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Phenotypic variation and 
thermoregulation of the human hand

Stephanie Payne

The hand has the highest surface area-to-volume ratio of any body part. This 

property offers the potential for the hand to serve an important function 

in thermoregulation through radiative heat loss. Theoretically, the capacity for heat loss 

may be influenced by hand and digit proportions, but the extent to which these 

proportions influence the hand’s radiative properties remains under-investigated. 

Although hand morphology is highly constrained by both integration and functional 

dexterity, phenotypic variation in hand and digit proportions across human 

populations shows broad ecogeographic patterns. These patterns have been 

associated with climate adaptation. However, the theory linking climate adaptation to 

such ecogeographic patterns is based on underlying assumptions relating to 

thermodynamic principles, which have not been tested in vivo. This study sought to 

determine the influence of hand and digit proportions on heat loss from the hands 

directly, the additional anthropometric factors that may affect this relationship, and the 

impact of variation in hand proportions on dexterity in the cold.  

The relationship between hand proportions and thermoregulation was 

tested through both laboratory-based investigation and a field study. The laboratory 

investigation assessed the relationship between hand proportions and heat loss, the 

influence of body size and composition on this relationship, and the effect of 

morphological variation on manual dexterity. Participants (N=114; 18-50 years of age), 

underwent a 3-minute ice-water hand-immersion.  
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Thermal imaging analysis was used to quantify heat loss. Hand and digit proportions 

were quantified using 2D and 3D scanning techniques; body size and composition were 

measured using established anthropometric methods and bio-impedance analysis. After 

accounting for body size, hand width, digit-to-palm length ratio, and skeletal muscle 

mass were significant predictors of heat loss from the hand, whilsthand length and fat 

mass were not. A separate set of participants (N=40) performed a Purdue pegboard 

dexterity test before and after the immersion test, which demonstrated that digit width 

alone negatively correlated with dexterity.  

The field study tested whether phenotypic variation in upper limb 

proportions could be attributed to cold adaptation or selection for dexterity in 

living populations exposed to significant energetic stress. Upper limb segment lengths 

were obtained from participants (N=254; 18-59 years of age), from highland and 

lowland regions of the Nepalese Himalayas using established anthropometric 

methods, and relative hand proportions were assessed in relation to severe energetic 

stress associated with life at high altitude. Relative to height, hand length and hand 

width were not reduced with altitude stress, whilst ulna length was. This indicates 

that cold adaptation is not shaping hand proportions in this case, although phenotypic 

variation in other limb segments may be attributed to cold adaptation or a thrifty 

phenotype mechanism. 

The current study provides empirical evidence to support the link between 

surface area-to-volume ratio, thermodynamic principles and ecogeographical patterns in 

human hand morphology. However, this research also demonstrates the complexity of the 

hand’s role in thermoregulation; not only do other factors such as muscularity affect 

heat loss from the hand, but hand morphology is also highly constrained by 

integration and dexterity. 
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Chapter 1  

Introduction 
“The hands are the instruments of man’s intelligence” 

Maria Montessori 

With its dextrous abilities, the human hand is often perceived as integral to our 

evolutionary success and cultural complexity (Lemelin and Schmitt, 2016). This popular 

view of the hand as a uniquely specialised tool has led to a considerable amount of 

scientific literature devoted to the discussion of the evolution of the human hand and its 

dexterity (Napier, 1960; Napier and Napier, 1967; Marzke and Shackly, 1986; Marzke and 

Marzke, 1987, 2000; Boesch and Boesch, 1993; Marzke and Wullstein, 1996; Tocheri et al., 

2003; Tocheri, 2007; Feix et al., 2015; Key and Dunmore, 2015; Kivell, 2015; Williams-

Hatala et al., 2018; Hu et al., 2018). Undoubtedly, many aspects of our behaviour are 

dependent on manual dexterity facilitated by our hand morphology, but only relatively 

recently have we acknowledged the developmental constraints that act on hand 

morphology and its integration into the body system (Rolian, 2009, 2016; Rolian et al., 

2010; Williams-Hatala, 2016). Furthermore, there is still a key aspect of hand biology that 

remains understudied by anthropologists: the role of the human hand in thermoregulation 

(Taylor, 2014). As the region of the body with the highest surface area-to-volume ratio, the 

hand has the greatest capacity to facilitate heat radiation per unit area (Molnar, 1957; 

Hirata et al., 1993). This property may have been relevant for hominin evolution in tropical 

regions, particularly with increasing demand for thermoregulatory adaptations with the 

evolution of long-distance running (Bramble and Lieberman, 2004; Steudel-Numbers et al., 

2007; Steudel-Numbers and Wall-Scheffler, 2009). However, as human populations 
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expanded into a more diverse range of climates, the radiative properties of the hand may 

have provided more of a challenge to maintaining temperature of the hand and digits 

(Wells and Stock, 2007). The development of clothing may have alleviated these 

thermoregulatory challenges to some extent (Gilligan, 2010), but the hands would have 

remained exposed during manual tasks essential for survival (Heus et al., 1995), and thus 

the hands would still be susceptible to heat loss and destabilising thermoregulation. 

The current study seeks to explore the concept of the hand as a thermoregulatory 

tool, and how this may relate to other aspects of hand biology, including dexterity and 

morphological integration. This thesis will begin by reviewing evidence for 

thermoregulatory adaptations in the human hand. 

1.1. Thermoregulatory adaptations of the human hand 

To fully utilise the high surface area-to-volume ratio for heat loss, enhancement of 

several thermoregulatory mechanisms has occurred in the hand to optimise evaporation, 

convection, conduction, and radiation (Taylor, 2014) (Figure 1.1). The hands are optimised 

for evaporative heat loss as they have the highest eccrine sweat gland density of any body 

part: approximately 500-600 eccrine glands per cm2 on the palms, compared to 

approximately 100 per cm2 on the torso and 200 per cm2 on the forehead (Taylor and 

Machado-Moreira, 2013). The sensitivity and sweat production rate of these palmar sweat 

glands increases with prolonged exposure to high environmental temperature, while torso 

sweat glands decrease in relative sweat rate (Allan and Wilson, 1971; Ethan et al., 1971; 

Chen and Elizondo, 1974; Buono, 2000). This thermoregulatory shift in sweat rate from the 

torso to the peripheries is an essential acclimatisation trait in hot climates, enabling the 

hands to be largely responsible for thermoregulatory heat loss (Périard et al., 2015). Sweat 

evaporation is more effective with constant air flow (Adams et al., 1992);  the swing of the 

arms during bipedal locomotion promotes air flow around the upper limbs, thus further 
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promoting heat loss from the hands, which have the greatest displacement value, and 

therefore the greatest air flow rate surrounding them (Cross et al., 2008). The combination 

of high surface area-to-volume ratio, arm swing, and high sweat gland density optimises 

the hands for radiative, evaporative, and convective heat loss, demonstrating the crucial 

role the hands play in thermoregulation. 

 

Figure 1.1 Summary of thermoregulatory adaptations of the hand 

In addition to radiation, evaporation, and convection, the hands are also able to 

change their heat-conducting capacities through vasoregulation, or dynamic blood flow. 

Changes in blood flow to the surface of the hand will alter the extent of heat conduction to 

the peripheries (Johnson and Proppe, 1996), and thus can be an effective form of 

thermoregulation. If a change in core body temperature or skin temperature is detected by 

the sensory nervous system,  sympathetic vasoregulator nerves are activated to alter the 

contraction of smooth muscle around the vessels leading to a dense network of papillary 

capillaries at the surface of the skin in the extremities (Zhong et al., 2000; Standring, 2008; 

Charkoudian, 2010). Relaxation of smooth muscle around the vessels leading to these 
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capillaries can increase blood flow through the digits up to 8 L/min (Rowell, 1974; Johnson 

and Proppe, 1996), allowing transmission of heat via the blood to the peripheries, which is 

then conducted to the surface of the skin and removed via radiation or evaporation. 

Conversely, constriction of the smooth muscle results in a flow rate close to zero in the 

digits, significantly reducing heat flux from the body’s outer shell (Sessler et al., 1990; 

Charkoudian, 2010). In cold conditions, this vasoregulation is even more nuanced to 

prevent potential injury from long-term reduced blood flow in the extremities; a post-

vasoconstriction response can occur known as cold-induced vasodilatation (CIVD) (Lewis, 

1930; Daanen, 2003), which allows a rapid temporary influx of blood into the peripheral 

tissues to increase digit temperature and prevent long-term cold injury, such as frostbite 

(Fox and Wyatt, 1962; Bergersen et al., 1999). Overall, this complex vasoregulation is 

another key adaptation which exploits the high surface area-to-volume ratio of the hand, 

further augmenting the essential role of the hands in thermoregulation.  

Thus, the hand is, theoretically, of great adaptive value for thermoregulation, 

particularly in hot climates, due to its radiative, evaporative and convective capacities. 

However, human populations span a vast range of climates (Wells and Stock, 2007), and 

thus differential adaptations are required to maintain thermal balance across different 

populations. Other than physiological acclimatisation of sweating and vasoregulation 

mechanisms, human populations may have evolved optimal hand proportions for their 

environment.  

1.2. Ecogeographical patterns in human hand morphology 

Research based upon the quantification of hand proportions in skeletal remains has 

indicated that there are ecogeographic patterns in hand morphology, whereby the first 

metacarpal (Betti et al., 2015), and second metacarpal (Lazenby and Smashnuk, 1999), are 

shorter relative to body size in populations inhabiting cold regions compared to those 
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inhabiting temperate and tropical regions. Lazenby and Smashnuk (1999) observed that 

the second metacarpal of an Inuit population from Southampton Island was significantly 

shorter in length and broader at the base relative to a sample from European settlers. 

Similarly, Betti et al. (2015) found that the ratio between the maximum breadth of the 

distal epiphysis and maximum length of the first metacarpal increased with decreasing 

minimum temperature across skeletal populations from across the globe. These findings 

correspond to patterns observed in both radial and tibial proportions, where reduction in 

length of the distal limb segment is associated with lower environmental temperatures 

(Ruff, 1994; Holliday, 1999; Holliday and Ruff, 2001; Temple and Matsumura, 2011). These 

ecogeographical patterns found in limb morphology, in conjunction with patterns of 

increasing body mass (Roberts, 1953; Ruff, 1994; Katzmarzyk and Leonard, 1998), and 

body breadth with decreasing environmental temperature (Ruff, 1993, 1994; Holliday, 

1997a; Holliday and Hilton, 2010), have been used as evidence to support the theory of 

cold adaptation, based on the ecogeographical rules laid out by Bergmann1 and Allen 

(Bergmann, 1847; Allen, 1877). These ecogeographical rules associate climate with body 

size (Bergmann, 1847) and limb proportions (Allen, 1877), based on the physical laws of 

thermodynamics; a body with a large surface area-to-volume ratio will result in increased 

heat loss to its surroundings (Scholander et al., 1950). As the hand is the body element with 

the largest surface area-to-volume ratio, it has the greatest potential for heat loss, and thus 

may have a strong thermoregulatory selective pressure acting upon it. Variation in the first 

and second metacarpal, do appear to align with Allen’s rule (Lazenby and Smashnuk, 1999; 

Betti et al., 2015). However, the conclusion that digit proportions are shaped by climate 

should be treated with caution as the presence of these ecogeographical patterns in Homo 

                                                        
1 A translation by Carl Godfrey (2004) of Bergmann’s (1847) Über die Verhältnisse der Wärmeökonomie der 
Thiere zu ihrer Größe was used during the writing of this thesis. The original text is cited throughout. 
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sapiens has been widely questioned. Although evidence for these ecogeographical patterns 

is seen in many species across mammals (Paterson, 1996; Ashton et al., 2000; Blackburn 

and Hawkins, 2004; Blackburn et al., 2008), birds (Ashton, 2002; Meiri and Dayan, 2003), 

and some reptiles (Ashton and Feldman, 2003), patterns previously observed in humans 

are less pronounced than previously thought (Foster and Collard, 2013).  

1.2.1. Limitations surrounding climate adaptation assumptions 

Since Roberts’ (1953) seminal work presenting evidence for Bergmann’s rule in 

humans, further investigation has brought the concept of human climate adaptation under 

scrutiny. Foster and Collard (2013) demonstrated that Bergmann’s rule was only 

applicable when populations span at least of 50˚ latitude or a 30˚C temperature difference. 

Furthermore, they discovered a sampling bias towards the northern hemisphere so that 

when data from each hemisphere were analysed separately, Bergmann’s rule did not apply 

to southern hemisphere populations.  Further statistical analysis has weakened support for 

Bergmann’s rule; when assessing limb proportions and body breadth, multivariate cluster 

analysis groups Inuit and European populations together relative to sub-Saharan African 

groups, despite Inuit experiencing significantly lower temperatures than Europeans 

(Holliday and Hilton, 2010). The ambiguity of ecogeographic patterns in humans is likely to 

stem from multiple causes: migratory events often complicate patterns in limb proportions 

based on geographic position (Holliday, 1997a, 1999); secular trends in nutrition 

(Katzmarzyk and Leonard, 1998), particularly nutrition availability during early life, 

appear to be stronger predictors of body size and shape than climate variables (Hadley and 

Hruschka, 2014; Stulp and Barrett, 2014); finally increased use of clothing over time has 

reduced climate-associated trends in body variables, such as the narrowing of the femoral 

neck shaft angle with decreasing minimum temperature (Gilligan et al., 2013). Analysis of 

population structure indicates that genetic drift can explain a considerable amount of 
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variation in human body shape and limb proportions, potentially more so than climatic 

selective pressures (Roseman and Auerbach, 2015; Savell et al., 2016). Genetic drift over 

increasing geographic distance can produce a gradient in a given trait, which is entirely 

unrelated to selective forces; the pattern produced is known as spatial autocorrelation, and 

is observed in genetic data (Relethford, 2009), cranial anatomy (Harvati and Weaver, 2006; 

Manica et al., 2007; von Cramon-Taubadel and Lycett, 2008; Betti et al., 2009), pelvic 

anatomy (Betti et al., 2013), and long bone morphometrics (Savell et al., 2016).  

Although spatial autocorrelation is not observed when investigating phenotypic 

variation in first metacarpal proportions (Betti et al., 2015), it brings to light the potential 

role of genetics in shaping patterns in hand proportions. The hands are morphologically 

integrated into the whole body system (Rolian, 2009), and may be pleiotropically 

constrained by coevolution with the human foot through their joint developmental origin 

and control via Homeobox genes (Rolian et al., 2010). Analysis of phenotypic covariation 

indicates that strong selection acting to shorten the lateral phalanges of the foot for 

bipedalism facilitated changes in hand phalanges through genetic pleiotropic effects, 

resulting from a single gene controlling extremity traits in multiple appendages (Rolian et 

al., 2010). The similarity in developmental architecture between the hands and feet 

provides support for this theory. Hand morphology may well be an “evolutionary spandrel” 

(Gould and Lewontin, 1979), whereby changes in the foot have also led to changes in the 

hand as a result of pleiotropy, and hand morphology has since been exapted for tool use 

and other manual tasks (Gould and Vrba, 1982).  Whether the hands are exapted or not, 

there appear to be significant developmental constraints which limit variation in human 

hand proportions.  

Indeed, hand proportions are highly conserved even when exposed to significant 

energetic stress during development (Pomeroy et al., 2012). This has been explained as a 
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plastic response to limited energy during growth, whereby energetic investment is 

prioritised in body elements adapted for specific important behaviours, such as the hands 

for dexterity, at the expense of other limb segments. Whilst this particular pattern has only 

been found in one energetically stressed population (Pomeroy et al., 2012), and requires 

further testing, it is indicative of the preservation of hand dimensions even under 

developmental energetic stress. This suggests that the morphology of the hand is highly 

conserved and that minimal intraspecific variation occurs through energetic limitations 

during development. 

Intraspecific phenotypic variation in human hand morphology that does occur is 

either created by nuances in gene expression (Wray, 2007; Carroll, 2008), or responses to 

developmental environment independent of energy availability. For example, differences in 

steroid hormone exposure during growth and development are also known to influence 

digit dimensions (Ecker, 1875; George, 1930; Manning et al., 1998; McFadden and Shubel, 

2002; Lutchmaya et al., 2004). Hand proportions may also change through plastic 

responses to the habitual use of the hand throughout life. For example, hand width is seen 

to differ with handedness (Krishan and Sharma, 2007), and long-term manual use can 

significantly increase the size of muscle tissue within the palm, again resulting in increases 

in hand width within an individual’s lifetime (Saengchaiya and Bunterngchit, 2004; Furuya 

et al., 2011). Changes in hand morphology as a response to tool use and biomechanical 

loading may also have the potential to occur over a longer, multi-generational time frame 

(Williams-Hatala et al., 2018). Thus, there are many factors to account for when attempting 

to determine the origin of phenotypic variation in the human hand. Whether climate 

adaptation does play a role here remains to be seen. 
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1.3. Testing assumptions surrounding climate adaptation 

The application of climate adaptation theory to the human hand makes a key 

assumption – that the hand is a passively radiating object where heat loss is directly 

proportional to surface area-to-volume ratio (Scholander et al., 1950). However, it is 

unlikely that heat loss from the hand will follow a straightforward surface area-to-volume 

ratio rule; the physiological thermoregulatory mechanisms (Figure 1.1) will significantly 

alter the hand’s heat loss capacities in hot and cold conditions, which may negate any 

influence that surface area-to-volume ratio alone would have (Steegmann, 2007). Thus an 

essential assumption surrounding the applicability of climate adaptation theory to the 

hands remains to be tested: do hand proportions directly influence heat loss from the 

hand?  

1.3.1. A whole-body system approach 

Tackling this question requires a biological systems approach, as the hand is not an 

isolated entity, but an element integrated into a complex body system. When testing heat 

loss from the hand, factors affecting whole-body thermoregulation, such as thermogenesis 

and insulation, should also be taken into account to assess their influence on hand 

temperature. Thermal balance is influenced by the insulative and thermogenic properties 

of different tissues (Fournet et al., 2013; Marins et al., 2014), and thus heat flux throughout 

the body, including the extremities, may be affected by body composition. 

When examining heat loss from the extremities, body size may also be an important 

influence, based on the thermodynamic assumptions used to explain cold adaptation 

theory, as discussed previously (Ruff, 1994). In turn, body size may affect heat flux in the 

extremities (Havenith, 2001; Daanen, 2003; Chudecka, 2013), due to the dynamic nature of 

the whole-body system. Understanding the role of whole-body properties in heat loss from 
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the extremities will, in turn, inform analysis of the relationships between hand temperature 

and other manual properties. 

1.3.2. Implications for dexterity 

Establishing the influences of body size, body composition, and hand dimensions on 

heat loss from the hand during cold exposure will have implications for understanding 

dexterity in cold conditions. Dexterity is known to be significantly compromised during 

cold exposure (Horvath and Freedman, 1947; Teichner, 1957; Gaydos and Dusek, 1958; 

Clark, 1961). However, the influence of hand proportions on retention of dextrous abilities 

in cold conditions is currently unknown. Understanding this relationship will provide 

insight into the validity of cold adaptation theory applied to the hands, as the hands will 

likely be exposed when carrying out dextrous tasks, and therefore selection may act to 

promote the retention of dexterity for essential survival tasks.  

1.3.3. Implications for interpreting hominin morphology 

Understanding the relationship between hand proportions and dexterity in cold 

conditions may provide insight into the dextrous abilities of extinct hominins in challenging 

climatic conditions. As we become increasingly aware of the dextrous capacities of extinct 

hominins (Niewoehner et al., 2003; Niewoehner, 2006; Feix et al., 2015; Skinner et al., 

2015; Hoffmann et al., 2018), it is important to be able to put this into a climatic context. 

Assessing whether morphology may have related to dexterity in specific climatic conditions 

in extinct hominins is only possible by considering modern day analogues. However, these 

inferences should also be treated with caution as it is not possible to infer the physiological 

adaptations extinct populations may have had, and physiology plays a significant role in 

dexterity changes in cold conditions. 



28 

1.4. Summary 

In summary, phenotypic variation in the human hand is relatively constrained, both 

by potential morphological integration with the feet and upper limb, and also by function in 

the form of dexterity. Some of the limited variation in elements of the human hand has 

been attributed to cold adaptation, but this has yet to be tested in vivo. Understanding the 

relationship between hand and digit dimensions and heat loss from the hand as part of a 

dynamic body system will test whether the principles underlying cold adaptation theory 

are applicable to the hand. This may also have implications for interpreting the 

maintenance of dexterity in cold conditions, and whether this played a possible role in 

shaping the hands of extinct and extant hominins. 

1.5. Purpose and Outline of the current study 

1.5.1. Purpose 

The purpose of the current study is to assess whether hand and digit proportions 

influence heat loss from the hands in vivo, to determine whether the underlying 

assumptions of Allen’s rule are applicable to the hands. This will be observed in the 

broader context of the whole-body system, and how body size and body composition may 

affect heat loss from the hands. In turn, the implications for dexterity and heat loss are 

considered. Whether ecogeographical patterns can be found in a population exposed to 

multiple stresses will also be tested, to assess the applicability of cold adaptation theory in 

a multi-stress context. 

1.5.2. Outline 

This thesis, as a collective whole, investigates phenotypic variation of the human 

hand in light of cold adaptation theory. It is structured in a series of distinct publications, 

each with its own introduction, results, and discussion. In each chapter, the introduction 
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expands upon the brief introduction found here (Chapter 1), which has outlined the key 

rationale for this research. The current chapter is followed by two discrete sections. Part I 

(Chapters 2-5) reports on a series of laboratory experiments investigating in vivo heat loss 

from the hand and its associations with hand proportions, body size and composition, 

and dexterity (Figure 1.2); Part II (Chapter 6) reports on a field study assessing 

phenotypic variation in Himalayan populations and how this may be attributed to 

cold adaptation or other forms of energetic stress. Parts I and II are followed by a 

general discussion (Chapter 7), which summarises the findings and considers the 

broader implications of this research.  

Figure 1.2 Flowchart of thesis structure and key research questions 
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1.5.3. Part I – Testing heat loss from the hand in vivo 

Part I reports the findings of the laboratory investigation on heat loss from the hand 

and the factors that affect it in vivo.  The methods for all the laboratory results chapters 

(Chapters 3-5) are collated in Chapter 2. How data from the separate studies were analysed 

is detailed within each individual results chapter. 

Chapter 3 reports on the influence of body size and body composition on heat loss 

from the hands during severe cold exposure. As the body is a dynamic system with both 

thermogenic and insulative tissues, the relative influence of both body size and body 

composition on maintaining hand temperature during immersion was assessed. Thermal 

imaging was used to determine heat loss during a 3-minute ice-water hand immersion test 

carried out on 114 volunteers (female=63, male=51). Established anthropometric 

measures were used to quantify body size, and bioelectrical impedance analysis 

determined body composition through measurement of skeletal muscle mass and fat mass. 

This study has potential significance for understanding which individuals are more 

susceptible to cold injury, based on their body size and composition. The implications for 

our interpretation of phenotypic variation in body size and composition across populations 

and whether that relates to thermoregulation are also discussed. 

Chapter 4 tackles the key assumption of Allen’s rule, testing whether 

ecogeographical patterns seen in hand proportions with heat loss directly. Using the same 

sample as chapter 3, the influence of hand and digit dimensions on heat loss during ice-

water hand immersion was evaluated. 2D and 3D scanning techniques were used to assess 

hand and digit dimensions. Thermal imaging analysis was used to quantify heat loss during 

a 3-minute ice-water immersion of the hands. This section of the study has significant 

implications for the applicability of Allen’s rule to the hands. 
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Chapter 5 evaluates the relationship between hand and digit dimensions and 

dexterity after severe cold exposure. As wide hands are hypothesised to lose less heat than 

narrow hands, and narrow digits are associated with greater dexterity, this study aims to 

test whether wider hands or narrower digits would protect dexterity in the cold. 

Participants (N=40) carried out the Purdue pegboard test before and after the 3-minute 

ice-water hand-immersion. Their hand length, hand width, and digit lengths were 

measured using standard anthropometric methods. This element of the study tests 

whether dexterity in cold conditions reflects patterns seen at room temperatures in 

dexterity relating to digit proportions. This may have important implications for 

interpreting the morphology of both extinct and extant hominins. 

1.5.4. Part II – Investigating environmental stresses and phenotypic 
variation in Himalayan populations  

Part II comprises one chapter (Chapter 6) detailing an individual field study with its 

own introduction, methods, results and discussion. Chapter 6 documents a field study 

carried out in the Nepalese Himalayas, assessing how the multi-stress environment of high 

altitude manifests in phenotypic variation in the local populations. The multi-stress 

environment of high altitude has been associated with growth deficits in humans, 

particularly in zeugopod elements (forearm, lower leg). This pattern has been observed in 

Andeans but has yet to be tested in other high altitude populations. In Himalayan 

populations, other factors, such as cold stress, may shape limb proportions. This field study 

investigated whether relative upper limb proportions of Himalayan adults (n=254) differ 

between highland and lowland populations and whether cold adaptation or an energetic 

stress response may be acting here. Height, weight, humerus length, ulna length, hand 

length, and hand width were measured using standard methods. This field study is 

important for assessing whether cold adaptation can be seen in multi-stress environments. 
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Chapter 7 provides a general discussion of the results of both the laboratory and 

field investigations. This section discusses noteworthy elements of the study and the 

implications of these results for our understanding of the selection pressures on the human 

hand, and how thermoregulation is one of the many contributing factors to phenotypic 

variation in the human hand. 
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PART I – Laboratory Investigation 
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Chapter 2  

Laboratory Methods 
The following methods apply to results Chapters 3-5.  

2.1. Ethics 

Participation was voluntary and unpaid, and the study conducted according to 

accepted international ethical standards for research involving human subjects 

(Declaration of Helsinki) (World Medical Association, 2013). The study was approved by 

the Cambridge Human Biology Ethics Committee (HBREC.2016.022). Written informed 

consent was obtained from all participants (ethics approval detailed in Appendix 1).  

2.2. Sample 

Participants were students and residents in Cambridge, UK, and were recruited via 

email announcement to mailing lists of University sports societies and individual 

Cambridge colleges (recruitment detailed in Appendix 1). As ancestry is known to affect 

vasoregulation (Farnell et al., 2008; Lee et al., 2013; Maley et al., 2014; Cheung, 2015), all 

participants were of European origin (self-identified).  Participants were excluded if they 

were smokers or had any conditions known to affect peripheral circulation: Type I or II 

diabetes, prior cold injury or hypothermia, cold-related asthma, or Raynaud’s disease.  As 

Raynaud’s disease is often undiagnosed, each volunteer was asked if they regularly 

experienced the following symptoms in the fingers: severe cold, white or blue 

discolouration, numbness or “pins and needles”, stinging or throbbing pain. If two or more 

of the symptoms were experienced, then the volunteer was excluded from the study, to 

minimise influence of unknown circulatory variation. All participants were right-handed, to 

negate any differences handedness might have on the experiment. The information relating 
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to handedness, health conditions, and ancestry was obtained via a screening questionnaire 

(see Appendix 1).  Participants refrained from consuming caffeinated drinks and alcohol 12 

hours before the study. Participants wore uniform garments to minimise the effect of 

differential clothing during the study. 

2.2.1. Thermoregulatory study (Chapters 3 and 4) 

A sample of 114 participants (Female=63, Male=51), aged 18-48, took part in the 

study at the Department of Archaeology at the University of Cambridge. Individual 

Cambridge colleges and sports societies were approached to obtain a sample with a range 

of body sizes and body compositions, including rowing, cycling, gymnastics, basketball, 

powerlifting, as well as relatively sedentary individuals. Several participants withdrew at 

certain points during the study2. A total of 95 participants completed every part of the 

study. As this study was dependent on individuals deciding to take part voluntarily, this 

study was based on convenience sampling, which may have caused potential bias. This 

would predominantly be volunteer bias; those with an interest in their own 

thermoregulation, body composition or other variables may be more likely to participate, 

which may result in data skewing. Potential bias may also result from who the investigator 

was able to contact. The email lists to Cambridge colleges and sports societies may not be 

                                                        
2 Five participants (two women, three men) withdrew after 6 minutes of post-

immersion monitoring due to discomfort. Two participants (both female) chose not carry 

out body composition analysis for personal reasons. One participant (female) did not have 

any hand measurements taken due to an electrical fault on the day. Eight participants (3 

women, 5 men) chose to not undergo 3D hand scanning for health purposes as it involved 

flashing lights from the scanner. 
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representative of the entire Cambridge community, particularly as most volunteers were 

from sports societies, and thus the body types and fitness of participants may not be 

representative of the broader community. 

2.2.2. Dexterity Study (Chapter 5) 

A separate sample of 40 participants (Female=25, Male=15), aged 19-47, took part 

in the study. Students and staff of the University of Cambridge were asked to participate via 

email through individual college mailing lists. Whilst age is known to affect dexterity 

(Carmeli et al., 2003), this effect is only considered significant on average beyond the age of 

65 (Dayanidhi and Valero-Cuevas, 2014); as participants were below the age of 65, they 

were not separated into age groups. Participants with a relatively sedentary lifestyle and 

without notably dextrous hobbies (such as piano-playing, sewing) were chosen to ensure 

that participants did not have significantly different dexterity experience. As this study was 

dependent on individuals deciding to take part voluntarily, this study was based on 

convenience sampling, which may have caused potential bias, as in the thermoregulatory 

study (Chapters 3 and 4). However, this study recruited participants from college mailing 

lists only, and thus was less likely to have a bias towards individuals actively partaking in 

sport. 

2.3. Anthropometry 

2.3.1. Whole-body anthropometry (Chapters 3-5) 

Height was measured unshod to the nearest 0.1cm using a SECA-274 stadiometer 

(SECA Ltd, Birmingham, UK). Weight, fat mass, and skeletal muscle mass were measured to 

the nearest 0.1 kg using a SECA mBCA-515 segmental body composition analyser (SECA 

Ltd, Birmingham, UK), which uses bioelectrical impedance. Skeletal muscle mass here is 

defined as all muscle mass in the body, excluding smooth muscle mass, and is calculated 
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using a standardised algorithm from the bioelectrical impedance scores (Bosy-Westphal et 

al., 2008, 2017). Relative fat mass and relative skeletal muscle mass were calculated as a 

percentage of total body weight. 

2.3.2. Hand anthropometry (Chapters 4 and 5) 

Two 2-dimensional scans were taken of the left hand with palm facing downwards 

with uniform pressure on the scanner, the first image with digits spread as wide as possible 

(Figure 2.1A), the second with fingers together (Figure 2.1B), using a Canoscan Lide 600F 

(Canon Ltd, UK).  The left hand, which was nondominant in this study as all participants 

were right-handed, was chosen because vasculature and vasoregulation is known to vary to 

a greater degree in the dominant hand (Kleinert et al., 1989). Each scan was processed 

using ImageJ image processing software. In the thermoregulatory study (Chapters 3 and 4), 

the first and third digit lengths and widths, hand length and hand width were measured to 

the nearest mm. The third digit was chosen for investigation as it is the longest digit, the 

distal end of which forms the terminal landmark of the hand length measurement (Figure 

2.1), and so can provide a direct ratio with palm length. The first digit was also chosen for 

investigation, as it develops via a different sequence of Hoxd gene expression in 

comparison to the other digits (Montavon et al., 2008), and thus has greater potential to 

have significantly different proportions. In the dexterity investigation (Chapter 5), the 

second digit was also measured as the second and first digit are essential for creating the 

precision pinch grips unique to human dexterity (Kivell et al., 2016). Measurements from 

2-dimensional scans yield slightly lower values than traditional anthropometric methods 

(Manning et al., 2005), but this error is minimal, with photocopies yielding an average of 

0.31mm greater digit length than when measuring directly from the hand for digits 2-5. 

The photocopy method enabled significant time-saving for participants and allowed for 

repeatability of measurements for intra-observer error tests.  
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Figure 2.1 Examples of images used for hand measurements. Panel A: 2D photocopy with digits spread. S=first 
digit length, T= first digit width, U=2nd digit length, V=2nd digit width, W=third digit length, X=third digit width; 
Panel B: 2D photocopy with digits together. Y= hand length, Z=hand width. 

Hand length was measured as the linear distance between the most anterior 

projection of the third digit to the mid-point on the wrist crease (between the proximal 

edge of the triquetrum and the proximal edge of the trapezium). Hand width was the linear 

distance between the radial side of the second metacarpophalangeal joint to the ulnar side 

of the fifth metacarpophalangeal joint. First digit length was measured as the linear 

distance between the most anterior projection of the first digit and the mid-point between 

the distal edge of the first metacarpophalangeal joint and the skin crease between the first 

and second digit. First digit width was measured as the greatest linear distance at the joint 

between the proximal and distal phalanges. The first metacarpophalangeal joint was not 

used to measure width to avoid variation in skin webbing across the joint affecting this 

measurement. Second and third digit lengths were measured as the linear distance 

between the most anterior projection of the digit and the mid-point of the 
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metacarpophalangeal joint. Second and third digit widths were measured as the greater 

linear distance at the joint between the proximal and middle phalanges.  

Hand surface area and volume were measured to the nearest mm2 and mm3  

respectively using an Artec Eva 3D scanner (Artec Ltd., USA); for the scan, the participant 

was seated with the left elbow resting on a bench and supported by foam padding, to 

prevent movement during the scan. Artec Studio software version 10.0 was then used to 

estimate both hand surface area and hand volume from the horizontal slice between the 

radial styloid process and the ulnar styloid process (Figure 2.2).  

 

Figure 2.2 3D hand scan used to measure surface area and volume of hand 

A precision test was performed to determine intra-observer error on both the 2D 

and 3D hand scan images. Five random images of each scan type were selected and 

processed on five separate days, with a minimum of 24 hours between re-measurement. 
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Intra-observer mean error across all measurements was 1.38mm, and thus considered to 

be within accepted standards for all measurements (R>0.9; rTEM<10%) (Ulijaszek and 

Kerr, 1999). 

2.4. Experimental protocol (Chapters 3-5) 

Room temperature and humidity were controlled (25˚C, 40%). After a 30-minute 

acclimation period where participants were seated and at rest, participants had a thermal 

image taken of the dorsal surface of their hands from a seated position while resting their 

palms on an insulated surface with fingers together. Whilst the dorsal regions of the digits 

may marginally differ in temperature from that of the finger pads used in the dexterity test, 

images of the dorsal side were taken for ease of positioning for participants.  Thermal 

images were taken using a FLIR T460 infrared camera (FLIR Systems Inc., USA).  

2.4.1. Thermoregulatory Study (Chapters 3 and 4) 

In the thermoregulatory study, participants then put on non-latex surgical gloves to 

avoid evaporative cooling from wet skin during the rewarming period. Whilst the non-latex 

gloves may have acted as a thin barrier to heat loss, this effect would be small in 

comparison to the considerable cooling resulting from wet skin (Geng, 2001), which may 

have reduced reheating considerably. Participants immersed both of their hands in 0˚C ice 

water for three minutes. This time period was chosen as this is shorter than the onset of 

CIVD (Adams and Smith, 1962; Takeoka et al., 1993; Daanen and van Ruiten, 2000; Tyler et 

al., 2015). Both hands were immersed to avoid variation in blood flow between hands 

when only one is immersed, as reported by Mekjavic et al. (2008). Hands were immersed to 

the distal edge of the ulnar styloid process, which was marked with a waterproof marker 

on the gloves. After immersion, the gloves were removed, and hands returned to the 

original imaging position and a second thermal image was taken (zero minutes after 
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immersion).  Thermal images were then taken at two-minute intervals for ten minutes. 

Core temperature was monitored as a safety precaution immediately before immersion and 

in the final minute of immersion using an infrared tympanic thermometer (Braun 

Thermoscan IRT 3020EE- Braun GmBH, Germany).  

2.4.2.  Dexterity Study (Chapter 5) 

In the dexterity study, after the first thermal image was taken, participants then 

undertook the Purdue pegboard dexterity test (Figure 2.3A). This is an established 

dexterity test which is widely used in clinical and physiological studies (Daanen, 2009). 

The assembly version of the test was used in this study, which tests the ability to assemble 

washers and pins using fine finger dexterity in both hands (Figure 2.3B & C)(Parkway and 

Box, 2002; Gallus and Mathiowetz, 2003; Yancosek and Howell, 2009). The assembly test 

was chosen for several reasons: its ability to measure the completion of thumb-finger 

precision pinch grips in quick succession, which may be required for certain survival tasks 

such as threading, sewing, delicate preparation of food, treating small wounds (Fleishman 

and Ellison, 1962; Marzke, 1997); its ease of repeatability; its comparability to 

other studies (Gallus and Mathiowetz, 2003; Daanen, 2009), and the likelihood of 

producing a significant range in dexterity values. Whilst other tests carried out on the 

Purdue pegboard last only 30 seconds, which is often insufficient to distinguish any 

differences in dexterity within or between individuals, the assembly test is carried out 

over 60 seconds, increasing the time period for which dextrous abilities can be 

established.  In the assembly test, the aim was to build as many assemblages of a specific 

pin-washer-collar-washer configuration in one minute, timed by a stop watch. Any digits 

from either hand could be used to make each assemblage. Assemblages had to be 

completed one at a time. 
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A) 

B) 

C) 

Figure 2.3 A) Image of a Purdue Pegboard B) Image of pins, collars, and washers C) Image of Purdue pegboard 
Assembly test 
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An assemblage was made by placing a pin in any hole of the pegboard, followed by placing a 

washer over the pin, a collar over the pin, and another washer other the pin.  After one 

minute, the n mber of pins,washers, and collars placed in correct positions were totalled to 

give a score representative of fine finger dexterity using both hands. Each participant was 

given three practice runs to familiarise themselves with the dexterity task, before 

carrying out the official pre-immersion test, after which a second thermal image was 

taken. 

Then the participants carried out the immersion stage of the experiment. As with 

the thermoregulatory investigation, participants put on non-latex surgical gloves and then 

immersed their hands in 0˚C ice water for 3 minutes. Core temperature was monitored as a 

safety precaution immediately before immersion and in the final minute of immersion 

using an infrared tympanic thermometer (Braun Thermoscan IRT 3020EE- Braun GmBH, 

Germany).  After immersion, the gloves were removed, and a third thermal image was 

taken immediately (zero minutes after immersion). The participant then repeated the 

dexterity test to measure post-immersion dexterity, and then a final thermal image was 

taken.  

2.5. Thermal image analysis (Chapters 3-5) 

Thermal images were analysed using FLIR Tools+ software (FLIR Systems Inc., 

USA). For each thermal image, the average temperature of each digit from the cuticle base 

to the metacarpophalangeal joint was measured, and then temperature was averaged over 

the five digits of the left hand to produce average digit temperature at each time point 

(Figure 2.4). Digit temperature was averaged across the length of the finger because the 

nail bed was the landmark most consistently and reliably identifiable on thermal 

images. 
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Though blood supply differs along the length of the finger (Ikeda et al., 1988; Rodriguez-

Niedenfuhr et al., 2001), this approach was used to enhance reliability of landmark location 

on the digits. All temperatures were measured to the nearest 0.01˚C. A precision test was 

performed to determine intra-observer error on thermal image analysis. Five random images 

were selected and processed on five separate days, with a minimum of 24 hours between re-

measurement. Intra-observer mean error across all measurements was 0.24˚C, was 

determined to be within accepted standards for all measurements (R > 0.9; rTEM < 1%) 

(Ulijaszek and Kerr, 1999). 

Figure 2.4 Example of Thermal Image Analysis. Li=Line; Red triangle= Highest temperature point on the line; 
Blue triangle= Lowest temperature point on the line 
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Chapter 3 

Body size and body composition effects 
on heat loss from the hands during 

severe cold exposure 
This chapter was published online in the American Journal of Physical Anthropology 

on 11 February 2018 (Payne et al., 2018a). An expanded literature review has been added 

for the purpose of completeness in this thesis. 

Objectives: This study investigated the influence of body size and composition on 

maintaining hand temperature during severe cold exposure. The hand’s high surface area-

to-volume ratio predisposes the hand to heat loss, increasing the risk of cold injury and 

even hypothermia, which are major selective pressures in cold environments. Whilst 

vasoregulation may reduce heat loss from the hand, the effect of body form, tissue 

thermogenesis, and body insulation on heat loss is unknown.  

Materials and Methods: Thermal imaging was used to determine heat loss during a 

three-minute ice-water hand immersion test carried out on 114 volunteers (Female=63, 

Male=51). Established anthropometric measures were used to quantify body size, and 

bioelectrical impedance analysis determined skeletal muscle mass and fat mass.  

Results: Skeletal muscle mass relative to weight was a highly significant predictor 

of heat loss, while fat mass, height, and weight were not. Body composition and body size 

had little to no significant influence during rewarming after immersion. 

Discussion: The thermogenic properties of muscle mass support maintenance of 

hand temperature during severe cold exposure. The findings here suggest that muscular 
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individuals are less susceptible to heat loss and cold injury, and may be better at manual 

tasks in cold conditions than non-muscular individuals. 

3.1. Introduction 

Population dispersals to regions of high latitude and altitude exposed humans to 

significant cold stress (Wells and Stock, 2007). To reduce the risk of death by hypothermia 

or cold injury, a range of thermoregulatory traits have developed to generate heat or 

minimise heat loss in cold environments (Parsons, 2014): shivering and non-shivering 

thermogenesis, increased basal metabolic rate, and dynamic vasomotor control. 

Furthermore, the development of clothing would have enabled expansion into even colder 

climates (Gilligan, 2010). Despite the body being protected from the cold, the hands would 

have remained exposed during manual tasks essential for survival (Heus et al., 1995), and 

thus the hands would still be at risk of cold injury. The hands have a large surface area-to-

volume ratio, which is beneficial for radiation, but potentially challenging to maintaining 

thermal balance in cold conditions (Savage and Brengelmann, 1996). Whilst dynamic 

vasomotor control in the hand would be essential in cold conditions, the thermodynamic 

properties of the body are likely to influence extremity temperature and dexterity, but this 

relationship has yet to be explored. The current study investigates the influence of body 

size and body composition on heat loss and rewarming in the hand, to determine whether 

they affect hand temperature and dexterity in cold conditions. 

In cold environments, the high surface area-to-volume ratio of the hand potentially 

puts the hand at risk of excess heat loss, which may lead to cold injury, and a wasteful loss 

of valuable body heat.  A direct relationship between hand size and core body temperature 

has been observed in Peruvian Quechua (Weitz, 1969), demonstrating the hand surface 

area-to-volume ratio may associate with whole-body thermoregulation. Whilst it is difficult 

to determine whether heat loss from the hand would occur to the extent of causing whole-
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body thermal imbalance and potentially fatal hypothermia, the hands to indeed have 

vasoregulatory mechanisms to reduce heat loss from the hands, indicating that such 

mechanisms do indeed have some benefit to our survival. (Taylor, 2014). These dynamic 

vasomotor responses include vasoconstriction and CIVD (Lewis, 1930; Cheung, 2015). In 

groups living in cold regions, vasomotor responses are amplified in one way or another 

depending on the response, as summarised by Frisancho (1993). Either vasoconstriction 

occurs to a greater degree, as seen in high altitude-dwelling Himalayan groups (Takeoka et 

al., 1993),  or the CIVD response has a greater pulse amplitude, as seen in highland 

Peruvians (Little and Hanna, 1977),  and high latitude-dwelling Inuit and Athapascan 

groups (Brown et al., 1953; Page and Brown, 1953; Meehan, 1955; Elsner et al., 1960; 

Miller and Irving, 1962; Steegmann, 1977). Increasing evidence suggests that variation 

across the globe in vasomotor responses appear to result from differences in 

acclimatisation (Cheung and Daanen, 2012); for instance, no differences were found in 

vasomotor responses between Artic natives and those of tropical origin after daily 

exposure to cold over a period of 7 weeks (Purkayastha et al., 1992). Developmental 

acclimatisation is also thought to occur, indicated by cross-sectional studies demonstrating 

increased CIVD amplitude with age (Little, 1976; Little and Hanna, 1977). Whilst 

acclimatisation appears to be essential in generating nuanced vasoregulatory responses to 

environmental temperature, there is also evidence to suggest that genetics may have a 

small influence on vasomotor responses, as indicated by differences in CIVD peak 

temperatures in UK-born residents of different ethnic origins (Maley et al., 2014). Whilst 

the extent of influence of genetics and acclimatisation on variation in vasoregulatory 

adaptations requires further clarification, it is evident that we have indeed developed 

effective vasomotor responses to deal with severe cold. 
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While dynamic vasoregulation in the hands is relatively well understood, the role of 

other factors in heat flux from the hand remains under-studied. Heat loss is also influenced 

by the insulative and thermogenic properties of different tissues (Fournet et al., 2013; 

Marins et al., 2014). Fat mass has traditionally been considered the body’s predominant 

insulative tissue under cold stress, as populations exposed to cold stress are found to have 

a higher percentage fat mass, relative to populations from tropical or temperate climates 

(Shephard et al., 1973; Houghton, 1990; Jones and White, 1994; Craig et al., 2001; Piers et 

al., 2003). Subcutaneous fat mass has also been considered the dominant insulating tissue 

in whole-body immersion investigations (Sloan and Keatinge, 1973; Toner and McArdle, 

1988; Glickman-Weiss et al., 1996). This is consistent with investigations demonstrating 

that adipose tissue has approximately double the thermal resistance of skeletal muscle 

(Hatfield and Pugh, 1951; Valvano et al., 1984). Whole-body immersion investigations have 

also indicated that muscularity does not protect from heat loss (Oksa et al., 2007), although 

the extent of blood-perfusion in the muscle does probably play a role (Veicsteinas et al., 

1982; Xu et al., 2007). Though considered important for insulation, white adipose tissue 

has been shown to have limited thermogenic capacity (Granneman et al., 2003; Seale et al., 

2011). Thermogenesis in white adipose tissue results from promoting the expression of the 

uncoupling protein which is involved in brown adipose tissue non-shivering thermogenesis 

(Nedergaard and Cannon, 2014). Uncoupling refers to mitochondrial respiration without 

ATP synthesis, where energy is released as heat within the brown adipose tissue in non-

shivering thermogenesis (Rousset et al., 2004). When activated, as little as 50g of brown 

adipose tissue can contribute up to 20% of energy expenditure (Rothwell and Stock, 1983). 

The presence of brown adipose tissue has been detected in some adults of cold climate 

populations, but the extent to which it is found throughout populations globally has yet to 

be established  (Nedergaard et al., 2007; Cypess et al., 2009). Whether the insulative and 
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thermogenic properties of adipose tissue significantly influence heat loss from the 

extremities is currently unknown. 

Alongside adipose tissue, skeletal muscle mass is also likely to play a role in 

thermoregulation. In adults, skeletal muscle mass is a key thermogenic tissue (Rowland et 

al., 2015; Pant et al., 2016), and has been associated with maintenance of core temperature 

during whole-body cooling (McArdle et al., 1984b). When exposed to cold environmental 

temperatures, active non-shivering thermogenesis in skeletal muscle is triggered, which 

has been linked to calcium ion cycling (Block, 1994; Rowland et al., 2015). Shivering 

thermogenesis may also be activated below a certain threshold environmental 

temperature, whereby muscle contraction results in thermogenesis (Block, 1994). Indeed, 

indigenous Arctic and high altitude populations have higher muscle masses than 

populations from temperate lowland regions (Picon-Reategui and Picón-Reátegui, 1961; 

Ducros and Ducros, 1979; Gnaiger et al., 2015), indicating the importance of skeletal 

muscle mass in the maintenance of body temperature under cold stress, although this may 

also result from differences in activity. Even when the body is not subjected to cold 

conditions, skeletal muscle generates approximately 20-30% of total body heat at rest 

(Brozek and Grande, 1955; Elia, 1991; Sparti et al., 1997). Thus, due to its passive and 

active thermogenic properties, skeletal muscle mass plays an important role in 

thermoregulation. However, the influence of relative fat and skeletal muscle masses on 

heat loss from the extremities has yet to be explored.  

When examining heat loss from the extremities, body size may also be an important 

influence. Increased body size has generally been associated with colder climates 

(Bergmann, 1847; Beall and Goldstein, 1992; Ruff, 1994; Katzmarzyk and Leonard, 1998; 

Gustafsson and Lindenfors, 2009; Hancock et al., 2011; Temple and Matsumura, 2011; 

Foster and Collard, 2013; Gilligan et al., 2013; Hadley and Hruschka, 2014; Roseman and 
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Auerbach, 2015; Savell et al., 2016). This association is considered to be a cold adaptation, 

whereby populations inhabiting cold climates tend to have larger bodies, with a smaller 

surface area-to-volume ratio, which will lose less heat per unit volume to the surroundings 

than smaller bodies (Bergmann, 1847; Ruff, 1994). During thermal stress, body size and 

core temperature do indeed show a direct positive relationship (Burton and Edholm, 1955; 

Pugh and Edholm, 1955; Folk, 1974; Shapiro et al., 1980; LeBlanc, 1988; Frisancho, 1993; 

Havenith, 2001). This relationship will result in body size affecting heat flux in the 

extremities (Havenith, 2001; Daanen, 2003; Chudecka, 2013), due to the dynamic nature of 

the whole-body system. During cold stress, however, the activation of physiological 

mechanisms, including thermogenesis and vasoregulation, mean that the model of heat loss 

from the body is unlikely to follow a simple surface area-to-volume ratio rule (Steegmann, 

2007). 

The role of body size and body composition on human cold adaptation still requires 

further investigation (Steegmann, 2007). Observing variation in heat loss will directly test 

the assumptions used to support cold adaptation theory. This research seeks to determine 

whether body size and body composition have any effect on heat loss from the hand, or 

whether this is countered by dynamic vasoregulation. As both body size and body 

composition are, on average, different between the sexes, the potential difference in heat 

loss capacities (McArdle et al., 1984a; b), and heat loss from the extremities between the 

sexes (Jay and Havenith, 2004), should also be investigated. The current study set out to 

test the following questions during an ice-water hand immersion experiment: do 

individuals with a larger body size lose less heat from the hands than those with smaller 

body size; do individuals with more muscle mass or more fat mass lose less heat from the 

hands: do women lose more heat from the hands than men; does weight, muscle mass, fat 

mass or sex affect rewarming? 
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3.2. Methods 

All methods are detailed in Chapter 2. Sampling can be found in section 2.2; 

anthropometry can be found in section 2.3.1; experimental protocol can be found in section 

2.4.1; thermal image analysis can be found in section 2.5. 

3.2.1. Statistical analysis 

All continuous variables were assessed for normality using the Shapiro-Wilk Test. 

Paired t-tests were used to test for differences in pre-immersion core temperature and 

core temperature during the final minute of immersion. Average digit temperature 

immediately after immersion (TPost) was calculated as a percentage of average digit pre-

immersion temperature (TPre), to remove any influence of inter-subject variation in TPre. 

Average digit temperature at the proceeding time points (two (T2), four (T4), six (T6), eight 

(T8), and ten (T10) minutes after immersion) was also calculated as percentages of TPre.  

Sex differences in body size and composition variables, average digit temperature at 

each time point, and change in average digit temperature at every time interval were 

assessed using independent-sample t-tests. 

Spearman’s rank correlation analysis was used to determine whether any body 

variables correlated significantly with TPost, T2, T4, T6, T8, or T10. A Bonferroni correction 

factor was applied to allow for multiple comparisons using different body size and body 

composition variables. Bivariate Pearson’s correlation analysis was used to assess 

relationships between skeletal muscle mass and fat mass. 

Stepwise regression analysis was carried out to determine whether height, weight, 

fat mass, skeletal muscle mass, relative skeletal and muscle mass (as a percentage of total 

body weight, respectively) were suitable predictors of TPost, according to the following 

models: 
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Model 1 

TPost = β0 + β1[Height] + β2 [Weight] + β3 [Skeletal Muscle Mass]  + β4 [Fat Mass] 

Model 2 

TPost = β0 + β1[Relative Skeletal Muscle Mass] + β2 [Relative Fat Mass] 

The models were applied to the sample both when sexes were pooled and 

separated. All variables in the regressions were assessed for normality using regression 

residual plots. To determine whether there were any additional sex effects beyond body 

size or body composition variables, the standardised residuals of any significant models 

were tested for significant differences between the sexes using independent t-tests. All 

statistical analysis was carried out using SPSS 25.0 for Windows. 

3.3. Results 

3.3.1. Test sample statistics 

Table 3.1 summarises the body size and composition variables for the test sample. 

Within sexes, all variables except age were normally distributed. When sexes were pooled, 

height, weight, relative fat mass, and relative skeletal muscle mass were normally 

distributed, but absolute fat mass and absolute skeletal muscle mass were not.  

All body size and composition variables were significantly different between men 

and women. Men were significantly taller and heavier than women (p<0.01 for both) and 

had significantly greater absolute and relative skeletal muscle mass than women (p<0.01 

for both), while women had significantly greater absolute and relative fat mass than men 

(p<0.01 for both).  
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Table 3.1 Summary statistics of test sample variables 

Sex N Minimum Maximum Mean (SD) 

Age (years) 
F 63 18 44 26 (±6) 

M 51 19 48 25 (±6) 

Height (cm) 
F 63 150.1 189.9 169.7 (±7.3) 

M 51 166.5 200.0 181.9 (±6.8) 

Weight (kg) 
F 63 41.00 88.85 63.62 (±9.46) 

M 51 60.40 118.00 78.31 (±7.64) 

 Absolute Fat Mass (kg) 
F 62 6.21 34.43 17.29 (±5.99) 

M 51 3.10 24.56 11.92 (±4.77) 

Relative Fat Mass (%) 
F 62 10.50 38.70 26.41 (±6.14) 

M 51 6.60 27.30 15.21 (±5.03) 

Absolute Skeletal Muscle Mass (kg) 
F 62 13.70 28.80 21.43 (±2.78) 

M 51 25.40 40.00 32.87 (±3.48) 

Relative Skeletal Muscle Mass (%) 
F 61 28.96 41.29 33.73 (±2.72) 

M 51 36.48 48.75 42.03 (±2.66) 

SD: Standard Deviation 

Figure 3.1 Tukey’s Boxplot showing difference between men and women in TPost; each box represents the 
respective interquartile range (IQR), whiskers represent the lowest value still found within 1.5 IQR of the lower 
and upper quartiles. 
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3.3.2. Heat Loss 

There was no significant difference in core body temperature before immersion 

(36.76˚C, ±0.96) and in the final minute of immersion (36.83˚C, ±0.35) (t113=0.820, p>0.05). 

Women had significantly lower mean TPost (41±5%) than men (45±4%; p<0.01, see Figure 

3.1). However, men and women did not differ significantly in average digit temperature at 

any time point after TPost.

The range of average digit temperatures during rewarming is shown in Figure 3.2. 

At the final time point, 64 participants had an average digit temperature greater than their 

pre-immersion temperature.   

Figure 3.2 Range of average digit temperatures at each time point during the rewarming period. Blue dots: 
female; green dots: male 
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The results of Spearman’s rank correlation analyses with a Bonferroni 

correction demonstrated that body composition variables did associate with temperature 

after immersion (Table 3.2). Height, weight, and absolute fat mass did not correlate with 

average digit temperature at any time point. When controlling for weight, relative muscle 

mass exhibited significant positive correlations with TPost (Figure 3.3A) and T2, while 

relative fat mass significantly negatively correlated with TPost (Figure 3.3B). It was noted 

that relative skeletal muscle mass and relative fat mass significantly negatively correlated 

with each other (Figure 3.3C). No body size or composition variables were significantly 

correlated with T4 through T10.  

Table 3.2 Summary of Spearman's Rank Correlation Analysis between body size and composition variables and 
average digit temperature during the experiment 

Average digit temperature (% of pre-immersion 
temperature) at given time point after immersion 

0 mins 
(TPost) 

2 mins 
(T2) 

4 mins 
(T4) 

6 mins 
(T6) 

8 mins 
(T8) 

10 mins 
(T10) 

Height 
CC .282 .251 .058 .019 .048 .027 

Sig. (2-tailed) .002 .007 .540 .839 .619 .784 

Weight 
CC .278 .254 .110 .083 .090 .026 

Sig. (2-tailed) .003 .007 .248 .380 .352 .793 

Absolute Fat 
Mass 

CC -.233 -.129 -.026 -.025 -.044 -.048 

Sig. (2-tailed) .014 .176 .783 .795 .650 .624 

Absolute Skeletal 
Muscle Mass 

CC .390* .320* .133 .089 .091 .045 

Sig. (2-tailed) .001 .001 .163 .354 .355 .650 

Relative Fat Mass  
CC -.370* -.224 -.053 -.050 -.049 -.034 

Sig. (2-tailed) .001 .018 .581 .603 .618 .731 

Relative Skeletal 
Muscle Mass  

CC .379* .286 .121 .101 .083 .050 

Sig. (2-tailed) .001 .002 .206 .294 .398 .612 

CC= Correlation Coefficient; *= significant with Bonferroni adjusted p-value (p<0.0014) 
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Figure 3.3. 
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Figure 3.3 Scatterplots of the relationship between heat loss and body composition variables, depicting a line of 
best fit and 95% confidence intervals. A) TPost and relative skeletal muscle mass (regression line: 
y=28.12+0.39*x), B) TPost and relative fat mass (regression line: y=47.81-0.23*x), and C) Relative skeletal muscle 
and fat masses (r=-0.922, p<0.01); blue dots: female; green dots: male 

The stepwise regression analyses determined which of the body composition 

variables were likely to be driving the relationships seen in the Spearman’s rank 

correlation analyses. Absolute and relative skeletal muscle masses were both highly 

significant predictors of heat loss from the digits upon cold water immersion. In model 1, 

absolute skeletal muscle mass was the only significant predictor of TPost (Table 3.3), while 

weight, height, and fat mass were not significant predictors of heat loss. In model 2, relative 

skeletal muscle mass alone was found to predict TPost; relative fat mass was not a significant 

predictor of TPost. When the sexes were analysed separately, there were no associations 

between any of the body size or body composition variables and TPost (p>0.05 for both 

models). In the analysis of the standardised residuals of both models 1 and 2, there was no 
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significant difference between the sexes (p>0.05), indicating that there were no additional 

sex effects beyond differences in skeletal muscle mass. 

Table 3.3 Summary of two stepwise linear regression models predicting TPost 

Model Predictors B Std. Error β F P value R2 

1 
(Constant) 35.085 1.801   <.01  

Absolute Skeletal Muscle Mass .291 .066 .390 19.694 <.01 0.152* 

2 
(Constant) 28.123 1.292   <.01  

Relative Skeletal Muscle Mass .393 .086 .398 20.752 <.01 0.159* 

Std. Error = Standard Error; *= highly significant (p<0.01) Model 1: Excluded variables were height, weight, 
absolute fat mass; Model 2: Excluded variables were relative fat mass 

3.4. Discussion 

3.4.1. Outcomes relating to body composition and body size 

The current study showed that in healthy men and women both absolute and 

relative skeletal muscle mass were significant predictors of heat loss during ice-water 

immersion of the hand, thus demonstrating the role of body composition in 

thermoregulation in cold environments. Body composition and body size had little to no 

significant influence during rewarming after immersion at most time points, indicating that 

dynamic thermoregulatory mechanisms control hand temperature during rewarming. 

These findings demonstrate that while body composition is influential in maintaining 

peripheral temperatures under cold stress, the body has powerful mechanisms to reduce 

heat loss from the hands after brief, severe cold exposure. 

Individuals with greater absolute and relative skeletal muscle mass had a higher 

post-immersion average digit temperature relative to pre-immersion temperature. This 

finding may relate to the greater thermogenic capacity of skeletal muscle relative to other 

tissues (Rowland et al., 2015). Greater relative skeletal muscle mass increases 

thermogenesis per kilogram of total weight, and thus for a given rate of heat loss, a greater 

amount of body heat will be replaced (Steegmann, 2007). From an evolutionary 
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perspective, the importance of muscle mass in reducing heat loss may explain why 

individuals inhabiting regions of extreme minimum temperatures tend to have greater 

overall muscle mass than those inhabiting tropical or temperate climes (Ducros and 

Ducros, 1979; Wells, 2012). Greater muscle mass may allow these individuals to better 

maintain the temperature of both body and extremities (Dusek, 1957; Clark and Cohen, 

1960; Provins and Clarke, 1960; Provins and Morton, 1960; Havenith et al., 1995; Heus et 

al., 1995). In conjunction with greater muscle mass, higher metabolic rates would be 

required to enable this greater thermogenic capacity, and this is indeed reported in several 

cold-adapted populations, including circumpolar groups (Rennie et al., 1962; Leonard et al., 

2002, 2005; Snodgrass et al., 2005; Brychta and Chen, 2017), and high altitude populations 

(Little et al., 1971; Little, 1976). Together this work shows that the ability to deliver heat 

effectively to peripheral tissues is driven more by metabolic capacity, such as greater 

muscle and metabolic rate, rather than insulation.  In the context of human adaptation, 

even after the invention of clothing (Gilligan, 2010), human hands are still likely to have 

been exposed when carrying out manual tasks, and thus, having substantial thermogenic 

tissue, in the form of muscle mass, would have been advantageous for replacing heat lost 

through the extremities. 

The regression models in the current study demonstrate that both absolute and 

relative skeletal muscle mass are highly significant predictors of hand temperature after ice 

water immersion. Whilst these predictors have a relatively small effect, this is generally to 

be expected when observing a variable such as temperature, which is influenced by 

multiple factors. Furthermore, vasoregulation will have a significant influence on hand 

temperature during cold stress, irrespective of body size or body composition, as 

vasoregulatory responses are known to vary significantly (Cheung, 2015). As discussed, 

there are heterogeneous vasoregulatory responses in populations residing in different cold 
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regions (Brown et al., 1953; Little and Hanna, 1977; Frisancho, 1993). Indeed, despite the 

known powerful vasoregulatory mechanisms, the current study still found body 

composition effects on hand temperature during cold stress, indicating the importance of 

body composition in thermoregulation. 

Absolute and relative fat mass did not significantly predict heat loss. Although fat 

mass is traditionally considered an insulating tissue (Henriques and Moritz, 1947; Lipkin 

and Hardy, 1954), it did not have a significant effect on heat loss or rewarming. This may be 

because relatively little fat mass is found in the hands (Taylor, 2014), and therefore the 

hands are poorly insulated, leaving them susceptible to heat loss. Interestingly, relative fat 

mass negatively correlated with TPost (Table 3.2). However, given the significant negative 

correlation between relative skeletal muscle mass and relative fat mass, this result may be 

related more to muscle tissue than to any direct biological link between body fat mass and 

heat loss from the hand. The significant correlation between body tissues often makes it 

difficult to partition their effects during cold exposure, as demonstrated by reanalysis of 

Sloan and Keatinge’s (1973) whole-body immersion investigations (Steegmann, 2007). 

There were no significant predictors of TPost when the sexes were analysed 

separately. There may not have been sufficient variation within the sexes in body size and 

body composition for a relationship to be apparent. Skeletal muscle mass and fat mass are 

closely associated with sex, thus again making it difficult to partition the effects of sex and 

different body tissues. On analysis of the residuals from Model 2, no significant difference 

was found between the sexes, demonstrating that, once relative skeletal muscle mass is 

taken into account, there are no additional sex effects. This finding aligns with previous 

hand heat loss investigations carried out by Jay and Havenith (2004), where no significant 

difference was found between the sexes when body size was taken into account. Further 

research using an even wider range of body types and body compositions within each sex 
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may shed further light on the influence of sex versus body composition of heat loss from 

the hands. 

3.4.2. Rewarming patterns 

No body size or composition variables correlated with T4, T6, T8, and T10 suggesting 

that other factors influence rewarming here, such as hand size, or vasoregulation. As 

relative skeletal muscle mass influences average digit temperature up to two minutes after 

immersion, but no longer has an effect at four minutes, this indicates that other factors 

such as vasodilatation may have a greater influence on digit temperature from this time 

point onwards. This agrees with previous findings that the time for rewarming 

vasodilatation to occur varies greatly between individuals; several studies have found an 

average of two to three minutes post-immersion lag time before seeing a significant 

vasodilatory-induced change in finger temperature (Adams and Smith, 1962; Itoh et al., 

1970). Furthermore, hand volume has been shown to influence rewarming (Jay and 

Havenith, 2004), which was assessed separately (see Chapter 4).  

3.4.3. Exceeding baseline temperature 

The current study demonstrated that average digit temperature can exceed pre-

immersion temperature after a 10-minute rewarming period. This is not commonly 

reported in immersion tests (Elsner et al., 1960; Krog et al., 1960; Mathew et al., 1979; 

Bergersen et al., 1999; Daanen et al., 2007; Mekjavic et al., 2008; Cheung, 2015), which may 

be due to a difference in protocol (Silverthorn and Michael, 2013). The ability to rewarm 

the extremities to beyond the pre-immersion temperature may be possible for several 

reasons. Firstly, as peripheral temperature is controlled by the sympathetic nervous 

system (McAllen et al., 2006),  feedback responses may cause a time delay, and thus an 

“overshoot” in temperature may occur. Whilst the vasoconstriction response is rapid, the 
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skin temperature will present a delayed change (Nagasaka et al., 1987; Romanovsky, 

2014).  Alternatively, the pattern of rewarming beyond pre-immersion temperature could 

be attributed to CIVD, where blood vessels to the digits dilate after an initial 

vasoconstriction response to cold exposure (Lewis, 1930); CIVD is often observed as a 

delayed significant increase in temperature during prolonged immersion (Daanen, 2003; 

Cheung, 2015). This CIVD response varies between individuals, both in regards to duration 

and threshold temperature to elicit a response; the 10-minute interval found in the current 

study fits several known CIVD patterns (Mekjavic et al., 2008). However, it is unknown 

whether CIVD still occurs after immersion (Cheung, 2015). Therefore, the increase in 

average digit temperature beyond baseline during the rewarming period post-immersion 

requires further investigation. 

3.4.4. Conclusion 

The current study demonstrated that absolute and relative muscle mass predict 

heat loss from the hands during severe cold exposure, while weight, height, and fat mass do 

not. This demonstrates the importance of muscle mass as a thermogenic tissue to maintain 

extremity temperature; having significant muscle mass when carrying out manual tasks 

would be advantageous for maintaining thermal balance for populations residing in cold 

environments. The current study demonstrates the importance of body composition in 

extremity thermoregulation.  
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Chapter 4  

The thermoregulatory function of the 
human hand: how do palm and digit 

proportions affect heat loss? 
This paper was published online in the American Journal of Physical Anthropology 

on 30 March 2018 (Payne et al., 2018b). 

Objectives: The current study assessed whether ecogeographical patterns seen in 

hand proportions correlate with heat loss directly. Using a brief severe cold immersion 

experiment on the hand, the influence of hand and digit dimensions on heat loss was 

evaluated.  

Materials and Methods: A sample of 113 living individuals were tested. 2-

dimensional and 3-dimensional scanning techniques were used to assess hand and digit 

dimensions. Thermal imaging analysis was used to quantify heat loss during a 3-minute 

ice-water immersion of the hands.  

Results: When body size was accounted for, hand width and digit length relative to 

total hand length were significant predictors of heat loss from the hand.  

Discussion: The current study provides empirical evidence to support the link 

between thermodynamic principles relating to surface area-to-volume ratio, and 

ecogeographical patterns associated with temperature. 

4.1. Introduction 

Human populations are exposed to a wide range of thermal environments and thus 

have had to evolve a range of physical and behavioural adaptations for thermoregulation 
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(Parsons, 2014). One trait in particular has historically been the focus of climate adaptation 

theory: intraspecific variation in surface area-to-volume ratio (Bergmann, 1847; Allen, 

1877; Ruff, 1994; Steegmann, 2007). Variation in body size and limb proportions is 

considered to affect the body’s thermoregulatory capacities, and thus, relationships 

between thermoregulation and variation in the surface area-to-volume ratio of the body 

have been proposed (Ruff, 1994). However, as the body is not a uniform shape, certain 

regions may have more thermoregulatory potential than others.  The hand, for instance, 

has a surface area-to-volume ratio five times larger than that of the torso (Molnar, 1957; 

Hirata et al., 1993; Taylor, 2014), yet the potential role of thermoregulation as a selective 

pressure contributing to variation in the size and shape of the hand is not well-

characterised.  

Variation in the surface area-to-volume ratio of the hand could have a significant 

adaptive advantage in particular climates. Whilst potentially adaptive in hot climates, a 

hand with a large surface area-to-volume ratio risks significant radiative heat loss in cold 

conditions, with implications for both cold injury and manual dexterity. As such, hand 

proportions that contribute to a lower surface area-to-volume ratio may have provided a 

selective advantage among populations living in cold climates.  Indeed, an association seen 

in digit proportions and climate has been documented among skeletal populations of cold-

adapted foragers (Lazenby and Smashnuk, 1999; Betti et al., 2015); populations residing in 

cold, high latitude regions had relatively shorter and broader first metacarpals than groups 

from lower latitudes. These results suggest that the predictions of Allen’s rule (1877), 

whereby cold region-inhabiting individuals within a species have shorter, broader 

appendages than individuals from warmer climes, may apply to human extremities. 

However, the relationship between hand size and shape and thermoregulation has yet to be 

tested in vivo. The theoretical assumption underlying Allen's rule is that short, broad 
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appendages reduce surface area-to-volume ratio to minimise heat loss: a form of cold 

adaptation. Whilst seemingly cold-adapted morphologies may have been shaped by 

climate, caution must be taken when assuming a direct causal link between the two. 

Firstly, the presence of these ecogeographical patterns may be an indirect reflection 

of factors other than cold adaptation. Patterns that appear to be cold adaptation may be an 

allometric consequence of differential growth in other body segments (Holliday, 1997b). It 

has been demonstrated that limb proportions can vary as a result of multiple variables 

during growth: temperature (Serrat et al., 2008; Serrat, 2013), variable blood flow (Lampl 

et al., 2003), nutrition (Bogin et al., 2002), or other environmental stresses (Pomeroy et al., 

2012). Furthermore, although hand morphology is highly constrained within humans due 

to functionality (Voracek and Offenmuller, 2007; Xiaohui et al., 2014; Almécija et al., 2015), 

there is morphological variation that is unrelated to sex or body size differences (Garrett, 

1971; Giles and Vallandigham, 1991; Imrhan et al., 1993, 2009; Ashizawa et al., 1997; 

Imrhan, 2000; Imrhan and Contera, 2005; Mandahawi et al., 2008; Chandra et al., 2011; 

Dizmen, 2012; Numan et al., 2013). In addition, morphological integration of the hands and 

feet means that some variation in hand size and shape may be due to covariance between 

these two regions (Rolian, 2009).  

Secondly, Allen’s rule treats the appendage as a passive radiating object, which is 

not the case, as sweat evaporation and vasoregulation will alter the hands’ radiative 

properties (Taylor, 2014). As the hands have a relatively limited capacity for heat 

production, local tissue temperatures are principally altered by vasoregulation. 

Vasoconstriction essentially alters the theoretical surface area at which heat is lost from 

the hand, (Johnson and Proppe, 1996), as the reduction in temperature gradient between 

the skin’s surface and the environment reduces the rate of heat loss, thus potentially 

minimising any effect that hand size may have on heat loss. 
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Whether the ecogeographical patterns seen in hand dimensions are directly cold-

adaptive remains unknown, as the direct relationship between hand dimensions and heat 

loss is untested in vivo (Steegmann, 2007). Prior research has indicated that hand size is 

associated with cooling time in cooling experiments on a small sample of volunteers 

(N=14) (Jay and Havenith, 2004), but this has not been tested on a much larger scale. Thus, 

the current study aimed to determine whether hand and digit dimensions influence heat 

loss from the hand in real-time, to test the applicability of cold adaptation theory to the 

hands.  

4.2. Methods 

All methods are detailed in Chapter 2. Sampling can be found in section 2.2; anthropometry 

can be found in section 2.3; experimental protocol can be found in section 2.4.1; thermal 

image analysis can be found in section 2.5. 

4.2.1. Calculations 

The following variables were calculated from the anthropometric measures: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑤𝑤𝐹𝐹𝑑𝑑𝐹𝐹ℎ
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ 

𝑇𝑇ℎ𝐹𝐹𝐹𝐹𝑑𝑑 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟 =  
𝑇𝑇ℎ𝐹𝐹𝐹𝐹𝑑𝑑 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑤𝑤𝐹𝐹𝑑𝑑𝐹𝐹ℎ
𝑇𝑇ℎ𝐹𝐹𝐹𝐹𝑑𝑑 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ 

𝐷𝐷𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹˗𝐹𝐹𝑟𝑟˗ℎ𝑟𝑟𝑙𝑙𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟 =  
𝑇𝑇ℎ𝐹𝐹𝐹𝐹𝑑𝑑 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ

𝐻𝐻𝑟𝑟𝑙𝑙𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ  

 𝐻𝐻𝑟𝑟𝑙𝑙𝑑𝑑 𝐹𝐹𝑠𝑠𝐹𝐹𝑠𝑠𝑟𝑟𝑠𝑠𝑙𝑙 𝑟𝑟𝐹𝐹𝑙𝑙𝑟𝑟 𝐹𝐹𝑟𝑟 𝑣𝑣𝑟𝑟𝑙𝑙𝑠𝑠𝑣𝑣𝑙𝑙 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟 (𝐻𝐻𝑟𝑟𝑙𝑙𝑑𝑑 𝑆𝑆𝑆𝑆:𝑉𝑉) =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐻𝐻𝑠𝑠𝑠𝑠 𝐻𝐻𝑠𝑠𝑠𝑠𝐻𝐻
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣𝑠𝑠

 

First digit ratio was calculated as the first digit is known to associate with climate in 

the skeletal record (Betti et al., 2015). Third digit ratio was calculated as the longest digit 

and therefore has the potential to have the greatest relationship with heat loss. Digit-to-
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hand length ratio was calculated to determine whether the proportions of the finger 

relative to the hand play a role in heat loss. 

To account for any influences of height, the following variables were calculated 

relative to height: hand length, hand width and hand surface area-to-volume ratio, first 

digit ratio, third digit ratio, and digit-to-hand length ratio. The corresponding relative 

variables were calculated as follows: 

𝑅𝑅𝑙𝑙𝑙𝑙𝑟𝑟𝐹𝐹𝐹𝐹𝑣𝑣𝑙𝑙 𝑣𝑣𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑣𝑣𝑙𝑙𝑙𝑙 =  
𝑉𝑉𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑣𝑣𝑙𝑙𝑙𝑙
𝐻𝐻𝑙𝑙𝐹𝐹𝑑𝑑ℎ𝐹𝐹  

These relative variables were then used in all statistical analyses. 

Average digit temperature immediately after immersion (TPost) was calculated as a 

percentage of average digit pre-immersion temperature (TPre), to remove any influence of 

inter-subject variation in TPre. Average digit temperature at the proceeding time points 

(two – T2, four – T4, six – T6, eight – T8, and ten - T10 minutes after immersion) was also 

calculated as percentages of TPre.  

4.2.2. Statistical Analysis 

All continuous variables were assessed for normality using the Shapiro-Wilk Test. 

Non-parametric tests were applied to variables that were not normally distributed (TPost, 

T2, T4, T6, T8, and T10). Anthropometric variables that were not normally distributed, 

specifically hand surface area and hand volume, were not included in stepwise regression 

analysis. A paired t-test was used to test for differences in pre-immersion core temperature 

and core temperature during the final minute of immersion. Stepwise regression analysis 

was carried out to determine whether hand length, hand width or hand surface area-to-

volume ratio relative to height could predict TPost in the following model: 
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Model 

TPost = β0 + β1[relative hand length] + β2 [relative hand width] + β3 [relative hand SA:V] 

Spearman’s Rank correlation analysis was used to determine whether any hand 

variables correlated with TPost, T2, T4, T6, T8, T10. The percentage change in average digit 

temperature between each adjacent time point was calculated: Change between TPost and 

T2, T2 and T4, T4 and T6, T6 and T8, and T8 and T10. To reach a normal distribution, a square-

root transformation was applied to each percentage change calculation (TPost-T2, T2-T4, T4-

T6, T6 -T8, and T8 -T10). Linear regression analysis was then carried out to determine if any 

hand variables were significant predictors of percentage change in average digit 

temperature at each time interval. 

All statistical analysis was carried out using SPSS 25.0 for Windows. 

4.3. Results 

4.3.1. Test Sample Statistics 

Table 4.1 summarises the anthropometric variables of the test sample. Height, hand 

length, hand width, and hand SA:V were approximately normally distributed. Hand surface 

area and hand volume were normally distributed when grouped by sex. As there were no 

significant differences between the sexes in anthropometric variables relative to height, the 

sexes were pooled for the analyses. 
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Table 4.1 Summary statistics of anthropometric variables 

 N Minimum Maximum Mean (SD) 

Height (cm) 113 150.1 200.0 175.0 (±9.2) 

Relative Hand Length 113 0.0984 0.1168 0.1073 (±0.00358) 

Relative Hand Width 113 0.0399 0.0546 0.0455(±0.00269) 

Relative Hand SA:V 105 0.00005 0.00009 0.00007(±0.00001) 

Relative First Digit Ratio 113 0.00014 0.00024 0.00019(±0.00002) 

Relative Third Digit Ratio 113 0.00009 0.00018 0.00013(±0.00001) 

Relative Digit-to-Hand Ratio 113 0.00022 0.00030 0.00025(±0.00002) 
SD: standard deviation; first digit ratio – first digit width/first digit length; third digit ratio – third digit 
width/third digit length; digit-to-hand length ratio – third digit length/hand length 

4.3.2. Heat loss 

There was no significant difference in core body temperature before immersion 

(36.85˚C, ±0.38) and in the final minute of immersion (36.83˚C, ±0.35) (t112=-0.840, p>0.05) 

Relative hand length was not a significant predictor of heat loss in any model. 

Relative hand width was a significant predictor alone (Figure 4.1A), but the model of best 

fit included both relative hand width and relative digit-to-hand length ratio (Table 4.2 & 

Figure 4.1B).  

Table 4.2 Summary of stepwise linear regression predicting TPost. 

Model Predictor B Std. Error β p-value R2 

1 (Constant) 8.948 7.931  >0.05  

Relative hand width 745.299 173.985 0.389 <0.01 0.151** 

2 Constant 26.761 10.585  <0.05  

Relative hand width 721.794 170.107 0.377 <0.01  

Relative digit-to-hand length ratio -66769.394 27058.198 -0.219 <0.05 0.199** 

**= highly significant (p<0.01). In model 1, excluded variables = relative hand length, relative hand SA:V, 
relative digit-to-hand length ratio; In model 2, excluded variables = relative hand length, relative hand SA:V  
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Figure 4.1 Scatterplots of model 1 and model 2 from regression analyses. Blue: female, Green: male. Panel A: 
Scatterplot of relative hand width and TPost Regression line: y=13.99+636*x, R2=0.151 Panel B: Scatterplot of 
predicted TPost,, using model 2 from regression analyses,   and observed TPost . Regression line: y=-9.24E-
14+1*x, R2=0.199 
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4.3.3. Hand and digit dimensions and average digit temperature by time 
point 

The results of Spearman’s rank correlation analysis assessing the relationship 

between relative hand length, hand width and hand surface area-to-volume ratio and 

temperature at each time point after immersion are summarised in Table 4.3. Relative hand 

width significantly positively correlated with TPost, while relative hand length did not. 

Relative digit-to-hand length ratio also correlated with TPost, while neither relative first 

digit ratio, nor third digit ratio correlated with temperature at any of the time points. 

Relative hand SA:V significantly negatively correlated with TPost and T2. No hand size 

variable correlated with average digit temperature beyond T2. 

Table 4.3 Summary of Spearman’s rank correlation analysis between hand size variables and average digit 
temperature during the experiment 

Average digit temperature (% of 
pre-immersion temperature) at 

given time point after immersion 

0 mins 
(TPost) 

2 mins 
(T2) 

4 mins 
(T4) 

6 mins 
(T6) 

8 mins 
(T8) 

10 mins 
(T10) 

Relative Hand Length 
CC 0.157 -0.036 -0.102 -0.061 -0.103 -0.152 

Sig. (2-tailed) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 

Relative Hand Width 
CC 0.333** 0.184 0.141 0.148 0.113 0.082 

Sig. (2-tailed) <0.01 >0.05 >0.05 >0.05 >0.05 >0.05 

Relative Hand SA:V 
Ratio 

CC -0.320** -0.302** -0.068 -0.042 -0.047 -0.010 

Sig. (2-tailed) <0.01 <0.01 >0.05 >0.05 >0.05 >0.05 

Relative first digit ratio 
CC 0.060 -0.015 -0.058 -0.002 -0.021 0.011 

Sig. (2-tailed) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 

Relative third digit ratio CC -0.061 -0.080 -0.048 -0.056 -0.073 -0.078 

 Sig. (2-tailed) >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 

Relative digit-to-hand 
length ratio 

CC -0.262** -0.184 -0.037 0.017 -0.020 0.028 

Sig. (2-tailed) <0.01 >0.05 >0.05 >0.05 >0.05 >0.05 

CC= Correlation Coefficient; *=p<0.05; **=p<0.01 
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4.3.4. Hand dimensions as predictors of temperature change and 
reheating 

The only significant predictor of temperature change in any interval was relative 

hand length between TPost and T2 (Table 4.4 & Figure 4.2A) and relative third digit ratio 

between T6 and T8 (Table 4.4 & Figure 4.2B). No other variable predicted change in 

temperature at any time interval.   

Table 4.4 Summary of regression models of hand dimensions as predictors of change between TPost and T2  

Model Predictors B Std.Error β P value R2 

TPost-T2 
(Constant) 8.725 2.713  <0.01  

Relative Hand Length -50.946 25.308 -0.195 <0.05 0.038* 

T6-T8 
(Constant) 1.080 0.733  >0.05  

Relative 3rd digit ratio 11461.654 5716.212 0.191 <0.05 0.037* 

TPost-T2 Model, excluded variables: relative hand width, relative hand SA:V, relative 1st digit ratio, relative 
digit-to-hand length ratio; T6-T8 Model, excluded variables: relative hand length, relative hand width, relative 
hand SA:V, relative 1st digit ratio, relative digit-to-hand length ratio. Std. Error = Standard Error, *= p<0.01 

 

 
Figure 4.2 
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Figure 4.2 Scatterplots of hand dimensions as a predictor of temperature change at given time intervals. Blue: 
female, Green: male.  

Panel A: Relative hand length against change in average digit temperature between TPost and T2. Regression 
line: y=9.75-60.49*x. R2=0.038 Panel B: Relative third digit ratio against change in average digit temperature 
between T6 and T8. Regression line:  y=8.64-50.23*x. R2=0.037 

4.4. Discussion 

The current study indicated that hand dimensions could play a role in heat loss from 

the hand. Whilst this had been demonstrated in cooling experiments on a small sample (Jay 

and Havenith, 2004), the findings here demonstrate this relationship on a larger scale. 

Wider hands with shorter digits relative to overall hand length have a smaller surface area-

to-volume ratio and lose less heat upon ice-water immersion than narrower hands with 

longer digits. Thus, wide hands and relatively short digits could be more advantageous in 

cold environments as heat loss would be reduced and risk of cold injury minimised. The 

current study supports the underlying thermodynamic principles behind Allen’s rule, 

documenting a relationship between thermoregulation and variation in hand morphology 

in vivo. These results suggest that thermoregulation in the hand may thus have been one of 
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the selection pressures contributing to human variation in hand and digit proportions in 

our evolutionary history.   

These results highlight relative hand width and digit-to-hand length ratios as 

significant predictors of heat loss from the hand. This finding aligns with the 

thermodynamic principles relating to heat radiation (Taylor, 2014), whereby appendage 

dimensions that create a greater surface area-to-volume ratio will result in greater heat 

loss. Notably, relative hand width is the most influential predictor of heat loss, as a small 

increase in width will result in a significant increase in volume but a small increase in 

surface area, compared to an increase in hand length, reinforcing the cylindrical model of 

the human body or appendages for radiating heat (Ruff, 1994). Ruff demonstrated that 

body width significantly correlates with latitude, further supporting the idea that variation 

in body width may have developed in response to environmental temperature stresses, 

although other confounding factors may have also influenced this pattern. Though such 

whole-body models of heat loss may not always be applicable to limbs in isolation (Collard 

and Cross, 2017), results of the current study suggest that the same relationships between 

width and thermoregulation may apply within the upper limb segment, specifically to the 

hand. Further, by documenting a relationship between wider hands with relatively short 

fingers and less heat loss per unit volume, our in vivo findings support the underlying 

theoretical basis of Allen’s rule, by which individuals inhabiting cold environments would 

be predicted to have shorter appendages than individuals inhabiting tropical environments 

(Niles, 1973; Lindsay, 1987; Rasmussen, 1994; Fooden and Albrecht, 1999; Nudd and 

Oswald, 2007). The results from the current study also align well with the ecogeographic 

variation in first and second metacarpal dimensions (Lazenby and Smashnuk, 1999; Betti 

et al., 2015). Although the first and second metacarpals themselves were not measured 

here, these bones are tightly integrated into hand development, and thus are likely to relate 
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to other hand elements. Further research is required to determine whether length and 

width of metacarpals associate with digit temperatures.  

Not only was there substantial variation in heat loss attributable to morphological 

variation in the hands, but there was also substantial variation in rewarming patterns 

following cold exposure that bore apparent relationships with morphology. For example, 

relative hand length was a significant predictor of initial rewarming temperature, whereby 

relatively longer hands did not rewarm as quickly as relatively shorter hands. Such a 

relationship may reflect the longer distance for blood to travel before reaching digit 

extremities during reheating, and supports the distal blood flow hypothesis (Lampl et al., 

2003), whereby limited nutrients cause a reduction in energetic investment in distal limb 

elements. In the current study, limited heat means that it takes longer for heat to be 

transferred to distal elements once cold. The distal blood flow hypothesis may also explain 

variation in temperature change that occurred much later in the rewarming period, 

between minutes six and eight. At this time, the relative third digit ratio was found to 

predict change in temperature, with wider third digits relative to length being associated 

with a greater increase in temperature. This suggests that individuals with particularly 

long fingers may be more prone to cold injury, as their digits will take longer to return to a 

temperature which avoids tissue freezing. Alternatively, this observed delayed influence of 

digit proportions on rewarming may result from a delayed vasodilatation response (Wendt 

et al., 2007), whereby vasomotor responses adapt within a particular individual to 

minimise heat loss in areas that have a particularly high surface area-to-volume ratio for 

that individual (Yoshimura et al., 1952). Vasoregulation was not directly measured in the 

current study, but it can significantly influence hand and digit temperatures (Daanen, 1997; 

Cheung and Daanen, 2012; Cheung, 2015), so may partly explain the significant variation in 

average digit temperature documented in Figure 4.1 and Figure 4.2.  
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Cold immersion in the current study involved immersion in ice-water, so the cooling 

rates observed here are likely to be faster than would occur among individuals exposed to 

cold air temperatures in field conditions. This is because cold injury rate is dependent upon 

the medium (air or water) to which heat is lost (Nimmo, 2004); heat is lost to water 

approximately 3-5 faster than air at the same temperature (Molnar, 1946). However, many 

indigenous populations inhabiting cold environments rely heavily on marine or aquatic 

resources, and resource acquisition likely involves frequently undertaking manual tasks 

while exposed to cold water (Makinen, 2010). Populations living in Arctic marine 

environments are indeed found to have hand elements, specifically the second metacarpal, 

optimised to reduce heat loss (Lazenby and Smashnuk, 1999). Further investigation is 

required to determine whether other groups inhabiting similar environments have similar 

hand and digit proportions, such as Tasmanian aboriginal groups (Gilligan, 2014), and 

Tierra del Fuegan indigenous groups (De La Fuente et al., 2015).  

4.4.1. Conclusion 

The current study indicates that hand dimensions directly affect heat loss during 

cold exposure, providing experimental support for thermoregulation as a selective 

pressure contributing to variation in human hand proportions. The findings here align with 

climate adaptation patterns found in the skeletal record (Lazenby and Smashnuk, 1999; 

Betti et al., 2015) whereby cold environments are associated with shorter, broader digit 

elements. Specifically, these results show that wide hands with relatively short digits are 

seen to lose less heat in vivo than narrow hands with relatively long digits, and thus align 

with the underlying principles behind Allen’s rule.  
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Chapter 5  

The influence of digit size and 
proportions on dexterity during cold 

exposure 
This paper was published online in the American Journal of Physical Anthropology 

on 20 April 2018 (Payne et al., 2018c). An expanded literature review has been added for 

the purpose of completeness in this thesis. 

Objectives: The current study investigated whether size and proportions of the 

hands and digits affect dexterity during severe cold exposure. As wide hands are known to 

lose less heat than narrow hands, and narrow digits are associated with greater dexterity, 

this study aimed to test whether there was a direct trade-off between dexterity and 

thermoregulation that shapes hand morphology.  

Methods: Participants (25 women, 15 men) carried out the Purdue pegboard test 

before and after a 3-minute ice-water immersion of the hand. Their hand length, hand 

width, digit lengths, and digit widths were measured using standard anthropometric 

methods.  

Results: Wide first and third digits associated with significantly reduced dexterity 

after immersion relative to individuals with narrower first and third digits. Second digit 

width positively correlated with average digit temperature after immersion. Hand length 

and hand width did not influence dexterity.  

Conclusion: The current study suggests that digit width influences dexterity in cold 

conditions, reflecting patterns found at room temperature. Hand and digit morphology may 
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be the product of two significant constraints on the hand: dexterity and thermoregulation. 

In cold conditions, hand morphology appears to be predominantly constrained by thermal 

stress, at the expense of dexterity. This may have important implications for interpreting 

the morphology of extinct and extant hominins. 

5.1. Introduction 

The intraspecific variation in hand and digit proportions is significantly smaller in 

humans than in other hominoid species, indicating strong selection for our specific 

proportions (Almécija et al., 2015; Kivell, 2015).  Whilst human hand proportions may be 

highly constrained by morphological integration of the hands and feet (Rolian, 2009), 

variation may also be further constrained by selection for manual dexterity: the ability to 

carry out skilful well-coordinated hand and finger manipulations (Fleishman and Ellison, 

1962).  Indeed, even under severe energetic stress, such as that experienced by highland 

Peruvian populations, hand proportions relative to body size are seen to be preserved at 

the expense of other limb segments, demonstrating the prioritisation of hand proportions 

to maintain their manipulatory function (Pomeroy et al., 2012). The preservation of these 

proportions reflects the functional importance of the hand for fine motor activities. 

However, hand and digit proportions may be constrained not only by morphological 

integration and selection for manipulation but may also be shaped by climate.  

As the hand has the highest surface area-to-volume ratio of any body part (Molnar, 

1957; Hirata et al., 1993; Taylor, 2014), the hand’s capacity for heat loss may also be of 

adaptive value. Quantifying digit proportions in skeletal remains has indicated that there 

are ecogeographic patterns in digit morphology (Lazenby and Smashnuk, 1999; Betti et al., 

2015). These findings indicated that hand proportions might be climate-adapted; hand 

proportions were considered to align with Allen’s Rule (Allen, 1877), whereby appendage 

length and width associated with climate to reduce surface area-to-volume ratio for heat 
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conservation. Experimental research in vivo on heat loss from the hands demonstrates that 

wide hands with relatively short digits do retain more heat in cold conditions (Payne et al., 

2018b). However, the effect of hand and digit proportions on maintaining digit 

temperatures is likely to be relatively moderate in comparison to the effect of physiological 

adaptations such as vasoregulation (Sloan and Keatinge, 1973; LeBlanc, 1975; Smith and 

Hanna, 1975; Hayward and Keatinge, 1981; Chudecka, 2013; Taylor, 2014; Tanda, 2016). In 

particular, CIVD is seen to maintain peripheral temperatures in populations exposed to 

severe cold (Lewis, 1930; Cheung, 2015), such as highland Peruvians (Little, 1976) and 

indigenous Arctic populations (Brown et al., 1953; Page and Brown, 1953; Meehan, 1955; 

Elsner et al., 1960; LeBlanc, 1975; Steegmann, 1977), and is thought to become enhanced 

during growth (Frisancho, 1993). In addition, CIVD is known to maintain dexterity during 

cold exposure (Cheung, 2015; Cheung et al., 2016). However, there is currently no 

consensus as to whether selection for such a trait occurred to reduce fatal cold injury or 

maintain dexterity (Hanna and Brown, 1983; Daanen, 2003; Wilberfoss, 2012; Cheung, 

2015). Whether morphological adaptations to maintain digit temperature have developed 

alongside these physiological mechanisms is unknown. Whilst vasoregulation is likely to 

primarily influence digit temperatures, associations between hand morphology and digit 

temperatures are still seen (Payne et al., 2018b), suggesting that selection may also act 

upon morphology to further aid the maintenance of peripheral temperatures. Whether 

hand morphology has any influence on their manipulatory function remains to be seen. 

Digit proportions are known to influence dexterity at room temperature, whereby 

individuals with wider digits (Marshall, 2007), and wider palms with relatively short 

thumbs (Çakit et al., 2016), tend to have decreased performance on standardised dexterity 

tests. This association is seen to be stronger in the non-dominant hand (Şahin et al., 2017). 

However, this association between wide digits and lower dexterity scores is somewhat 
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dependent on the nature of the task (Peters and Campagnaro, 1996). In standardised 

pegboard tests, when wide pegs are included, those with wider digits tend to perform 

better than those with slim digits, who instead perform better with finer pegs. When 

assessing grip strength, individuals with wider and longer hands tended to have higher grip 

strength than those with small hands, and individuals with a wide span between first and 

fifth digit tip with the fingers outstretched also tended to have a higher grip strength than 

those with a narrow finger span (MacDermid et al., 2002). Whilst the influence of digit 

proportions on dexterity has been established in room temperature conditions, this 

relationship has yet to be tested in cold conditions. It is well established that dexterity is 

significantly compromised in cold conditions (Horvath and Freedman, 1947; Teichner, 

1957; Gaydos and Dusek, 1958; Clark, 1961; Schiefer et al., 1984), but how this relationship 

is affected by hand and digit morphology is not known. 

If the association between digit width and dexterity observed at room temperature 

is also seen in cold conditions, then a trade-off may arise between dexterity and 

thermoregulation. Wide hand and digit proportions, advantageous for heat retention, 

would be costly for dexterity. If wide hands and digits lose dexterity on cold exposure, then 

thermal stress may be the primary selective pressure in cold conditions, as wider 

proportions are found in cold-inhabiting populations, such as Inuit, Inupiat, and Fuegian 

groups (Lazenby and Smashnuk, 1999; Betti et al., 2015). Cold may be the dominant 

selective pressure as severe cold injury and hypothermia are likely to be more detrimental 

in the long term than loss of fine finger dexterity. The opposing hypothesis, whereby 

dexterity is not influenced by hand and digit proportions or improves with hand or digit 

width during cold exposure, would suggest that both thermal stress and dexterity may be 

dual selective pressures promoting the same hand and digit morphology. Arguably, 

morphology that promotes the maintenance of fine motor control when performing manual 
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tasks essential for survival in cold conditions could be a significant advantage (Taylor, 

2014). As cold region-inhabiting populations are found to have shorter, broader 

proportions of their metacarpals (Lazenby and Smashnuk, 1999; Betti et al., 2015), these 

may be the optimal proportions for maintaining dexterity in these conditions for tasks such 

as hunting, food preparation, fire-lighting, and shelter maintenance (Cheung, 2015). Thus, 

determining whether hand proportions affect dexterity in cold conditions may shed further 

light on whether ecogeographic patterns in hand proportions have adaptive value. 

Studying the influence of hand proportions on dexterity in the cold is particularly 

challenging, as there are multiple physiological contributors to the cold-associated 

decrease in manual dexterity. As discussed in previous chapters, vasoregulation can 

significantly alter blood flow, and during cold exposure constriction of blood vessels in the 

digits can result in a flow rate close to zero at the fingertips (Rowell, 1974; Johnson and 

Proppe, 1996). As a consequence, hand temperatures can reach below 10˚C in several 

minutes (Mills, 1956; Geng, 2001). This has an impact on the functioning of multiple soft 

tissues in the hand; nerves, muscles, joints and ligaments are all affected by temperature 

changes. Cold can reduce nerve conduction velocity (De Jong et al., 1966; Vanggaard, 1975), 

and at nerve temperatures below 10˚C, nerve conduction entirely ceases. Fortunately, 

neuronal axons are located within deeper structures, and thus nerve temperature will 

follow skin temperature after significant delay, allowing nerve conduction velocity to be 

maintained for as long as possible on cold exposure (Heus et al., 1995). Exposure of muscle 

to temperatures below 28˚C reduces maximal contraction velocity and force, and reduces 

time to exhaustion, affecting contraction force of the fingers and hand (Clarke et al., 1958). 

Finger mobility is determined by joint mobility, which in turn is influenced by the viscosity 

of synovial fluid. Synovial fluid viscosity increases in cold conditions causing significant 

joint stiffness. Along with reduced mobility, changes to motor control due to decreased 
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tactile sensitivity can also occur (Provins and Morton, 1960), and can cause 

underestimation of handgrip force and plantar pressure, possibly resulting from 

proprioceptive suppression (Nurse and Nigg, 2001; Cheng et al., 2014). Motor control 

progressively decreases proportionally to the volume of limb exposed to cold (Montgomery 

et al., 2015). Overall, a reduction in temperature and blood flow has significant negative 

effects on manual dexterity. Variation in hand proportions may have no effect on dexterity 

in the cold as a result of the multiple tissues compromised by low temperatures, but this 

remains to be tested. 

Understanding the relationships between morphology, dexterity, and 

thermoregulation are also important for interpreting the morphology of skeletal remains 

from modern humans and extinct hominins, and in turn inferring behaviours in a climatic 

context. For example, whilst the dextrous capacities of Homo neanderthalensis 

(Neanderthals) are likely to have been near identical to anatomically modern humans, 

based on evidence from mathematical and three-dimensional modelling (Niewoehner et al., 

2003; Feix et al., 2015), material culture (Niewoehner, 2006), and representational art 

(Hoffmann et al., 2018), the possible compromise on dexterity experienced by high 

latitude-dwelling Neanderthal groups remains unknown. When considering morphological 

evidence, the comparative length of metacarpals between Neanderthals and modern 

humans indicates that Neanderthals had longer palms relative to their digits (Musgrave, 

1971; Mersey et al., 2013). This would indicate that their hands may have remained 

warmer in cold conditions, based on the experimental results of Payne et al. (2018b). 

However, it is not possible to make inferences about how vasoregulation may have affected 

Neanderthal extremity temperature. Whilst Neanderthal populations spanned a broad 

range of climates (Krause et al., 2007; Hublin and Roebroeks, 2009), this finding is of 

particular interest relating to Neanderthal fossil remains found in high latitude regions 
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(Nielsen et al., 2017), as their hand proportions may have been better suited to maintaining 

thermal balance in cold climates. However, the extent to which their hand proportions 

affected Neanderthal dexterity in cold conditions cannot be inferred without reference data 

from living populations.  

The current study provides an empirical test of the relationship between manual 

dexterity and variation in the proportions and temperature of the hand and digits after 

acute cold exposure among living men and women. In doing so, the study aimed to assess 

the functional significance of specific hand proportions in cold environments and whether 

this reflects a trade-off between thermoregulation and dexterity. This indicates how 

selection for dexterity or thermoregulation may be contributing to both ecogeographic 

variation in human hand proportions and hand morphology of extinct hominins. 

5.2. Methods 

All methods are detailed in Chapter 2. Sampling can be found in section 2.2.2; 

anthropometry can be found in section 2.3.2; experimental protocol can be found in section 

2.4.2; thermal image analysis can be found in section 2.5. 

5.2.1. Calculations 

The first, second, and third digits were included in the calculations. 

Digit-to-hand length ratio was then calculated as follows: 

𝐷𝐷𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹˗𝐹𝐹𝑟𝑟˗ℎ𝑟𝑟𝑙𝑙𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟 =  
𝑇𝑇ℎ𝐹𝐹𝐹𝐹𝑑𝑑 𝑑𝑑𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ

𝐻𝐻𝑟𝑟𝑙𝑙𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ  

Individual digit ratios were calculated as follows: 

𝐷𝐷𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟 =  
𝐷𝐷𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑤𝑤𝐹𝐹𝑑𝑑𝐹𝐹ℎ
𝐷𝐷𝐹𝐹𝑑𝑑𝐹𝐹𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ 
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The dexterity test before immersion (DEXPre) and immediately after immersion 

(DEXPost) were used to calculate any difference in dexterity (DEXDiff): 

DEXDiff = DEXPre – DEXPost 

5.2.2. Statistics 

The Shapiro-Wilk test was used to determine whether variables were normally 

distributed. Where variables were found to be normally distributed, independent sample t-

tests were carried out to determine differences between males and females in 

anthropometric variables. In the case where there were no significant differences in hand 

or digit proportions between the sexes, sexes were pooled. In the instances where variables 

were non-normally distributed, Spearman’s rank correlation coefficient analysis was used 

to determine any relationships between anthropometric variables, dexterity, and 

temperature using a p-value of 0.05 to assess significance. Independent sample t-tests were 

used to assess any differences in dexterity between the sexes. A paired t-test was used to 

test for differences in pre-immersion core temperature and core temperature during the 

final minute of immersion. All statistical analysis was carried out using SPSS 25.0 for 

Windows. 

5.3. Results 

Table 5.1 summarises the anthropometric variables of the test sample. Independent 

sample t-tests demonstrated that there were no differences between males and females in 

hand and digit measurements, other than hand length (t38=4.201, p<0.01), hand width 

(t38=5.389, p<0.01), second digit length (t38=2.433, p<0.05), and second digit width 

(t38=2.542, p<0.05).  When sexes were pooled, hand width, first digit length, first digit 

width, and second digit width were normally distributed, as was height. Hand length, 



86 
 

second digit length, third digit length, third digit width, weight, and digit-to-hand length 

ratio were not normally distributed. Thus, non-parametric tests were applied.  

There was no significant difference in core body temperature before immersion 

(36.81˚C, ±0.35) and in the final minute of immersion (36.81˚C, ±0.35) (t39=-0.201,p>0.05). 

There was no correlation between pre-immersion dexterity (DEXPre) and any hand 

or digit dimensions. Post-immersion dexterity (DEXPost) and the difference in dexterity 

before and after immersion (DEXDiff) did not correlate with the following anthropometric 

variables: hand length, hand width, digit-to-hand length ratio, first digit ratio, and third 

digit ratio.  

 

Table 5.1 Summary statistics of combined sample (males and females) 

 Minimum Maximum Mean (SD) 
Hand Length (cm) 16.10 20.00 17.94 (±1.12) 

Hand Width (cm) 6.20 8.40 7.19 (±0.60) 

First digit length (cm) 4.50 6.60 5.57 (±0.49) 

First digit width (cm) 1.40 2.20 1.76 (±0.19) 

First digit ratio 0.25 0.40 0.32 (±0.04) 

Second digit length (cm) 6.10 7.70 6.87 (±0.48) 

Second digit width (cm) 1.30 2.20 1.72 (±0.20) 

Second digit ratio 0.19 0.33 0.25 (±0.03) 

Third digit length (cm) 7.00 9.10 7.75 (±0.58) 

Third digit width (cm) 1.40 2.00 1.70 (±0.17) 

Third digit ratio 0.17 0.27 0.22 (±0.02) 

Digit-to-hand length ratio 0.40 0.50 0.43 (±0.02) 

Height (cm) 152.2 191.5 166.9 (±9.3) 

Weight (kg) 42.40 100.95 62.64 (±15.15) 

SD: Standard Deviation    
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First digit width was found to significantly correlate with DEXDiff, and negatively 

correlate with DEXPost (Error! Not a valid bookmark self-reference. and Figure 5.1A). 

Third digit width was also found to negatively correlate with DEXPost  (Table 5.4 and Figure 

5.1B). No other correlations were found between the dexterity variables and digit widths 

or lengths.  

 

Table 5.2 Summary of Spearman’s Rank Analysis of first digit variables, dexterity and average digit temperature 

 
First digit length First digit width First digit ratio 

 
CC Sig. CC Sig. CC Sig. 

DEXDiff 0.236 ns 0.448** p<0.01 0.264 ns 

DEXPre 0.071 ns -0.024 ns -0.061 ns 

DEXPost -0.150 ns -0.433** p<0.01 -0.210 ns 

Pre-immersion temperature -0.043 ns -0.126 ns -0.074 ns 

Post-immersion temperature -0.208 ns -0.021 ns 0.175 ns 

CC= Correlation coefficient; Sig.= Significance; ns=not significant *= significant (p<0.05); **= highly significant 
(p<0.01) 

 

Table 5.3 Summary of Spearman’s Rank Analysis of second digit variables, dexterity and average digit 
temperature 

 
Second digit length Second digit width Second digit ratio 

 
CC Sig. CC Sig. CC Sig. 

DEXDiff 0.084 ns -0.271 ns -0.298 ns 

DEXPre 0.01 ns -0.068 ns -0.054 ns 

DEXPost -0.062 ns 0.160 ns 0.208 ns 

Pre-immersion temperature -0.112 ns 0.260 ns 0.283 ns 

Post-immersion temperature 0.018 ns 0.369* p<0.05 0.29 ns 

CC= Correlation coefficient; Sig.= Significance; ns=not significant *= significant (p<0.05); **= highly significant 
(p<0.01) 
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Table 5.4 Summary of Spearman’s Rank Analysis of third digit variables, dexterity and average digit 
temperature 

 
Third digit length Third digit width Third digit ratio 

 
CC Sig. CC Sig. CC Sig. 

DEXDiff 0.127 ns 0.263 ns 0.153 ns 

DEXPre -0.126 ns -0.086 ns -0.024 ns 

DEXPost -0.2 ns -0.353* p<0.05 -0.138 ns 

Pre-immersion temperature -0.005 ns 0.008 ns 0.109 ns 

Post-immersion temperature -0.226 ns 0.097 ns 0.356* p<0.05 

CC= Correlation coefficient; Sig.= Significance; ns=not significant *= significant (p<0.05); **= highly significant 
(p<0.01) 

 

Second digit width and third digit ratio correlated with post-immersion average digit temperature ( 

Table 5.3 and Figure 5.2). No other digit lengths or widths correlated with average 

digit temperature at any time point. DEXPre, DEXPost, or DEXDiff did not correlate with 

average digit temperature at any time point.  

There were no differences in dexterity between the sexes. There was no significant 

difference in core body temperature before immersion and in the final minute of 

immersion. 
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Figure 5.1 Scatterplots of dexterity and digit widths. Blue: female, Green: male. A. Scatterplot of first digit width 
and DEXPost. Correlation Coefficient=-0.433; B. Scatterplot of third digit width and DEXPost. Correlation 
Coefficient=-0.353. 
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Figure 5.2 Scatterplots of post-immersion average digit temperature and anthropometric variables. Blue: 
female, Green: male. A. Scatterplot of second digit width and post-immersion average digit temperature. 
Correlation Coefficient=0.369; B. Scatterplot of third digit ratio and post-immersion average digit temperature. 
Correlation Coefficient=0.356. 
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5.4. Discussion 

The current study suggests that digit dimensions affect dexterity under cold 

conditions: individuals with wider first and third digits had significantly reduced dexterity 

after immersion relative to individuals with narrower digits. Individuals with a wider first 

digit also had a greater difference in dexterity between the pre-immersion dexterity test 

and the post-immersion dexterity test than those with a narrower first digit. These results 

reflect the association observed between digit width and dexterity at room temperature 

(Marshall, 2007; Şahin et al., 2017). Second digit width did not influence dexterity in cold 

conditions but associated with average digit temperature after immersion, as did third digit 

ratio. Dexterity did not correlate with digit length, hand length, hand width or digit-to-hand 

length ratio. These results suggest that narrow digits are more advantageous for carrying 

out dextrous tasks in cold conditions than wide digits, but compromise digit temperature. 

The current study suggests that there is a trade-off between manual functions in 

cold conditions: dexterity and thermoregulation. Wider hands with relatively short and 

wide digits maintain a higher average digit temperature (Payne et al., 2018b). However, 

wide digits are seen to reduce dexterity, although length and width of hands do not appear 

to affect dexterity in this case. This indicates that only certain hand dimensions impact on 

dexterity and thermoregulation (Figure 5.3).  

The current study suggests that first digit width significantly influences fine finger 

dexterity during cold exposure. This aligns with previous research, which demonstrates 

that the first digit is essential in performing the precision pinch grips required for fine 

finger dextrous tasks (Napier, 1960; Fleishman and Ellison, 1962; Boesch and Boesch, 

1993; Bernstein, 1996; Yancosek and Howell, 2009). Second digit width did not influence 

dexterity in cold conditions but associated with average digit temperature. The second digit 

is the first to receive blood from the superficial palmar arch (Standring, 2008), as the first 
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digit has a separate blood supply linked to the radial artery.  Vasoconstriction may affect 

the second digit strongly and thus significantly reduce temperature, and thus reflect the 

temperature across the other digits. Third digit width negatively correlated with dexterity. 

Although not a commonly used digit in the Purdue pegboard dexterity test, this dimension 

may correlate with dexterity as a result of significant integration with other elements of the 

hand, such as the first digit. 

 

Figure 5.3 Diagram of which hand and digit dimensions associate with dexterity and thermoregulation based on 
results from the current study and Payne et al. (2018b). 
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Some individuals, irrespective of average digit temperature and digit width, in fact, 

increased in dexterity after the ice-water immersion. This may be due to an improvement 

over time with practice of the Purdue pegboard test. Whilst three practice runs were 

carried out as recommended (Gallus and Mathiowetz, 2003), some participants may still 

have improved after this practice period. Further investigation may be required to 

determine whether these cases are removed with further practice. 

From an evolutionary perspective, the findings here indicate a trade-off in functions 

of the hand in cold conditions. Whilst dexterity may be compromised with wider digits, 

wide digits are likely to protect from cold injury, and thus may be more advantageous in 

the long term, over a short term compromise in fine finger dexterity. It is worth noting that 

the Purdue pegboard test is only one measure of dexterity, used to quantify fine finger 

dexterity (Yancosek and Howell, 2009), specifically, the completion of thumb-finger 

precision pinch grips in quick succession. This test does not measure other elements of 

dexterity, such as overall manual dexterity (any task which requires the coordination of the 

entire hand), hand steadiness, overall grip strength or grip sensitivity (Fleishman and 

Ellison, 1962). Indeed, all these elements of manual dexterity are compromised by lower 

temperatures (Teichner, 1957; Riley and Cochran, 1984; Heus et al., 1995; Daanen, 2009; 

Cheng et al., 2014; Cheung et al., 2016), but whether different hand or digit proportions 

affect these other elements of dexterity has yet to be investigated. Fine finger dexterity is 

representative of some essential survival tasks, such as lighting a fire, threading a needle, 

processing food, or utilising a fishing hook (Cheung, 2015). Past and present populations 

may have found such tasks challenging in cold conditions. Notably, some Arctic hunter-

gatherer groups have markedly complex fishing and hunting technologies (Torrence, 2001; 

Read, 2012), which may be particularly challenging to create and operate in severe cold. As 

populations residing in cold regions have been found to have wider digits (specifically the 
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first and second metacarpals) (Lazenby and Smashnuk, 1999; Betti et al., 2015), these 

populations may have found fine finger dextrous tasks particularly challenging, given the 

results found here, whereby wide digits result in a greater compromise in fine finger 

dexterity.  Digit width may well have compromised fine finger dexterity but may have been 

essential for optimising thermoregulation. However, it is also possible that the capacity for 

dextrous tasks may be maintained by vasoregulatory mechanisms, which are known to be 

enhanced in Arctic populations (Brown et al., 1953; Page and Brown, 1953; Meehan, 1955; 

Elsner et al., 1960), and fishermen operating in high latitude regions (LeBlanc et al., 1960; 

Steegmann, 1977), but this requires further investigation.  

Based on the findings of the current study, it may be possible to infer potential cold-

associated dexterity limitations in extinct hominins. Species with relatively wide digits may 

have significantly reduced fine finger dexterity in cold conditions. Neanderthals are 

considered to have highly robust phalanges (Musgrave, 1971), indicating they had wide 

digits, and thus potentially may have had reduced fine finger dexterity both in temperate 

and cold climates. Furthermore, Neanderthals are considered to have had hypertrophied 

hand musculature based on the increased projection of some carpal tubercles 

(Niewoehner, 2006), and prominent opponens pollicis crest (Trinkaus, 1983). This 

enhanced musculature may have impaired dexterity in cold conditions, as muscle 

contraction velocity and force reduces with decreasing temperature (Clarke et al., 1958). 

Further research is required to ascertain whether muscle hypertrophy does indeed 

significantly compromise dexterity in cold conditions. 

5.4.1. Conclusion 

The current study suggests that digit proportions influence dexterity in cold 

conditions; narrow fingers are advantageous at carrying out fine finger dexterity tasks after 

acute cold exposure. However, narrow digits compromise thermoregulation. As wider hand 
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proportions are found in cold-inhabiting populations, this may indicate that climate is the 

primary selective pressure for wide hand and digit morphology in cold conditions, despite 

the reduction in dexterity, as overall long-term function is better preserved. This could 

inform inferences about the hand morphology of extant and extinct hominin populations. 

Further research is required to ascertain the underlying physiological mechanism behind 

the relationship between fine finger dexterity in the cold and digit width, and whether this 

relationship is also seen for other manual dexterity tasks.   
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PART II – Field Investigation 
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Chapter 6  

Thrifty Phenotype vs Cold Adaptation: 
Trade-offs in Upper Limb Proportions 

of Himalayan Populations of Nepal 
This paper was accepted for publication in the Royal Society Open Science journal on 14 

May 2018 (Payne et al., 2018d). 

Objectives: The current study investigated whether relative upper limb 

proportions of Himalayan adults differ between highland and lowland populations, and 

whether cold adaptation or an energetic stress response relating to the thrifty phenotype 

hypothesis may be acting here.  

Materials and Methods: Height, weight, humerus length, ulna length, hand length, 

and hand width were measured in Himalayan adults (n=254) from highland and lowland 

populations using standard methods.  

Results: Relative to height, total upper limb and ulna lengths were significantly 

shorter in highlanders compared to lowlanders in both sexes, whilst hand and humerus 

length were not. Hand width did not significantly differ between populations.  

Discussion: These results support the thrifty phenotype hypothesis, as hand and 

humerus proportions are conserved at the expense of the ulna. The reduction in relative 

ulna length could be attributed to cold adaptation, but the lack of difference between 

populations in both hand length and width indicate that cold adaptation is not shaping 

hands proportions in this case. 
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6.1. Introduction 

Life at high altitude (>3000 metres) is associated with extreme environmental 

stresses (Morpurgo et al., 1976; Pawson, 1976; Moore et al., 1998; Moore, 2001; Beall, 

2006, 2014; West et al., 2013; Bigham and Lee, 2014; Gilbert-Kawai et al., 2014). Hypoxia, 

one of the few environmental stresses that cannot be effectively buffered by cultural 

adaptation (Beall et al., 2012a), in combination with low ambient temperatures, a 

physically demanding lifestyle, and nutritional constraints create a multi-stress 

environment which is highly challenging to longer-term human occupation (Gilbert-Kawai 

et al., 2014). In order to deal with these stresses, high altitude populations such as 

Himalayan, Andean and Ethiopian groups have adapted, both genetically and 

developmentally, through multiple adaptive pathways (Pawson, 1976; Beall, 2006, 2014; 

West et al., 2013; Bigham and Lee, 2014; Gilbert-Kawai et al., 2014) (Table 6.1). Genetic 

changes affecting hypoxia-inducing factor pathways (Scheinfeldt et al., 2012; Bigham et al., 

2013) have been identified in all three groups, in addition to genetic changes in oxygen 

sensing (Ge et al., 2015) in Himalayans and Andeans, and glucose and insulin sensing 

(Wang et al., 2011) in Himalayans, overall enabling efficient mitochondrial metabolism in 

hypoxic conditions (Horscroft et al., 2017). This evidence demonstrates that quantitatively 

different genotypes have developed in high altitude regions. Whilst high altitude 

populations have evolved efficient mechanisms for dealing with hypoxia, limited energy 

availability can often result in trade-offs during growth, creating a different phenotype 

from lowland populations (Pawson, 1977; Smith, 1997; Weitz et al., 2004; Bailey et al., 

2007; Argnani et al., 2008; Moore et al., 2011; Pomeroy et al., 2012, 2013, 2014; Weitz and 

Garruto, 2015). Whilst it is often difficult to obtain lowland populations that are directly 

comparable to highland populations in terms of lifestyle, culture and genetics, proximate 

groups are often used to find the closest fit to comparable populations. 
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Table 6.1 List of traits found in high altitude populations (>3000m) compared to local lowland native groups 

Trait 
High Altitude Region 

Himalayas/ Tibet Andes Ethiopia 
Height ↓ (Pawson, 1976, 1977) ↓ (Beall, 2006) ↑ (Harrison et al., 1969) 

Sitting Height ↑ (Tripathy and Gupta, 2007) ↑ (Trowbridge et al., 1987) ↑ (Clegg et al., 1972) 

Relative zeugopod length ↓ (Bailey and Hu, 2002) ↓ (Pomeroy et al., 2012) ↓ (Clegg et al., 1972) 

Fat mass ↓ (Boyer and Blume, 1984) ↓ (Haas et al., 1977) ↓ (Harrison et al., 1969) 

Chest volume ↑ (Tripathy and Gupta, 2007) ↑ (Greksa, 1986) ↑ (Harrison et al., 1969) 

Exhaled nitric oxide ↑ (Erzurum et al., 2007) ↑ (Beall et al., 2001) ↑ (Beall et al., 2012b) 

Erythrocytosis ↔ (Beall, 2014) ↑ (Beall, 2014) ↔ (Xing et al., 2008) 

Arterial O2 concentration ↓ (Beall et al., 1997) ↑ (Beall et al., 1997) ↔ (Beall, 2006) 

Altitude sickness with age ↑ (Xing et al., 2008) ↑ (Beall et al., 1992) ↔ (Xing et al., 2008) 

↑ - Increase; ↓ - Decrease; ↔ - No difference; O2 - Oxygen 

6.1.1. Plastic Growth 

Linear growth during infancy and childhood appears to be moderately reduced with 

increasing altitude in Andean and Himalayan populations relative to their lowland 

counterparts (Beall, 1981, 1984; Gupta and Basu, 1981; Argnani et al., 2008), likely due to 

developmental plasticity. This height deficit has been commonly attributed to hypoxic 

stress, whereby limited oxygen compromises growth (Bateson et al., 2004; Weinstein, 

2005; Julian et al., 2007; Argnani et al., 2008; Moore et al., 2011; Pomeroy et al., 2013, 

2014; Eichstaedt et al., 2015; Ge et al., 2015). However recent evidence suggests that 

oxygen saturation does not correlate with height in high altitude Andean populations, 

indicating that nutrition and socioeconomic factors may play a more important role in 

stunted growth patterns (Weitz et al., 2004; Pomeroy et al., 2013). Indeed, it is likely to be 

multiple high altitude-related stresses contributing to reduced growth in high altitude 

populations. Interestingly, Ethiopian highlanders are not reported to have reduced linear 

growth relative to their lowland counterparts (Harrison et al., 1969); in fact, highlanders 

have greater height than lowlanders, but this trend has been attributed to higher disease 
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prevalence in lowland populations, thus potentially causing another energetic demand on 

lowland populations that compromises linear growth. 

Clarifying where in the body the reduction in growth occurs is a strong indicator of 

the reason behind reduced height. The most significant decrement in height relative to 

lowland populations occurs in tibial growth, whilst sitting height remains the same (Bailey 

and Hu, 2002; Bailey et al., 2007). The reduction in tibia length is mirrored by a reduction 

in radius length in some Andean populations (Pomeroy et al., 2012), although this currently 

remains untested in Himalayan populations. Pomeroy et al. speculated that their findings 

could be attributed to a developmentally plastic response relating to the thrifty phenotype 

hypothesis (Hales and Barker, 1992). Whilst the thrifty phenotype hypothesis originated to 

explain the association between poor nutrition during early life and susceptibility to type II 

diabetes mellitus, it has since been expanded upon to suggest that susceptibility to a range 

of chronic diseases could relate to selection for a thrifty growth trajectory during early life, 

if nutritional status changes between early life and adulthood (Barker et al., 2002; Wells, 

2011). This concept of thrifty phenotypic plasticity under energetic stress may be extended 

to growth prioritisation of certain critical body elements, such as the brain, at the expense 

of the full growth of other organs; this concept is applied by Pomeroy et al. (2012), to 

explain the reduction in forearm and lower leg segments elements relative to hands and 

feet. The authors argued that this pattern preserved function in the hands and feet, and that 

this pattern was inconsistent with the alternative distal blood flow hypothesis (Lampl et al., 

2003), which would predict a gradient of decreasing relative distal segment length with 

increased distance from the body as a result of progressively reduced nutrient availability. 

It remains untested whether the same pattern of relative size in different segments of the 

extremities is observed in high altitude Himalayans. Greater cold stress in the Himalayas 

may result in different limb proportions from those of Andeans. 
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6.1.2. Potential Cold Adaptation 

Whilst both the Himalayas and the Andes have considerable local variation in 

temperature and humidity, high altitude populations in the Himalayas are exposed to lower 

temperatures on average compared to Andeans due to differences in latitude, topography, 

rainfall and ecology (Barry, 1992). The highland populations of Peru, Ecuador, and Bolivia, 

residing up to as high as 4500m above sea level, are likely to experience limited 

seasonality, but a significant range in diurnal temperature (Thomas and Winterhalder, 

1976). During winter, inhabitants of the highest settlement in the Andes, La Rinconada in 

Peru, are exposed to annual minimum temperatures of approximately -20˚C (Merkel, 

2016). Minimum temperatures are reported to be lower in some Himalayan settlements, 

such as Lo Manthang in Nepal, reaching below -30˚C in winter (Merkel, 2016; Vuillermoz, 

2016). Whilst it is impossible to make generalisations about such vast and climatically 

diverse mountain ranges, extreme temperatures are probably the most influential as 

potential selection pressures. The lower minimum temperatures in some Himalayan 

settlements may be a greater selection pressure for good thermoregulation and minimising 

risk of cold injury, and thus thermal selection pressures may have shaped the limb 

morphology of Himalayan populations unlike other high altitude populations. Himalayan 

limb morphology may resemble the cold adapted patterns found in other populations 

exposed to low temperatures (Lazenby and Smashnuk, 1999; Betti et al., 2015), such as 

shorter and broader first and second metacarpals in individuals residing in cold climates 

than individuals from hot climates. These patterns found in metacarpal dimensions support 

Allen’s rule (Allen, 1877), where appendage length is reduced and appendage breadth 

increased to reduce heat loss in a cold climate.  

Thus, applying Allen’s rule to predict limb proportions in Himalayan populations, 

we would expect them to have shorter and broader limbs to minimise heat loss. Minimising 
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heat loss would reduce energetic demands on the body from maintaining body 

temperature, which may well be selected for as energetic stress is already strong in these 

populations as a result of multiple altitude-related stresses. Furthermore, low 

temperatures would also put individuals at greater risk of cold injury in the extremities 

(Subedi et al., 2010; Moore and Semple, 2011). Although there are individually reported 

cases of Sherpas with frostbite (Subedi et al., 2010; Macdonald et al., 2015), they tend to 

have a lower incidence than recreational mountaineers, although this may be due to 

differences in behaviour (Takeoka et al., 1993; Maley et al., 2014). These findings suggest 

that Sherpa hands may be better adapted to life in cold conditions, but whether hand 

dimensions play a role remains untested. By measuring hand dimensions of a sample of 

Sherpas, it may be possible to infer whether both their absolute and relative hand 

dimensions are suited to heat preservation or not. 

As the extremity proportions of permanent Himalayan populations remain poorly 

documented (Sloan and Masali, 1978; Gupta and Basu, 1981; Tripathy and Gupta, 2007), it 

is currently not possible to infer the key environmental stresses in Himalayan high altitude 

upper limb morphology and how the trade-off is balanced between dexterity and 

thermoregulation. Thus, the current study investigates the limb proportions of highland 

and lowland groups from the Himalayas to determine how the multi-stress environment of 

high altitude influences limb morphology.  

6.2. Methods 

6.2.1. Study Sample 

The lowland population (n=71) was sampled from a migrant Tibetan community in 

Jawalakhel, Kathmandu, Nepal (1400 m above sea level, 27.6744° N, 85.3123° E; average 

minimum winter temperature= 3.1˚C (Merkel, 2016)). Whilst this population was located at 

moderate altitude, the significant impacts of altitude on the body are reported to only 
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emerge approximately 2000m+ above sea level (Young and Reeves, 2002), thus this 

community was considered suitable as a comparable lowland population. A Tibetan 

community was selected as they share common genetic ancestry with the highland 

population (Bhandari et al., 2015), and have similar diets and activity levels. Whilst Tibetan 

and Sherpa groups are still genetically distinct, Tibetans are the most closely genetically 

related to Sherpa, and therefore make the most suitable comparison group.  The highland 

population (n=183) was sampled from several Sherpa communities in Namche Bazaar and 

surrounding villages, Nepal (3500m+ above sea level, 27.8069° N, 86.7140° E; average 

minimum winter temperature= -7.9˚C (Merkel, 2016)) (further details of the population 

can be found in Appendix 2). Each participant self-identified as Tibetan or Sherpa in the 

lowland and highland populations respectively, and evidence of birthplace was confirmed 

when possible through birth certificates or school records. A convenience sample of 254 

participants between the age of 18 and 59 was measured. Convenience sampling was used 

for two reasons; due to the dispersed nature of many of the highland settlements, and the 

relatively low number of individuals of Tibetan origin in Kathmandu. Thus, sampling was 

limited to the groups that were easily accessible within the limited data collection time 

frame. Inevitably, there were likely sampling biases resulting from this form of data 

collection. The convenience sampling method may have resulted in differences in number 

of men and women between lowland and highland samples, based on who was available 

and willing to talk to investigators at the time of the study. As the lowland population were 

workers in the Jawalakhel community centre, only those relatively fit and healthy would 

have been sampled. Those from the Tibetan community who were able to get passports 

and work abroad, predominantly young men, would not be well represented in the lowland 

sample. Both highland and lowland samples were dependent upon those willing to 

cooperate with researchers, which may have also brought in an element of unknown bias. 
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6.2.2. Ethics Statement 

Participation was unpaid and voluntary and the study was conducted according to 

accepted international ethical standards for research involving human subjects 

(Declaration of Helsinki) (World Medical Association, 2013). The study was approved by 

the Human Biology Research Ethics Committee at the University of Cambridge 

(HBREC.2016.22), and the Nepal Health Research Council (Reference Number: 1571) 

(ethics proposal and approvals can be found in Appendix 1). Written informed consent was 

obtained from all participants by signature, or fingerprint if not literate. 

6.2.3. Anthropometry 

Height was measured to the nearest mm using a Seca Leicester Portable Height 

Measure following standard protocols with participants dressed in light clothing and 

unshod (Moore, 2001; Beall, 2006). Weight was measured to the nearest 0.05 kg using 

SECA-807 weighing scales (Seca, Birmingham, United Kingdom). Upper limb segment 

measurements were taken using Trystom anthropometer A-226 (Trystom, spol s.r. o, Czech 

Republic). Both humerus and ulna length were measured following standard definitions 

(Lohman et al., 1988). Humerus length was measured from the lateral border of the 

acromion to the inferior extent of the olecranon (elbow flexed at 90 degrees), while ulna 

length was taken from the olecranon to the head of the styloid process. Hand dimensions 

were measured following definitions by Davies et al. (1980), with palm facing upwards, 

fingers and palm fully extended and hand flat, with dorsum of the hand resting on a 

horizontal surface. Hand length was measured from the level of the ulna styloid to the 

greatest extension of the middle finger perpendicular to the long axis of the hand. Hand 

width was measured as the linear distance between the radial side of the second 

metacarpophalangeal joint and the ulnar side of the fifth metacarpophalangeal joint  
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(Davies et al., 1980). Humerus, ulna, and hand lengths were summed to give total upper 

limb length. 

6.2.4. Statistical Analysis 

To take account of differences in body size, upper limb segments relative to height 

were compared between populations. Relative segment lengths were calculated as follows: 

𝑅𝑅𝑙𝑙𝑙𝑙𝑟𝑟𝐹𝐹𝐹𝐹𝑣𝑣𝑙𝑙 𝐹𝐹𝑙𝑙𝑑𝑑𝑣𝑣𝑙𝑙𝑙𝑙𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ =  
𝑆𝑆𝑣𝑣𝐹𝐹𝑟𝑟𝑙𝑙𝑠𝑠𝐹𝐹𝑙𝑙 𝐹𝐹𝑙𝑙𝑑𝑑𝑣𝑣𝑙𝑙𝑙𝑙𝐹𝐹 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝐹𝐹ℎ (𝑠𝑠𝑣𝑣)

𝐻𝐻𝑙𝑙𝐹𝐹𝑑𝑑ℎ𝐹𝐹 (𝑠𝑠𝑣𝑣)  

Both absolute and relative segment lengths were analysed using independent t-tests 

between the highland and lowland populations. To remove any sex differences, male and 

female data were analysed separately. Normality was tested using the Shapiro-Wilk test on 

all data. All statistical analysis was carried out using SPSS 25.0 for Windows. 

6.3. Results 
Table 6.2 Descriptive statistics of highland and lowland populations 

 

 

Female Male 
Lowland 
(n=42) 

Mean (SD) 

Highland 
(n=48) 

Mean (SD) Sig. 

Lowland 
(n=29) 

Mean (SD) 

Highland 
(n=135) 

Mean (SD) Sig. 
Height 154.1 (±5.7) 155.5 (±6.3) p>0.05 168.2 (±7.0) 165.1 (±7.0) ** p<0.01 

Total Arm Length 71.3 (±3.7) 70.0 (±3.3) p>0.05 77.6 (±3.9) 74.6 (±3.8) ** p<0.01 

Humerus Length 29.1 (±1.8) 29.0 (±2.0) p>0.05 31.4 (±1.8) 30.3 (±2.1) ** p<0.01 

Ulna Length 24.3 (±1.5) 23.2 (±1.4) ** p<0.01 26.8 (±1.7) 25.4 (±1.8) ** p<0.01 

Hand Length 17.8 (±0.9) 17.7 (±0.9) p>0.05 19.4 (±1.3) 18.9 (±0.1) * p<0.05 

Hand Width 9.2 (±0.5) 9.1 (±0.6) p>0.05 10.2 (±0.7) 9.9 (±0.6) p>0.05 

All anthropometric variables were measured in cm. Total arm length includes humerus ulna and hand length 
Sig. = significance. *=p <0.05; **=p<0.01 

Absolute ulna length was significantly longer in lowlanders than in highlanders in 

both sexes (Table 6.2). In males, highlanders were significantly shorter in height, total 
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upper limb length, humerus length, ulna length and hand length. Absolute hand width did 

not significantly differ between populations in either sex. 

Relative to height, total upper limb and ulna lengths were significantly shorter in 

highlanders compared to lowlanders in both sexes, whilst relative hand length and width 

and relative humerus length were not significantly different between the two populations 

(Figure 6.1: p>0.05 for both sexes). 

 

Figure 6.1 Bar chart of mean difference in upper limb segment length relative to height between lowland and 
highland populations (Mean relative difference calculated as lowland relative mean – highland relative mean) 
*** = p<0.01 

6.4. Discussion 

These results are consistent with previous findings in children from Andean 

populations (Pomeroy et al., 2012), as relative hand and humerus proportions are 

conserved at the expense of the ulna. This suggests that limb growth may respond to 

environmental stress in Himalayan populations in a similar way to that seen in Andean 

populations, and provides support for plasticity, possibly in the form of a thrifty phenotype 
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mechanism, in shaping limb segment proportions in the presence of high altitude stresses. 

Whilst the current study only investigated adults (aged 18-59), it indicates that the adult 

phenotype reflects the pattern which develops during childhood (Pomeroy et al., 2012), 

whereby relative ulna length is reduced whilst relative humerus and hand length are not. 

The current study aligns with prior evidence of selective plastic growth under 

environmental stress (Bogin et al., 2002; Pomeroy et al., 2012), whereby certain limb 

segments, such as femur or humerus and hand, grow to near expected full length, whilst 

other segments, such as tibia or ulna, do not. No difference was found in relative hand 

length or width between the populations, indicating that no compromise in growth was 

made in hand dimensions. Relative ulna length was significantly shorter in highlanders 

relative to lowlanders, indicating reduced growth of this limb segment. Differences in 

altitude may result in this limb segment difference as limited oxygen availability may 

reduce growth in the highland population, as previously seen in other high altitude 

populations (Greksa, 1990; Bailey et al., 2007). However, this explanation is based on 

hypothetical assumptions relating to prioritisation of functional elements, and thus 

requires further investigation to fully understand the underlying mechanisms behind the 

limb segment pattern found here and elsewhere (Pawson, 1977; Beall, 1981; Singh et al., 

1986; Bailey and Hu, 2002). The preservation of humerus length in the highland sample 

may result from the prioritisation of the upper arm segment for functional purposes, but 

could also occur due to morphological integration and regulation of this segment during 

development (Zakany and Duboule, 2007), limiting plastic responses to growth 

environment in the humerus. 

The reduction in relative ulna length could be attributed to cold adaptation (Ruff, 

1991; Wilberfoss, 2012), but the lack of difference between populations in both hand 

length and width indicate that cold adaptation is not shaping hand proportions in this case. 
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It is possible that the forearms, but not hand proportions, are shaped by climate; 

Steegmann (2007) suggested that extreme vasoconstriction in the hands as a response to 

cold may negate any effect of hand proportions, as hand temperature may reach close to 

the surrounding temperature, and thus little heat is transferred to the surroundings from 

the hand. This is supported by cold immersion tests, whereby heat flux from the hand is 

consistently lower than heat flux from the forearm, even when a temporary CIVD response 

occurs in the fingers (Wang et al., 2007). The forearm does not have such vasoregulatory 

responses (Rodriguez-Niedenfuhr et al., 2001; House and Tipton, 2002), and thus may be 

more susceptible to heat loss, and thus shortening of the zeugopod segment may have a 

significant effect on reducing energy expenditure via reduction in heat loss (Steegmann, 

2007). The mechanism for this adaptive limb segment shortening in the presence of cold 

stress is unknown, but plasticity may play a role. It is well documented that temperature 

influences long bone elongation during postnatal development in several species, including 

mice (Sumner, 1909; Sundstroem, 1922; Ogle, 1934; Serrat et al., 2008, 2009), rats 

(Chevillard et al., 1963; Lee et al., 1969; Riesenfeld, 1973), rabbits (Ogle, 1933), and pigs 

(Weaver and Ingram, 1969). This plastic growth response to temperature may influence 

high altitude long bone proportions; however, this plasticity in response to temperature 

has yet to be investigated in humans. 

The hand proportions measured in the current study do not appear to align with 

cold adaptation theory. This may be for several reasons. Firstly, cold stress may not be the 

dominant factor influencing limb proportions; maintenance of hand dimensions for 

dexterity may be acting here (Marzke and Marzke, 2000). Evidence in the skeletal record 

suggests that cold adaptation theory may explain patterns in digit proportions of high 

latitude-dwelling populations (Lazenby and Smashnuk, 1999; Betti et al., 2015), but may 

not be applicable to high altitude populations.  The highland population in the current 



110 
 

study may not show cold adaptation patterns in the hands as they may not be exposed to 

extreme low temperatures as regularly or for such prolonged periods as populations at 

very high latitudes, and the high insolation of the Himalayas during the day may alleviate 

cold stress (Merkel, 2016; Vuillermoz, 2016). Alternatively, the results here may indicate 

that in Himalayan populations, temperature does not act on hand proportions through 

plastic mechanisms. As the lowland population had a shared genetic ancestry with the 

highland population (Bhandari et al., 2015), both populations may have the same genetic-

based long term adaptations which shape the hands, which may or may not relate to cold 

adaptation. Finally, there could be other modifying factors here, such as the use of gloves or 

insulative clothing in highlanders to alleviate any cold stress effects, but this was not 

measured in the current study.  

The results here do not support the distal blood flow hypothesis (Lampl et al., 

2003), as the hand was not significantly reduced in length or width relative to the rest of 

the body in highlanders compared to lowlanders. This again aligns with findings from 

Andean populations (Pomeroy et al., 2012). However, this limb proportion pattern may 

indirectly be linked to differential blood supply to hand and forearm segments. When blood 

vessels are fully perfused, blood supply is greater in autopod segments than zeugopod 

segments, due to dense capillary networks in the hands and feet (Standring, 2008), where 

blood moves slowly and thus nutrient delivery is highly efficient. Even if there is significant 

vasoconstriction in the highland populations during cold exposure, there may still be 

sufficient nutrient delivery to the deep tissue and bones of the hands, ensuring essential 

bone development and regeneration (Tomlinson and Silva, 2013; Ramasamy et al., 2016). 

Whether vasoconstriction negates any effect of differential blood supply requires further 

investigation. 
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Although overall the diet and activity of the two populations were similar, there may 

have been some differences which were difficult to quantify. Lowland individuals self-

reported a traditionally Tibetan diet but may also have had access to Westernised food as 

globalisation has increased the diversity of food products available in Kathmandu. 

Differences in activity may also have occurred; the women in both populations were 

homemakers and living relatively sedentary lifestyles; the men in the lowland population 

were factory workers, whilst the men in the highland population were porters. Whilst the 

men in both populations were manual labourers, energy expenditure of activity was not 

directly measured in this case, so any differences in activity were unknown. Previous work 

indicates a very high daily energy expenditure of highland porters (Malville et al., 2001); 

further investigation would be required to determine the daily energy expenditure of 

Jawalakhel factory workers. 

The significant differences between males in all absolute variables other than hand 

width may be due to greater sensitivity to environmental stresses in males (Stinson, 1985). 

As five different variables show the same pattern between the male populations (height, 

total upper limb length, humerus length, ulna length, hand length), this is unlikely to be a 

chance outcome. Alternatively, confounding factors such as unknown differences in diet or 

activity, as discussed above, may result in differences in body form between highland and 

lowland males. Although there is a difference in sample size between males, there are no 

assumptions relating to sample size when applying the independent samples t-test, and 

thus differences in sample size should not have an effect. However, it is possible that the 

lack of differences identified in the female samples, other than the significant difference in 

relative ulna length, may result from a lack of power due to the relatively small sample 

sizes. 
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Although the absolute differences were greater in males, the differences in relative 

ulna length and total upper limb length were greater in females. This may indicate 

differential investment in segment lengths between the sexes during energetic stress. 

Reports from Himalayan communities in both Nepal (Madjdian and Bras, 2016; Nath, 

2017), and India (Kshatriya and Acharya, 2016), have indicated that during childhood, girls 

suffer greater malnutrition than boys as a result of differential intra-household food 

allocation patterns. These findings, in conjunction with a strong association found between 

nutritional status and women’s health markers, including body mass index, and stature 

(Smith, 1997), suggest that greater relative differences in ulna length and total upper limb 

length in women compared to men may be nutritionally founded. Alternatively, the greater 

deficit in height in highland males reduces the relative differences in male upper limb 

segment lengths, and thus the outcome of males having reduced relative differences in ulna 

length and total upper limb length may merely be a consequence of scaling. This outcome 

needs further investigation to determine why absolute differences between highland and 

lowland upper limb segment lengths are greater in males, but relative differences are 

greater in females. 

6.4.1. Conclusion 

In conclusion, the current study showed heterogeneous reductions in different 

upper limb segments in association with altitude-related stresses in Himalayan 

populations. Relative to height, total upper limb length was significantly shorter in 

highlanders than lowlanders, a difference driven largely by reduced ulna length. These 

results provide further support for the thrifty phenotype hypothesis, as hand dimensions 

are prioritised over other upper limb segments for their manipulative function. Cold 

adaptation patterns in the hand were not found in this study, indicating that other selection 

pressures dictate limb proportions in the Himalayan high altitude environment. 
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Chapter 7  

Conclusion 
The principal aims of this thesis were to assess whether hand proportions may be 

adapted to climate and to evaluate the implications of hand variation on thermoregulation 

and dexterity. Using a multidisciplinary approach, including in vivo laboratory 

investigations and an anthropometric field study, this work explored the potential factors 

shaping phenotypic variation in hand proportions. The laboratory investigations directly 

assessed the relationship between hand proportions and heat loss from the hand during 

brief cold exposure and the implications for dexterity, whilst acknowledging potential 

confounding factors relating to body size and body composition. The field study tested 

whether cold adaptation is observed in a population experiencing significant cold and 

energetic stress, or whether other selective pressures influence phenotypic variation in the 

hand in this case. The outcomes from each of the investigations are summarised below. 

7.1. Summary of findings 

The in vivo laboratory-based investigation detailed in Part I (Chapters 3-5) not only 

provided empirical support for the application of climate adaptation theory to the human 

hand, but also demonstrated the complexity of the relationships between heat loss from the 

hand, whole-body thermal balance, and dexterity. Firstly, the study demonstrated the 

importance of skeletal muscle mass in maintaining hand temperature during cold 

exposure. Absolute and relative muscle mass predicted heat loss from the hands in cold 

conditions, whilst weight, height, and fat mass did not. This indicates that thermogenesis in 

muscle may be more important than insulative fat in maintaining digit temperatures, as 

heat lost at the surface of the hand may be replaced more quickly with greater 
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thermogenesis from a larger muscle mass. This highlights the importance of body 

composition in thermoregulation of the extremities and has enabled whole-body factors to 

be taken into account in the study relating specifically to hand dimensions. 

In light of the findings relating to whole-body thermoregulation, body size was 

accounted for when testing heat loss from the hand in relation to hand proportions. This 

study demonstrated that hand proportions do indeed influence heat loss from the hand. 

Wider hands with relatively short digits retained more heat than other hand proportions. 

This provided experimental support for climate adaptation theory, as the assumptions 

using thermodynamic principles to explain Allen’s rule hold true, despite potential 

confounding factors such as body composition and vasoregulation.  

In contrast, the dexterity segment of this investigation indicated that narrow digits 

are advantageous for maintaining dexterity on cold exposure, despite a compromise in digit 

temperature.  As cold-inhabiting populations have wider hand and digit elements than 

those of tropical origin, this suggests that climate, rather than maintenance of dexterity, is 

the primary selective pressure in cold environments. This may indicate that ecogeographic 

patterns found in the extremities are primarily driven by cold adaptation, rather than heat 

adaptation (Ocobock, 2014). 

Part II tested whether climate adaptation patterns in the hands are observable in an 

energetically stressed population. Between high altitude and low altitude populations of 

shared genetic ancestry in the Himalayas, relative hand proportions were not significantly 

different, but relative ulna length was, indicating that a thrifty phenotype mechanism 

shapes limb proportions at high altitude. This puts the in vivo laboratory investigation into 

perspective, as it demonstrates that energetic stress is the primary selective pressure on 

hand proportions in this case, rather than climate adaptation. Although climate adaptation 
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is supported by gradients in digit proportions with latitude (Lazenby and Smashnuk, 1999; 

Betti et al., 2015), high altitude populations do not follow patterns of climate adaptation. 

7.1.1. Comparison between laboratory and field investigation 

To consolidate the findings of the current thesis, and to appreciate the variation in 

hand proportions across both the laboratory and field investigations, Tukey’s boxplots 

were generated to observe the range of both relative and absolute hand length and width 

variables, as well as height, from the European population (reported in Chapters 3 and 4), 

and the Himalayan populations (reported in Chapter 6) (Figure 7.1 and Figure 7.2). It 

should be noted that the laboratory investigation used 2D photocopy scans in order to 

obtain hand measurements, whilst the field investigation used an anthropometer to obtain 

measurements from participants directly. Whilst it has been established that photocopies 

yield lower values than direct measurements (Manning et al., 2005), the differences are on 

average less than 1mm, and thus a comparison between populations was considered 

acceptable here. When sexes were analysed separately, all variables were normally 

distributed within each sample, as assessed by the Shapiro-Wilk Test, aside from male 

relative hand length and widths which were approximately normally distributed based on 

Q-Q plots. One-way ANOVA was carried out on each variable to assess whether the 

differences demonstrated in the Tukey’s boxplots were significant. 

Relative to height, both hand length (F2,149=73.76, p<0.01 for women, F2,212=37.20, 

p<0.01 for men) and hand width (F2,149=516.46, p<0.01 for women, F2,212=326.75, p<0.01 

for men) were significantly lower in the European population in comparison to both the 

Himalayan populations. On analysis of the absolute variables, height was significantly 

different in Europeans from the Himalayan groups (F2,149=95.37, p<0.01 for women, 

F2,212=108.81, p<0.01 for men). This height difference is likely to have contributed to the 

difference in relative hand length and hand width. Absolute hand length was found to be 
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significantly different between Europeans and Himalayans in men (F2,212=16.19, p<0.01), 

but not in women (F2,149=0.96, p>0.05), whilst absolute hand width was significantly 

different in both sexes (F2,149=222.07, p<0.01 for women, F2,212=134.34, p<0.01 for men).  

 
Figure 7.1 Tukey Boxplots showing differences between the populations from the laboratory study (Chapters 3 & 
4 – European), and the highland and lowland Himalayan populations (Chapter 6) ; each box represents the 
respective interquartile range (IQR), whiskers represent the lowest value still found within 1.5 IQR of the lower 
and upper quartiles. Blue: female, Green: male. A. Differences in hand length relative to height. B. Differences in 
hand width relative to height. 
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The significant height differences are likely to be genetically founded, as the 

European sample and the two Himalayan groups are relatively genetically distant (Arciero 

et al., 2018). However, the environment may also have an influence on the height 

differences here. Developmental and childhood growth environments are likely to be 

different between these populations, in terms of nutrition, disease burden, oxygen 

availability, physical activity, and other unknown factors (Wells, 2007; Wang et al., 2016). 

This pattern in height differences between Himalayan populations and Europeans is well 

reported (Pawson, 1977; Argnani et al., 2008; Weitz and Garruto, 2015). The small 

difference in absolute hand length between men, and no difference in women, may indicate 

that hand length growth is not plastic, but relatively resilient to environmental stress 

during early growth and development (Holliday and Ruff, 2001), or that hand length is 

strongly morphologically integrated with the feet (Rolian, 2009).  

Absolute hand width was notably different between Europeans and the two 

Himalayan groups. Similar to height, hand width could have a genetic basis (Wray, 2007; 

Carroll, 2008). Alternatively, differences in manual labour between these groups may also 

have contributed to the differences in hand width, as frequent manual activities may have 

cause greater musculature to develop in the palms (Okunribido, 2000; Vsnapuu and 

Jurimae, 2008; Fallahi and Jadidian, 2011). Both Himalayan groups had a physically active 

lifestyle that regularly used the hands, either through heavy lifting as porters, or through 

packing in the Jawalakhel centre. Whilst many of the participants in the laboratory study 

actively took part in sport, it is unlikely that they will have reached the same levels of 

manual activity as the Himalayan groups. Whether the differences between the groups 

stem from genetic or environmental causes is unknown, but the findings from this 

comparison in hand proportions between the laboratory and field investigations allow 

further reflection on the results from the previous chapters. 
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Figure 7.2 Tukey Boxplots showing differences between the populations from the laboratory study (Chapters 3 & 
4 – European), and the highland and lowland Himalayan populations (Chapter 6); each box represents the 
respective interquartile range (IQR), whiskers represent the lowest value still found within 1.5 IQR of the lower 
and upper quartiles. Blue: female, Green: male. A. Differences in height. B. Differences in absolute hand length. C. 
Differences in absolute hand width.  

The significant difference in both relative and absolute hand width between the 

laboratory sample and the field sample was particularly interesting, as whilst there was no 

difference between the highland and lowland samples seen in Chapter 6, it was evident that 

both groups have significantly wider hands than those of Europeans, despite being 

significantly shorter in height. As relative hand width was shown to predict average digit 

temperature after immersion in Chapter 4, this would indicate that Himalayan groups may 

retain higher hand temperatures on cold exposure than Europeans on average, as indicated 

in previous research (Little and Hanna, 1977; Mathew et al., 1979; Daanen and van Ruiten, 

2000). The much smaller difference in hand length in men, and no difference in women, 

between the Europeans and both Himalayan samples was reflected in the little variation 
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seen in absolute hand length in Chapter 4 and Chapter 6, and again supports the idea of 

hand length being constrained by other factors, such as function or integration (Lemelin 

and Schmitt, 2016; Rolian, 2016). Considering how hand length and hand width vary across 

the populations studied here provides a broader context for assessing the implications of 

the results from both the laboratory and field study. 

7.2. Implications for climate adaptation theory 

The thermoregulatory role of limb proportions in climate adaptation has long been 

entrenched in anthropological theory, yet has not been experimentally validated 

(Steegmann, 2007). This research provides empirical evidence indicating that 

ecogeographical patterns found in humans could be attributed to cold adaptation (Allen, 

1877; Ruff, 1994; Lazenby and Smashnuk, 1999; Betti et al., 2015), based on in vivo heat 

loss patterns seen here. Prior to this research, the key assumption surrounding climate 

adaptation theory, whereby thermoregulatory capacity is directly proportional to surface 

area-to-volume ratio of the body, did not account for differences in vasoregulation across 

the body or in the extremities. Previous research had demonstrated that heat loss 

significantly varied across different areas on the skin as a result of vasoconstriction from 

long-term full-body immersion, the torso losing approximately 24 Watts compared to the 

hand losing only 1.5 Watts (Wade et al., 1979). Despite vasoregulatory mechanisms, 

however, the current research demonstrated that hand proportions play a role in 

differential heat loss from the hand. 

The current work also stresses the value of thermogenic tissue in thermoregulation, 

and that body size itself has minimal effect on hand temperature under cold stress. This 

aligns with whole-body immersion experiments, which observed that surface area-to-

volume ratio of the body had little effect on core temperature and skin temperature 

regulation, but body composition plays a significant role (Sloan and Keatinge, 1973; Toner 
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and McArdle, 1988; Glickman-Weiss et al., 1991, 1993). Muscle appears to be essential for 

generating heat, as demonstrated by the high muscle mass of cold-inhabiting groups, 

although this may also result from a physically demanding lifestyle (Shephard et al., 1973). 

The outdated concept that white adipose tissue is the primary thermoregulatory tissue is 

further refuted here; previous experiments have demonstrated that most insulation comes 

from fat-free mass (Rennie, 1988), and suggests that white adipose tissue has not been 

selected for its insulative properties, but its energy storage capacity (Pond, 1998). Our 

changing understanding of human thermoregulation increasingly highlights the 

importance of metabolic adaptations, from evidence of increased metabolic rates in cold-

dwelling populations (Leonard et al., 2005; Snodgrass et al., 2005), and also the presence of 

thermogenic brown adipose tissue among adults susceptible to heat loss (Nedergaard et al., 

2007; Cypess et al., 2009). 

It is worth noting that climate adaptation theory relating to limb proportions still 

has a key assumption which remains untested (Steegmann, 2007). If ecogeographic 

patterns seen in limb proportions are indeed adaptive, this would mean that the difference 

between having “optimised” and “non-optimised” limb proportions would have a 

significant impact on fertility or mortality (Mazess, 1975). Whilst it would not be feasible to 

test this empirically, it is important to acknowledge that there is still an untested 

assumption here that surrounds climate adaptation theory. 

Furthermore, these adaptation theories need to be put into context with the range of 

adaptive behaviours which minimise heat loss. Access to shelter, limited outdoor activity, 

and the ability to make and wear clothing will act as significant buffers against the cold 

(Gilligan, 2010). In industrialised societies, this may largely negate the need for efficient 

physiological thermoregulation under cold stress. Even in human groups living in non-

industrialised settings, behavioural thermoregulatory adaptations are more likely to 
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influence heat loss prevention, and ultimately survival, than biological adaptations 

(Steegmann, 2007). However, even with the development of clothing and shelter, the hands 

are regularly exposed when carrying out dextrous tasks in cold environments (Van Dilla et 

al., 1949; Daanen, 2009a), and thus optimal thermoregulation in the hands may still be an 

important selective pressure. 

Not only does cold adaptation theory have to be put into context with behavioural 

adaptations, but also the many other forces acting to shape limb proportions. The field 

study demonstrated that energetic stress is the dominant influence in shaping limb 

proportions in Himalayan populations (Payne et al., 2018d), rather than cold stress. Whilst 

a considerable amount of literature is devoted to cold adaptation theory (Ruff, 1994; 

Holliday, 1997b; Steegmann, 2007; Tilkens et al., 2007; Foster and Collard, 2013; Roseman 

and Auerbach, 2015; Savell et al., 2016), the current field research demonstrates that ideas 

on climate adaptation may only be applicable when considering populations which are not 

under severe energetic stress. Not only will energy availability during growth influence 

limb proportions, but other factors, such as biomechanics and function (Kivell, 2015), and 

morphological integration (Rolian, 2009, 2016; Rolian et al., 2010), will shape the upper 

limb. Recent morphospace modelling shows that the human hand does not equate to the 

theoretical optimum of an anthropoid hand for manipulation (Hu et al., 2018), indicating 

that hand morphology is constrained by other factors, such as evolutionary history. Thus, a 

holistic systems biology approach may be useful when investigating phenotypic variation 

seen in human hands, and the body in general. This would also be of particular importance 

for understanding the evolution of hominin limb proportions. 

7.2.1. Interpreting hominin morphology 

The results presented in this thesis could provide useful context for the 

interpretation of the morphology of hominin remains and potential climate adaptation. For 
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example, as discussed in Chapter 5 , this could shed light on the perception of Neanderthal 

morphology as “cold-adapted” (Trinkaus, 1981; Ruff, 1994; Holliday, 1997b). Firstly, 

observing metacarpal morphology, Neanderthals tend to have longer palms relative to 

their digits (Musgrave, 1971; Mersey et al., 2013). This would indicate that their hands may 

have been well-suited to maintaining digit temperatures in cold conditions. This may be 

further enhanced by the significant body musculature traditionally associated with 

Neanderthal anatomy (Holliday, 1997b). This high relative muscle mass may also have 

supported warmer digit temperatures in cold conditions. However, the increased 

robusticity of the carpals, metacarpals, and phalanges (Trinkaus, 1983; Niewoehner, 2006), 

and evidence for well-developed digit flexor tendons (Kivell et al., 2018), indicate wider 

digits from greater soft tissue mass which would impair fine finger dexterity in cold 

conditions, based on the findings in the current thesis. Although not all Neanderthal 

populations would have been exposed to significant cold (Krause et al., 2007; Hublin and 

Roebroeks, 2009), the generalised robusticity of Neanderthal morphology indicates that 

they would have been well-suited to maintaining hand temperatures in cold conditions. As 

discussed previously, it is not possible to ascertain whether such traits have definitively 

been selected for thermoregulation, as other factors such as biomechanics and energetic 

stress are also likely to have shaped Neanderthal limbs. 

The findings from the current thesis could be used to make inferences about the 

thermoregulatory implications of the hands in other fossil species with relatively intact 

hand remains. Near complete hand specimens such as those of Homo naledi (Kivell et al., 

2015) and Australopithecus sediba (Kivell et al., 2011), with their mosaic of ancestral and 

derived features, would be interesting, albeit challenging, to place in a climatic context. 

However, the lack of secure attribution of many hand specimens to a given species limits 
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the extent of interpretation of the hand morphology and its thermoregulatory capacity in 

extinct hominins (Richmond et al., 2016).  

7.2.2. Health and safety implications 

The results here may be informative for individuals working or living in cold conditions, 

as those with phenotypic traits associated with lower average digit temperatures should 

take particular caution to monitor digit temperatures (Goldman, 1970; Hamlet, 1988; 

Valnicek et al., 1993). Individuals exposed to cold in the long term may be at risk of a 

permanent cold injury which would be detrimental to dexterity, as well as compromising 

quality of life, and potentially leading to more serious health problems as a result of post-

injury infection (Golant et al., 2008; Makinen et al., 2009; Saemi et al., 2009). For example, 

occupational cold injury rates in military personnel undergoing winter mountain training 

exercises can be up to 12% (Reynolds et al., 2000). These injury rates could be reduced by 

identifying and monitoring digit temperatures of individuals with low relative muscle 

mass, or narrow hands and long fingers, to ensure that individuals who have morphologies 

associated with lower average digit temperatures do not develop cold injuries. Those at 

potential occupational risk include military personnel operating in cold environments 

(Oksa et al., 2006; Brändström et al., 2008), individuals involved in snow and ice sports 

(Johnson et al., 2007; Schindera et al., 2018), or those working with refrigerated or frozen 

goods (LeBlanc et al., 1960; Nelms and Soper, 1962; Enander et al., 1980; LeBlanc, 1988). 

Others may be at risk of heat loss as a result of their relatively low muscle mass, in 

particular, the elderly, with increasing muscular atrophy and reduced temperature 

perception (Guergova and Dufour, 2011). Individuals with relatively narrow hands and 

long fingers relative to palms may also be at greater risk of frostbite, as a result of 

predicted lower average digit temperatures in cold conditions. Also, children, having a very 

high surface area-to-volume ratio of their hands, may therefore be at greater risk, although 
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their resting metabolic rates tend to be higher compared to adults (Holliday, 1971), which 

may negate any influence of surface area-to-volume ratio, as heightened metabolic rate is 

seen to be a thermoregulatory advantage (Leonard et al., 2005; Snodgrass et al., 2005; 

Hancock et al., 2008; Castellani and Young, 2016). Overall, this study has a wide range of 

health and safety implications for a range of human groups. 

7.3. Limitations and future directions 

7.3.1. Quantifying vasoregulation 

The current study did not quantify vasoregulation when measuring factors 

influencing heat loss from the hands. This would be considered a key limitation, as 

vasoregulation is known to significantly affect heat flux from the surface of the skin 

(Sendowski et al., 1997; Daanen, 2003; Merla et al., 2010; Cheung and Daanen, 2012; 

González-Alonso, 2014; Taylor, 2014; Cheung, 2015; Neves et al., 2015; Walløe and Walløe, 

2016). The decision was made not to measure vasoregulation, as the application of 

Doppler-flow techniques to the protocol for the in vivo investigation would have been 

impractical and would likely have produced a high error rate in measurement, for several 

reasons. Firstly, there is significant variation in blood flow to different skin regions across 

the hand and arm, even with very close proximity (Tur et al., 1983; Sundberg, 1984), which 

would result in a high error rate when repositioning the Doppler probe after immersion 

tests (Agner and Serup, 1990; Braverman et al., 1990; Bircher et al., 1994). Furthermore, 

motion artefact noise using the Doppler method is a frequent limitation in experiments 

where the Doppler probe has to be moved, which would be inevitable between pre-

immersion and post-immersion testing (Leahy et al., 1999). Variable moisturisation of the 

area will also affect the accuracy of the measurement, which would have been a particular 

issue, as hands were required to remain dry for more reliable readings of temperature 

using the thermal imaging camera, and thus liquid could not be used for a Doppler method 
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(Buraczewska et al., 2007). The consistency of measurement would also have proved a 

challenge as pressure and repeatability of finding the exact same position is known to affect 

this (Timmers et al., 2005; Cracowski et al., 2006). As a result of the high error rate which 

these factors would have produced, it was decided that vasoregulation would not be 

quantified in the current study. To ensure that the lack of measurement of vasoregulation 

did not impinge on testing the primary hypothesis, regression models were used so that 

vasoregulation could contribute to the unknown variation aspect of the models. 

Increasingly, Doppler-flow technology is being developed to improve reliability in 

medical settings for measuring blood flow (Yvonne-Tee et al., 2005). As a result, this may in 

future provide an avenue for further research to determine the extent of vasoregulatory 

influence on heat loss and whether this interacts with body size, body composition, or hand 

proportions. As muscularity of limb elements is known to influence the size of arteries, this 

may in turn influence the extent of vasoconstriction and vasodilatation in response to cold 

exposure. 

7.3.2. The diversity of the study sample 

For the current laboratory study, the participants were of self-identified European 

origin. This was to minimise variation in homeostatic thermoregulatory responses which 

are associated with ethnicity (Farnell et al., 2008; Lee et al., 2013; Maley et al., 2014; 

Cheung, 2015). However, this means that the current study is not representative for the 

entirety of the human population, as variation in physiological responses to cold may 

negate any differences in hand proportions. A broader sampling approach across a range of 

ethnicities in future research may provide a more representative picture of the influence of 

human hand proportions on thermoregulation. 
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7.3.3. Heat loss in hot and humid conditions 

The current study focused on heat loss in cold conditions. However, the role of hand 

surface area-to-volume ratio in hot or humid conditions is relatively under-studied, despite 

the diverse array of thermoregulatory adaptations attuned for excess heat loss in the hand 

(Chapter 1, Figure 1.1). As the majority of human evolution occurred in the tropics, heat 

loss should be well regulated, but determining whether the surface area-to-volume ratio of 

the hand plays a role in protecting the body from heat stress has yet to be clarified. 

Carrying out a test to determine whether hand proportions affect heat loss from the hands 

in hot conditions will further test the applicability of climate adaptation theory to the 

hands. It has been argued that humans may be better adapted to heat selection pressures 

than cold (Ocobock, 2014), but whether this relates to hand proportions remains 

understudied. Furthermore, humans are exposed to a wide range of climates of varying 

humidity; as the hand has the highest number of sweat glands per cm2 on the body (Taylor 

and Machado-Moreira, 2013), an investigation into variation in hand-specific sweating 

rates across the globe may also be informative for understanding adaptation and 

physiological acclimatisation to specific climates. 

7.3.4. Heat loss from the feet 

Although the hands and feet are considered to be tightly morphologically integrated 

(Rolian, 2009; Rolian et al., 2010), evidence shows that this may not be the case for their 

physiological thermoregulatory responses to cold (Norrbrand et al., 2017). There is no 

association between hand and foot temperatures during cold stress and rewarming, and 

overall toe temperatures appear to be significantly lower than fingers both at room 

temperature and during cold stress. Investigating whether foot and toe proportions 

influence temperature in this case would provide an interesting future investigation to 

parallel the current study. Temperature decrease within the foot is associated with reduced 
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plantar sensation (Eils et al., 2004), altered muscle activity, and a slower, less efficient gait 

(Hohne et al., 2012; Zhang and Li, 2013), which may have interesting health and safety 

implications. Whether certain foot dimensions reduce this loss of plantar sensation and 

altered gait may inform interpretations of gait mechanics in different environments.  

7.4. Concluding remarks 

The methodology and results of this thesis are unique and readdress questions left 

unanswered in the field of human climate adaptation (Steegmann, 2007).  Assumptions 

about the adaptive role of surface area-to-volume ratio have been established in 

anthropology with lack of experimental validation. This research is the first to provide 

empirical evidence that there is a relationship between hand and digit proportions, and 

heat loss from the hand. Furthermore, this research demonstrated the potential trade-off in 

hand proportions between thermoregulation and dexterity in cold conditions. These 

relationships between heat loss, hand proportions, and dexterity should be considered in 

light of whole-body traits, as this research demonstrates the significant influence that 

skeletal muscle mass has on thermoregulation on extremity temperature due to its 

powerful thermogenic properties. Associations between heat loss and hand proportions 

should also be put into a broader evolutionary context; whilst these results support the 

underlying assumptions behind cold adaptation theory, the field study of limb proportions 

in Himalayan groups demonstrates that energetic stress is the dominant influence on 

phenotypic variation in hand proportions over cold stress. The results presented here 

provide the foundation for further work unifying thermoregulation and phenotypic 

variation in the hand and the human body as a whole.  
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Appendix 1 – Ethics  Summary 
The letter below demonstrates receipt of ethical approval for the laboratory and field 

investigations given by the Human Biological Research Ethics Committee at the University of 

Cambridge. Pages 144-165 detail the form submitted for ethical approval. 

 
Human Biology Research Ethics Committee 

 

 

I am pleased to let you know that the Human Biology Research Ethics Committee has 
considered your research project 'How does phenotype affect heat loss and dexterity?' and has 
agreed to give ethical approval. 

The Committee attaches certain standard conditions to all ethical approval. These are: 

(a) that if the staff conducting the research should change, any new staff should read the 
application submitted to the Committee for ethical approval and this letter (and any 
subsequent correspondence concerning this application for ethical approval); 

(b) that if the procedures used in the research project should change or the project itself should 
be changed you should consider whether it is necessary to submit a further application for 
any modified or additional procedures to be approved; 

(c) that if the employment or departmental affiliation of the staff should change you should notify 
us of that fact. 

The Committee also asks that you inform members of any unexpected ethical issues. If you will let 
me know that you are able to accept these conditions, I will record that you have been given ethical 
approval. 

Yours sincerely 

 
Karen Douglas 

17 Mill Lane 
Cambridge CB2 IRX 

Tel: 01223 766894 
 

Dr J Stock  
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Ethics Application for both laboratory and field investigations 

COUNCIL OF THE SCHOOL OF THE BIOLOGICAL SCIENCES 
Human Biology Research Ethics Committee 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Question 1:  Title of the study 

How does phenotype affect heat loss and dexterity? 

Question 2:  Primary applicant   

Dr Jay Stock, University Reader 
Division of Biological Anthropology, Department of Archaeology and Anthropology, Pembroke Street, 
Cambridge, CB2 3DZ 

 
Question 3:  Co-applicants   

Stephanie Payne, Probationary PhD Candidate 
Division of Biological Anthropology, Department of Archaeology and Anthropology, Pembroke Street, 
Cambridge, CB2 3DZ 

 
Question 4:  Corresponding applicant  

Stephanie Payne (sp627@cam.ac.uk) 

Question 5:  In which Department(s) or Research Unit(s) will the study take place?   

UK Laboratory Study Procedure – PAVE Imaging and Performance Laboratory, Division of Biological 
Anthropology, Department of Archaeology and Anthropology, Pembroke Street, Cambridge, CB2 3DZ 
Nepal Field Investigation – Namche Bazaar and Sagarmartha National Park, Solukhumbu District, Nepal, 
and Jawalakhel Tibetan Community Centre, Kathmandu, Nepal 
Storage and Analysis of Data from UK and Nepal - Division of Biological Anthropology, Department of 
Archaeology and Anthropology, Pembroke Street, Cambridge, CB2 3DZ 

 
Question 6:  What are the start and end dates of the study? 

UK Laboratory Investigation – October 2016-April 2018 
Nepal Field Investigation – 26th March- 21st April 2017 

Question 7:  Briefly describe the purpose and rationale of the research   
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This research will investigate how phenotypic variation influences heat loss from the hands and its 
relationship with manual dexterity. Human manual dexterity has enabled us to inhabit a wide range of 
ecological niches (Wells and Stock, 2007), by allowing us to manipulate our environment with highly 
dexterous hands (Marzke, 1971; Marzke and Marzke, 2000; Kivell, 2015). Traditionally, anthropological 
research has only focused on the early anatomical changes in the hands to facilitate basic tool use 
(Marzke, 1971; Wiesendanger, 1999; Marzke and Marzke, 2000; Churchill, 2001; Almécija et al., 2015; 
Heldstab et al., 2016), yet the refinement and optimisation of modern human hand traits remains entirely 
unexplored. Our hands are one of the most highly specialised structures in the human body (Boesch and 
Boesch, 1993; Marzke, 1997), not only as manipulative appendages, but also as dynamic 
thermoregulators (Taylor, 2014). The trade-off between these highly specialised traits remains poorly 
understood (Schiefer et al., 1984; Havenith et al., 1995; Heus et al., 1995; Daanen, 2009). This research 
will thoroughly investigate the interaction between the manipulative and thermoregulatory functions of 
the hands, and whether this interaction varies significantly in different hand proportions (Jay and 
Havenith, 2004; Daanen, 2009). Variation in hand proportions among human populations has been 
attributed to climate adaptation (Betti et al., 2015), but this theory has not been tested in vivo. This 
research will investigate whether hand proportions influence heat flux in real time, and whether certain 
proportions better preserve functionality under thermal stress, or whether dynamic thermoregulatory 
vasomotor responses can alleviate any effects that proportions have on heat flux from the extremities 
(Daanen, 1997; Daanen and van der Struijs, 2005; Cheung and Daanen, 2012). Testing hand proportions 
and responses during immersion-relate cold stress, and exercise-related heat stress will allow us to better 
understand the evolutionary trade-offs between thermoregulation, acclimatisation, function and 
energetic stresses in shaping human hands. Furthermore, by taking into account other body proportions, 
environmental conditions, and lifestyle factors, we can gain a more nuanced understanding of the origin 
of variation in human hand proportions. By quantifying hand proportions of populations exposed to 
extreme environmental conditions, such as cold and hypoxia, we can determine whether these energetic 
stresses also play a role in shaping human hands. 
Laboratory research questions: 
Do changes in hand temperature as a result of heating or cooling associate with: 

• hand dimensions (length, breadth, estimated surface area, estimated volume),
• body size estimates
• body temperature
• dexterity

Do any of these variables correlate with one another? 
Field research questions: 
Is there phenotypic variation in upper limb proportions between highland and lowland populations in the 
Himalayas? 
Do any differences in body proportions and lifestyle factors support: 

• The cold adaptation hypothesis (Trinkaus, 1981)
• The distal blood flow hypothesis (Lampl et al., 2003)

      
Question 8:  Who is funding the costs of the study?  
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Trinity Hall Graduate Research Studentship, Trinity Hall, Cambridge 
The European Research Council - Covent Garden, Place Charles Rogier 16, 1210 Saint-Josse-ten-Noode 
(Brussels), Belgium 
British Association of Biological Anthropology and Osteoarchaeology - Bournemouth University 
Faculty Science and Technology, Dept. of Archaeology, Anthropology and Forensic Science 
Christchurch House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB 
Sigma Xi The Scientific Research Society - 3200 East NC Highway 54, Research Triangle Park, NC 27709 
National Geographic Society – Headquarters, National Geographic, 1145 17th Street N.W., Washington, 
D.C. 20036-4688

 
Question 9:  Describe the methods and procedures of the study  

Full details for all the investigations are detailed in the accompanying protocol of the UK Laboratory 
Investigation and the Nepal Field Investigation. A summary is found here- 
UK Laboratory Investigation: 
Student volunteers will be recruited from the University of Cambridge via email to college and society 
email lists. Volunteers will be screened for eligibility via email, and then will attend the PAVE Imaging and 
Performance Laboratory (PAVE-IPL). Eligible volunteers will give informed consent, before having 
anthropometric measurements  (height, mass, upper limb measurements) taken using standard protocol 
(Norton and Olds, 1996; Cameron, 2013), 2D and 3D hand scans, 3D body scans (Sizestream Inc, 2014), 
and bioelectrical impedance analysis data collected from them(Tufts University Nutrition Collaborative, 
2003).  They will then have a thermal image taken of their hands using a FLIR T460® camera (FLIR Systems, 
2015). They will then undergo brief dexterity tests on both hands using  established protocol for the 
Purdue Pegboard (Daanen, 2009). Participants will then immerse their hands in cold water (5˚C) for a 
maximum of 3 minutes. After 3 minutes the participant will remove their hand from the water, rate the 
cold/pain sensation as a safety precaution, and have a second thermal image taken of their hands, and 
then repeat the dexterity test. 3 minutes was chosen for cold-water-immersion as this is a time known to 
induce a vasoconstriction response to cold, but prior to cold-induced vasodilatation response and cold 
injury (Mekjavic et al., 2008). 
Participants will then be allowed rest time, a hot/cold drink and snack of their choice and will be free to 
leave.  
Nepal Field Investigation: 
Volunteers of self-identified Sherpa origin in Namche Bazaar, Nepal, and volunteers of self-identified 
Tibetan ancestry in Kathmandu, Nepal, will be recruited during direct meetings during the Caudwell 
Xtreme Everest 2017 Research Expedition. Volunteers will be screened for eligibility through verbal 
communication. Eligible volunteers will give informed consent before having anthropometric 
measurements  (height, mass, upper limb proportions) taken using standard protocol (Norton and Olds, 
1996; Cameron, 2013) at either the Namche Bazaar Health Post, Namche Bazaar Monastery, or Jawalakhel 

      
Question 9a:  Does the study involve any pharmaceutical or other compounds with physiological 

effects?  

No 

Question 10:  What ethical issues does this study raise and what measures have been taken to 

address them?    
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Laboratory Investigation  
Immersion of one’s hand in cold water is likely to result in temporary discomfort in the form of cold/pain 
sensation. Individuals are informed that they may withdraw from the investigation at any time if they 
reach a level of discomfort which they do not wish to be in. Cold immersion for 3 minutes is considered a 
safe immersion time as it is not long enough for tissue damage to occur.  
No other conditions in the laboratory investigation cause discomfort or inconvenience.  
Nepal Investigation 
Measurement of the body may be considered unethical in some communities in Nepal. Thus, to ensure 
that all standard anthropometric procedures are culturally sensitive, all volunteers will have the 
procedure explained to them prior to measurement, and volunteers can withdraw at any time. 
Participants will also be measured through light clothing to minimise any participant discomfort. 
 
Question 11:  Who will the participants be? 

UK Laboratory Study  
The participants will be healthy volunteers ages 18-50 from the student and residential population of 
Cambridge. I plan to recruit approximately 200 volunteers. Volunteers will be ineligible if they suffer any 
of the following conditions: 
Raynaud’s disease, or other cold-related injury 
Hypothermia 
Cold-related asthma 
Type I/II diabetes 
These conditions will not be tested, as they are either known to affect peripheral circulation. 
Women who are pregnant or breastfeeding will also be ineligible for this study. 
Individuals who have a cardioverter defibrillator implant will also be ineligible for this study, as they have 
yet to be tested for safe use with bio-impedance analysis equipment. 
The age limit of 50 is in place, as control of peripheral circulation has been shown to decrease with age 
(Guergova and Dufour, 2011) 
Nepal Field Study  
Highland Sample: The participants will be healthy volunteers ages 18-60 from Namche Bazaar, of at least 
third generation Sherpa ancestry. I plan to recruit approximately 100 Sherpa volunteers. Confirmation of 
Sherpa ancestry will be both through self-identification and through identification documents such as 
school records or birth certificates where possible 
Lowland Sample: The participants will be healthy volunteers ages 18-60 from Kathmandu, recruited 
through the Jawalakhel Tibetan Community Centre. Confirmation of Tibetan ancestry will be both through 
self-identification and through identification documents such as school records or birth certificates where 
possible.  
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Question 12:  Describe the recruitment procedures for the study 

Laboratory Investigation 
 A flowchart of recruitment procedures can be found below. Participants will be invited via email to 
college and society lists. Any individuals who respond to the email will be sent the PARTICIPANT 
INFORMATION SHEET (accompanying this application), and STUDY CONDUCT INFORMATION SHEET 
(accompanying this application), and will be offered several investigation slots to choose from, along with 
highlighting the ineligibility criteria, so that volunteers can self-select as to whether they are eligible for 
the study. If the volunteer replies to indicate a time slot preference, this will then be confirmed via email 
by the research team, along with details of what to bring and wear. Participants will then attend the 
PAVE-IPL in their designated time slot.  
Nepal Field Investigation 
Participants will be recruited directly during meetings and gatherings held by the Caudwell Xtreme 
Everest Team, in both Namche Bazaar and Kathmandu. Participants will be information verbally in English, 
Sherpa, Tibetan or Nepali. 

Question 13:  Describe the procedures to obtain informed consent  

Laboratory Investigation 
Participants will be given a printed copy of the PARTICIPANT INFORMATION SHEET, STUDY CONDUCT 
INFORMATION SHEET, and CONSENT FORM & QUESTIONNAIRE (accompanying this application), which 
states that the participant has read and understands the study procedure, the risks, benefits and possible 
outcomes. The participant’s signature is required on the CONSENT FORM & QUESTIONNAIRE, prior to 
involvement in the investigation.  
Nepal Field Investigation 
Participants will sign (or thumb print if illiterate) a CONSENT FORM, and verbally answer a questionnaire 
prior to involvement in the investigation.  

Question 14:  Will consent be written?  

Yes.  

Question 15:  What will participants be told about the study? Will any information on 

procedures or the purpose of study be withheld? 

Participants will be informed of the entire study procedure, risks, benefits and possible outcomes. No 
information will be withheld, in the Laboratory Investigation and Nepal Field Investigation. Participant’s 
questions will be answered fully. 

Question 16:  Will personally identifiable information be made available beyond the research 
team? 

No 

Question 17:  What payments, expenses or other benefits and inducements will participants 

receive? 
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Laboratory Investigation: All participants will be offered a hot drink (tea or coffee), a choice of fruit and a 
choice of chocolate or cereal bar during the study. 
Nepal Field Investigation: All participants will be offered a choice of chocolate or confectionary on 
completion of the study. 

Question 18:  At the end of the study, what will participants be told about the investigation?   

Participants have the following debrief stated to them (for the Nepal Investigation, in Nepali if required): 
“Thank you very much for participating in our study. If you have any concerns or questions, please feel 
free to contact the research group at any time. We want to confirm that all the data collected will remain 
strictly anonymous. If you would like us to inform you of any publications or presentations the data from 
this study is used in then please feel free to ask and we will update you. If you have any questions now, 
please do ask us and we will do our best to answer any questions. If you have no questions, you are free 
to leave, you have completed the study. Many thanks again for your participation.” 

Question 19:  Has the person carrying out the study had previous experience of the 

procedures?  If not, who will supervise that person? 

Stephanie Payne (SP) will by the primary investigator. SP has previous experience in collecting 
anthropometric data from undergraduate research. SP will be given training by Dr Daniel Longman and Dr 
Alison Macintosh on the use of the equipment used in the PAVE-IPL, including the use of the SizeStream 
3D scanner and the bioelectrical impedance analysis equipment. SP will be trained by a representative of 
Artec 3D Systems, on the use of the portable 3D scanner. SP will be trained in use of the thermal imaging 
camera by Dr Jurgi Cristobal Azkarate. No training is required for use of the hand dynamometer and 
Purdue Pegboard. Furthermore, the procedures will have been practised to ensure familiarity and 
accuracy of data collection. 

Question 20:  What arrangements are there for insurance and/or indemnity to meet the 

potential legal liability for harm to participants arising from the conduct of the study? 

Insurance has been obtained for this investigation (evidence accompanying this application) 

 Question 21:  What arrangements are there for data security during and after the study? 

Stephanie Payne and Dr Jay Stock only will have access to the participants’ personal data. All forms will be 
filled out by hand. All collected data, forms and questionnaires will be kept strictly confidential and secure 
in locked filing cabinets. Each participant will be assigned a unique, linked-anonymising code to ensure 
that personal information is not directly linked to any data or results. Personal information will be 
destroyed 12 months after the project has ended. Consent will be attained for retention of data, but not 
personal information, for future studies. Data will be destroyed after 20 years. Participants can request to 
have their data destroyed at any time. Participants can also request copies of any data collected specific 

  
Signatures of the study team (including date) 

Signatures of the study team (including date) 

Stephanie Payne 08/08/2016    Jay Stock 08/08/2016 
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 Recruitment Flowchart for Laboratory Study 

 

 

 

 

 

 

 

 

 

 

 

  

Individual receives email from College JCR/MCR/Sports Club/Society/National Society with invitation 
to participate 

Volunteer receives detailed information email including PARTICIPANT INFORMATION 

SHEET and STUDY CONDUCT INFORMATION SHEET and possible time to participate in study 

Volunteer self-select based on 

eligibility criteria in email. If participant 

is uncertain, participant may email for 

clarification of their personal eligibility. 

Confirmation email of time and date of participation slot and what to bring and wear 

Participant attends PAVE-IPL at given time, signs CONSENT FORM and completes 

PARTICIPANT QUESTIONNAIRE 

Participant undertakes investigation protocol (detailed below) 

 

 
Participant has completed the study and is free to leave the PAVE-IPL. Participant may 

contact the research team anytime in they have any questions or concerns 
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The invitation email will read as follows: 

BioAnth Study: Participate for free chocolate and coffee 

Hi there,  

The Department of Biological Anthropology are looking for healthy volunteers to participate in a 

study looking at how hand and foot coordination changes with brief exposure to cold.  

You will carry out a brief coordination test before and after immersing your hands and feet in cold 

water for 3 minutes. You will be rewarded with a selection of chocolate, fruit and a hot drink of your 

choice (tea/coffee/hot chocolate)! 

Investigation: Coordination and Thermoregulation 

Location: Department of Biological Anthropology, Pembroke Street, CB2 3DZ 

Experiment: Approximately 1 hour 

Who can participate: Healthy volunteers 

For further information, please contact:  

Stephanie Payne (sp627@cam.ac.uk) 

  

mailto:sp627@cam.ac.uk
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After initial interest has been shown, the following email will be sent detailing the 

procedure and possible attendance dates and times: 

Coordination and Thermoregulation Investigation 

Hi (insert volunteer’s name),  

Thank you for showing interest in the Coordination and Thermoregulation Investigation, run by the 

PAVE Research Group in the Division of Biological Anthropology.  

Please read the attached Participant Information Sheet and Study Conduct Information Sheet. After 

reading these information sheets, if you do indeed decide that you wish to participate, please reply to 

this email, indicating which of the following dates and times would suit you to visit the PAVE Imaging 

and Performance Laboratory on Pembroke Street, CB2 3DZ.  

Possible investigation slots: ______________________________________________________________ 

Please note that if you have had any of the following health conditions, you will unfortunately not be 

able to participate in this study:  

• Raynaud’s disease/other cold-related injury 

• Hypothermia 

• Cold-related asthma 

• Type I/Type II diabetes 

• Cardioverter defibrillator implant 

Once we have received your reply, we will email to confirm your investigation slot and details of what 

to expect on the day.  

We very much look forward to hearing from you,  

The PAVE Research Team 

The conduct sheet, participant information sheet, and participant questionnaire can be 

found below:  
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Dexterity and Thermoregulation  

STUDY CONDUCT INFORMATION SHEET  
PAVE Research Group  

Stephanie Payne | Dr Jay Stock  
Imaging and Performance Laboratory | University of Cambridge | Cambridge | CB2 

3QG  

This sheet gives information on confidentiality and data protection, indemnity and 
compensation, publication, etc. It is important that you have read the information found here, 
alongside the PARTICIPANT INFORMATION SHEET. Please take time to read this information 
sheet carefully and ask us if there is anything unclear, or if you would like further 
information. Please take time to decide whether or not you wish to take part in this study.  

Will my taking part in this study be kept confidential?  
Yes - any information that is collected about you during the course of the research will be 

kept strictly confidential: PAVE-IPL will be the custodians of the data. Any information about you 
that leaves PAVE-IPL will have your name and address removed so that you cannot be recognised 
from it.   

A standard confidentiality procedure is in place for participants involved in research. This 
stipulates how personal information is collected, used, stored and disposed of during and 
following completion of research projects.  Any information that is collected about you during the 
course of the project will be kept strictly confidential and secure in locked filing cabinets and 
or/electronic files on computers that have restricted access. Each participant is assigned a unique, 
linked-anonymising code to be used for all data collected during the research. Personal 
information will not be linked to any data or results. Once the study is over, the data will be 
completely anonymous.   

Only the specified research team will have access to personal identifying data information. 
PAVE-IPL maintains a central record of all research projects but this does not include personal 
information on participants, which will be kept no more than 12 months after the project has 
ended. With your agreement, non-personal data will be stored for 20 years. With your consent, and 
with the appropriate research ethics approval, retained data may be used for future studies.  

What will happen to images, scans, data and questionnaire information collected?   
Any images, scans, data, and questionnaires that are collected during the course of the 

project will be processed and kept in accordance with PAVE-IPL standard operating procedures. 
Each participant is assigned a unique, anonymising code to be used to label all data and 
questionnaires collected during the research. Personal information will not be linked to any saved 
data. Only the specified research team will have access to your data and questionnaires. With your 
agreement, we may store data for up to 20 years and then they will be destroyed. With your 
consent, and with the appropriate research ethics approval, retained data may be used for future 
studies.   
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What will happen to my data if I do not want to carry on with the study?  
If you decide to withdraw from the study, with your consent, data obtained may be kept 

and used to contribute to study results or, with your consent, for future studies. However, should 
you request your data to be destroyed along with any other information relating to you, we will 
ensure that this takes place.  

What will happen to the study results?  
The overall study results may be presented at scientific meetings or published in a 

scientific journal. You will not be identified in these presentations and publications. We will be 
happy to discuss the results with you at the end of the study if you wish.   

What should I do if I am harmed during the study?  
If you are harmed and this is due to someone’s negligence then you may have grounds for 

legal action for compensation against the University of Cambridge, but you may have to pay for 
legal costs. For research carried out at the University of Cambridge, participants would be in the 
same position as if public liability insurance had been taken out.   

The University of Cambridge undertakes to give sympathetic consideration, on a case by 
case basis, to claims of negligent and non-negligent harm arising from research carried out at the 
University provided the claim does not relate to standard treatment.  

What should I do if I want to make a complaint?  
Any complaints about the way you have been dealt with during the study or any possible 

harm you might suffer will be addressed and fully investigated. If you have a concern about any 
aspect of this study, you should speak with Stephanie Payne, Alison Macintosh, Danny Longman, or 
Jay Stock who will do their best to answer your questions. If you remain unhappy and wish to 
complain formally, please contact:  

Professor Charles French  

Head of Department, Archaeology & Anthropology, University of Cambridge  

+44 (0)1223 333533   

Who should I contact for further information?  
If you have any further questions or if you have any concerns whilst participating in the 

study, please contact Stephanie Payne (sp627@cam.ac.uk), and/or Dr Jay Stock 
(jts34@cam.ac.uk) at PAVE.  
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Dexterity and Thermoregulation  

PARTICIPANT INFORMATION SHEET  
PAVE Research Group  

Stephanie Payne | Dr Jay Stock  
Imaging and Performance Laboratory | University of Cambridge | Cambridge | CB2 

3QG  

You are being invited to take part in a research study. This information sheet tells you about 
the purpose of the study and what will happen if you agree to take part. Details about the 
conduct of the study, confidentiality and data protection, indemnity and compensation, 
publication etc. are provided on the STUDY CONDUCT INFORMATION SHEET. Please take time 
to read both of these information sheets carefully and discuss them with others if you wish.  
Please ask us if there is anything which is unclear, or if you would like further information.   

What are the aims of the study?   
This study aims to find out how the proportions of our hands influence our dexterity in hot and cold 
conditions. By taking measurements of the hand relative to the rest of the body, and performing 
manual tasks after brief cold exposure, we can build a picture of the body’s dynamic 
thermoregulatory responses and how they might vary according to our body type and previous cold 
exposure.   

Why have I been invited?   
We are contacting you because you have been identified as a healthy adult above the age of 18.  

Do I have to take part?  
It is your decision whether to take part in the study or not. If you do decide to take part, you will be 
given this information sheet to keep and be asked to sign a consent form. You are free to withdraw 
at any point in the study without giving a reason, and this will not affect your legal rights or the 
standard of care that you receive.  

What will happen to me if I take part?   
You will be invited to attend the PAVE Research Group Imaging and Performance Laboratory 
(PAVE-IPL) at the Department of Archaeology and Anthropology. Your visit will last approximately 
one and a half hours.  

Might I be excluded from the study?   
You may not be eligible to take part in some aspects of the study if you have a cardioverter 
defibrillator implant or you suffer from photosensitivity/epilepsy. A member of the research team 
will ask you if this is the case, and if so, will emit these aspects of the study procedure for you. You 
will be able to take part in all other aspects of the study.  
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What do I have to do?   
1: Questionnaire and Consent form - At the PAVE-IPL, you 
will fill out a questionnaire and be asked to sign the consent 
form.  
2: Full Body 3D Scanning - You will be asked to stand still in 
a scanning booth (see Picture 1) for approximately two 
minutes while a 3D scan is taken of your body. The scan takes 
thousands of measurements automatically, and is painless 
and does not involve any radiation.   

3: Body Measurements - You will have your height, weight 
and several arm and finger measurements taken.  

4: Body Composition Analyses - You will be asked to step on 
to a platform to calculate your body composition (the amount 
of bone, fat and muscle in your body). It is not recommended 
that you carry out this element of the study if you have a 
cardioverter defibrillator implant. Please make the research 
team aware if this is the case.  

5: 2D Hand Scanning – You will be asked to place both your 
hands on a photocopier scanning plate, whilst we take three 
scans of your hands.  

6: Hand and Arm 3D Scanning - You will then be asked to 
sit whilst we take 3D scans of your hands and arms. This will 
take several minutes and is also painless and involves no 
radiation. This scan involves bright, flashing lights, so please 
make the research team aware if you are photosensitive.  

7: Thermal Imaging - You will have a series of photographs 
taken of your hands throughout the investigation using a 
thermal imaging camera (see Picture 2).   

8: Dexterity Test - You will have your dexterity tested, 
where you will be asked to place as many pins in a pinhole 
board in a set time (see Picture 3).  

9: Immersion Test - You will be asked to put on non-latex 
gloves and immerse your hand in cold water for 3 minutes. 
You will be asked to rate how cold your hands feel. After 3 
minutes, your hand will be removed from the cold water, 
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gloves also removed, and a second thermal image taken. You will then be asked to repeat the 
dexterity test.  

What will I have to wear?  
Please arrive at the PAVE-IPL in comfortable clothing. For the 3D body scan, you will be asked to 
wear close-fitting clothing as the scanner uses the external outline of your body to make 3D images, 
and thus any clothes you wear will be included in your outline. There will be a private changing 
area available for you to change into close-fitting clothing. For the rest of the study, you can wear 
comfortable clothing.   

What are the possible risks of taking part?  
There are no risks associated with body measurements, 3D scanning, body composition analysis, or 
thermal imaging. There are also no risks associated with short-term exposure of the hands to cold 
water. However, you may experience mild discomfort during the immersion period. You can 
withdraw from the experiment at any point if you reach a level of discomfort which you do not wish 
to be at.  

What are the possible benefits?  
Your participation in this study will increase our knowledge of thermoregulation. You can request 
to have a copy of your 3D scans, thermal images and other information sent to you. You will be 
provided with chocolate, and a free hand-warmer pack on completion of the study. There will be no 
other direct benefit to you.   

What will happen if anything goes wrong?  
In the unlikely event that something should go wrong during the study, procedures will be stopped. 
Standard procedures are in place at the PAVE-IPL, while acting as the research site, for dealing with 
serious adverse events should they occur.   

Any complaints about the way you have been dealt with during the study or any possible harm you 
might suffer will be addressed. The detailed information on this is given on the STUDY CONDUCT 
INFORMATION SHEET. If you have any concern or need further details at any point, please contact 
Stephanie Payne (sp627@cam.ac.uk) or  Jay Stock (jts34@cam.ac.uk).   

Who is organising and funding the study?  
This study is being organised by the PAVE Research Group, Department of Archaeology & 
Anthropology. This study is funded by the European Research Council and Trinity Hall, Cambridge.  
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Cambridge University HBREC Reference Number:  HBREC.2016.22    

       Please tick  
 I confirm that I have read and understand the information sheet for the above study and have had 

the opportunity to ask questions.  
 I understand that data will be linked-anonymised, personal information will not be linked to any 

data.  
 I understand that data from this study will be presented at conferences and published in journals. 

The data presented will be anonymous.  
 I understand that my participation is voluntary and that I am free to withdraw at any time, without 

giving any reason, and without my legal rights being affected.  
 I understand that being exposed to cold water may temporarily cause mild discomfort.  

 I understand that there are bright flashing lights involved in the scanning process, and take full 
responsibility for making the research team aware of any photosensitivity condition I may have.  

 I understand that this project has received ethical approval from the Cambridge University Human 
Biology Research Ethics Committee.  

 I consent to my anonymised data being used for future studies, for a maximum of 20 years.  

 I agree to take part in the above study.  
  

 
Name of Volunteer (Please print)    Date    Signature  

          
  

 
Name of Research Team Member (Please print)  
 
2 copies required: for researcher and volunteer   
 

Date    Signature  

  

Dexterity and Thermoregulation  

CONSENT FORM  
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Participant     __ __ __ (completed by research team)  Date of Birth __ __ / __ __ / __ __ __ __   

Email _______________________________________  Contact Number  _________________________________  

Address ___________________________________________________________________________________________________ 

Have you ever had a cardioverter defibrillator implanted?                     Yes/No  

Have you ever had any of the following health conditions?       Delete as appropriate  

Cold injury  Yes/No  Hypothermia  Yes/No  

Raynaud’s disease/Poor circulation  Yes/No  Type I/II diabetes  Yes/No  

If you have answered Yes to any of the above, please provide further details   

__________________________________________________________________________________________________________________  

If you smoke, do you smoke more than 10 cigarettes a week?                                  Yes/No  

FEMALE PARTICIPANTS ONLY: Are you currently pregnant or breastfeeding?                Yes/No 

Date  __ __ / __ __ / __ __ __ __  Participant __ __ __ (completed by research team)  

Handedness and Occupation  

Are you left or right handed? Delete as appropriate                                                                          Left/Right  

Occupation _____________________________________________________________________________________________________  

Birth Place 

In which town/city were you born? _________________________________________________________________________  

In which town/city was your mother born?_________________________________________________________________  

In which town/city was your father born? __________________________________________________________________ 
 

Dexterity and Thermoregulation  

Screening Questionnaire 
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On receipt of confirmation email from the volunteer the following email will be sent: 
Details for Coordination and Thermoregulation Investigation 

Hi (insert participant’s name),  

Thank you for indicating your availability for our study. We would like to invite you to the PAVE 

Imaging and Performance Laboratory on Pembroke Street, CB2 3DZ. Attached is a map to the 

laboratory, and a member of the research team will be there to meet you at the entrance. 

You are provisionally booked to attend at: (hh:mm, DD/MM/YY)  

If this is no longer convenient for you then please reply to this email and we will arrange a time that is 

better suited to you.  

Please come in comfortable clothing and bring close-fitting clothes to be worn in the 3D body scanner. 

The scanner uses the external outline of your body to make 3D images, and thus any clothes you wear 

will be included in you outline. To ensure that an accurate representation of your body outline is 

obtained, men should wear lycra shorts and no shirt; women should wear lycra shorts and a sports bra 

or fitted vest. Please also wear cotton underpants, which will be worn under standard clothing during 

immersion testing. If you will have difficulty bringing you own clothing, please reply to this email, and 

the team will do their best to provide suitable clothing for you. 

Please ensure that you are well hydrated, and have not exercised or been in a sauna 8 hours before the 

time you are due to attend the laboratory. We ask that you have not imbibed alcohol or caffeinated 

drinks 12 hours before you are due to attend the laboratory.  

We very much look forward to seeing you at the PAVE-IP Laboratory.  

Kind regards,  

The PAVE Research Team 
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Laboratory Protocol 

• Participants will be asked to change into close-fitting clothing in the private 
changing area and to remove socks, shoes and any jewellery other than stud 
earrings after consent. 

• The observer will familiarise the participant with the procedure by demonstrating 
on the observer, or another member of the research team if present.  

Anthropometry 

• Standard anthropometric procedures followed (Norton and Olds, 1996; Cameron, 
2013). 

• Weight: Participant stands on the centre of weighing platform. Record the weight to 
0.1kg. 

• Height: Participant stands on the platform of the Seca Leicester Height Measure with 
their back to the vertical board. Weight evenly distributed across the feet, heels 
placed together, both heels touching the base of the vertical board, feet should 
ideally point 60˚ degrees outwards. The buttocks, scapulae and head are positioned 
in contact with the vertical backboard where possible, arms hanging freely, palms 
facing the thighs, and head facing forward. On an in-breath, the horizontal bar 
should be lowered to sit snugly on the crown of the participant’s head with 
sufficient pressure to compress hair. Record height to the nearest mm. 

• Humerus Length: Participant stands and rolls up the sleeve of the right arm. 
Participant flexes arm to 90˚ to the floor. The acromion lateral tip is marked with 
body marker. The inferior border of the olecranon process is marked with body 
marker. Standing on the right side of the participant, with the sliding callipers in the 
right hand, place the counter blade on the marked acromion and the fixed blade on 
the marked olecranon. Record upper arm length to the nearest mm.  

• Ulna Length: The distal end of the styloid process is marked with body marker. The 
counter blade is applied to the marker olecranon and the fixed blade to the styloid 
process.  Record fore-arm length to the nearest mm. 

• 2D Hand Scan: Participant places their right hand on the scanning plate of the 
CanoScan LiDE 600 Scanner, palm facing downwards. One image is taken with 
fingers together; one image is taken with fingers spread as widely as possible. 

• 3D Hand Scan: Participant sits with the right arm abducted parallel to the ground, 
fingers outstretched but held together, thumb held away from the fingers. Open 
Scan panel on the desktop. Hold scanner 0.5m away from at same height as hand, 
pointing at the thumb. Press Record button on scan panel and move around the hand 
180˚, remaining 0.5m away. Continue up the arm to the acromion process on the 
shoulder. Press Stop button on scan panel once a 3D scan of the entire hand has 
been collected.  
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• SizeStream: Standard measurement procedure followed  (Sizestream Inc, 2014). 
Participant steps into the body scanner, observer closes curtain behind them. 
Participant told to stand on footprint marks, feet approximately shoulder-width 
apart and toes pointed out to ensure complete foot coverage. Participant grasps 
adjustable handhold with the right hand. Handhold will slide so the participant is 
standing upright in a normal relaxed posture while holding the handhold. The left 
arm should be held away from the body similar to the right arm’s position. Observer 
asks for confirmation that participant is ready for Scan. Observer enters participant 
number, click the grey button under the Sizestream logo. Audio instructions will be 
given to the participant. The scan is carried out. After the scan, the participant is told 
to relax whilst observer checks the scan.  If the scan is approved, then participant 
handed standard test clothing to put on. 

• Body Composition Measurement: Participant will stand on SECA mBCA-515 body 
composition analyser, with heels on heel pads, toes on toe-pads, and fingers 
gripping finger pads. The analyser will be switched on to measure fat-free mass, fat 
mass, and skeletal muscle mass for the participant. 

Thermoneutral Tests 

• Each participant will enter testing room, which is held at a given room temperature 
(24˚C). 

• They will be asked to sit and have core temperature taken using the Braun 
Thermoscan to 0.1 ˚C. 

• The temperature of each hand will be taken using a thermal imaging camera FLIR 
T460®. The hand will be placed with fingers outstretched on a plastic table top 
whilst the image is taken.  

• The participant will then have the procedure explained to them. After 10 minutes, 
body temperature will be taken again, to determine whether their body 
temperature is stable. 

• A second thermal image will be taken of each hand to determine whether hand 
temperature is stable. The investigation will then commence. 

Finger Dexterity 

• Carry out dual dexterity test as stated by Purdue Pegboard Instructions (Parkway 
and Box, 2002) 

Immersion Tests 

• The participant will then have their body temperature, and hand temperature 
measured again prior to immersion using the Braun Thermoscan. 

• One thermal image will be taken.  
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• The participant will then put latex-free gloves on their hands before immersing their 
hands in a bucket of ice-cold water (0˚C), up to the styloid process, but not over the 
top of the gloves. 

Post-Immersion 

• At the end of the 3-minute period, the participant will be asked to rate the cold 
sensation on an 11 point scale (0-not cold, 10- extreme cold), and pain sensation on 
an 11 point scale (0-no pain, 10- extreme pain). 

• The participant will remove the gloves and have a thermal image taken immediately. 
Then they will repeat the Purdue pegboard test. 

• The participant will then proceed to the private changing area where they will 
change back into their own clothing 

• Participants will then be offered a glass of water and a choice of fruit/cereal bar or 
chocolate. 

• Participant is free to leave. 
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Protocol for Nepal Field Investigation 

Consent 

• On attendance of the Jawalakhel Community Centre/Namche Bazaar Health 
Post/Namche Monastery, the participant will be informed of the protocol and given 
the Questionnaire Consent Form to read and complete. The form is below: 

 ;xdlt kmd{ Consent Form   Participant 

Number: …………………………l;=o' HBREC /]km/]G; gDa/: 2016.22 g]kfn :jf:Yo cg';Gwfg kl/ifb /]km/]G; gDa/: 1571 

d पुि�u5'{ ls d}n] dfly pNn]lvt cWoog ;DalGw hfgsf/L kq k9] / a'em] / dnfO{ k|Zgx? ;f]Wg] cj;/ k|fKt ePsf] lyof] . 
I confirm that I have read and understood the information sheet for the above study and have had the opportunity to ask questions 

d}n] a'em]sf] 5' ls d]/f] JolQmut klxrfg s'g}}klg tYof+s;uF ldnfOg] 5}g. d]/f] tYof+s JolQmut klxrfg िबना eljZodf (@) jif{;Dd x'g] 
cg';Gwfgdf k|of]u x'g ;Sg]5.  
I understand that data will be anonymized, personal information will not be linked to any data, and that my data may be used for future 
studies, for a maximum of 20 years. 

d}n] a'em]sf] 5' ls d]/f] ;xeflutf :jo+;]jssf] ?kdf x'g]5 / d s'g} klg a]nf o; cWoogaf6 cfkm'nfO{ s'g} sf/0f glbOsg cnu ug{ 
;Sg]5'. d}n] kfpg] sfg'gL ;+/If0f pn+3g �ने छैन.  
I understand that my participation is voluntary and that I am free to withdraw at any time, without giving a reason, and without my legal 
rights being affected. 

d}n] a'em]sf] 5' ls of] cWoog kl/of]hgfn] s]dla|h ljZj ljBfnosf] dfgj lhjzf:q cg';Gwfg OlyS; ;ldlt / g]kfn :jf:Yo cg';Gwfg 
kl/ifbaf6 Olysn :jLs[tL lnPsf] 5 .  

I understand that this project has received ethical approval from the Cambridge University Human Biology Research Ethics Committee and 
the Nepal Health Research Council. 

dfly pNn]lvt cWoogdf efu lng d ;xdt 5' .  

I agree to take part in the above study.  

……………………………………………………… __ __/__ __/2017 …………………………………………………… 

;xefuLsf] gfd -s[kof n]Vg'xf];_    ldlt Date   ;lx Signature 

• The observer will familiarise the participant with the procedure demonstrating on 
themselves 

• Ensure participants are wearing light clothing, no shoes 

Anthropometry 

• Standard anthropometric procedures followed (Norton and Olds, 1996; Cameron, 
2013). 

• Weight: Participant stands on the centre of weighing platform. Record the weight to 
0.1kg. 

• Height: Participant stands on the platform of the Seca Leicester Height Measure with 
their back to the vertical board. Weight evenly distributed across the feet, heels 
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placed together, both heels touching the base of the vertical board, feet should 
ideally point 60˚ degrees outwards. The buttocks, scapulae and head are positioned 
in contact with the vertical backboard where possible, arms hanging freely, palms 
facing the thighs, and head facing forward. On an in-breath, the horizontal bar 
should be lowered to sit snugly on the crown of the participant’s head with 
sufficient pressure to compress hair. Record height to the nearest mm. 

• Humerus Length: Participant stands and rolls up the sleeve of the right arm. 
Participant flexes arm to 90˚ to the floor. The acromion lateral tip is marked with 
body marker. The inferior border of the olecranon process is marked with body 
marker. Standing on the right side of the participant, with the sliding callipers in the 
right hand, place the counter blade on the marked acromion and the fixed blade on 
the marked olecranon. Record upper arm length to the nearest mm.  

• Ulna Length: The distal end of the styloid process is marked with body marker. The 
counter blade is applied to the marker olecranon and the fixed blade to the styloid 
process.  Record fore-arm length to the nearest mm. 

• Hand Length: Participant sits with right arm forearm resting on the table, palm 
facing upwards, fingers and palm fully extended and hand flat. The fixed blade of the 
calliper is placed against the most distal point of the middle finger; the sliding blade 
is placed on the marked styloid process. Record hand length to the nearest mm. 

• Hand Width: Participant holds hand with the identical position to the previous 
measurement. The fixed blade is placed on the distal side of the fifth 
metacarpophalangeal joint, and the sliding blade is placed on the proximal side of 
the second metacarpophalangeal joint. Record hand width to the nearest mm. 

• All measurements were recorded on the following form: 

 Scientific Study of Human Hands  
Date (DD/MM/YYYY)  __ __ / __ __ / __ __ __ __  Participant Number ………………………………… 
Age (in complete years) ………………………………. Birthplace  ………………………………… 
Migration (if applicable)………………………………………………………………………………………………………………... 
Handedness   L/R   Occupation   ………………………………… 
Ethnicity and town/region of parents and grandparents’ origin:  Same/Different 
Notes: 
…………………………………………………………………………………………………………………………………………………… 
Number of siblings:……………………………………………………………………………………………………………………… 
Any amputations/bone fractures? ……………………………………………………………………………………………….. 
Body Weight (kg)  __ __ __ /__ __ __/ __ __ __   Body Height (mm)  __ __ __ /__ __ __/ __ __ __  
Humerus Length (mm) __ __ __ /__ __ __/ __ __ __   Ulna Length (mm) __ __ __ /__ __ __/ __ __ __  
Hand Length (mm) __ __ __ /__ __ __/ __ __ __   Hand Width (mm) __ __ __ /__ __ __/ __ __ __   

 
• After measurement, participants will be offered a choice of confectionery or 

chocolate 
• Participant is free to leave 
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The following form demonstrates evidence of insurance for this investigation: 

     

Head of Insurance  

Our Ref: 609/M/C/1728  

 Dr Jay Stock    

Department of Archaeology and Anthropology   

University of Cambridge  
  

  14th October 2016    
    

Dear Dr Stock  
  

How does dexterity change in cold stress, heat stress and at high altitude?  
  

I am writing to confirm that, on the basis of information supplied this research will be covered by 
Newline Clinical Trials policy B0823Q31000177 which has a £10m Limit of Indemnity.  

  

The University’s insurance is primarily concerned with the risks associated with ‘design of study 
protocol’, however the cover extends to claims made on a non-negligent harm basis.     

  

This insurance indemnifies the University of Cambridge and its employees.  There is no 
indemnity to NHS Trusts or Primary Care practices participating in this trial or to manufacturers 
of substances or equipment to be used in this trial.  

  
Any amendments to the Study Protocol (including research sites) or to the Sponsorship 

of Study must be notified to the insurance section so that the insurance can be reviewed and 
ensure that all material facts are notified to the insurance underwriters as required by the 
insurance policy agreement.  

  

Yours sincerely  

  
Gill Armstrong  

Greenwich House  
Madingley Rise, Madingley Road  

Cambridge  
   CB3 0TX  
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Ethical approval for the field study was also obtained from the Nepal Health 

Research Council (NHRC). The approval form is held by the NHRC, and thus is not available 

for publication in this thesis. However, the following letter demonstrates receipt of ethical 

approval from the NHRC: 

 

Government of Nepal 

Nepal Health Research Council (NHRC) 
Ref. No.: 1571 

01 March, 2017 

Ms. Stephanie Alice 
University of Cambridge 
United Kingdom 

Subject: Approval of Research Proposal entitled Testing hand and body proportions of high and low 
altitude populations in Nepal 

It is my pleasure to inform you that the above-mentioned proposal submitted on 19 January 
2017 (Reg.no. 14/2017 please use this Reg. No. during further correspondence) has been approved by 
NHRC Ethical Review Board on 01 March, 2017. 

As per NHRC rules and regulations, the investigator has to strictly follow the protocol 
stipulated in the proposal. Any change in objective(s), problem statement, research •question or 
hypothesis, methodology, implementation procedure, data management and budget that may be 
necessary in course of the implementation of the research proposal can only be made so and 
implemented after prior approval from this council. Thus, it is compulsory to submit the detail of such 
changes intended or desired with justification prior to actual change in the protocol before the 
expiration date of this approval. Expiration date of this study is April 2017. 

If the researcher requires transfer of the bio samples to other countries, the investigator should 
apply to the NHRC for the permission. The researchers will not be allowed to ship any raw/crude 
human biomaterial outside the country; only extracted and amplified samples can be taken to labs 
outside of Nepal for further study, as per the protocol submitted and approved by the NHRC. The 
remaining samples of the lab should be destroyed as per standard operating procedure, the process 
documented, and the NHRC informed. 

Further, the researchers are directed to strictly abide by the National Ethical Guidelines 
published by NHRC during the implementation of their research proposal and submit progress report 
and full or summary report upon completion. 

If you have any questions, please contact the Ethical Review M & E section of NHRC. 

 - Member Secretary  

RESE4e 
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Appendix 2 – Details of Field 
Investigation Populations 

Details of the highland population 

All participants in the highland population of the field study self-identified as Sherpa 

and all were born and resident in the Khumbu region of Nepal (Figure A2.1).  The Sherpa 

were chosen for study as this ethnic group are associated with the Eastern Nepalese region 

of the high Himalayas (von Furer-Haimendorf, 1975), which they have occupied for 

approximately 300-400 years (Oppitz, 1974; Ortner, 1989). The Sherpa founding 

population stemmed from an ancestral Tibetan population (Bhandari et al., 2015). Using 

genetic estimates, the Sherpa population would have been relatively isolated for 

approximately 500 generations.  The relative genetic isolation of the Sherpas makes them a 

suitable population of Tibetan ancestry, as many other Himalayan populations will have 

undergone extensive genetic mixing as a result of considerable migration in the region 

(Aldenderfer, 2016). 

Sherpa livelihood is dictated by the harsh Himalayan environment. Sherpas have 

traditionally been pastoralists and agriculturalists, with a relatively limited diet (Stevens, 

1993). This limited diet may well have acted as an energetic stress on the Sherpa 

phenotype, as indicated by Bailey et al. (Bailey and Hu, 2002; Bailey et al., 2007). 

Furthermore, the harsh environment of the Khumbu region will have produced additional 

energetic stress. Within the Khumbu region, the elevation varies from approximately 2800-

8850m, creating an ecological gradient from temperate to alpine environments. The 

shallow soil, lack of nutrients, hypoxia (~15% atmospheric O2 at 2800m, reaching as low as 

~6% at Everest’s peak), and cold conditions (falling to around -40˚C in winter), make the 

Everest region a very inhospitable place to live (Peacock, 1998). These conditions are also 

likely to have created high energetic demands on the Sherpa population which, when 

combined with a physically demanding pastoral/agricultural lifestyle, will have acted as a 

strong selection pressure on the Sherpa phenotype.  
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Figure A2.1 Map of Sagarmatha National Park (Nyaupane et al. 2014) 



 

185 
 

Details of the lowland population 

The lowland population were of self-identified Tibetan origin, now living in the 

Jawalakhel refugee camp in Kathmandu. All participants had Tibetan ancestry, but had 

been born in either lowland Tibet during migration from the Tibetan Plateau to Nepal 

(Figure A2.2), or were born in Kathmandu. All participants were below the age of 58, to 

ensure that they were born after migration from the highland regions in Tibet in 1959 

(Jian, 2006). Over 20,000 Tibetans migrated during this time as a result of persecution, 

including the exile of the Dalai Lama, and the subsequent Tibetan uprising.  

 

Figure A2.2 Topography of the Himalayas and the Tibetan Plateau. 

This population were suitable as a lowland comparison to the Sherpa population as 

they had shared genetic ancestry (Bhandari et al., 2015), but had been residential at a 

relatively low altitude throughout their lives (~1800m), including childhood growth 

periods. Thus, this population will not have experienced the same altitude-associated 

stresses which the Sherpa population had been exposed to during growth.  
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Although this lowland Tibetan population may have been exposed to a westernised 

diet in Kathmandu, many of the participants affirmed maintenance of a traditional Tibetan 

Buddhist diet. This is similar to the Sherpa population, who may have been exposed to an 

increasingly westernised diet as a result of growing tourism in the Khumbu region. 

However, it was observed that most maintained a similar Buddhist diet. 

In terms of physical activity, the populations were relatively well matched. The 

majority of the male Sherpa population measured were porters, whilst the majority of the 

male Tibetan population were factory workers in the Jawalakhel Tibetan community 

centre; both male samples having relatively high physical activity levels. The female Sherpa 

population were homemakers or lodge-hosts, whilst the female Tibetan population were 

either homemakers or shopkeepers, and so also had relatively similar activity levels.  
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