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Abstract

The computational analysis of high dimensional surfaces is a fundamental problem
across a wide range of scientific fields, for example in the study of models of clusters
of atoms, glasses, self-assembling systems and biomolecules; machine learning;
physics; and other fields. This work presents a variety of novel methods developed
to aid the computational study of the structures, dynamics and thermodynamics of
systems described by these surfaces, traditionally termed energy landscapes.

When studying molecular systems, it is important to be able to quantify measures
of similarity or difference between a pair of structures generated from an energy
landscape. These measures are needed to make predictions of the properties of a
given molecular structure from the known properties of similar others. Equivalently
a pair of structures can be aligned into similar orientations to allow an interpolated
pathway to be generated between them which can be used to identify the transition
states between the pair which is a key limiting step in discrete path sampling. The
efficiency of the transition state search is strongly dependent on the quality of the
initial interpolation and so the alignment methods used. In this work two novel
alignment algorithms are presented and benchmarked against existing algorithms
for aligning pairs of structures for both periodic and isolated clusters of atoms. The
algorithms respectively demonstrate superior performance for either periodic or
isolated structures.

The efficient evaluation of the global thermodynamic properties of an in silico
system, or analogously, the evidence in Bayesian inference, is a challenge for many
high-dimensional systems due to a phenomenon known as broken ergodicity. This
problem occurs when the energy barriers between different regions of the energy
landscape make it difficult to sample both uniformly. In this work a novel superposi-
tion based approach that is embarrassingly parallel, based on the athermal method
nested sampling, is introduced and benchmarked against a model system exhibiting
broken ergodicity. It is shown that the method reproduces the key features of the
heat capacity.





Acknowledgements

First and foremost I would like to thank my supervisor, Prof. David Wales FRS for
all his help, support, guidance, suggestions and corrections. In particular I am most
grateful for the freedom he gave me to explore and grow through my (often silly)
ideas and projects. I must also thank Dr Chris Forman for introducing me to the
world of energy landscapes and guiding me through the formative years of my PhD.

The theory sector of the chemistry department, and the Wales group, has one
of the friendliest academic environments in which I have ever worked, and I must
thank everyone there I have had the pleasure of getting to know. Notably, I must
thank Sam Niblett for his collaboration and always being ready to provide thoughtful
feedback and suggestions and Konstantin Röder for his Teutonic insights into all
things related to work, research, beer and life.

I was funded by the Engineering and Physical Sciences Research Council Centre
for Doctoral Training in Nanoscience and Nanotechnology (NanoDTC). I would like
to thank all the academics, students and friends involved with the NanoDTC for
creating an excellent environment to explore and make friends across a wide range
of fields of science. I would also like to thank the Department of Chemistry and the
Trinity College Rouse Ball fund for funding travel to conferences.

In my time at Trinity College I have been extremely lucky to have made so many
friends that have all helped me in their own ways. The many members of the BA
Society and Boat Club have been of welcome support and companionship. In partic-
ular, I would like to thank Peter Ford for his friendship, suggestions, corrections and
willingness to talk ‘shop’ long after anyone else would have given up. My fellow res-
idents of Marshall Road, Sam Bell, John Grenfell-Shaw, Preeyan Parmar and Imogen
Grant have all been invaluable in their own ways, for which I am eternally grateful.
Specifically, I must thank Imogen for her unwavering support and reminders that
commas are not, always, necessary.





I dedicate this thesis to John.





Table of contents

List of figures xv

1 Introduction 1

2 Methods 5
2.1 Global optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Lennard-Jones potential . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Structural comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Root-mean-square distance . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Sampling energy landscapes . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Thermal methods . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Principle of superposition . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Athermal methods . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 Nested sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Mathematical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Dirichlet distribution . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.3 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Kernel Correlation Alignment 33
3.1 RMSD estimation by Gaussian overlap . . . . . . . . . . . . . . . . . . 33
3.2 Global optimisation of the overlap integral . . . . . . . . . . . . . . . 35

3.2.1 Width of kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Algorithmic complexity . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Minimising RMSD for clusters . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Harmonic basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



xii Table of contents

3.3.2 Spherical Fourier transforms . . . . . . . . . . . . . . . . . . . 42
3.4 Including multiple species . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Branch and Bound Alignment 47
4.1 Deterministic calculation of RMSD . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Bounding RMSD for clusters . . . . . . . . . . . . . . . . . . . 48
4.1.2 Bounding RMSD for periodic systems . . . . . . . . . . . . . . 51
4.1.3 Approximating bounds . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Branch and Bound algorithm . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . . 54

5 Comparison of Alignment Methods 55
5.1 Periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Performance on scrambled data . . . . . . . . . . . . . . . . . 56
5.1.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 58
5.1.4 Go-PERMDIST . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 FASTOVERLAP . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Go-PERMDIST . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Comparison to permutation optimisation schemes . . . . . . . . . . . 64

6 Nested Basin-Sampling 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Nested optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Nested basin-sampling calculations . . . . . . . . . . . . . . . . . . . 71

6.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.2 Estimating basin configuration volumes . . . . . . . . . . . . . 71
6.3.3 Top-down calculations . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.4 Bottom-up calculations . . . . . . . . . . . . . . . . . . . . . . 76
6.3.5 Interpolating between the top-down and bottom-up calculations 77

6.4 Determining the disconnectivity graph . . . . . . . . . . . . . . . . . . 78
6.4.1 Comparing basin volumes . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Determining the harmonic energy range . . . . . . . . . . . . 80
6.4.3 Local sampling close to a minimum . . . . . . . . . . . . . . . 80

6.5 The No Galilean U-Turn Sampler . . . . . . . . . . . . . . . . . . . . . 81



Table of contents xiii

6.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Adapting the stepsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6.1 Avoiding non-Markovian dynamics . . . . . . . . . . . . . . . 86
6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.7.1 Distribution of minima . . . . . . . . . . . . . . . . . . . . . . . 88
6.7.2 Disconnectivity graph . . . . . . . . . . . . . . . . . . . . . . . 89
6.7.3 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusions and Further Work 91
7.1 Alignment algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 Recommended usage of alignment methods . . . . . . . . . . 92
7.1.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2 Nested basin-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References 95

Publications 101





List of figures

1.1 Schema of a high dimensional energy surface . . . . . . . . . . . . . . 2
1.2 Disconnectivity graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of basin-hopping . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Nested sampling schematic . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Angle-axis composition . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Splitting search cube into pyramids . . . . . . . . . . . . . . . . . . . . 52

5.1 Comparison of periodic alignment algorithms . . . . . . . . . . . . . 57
5.2 Comparison of accuracy of periodic alignment algorithms . . . . . . 58
5.3 Time complexity of periodic FASTOVERLAP alignment . . . . . . . . 59
5.4 Comparison of finite alignment algorithms . . . . . . . . . . . . . . . 60
5.5 Comparison of finite alignment algorithm accuracies . . . . . . . . . 61
5.6 Computational complexity of FASTOVERLAP for finite clusters . . . 62
5.7 Comparison of Go-PERMDIST and PERMDIST for LJ38 clusters . . . 62
5.8 Comparison of Go-PERMDIST and PERMDIST for Au55 clusters . . . 65
5.9 Comparison of Go-PERMDIST and PERMDIST for Au147 clusters . . 65

6.1 Classification scheme for NBS disconnectivity graphs . . . . . . . . . 68
6.2 The notation scheme for a NBS disconnectivity graph. . . . . . . . . . 71
6.3 A schematic of NoGUTS in action . . . . . . . . . . . . . . . . . . . . . 81
6.4 Minima nested optimisation probabilities . . . . . . . . . . . . . . . . 87
6.5 The NBS disconnectivity graph for LJ31 . . . . . . . . . . . . . . . . . 88
6.6 Heat capacity of LJ31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89





1 Introduction

“Young man, in mathematics you
don’t understand things. You just
get used to them.”

— John von Neumann

The curse of dimensionality is a fundamental problem faced by any method attempt-
ing to study complex systems. As the number of free variables and dimensions
increase, the structure of the space being studied becomes exponentially sparser. Es-
sentially the ratio of the fraction of space that is interesting compared to the fraction
of space that is not decreases exponentially quickly, which means that it becomes
much more difficult to sample, cluster or search for points of interest.

The study of energy landscapes, pioneered in chemical physics, has developed
a variety of methods to enable the study of in silico models of complex chemical
systems, in particular clusters, glasses and biomolecules [1]. These methods have
been extended to a wide variety of fields, such as machine learning [2–6], self-
assembly [7, 8] and many others.

In the energy landscapes approach a potential energy surface (PES) is defined
over the space of all possible configurations of the system, and the properties of the
system are related to this energy surface.

The curse of dimensionality manifests itself in a variety of ways.

• As the potential energy increases the number of local minima rises exponen-
tially [9–11].

• It is impossible to enumerate all the minima that contribute to the properties
of the system.

• The vast majority of the configuration space corresponds to unphysically high
energies.
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Fig. 1.1 A schematic of the structure of a high-dimensional energy surface. The vast
majority of the configuration volume is high energy, which is not physically relevant,
whilst the regions of low energy, which are of physical interest, are sparse.

• Only very small moves that sample from a local volume in configuration space
will remain low energy. Larger moves will generally end up in the unphysically
high energy region, which occupies the vast majority of the total configuration
space.

These behaviours are illustrated in fig. 1.1.
One of the most efficient ways to survey an energy landscape is the basin-hopping

algorithm, a stochastic global optimisation approach [12–14] described in section 2.1.
It can be used to produce a database of low energy minima from which it is possible
to estimate the low-temperature thermodynamics of the system using the harmonic
superposition approximation, as explained in section 2.4.2.

It is not possible to understand the dynamics of the system from just a database
of minima, because the rearrangement pathways between the states associated with
different minima must also be considered. Discrete path sampling is a framework
that identifies the transition states connecting a database of minima which can be
used to study the dynamics of the system [15–17]. Standard techniques from uni-
molecular rate theory [18], or rare event methodology using explicit dynamics [19]
can then be used to calculate rate constants for individual minimum-to-minimum
transitions and hence construct kinetic transition networks [20–24].

The initial pathway obtained between distant end points may be the union of
many individual minimum-transition state-minimum paths [25], and is likely to
require extensive refinement to locate kinetically relevant routes. Substantial gains in
efficiency are likely if the end points can be aligned to improve the interpolation and
reduce the initial path length [26, 27]. Finding connections between designated end
points may also be helpful for some path sampling approaches that employ explicit
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Fig. 1.2 Disconnectivity graphs of several one-dimensional potential energy func-
tions. The dashed lines indicate the energies where the superbasins were calculated,
figure reproduced with permission from Wales [17].

dynamics. Unfortunately, alignment can require optimisation of permutational
isomers as well as translational and rotational degrees of freedom. Finding the best
solution then becomes a global optimisation problem in its own right. In section 2.3
we review existing alignment algorithms, in chapters 3 and 4 we introduce two
new alignment algorithms, and in chapter 5 we demonstrate how these algorithms
exhibit improved accuracy and efficiency over existing algorithms.

The database of minima and transition states can be used to construct a discon-
nectivity graph (DG), as illustrated in fig. 1.2, which shows the energy level above
which minima become connected. The exact definition of what being connected
means can vary, leading to different DGs, which is explored in section 6.7.2. For the
standard definition, two minima are said to be connected at a given energy threshold
if there exists a sequence of transition states connecting them which are all below
the threshold. The structure of a DG gives insights into the dynamical behaviour of
the system being studied [17].

In addition to understanding the dynamics of a system, we are also often in-
terested in understanding its global thermodynamic properties. Evaluating these
thermodynamic properties amounts to performing integrals over the PES, which
can in general only be attempted by Monte Carlo sampling techniques, due to the
high dimensionality. These types of integral are also important for calculating the
evidence in Bayesian inference, see section 2.5.3.

For these sampling problems, the curse of dimensionality tends to manifest in
the form of broken ergodicity. Any sampling technique must ensure that it samples
uniformly over all regions of the same energy. However if there are large energy
barriers between two disconnected regions, then it can take random walks exploring
the space an extremely long time to cross the barrier, so the convergence time of
the sampling will become extremely long. Methods that have been developed to
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evaluate these integrals and the approaches used to deal with broken ergodicity
are reviewed in section 2.4. In chapter 6 we introduce a new approach, which is
embarrassingly parallel, and a new method for sampling from hard constraints and
benchmark them on a model system of a cluster of 31 Lennard-Jones atoms.

In chapter 7, we summarise the main findings of this work and suggest avenues
for future work.



2 Methods

2.1 Global optimisation

Basin-hopping (BH) is a global optimisation technique [12–14] where any point in
configuration space is associated with the local minimum of the corresponding basin
of attraction, of a given minimisation method [14]. The basin of attraction is defined
as the set of points that minimise to the same minimum for a given minimisation
method. Basins of attraction are only guaranteed to be contiguous when steepest-
descent minimisation is used. The boundary between two contiguous basins of
attraction is a watershed [28] or transition surface. See fig. 2.1 for a schematic view
of the BH transformation which allows the algorithm to take moves to high energy
configurations, whilst still sampling the low energy states of interest (see fig. 1.1).
The key point about this transformation is that it removes the downhill barriers
between local minima which can trap alternative algorithms. We can see how in
fig. 2.1 a multiminimum function (multimodal in terms of likelihood) has been
turned into a broad funnel. This transformed landscape is comparatively much
easier to explore as it is possible to make efficiently much larger moves.

0 2 4 6 8 10
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0

2
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6

Potential Energy
Basin Energy
Watersheds
Local Minima

Fig. 2.1 Illustration of how the basin-hopping algorithm produces a stepped land-
scape. Every point in the basin of attraction of a minimum is associated with the
energy of that minimum.
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Algorithm 1 Basin-Hopping

Input: Rstart, T , d ◃ Starting configuration, fictitious temperature, starting stepsize
Output: V Q

min and Rmin ◃ List of energy and configuration of minima
V Q

min = {}, Rmin = {} ◃ Initialise empty lists
V Q
µ = min{V (R)}, Rµ = argmin{V (R)} ◃ Minimise initial configuration R

add V Q
µ , Rµ to V Q

min, Rmin

repeat
Rnew = Rµ + s(d) ◃ Make random move to generate new configuration
V Q

new = min{V (Rnew)} ◃ Minimise Rnew

if Accept(V Q
new, Vµ, T ) then ◃ Test acceptance criterion

Rµ = argmin{V (Rnew)} ◃ Move to accepted minimum
V Q
µ = V Q

new ◃ Change acceptance energy
if Rµ ̸∈ Rmin then ◃ Check whether minimum has already been found

add V Q
µ , Rµ to V Q

min, Rmin

end if
end if
if Adjustable T or d then

Adjust T , d ◃ To keep acceptance rate approximately fixed
end if

until Termination condition

For a potential energy surface, V (R) : R3N → R, the basin-transformation can
be defined as V (R) → Ṽ (R) = min{V (R)}, where min{V (R)} is the potential
energy resulting from a local minimisation or quench of V (R) starting at R and
argmin{V (R)} = Rm returns the location of the minimum associated with this
quench.

A simple overview of the BH algorithm is shown in algorithm 1, where repeated
random steps are taken corresponding to coordinate perturbations followed by
minimisations. A pseudo-temperature is used to allow the acceptance rate of these
moves to be kept approximately constant, and the size of the random jumps can also
be varied to adjust the acceptance rate, with larger steps being less likely.

The Metropolis criterion is a commonly used acceptance criterion, though other
criteria can be used. A simple step displacement function, s(d), involves randomly
displacing each coordinate in the range [−d, d], although a multivariate Gaussian
or uniform hypersphere could also be used. We can adjust the pseudo-temperature
and/or the step size to keep the acceptance rate close to a target value. The algorithm
returns a list of minima encountered, Rmin, and their energies, V Q

min, where the
superscript Q indicates that these are quenched energies.
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The standard BH algorithm cannot be used to obtain thermodynamic information
as the stepsize and pseudo-temperature are updated during the simulation, and
the location of the replica is moved to the location of the minimum, which all
break detailed balance, hence the distribution of points that are encountered is
also unknown. A variety of extensions to BH have been developed using the
superposition approach [1, 10, 29–32] , which enable the density of states to be
extracted.

Statistically valid samples from the canonical distribution of Ṽ (R) can be gen-
erated if BH is performed at fixed temperature and stepsize, though at the cost of
decreased global optimisation efficiency.

2.2 The Lennard-Jones potential

The Lennard-Jones (LJ) potential is a simple representation for the energy of a pair
of atoms:

VLJ(r) = 4 ϵLJ

[(σLJ

r

)12
−
(σLJ

r

)6]
, (2.1)

where ϵLJ and 21/6σLJ are respectively the pair equilibrium depth of the potential
well and separation. When applied to homoatomic systems both ϵLJ and σLJ can
be set equal to unity to make the potential dimensionless without loss of general-
ity. Its computational simplicity means that it has been extensively studied as a
model system. Isolated clusters of n interacting atoms (LJn) have been extensively
studied at a range of cluster sizes [33] making LJ clusters useful model systems for
benchmarking various methods.

2.3 Structural comparison

Quantifying the difference or similarity between two structures is of broad relevance.
In a chemical context we may be interested in using measures of structural similarity
among a set of chemical structures to predict various chemical properties, for exam-
ple in quantitative structure-activity relationships (QSAR) where statistical models
for predicting the chemical and biological activities of new structures are generated
from data about known structures [34]. In this field many structural comparison
protocols utilise additional information about the structures, so that the comparison
is performed primarily on the chemically active region of the structure.
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A related field is that of machine learning of chemical properties where a variety
of approaches have been developed. Here it is of particular importance that the
methods effectively capture the structural information in ways that it is easy for the
machine learning algorithms to learn from [35–38].

Quantifying the similarity between structures can allow two configurations to
be aligned to match each other as closely as possible. This alignment is particularly
useful in DPS [15–17] which identifies pathways and transition states between local
minima on the energy landscape. The initial pathway obtained between distant
minima may be the union of many individual minimum-transition state-minimum
paths [25], and is likely to require extensive refinement to locate kinetically relevant
routes. Substantial gains in efficiency are likely if the end points can be aligned to
improve the initial interpolation [26, 27] and reduce the corresponding path length.

Optimal alignment for connection purposes usually corresponds to minimising
the Euclidean distance between the two end points in 3N -dimensional configuration
space whereN is the number of atoms. However, there are cases where the minimum
distance results in incorrect local permutational alignment, producing artificially
high barriers if the permutations are not corrected [26]. For large biomolecules a
local permutational alignment procedure was introduced to solve this problem [26],
combining translational and orientational degrees of freedom with the shortest aug-
menting path algorithm [39] for each group of permutable atoms and an adjustable
number of atoms from the immediate environment.

The Euclidean distance in configuration space is simply related to the root-
mean-square distance (RMSD) by a factor of

√
N , so we can use these quantities

interchangeably. RMSD is the most commonly used metric for comparing two dif-
ferent structures. However, the exhaustive, deterministic calculation of the minimal
RMSD with respect to translational, rotational and permutational symmetries scales
combinatorially with the number of identical atoms in the system [40]. The difficul-
ties associated with using RMSD have led to the development of a wide variety of
alternative metrics for quantifying the dissimilarity between structures [41].

The problem of 3D point set registration in computer vision is analogous to
structure alignment in chemical systems. It is used in many different applications, for
example in 3D surface reconstruction [42], alignment of magnetic resonance images
and computer aided tomography scans [43], optical character recognition [44], and
range image matching [45]. In computer vision the correspondence between point
sets usually does not need to be one-to-one, in contrast to most chemical alignment
problems.
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While it is possible to compare periodic structures with different lattice param-
eters [46], many algorithms (including the algorithms introduced in this work)
assume that the structures being compared have the same lattice parameters.

In this section we review the existing methods used to compare structures, with
a particular focus on the alignment algorithms, both in the computer vision and
chemical physics literature.

2.3.1 Root-mean-square distance

Two structures (or in computer vision terms, point sets), p and q, can each be defined
by N atomic coordinates, Rp = {rp

1, r
p
2, ..., r

p
N} ∈ R3N and Rq = {rq

1, r
q
2, ..., r

q
N} ∈

R3N . The generalised Euclidean distance (norm)

|Rp −Rq| =
(

N∑
j=1

|rp
j − rq

j |2
)1/2

, (2.2)

is not a good metric, because it is not invariant to symmetries of the Hamiltonian,
in particular the rigid-body motions and permutations of identical atoms. For an
isolated cluster in the absence of external fields the energy is invariant to overall
translation and rotation, and to permutations of identical atoms. Similarly, for a
periodic system, point group symmetries, permutations, and global translations
leave the energy unchanged. The RMSD between two structures is better defined as
the minimum of the Euclidean norm with respect to all these symmetries. For an
isolated cluster this definition becomes

RMSD(p, q) =
1√
N

min
M ,P ,D

|Rp − P (RqM⊤ −D)|, (2.3)

where P is a 3N × 3N permutation matrix of the atomic coordinates, D ∈ R3N

contains N copies of d ∈ R3 the global displacement vector of the structure, M ∈
R3N×3N is a block diagonal matrix, containing N copies of a rotation matrix m ∈
SO(3) and M⊤ indicates the matrix transpose of M [1].

Similarly, for a periodic system we can define

RMSD(p, q) =
1√
N

min
L,P ,D,S

|Rp − P (RqS −D −L)|, (2.4)

where S ∈ R3N×3N is a block diagonal matrix containing N copies of a 3× 3 matrix
corresponding to symmetry operations of the periodic supercell, L = (l1, l2, ..., lN) =
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LJ ∈ R3N is a set of lattice vectors, with J ∈ Z3N and L the length of the unit cell.
In the present work we consider a cubic supercell, but the above definition is easily
generalised.

Calculating the RMSD is therefore a global optimisation problem, requiring the
identification of the relative lattice vectors and/or rotation, permutation and transla-
tion that define the global minimum. Locating this global minimum is equivalent to
finding the optimal alignment of two structures where the total squared displace-
ment between them is minimised. Henceforth, we will refer to finding the minimal
RMSD between two structures as aligning them.

2.3.2 Existing methods

A variety of methods have been developed to calculate the minimal RMSD. They
are either heuristic or are not guaranteed to locate the global minimum RMSD in
polynomial time. A variety of algorithms have also been developed in the computer
vision literature that attempt to minimise alternative metrics, as discussed below.

Partial algorithms

Various algorithms have been developed that, in polynomial time, will find the
global minimum for one of the symmetries over which we are minimising.

Translational Alignment For an isolated cluster it can easily be shown that the best
alignment will always occur when the centres of coordinates coincide, inde-
pendent of the permutations, rotations and the number of different chemical
species present [40]. This result does not apply to a periodic system, because
the centre of coordinates is not well defined, although the mean displacement
between the two structures must be zero when the RMSD between them is
minimised.

Permutational Alignment If the minimisation is restricted to permutations then
the optimal permutation can be found in polynomial time using the Hun-
garian algorithm [47] which scales approximately as O(N2.5) and the shortest-
augmenting path algorithm which is faster and scales asO(N2) [39]. Both these
algorithms are forms of primal-dual methods that perform a simultaneous
primal constrained maximisation and dual constrained minimisation; when
both problems are satisfied the optimal solution has been found [39].



2.3 Structural comparison 11

Rotational Alignment Finding the optimal rotational alignment for a fixed permu-
tation has an analytic solution, O(N), and can be achieved using quaternions
[48] or Lagrange multipliers [49].

Lattice Vectors For a given displacement and permutation the lattice vector that
minimises the RMSD between the two structures can be found in O(N) opera-
tions, by rounding the relative displacement vector between pair of atoms to
the closest lattice vector. Finding the global translation and set of lattice vectors
that minimises the RMSD can be found by setting the mean displacement
between the structures to zero after finding the optimal lattice vectors in O(N)

operations

Point Group Symmetries The RMSD should also be minimal with respect to the
point group symmetries of the periodic structure which can be enumerated.
For isolated structures the inverted structure (Rq → −Rq) may also be relevant.

Unfortunately, iteratively minimising each of these symmetries in turn does not
guarantee that the global minimum RMSD will be found. Guaranteeing this condi-
tion would require testing every possible permutation. Since there are N ! possible
permutations for a homoatomic system this approach is prohibitively expensive for
all but the smallest systems.

Full algorithms

Monte Carlo alignment Sadeghi et al. [40] developed a Monte Carlo algorithm for
calculating the global minimum RMSD for both clusters and periodic systems [50].
In this method an initial permutational alignment is performed by either matching
the principal axes of the moment of inertia, or by matching atoms with similar local
environments. Random permutations followed by a rotational or displacement
alignment are then applied, and the new alignment is accepted if the RMSD is less
than the old RMSD plus a small adjustable parameter. This parameter is changed
dynamically during the simulation to keep the acceptance rate around 50%. The
number of MC iterations required to find the global minimum RMSD for this method
scales approximately exponentially for atomic Lennard-Jones clusters [40].

Iterative closest point This is one of the most commonly used algorithms in com-
puter vision to align point sets. This algorithm iteratively pairs up the closest points
in the two point clouds (the computer vision equivalent to a structure) and then



12 Methods

minimises the distance squared between them until no further improvement appears
[45]. Variants of this method have been developed, incorporating the expectation-
maximisation algorithm [51] or using the Levenberg-Marquardt approach [44]. These
local minimisation methods can be combined with a branch and bound scheme to
determing the global minimum of the cost function [52–54]. However, because the
cost function measures the nearest neighbour distance, these algorithms will not
necessarily find the global RMSD.

Kernel correlation An alternative approach developed for point set registration is
based on maximising the kernel correlation between two points sets, p and q. For a
kernel function, K(r, r′), we can define the kernel correlation between two vectors,
{rp

j , r
q
j′} ∈ R3, as

KC(rp
j , r

q
j′) =

∫
K(r, rp

j )K(r, rq
j′)dr, (2.5)

and the total kernel correlation between two structures as

KT (p, q) =
∑
j

∑
j′

KC(rp
j , r

q
j′). (2.6)

The registration of two point sets is achieved by performing a non-linear optimisation
of the total kernel correlation [55]. This method is directly analogous to the extended
Gaussian image approach [56]. This approach was used by Makadia et al. [57]
to align point sets with very little overlap, optimising rotations with a discrete
SO(3) Fourier transform (SOFT) [58] to find the best correlation between discrete
histograms of the extended Gaussian images. The SOFT has also been used to
identify binding regions between proteins [59, 60].

Branch and bound RMSD Hong et al. [61] developed a branch and bound based
method for deterministically calculating the RMSD between two configurations of
identical atoms. The algorithm works by progressively bounding the RMSD between
subsets of permutations of the atoms in both structures. By bounding the lowest
possible RMSD for each subset the algorithm can eliminate those that give poorer
alignments, removing that region of search space. The algorithm exhibited better
than O(N2) performance for aligning identical structures generated randomly, with
permuted components.

Our own analysis and implementation of this algorithm suggest that the per-
formance is not competitive for alignment of different structures. The number of
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permutation subsets with a lower bound below a given distance scales approximately
exponentially with the distance which means that the computational complexity
scales approximately with the exponential of the minimum RMSD.

Methods implemented in Cambridge energy landscape software PERMDIST,
ATOMMATCHFULL and ATOMMATCHDIST are heuristic algorithms for estimat-
ing the global RMSD which have been developed and implemented in the public
domain programs GMIN [62] and OPTIM [63]. These algorithms are described
below:

PERMDIST This algorithm applies a successive set of permutational align-
ments, using the shortest augmenting path algorithm [39], each one followed by an
overall rotational or translational alignment [26]. The procedure is repeated until
a minimum RMSD in permutational space is reached. Because this process is not
guaranteed to give the global RMSD it is restarted from multiple random initial
rotations/displacements. This approach has much in common with the iterative
closest point based algorithms.

ATOMMATCHFULL This algorithm was developed to identify structural iso-
mers of periodic systems by successively superimposing every pair of atoms and
then checking how many other atoms in one structure are within a certain distance
of an atom in the second structure (in which case the two atoms are said to “match”)
[64]. An exhaustive search is performed, superimposing all pairs of atoms within
the smallest permutable group which allows us to fix the global translation. Once
the global translation is found the permutational assignment problem can be solved
to get the full permutation. Because this algorithm attempts to maximise the number
of matches it does not necessarily find the global RMSD. It scales approximately as
O(N4), so for large systems it is computationally expensive.

ATOMMATCHDIST This algorithm is based on ATOMMATCHFULL, but
reduces the computational expense by exiting some of the loops over atoms early
if the current trial superposition does not give enough matches [64]. This strategy
sometimes gives significantly poorer alignments than ATOMMATCHFULL.

Methods implemented in KPLOT Two algorithms have been developed for use
in the structure visualisation and analysis program KPLOT [65] for identifying
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isostructural similarities between structures. These methods do not attempt to
minimise the RMSD, but are included for reference.

CMPZ This is a method developed for comparing crystallographic structures. It
looks for the set of affine transformations that map atoms from the rescaled unit cell
of one crystal structure onto atoms in the rescaled unit cell of the second structure;
it then performs the inverse transform to check that the mapping is bijective. If
all the atoms map to within a certain tolerance of each other then the structures
are described as equivalent [46]. If the unit cells have different specifications the
algorithm will detect whether they are equivalent, whether one unit cell is a supercell
of the other, and/or whether one structure is a substructure of the other. This
algorithm is one of the few algorithms capable of comparing structures with different
lattice parameters.

CCL This approach extends the CMPZ algorithm to clusters, by seeking the affine
transformation that maps one set of atoms onto another, and it can be used to identify
structural isomers. It will also identify whether a cluster forms a smaller part of a
larger system [66].

Alternative metrics

Due to several difficulties associated with calculating and using the RMSD a variety
of alternative metrics and descriptors have been developed. A number of issues
motivated these developments:

• Calculating the global minimum RMSD can be computationally difficult.

• The RMSD changes continuously but not smoothly as the coordinates of one
structure are smoothly varied, because there are discontinuities in the gradient
when the optimal permutation changes.

• The RMSD does not always accurately capture the degree of (dis)similarity
between two structures in the most useful way [26, 41].

• The RMSD can only be used to compare structures with the same number of
equivalent atoms.

We now briefly review some of the metrics and methods that are related to the
approaches developed in the present work.
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Gaussian kernels A variety of algorithms (including those we employ below) are
based on the definition of a density function using a sum of Gaussian kernels of
width σG,

ρp(r) =
N∑
j=1

exp

( |r − rp
j |2

2σ2
G

)
, ρq(r) =

N∑
j=1

exp

( |r − rq
j |2

2σ2
G

)
. (2.7)

These densities are equivalent to the kernel functions used in the kernel correlation
point set registration methods [55–57]. The properties of the overlap integral with
respect to a set of rigid body motions, T : R3 → R3,

Ωpq(T ) =

∫∫∫
ρp(r)ρq(T (r))dr, (2.8)

are considered. The Gaussian kernel is one of the more common kernels used to
generate a density function from a list of coordinates, but others have been proposed
[67–69]. This functional representation of the densities is permutationally invariant
and smooth.

Smooth Overlap of Atomic Positions (SOAP) This descriptor compares the local
environment of two atoms by centring the density functions on two specific atoms
and then evaluating the overlap integral with respect to all possible rotations [67].
The calculation can be performed efficiently by expressing the densities as truncated
sums of spherical harmonics whose integrals can be evaluated analytically to obtain
density functions. This procedure allows the local environment of different atoms
to be compared. There are a variety of ways that the local similarity metrics can be
combined to determine the global similarity of two structures [41]. This method
has been used to improve potential energy surface fitting within the Gaussian
approximation potentials (GAP) framework [70, 71].

Maximum overlap of kernels The global maximum value of eq. (2.8) with respect
to rotations has been used as an alternative metric for clusters through searches
based on simulated annealing [68].

Fingerprint functions Fingerprint functions produce vectors of structural prop-
erties that are invariant to symmetries of the Hamiltonian. These properties are
often based on the eigenvalues of various matrices associated with the structure,
such as Coulomb matrices [72], or kernel overlap matrices [40, 73]. The norm of
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the ordered eigenvalues can be used as a metric, and if the vector is larger than the
number of degrees of freedom it can provide a unique identifier for the structure
[40]. Properties of the interatomic distance matrix have also been used to construct
descriptors and metrics [74].

Other metrics A variety of other metrics have been developed, based on a number
of properties including bond-order parameters [70, 75–77], ‘similarity functions’[78],
bond network graphs [79], localised Coulomb representations (related to Coulomb
matrices in the same way as SOAP relates to kernel overlap matrices) [80], and
radial distribution functions [81]. The similarity of proteins has been calculated
by projecting the shape of the protein as an expansion of Wigner-D functions and
calculating the correlation between these expansions [82].

2.4 Sampling energy landscapes

In this section we review the methods and challenges associated with the calculation
of the global thermodynamic properties of an energy landscape. These properties
are determined by integrals of the form,

IΦ0 [f ] =

∫
Φ0

f(V (R))dR, (2.9)

where Φ0 is the domain of the integral and IΦ0 [f ] is a functional of the integral of
f over Φ0. Due to the curse of dimensionality these integrals generally have to be
estimated numerically using stochastic methods. These approaches can generally be
classified under two broad classes, thermal or athermal.

2.4.1 Thermal methods

Thermal methods directly generate samples from probability distributions related to
f(V (R)), often using Markov chain Monte Carlo (MCMC), and usually sampling
from the canonical distribution. More advanced thermal methods may sample from
a set of related probability distributions simultaneously [33, 83–90]. Due to the
‘curse of dimensionality’ the vast majority of configuration space will be extremely
high in energy, and to generate statistically valid samples thermal methods must
obey detailed balance. Almost all large moves will land in high energy regions and
so will be rejected. Hence these sampling methods must take short local moves to
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have a reasonable acceptance rate, increasing the time taken to simulate large-scale
rearrangements. The convergence is dominated by the time taken to simulate such
rearrangements which can lead to broken ergodicity. The performance may some-
times be improved by making more efficient moves, for example using Hamiltonian
Monte Carlo [91], molecular dynamics [90], and/or by replica exchange between
different probability distributions [83–87] (see section 2.4.1).

Markov Chain Monte Carlo

Unless a mapping to the uniform distribution can be found then it is not generally
possible to directly sample from an arbitrary probability distribution. In these cases
Markov Chain Monte Carlo (MCMC) is normally used as the basis to generate
samples from a target probability distribution, Pr0(R).

The samples are generated by constructing a Markov chain whose equilibrium
distribution is the same as the target distribution. This approach is based on the
principle of detailed balance,

T 0(R → R′)Pr0(R) = T 0(R′ → R)Pr0(R′), (2.10)

where T 0(R → R′) is the probability of transitioning from state R to state R′, so
the rate of flow from R to R′ is the same as the reverse flow. When simulating a
Markov process an instance of a Markov process is commonly referred to as a replica.
A Markov process is uniquely defined by the transition probability T 0(R → R′).
Provided that a Markov process satisfies eq. (2.10), and there exists a unique station-
ary distribution, the stationary distribution of the Markov process will correspond
to Pr0(R).

While it is not known how to directly sample from Pr0, it is generally straightfor-
ward to define a Markov process that satisfies eq. (2.10). The transition probability
is normally split into the product of an acceptance distribution, A0(R → R′), and
proposal distribution, h0(R → R′),

T 0(R → R′) = A0(R → R′)h0(R → R′). (2.11)

The proposal distribution is used to generate moves, so it is commonly a Gaussian
or uniform distribution. The acceptance distribution determines the probability
of accepting or rejecting these proposed moves. In standard MCMC the proposal
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distribution is chosen to be symmetric so

h0(R → R′) = h0(R′ → R) (2.12)

which means that the acceptance distribution must satisfy,

A0(R → R′)

A0(R′ → R)
=

Pr0(R′)

Pr0(R)
. (2.13)

The Metropolis criterion

A0(R → R′) = min

(
1,

Pr0(R′)

Pr0(R)

)
(2.14)

satisfies this condition, and defines the Metropolis–Hastings algorithm. As the
acceptance criterion only depends on the ratio of the probabilities, the probability
distribution does not need to be normalised [90].

Molecular dynamics/Hamiltonian Monte Carlo

Perhaps the most obvious way to generate representative samples of a molecular
configuration is to directly simulate the behaviour in silico. Assuming that the
thermal energy of the system is high enough to render quantum effects irrelevant,
then it is possible to directly model the molecular dynamics (MD) classically [90].
Provided the MD simulation is run for long enough at a given temperature, it can
capture the required properties. Closely related to MD is Hamiltonian Monte Carlo
(HMC) which extends MD simulation methods and ideas to modelling a wider
range of probability distributions [91, 92].

In MD and HMC the size of the state space is effective doubled to include both the
configuration and the velocity (or momentum). While this factor incurs additional
computational cost, including the velocity can facilitate more efficient exploration of
the available state space by guiding the MC moves to stay in the region of interest
[91].

NUTS

One challenge when using HMC is choosing the appropriate length trajectory to
simulate, as a poor choice leads can lead to a dramatic reduction in the efficiency of
the sampler. The No U-Turn Sampler (NUTS) avoids having to specify this parameter
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by recursively doubling a slice of points along a HMC trajectory and terminating
once the trajectory starts doubling back on itself (hence the no u-turn). This method
has the additional advantage of making the sampling from HMC exact [91].

NUTS still requires a stepsize to chosen for the HMC simulation, however this
can be chosen slightly more straightforwardly by adaptively adjusting the stepsize
to target an effective acceptance rate [93].

Replica exchange

Replica exchange is one of the most commonly used approaches to accelerate conver-
gence and overcome broken ergodicity in MC simulations. This technique enables
samples from different probability distributions to be coupled together in a single
simulation, which can be advantageous as it may be easier to sample from certain
distributions which may be analytic, have lower barriers, or faster converging MC
averages (for example sampling at a higher temperature). Coupling alternative prob-
ability distributions to systems that exhibit broken ergodicity can allow simulations
to cross barriers faster, accelerating convergence.

Replica exchange enables MC simulations of two probability distributions, Pr0(R)

and Pr1(R), to swap their current replicas, Ra and Rb [90]. For unbiased sampling
the reverse swap must be equally likely, so it must obey detailed balance,

TRX({Ra,Rb} → {Rb,Ra})Pr0(Ra)Pr1(Rb) =

TRX({Rb,Ra} → {Ra,Rb})Pr0(Rb)Pr1(Ra), (2.15)

where we have indicated the joint state of Ra and Rb being associated with Pr0 and
Pr1 respectively, by {Ra,Rb}. The generalised Metropolis acceptance criterion,

ARX({Ra,Rb} → {Rb,Ra}) = min

(
1,

Pr0(Rb)Pr1(Ra)

Pr0(Ra)Pr1(Rb)

)
, (2.16)

will satisfy eq. (2.15), assuming that the jump probability is symmetric, and so can
be used to exchange replicas between different MCMC simulations, or to seed an
individual MCMC walk with samples from an alternate distribution [83–87] .

Parallel tempering

The canonical example of replica exchange is parallel tempering (PT) where MC
simulations are run at different temperatures simultaneously and replicas are peri-



20 Methods

odically exchanged according to eq. (2.16). A key challenge associated with PT and
its associated variants is choosing the set of temperatures over which to perform
the simulation. If they are too widely spaced then the average energy differences
between adjacent replicas will be too large, and exchanges between temperatures
will not happen quickly enough whilst having too many replicas will be ineffi-
cient. When PT is applied to MD simulations it is normally referred to as molecular
dynamics replica exchange (MD-REX) [83–86] .

Hamiltonian replica exchange

It is also possible to exchange replicas between different potential energy distribu-
tions [33, 87]. Commonly, harmonic potentials are used as a reference, as sampling
from a harmonic distribution corresponds to sampling from a normal distribution.
At energies close to the lowest energy minimum the potential function can be approx-
imated fairly accurately by a multidimensional harmonic well. Coupling the MC
simulations to the analytic harmonic potential allows replicas to ‘tunnel’ through
the energy barriers between the lowest basins for the actual potential. This harmonic
approximation has been successfully applied to calculate heat capacities of various
Lennard-Jones clusters using PT [33, 87] and nested sampling [94].

2.4.2 Principle of superposition

It is common practice to split the configuration space into different regions and
then tackle the configuration integral in each region independently. Often different
regions are associated with different minima, using the basin of attraction of a
minimisation algorithm [1, 95]. The total density of states can then be described by
the sum over basins of attraction of the minima to give the superposition partition
function [1, 10, 30–32, 96]:

Ω(V ) =
∑

µ∈Rmin

PµΩµ(V ), (2.17)

where Pµ is the number of distinguishable permutation-inversion isomers of mini-
mum µ, and Ωµ(V ) is the density of states for the corresponding basin of attraction
(see section 2.4.3).

This approach can be useful, because in many situations determining Ωµ(V ) is
more straightforward than determining the full density of states. At energies close
to the minimum, the potential function can be well approximated by a harmonic
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potential, with an analytic density of states. Additionally, there are no barriers within
a basin of attraction.

Harmonic superposition approximation

Given a database of minima, the fastest method for estimating the density of states
is the harmonic superposition approximation (HSA) [29] where the density of states,

Ωµ(V
I) ∝ θ(V I − V Q

µ )(V I − V Q
µ )κ/2−1/νµ, (2.18)

and configuration volume,

Φµ(V
I) ∝ θ(V I − V Q

µ )(V I − V Q
µ )κ/2/νµ, (2.19)

of each individual minimum are approximated by a harmonic potential with known
analytic form where θ is the Heaviside step function, V Q

µ is the energy of minimum
µ associated with the basin, κ is the number of vibrational degrees of freedom (the
number of non-zero eigenvalues of the Hessian), and νµ is the geometric mean of the
vibrational normal modes. The harmonic superposition partition function is simple
to calculate and accurate at low temperatures, but at high temperatures anharmonic
vibrational effects become pronounced introducing systematic errors [29].

Basin-sampling

The harmonic superposition principle can be extended to work at higher tempera-
tures by fitting an anharmonic density of states to a two-dimensional histogram using
basin-sampling with PT (BSPT) [89], though the original method used Wang–Landau
sampling [88]. This method enables HSA to be coupled to a high-temperature PT
simulation. HSA efficiently models the low-temperature thermodynamics, circum-
venting broken ergodicity whilst PT efficiently samples the high-temperature ther-
modynamics where broken ergodicity is no longer a problem. The anharmonic
correction involves a smooth interpolation between these two schemes.

2.4.3 Athermal methods

Athermal methods attempt to determine the density of states,

Ω(V ) =
dΦ(V )

dV
, (2.20)
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where
Φ(V ) =

∫
V (R)<V

dR (2.21)

is the configuration volume, so eq. (2.9) can then be expressed as,

IΦ0 [f ] =

∫ ∞

−∞
f(V )Ω(V )dV =

∫ Φ(∞)

0

f(V )dΦ(V ). (2.22)

The density of states can be determined by discretising into a set of energy bins (see
section 2.4.3) or determined afterwards by nested sampling [2] (see section 2.4.4).

Bin-based methods

Almost all bin-based methods generate samples by performing a random walk with
a flat-histogram acceptance criterion,

Ahist(j → j′) = min

(
1,
ΩH

j

ΩH
j′

)
, (2.23)

where ΩH
j is the configuration volume associated with the histogram bin j, so the

probability of accepting a move into a given bin is inversely proportional to the
volume of the bin. This criterion in theory ensures that every bin is visited an
equal number of times. The key challenge associated with these methods is that
the relative size of adjacent histogram bins can be extremely large if the bin ranges
are not carefully chosen, so the probability of any move landing in the smaller bins
becomes too low and the simulation will not converge.

Additionally, calculating the optimal acceptance probability requires the density
of states to be known which is the required goal. Most histogram based algorithms
therefore employ bootstrapping where an estimate of the density of states is pro-
gressively refined during the simulation whilst also guiding the sampling. As the
estimated density of states changes the acceptance probabilities of the moves during
the simulation vary, so these simulations are non-Markovian.

There are several bin-based athermal methods.

Wang–Landau sampling Every MC step moving from bin j to j′ updates the WL
density of states estimate by a multiplicative factor of fWL > 1. Over the course of
the simulation the value of fWL is reduced closer to unity. Convergence is diagnosed
when the number of visits to each potential bin is approximately equal.
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Transition matrix Monte Carlo An alternative approach to determining the den-
sity of states histogram is to treat the histogram bins as discrete states of a Markov
process, and sample the transition state matrix between these states. To sample
the full transition matrix efficiently, a criterion like eq. (2.23) is needed to ensure
that all the bins are sampled approximately equally. The relative configuration
volumes of the histogram can then be calculated by a non-linear least squares fit of
the logarithmic volumes to the transition matrix [97].

Statistical temperature Monte Carlo Statistical temperature Monte Carlo (STMC)
can be viewed as a generalisation of the Wang–Landau approach that effectively
interpolates the density of states between the bin ranges. The formulation of the
method is different because the quantity of interest is the statistical temperature,
T (V ) = (d lnΩ(V )/dV )−1, rather than the density of states [98].

Because STMC and its variants perform an interpolation between the bins, they
avoid many of the issues associated with the finite bin widths in the WL approach.
Hence STMC may converge more efficiently compared to WL sampling. STMC has
been extended to work with both PT [99] and MD [100] simulations.

2.4.4 Nested sampling

Nested Sampling (NS) is an approach that was developed by Skilling [2] to efficiently
calculate the evidence in Bayesian inference, as discussed in section 2.5.3, equivalent
to the evaluation of eq. (2.9).

Skilling’s insight was to reformulate the density of states integral, eq. (2.22), as a
Lebesgue integral,

Pr(D|M) =

∫
Pr (D|M(θ)) Pr (M(θ)) dθ =

∫ ∞

0

λdXNS(λ), (2.24)

where XNS(λ) is the prior volume enclosed within likelihood contour Pr (D|M(θ)) >

λ, and

XNS(λ) =

∫
Pr(D|M(θ))>λ

Pr (M(θ)) dθ, (2.25)

Associating θ ≡ R, Pr (D|M(θ)) ≡ f(V (R)), and taking Pr (M(θ)) to be uniform
over all of the available configuration space, eq. (2.22) is recovered exactly, and the
prior volume becomes proportional to the configuration volume, eq. (2.21). Hence
it is possible to define nested sampling in terms of configuration volumes which is
how we will describe it.
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Fig. 2.2 A schematic representation of how nested sampling can calculate the relative
difference in configuration volume between two energy thresholds. nlive live points
are randomly distributed over R such that they all have energy less than V NS

i . The
live point with the highest energy, V NS

i+1 is highlighted in red. As the live points are
randomly distributed over R (and so Φ(V )) we know that Φ(V NS

i )/Φ(V NS
i+1) ≡ tNS

i ∼
B(nlive, 1).

Nested sampling works by determining the ratio in configuration volume for
decreasing thresholds V NS = {V NS

1 , ..., V NS
NNS}. This list is generated by maintaining

a set of nlive independent replicas (also known as live points) and then iteratively
removing the highest energy replica (whereupon it becomes a dead point).

A new live point is generated randomly and uniformly within the configura-
tion volume enclosed by the energy contour of the most recently removed dead
point. This process means that the ratio of configuration volumes enclosed by the
energy contours of successively removed dead points can be modelled by a set of
independent beta-distributed variables (see section 2.5.1 and eq. (2.37)),

tNS
j =

Φ(V NS
j )

Φ(V NS
j+1)

∼ B(nlive, 1). (2.26)

An overview of the basic nested sampling algorithm is shown in algorithm 2, and a
schematic for one step of a nested sampling run is shown in fig. 2.2.

For nested sampling convergence is normally considered to have occurred when
the value of the evidence integral (configuration integral) contained by the live points
is less than some specified fraction of the total evidence (the partition function), or
the energy difference between the highest and lowest live points is less than some
tolerance.

If the likelihood is set to be the canonical probability of a configuration, and θ is
the configuration, then the evaluation of the evidence in eq. (2.24) is equivalent to
the calculation of the partition function.
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Formulating the integral as a Lebesgue integral enables NS to effectively choose
the optimal bin width during the course of a NS calculation.

Algorithm 2 Basic nested sampling

Input: nlive ◃ Number of replicas to generate
Output: V max ◃ List of likelihoods of dead points
Initialise empty list V max = {}
generate nlive independent replicas of live points with sorted energies V = {V1 <
V2 < ... < Vnlive}
repeat

Remove dead point Vnlive from V and append to V max

Generate new replica uniformly from prior with energy Vnew < Vnlive

Insert new energy, Vnew, into sorted list, V , of energies of live points
until Convergence

Dynamic nested sampling During nested sampling it is possible to dynamically
change the number of replicas being sampled by increasing the number of replicas
in the energy/likelihood ranges that contribute most to the observables, which can
be useful to improve the accuracy. The ratio of volumes enclosed by successive ener-
gies/likelihoods will still be distributed as eq. (2.34), but the number of live points
can now change. This process is known as dynamic nested sampling [101]. Dynamic
nested sampling runs can be combined by merging all the energies/likelihoods into
a single sorted list. The ratio of volumes enclosed will again be beta distributed, with
nlive equal to the sum of the live points in all the nested sampling runs considered.

In this framework every step of a nested sampling run can be viewed as the
removal of the highest energy live point, followed by the addition of some number
of live points sampled uniformly below the energy of the point removed. If no live
points are added their number will decrease as the live point with the highest energy
is successively removed which is equivalent to removing multiple points at the same
time. Here we will assume that in every step of a nested sampling run exactly one
live point is removed, but there can be a dynamic number of live points.

Challenges The key computational challenge associated with nested sampling is
generating replicas uniformly from the configuration space (the prior) subject to
the constraint that the energy/likelihood of the replicas is less/greater than a given
cut-off [102, 103]. Three key factors complicate this process.
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• The configuration (prior) volume of interest is normally a tiny fraction of the
total.

• The potential energy landscape has an exponentially large number of local
minima, all corresponding to maxima of the likelihood.

• As the potential energy constraint decreases during the nested sampling simu-
lation, regions in configuration space will become disconnected, and sampling
across them becomes challenging.

A variety of approaches have been developed to tackle these problems.

• A hard constraint variant of HMC known as Galilean sampling which exploits
isolikelihood contours/potential gradient information [104, 105] to enable
long-range directed moves.

• MULTINEST [106] fits a set of intersecting ellipsoidal contours to the set of live
points and then performs rejection sampling within the contours though the
efficiency of this method will decrease with the dimensionality of the system.

• Diffusive nested sampling [107] uses MCMC to explore a variety of nested
sampling distributions to overcome barriers between basins.

• POLYCHORD [102] extends the slice sampling algorithms to multimodal distri-
butions.

• Most approaches discard information when generating new replicas. Impor-
tance nested sampling [108] and nested importance sampling [109] allow the
inclusion of discarded data points. These possibilities have been used to
improve estimates generated by the MULTINEST algorithm.

• Superposition enhanced nested sampling (SENS) [94] uses a population of low
energy minima (corresponding to high likelihood) obtained using a global
optimisation algorithm, such as BH [12–14], to propose moves to cross barriers
that the MCMC walks cannot overcome. In exact-SENS, replicas are generated
via Hamiltonian replica exchange; in inexact-SENS new samples are generated
at low energies by approximating the potential function as a set of harmonic
wells. Both of these approaches enable SENS to significantly improve the
accuracy of the calculated density of states at lower energies, whilst needing
fewer replicas than in a standard NS simulation.
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Landscape charts The results from nested sampling have been used to determine
when different regions in configuration space become disconnected during the simu-
lation [110]. A shape descriptor was used to group together configurations generated
from the simulation to detect when different regions have become separated which
was then used to generate energy landscape charts.

Integration Using nested sampling we can calculate an estimate of eq. (2.9) and
its associated uncertainty [103]. This estimation can be done by calculating the first
and second moments of IΦ0 [f ]. Suppose we have performed nested sampling and
generated NNS nested sampling points where the jth point was sampled with nNS

j

live points present. We can approximate the integral eq. (2.22) by the sum

IΦ0 [f ] ≈ Φ0

NNS∑
j

V NS
j (Φ(V NS

j+1)− Φ(V NS
j )) = Φ0

NNS∑
j

fj(1− tj)

j−1∏
k=1

tk, (2.27)

where fj = f(V NS
j ). Assuming the quadrature error is negligible [2] and as all

the volume ratios are independent, the expected value of IΦ0 [f ] can be calculated
straightforwardly from eq. (2.36),

ENS[IΦ0 [f ]] = Φ0

NNS∑
j=1

fj
1

nNS
j

j∏
k=1

nNS
k

nNS
k + 1

. (2.28)

ENS[IΦ0 [f ]
2] can be found by adapting the method used by Keeton [103] to estimate

the uncertainty of estimates obtained using nested sampling runs with a fixed
number of live points,

ENS[IΦ0 [f ]
2] =

NNS∑
l=1

[
2fl
nNS
l

(
l∏

k=1

nNS
k

nNS
k + 1

)(
l∑

j=1

(
fj

nNS
j + 1

j∏
k′=1

nNS
k′ + 1

nNS
k′ + 2

))]
, (2.29)

which can be calculated in O(NNS) operations. The statistical uncertainty for the
estimate of IΦ0 [f ] can be calculated as,

σ2
IΦ0

[f ] = ENS[IΦ0 [f ]
2]− ENS[IΦ0 [f ]]

2. (2.30)
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2.5 Mathematical Methods

In this section we give a brief overview of the mathematical methods that are used
in the rest of this work.

2.5.1 Beta distribution

To model a binomial event, such as flipping a coin, we need to be able to specify
a probability distribution of the probability of obtaining heads, a probability of a
probability. The probability of observing a certain number of heads, Nheads, after a
fixed number of flips, Nflips, with a fixed probability of obtaining heads, pheads, is
modelled by the binomial distribution,

Nheads ∼ Bin(Nflips, pheads) (2.31)

with probability,

Pr(Nheads|Nflips, pheads) =

(
Nflips

Nheads

)
pheads

Nheads
(1− pheads)

Nflips−Nheads
, (2.32)

where
(
n
m

)
= n!

m!(n−m)!
. The beta distribution is the conjugate prior to the binomial

distribution (see section 2.5.3), so it is the most straightforward way to define a
distribution over

pheads ∼ B(αB, βB), (2.33)

with probability density,

Pr(pheads) =


Γ(αB + βB)
Γ(αB)Γ(βB)

pαB−1
heads (1− pheads)

βB−1 when 0 < pheads < 1

0 otherwise

≡ B(pheads|αB, βB), (2.34)

where αB, βB are the shape parameters of the beta distribution. The normalisation
constant can also be written as a beta function,

B(αB, βB) =
Γ(αB + βB)

Γ(αB)Γ(βB)
. (2.35)
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The moments of the beta distribution are∫ 1

0

taB(1− tB)
b′B(tB|αB, βB)dtB =

Γ(αB + βB)

Γ(αB)Γ(βB)

Γ(αB + a)Γ(βB + b′)

Γ(αB + a+ βB + b′)
, (2.36)

so in the case of eqs. (2.28) and (2.29) tk = tB, αB = 1 and βB = nNS
k , so we would

find that E[tB] = nNS
k /(nNS

k + 1), E[t2B] = nNS
k /(nNS

k + 2), and E[(1− tB)] = 1/(nNS
k + 1).

The beta distribution can also be used to model the order statistics of samples
from the uniform distribution, if nU samples have been drawn independently from
the uniform distribution, then the kU th order statistic,

UkU ∼ B(kU , nU − kU + 1), (2.37)

the distribution of the kU th highest value of nU independent samples from the uni-
form distribution, which derives naturally from considering the binomial likelihood
of observing kU successes out of nU trials with probability UkU . It is in this sense that
NS uses the beta distribution as the set of live points can be modelled as uniformly
distributed samples over Φ(V ).

Fitting beta distributions

It is possible to fit a beta distribution, B(afit, bfit), to some other random variable,
tfit ∼ qfit, by matching the first and second moments as the beta distribution has only
two degrees of freedom,

afit = Eqfit [tfit]

(
Eqfit [tfit] (Eqfit [tfit]− 1)

Eqfit [t
2
fit]− Eqfit [tfit]

2 − 1

)
, (2.38)

bfit = (Eqfit [tfit]− 1)

(
Eqfit [tfit] (Eqfit [tfit]− 1)

Eqfit [t
2
fit]− Eqfit [tfit]

2 − 1

)
, (2.39)

where Eqfit [tfit] is the first moment of tfit and Eqfit [t
2
fit] is the second moment of tfit with

respect to qfit.

2.5.2 Dirichlet distribution

The binomial distribution and the beta distribution can be generalised to model
multiple probabilities, for example, studying the rolling of a kdie-sided die. The
results, Ndie = {Ndie

1 , ..., Ndie
kdie} ∼ Mult(pdie) of rolling the die with probabilities,

pdie = {pdie
1 , ..., pdie

kdie} will be distributed according to the multinomial distribution,
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Ndie ∼ Mult(pdie), with probability,

Mult(Ndie|pdie) =

(∑kdie

j=1N
die
j

)
!∏N

k=1N
die
k !

N∏
k=1

pdie
k

Ndie
k . (2.40)

The conjugate prior of the multinomial distribution is the Dirichlet distribution,
parametrised by an N -dimensional parameter vector, αdie = (αdie

1 , ..., αdie
N ). For

pdie ∼ Dir(αdie) the probability distribution of pdie will be,

Pr(pdie|αdie) =
Γ
(∑N

j=1 α
die
j

)
∏N

j=1 Γ(α
die
j )

N∏
k=1

pdie
k

αdie
k −1

, (2.41)

where
∑N

j=1 p
die
j = 1.

2.5.3 Bayesian inference

In Bayesian statistics, probabilities are used to encode beliefs about some phe-
nomenon, whereas in frequentist statistics probabilities are used to model frequen-
cies of events. At the heart of Bayesian statistics is Bayes’ rule,

Pr(M(θ)|D) =
Pr(D|M(θ)) Pr(M(θ))

Pr(D|M)
, (2.42)

which allows the prior belief/distribution, Pr (M(θ)), for the parameters, θ, of some
model, M(θ), to be updated to give a posterior belief/distribution, Pr(M |D(θ)), for
the parameters, given some observed data, D. This update is performed by taking
the product of the likelihood, Pr(D|M(θ)), of observing the data given the model with
the prior. This product is normalised by the evidence, Pr(D|M), the probability of
observing the data given all possible instances of the model, calculated by integrating
the product of the likelihood and prior or marginalising over all possible parameters,

Pr(D|M) =

∫
Pr (D|M(θ)) Pr (M(θ)) dθ, (2.43)

noting that we have dropped the model’s argument of θ as the evidence is not a
function of the parameters.

When using the beta distribution to model pheads, we can specify an uninformative
prior on the coin toss, pheads ∼ B(αp, βp), where αp and βp specify our prior belief of
pheads. For an uninformative prior αp = βp = 1/2. We can use Bayes’ rule to update
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our belief of pheads,

Pr(pheads|Nheads, Nflips) =
Bin(Nheads|Nflips, pheads)B(pheads|αp, βp)

Pr(Nheads|Nflips)

= B(pheads|Nheads + αp, N
flips −Nheads + βp), (2.44)

here we see why the parameters of the beta distribution are commonly viewed as
pseudocounts, since they can be viewed as representing the number of observations
of the event happening or not happening.

Model comparison

The evidence is useful as it allows different models to be compared. Given two
models, M1 and M2, and some data, the probability of the hypothesis that the first
model is correct, H1, can be calculated as,

Pr(H1) =
Pr(M1|D) Pr(M1)

Pr(M1|D) Pr(M1) + Pr(M2|D) Pr(M2)
=

KBF

1 +KBF , (2.45)

where the relative evidence between the two models is known as the Bayes factor,

KBF =
Pr(M1|D)

Pr(M2|D)

Pr(M1)

Pr(M2)
, (2.46)

and Pr(M1) and Pr(M2) are the prior belief of whether H1 or H2 is true. If a priori
both models are viewed equally likely then Pr(M1) = Pr(M2) = 1/2.

When KBF > 1, H1 is more likely. Conversely if KBF < 1, H2 is more likely given
the data. In the next section it will be shown how to compare binomial distributions
using Bayesian model comparison.

Comparing binomial distributions

Consider an example where we want to compare examination pass rates, pa and
pb, between two different departments, a and b. Suppose we observe that there
are n

pass
a passes and nfail

a fails from department a and the equivalent for b, and
nstudents
a/b = n

pass
a/b + nfail

a/b. We are interested in testing the hypothesis that the pass
rates are the same, H0 : pa = pb, or different, H1 : pa ̸= pb. We can compare these
hypotheses by Bayesian model comparison, from section 2.5.3. So we can calculate
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the evidence of model 1,

Pr(pa = pb|npass
a , nfail

a , n
pass
b , nfail

b )

=

∫
Bin(npass

a |nstudents
a , pa)Bin(npass

b |nstudents
b , pa)B(pa|αpass, βpass)dpa

=

(
nstudents
a

n
pass
a

)(
nstudents
b

n
pass
b

)
B(npass

a + n
pass
b + αpass, nfail

a + nfail
b + αfail), (2.47)

and 2,

Pr(pa ̸= pb|npass
a , nfail

a , n
pass
b , nfail

b )

=

∫∫
Bin(npass

a |nstudents
a , pa)Bin(npass

b |nstudents
b , pb)B(pa|αpass, βpass)B(pb|αpass, βpass)dpa dpb

=

(
nstudents
a

n
pass
a

)(
nstudents
b

n
pass
b

)
B(npass

a + αpass, nfail
a + αfail)B(n

pass
b + αpass, nfail

b + αfail),

(2.48)

where αpass and αfail encode the prior pseudocounts on the pass rate. The Bayes
factor comparing the two hypotheses can be calculated

KBF
B (npass

a , nfail
a , n

pass
b , nfail

b )

=
B(n

pass
a + n

pass
b + αpass, nfail

a + nfail
b + αfail)

B(n
pass
a + αpass, nfail

a + αfail)B(n
pass
b + αpass, nfail

b + αfail)
. (2.49)

In addition we can generalise eq. (2.47) to more than two departments, with pass
rates, ppass = {p1, ..., pNdepartments}, observed passes counts npass = {npass

1 , ..., n
pass
Ndepartments

}
and fail counts nfail = {nfail

1 , ..., nfail
Ndepartments

} then we can calculate the Bayes factor for
them having the same pass rate,

Pr
(
(pj = pk)∀pj, pk ∈ ppass|npass,nfail)
= B

αpass +

Ndepartments∑
j=1

n
pass
j , αfail +

Ndepartments∑
j=1

nfail
j

Ndepartments∏
j=1

(
n

pass
j + nfail

j

n
pass
j

)
. (2.50)
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In this chapter we describe the FASTOVERLAP algorithm, a variant of kernel cor-
relation [55] based alignment methods. It uses a fast Fourier transform (FFT) or
discrete SO(3) Fourier transform (SOFT) [58] to find deterministically the maximum
correlation/overlap between kernel/density representations of either periodic struc-
tures or clusters. FASTOVERLAP is also related to the methods proposed by Bartók
et al. [67], Ferré et al. [68] and Makadia et al. [57].

In sections 3.1 and 3.3 we demonstrate how the kernel correlation/overlap can
be used to estimate the global minimum RMSD efficiently for structures that are
reasonably close for periodic systems and isolated clusters of atoms; for alignments
with large RMSDs the inherent approximations will break down. The maximum
correlation displacement/rotation can be used as a starting point for the PERMDIST
algorithm (see section 2.3.2). The run time for FASTOVERLAP is not very sensitive
to the RMSD for a given system.

A comparison of the performance of this algorithm compared to existing methods
is given in chapter 5.

3.1 RMSD estimation by Gaussian overlap

Under certain circumstances it is possible to estimate the RMSD between two closely
aligned structures by calculating the overlap integral of a set of Gaussian functions
centred on the atomic coordinates. Consider a pair of atoms, specified by two
Gaussian kernels with width σG, centred at positions r0 and r1,

ρ0(r) = exp

(
−|r − r0|2

2σ2
G

)
, ρ1(r) = exp

(
−|r − r1|2

2σ2
G

)
. (3.1)
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The overlap integral of these two Gaussians is,∫∫∫
ρ0(r)ρ1(r)dr =

∫∫∫
exp

(
−|r0 − r1|2

4σ2
G

)
exp

(
−|r − r0+r1

2
|2

σ2
G

)
dr

= exp

(
−|r0 − r1|2

4σ2
G

)
(πσ2

G)
3/2. (3.2)

When |r0 − r1| ≪ σG we can approximate eq. (3.2) as,

∫∫∫
ρ0(r)ρ1(r)dr ≈ (πσ2

G)
3/2 − (πσ2

G)
3/2 |r0 − r1|2

4σ2
G

+ o

(( |r0 − r1|
σG

)4
)
. (3.3)

Hence the overlap integral is proportional to the squared displacement between the
atoms when they are close relative to σG. We can extend this result to estimate the
RMSD of two closely aligned periodic structures, p and q, by defining the density
functions

ρp(r) =
∑
l∈L

N∑
j=1

exp

( |r − rp
j + l|2

2σ2
G

)
, ρq(r − d) =

∑
l∈L

N∑
j=1

exp

( |r − rq
j − l− d|2
2σ2

G

)
.

(3.4)

Recall that d is the global displacement vector and l is a particular lattice vector.
Using eq. (3.2) we can calculate the overlap integral or kernel correlation of these
densities

Ωpq(d) =

L∫∫∫
0

ρp(r)ρq(r − d)dr = (πσ2
G)

3/2
∑
l∈L

N∑
j=1

N∑
j′=1

exp

(
−
|rp

j − rq
j′ − l− d|2
4σ2

G

)
.

(3.5)
We note that eq. (3.5) is invariant to permutations. If we then assume that σG ≪
rsep, where rsep is the minimum atomic separation, then for displacement vector
d, permutation matrix P and lattice vectors L that minimise the RMSD we can
approximate the integral above as

Ωpq(d) ≈ (πσ2
G)

3/2

N∑
j=1

exp

(
−
|rp

j −
∑N

j′=1Pjj′(r
q
j′ − lj′ − d)|2

4σ2
G

)
. (3.6)
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If we also assume that |rp
j −

∑N
j′=1Pjj′(r

q
j′ − lj′ − d)| ≪ σG for all j, so the structures

are relatively similar, then if dm = argmaxΩpq(d)

Ωpq(dm) ≈ (πσ2
G)

3/2

N∑
j=1

(
1−

|rp
j −

∑N
j′=1Pjj′(r

q
j′ − lj′ − dm)|2

4σ2
G

)

= N(πσ2
G)

3/2 − π3/2σ
−1/2
G

√
N

4
RMSD(p, q). (3.7)

Hence the global maximum of Ωpq(d) corresponds to the displacement that gives
the minimum RMSD if the structures can be aligned sufficiently closely. Once
the displacement is known, the corresponding optimal permutation matrix can
be calculated using the Hungarian algorithm [47] or shortest augmenting path
algorithm [39].

The choice of σG is important for determining the accuracy of this method, If
σG is set too small then the approximations only hold true for very closely aligned
systems, while if σG is too large then the value of the integral is no longer determined
by the nearest neighbours at optimal alignment. In practice we found that setting
σG to be around 1/3 of the equilibrium pair separation produced good results over
the widest range of structures.

We can see this value as being a compromise between having too small a kernel
width, which would mean that the algorithm would only work for very similar
structures, due to the limited overlap, versus too large a kernel width, which would
make the overall density too homogeneous.

3.2 Global optimisation of the overlap integral

To identify the global maximum of Ωpq(d) efficiently we use Parseval’s theorem,
which states that for functions with Fourier series

ρp(r) =
∑
k∈K

cpke
ik·r, ρq(r − d) =

∑
k∈K

cqke
ik·re−ik·d, (3.8)

where K is the set of allowed wavevectors, so if k ∈ K, then k = 2πn/L, for n ∈ Z3,
that

Ωpq(d) =

L∫∫∫
0

ρp(r)ρq(r − d)dr =
1

L3

∑
k∈K

cpkc
q
k
∗eik·d, (3.9)
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where z∗ indicates the complex conjugate of z. The Fourier series coefficients can
easily be calculated by treating the structure as a sum of delta functions at the atomic
coordinates convolved with a Gaussian function of width σG

cpk = e−
1
2
|k|2σ2

G

N∑
j=1

e−ik·rp
j , (3.10)

cqk = e−
1
2
|k|2σ2

G

N∑
j=1

e−ik·rq
j (3.11)

For brevity we define the structure factors,

dpk =
N∑
j=1

e−ik·rp
j , dqk =

N∑
j=1

e−ik·rq
j . (3.12)

Here we note that the magnitude of the Fourier coefficients decays exponentially, so
we can specify a cutoff wavevector, |kmax| ≫ 1/σG above which we do not need to
calculate them. The value of the cutoff will determine the numerical accuracy of the
calculation. We find

Ωpq(d) ≈ 1

L3

|k|<|kmax|∑
k∈K

e−|k|2σ2
Gdpkd

q
k
∗eik·d. (3.13)

This expression is simply the Fourier series representation of Ωpq(d), so in order
to calculate the maximum value of Ωpq(d) we can perform the fast inverse Fourier
transform (FFT) on the coefficients to calculate an array of values of Ωpq(d). The
value of d that maximises Ωpq(d) can be found by fitting a quadratic or Gaussian to
the points close to the maximum value of the array in the three axes, or by a local
maximisation of eq. (3.13).

3.2.1 Width of kernel

From eq. (3.13) we see that the convolution of a second Gaussian kernel of width σG1

with Ωpq(d) simply corresponds to the selection of a larger width σG2 =
√
σ2
G + 2σ2

G1

for the original Gaussian kernel.
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3.2.2 Algorithmic complexity

The efficiency is primarily determined by the number of k values that need to be
computed for the Fourier series representation of Ωpq(d) to converge. The number
of k values is proportional to the ratio L/σG, while σG ∝ rsep, the minimum atomic
separation. If we assume that the atomic density is approximately uniform then
rsep ∝ (L/N)1/3, so the total number of k values will be proportional to (L/σG)

3 ∝ N .
Hence calculating the Fourier coefficients will be O(N2). The FFT will be O(N logN),
so the total complexity of finding the optimal displacement will be O(N2). Solving
the assignment problem to find the correct permutation is also O(N2), so the overall
complexity of the alignment is still O(N2).

Much of the computational cost is associated with the calculation of the Fourier
coefficients in eqs. (3.10) and (3.11). When aligning a large database of structures
these coefficients can be precalculated, providing a significant performance improve-
ment.

3.2.3 Limitations

This algorithm will fail to find the global RMSD when the difference between
the structures is dominated by pairs of atoms that are a large distance apart, as
the contribution of these pairs to the overlap integral is small and so will not be
optimised. In this case it is possible that the RMSD is not a particularly useful
measure of similarity, and so other methods for comparing and aligning structures
may be more relevant.

3.3 Minimising RMSD for clusters

We can perform a very similar analysis for isolated clusters of atoms. For structures
p and q, with atomic coordinates Rp and Rq, and centroids already shifted to the
origin, we seek

RMSD(p, q) =
1√
N

min
α,β,γ,P

|Rp − PRqM(α, β, γ)⊤|, (3.14)
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where M is the block diagonal coordinate rotation matrix containing N copies of m,

m(α, β, γ) =

 cos γ sin γ 0

− sin γ cos γ 0

0 0 1


 cos β 0 sin β

0 1 0

− sin β 0 cos β


 cosα sinα 0

− sinα cosα 0

0 0 1

 .
(3.15)

m(α, β, γ) is a rotation matrix parametrised by the Euler angles, α, β and γ, rep-
resenting three successive rotations around the z, y and then the z axis. We can
redefine the overlap integral in eq. (2.8) for rotations:

Ωpq(α, β, γ) =

−∞∫∫∫
∞

ρp(r)ρq(m(α, β, γ)r) dr

= (πσ2
G)

3/2

N∑
j=1

N∑
j′=1

exp

(
−
|rp

j −m(α, β, γ)rq
j′ |2

σ2
G

)
, (3.16)

and similarly, as in eq. (3.7), for systems where every pair of aligned atoms is
separated by much less than σG and if (αm, βm, γm) = argmaxΩpq(α, β, γ) then

Ωpq(αm, βm, γm) ≈ N(πσ2
G)

3/2 − π3/2σ
−1/2
G

√
N RMSD(p, q). (3.17)

To evaluate Ωpq(α, β, γ) efficiently we follow the method developed to calculate
SOAP similarity kernels by Bartók et al. [67] and De et al. [41] based on expanding
Gaussian functions by a modified form of the Rayleigh expansion [111],

exp

(
−|r − rj|2

2σ2
G

)
= 4π exp

(
−r

2 + r2j
2σ2

G

) ∞∑
l=0

l∑
m=−l

il

(
rrj
σ2
G

)
Y m
l (r̂)Y m

l (r̂j)
∗, (3.18)

where r = |r| and r̂ = r/r. Y m
l (r̂) is the value of the spherical harmonic with degree

l and order m evaluated at a point on the unit sphere, r̂, il(r) are modified spherical
Bessel functions of the first kind. Using this relationship we can express the two
densities as

ρ(m(α, β, γ)Tr)q =∑
j

∞∑
l=0

l∑
m,m′=−l

4π exp

(
−
r2 + rqj

2

2σ2
G

)
il

(
rrqj
σ2
G

)
Dl

mm′(α, β, γ)Y m
l (r̂)Y m

l (r̂q
j )

∗ (3.19)
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ρ(r)p =
∑
j

∞∑
l=0

l∑
m=−l

4π exp

(
−
r2 + rpj

2

2σ2
G

)
il

(
rrpj
σ2
G

)
Y m
l (r̂)Y m

l (r̂p
j )

∗, (3.20)

whereDl
mm′(α, β, γ) are the coefficients of the Wigner-D matrix that transforms the co-

efficients of the spherical harmonics by a rotation of α, β, γ, with
∑

m′ Dl
mm′Y m′

l (r̂) =

Y m
l (mr̂). For brevity we have dropped the arguments, so Dl

mm′ ≡ Dl
mm′(α, β, γ) and

m ≡ m(α, β, γ), and abbreviated the sums, as
∑

l,m{} ≡∑∞
l=0

∑l
m=−l{}. Substitut-

ing eqs. (3.19) and (3.20) into eq. (3.16)

Ωpq(α, β, γ) =
∑
j,j′

∑
l,m

∑
l′,m′,m′′

(4π)2Y m
l (r̂p

j )D
l′

m′m′′Y m′′

l′ (r̂q
j′)

∗
exp

(
−
rpj

2 + rqj
2

2σ2
G

)
×

∫ ∞

0

exp

(
− r2

σ2
G

)
il

(
rrpj
σ2
G

)
il

(
rrqj′

σ2
G

)
r2 dr

∫
Y m
l (r̂)∗Y m′′

l′ (r̂) dr̂. (3.21)

The integrals can be evaluated analytically,

∫ ∞

0

exp

(
− r2

σ2
G

)
il

(
rrpj
σ2
G

)
il

(
rrqj′

σ2
G

)
r2 dr =

√
πσ3

G

4
il

(
rpj r

q
j′

2σ2
G

)
exp

(
rpj

2 + rqj′
2

4σ2
G

)
,

(3.22)∫
Y m
l (r̂)∗Y m′′

l′ (r̂) dr̂ = δll′δmm′′ . (3.23)

Hence

Ωpq(α, β, γ) =
∑
j,j′

∑
l,m,m′

4π5/2σ3
G Y

m
l (r̂p

j )Y
m′

l (r̂q
j′)

∗
exp

(
−
rpj

2 + rqj′
2

4σ2
G

)
il

(
rpj r

q
j′

2σ2
G

)
Dl

mm′ .

(3.24)

Now we can calculate the Fourier coefficients of the overlap integral as

Ωpq(α, β, γ) =
lmax∑
l=0

l∑
m,m′=−l

I lmm′Dl
mm′(α, β, γ), (3.25)

where

I lmm′ =
∑
j,j′

4π5/2σ3
G Y

m
l (r̂p

j )Y
m′

l (r̂q
j′)

∗
exp

(
−
rpj

2 + rqj′
2

4σ2
G

)
il

(
rpj r

q
j′

2σ2
G

)
. (3.26)
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To evaluate the integral numerically we truncate the the sum at a maximum angular
momentum degree, lmax. To find the maximum value of Ωpq we can use SOFT to
perform a SO(3) Fourier synthesis on I lmm′ , which can be achieved in O(∆3

θ log
2∆θ)

operations, where 2∆θ = lmax is the angular resolution or bandwidth of SOFT
[58]. Most implementations of SOFT (including ours) have O(∆4

θ) computational
complexity.

Calculating the full sum over all j and j′ is computationally expensive, but
the number of terms required can be reduced by omitting contributions where
|rpj − rqj′ | ≫ σG. Assuming a uniform density of points, this observation means the
number of terms in the sum will reduce from N2 to N5/3. Hence, calculating the
Fourier coefficients requires O(N5/3l3max) operations.

The result given by this Fourier synthesis can be refined by performing a local
minimisation of eq. (3.25), as the gradients of Dl

mm′(α, β, γ) can be calculated ana-
lytically or by fitting a set of Gaussian peaks to the output data, and the location of
these peaks can be used as an initial starting point for the PERMDIST algorithm (see
section 2.3.2).

3.3.1 Harmonic basis

The calculation of the cross terms in eq. (3.22) makes the overlap method more
expensive, and as a result, it is harder to evaluate .To improve efficiency we can
project eqs. (3.19) and (3.20) onto an orthogonal radial basis, which we can generate
from the isotropic three-dimensional quantum harmonic oscillator (referred to here
as the harmonic basis). Expressing eq. (3.19) in the harmonic basis we obtain,

ρp(r) =
∑
n,l,m

cpnlmNnlr
l exp

(
− r2

2r20

)
Ll+1/2
n

(
r2

r20

)
Y m
l (r̂) =

∑
n,l,m

cpnlmgnl(r)Y
m
l (r̂),

(3.27)
where Lm

n (r), are generalised Laguerre polynomials and

Nnl =

√
2n!

r2l+3
0 Γ (3/2 + n+ l)

(3.28)

is the normalisation constant, such that∫∫∫
gnl(r)Y

m
l (r̂)∗gn′l′(r)Y

m′

l′ (r̂) dr = δnn′δll′δmm′ . (3.29)
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The coefficients of eq. (3.27) can be obtained using eqs. (3.18) and (3.29),

cpnlm =

∫
ρp(r)gnl(r)Y

m
l (r̂) dr

= 4π
N∑
j=1

Y m
l (r̂p

j )
∗
∫ ∞

0

gnl(r) exp

(
−
r2 + rpj

2

2σ2
G

)
il

(
rrpj
σ2
G

)
r2 dr

=
N∑
j=1

Y m
l (r̂p

j )
∗dnl(r

p
j ). (3.30)

For n = 0 we have the following analytic result

d0,l = 4σ3
G

√
π3

r3jΓ
(
l + 3

2

) ( r0rj
r20 + σ2

G

)l+ 3
2

exp

(
− r2j
2 (r20 + σ2

G)

)
. (3.31)

To evaluate eq. (3.30) for larger values of n we can use the following recurrence
relations

nLl+1/2
n (x) = (n+ l + 1/2)L

l+1/2
n−1 (x)− xL

l+3/2
n−1 , (3.32)

L
l+3/2
n−1 (x) = L

l+5/2
n−1 (x)− L

l+5/2
n−2 (x), (3.33)

il(x) =
2l + 3

x
il+1(x) + il+2(x). (3.34)

Hence we obtain a recurrence relation for the integral dn,l(rj) (where for brevity we
drop the argument of dn,l(rj), so dn,l(rj) ≡ dn,l and noting that d−1,l = 0)

0 = −
√
n− 1

n
dn−2,l+2 −

√
n+ l + 1/2

n
dn−1,l +

(2l + 3)σ2
G

rjr0
√
n

dn−1,l+1+√
n+ l + 3/2

n
dn−1,l+2 + dn,l. (3.35)

Unfortunately, evaluating the forward recurrence of eq. (3.35) is numerically unstable
for large n and l, and attempting to stabilise the recursion results in ill-conditioned
matrices. This problem limits the ratio of maximum extent of the structure to the
width of the kernel, max (rj) < 10σG. Within this regime Fourier coefficients of the
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overlap integral can be calculated as,

Ωpq(α, β, γ) =
∑
n,l,m

∑
n′,l′,m′

∑
m′′

∫∫∫
(cpn,l,m)

∗gnl(r)Y
m
l (r̂)∗ cpn′,l′,m′gn′l′(r)D

l′

m′′m′Y m′′

l′ (r̂)dr

=
∑
n

(cpn,l,m)
∗cqn,l,m′D

l
mm′ . (3.36)

This result can be used to perform an alignment by following the method in sec-
tion 3.3. When aligning a large database of structures the algorithm can be made
more efficient by precalculating the harmonic basis coefficients. This precalculation
will come at a slight cost of accuracy in eq. (3.36), as only a fixed number of radial
basis functions can be considered, whereas the numerical calculation for eq. (3.26) is
exact.

Computational complexity Calculating eq. (3.36) requires specifying a cutoff an-
gular momentum order, as discussed in section 3.3, and a cutoff harmonic basis
order, such that n ≤ nmax and nmax ∝ N2/3. Hence the total complexity associated
with calculating the harmonic basis coefficients will be approximately O(N5/3l3max).

3.3.2 Spherical Fourier transforms

Generalising the Fourier transform to spherical coordinates gives an alternative
method to obtain the SO(3) Fourier coefficients. For a function f(r), the Fourier
transform and Fourier synthesis can be defined

F (k) = F [f(r)]k =

∫∫∫
f(r) exp(−ik · r)dr, (3.37)

f(r) = F−1[f(k)]r =
1

(2π)3

∫∫∫
F (k) exp(ik · r)dk. (3.38)

This approach can be generalised to spherical coordinates by expressing the expo-
nential in spherical harmonics,

exp(ik · r) = 4π
∑
l,m

iljl(kr)Y
m
l (r̂)Y m

l (k̂)∗, (3.39)
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where jl(kr) are spherical Bessel functions of the first kind. We can use Parseval’s
theorem to evaluate the overlap integral of the two densities,

Ωpq(α, β, γ) =

−∞∫∫∫
∞

ρp(r)ρq(mr)∗dr

=
1

(2π)3

−∞∫∫∫
∞

F [ρp(r)]k F [ρq(mr)]∗k dk. (3.40)

Using the convolution theorem we can calculate the Fourier transforms,

Cp(k) = F [ρp(r)]k

= (2πσ2
G)

3/2 exp

(
−k

2σ2
G

2

)∑
j

exp(−ik · rp
j )

= (2πσ2
G)

3/2 exp

(
−k

2σ2
G

2

)
4π
∑
j

∑
l,m

(−i)ljl(κrpj )Y m
l (r̂p

j )
∗Y m

l (k̂), (3.41)

Cq(k) = F [ρq(mr)]k

= (2πσ2
G)

3/2 exp

(
−k

2σ2
G

2

)
4π
∑
j

∑
l,m

∑
m′

(−i)ljl(krqj )Dl
m,m′Y m′

l (r̂q
j )

∗Y m
l (k̂).

(3.42)

Instead of evaluating eq. (3.40) as an integral we can evaluate it as a sum by consid-
ering the discrete spherical Fourier transform, where we truncate the integral up to
a cut-off radius, rcut, and use the orthogonality relation∫ rcut

0

jl

(
κl,n
rcut

r

)
jl

(
κl,n′

rcut
r

)
r2 dr =

π r3cut

4κl,n
jl+1(κl,n)

2δn′n, (3.43)
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where κl,n is the nth root of jl, so jl(κl,n) = 0, to transform eq. (3.38) into a sum (the
spherical analogue of a discrete Hankel transform [112]),

f(r) =
∑
l,m

∞∑
n=1

Fm
l,n

√
2κl,n

r3cutjl+1(κl,n)2
4πiljl

(
κl,n
rcut

r

)
Y m
l (r̂), (3.44)

Fm
l,n =

1

(2π)3

√
2κl,n

r3cutjl+1(κl,n)2

∫∫∫
|r|<rcut

f(r)4π(−i)ljl
(
κl,n
rcut

r

)
Y m
l (r̂)∗ dr. (3.45)

If we assume that ρp(r) = ρq(r) = 0 when |r| ≥ rcut, then by inspection of eqs. (3.41)
and (3.42) we can express the density functions as,

ρp(r) =
∑
l,m

∞∑
n=1

Cp,m
l,n

√
2κl,n

r3cutjl+1(κl,n)2
4πiljl

(
κl,n
rcut

r

)
Y m
l (r̂), (3.46)

Cp,m
l,n = (2σ2
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N∑
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√
2κl,n

r3cutjl+1(κl,n)2
exp

(
−
κ2l,nσ

2
G

2r2cut

)
jl

(
κl,n
rcut

rpj

)
Y m
l (r̂p

j )
∗, (3.47)

ρq(mr) =
∑
l,m

∑
m′

∞∑
n=1

Dl
m,m′C

p,m
l,n

√
2κl,n

r3cutjl+1(κl,n)2
4πiljl

(
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r

)
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l (r̂), (3.48)

Cp,m
l,n = (2σ2
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N∑
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exp

(
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2
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)
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(
κl,n
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∗. (3.49)

We can obtain an expression for the overlap integral as,

Ωpq(α, β, γ) =
∑
l,m,m′

Dl
m,m′

1

(2π)3

∞∑
n

Cp,m
l,n

∗Cq,m′

l,n . (3.50)

To evaluate the overlap integral we need to specify a cut-off order, nl
cut, such that

κl,nl
cut

≫ rcut

σG
, (3.51)

as the zeros of the spherical Bessel function are approximately uniformly distributed,
κl,nl

cut
∝ N1/3. The SO(3) Fourier coefficients can be calculated,

Il,m,m′ =
1

(2π)3

nl
cut∑
n

Cp,m
l,n

∗Cq,m′

l,n , (3.52)
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which will require O(l3maxN
1/3) operations, while calculating the spherical Fourier

coefficients will require O(l2maxN
4/3) operations.

3.4 Including multiple species

The methods as described above for both periodic and isolated systems assume that
there is only one type of atomic species present; it is straightforward to extend these
methods to apply to systems with multiple different types of atomic species. In the
multiple species case, the Fourier or Harmonic coefficients for each species can be
calculated independently. The Fourier coefficients for the species overlap integral
can be calculated separately in turn. The coefficients for the total overlap integral are
equal to the sum of the species overlap Fourier coefficients, so the Fourier transform
only needs to be applied once for any given alignment involving multiple species.
In the case of the method described in section 3.3 the scheme is modified by only
summing over the indices of identical atomic species in eq. (3.26).

Note that unlike for a calculation of a SOAP-like coefficient cross-terms between
different species do not need to be considered. The SOAP coefficient is calculated by
averaging the overlap integral over all rotations, so if cross-terms are not included
then the SOAP coefficient would not capture any relative rotation between different
species. Whereas the above calculation calculates the overlap integral for a specific
rotation which will capture relative rotations between different sets of species.





4 Branch and Bound Alignment

Here we describe the branch and bound algorithm, named Go-PERMDIST, devel-
oped to deterministically calculate the minimal RMSD between two structures. Its
performance is compared against other approaches in chapter 5.

This algorithm is based on the branch and bound scheme developed by Li and
Hartley [52] and Yang et al. [53] to minimize the nearest neighbour distance. It works
by searching for the optimal rotation/displacement, as opposed to the optimal per-
mutation. The search space can be mapped onto a finite three-dimensional volume.
The branch and bound algorithm then finds the optimal rotation/displacement by
splitting the search space into a set of cubes, and then calculates a lower bound for the
RMSD within each cube. If the lower bound of any cube is higher than the current
upper bound of the solution then the algorithm stops searching in that cube, otherwise
the algorithm splits the cube into smaller sub-cubes and repeats the algorithm for
these separate branches. It stops once the difference between the upper bound and
lowest lower bound is less than some specified tolerance. Alternatively, because the
optimal solution is normally found before it is proven to be optimal, the algorithm
can be run for a set number of iterations to shorten the expected run time, at the
expense of the guarantee of optimality.

4.1 Deterministic calculation of RMSD

To apply a branch and bound algorithm we need to parameterise the domain over
which we are searching for a solution and define bounding functions that allow
us to prune the search space. For isolated clusters Go-PERMDIST follows Li and
Hartley [52] and uses the angle-axis representation of rotations, where all possible
rotations can be described as a point within a R3 sphere of radius π, and search
within the minimal [−π, π]3 bounding cube enclosing this sphere. Search regions
that are entirely outside this sphere can be discarded to reduce the search space by
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around a factor of two. For periodic systems the search space exactly corresponds to
displacements that fit within a single crystal supercell.

When searching for permutation-inversion isomers a second search domain of
the same size can be defined, corresponding to the set of rotations on the inverted
structure. For periodic systems our search space can be defined simply within the
supercell. If we wish to find the global RMSD over all the point group symmetries of
the supercell, then we can add extra search domains corresponding to translations
within the unit cell for each point group operation. Additionally, if we are interested
in finding the closest structure from a set of configurations to a target structure, we
could treat each one as a separate search domain and search over all of them.

This version of branch and bound algorithm recursively explores the solution
domain by breaking each cubic search region into eight smaller cubes, and estimating
a lower and upper bound for the RMSD within each cube. If a cube is found to have
a lower bound higher than the best found RMSD then the algorithm stops searching
in that region of the domain, progressively eliminating areas of the search space.
The process terminates once it finds a region where the upper bound is within a
given tolerance of the lowest lower bound. The performance depends on our ability
to accurately find lower and upper bounds for the search region. The functions that
are used to bound the RMSD for clusters and periodic systems are defined below.

4.1.1 Bounding RMSD for clusters

For a given rotation matrix, m, with corresponding angle-axis rotation, v and
search region box width θB, an upper bound of the RMSD can be found by solving
the permutational assignment problem between the target structure and rotated
structure. Finding the lower bound of the RMSD requires locating a lower bound of
the distance between all points in the structure within the search region. We can find
a lower bound using the law of cosines, where points rp

j and m · rq
j′ are separated by

distance djj′ where,
d2jj′ = rpj

2 + rqj′
2 − 2rpj r

q
j′ cosφj,j′ (4.1)

and φj,j′ is the angle between rp
j and m · rq

j′ . We can calculate the lower bound of
the distance between the points, djj′ within the search region as,

d2jj′ = min
|θ|≤θB′

rpj
2 + rqj′

2 − 2rpj r
q
j′ cos (φj,j′ + θ). (4.2)
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where θB′ is the maximum angle by which points can be rotated relative to the
rotation m in the search box (see section 4.1.1). First we calculate the upper bound
for cos (φj,j′ + θ),

cos(φj,j′) = max
|θ|≤θB′

cos (φj,j′ + θ)

=

1, when |φj,j′ | ≤ θB′

cos (φj,j′) cos (θB′),+| sin (φj,j′)| sin (θB′), when |φj,j′ | > θB′ .
(4.3)

We can now calculate a lower bound for the distance between the two points,

d2jj′ = rpj
2 + rqj′

2 − 2rpj r
q
j′cos(φj,j′). (4.4)

This pairwise lower bound between all the points in both structures can be used by
an assignment problem or nearest neighbour search algorithm to produce a lower
bound for the RMSD in the bounding cube.

Composing Angle-Axis Rotations

To bound the pairwise distance we need to place a bound on the maximum angle by
which a point could be displaced within the search box. The approach presented here
differs from that used by Li and Hartley [52], and Yang et al. [53]. They bound the
maximum angle by which a point can differ after two rotations using the inequality
that the angular distance between two rotations is less than or equal to the Euclidean
distance between the vectors in the angle-axis representation. Here we consider how
angle-axis rotations are composed to bound the maximum angle.

For an angle-axis rotation v + e we want to find the magnitude of the rotation
vector e′ such that rotation by vector v then e′ is equivalent to rotation by vector
v + e. By considering angle-axis rotations as arcs of a great circle their composition
can be viewed as equivalent to vector addition of these arcs on the surface of a unit
sphere (see fig. 4.1). The angle-axis rotation vector v has equivalent great circle arc
AB, vector v + e corresponds to arc AC, vector e′ is equivalent to arc BC, and the
composition of angle-axis rotations v followed by e′ is v + e. The starting points of
the arcs are arbitrary, so we have chosen A to correspond to the starting point of the
rotations v and v + e, the intersection of their great circles.

To bound the distance between two points for the set of all possible rotations in
a given search box, we find a bound on the arc BC = |e′| for the same search box,
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Fig. 4.1 Diagram indicating how angle-axis rotations can be composed. The rotation
corresponding to the angle axis vector v + e is equivalent to the composition of the
rotation around v then e′. Alternatively, considering rotations as arcs of great circles,
the arc AC is equal to the arc BC added to the arc AB.

using the spherical law of cosines,

cosBC = cosAB cosAC + cos∠DOE sinAB sinAC. (4.5)

∠DOE is the angle between v + e and v, AB = |v| and AC = |v + e|. So we can
bound these values, for a search box centred on vector v with rotation θ1 = |v| and
box width θB:

cos∠DOE ≥ θ1√
θ21 + 3θ2B/4

= cos θ̄2, (4.6)

AB = θ1 = |v|, (4.7)

θ1 −
θB

2
≤ AC ≤ θ1 +

θB

2
. (4.8)
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From this result we can find a bound for the maximum angle, θB′ , a point can be
rotated within the search box,

cos θB′ = min [cosAB] (4.9)

= min

[
cos

θB
2
,

(
cos(θ1)

2 + cos θ̄2 sin(θ1)
2
)
cos

θB
2

− (1− cos θ̄2)

∣∣∣∣sin θ1 cos θ1 sin θB2
∣∣∣∣] .

This result can then be used in eq. (4.3) to obtain a lower bound for the distance
between two coordinates inside the search box.

4.1.2 Bounding RMSD for periodic systems

For periodic systems we can follow a similar procedure, where for a given displace-
ment, d, with bounding box width dB, the upper bound of the RMSD can be found
by solving the assignment problem between the target and translated structure. To
find the lower bound of the RMSD we need the lower bound of the distance between
all the points in the structure, so if we employ the notation in section 4.1.1, we can
define the distance between points as

djj′ = min
l∈L

|rp
j − rq

j′ − d+ l| = |rp
j − rq

j′ − d+ ljj′|, (4.10)

where ljj′ is the lattice vector that minimises the distance between the points. The
lower bound of the distance between the points is

djj′ =

0, djj′ ≤
√
3dB/2,

djj′ −
√
3dB/2, djj′ >

√
3dB/2.

(4.11)

This result can be used to calculate a lower bound for the RMSD using the assignment
algorithm.

We can improve this lower bound by splitting the cube into six identical square
pyramids. Consider one of these pyramids (for example the top one in fig. 4.2), with
triangular face normals, v1, v2, v3, and v4. The closest distance of pairs of particles
for which Fi(r

p
j , r

q
j′) = (rp

j − rq
j′ − d + l) · vi ≥ 0, for i = 1, 2, 3, 4, will only ever be
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Fig. 4.2 A diagram showing how the search cube can be split into six identical
pyramids. The faces of the top pyramid have been shaded.

djj′ , so we can define a new pair wise distance lower bound for the pyramid as

djj′ =


djj′ , if Fi(r

p
j , r

q
j′) > 0 for i = 1, 2, 3, 4,

else:

0, djj′ ≤
√
3dB/2,

djj′ −
√
3dB/2, djj′ >

√
3dB/2.

. (4.12)

The lower bound for the box then can be found by calculating the lower bound for
each pyramid and taking the minimum value.

4.1.3 Approximating bounds

It requires O(N2) operations to solve the assignment problem, whereas using a
k-dimensional binary search tree it is possible to find the set of nearest neighbours
between two point clouds in O(N logN) operations [113]. We are only interested in
the exact value of the upper bound if it is lower than any other upper bound found,
so instead of solving the assignment problem for each search region we can perform
an initial nearest neighbour search to give a lower bound for the upper bound search
region, and then perform the same calculation as in eqs. (4.2) and (4.4) to produce
a lower bound for the RMSD. If the calculation of the nearest neighbour distance
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is found to give an upper bound less than the lowest found upper bound, then
the more expensive calculation of the ‘proper’ upper bound using the assignment
problem can be performed. Both the bounds calculated using the nearest neighbours
approach will be at most equal to the bounds calculated using the assignment
method.

Algorithm 3 Go-PERMDIST

Input: Rp, Rq, CG, (optional C∗
G) ◃ Structures to align and search region(s)

Output: E,vbest ◃ RMSD and transformation vector
add {C∗

G} to Q
if Testing for Symmetries then

add C∗
G to Q

end if
E = +∞ ◃ Estimate of RMSD of p and q
loop

get search cube Ct with lowest lower bound E(t) from Q
if E − E(t) < ϵa + ϵrE(t) then

quit loop ◃ Stop algorithm once desired precision achieved.
end if
for 8 sub-cubes Ct∗ of Ct do

compute ⌊E⌋(t)
if ⌊E⌋(t) < E then ◃ If estimate of upper bound less than current best

upper bound, calculate upper bound using assignment algorithm.
compute E(t)
if E(t∗) < E then

compute E(t∗)
if E(t∗) < (1 + ϵr)E then

use PERMDIST algorithm to refine E(t∗) and vt∗ to E
∗

and v∗

E, vbest = E
∗
, v∗ ◃ Update best estimate of RMSD

end if
add Ct∗ to Q

end if
else

compute ⌊E⌋(t)
if ⌊E⌋(t) < E then

add Ct∗ to Q
end if

end if
end for

end loop
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4.2 Branch and Bound algorithm

The branch and bound algorithm to find the global minimum RMSD, within a
certain absolute tolerance, ϵa and relative tolerance, ϵr, uses a best-first-search, where
the regions in search space with the smallest lower bounds are explored first. To
describe the algorithm we first define some terms. We seek the globally optimum
transformation vector vG contained within a cubic search domain CG of width wG.
For a periodic system vG corresponds to the displacement vector and wG = L,
while for a cluster vG corresponds to the rotation vector, wG = 2π, and {C∗

G} are the
set of search regions corresponding to point group symmetries of the system (e.g.
inversion).

For a search domain, Ct, centred at vt and width wt, we define the upper and
lower bound of the RMSD to be E(t) and E(t). We define the upper and lower
bound calculated by the nearest-neighbours approach as ⌊E⌋(t) and ⌊E⌋(t). We store
the set of search regions in a priority queue, Q, where the search region with the
lowest lower bound, E(tlow), is returned first. When an alignment is found with a
lower bound within a certain tolerance of the current best found solution, then this
alignment is refined by applying a single run of the iterative PERMDIST algorithm
as described in section 2.3.2. A detailed description is given in algorithm 3.

4.2.1 Asymptotic behaviour

As the size of the search regions decreases the difference between the upper and
lower bounds also decreases. For clusters we can see that with regions of angular
size, θB, where θB ≪ 1,

d2j,j′ − d
2

j,j′ ∝ θBr
p
j r

q
j′ . (4.13)

So the difference between the lower and upper bound will be proportional to θB.
For periodic systems with regions of size, dB, the difference between the lower
and upper bound will be proportional dB when dB ≪ L/N1/3. The width of the
search region is therefore proportional to the uncertainty in the lower bound. This
result holds both when calculating the bounds using the assignment problem or the
nearest-neighbours algorithm, so as the width of the search region decreases the
difference between the bounds will decrease uniformly. This decrease guarantees
that the global RMSD is found because the lowest upper bound calculated will
always correspond to a possible RMSD alignment between the structures.



5 Comparison of Alignment
Methods

The performance of various alignment algorithms was assessed by comparing the
lowest RMSD values and associated computational cost for a test set of structures.
Timing benchmarks correspond to a single CPU core on a workstation with an
Intel 3.3 GHz i7 Haswell processor. We primarily benchmarked the new algorithms
against the methods in the Cambridge Energy Landscapes software package, as
they perform significantly better than alternative algorithms, as discussed in in
section 5.3.

The FASTOVERLAP algorithm requires us to choose the width of the Gaussian
kernels, σG. Our investigations have shown that setting σG equal to 1/3 of the
interatomic separation generally gives good performance. For cluster alignment the
angular momentum cutoff, lmax, needs to be set as well, which defines the angular
resolution, ∆θ = π/lmax of the SOFT to find the global maximum kernel correlation.
For most purposes setting lmax = 15 worked well, though for large systems, the
algorithm may display improved performance if the angular momentum cutoff is
higher.

5.1 Periodic systems

Three different algorithms for aligning periodic systems in OPTIM [63], correspond-
ing to keywords PERMDIST, ATOMMATCHFULL and ATOMMATCHDIST, were
tested against the FASTOVERLAP kernel correlation/Gaussian overlap schemes.
The algorithms were tested on amorphous local minima for a binary Lennard-Jones
liquid containing 204 atoms of type A and 52 atoms of type B, with a density of
1.2σ−3

AA. The energies were calculated using the usual Lennard-Jones pair potential
with the Stoddard–Ford quadratic cutoff [114]. The interaction parameters used were
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ϵAA = 1.0, ϵAB = 1.5, ϵBB = 0.5, σAA = 1.0, σAB = 0.8 and σBB = 0.88, corresponding
to a popular model glass former [115].

For the FASTOVERLAP algorithm we set the kernel width to 1/3 of the average
interatomic spacing, σG = σAA/(3

3
√
1.2) = 0.314σAA, and the cutoff wavevector order

to 6.

5.1.1 Data generation

Two data sets of 100 distinct minima were generated using the Python Energy
Landscape Explorer (PELE) [116] and used to compare the algorithms. The first
set was created by a basin-hopping [12–14] global optimisation run from a random
starting point. The second data set was generated by taking random steps away
from one particular minimum, using a local geometry optimisation after each step
to locate new minima. The steps were performed by assigning every atom a uniform
random displacement along each axis of up to 0.3σAA, no permutations of atomic
identity were made. The minimum RMSD for every pair of minima in each data
set was calculated using several different alignment algorithms to compare them.
Because these schemes are not necessarily symmetric in their arguments, all of the
10,000 possible pairs of minima were used.

The above procedure for generating the minima tends to produce pairs of struc-
tures that are already reasonably well aligned. A naive calculation of the RMSD
without any form of alignment often produces an RMSD very close to the optimal
value. Hence each minimum was also scrambled by applying a random global
translation and permutation.

5.1.2 Performance on scrambled data

A graphical comparison of the performance for the scrambled data sets is shown in
fig. 5.1. The lower the RMSD, the better the alignment. The fourth column shows
the best RMSD located, so if FASTOVERLAP always calculated the lowest RMSD it
would give a straight line for that column. The percentage of RMSDs found by each
method within a certain tolerance of the best RMSD is shown in fig. 5.2.

For RMSD < 0.6σAA the FASTOVERLAP method always found an alignment
quite close to the best RMSD. However, for a small number (∼ 1%) of more distant
pairs of minima it fails. For these structures the RMSD is dominated by atoms that
are separated by > 1σAA, so the approximations made in the derivation are expected
to fail and optimising the overlap no longer corresponds to optimising the RMSD.



5.1 Periodic systems 57

Fig. 5.1 Comparison of the RMSD/σAA calculated by FASTOVERLAP against the
RMSD found by various different alignment algorithms for scrambled amorphous
binary Lennard-Jones structures. BEST gives the lowest RMSD found by any means.
The top row shows a scatter plot of the RMSD found by FASTOVERLAP against
the RMSD found by the methods listed on the bottom; red, green and blue points
indicate whether the FASTOVERLAP method found a higher, equal or lower RMSD.
The bottom row shows the density distribution of the scatter plots. Above the scatter
plots the marginal distribution of the RMSD found by the methods listed below
are shown. On the right next to the scatter graphs the marginal distribution of the
RMSD found by FASTOVERLAP is shown. All the marginal distributions are on the
same scale.

These results show that when aligning reasonably close minima, the FASTOVERLAP
method is very reliable and is significantly better than the other methods.

All the other methods show significantly worse performance than FASTOVER-
LAP, except for the more distant pairs of minima, often failing to identify relatively
close minima reliably. ATOMMATCHDIST does not identify the lowest RMSD for
the vast majority of minima. PERMDIST is slightly better at identifying relatively
close minima than ATOMMATCHFULL, but failed to find the global minimum for
nearly all the pairs separated by intermediate distances, where ATOMMATCHFULL
performs slightly better.

The bimodal distribution of RMSD found is due to the two different methods
for generating minima. The dataset that produced minima by stepping from the
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Fig. 5.2 Graph comparing the accuracy of the different methods for aligning the
scrambled binary Lennard-Jones structures, plotting the difference between the
calculated RMSD and the optimal value against the percentage of alignments with a
smaller difference.

same minimum repeatedly tended to generate very similar structures, while the
basin-hopping run tended to produce more diverse structures.

We also note that for this system the RMSD is peaked around 0.7σAA, as this is
around the maximum the RMSD of the system can be after solving the assignment
problem. For a bad alignment the atomic separations will be approximately evenly
distributed between 0 and 1, resulting in an RMSD of around 0.7σAA. When one
of the alignment algorithms fails to find the correct translational alignment then it
will return an RMSD of around 0.7σAA, so worse methods will have larger peaks at
0.7σAA due to having more failed alignments.

5.1.3 Computational complexity

To measure the computational complexity the time to perform the alignment was
calculated for supercells of increasing size. The potential used in this case corre-
sponds to a single atomic species with pairwise Lennard-Jones interactions and fixed
number density 1.05σAA. System sizes ranging from 128 to 16384 atoms were tested.
The average times taken for the different sized systems are shown in fig. 5.3; we
observe an asymptotic approach to O(N2) scaling, as suggested by the analysis in
section 3.2.2. Calculating all 10,000 alignments with the FASTOVERLAP algorithm
required 90 s.
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5.1.4 Go-PERMDIST

We found that Go-PERMDIST requires a significantly larger runtime than FAS-
TOVERLAP to achieve comparable performance. The run time for FASTOVERLAP
was approximately equivalent to around five steps of the Go-PERMDIST algorithm,
which normally needed 100–1000 steps to find the optimal alignment.

5.2 Clusters

5.2.1 FASTOVERLAP

For aligning clusters the algorithm corresponding to the keyword PERMINVOPT in
GMIN [62] was compared to the FASTOVERLAP algorithm for clusters. PERMIN-
VOPT is the same algorithm as PERMDIST, but it also tests alignment for inverted
structures. The maximum number of iterations in the PERMDIST algorithm was
varied from 300 to 3000 to evaluate the effect of this parameter on the alignment.
The algorithms were compared for Lennard-Jones (LJ) clusters of 38 atoms, LJ38,
using a database of 1000 distinct minima generated in a discrete path sampling study
[15, 16]. Minimum RMSD values were calculated for all pairs.

For the FASTOVERLAP algorithm the kernel width was set to approximately
1/3 of the average interatomic spacing, σG = 0.3σLJ. The cutoff angular momentum
degree was set to 15.
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Fig. 5.4 Comparison of the RMSD calculated by FASTOVERLAP against the RMSD
found by PERMDIST for clusters of 38 Lennard-Jones atoms as a function of the
number of PERMDIST iterations. The top row shows a scatter plot of the RMSD
found by FASTOVERLAP against the RMSD found by PERMDIST on the bottom;
red, green and blue points indicate whether the FASTOVERLAP method found a
higher, equal or lower RMSD. The bottom row shows the density distribution of
the scatter plots. Above the scatter plots the marginal distribution of the RMSD is
illustrated. On the right, next to the scatter graphs, the marginal distribution of the
RMSD found by FASTOVERLAP is shown. All the marginal distributions are on the
same scale.

Performance

A comparison of the performance of PERMDIST and FASTOVERLAP is shown in
fig. 5.4. The percentage of RMSDs found by each method within a certain tolerance
of the best RMSD is shown in fig. 5.5.

FASTOVERLAP finds the optimal RMSD for about 71% of the pairs of minima
tested, and always finds the optimal RMSD for pairs separated by less than 0.15σ.
After 600 iterations PERMDIST has nearly identical performance to FASTOVERLAP,
with FASTOVERLAP performing slightly better for closer pairs of structures. After
1000 iterations PERMDIST is better, the same or worse than FASTOVERLAP for 26%,
67% or 7% of the pairs of minima, and after 3000 iterations these figures change to
28%, 71% or 0.5% of the pairs.
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Fig. 5.5 Graph comparing accuracy of the different methods for aligning LJ38 clusters,
showing the percentage of alignments that achieved within a certain RMSD of the
best found RMSD for each respective algorithm.

The FASTOVERLAP algorithm failed to find the optimal RMSD for a few mod-
erately close pairs of minima with ‘non-cooperative’ alignments [117], where the
difference in structure is dominated by a small number of atoms moving a relatively
long distance. For these alignments choosing a larger kernel width generally resulted
in finding the optimal alignment. For more distant minima FASTOVERLAP tended
to fail because numerous atoms needed to be displaced a long way in the optimal
alignment, so the assumptions made in the derivation do not hold (see section 3.3).

Computational complexity

A test set of random LJ minima was used to analyse the computational scaling of
the algorithm with system size ranging from 128 to 8192 atoms. The results are for
a kernel width of σG = 0.3σ and angular momentum cutoff lmax = 15. The timings
of the calculations shown in fig. 5.6b confirm the expected O(N5/3) scaling for fixed
angular momentum cutoff, deduced in section 3.3. The scaling with respect to the
angular momentum cutoff is shown in fig. 5.6a; the O(l3max) behaviour suggests that
the computational complexity is dominated by the O(N5/3l3max) calculation of the
SO(3) Fourier coefficients, rather than the O(l4max) cost of performing the inverse
SO(3) Fourier transform (see section 3.3).
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Fig. 5.6 Computational complexity of FASTOVERLAP for finite clusters
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Fig. 5.7 A comparison of the performance for Go-PERMDIST and PERMDIST over a
range of alignments of LJ38 clusters. The top graph shows the expected runtime of
Go-PERMDIST limited to 1000 or 2000 iterations, and the expected runtime of the
PERMDIST algorithm to achieve a given success rate to find the global minimum
RMSD. The bottom graph shows the rolling-average success rate of the limited
iteration Go-PERMDIST algorithm.
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5.2.2 Go-PERMDIST

Although the Go-PERMDIST algorithm can calculate the minimal RMSD determinis-
tically, for structures that are relatively distant this calculation can take an extremely
long time. However if speed is critical, the Go-PERMDIST algorithm can be run with
a maximum number of iterations to ensure that it terminates faster. This behaviour
is offset by a slight loss in reliability.

For a pair of structures, if the random starting orientations are selected uniformly
(which is not an immediately straightforward task [118]), there will be a fixed
probability, pfind, that PERMDIST will find the global minimum RMSD for a random
starting orientation, which will be proportional to the size of the basin of attraction.
The probability that the correct global minimum RMSD has been found after n
random orientations will be

pfound(n) = 1− (1− pfind)
n (5.1)

and the number of random starting orientations to achieve a certain success rate,
fsuccess will be

nrate(fsuccess) =
ln(1− fsuccess)

ln(1− pfind)
. (5.2)

The maximum likelihood estimator of pfind is

p̂find =
Ntrials∑Ntrials
j=1 nj

(5.3)

for Ntrials independent alignments, where PERMDIST finds the global minimum
after nj random starting orientations for alignment number j. For any given system
size there is generally a fixed computation time for each iteration so we can use
eqs. (5.2) and (5.3) to estimate the time that PERMDIST would need to run for to
achieve a given level of accuracy. It was found that pfind was strongly correlated with
the distance between the structures.

Data Generation

Three test sets were generated to compare the performance of PERMDIST and
Go-PERMDIST.

LJ38 6000 pairs of structures from the dataset used in section 5.2.1, with RMSD
distributed from 0 to 0.6 σ.
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Au55 1000 pairs of structures from a dataset of the 100 lowest lying minima of
55 gold atoms, Au55, modelled by the Gupta potential [119] and found by
basin-hopping using GMIN [62], with RMSD distributed from 0 to 1.3 Å.

Au147 1000 pairs of structures from a dataset of the 100 lowest lying minima of
147 gold atoms, Au147, modelled by the Gupta potential [119] and found by
basin-hopping using GMIN [62], with RMSD distributed from 0 to 1.5 Å.

Performance

Graphs comparing the performance of Go-PERMDIST and PERMDIST are shown
in figs. 5.7 to 5.9. Each figure shows a comparison for the estimated runtime be-
tween Go-PERMDIST limited to 1000 or 2000 iterations and the expected runtime
of the PERMDIST algorithm to reach a certain level of accuracy for a given RMSD
(estimated using eqs. (5.2) and (5.3) and the pairs with the most similar RMSD).

The two algorithms show comparable performance, and both find higher RMSD
alignments more difficult. For PERMDIST, the number of random orientations that
needed to be tested increased approximately as RMSD2 for RMSD ≫ 0. The runtime
for PERMDIST to achieve the same level of accuracy as Go-PERMDIST was generally
higher or similar to the expected runtime of Go-PERMDIST.

Ensuring that rotations were sampled uniformly was important for many align-
ments with PERMDIST, especially for pairs of structures with distinct alignments
but very similar RMSDs. For these structures the PERMDIST algorithm would often
be attracted to the region around the alignment with a slightly higher RMSD, and so
would take a disproportionately long time to find the best alignment.

5.3 Comparison to permutation optimisation schemes

We also tested the performance of our own implementations of other algorithms
against the above methods, in particular the Monte Carlo permutation optimisation
algorithm developed by Sadeghi et al. [40] and the branch and bound permutation
optimisation algorithm developed by Hong et al. [61].

Both algorithms were found to scale exponentially with system size, which
made the calculation of the minimal RMSD for systems with more than around
15 atoms much slower than FASTOVERLAP, PERMDIST and Go-PERMDIST. This
behaviour is expected, as both algorithms optimise over an exponentially large
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Fig. 5.8 A comparison of the performance for Go-PERMDIST and PERMDIST over a
range of alignments of Au55 clusters. The top graph shows the expected runtime of
Go-PERMDIST limited to 1000 or 2000 iterations, and the expected runtime of the
PERMDIST algorithm to achieve a given success rate to find the global minimum
RMSD. The bottom graph shows the rolling-average success rate of the limited
iteration Go-PERMDIST algorithm.
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Fig. 5.9 A comparison of the performance for Go-PERMDIST and PERMDIST over a
range of alignments of Au147 clusters. The top graph shows the expected runtime of
Go-PERMDIST limited to 1000 or 2000 iterations, and the expected runtime of the
PERMDIST algorithm to achieve a given success rate to find the global minimum
RMSD. The bottom graph shows the rolling-average success rate of the limited
iteration Go-PERMDIST algorithm.
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space of permutations, whereas the FASTOVERLAP, PERMDIST and Go-PERMDIST
algorithms are effectively 3D optimisation algorithms.

If the structures are initially relatively well aligned then the Monte Carlo permu-
tation algorithm could occasionally find the optimal alignment relatively quickly.
However, for systems with as few as 12 atoms it could take over 20,000 steps to
find the optimal alignment, especially if the structures were not initially close. We
implemented the algorithm in python using PELE [116].

The branch and bound permutation optimisation algorithm was relatively ef-
ficient when aligning permutational isomers (or close to permutational isomers)
compared to the other methods tested, because it is then easier to discard branches
with the wrong permutation, so only a relatively small number of permutations
need to be tested. However, the number of permutations required increases expo-
nentially with RMSD, so the algorithm showed poor performance in general. We
implemented the algorithm in python, and to improve the performance we used the
shortest-augmenting path algorithm to calculate the upper bounds of the branches.

Code

The python and Fortran code that was used to perform the FASTOVERLAP and
Go-PERMDIST calculations can be found at:

https://github.com/matthewghgriffiths/fastoverlap

https://github.com/matthewghgriffiths/fastoverlap


6 Nested Basin-Sampling

In this chapter we report a new method for the evaluation of integrals over an
energy landscape exhibiting broken ergodicity, nested basin-sampling (NBS). We apply
this approach to LJ31. The results of this simulation are analysed and the heat
capacity calculated is benchmarked against results generated by parallel tempering
(PT), basin-sampling parallel tempering (BSPT), and standard nested sampling (NS)
simulations.

We also introduce the No Galilean U-Turn Sampler (NoGUTS), a new sampling
scheme based on the No U-Turn Sampler (NUTS) to work with the Galilean Monte
Carlo scheme to aid the efficient generation of new live points and a simple stepsize
adjustment scheme for nested sampling to ensure effective selection of stepsize
during the NBS simulation.

6.1 Introduction

Standard nested sampling must be run with a minimum number of live points when
simulating systems exhibiting broken ergodicity with nested sampling so that at
there are a sufficient number of points in each basin once they become disconnected,
to ensure uniform sampling across the disconnected basins. Choosing the correct
number of live points to simulate poses a challenge, as it is not obvious a priori what
will be sufficient, and simulating a large number of live points is computational
expensive and tricky to parallelise.

NBS tackles this problem by performing NS simulations with a single live point,
with each new live point being spawned by a random walk originating from the
previous live point. These simulations will be called nested optimisations (NOpts)
as each simulation is guaranteed to finish in a minimum. This approach means that
a given NOpt will never jump out the basin it is currently in, so the NOpts that are in
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the same basin can be combined together to provide an estimate of the configuration
volume of that specific basin. We describe NOpts in more detail in section 6.2.

Instead of inferring the volumes of disconnected basins by the number of live
points present in a given basin, the volume of a given basin can be estimated from
the fraction of NOpts that fall into it and the statistics of the aggregated NOpts
associated with the basin. So to ensure sufficient sampling across disconnected
regions enough NOpts must be done to ensure sufficient statistics to estimate the
probability of a NOpt landing in a specific basin and there are enough NOpts in each
basin such that their aggregated statistics are sufficiently accurate. This approach
has the advantage of being highly parallelisable, and does not require the number of
live points to be chosen before beginning the simulation. The computational details
for inferring the basin volumes and integrals over the potential energy surface (PES)
are discussed in section 6.3.

In this superposition based approach basins are considered and sampled sepa-
rately. In contrast SENS uses the harmonic approximation to the potential to seed
low energy replicas into the simulation [94]. Similar superposition-based approaches
are used by MULTINEST and POLYCHORD, though in these codes it is assumed that
it is possible to cluster the configuration space into either disconnected regions or
a set of hyperellipsoids, which is not always straightforward for an arbitrary PES
and/or a high-dimensional system.

The behaviour of regions in configuration space becoming mutually inaccessible
can be visualised using a disconnectivity graph (DG) [17] (see also fig. 1.2), shown

Fig. 6.1 Classification scheme for a dis-
connectivity graph. Two points in space
are considered to be connected if it is
possible to move from the highest en-
ergy point to the lowest energy point
without exceeding the energy of the
highest. A disconnectivity graph de-
scribes the topology of the connectivity
of an energy landscape. Nodes on a dis-
connectivity graph indicate the energy
threshold at which different child vol-
umes in the energy landscape become
connected. A branch volume of a node
corresponds to a region that becomes
connected to other branches above the
node.
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in fig. 6.1. Any random walk constrained to stay below the energy of a given node
will only be able to visit the volume of space associated with whichever branch the
random walk begins in. An edge of the disconnectivity graph represents a region
in space where all pairs of points in the region are connected by a barrierless path,
where the energy does not exceed the higher value of the pair. We will refer to
different regions or volumes of configuration space as leaves, edges or branches. In
NBS it is these regions that are considered.

The DG we employ for NBS differs from standard DGs, where nodes correspond
to the minimum energy transition state that connects two branches descending from
that node. In NBS the nodes correspond to the energy level at which MC walks
to generate new replicas in the two regions do not cross the barrier between them,
which happens once the probability of the MC walk moving between the regions
becomes too small. These barriers will be termed lazy barriers to differentiate them
from potential energy barriers, because the MC walk has not been run for ‘long
enough’ to cross them. For brevity, we will henceforth refer to lazy basins simply
as basins. An approach to self-consistently infer this DG from just the NOpt results
without needing a PES specific similarity metric is described in section 6.7.2.

NBS presents some advantages over standard nested sampling:

• the NOpt simulations are embarrassingly parallel,

• it is easy to perform additional simulations to increase the accuracy of the
simulation,

• by modelling the volumes of the basins independently it is possible to enhance
the accuracy at low energies by using the harmonic superposition approxima-
tion to calculate the configuration volume at low energies, in a similar manner
to basin-sampling.

Unfortunately, these advantages come at the cost of creating more stringent require-
ments for the generation of new live points. Ensuring that the new live points are
sufficiently decorrelated from the previous point becomes more important as the
number of live points in the simulation decreases.

To alleviate these issues we introduce NoGUTS in section 6.5 to facilitate more
efficient generation of new replicas within a basin. In addition the selection of an
appropriate stepsize during the course of the simulation is important to ensure that
each new live point is generated efficiently, however naively changing the stepsize
can induce bias [120, 121].
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In section 6.6 we describe a scheme to enable selection of an appropriate stepsize
during the course of a NOpt, which mostly nullifies the sampling bias that can occur
when the stepsize is adjusted during a MC simulation. A logistic model relating
the acceptance rate to the cut-off energy and stepsize is used to choose an efficient
stepsize, with a delay to reduce history dependence.

6.2 Nested optimisation

The NBS DG can be sampled by nested optimisation (NOpt), defined as NS with only
a single live point. Performing NS with a single live point means that new replicas
are always spawned by MC walks of length Nopt

MC starting from the location of the
last live point, which means that the NS will never jump across a lazy barrier. As the
nested optimisation run continues it will therefore descend the NBS DG, sampling
all the edges connected from the starting edge, to the minimum that it finishes in
(see fig. 6.1).

A single NOpt run will not provide good statistics about the configuration
volume of the edges it samples, but as more nested optimisation runs are completed
and merged (see section 2.4.4) a more accurate picture of the configuration volume
of the edges can be built. Furthermore, at any given node, the relative volumes of
each of the child edges of the node can be estimated by analysing the statistics of
the number of NOpt runs that fall into each edge, which is discussed in detail in
sections 6.3.3 and 6.3.4.

Each nested optimisation run is completely independent, so these calculations
are embarrassingly parallel to perform.

6.2.1 Stopping criterion

Many nested sampling algorithms use the statistics of the live points to determine a
stopping criterion for the simulation, commonly when the energy difference between
the highest and lowest energy replica reduces below some energy tolerance. In NBS,
this approach would not work, as there is only ever one live point. Instead the
statistics of the dead points can be considered. For example, the difference in energy,
V

opt
tol , between the current live point and the one sampled N

opt
stop iterations ago, will

be approximately equal to the energy difference in a 2N
opt
stop live point standard NS

simulation at the same energy cut-off, which makes this comparison an effective
termination criterion for an NOpt.
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6.3 Nested basin-sampling calculations

Supposing we have performed a set of nested optimisation runs for a PES, and we
know the path that every run took during the simulation. Using these results we
can proceed with a calculation similar to that described in section 2.4.4 to calculate
the global properties of the PES, as in eq. (2.22).

6.3.1 Notation

Fig. 6.2 The notation scheme for a NBS
disconnectivity graph.

An edge volume, Φβδ

βδ+1
, can be defined

with respect to the NBS DG by its parent
node, βδ, and child node, βδ+1; where
δ is the depth of the node on the NBS
DG, and β indexes the siblings of the
node. The branch volume associated with
a node, βδ, can be defined as Φβδ

=

Φ
βδ−1

βδ
+
∑

βδ+1
(Φβδ+1

), see figs. 6.1 and 6.2.
For a edge connecting to node βδ, the jth
point of the aggregated runs has energy
V βδ and nβδ

j live points present. Mβδ

βδ+1

runs fall from branch βδ into βδ+1.
The integral of f(V (x)) over Φ0 will be equal to the sum of the integrals over all

the edges of the disconnectivity graph,

IΦ0 [f ] =
∑
δ

∑
βδ

∑
βδ+1

I
Φ
βδ
βδ+1

[f ]. (6.1)

In section 6.3.3 we show how to compute the first and second moments of IΦ0 [f ],
following a similar, if a little more involved, process to that described in section 2.4.4.
In section 6.3.4 we generalise this approach to estimate the configuration volume
from the volumes of child leaves, which can be calculated using the harmonic
approximation, as explained in section 6.4.2. In section 6.3.5 we show how these
estimate can be combined to create a more accurate overall estimate.

6.3.2 Estimating basin configuration volumes

If the NBS DG is known and there is a set of NOpt runs, the configuration volume of
the edges can be estimated by two complementary methods.
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1. The configuration volumes of each edge of the NBS DG can be calculated using
NS, with the additional slight complication that the relative configuration
volumes of edges connected to any given node is modelled by the Dirichlet
distribution (see section 2.5.2). Where we assume that the process by which
the NOpts fall into different edges can be modelled as a multinomial process
with the multinomial probabilities probability proportional to the volume of
the child edge at the energy at which the edges become disconnected during a
NOpt.

2. Because the configuration volume has been separated into different regions it
is also possible to estimate the configuration volume near a minimum basin
(leaf) using the harmonic superposition approximation, eq. (2.19). The relative
volumes of higher energy levels can then also be estimated from the aggregated
NOpt runs, calculating the configuration volumes bottom-up. This calculation
enhances the relative basin size estimates at low energy.

The mathematical details for computing these top-down and bottom-up estimates
of the configuration volume are described in section 6.3, given a known NBS DG
and aggregated NS results for each edge.

6.3.3 Top-down calculations

First we consider the edge volume, Φβδ−1

βδ
, which we can express in terms of the

parent and child branch volumes,

Φβδ+1
= pβδ

βδ+1

(
Φβδ

− Φ
βδ−1

βδ

)
, (6.2)

where pβδ

βδ+1
is the branch probability of a NS run going from branch Φβδ

to Φβδ+1
. The

branch probability will be Dirichlet distributed over the indexes, βδ+1,

pβδ

βδ+1
∼ Dir(Mβδ

βδ+1
), (6.3)
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and we can calculate the moments of the branch probabilities,

EB

[
pβδ

βδ+1

]
=
Mβδ

βδ+1

Mβδ
, (6.4)

ED

[
pβδ

βδ+1

2
]
=
Mβδ

βδ+1
(Mβδ

βδ+1
+ 1)

Mβδ(Mβδ + 1)
, (6.5)

ED

[
pβδ

βδ+1
pβδ

β′
δ+1

]
=

Mβδ

βδ+1
Mβδ

β′
δ+1

Mβδ(Mβδ + 1)
, (6.6)

where ED indicates that this is the expectation of the top down volume. The edge
ratio Xβδ−1

βδ
=
(
Φβδ

− Φ
βδ−1

βδ

)
/Φβδ

can be calculated using NS, as

X
βδ−1

βδ
=

N
βδ
NS∏

j=1

tβδ
j , (6.7)

which will have moments

ED

[
X

βδ−1

βδ

]
=

N
βδ
NS∏

j=1

nβδ
j

nβδ
j + 1

, (6.8)

ED

[
X

βδ−1

βδ

2
]
=

N
βδ
NS∏

j=1

nβδ
j

nβδ
j + 2

. (6.9)

Hence we can define the edge volume in terms of the edge ratios and branch
probabilities,

Φ
βδ′
βδ′+1

= Φ0 p
βδ′
βδ′+1

(1−X
β′
δ

βδ′+1
)
δ′−1∏
δ=0

pβδ

βδ+1
Xβδ

βδ+1
. (6.10)

The different edge ratios will be uncorrelated, so calculating the moments of Φβδ′
βδ′+1

can be done by substituting the appropriate moments into eq. (6.9).
AsXβδ

βδ+1
and I

Φ
βδ
βδ+1

[f ] both depend on tβδ+1

j ,Xβδ

βδ+1
will be correlated with I

Φ
βδ
βδ+1

[f ],

so we need to calculate the moments of the product Xβδ

βδ+1
I
Φ
βδ
βδ+1

[f ] in order to make
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an unbiased estimate of ḡ,

ED

[
Xβδ

βδ+1
I
Φ
βδ
βδ+1

[f ]

]
= ED

[
Φβδ

βδ+1

]N
βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 1

N
βδ+1
NS∑
j

(
g
βδ+1

j

n
βδ+1

j

j∏
k=1

n
βδ+1

k + 1

n
βδ+1

k + 2

)
,

(6.11)

ED

[
Xβδ

βδ+1

2I
Φ
βδ
βδ+1

[f ]

]
= ED

[
Φβδ

βδ+1

]N
βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 2

N
βδ+1
NS∑
j

(
g
βδ+1

j

n
βδ+1

j

j∏
k=1

n
βδ+1

k + 2

n
βδ+1

k + 3

)
,

(6.12)

ED

[
Xβδ

βδ+1
I
Φ
βδ
βδ+1

[f 2]

]
= ED

[
Φβδ

βδ+1

2
]N

βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 1


×

N
βδ+1
NS∑
l=1

[
2g

βδ+1

l

n
βδ+1

l + 1

(
j∏

k=1

n
βδ+1

k + 1

n
βδ+1

k + 2

)
l∑

j=1

(
g
βδ+1

j

n
βδ+1

j + 2

j∏
k=1

n
βδ+1

k + 2

n
βδ+1

k + 3

)]
, (6.13)

ED

[
Xβδ

βδ+1

2I
Φ
βδ
βδ+1

[f 2]

]
= ED

[
Φβδ

βδ+1

2
]N

βδ+1
NS∏
l=1

n
βδ+1

l

n
βδ+1

l + 2


×

N
βδ+1
NS∑
l=1

[
2g

βδ+1

l

n
βδ+1

l + 2

j∏
k=1

n
βδ+1

k + 2

n
βδ+1

k + 3

l∑
j=1

(
g
βδ+1

j

n
βδ+1

j + 3

j∏
k=1

n
βδ+1

k + 3

n
βδ+1

k + 4

)]
. (6.14)

To simplify this calculation, we define the branch integral,

IΦβδ
[f ] =

argmaxδ βδ∑
δ′=δ

I
Φ
βδ−1
βδ

[f ], (6.15)

over the configuration space, so we can define the branch integral in terms of the
edge integral and daughter branch integral,

IΦβδ
[f ] = I

Φ
βδ−1
βδ

[f ] +
∑
β′

IΦβ′
δ+1

[f ]. (6.16)
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Hence the first moment can be calculated as

ED

[
IΦβδ

[f ]
]
= ED

[
I
Φ
βδ−1

β′
δ

[f ]

]
+
∑
β′

ED

[
IΦβ′

δ+1

[f ]
]
, (6.17)

and the second moment will be

ED

[
IΦβδ

[f ]2
]
= ED

[
I
Φ
βδ−1
βδ

[f ]2
]
+
∑
β′

ED

[
I
Φ
βδ−1

β′
δ

[f ]IΦβ′
δ+1

[f ]

]

+
∑
β′,β′′

ED

[
I
Φ
βδ
β′
δ+1

[f ]I
Φ
βδ
β′′
δ+1

[f ]

]
, (6.18)

and the moments can be calculated as

ED

[
I
Φ
βδ−1
βδ

[f 2]

]
= ED

[
p
βδ−1

βδ

]
×
(
ED

[
I
Φ
βδ−1
βδ+1

[f 2]

]
− 2ED

[
X

βδ−1

βδ
I
Φ
βδ−1
βδ

[f 2]

]
+ ED

[(
X

βδ−1

βδ
I
Φ
βδ−1
βδ

[f 2]

)])
, (6.19)

ED

[
I
Φ
βδ−1
βδ

[f ]IΦβ′
δ+1

[f ]

]
=

ED
[
Φβδ−1

2
]

ED [Φβδ
]ED

[
Φβδ−1
βδ

]
×
(
ED

[
X

βδ−1

βδ
I
Φ
βδ−1
βδ

[f ]

]
− ED

[
X

βδ−1

βδ

2I
Φ
βδ−1
βδ

[f ]

])
ED

[
IΦβ′

δ+1

[f ]
]
, (6.20)

ED

[
IΦβ′

δ+1

[f ]IΦβ′′
δ+1

[f ]
]

=
ED
[
Φβδ

2
]

ED [Φβδ
]2

ED

[
pβδ

β′
δ+1
pβδ

β′′
δ+1

]
ED

[
pβδ

β′
δ+1

]
ED

[
pβδ

β′′
δ+1

]ED

[
IΦβ′

δ+1

[f ]
]
ED

[
IΦβ′′

δ+1

[f ]
]
, (6.21)

where the branch volume moments are

ED [Φβδ
] = ED [Φ0]

(
δ∏

δ′=0

ED

[
p
βδ′−1

βδ′

]
ED

[
X

βδ′−1

βδ′

])
, (6.22)

ED
[
Φ2
βδ

]
= ED

[
Φ2
0

]( δ∏
δ′=0

ED

[
p
βδ′−1

βδ′

2]
ED

[
X

βδ′−1

βδ′

2])
. (6.23)
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6.3.4 Bottom-up calculations

The volume of an edge, Φβδ

βδ+1
, can be expressed in terms of the volume of the branch

it connects to and the configuration volume ratios,

Φβδ

βδ+1
(V

βδ+1

j ) = Φβδ+1

N
βδ+1
NS∏
k=j

1

t
βδ+1

k

, (6.24)

and the volume of a branch can also be expressed in terms of its child edges and
nodes,

Φβδ
=
∑
βδ+1

(
Φβδ

βδ+1
+ Φβδ+1

)
. (6.25)

The moments for the edge volumes can be calculated for the bottom up calculation,

ED

[
Φβδ

βδ+1
(V

βδ+1

j )
]
= ED

[
Φβδ+1

]N
βδ+1
NS∏
k=j

n
βδ+1

k

n
βδ+1

k − 1

 , (6.26)
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= ED
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NS∏
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(
n
βδ+1

k

n
βδ+1
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)
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Hence the branch moments are

ED [Φβδ
] =

∑
βδ+1

ED
[
Φβδ+1

]Nβδ+1
NS∏
k=1

(
n
βδ+1

k

n
βδ+1

k − 1

) , (6.28)

ED
[
Φ2
βδ

]
=
∑
βδ+1

ED

[
Φ2
βδ+1

]N
βδ+1
NS∏
k=1

(
n
βδ+1

k

n
βδ+1

k − 2

) . (6.29)

The integral eq. (2.22) can then be evaluated using equations eqs. (6.26) and (6.28).
However, it is more useful to interpolate between the bottom-up and top-down
calculations, as this enables the HSA to significantly enhance the accuracy of the
density of states obtained by NBS, which we will discuss next.
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6.3.5 Interpolating between the top-down and bottom-up calcula-
tions

The second moments calculated for the top-down and bottom-up procedures can
be used to obtain a weighted sum of the two results that naturally incorporates the
associated uncertainty with either calculation to produce the best overall estimate
of the basin volumes. As the configuration volumes for both procedures are cal-
culated by the product of a set of independently distributed variables, the overall
configuration volume was calculated by a weighted sum of logarithms,

EI

[
ln
(
Φβδ

βδ+1
(V

βδ+1

j )
)]

≈

 ln
(
ED

[
Φβδ

βδ+1
(V

βδ+1

j )
])

wD(V
βδ+1

j )
+

ln
(
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[
Φβδ

βδ+1
(V

βδ+1

j )
])

wU(V
βδ+1

j )


(

1

wD(V
βδ+1

j )
+

1

wU(V
βδ+1

j )

) , (6.30)

where ED/U

[
Φβδ

βδ+1
(V

βδ+1

j )
]

is the expected configuration volume [calculated top
down (D) or bottom up (U)] of all the basins connected to βδ+1 up to an energy of
V

βδ+1

j , and EI is the expectation value of the interpolation.
The chosen weighting was the logarithmic ratio of the second moment to the

square of the first moment,

wU/D(V
βδ+1

j ) = ln

EU/D

[
Φβδ

βδ+1
(V

βδ+1

j )2
]

EU/D

[
Φβδ

βδ+1
(V

βδ+1

j )
]2
 , (6.31)

which is an effective approximation to the uncertainty in the logarithmic volume.
Though as the logarithmic volume can be expressed as the sum of a set of indepen-
dent variables a direct calculation is relatively straightforward to perform.

Before the above calculation can be performed, the relative scale factor between
the bottom-up and top down calculations needs to be determined. In theory this
scale factor could be estimated by calculating the exact configuration volume for
each harmonic basin, and then the volume available to the minimum within its
constraints associated within its rotational and translational degrees of freedom.
However, in this implementation of NBS it was found that instead, the relative
factor could be determined by minimising the logarithmic difference between the
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top-down and bottom-up basin volumes for each of the leaves, at the harmonic
energy, as calculated in section 6.4.2, scaled by the sum of the weights, as calculated
in eq. (6.31).

This scheme unfortunately does not smoothly connect the configuration volumes
above and below a node, so to ensure a smooth interpolation, the value of EU [Φβδ

]

can be adjusted slightly to ensure that

EI

[
Φ
βδ−1

βδ
(V βδ

N
βδ
NS

)

]
=
∑
βδ+1

EI

[
Φβδ

βδ+1
(V βδ

N
βδ
NS

)

]
. (6.32)

With the above caveats the trapezium rule can then be used to evaluate eq. (2.22)
using eq. (6.30) on each edge and then summing the results.

6.4 Determining the disconnectivity graph

To calculate the configuration volume, as described in section 6.3, the NBS DG first
needs to be known. While it may be possible to adapt the procedure used by Pártay
et al. [110] to generate landscape charts, this approach to detecting disconnecting
regions would require the configurations generated by the NS to be saved, which sig-
nificantly increases the storage demands of the method and requires an appropriate
similarity metric specific to the problem at hand.

An alternative approach was developed for this work, where different basins are
merged together at the energy level above which the configuration volume estimated
by NS for each basin looks identical, which avoids storing the configurations of the
dead points and the specification of a problem specific metric.

This approach does not guarantee that the DG generated will accurately represent
the true NBS DG as it only merges basins when the configuration volumes appear
identical. However, the overall density of states produced should not be affected by
the merge, ensuring that the method produces self-consistent results. The mergers
primarily serve to decrease the uncertainty of the configuration volume estimates.

6.4.1 Comparing basin volumes

The configuration volume of two different basins can be compared by Bayesian
model comparison, as described in section 2.5.3, where the hypothesis that the basin
volumes are the same can be compared against the probability that they are different.
Suppose there are two different basins, βδ, β′

δ, connected to the same parent basin,
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βδ−1. The basins should merge at the energy above which the density of states appear
identical for both basins. To find this energy threshold the configuration volume
ratio at two different energy levels, Vj , Vj+1, was modelled as a beta-distributed
variable [see eq. (2.34)],

Φ
βδ−1

βδ
(Vj)

Φ
βδ−1

βδ
(Vj+1)

= t
βδ−1

βδ
(Vj) ∼ B

(
a
βδ−1

βδ
(Vj), b

βδ−1

βδ
(Vj)

)
, (6.33)

whose parameters can be estimated from the first and second moments of the
configuration volume using eqs. (2.38) and (2.39).

We can interpret aβδ−1

βδ
(Vj) and b

βδ−1

βδ
(Vj) as binomial pseudocounts of uniformly

sampled points in Φβδ−1

βδ
with an energy cut-off of Vj , where aβδ−1

βδ
(Vj) are the number

of points observed to have energy greater than Vj+1 and b
βδ−1

βδ
(Vj) less than. It is

possible to generate true count data from the individual results from the NOpts runs
in this region, but the statistical properties of these count results would not be as
good.

The maximum a posteriori (map) estimate of the merge energy,

V
βδ=β′

δ
merge = argmax

Vj

∏
Vj′<=Vj

Pr
(
t
βδ−1

βδ
(Vj′) = t

βδ−1

β′
δ

(Vj′)
) ∏

Vj′′>Vj

Pr
(
t
βδ−1

βδ
(Vj′′) ̸= t

βδ−1

β′
δ

(Vj′)
)
,

(6.34)
of two branches, Φβδ

and Φβ′
δ

can be obtained by modelling the fitted beta param-
eters of tβδ−1

βδ
(Vj) and t

βδ−1

β′
δ

(Vj) from eq. (6.33) as binomial pseudocounts and using
eqs. (2.47) and (2.48). This approach allows us to self-consistently merge different
edges on the NBS DG, as the edges only merge when their densities of states look
the same. Using eq. (2.50) it is also possible to consider merging multiple edges
simultaneously.

The above procedures for merging the different basins require an ordered list of
energy levels to compare all the separate basins. This list was generated by choosing
energy levels evenly spaced in the logarithm of the configuration volume of the
aggregated runs for all the separate basins, so the configuration volume ratio would
be approximately constant as the energy levels decreased. In this work a volume
ratio of 0.5 was chosen, so Vj corresponds to the expected energy of a new live point
generated with energy cut-off Vj+1.
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6.4.2 Determining the harmonic energy range

To start the bottom-up procedure we must calculate the energy range over which a
minimum, µ, can be treated as harmonic. Here a similar procedure was performed
as described above. A set of energy levels, Vj < Vj+1, evenly spaced by the logarithm
of the harmonic configuration volume, tharm = (Vj − V Q

µ )κ/2
/
(Vj+1 − V Q

µ )κ/2 . The
probability that the NBS volume ratio and harmonic volume ratio are the same can
be calculated,

Pr
(
t
βδ−1

βδ
(Vj) = tharm

)
= Bin(a(Vj)|a(Vj) + b(Vj), tharm), (6.35)

and from eq. (2.48) the probability they are different,
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)
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(
a(Vj) + b(Vj)

a(Vj)

)
B
(
a(Vj) + αprior, b(Vj) + αprior

)
(6.36)

where we have dropped a
βδ−1

βδ
(Vj) from a(Vj) and b(Vj) for brevity, and αprior is an

appropriate prior for the beta distribution. The map estimate of the harmonic energy
level,
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∏
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) ∏
Vj′′>Vj

Pr
(
t
βδ−1

βδ
(Vj′′) ̸= tharm

)
, (6.37)

can then be found.

6.4.3 Local sampling close to a minimum

The chance of a random nested optimisation run finishing in a specific minimum
will be extremely small for most of the minima, which means that the density of
states will be rather uncertain before the basin has merged with other basins, as
estimated by the NS at energies close to the minimum. To decrease this uncertainty
the local basin of a minima can be sampled by performing traditional NS, except that
all the new replicas are generated by random walks beginning at the minimum itself.
This process may only work up to a certain energy level, as the random walks to
generate new live points may cease to be ergodic. The map estimate can be calculated
as in eq. (6.34), except that inequality signs are swapped, as we expect the density
of states to diverge as the energy increases. We will refer to this process as local NS,
to indicate that it samples only the section of the disconnectivity tree local to the
minimum.
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Gradient

Accepted slice
Rejected slice
Invalid points

Fig. 6.3 A graphic showing how NoGUTS generates slices. The large green point
shows the starting point. The red slice represents a proposed slice to double the
length of the current slice. However, because the red slice has a u-turn present, the
proposal to extend the slice is rejected and the algorithm quits.

6.5 The No Galilean U-Turn Sampler

Here we describe the No Galilean U-Turn Sampler (NoGUTS), which is a modifi-
cation of the No U-Turn Sampler (NUTS) [91, 93] (see section 2.4.1) to work with
Galilean sampling (see section 2.4.4) [104, 105]. As NoGUTS can be viewed as a form
of multivariate reflective slice sampling [122] with an automatic stopping criterion,
and as such we will refer to the trajectories generated by the algorithm as slices.

Several modifications have been made to the NUTS algorithm to make it work
for the problem at hand.

• The leapfrog integration step has been replaced with the Galilean sampling
equivalent step, which is described in algorithm 6.

• Each point, R′, on a slice has a forward p′
+ and backwards velocity p′

− as-
sociated with it, to account for reflections to the velocity at invalid points.
This modification primarily affects the Galilean step, as described in algo-
rithm 6, but also introduces some additional bookkeeping in the BuildTree and
NoGUTS algorithms as described in algorithms 4 and 5, compared to NUTS.

• The ability to include constraints in the simulation has been incorporated, de-
scribed in algorithm 7. Constraints can be most straightforwardly incorporated
by rejecting any slice that violates the constraints with a simple test func-
tion TestConstraint(R′), which returns true if R′ satisfies the constraints, and
false otherwise. However, by introducing a ‘constraint potential’, Vconstraint(R),
which is 0 for all configurations that satisfy the constraint and positive for
invalid configurations, the NoGUTS simulation can reflect off the constraint
boundaries in addition to the energy cut-off boundaries. In the case that the
configuration encountered violates both the potential cut-off and the constraint,
the algorithm as described reflects off the sum of the normalised gradient and
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constraint gradient at that point. The NoGUTS simulation could also reflect off
just the gradient or the constraint gradient and maintain detailed balance. It is
straightforward to construct continuous constraint potentials for hard sphere
constraints, by summing the excess radius of all the points that exceed the
radius of the hard sphere.

• In NUTS the points to include in the trajectory are determined by a 1-D slice
sampling process, however in the case of sampling from a hard constraint, all
points that are valid can be straightforwardly included in the slice generated.

• The stopping criterion also needs to be slightly modified to account for the
multivalued velocities, so for the positive direction the positive velocity must
be used and vice versa for the negative direction.

• For atomic simulations rigid body motions of the atoms are spurious, so before
the stopping criterion is calculated, any net linear and angular momentum of
the velocity vectors can be subtracted without violating detailed balance.

6.5.1 Overview
Galilean sampling can be a very efficient method for exploring a hard constraint
space as it allows long-range directed moves away from the starting point. The
choice of simulation length for Galilean sampling is extremely important, as the
reflective nature of the movement can cause the replica to start moving back to its
starting point, significantly reducing the efficiency.

NoGUTS (and NUTS) enable the simulation to detect when this process occurs
and stop, whilst maintaining detailed balance.

The algorithm works by recursively doubling a slice of points, or equivalently
building a binary tree, until it reaches a stopping criterion, as shown in fig. 6.3. For
each iteration the algorithm selects forwards or backwards directions randomly and
then attempts to build a slice of equal length in that direction. If at any point of
building the new slice the algorithm detects that the stopping criterion would have
been satisfied then NoGUTS stops and rejects the new slice. It rejects this new slice
because the probability of moving from it to the current slice would be zero, as a
NoGUTS simulation starting from the new slice would terminate before adding
the current slice. If the new slice is successfully added to the current slice then
the stopping criterion can be tested again on the new combined slice, and then the
process can be repeated. This procedure ensures that each valid point on the slice
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Algorithm 4 The NoGUTS algorithm

Function: NoGUTS
Input: R, δ, V , Vcut, jmax

Output: R, V ′, naccept, nreject ◃ The new live point generated by NoGUTS
jdepth = 0
naccept = 0, nreject = 0
svalid = True
R+ = R+ = R
p+
+ = p−

+ = p+
− = p−

− ∼ N (0, I) ◃ Initialise random velocity
while svalid AND jdepth < jmax do

if unif(0, 1) < 0.5 then ◃ Make proposal to double slice
_, _, _,R−,p−

+,p
−
−,R

′,p′
+,p

′
−, V

′, n′
accept, n

′
reject, s

′
valid

= BuildTree(R−,p−
+,p

−
−, Vcut,−1, δ, jdepth) ◃ See algorithm 5

else
R+,p+

+,p
+
−, _, _, _,R′,p′

+,p
′
−, V

′, n′
accept, n

′
reject, s

′
valid

= BuildTree(R+,p+
+,p

+
−, Vcut, 1, δ, jdepth)

end if
if s′valid AND unif(0, 1) < n′

accept/naccept then ◃ take point selected by new slice
RNoGUTS = R′

VNoGUTS = V ′

end if
naccept = naccept + n′

accept, nreject = nreject + n′
reject

svalid = s′valid AND StopCriterion(R+,p+
+,p

+
−,R

−,p−
+,p

−
−)

◃ Test whether proposal is valid or whether the new slice has performed a
u-turn

j = j + 1
end while

has an equal probability of generating an identical slice, preserving detailed balance.
To ensure that the algorithm terminates in a reasonable time a maximum recursion
depth, jdepth, can be specified.

The algorithm does not need to store all the valid points as the slice is generated.
Instead it maintains for every sub-slice its associated selected point, which has been
randomly chosen uniformly out of the valid points in that sub-slice. When joining
two sub-slices the algorithm will randomly pick a selected point from one of the
sub-slices with probability equal to the number of valid points in that sub-slice,
ensuring that the selected point of the new slice has been selected uniformly from
the union of valid points of for the pair [93].

This process of implicitly building the slice is performed by the recursive BuildTree
function described in algorithm 5, which is called by the NoGUTS algorithm, de-
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Algorithm 6 Galilean step

Function: GalileanStep
Input: R,p+,p−, Vcut, vdir, δ, V

◃ Start
point, forwards velocity, back-
wards velocity, energy cut-off,
direction, stepsize, potential
Output: R′,p′

+,p
′
−, V

′, n′

◃ New point, forwards veloc-
ity, backwards velocity, energy,
and validity
if vdir = −1 then

◃ Selecting appropriate
velocity vector

p = −p−
else

p = p+

end if
R′ = R+ δp
V ′ = V (R′)
G′ = ∇RV (R′)
renergy = V ′ > Vcut

if renergy then
◃ New point not valid

n′ = 0
◃ Reflect velocity

p′ = p− 2
G′ · p
G′ ·G′G

′

else
◃ New point is valid

n′ = 1
p′ = p

end if
if vdir = −1 then

◃ Set new velocity vectors
p′
+ = p−

p′
− = −p′

else
p′
+ = p′

p′
− = p+

end if

Algorithm 7 Constrained Galilean step

Function: ConsGalileanStep
Input: R,p+,p−, Vcut, vdir, δ, V, Vconstraint

Output: R′,p′
+,p

′
−, V

′, n′

if vdir = −1 then
p = −p−

else
p = p+

end if
R′ = R+ δp
V ′ = V (R′)
G′ = ∇RV (R′)
V ′

constraint = Vconstraint(R
′)

G′
constraint = ∇RVconstraint(R

′)
renergy = V ′ > Vcut

rconstraint = V ′
constraint > 0

if renergy OR rconstraint then
if renergy AND NOT rconstraint then

G′′ = G′

else if NOT renergy AND rconstraint then
G′′ = G′

constraint
else if renergy AND rconstraint then

◃ Reflect off both gradients

G′′ =
G′

|G′| +
G′

constraint

|G′
constraint|

end if
n′ = 0

p′ = p− 2
G′′ · p
G′′ ·G′′G

′′

else
n′ = 1
p′ = p

end if
if vdir = −1 then

p′
+ = p−

p′
− = −p′

else
p′
+ = p′

p′
− = p+

end if
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Algorithm 5 BuildTree

Function: BuildTree
Input: R,p+,p−, Vcut, vdir, δ, jdepth, V
Optional: Vconstraint, TestConstraints
Output: R+,p+

+,p
+
−,R

−,p−
+,p

−
−,R

′,p+,p
′
−, V

′, naccept, nreject, svalid

if jdepth = 0 then
if using constraint potential then ◃ See algorithm 7

R′,p′
+,p

′
−, V

′, n′ = ConsGalileanStep(R,p+,p−, Vcut, vdir, δ, V, Vconstraint)
else ◃ See algorithm 6

R′,p′
+,p

′
−, V

′, n′ = GalileanStep(R,p+,p−, Vcut, vdir, δ, V )
end if
R+,p+

+,p
+
− = R′,p′

+,p
′
−

R−,p−
+,p

−
− = R′,p′

+,p
′
−

svalid = TestConstraints(R′) ◃ Stop if constraint broken
else ◃ Recursively build binary tree

R+,p+
+,p

+
−,R

−,p−
+,p

−
−,R

′,p′
+,p

′
−, V

′, n′
accept, n

′
reject, s

′
valid

= BuildTree(R,p+,p−, Vcut, vdir, δ, jdepth − 1)
if s′valid then

if vdir = −1 then
_, _, _,R−,p−

+,p
−
−,R

′′,p′′
+,p

′′
−, V

′′, n′′
accept, n

′′
reject, s

′′
valid

= BuildTree(R−,p−
+,p

−
−, Vcut, vdir, δ, jdepth − 1)

else
R+,p+

+,p
+
−, _, _, _,R′′,p′′

+,p
′′
−, V

′′, n′′
accept, n

′′
reject, s

′′
valid

= BuildTree(R+,p+
+,p

+
−, Vcut, vdir, δ, jdepth − 1)

end if
naccept = n′

accept + n′′
accept

svalid = s′′valid AND StopCriterion(R+,p+
+,R

−,p−
−)

if unif(0, 1) <
n′′

accept

naccept
then ◃ Implicitly join slices together

R′, V ′,p′
+,p

′
− = R′′, V ′′,p′′

+,p
′′
−

end if
end if

end if

scribed in algorithm 4, to progressively double a slice until the stopping criterion is
reached. In these algorithms the function unif(a, b) uniformly generates a random
real number between a and b.
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6.6 Adapting the stepsize

During the course of a NOpt run the energy cut-off and valid region of space will
vary drastically, so the optimal stepsize to maintain an efficient acceptance rate will
tend to decrease by several orders of magnitude during the course of the run. To
cope with this variation we can define a simple logistic model for predicting the
acceptance probability, pacc, for a given stepsize, δ, at a given energy cut-off, Vcut,

pacc(δ, Vcut) =
1

1 + exp (maccVcut + cacc)δ
. (6.38)

Rearranging we find
maccVcut + cacc = logit pacc + ln δ, (6.39)

where logitx = lnx − ln(1 − x). This suggests that the appropriate stepsize for a
NoGUTS simulation can be chosen by performing an appropriate linear fit to the
previous simulation results. Suppose during a simulation with cut-off energy Vt,
and stepsize δt, that nacc

t moves finish below Vt and nrej
t finish above Vt. Then we can

calculate the expected value,

E [logit pacc(δt, Vt)] = ψ0(n
acc
t )− ψ0(n

rej
t ), (6.40)

by modelling pacc ∼ B(naccept, nreject), where ψ0(x) = d ln(Γ(x))/ dx is the digamma
function. This model enables us to predict an appropriate step size for a given energy
cut-off.

6.6.1 Avoiding non-Markovian dynamics

If the stepsize of a MCMC simulation is adjusted without due care the simulation
may cease to be Markovian [120, 121]. However, during an NOpt the stepsize must
be adjusted quite drastically, as the energy cut-off decreases to maintain an efficient
acceptance rate.

One method to significantly reduce any sampling artifacts generated by adapting
the stepsize is to introduce a delay, Nopt

delay, to incorporating the accept/reject statistics
to the above model, so that the replica in NBS has time to completely move away
from the regions used to determine the optimal stepsize.

Additionally, to avoid biasing this model with high energy points, a rolling
window of length Nopt

window can be applied, so that only the last Nopt
window dead points
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generated (and the associated lag introduced by the delay) are used to choose the
stepsize for the NoGUTS simulation.

6.7 Results

LJ clusters have been extensively studied at a range of sizes [33, 87, 89, 94, 123],
which makes them useful model systems for benchmarking various methods.

LJ31 has been extensively studied by a variety of different approaches, as it is the
smallest LJ cluster to exhibit a complex heat capacity, with a solid-solid peak at low
temperatures and a solid-liquid peak at higher temperatures. To accurately replicate
both thermodynamic features requires effective sampling, both at the lowest energies
to accurately replicate the solid-solid peak, and at higher energies to replicate the
solid-liquid peak.

To avoid evaporation of the cluster the atoms were constrained to stay within a
sphere of radius 2.5 σLJ, as in previous studies [89, 94]. 20,000 independent NOpts
were performed. In addition, for each of the 4 lowest energy minima, local NS, as
described in section 6.4.3, was performed with 1000 live points.

Each new live point was generated by 20 iterations of NoGUTS with a max tree
depth of jmax = 8. Overall angular and linear momentum were removed from the
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Fig. 6.4 In (a) the cumulative probability of a nested optimisation ending in a given
range of the most likely minima is shown for LJ31. The inset shows a magnification
of the cumulative probabilities of the 50 most likely minima. In (b) the probability of
landing in a specific minimum is plotted against the energy of that minimum in NS
runs for LJ31.
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velocities before evaluating the NoGUTS stopping criterion. The target acceptance
ratio was chosen to be pacc = 0.5, the optimal stepsize was determined over a
window of Nopt

window = 100 points, with a delay of Nopt
delay = 20 iterations to avoid

non-Markovian behaviour. The simulation was stopped when the energy difference
between the live point and the dead point from N

opt
stop = 10 iterations previously was

less than V opt
tol = 0.1 ϵLJ.

For comparison, a calculation of the heat capacity using standard NS with 20,000
live points was also performed. The live points were generated using NoGUTS with
the same parameters as for the NBS calculation. This NS simulation was performed
using the software developed by Martiniani et al. [94]. The simulation was stopped
when the energy difference of the live points was less than 0.1ϵ.

The NBS simulation overall generated 11× 106 live points using 3× 1010 energy
gradient calculations. The NS simulation generated 10 × 106 live points using
3.5× 1010 energy gradient calculations.

The runs generated by the local NBS were found to be indistinguishable from
the runs generated by standard NBS at all energies when performing the maximum a
posteriori calculation of the merge energy.

6.7.1 Distribution of minima
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Fig. 6.5 The NBS disconnectivity
graph for LJ31 with 20,000 NOpts.

It is interesting to analyse the distribution of min-
ima generated by 20,000 NOpts, as shown in
figs. 6.4a and 6.4b. Only 9 of the runs landed
in the global minimum, whereas 30.6% of the
NOpt runs landed in just a single minimum
(Vµ = −133.1 ϵLJ); 79.4% of the runs landed in just
20 of the minima; and during 20,000 minimisa-
tions the nested optimisations, only 873 distinct
minima were found, whilst the actual number
of minima for LJ31 has been estimated as approx-
imately 1015, excluding permutation-inversion
isomers [89].

This structure is remarkably different from
performing standard minimisations on LJ31, and
suggests there might be ways of associating most
of the LJ31 PES of interest with a very small num-
ber of minima.
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It is not immediately obvious what drives this difference, but it seems that the
leaves associated with most minima do not make a meaningful contribution to
the overall configuration volume as opposed to the branches associated with the
minima.

6.7.2 Disconnectivity graph

The NBS results were used to construct a NBS DG, which is shown in fig. 6.5. The
maximum entropy prior, αprior = 0.5 was chosen when determining the merge
energies.

6.7.3 Heat capacity

Using the DG illustrated in section 6.7.2 the heat capacity of LJ31 was calculated using
NBS and is shown in fig. 6.6. For comparison results generated by the equivalent
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Fig. 6.6 The heat capacity of LJ31, as calculated by NBS with 20,000 NOpts and
1,000 local NOpts on each of the 4 lowest energy minima. For comparison results
from a standard NS simulation with 20,000 live points and a previous study using
BSPT and PT [89] are shown. Each new live point for the NS and NBS simulation
was generated using NoGUTS with jmax = 8. Inset is a magnification of the low
temperature solid-solid peak.
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calculation for the standard NS simulation with 20,000 live points and a previous
study using BSPT and PT are also illustrated.

Both the NBS and NS simulations show very similar high temperature solid-
liquid heat capacity peaks, though both are slightly lower than the peaks as calcu-
lated by PT and BSPT. The NBS results closely match the low temperature solid-solid
peak calculated by PT and BSPT. The standard NS simulation failed to find the
lowest energy minimum and so fails to reproduce the lowest temperature peak. At
higher temperatures the NBS and PT heat capacity curves match extremely well.

Code

The python and Fortran code that was used to perform these calculations can be
found at:

https://github.com/matthewghgriffiths/nestedbasinsampling

https://github.com/matthewghgriffiths/nestedbasinsampling


7 Conclusions and Further Work

7.1 Alignment algorithms

In this work we have shown that it is possible to estimate the RMSD between
structures by calculating the maximum kernel correlation, so long as the interatomic
separation is relatively large compared to the kernel size. We then demonstrated
that the FASTOVERLAP algorithm can find the maximum value of the overlap
in periodic and isolated systems efficiently and deterministically using FFTs and
SOFTs. Additionally, we have shown that it is possible to calculate the true RMSD of
a system deterministically in a manner that scales polynomially with the number
of atoms and RMSD, using the branch and bound algorithm, Go-PERMDIST. The
correct RMSD is often obtained when a early exit condition is applied.

For periodic systems FASTOVERLAP performs particularly well, and scales
favourably with both system and database size for multiple alignment tasks. The
algorithm reliably identifies the optimal alignment for pairs of structures that are
reasonably close together. For more distant configurations the performance degrades
as the assumptions underlying the derivation of the algorithm break down. However,
for these structures it is likely that finding the minimum RMSD is less critical in
applications. For periodic systems the Go-PERMDIST algorithm is significantly
slower than the FASTOVERLAP algorithm.

For isolated clusters of atoms the FASTOVERLAP algorithm performs less well,
while the PERMDIST and Go-PERMDIST procedures are relatively effective and
efficient. The Go-PERMDIST algorithm shows comparable or better performance
than PERMDIST with random restarts when using the early exit condition.
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7.1.1 Recommended usage of alignment methods

If run time is not critical we recommend using the Go-PERMDIST algorithm, which
is guaranteed to find the best RMSD for both periodic systems and clusters given
enough time. If the run time is important, then the FASTOVERLAP algorithm should
be used for periodic systems and the Go-PERMDIST algorithm with an early exit
condition could be used for clusters. For biomolecules it is likely that other methods,
for example LPERMDIST [26], which take into consideration the local structure of
the molecule by permuting local groups of atoms, will be more effective.

7.1.2 Further work

In certain applications we seek only the closest structures to a given target structure
from a large database. In this situation it will be possible to adapt the Go-PERMDIST
method to simultaneously align over the database and to quit once it has found the
closest structures, instead of aligning the target structure with every member of the
database.

When modelling the growth of clusters or mutations of proteins, it can be useful
to align structures with different numbers of atoms. The Go-PERMDIST algorithm
could be modified to perform this alignment, but the translational component would
also have to be considered, in addition to the rotational alignment, as superimposing
the centroids of the two structures no longer results in the optimal alignment. This
step could be achieved by including translation alignment as in the Go-ICP method
[53, 54].

It may also be possible to improve the performance of the PERMDIST algorithm
using BH global optimisation [12–14] and taking smaller, non-random, rotational
steps. Care would be required to ensure that the procedure does not get stuck in a
local minimum.

When aligning very large databases of structures it can be prohibitively expensive
to align every possible pair. The FASTOVERLAP method allows the RMSD between
structures to be estimated quickly as an alternative metric. It may be possible in
the future to develop diagnostic statistics that could be used to give an indication
whether FASTOVERLAP has found the optimal alignment or determine whether
there is a better kernel width for a particular pair of structures.

The maximal kernel overlap found by FASTOVERLAP may also be useful when
only the similarity between two structures is needed, for example when comparing
configurations with different numbers of atoms. It also may be possible to gen-



7.2 Nested basin-sampling 93

eralise the calculation of the SO(3) Fourier coefficients to allow optimisation over
translations in addition to rotations.

The FASTOVERLAP method could also be applied as an alternative or in addition
to SOAP when calculating the covariance between local atomic environments in the
Gaussian approximation potentials framework [70, 71].

7.2 Nested basin-sampling

Many schemes that have been developed to calculate equilibrium thermodynamic
properties require parallelisation to function efficiently [33, 87, 89, 94, 123]. In this
work we present a new method, nested basin-sampling (NBS), which proceeds by
performing a set of embarrassingly parallel nested optimisations (NOpts) whose
results can be combined after the simulations end.

By splitting the configuration volume into separate regions, the calculation can
provide a more detailed understanding of the structure of the energy landscape, and
how the global thermodynamic properties are encoded. The harmonic approxima-
tion can be employed to enhance the accuracy at low temperatures, by separating
the configuration volume into disconnected regions.

NBS was used to calculate the heat capacity of LJ31, a benchmark system exhibit-
ing broken ergodicity [89]. The heat capacity as calculated using NBS shows strong
agreement with other methods, and compares favourably against NS. It was able
to successfully resolve the low temperature solid-solid heat capacity peak, which
standard NS missed, when performed with a comparable number of live points and
energy gradient calculations.

The close agreement with the previous results suggest that the stepsize adjust-
ment scheme, combined with NoGUTS are sufficient to ensure that the results
generated by the NOpts are generating sufficiently unbiased samples from the PES
of LJ31.

7.2.1 Further work

There are several directions for future work.

• Due to the embarrassingly parallel nature of the NBS calculation, this ap-
proach can tackle much larger systems, where equilibrium is usually difficult
to achieve.
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• The method in its current form is still fairly inefficient compared to BSPT.
However, there are many avenues that could be explored to increase its effi-
ciency, particularly when combined with its local sampling scheme. It is likely
that good results can still be achieved with a smaller number of NOpts, and
some preliminary work suggests that reasonable heat capacity curves can be
generated using just local sampling.

• It should be possible to enhance the results generated by local sampling using
configurations generated by previous local sampling NOpts as starting points,
instead of the minimum.

• It should also be possible to assign contributions to the heat capacity to specific
parts of the NBS disconnectivity graph by extending the scheme that was
recently applied to results obtained with BSPT [124].

• It should be possible to relate the NBS DG to the DG obtained by generating a
transition state network.

• Since NBS partitions the PES into a set of separate regions it is possible to
quantify which regions in configuration space have been poorly sampled,
further prioritise sampling in those regions, and also provide better measures
of convergence for the simulation.

• There are a variety of hyperparameters, pacc, jdepth, Nopt
delay, Nopt

MC, Nopt
stop, Nopt

window,
and V

opt
tol , that need to be chosen before beginning a NBS calculation. It is

important to quantify how the choice of these hyperparameters affects the
overall results and efficiency of the NBS simulation.

• The properties of the NoGUTS sampler could be explored in more detail, in
particular how the target acceptance rate affects the overall efficiency of the
method.
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