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Abstract 

Digitally quantified neuropathological correlates of structural and functional imaging 

biomarkers in progressive supranuclear palsy 

Tanrada Pansuwan 

 

 
Neuroimaging measures are increasingly useful as in vivo biomarkers for differential 

diagnosis in neurodegenerative tauopathies. However, the relationship between imaging 

changes and neuropathology requires more thorough validation and beyond Alzheimer’s 

disease. In tauopathies, tau is the key protein where specific pattern of tau aggregation and 

distribution can distinguish between different tauopathies. With this, progressive supranuclear 

palsy (PSP) is a prime disease for investigating the relationship between imaging changes and 

tau burden. Early studies have revealed that semi-quantitative pathological tau measures are 

predictive of in vivo atrophy but is less predictive of intrinsic functional connectivity. 

However, the semi-quantitative pathological measures used in these studies have limitations 

such that they are prone to inter-rater variability and may be insensitive to subtle pathological 

patterns. Therefore, in this thesis, I first attempted to develop an automated pipeline for 

quantifying total and tau positive cell density for neuronal and glial cells in post mortem 

samples. This promises to be a more objective, detailed, and scalable solution for 

pathological assessment. However, cell classification with high accuracy has proven to be 

very challenging; I then adapted the pipeline to only focus on quantifying tau type-specific 

aggregates in PSP. I used the pipeline to quantify PSP-related tau aggregates across cortical 

and subcortical regions and found a strong correspondence between the digitally quantified 

tau burden and the current consensus PSP staging scheme. I further assessed its 

clinicopathologic predictive power and found that total cortical tau and subcortical 

neurofibrillary densities correlate with clinical severity measured prior to death. Lastly, I 

assessed the relationship between both structural and functional imaging measures and post 

mortem tau type-specific density. I found that total tau density was associated with in vivo 

functional connectivity but not atrophy, suggesting that structural measure may be a less 

reliable marker of tau burden than functional measure in PSP. Overall, I have demonstrated 

that digitally quantified tau pathology can be a powerful tool to deepen our understanding of 

the role of tau for mechanistic studies and diagnosis in neurodegenerative tauopathies.  
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Figure 4.3: Plots showing mean PR-AUC score for each classifier from 10-fold stratified 

cross validation when 10-100% of the dataset was used. This shows the stability of PR-AUC 

to inform whether increasing dataset would be useful in training the classifiers. Mean (dot) 

and 95% confidence intervals (shaded area) are shown. ___________________________ 110 

 

Figure 4.4: Top ten most important features of each classifier from hyper-parameter tuning.  

a) screening classifier, b) cortical tau classifier, c) tau classifier for putamen, d) tau classifier 

for subthalamic nucleus and globus pallidus (STN & GP), and e) tau classifier for dentate 

nucleus (DN). ____________________________________________________________ 112 

 

Figure 4.5: Mean confusion matrices from validation set in the 10-fold cross validation for a) 

screening classifier and tau classifier for b) the cortex, c) putamen, d) subthalamic nucleus 

and globus pallidus (STN & GP), and e) dentate nucleus (DN). _____________________ 116 

 

Figure 4.6: Confusion matrices of held-out test set by region a) cortex, b) putamen, c) 

subthalamic nucleus, d) globus pallidus, e) dentate nucleus. ________________________ 119 

 

Figure 4.7: Examples of correct classification from the held-out test set for each tau aggregate 

type from the cortex, putamen, subthalamic nucleus (STN), globus pallidus (GP) and dentate 

nucleus (DN). All images were cropped 150 x 150 m window size. TA examples are only 

drawn from the cortex and putamen. CB coiled body; NFT neurofibrillary tangle; TA tufted 

astrocyte; TF tau fragments. _________________________________________________ 120 

 

Figure 4.8: Example of possible misclassification observed between tau aggregate types from 

the held-out test set. Truth label as predicted label is presented. All images were cropped 150 

x 150 m  window size. CB coiled body; NFT neurofibrillary tangle; TA tufted astrocyte; TF 

tau fragments. ____________________________________________________________ 121 

 

Figure 5.1:  Logarithmic total tau density plot from PSP stage 2 (least severe) to 6 (most 

severe) across all PSP participants from both cortical and subcortical structures. STN 

subthalamic nucleus, GP globus pallidus, PU putamen, DN dentate nucleus, PF pre-frontal, 

PM pre-motor, 1°M primary motor, 1°S primary somatosensory, T temporal, P parietal, OC 

occipital, C cingulate. ______________________________________________________ 132 

 

Figure 5.2: Logarithmic tau density plot by tau type per PSP stage from stage 2 (top) to 6 

(bottom) across all PSP participants and brain regions sampled. CB density plot (green), NFT 

density plot (red), TA density plot (yellow) and TF density plot (orange). STN subthalamic 

nucleus, GP globus pallidus, PU putamen, DN dentate nucleus, PF pre-frontal, PM pre-motor, 

1°M primary motor, 1°S primary somatosensory, T temporal, P parietal, OC occipital, C 

cingulate. ________________________________________________________________ 133 

 

Figure 5.3: Correlation matrices of tau aggregate types across a) all regions, b) cortical and c) 

subcortical regions in the study. All correlation coefficients are significant at p<0.001. 

*0.001<p-value<0.05, **p-value > 0.05, _______________________________________ 135 

 

Figure 5.4: A boxplot showing PSPRS score and PSP stage (left) and a plot showing posterior 

distribution of the regression coefficients of the model PSPRS score ~ PSP stage + disease 

duration + PSPRS-death interval (right). Median (circle) and 95% credible interval (line) are 

plotted for each parameter alongside ROPE [-1.24 to 1.24] (blue region). _____________ 139 
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Figure 5.5: (a) A scatterplot showing PSPRS score, and total tau density quantified from all 

regions (left), and a plot showing the posterior distribution of the regression coefficients of 

the final model PSPRS score ~ tau density + disease duration + PSPRS-death interval with 

possible parameter values (right). Mean (circle) and 95% credible interval are plotted with 

ROPE [-1.24 to 1.24] (blue region). Plots from the final model when tau was quantified from 

only cortical regions with ROPE [-1.24 to 1.24] (b) and only subcortical regions with ROPE 

[-1.26 to 1.26] (c) are also presented. __________________________________________ 141 

 

Figure 5.6: Sensitivity analysis plots showing the effect of setting alternative weakly 

informative priors on the regression coefficient of the effect of interest (PSP stage, tau 

burden) in the final models. Normal distribution, N (mean, standard deviation), was chosen 

with mean centred at zero, and standard deviation was varied from 50, 100 and 150. ____ 142 

 

Figure 5.7: Boxplots showing total tau density quantified for each brain region between PSP 

and control subjects. _______________________________________________________ 144 

 

Figure 5.8: Examples from two occipital slides from control subjects. a) age-related tau 

astrogliopathy is observed (with scale bar 100μm) and b) tau aggregates that can generally be 

found in some control slides (with scale bar 50μm). ______________________________ 145 

 

Figure 6.1: Illustration of regression coefficient map creation from control group as part of w-

score calculation. a) Linear regression with covariates (age at scan and gender) was 

performed in the control group to estimate age and gender related changes. b) Maps with 

parcel-wise intercept values ( 0), age-related ( 1), gender-related ( 2), individual maps of 

residuals can be extracted. c) The standard deviation (SD) of the residuals was then 

computed. _______________________________________________________________ 155 

 

Figure 6.2: Illustration of w-score calculation after extracting maps of regression coefficient 

from controls. Raw parcel-wise values are extracted from each patient brain scan and w-score 

is calculated using the formula. Raw w-scores are reversed so that higher positive value 

means more atrophy. _______________________________________________________ 156 

 

Figure 6.3: Group level w-score map of atrophy and raw functional connectivity measures of 

weighted degree and closeness centrality. Higher w-score corresponds to higher volume loss.

________________________________________________________________________ 162 

 

Figure 6.4: Boxplots showing a) mean w-score, b) total tau and tau hallmark density (all tau 

types except for TF) and c) tau type-specific density in PSP subjects across all regions with 

histology data. NFT neurofibrillary tangle, TA tufted astrocyte, CB coiled bodies, TF tau 

fragments. _______________________________________________________________ 164 

 

Figure 6.5: Plots showing posterior distribution of the regression coefficients of all tau 

models, w-score ~ tau density + imaging-to-death interval + gender + (1|region name) + 

(1|Patient ID) for all regions. Median (circle) and 95% credible interval (line) are plotted for 

each parameter alongside ROPE [-0.13 to 0.13] (blue region). ______________________ 167 

 

Figure 6.6: Sensitivity analysis plots of the effect of setting alternative weakly informative 

priors for the regression coefficient of the effect of interest, in the total tau model in 

predicting atrophy across all regions. A normal distribution, N (mean, standard deviation), 

was centered at zero and the standard deviation was varied. ________________________ 168 

https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210241
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210242
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210242
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210242
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210242
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210243
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210243
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210244
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210244
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210244
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210245
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210245
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210245
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210245
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210245
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210245
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210246
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210246
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210246
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210246
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210247
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210247
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210247
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210248
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210248
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210248
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210248
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210249
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210249
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210249
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210249
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210250
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210250
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210250
https://universityofcambridgecloud-my.sharepoint.com/personal/tp500_cam_ac_uk/Documents/Attachments/Jan2023/Thesis_submission/Corrections/doc1_asus.docx#_Toc155210250


 
 

13 
 

Figure 6.7: Plots showing posterior distribution of the regression coefficients of all tau 

models, w-score ~ tau density + imaging-to-death interval + gender + (1|region name) + 

(1|Patient ID) for cortical regions. Median (circle) and 95% credible interval (line) are plotted 

for each parameter alongside ROPE [-0.09 to 0.09] (blue region). ___________________ 169 

 

Figure 6.8: Sensitivity analysis plots for the effect of setting alternative weakly informative 

priors on the regression coefficient of the effect of interest in the total tau model in predicting 

atrophy across cortical regions. A normal distribution, N (mean, standard deviation), was 

centered at zero and standard deviation was varied. _______________________________ 170 

 

Figure 6.9: Plots showing posterior distribution of the regression coefficients of all tau 

models constructed for each region, w-score ~ tau density + imaging-to-death interval + 

gender. Median (circle) and 95% credible interval (line) are plotted for each parameter 

alongside ROPE [-0.10 to 0.10] (blue region). ___________________________________ 171 

 

Figure 6.10: Scatterplots (left) showing CB density and w-score (atrophy) in dentate nucleus 

with a) full dataset and b) after removing a potential outlier. Plots (right) showing the 

posterior distribution of the regression coefficients of the tau models; w-score ~ CB density + 

imaging-death interval + gender. Mean (circle) and 95% credible interval are plotted with 

ROPE [-0.10 to 0.10] (blue region). ___________________________________________ 172 

 

Figure 6.11: Sensitivity analysis plots of the effect of setting alternative weakly informative 

priors on the regression coefficient of the effect of interest in the CB density model in 

predicting atrophy of dentate nucleus with full dataset (left) and with a potential outlier 

removed (right). Normal distribution, N (mean, standard deviation), was chosen with mean 

centered at zero and standard deviation was varied. Median (circle) and 95% credible interval 

(line) are plotted for each parameter alongside ROPE (blue region). __________________ 173 

 

Figure 6.12: Boxplots showing a) mean weighted degree, b) closeness centrality in PSP 

subjects across all regions in the analysis. ______________________________________ 174 

 

Figure 6.13: Scatterplots (left) showing total tau density and a) weighted degree or b) 

closeness centrality across all regions. c) Tau hallmark density and closeness centrality across 

only cortical regions is plotted. Plots (right) showing the posterior distribution of the 

regression coefficients of the tau models; graph metric ~ tau density + imaging-death interval 

+ gender + disease duration + echo type + (1|region name) + (1|Patient ID). Mean (circle) and 

95% credible interval are plotted with ROPE [-0.01 to 0.01] (blue region). ____________ 177 

 

Figure 6.14: Sensitivity analysis plots of the effect of setting alternative weakly informative 

priors on the regression coefficient of the effect of interest in the total tau density model in 

predicting weighted degree across all regions. Normal distribution, N (mean, standard 

deviation), was chosen with mean centered at zero and standard deviation was varied. Median 

(circle) and 95% credible interval (line) are plotted for each parameter alongside ROPE (blue 

region). _________________________________________________________________ 178 

 

Figure 6.15: Sensitivity analysis plots of the effect of setting alternative weakly informative 

priors on the regression coefficient of the effect of interest in the total tau density model in 

predicting closeness centrality across all regions. Normal distribution, N (mean, standard 

deviation), was chosen with mean centered at zero, and standard deviation was varied. 
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Median (circle) and 95% credible interval (line) are plotted for each parameter alongside 

ROPE (blue region). _______________________________________________________ 179 

 

Figure 6.16: Sensitivity analysis plots of the effect of setting alternative weakly informative 

priors on the regression coefficient of the effect of interest in the tau hallmark density model 

in predicting closeness centrality across only cortical regions. Normal distribution, N (mean, 

standard deviation), was chosen with mean centered at zero and standard deviation was 

varied. Median (circle) and 95% credible interval (line) are plotted for each parameter 

alongside ROPE (blue region). _______________________________________________ 180 

 

Figure 0.1: Prior predictive check of N(0,100) for the model, PSPRS score ~ PSP stage + 

disease duration + PSPRS-death interval. T(y) is the distribution of the data (dark blue line), 

T(yrep) is the data generated from the chosen prior (light blue). A chosen prior is appropriate 

when the dark blue line is more than minimum (a), within mean (b) and less than the 

maximum values (c) generated. Posterior predictive check (d) is shown where actual data (y) 

is plotted with the simulated data from the posterior distribution (yrep). Actual data should be 

in-line with the simulated data. _______________________________________________ 226 

 

Figure 0.2: Plots of posterior distribution (left) and trace plots (right) of the regression 

coefficients in the model, PSPRS score ~ PSP stage + disease duration + PSPRS-death 

interval. When the model is fit properly, trace plots should have no specific pattern observed, 

but should show random scatter around the mean. ________________________________ 227 

 

Figure 0.3: Prior predictive check of N(0,100) for the model, PSPRS score ~ total tau burden 

(all regions) + disease duration + PSPRS-death interval. T(y) is the distribution of the data 

(dark blue line), T(yrep) is the data generated from the chosen prior (light blue). A chosen 

prior is appropriate when the dark blue line is more than minimum (a), within mean (b) and 

less than the maximum values (c) generated. Posterior predictive check (d) is shown where 

actual data (y) is plotted with the simulated data from the posterior distribution (yrep). Actual 

data should be in-line with the simulated data. ___________________________________ 228 

 

Figure 0.4: Plots of posterior distribution and trace plots of the regression coefficient in the 

model; PSPRS score ~ total tau burden (all regions) + disease duration + PSPRS-death 

interval. When the model is fit properly, trace plots should have no specific pattern observed, 

but should show random scatter around the mean. ________________________________ 229 

 

Figure 0.5: Prior predictive check of N(0,100) for the model, PSPRS score ~ total tau burden 

(cortical regions) + disease duration + PSPRS-death interval. T(y) is the distribution of the 

data (dark blue line), T(yrep) is the data generated from the chosen prior (light blue). A chosen 

prior is appropriate when the dark blue line is more than minimum (a), within mean (b) and 

less than the maximum values (c) generated. Posterior predictive check (d) is shown where 

actual data (y) is plotted with the simulated data from the posterior distribution (yrep). Actual 

data should be in-line with the simulated data. ___________________________________ 230 

 

Figure 0.6: Plots of posterior distribution and trace plots of the regression coefficient in the 

model; PSPRS score ~ total tau burden (cortical regions) + disease duration + PSPRS-death 

interval. When the model is fit properly, trace plots should have no specific pattern observed, 

but should show random scatter around the mean. ________________________________ 231 
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distribution (yrep). Actual data should be in-line with the simulated data. ______________ 232 
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Figure 0.14: Plots of posterior distribution and trace plots of the regression coefficient in the 

model, weighted degree ~ tau density + imaging-death interval + gender + disease duration + 

echo type + (1|region name) + (1|Patient ID) across all regions. When the model is fit 

properly, trace plots should have no specific pattern observed, but should show random 

scatter around the mean. ____________________________________________________ 255 
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Chapter 1: Introduction 

 

1.1. Overview  
 

There have been advances in the fields of molecular pathology and neuroimaging in 

understanding neurodegenerative diseases. However, key questions remain about the 

relationship between molecular changes, brain networks and clinical syndromes. In this 

thesis, the focus is on improving our understanding of tau protein in humans using histology 

and imaging data. Therefore, in this chapter, neurodegenerative tauopathies as 

clinicopathological entities will firstly be reviewed to establish the significance of studying 

abnormal tau protein. Subsequently, important contributions from the field of molecular 

pathology in understanding tauopathies concerning the role of tau in normal health and 

disease, tauopathy classification schemes, and neuropathological examination will be 

explored. The motivation towards quantitative pathology and insights gained so far will then 

be evaluated. Next, the contribution from neuroimaging research on in vivo biomarker of 

tauopathies will be reviewed and the importance of establishing a bridge between molecular 

pathology and neuroimaging will be discussed. Progressive supranuclear palsy (PSP), a type 

of neurodegenerative diseases associated with tau neuropathology, is chosen as the focus of 

this thesis. A detailed explanation will be provided to justify this choice and to show that PSP 

has a potential to be a disease model for understanding tauopathies. Finally, the outline and 

contribution of this thesis towards the wider literature will be presented. 

 

 

1.2. Neurodegenerative tauopathies 

According to the World Health Organisation (World Health Organization, 2023), more than 

55 million people worldwide have dementia, where 60-70% of these cases result from 

Alzheimer’s disease. On a global scale, there are approximately 10 million new cases per 

annum and dementia is a major cause of disability and dependency in older people. In 2019, 

Alzheimer’s disease and other forms of dementia were the 7th leading cause of global death 

and cost the global economy roughly 1.3 trillion US dollars. Dementia refers to a loss of 

cognition such as memory, language and problem-solving skills that ultimately affect one’s 
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normal daily functions. There are several diseases that result in cognitive and motor 

neurodegenerative syndromes, one of which is a class of neurodegenerative diseases called 

‘tauopathies’.  

Tauopathies are characterised by abnormal tau protein accumulating as intracellular 

inclusions in neurons and/or glia, accompanied by neuronal loss and gliosis (Irwin, 2016; 

Kovacs, 2015). The clinical spectrum is broad and heterogenous, and often involves a 

dysexecutive cognitive impairment and parkinsonism, but may also cause language disorders, 

dystonia, eye movement abnormalities, and dysphagia (Höglinger et al., 2018). These 

symptoms reflect the brain regions affected and become more complex as more regions are 

affected to a greater degree (Forrest et al., 2019). Many clinical features can be seen in 

multiple tauopathies and other diseases, therefore they are not specific to a particular type of 

underlying pathology which makes in vivo diagnosis difficult (Höglinger et al., 2018; 

Kovacs, 2015). For example, 50% of the patients with clinical phenotype of behavioural 

variant of frontotemporal dementia (bvFTD) have tau-positive pathology of a wide range of 

underlying neuropathology including progressive supranuclear palsy, corticobasal 

degeneration, Pick’s disease and argyrophilic grain disease, or, they can have tau-negative 

frontotemporal degeneration, or Alzheimer’s disease (Höglinger et al., 2018; Irwin, 2016). 

Therefore, the traditional syndrome-based classification of tauopathies needs to be 

supplemented with details about molecular pathology to enable more specific classifications 

for better targeting of tau therapies (Höglinger et al., 2018).  

 

1.3. Molecular pathology 
 

Molecular pathology plays a key role in understanding neurodegenerative diseases as it 

permits the characterisation of neuropathological changes (Kovacs, 2019). This is crucial as 

such characterisation serves as a way to identify potential disease modifying targets (Guo & 

Lee, 2014; Iba et al., 2013). A molecular pathology approach has therefore been used to 

elucidate tau protein in health and disease, characterise tauopathies and examine 

neuropathology from post mortem samples for definite diagnosis and understanding disease 

progression. 
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1.3.1. What is tau? 
 

Physiologically, tau can be found intracellularly and extracellularly where the function of 

extracellular tau is still unclear (Colin et al., 2020). Intracellular tau is predominantly found 

in the cytoplasm of neuronal axons and some can also be found in non-neuronal cells (Forrest 

et al., 2019). In neurons, the primary role of tau is to modulate the stability of axonal 

microtubules, by acting as a binding protein to support micro-tubule stabilization and axonal 

transport (Irwin, 2016). Extracellularly, tau can be found in the interstitial fluid and 

cerebrospinal fluid (Sexton et al., 2022).  

 

Tau undergoes multiple post-translational modifications such as phosphorylation, acetylation, 

methylation, ubiquitination, and truncation (Sexton et al., 2022; Spillantini & Goedert, 2013; 

Wang & Mandelkow, 2016); abnormalities in these processes have been directly or indirectly 

implicated in neurodegeneration (Cohen et al., 2011; Irwin, 2016). Of the several 

modifications, phosphorylation is the major modification step that regulates the normal 

biological function of tau and has received the greatest interest in research (Irwin, 2016; 

Sexton et al., 2022; Y. Zhang et al., 2022).  Tau hyperphosphorylation results in lower affinity 

between tau and axonal microtubules, thereby reducing the stability of the microtubule and 

affecting axonal transport and neurotransmission (Biernat et al., 2002; Sexton et al., 2022; Y. 

Zhang et al., 2022). The change in function resulting from tau hyperphosphorylation or other 

modifications is a result of  conformational changes, resulting in insoluble misfolded tau 

aggregates which cause cellular dysfunction hence death (Sexton et al., 2022). In addition, 

the abnormal tau can be translocated from neuronal axons to the cell body and dendrites 

(Spillantini & Goedert, 2013). It has been proposed that abnormal tau may spread to other 

healthy cells, where it may promote further tau abnormality (Höglinger et al., 2018).  

 

1.3.2. Characterising tauopathies 
 

Tauopathies are largely sporadic but can result from mutations in the MAPT gene such as 

frontotemporal lobar degeneration tau with MAPT mutation (FTLD-MAPT) (Irwin, 2016).  

 

Tau exists in six isoforms, produced by the alternative mRNA splicing on exons 2, 3, and 10 

of the microtubule-associated protein tau (MAPT) gene, located on chromosome 17q21.3 

(Andreadis, 2005). The isoforms include 3-repeat-tau (3R-tau) and 4-repeat-tau (4R-tau), 

with three isoforms in each group where the healthy human brain contains an equal ratio of 
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expressed 3R and 4R tau isoforms (Irwin, 2016). These are important, since different 

neurodegenerative diseases are associated with accumulation of distinct tau isoforms 

(Kovacs, 2015):  

• 3R-tauopathies: Pick’s disease (PiD)  

• 4R-tauopathies: Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration 

(CBD), Argyrophilic Grain Disease (AGD), Globular glial tauopathy (GGT) 

• 3/4R tauopathies: Alzheimer’s disease (AD), Chronic Traumatic Encephalopathy 

(CTE). 

A more recent study (Shi et al., 2021) using a cryo-electron microscopy to capture 3-

dimensional structure of tau protein has found that tauopathies can be also characterized 

based on their disease-specific tau filament structures. This goes beyond the composition of 

3R or 4R tau isoforms. Based on this, tauopathies can be classified based on 3 levels of 

classification. First, tauopathies are classified by the ordered tau protein core which also 

matches the classification by isoform composition (3R, 4R, 3/4R). At level 2, 4R tauopathies 

(but not others) can be separated into a 3-layered or 4-layered tau filament fold group, 

resulting in PSP and GGT in the former group, and CBD and AGD in the latter group. Lastly, 

CBD is differentiated from AGD, and PSP from GGT by the differences in the residue 

between the folds. 
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Table 1.1: Definitions and AT8 immunoreactive structures of neuronal, astroglial and 

oligodendroglial tau inclusion. 

Cell type Immunoreactive structure Definition 

Neuron - Pre-tangle / diffuse 

cytoplasmic inclusion 

Diffuse fine granular staining of neuronal cytoplasm. 

 - Neurofibrillary tangle Fibrillar intracellular cytoplasm structures. 

 - Pick’s body Cytoplasmic fibrillar spherical structures. 

 - Threads A segment of a thin neuronal process usually 

associated with axons. 

 - Grains 4–9 m spindle, coma or dot-like structures in the 

neuropil that are associated with dendrites. 

 - Other spherical inclusions  Globular cytoplasmic inclusions that are various 

sized, and the staining pattern does not match the 

current definition of a Pick body. 

Astrocyte - Tufted Star-like tufts of densely packed fibres in the proximal 

segments of astrocytic processes. 

 - Astrocytic plaque  Annular cluster of short stubby lesions representing 

the distal segments of astrocytic processes. 

 - Globular astroglial inclusion Small globules in the astrocytic processes. 

 - Ramified astrocyte Tau positive astrocyte in PiD, with eccentric nuclei. 

Oligodendrocyte - Coiled body Coil-like or coma-like intracytoplasmic profiles. 

 - Globular oligodendroglial 

inclusion 

Globular, spherical, or conical shaped structures with 

the diameter up to 15 μm. 

Note. Adapted from “Invited review: Neuropathology of tauopathies: principles and practice” 

by G. G. Kovacs, 2015, Journal of Neuropathology and Applied Neurobiology, p. 6. 

Copyright 2014 British Neuropathological Society. 
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Table 1.2: Tau pathological hallmarks of neurodegenerative tauopathies in neuron, astrocyte, and 

oligodendrocyte under light microscope in specific vulnerable brain regions using AT8 stain. 

Tauopathy Neuronal inclusion Astrocytic 

inclusion 

Oligodendroglia 

inclusion 

Main anatomic vulnerability 

3R     

PiD - Pick bodies 

- Pick cells 

- Neuropil threads 

- Ramified 

astrocytes 

- - Frontal & temporal cortices 

- Dentate gyrus 

- Hippocampus 

4R     

PSP - Globose-type 

neurofibrillary tangles 

- Diffuse inclusion 

- Neuropil threads 

- Tufted astrocyte - Coiled bodies - Basal ganglia (specifically 

subthalamic nucleus, 

substantia nigra) 

- Brainstem (specifically 

midbrain) 

Frontal lobe 

CBD - Diffuse inclusion 

- Ballooned neurons 

- Neuropil threads 

- Spherical inclusion 

- Astrocytic 

plaque 

- Coiled bodies - Frontoparietal association 

cortices 

- Neostriatum 

Substantia nigra 

AGD - Spindle-shaped grains 

- Diffuse inclusion 

- Ballooned neurons 

- Ramified 

astrocytes 

- Coiled bodies - Limbic structures 

GGT - Spherical inclusion 

- Diffuse inclusion 

- Globular 

astroglial 

inclusion 

- Globular 

oligodendroglial 

inclusion 

- Frontal, temporal lobes 

3/4R     

AD - Flame-shaped 

neurofibrillary tangles 

- Diffuse inclusion 

- Neuritic plaques 

- Neuropil threads 

- - - Basal forebrain 

- Frontal, temporal lobes 

- Limbic structures 

- Locus coeruleus 

Olfactory bulb 

CTE - Neurofibrillary 

tangles 

- Astrocytic 

tangles 

- - Frontal, temporal, and 

parietal lobes 

- Depth of sulci and 

surrounding vasculature 

PART - Neurofibrillary 

tangles 

- Diffuse 

inclusion 

- Coiled bodies - Medial temporal lobe 

- Substantia nigra 

- Brainstem 

Note. Adapted from “Pathology of Neurodegenerative diseases” by Brittany N Dugger and 

Dennis W. Dickson, 2017, Cold Spring Harb Perspect Biol, p. 2. Copyright 2017 Cold Spring 

Harbor Laboratory Press. 

 

Numerous antibodies are available for staining hyperphosphorylated tau and identifying 

conformational modifications, with the commonest antibody for detecting 

hyperphosphorylated tau being AT8 that binds to the Ser202/Thr205 residue (Kovacs, 2015). 
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After staining, light microscopy can be used to inspect tau isoforms and immunoreactive 

structures for specific tauopathies where specific tauopathy can be classified based on the 

specific pattern of tau aggregation in the affected cell type and brain region (Table 1.1, Table 

1.2). 

Furthermore, tauopathies can also be described as primary or secondary tauopathies, 

depending on whether tau is the prominent feature of the pathology or not (Y. Zhang et al., 

2022). For example; PiD, PSP, CBD, AGD are classified as primary tauopathies, whereas 

AD is a secondary tauopathy as amyloid beta is also involved and likely triggered the 

abnormal tau production (Chung et al., 2021; Irwin, 2016; Sexton et al., 2022). 

 

1.3.3. Neuropathological examination 

Post mortem neuropathological examination is the gold standard approach for definite 

diagnosis in neurodegenerative diseases (Jack et al., 2018; Scheltens & Rockwood, 2011). 

This process involves the identification of disease-specific protein accumulation pattern in 

the affected cell type and brain region that correlates with specific diseases (see Table 1.2) 

(Dugger & Dickson, 2017; K. H. Kim et al., 2020; Scheltens & Rockwood, 2011). For 

example, amongst the 4R tauopathies, the morphology of astrocytic tau lesions is the key 

distinctive feature in differentiating between PSP and CBD such that tufted astrocytes are 

found only in PSP and astrocytic plaques are found only in CBD (Koga et al., 2021). 

Moreover, even though both PiD and AGD have common site of pathology at limbic 

structures, PiD shows wider spread of pathology to cortical structures, unlike AGD (Dugger 

& Dickson, 2017). 

Identifying characteristic patterns of neuropathological progression has led to staging systems 

of neurodegenerative diseases to encapsulate disease progression (Colin et al., 2020). For 

example, Braak staging of AD (Braak et al., 2011; Braak & Braak, 1991, 1995) proposes that 

neurofibrillary changes first occur in the transentorhinal region in early stages of the disease 

before spreading to limbic areas and then to primary and secondary neocortical regions at the 

final stage. These staging systems enable a more detailed characterisation of individuals, and 

a framework within which to consider the sequential spreading pattern of neurodegenerative 

pathology (Rösler et al., 2019). 
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A recent PSP staging scheme has been proposed (Figure 1.1), based on tau type-specific 

burden (Kovacs et al., 2020). The PSP Richardson syndrome (PSP-RS) contains 6 stages, 

where each stage can be characterised by the severity of tau burden in the specific cell type 

and brain region. For example, tau burden accumulates first in the basal ganglia nuclei and 

dentate nucleus before spreading to cortical regions. The main cell type affected is different 

amongst the regions, such that the focus is on neuronal tau in the subthalamic nucleus, globus 

pallidus and dentate nucleus, while astrocytic tau is the focus in striatum. In the cortex, 

astroglial tau pathology is the focus, and the frontal lobe is affected before the occipital lobe. 

This staging scheme can help address questions about disease progression, including in 

different PSP subtypes. 
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Note. Kovacs et al (2020) noted that “−/ + Indicates single cell involvement; + indicates mild; 

+ + / + + + indicates moderate/severe involvement. GP globus pallidus, STN subthalamic 

nucleus, STR striatum, FR frontal, DE/CB dentate nucleus and cerebellar white matter, OC 

occipital. This can be applied to all clinical subtypes. The evaluator should focus on different 

cell types in different brain regions: in GP and DE/CB neuronal (N) or oligodendroglial (O); 

Figure 1.1: The current PSP-RS staging scheme for neuropathological 

assessment. 
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in the STN neuronal; in the STR and FR and OC cortices astroglial (A). The brain schema is 

a conceptual summary of the tabularized schema in the lower panel; thus the color coding of 

different brain regions reflect the variability in scores (or-or) required for a stage.” (p. 115) 

This scheme was produced by Kovacs et al in 2020 for neuropathological testing criteria for 

PSP-RS. From “Distribution patterns of tau pathology in progressive supranuclear palsy”, by 

Kovacs et al, 2020, Acta neuropathologica, 140, 99-119. Copyright 2020 by The Author(s). 

 

 

The current PSP-RS staging scheme has recently been validated in an independent cohort and 

is found to correlate with PSP rating scale (PSPRS) and revised Addenbrooke’s Cognitive 

Examination (ACE-R) scores at death, supporting the association between pathological tau 

and cognitive impairment (Briggs et al., 2021). Nevertheless, there are limitations to the 

current staging scheme. Neuropathological examination is a semi-quantitative approach 

where visual inspection is performed to grade the severity of pathology on an ordinal scale 

(Kovacs, 2015; Kovacs et al., 2020; Scheltens & Rockwood, 2011). Defining a precise cut-

off point for each stage is an artificial construct and can be challenging, as the underlying 

pathobiological processes of neurodegenerative disorders are dynamic (Del Tredici & Braak, 

2020). Such examination is also inherently subjective as there are innate differences in visual 

perception and decision-making processes between individuals (Bera et al., 2019) and tissue 

preparation techniques can be different across institutions (Del Tredici & Braak, 2020; 

Jellinger, 2010; Litvan et al., 1996). These result in issues with inter- and intra-observer 

reliability (Alafuzoff et al., 2009; Scheltens & Rockwood, 2011). Pathologists also have to be 

extensively trained (Koga et al., 2021; Signaevsky et al., 2019), making the quality of 

assessment dependent on their level of experience. Lastly, given the laborious and time-

consuming manual assessment process (Neltner et al., 2012; Walker et al., 2017), the current 

staging scheme is limited to a selection of regions which does not consider all the brain 

regions affected by PSP pathology. Advantages in digital pathology could potentially address 

a number of these issues. 
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1.4. Digital pathology 

 

1.4.1. Towards digital pathology 

 

Digital pathology promises to be a more objective method of assessing histology using 

computational approaches (Al-Janabi et al., 2012; Bera et al., 2019). The current semi-

quantitative approach provides simple measurements suitable for routine autopsy. However, 

as larger amount of data with greater detail is required for research, digital pathology has a 

potential to address these current limitations. Such concepts have been around since 1960s 

(Prewitt & Mendelsohn, 1966) but has gained greater popularity due to the advancement in 

whole slide imaging at high resolution, and advances in artificial intelligence methods (Al-

Janabi et al., 2012; Hamilton et al., 2014; Kayser et al., 2009).  

Key advantages of digital pathology over the current standard practice include reducing inter-

rater variability and increasing efficiency through automated pipelines which can be scaled to 

analyse larger datasets (Hamilton et al., 2014). This is crucial as more brain regions and data 

from multiple institutions can be analysed to ensure the generalisability of results (Tang et 

al., 2019) and a more comprehensive neuropathological characterisation of tauopathies would 

be possible (Khan et al., 2021). Moreover, as biological samples are complex, some 

pathological changes can be subtle and masked by the discrete nature of a semi-quantitative 

method (Walker et al., 2017). Therefore, novel pattern can potentially be captured by digital 

pathology to provide insights for mechanistic studies (Vega et al., 2021) and assist 

differential diagnosis by detecting disease-specific tau pathological hallmarks (Koga et al., 

2021, 2022). In addition, as the standard semi-quantitative approach summaries pathology as 

a score, this limits the statistical power for comparative studies (Coughlin et al., 2022) and 

meaningful correlation with other measures of disease (Tang et al., 2019).  

As richer information can be extracted using digital pathology, the main benefit will be 

towards enabling more research questions and complex analyses to be possible for 

mechanistic research. Digital pathology can also assist pathologists with autopsy verification 

by reducing time and expertise required from the hospitals. It is not designed to replace 

pathologists as human expertise will continue to be essential due to unforeseen decision-

making and ethical reasons. Nevertheless, there are caveats and many challenges concerning 
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machine learning algorithm validation, interpretability, and standardisation (Bera et al., 2019; 

Hamilton et al., 2014; Vizcarra et al., 2020). If these limitations can be addressed, digital 

pathology has potential to address the need for more sensitive measures of disease burden.  

 

 

1.4.2. What has digital pathology told us?  

Within the last 5 years, studies using automated approaches to investigate neurodegenerative 

diseases can be grouped into 3 main categories: characterisation of tau aggregates in 

tauopathies, tau hallmark classification, and the practicality of automated pipeline for clinical 

use. In characterising tau aggregates, studies have strengthened our understanding of the 

relationship between tau burden and clinical symptoms (Kaalund et al., 2020; Marx et al., 

2022). For example, Kaalund et al (2020) quantified neuronal loss and the proportion of 

neurons with hyperphosphorylated tau in the locus coeruleus of PSP patients. They used 

‘positive pixel count’ method to count ‘tau positive’ cells with pixel values above the pre-

determined tau positive threshold. With this, they found that PSP patients have a 49% 

reduction in noradrenergic neurons that contain neuromelanin relative to controls, and that 

44% of noradrenergic neurons have hyperphosphorylated tau. Neuronal loss also negatively 

correlates with tau positive neurons in a non-linear fashion which is not due to age or disease 

duration and only neuronal loss but not tau burden is associated with clinical severity. These 

findings demonstrate the complex relationship between tau burden, neuronal loss, and clinical 

severity and that the integrity of locus coeruleus may mediate clinical severity independent of 

aging and prolonged disease duration effects, highlighting its potential for targeted 

pharmacological treatment.  

Studies have also used automated pipelines to investigate tau aggregates in both cortical grey 

and white matter across tauopathies (Coughlin et al., 2022; Vega et al., 2021). This is 

powerful as white matter has substantial tau pathology but has not been well studied 

(Coughlin et al., 2022). Tau aggregates in white matter can be complex as they lack canonical 

phenotypes which can pose difficulties for visual inspection, but such a task is suitable for 

machine learning algorithms designed to analyse intricate patterns (Vega et al., 2021). With 

this, studies using automated approaches have found that grey and white matter tau correlated 

with each other in a disease-specific fashion (Coughlin et al., 2022; Vega et al., 2021). PSP 

and CBD showed equal distribution of tau in grey and white matter while tau predominantly 
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accumulates in grey matter in AD (Vega et al., 2021) which also correlates with cognitive 

score (Coughlin et al., 2022). Novel patterns of white matter tau aggregates were found 

which were morphologically distinct across AD, PSP, and CBD which could be useful for 

disease classification (Vega et al., 2021). Altogether, these studies have emphasised the 

importance of studying both grey and white matter for a better understanding of tau 

pathology in tauopathies and highlight the utility of digital pathology for repetitive and 

intricate tasks. 

Due to a greater need for better stratification, characterization, and quantification of tau 

burden in tauopathies, studies have advanced from investigating tau burden as a whole to tau 

type-specific burden using a semi-quantitative approach (Jellinger, 2018; Kovacs et al., 

2020). In developing further to reduce human error, and to increase accuracy and efficiency, 

there have been attempts to create automated tau type-specific quantification pipelines to aid 

differential pathological diagnosis (Koga et al., 2021, 2022; Signaevsky et al., 2019) and 

disease mechanism research (Marx et al., 2022; Tang et al., 2019). Studies focusing on 

classification tasks have shown high performance and have largely used convolution neural 

network (Signaevsky et al., 2019; Tang et al., 2019) and random forest approaches (Koga et 

al., 2022). 

For differential diagnosis, studies have attempted to differentiate between disease-specific tau 

hallmarks (Koga et al., 2021, 2022). Koga et al (2021) created a pipeline to classify tufted 

astrocytes which are characteristic of PSP tau pathology, astrocytic plaques characteristic of 

CBD and neuritic plaques characteristic of AD. Such a pipeline would be useful for aiding 

neuropathologists in their decision-making for differential diagnosis between CBD and PSP, 

as well as informing about co-pathology as inferred from neuritic plaques. Similarly, Koga et 

al (2022) created a pipeline to classify 5 different types of tau burden to differentiate between 

4 tauopathies which include PSP, CBD, PiD and AD with classification performance over 

95%. This further demonstrates that automated pipelines can achieve high accuracy to 

support diagnosis in the clinical setting, applied to tauopathies. Furthermore, these digital 

pipelines (Koga et al., 2022; Marx et al., 2022; Signaevsky et al., 2019) output detailed 

objective quantification, which can be used for correlation studies such as correlating tau 

burden with clinicopathological, molecular and genetic indices to investigate novel research 

questions about their relationships (Signaevsky et al., 2019). 
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In mechanistic research using automated pipelines, neurofibrillary tangle (NFT) has received 

the greatest attention amongst all tau types (Marx et al., 2022; Signaevsky et al., 2019). This 

is likely because NFT is prominent across tauopathies, especially in AD which is the most 

common type of dementia (Y. Zhang et al., 2022). Braak staging of AD involves the 

assessment of NFT distribution and is commonly used for measuring pathological tau in 

research and clinical settings (Braak & Braak, 1995). However, Braak staging is not well 

validated in beta-amyloid negative disease and may lack clinicopathologic predictive power 

in those disorders (Iida et al., 2021). Marx et al (2022) used an AI-derived measure of NFT 

burden and Braak stage to study the relationship between NFT burden, aging, and clinical 

presentation in patients with PART. These patients are elderly individuals that have 

Alzheimer-type NFT but are amyloid-beta negative and may or may not have cognitive 

impairment. It remains unclear whether cognitive impairment in PART is a result of age-

related neurodegenerative processes or not. They found that NFT counts but not Braak stage 

correlated with cognitive impairment in PART after controlling for age. This suggests that 

NFT burden which is not due to aging correlates with cognitive impairment in PART and 

highlights the advantage of using artificial intelligence derived metrics over a simplistic 

semi-quantitative stage-based approach for measuring NFT burden. 

Taking it further, Yushkevich et al (2021) developed a method for quantitative 3D mapping 

of NFTs. They found a significant variation of NFT along the anterior-posterior axis of the 

brain that could be missed by the 2D approach as histological sectioning is usually done in a 

single (usually coronal) plane. Such quantification enables a more detailed characterisation of 

tau distribution in normal ageing and pathology and could also be useful for validating 

neuroimaging biomarkers (Ravikumar et al., 2021). 

Lastly, with numerous studies developing automated pipelines, it is also important to 

consider practical factors that will influence adoption rate by researchers and healthcare 

professionals such as pipeline robustness and ease of use. Studies have begun to validate their 

pipeline on data from multiple institutions (Coughlin et al., 2022; Vizcarra et al., 2020; 

Yushkevich et al., 2021). This is important as tissue preparation standards can vary across 

institutions such as criteria for cohort selection, slide preparation techniques, post mortem 

interval, skills of the scientists (Alafuzoff et al., 2006; Vizcarra et al., 2020) and imaging 

systems (Bautista et al., 2014). Moreover, increasing efforts have been dedicated towards 

developing an easy-to-use interface that requires minimal computational skills from end users 
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(Jungo & Hewer, 2023; Tang et al., 2019). For example, Tang et al (2019) created a custom 

web interface for amyloid plaque annotation for pathologists to annotate objects at a faster 

rate using mouse and keystrokes where data is then stored in a standardised query language 

format. Jungo and Hewer (2023) assessed the utility of publicly available code-free machine 

learning platforms and found that Microsoft Custom Vision and Google AutoML could easily 

be used by pathologists in a code-free manner and still achieve high classification 

performance. These efforts will contribute towards ensuring the translation of a highly robust 

and accurate automated pipelines from development to real-world adoption by both 

researchers for mechanistic research and healthcare professionals to aid their decision-

making processes in hospitals. 

All in all, digital pathology is a promising discipline in improving our understanding of the 

pathogenesis of neurodegenerative tauopathies and aiding decision-making processes of 

pathologists and clinicians.  

 

1.5. Neuroimaging 
 

1.5.1. Neuroimaging as a biomarker 
 

Neuroimaging plays an increasing role in identifying reliable and sensitive in vivo biomarkers 

for studies of neurodegenerative disease progression (Vogel et al., 2021), prognosis (Jo et al., 

2019), mechanisms (Iturria-Medina et al., 2016) and disease-modifying treatments (Schott et 

al., 2010; Staffaroni et al., 2017).  

Biomarkers are measurable characteristics of specific biological processes, indicative of 

normal or pathological processes (Strimbu & Tavel, 2010). They are important as clinical 

symptoms are not sensitive nor specific enough to characterise neurodegenerative diseases 

(Jack et al., 2018), because neuropathological changes can be present with few or no 

symptoms or with non-specific symptoms that overlap between diseases (Bennett et al., 2006; 

Knopman et al., 2003). Biomarkers are largely grouped into two categories; disease-specific 

biomarkers are useful for diagnosis and prognosis while biomarkers that reflect non-disease-

specific processes provide additional insights into the underlying neuropathological changes 

(Jack et al., 2018). For example, beta-amyloid plaque and neurofibrillary tangle biomarkers 

together are specific to AD and are therefore used to determine if a person belongs to the AD 
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spectrum while neuronal injury biomarkers such as elevated total tau burden or decreased 

glucose metabolism are used to determine disease severity (“2018 Alzheimer’s Disease Facts 

and Figures,” 2018; Jack et al., 2018) as these changes also occurs in non-AD conditions 

(Kovacs et al., 2013). Imaging biomarkers that reflect the underlying neuropathological 

changes are of interest to define the disease (Rittman, 2020). 

 

1.5.2. MRI as in vivo biomarker 

 

Magnetic resonance imaging (MRI) is a non-invasive technique widely used in research and 

clinical practice to corroborate a diagnosis together with the presence of clinical syndromes 

and tracking disease progression (Rittman, 2020).  In AD, MRI-based measures of atrophy 

have been shown to relate to upstream neuronal deficits (Whitwell et al., 2008) and 

downstream clinical symptoms (Grundman et al., 2002; Vemuri et al., 2009). The degree of 

medial temporal lobe atrophy is widely used to predict the progression to AD from mild 

cognitive impairment (MCI), presumed to reflect underlying neuronal loss (Frisoni et al., 

2010). Medial temporal lobe atrophy is predictive of future AD in both non-demented 

patients and those with MCI; and this prediction improves when age and memory scores are 

added to medial temporal lobe atrophy measures (Visser et al., 2002). Various longitudinal 

studies have also shown that MCI patients that later develop AD have greater volumetric 

reduction in the hippocampal area (Chételat et al., 2005; Tapiola et al., 2008). Visual 

assessment of MRI scans using either rating scales (Harper et al., 2016) or automated 

approaches can also identify AD and non-AD tauopathies (Vemuri et al., 2011). Moreover, 

MRI-based measures of atrophy are included as mandatory and supportive features for the 

diagnosis of non-AD disorders. For example; extensive white matter changes are mandatory 

for the diagnosis of vascular dementia (Román et al., 1993) and focal frontal or temporal 

atrophy is supportive of frontotemporal dementia (Neary et al., 1998). 

Functional MRI estimates changes in blood flow, reflective of activation in different brain 

regions during rest or when actively performing a task, which can be used to study functional 

brain networks (Bullmore & Sporns, 2009). Studies have shown that functional networks can 

be affected in a disease-specific fashion, for example, the default mode network which relates 

to episodic memory is affected in AD (Ingala et al., 2021; Seeley et al., 2009) and the 

emotional salience processing network is affected in bvFTD (Pasquini et al., 2020; Seeley et 

al., 2009). In general, even though functional measures show focal changes in dementia, they 
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are currently not being used in clinical practice as there are significant overlaps amongst 

diagnostic groups (Chouliaras & O’Brien, 2023).  

Overall, structural MRI is the most widely used neuroimaging biomarker in clinical practice 

and integrated in various diagnostic and research guidelines for dementia as it is a practical 

and inexpensive measure that can improve diagnostic accuracy  (Chouliaras & O’Brien, 

2023; Harper et al., 2016). Nevertheless, MRI measures still have limitations as biomarkers 

because imaging measures have mostly been presumed to reflect the underlying pathology, 

with little autopsy verification (Jack et al., 2002). 

 

1.6. Neuroimaging-pathology 

 

1.6.1. Validating in vivo structural and functional biomarkers 

Studies have first examined the underlying relationship between pathology and structural 

MRI biomarker by studying the relationship between brain volume and simple pathological 

measures. In AD, brain volume was correlated with Braak stages, counts or percentage area 

covered by neurons and pathological proteins (Apostolova et al., 2015; Burton et al., 2009; 

Jack et al., 2002; Whitwell et al., 2012). Atrophy in the hippocampus was found to correlate 

with the Braak stage (Jack et al., 2002) as well as tau, beta-amyloid burden and neuronal 

count (Apostolova et al., 2015). MTA correlates with the distribution of NFT in AD, more 

strongly than with amyloid plaques, or Lewy bodies in dementia with Lewy bodies (Burton et 

al., 2009). The pattern of atrophy across the cortex and medial temporal lobe can be used to 

distinguish between AD pathological subtypes that were grouped based on the distribution of 

NFT, suggesting that MRI measure can reliably track NFT burden in AD (Whitwell et al., 

2012).  

More recently, studies have investigated a range of neurological conditions, including 

functional biomarkers and a wider range of pathological measures such as neuronal loss and 

size, astrogliosis, microvacuolation, combined neuronal and glial tau inclusions (Jardim et al., 

2016; E.-J. Kim, 2020; Popescu et al., 2015; Spina et al., 2019). These studies are essential in 

improving the specificity of assessing in vivo biomarkers and can also reveal patho-

mechanisms. Grey matter volume has been shown to correlate with neuronal density and size 
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in multiple sclerosis (Popescu et al., 2015) and hippocampal atrophy also correlates with 

neuronal loss in epilepsy with hippocampal sclerosis, useful for surgical prognosis (Jardim et 

al., 2016). A study also (Spina et al., 2019) found that brain atrophy reflected an independent 

contribution from neurodegeneration and tau burden in PSP and CBD at the whole brain 

level. Specifically, atrophy in PSP was more driven by neuronal tau, whereas atrophy in CBD 

was more driven by glial tau pathology. Moreover, functional networks showed less 

predictive value of the underlying pathology in comparison to structural networks where tau 

pathology predicted connectivity dysfunction in PSP subjects, but no relationship was found 

in CBD. The authors reasoned that it could be due to the ceiling effect of neurodegeneration 

in their patient cohort, suggesting that disease stage matters when assessing the association 

between pathology and functional connectivity. Nevertheless, these results suggest a potential 

difference in patho-mechanism between the two 4R-tauopathies and that atrophy measure is 

likely more robust as an in vivo biomarker of tau burden and neurodegeneration than 

functional measures in 4R-tauopathies. 

A more recent study (Faye Carlos et al., 2022)  further probed the relationship between 

region-specific volume and tau type-specific burden in each brain region of 4R-tauopathies 

(PSP and CBD combined). They found that total tau burden was associated with atrophy only 

in subcortical, but not cortical regions. There was also no relationship between atrophy and 

NFT burden, but glial tau burden was associated with atrophy in subcortical regions such as 

the midbrain and subthalamic nucleus. These suggest that the atrophy-tau relationship in 4R 

tauopathies may be primarily driven by glial pathology due to their abundance across 

subcortical regions. 

The differences in the results between Spina et al (2019) and Carlos et al (2022) in the 

relationship between neuronal tau and atrophy may stem from the fact that Spina et al 

included more measures of neuronal tau burden and studied PSP and CBD separately. 

Furthermore, for white matter, total tau burden in the frontal gyrus and premotor cortex was 

associated with increased mean diffusivity in the underlying white matter, indicating cellular 

degeneration. Taken together, these results revealed that the atrophy-tau relationship in 4R-

tauopathies may be region and cell type specific. All in all, the investigations thus far have 

demonstrated that the relationship between neuroimaging measures and tau burden differs 

between tauopathies. It appears that the imaging-pathology relationship depends on the 



 
 

41 
 

severity of the pathology, in which the vulnerability pattern is determined by cell type and 

anatomical location. 

 

 

 

1.6.2. Investigating patho-mechanism 

 

Imaging-pathology studies not only help validate in vivo biomarkers, but also provide 

additional insights into the complex interaction between microscopic and macroscopic levels 

of the brain during disease progression. Despite the rarity of these studies, they are useful in 

demonstrating the impact of cellular pathology on brain networks and cognition. (Pasquini et 

al., 2020) investigated the interplay between cellular, brain network and behavioural response 

in bvFTD. They found that the pathobiology of specific neuron types in layer five of grey 

matter did not directly cause social-emotional deficits in bvFTD but resulted in the 

degeneration of the salience network regions which led to behavioural deficits. This finding 

shows that the involvement of a specific neuronal morphotype embedded in the brain 

network was critical for cognitive function, in this case empathy. 

The relationship between brain networks and tau type-specific pathology can reveal cell type-

specific involvement during pathogenesis and suggest new models for understanding the 

progression of tau neuropathology across the brain. For example, Carlos et al (2022) 

observed a strong negative association between astroglial tau burden and neurodegeneration 

in the striatum of 4R-tauopathies. This contrasts with the general trend observed in other 

subcortical regions which showed positive associations. The author proposed two potential 

explanations where one concerns the protective role of astrocytes and the other concerns the 

increase in cellularity due to gliosis. Further investigations are required to untangle this 

unexpected finding which could reveal novel or supportive insights for the role of striatum 

and astrocyte during the pathogenesis.  

Overall, neuroimaging-pathology studies thus far have demonstrated that they can be used to 

expand a pool of possible research questions. Direct and specific evidence in assessing tau 

spread hypothesis need not be restricted to molecular research alone, and that it is now 

possible to assess the interactions between components from different level of abstractions 

within the disrupted system which can generate new hypotheses for further investigation. 

Nevertheless, this is simply the beginning and more significant questions remain in 
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understanding the impact of neuropathology on specific brain structures and networks across 

tauopathies. 

 

1.7. PSP as a potential disease model 

As previously reviewed, tauopathies is a class of neurodegenerative diseases associated with 

tau neuropathology. To begin investigating abnormal tau using a relatively new approach 

such as digital pathology, a reasonable first step would be to study a disease with minimal 

complications. In this thesis, I have chosen to focus on a primary tauopathy where tau can be 

studied in isolation, unlike Alzheimer’s disease where beta-amyloid is also involved, or 

Parkinson’s disease with alpha-synuclein. PSP is the central focus of this thesis as it has a 

well-defined staging scheme and tau type-specific aggregates are relatively distinct, essential 

for a proof-of-concept investigation and more. 

PSP is an example of a prototypical primary tauopathy (Höglinger et al., 2017, 2018) as it 

enables the study of tau protein in isolation with clear stages of neuropathology (Kovacs et 

al., 2020). Classically, PSP is classified as an atypical parkinsonian disorder and is estimated 

to affect 5-17 in 100,000 people (Elble, 2021). Diagnosis is typically 3-4 years after symptom 

onset (Höglinger et al., 2017), and life expectancy is approximately 5-7 years (Armstrong et 

al., 2014). Based on the PSP diagnostic criteria (Höglinger et al., 2017), the core clinical 

features of PSP include vertical gaze palsy, postural instability, akinesia, and cognitive 

dysfunction. PSP patients can have varied clinical presentations, with the most common 

subtype being PSP Richardson syndrome (PSP-RS) which is defined by postural instability 

and falls with vertical ocular motor dysfunction. Other subtypes include PSP with ocular 

motor dysfunction (PSP-OM), postural instability (PSP-PI), parkinsonism (PSP-P), frontal 

lobe cognitive or behavioural presentations (PSP-F), progressive gait freezing (PSP-PGF), 

cortical basal syndrome (PSP-CBS), primary lateral sclerosis (PSP-PLS), cerebellar ataxia 

(PSP-C) and speech disorder (PSP-SL). 

PSP is characterised pathologically by 4R tau, with pathological hallmarks of neurofibrillary 

tangles (NFT), neuropil threads, coiled bodies (CB), and tufted astrocytes (TA). Pathological 

tau is predominantly found in subcortical structures but appears in the neocortex as the 
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disease progresses. The differences in the distribution of neuropathology explains the 

multiple PSP subtypes.  

Despite the clinical heterogeneity, there are key brain regions in PSP that dictate disease 

stage  (Kovacs et al., 2020). These include highly affected regions, of the subthalamic 

nucleus, globus pallidus, striatum, and cerebellar dentate nucleus; modestly affected regions 

of the and frontal cortex; and the occipital cortex affected only in late disease. The ability to 

examine these regions makes PSP a prime candidate for creating a disease model in 

improving the understanding of tau pathology and its relationship to neuroimaging 

biomarkers. 

 

 

1.8. Research objectives 

 

In this thesis, I aimed to develop a digital pathology pipeline to better quantify cellular changes 

including cell loss and tau protein aggregates and understand their relationship to in vivo MRI 

biomarkers. The main goal of this pipeline is to contribute to research by quantifying detailed 

measurements at scale with minimal processing time, essential for complex and robust analyses 

for understanding abnormal tau protein better. I focus on PSP, a primary tauopathy 

characterised by the accumulation of 4-repeat tau in neuronal and glial cells.  

 

In chapter 3 (page 58), I aimed to create a pipeline using a supervised machine learning 

algorithm to quantify total and tau positive cell type-specific density. Specifically, I aim to: 

• Design a pipeline that will perform cell classification and quantify tau positive and 

negative cells for neurons, astrocytes and oligodendrocytes in control and PSP post 

mortem samples. 

• The pipeline should be applicable across key brain regions in PSP pathology. 

• The pipeline should have high performance in the held-out test set and yield 

quantification results that are consistent with the wider literature on slides beyond the 

held-out test set where there is no ground truth. 

• Compare different approaches in the pipeline workflow to ensure the resulting pipeline 

is optimal in terms of accuracy, interpretability, and adaptability. 
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Such a task has proven to be extremely challenging, and I demonstrated that using supervised 

probabilistic machine learning models with cellular features was insufficient to accurately 

identify cell types in the context of PSP. 

 

In chapter 4 (page 100), I adapted the pipeline from project 1, using a probabilistic random 

forest approach, to identify tau type-specific aggregates in PSP post mortem samples. 

Specifically, a successful pipeline should:  

• Be able to quantify density of neurofibrillary tangle, tufted astrocyte, coiled bodies, and 

tau fragments. 

• Be applicable to key brain regions in the current PSP staging system and beyond the 

staging system. 

• Have high classification performance that is comparable to expert neuropathologists in 

the held-out test set. 

In chapter 5 (page 124), I set out to apply the tau quantification pipeline on novel slides from 

PSP and control donors, beyond the held-out test set. Specifically, I aimed to: 

• Investigate digitally quantified tau distribution patterns and the relationship between 

tau aggregate types across brain regions.  

• Validate digitally quantified tau burden against the current PSP staging system. 

• Investigate the relationship between digitally quantified tau burden, PSP stage and 

clinical severity in PSP donors. 

• Compare digitally quantified tau burden from PSP to control donors to demonstrate that 

the pipeline can quantify tau burden beyond PSP post mortem samples. 

 

In chapter 6 (page 149), I focused on validating whether structural and functional MRI 

measures can be used as in vivo biomarkers of tau burden in PSP. To do this, I investigated: 

• The relationship between structural atrophy and tau burden (both total and tau type-

specific) across brain regions. 

• Similarly, the relationship between functional network graph metrics and tau burden 

(both total and tau type-specific) across brain regions. 
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1.9. Summary and contribution of thesis 

 

Overall, neuroimaging measures are increasingly useful as in vivo biomarkers of 

neurodegenerative diseases. They were previously used to only rule out alternative causes of 

cognitive impairments but now are included in various diagnostic criteria for tauopathies. 

However, they still have limited translational value as their specificity and sensitivity as 

biomarkers require more thorough validation. Tau is a key protein in tauopathies where 

specific pattern of tau aggregation in an affected cell type and brain region is used to 

distinguish between different tauopathies and determine disease severity. It is important then 

to investigate the relationship between in vivo imaging measures and tau burden for tracking 

disease progression, monitoring prognosis and differential diagnosis. PSP is a suitable disease 

as it is a primary tauopathy which enables the study of tau protein in isolation and has a well-

defined pathological staging system.  

 

Neuropathological examination of post mortem data is the gold standard approach for definite 

diagnosis of tauopathies as tau distribution pattern can characterised. This makes it important 

to derive tau burden from such data for validating in vivo neuroimaging markers. However, 

neuropathological examination is a semi-quantitative approach with limitations. It is a 

subjective and time-consuming process that requires high level of expertise, making it prone 

to both intra- and inter-rater variability. With this, limited brain regions can be analysed and a 

simple ordinal measure of pathological stage limits more complex research questions and 

analyses to be possible. Automated pipeline using machine learning algorithms can be 

applied to move towards a more objective, detailed, and scalable solutions for pathological 

assessment. However, there also remains limitations to be addressed such as validation, 

interpretability, and standardisation.  

 

In conclusion, this thesis attempts to firstly develop a digital pathology pipeline for 

quantifying PSP-related pathology across key brain regions in the PSP staging system and 

more. The pipeline will be validated on a held-out test set and all available novel slides where 

quantification results would be compared against the PSP staging scheme. With the 

quantification results, the relationship between tau aggregate types, comparison between PSP 

and control tau burden, and the relationship between neuropathological and clinical severity 
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would be investigated. Finally, digitally quantified tau burden will be used to validate 

structural and functional MRI measures as in vivo biomarkers of tau burden and provide 

additional insights for the role of tau in the pathogenesis of PSP. 
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Chapter 2: Core methods 

In this thesis, I will be using cutting edge and established methods applied to histopathology 

and neuroimaging data. These methods form the basis of work in the rest of the chapters. I 

will firstly outline the digital pathology pipeline which is the core method used to perform 

cell and tau type-specific classification. Bayesian statistics will also be outlined as it is the 

main statistical method used throughout the chapters to investigate the relationship between 

tau burden and other measures such as cognitive score and neuroimaging measures.  

 

This work was performed in collaboration with Sanne Kaalund (post-doctoral researcher with 

James Rowe and the Cambridge brain bank) who extracted brain slices, arranged slide 

staining and scanning, and led the manual annotation of cell types; Eric Hidari (post-doctoral 

researcher with James Rowe) who assisted in developing a pipeline using QuPath software 

for brain slide segmentation. 

 

 

 

2.1. Digital pathology pipeline  

 

The core steps in the digital pathology pipeline include data preparation, feature selection, 

supervised machine learning algorithms and model development. 

 

2.2. Data preparation 
 

2.2.1. Tissue processing and immunohistochemistry  

Post mortem tissue with a clinical and pathological diagnosis of Progressive Supranuclear 

Palsy (PSP) were obtained from the Cambridge Brain Bank under the Neuropathology 

Research in Dementia (NERD) study with ethical approval from the Wales 6 Research Ethics 

Committee. For each participant, the brain was removed at autopsy for post mortem analysis 

and the left cerebral hemisphere and left cerebellum were fixed in 10% neutral buffered 

formalin for two to three weeks. Fixed brain tissues were embedded in paraffin and cut at 10 

μm on a rotary microtome and mounted on microscope slides. Sections were deparaffinised 

in xylene and dehydrated through 2 troughs of 99% Industrial Denatured Alcohol (IDA) and 
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rinsed in running water. Sections were incubated in formic acid for antigen retrieval and 

endogenous peroxidase blocked with a 4% peroxide solution. Sections were then incubated in 

phosphate buffered saline and blocked in 5% normal rabbit serum before incubating with 

primary antibody. Slides were incubated with AT8 (1:500, MN1020, Thermo Scientific, 

USA) and washed in phosphate buffered saline and incubated with the secondary antibody, 

Polyclonal Rabbit Anti-Mouse Immunoglobulins/Biotinylated (E0354, Dako, Denmark). The 

signal was amplified with the ABC kit (Vectastain), washed in phosphate buffered saline, 

then the chromogen is 3,3’-diaminobenzidine (DAB) was applied to visualize pathological 

tau as a brown reaction product. Counter-staining was performed using haematoxylin to 

visualise cell nuclei as blue reaction products. Slide images were acquired by an Aperio AT2 

whole slide scanner (Leica) at 40x magnification with a resolution of 0.2528 μm / pixel.  

 

2.2.2. Image pre-processing 

All pre-processing steps (Figure 2.1) were carried out in QuPath (version 0.4.3) software 

(Bankhead et al., 2017). First, color deconvolution was applied to all scanned bright-field (H-

DAB) whole slide images to digitally separate stains into three different channels: the DAB 

channel for hyperphosphorylated tau, the hematoxylin channel for cell nuclei and a residual 

channel. Slides were then manually inspected to remove obvious artefacts such as DAB 

artefacts, de-focused regions, folded tissue, air bubbles and other confounding objects. Brain 

tissue was separated from the background and segmented into respective regions; for cortical 

regions, a semi-automated grey and white matter segmentation was carried out using the 

simple tissue detection tool, followed by the wand tool to manually fine-edit the 

segmentation. For basal ganglia regions, putamen, globus pallidus and subthalamic nucleus 

were manually segmented by an experienced neuropathologist (SSK). The dentate nucleus 

was segmented from the cerebellum slide by a trained expert (TP).   
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2.3. Feature selection  
 

In a dataset, the rows contain data points, and the columns contain features, where they can 

be of various types such as categorical or numerical. Feature selection is a process of 

selecting only informative or relevant features in a dataset for a machine learning model to 

learn and perform a specific task optimally. This step is crucial as it helps reduce 

uninformative and redundant features to ensure a parsimonious model with optimal 

performance and minimal computational complexity. 

 

2.3.1. Recursive feature elimination 
 

Recursive feature elimination (RFE) is a feature selection algorithm (or set of rules) that fits a 

model to the data with all available features and removes the least important feature, until a 

specified number of feature is reached (Guyon et al., 2002). Starting with fitting a chosen 

machine learning model such as a support vector machine with a full feature set, 1) feature 

importance is calculated for all features, 2) the lowest ranked feature is removed, 3) the 

remaining features are refitted to the model. Step 1 to step 3 are repeated until a chosen 

number of features remain. RFE is a flexible approach that can be wrapped around any 

supervised learning model, works well with complex datasets in selecting important features 

and can tackle interactions between features. However, it is computationally expensive as it is 

a recursive approach and may have issues with highly correlated and noisy datasets. 

Color Deconvolution & Tissue Segmentation 

Artefacts removed 

Figure 2.1: A whole slide image is imported into QuPath which undergoes colour deconvolution and segmentation 

of region of interest. Artefacts are manually removed at this step. 
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2.3.2. Principal component analysis 
 

Principal component analysis (PCA) is a dimensionality reduction approach where an 

original feature set is decomposed to a lower dimensional space, resulting in a smaller 

number of components that still capture most of the variance in the dataset (Pearson, 1901). 

This means PCA is suitable when the feature set is large and when features are highly 

correlated as PCA can lessen the impact of multicollinearity by identifying the most 

important features or components. This can improve visualisation and speed up the 

processing time for machine learning algorithms. However, it can be difficult to interpret the 

components as they are transformed from the original feature space and may not be suitable 

when there is a non-linear relationship between features. 

 

 

2.4. Supervised machine learning algorithms  

 

In supervised learning, machines learn appropriate actions from examples given to them 

(Cunningham et al., 2008). They are provided with inputs and correct outputs, where they 

need to identify patterns in the data to make correct predictions. Supervised algorithms can be 

used for classification task where they learn to predict the category of a new instance based 

on previous observations (Guyon et al., 2008). There is no universal best classifier for every 

problem as every dataset is different (Wolpert & Macready, 1997). In this thesis, two machine 

learning algorithms are used: support vector machines and random forests. Further details of 

how these are applied are included in each chapter, however there are specific considerations 

in the choice of machine learning model that I will discuss here. 

 

2.4.1. Class imbalance issue 

 

Class imbalance is an inherent attribute of most real-world datasets which poses issues to 

most machine learning algorithms (Luo et al., 2019; More & Rana, 2017). For a classification 

task, algorithms usually assume that the number of instances in each class or category are 

equal. Therefore, the predictive performance of the algorithm trained on an imbalanced 

dataset where the number of instances in each class is not equal will be poor. The algorithm 

becomes biased towards the majority class with higher proportion of instances in the dataset 

than other classes, and against the minority class which has smaller proportion of instances. 

This results in the over-classification of the majority class and under-classification of the 
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minority class. This issue becomes particularly important in tasks where the minority class is 

more important or of more interest than the majority class. In this thesis, 3 methods to tackle 

class imbalance are explored: cost-sensitive learning, a re-sampling strategy, and the 

threshold-moving approach. Cost sensitive learning involves changing the weight or penalty 

parameters of the algorithm (C. X. Ling & Sheng, 2010), by for example, introducing the 

class weight parameter to penalise classification mistake more in the smaller than the larger 

class. A re-sampling strategy directly changes the class distribution by re-sampling the 

dataset (Chen, 2011). In general, machine learning algorithms can predict probability or 

scores of class membership. The scores would then be ‘thresholded’ to map class scores into 

class labels. For a binary classification task, the threshold could be 0.5 for both classes 

(totalling 1). An object would be mapped to a specific class label when the class-specific 

score is equal to or greater than the class-specific threshold. With severe class imbalance, the 

default class-specific thresholds could lead to suboptimal results. The threshold-moving 

method can be used to tune the class-specific thresholds. I have chosen to tune for optimal 

thresholds by using the precision-recall curves as it is suitable for when there is moderate to 

large class imbalance (Davis & Goadrich, 2006).  

 

2.4.2. Support vector machine  

 

A support vector machine (SVM) is an algorithm that constructs a hyperplane to separate two 

classes of data (Cortes & Vapnik, 1995). The hyperplane is constructed to ensure the distance 

(or margin) between itself, and data points is maximised for minimal generalisation error and 

maximal confidence. SVM can be applied to both linearly and non-linearly separable data, 

depending on the choice of kernel functions for data transformation. A common first choice 

of non-linear kernel is the radial basis function (RBF) which is the least complex kernel and 

is relatively similar to a linear kernel with an additional hyper-parameter (Hsu et al., 2003). A 

linear SVM (L-SVM) has 1 hyperparameter; the penalty regularisation parameter C, while an 

SVM with RBF kernel (RBF-SVM) has an additional regularisation parameter . Both 

parameters regulate the complexity of the hyperplane, where C controls the error and  

controls the complexity and flexibility of the hyperplane. 
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The standard SVM can be adapted to tackle with class imbalance using the cost-sensitive 

learning approach by introducing the class weight parameter and the threshold-moving 

method to tune class probability estimates. 

 

2.4.3. Random forests 

 

A random forest (RF) is a tree-based ensemble algorithm, meaning that the final prediction is 

a result of a number of separately run predictions (Breiman, 2001). The data is re-sampled to 

create many bootstrap (smaller) datasets. A decision tree is created for each random subset of 

each bootstrap dataset. This is important as it de-correlates the decision trees, improving the 

ensemble decision. The RF model considers class prediction voting from all trees in the forest 

and finally outputs a class prediction with the majority vote. A random forest algorithm has 

many hyperparameters but in general, they relate to determining the number of trees and leaves 

(nodes) in the forest, number of features to consider at each node, and re-sampling strategy.   

 

In this thesis, I have chosen to apply cost-sensitive learning and the re-sampling technique to 

the standard random forest. Therefore, a balanced random forest which randomly under-

samples the majority class in each bootstrap, making the data balanced (Chen, 2011) is used 

with a class weight parameter. 

 

As a random forest classifier makes a final class prediction based on majority voting, it operates 

under the assumption that each class has an equal likelihood, or threshold, of occurring. The 

threshold can be adjusted to further tackle severe class imbalance issue using a threshold-

moving technique (Lipton et al., 2014; X. Zhang et al., 2020; Zou et al., 2016). This is 

especially relevant for tau burden classification as their relative proportions are different in 

cortical and subcortical structures (Kovacs et al., 2020).  
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2.5. Model development 
 

2.5.1. Area under precision-recall curve as a performance metric 

 

To evaluate classification performance of a probabilistic classifier, area under the precision-

recall curve (PR-AUC) can be used. A precision-recall curve is a plot with precision on the y-

axis and recall on the x-axis. Precision (or positive predictive value) is the proportion of 

relevant and retrieved items amongst all the retrieved items. Recall (or sensitivity) is the 

proportion of relevant and retrieved items amongst all the relevant items. To create a 

precision-recall curve using The Sci-kit learn library (version 0.24.1) in Python (Pedregosa et 

al., 2011), predicted class scores and true class labels for objects are fed to 

precision_recall_curve() function to compute precision-recall pairs for different (probability 

or score) thresholds (from 0.0 to 1.0). This function is designed for a binary classification 

task, but cell or tau classification is a multi-class classification task. One-vs-rest approach is 

used to split up the multi-class classification task into multiple binary classification problems 

where a class is compared against all other classes. With this, each class has its own 

precision-recall curve and auc() function was applied to calculate area under the curves. 

Mean value of all areas across all classes was computed and used as a performance metric in 

the model development stage such as tuning hyper-parameters of the machine learning 

algorithm. 

 

2.5.2. Sample size check  

 

For my specific cell or tau classification task, no ground truth is available to indicate the 

training sample size required for an optimal classification performance. This is crucial as too 

little data results in suboptimal performance and low generalisability, while too much data 

means unnecessary extra time on data preparation and computational complexity. Therefore, 

to ensure sufficient objects were annotated for training the machine learning algorithm, I 

compared classification performance obtained from using smaller portions of the dataset to 

the full dataset. With this, 10% of the dataset was first randomly sampled while preserving 

the class ratio to train the classifier using 10-fold cross validation to obtain PR-AUC. This 

was repeated with an additional 10% of the dataset each time, until 100% of the dataset was 

used. PR-AUC from the ten sampling points were plotted for visual inspection where PR-
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AUC should initially increase with training size to indicate that the algorithm learns better as 

more data is provided. When the plot plateaus, this indicates that extra training data does not 

further improve classification performance, suggesting that sufficient data has been used to 

train the algorithm for optimal results. 

 

 

2.5.3. Hyper-parameter tuning  

 

The Sci-kit learn (version 0.24.1)  (Pedregosa et al., 2011) and Imbalanced-learn (Lemaître et 

al., 2017) libraries in Python (version 3.8.1) were used to implement all digital pathology 

pipelines. Annotated objects from all slides were pooled together, yielding a dataset. The 

dataset was then standardised (mean = 0, SD =1) and 10-fold stratified cross validation was 

used to train the classifiers.  

 

Feature selection approaches have the following parameters, n_features_to_select=[28, 30, 

34, 36, 38, 40, 42, 44] (number of features to select for RFE) and n_components_to_select = 

[0.95, 0.96, 0.97, 0.98, 0.99] (select the number of components such that the amount of 

variance that needs to be explained is greater than n_components_to_select).  

 

Hyperparameters define the architecture of a machine learning model and are chosen before 

training. During training, hyper-parameter tuning is carried out to determine the optimal set 

of model parameters. Hyperparameters of SVM classifiers were tuned using grid-search with 

C = [10-1, 100, 101, 102] and  = [10-4, 10-3, 10-2, 10-1, 100] when RBF kernel was used. 

Hyper-parameters of the balanced random forest were tuned using a random-search with the 

following parameter space: n_estimators = [100, 200, 300, 400, 500, 600, 700, 800, 900, 

1000] (number of trees in the forest), max_features =[0.2, 0.4, 0.6, 0.8, 1] (number of 

features to consider for best split), max_depth= [5, 10, 15, 20, None] (maximum depth of the 

tree), min_samples_split = [2, 5, 10] (minimum samples required to split further), 

min_samples_leaf = [1, 2, 4] (minimum samples required to be a leaf node), 

sampling_strategy = ['auto', 'all', 'not majority', 'majority'] (sampling strategy to sample the 

dataset), max_samples = [0.25, 0.5, 0.75, None] (number of bootstrap samples to draw to 

train each base estimator), class_weight = ['balanced'] (weight or importance associated with 

the classes). Both classifiers were optimised based on the mean area under the 4 precision-
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recall curves (PR-AUC) using a one-vs-rest approach (class 1 vs rest, class 2 vs rest, class 3 

vs rest, class 4 vs rest). 

 

2.5.4. Class-specific threshold tuning 

 

Using the hyper-parameters found, optimal class-specific thresholds were tuned to tackle class 

imbalance. Predicted class scores and true class labels were used to re-compute precision-recall 

curve for each class using a one-vs-rest approach. Class-specific threshold was optimised using 

F1-score calculated from the precision-recall pairs on the class-specific curve. F1-score was 

computed as follows. 

 

𝐹1 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                 

 

After obtaining class-specific thresholds, class probabilities for each object were thresholded 

to obtain the predicted class label. Brain regions with similar tau or cell morphology and 

distribution were grouped together where class-specific thresholds were tuned separately for 

each brain grouping.  

 

If an object’s class probability passed the class-specific threshold, an object would be labelled 

as the corresponding class. To mirror human classification of tau or cell objects, I assessed the 

ambiguity of tau or cell object classification. If more than one class or no class passed the class-

specific threshold, the object was labelled as ‘Ambiguous’ and discarded from further analyses.  

 

2.5.5. Classification performance 

 

After classification, the precision, recall, macro F1-score and confusion matrix of the model 

were collected. Macro F1-score was calculated using the following formulae: 

 

𝑀𝑎𝑐𝑟𝑜𝐹1 =
∑(𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑠) 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
              

 

The model was then applied to the held-out test set to evaluate its performance generalisability. 

Finally, the optimised model was applied to the remaining novel slides for classification and 

quantification and further analyses. 
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2.6. Bayesian statistics 

 

Bayesian analysis was chosen due to several advantages (Kruschke et al., 2012), in particular, 

it enables the calculation of posterior probability distributions showing the uncertainty of the 

regression coefficient estimates and that sample size does not affect the inference method. In 

addition, null hypothesis could also be rejected or accepted which is of interest in this study. 

However, it is more computationally intensive than frequentist statistics and the results may be 

sensitive to the priors used. Here, I will describe the core of Bayesian statistics and regression, 

configurations of Bayesian regression models used in this thesis and steps taken to address 

potential issues. 

 

Bayesian statistics can be described as the reallocation of credibility (or probability) across 

possibilities (Kruschke & Liddell, 2018b). With some data to be explained, we have an 

existing set of candidate explanations. Before observing any new data, these explanations 

have ‘prior credibility’ of them being the best explanations. After observing the new data, we 

re-allocate the credibility of the candidate explanations towards the ones that better explain 

the data, and away from those that do not. This idea can be formalised as Bayes’ rule, where 

Ck is class ‘k’ and x is data:  

 

 

 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝐶𝑘)𝑃(𝑥|𝐶𝑘)

𝑃(𝑥)
 

 

                 ∝ 𝑃(𝐶𝑘)𝑃(𝑥|𝐶𝑘) 

 

 

P(Ck|x) is the posterior probability; the probability of class ‘k’ given the data and concerns 

the re-allocation of distribution of probability after observing the new observation. P(Ck) is 

the prior probability; the probability of each possibility before seeing the data. P(x|Ck) is the 

likelihood; the probability of observed data given any candidate values of the parameters. 

P(x) is the probability of the data or evidence. 
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2.6.1. Bayesian regression 

To investigate the relationship between independent and dependent variables, the brms 

package in R (Bürkner, 2017, 2018, 2021) was used to construct Bayesian linear regression 

models.  Multiple models were constructed to test various hypotheses across the projects 

where Bayes’ factor (BF) was used for model comparison. To have sufficient evidence in 

favor of an alternative model against a baseline model, BF has to be greater than 3 

(Kruschke, 2011). In the final model, the strength of the regression coefficient was assessed 

using the region of practical equivalence (ROPE) which is a range of values that are 

equivalent to the null value for practical purposes (Kruschke & Liddell, 2018b). If no prior 

information is available to inform the ROPE, by convention it is constructed as a range of 

values +/- 0.1 of the standard deviation of a standardized parameter (dependent variable) 

(Kruschke, 2018). If 95% of the credible interval (Crl) of the regression coefficient falls 

completely within ROPE, then the effect of the parameter is equivalent to the null value of 

practice purpose (Kruschke, 2011; Kruschke & Liddell, 2018b). If the 95% Crl falls 

completely outside ROPE, the ROPE value (but not the entire interval) is rejected. If 95% Crl 

overlaps with ROPE, the decision remains undecided. 

 

Model configuration was the same for all models (warmup = 10000, iteration = 20000). All 

models went through prior and posterior predictive checks to ensure that the configurations 

were valid. All models converged with no divergences or diagnostic warnings where R^ 

convergence values were all ~ 1.00 (by convention these should be < 1.05). Sensitivity analysis 

of prior was supplemented for all final models to illustrate the choice of prior on posterior 

estimates (See Appendix) 
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Chapter 3: Total and tau positive cell type-specific 

quantification 

 

3.1. Introduction  

 

Many neurodegenerative diseases are characterised by abnormal protein accumulation within 

neurons and glia, accompanied by neuronal loss and gliosis (Irwin, 2016; Kovacs et al., 

2020). Understanding the severity and distribution of this protein pathology is key to 

investigate the aetiology, understand disease heterogeneity, model disease progression, and to 

design molecular-targeted disease-modifying therapies. Hyperphosphorylated and misfolded 

aggregates of tau accumulate in common and rare neurodegenerative diseases, including AD, 

FTD, and PSP. Such tau pathology is related to neuronal loss (Giannakopoulos et al., 2003), 

grey matter atrophy (Whitwell et al., 2008) and clinical severity (Bejanin et al., 2017; Cho et 

al., 2016). It is therefore interesting to quantify and investigate the relationship between total 

and tau positive cell type-specific density in the same sample to investigate tau distribution 

pattern and better understand the impact of tau on neurodegeneration. 

 

To quantify both total and tau positive cell type-specific density, the first step is to perform cell 

classification, then select a tau threshold to detect tau positive cells. Cell classification using 

automated pipelines have many applications in biological science and medicine that relate to 

deciphering various intricate biological processes (Shifat-E-Rabbi et al., 2020). Applications 

include, for example, understanding the effect of genes (Conrad & Gerlich, 2010) or drugs on 

cell cultures in screening experiments (Murali et al., 2019; Xu et al., 2008) and detecting 

cancerous cells for diagnosis and prognosis (Kantara et al., 2015; Oei et al., 2019). Various 

algorithms have been utilised, notably numerical feature engineering and neural network 

algorithms (Shifat-E-Rabbi et al., 2020). Numerical feature engineering involves using expert’s 

knowledge to define important features for cell classification such as staining agents 

(Solorzano et al., 2021) or cytoskeleton features (Oei et al., 2019). Neural network algorithms, 

which can work directly with images without feature extraction, have been shown to achieve 

high classification performance with a large amount of training data (Gao et al., 2017; Phan et 

al., 2016) . Despite a large number of cell classification studies, to my knowledge, there has 

been only one study that tried to classify neuronal and glial cells using an automated pipeline 
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(Solorzano et al., 2021). The classification performance was relatively high at 83% and could 

be pushed to 95% when discarding low-confidence classifications. Still, this study used novel 

staining techniques with many cell-specific molecular markers. 

 

For automated cell classification pipeline to be widely adopted, data pre-processing should be 

as simple as possible. No study has yet attempted to perform neuronal and glial cell 

classification using standard staining agents from routine autopsy assessment, especially in a 

PSP cohort. Studies using automated pipelines to investigate tau pathological hallmarks in 

tauopathies have not directly quantified cell density (Koga et al., 2021, 2022). This motivates 

the development of a cell quantification pipeline that can also detect tau positive cells to aid 

further investigation of the tau distribution pattern and the relationship between tau aggregates 

and neuronal loss in human post mortem data. 

 

3.2. The present study 
 

I attempted to create a cell quantification pipeline using a supervised machine learning 

algorithm for the cortex and basal ganglia of PSP participants. My objective was to quantify 

cell density for neurons, astrocytes, and oligodendrocytes. With an additional step of tau 

thresholding to detect tau positive cells, I also aimed to investigate the relationship between 

neuronal loss and tau type-specific positive cell density.  

 

3.2.1. Pipeline framework  
 

First, I used a supervised machine learning algorithm to perform neuronal and glial 

classification on post mortem brain slides from PSP and control participants. Both PSP and 

control slides were included to ensure the pipeline can generalise to both groups. There were 

3 main methodological challenges in cell classification across multiple brain regions to 

address. First, there are not equal numbers of neuronal and glial cells in the brain (von 

Bartheld et al., 2016; WallÃ¸e et al., 2014), leading to a class imbalance for the machine 

learning model. Second, the ratio of class imbalance and cell morphology differed between 

brain regions (Ribeiro et al., 2013; Salvesen et al., 2015; von Bartheld et al., 2016). Third, 

there is inherent ambiguity in classifying some cells, even for expert neuropathologists (Oei 

et al., 2019; Scheltens & Rockwood, 2011). I therefore designed our pipeline architecture 

with these challenges in mind (Figure 3.1, Figure 3.2). Supervised machine learning 



 
 

60 
 

algorithm that can tackle class imbalance was chosen. By developing three separate 

classifiers specific for three different groups of brain regions (non-occipital cortical regions, 

occipital region, basal ganglia), we were able to optimise the classifier within each region. 

Finally, we explicitly addressed the challenge of ambiguous classification by optimising 

thresholds for each cell class and excluding individual objects that met either no class 

threshold or multiple class thresholds.  

 

3.2.2. Comparison between technical approaches  

 

In general, a classification pipeline consists of 4 main steps: 1) data preparation, 2) feature 

selection, 3) model development and 4) testing on novel datasets. Multiple techniques are 

available for each step and there is no best configuration for every dataset. In this study, I 

aimed to use the pipeline framework previously described to experiment with different 

choices of feature selection methods and machine learning algorithms. First, features 

extracted for cell classification in the current study are closely related, where some may be 

redundant or introducing noise and impair classification performance. Therefore, I aimed to 

compare recursive feature elimination (RFE) which uses key features for cell classification to 

principal component analysis (PCA) which reduces original features into components, 

reducing multicollinearity. Second, as there is no universal best classifier for every dataset, I 

aimed to compare 3 widely used machine learning algorithms together: a support vector 

machine with 1) linear kernel (L-SVM), 2) with radial basis function (RBF-SVM), and 3) 

balanced random forest (RF).  

 

3.2.3. Research objectives 

 

I set out to: 

1. Compare classification performances of L-SVM when full feature set was used to 

when RFE or PCA was used to determine the most suitable feature selection approach 

given the data.  

2. With the chosen feature selection approach, 3 machine learning algorithms are 

compared to determine the most optimal algorithm for cell classification.  
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3. The final model will be validated on the held-out test set and is expected to have high 

classification performance, comparable to training performance and expert 

neuropathologist. 

4. The final model will be applied to all available novel slides from PSP and control 

donors. With no ground truth available, the quantification results, including 

glia:neuron ratio (GNR) and cell type-specific density in controls should be consistent 

with the wider literature.  

o For controls, GNR is hypothesised to be higher in subcortical than cortical 

regions. GNR in cortical regions may range from 1-3.6, with occipital 

showing the highest GNR as compared to other cortical regions (Ribeiro et al., 

2013; von Bartheld et al., 2016). 

o PSP participants are expected to show lower neuronal density than controls 

due to neuronal loss. This means PSP participants should also show higher 

GNR than controls. 

o For PSP participants, neuronal density is hypothesised to be lower in higher 

than lower PSP pathological stages due to neuronal loss. 

5. The pipeline will be used to quantify tau positive cell type-specific density to assess 

whether the pipeline is robust against tau aggregation. In PSP, tau positive cell density 

should be higher in basal ganglia than cortical regions. 

 

 

This work was performed in collaboration with Sanne Kaalund (post-doctoral researcher with 

James Rowe and the Cambridge brain bank) who extracted brain slices, arranged slide 

staining and scanning, and led the manual annotation of cell types; Mayen Briggs (a 

neuropathologist at Cambridge Brain Bank) who annotated cell types for inter-rater 

agreement; and Eric Hidari (post-doctoral researcher with James Rowe) who assisted in 

developing a pipeline using QuPath software for nuclear detection and brain slide 

segmentation. 
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Figure 3.1: Cell classification pipeline overview. a) A whole slide image is imported into QuPath which 

undergoes colour deconvolution and segmentation of region of interest. Artefacts are manually removed at this 

step. b) Nuclei detection and cell expansion using StarDist plug-in was applied. Detections with haematoxylin 

staining in the top 1% were discarded as artefacts. c) Detected objects are fed into the region-specific cell 

classifiers to separate them into different cell types (astrocyte, neuron, oligodendrocyte, others). Final slide 

checking should be done to ensure accurate results before subsequent analysis such as cell quantification. 

a) Color Deconvolution & Tissue Segmentation 

b) Nuclei detection by StarDist 

Artefacts removed 

c) Region-specific cell classifiers classify cells into different types 

   Astrocyte 

   Neuron 

   Oligodendrocyte 

   Others 
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3.3. Materials and methods 

 

3.3.1. Subject and brain regions 

 

A total of 280 slides were obtained from systematically sampled cortical and subcortical 

regions from 36 brains donated by patients with a clinical and pathological diagnosis of 

Progressive Supranuclear Palsy (PSP) and 9 control post mortem brains with no known 

history of neurodegenerative diseases (Table 3.1,Table 3.2). Of these, 28 slides were used for 

model development (See Table 3.3). From the remaining 252 slides, 10 slides were used as 

held-out test set (2 slides from each of the following regions: frontal, parietal, temporal, 

occipital and basal ganglia regions). Of these, 6 slides (frontal, parietal and temporal slides) 

were independently annotated by 2 pathologists (S.S.K and M.B) to calculate inter-rater 

reliability. All slides that were not used during model development were used for further 

statistical analyses (See Table 3.4). 
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Table 3.1: Demographic, clinical and region-specific severity rating, overall PSP stage and clinical 

diagnosis of donor participants in the study. Not applicable (N/A) where data is not available in the 

database. 

Subject GP STN STR PF DN OC Stage 
Clinical 

diagnosis 
Gender 

Age at 

death 

(years) 

Disease 

duration 

(years) 

Last 

PSPRS 

total 

PSPRS to 
death (years) 

1 2 2 2 0 1 0 2 prob. PSP-RS Female 76.4 8.75 63 0.32 

2 3 3 2 0 1 0 2 poss. PSP-PGF Male 75.2 4.62 26 0.52 

3 2 2 2 1 1 0 3 prob. PSP-RS Female 55 5.5 53 0.41 

4 2 2 2 1 1 0 3 prob. PSP-RS Male 74.5 6 45 0.67 

5 2 2 2 1 1 0 3 prob. PSP-RS Female 84.7 5.58 59 1.25 

6 2 2 2 0 2 0 N/A prob. PSP-RS Female 73.7 16.33 51 0.56 

7 2 N/A 2 0 2 0 N/A s.o. PSP-P Male 74.2 8.07 N/A N/A 

8 2 2 2 1 2 0 4 poss. PSP-CBS Female 79.8 3.42 49 0.74 

9 2 2 2 1 2 0 4 prob. PSP-RS Male 78.7 5.33 54 0.56 

10 2 3 2 1 2 0 4 prob. PSP-RS Male 80.8 11.92 76 1.3 

11 2 3 2 1 2 0 4 prob. PSP-RS Male 80.5 6.5 62 0.11 

12 2 3 3 1 2 0 4 prob. PSP-RS Female 71.6 4.58 45 0.13 

13 3 N/A 2 1 2 0 4 s.o. PSP-CBS Female 75.2 2.83 N/A N/A 

14 3 3 3 3 2 0 4 poss. PSP-CBS Male 78.8 5.75 43 0.69 

15 3 3 2 2 3 0 4 prob. PSP-RS Male 77.4 6.33 55 0.74 

16 2 N/A 2 2 3 0 4 prob. PSP-RS Male 64.7 5.08 38 1.09 

17 2 3 2 1  0 4 prob. PSP-RS Female 65.3 13.92 54 0.75 

18 2 2 2 2 2 1 5 prob. PSP-RS Female 74.7 6.58 58 2.66 

19 2 N/A 2 2 2 1 5 prob. PSP-RS Male 88.5 5.08 53 0.3 

20 2 3 2 3 2 1 5 prob. PSP-RS Male 71.5 5.17 38 2.21 

21 3 3 3 3 2 1 5 prob. PSP-RS Female 78.1 16.75 52 0.99 

22 3 3 3 1 3 1 5 poss. PSP-CBS Female 78.9 5 48 0.18 

23 3 3 3 2 3 1 5 prob. PSP-RS Female 69.9 5.33 51 0.36 

24 3 3 3 2 3 1 5 prob. PSP-RS Male 63 8.83 62 2.44 

25 3 3 3 2 3 1 5 prob. PSP-RS Male 84.6 8.75 59 2.42 

26 2 N/A 2 2 3 1 5 prob. PSP-RS Female 71.9 6.17 60 0.05 

27 3 3 3 3 3 1 5 prob. PSP-RS Male 71 5.42 43 1.89 

28 3 3 3 3 3 1 5 poss. PSP-SL Female 78.4 8.83 72 1.94 

29 3 3 3 3 3 1 5 prob. PSP-RS Male 76.2 3.87 51 0.42 

30 3 3 3 3 3 1 5 s.o. PSP-CBS Male 73.9 4 N/A N/A 

31 3 3 3 3 3 1 5 prob. PSP-RS Female 84.1 4.25 67 0.78 

32 1 3 1 2 2 2 N/A prob. PSP-RS Male 72.3 4.33 38 1.25 

33 3 3 2 2 3 2 6 s.o. PSP-CBS Female 80.5 8.42 73 0.23 

34 3 3 3 3 3 2 6 prob. PSP-F Male 75.4 8.42 81 0.76 

35 N/A N/A N/A N/A N/A N/A 5 poss. PSP-CBS Male 78 N/A N/A N/A 

36 N/A N/A N/A N/A N/A N/A 3 prob. PSP-RS Male 72 N/A N/A N/A 

 

Severity rating for each brain region includes 0 = absence, 1 = mild, 2 = moderate, 3 = 

severe. For clinical diagnosis of PSP participants, prob. probable, poss. possible, s.o. 
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suggestive of, RS Richardson syndrome, CBS predominant corticobasal syndrome, SL 

predominant speech and language disorder. PF pre-frontal, 1°M Primary motor, PM Pre-

motor, OC Occipital, BG Basal ganglia, DN Dentate nucleus. 

 

 
Table 3.2: Demographic and Braak stage of control donor participants in the study. 

Subject Diagnosis Gender 

Age at 

Death 

(years) 

 

Braak 

1 Control Female 70 I 

2 Control Male 68 II 

3 Control Male 87 I 

4 Control Male 70 N/A 

5 Control Female 72 II 

6 Control Female 84 III 

7 Control Male 82 III 

8 Control Male 74 II 

9 Control Female 70 II 

 

 
Table 3.3: Number of slides from PSP and control, used for model development. 

Region PSP Control 

Frontal 2 2 

Temporal 2 2 

Parietal 2 2 

Occipital 6 2 

Basal ganglia 7 1 

 

 
Table 3.4: Number of novel slides from PSP and control, not used during model development. 

Region PSP Control 

Frontal 35 5 

Temporal 23 6 

Parietal 23 3 

Cingulate 25 1 

Primary somatosensory 25 0 

Primary motor 23 0 

Pre-motor 24 0 

Occipital 29 2 

Basal ganglia 27 1 
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3.3.2. Nuclei detection and feature extraction 
 
Table 3.5: Features from each category were extracted from detected cells, including cellular 

detection probability, cell morphology, haematoxylin staining intensity and number of nearest 

neighbours by distance. 

Number of features Category Feature  
1 Cellular detection probability Probability  
 

 

12 

 

 

Nucleus, cell morphology 

Area (μm2)  

Length (μm)  
Circularity  

Solidity  
Max diameter (μm)  
Min diameter (μm)  

1 Nucleus/cell area ratio Nucleus/Cell area ratio  
 

 

20 

 

Haematoxylin staining intensity in 

nucleus, cytoplasm, membrane, cell 

Mean  
Median  

Min  
Max  

Standard deviation  
10 Number of nearest neighbours at 

each distance location 

10 – 100 μm  

 

StarDist, a plug-in software for a deep-learning based method was used to perform nuclei 

detection on all slides (Schmidt et al., 2018). StarDist first detected cell nuclei and expanded 

around the nuclear boundary to estimate the extent of the cytoplasm, creating an entire cell 

object. The dilation radius was set to 3 times the radius of the nucleus, or 5 μm, whichever 

was smaller. The following parameters were chosen: threshold = 0.5 (prediction threshold), 

normalizePercentiles (1, 99) (percentile normalization), pixelSize = 0.25 (resolution for 

detection), cellExpansion=5.0 (approximate cell size based upon nucleus expansion), 

cellConstrainScale=3 (constrain cell expansion using nucleus size), 

ignoreCellOverlaps=false (prevent cells from expanding into one another), 

measureShape=true (add shape measurements), measureIntensity=true (Add cell 

measurements in all compartments), includeProbability=true (add detection probability as 

measurement), simplify= 1 (Control how polygons are simplified to remove unnecessary 

vertices). After cell detection, 44 features were extracted from QuPath which were 34 

features relating to morphology and staining intensity, and 10 features relating to the number 

of nearest neighbours within 10-100μm for contextual information of neighbourhood cell 

density (See Table 3.5). 
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3.3.3. Training set 

 

To create the sampling area of cortical training slides, portions of grey matter with no artefact 

and consistent depth from visual inspection were labelled as ‘cortical ribbon’. A rectangle of 

equal width was drawn across all layers of grey matter within the cortical ribbon. For basal 

ganglia, sampling squares were created with equal spacing. All cells were annotated by a 

single pathology (SSK) as belonging to one of the four classes (‘astrocyte’ (Astro), ‘neuron’ 

(Neuron), ‘oligodendrocyte’ (Oligo), or ‘others’ (Others). Others class consists of endothelial 

cells and artefacts on the slide which include ‘fragmented’ cells where cells were partially 

detected by StarDist and ‘ignored’ cells where StarDist detected out-of-focus cells or detected 

background as cells. All cells used for training are healthy cells with minimal or no tau 

aggregation. 

 

For cortical regions excluding the occipital regions, 2473 cells were annotated (179 

astrocytes, 885 neurons, 792 oligodendrocytes, 617 others). For occipital cortex, 1673 cells 

were annotated (220 astrocytes, 476 neurons, 445 oligodendrocytes, 532 others) and there 

were 1628 annotated cells (187 astrocytes, 200 neurons, 783 oligodendrocytes, 458 others) in 

the basal ganglia. Sample size checks were carried out to ensure sufficient data to train the 

algorithms.  

 

 

3.3.4. Held-out test set 

 

Two slides, each from control and PSP groups, were randomly selected from frontal, 

temporal, parietal, occipital regions, and basal ganglia as held-out test slides. Non-occipital 

cortical slides were independently annotated by another neuropathologist (MB). F1-score was 

calculated with annotations from rater 1 as ground truth and supplemented with Cohen’s 

kappa for inter-rater agreement. For cortical regions, rater 1 has annotated 802 cells (101 

astrocytes, 169 neurons, 231 oligodendrocytes, 301 others). Rater 2 has annotated 681 cells 

(162 astrocytes, 141 neurons, 229 oligodendrocytes, 149 others). For occipital region, 393 

cells were annotated (62 astrocytes, 82 neurons, 98 oligodendrocytes, 151 others) and there 

were 417 annotated cells (56 astrocytes, 53 neurons, 155 oligodendrocytes, 153 others) in the 

basal ganglia. 
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Figure 3.2: Schematic diagram showing a) annotated data and hyper-parameter tuning step for region-specific cell 

classifiers with resulting class-specific thresholds. b) In each loop through the stratified 10-fold cross validation, the 

following steps were carried out: data normalization, hyper-parameter tuning of feature selection approach and 

machine learning algorithm. Mean classification performance across 10 folds were used to evaluate pipeline 

performance and a set of parameters that yielded the highest performance across 10 folds was selected to further 

perform class-specific threshold-tuning. 

Cortical cell classifier 
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Cortical regions 
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10-fold CV 

179 Astrocytes 

885 Neurons 

792 Oligodendrocytes 

617 Others 
 

Threshold 

tuning 

Astrocyte 0.51 

Neuron 0.51 

Oligodendrocyte 0.28 

Others 0.29 
 

a) Region-specific tau classifier 

Data normalization Feature selection 
Machine learning 

algorithm 

b) Stratified 10-fold cross validation 

Train Train Train Train Train Train Train Train Train Test 

Occipital cell classifier 

Occipital region 

N = 1,673 

220 Astrocytes 

476 Neurons 

445 Oligodendrocytes 

532 Others 
 

Astrocyte 0.47 

Neuron 0.36 

Oligodendrocyte 0.39 

Others 0.33 
 

Basal ganglia cell 

classifier 

Basal ganglia 

N = 1,628 

187 Astrocytes 

200 Neurons 

783 Oligodendrocytes 

458 Others 
 

Astrocyte 0.46 

Neuron 0.48 

Oligodendrocyte 0.51 

Others 0.22 
 

Stratified 

10-fold CV 

Threshold 

tuning 

Stratified 

10-fold CV 

Threshold 

tuning 



 
 

69 
 

3.3.5. Model development 

 

First, for each training slide, mean haematoxylin intensity of the nucleus of all cells were 

normalized and cells with top 1% staining intensity were discarded to reduce DAB artefacts 

created from the bleeding of digital stain from hematoxylin to DAB channel. Annotated objects 

from all slides of the same brain regional grouping were pooled together, yielding a dataset. 

The dataset was then standardised (mean = 0, SD =1) and 10-fold stratified cross validation 

was used to train the region-specific cell classifiers. During the training phase, hyper-

parameters of feature selection approaches (RFE, PCA) and machine learning algorithms (L-

SVM, RBF-SVM, RF) were tuned (see Core methods). The machine learning algorithms were 

optimised based on the mean area under the 4 precision-recall curves (PR-AUC) using a one-

vs-rest approach (Astro vs rest, Neuron vs rest, Oligo vs rest, Others vs rest).  

 

Using the hyper-parameters found, optimal class-specific thresholds were tuned to tackle class 

imbalance for each brain regional grouping (non-occipital cortical regions, occipital region, 

and basal ganglia). 

 

After classification, the precision, recall, macro F1-score and confusion matrix of the model 

were assessed. The model was then applied to the held-out test set to evaluate its performance 

and generalisability. Finally, the optimised model was applied to the remaining novel slides to 

perform tau classification and quantification for further analyses. 

 

3.3.6. Cell quantification, tau positive and negative cells 

 

Neuronal, glial, and other classes were quantified where key cells included neuronal and glial 

cells. The others class was mostly noise and would not be further analyzed. GNR and cell 

densities were calculated for all cells. GNR was defined as the ratio between glial cells 

(astrocytes and oligodendrocytes) and neurons. Cell density was defined for each cell type as 

the cell count divided by the area sampled (m2). Tau positive cells were those with DAB 

intensity equal to or greater than the tau positive threshold, otherwise they were tau negative 

cells (threshold = 0.27 in the mean DAB in the nucleus). The tau positive threshold was 

determined by considering the potential digital bleeding from hematoxylin channel to DAB 

channel as follows; pooling together slides across scanning batches, the top 10% most 

pigmented nuclei from hematoxylin staining intensity were selected from each control slide. 
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The 75th percentile value of DAB staining intensity in the nuclei from each slide was 

extracted and the maximum value across all control slides was inspected. The chosen 

threshold value was cross-checked with the most lightly stained heavy tau burden slide to 

ensure the validity of the chosen value. 

 

3.3.7. Validation on novel slides 

 

Boxplots using the seaborn package (Waskom, 2021) in Python were used to plot (1) GNR 

and regional cell type-specific density across brain regions for all subjects and (2) separately 

for control and PSP participants for comparison, (3) neuronal density of PSP participants 

across PSP pathological stage, (4) tau positive cell type-specific density of PSP participants, 

and (5) tau negative neuronal and astroglial density of PSP participants across PSP 

pathological stage. Further slide inspection was carried out and presented to explain the 

observed results.  
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3.4. Results 
 

 

3.4.1. Comparison of feature selection methods using L-SVM  
 

 
Table 3.6: Comparison of using no feature selection, using recursive feature elimination (RFE) 

wrapped around support vector machine with linear kernel (L-SVM) and principal component 

analysis (PCA) approaches. Selected features were subsequently fed to L-SVM classifier which was 

tuned for area under the precision-recall curve (PR-AUC) for cell classification. Precision, recall, F1-

score without threshold-moving approach applied, and mean values from cross-validation with 

standard deviation in brackets are reported. 

No. features Region Precision Recall F1-score PR-AUC 

No feature selection 

44 Cortical 0.76 (+/-0.04) 0.81 (+/-0.04) 0.76 (+/-0.04) 0.82 (+/- 0.04) 

44 Occipital 0.77 (+/- 0.04) 0.77 (+/- 0.04) 0.76 (+/- 0.04) 0.82 (+/- 0.05) 

44 Basal ganglia 0.75 (+/- 0.06) 0.77 (+/- 0.06) 0.75 (+/- 0.06) 0.82 (+/- 0.06) 

RFE 

40 Cortical 0.76 (+/- 0.04) 0.81 (+/- 0.03) 0.76 (+/- 0.04) 0.82 (+/- 0.04) 

30 Occipital 0.76 (+/- 0.04) 0.77 (+/- 0.04) 0.76 (+/- 0.05) 0.83 (+/- 0.05) 

28 Basal ganglia 0.75 (+/- 0.06) 0.78 (+/- 0.06) 0.76 (+/- 0.06) 0.82 (+/- 0.06) 

PCA      

24 Cortical 0.75 (+/- 0.05) 0.80 (+/- 0.04) 0.75 (+/-0.05) 0.82 (+/- 0.04) 

24 Occipital 0.77 (+/- 0.05) 0.77 (+/- 0.05) 0.76 (+/- 0.05) 0.83 (+/- 0.05) 

21 Basal ganglia 0.76 (+/- 0.06) 0.78 (+/- 0.06) 0.76 (+/- 0.07) 0.82 (+/- 0.06) 

 

 

First, classification performances from L-SVM when full feature set, RFE wrapped around L-

SVM, or PCA as the feature selection approach were compared across cortical, occipital, and 

basal ganglia (Table 3.6). The PCA approach selected at least 0.98 variance explained across 

all regions and retained smaller number of features or components than the RFE approach. 

The RFE approach retained the highest number of features for cell classification in cortical 

regions, followed by the occipital and basal ganglia regions. Classification performances with 
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or without feature selection approaches achieved the same PR-AUC across all regions. 

Therefore, RFE was chosen as the feature selection approach as PCA has issues with feature 

interpretability and using full feature set would mean retaining redundant features. 

 

3.4.2. Comparison of machine learning algorithms 

 
Table 3.7: Classification performance without the threshold-moving method from training for the cell 

classifiers (L-SVM, RBF-SVM, RF) with RFE as feature selection approach for the cortex, occipital 

region, and basal ganglia. Classifiers were tuned for area under the precision-recall curve (PR-AUC), 

where precision, recall and F1-score are also reported. Mean values from cross-validation are 

reported, and standard deviation in brackets. 

 

Region Precision Recall F1-score PR-AUC 

L-SVM 

Cortical 0.76 (+/- 0.04) 0.81 (+/- 0.03) 0.76 (+/- 0.04) 0.82 (+/- 0.04) 

Occipital 0.76 (+/- 0.04) 0.77 (+/- 0.04) 0.76 (+/- 0.05) 0.83 (+/- 0.05) 

Basal ganglia 0.75 (+/- 0.06) 0.78 (+/- 0.06) 0.76 (+/- 0.06) 0.82 (+/- 0.06) 

RBF-SVM 

Cortical 0.75 (+/- 0.04) 0.80 (+/- 0.04) 0.76 (+/- 0.05) 0.83 (+/- 0.04) 

Occipital 0.75 (+/- 0.04) 0.77 (+/- 0.05) 0.75 (+/- 0.04) 0.83 (+/- 0.05) 

Basal ganglia 0.75 (+/- 0.06) 0.77 (+/- 0.07) 0.75 (+/- 0.07) 0.85 (+/- 0.06) 

RF 

Cortical 0.73 (+/-0.05) 0.76 (+/-0.07) 0.73 (+/-0.06) 0.80 (+/-0.06) 

Occipital 0.75 (+/-0.04) 0.76 (+/-0.04) 0.74 (+/-0.04) 0.82 (+/-0.05) 

Basal ganglia 0.76 (+/-0.05) 0.77 (+/-0.06) 0.75 (+/-0.06) 0.85 (+/-0.06) 
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Table 3.8: Classification performance with the threshold-moving method from training for the cell 

classifiers for the cortex, occipital region, and basal ganglia. Precision, recall and F1-score are 

reported. Mean values from cross-validation are reported and standard deviation in brackets. 

 

Region Precision Recall F1-score 

L-SVM    

Cortical 0.78 (+/- 0.04) 0.78 (+/- 0.06) 0.77 (+/- 0.05) 

Occipital 0.79 (+/- 0.05) 0.79 (+/- 0.05) 0.79 (+/- 0.05) 

Basal ganglia 0.79 (+/- 0.05) 0.78 (+/- 0.06) 0.78 (+/-0.06) 

RBF-SVM    

Cortical 0.77 (+/- 0.04) 0.78 (+/- 0.05) 0.77 (+/- 0.04) 

Occipital 0.80 (+/- 0.07) 0.79 (+/- 0.06) 0.79 (+/- 0.06) 

Basal ganglia 0.79 (+/- 0.05) 0.78 (+/- 0.07) 0.78 (+/- 0.06) 

RF    

Cortical 0.78 (+/-0.05) 0.80 (+/-0.06) 0.78 (+/-0.06) 

Occipital 0.78 (+/-0.05) 0.79 (+/-0.05) 0.77 (+/-0.05) 

Basal ganglia 0.81 (+/-0.05) 0.81 (+/-0.05) 0.80 (+/-0.05) 

 

 

Next, using RFE approach as the feature selection method, the performance of L-SVM, RBF-

SVM and RF were compared (Table 3.7). PR-AUC across the three classifiers were very 

similar across all regions with at most 0.03 difference between mean PR-AUC values, which 

was still within the standard deviation around the mean. Threshold-moving approach was 

then applied to the three classifiers (Table 3.8). F1-scores across the three classifiers in all 

regions were very similar, with differences at most 0.02 where RF showed generally higher 

mean across regions than L-SVM and RBF-SVM. Therefore, RF was chosen as the algorithm 

to use forward as it is more interpretable and adaptable than SVM algorithms. 
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3.4.3. Classification performance of the chosen model 

 

3.4.4. Sample size check 

 

To ensure we had sufficient samples to train the RF classifiers for optimal results, I plotted 

the validation scores to check the stability of optimised PR-AUC from sampling 10-100% of 

the dataset incrementally (Figure 3.3). Across the 3 classifiers, PR-AUC from validation sets 

stabilised after 30% of the dataset was used, and the 95% confidence interval stayed small. 

 

 

 

Figure 3.3: Plots showing mean PR-AUC score for each classifier from 10-fold stratified cross 

validation when 10-100% of the dataset was used. This shows the stability of the PR-AUC to inform 

whether increasing dataset would be useful in training the classifiers. Mean (dot) and 95% confidence 

intervals (shaded area) are shown. 

a) Cortical cell classifier b) Occipital cell classifier 

c) Basal ganglia cell classifier 
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3.4.5. Hyper-parameter tuning 
 
Table 3.9: Hyperparameter values from stratified 10-fold cross validation for the cell classifiers, 

specific to each regional grouping, including cortical regions (does not include occipital region), 

occipital region only and basal ganglia. 

Parameter Cortical Occipital Basal ganglia 

N_features_to_select 38 28 38 

Sampling strategy ‘not majority’ ‘auto’ ‘not majority’ 

n_estimator 900 200 600 

min_sample_split 5 10 5 

min_sample_leaf 4 4 2 

max_features 0.2 0.4 0.2 

max_depth None 15 10 

max_sample 0.5 0.25 0.75 

 

 

 

All classifiers were optimised for PR-AUC where cell classifiers for different regions yielded 

a different set of optimal hyperparameters (Table 3.9). Cell classifiers in the cortex and basal 

ganglia selected the same number of features for cell classification (38 features), more than 

the occipital cell classifier which selected 28 features. All classifiers achieved PR-AUC 

scores above 0.80, where the basal ganglia cell classifier achieved the highest PR-AUC of 

0.85, followed by occipital cell classifier of 0.82 and cortical cell classifier of 0.80 (Table 

3.7).  

 

From inspecting the feature importance plots (Figure 3.4), nuclear morphology such as area 

and diameter are the top two most important features in distinguishing between different cell 

types. In general, morphological information were more important than haematoxylin 

staining intensities in classifying neuronal, glial, and other cell types across brain regions. 
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Figure 3.4: Top 10 most important features of each classifier from hyper-parameter tuning, a) cortical cell 

classifier, b) occipital cell classifier, c) cell classifier for basal ganglia.  

a) Cortical cell classifier b) Occipital cell classifier 

c) Basal ganglia cell classifier 
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3.4.6. Threshold-moving optimisation 
 
 

Table 3.10: Class-specific thresholds for cell classifier for the cortex, occipital, and basal ganglia. 

Thresholds were optimised for F1-score using a one-vs-rest approach. 

Classifier Astro F1-score Neuron F1-score Oligo F1-score Others F1-score 

Cortex 0.51 0.58 0.51 0.91 0.28 0.86 0.28 0.77 

Occipital 0.47 0.65 0.36 0.84 0.39 0.84 0.33 0.83 

Basal ganglia 0.46 0.68 0.48 0.85 0.51 0.91 0.21 0.83 

 

 

After optimising the hyper-parameters for each RF classifier, the next step is to tune class-

specific thresholds for assigning labels to individual cells. Using a one-vs-rest approach, the 

class threshold with the highest F1-score was selected (Table 3.10). The astrocyte and neuron 

classes had the same threshold of 0.51, and oligodendrocyte and others had the same 

threshold of 0.28 in the cortex. In the occipital region, the astrocyte class has the highest 

threshold (0.47), followed by oligodendrocyte (0.39), neurons (0.36), and others (0.33). For 

the basal ganglia, the oligodendrocyte class (0.51) had the highest class-specific threshold, 

followed by neurons (0.48), astrocytes (0.46), and others (0.21). In general, the astrocyte 

class had the smallest F1-score across the regions of below 0.7 while other cell types have 

class-specific thresholds with F1-score above 0.75. The proportion of cells being discarded as 

ambiguous was the highest in the cortex of 12% followed by the occipital region of 9% and 

basal ganglia of 7%. These results demonstrate the greater difficulty of classifying cell types 

in the cortex, as compared to the basal ganglia. 

 

We compared the classification performance of the threshold-moving method to the default 

method of assigning class label based on maximum class scores (Table 3.7, Table 3.8). 

Applying threshold-moving method improved all metrics, specifically, F1-score by 0.03 for 

the occipital cell classifier and by 0.05 for the cell classifiers specific to the cortex and basal 

ganglia. Therefore, the threshold-moving methods were used for the final models.  
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3.4.7. Confusion matrices 

 

Confusion matrices for each classifier are shown in Figure 3.5. Cell classification in cortical 

regions achieved the highest accuracy of 92.44% in classifying neurons correctly, followed 

by oligodendrocytes (81.83%), others (76.39%) and astrocytes (69.62%). Neurons were most 

often misclassified as astrocytes (5.67%) while astrocytes were misclassified as neurons most 

often (18.99%), but also as oligodendrocytes (7.59%). Oligodendrocytes were most often 

misclassified as astrocytes (10.19%) and the misclassification of others was mostly as 

neurons (11.90%). 

 

Similarly, cell classification in occipital cortex, the highest accuracy was achieved for the 

neuronal class (81.55%), followed by oligodendrocytes and others which yielded similar 

accuracies of 79.13% and 79.25% respectively. The accuracy for the astrocyte class was the 

lowest but higher than in cortical regions (75.74%). The mis-classification pattern followed 

the same pattern seen in cortical regions. 

 

For the basal ganglia, the classifier performed best in the oligodendrocyte class (91.02%), 

followed by others (82.76%), neurons (81.77%) and astrocytes (68.00%). Oligodendrocytes 

here were most likely misclassified as others (5.63%) and others were also most likely 

misclassified as oligodendrocytes (8.13%). Neurons were misclassified as astrocytes most 

often (10.94%) and astrocytes were likely misclassified as neurons (14.86%) and others 

(12.00%).  
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Figure 3.5: Mean confusion matrices from the 10-fold cross validation for a) cortical cell classifier, b) the 

occipital cell classifier, c) cell classifier for basal ganglia. 

a) Cortical cell classifier b) Occipital cell classifier 

c) Basal ganglia cell classifier 
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3.4.8. Validation on a held-out test set 
 
Table 3.11: Classification performance on a held-out test set from cortical, occipital regions and basal 

ganglia. Precision, recall and F1-score are reported. 

Region Precision Recall F1-score 

Cortex 0.78 0.79 0.77 

Occipital 0.79 0.80 0.79 

Basal ganglia 0.81 0.85 0.83 

 

 

For the held-out test set, the cell classifier for the basal ganglia achieved the highest F1-score 

of 0.83, followed by the classifier for occipital cortex of 0.79 and cortical regions of 0.77 

(Table 3.11). For inter-rater agreement in cortical regions, F1-score was 0.85 and Cohen’s 

kappa was 0.81. 

 

From inspecting the confusion matrices (Figure 3.6), the cortical cell classifier achieved the 

highest accuracy for neurons (95.78%), followed by oligodendrocytes (87.77%), astrocytes 

(67.74%), and others (65.10%). For the occipital region, neuron class achieved the highest 

accuracy (95.95%), followed by others (78.79%), oligodendrocytes (75.56%) and astrocytes 

(69.64%). This order was the same for cell classification in basal ganglia, except the accuracy 

for oligodendrocyte class (89.44%) was higher than the others class (79.85%). As before, the 

astrocyte class achieved the lowest accuracy across the brain regions where the lowest was in 

the cortical regions. Examples of correct and incorrect classifications are shown in Figure 3.7 

and Figure 3.8, illustrating heterogeneity within each cell class which can impact 

classification accuracy. These examples, along with feature importance plots (Figure 3.4), 

illustrate that the classifiers tend to rely more on nuclear size than other features for cell 

classification, which could help explain the misclassification pattern observed. 
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Figure 3.6: Confusion matrices of held-out test set by region a) non-occipital cortex, b) occipital cortex, c) 

basal ganglia. 

a) Non-occipital cortex b) Occipital cortex 

c) Basal ganglia 
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Figure 3.7: Examples of correct classification from held-out test sets for each cell type drawn from 

cortical regions (left column), occipital region (middle column), and basal ganglia (right column). 

Arrows point at cell of interest.  

Correct astrocyte classification 

Correct neuron classification 

Correct oligodendrocyte classification 

Correct others classification 
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Figure 3.8: Main misclassification between cell types from held-out test sets (truth label as predicted 

label), drawn from cortical regions (left column), occipital region (middle column), and basal ganglia 

(right column). Except for Others as key cells that are only drawn from cortical regions as examples. 

Astrocyte as neuron 

Oligodendrocyte as astrocyte 

Oligodendrocyte as others 

Others as key cells (astrocyte, neuron, oligodendrocyte) 
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3.4.9. All subjects: total GNR and cell density 

 

The resulting pipeline was applied to all novel slides for validation. GNR was calculated for 

all brain regions (Figure 3.9). Mean GNR in cortical regions ranged from 1.21 (parietal) to 

1.56 (temporal) where GNR was much higher in the basal ganglia and the highest GNR was 

found in the globus pallidus (15.40), followed by subthalamic nucleus (10.62) and putamen 

(3.43). In general, others density (which include artefacts and endothelial cells) was the 

highest across all cell type-specific densities across all brain regions, except for putamen. 

When inspecting key cell density across cortical regions, neuronal density was the greatest as 

compared to glial density, followed by oligodendroglial and astrocytic density being the 

lowest. In contrast, oligodendroglial density was the highest in basal ganglia, followed by 

astrocytic and neuronal density for subthalamic nucleus and globus pallidus. In putamen, 

higher neuronal density than astrocytic density was observed. 
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Figure 3.9:  Boxplots showing a) glia:neuron ratio in cortical regions based on a random forest classifier and b) basal 

ganglia nuclei, and c) cell type-specific density for each brain region. d_Astro astrocytic density, d_Oligo 

oligodendroglial density, d_Neuron neuronal density, d_Others others density. 

a) b) 

c) 
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3.4.10. Control vs PSP: total key cell type-specific density and GNR  
 

 

Cell type-specific density and GNR were compared between PSP and controls (Figure 3.10), 

it is difficult to interpret results for the basal ganglia regions as only 1 control has those 

regions. Focusing on cortical regions, controls showed higher mean key cell density (all cell 

types excluding others class) in temporal, parietal and occipital regions than PSP subjects, 

while PSP showed higher key cell density in the pre-frontal region. Furthermore, PSP showed 

higher mean astrocytic and neuronal density across cortical regions than controls, except for 

the occipital region where the opposite pattern is observed. PSP tended to show lower mean 

oligodendroglial density than controls across cortical regions. For GNR across cortical 

regions, PSP showed lower GNR in temporal, parietal and occipital regions, similar GNR in 

pre-frontal and higher GNR in cingulate than controls. 
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Figure 3.10: Boxplots showing a) key cell type-specific density (neuronal and glial cells), b) astrocytic density, c) 

neuronal density, d) oligodendroglial density each brain region, e) GNR in cortical regions, f) GNR in subcortical 

regions between PSP and control participants.  

a) b) 

c) d) 

e) f) 
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3.4.11. Total neuronal density in PSP, by PSP stage 
 

 

 

Neuronal density across PSP stage was assessed to investigate for neuronal loss where stage 2 

showed the lowest neuronal density as compared to later PSP stages which showed similar 

but a trend towards increasing in neuronal density from stage 3-6 (Figure 3.11). Looking 

more closely at each region from subjects with available PSP stage, the neuronal density in 

stage 2 was generally the lowest, and followed the pattern observed from stages 3-6 across 

brain regions. 

 

 

3.4.12. Robustness towards tau aggregation: tau positive cells 

 

First, tau positive cell density in PSP was plotted across cortical and basal ganglia regions 

(Figure 3.12). Basal ganglia nuclei showed higher tau positive cell density than cortical 

regions, specifically tau positive oligodendroglial density. In cortical regions, tau positive 

oligodendroglial density was the highest, and tau positive neuronal and astrocytic density 

were relatively similar. 

 

I further inspected PSP slides with high tau density to test the robustness of the classifier for 

cell types with tau aggregates (Figure 3.13). In general, nuclei detection was influenced by 

tau aggregation, resulting in multiple smaller fragmented nuclei detections, or a single 

enlarged detection. Tufted astrocytes were often detected as neurons or multiple others when 

Figure 3.11: Boxplots showing a) total neuronal density for each PSP pathological stage from 2-6 and further 

b) separated by region. 

a) b) 



 
 

89 
 

nuclei detection failed to detect the cell body of astrocytes. For neurofibrillary tangles, they 

were still largely detected as a single neuron, but could also be detected as multiple cells and 

labelled as a neuron or others. Furthermore, coiled bodies might be detected as a neuron or 

others, depending on whether the nuclear detection was enlarged by the tau inclusion or not. 

Lastly, neuronal threads that were not associated with a cell body were either detected from 

the nuclei detection step and classified as others or were undetected. These findings suggests 

that the automated cell classification is unreliable in tau containing cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Boxplots showing tau positive cell type-specific density in PSP participants across a) cortical regions, 

and b) basal ganglia nuclei. d_Astro+ tau positive astrocytic density, d_Oligo+ tau positive oligodendroglial density, 

d_Neuron+ tau positive neuronal density. 

a) b) 
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Figure 3.13: Examples of correct and incorrect cell classification result overlayed on tau pathological hallmarks 

(tufted astrocyte, neurofibrillary tangle, coiled body, and threads) in PSP. Prediction of the cell type is colour 

coded: neuron (Cyan), oligodendrocyte (magenta), astrocyte (green), others (orange).  

Tufted astrocyte 

Neurofibrillary tangle 

Coiled body 

Threads 
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3.4.13. Tau positive threshold selection 

 

Slides from all batches available were pooled together and the tau positive threshold was 

determined from control slides with heavy haematoxylin staining and cross-checked with 

PSP slides with light tau aggregation (threshold=0.27). We further inspected control and PSP 

slides with the lowest and highest staining intensity to ensure the threshold value generalised 

at both extremes. Based on Figure 3.14, tau negative cells were largely captured with the 

chosen threshold as only tau aggregates were detected as tau positive. Nevertheless, on 

occasion where the bleeding between DAB and haematoxylin channels was severe, highly 

pigmented healthy cells in the control slide could be detected as tau positive. This issue was 

likely tackled by the initial discarding of cells where cells with top 1% haematoxylin staining 

intensity per slide were discarded before cell classification step. This was rarely the case with 

PSP slides that generally had lower staining intensity across cells than control slides. 
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Figure 3.14: With tau positive threshold of 0.27, slides with the lowest and highest haematoxylin staining 

intensity from control and PSP were inspected to ensure the robustness of the threshold value. Cells labelled 

in black are tau negative, and in pale yellow are tau positive. The colour bar represents the intensity of DAB 

staining in the nucleus. 

Light staining, PSP slide 

Heavy staining, PSP slide 

0.27 

0.02 

Light staining, control slide 

Heavy staining, control slide 
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3.4.14. Robustness in out-of-sample tau negative cells 

 

We plotted tau negative neuronal and astrocytic density (Figure 3.15) to further inspect the 

unexpected finding seen in Figure 3.11 that neuronal density in stage 6 appeared higher than 

stage 2. We found that the same pattern was observed with tau negative neuronal density and 

astrocytic density from stage 2-6 appear relatively unchanged but towards a decreasing trend. 

We inspected a pre-motor slide from a PSP stage 6 participant (Figure 3.16) and found 

substantial misclassification of astrocytes as neurons, explaining this unexpected finding. 

 

Figure 3.15: Boxplots showing tau negative a) neuronal density and b) astrocytic density for each PSP 

pathological stage from 2-6. 

a) b) 
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Figure 3.16: A pre-motor slide of PSP stage 6 donor participant, showing misclassification of 

astrocytes as neurons where examples of misclassifications are indicated by red arrow. Predicted as 

neurons (blue), astrocytes (green), oligodendrocytes (magenta), others (orange).  
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3.5. Discussion 

 

3.5.1. Overview 

 

I have attempted to develop a pipeline for total and tau positive cell type-specific density in 

post mortem cortical and basal ganglia slides in PSP and control donors. 

 

First, I compared multiple feature selection approaches and machine learning algorithms to 

determine the most suitable configurations for the cell classification pipeline. Classification 

performances across approaches were very similar, therefore, the decision was made based on 

other criteria concerning pipeline interpretability and adaptability. I have shown that PCA 

retained the lowest number of features and classification performance of L-SVM was the 

same whether feature selection was applied or not. This suggests that even though using the 

full feature set does not add new information, it also does not introduce noise that impairs 

classification performance. PCA was the most effective approach to remove redundancy and 

retained important information for cell classification. Even though RFE retains more features 

than PCA, it enables the pipeline to be more interpretable as it does not involve feature 

decomposition and still reduces redundancy compared to using all the available features. It 

was therefore selected as the feature selection approach. I further compared classification 

performance across 3 machine learning algorithms: L-SVM, RBF-SVM and RF. They 

performed similarly with and without the threshold-moving approach applied. RF was 

selected as the algorithm for cell classification as it is more adaptable or flexible than L-SVM 

and is more interpretable than RBF-SVM in which feature importance cannot be natively 

extracted. 

 

 

With RF with RFE as the chosen configuration, the classification performance differs across 

brain regions, where the highest PR-AUC was achieved in the basal ganglia, followed by 

occipital and cortical regions. I have shown that a threshold-moving method improves 

classification performance by adapting class-specific thresholds to take account of class 

imbalance within each brain region. Nevertheless, class-specific accuracy from the final 

models differed drastically, especially when comparing the majority (such as neurons) to the 

minority cell class (such as astrocytes) for each brain grouping where the former achieved 
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much higher accuracy than the latter. The results were further confirmed by the held-out test 

set and F1-score achieved by the pipeline (0.77) was lower than an independent expert 

neuropathologist (0.85) in cortical regions when compared against the primary 

neuropathologist. 

 

We applied the pipeline to all available slides to gauge whether classification performance 

would be sufficient for further analyses. We found that GNR and cell type-specific density in 

the cortex were in line with existing literature (von Bartheld et al., 2016). Nevertheless, PSP 

participants did not consistently show higher GNR than controls across cortical regions as 

anticipated. Still, tau positive cell density was higher in basal ganglia nuclei than cortical 

regions in PSP. However, neuronal density appeared to be lowest in pathological PSP stage 2 

compared to more severe PSP stages. Upon slide inspection, these results were explained by 

the misclassification of cells with tau aggregation which distorted the nuclear detection step. 

When nucleus detection was falsely enlarged, glial cells were detected as neurons, while 

when the nuclei detection step resulted in multiple detections of a single cell, they were 

generally classified as others due to their small and fragmented nature. Moreover, astrocytes 

were often misclassified as neurons; and  higher stages of pathology have a great number of 

reactive astrocytes that are more likely to be misclassified as neurons. (Li et al., 2019). This 

may also contribute to the surprising increase in neuronal density with pathological stage. To 

be certain, we would need to additional astrocytic staining to objectively determine the 

misclassification rate and astrocytic density.  

 

3.5.2. Challenges and solutions 

 

There were 3 main challenges that I addressed in this study. First, there is a class ratio 

imbalance of neuronal and glial cells in the brain. For example, oligodendrocytes are the 

most abundant cell type in the cortex, followed by neurons and astrocytes (von Bartheld et 

al., 2016), (WallÃ¸e et al., 2014), as reflected by our annotated dataset. Class imbalance is a 

common issue of real-world datasets which most machine learning algorithms struggle with 

since they are designed to deal with balanced datasets (Brownlee, 2020).With imbalanced 

datasets, machine learning algorithms are often biased towards the majority class. This is a 

problem as the lower accuracy from the minority class will influence the classification 

performance of the model (Basha et al., 2022).  
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Second, the ratio of class imbalance and cell morphologies differ between brain regions. 

GNR in the prefrontal cerebral cortex is roughly 1.5 but can range from 1.2 (occipital) to 3.6 

in frontal areas (Ribeiro et al., 2013; von Bartheld et al., 2016). Neurons in the occipital 

cortex are generally smaller in size and are more densely packed (Ribeiro et al., 2013). 

Furthermore, in the basal ganglia, astrocytes are more abundant than neurons (Salvesen et al., 

2015), which is opposite to the cerebral cortex. 

Third, classifying cells on bright-field images with high precision is difficult as the slide 

preparation technique does not fully capture the biological diversity of different cell types, 

resulting in ambiguity (Oei et al., 2019). 

 

To tackle the class imbalance challenge, we chose a probabilistic classifier which would enable 

us to tune class-specific thresholds. We chose a relatively simple but powerful machine learning 

algorithm; the random forest which yielded highly satisfactory results for our task. Major 

advantages of using a random forest as opposed to more complex algorithms, such as a neural 

network, is that it requires less training data, tuning time, and is readily interpretable (Kong & 

Yu, 2018) . Not only that, random forest algorithms are effective when there are highly 

correlated predictors (an advantage over linear regression approaches) and can capture non-

linear relationship between the predictors and outcome (Boulesteix et al., 2012).  This is highly 

relevant to our task where features relating to cell morphology and staining intensities from 

various digital channels are likely highly correlated. With the supervised learning approach, 

we could carefully annotate a highly accurate dataset to train the classifier within a reasonable 

timeframe and extract feature importance which provides insights into how the algorithm 

works, providing greater confidence in the results. Moreover, since most machine learning 

algorithms struggle with learning from an imbalanced dataset, I chose to use a balanced random 

forest classifier to create a balanced bootstrap training dataset for the classifier  (Chen, 2011; 

Luo et al., 2019; More & Rana, 2017). Instead of annotating the dataset in a class-balanced 

manner, I chose to systematically sample regions on the slide to annotate all tau objects that 

we are confident of, to reflect the actual class distribution. The threshold-moving method was 

then used to fine tune the classifier to handle class imbalance. This helped to ensure that our 

training dataset reflected the class distribution of the actual dataset, and that the classification 

performance would generalise to other datasets.  
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To tackle with the second challenge of region-specific class ratio and tau morphology, we 

grouped similar brain regions together and trained region-specific classifiers. This resulted in 

3 region-specific cell classifiers for the cortical, occipital, and basal ganglia regions. 

 

Lastly, to tackle with the ambiguity inherent in identifying cells, we employed an approach 

used by neuropathologists and introduced an ‘ambiguous’ class for when the classifier was 

unsure of its decision. An object was labelled as ambiguous when the class scores passed more 

than one class-specific threshold, or none. This captured both the upper level of ambiguity 

where the classifier thinks an object could belong to more than 1 class, and the lower end of 

ambiguity where the classifier thinks this object does not resemble any of the pre-defined 

classes. Therefore, the classifier does not need to force a label and risk making a mistake.  

 

3.5.3. Outstanding challenges 

 

Despite our attempts, nuclear detection step is influenced by tau aggregation so that 

classifying tau positive cells with high accuracy was not possible with the current pipeline. 

The current pipeline has the potential to work well with healthy neuronal and glial cells, but 

there are two main issues that we believe hinder this. First, the current feature choices may be 

inadequate for accurate cell classification. The astrocyte class consistently achieved the 

lowest classification accuracy across the cortex and basal ganglia. Despite it being the 

minority class, another potential explanation could be that the characteristics of astrocytes lie 

between neurons and oligodendrocytes. Based on feature importance plots, cellular 

morphology such as the nucleus area was one of the top 2 most important features in 

classifying cell types. Neurons are slightly bigger than astrocytes, while oligodendrocytes are 

the smallest and differ from astrocytes considerably. Misclassifications happened when large 

oligodendrocytes resembled small astrocytes, and large astrocytes resembled smaller neurons. 

As a result, astrocytes were most often misclassified as neurons and sometimes as 

oligodendrocytes while misclassification between oligodendrocytes and neurons was rare. 

 

The confusion between key cell types and others could come from the disagreement between 

the algorithm and the pathologists as to whether a given cell should be ignored. Therefore, 

more informative, and distinctive features of each class would be useful to enable better 

classification. It may be useful to directly use pixel values of the cells and feed into more 
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complex machine learning algorithms such as convolution neural network to better classify 

between cell types. 

 

Second, the currently available data may lack the information required to accurately classify 

cell types. The most challenging aspect of the pipeline development was accurately 

distinguishing between cell types by the human raters, whether that be cell annotation by the 

pathologists which was very time-consuming or cell type recognition by the data scientist. 

This points to the fact that slides stained with haematoxylin for nuclei detection may not 

readily provide sufficient information to distinguish between cell types reliably. 

Haematoxylin staining only enables cell nuclei visualisation, therefore other important 

cytological features such as cytoplasm, heterochromatin, and the nucleolus are missing. Such 

information could help, for example, to distinguish neurons from astrocytes since neurons 

would show a patent rim of cytoplasm encircling the nucleus, which would be possible with 

Nissl staining (Garcia et al., 2018). Therefore, cell type-specific staining agent may be 

required to further improve on the confidence of annotated dataset and for better 

understanding of the classification results by data scientists. Any choice of preparation 

technique should still aim for a simple solution that can be widely adopted and scalable. 

 

Overall, we feel that the current pipeline is not ready to be taken forward to analyse tau 

positive cells. Therefore, we aimed to re-design the pipeline to focus on tau hallmarks in PSP, 

outlined in the next chapter.  
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Chapter 4: Tau type-specific quantification 

 

4.1. Introduction 

 

The characterization of tau pathological hallmarks is essential in permitting the study of 

neurodegenerative tauopathies (Kovacs, 2015; Kovacs et al., 2020). Recent efforts in using 

automated pipelines to characterize tau burden in tauopathies can largely be grouped into 3 

categories which are: 1) the quantification of total tau burden, 2) classifying multiple tau 

type-specific aggregates, and 3) classifying a single tau aggregate type. Studies focusing on 

total tau burden have quantified percentage area covered by tau without cell type-specific 

distinction in both grey and white matter to investigate disease-specific signature across 

tauopathies (Coughlin et al., 2022; Vega et al., 2021). Specifically, only in grey matter, 

studies have largely focused on tau hallmark classification to aid postmortem diagnosis. 

Studies have attempted to differentiate between AD and non-AD tauopathies such as PSP, 

CBD and PiD by quantifying disease-specific tau hallmarks (Koga et al., 2021, 2022). 

Amongst the tau aggregate types, NFT has been most widely researched, most likely because 

it is found across tauopathies, especially in AD which is the most common type of dementia 

(Y. Zhang et al., 2022). Studies have attempted to quantify and investigate NFT counts and 

cognitive impairment (Marx et al., 2022), as well as developing a novel technique that can 

generate 3-dimensional mapping of NFTs in the brain (Yushkevich et al., 2021).  

 

However, these studies are largely at proof-of-concept stage where only a small subset of 

brain regions were investigated (Koga et al., 2021, 2022; Signaevsky et al., 2019). For 

investigating the tau distribution pattern, it is desirable to include a wide range of brain 

regions to enable comparison between regions. Studies that have developed a pipeline for tau 

type-specific quantification have also largely focused on key disease-specific pathological 

hallmarks that would be useful for distinguishing between different tauopathies (Koga et al., 

2021, 2022). Tau aggregate types that are also informative but may not be directly useful for 

diagnosis were not quantified. There remains a gap in the literature for a digital pipeline that 

can cover a larger number of regions and more detailed quantification for mechanistic 

studies. 
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4.1.1.  The present study 

 

Here, I aimed to quantify tau pathology in PSP post mortem brains by developing a digital tau 

pathology pipeline for whole slide images. This pipeline (Figure 4.1) has been developed to 

work with brain regions included in the current consensus PSP pathology staging scheme 

(Kovacs et al., 2020) and additional cortical regions relevant to PSP. I decided to use a 

balanced random forest machine learning algorithm (RF) with a threshold-moving approach 

for optimal object classification and interpretability. Brain regions were grouped together 

based on tau distribution and morphology, resulting in 4 separate tau classifiers for cortical 

regions, striatum, putamen and subthalamic nucleus, and dentate nucleus. I optimised the 

algorithm to quantify tau pathological hallmarks of PSP which include 'coiled bodies' (CB), 

'neurofibrillary tangles' (NFT), 'tufted astrocytes' (TA) and ‘tau fragments’ (TF). A successful 

pipeline should have comparable performance in the held-out test set to the expert 

pathologists. 

 

This work was performed in collaboration with Annelies Quaegebeur (Senior Clinical 

Research Associate and Consultant Neuropathologist at the University of Cambridge and 

Cambridge University Hospital NHS Foundation Trust) who assisted with tau annotation and 

gave advice on pathology; Sanne Kaalund (post-doctoral researcher with James Rowe and the 

Cambridge brain bank) who extracted brain slices, arranged slide staining and scanning; and 

Eric Hidari (post-doctoral researcher in the department of chemistry) who assisted with brain 

slide segmentation. 
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a) Color Deconvolution & Tissue Segmentation 

b) DAB Thresholding & Feature Extraction 

Artefacts removed 

c) Screening Classifier: Separates Non-tau From Tau 

d) Region-specific Tau Classifier: Classifies Tau into Different Types 

Tau 
Non-tau 
Ambiguous 

TA 
NFT 
CB 
TF 
Non-tau 
Ambiguous 

Figure 4.1: Tau pipeline overview. a) In Qupath, a whole slide image undergoes colour deconvolution and 

segmentation of region of interest. Artefacts are manually removed. b) DAB thresholding is performed to 

detect tau objects (in green) and features are extracted. c) The screening classifier separates non-tau artefacts 

from tau objects and d) tau objects are classified into different tau types. Final slide checking to ensure 

accurate results before subsequent analysis. 
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4.2. Materials and methods   
 

Table 4.1: Demographic, clinical and region-specific severity rating, overall PSP stage and 

clinical diagnosis of donor participants in the study. Brain slides from each participant used 

for training and as held-out test set are indicated. Not applicable (N/A) where data is not 

available in the database. 

Severity rating for each brain region includes 0 = absence, 1 = mild, 2 = moderate, 3 = 

severe. For clinical diagnosis of PSP participants, prob. probable, poss. possible, s.o. 

suggestive of, RS Richardson syndrome, CBS predominant corticobasal syndrome, SL 

predominant speech and language disorder. PF pre-frontal, 1°M Primary motor, PM Pre-

motor, OC Occipital, BG Basal ganglia, DN Dentate nucleus. 

 

 

 

4.2.1. Donors and brain regions  

 

A total of 19 formalin-fixed paraffin embedded slides were obtained from 14 brains (1-5 

slides per brain, median = 1.5, IQR = 1) donated by patients with a clinical and pathological 

diagnosis of Progressive Supranuclear Palsy (PSP) (Table 4.1). A total of 13 slides were used 

for model development, 6 cortical slides (1 pre-motor, 1 pre-frontal, 1 primary motor and 3 

occipital slides), 3 dentate nucleus slides and 4 basal ganglia slides. Occipital slides were 

Subject GP STN STR PF DN OC Stage 
Clinical  

diagnosis 
Gender 

Age at 

death 

(years) 

Disease 

duration 

(years) 

Training  Held-out  

1 2 2 2 0 1 0 2 prob. PSP-RS Female 76.4 8.75 
OC - 

2 2 2 2 1 1 0 3 prob. PSP-RS Male 74.5 6 
OC - 

3 3 3 3 3 2 0 4 poss. PSP-CBS Male 78.8 5.75 
- DN 

4 2 3 2 1 2 0 4 prob. PSP-RS Male 80.8 11.92 
OC - 

5 3 3 3 3 3 1 5 prob. PSP-RS Male 71 5.42 
- BG 

6 3 3 3 3 3 1 5 s.o. PSP-CBS Male 73.9 4 
- BG 

7 NaN NaN NaN NaN NaN NaN 5 poss. PSP-CBS Male 78 NaN 
- 

DN 

8 3 3 3 3 3 1 5 prob. PSP-RS Male 76.2 3.87 
PF, 1°M, BG PM 

9 3 3 3 3 3 1 5 poss. PSP-SL Female 78.4 8.83 
BG - 

10 3 3 3 2 3 1 5 prob. PSP-RS Female 69.9 5.33 
BG, DN - 

11 3 3 3 1 3 1 5 poss. PSP-CBS Female 78.9 5 
BG - 

12 2 3 2 3 2 1 5 prob. PSP-RS Male 71.5 5.17 
DN - 

13 2 2 2 2 2 1 5 prob. PSP-RS Female 74.7 6.58 
DN - 

14 3 3 2 2 3 2 6 s.o. PSP-CBS Female 80.5 8.42 
PM PF 
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used to only train the screening classifier due to heavy artefacts. The held-out test set 

consisted of 6 extra slides (2 cortical, 2 basal ganglia and 2 dentate nucleus slides). Training 

and held-out test slides were annotated by a trained expert (TP), and a neuropathologist (AQ) 

independently annotated the held-out test slides to calculate the inter-rater reliability.  

 

 

4.2.2. DAB thresholding and feature extraction 

 
Table 4.2: Haralick and morphological features extracted from detected objects and used for tau 

classification.  

Features 

Haralick features Angular second moment (F0) 

 Contrast (F1)  

 Correlation (F2) 

 Sum of squares (F3) 

 Inverse difference moment (F4)  

 Sum average (F5)  

 Sum variance (F6) 

 Sum entropy (F7) 

 Entropy (F8) 

 Difference variance (F9)  

 Difference entropy (F10) 

 Information measure of correlation 1 (F11) 

 Information measure of correlation 2 (F12) 

Morphology Area 

 Circularity 

 Length 

 Maximum diameter 

 Minimum diameter 

 Solidity 

 

A thresholder tool in QuPath software (Bankhead et al., 2017) was applied to the DAB channel 

to detect tau objects (resolution = high, pre-filter = Gaussian, smoothing sigma = 0, threshold 

= 0.25, minimum object size = 5mm2). Areas with DAB intensity above the threshold were 

labelled as tau objects. Optimal parameters of the thresholder were obtained from visual 

inspection to maximise the detection of tau and minimise the detection of noise and artefacts. 

 

To reduce the creation of artefacts resulting from bleeding of digital stains between the 

haematoxylin and DAB channels, we applied an initial screening classifier. This is a random 

forest classifier trained on all extracted features to separate non-tau from tau objects. Non-tau 

objects include artefacts from slide preparation, and brown biological elements such as iron 

granules and lipofuscin.  
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In total, 54 features were extracted from each tau object. These comprised 35 intensity features, 

where 5 features (minimum, maximum, mean, median and standard deviation) were calculated 

from 7 channels (red, green, blue, DAB, haematoxylin, brightness, and saturation), 6 

morphological features and 13 Haralick features from the DAB channel were also computed 

for textural information (see Table 4.2).  

 

4.2.3. Training set  

 

An important step of training a machine learning algorithm is to create a training set. This 

training set contains manually labelled data from which the machine learning algorithm 

‘learns’. To create an equal sampling area for each training slide, a grid view was used (grid 

size = 250 x 250 m). Each tau object labelled by DAB thresholding was manually labelled as 

belonging to one of the five classes ('coiled body' (CB), 'neurofibrillary tangle' (NFT), 'tufted 

astrocyte' (TA), 'tau fragments' (TF), and 'non-tau'). 

 

A screening classifier was trained on 9,827 tau and 12,006 non-tau objects annotated from 

cortical and basal ganglia slides (see Figure 4.2). The screening classifier employed a random 

forest algorithm using the features in Table 4.2. 

 

For the cortical tau classifier, training objects were sampled from boxes defined over areas of 

high tau burden, yielding 3,954 objects (661 CB, 126 NFT, 254 TA, 2913 TF). For basal ganglia 

and the dentate nucleus, 4-grid boxes with 1-grid spacing between the boxes were drawn to 

cover the entire area for sampling. The tau classifier for the putamen was trained on 3,699 tau 

objects (335 CB, 48 NFT, 200 TA, 3116 TF), and the tau classifier for the subthalamic nucleus 

and globus pallidus was trained on 13,686 tau objects (601 CB, 97 NFT, 12988 TF). The tau 

classifier for the dentate nucleus was trained on 2,186 tau objects (147 CB, 234 NFT, 1805 

TF). The tau classifiers for the subthalamic nucleus and globus pallidus, and dentate nucleus 

were not trained to detect TA as they are very rare in these regions, unlike in the putamen and 

the cortex. Sample size checks were carried out to ensure sufficient data for training the 

algorithm.  
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4.2.4. Held-out test set 

 

Two slides from each of the cortical, basal ganglia and dentate nucleus slides were randomly 

selected as held-out test slides and annotated by a trained expert (TP) and a neuropathologist 

(AQ). Cohen’s kappa was used to assess the inter-rater reliability alongside classification 

performance against the trained expert. In total, 5754 objects were annotated for cortical slides 

(296 CB, 78 NFT, 237 TA, 1761 TF, 3382 non-tau).  For the basal ganglia, 6528 objects were 

annotated (153 CB, 21 NFT, 2795 TF, 44 TA, 3515 non-tau), with 2207 objects in the globus 

pallidus, 2199 objects in putamen, 2122 objects in the subthalamic nucleus. For dentate 

nucleus, 2280 objects were annotated (18 CB, 26 NFT, 844 TF, 1392 non-tau). 
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4.2.5. Model development  

 

 

 

 

Cortex  

Basal ganglia  

Screening 

classifier  

Stratified  

 

10-fold CV 

N = 21,833 

9,827 tau 

12,006 non-tau 

 

Cortical tau 

classifier 
PU tau classifier 

STN & GP tau 

classifier 
DN tau classifier 

Brain region 

Cortex 

N = 3,954 
Putamen 

N = 3,699 

STN & GP 

N = 13,686 

DN 

N = 2,186 

Stratified 

10-fold CV 

661 CB, 126 NFT, 

254 TA, 2913 TF 

 

Stratified 

10-fold CV 

335 CB, 48 NFT, 

200 TA, 3,116 TF 

 

Stratified 

10-fold CV 

601 CB, 97 NFT, 

12,988 TF 

 

Stratified 

10-fold CV 

147 CB, 234 NFT, 

1805 TF 

 

Threshold 

tuning 

CB 0.202 

NFT 0.682 

TA 0.505 

TF 0.761 

 

Threshold 

tuning 

CB 0.196 

NFT 0.826 

TA 0.450 

TF  0.761 

 

Threshold 

tuning 

CB: 0.188 

NFT: 0.719 

TF: 0.775 

 

 

Threshold 

tuning 

CB: 0.409 

NFT: 0.422 

TF: 0.660 

 

 

a) Screening classifier 

b) Region-specific tau classifier 

Data normalization Feature selection 
Machine learning 

algorithm 

c) Stratified 10-fold cross validation 

Train Train Train Train Train Train Train Train Train Test 

Figure 4.2:  Schematic diagram showing annotated data and hyper-parameter tuning step for the a) 

screening classifier and b) region-specific tau classifiers. c) For each loop through the stratified 10-fold 

cross validation, the following steps were carried out: data normalization, hyper-parameter tuning of 

feature recursive elimination with a random forest and the balanced random forest algorithm for tau 

classification. PU Putamen, STN & GP Subthalamic nucleus and globus pallidus, DN Dentate nucleus. 
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Annotated objects from all slides of the same brain grouping were pooled together, yielding a 

dataset. In this study, there were 4 regional groupings: cortex, putamen, globus pallidus and 

subthalamic nucleus, and dentate nucleus. The dataset was then standardised (mean = 0, SD 

=1) and 10-fold stratified cross validation was used to train the region-specific cell classifiers. 

Balanced random forest algorithm was implemented for the tau classification pipeline. During 

the training phase (Figure 4.2), hyper-parameters of the feature selection step using recursive 

feature elimination with random forest and the balanced random forest for tau classification 

were tuned using a random search. The balanced random forest was optimised based on the 

mean area under the 4 precision-recall curves (PR-AUC) using a one-vs-rest approach (TA vs 

rest, CB vs rest, NFT vs rest, TF vs rest). 

 

Using the optimised hyper-parameters, class-specific thresholds were tuned to tackle class 

imbalance. Brain regions with similar tau morphology and distribution were grouped together 

where class-specific thresholds were tuned separately for each brain grouping.  

 

After classification, the precision, recall, macro F1-score and confusion matrix of the model 

were assessed. The model was then applied to the held-out test set to evaluate its performance 

and generalisability. 
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4.3. Results 

 

4.3.1. Sample size check  

 

First, we ensured there was sufficient data to train the screening and region-specific tau 

classifiers for optimal results. We plotted the mean PR-AUC from the validation sets in the 

10-fold cross validation to check the stability of the score when sampling from 10-100% of 

the dataset (Figure 4.3). The screening classifier had high PR-AUC of 0.99 (0.9906 - 0.9934) 

consistently from 10-100% of the dataset. All the tau classifiers showed a similar trend where 

mean PR-AUC was the lowest when 10% of the data was used and slowly increased as more 

data was used. The 95% confidence interval of the estimates also became smaller as more 

data was used to train the classifier. The estimates stabilised after 60-70% of the data was 

used where mean PR-AUC remained relatively unchanged and 95% confidence intervals 

stayed small. 
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Figure 4.3: Plots showing mean PR-AUC score for each classifier from 10-fold stratified cross validation when 10-

100% of the dataset was used. This shows the stability of PR-AUC to inform whether increasing dataset would be 

useful in training the classifiers. Mean (dot) and 95% confidence intervals (shaded area) are shown. 

a) Screening tau classifier b) Cortical tau classifier 

c) Putamen tau classifier d) STN&GP tau classifier 

e) DN tau classifier 
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4.3.2. Hyper-parameter tuning 

 
Table 4.3: Hyperparameter values from stratified 10-fold cross validation for the screening classifier 

and tau classifier for each regional grouping.  

Parameter Screening Cortical Putamen STN & GP Dentate nucleus 

N_features_to_select 46 40 34 34 34 

Sampling strategy ‘auto’ ‘not majority’ ‘not majority’ ‘not majority’ ‘not majority’ 

n_estimator 600 800 500 500 100 

min_sample_split 2 2 2 2 2 

min_sample_leaf 2 1 2 2 1 

max_features 1 0.2 0.6 0.6 0.2 

max_depth None 10 15 15 None 

max_sample None 0.75 0.75 0.75 None 

STN & GP Subthalamic nucleus and globus pallidus. 

 

All classifiers were optimised for PR-AUC where tau classifiers for different regions yielded 

different set of optimal hyperparameter values, except for the classifiers for basal ganglia nuclei 

(Table 4.3). All classifiers achieved PR-AUC scores of over 0.97 (Table 4.4) where the 

screening classifier achieved the highest PR-AUC of 0.99, and the tau classifier for the 

subthalamic nucleus and globus pallidus achieved the lowest PR-AUC of 0.97. Tau classifiers 

for the cortex, putamen, and dentate nucleus achieved similar PR-AUC scores of 0.98. Tau 

classifiers for non-cortical regions selected 34 from 54 features, while 40 features were selected 

for the cortical tau classifier and 46 features were selected for the screening classifier from the 

hyper-parameter tuning step. For feature importance (Figure 4.4), the top 10 most important 

features for the screening classifier were mainly staining intensities in hematoxylin, red and 

DAB channels. Tau classifiers for different brain regions showed the same trend where 

morphological features such as area and diameter of tau objects were the most important, 

followed by staining intensities and textural features.  
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a) Screening classifier b) Cortical classifier 

c) Putamen classifier d) STN & GP classifier 

e) DN classifier 

Figure 4.4: Top ten most important features of each classifier from hyper-parameter tuning.  a) screening classifier, 

b) cortical tau classifier, c) tau classifier for putamen, d) tau classifier for subthalamic nucleus and globus pallidus 

(STN & GP), and e) tau classifier for dentate nucleus (DN). 
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Table 4.4:  Classification performance of tau object identification with no threshold-moving applied, 

for the screening classifier, and tau classifiers. Classifiers were tuned for area under the precision-

recall curve (PR-AUC), where precision, recall and F1-score were calculated. Mean values from 

cross-validation and standard deviation in brackets are reported. 

Classifier Precision Recall F1-score PR-AUC 

Screening 0.96 (+/-0.044) 0.96 (+/-0.053) 0.96 (+/-0.060) 0.99 (+/-0.011) 

Cortex 0.92 (+/-0.037) 0.92 (+/-0.017) 0.91 (+/-0.027) 0.98 (+/-0.010) 

Putamen 0.90 (+/-0.046) 0.86 (+/-0.068) 0.86 (+/-0.061) 0.98 (+/-0.015) 

STN & GP 0.93 (+/-0.038) 0.86 (+/-0.056) 0.87 (+/-0.061) 0.97 (+/-0.020) 

DN 0.96 (+/-0.020) 0.93 (+/-0.041) 0.94 (+/-0.029) 0.98 (+/-0.016) 

STN & GP Subthalamic nucleus and globus pallidus, DN Dentate nucleus. 

 

 

Table 4.5:  Classification performance of tau object identification with the threshold-moving method 

applied, for the screening classifier and tau classifiers. Precision, recall and F1-score are calculated 

where mean values from cross-validation and standard deviation in brackets are reported. 

Classifier Precision Recall F1-score 

Screening 0.96 (+/-0.046) 0.96 (+/-0.057) 0.95 (+/-0.064) 

Cortex 0.95 (+/-0.025) 0.95 (+/-0.027) 0.95 (+/-0.021) 

Putamen 0.94 (+/-0.024) 0.92 (+/-0.049) 0.93(+/-0.037) 

STN & GP 0.95 (+/-0.026) 0.92 (+/-0.042) 0.93 (+/-0.027) 

DN 0.96 (+/-0.028) 0.95 (+/-0.026) 0.95 (+/-0.023) 

STN & GP Subthalamic nucleus and globus pallidus, DN Dentate nucleus. 
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Table 4.6:  Class-specific thresholds of tau classifiers for the cortex, putamen, subthalamic nucleus 

and globus pallidus (STN & GP) and dentate nucleus (DN). Thresholds were optimised for F1-score 

using a one-vs-rest approach. Not applicable (N/A) is reported where TA is not quantifiable. 

Classifier CB F1-score NFT F1-score TA F1-score TF F1-score 

Cortex 0.20 0.95 0.68 0.91 0.51 0.96 0.76 0.99 

Putamen 0.20 0.88 0.83 0.98 0.45 0.94 0.76 0.99 

STN & GP 0.19 0.90 0.72 0.95 N/A N/A 0.78 1.00 

DN 0.41 0.91 0.42 0.98 N/A N/A 0.66 0.99 

 

4.3.3. Threshold-moving optimisation 

 

After optimising the hyper-parameters for each classifier, the next step was to tune class-

specific thresholds for assigning labels to individual tau objects. Using a one-vs-rest approach, 

the class threshold with the highest F1-score was selected (Table 4.6). For the screening 

classifier, the threshold for tau (threshold = 0.46; F1-score 0.97) was lower than non-tau 

(threshold = 0.53; F2-score 0.97). The threshold for TF (threshold=0.76) was the highest for 

the cortical tau classifier, followed by NFT (threshold = 0.68), TA (threshold = 0.51) and CB 

class (threshold = 0.20). The class thresholds of the tau classifier for the putamen followed a 

similar pattern (TA threshold = 0.45, CB threshold = 0.20) but differed in that the NFT 

threshold (0.83) was higher than the TF class (0.76). The tau classifier for the subthalamic 

nucleus and globus pallidus and dentate nucleus followed the same trend, where the TF class 

threshold was highest (STN & GP = 0.78, DN = 0.66), followed by the NFT (STN & GP = 

0.72, DN = 0.42), and CB classes (STN & GP = 0.19, DN = 0.41).  

 

We further compared the classification performance of the threshold-moving method to the 

default method of assigning class labels based on F1-scores. The screening classifier with or 

without the threshold-moving method performed similarly, with F1-scores of 0.95 and 0.96 

respectively. Therefore, the screening classifier without threshold-moving was selected as the 

final screening model. For tau classifiers, the threshold-moving method improved the mean 

F1-score and were used in the final models (Table 4.4, Table 4.5).  
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4.3.4. Final models and confusion matrices 

 

Confusion matrices for each classifier are shown in Figure 4.5. The screening classifier 

achieved high accuracy for both tau (97.75%) and non-tau (93.75%) with minimal 

misclassification. Tau classification for cortical regions achieved the highest accuracy of 

99.17% in classifying TF correctly, followed by TA (96.71%), CB (93.53%) and NFT 

(89.17%). NFT was misclassified as CB most often (6.67%) while CB was most often 

misclassified as TF (3.08%). Similarly, tau classification for the putamen achieved the highest 

accuracy in classifying TF (99.03%) followed by TA (95.21%). However, the classifier 

misclassified CB most often (accuracy 84.16%) as opposed to NFT (accuracy 89.13%). CB 

was most wrongly classified as TF (10.87%) but not vice versa. NFT was wrongly classified 

as either TA (6.52%) or CB (4.35%), but never as TF whilst TA was most often classified as 

CB (3.72%). For tau classifiers in regions with no TA quantified, they performed best in 

classifying TF correctly (99.33% for dentate nucleus, 99.59% for subthalamic nucleus and 

globus pallidus). Tau classification was slightly lower in the subthalamic nucleus and globus 

pallidus compared to the dentate nucleus in classifying NFT (88.76% vs 96.89%) and CB 

(86.71% vs 90.07%) correctly. For misclassifications, a similar pattern was seen in both regions 

where CB was mostly misclassified as TF and NFT, while TF were rarely misclassified. The 

proportion of objects labelled as ‘Ambiguous’ from each of the tau classifiers was no more 

than 1 % of tau objects.  
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Figure 4.5: Mean confusion matrices from validation set in the 10-fold cross validation for a) screening classifier and 

tau classifier for b) the cortex, c) putamen, d) subthalamic nucleus and globus pallidus (STN & GP), and e) dentate 

nucleus (DN). 

b) Cortex classifier a) Screening classifier 

c) Putamen classifier d) STN & GP classifier 

e) DN classifier 
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4.3.5. Validation on the held-out test set 
 

Table 4.7:  Classification performance on a held-out test set. Precision, recall and F1-score are 

reported and supplemented with Cohen’s kappa to show agreement between the raters (algorithm, 

rater 1, rater 2). 

Region Precision Recall F1-score Algorithm & rater 1 Rater 1 & 2 

Cortex 0.98 0.96 0.97 0.94 0.96 

Putamen 0.97 0.98 0.98 0.97 0.99 

Subthalamic nucleus 0.91 0.94 0.92 0.87 1.00 

Globus pallidus 0.95 0.96 0.96 0.93 0.99 

Dentate nucleus 0.91 0.95 0.93 0.97 1.00 

 

From Table 4.7, using rater 1 as the ground truth (the trained expert), the F1-score of the 

classification performance in each of the brain region ranged from 0.92 to 0.98. The classifier 

performed best in the putamen, followed by the cortex, globus pallidus, dentate nucleus and 

subthalamic nucleus. Furthermore, Cohen’s kappa indicated that the agreement between rater 

1, the algorithm, and rater 2 across brain regions was high, at least 0.87. The agreement 

between two human raters was higher than the algorithm and rater 1 across all regions, where 

the smallest difference was by 0.02 in the cortex and putamen, followed by 0.03 difference in 

dentate nucleus, 0.06 in globus pallidus and 0.13 difference in the subthalamic nucleus, 

indicating low levels of classification uncertainty in each region. Looking at the confusion 

matrices (Figure 4.6), the algorithm achieved above 90% accuracy in classifying tau types 

across all brain regions but struggled more with classifying CB accurately in the cortex 

(89.44%) and dentate nucleus (83.33%) as they could be mistaken for TF.  

 

Figure 4.7 displays examples of correct classification of tau type-specific aggregates across 

all brain regions. CB has a coiled-like structure and can appear larger in subcortical structures 

compared to the cortex. Similarly, NFT is a highly pigmented oval structure and can appear 

larger in subcortical structures, particularly the subthalamic nucleus, than in the cortex. The 

dentate nucleus has numerous pre-tangles which are generally more diffuse and granular than 

NFT and are detected as NFT in the pipeline. Correctly classified TA have star-like tufts of 

densely packed fibres and appear larger than CB and NFT in general. TF consists of threads 
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and background tau burden that can often be difficult to associate with a cell. Figure 4.8 

illustrates the main misclassifications from the held-out test set where mistakes can occur 

when tau aggregates have deviant shape from the stereotypical range, meaning their features 

closely resemble other tau types.  
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a) Cortex 

c) Subthalamic nucleus 

b) Putamen 

d) Globus pallidus 

Figure 4.6: Confusion matrices of held-out test set by region a) cortex, b) putamen, c) subthalamic nucleus, d) 

globus pallidus, e) dentate nucleus. 

e) Dentate nucleus 
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Figure 4.7: Examples of correct classification from the held-out test set for each tau aggregate type from the 

cortex, putamen, subthalamic nucleus (STN), globus pallidus (GP) and dentate nucleus (DN). All images were 

cropped 150 x 150 m window size. TA examples are only drawn from the cortex and putamen. CB coiled 

body; NFT neurofibrillary tangle; TA tufted astrocyte; TF tau fragments. 

DN GP STN Putamen Cortex 

CB 

NFT 

TF 

TA 
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NFT as CB 

TA as TF 

CB as TF 

TA as CB 

TF as non-tau TF as CB 

CB as TA 

NFT as TA 

Figure 4.8: Example of possible misclassification observed between tau aggregate types from the held-out 

test set. Truth label as predicted label is presented. All images were cropped 150 x 150 m  window size. 

CB coiled body; NFT neurofibrillary tangle; TA tufted astrocyte; TF tau fragments. 
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4.4. Discussion   

 

4.4.1. Overview 

I have developed a robust and reliable digital pipeline for the quantification of post mortem 

tau pathology in PSP, achieving an accuracy comparable to expert assessment. An optimised 

balanced random forest machine learning algorithm with a threshold-moving method 

achieved satisfactory results. The pipeline achieved high classification performance in the 

held-out test set, F1-score ranging from 0.92 to 0.98 across brain regions in the study. When 

inspecting the correct and incorrect classifications, it can be observed that tau aggregates of 

the same type are heterogenous in their morphology. Those that deviate from the stereotypical 

norm of its own class were the most likely to be misclassified as other tau classes they most 

closely resembled, which is not surprising given the majority of features weighted highly in 

the classifier were morphological features. This is largely supported by the observation that 

CB is rarely ever misclassified as NFT or TA but the confusion between the more 

morphologically similar CB and TF as non-tau were more frequent.  

 

4.4.2. Strengths and limitations 

 

The main issue in project 1 was to do with the data not having sufficient information to 

distinguish between cell types reliably. The was less of an issue in the current project as tau 

aggregates of different classes are more distinctive than cells of different classes. Therefore, a 

balanced random forest with threshold-moving method was sufficient to achieve a high level 

of classification. 

 

There remain limitations to our study (Coughlin et al., 2022; Koga et al., 2021; Signaevsky et 

al., 2019). Despite the high accuracy and robustness of the pipeline, it is designed to only 

classify tau pathologies that are specific to PSP. If the post mortem slide has coexisting 

tauopathies such as Ageing-related Tau Astrogliopathy, Primary Age-related tauopathy or 

Alzheimer-type neurofibrillary tangle and thread pathology, the pipeline may not yield 

accurate results because it has not ‘seen’ them before. These coexisting pathologies are not 

uncommon in PSP but are generally mild in severity so in most cases their impact is minimal 

(Jecmenica Lukic et al., 2020; Martinez-Lage & Munoz, 1997; Togo et al., 2002).  
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 Moreover, like other pipelines analysing 2-dimensional instances of 3-dimensional tau 

aggregates, misclassification can occur. For example, it is difficult to identify tau types when 

two tau objects are superimposed, as this affects their morphology. Moreover, sectioning the 

slide can influence the size and shape of tau as cutting through the edge or mid-body of a tau 

object will result in different morphology. In addition, tau morphologies in the brain are not 

always well defined with clear cut features. Tau objects can be at an early stage of the 

development where the typical features of a specific tau type are not yet fully visible. This 

makes them ambiguous, therefore it is very challenging to reliably identify them correctly. 

These reasons contribute to the subjective nature of classifying tau pathologies. Lastly, the TF 

class is made up of parts of axonal tau threads, tufted astrocyte processes and other tau 

fragments. This presents a challenge to a truly accurate quantification, since a large 

proportion of these fragments will be associated with larger tau inclusions. 

 

The main strengths of our pipeline are its versatility permitting accurate assessment in 

multiple brain areas, and scalability allowing assessment across a large number of brain 

regions and a large number of subjects. The accuracy of the method was similar for neuronal 

and glial tau pathology densities. We have gone beyond former proof of concept studies, 

which generally include a small subset of brain regions (Coughlin et al., 2022; Koga et al., 

2021; Signaevsky et al., 2019). We deliberately applied the machine learning algorithm to 

both cortical and subcortical structures. This is particularly important in PSP which affects 

both cortical and basal ganglia regions.  

 

With this pipeline, more detailed information can be extracted beyond the current semi-

quantitative method of grading tau pathology in post-mortem brains. It could be useful for 

mechanistic studies in uncovering more subtle pathological phenomena and for post-mortem 

diagnosis, as the pipeline could aid pathologists by providing fast and rich information.  
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Chapter 5: Testing tau quantification pipeline beyond the 

held-out test set  

 

 

5.1. Introduction  

 

In PSP, the distribution of tau type-specific aggregates have been well characterised by the 

current PSP staging scheme (Kovacs et al., 2020). The PSP staging scheme has also been 

validated in an independent cohort where PSP stage was related to clinical severity prior to 

death (Briggs et al., 2021). Neuropathological examination using a semi-quantitative 

approach is the current standard method for examining neuropathology in post mortem 

brains, but it has limitations (Scheltens & Rockwood, 2011). Using ordinal measure of stage 

severity to reflect tau burden may also have suboptimal clinicopathologic predictive power as 

it may mask the subtle pathological changes, which is particularly relevant for studies of 

disease mechanisms (Marx et al., 2022; Walker et al., 2017).  

 

No study has yet compared semi-quantitative to quantitative approach in quantifying tau 

burden in PSP across multiple brain regions. As PSP staging system is the current standard, it 

can act as the ground truth, where the degree of agreement will indicate how robust the 

pipeline is against a large number of novel slides which may contain out-of-sample objects. 

For additional validation, it will be important to compare the clinicopathologic predictive 

power of PSP stage to digitally quantified tau of clinical severity.  

 

5.1.1. The present study 

 

Here, I used the tau quantification pipeline to investigate tau pathology in post mortem slides 

from PSP and control participants. I first applied the pipeline to histology slides from both 

groups, where total tau was quantified from control participants, and 4 tau objects 

(‘neurofibrillary tangles’ (NFT), ‘coiled bodies’ (CB), ‘tufted astrocytes’ (TA), and ‘tau 

fragments’ (TF)) were quantified for PSP participants.   
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My objectives are to:  

1. Assess the correlation between tau type-specific burden to understand the 

relationship between tau types across three spatial levels (all brain regions, 

cortical regions, and subcortical regions) in PSP donors. 

▪ I predict that tau burden will be more severe in subcortical structures 

than cortical structures, where occipital region should have less tau 

burden than other cortical regions. 

▪ I predict that TF, CB and NFT density will generally be higher than 

TA density, but TA density is likely to be higher than other types in the 

cortex. 

2. Validate tau burden estimates from the pipeline, correlating tau burden against 

the PSP pathology staging scheme. 

▪ There will be at least moderate correlation between digitally quantified 

tau burden and PSP pathology staging. 

3. Assess whether neuropathological severity (PSP stage, digitally quantified tau 

burden) predicts clinical severity (PSP rating scale, PSPRS) score in PSP 

donors. 

▪ Digitally quantified tau burden is hypothesised to have higher 

predictive power of clinical severity than PSP stage. 

4. Compare total tau burden estimates in post mortem slides from control and 

PSP donors to assess the pipeline’s robustness when there should be no or 

minimal tau. 

▪ PSP donors should have higher tau burden than control donors across 

all brain regions, specifically in subcortical regions. 
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5.2. Materials and method 
 

Table 5.1: Demographic, clinical and region-specific severity rating, overall PSP stage and 

clinical diagnosis of donor participants in the study. Not applicable (N/A) where data is not 

available in the database. 

Severity rating for each brain region includes 0 = absence, 1 = mild, 2 = moderate, 3 = 

severe. For clinical diagnosis of PSP participants, prob. probable, poss. possible, s.o. 

Subject GP STN STR PF DN OC Stage 
Clinical  

diagnosis 
Gender 

Age at 

death 

(years) 

Disease 

duration 

(years) 

Last 

PSPRS 

Total 

PSPRS 

to 

death 

(years) 

1 2 2 2 0 1 0 2 prob. PSP-RS Female 76  8.75 63 0.32 

2 3 3 2 0 1 0 2 poss. PSP-PGF Male 75 4.62 26 0.52 

3 2 2 2 1 1 0 3 prob. PSP-RS Female 55 5.5 53 0.41 

4 2 2 2 1 1 0 3 prob. PSP-RS Male 74 6 45 0.67 

5 N/A N/A N/A N/A N/A N/A 3 prob. PSP-RS Male 72 N/A N/A N/A 

6 2 3 2 1 N/A 0 4 prob. PSP-RS Female 65 13.92 54 0.75 

7 3 3 3 3 2 0 4 poss. PSP-CBS Male 78 5.75 43 0.69 

8 2 2 2 1 2 0 4 poss. PSP-CBS Female 79 3.42 49 0.74 

9 3 3 2 2 3 0 4 prob. PSP-RS Male 77 6.33 55 0.74 

10 2 2 2 1 2 0 4 prob. PSP-RS Male 78 5.33 54 0.56 

11 2 3 2 1 2 0 4 prob. PSP-RS Male 80 6.5 62 0.11 

12 2 3 3 1 2 0 4 prob. PSP-RS Female 71 4.58 45 0.13 

13 3 N/A 2 1 2 0 4 poss. PSP-CBS Female 75 2.83 N/A N/A 

14 2 N/A 2 2 3 0 4 prob. PSP-RS Male 64 5.08 38 1.09 

15 2 3 2 1 2 0 4 prob. PSP-RS Male 80 11.92 76 1.3 

16 2 3 2 3 2 1 5 prob. PSP-RS Male 71 5.17 38 2.21 

17 3 3 3 3 3 1 5 poss. PSP-SL Female 78 8.83 72 1.94 

18 3 3 3 2 3 1 5 prob. PSP-RS Male 63 8.83 62 2.44 

19 3 3 3 3 3 1 5 prob. PSP-RS Male 76 3.87 51 0.42 

20 2 2 2 2 2 1 5 prob. PSP-RS Female 74 6.58 58 2.66 

21 2 N/A 2 2 2 1 5 prob. PSP-RS Male 88 5.08 53 0.3 

22 3 3 3 2 3 1 5 prob. PSP-RS Female 69 5.33 51 0.36 

23 2 N/A 2 2 3 1 5 prob. PSP-RS Female 71 6.17 60 0.05 

24 3 3 3 3 3 1 5 prob. PSP-RS Male 71 5.42 43 1.89 

25 3 3 3 3 3 1 5 poss. PSP-CBS Male 73 4 N/A N/A 

26 3 3 3 1 3 1 5 poss. PSP-CBS Female 78 5 48 0.18 

27 3 3 3 2 3 1 5 prob. PSP-RS Male 84 8.75 59 2.42 

28 3 3 3 3 3 1 5 prob. PSP-RS Female 84 4.25 67 0.78 

29 3 3 3 3 2 1 5 prob. PSP-RS Female 78 16.75 52 0.99 

30 N/A N/A N/A N/A N/A N/A 5 poss. PSP-CBS Male 78 N/A N/A N/A 

31 3 3 2 2 3 2 6 poss. PSP-CBS Female 80 8.42 73 0.23 

32 3 3 3 3 3 2 6 prob. PSP-F Male 75 8.42 81 0.76 
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suggestive of, RS Richardson syndrome, CBS predominant corticobasal syndrome, SL 

predominant speech and language disorder. PF pre-frontal, 1°M Primary motor, PM Pre-

motor, OC Occipital, BG Basal ganglia, DN Dentate nucleus. 

 

 
Table 5.2: Demographic and number of slides available from healthy control donor participants in the 

study. 

Subject Gender Age at death (years) Braak stage No. of slides 

1 Male 87 I 3 

2 Female 70 I 3 

3 Female 72 II 4 

4 Male 74 II 3 

5 Female 70 II 4 

6 Male 68 II 3 

7 Female 84 III 1 

8 Male 82 III 2 

 

 

 
Table 5.3: Brain regions available from each control donor participant in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject Pre-frontal Temporal Parietal Occipital Cingulate Basal ganglia 

1 ✓ ✓ ✓ - - - 

2 ✓ ✓ ✓ - - - 

3 ✓ ✓ ✓ - ✓  

4 ✓ ✓ - ✓ - - 

5 ✓ ✓ - ✓ - ✓ 

6 ✓ ✓ ✓ - - - 

7 - - - ✓ - - 

8 - ✓ - ✓ - - 
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5.2.1. Donors and brain regions  

 

A total of 240 formalin-fixed, paraffin embedded slides were obtained from 32 brains (2-10 

slides per brain, median = 8.5, IQR = 6) donated by patients with a clinical and pathological 

diagnosis of Progressive Supranuclear Palsy (PSP) (Table 5.1). The slides included 185 cortical 

slides (29 pre-frontal, 21 premotor, 20 primary motor, 22 primary somatosensory, 23 temporal, 

20 parietal, 28 occipital, 22 cingulate), 25 basal ganglia and 30 cerebellar (dentate nucleus) 

slides. Of the 240 slides, 13 slides were used for model development and 6 as a held-out test 

set (see in chapter 2). Following pipeline development, 227 novel slides were used for 

validation against the PSP staging scheme (Kovacs et al., 2020) and all slides were used for 

further analyses. A total of 23 slides from 8 control donors (Table 5.2, Table 5.3) with no known 

history of neurodegenerative diseases were used to compare to PSP slides to further validate 

the tau quantification pipeline. 

 

5.2.2. Tau quantification 

 

The four types of tau quantified in PSP brains were CB, NFT, TA and TF. This enabled the 

calculation of total tau (all tau types) and tau hallmarks (all tau types excluding TF). Using raw 

counts of tau quantified, tau density was calculated as the number of tau objects per unit area 

(m2) of the region quantified. For cortical regions, tau density was quantified in cortical grey 

matter, while the entire nuclei area was used for basal ganglia and the dentate nucleus. 

 

5.2.3. Correlation amongst tau aggregate types and with PSP staging 

 

Polar plots using the plotly package in Python (Plotly Technologies Inc., 2015) were used to 

show regional tau distribution quantified from the pipeline for both total tau and tau density 

by tau type. Pearsons’s correlation coefficient was used to compare the correlation between 

tau aggregate types across all brain regions, and separately in cortical and subcortical regions. 

Subsequently, Spearman's rank correlation coefficient was used to compute the correlation 

between tau density quantified across regions and PSP stage. Correlations between region-

specific tau density and region-specific rating were also computed within regions of the PSP 

staging scheme. 
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5.2.4. Clinicopathological correlations 

 

For this analysis, we included 28 PSP subjects with available PSPRS scores. Due to the 

skewness of the tau density distribution, a logarithmic transformation (log10) was applied. To 

investigate the relationship between post mortem tau and PSPRS score, Bayesian linear mixed 

regression models were used, employing the brms package in R (version 1.4.1717) (Bürkner, 

2017, 2018, 2021). The analysis was first carried out with PSP stage as the predictor, PSPRS 

total score as the outcome variable, and disease duration and PSPRS to death interval as 

covariates to establish a baseline relationship between the staging scheme and PSPRS score. 

The same analysis was repeated with tau density quantified from all regions, and separately 

from only cortical and subcortical regions as the predictor. A single tau density value from each 

participant was obtained by first summing total tau count and total brain area from all brain 

slides considered (all regions, only cortical or subcortical regions), and dividing total tau count 

by total area. 

 

To test whether tau type-specific burden was more informative of PSPRS score than total tau 

burden, total tau and tau type-specific models were created for model comparison. To estimate 

the strength of evidence in favor of the tau type-specific models against the total tau model, we 

used a standard Bayes Factor (BF) cut-off of 3 to indicate at least moderate evidence 

(Kruschke, 2011). 

 

In the final model, the strength of regression coefficients were assessed using the Region of 

Practical Equivalence (ROPE) approach. If 95% of the credible interval (Crl) of the regression 

coefficient falls completely within the ROPE, then the effect of the parameter would be 

equivalent to the null value for practical purposes (Kruschke, 2011; Kruschke & Liddell, 

2018a). 

 

A Gaussian model family was selected based on the distribution of the data. A weakly 

informative normal prior (mean=0, SD =100) was chosen for the regression coefficients and 

default priors were used for the intercept (student-t prior; df=3, mean = 53.5, SD = 12.6) and 

the sigma (student-t prior; df=3, mean =0, scale = 12.6).  

 

Due to the complexity of our analysis, sensitivity analysis of priors was conducted only to 

assess the effect of prior choice on neuropathological severity (PSP stage, tau burden) in the 
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final models. We chose two other weakly informative normal priors, one more informative 

(mean = 0, SD = 50) and the other less informative (mean=0, SD = 150) to assess the 

sensitivity of posterior estimates on the prior choice.  

 

5.2.5. Comparison between tau burden in control and PSP 

participants 

 

Boxplots using seaborn package (Waskom, 2021) in Python were used to compare total tau 

density quantified from control slides to the corresponding brain region from PSP participants. 

Visual inspection was carried out in Qupath (Bankhead et al., 2017) to confirm the findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

131 
 

5.3. Results 

 

5.3.1. Tau density across cortical and subcortical regions 

 

Total tau was quantified, and cases were grouped based on their PSP pathology stage (stages 

1-6), shown in Figure 5.1. Tau pathology density in subcortical regions was greater than in 

cortical regions, in keeping with the tau staging system suggesting earlier subcortical 

involvement. In stage 2, tau accumulation was most prevalent in the subthalamic nucleus and 

globus pallidus, followed by the dentate nucleus and putamen with minimal tau in cortical 

regions. In stage 3, there was greater tau pathology in subcortical regions and tau could be seen 

across multiple cortical regions, especially in the frontal regions, while tau pathology in the 

occipital lobe was minimal. From stages 4 to 6 tau pathology was greatest in subcortical 

regions, particularly the subthalamic nucleus and globus pallidus, but the density of tau 

pathology in the cortical areas increases with each stage, particularly in the frontal lobe. 

 

In the cortex, frontal regions were affected to a greater degree which includes primary motor 

and pre-motor regions. Temporal and parietal regions showed tau accumulation but to a lesser 

degree than frontal regions, while the occipital region still showed the least accumulation of 

tau. Examining tau type-specific density plots (Figure 5.2), the density of tau fragments was 

higher than other tau types across all PSP stages.  

 

When focusing on individual tau hallmarks (not including TF) across PSP stages, CB density 

was the most abundant tau type. In subcortical regions, this was followed by NFT density, then 

TA density, but the pattern is reversed in cortical regions. In stage 2, CB and NFT densities 

followed the general pattern of total tau accumulation where they were predominantly found 

in subcortical regions, specifically the globus pallidus and subthalamic nucleus. From stages 3 

– 6, CB and NFT appeared in cortical regions and continued to accumulate in subcortical 

regions. The main cortical regions with high CB and NFT densities included motor and parietal 

regions, with the least affected area being the occipital region. 

 

TA density was highest in the putamen and could be observed in cortical regions. In contrast to 

CB and NFT, TA density was the highest in the putamen in stage 2 and was minimal in cortical 

regions. As the stage progressed, TA density increased predominantly in the putamen and 
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cortical regions and TA density showed the same pattern as NFT and CB accumulation in 

cortical regions. 

Figure 5.1:  Logarithmic total tau density plot from PSP stage 2 (least severe) to 6 (most severe) across all PSP 

participants from both cortical and subcortical structures. STN subthalamic nucleus, GP globus pallidus, PU putamen, 

DN dentate nucleus, PF pre-frontal, PM pre-motor, 1°M primary motor, 1°S primary somatosensory, T temporal, P 

parietal, OC occipital, C cingulate. 
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Figure 5.2: Logarithmic tau density plot by tau type per PSP stage from stage 2 (top) to 6 (bottom) across all PSP 

participants and brain regions sampled. CB density plot (green), NFT density plot (red), TA density plot (yellow) and 

TF density plot (orange). STN subthalamic nucleus, GP globus pallidus, PU putamen, DN dentate nucleus, PF pre-

frontal, PM pre-motor, 1°M primary motor, 1°S primary somatosensory, T temporal, P parietal, OC occipital, C 

cingulate. 
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5.3.2. Correlation between tau aggregate types 

 

Correlation between tau aggregate types were plotted across all brain regions, cortical and 

subcortical regions (Figure 5.3). Across all spatial levels, total tau density has a perfect 

correlation with TF density (r=1.00, p<0.001), followed by strong correlation with CB 

density (r=0.71 to 0.89, p<0.001). There was a strong correlation between total tau and NFT 

density across cortical regions (r=0.69, p<0.001), but modest correlation across the whole 

brain (r=0.37, p<0.001) and subcortical regions (r=0.29, p=0.007). Total tau had no 

significant correlation with TA density at the whole brain level (r=0.01, p=0.84) but strong 

correlation across cortical regions (r=0.88, p<0.001). 

 

 Tau hallmark density (all tau types excluding TF) generally showed strong positive 

correlation with total tau density (r=0.68 to 0.95, p<0.001). CB density (r=0.98 to 1.00, 

p<0.001) showed correlation to tau hallmark density across all spatial levels, followed by 

NFT density (r=0.50 to 0.73, p<0.001). Tau hallmark density showed strong correlation with 

TA density in cortical regions (r=0.78, p<0.001) but not at the whole brain level (r=0.34, 

p<0.001). 

 

Next, the relationship between tau aggregate types were investigated. The relationship 

between CB or NFT density with other tau aggregate types was the consistent across all 

spatial levels, unlike for TA and TF density. CB density correlated most with TF density 

(r=0.69 to 0.85, p<0.001), followed by NFT density (r=0.44 to 0.67, p<0.001) and TA density 

(r=0.22 to 0.66, p<0.001). NFT density correlated most strongly with CB density, followed 

by TF density (r=0.28 to 0.67, p<0.05) and TA density (r=0.16 to 0.54, p<0.05).  TA density, 

at the whole brain level, showed a weak correlation with CB density (r=0.22, p<0.001), 

followed by NFT density (r=0.16, p=0.008) and no correlation with TF density (r=0.00, p = 

0.99). The order changed slightly across cortical regions where TA density correlated most 

strongly with TF density (r=0.89, p<0.001). TF density, at the whole brain level, showed the 

highest correlation with CB density (0.67, p<0.001), followed by NFT density (0.36, 

p<0.001) and no correlation with TA density. Across cortical level, TF density correlated 

most strongly with TA density (r=0.89, p<0.001), followed by CB density (r=0.85, p<0.001) 

and NFT density (r=0.67, p<0.001). The order was preserved at subcortical level with CB 

density (r=0.71, p<0.001) showing higher correlation to TF density than NFT density (r=0.28, 

p=0.007). 
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Taken together, these findings demonstrate that total tau density was mainly driven by TF 

density and when only focusing on tau hallmark density, CB density was the main driver 

across all spatial levels. In general, the different type-specific tau aggregates generally 

correlated with one another. Specifically, CB correlated most strongly with TF density, 

followed by NFT density across all spatial levels and TA density correlated most strongly 

with other tau types particularly across cortical regions. 

 

Figure 5.3: Correlation matrices of tau aggregate types across a) all regions, b) cortical and c) subcortical 

regions in the study. All correlation coefficients are significant at p<0.001. *0.001<p-value<0.05, **p-value > 

0.05, 
 

a) Whole brain 

b) Cortical regions c) Subcortical regions 

* 

* 

* * 

** 

** 

* 

* 

* 
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5.3.3. Correlation to the current PSP staging scheme 

 
Table 5.4:  Spearman's correlation coefficients between tau density and PSP stage when considering 

all brain regions, only cortical regions, and only subcortical regions. *Correlations significant at P 

<0.05, ** Correlations are significant at P<0.001. Not applicable (N/A) as TA density is only 

quantifiable in putamen. 

 

Across all brain regions in the study, there was a positive correlation between tau hallmark 

(CB+NFT+TA) density quantified from all regions and the overall PSP stage (Table 5.4). CB 

and TA densities showed the strongest correlation to PSP stage when considering only cortical 

structures. NFT density also generally showed positive correlation to PSP stage, but the 

correlations were weaker than that of the glial tau. 

 

 

 

 

 

 

 

 

 

 

 

 

Tau type All regions Cortical regions Subcortical regions 

Total tau density 0.37** 0.57** 0.27* 

CB+NFT+TA density 0.47** 0.59** 0.39** 

CB density 0.46** 0.58** 0.38** 

NFT density 0.37** 0.51** 0.24* 

TA density 0.37** 0.62** N/A 

TF density 0.36** 0.56** 0.26* 
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Table 5.5: Spearman’s correlation coefficients between tau density from each region in the PSP 

staging system, and the overall PSP stage. Globus pallidus (GP), subthalamic nucleus (STN), putamen 

(PU), dentate nucleus (DN), pre-frontal (PF) and occipital (OC) regions. *Correlations are significant 

at p<0.05, **Correlations are significant at p<0.001. Not applicable (N/A) where TA density is not 

quantifiable.  

 

 

Next, we investigated the contribution of tau quantified at each region in the PSP staging 

system (Table 5.5) to the overall PSP stage. Total tau and tau hallmark density in the occipital 

region showed the highest correlation to the overall PSP stage, followed by pre-frontal, dentate 

nucleus, subthalamic nucleus, putamen and globus pallidus respectively. These trends are in-

line with the defining features of PSP staging where subcortical regions are heavily affected 

early in the disease stage therefore tau density in these regions is less informative in 

distinguishing between higher PSP stages than tau density in cortical regions that is a feature 

of mid to late disease stages. 

 

When looking at individual tau type-specific densities, CB density in the globus 

pallidus/subthalamic nucleus and dentate nucleus showed the strongest contribution in 

comparison to other tau types to PSP stage. In contrast, NFT density in putamen, TF and TA 

density in the occipital region, and TA density in the pre-frontal region showed the strongest 

contribution to overall PSP stage when compared to other region-specific tau densities. 

 

 

 

 

Tau type GP STN PU DN PF OC 

Total tau density 0.19 (p=0.41) 0.34 (p=0.13) 0.28 (p=0.22) 0.63** 0.70** 0.85** 

Tau hallmark density 0.30 (p=0.19) 0.51* 0.37 (p=0.10) 0.71** 0.75** 0.81** 

CB density 0.30 (p=0.19) 0.49* 0.37 (p=0.10) 0.72** 0.67** 0.79** 

NFT density 0.12 (p=0.61) 0.12 (p=0.60) 0.53* 0.68** 0.54* 0.69** 

TA density N/A N/A 0.33 (p=0.14) N/A 0.73** 0.83** 

TF density 0.16 (p=0.48) 0.34 (p=0.13) 0.27 (p=0.24) 0.60* 0.67** 0.84** 
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Table 5.6:  Spearman's correlation coefficients between tau density from each region in the PSP 

staging and region-specific severity rating. Globus pallidus (GP), subthalamic nucleus (STN), 

putamen (PU), dentate nucleus (DN), pre-frontal (PF) and occipital (OC) regions. *Correlations are 

significant at p<0.05, **Correlations are significant at p<0.001. Not applicable (N/A) where TA 

density is not quantifiable. 

Tau type GP STN PU DN PF OC 

Total tau density 0.69* 0.66* 0.87** 0.51* 0.83** 0.84** 

Tau hallmark density 0.62* 0.44 (p=0.06) 0.83** 0.58* 0.73** 0.80** 

CB density 0.62* 0.50* 0.79** 0.63* 0.63* 0.79** 

NFT density 0.50* 0.20 (p=0.42) 0.61* 0.56* 0.44* 0.72** 

TA density N/A N/A 0.87** N/A 0.81** 0.84** 

TF density 0.67* 0.66* 0.87** 0.48* 0.81** 0.82** 

 

Finally, we investigated the correlation between the region-specific tau density and the 

manually assessed region-specific severity rating to understand which tau type is most 

contributory to grading the severity of each region (Table 5.6). TF density in the basal ganglia 

nuclei showed the strongest positive correlation to region-specific severity rating when 

compared to other tau types. CB density in the dentate nucleus and TA density in cortical 

regions showed the highest correlation to manually rated region-specific severity. The 

correlation between NFT density and region-specific rating was lower than that of glial density 

across all regions. In general, the correlation strength between total tau or tau hallmark density 

to region-specific severity rating is similar to the highest correlation strength between each tau 

type-specific density to region-specific density.   
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5.3.4. PSP stage, tau burden and PSPRS scores 

 

We assessed whether there was a relationship between clinical severity (using the last PSPRS 

score prior to death) and neuropathological severity (using the PSP pathology stage at post 

mortem) using Bayesian regression analysis. Across PSP stages (Figure 5.4), there was 

evidence that clinical severity of stage 6 patients was higher than stage 2 patients (median 

PSPRS=28.44, Crl 6.71 to 48.57), while there was insufficient evidence that clinical severity 

differed between stage 3-5 patients versus stage 2 patients. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5.4: A boxplot showing PSPRS score and PSP stage (left) and a plot showing posterior distribution 

of the regression coefficients of the model PSPRS score ~ PSP stage + disease duration + PSPRS-death 

interval (right). Median (circle) and 95% credible interval (line) are plotted for each parameter alongside 

ROPE [-1.24 to 1.24] (blue region). 
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Table 5.7:  Bayes’ factor (BF) for each tau model compared against the total tau density model in 

predicting PSP rating scale (PSPRS) are presented. The comparison is made in 3 regional groupings; 

logarithmic tau density quantified across all brain regions, and separately for cortical and subcortical 

regions. **indicates BF > 3 (substantial evidence for tau type-specific density that it correlates better 

with PSPRS score than total tau density) or BF<1/3 (substantial evidence for total tau model as 

compared to tau type-specific model), and 1/3 < BF < 3 suggests the evidence from the available data 

is inconclusive. Not applicable (N/A) as TA density is only quantifiable in putamen. 

Model All regions Cortical regions Subcortical regions 

CB density 0.69 0.29** 0.47 

NFT density 0.82 0.29** 10.52** 

TA density  0.84 0.31** N/A 

TF density  0.83 1.10 0.95 

 

Next, we investigated whether total tau burden was informative of the PSPRS score when tau 

was quantified from all regions, only cortical and only subcortical regions. Despite a positive 

trend between total tau burden quantified from all regions (median = 10.96, Crl -0.24 to 21.65, 

1.87% in ROPE) and only subcortical regions (median = 3.89, Crl -7.08 to 15.00, 14.79% in 

ROPE), there was insufficient evidence to support their relationship with PSPRS score. 

However, total tau burden quantified from only cortical regions (median = 10.68, Crl 2.66 to 

18.91) was positively associated with PSPRS score.  

To investigate whether tau type-specific burden is more informative of PSPRS score than total 

tau burden, we assessed tau type-specific models against a total tau model (Table 5.7). Total 

tau burden and tau type-specific burden were equally predictive of PSPRS score when tau was 

quantified from all regions. The total cortical tau burden was more predictive of PSPRS score 

than cortical CB, NFT and TA density but not cortical TF density (BF=1.10). However, when 

tau was quantified from only subcortical regions, NFT density was a better predictor of PSPRS 

score than total tau burden (BF = 10.52) and was chosen as the final model for subcortical tau 

burden. Upon final model inspection (Figure 5.5), there was decisive evidence supporting 
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higher tau burden and PSPRS score when tau was quantified from either only cortical or 

subcortical regions. 

 

 

Figure 5.5: (a) A scatterplot showing PSPRS score, and total tau density quantified from all regions 

(left), and a plot showing the posterior distribution of the regression coefficients of the final model 

PSPRS score ~ tau density + disease duration + PSPRS-death interval with possible parameter values 

(right). Mean (circle) and 95% credible interval are plotted with ROPE [-1.24 to 1.24] (blue region). 

Plots from the final model when tau was quantified from only cortical regions with ROPE [-1.24 to 

1.24] (b) and only subcortical regions with ROPE [-1.26 to 1.26] (c) are also presented. 

a) 

b) 

c) 
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5.3.5. Sensitivity analysis of priors 
 

 

 

When designing a Bayesian analysis, the choice of prior can influence the posterior distribution 

and the estimation of statistical differences. We assessed the sensitivity of the posterior 

distribution of the effects of interest (neuropathological severity) from the chosen prior choice 

of N (0,100) by setting other weakly informative priors. Due to the complexity of our analysis, 

sensitivity analysis was only conducted on the final models and posterior distributions of the 

neuropathological severity was qualitatively assessed. Figure 5.6 shows that choosing a less 

broad prior of N (0,50) or a broader prior of N (0,150) does not substantially change the 

conclusion of the analysis when considering ROPE: the results are robust across other weakly 

informative prior choices.  

 

Figure 5.6: Sensitivity analysis plots showing the effect of setting alternative weakly informative priors on the regression 

coefficient of the effect of interest (PSP stage, tau burden) in the final models. Normal distribution, N (mean, standard 

deviation), was chosen with mean centred at zero, and standard deviation was varied from 50, 100 and 150.  
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5.3.6. Total tau burden: PSP vs control subjects 

 

We quantified total tau density in available brain slides from controls and compared to the 

corresponding brain regions in PSP (Figure 5.7). For controls, a small amount of tau burden 

could be detected, particularly in parietal, cingulate and basal ganglia nuclei. Pre-frontal, 

temporal and occipital regions in showed higher tau burden that other regions in controls. 

When compared to the corresponding brain regions from PSP participants, PSP showed 

higher tau burden than controls, except for the occipital region. Upon visual inspection of the 

occipital slides (Figure 5.8), there was one control slide with high tau burden which was 

likely due to age-related tau astrogliopathy (ARTAG). Other occipital slides showed minimal 

tau burden, in keeping with the reported tau burden from the pipeline. 
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Figure 5.7: Boxplots showing total tau density quantified for each brain region 

between PSP and control subjects.  
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Figure 5.8: Examples from two occipital slides from control subjects. a) age-related tau astrogliopathy is observed 

(with scale bar 100μm) and b) tau aggregates that can generally be found in some control slides (with scale bar 

50μm). 

b) 

a) 
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5.4. Discussion 

 

5.4.1. Overview 

 

By assessing all the major brain regions relevant to the established pathological staging of 

PSP, we were able to validate the pipeline against the best current PSP pathology staging 

scheme (Kovacs et al., 2020), providing confidence in the robustness of the pipeline and 

additional insights into PSP tau pathology. We found a strong correspondence between our 

automated tau quantification and the standard, manual staging approach. We were able to 

demonstrate that TA density in cortical areas showed the strongest relation to PSP stage, 

which is consistent with the PSP staging system where TA density is the focus in cortical 

regions when grading severity.  

 

We went further by investigating which regions are the most informative towards PSP 

staging, finding that the dentate nucleus, frontal and occipital regions were more informative 

than basal ganglia nuclei. This is consistent with the known severe involvement of the basal 

ganglia nuclei from stage 2 onwards as per the described PSP staging; as a result, the severity 

of pathology in the basal ganglia contributes less to distinguishing between higher PSP 

stages. The occipital region involvement corresponds to the PSP stage 4 and onwards, which 

likely explains the strong correlation between tau hallmark density in the occipital lobe and 

PSP stage. 

 

To build on these insights, we investigated the relationship between measured tau type 

density and manually assessed region-specific severity rating to understand which tau types 

most influence the severity rating. We found that TA (and tau fragments) density correlated 

strongest with the severity rating in the putamen. These findings demonstrate the utility of 

automated quantitative neuropathology to validate and investigate the staging and 

progression of tau neuropathology. 

 

Given our algorithm’s ability to quantify distinct types of tau inclusion, we investigated how 

the quantity and type of tau inclusions were related to clinical severity prior to death. 

Although there is some uncertainty given the small numbers at each stage, my results suggest 

that the most advanced PSP neuropathology stage 6 had the most severe clinical syndrome 
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measured by PSPRS scores. I demonstrated the advantage of the quantified approach by 

showing that that cortical tau density and subcortical NFT density were strongly associated 

with clinical severity measured by the PSPRS. We found largely insufficient evidence to 

demonstrate a linear relationship between tau burden and PSPRS score when quantified from 

all regions in the study. The use of Bayesian statistics indicated that more data would help to 

test (accept or reject) this association. I was also able to demonstrate that in subcortical 

regions only NFT burden is associated with disease severity. Overall, these results highlight 

the importance of being able to assess tau type-specific burden in specific anatomical 

locations, instead of using either stage alone or total tau burden in all regions.  

 

We further validated the tau quantification pipeline on control slides and compared these to 

the tau burden detected on PSP slides. The result was, as expected, that control slides have 

less tau burden than PSP slides, suggesting that the pipeline can reliably detect tau aggregates 

with minimal noise. As control slides are not expected to have PSP-related tau pathology, we 

did not perform tau classification step on the slides. Nevertheless, the pipeline identified 

control slides with unusually high amount of tau, such as those with ARTAG. This could be 

useful in processing control slides in batch, to flag up some slides for further inspection. It 

also suggests that the current pipeline is potentially generalisable to other types of tau. 

 

 

5.4.2. Strengths and limitations 

 

I identified some limitations of the pipeline. I excluded 8 slides with significant co-pathology 

as the pipeline was trained to only recognised PSP-related tau pathology. The pipeline relies 

on DAB thresholding to detect tau objects and struggled with brain region with iron granules 

such as the basal ganglia. In this study, we manually removed iron granules, which was a 

time-consuming step that can be prone to error. Automating iron granule removal is 

challenging since they are heterogeneous between slides. Lastly, this study included few early 

stage PSP donors (stage 2 or less), who are relatively rare in brain bank cohorts (Williams et 

al., 2007). Nevertheless, we were able to observe the expected pattern of progression across 

stages from the current dataset. 

 

Having a reliable and robust automated quantification of tau pathology will catalyse future 

analysis to better understand the progression of tau pathology in PSP. We anticipate our 
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approach can be adapted to other similar neurodegenerative tauopathies and proteinopathies. 

This will enable analysis of neuropathology at scale across brain regions and larger numbers 

of participants than is currently possible. 
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Chapter 6: Neuropathological correlates of imaging 

measures in PSP 

 

6.1. Introduction 

 

In this chapter, I aimed to investigate the relationship between quantitative post mortem tau 

density and in vivo structural and functional imaging measures in PSP. This will help 

determine how well in vivo imaging measures relate to the underlying tau pathology, 

validating their utility as surrogate biomarkers for diagnosis and prognosis. Addressing this 

question will improve our understanding of the relationship between the molecular level of 

tau aggregation, and the macroscopic level of changes in brain structure and function. 

 

MRI-based measures, specifically structural MRI, are widely used as part of the clinical 

diagnosis of patients with neurodegenerative diseases (Höglinger et al., 2017; Neary et al., 

1998; Román et al., 1993). For a full evaluation of neuroimaging biomarkers, detailed 

validation with the underlying neuropathology is required to assess how well they reflect the 

underlying disease, and which aspects of neuropathology they best represent (Rittman, 2020). 

In AD, it is well established that atrophy on structural MRI is related to tau neurofibrils on 

neuropathology examination (Apostolova et al., 2015; Burton et al., 2009; Jack et al., 2002; 

Whitwell et al., 2012). However, atrophy may be related to different neuropathological 

mechanisms in distinct diseases, and little is known about the imaging-tau relationship in 

PSP.  

 

One study (Spina et al., 2019) found that atrophy in PSP may be related to neuronal loss and 

that tau aggregation was related to atrophy across the whole brain. Their sample size was 

relatively small, and they employed a semi-quantitative assessment of tau burden. Their 

findings have yet to be validated directly, but a related study (Carlos et al., 2022) investigated 

atrophy-tau relationship in 4R-tauopathies (PSP and CBD combined) and found that tau 

relates to atrophy only in subcortical but not cortical regions. Therefore, further investigation 

is required to elucidate the differences in their findings. 
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To my knowledge, there has been only one study that investigated the relationship between 

functional measures and post mortem tau burden specifically in PSP (Spina et al., 2019). 

Most studies tend to use in vivo tau burden measured from Positron Emission Tomography 

(PET) (Cope et al., 2018; Franzmeier et al., 2020; Hoenig et al., 2018) and post mortem data 

of the same subject is rarely available (Lee et al., 2023). Cope et al (2018) found that nodes 

with stronger functional connections accrued higher tau burden than nodes that are weakly 

connected in AD, but the opposite association was observed in PSP. They reasoned that this 

could possibly explain why AD pathology is widespread in the cortex, targeting large 

networks and PSP pathology is concentrated in smaller number of subcortical regions. 

Therefore, it is of interest to see if we could replicate the findings found in PSP cohort as tau 

PET has off-binding target issues, especially in non-AD disorders (Lee et al., 2023; Lowe et 

al., 2016; Marquié et al., 2017; Sander et al., 2016). Also, using post mortem tau means we 

can investigate the relationship between functional imaging measures and tau type-specific 

burden, which is not possible with tau PET. Therefore, the relationship between tau burden 

and atrophy or functional networks require further investigation, especially with quantitative 

measures of tau burden. 

 

6.1.1. The present study 

 

In this study, I aimed to explore the relationship between in vivo structural and functional 

imaging measures and tau burden quantified digitally. I focused on key pathological regions 

in PSP subjects (Kovacs et al., 2020), covering a wide range of cortical regions, basal ganglia 

and dentate nucleus. For functional measures, I have chosen 2 simple graph metrics, weighted 

degree which measures the number and strength of connections of each node in the network, 

and closeness centrality which concerns how efficient the communication of each node in the 

network is. 

 

 

Hypotheses: 

1. PSP patients will show atrophy across cortical and subcortical regions, where the 

degree of atrophy in subcortical regions will be greater than in cortical regions. 

2. PSP patients will show variations in functional measures across regions.  
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3. Given that previous studies found that tau is associated with atrophy, particularly in 

subcortical regions (Carlos et al., 2022; Spina et al., 2019), I anticipate that such a 

relationship will be found in subcortical regions. 

4. Given the role of tau in microtubule stability, tau dysfunction and accumulation, tau 

burden would be related to impairments in functional network properties. Reflecting 

Cope et al (2018), I anticipate higher in vivo tau is associated with higher weighted 

degree and lower closeness centrality in PSP. 

5. Structural and functional changes relate differentially to tau type-specific burden, as 

neuronal and glial cells have different roles in the brain and may respond differently 

during pathogenesis (Forrest et al., 2019). 

 

This work was performed in collaboration with Timothy Rittman (Senior Clinical Research 

Fellow) and David Whiteside (NIHR Academic Clinical Research Fellow) who pre-processed 

fMRI data and extracted graph metrics. 
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6.2. Materials and methods  

 

6.2.1. Subject and brain regions 

 

A total of 154 subjects, comprising 133 healthy controls (mean age 67.98 years, range 58.90-

84.50; 61 male), and 21 PSP (mean age 73.87, range 55.00-84.10; 9 male) were included in 

the study (Table 6.1). All PSP patients were diagnosed with either probable or possible PSP 

based on published diagnostic criteria (Höglinger et al., 2017) and the clinical diagnoses were 

verified by post mortem examination. All subjects had MRI scans performed at the Wolfson 

Brain Imaging Centre. Of 21 PSP subjects, 15 of them have fMRI data (11 multi-echo scans, 

4 single-echo scans).  
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Table 6.1: Demographics table of patients with progressive supranuclear palsy. Not applicable (N/A) 

where information is missing from the database. 

Subject 
Clinical 

diagnosis 
Gender 

Age at 

Death 

MRI-to-death 

Interval (years) 

fMRI-to-death 

Interval (years) 

Disease 

duration 

(years) 

1 poss. PSP-CBS Female 78.9 0.81 0.81 5 

2 poss. PSP-CBS Female 79.8 1.81 
1.81 

3.42 

3 poss. PSP-PGF Male 75.2 0.41 
1.37 

4.51 

4 poss. PSP-SL Female 78.4 2.42 2.42 8.83 

5 prob. PSP-F Male 75.4 1.12 
4.99 

8.42 

6 prob. PSP-RS Male 63 2.3 
2.3 

8.83 

7 prob. PSP-RS Female 71.6 0.26 0.26 4.58 

8 prob. PSP-RS Female 78.1 1.76 
N/A 

16.75 

9 prob. PSP-RS Female 76.4 1.73 
1.73 

8.75 

10 prob. PSP-RS Male 80.5 0.93 N/A 6.5 

11 prob. PSP-RS Female 69.9 0.4 
0.4 

5.33 

12 prob. PSP-RS Male 71 2.68 
N/A 

5.42 

13 prob. PSP-RS Male 74.5 2.22 N/A 6 

14 prob. PSP-RS Male 77.4 1.95 
N/A 

6.33 

15 prob. PSP-RS Female 84.1 0.62 
N/A 

4.25 

16 prob. PSP-RS Female 65.3 1.06 1.06 13.92 

17 prob. PSP-RS Female 71.9 0.79 
3.54 

6.17 

18 prob. PSP-RS Female 55 2.82 
2.82 

5.5 

19 prob. PSP-RS Female 74.7 3.08 3.08 6.58 

20 prob. PSP-RS Male 71.5 1.77 
1.77 

5.17 

21 prob. PSP-RS Male 78.7 0.59 
2.32 

5.33 

For clinical diagnosis of PSP participants, prob. probable, poss. Possible, RS Richardson 

syndrome, CBS predominant corticobasal syndrome, SL predominant speech and language 

disorder, F predominant frontal presentation, PGF progressive gait freezing.  

 

 

6.2.2. Quantitative pathology in PSP 

 

A total of 163 slides (199 regions) were obtained (2-12 slides per brain, median =11, IQR=4). 

The slides included 126 neocortical slides (19 pre-frontal, 18 occipital, 15 temporal, 15 

parietal, 15 cingulate, 15 primary somatosensory, 15 primary motor, 14 pre-motor slides), 18 

basal ganglia slides (with globus pallidus, subthalamic nucleus and putamen) and 19 dentate 

nucleus slides. The tau quantification pipeline was applied to all slides to quantify tau type-

specific pathologies (‘coiled body’ (CB), ‘neurofibrillary tangles’ (NFT), ‘tufted astrocyte’ 

(TA), ‘tau fragments (TF)). Total tau density was quantified by summing up all tau types and 

divided by the area sampled. Tau hallmark density includes CB, NFT, TA but not TF. 
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Subcortical regions, except for putamen, have no TA quantification. See slide preparation 

outlined in core methods chapter. 

 

6.2.3. MRI pre-processing 

 

T1-weighted MRI scans were pre-processed using FreeSurfer, an automated surface-based 

analysis which parcellated cortical structures and segmented sub-cortical structures (Fischl & 

Dale, 2000). First, skull, eyes and neck were removed from the scans. Subcortical structures 

were segmented, and intensity normalization applied to enhance the distinction between grey 

and white matter. White matter segmentation followed, and cortical surfaces were registered 

to Desikan-Killiany atlas for gyral labelling. All pre-processed brains were quality checked 

using VisualQC (Raamana, 2018) and manually corrected using Freeview where necessary 

(Fischl & Dale, 2000). 

Pre-processed brains were parcellated using the Brainnetome Atlas, a validated connectivity-

based parcellation atlas suitable for multi-modal analyses (Fan et al., 2016). The Brainnetome 

atlas contains 210 cortical and 36 subcortical regions but does not contain brainstem or 

cerebellar regions, therefore these regions were added from the FreeSurfer segmentation. 

Since the subthalamic nucleus and dentate nucleus were not part of the default FreeSurfer 

segmentation, probability maps and masks were used to segment them from T1 images using 

SPM12 in MATLAB (MATLAB, 2010). A total of 258 regions from both hemispheres were 

used in the study.  

Single-subject w-score maps of grey matter atrophy were computed, where region-specific 

volumes were standardized with estimated total intracranial volume prior to w-score 

calculation. W-scores are analogous to z-scores but have been corrected for age at scan and 

gender (see Figure 6.1), representing the patient’s deviation from the norm, i.e. the control 

group (Jack et al., 1997; La Joie et al., 2012; Spina et al., 2019). Similar to z-scores, w-scores 

in the control group have a mean value of 0 and standard deviation of 1, where a value of 

+1.65 corresponds to the 95th  and a value of -1.65 corresponds to the 5th percentile (La Joie 

et al., 2012). W-score maps (see Figure 6.2) were computed and reversed so that positive w-

scores represent atrophy (La Joie et al., 2012). 
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Intercept (0) map Gender (2) map Age (1) map 

HEALTHY CONTROLS 

Individual maps of residuals 

Residual SD map 

a) Parcel-wise linear regression with age at scan & gender 

0 + 1 x age + 2 x gender + residuals 

 

b) b) b) 

b) 

c) 

Figure 6.1: Illustration of regression coefficient map creation from control group as part of w-score calculation. a) 

Linear regression with covariates (age at scan and gender) was performed in the control group to estimate age and 

gender related changes. b) Maps with parcel-wise intercept values (0), age-related (1), gender-related (2), 

individual maps of residuals can be extracted. c) The standard deviation (SD) of the residuals was then computed. 
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W-score calculation 

 In conceptual term,  

𝑤 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑟𝑎𝑤 𝑣𝑎𝑙𝑢𝑒 − 𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡′𝑠𝑎𝑔𝑒 & 𝑔𝑒𝑛𝑑𝑒𝑟

𝑆𝐷 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑖𝑛 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
 

In mathematical term,  

𝑜𝑢𝑡𝑝𝑢𝑡 =  
𝑝_𝑚 −  (𝑏0_𝑚 +  (𝑏1_𝑚 𝑥 𝑎𝑔𝑒)  +  (𝑏2_𝑚 𝑥 𝑔𝑒𝑛𝑑𝑒𝑟) )

𝑠𝑑_𝑚
 

Where p_m: patient’s map, b0_m: 0 (intercept), b1_m: 1 map (age), b2_m: 2 map (gender), 

sd_m: residuals SD map  

Raw w-score map Reversed w-score map Patient brain scan 

Figure 6.2: Illustration of w-score calculation after extracting maps of regression coefficient from controls. Raw 

parcel-wise values are extracted from each patient brain scan and w-score is calculated using the formula. Raw w-

scores are reversed so that higher positive value means more atrophy.  
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6.2.4. fMRI pre-processing 

 

Pre-processing of fMRI data is the same as a previous study from our lab (Whiteside et al., 

2021). Participants underwent fMRI imaging at 3T using echo-planar imaging sensitive to the 

blood-oxygen-level-dependent signal (TR 2s, TE 30ms, whole brain acquisition, 3 x 3 x 

3.75mm voxels, 305 volumes) with eyes open in a dark bore. High resolution T1-weighed 

Magnetization Prepared Rapid Gradient Echo (MPRAGE) structural images (TR 2s, TE 

2.93ms, flip angle 8, voxel size 1.1mm isotropic) were acquired during the same session for 

use in normalization. 

 

Image pre-processing used FSL’s FEAT for registration to the structural image, motion 

correction, 100Hz high-pass temporal filtering, 5mm FWHM spatial smoothing. Denoising 

was performed using FSL’s FIX with a training set of 10 subjects from each disease group per 

cohort. Additional removal of motion artefact used wavelet de-spiking (brainwavelet.org). 

 

Graph theoretical analysis was performed using Maybrain software 

(https://github.com/RittmanResearch/maybrain) and NetworkX (Hagberg et al., 2008), with 

the Brainnetome parcellation. Weighted degree was extracted which measures the number and 

strength of nodal functional connections and closeness centrality, the inverse of the path 

length between a node and all other nodes in the graph. A network density threshold of 5% 

was used for the primary statistical analysis. I also report the results at density threshold of 1-

10%, with 1% increments. A total of 244 regions were included in the analysis as graph 

metrics are not available for the subthalamic nucleus, cerebellum, and brainstem. 
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6.2.5. Matching imaging and pathology modalities 
 

Table 6.2: A matching between histology slide and Brainnetome atlas parcel for all brain regions in 

the imaging-pathology analysis. 

Region Histology slide Brainnetome parcel  Region 

Pre-frontal BA46 A9/46d_L, A46_L, A9/46v_L Middle frontal gyrus 

Pre-motor BA6 
A6dl_L, A6m_L, A6vl_L, 

A6cdl_L, A6cvl_L 

Superior frontal gyrus, 

precentral gyrus 

Primary motor BA4 
A4hf_L, A4ul_L, A4t_L, 

A4tl_L 
Precentral gyrus 

Primary 

somatosensory 
BA1-3 

A1/2/3ulhf_L, 

A1/2/3tonla_L, A2_L, 

A1/2/3tru_L 

Postcentral gyrus 

Temporal BA21/22 or BA 41/42 
A41/42_L, A22c_L, A22r_L, 

A21c_L, A21r_L 

Superior temporal gyrus, 

middle temporal gyrus 

Parietal BA7 
A7r_L, A7c_L, A7pc_L, 

A7ip_L 
Superior parietal lobule 

Occipital BA17/18 
rCunG_L, cCunG_L, 

cLinG_L, rLinG_L 

MedioVentral occipital 

cortex 

Cingulate BA23, 24, 28-33 

A23d_L, A24rv_L, A32p_L, 

A23v_L, A24cd_L, A23c_L, 

A32sg_L 

Cingulate gyrus 

Subthalamic 

nucleus 

Extracted from basal 

ganglia 
Freesurfer Subthalamic nucleus 

Globus pallidus 
Extracted from basal 

ganglia 
GP_L Globus pallidus 

Putamen 
Extracted from basal 

ganglia 
vmPu_L, dlPu_L Putamen 

Dentate nucleus 
Extracted from 

cerebellum 
Freesurfer Dentate nucleus 

 

 

To match pathology slides to the Brainnetome atlas, we selected Brainnetome parcels that 

correspond to the specific brain region in which the pathology slides were sectioned from 

(Table 6.2, see Appendix for parcel code details). As multiple Brainnetome parcels make up a 

given region, we took a mean value of those parcels for both w-score and nodal measures. 
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6.2.6. Imaging-tau analyses  

 

For this analysis, a logarithmic transformation (log10) was applied to tau density scores due to 

the skewness of the tau density distribution. To investigate the relationship between in vivo 

imaging measures and tau density, the brms package in R (Bürkner, 2021) was used to 

construct Bayesian linear mixed regression models. This analysis was carried out separately 

with in vivo structural and functional measures as the outcome variables, tau density as the 

fixed effect, imaging-death interval, gender, age at death, disease duration, echo acquisition 

(only for functional metrics) as covariates. Brain region and patient identifier were included 

as random effects. The relationship between imaging measures and tau density was first 

assessed at a whole-brain level to investigate if a common relationship exists across all 

regions. If no relationship is found, we would investigate such relationship across cortical 

regions only and within each brain region. 

 

First, to investigate whether tau density is predictive of imaging measures, total tau and tau 

type-specific models were constructed. For each model, I first determined which covariates 

are useful by creating a full model with all covariates and assessing regression coefficients 

using the region of practical equivalence (ROPE). If 95% of the credible interval (Crl) of the 

regression coefficient falls completely within ROPE, then the effect of the parameter would 

be equivalent to the null value for practical purposes  (Kruschke, 2011; Kruschke & Liddell, 

2018a) and would be excluded from the model.  Next, I assessed the total tau regression 

coefficient using ROPE to establish a baseline relationship. With all tau models, I then tested 

whether tau type-specific density was more informative of the in vivo imaging measures than 

the simpler measure of total tau density by comparing tau type-specific models to the total tau 

model. For the final model, the strength of regression coefficients for tau and each covariate 

were assessed using a ROPE.  

 

A Gaussian model family was selected based on the distribution of the data. A relatively 

informed normal prior (mean=0, SD =1) was chosen for the tau coefficient when assessing its 

relationship with atrophy from the previously found effect size (Spina et al., 2019) and a weakly 

informative prior (mean=0, SD =10) was chosen when assessing tau relationship with 

functional measures. For analyses, weakly informative priors (mean=0, SD=10) were chosen 

for covariates, and default R priors were used for the intercept (student-t prior; df=3, mean = 
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1, SD = 2.5 for all regions and region-specific analysis, student-t prior; df=3, mean = 0.6, SD 

= 2.5 for only cortical regions) and the sigma (student-t prior; df=3, mean =0, scale = 2.5).  

 

Due to the complexity of our analysis, a sensitivity analysis of priors was conducted to assess 

the effect of the prior choice on the regression coefficients in the final models. We chose two 

other sets of normal priors, one more informative (for tau-atrophy, mean = 0, SD = 0.5 for tau; 

mean = 0, SD = 5 for covariates; for tau-functional measure, mean = 0, SD = 5 for both tau 

and covariates) and the other less informative (for tau-atrophy, mean = 0, SD = 2 for tau; mean 

= 0, SD = 20 for covariates; for tau- functional measures, mean =0, SD = 20 for both tau and 

covariates) to assess the sensitivity of posterior estimates on the prior choice.  
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6.3. Results 

 

6.3.1. Structural and functional measures assessment across all 

regions in PSP 

 

To assess the relationship between structural and functional brain measures, atrophy and 

functional graph metrics calculated from PSP subjects were first visualized (Figure 6.3, for 

full results see Appendix). Regions with particularly high w-scores, in the 95th percentile, 

include subthalamic nucleus, putamen, thalamus, cerebellar white matter, midbrain and pons. 

Subcortical regions generally had higher w-scores than cortical regions. Frontal regions had 

higher w-scores than more posterior cortical regions.  

 

Regions with particularly high weighted degree included the lateral pre-frontal thalamus and 

a wide range of cortical regions such as the superior frontal, pre- and para-central gyrus, 

superior and middle temporal gyrus, precuneus, post-central gyrus, cingulate gyrus, and 

rostral cuneus gyrus. Those with low weighted degree, in the bottom 5th percentile, included 

the caudate nucleus, and temporal regions such as the inferior temporal gyrus and 

parahippocampal gyrus.  

 

Regions have very similar closeness centrality values, ranging from 0.67 to 0.75 (mean= 

0.71). However, regions with high closeness centrality include amygdala, and a wide range of 

cortical regions such as the superior frontal, and temporal gyrus, parahippocampal gyrus, 

insula gyrus and cingulate gyrus. In contrast, medioventral and lateral occipital cortex have 

lower closeness centrality than other regions. 
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Figure 6.3: Group level w-score map of atrophy and raw functional connectivity measures of 

weighted degree and closeness centrality. Higher w-score corresponds to higher volume loss. 
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6.3.2. PSP w-score and tau density 

 

Atrophy (w-scores) and tau density of the matched regions in PSP patients were firstly 

plotted for inspection (Figure 6.4). For atrophy, w-scores were highest in subcortical 

structures, particularly in the subthalamic nucleus. Cortical regions generally showed slightly 

lower w-scores where frontal regions showed higher w-scores than other cortical regions, and 

mean w-scores were lowest in parietal, cingulate and occipital regions. 

 

Similarly, total tau density was generally higher in subcortical regions, followed by frontal 

regions, and was lowest in occipital cortex. For tau type-specific density, TF showed the 

highest density across brain regions compared to other tau types, followed by CB density, TA 

density (where quantifiable) and NFT density. All tau type-specific densities followed the 

same trend as total tau density such that subcortical regions, specifically the subthalamic 

nucleus showed the highest tau density, followed by frontal regions, and intermediate regions 

and finally the occipital region which showed the lowest tau density. 
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Figure 6.4: Boxplots showing a) mean w-score, b) total tau and tau hallmark density (all tau types except for TF) and c) tau 

type-specific density in PSP subjects across all regions with histology data. NFT neurofibrillary tangle, TA tufted astrocyte, 

CB coiled bodies, TF tau fragments. 
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6.3.3. Postmortem tau density is not predictive of in vivo whole-brain 

and cortical structural atrophy  

 
Table 6.3: Bayes’ factor (BF) for each tau type-specific model compared against the total tau density 

model in predicting w-score (atrophy) are across all and only cortical regions are presented. 1/3< BF 

<3 represents inconclusive evidence from model comparison. 

Model All regions Cortical regions only 

Tau hallmark density 0.57 0.92 

NFT density 0.50 1.12 

TA density 1.50 0.73 

CB density 0.43 0.98 

TF density 1.00 0.97 

 

First, I assessed the relationship between MRI measured brain atrophy and 

neuropathologically quantified tau across all brain regions by constructing models of density 

for different tau types, with imaging-death interval and gender as covariates (Figure 6.5). 

Despite a negative trend between total tau burden and atrophy, there was insufficient 

evidence to support this association (median = -0.15, Crl -0.45 to 0.13, 42.00% in ROPE). To 

investigate whether tau type-specific burden is more informative of atrophy than total tau 

burden, we assessed tau type-specific models against a total tau model, but the evidence was 

inconclusive (Table 6.3). All tau density types showed a negative trend with atrophy, but 

there was insufficient statistical evidence to support this association, except for NFT density 

which showed a positive trend with atrophy across all regions (Figure 6.5). Sensitivity 

analysis of the total tau model showed robust results; the median of the posterior distribution 

of the regression coefficients stayed roughly unchanged for different prior choices (Figure 

6.6). 

 

Next, we assessed the relationship between MRI measured atrophy and neuropathology 

quantified tau across cortical regions in the same manner. Despite a trend for a positive 

relationship between total tau density and atrophy in cortical regions (Figure 6.7), there was 

insufficient evidence to support such relationship (median = 0.02, Crl -0.26 to 0.29, 47.63% 

in ROPE). There was insufficient evidence in favor of tau type-specific models as compared 
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to the total tau model, with the highest, but still very weak (BF = 1.12) evidence in favor of 

the NFT model (Table 6.3). Unlike results from the whole-brain analysis, all cortical tau type-

specific densities showed a positive trend with cortical atrophy. Nevertheless, there was 

insufficient evidence to support these relationships. Sensitivity analysis of the total tau model 

showed robust estimates with other choices of priors (Figure 6.8).  
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Figure 6.5: Plots showing posterior distribution of the regression coefficients of all tau models, w-score ~ tau density + 

imaging-to-death interval + gender + (1|region name) + (1|Patient ID) for all regions. Median (circle) and 95% credible 

interval (line) are plotted for each parameter alongside ROPE [-0.13 to 0.13] (blue region). 
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Figure 6.6: Sensitivity analysis plots of the effect of setting alternative weakly informative priors for the regression 

coefficient of the effect of interest, in the total tau model in predicting atrophy across all regions. A normal distribution, N 

(mean, standard deviation), was centered at zero and the standard deviation was varied. 
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Figure 6.7: Plots showing posterior distribution of the regression coefficients of all tau models, w-score ~ tau density + 

imaging-to-death interval + gender + (1|region name) + (1|Patient ID) for cortical regions. Median (circle) and 95% 

credible interval (line) are plotted for each parameter alongside ROPE [-0.09 to 0.09] (blue region). 
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6.3.4. Postmortem tau density may be predictive of in vivo dentate 

nucleus atrophy 

 

To better understand the results from whole-brain and cortical analyses, we investigated the 

atrophy-tau relationship within each brain region across all tau types. In general, Figure 6.9 

shows that there is insufficient evidence to support an atrophy-tau relationship, except for a 

negative association between CB density and atrophy in the dentate nucleus (median = -0.55, 

Crl -0.95 to -0.14, 0% in ROPE). Inspection of this negative relationship showed that it could 

have been driven by an outlier (Figure 6.10). To test this, the potential outlier was removed, 

and the analysis was re-run where there was insufficient evidence to support the relationship 

between atrophy and CB density in dentate nucleus (median = 0.18, Crl -0.52 to 0.90, 

Figure 6.8: Sensitivity analysis plots for the effect of setting alternative weakly informative priors on the regression 

coefficient of the effect of interest in the total tau model in predicting atrophy across cortical regions. A normal distribution, 

N (mean, standard deviation), was centered at zero and standard deviation was varied. 
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13.31% in ROPE). Sensitivity analysis showed that the evidence supporting atrophy-tau 

relationship in dentate nucleus could become inconclusive if a set of priors with narrower 

distributions was chosen with the full dataset, and the evidence remained inconclusive with 

the potential outlier removed (Figure 6.11). 

 

Figure 6.9: Plots showing posterior distribution of the regression coefficients of all tau models constructed for each region, w-

score ~ tau density + imaging-to-death interval + gender. Median (circle) and 95% credible interval (line) are plotted for each 

parameter alongside ROPE [-0.10 to 0.10] (blue region). 
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Figure 6.10: Scatterplots (left) showing CB density and w-score (atrophy) in dentate nucleus with a) full dataset and b) 

after removing a potential outlier. Plots (right) showing the posterior distribution of the regression coefficients of the tau 

models; w-score ~ CB density + imaging-death interval + gender. Mean (circle) and 95% credible interval are plotted with 

ROPE [-0.10 to 0.10] (blue region). 

a) 

b) 

Outlier
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Figure 6.11: Sensitivity analysis plots of the effect of setting alternative weakly informative priors on the regression 

coefficient of the effect of interest in the CB density model in predicting atrophy of dentate nucleus with full dataset (left) 

and with a potential outlier removed (right). Normal distribution, N (mean, standard deviation), was chosen with mean 

centered at zero and standard deviation was varied. Median (circle) and 95% credible interval (line) are plotted for each 

parameter alongside ROPE (blue region). 
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6.3.5. Less strongly interconnected regions accrue more tau burden 

 

The mean weighted degree and closeness centrality of PSP subjects were assessed across 

matched cortical and subcortical regions (Figure 6.12). Occipital, cingulate, and primary 

motor regions showed higher weighted degree than other regions, with the globus pallidus 

showing the lowest weighted degree. In contrast, mean closeness centrality values between 

regions were similar, but was higher in the globus pallidus and pre-frontal regions as 

compared to other regions and was lowest in the occipital region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 6.12: Boxplots showing a) mean weighted degree, b) closeness centrality in PSP subjects across all regions in 

the analysis. 

a) 

b) 
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Table 6.4: Bayes’ factor (BF) for each tau type-specific model compared against the total tau density 

model in predicting weighted degree and closeness centrality across all regions and only cortical 

regions. *Indicates BF <1/3 or BF>3, illustrating moderate evidence in favor of total tau model or tau 

type-specific model, respectively. **indicates BF <1/10, illustrating strong evidence in favor of total 

tau model. 1/3< BF <3 represents inconclusive evidence for the total tau model as compared to tau 

type-specific model. 

 

Model Weighted degree 

 

Closeness centrality Closeness centrality 

Regions  All regions All regions Only cortical regions  

Tau hallmark density 0.87 2.12 3.19* 

NFT density 0.033** 0.18* 0.36 

TA density 0.01** 0.14* 1.14 

CB density 0.43 2.09 2.39 

TF density 0.87 0.98 0.91 

 

 

I assessed the weighted degree – tau relationship across all brain regions by constructing 

models with different tau density types and imaging-death interval, gender, echo acquisition 

and disease duration as covariates. At a 5% network threshold (Figure 6.13), there was a 

negative association between total tau density and weighted degree across all regions (median 

= -0.08, Crl -0.11 to -0.03, 0% in ROPE). To investigate whether tau type-specific burden is 

more informative of weighted degree than total tau burden, we assessed tau type-specific 

models against a total tau model (Table 6.4). There was strong evidence in favor of the total 

tau model against NFT and TA models, except for the TF, CB and tau hallmark models which 

showed inconclusive evidence against the total tau model. Results from Bayesian regression 

from 1% to 10% also consistently showed a negative association between total tau burden 

and weighted degree. Sensitivity analysis of the total tau model in predicting weighted degree 

(Figure 6.14) showed robust results where median of the posterior distribution of the 

regression coefficients stayed roughly unchanged.  

 

Next, I assessed the closeness centrality – tau relationship across all brain regions in the 

same manner. At a 5% network threshold (Figure 6.13), there was insufficient evidence to 

support a positive association found between total tau density and closeness centrality across 
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all regions (median = 0.01, Crl 0.00 to 0.02, 9.58% in ROPE). To investigate whether tau 

type-specific burden is more informative of closeness centrality than total tau burden, we 

assessed tau type-specific models against a total tau model (Table 6.4). There was moderate 

evidence in favor of the total tau model against NFT and TA density, except for the TF, CB 

and tau hallmark models which showed inconclusive evidence against the total tau model. 

Results from Bayesian regression from 1% to 10% also consistently showed insufficient 

evidence to support the positive association between total tau burden and closeness centrality. 

Sensitivity analysis of the total tau model in predicting closeness centrality (Figure 6.15) 

showed robust results where median of the posterior distribution of the regression 

coefficients stayed roughly unchanged.  

 

I further assessed closeness centrality – tau relationship across only cortical regions. At 5% 

network threshold, there was a positive trend between closeness centrality and tau but there 

was insufficient evidence supporting this association (median = 0.02, Crl 0.00 to 0.023 6.61% 

in ROPE). In contrast to tau type-specific models, tau hallmark burden was informative of 

closeness centrality than total tau burden (BF=3.19). Despite a positive association between 

tau hallmark density and closeness centrality, the evidence supporting this relationship was 

almost sufficient (median = 0.02, Crl 0.00 to 0.03 0.29% in ROPE). Results from 1-10% 

network thresholds showed consistently insufficient evidence for this relationship (0.30-

27.65% in ROPE from 1-4% threshold, 0.23-2.13% in ROPE from 7-10% threshold), except 

for network threshold of 6% which showed sufficient evidence (median = 0.02, Crl 0.00 to 

0.03, 0% in ROPE). Sensitivity analysis showed robust results where median of the posterior 

distribution of the regression coefficients stayed roughly unchanged. 
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Figure 6.13: Scatterplots (left) showing total tau density and a) weighted degree or b) closeness centrality across all 

regions. c) Tau hallmark density and closeness centrality across only cortical regions is plotted. Plots (right) showing 

the posterior distribution of the regression coefficients of the tau models; graph metric ~ tau density + imaging-death 

interval + gender + disease duration + echo type + (1|region name) + (1|Patient ID). Mean (circle) and 95% credible 

interval are plotted with ROPE [-0.01 to 0.01] (blue region). 

a) 

b) 

c) 
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Figure 6.14: Sensitivity analysis plots of the effect of setting alternative weakly informative priors on the regression 

coefficient of the effect of interest in the total tau density model in predicting weighted degree across all regions. 

Normal distribution, N (mean, standard deviation), was chosen with mean centered at zero and standard deviation was 

varied. Median (circle) and 95% credible interval (line) are plotted for each parameter alongside ROPE (blue region). 
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Figure 6.15: Sensitivity analysis plots of the effect of setting alternative weakly informative priors on the regression 

coefficient of the effect of interest in the total tau density model in predicting closeness centrality across all regions. 

Normal distribution, N (mean, standard deviation), was chosen with mean centered at zero, and standard deviation was 

varied. Median (circle) and 95% credible interval (line) are plotted for each parameter alongside ROPE (blue region). 
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Figure 6.16: Sensitivity analysis plots of the effect of setting alternative weakly informative priors on the regression 

coefficient of the effect of interest in the tau hallmark density model in predicting closeness centrality across only 

cortical regions. Normal distribution, N (mean, standard deviation), was chosen with mean centered at zero and standard 

deviation was varied. Median (circle) and 95% credible interval (line) are plotted for each parameter alongside ROPE 

(blue region). 
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6.4. Discussion 

 

6.4.1. Atrophy and tau burden 

 

Our data suggests that PSP subjects showed the expected pattern of atrophy in subcortical 

regions such as the basal ganglia, thalamus (Albrecht et al., 2019) and brainstem nuclei and a 

wide range of cortical regions (Pan et al., 2017; Piattella et al., 2015; Stezin et al., 2017). 

Regions with marked atrophy included the midbrain and cerebellar pedunculi which are also 

typical of PSP (Albrecht et al., 2019; Höglinger et al., 2017; Pan et al., 2017). 

 

In relation to atrophy-tau relationship, I found insufficient evidence to support that tau 

density is associated with structural atrophy at the whole-brain or cortical level. Nevertheless, 

there was a trend towards a negative relationship at the whole-brain level and a positive 

relationship when considering only cortical regions. The contrasting trends could potentially 

be explained by the differing severity of pathology in cortical and subcortical structures as tau 

primarily accrues in the basal ganglia before spreading to the cortex (Kovacs et al., 2020). 

This might suggest that pathology stage could differ between cortical and subcortical regions, 

highlighting the importance of assessing individual regions when considering the relationship 

between atrophy and neuropathological changes. Future studies will need to further validate 

these trends and hypotheses as I have found insufficient evidence to reject nor accept these 

findings.  

 

In contrast to my findings, (Spina et al., 2019) found a positive relationship between tau 

burden and atrophy at the whole-brain level in PSP participants. Their effect size was very 

small and just reached significance (b=0.036, p = 0.046). With a few methodological 

differences in this study, it may not be surprising that the findings did not replicate. Spina et 

al (2019) included only PSP-RS subjects, regions from the right hemisphere and more 

subcortical regions such as the midbrain, amygdala, hippocampus, and thalamus in their 

study. Furthermore, another study (Carlos et al., 2022) investigated region-specific 

relationship between atrophy and tau burden in 4R-tauopathies (PSP and CBD combined). 

Consistent with our findings, they found no such relationship in the cortex. However, they 

found a positive atrophy-tau relationship in the subthalamic nucleus, but the influence of 
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CBD participants cannot be ruled out. Overall, our results suggest that atrophy derived 

measure from MRI does not reliably track tau burden in PSP.  

 

As no atrophy-tau relationship was found in cortical regions where TA density was high, this 

could suggest a protective role of astrocytes (Carlos et al., 2022; Qian et al., 2023). It has 

been shown that astrocytes are unable to propagate tau in the absence of neuronal tau 

(Narasimhan et al., 2019), they may therefore accumulate tau secondary to neurons which 

may explain the lack of atrophy-tau relationship in cortical regions (Carlos et al., 2022). 

Bayesian model comparison showed that total tau density was equally as good as tau type-

specific density as a predictor of atrophy across whole-brain and cortical regions. This is 

likely to be because tau does not correlate with atrophy, therefore the type of tau does not 

change the results.  

 

I further investigated the atrophy-tau relationship within each brain region in the study and 

found a negative relationship between atrophy and CB density in the dentate nucleus. This 

relationship could become inconclusive if a narrower prior was chosen, and it could have 

been driven by an outlier as the relationship became inconclusive when it was removed. With 

other regions, there was insufficient evidence to support an atrophy-tau relationship, but 

positive and negative trends could be observed across the regions. In contrast to my findings, 

Carlos et al (2022) found a positive atrophy-tau relationship in the subthalamic nucleus but 

found no such relationship in cerebellar dentate nucleus. It is important to note a few 

methodological differences such that they investigated atrophy-tau relationship using brain 

volume and semi-quantitative measure of tau burden whereas I used w-score to indicate 

atrophy by taking age and gender into account, and digitally quantified tau density. Overall, 

my results suggest that atrophy is not a reliable marker of tau burden, even when assessing 

such relationship separately within each region. 

 

 

 

6.4.2. Weighted degree & tau burden 

 

I have demonstrated that regions with higher tau burden have lower weighted degree, or in 

other words are less functionally interconnected with other regions at the whole-brain level. 

This result is in the opposite direction to a previous study (Cope et al., 2018). There are two 
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major methodological differences that may explain the differences in findings, first, they 

found a positive relationship between global tau burden and weighted degree across subjects, 

but no relationship was found when region-specific tau burden was used. Also, they used tau 

PET which captures in vivo tau burden but also suffer from off-target binding issue in PSP, 

unlike post mortem tau burden (Lee et al., 2023). Therefore, future studies could aim to 

validate our findings using tau burden quantified from post mortem samples of other PSP 

cohorts. 

 

Our results have implications for understanding tau spread hypotheses. Our finding does not 

support trans-neuronal spread of tau hypothesis since it would predict highly connected nodes 

to accrue higher tau burden as they are more likely to receive tau from the ‘seed’ regions 

(Cope et al., 2018). Our results are in-line with alternative hypotheses of tau where a node 

may be selectively vulnerable to tau pathology due to the lack of trophic support, higher 

metabolic demand or differential gene expression (Rittman et al., 2016; Zhou et al., 2012). 

Future studies could aim to disentangle these hypotheses by including more brain regions and 

exploring other graph metrics such as weighted participation coefficient as a proxy for 

metabolic activity and clustering coefficient as a proxy for trophic support (Cope et al., 

2018).   

 

Bayesian model comparison showed that total tau density is a better predictor of weighted 

degree than NFT and TA density but is no better than CB and TF density. This reinforces the 

benefit of assessing tau type-specific aggregates when assessing tau relationship with 

imaging measures. CB and TF are more abundant than NFT and TA density across brain 

regions in the study, which may suggest that the effect of tau burden on weighted degree is 

primarily driven by CB and TF density. The role of oligodendrocytes remains unclear in the 

pathogenesis of tauopathies, but a study (Narasimhan et al., 2019) has shown that 

oligodendrocytes can propagate tau independently of neuronal tau, unlike astrocytes in a 

mouse model. Neuroimaging studies have also shown that oligodendrocyte dysfunction can 

alter functional connectivity (Ji et al., 2017; Kawamura et al., 2020). In addition to 

oligodendrocytes being the most abundant cell type in the brain, this could explain why CB 

are the most abundant tau type in PSP. TF is more difficult to explain as it includes tau 

threads and small fragments of other tau aggregates. Future studies could further aim to 

improve the pipeline to cleanly detect tau threads to enable better understanding of TF 

density findings. 
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6.4.3. Closeness centrality and tau burden  

 

There was insufficient evidence to support the association between closeness centrality and 

tau burden even though a positive trend was observed at both whole-brain and cortical levels. 

This is likely because closeness centrality values across brain regions in my analysis were 

relatively similar, unlike weighted degree.  

 

Even though a positive association between closeness centrality and tau burden across 

cortical regions was found at 6% network density, the effect size was very small and 

insufficient evidence for the relationship was found across other thresholds in the 1-10% 

range. Therefore, it remains unclear whether tau burden is associated with closeness 

centrality as the posterior distribution of tau burden was also not completely within ROPE to 

permit the rejection of the alternative hypothesis. This may imply that a larger sample size, 

both number of subjects and brain regions are required to elucidate this relationship which 

may be more subtle than weighted degree and tau burden.  

 

Bayesian model comparison when assessing closeness centrality and tau burden across 

cortical regions showed sufficient evidence in favor of tau hallmark burden than total tau 

burden. This likely suggests that a combined measure of TA, NFT and CB are useful in 

assessing closeness centrality, without the addition of TF burden which may introduce more 

noise. However, TF measure alone is not uninformative as model comparison suggests that 

each tau type-specific aggregate alone is as useful as total tau burden in relating to closeness 

centrality. 

 

6.4.4. Overall 

 

Although I have not compared them directly, my findings suggest that the functional MRI to 

tau relationship is stronger than the atrophy-tau relationship in PSP. This could be because tau 

first impairs the healthy functioning of cells which may directly or indirectly result in cell 

death (Sexton et al., 2022). Tau has been associated with synaptic loss at post mortem  (Bigio 

et al., 2001) and in vivo using PET (Holland et al., 2020). As atrophy is a less direct effect of 

tau aggregation, it is possible that function-tau relationship better reflects these early 

neuropathological changes. 
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My findings also suggests that tau impairs cell functioning across the brain, while it may be 

possible that the atrophy-tau relationship is more focal, related to differing levels of severity 

of pathology across the brain and cell type affected. Overall, these results suggest that 

functional connectivity is more closely related to tau burden in PSP than structural measure. 

 

 

6.4.5. Strengths and weaknesses 

 

The main strength of this study is that tau burden was quantified digitally. This enabled tau 

type-specific quantification of PSP-related tau aggregates and detailed quantification such as 

tau density for each tau type. Second, the use of Bayesian statistics enabled the null 

hypothesis to be rejected, accepted or undecided which is useful for a study with relatively 

small sample size. The current study only included pathologically confirmed PSP cases, 

which ensured that the diagnosis was accurate. 

 

Nevertheless, the matching between imaging-pathology samples is one of the main 

challenges in such study. It is not possible to perfectly match each post mortem brain slide 

which is a small thin section of the brain to the corresponding imaging sample. However, we 

tried to reduce noise or errors by averaging the imaging measures over several parcels. 

Moreover, post mortem samples, though provided detailed information of tau aggregates, can 

also only be taken at the time of death. This requires the inclusion of imaging-death interval 

to study the relationship between imaging-pathology samples, which in the context of linear 

regression, could be an oversimplification of the changes (Baayen et al., 2008). All 

participants with available fMRI and MRI data were included to maximise sample size in this 

study. This means participants with relatively longer imaging-death interval were also 

included where they may show a different imaging-pathology relationship to those with 

shorter interval. Brain volume estimation of subthalamic nucleus and dentate nucleus were 

carried out using probability maps as they are very small on an MRI scan. This means only 

estimated volumes, but not actual volumes could be extracted and that these structures are 

more prone to mis-localisation. Results concerning these regions should therefore be 

interpreted with caution. Furthermore, due to limited data, we were not able to assess the 

imaging-pathology relationship separately for subcortical regions, which could be interesting 

as PSP is a primarily subcortical disorder.
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Chapter 7: Discussion 

 

7.1. Summary of the presented work 

 

In this thesis, I set out to investigate the relationship between in vivo imaging markers and 

underlying tau pathology in PSP. I first attempted to advance the semi-quantitative approach 

of assessing pathology in post mortem brain by developing an automated pipeline to quantify 

tau positive and negative neuronal and glial cells using a supervised machine learning 

algorithm. I designed a pipeline by considering 3 main challenges associated with cell 

classification of cell class imbalance, the heterogeneity of cell characteristics and the ratio of 

class imbalance across brain regions, and the ambiguous nature of classifying cells. I 

compared different approaches for feature selection and machine learning algorithm. 

Balanced random forest with feature recursive elimination approach was selected for the final 

pipeline as it has the best trade-off accuracy, interpretability, and adaptability. 

 

Despite these considerations, the cell quantification pipeline was unable to perform at a high 

level due to 3 main reasons. First, neuronal, and glial cells have overlapping features based 

on the information extracted from the brightfield image with haematoxylin staining. This 

issue could be because of the chosen feature extraction method or simply that our images 

only provided information on cell nuclei but no other important cytological features 

necessary to differentiate between the cell types. Secondly, the pipeline was not robust 

against tau aggregation as the nuclei detection step was inaccurate since nuclear shape was 

distorted by tau aggregates, resulting in misclassification of cell types. Thirdly, relying on 

DAB thresholding to identify tau positive cells is likely problematic due to the bleeding 

between digital channels.  

 

I therefore concentrated on quantifying PSP-related tau pathological hallmarks which reflect 

PSP pathology. I adapted the original pipeline to be compatible with classifying 4 

pathological hallmarks in key brain regions in the PSP pathology staging scheme: coiled 

bodies, neurofibrillary tangles, tufted astrocytes, and tau fragments. The pipeline has been 

shown to work at a much higher performance than the cell classification pipeline, comparable 

to an expert neuropathologist. Next, I validated the tau quantification pipeline in a larger 



 
 

187 
 

dataset consisting of PSP participants of pathological stage 2-6 and control donors. I found a 

strong correspondence between digitally quantified tau burden and the current consensus PSP 

staging scheme. I further assessed the relationship between tau burden, PSP stage and PSPRS 

score prior to death as a measure of clinical severity. I found that the clinical severity of PSP 

stage 6 participants is higher than that of stage 2, while clinical severity of stage 3-5 is similar 

to that of stage 2. Total cortical tau density and subcortical neurofibrillary tangle density, but 

not subcortical or whole-brain total tau density, correlate with the clinical severity. These 

results highlight the importance of studying tau type-specific burden in specific anatomical 

locations in PSP, instead of simply investigating total tau burden in all regions or using the 

pathological PSP stage. Next, I compared total tau density quantified from control to PSP 

participants and have shown that that former indeed had lower tau burden than the latter. This 

further suggests that the tau quantification pipeline also works well when tau is minimal and 

is not highly susceptible to noise from, for example, artefacts or bleeding between digital 

channels.  

 

Lastly, I investigated the relationship between tau burden and both structural and functional 

imaging measures from PSP participants. I did not find evidence supporting the relationship 

between atrophy and tau burden across the whole brain or cortical regions. Nevertheless, 

when inspecting atrophy-tau relationship within each brain region, I found atrophy and coiled 

body density to be correlated only in dentate nucleus. Moreover, there was a negative 

relationship between functional connectivity and total tau burden across all brain regions in 

the study. These results therefore demonstrate that structural imaging measures may be a less 

reliable marker than functional imaging measures in tracking tau burden in PSP participants. 

Overall, I have advanced the semi-quantitative approach of assessing tau pathology in post 

mortem PSP brains and investigated the association between tau burden and a variety of 

measures such as PSP pathological staging, clinical severity, and imaging markers. 
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7.2. Relation to existing literature & future work 

 

7.2.1. Digital pathology pipeline 

 

In tauopathies, studies using automated pipeline have attempted to quantify neurons (Kaalund 

et al., 2020) and tau type-specific aggregates (Koga et al., 2021, 2022; Marx et al., 2022; 

Signaevsky et al., 2019). However, to my knowledge, no study has attempted to quantify both 

neuronal and glial cells as well as a wide range of tau type-specific aggregates in the same 

sample. Previous studies using automated pipelines can largely be grouped into 2 types, for 

mechanistic research (Kaalund et al., 2020; Marx et al., 2022; Signaevsky et al., 2019) and 

for aiding post mortem diagnosis of tauopathies (Koga et al., 2021, 2022). For mechanistic 

research, the relationship between overall neuronal and tau positive neuronal density to 

cognition has been investigated (Kaalund et al., 2020). Studies have also attempted to 

investigate diseases-specific tau distribution patterns in both grey and white matter but have 

not classified tau into different types (Coughlin et al., 2022; Vega et al., 2021). For studies 

that have assessed tau type-specific aggregates, the focus has been on investigating the 

relationship between neurofibrillary tangle and cognition (Marx et al., 2022; Signaevsky et 

al., 2019), and using disease-specific tau aggregates for post mortem diagnosis (Koga et al., 

2021, 2022). Therefore, this thesis is the first, to my knowledge, to have successfully 

developed tau type-specific quantification pipeline for multiple key brain regions and 

investigated various association between tau burden and other factors such as the current 

pathological staging scheme, to cognition and imaging measures in one cohort.  

 

Despite high performance of the tau quantification pipeline, it only recognizes PSP-related 

tau aggregates and would misclassify non-PSP-related aggregates in the presence of co-

pathology as it has not ‘seen’ them before. Therefore, an obvious next step is to re-train the 

pipeline to recognize other tau pathological hallmarks (Jecmenica Lukic et al., 2020) such as 

Alzheimer’s disease, and other tauopathies including Corticobasal Degeneration and Pick’s 

disease. Eventually, it may be possible to build a pipeline that can distinguish multiple 

pathologies and recognize co-pathology.  If successful, this pipeline could be applied to 

regions in PSP with heavy tau pathology but are known to have heavy co-pathology such as 

the midbrain (Kovacs et al., 2020). The pipeline could be trained to recognize other disease-

specific non-tau protein hallmarks. This will require a few adaptations to the current object 

detection step as it is currently designed to detect tau objects from DAB thresholding. 
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However, the principles of the pipeline could be adapted for other pathological protein 

aggregates, such as alpha-synuclein, beta-amyloid or TDP-43. 

 

7.2.2. Cell classification pipeline  

 

Cell classification pipelines have received great attention in other areas of biological science 

research (Shifat-E-Rabbi et al., 2020), but less so in tauopathies as the focus has largely been 

on tau aggregates. Still, being able to quantify neuronal density as a proxy for neuronal loss, 

and glial density will continue to be highly desirable for investigating the relationship 

between tau aggregation and neuronal and glial cells. Studies investigating the interaction 

between tau and cells are mostly based on animal models of tauopathies where questions of 

tau hyperphosphorylation, aggregation and spreading have been addressed  (Dujardin et al., 

2015). An advantage of animal models is that they can provide clear experimental evidence 

for understanding how complex processes work where various hypotheses can be directly 

tested. This has led to findings including evidence supporting the toxicity of tau aggregates, 

leading to neuronal death (Fatouros et al., 2012; Mocanu et al., 2008),  and evidence showing 

that cognitive impairment and neurodegeneration can happen without tangle formation 

(Andorfer et al., 2005; Cowan & Mudher, 2013; Wittmann et al., 2001). The limitation of 

animal models is that it is not clear whether these mechanisms contribute to human sporadic 

disease. As these studies are based on animal models which have translational potential to 

tauopathies in human, it would be interesting to investigate the association between cell 

density and tau aggregation in post mortem human samples.  

 

Stereology has been the standard approach for cell counting but is time-intensive and require 

training (West & Gundersen, 1990). The isotropic fractionator approach was developed in 

2005 and is a more user-friendly approach, but the tissue analyzed is destroyed and it 

provides no cellular spatial information (Herculano-Houzel & Lent, 2005).  An automated 

approach promises to be an optimal alternative approach that provides rich information and is 

scalable. To improve the cell classification pipeline, we may require an alternative staining 

agent, such as a Nissl stain to identify cytoplasm and other cytological features, to enable 

more distinctive features of each class to be visible. Even if this were successful, the cell 

classification pipeline is still likely to require an additional tau object classification pipeline 

since cells with tau aggregates become distorted.  
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7.2.3. Pathological stage  

 

I assessed the agreement between digitally quantified tau burden and the current PSP staging 

scheme which showed strong correspondence. This validates our novel digital approach and 

provide detailed insights into how the staging system works such as the key pathology in 

each region and the contribution of region-specific severity towards the overall PSP stage. 

The digital approach has additional advantages over the traditional semi-quantitative 

approach, providing more fine-grained detail over a much larger brain area and is less prone 

to inter and intra-rater variability. 

 

I further assessed the predictive power of PSP stage, digital tau burden and PSPRS score 

using Bayesian regression. I found that cortical tau burden and subcortical neurofibrillary 

tangle burden are associated with PSPRS score, but not when tau was quantified from all 

regions. Previous studies have found a positive relationship between whole brain atrophy and 

PSPRS score (Dutt et al., 2016; Tsai et al., 2016), however, amongst all structures, the 

association is most prominent in the brainstem, midbrain and cortical regions such as the 

precentral gyrus (Dutt et al., 2016). Subcortical atrophy has also been shown to drive changes 

in frontal executive function (Whiteside et al., 2021), all together, these previous findings 

suggest that subcortical and cortical neuropathology burden measured in different ways 

underlie clinical dysfunction. In general, clinical deficits in neurodegenerative diseases are 

linked to neuronal dysfunction with unclear role of glial tau burden (Kovacs et al., 2020; 

Robinson et al., 2020), while this may appear to be the case in subcortical structures in our 

PSP cohort, such relationship is likely different in cortical structures where the interplay 

between neuronal and glial tau burden may be more prominent. 

 

There was only sufficient evidence to support that clinical severity of PSP stage 6 is higher 

than stage 2 and not other stages. These results suggest using pathological stage as a measure 

of tau burden can mask subtle pathological changes where more detailed measurement such 

as tau density would be more informative, especially when linking to cognition (Signaevsky 

et al., 2019). This is in-line with a study which found Braak stage to have less 

clinicopathologic power than using neurofibrillary counts in PART  (Marx et al., 2022). 

Directly using pathological counts would also avoid the need to validate such disease-specific 

staging scheme in other diseases with similar pathology which may have different 

pathogenesis. 
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7.2.4. In vivo imaging and its relation to tau burden 

 

I investigated whether in vivo structural and functional imaging measures are indicative of tau 

burden using post mortem data. Such investigation is crucial for validating imaging measures 

as a surrogate biomarker of tau burden. I found that tau burden is associated with weighted 

degree but not atrophy across all brain regions in the PSP staging scheme. Despite the lack of 

atrophy-tau relationship in our PSP cohort, Spina et al (2019) found a small effect size of tau-

atrophy relationship (that just reached significance) at the whole-brain level while Carlos et al 

(2021) found such relationship only in subcortical regions. Altogether, this suggests that it is 

possible to find no such relationship in other PSP cohorts with a few methodological 

differences. This also suggests that structural atrophy may not be a reliable biomarker of the 

underlying tau pathology in PSP. To my knowledge, this thesis is the first to investigate the 

relationship between tau burden and graph metrics in PSP cohort. Therefore, our finding 

remains to be replicated in other PSP cohorts to ensure that functional connectivity is a 

reliable biomarker of PSP tau pathology.   

 

The investigation of imaging-pathology relationship also provides insights for understanding 

the relationship between tau burden, functional connectivity, and atrophy in tauopathies. My 

findings suggest that the relationship between tau and functional change is more closely 

related than structural change, in-line with the finding from chapter 5 (Page 124) that tau 

burden correlates with cognition. This is also consistent with the well-established insights 

that hyperphosphorylated tau can impair microtubule stability and affect normal functioning 

of neurons (Biernat et al., 2002; Irwin, 2016; Sexton et al., 2022; Y. Zhang et al., 2022). 

However, the relationship between tau burden and atrophy is less straightforward. In AD 

research, it is a common finding that structural MRI can be used to track NFT burden and can 

distinguish between AD subtypes (Apostolova et al., 2015; Burton et al., 2009; Jack et al., 

2002; Whitwell et al., 2012). This therefore raises the question about the underlying basis of 

atrophy in neurodegenerative diseases, which is often interpreted as a marker of neuronal loss 

and neurodegeneration more generally (Jack et al., 2016). There are a few differences 

between AD and PS; beta-amyloid is also involved in AD, and the key tau pathology differs 

between the disorders. Future studies could try to investigate structural and functional 

imaging measures to post mortem tau burden in AD.  
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The relationship between tau burden and functional connectivity raises the possibility that the 

effect of tau neuropathology could be related to its role in supporting microtubules, and 

therefore the structural integrity of axons and synapses. This could be investigated by 

examining white matter. White matter in PSP also has substantial tau pathology but has 

received little attention. Studies have found disease-specific tau distribution patterns in grey 

and white matter (Coughlin et al., 2022; Vega et al., 2021). The current pipeline can easily be 

adapted to analyze tau pathology in white matter. This would permit comparison between 

white and grey matter in terms of tau burden, and relationship to clinical disease severity. 

 

Autopsy-verified cohorts are essential in tauopathies as clinical diagnosis is challenging due 

to the overlapping clinical features between disorders which makes definitive diagnosis only 

possible at post mortem. For quantifying tau, post mortem data provides the most detailed 

quantification such as total and tau type-specific density. Though tau burden can be 

quantified using PET, it is only accurate in AD and not non-AD disorders due to off-target 

binding issues (Jucker & Walker, 2013). This means that post mortem tau is the current best 

method to quantify tau type-specific aggregates accurately. Concerns remain about matching 

between imaging and post mortem brain regions and making assumptions about how tau 

change with imaging-death interval need to be better addressed in future studies.  

 

 

7.3. Concluding remarks 

 

This PhD thesis has demonstrated the utility of machine learning in assessing 

neuropathology, specifically that an automated pipeline can achieve a fast and scalable 

workflow for quantifying tau pathology in PSP. Such a pipeline can be used to assess 

pathology across cell types and brain regions and is useful for mechanistic research in 

preliminarily assessing pathology and generating new hypotheses. The involvement of a 

well-trained neuropathologist will continue to be essential, but such a pipeline can assist in 

providing additional information and reducing workload. My work has highlighted the 

importance of studying tau type-specific burden in specific anatomical locations in PSP and 

the significance of investigating imaging-pathology relationships in both validating in vivo 

biomarkers and discovering novel mechanistic insights in the pathogenesis of tauopathies. 
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Appendix 

 

 

 

In Appendix, extra information is provided for analyses carried out in chapter 5 and 6. For 

chapter 5, model diagnostic plots are provided Bayesian regression models when assessing 

the relationship between neuropathological severity (PSP stage, tau burden) and clinical 

severity (PSPRS score). For chapter 6, full results for w-score, weighted degree (WD) and 

closeness centrality (CC) in PSP are provided for 258 regions in the analysis (where 

applicable). Due to a large number of models constructed when assessing pathology-imaging 

relationship, here, I have provided model diagnostic results for only key results, 1) atrophy-

tau relationship in dentate nucleus and 2) weighted degree and tau at whole brain level. 
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Model fit for chapter 5 
 

 

 

  Figure 0.1: Prior predictive check of N(0,100) for the model, PSPRS score ~ PSP stage + disease duration + PSPRS-death 

interval. T(y) is the distribution of the data (dark blue line), T(yrep) is the data generated from the chosen prior (light blue). 

A chosen prior is appropriate when the dark blue line is more than minimum (a), within mean (b) and less than the 

maximum values (c) generated. Posterior predictive check (d) is shown where actual data (y) is plotted with the simulated 

data from the posterior distribution (yrep). Actual data should be in-line with the simulated data. 

a) b) 

c) d) 
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Figure 0.2: Plots of posterior distribution (left) and trace plots (right) of the regression coefficients in 

the model, PSPRS score ~ PSP stage + disease duration + PSPRS-death interval. When the model is 

fit properly, trace plots should have no specific pattern observed, but should show random scatter 

around the mean.  
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Figure 0.3: Prior predictive check of N(0,100) for the model, PSPRS score ~ total tau burden (all regions) + disease duration 

+ PSPRS-death interval. T(y) is the distribution of the data (dark blue line), T(yrep) is the data generated from the chosen 

prior (light blue). A chosen prior is appropriate when the dark blue line is more than minimum (a), within mean (b) and less 

than the maximum values (c) generated. Posterior predictive check (d) is shown where actual data (y) is plotted with the 

simulated data from the posterior distribution (yrep). Actual data should be in-line with the simulated data. 

a) b) 

c) d) 
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Figure 0.4: Plots of posterior distribution and trace plots of the regression coefficient in the model; 

PSPRS score ~ total tau burden (all regions) + disease duration + PSPRS-death interval. When the 

model is fit properly, trace plots should have no specific pattern observed, but should show random 

scatter around the mean. 
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Figure 0.5: Prior predictive check of N(0,100) for the model, PSPRS score ~ total tau burden (cortical regions) + disease 

duration + PSPRS-death interval. T(y) is the distribution of the data (dark blue line), T(yrep) is the data generated from the 

chosen prior (light blue). A chosen prior is appropriate when the dark blue line is more than minimum (a), within mean (b) 

and less than the maximum values (c) generated. Posterior predictive check (d) is shown where actual data (y) is plotted with 

the simulated data from the posterior distribution (yrep). Actual data should be in-line with the simulated data. 

a) b) 

c) d) 
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Figure 0.6: Plots of posterior distribution and trace plots of the regression coefficient in the model; 

PSPRS score ~ total tau burden (cortical regions) + disease duration + PSPRS-death interval. When 

the model is fit properly, trace plots should have no specific pattern observed, but should show 

random scatter around the mean. 
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Figure 0.7: Prior predictive check of N(0,100) for the model, PSPRS score ~ neurofibrillary tangle burden (subcortical 

regions) + disease duration + PSPRS-death interval. T(y) is the distribution of the data (dark blue line), T(yrep) is the 

data generated from the chosen prior (light blue). A chosen prior is appropriate when the dark blue line is more than 

minimum (a), within mean (b) and less than the maximum values (c) generated. Posterior predictive check (d) is shown 

where actual data (y) is plotted with the simulated data from the posterior distribution (yrep). Actual data should be in-

line with the simulated data. 

a) b) 

c) d) 
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Figure 0.8: Plots of posterior distribution and trace plots of the regression coefficient in the model; 

PSPRS score ~ neurofibrillary tangle burden (subcortical regions) + disease duration + PSPRS-death 

interval. When the model is fit properly, trace plots should have no specific pattern observed, but 

should show random scatter around the mean. 
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Analysis results & model fit for chapter 6 
 

Table 0.1: W-score, weighted degree (WD) and closeness centrality (CC) are reported for all 258 

brain regions in the analysis. Not applicable (NA) is reported where no calculation was done. 

Index Region Specific region Parcel w-score WD CC 

1 Amygdala medial amyg mAmyg_L 0.282 13.516 0.773 

2 Amygdala medial amyg mAmyg_R 0.228 13.504 0.766 

3 Amygdala lateral amyg lAmyg_L 0.884 13.254 0.781 

4 Amygdala lateral amyg lAmyg_R 0.867 13.796 0.762 

5 Hippocampus rostral hipp rHipp_L 0.461 17.506 0.769 

6 Hippocampus rostral hipp rHipp_R 0.320 16.170 0.765 

7 Hippocampus caudal hipp cHipp_L 0.576 14.637 0.772 

8 Hippocampus caudal hipp cHipp_R 0.919 14.967 0.776 

9 Basal Ganglia ventral caudate vCa_L 1.554 12.440 0.755 

10 Basal Ganglia ventral caudate vCa_R 1.328 14.339 0.758 

11 Basal Ganglia globus pallidus GP_L 1.317 15.068 0.742 

12 Basal Ganglia globus pallidus GP_R 1.392 15.984 0.750 

13 Basal Ganglia nucleus accumbens NAC_L 0.705 15.224 0.772 

14 Basal Ganglia nucleus accumbens NAC_R 1.428 14.815 0.764 

15 Basal Ganglia ventromedial putamen vmPu_L 1.820 15.600 0.750 

16 Basal Ganglia ventromedial putamen vmPu_R 1.300 15.059 0.759 

17 Basal Ganglia dorsal caudate dCa_L 0.681 11.834 0.743 

18 Basal Ganglia dorsal caudate dCa_R 0.713 12.544 0.740 

19 Basal Ganglia dorsolateral putamen dlPu_L 1.977 15.957 0.761 

20 Basal Ganglia dorsolateral putamen dlPu_R 1.565 15.459 0.766 

21 Thalamus medial pre-frontal thalamus mPFtha_L 1.565 19.729 0.737 

22 Thalamus medial pre-frontal thalamus mPFtha_R 1.417 19.526 0.732 

23 Thalamus pre-motor thalamus mPMtha_L 0.538 14.075 0.736 

24 Thalamus pre-motor thalamus mPMtha_R 1.544 18.136 0.742 

25 Thalamus sensory thalamus Stha_L 1.699 16.568 0.756 

26 Thalamus sensory thalamus Stha_R 1.550 16.030 0.765 

27 Thalamus rostral temporal thalamus rTtha_L -0.153 17.006 0.742 

28 Thalamus rostral temporal thalamus rTtha_R 0.044 15.741 0.728 

29 Thalamus posterior parietal thalamus PPtha_L 1.818 19.998 0.748 

30 Thalamus posterior parietal thalamus PPtha_R 1.845 17.460 0.766 
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Index Region Specific region Parcel w-score WD CC 

31 Thalamus occipital thalamus Otha_L 1.516 17.275 0.763 

32 Thalamus occipital thalamus Otha_R 1.014 14.322 0.756 

33 Thalamus caudal temporal thalamus cTtha_L 1.128 14.068 0.755 

34 Thalamus caudal temporal thalamus cTtha_R -0.022 12.664 0.752 

35 Thalamus lateral pre-frontal thalamus lPFtha_L 1.904 20.166 0.738 

36 Thalamus lateral pre-frontal thalamus lPFtha_R 1.797 21.280 0.743 

37 

Subthalamic 

nucleus Subthalamic nucleus STN_L 3.901 NA NA 

38 

Subthalamic 

nucleus Subthalamic nucleus STN_R 3.407 NA NA 

39 

Superior 

frontal gyrus medial area 8 A8m_L 0.852 17.418 0.769 

40 

Superior 

frontal gyrus medial area 9 A8m_R 0.330 18.085 0.777 

41 

Superior 

frontal gyrus dorsolateral area 8 A8dl_L 0.350 16.230 0.740 

42 

Superior 

frontal gyrus dorsolateral area 9 A8dl_R 0.336 16.001 0.742 

43 

Superior 

frontal gyrus lateral area 9 A9l_L 0.250 14.537 0.733 

44 

Superior 

frontal gyrus lateral area 10 A9l_R -0.219 15.390 0.739 

45 

Superior 

frontal gyrus dorsolateral area 6 A6dl_L 0.448 16.619 0.769 

46 

Superior 

frontal gyrus dorsolateral area 7 A6dl_R 0.470 15.811 0.768 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

236 
 

Index Region Specific region Parcel w-score WD CC 

47 

Superior 

frontal 

gyrus medial area 6 A6m_L 1.116 21.085 0.763 

48 

Superior 

frontal 

gyrus medial area 7 A6m_R 0.877 22.147 0.758 

49 

Superior 

frontal 

gyrus medial area 9 A9m_L 0.829 18.564 0.748 

50 

Superior 

frontal 

gyrus medial area 9 A9m_R 0.509 18.807 0.754 

51 

Superior 

frontal 

gyrus medial area 10 A10m_L 0.702 17.155 0.735 

52 

Superior 

frontal 

gyrus medial area 11 A10m_R -0.081 17.509 0.735 

53 

Middle 

frontal 

gyrus dorsal area 9/46 A9/46d_L 0.464 15.599 0.771 

54 

Middle 

frontal 

gyrus dorsal area 9/46 A9/46d_R 0.263 16.871 0.762 

55 

Middle 

frontal 

gyrus inferior frontal junction IFJ_L 0.730 16.790 0.757 

56 

Middle 

frontal 

gyrus inferior frontal junction IFJ_R 0.770 17.064 0.743 

57 

Middle 

frontal 

gyrus area46 A46_L 0.651 15.635 0.762 

58 

Middle 

frontal 

gyrus area46 A46_R 0.078 16.120 0.754 

59 

Middle 

frontal 

gyrus ventral area 9/46 A9/46v_R 0.546 16.075 0.743 

60 

Middle 

frontal 

gyrus ventral area 9/46 A9/46v_R 0.030 16.075 0.743 

61 

Middle 

frontal 

gyrus ventral lateral area 8 A8vl_L 0.426 16.318 0.740 
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Index Region Specific region Parcel w-score WD CC 

62 

Middle 

frontal 

gyrus ventral lateral area 8 A8vl_R 0.418 15.236 0.742 

63 

Middle 

frontal 

gyrus ventral lateral area 6 A6vl_L 0.793 16.704 0.768 

64 

Middle 

frontal 

gyrus ventral lateral area 6 A6vl_R 0.132 16.845 0.758 

65 

Middle 

frontal 

gyrus lateral area 10 A10l_L 0.325 14.604 0.757 

66 

Middle 

frontal 

gyrus lateral area 10 A10l_R -0.108 15.093 0.755 

67 

Inferior 

frontal 

gyrus dorsal area44 A44d_L 0.568 15.439 0.762 

68 

Inferior 

frontal 

gyrus dorsal area44 A44d_R 0.636 16.139 0.755 

69 

Inferior 

frontal 

gyrus inferior frontal sulcus IFS_L 0.505 14.228 0.761 

70 

Inferior 

frontal 

gyrus inferior frontal sulcus IFS_R 0.448 14.635 0.757 

71 

Inferior 

frontal 

gyrus caudal area 45 A45c_L 0.186 12.734 0.754 

72 

Inferior 

frontal 

gyrus caudal area 45 A45c_R 0.428 14.661 0.748 

73 

Inferior 

frontal 

gyrus rostral area 45 A45r_L 0.400 13.713 0.761 

74 

Inferior 

frontal 

gyrus rostral area 45 A45r_R 0.058 13.757 0.754 

75 

Inferior 

frontal 

gyrus opercular area 44 A44op_L 0.654 16.192 0.763 

76 

Inferior 

frontal 

gyrus opercular area 44 A44op_R 0.553 16.593 0.764 
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Index Region Specific region Parcel w-score WD CC 

77 

Inferior 

frontal 

gyrus ventral area 44 A44v_L 0.530 14.748 0.757 

78 

Inferior 

frontal 

gyrus ventral area 45 A44v_R 0.642 15.864 0.753 

79 

Orbital 

gyrus medial area 14 A14m_L 0.151 15.607 0.731 

80 

Orbital 

gyrus medial area 14 A14m_R 0.023 16.698 0.729 

81 

Orbital 

gyrus orbital area 14/47 A12/47o_L 0.673 15.076 0.770 

82 

Orbital 

gyrus orbital area 14/47 A12/47o_R 0.185 14.312 0.760 

83 

Orbital 

gyrus lateral area 11 A11l_L 0.319 14.188 0.774 

84 

Orbital 

gyrus lateral area 11 A11l_R 0.133 15.437 0.764 

85 

Orbital 

gyrus medial area 11 A11m_L 0.342 14.000 0.736 

86 

Orbital 

gyrus medial area 11 A11m_R -0.406 14.572 0.737 

87 

Orbital 

gyrus area 13 A13_L 0.471 13.926 0.763 

88 

Orbital 

gyrus area 13 A13_R 0.256 13.668 0.761 

89 

Orbital 

gyrus lateral area 12/47 A12/47l_L 0.126 15.662 0.770 

90 

Orbital 

gyrus lateral area 12/47 A12/47l_R 0.496 16.630 0.766 

91 

Precentral 

gyrus area 4 (head&face region) A4hf_L 1.484 19.989 0.754 

92 

Precentral 

gyrus area 4 (head&face region) A4hf_R 0.865 17.964 0.746 

93 

Precentral 

gyrus caudal dorsolateral area 6 A6cdl_L 1.037 20.173 0.758 

94 

Precentral 

gyrus caudal dorsolateral area 6 A6cdl_R 0.860 20.329 0.762 

95 

Precentral 

gyrus area 4 (upper limb region) A4ul_L 0.891 22.661 0.738 
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Index Region Specific region Parcel w-score WD CC 

96 

Precentral 

gyrus area 4 (upper limb region) A4ul_R 0.708 20.967 0.737 

97 

Precentral 

gyrus area 4 (trunk reggion) A4t_L 1.134 18.200 0.748 

98 

Precentral 

gyrus area 4 (trunk reggion) A4t_R 0.975 19.492 0.746 

99 

Precentral 

gyrus area 4 (tongue & larynx) A4tl_L 0.521 19.361 0.745 

100 

Precentral 

gyrus area 4 (tongue & larynx) A4tl_R 0.671 19.030 0.746 

101 

Precentral 

gyrus caudal ventrolateral area 6 A6cvl_L 1.014 17.611 0.762 

102 

Precentral 

gyrus caudal ventrolateral area 6 A6cvl_R 0.630 18.922 0.755 

103 

Paracentral 

lobule 

area1/2/3 (lower limb 

region) A1/2/3ll_L 0.039 22.138 0.760 

104 

Paracentral 

lobule 

area1/2/3 (lower limb 

region) A1/2/3ll_R 0.387 25.051 0.751 

105 

Paracentral 

lobule area 4 (lower limb region) A4ll_L 0.884 22.060 0.744 

106 

Paracentral 

lobule area 4 (lower limb region) A4ll_R 0.978 23.336 0.743 

107 

Superior 

temporal 

gyrus medial area 38 A38m_L -0.293 15.579 0.759 

108 

Superior 

temporal 

gyrus medial area 38 A38m_R -0.531 16.214 0.762 

109 

Superior 

temporal 

gyrus area 41/42 A41/42_L 0.647 21.561 0.739 

110 

Superior 

temporal 

gyrus area 41/42 A41/42_R 0.423 21.321 0.744 

111 

Superior 

temporal 

gyrus TE1.0 and TE1.2_L TE1.0 and TE1.2_L 0.611 23.543 0.750 

 

 

 

 

 

 

 

 



 
 

240 
 

Index Region Specific region Parcel w-score WD CC 

111 

Superior 

temporal 

gyrus TE1.0 and TE1.2_L TE1.0 and TE1.2_L 0.611 23.543 0.750 

112 

Superior 

temporal 

gyrus TE1.0 and TE1.2_L 

TE1.0 and 

TE1.2_R 0.458 22.357 0.748 

113 

Superior 

temporal 

gyrus caudal area 22 A22c_L 1.052 18.914 0.756 

114 

Superior 

temporal 

gyrus caudal area 22 A22c_R 0.465 18.778 0.757 

115 

Superior 

temporal 

gyrus lateral area 38 A38l_L 0.692 14.887 0.779 

116 

Superior 

temporal 

gyrus lateral area 38 A38l_R 0.515 16.739 0.772 

117 

Superior 

temporal 

gyrus rostral area 22 A22r_L 0.815 19.176 0.761 

118 

Superior 

temporal 

gyrus rostral area 22 A22r_R 0.365 19.261 0.774 

119 

Middle 

temporal 

gyrus caudal area 21 A21c_L 0.723 14.907 0.745 

120 

Middle 

temporal 

gyrus caudal area 21 A21c_R 0.327 14.263 0.747 

121 

Middle 

temporal 

gyrus rostral area 21 A21r_L 0.366 14.098 0.755 

122 

Middle 

temporal 

gyrus rostral area 21 A21r_R 0.013 15.461 0.755 

123 

Middle 

temporal 

gyrus dorsolateral area 37 A37dl_L 0.152 16.269 0.765 
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Index Region Specific region Parcel w-score WD CC 

124 

Middle 

temporal 

gyrus dorsolateral area 37 A37dl_R 0.400 16.210 0.763 

125 

Middle 

temporal 

gyrus 

anteiror superior temporal 

sulcus aSTS_L 0.394 16.552 0.756 

126 

Middle 

temporal 

gyrus 

anteiror superior temporal 

sulcus aSTS_R 0.436 18.164 0.763 

127 

Inferior 

temporal 

gyrus intermediate ventral area 20 A20iv_L 0.665 12.560 0.760 

128 

Inferior 

temporal 

gyrus intermediate ventral area 20 A20iv_R 0.586 12.358 0.753 

129 

Inferior 

temporal 

gyrus 

extreme lateroventral area 

37 A37elv_L 0.085 15.820 0.766 

130 

Inferior 

temporal 

gyrus 

extreme lateroventral area 

37 A37elv_R 0.448 15.377 0.766 

131 

Inferior 

temporal 

gyrus rostral area 20 A20r_L 0.023 12.226 0.752 

132 

Inferior 

temporal 

gyrus rostral area 20 A20r_R -0.055 12.383 0.755 

133 

Inferior 

temporal 

gyrus intermediate lateral area 20 A20il_L 0.767 13.296 0.744 

134 

Inferior 

temporal 

gyrus intermediate lateral area 20 A20il_R 0.409 12.999 0.737 

135 

Inferior 

temporal 

gyrus ventrolateral area 37 A37vl_L 0.489 14.383 0.761 

136 

Inferior 

temporal 

gyrus ventrolateral area 37 A37vl_R 0.678 15.464 0.760 
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Index Region Specific region Parcel w-score WD CC 

137 

Inferior temporal 

gyrus caudolateral of area 20 A20cl_L 0.027 12.773 0.740 

138 

Inferior temporal 

gyrus caudolateral of area 20 A20cl_R 0.372 12.313 0.749 

139 

Inferior temporal 

gyrus caudoventral of area 20 A20cv_L 0.450 11.458 0.749 

140 

Inferior temporal 

gyrus caudoventral of area 20 A20cv_R 0.330 11.530 0.752 

141 Fusiform gyrus rostroventral area 20 A20rv_L 0.683 15.987 0.761 

142 Fusiform gyrus rostroventral area 20 A20rv_R 0.750 16.914 0.764 

143 Fusiform gyrus medioventral area 37 A37mv_L 0.821 21.909 0.739 

144 Fusiform gyrus medioventral area 37 A37mv_R 0.719 21.755 0.740 

145 Fusiform gyrus ventrolatral area37 A37lv_L 0.751 17.692 0.766 

146 Fusiform gyrus ventrolatral area37 A37lv_R 0.478 19.185 0.756 

147 

Parahippocampal 

gyrus rostral area 35/36 A35/36r_L 0.396 13.126 0.756 

148 

Parahippocampal 

gyrus rostral area 35/36 A35/36r_R 0.275 13.955 0.748 

149 

Parahippocampal 

gyrus caudal area 35/36 A35/36c_L 0.399 13.168 0.771 

150 

Parahippocampal 

gyrus caudal area 35/36 A35/36c_R 0.433 13.024 0.765 

151 

Parahippocampal 

gyrus 

lateral posterior 

parahippocampal gyrus 

(PPHC) TL_L 0.160 13.862 0.769 

152 

Parahippocampal 

gyrus 

lateral posterior 

parahippocampal gyrus 

(PPHC) TL_R 0.571 14.133 0.768 

153 

Parahippocampal 

gyrus area 28/34 A28/34_L 0.673 14.794 0.763 
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Index Region Specific region Parcel w-score WD CC 

154 

Parahippocampal 

gyrus area 28/34 A28/34_R -0.210 13.589 0.754 

155 

Parahippocampal 

gyrus 

temporal agranular 

insular cortex TI_L 0.015 11.849 0.756 

156 

Parahippocampal 

gyrus 

temporal agranular 

insular cortex TI_R 0.391 11.574 0.750 

157 

Parahippocampal 

gyrus medial PPHC TH_L 0.028 15.029 0.780 

158 

Parahippocampal 

gyrus medial PPHC TH_R -0.122 15.893 0.782 

159 

Posterior superior 

temporal sulcus 

rostroposterior superior 

temporal sulcus (rpSTS) rpSTS_L 0.755 15.696 0.767 

160 

Posterior superior 

temporal sulcus 

rostroposterior superior 

temporal sulcus (rpSTS) rpSTS_R 0.638 16.987 0.765 

161 

Posterior superior 

temporal sulcus 

caudoposterior superior 

temporal sulcus (cpSTS) cpSTS_L 0.684 16.086 0.768 

162 

Posterior superior 

temporal sulcus 

caudoposterior superior 

temporal sulcus (cpSTS) cpSTS_R 0.516 16.673 0.762 

163 

Superior parietal 

lobule rostral area 7 A7r_L 0.098 16.967 0.750 

164 

Superior parietal 

lobule rostral area 7 A7r_R 0.409 17.418 0.731 

165 

Superior parietal 

lobule caudal area 7 A7c_L 0.474 16.970 0.745 

166 

Superior parietal 

lobule caudal area 7 A7c_R 0.613 16.288 0.744 

167 

Superior parietal 

lobule lateral area 5 A5l_L 0.336 20.303 0.748 

 

 



 
 

244 
 

Index Region Specific region Parcel w-score WD CC 

168 

Superior parietal 

lobule lateral area 5 A5l_R 0.325 17.660 0.747 

169 

Superior parietal 

lobule postcentral area 7 A7pc_L 0.041 18.136 0.749 

170 

Superior parietal 

lobule postcentral area 7 A7pc_R 0.228 17.813 0.738 

171 

Superior parietal 

lobule intraparietal area 7 A7ip_L 0.319 19.312 0.752 

172 

Superior parietal 

lobule intraparietal area 7 A7ip_R 0.705 18.745 0.740 

173 

Inferior parietal 

lobule caudal area 39 A39c_L 0.443 16.233 0.751 

174 

Inferior parietal 

lobule caudal area 39 A39c_R 0.431 16.331 0.762 

175 

Inferior parietal 

lobule rostrodorsal area 39 A39rd_L 0.201 15.599 0.743 

176 

Inferior parietal 

lobule rostrodorsal area 39 A39rd_R 0.434 15.370 0.739 

177 

Inferior parietal 

lobule rostrodorsal area 40 A40rd_L 0.151 19.155 0.755 

178 

Inferior parietal 

lobule rostrodorsal area 40 A40rd_R 0.588 18.841 0.750 

179 

Inferior parietal 

lobule caudal area 40 A40c_L 0.342 15.036 0.758 
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Index Region Specific region Parcel w-score WD CC 

180 

Inferior 

parietal 

lobule caudal area 40 A40c_R 0.446 13.970 0.745 

181 

Inferior 

parietal 

lobule rostroventral area 39 A39rv_L 0.581 17.558 0.742 

182 

Inferior 

parietal 

lobule rostroventral area 39 A39rv_R 0.314 16.446 0.742 

183 

Inferior 

parietal 

lobule rostralventral area 40 A40rv_L 0.023 18.850 0.746 

184 

Inferior 

parietal 

lobule rostralventral area 40 A40rv_R 0.564 18.671 0.744 

185 Precuneus medial area 7 (PEp) A7m_L -0.157 18.333 0.752 

186 Precuneus medial area 7 (PEp) A7m_R 0.465 17.977 0.750 

187 Precuneus medial area 5 (PEm) A5m_L 0.428 22.261 0.763 

188 Precuneus medial area 5 (PEm) A5m_R 0.624 24.388 0.755 

189 Precuneus 

dorsomedial parietooccipital 

sulcus (PEr) dmPOS_L 0.615 19.128 0.752 

190 Precuneus 

dorsomedial parietooccipital 

sulcus (PEr) dmPOS_R 0.839 19.232 0.755 

191 Precuneus area 31 (LC1) A31_L 0.341 19.781 0.738 

192 Precuneus area 31 (LC1) A31_R 0.720 20.638 0.734 

193 

Postcentral 

gyrus 

area 1/2/3 (upper limb, head 

& face region) A1/2/3ulhf_L 0.618 19.819 0.734 

194 

Postcentral 

gyrus 

area 1/2/3 (upper limb, head 

& face region) A1/2/3ulhf_R 0.735 20.379 0.739 

195 

Postcentral 

gyrus 

area 1/2/3 (tongue & larynx 

region) A1/2/3tonIa_L 0.463 19.436 0.745 

196 

Postcentral 

gyrus 

area 1/2/3 (tongue & larynx 

region) A1/2/3tonIa_R 0.659 19.875 0.741 

197 

Postcentral 

gyrus area 2 A2_L 0.519 20.456 0.737 

198 

Postcentral 

gyrus area 2 A2_R 0.702 20.339 0.739 
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Index Region Specific region Parcel w-score WD CC 

199 

Postcentral 

gyrus area 1/2/3 (trunk region) A1/2/3tru_L 0.246 21.674 0.744 

200 

Postcentral 

gyrus area 1/2/3 (trunk region) A1/2/3tru_R 0.154 22.860 0.740 

201 Insula gyrus hypergranular insular G_L 0.251 18.411 0.761 

202 Insula gyrus hypergranular insular G_R 0.605 16.534 0.759 

203 Insula gyrus ventral agranular insular vIa_L 0.008 13.324 0.780 

204 Insula gyrus ventral agranular insular vIa_R 0.114 13.925 0.774 

205 Insula gyrus dorsal agranular insular dIa_L 0.159 15.933 0.752 

206 Insula gyrus dorsal agranular insular dIa_R 0.850 15.497 0.749 

207 Insula gyrus ventral granular insular vId/vIg_L -0.076 16.722 0.759 

208 Insula gyrus ventral granular insular vId/vIg_R -0.124 17.802 0.750 

209 Insula gyrus dorsal granular insular dIg_L 0.738 17.039 0.756 

210 Insula gyrus dorsal granular insular dIg_R 0.473 17.311 0.755 

211 Insula gyrus dorsal dyspranular insular dId_L 0.379 17.069 0.732 

212 Insula gyrus dorsal dyspranular insular dId_R 0.581 17.545 0.739 

213 

Cingulate 

gyrus dorsal area 23 A23d_L 0.169 20.365 0.729 

214 

Cingulate 

gyrus dorsal area 23 A23d_R 0.395 19.493 0.742 

215 

Cingulate 

gyrus rostroventral area 24 A24rv_L 0.137 19.488 0.776 

216 

Cingulate 

gyrus rostroventral area 24 A24rv_R 0.319 16.886 0.765 

217 

Cingulate 

gyrus pregenual area 32 A32p_L 0.250 17.137 0.761 

218 

Cingulate 

gyrus pregenual area 32 A32p_R 0.055 17.866 0.766 

219 

Cingulate 

gyrus ventral area 23 A23v_L 0.159 19.049 0.747 
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Index Region Specific region Parcel w-score WD CC 

220 

Cingulate 

gyrus ventral area 23 A23v_R 0.148 19.701 0.747 

221 

Cingulate 

gyrus caudodorsal area 24 A24cd_L 0.298 21.087 0.764 

222 

Cingulate 

gyrus caudodorsal area 24 A24cd_R 0.473 21.318 0.754 

223 

Cingulate 

gyrus caudal area 23 A23c_L 0.506 22.299 0.785 

224 

Cingulate 

gyrus caudal area 23 A23c_R 0.323 23.678 0.770 

225 

Cingulate 

gyrus subgenual area 32 A32sg_L 0.336 15.023 0.737 

226 

Cingulate 

gyrus subgenual area 32 A32sg_R 0.215 15.542 0.748 

227 

MedioVentral 

Occipital 

cortex caudal lingual gyrus cLinG_L 0.404 20.823 0.729 

228 

MedioVentral 

Occipital 

cortex caudal lingual gyrus cLinG_R 0.054 19.803 0.730 

229 

MedioVentral 

Occipital 

cortex rostral cuneus gyrus rCunG_L 0.298 21.370 0.724 

230 

MedioVentral 

Occipital 

cortex rostral cuneus gyrus rCunG_R 0.262 21.318 0.732 

231 

MedioVentral 

Occipital 

cortex caudal cuneus gyrus cCunG_L 0.049 18.522 0.725 

232 

MedioVentral 

Occipital 

cortex caudal cuneus gyrus cCunG_R -0.022 19.105 0.718 

233 

MedioVentral 

Occipital 

cortex rostral lingual gyrus rLinG_L 0.181 21.171 0.736 

234 

MedioVentral 

Occipital 

cortex rostral lingual gyrus rLinG_R 0.143 21.435 0.733 
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Index Region Specific region Parcel w-score WD CC 

235 

MedioVentral 

Occipital 

cortex 

ventomedial parietoocipital 

sulcus vmPOS_L 0.392 21.435 0.743 

236 

MedioVentral 

Occipital 

cortex 

ventomedial parietoocipital 

sulcus vmPOS_R 0.082 21.232 0.744 

237 

Lateral 

occipital 

cortex middle occipital gyrus mOccG_L 0.106 17.648 0.713 

238 

Lateral 

occipital 

cortex middle occipital gyrus mOccG_R 0.070 17.449 0.718 

239 

Lateral 

occipital 

cortex area V5/MT+ V5/MT+_L 0.320 18.607 0.732 

240 

Lateral 

occipital 

cortex area V5/MT+ V5/MT+_R 0.468 17.758 0.731 

241 

Lateral 

occipital 

cortex occipital polar cortex OPC_L -0.099 17.685 0.719 

242 

Lateral 

occipital 

cortex occipital polar cortex OPC_R 0.191 16.967 0.726 

243 

Lateral 

occipital 

cortex inferior occipital gyrus iOccG_L -0.078 18.103 0.723 

244 

Lateral 

occipital 

cortex inferior occipital gyrus iOccG_R -0.029 18.777 0.728 

245 

Lateral 

occipital 

cortex 

medial superior occipital 

gyrus msOccG_L 0.236 18.530 0.717 

246 

Lateral 

occipital 

cortex 

medial superior occipital 

gyrus msOccG_R 0.549 18.463 0.722 

247 

Lateral 

occipital 

cortex 

lateral superior occipital 

gyrus lsOccG_L 0.426 18.090 0.753 
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Index Region Specific region Parcel w-score WD CC 

248 

Lateral 

occipital 

cortex 

lateral superior 

occipital gyrus lsOccG_R 0.484 18.816 0.747 

249 Cerebellum 

Cerebellum 

white matter Left.Cerebellum.White.Matter 1.301 NA NA 

250 Cerebellum 

Cerebellum 

cortex Left.Cerebellum.Cortex 0.780 NA NA 

251 Cerebellum 

Cerebellum 

white matter Right.Cerebellum.White.Matter 1.678 NA NA 

252 Cerebellum 

Cerebellum 

cortex Right.Cerebellum.Cortex 0.526 NA NA 

253 Midbrain Midbrain Midbrain 3.095 NA NA 

254 Brainstem Pons Pons 1.684 NA NA 

255 Brainstem Medulla Medulla 1.367 NA NA 

256 Brainstem 

Superior 

cerebellar 

peduncle SCP 1.108 NA NA 

258 Cerebellum Dentate nucleus DN_L 1.548 NA NA 

258 Cerebellum Dentate nucleus DN_R 1.491 NA NA 
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Figure 0.9: Prior predictive check of a model with N(0,1) for coiled bodies burden and N(0,10) for covariates, w-score ~ 

coiled bodies burden + imaging-death interval + gender (in dentate nucleus with full dataset). T(y) is the distribution of the 

data (dark blue line), T(yrep) is the data generated from the chosen prior (light blue). A chosen prior is appropriate when the 

dark blue line is more than minimum (a), within mean (b) and less than the maximum values (c) generated. Posterior 

predictive check (d) is shown where actual data (y) is plotted with the simulated data from the posterior distribution (yrep). 

Actual data should be in-line with the simulated data. 

Hide

Hide

a) b) 

c) d) 
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Figure 0.10: Plots of posterior distribution and trace plots of the regression coefficient in the 

model; w-score ~ coiled body burden + imaging-death interval + gender in dentate nucleus with 

full dataset. When the model is fit properly, trace plots should have no specific pattern observed, 

but should show random scatter around the mean. 
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Figure 0.11: Prior predictive check of a model with N(0,1) for coiled bodies burden and N(0,10) for covariates, w-score ~ 

coiled bodies burden + imaging-death interval + gender (in dentate nucleus with the potential outlier removed). T(y) is 

the distribution of the data (dark blue line), T(yrep) is the data generated from the chosen prior (light blue). A chosen prior 

is appropriate when the dark blue line is more than minimum (a), within mean (b) and less than the maximum values (c) 

generated. Posterior predictive check (d) is shown where actual data (y) is plotted with the simulated data from the 

posterior distribution (yrep). Actual data should be in-line with the simulated data. 

a) b) 

c) d) 
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Figure 0.12: Plots of posterior distribution and trace plots of the regression coefficient in the model; w-score 

~ coiled body burden + imaging-death interval + gender in dentate nucleus with the potential outlier 

removed. When the model is fit properly, trace plots should have no specific pattern observed, but should 

show random scatter around the mean. 
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Figure 0.13: Prior predictive check of a model with N(0,10) as the prior distribution, weighted degree ~ tau density + 

imaging-death interval + gender + disease duration + echo type + (1|region name) + (1|Patient ID) across all regions. 

T(y) is the distribution of the data (dark blue line), T(yrep) is the data generated from the chosen prior (light blue). A 

chosen prior is appropriate when the dark blue line is more than minimum (a), within mean (b) and less than the 

maximum values (c) generated. Posterior predictive check (d) is shown where actual data (y) is plotted with the 

simulated data from the posterior distribution (yrep). Actual data should be in-line with the simulated data. 

a) b) 

c) d) 
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Figure 0.14: Plots of posterior distribution and trace plots of the regression coefficient in the model, 

weighted degree ~ tau density + imaging-death interval + gender + disease duration + echo type + 

(1|region name) + (1|Patient ID) across all regions. When the model is fit properly, trace plots should have 

no specific pattern observed, but should show random scatter around the mean. 
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