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Abstract 

 

Detection, causes and consequences of sex chromosome mosaicism 

 

Yajie Zhao 

 

Sex chromosome mosaicism, including male mosaic loss of chromosome Y (LOY) and female 

mosaic loss of chromosome X (LOX), is the most common form of clonal haematopoiesis 

(CH) that can be defined as the age-related clonal expansion of blood cells with somatic 

mutations. With the decreased cost of sequencing, the development of new bioinformatics 

methods and the emergence of large cohorts with both genotype and phenotype data, 

there has been much progress in the detection, causes and consequences of sex 

chromosome mosaicism especially LOY. On the contrary, the studies of LOX are still very 

limited.  

 

The most recent genome-wide association study (GWAS) to investigate the genetic 

determinants of LOY in 205,011 males identified 156 independent signals and highlighted a 

key role for genes involved in cell-cycle regulation and DNA damage response. Population 

studies typically determine LOY using genotype intensities derived from genotype array 

data, the accuracy of which varies by the number of Y chromosome probes on the array and 

are technically noisy. Inaccurate estimation of LOY reduces the power to identify genetic 

and phenotypic associations with LOY. To overcome these constraints, I developed a robust 

estimator of LOY , which was derived from several orthogonal approaches using both whole 

exome sequence and genotype array data. The same method was also implemented for 

LOX.  

 

In chapter 2, in genetic data derived from 205,604 UK Biobank males and 243,765 females, 

the new method improved the accuracy of LOY/LOX estimation as measured by the strength 

of association between LOY/LOX and age, smoking status, and polygenic risk of LOY/LOX 

derived from previous GWAS. In chapter 3, I then used this revised and validated LOY 

instrument to conduct a new GWAS of LOY status in the UK Biobank. Beyond the previously 
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identified 156 signals, I identified 22 novel LOY-associated loci. I leveraged the shared 

genetic architecture between LOY and other related traits to improve the power to identify 

variants associated with the risk of myeloproliferative neoplasm (MPN). Based on available 

MPN GWAS summary statistics, I identified 13 novel loci reaching genome-wide significance, 

including locus near PARP1, which encodes an established target of cancer therapy. 

The method used to detect somatic LOY/LOX can also be used to identify congenital sex 

chromosome abnormalities. In chapter 4, the detection method and characterisation of 

male sex chromosome abnormalities were reported, as a similar study on female sex 

chromosome abnormalities in UK Biobank had already been published. 

 

The whole exome sequence also provided the chance to explore the effect of rare non-

synonymous variants, which are rarely captured by GWAS arrays. In chapter 5, the first 

exome-wide association study (ExWAS) for LOY was conducted on over 80,000 men from UK 

Biobank. As well as CHEK2, which had been identified on a previous GWAS on LOY, a novel 

gene, GIGYF1, was identified, in which loss-of-function variants increased the risk of LOY and 

Type 2 diabetes (T2D) by 6-fold. This finding illuminated the potential link between LOY and 

metabolism. In chapter 6, the first ExWAS of LOX and an extended ExWAS of LOY were 

performed on over 450,000 samples from UK Biobank. For LOY, the power increase was 

observed for the two identified genes, CHEK2 and GIGYF1. In addition, loss of function 

variants in three clonal haematopoiesis of indeterminate potential (CHIP) genes, DNMT3A, 

TET2 and ASXL1, were negatively associated with LOY. For LOX, rare damaging variants in 

FBXO10 were identified to increase the risk of LOX. 

 

In summary, this thesis shows that the accuracy of estimating LOY/LOX was improved by 

combining multiple approaches using both GWAS array and whole exome sequence data. 

Using both GWAS and ExWAS approaches, the thesis further improved the understanding of 

the genetic causes of sex chromosome mosaicism. This innovative approach improved the 

power to detect novel mechanisms that regulate clonal mosaicism in blood and can be used 

to enhance the identification of novel genes associated with the risk of related cancers.   
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SNVs Single-Nucleotide Variants 

STAAR variant-set test for association using annotation information 

SVs Structural Variations  

T2D Type 2 Diabetes  

TOPMed The Trans-Omics for Precision Medicine program 

VAF Variant Allele Fraction  

VCF Variant Call Format  

VEP Ensembl Variant Effect Predictor  

WDL  Workflow Description Language 

WES Whole Exome Sequencing  

WGS Whole Genome Sequencing  

WP WikiPathways 

XDR X-degenerate regions 
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Chapter 1 Introduction 

1.1 Sex chromosomes 

Most males and females carry 22 pairs of autosomal chromosomes and 1 pair of sex 

chromosomes. Same as other mammals, the pair of human sex chromosomes is male 

heterogamety (males XY, females XX)1. However, inborn sex chromosome abnormalities 

could occur as various forms, such as male 47,XXY (carrying one extra X chromosome) - also 

known as the  Klinefelter syndrome, 47, XYY (carrying one extra Y chromosome), 48, XXYY 

(carrying one extra pair XY chromosome), female 45, XO (losing one X chromosome) - also 

known as the Turner syndrome, 47, XXX (carrying one extra X chromosome) and various 

forms of sex chromosome mosaicism2. When compared to people with normal sex 

chromosomes, carriers of abnormal karyotypes can  be affected by various health 

consequences ranging from reproductivity to intelligence2. However, the understanding of 

the mechanisms underlying these health burdens is still very limited.  

There have been many studies illustrating that human sex chromosomes differ from 

autosomes in many aspects of genome biology, such as organization, gene content and gene 

expression1. The sex chromosome pair shows an extreme imbalance in size and function, 

which is different from the autosome pairs. The X chromosome is large (165 Mb) and gene-

rich (about 1000 genes with diverse general and specialised functions), but the Y 

chromosome is small (∼60 Mb) and heterochromatic (most transcribed units3 are 

pseudogenes or amplified copies)4. From the evolutionary perspective, the Y chromosome 

can be seen as the degraded X chromosome, as 20 of the 27 genes on the male-specific 

regions of the human Y chromosome evolved from the genes on the X chromosome4,5. The 

most important function of the sex chromosomes is sex determination, especially for the Y 

chromosome. Over 30 years ago, the gene in the Y chromosome, SRY, which encodes the 

testis-determining factor was first identified by Sinclair et al6. This illuminated an essential 

genetic pathway which determines the sex of a new-born5. Unlike other chromosomes, not 

just SRY, the functions of many other genes on the Y chromosome converge to affect the sex 

or fertility of males4,7. Because of its characteristics, much of the Y chromosome has been 

thought to be “functional wasteland” which will completely disappear from human 
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genome8,9. However, this view has been challenged because several ubiquitously expressed 

Y-chromosome genes have been identified and multiple association between the Y 

chromosome, immune system and complex polygenic traits including coronary artery 

disease were discovered8.  

Females, unlike males, inherit one X chromosome from each  parent. During the early 

developmental stage, one copy of the X chromosomes partially becomes transcriptionally 

inactive10. The inactivation process is random and irreversible and then transferred to the 

daughter cells10. One of the mechanisms to explain this is to compensate for the gene 

dosage imbalance of sex chromosomes of 46,XX females and 46,XY males11. However, with 

increasing age, the expected 1:1 ratio of the inactivated maternal and paternal X 

chromosome copies shows skewness, and this skewness was discovered in different 

tissues12,13. The detectable skewness of X chromosome inactivation in white blood cells 

might be an indicator of the depletion of hematopoietic stem cells (HSCs), selective pressure 

of white blood cells, or clonal hematopoiesis.  

1.2 Clonal haematopoiesis  

The age-related accumulations of postzygotic DNA mutations resulting in tissue genetic 

heterogeneity are known as somatic mosaicism, which arises because of errors in the repair 

or replication of damaged DNA14. The concept of genome mosaicism dates back more than a 

century ago, when several scientists speculated that cancer was a somatic mosaic by genetic 

alterations14. 40 years since then, two scientists proposed that cancer and ageing were 

consequences of the accumulation of de novo somatic mutations. After another two 

decades, this concept was proved to be correct for cancer14. Since then, most of the studies 

on somatic mosaicism have focused on cancer. However, the roles of somatic mosaicism in 

rare diseases and complex traits, especially ageing and ageing-related diseases, are still 

unclear.  

Somatic mosaicism in ageing has been identified since the 1950s14–16. However,  somatic 

mosaicism in normal tissue has been difficult to study as the mutation events are random 

and rare, and the fractions of affected cells are so low that it is hard to be detected14,15,17.   
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In this thesis, I mainly focused on the age-related accumulated somatic mutations in blood, 

which is called clonal haematopoiesis (CH) and can be detected from SNP-array used for 

genome wide association studies (GWAS) or high-throughput sequencing (HTS) data18. The 

types of clonal haematopoiesis include the gain, loss or recombination resulting in the loss 

of heterozygosity of large pieces of one or more chromosomes (mCAs), mosaic loss of sex 

chromosomes (LOY/LOX) and the somatic mutations occurring in myeloid-associated genes 

at ≥ 2% variant allele fraction (VAF) called clonal haematopoiesis of indeterminate potential 

(CHIP)18. 

Over the past ten years, there has been substantial progress in identifying mCAs in large 

cohorts, which was benefited from the decreasing cost of sequencing and the emergence of 

large cohorts with genomics data18. In 2012, Laurie et al.19 detected large structural mosaic 

events of autosomal chromosomes based on SNP array data from over 50,000 individuals 

recruited for GWAS by exploring log R ratio (LRR) and B-allele frequency (BAF) data (Figure 

1-1). They identified 514 large structural mosaic events in 404 of 50,222 participants and 

found the frequency of clonal mosaicism for large chromosomal anomalies in blood sample 

is low (<0.5%) from birth until 50 years of age, after which it rapidly rises to 2–3% in the 

elderly19.  

 

Figure 1-1 Illustration of log R ratio (LRR) and B-allele frequency (BAF) (Cited from Laurie et al. 19) 
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In the same issue of Nature Genetics, Jacobs et al.20 reported similar results as Laurie et al. 

They identified 514 mosaic events of autosomal chromosomes based on 31,717 cancer 

cases and 26,136 cancer cancer-free controls20. In 2015, Machiela et al. detected 1,315 large 

structural mosaic events of autosomal chromosomes in 925 of 127,179 individuals21. Most 

DNA materials used in these studies were extracted from blood and the sensitivity of 

detection largely depended on the fraction of blood cell with mosaic events (> 5%) and 

sample size19–21. The phase information was also not used in the studies mentioned above. 

Therefore, many more mosaic events may be missed.  

Using statistical phasing, Vattathil and Scheet increased the mosaic detection sensitivity 

(>1%) and identified 1,141 large structural mosaic events of autosomal chromosomes in 901 

of 31,110 participants22. An important breakthrough in detecting large structural mosaic 

events was made by Loh et al in 201817. They exploited the information provided by long-

range phasing and hugely increased the detection sensitivity (>0.1%). With their novel 

phase-based computational method based on SNP-array data, 8,342 chromosomal 

structural mosaic events ranging from 50 kb to 249 Mb  in blood-derived DNA were 

identified in 151,202 UK Biobank participants17. By applying their new method on the whole 

UK Biobank cohort, they further identified 19,632 autosomal mosaic chromosomal 

alterations in 482,789 participants23. Their new method shed a light on this area and has 

been a cornerstone for the downstream analysis of specific chromosomal structural mosaic 

events, because of its high and accurate detection rate compared to the previous methods  

based on SNP array data. 

Although the studies using SNP array data have made significant progress in detecting clonal 

haematopoiesis events especially for mCAs, there is still a great potential to explore clonal 

haematopoiesis events using genotype data generated by HTS. The advancement of HTS, 

including whole exome sequencing (WES) and whole genome sequencing (WGS) technology, 

and its continuing decline in cost, promise to transform population-based genetics studies. 

HTS data enables the identification of other types of genetic variation that are often 

overlooked, such as copy number changes and mosaic alterations present in only a fraction 

of cells. Detection of somatic variation or chromosomal gains/losses can be accomplished by 

calculating the proportion of sequenced reads.  
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One application of HTS data is to detect CHIP mutations. Unlike other types of clonal 

haematopoiesis, CHIP is hard to detect from SNP-array data as many CHIP mutations are 

rare and cannot be captured or imputed from SNP-array. Recently, there have been two 

large studies on CHIP. Using the high coverage WGS of blood DNA in 97,691 participants of 

The Trans-Omics for Precision Medicine (TOPMed) program, Bick et al. identified 4,938 CHIP 

mutations in 4,229 participants24. They found that over 75% of identified CHIP mutations 

were in one of three genes, DNMT3A, TET2 and ASXL124. Kar et al. used the blood WES data 

of 200,453 participants from UK Biobank to detect CHIP mutations25. They identified 11,697 

mutations in 10,924 participants. Again, DNMT3A, TET2 and ASXL1 were the most mutated 

CHIP genes25. From these two studies, several loci were identified to be significantly 

associated with CHIP including loci near TERT, TET2, KPNA4-TRIM59, PARP1, ATM, CHEK2, 

CD164, and SETBP124,25.  

  



23 
 

1.3 Mosaic loss of chromosome Y 

The studies described above introduced the progress in autosomal mCA and CHIP events. 

However, the most common type of chromosomal structural mosaic event is mosaic loss of 

chromosome Y (LOY) in circulating white blood cells. LOY is defined as a lower-than-

expected abundance of DNA from the Y chromosome with a certain threshold of 

detection14,16,26. LOY has been discovered for over 50 years from the earliest cytogenetic 

analyses, and it has a high prevalence among the ageing men15,16. Previous studies have 

shown significant associations between LOY and smoking status27. There is numerous 

epidemiological evidence demonstrating that LOY associates with several types of cancer, 

autoimmune conditions, age-related macular degeneration, cardiovascular disease, 

Alzheimer’s disease, type 2 diabetes, obesity, and all-cause mortality16. However, the causes 

of LOY and the mechanisms behind these associations are still unclear. 

Like other large structural mosaic events, LOY can be detected using SNP-array genotyping 

for GWAS as  the arrays include a varying number of probes on chromosome Y 28. Human 

chromosome Y has a special structure and can be divided into two different parts: pseudo 

autosomal regions (PAR) and male-specific regions (MSY) consisting of X-transposed, X-

degenerate (XDR) and Ampliconic regions3,29 (Figure 1-2). Since the MSY region does not 

participate in recombination, the degree of LOY can be estimated by calculating the median 

or mean of log R ratio (mLRR) values of the probes on MSY (chrY: 2,694,521-59,034,049, 

hg19/GRCh37; 6,671,498–22,919,969, hg18/Build 36)28,30,31. The mLRR value close to zero is 

the normal state and the more negative value means that the larger proportion of cells may 

have loss of chromosome Y.  

Previous studies on LOY have set different thresholds for mLRR-Y values to distinguish mLOY 

events from controls. By analysing the peripheral blood DNA from 1,153 elderly men in an 

age window of 70.7-83.6 years, Forsberg et al. found at least 8.2% of these participants with 

LOY in their blood cells31. After applying the same approach but choosing a different 

threshold, Zhou et al. also identified LOY events for 8,679 cancer cases and 5,110 cancer-

free controls and found that 7% of the men had LOY and the prevalence of LOY increased 

with age, reaching 18.7% in men aged over 80 years old30. It is obvious that the different 
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arbitrary thresholds explain the difference in LOY prevalence among the older males in 

these studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 Structure of human chromosome Y (Cited from Guo et al. 29). 

Detecting large structural mosaic events such as LOY is just the first step, the key questions 

needing to be answered are the mechanisms behind these events and their contributions to 

the developmental traits and diseases. If the large structural mosaic events can be regarded 

as one type of “genetic phenotypes”, it will be worth to conduct GWAS to understand the 

genetic contribution of common variants to them and then uncover the potential biological 

pathways. For LOY, Zhou et al. discovered the first common variant susceptibility locus 

(rs2887399, OR=1.55, 95% CI=1.36-1.78; P=1.37×10−10) relating to mLOY by conducting 

GWAS, which mapped at 14q32.13 to TCL1A (encoding T cell leukaemia/lymphoma 1A) that 

functions as a co-activator of the cell survival kinase AKT and is often over- expressed in 

haematological malignancies of T and B cells30.  
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Using genotype-array-intensity data and sequence reads from 85,542 male UK Biobank 

participants, Wright et al. identified 19 genomic regions (P < 5×10−8) associated with LOY, 

which was estimated by the mean of log R ratio directly through implementing GWAS32. 

These identified loci included genes that covered several aspects of cell proliferation and 

cell cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), mitosis 

(PMF1, CENPN and MAD1L1) and apoptosis (TP53) 32.  

In 2019, Thompson et al. published the largest research on LOY and found that about 20% of 

male participants aged from 40 to 70 years old in UK Biobank (N=205,011) had detectable 

LOY, using the phase-based computational method (PAR-LOY) developed by Loh et al16,17. In 

this method, they used allele-specific genotyping intensities in PAR which is the  

chromosome Y region affected by recombination16. Then, they performed a GWAS for 

dichotomous LOY status estimated by PAR-LOY and identified 156 statistically independent 

signals (P<5×10−8). Among the identified signals, 19 were previously reported , which were 

involved in cell-cycle regulation and cancer susceptibility, as well as acting as the somatic 

drivers of tumour growth and targets of cancer therapy16. In order to compare these two 

LOY estimation methods (mLRR-Y and PAR-LOY), they performed a GWAS for continuous 

LOY variables estimated by mLRR-Y on the same study samples and found that only 61 of 

the 156 loci reached genome-wide significance, which showed that PAR-LOY may have 

much more power for detecting LOY than mLRR-Y16.  

Table 1-1 Characteristics of previous population-scale studies on LOY 

LOY Study Year LOY measures Sample size No. of LOY cases No. of Leading Signals 

Forsberg et al. 31 2014 mLRR-Y (< -0.139) 1,141 93 NA 

Dumanski et al.27  2015 mLRR-Y (< -0.139) 5,738 900 NA 

Zhou et al. 30 2016 mLRR-Y (< -0.15) 13,729 970 1 

Wright et al. 32 2017 mLRR-Y 85,542 NA 19 

Terao et al. 33 2019 mLRR-Y 95,380 NA 50 

Thompson et al. 16 2019 PAR-LOY 205,011 41,791 156 

 

Most current LOY studies use white Europeans as their study group, but there may exist 

different genetic architectures for different ancestry groups. Loftfield et al. observed  less 

LOY in men of African ancestry (0.4%) compared to men of European ancestry (1.8%, 

P=0.003) in UKBB34. Before the study of Thompson et al.16, Terao et al.33 conducted a GWAS 
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on 95,380 Japanese males and identified 50 independent genetic markers in 46 loci at the 

genome-wide significant level, 35 of which were unreported. Among these signals, 15 of 

them replicated the significant signals from Wright et al.32  

Therefore, conducting GWAS on non-European groups may identify novel ancestry-specific 

signals, which can reflect the differences in the genetic architecture of LOY between ancestry 

groups.  

1.4 Mosaic loss of chromosome X 

Same as LOY in males, mosaic loss of chromosome X (LOX) is the most common mosaic 

event in females17, which might be affected by the X chromosome inactivation and can 

increase the risk of leukaemia35–37. On the contrary, male LOX is extremely rare38. Compared 

with the genetic and epidemiological studies on LOY, studies on LOX are still lacking. 

Although there have been over 150 signals reported to be associated with LOY that reveal 

the underlying mechanisms16, there has been  no large-scale GWAS of LOX since now.  

There is reported moderate genetic correlation (rg =0.3, P=3.98×10-4) between LOY and 

LOX39, suggesting some shared mechanisms between these two types of sex chromosome 

mosaicism. But the distinct pattern of LOX means that other mechanisms underlying LOX 

may also exist. As reported by Loh et al., two common variants (Xp11.1 near DXZ1 and Xq23 

near DXA4) on chromosome X that weakly elevate the risk of LOX but strongly impact which 

X chromosome is lost in the expanded clone in heterozygous females17. Additionally, the loci 

near HLA and SP140L were associated with a higher risk of LOX 17.  

1.5 Exploring sex chromosome mosaicism using high-throughput sequencing data from 

large cohorts 

Same as other studies on somatic mosaicism, the comprehensive exploration of LOY/LOX 

estimates derived from HTS data and comparison with LOY/LOX estimates based on SNP 

array data are still lacking until now. Meanwhile, GWAS have identified hundreds of signals 

associated with sex chromosome mosaicism, especially for LOY16,30,32,33. 

As an intrinsic limitation of GWAS, most identified LOY-associated signals are common 

variants with a minor allele frequency (MAF)>5% in the non-coding regions and only have a 
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tiny effect size40. The potential causal genes and regions still need to be targeted through 

several downstream analytical pipelines from the identified signals, which makes it difficult 

to conduct follow-up wet-lab validation work for the targeted genes or regions through 

these pipelines.  

From the evolutionary theory, protein-truncating or missense variants with deleterious 

effects are likely to be rare due to natural selection41,42. Compared to common non-coding 

variants, protein-truncating or missense variants in some genes and regions may play a 

much greater role, but they are often poorly included in SNP arrays designed for GWAS43 

and are hard to be imputed from the reference sequence. The classical single variant 

association tests for GWAS may not be suitable for these low frequency (0.5%<MAF<5%) 

and rare (MAF<0.5%) variants as the statistical power would be very low unless the sample 

sizes or effect sizes are very large40.  

Due to the rarity of rare nonsynonymous variants, the cumulative effects of a group of 

variants with similar predictive functions in the same gene can be explored by implementing 

gene-based aggregation tests. When multiple variants in the group are associated with a 

given disease or trait, the statistical power can be increased40. The current widely used 

approaches for the gene-based aggregation tests are mainly based on two hypotheses. The 

first hypothesis is that a large proportion of the variants are causal, and their effects are in 

the same direction. Based on this hypothesis, the rare variants are simply collapsed into 

genetic scores to gain more power, which is called burden tests. However, this approach 

might be less powerful if only a small fraction of variants are causal or if the effects of causal 

variants have different directions. The variance-component tests (i.e., SKAT (the sequence 

kernel association test)44) are proposed to address this limitation by testing the variance of 

the genetic effects. As the prior knowledge about the real association is lacking for most 

tests, the omnibus test can also be performed by combining burden and variance-

component tests, which can better account for the proportion of causal variants and the 

existence of the variants with the opposite effects40. However, if one of the hypotheses 

strongly holds, the omnibus test might be less powerful than the test based on that 

hypothesis40. Recently, more methods (i.e., STAAR (variant-set test for association using 

annotation information)45) have been developed to set a flexible weighting scheme 
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according to the MAF of variants and the quantitative annotation scores (i.e., CADD46, 

REVEL47, SIFT48, POLYPHEN49 etc.) (Figure 6) 

 

Figure 1-3 Data-processing and analysis flow chart for Sequencing-Based Association Studies (cited 

and redrawn from Lee et al.40) 

However, the absence of large cohorts with HTS data has been one major obstacle for these 

studies to estimate LOY/LOX and explore the cumulative effects of rare variants. This 

obstacle can be resolved now because the large cohorts such as UK Biobank made their HTS 

data publicly available. UK Biobank released its WES data for all 454,834 participants 

through 3 batches from Mar. 2019 to Oct. 2021 and WGS data for over 200,000 participants 

in Nov. 2021. Along with the SNP-array data, UK Biobank is ideal to explore the LOY/LOX 

estimation from different sequencing method and identify the genes which have direct 

effects on LOY/LOX by using the HTS data. With the abundant health-related data including 
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medical history, environment exposure and health outcome etc. of the UK Biobank, more 

associations between LOY and health outcomes might be revealed50.  

1.6 Structure and aim of this thesis 

This thesis aims to explore the detection, causes and consequences of sex chromosome 

mosaicism by combining the data from both SNP-array and WES of half a million participants 

and implementing advanced statistical methods.  

Chapter 2 describes the methods used to estimate LOY/LOY from SNP-array and WES data 

and the systematic comparison among different LOY/LOX metrics, including two combined 

LOY/LOX calls incorporating LOY/LOX metrics estimated from both SNP-array and WES data.  

Chapter 3 describes a new GWAS for LOY, exploiting the new combined LOY metric 

estimated from SNP-array and WES data and the exploration of whether the summary 

statistics of LOY and LTL can be used to boost the power of detecting the signals of MPN. 

Chapter 4 describes the detection and characteristics of the males with abnormal 

karyotypes in the UK Biobank. 

Chapter 5 describes the first exome-wide association study of LOY on over 80,000 males in 

the UK Biobank and the comprehensive investigation of the novel LOY-associated gene 

GIGYF1.  

Chapter 6 describes exome-wide association studies of LOY and LOX based on over 450,000 

participants from the UK Biobank. 
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Chapter 2 Development and statistical power evaluation of 

sex chromosome mosaicism measures 
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2.1 Contributions 

This chapter describes the analyses that I conducted for the development and statistical 

power evaluation of sex chromosome mosaicism measures. I estimated LOY and LOX from 

SNP-array data for all UK Biobank participants and the Y and X chromosome dosages from 

WES data for over 200,000 UK Biobank participants. I then calculated the new combined 

LOY and LOX calls, checked correlations among the different LOY and LOX measures and 

performed systematic comparisons of their statistical power. Dr Hana Lango Allen designed 

and tested the pipeline to estimate the average read depth of the autosomes and sex 

chromosomes. Prof Po-Ru Loh (Harvard University) proposed the formulas to combine the 

different sex chromosome mosaicism measures. Dr Eugene J. Gardner implemented the 

read depth pipeline in UKBB RAP platform and provided valuable advice on Figure 2-3. Prof 

John R.B. Perry and Ken K. Ong supervised the analyses and provided guidance. 
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2.2 Abstract 

Sex chromosome altering events, including mosaic loss of the Y (LOY) and X (LOX) 

chromosomes, accumulate during the ageing process. However, the causes and 

consequences of these events are unclear. Previous studies have used SNP-array intensity 

data to estimate LOY and LOX in thousands of human individuals in order to identify the 

genetic underpinnings of LOY/LOX. Estimates of an individual’s LOY/LOX status are then 

used to perform Genome-Wide Association Studies (GWAS) and Phenome-Wide Association 

Studies (PheWAS) to identify genetic loci or phenotypes, respectively, that increase an 

individual’s risk of mosaic sex chromosomes loss. Yet, sex chromosome mosaicism 

estimated from high-throughput sequencing data (e.g., Whole-Exome [WES] and Whole-

Genome Sequencing [WGS]) and the systematic evaluation of these measures is lacking. In 

this chapter, I proposed a new approach to the estimation of sex chromosome mosaicism 

from WES. I calculated the combined estimates incorporating several independent 

measures, including continuous and binary LOY/LOX estimation from SNP-array intensity 

and the Y/X dosage estimated from WES for LOY and LOX respectively. Through systematic 

comparisons between LOY measures, my new 3-way combined metric showed an 

improvement from previous approaches. Although the results pertaining to LOX were more 

difficult to interpret compared with LOY, the WES based dosage and 3-way combined metric 

still showed some advantages compared to SNP-array based approaches especially a 

stronger association with age, the dominant risk factor of all CH events. These results 

provide evidence for selecting the measures of sex chromosome mosaicism with the highest 

statistical power for epidemiological studies, SNP-based genome-wide association, and 

gene-based burden tests.  

  



33 
 

2.3 Introduction 

Most studies in human genetics have mainly focused on inherited variation transmitted 

through the germline. Many have concentrated on identifying disease-causing variants in 

monogenic diseases and investigating the genetic contribution to complex phenotypes 

through the use of genome-wide association and sequencing-based studies15. However, as 

part of the ageing process and owing to errors in DNA repair or replication of damaged DNA 

as cells divide14, many different mutations, such as Single-Nucleotide Variants (SNVs), 

insertion or deletions (InDels), and large chromosomal structural variations (SVs) can arise 

and accumulate over time in the somatic cells of the human body. Consequently, cells 

originating from a single fertilised zygote may differ in their genetic makeup. The age-

related accumulation of postzygotic DNA mutations results in tissue genetic heterogeneity 

in adult humans and is known as somatic mosaicism14. 

Although somatic mosaicism can arise in all tissues of the human body14, the most well-

studied is somatic mosaicism in the blood18. More specifically known as clonal 

hematopoiesis (CH), CH can be defined as an age-related expansion of mutated 

hematopoietic clones, of which several distinct subtypes exist: coding mutations in 

approximately 20 genes recurrently found as mutated in CH51 (Clonal hematopoiesis of 

indeterminate potential; CHIP), gains/losses and copy-neutral loss of chromosomal 

segments (mosaic Chromosomal Alterations; mCAs), and loss of whole sex chromosomes39. 

Of these subtypes, the most common form of CH is the mosaic loss of chromosome Y (LOY) 

in circulating white blood cells. LOY was discovered over 50 years ago from cytogenetic 

analyses and has a high prevalence among aging men16,31. 

LOY has several clinical definitions, the most common one classifies LOY as a lower-than-

expected abundance of DNA from the Y chromosome within a certain threshold of 

detection14,16,26. According to the largest study on LOY (N=205,011 males), around 20% of 

European males between 40-70 years of age have some evidence of LOY16. Other studies 

have also shown that LOY is associated with a wide range of behaviours and comorbidities 

such as age, smoking status, cancer, autoimmune conditions, type 2 diabetes, and all-cause 

mortality16,26,28,30,31,52. Due to limitations in sample size and methodology, somatic 
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mosaicism has been difficult to identify; mutation events are random, rare, and the fraction 

of affected cells is often below the detection limit of current technologies14,15,17.  

Nonetheless, in the past ten years, there has been significant progress in identifying somatic 

mosaicism events due to the decreasing cost of high-throughput sequencing and the 

emergence of large cohorts with SNP array data18 the identification of common genetic 

variation. The standard approach calculates the log2-transformed R ratio (LRR), which 

represents the difference between the fluorescence signal intensity of the ‘A’ and ‘B’ alleles 

assayed for each SNP on the genotyping array28. Because the male-specific regions (MSY)  

portion of the Y chromosome does not participate in recombination with the X 

chromosome, the degree of LOY can be estimated by calculating the median or mean of LRR 

values (mLRR-Y) of all probes in the MSY region28,30,31 . Recently, Thompson et al.16 proposed 

a new approach to identify dichotomous LOY events (PAR-LOY). Using PAR-LOY, they 

identified 156 leading LOY-associated signals by performing GWAS for over 200,000 male 

participants in UK Biobank16. This approach uses the phase-based computational method 

developed by Loh et al17 and was based on allele-specific genotyping intensities in the sex 

chromosome pseudo autosomal regions (PAR) rather than MSY16. In order to compare these 

two LOY estimation methods (mLRR-Y and PAR-LOY), they also performed a GWAS for 

continuous mLRR-Y values on the same study samples and found that only 61 of the 156 loci 

reached genome-wide significance, which indicated that PAR-LOY may have much more 

power for detecting LOY than mLRR-Y16.  

LOX can also be estimated using these above-mentioned approaches. Different from LOY, 

female mosaic loss of the chromosome X (LOX) is also age-related but much less common. 

Previous research on LOX identified 124 LOX events>2 Mb in size in only 0.25% (97 out of 

38,303) women using SNP-array intensity data35. Compared with LOY, large-scale studies on 

LOX are still lacking.  

Most of these current implemented approaches to detect sex chromosome mosaicism 

events have relied on SNP-array probes on the sex chromosomes, so the accuracy of the 

estimations depends on the number of probes, which can vary greatly between arrays 

especially for LOY. For most genotype arrays, there are only hundreds to thousands of 

probes on the Y chromosome. Because mLRR-Y is the mean or median of the LRR values of 
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these probes, the number of probes can largely affect the accuracy of the estimation. By 

contrast, data from WES and WGS provides the sequence read depth of the exomes and 

genomes of Y chromosome. Therefore, WES and WGS have great potential for exploring 

somatic mosaicism, including sex chromosomes mosaicism events. From WES and WGS 

data, the detection of somatic variation or chromosomal gains/losses can be accomplished 

by calculating the proportion of sequenced reads. It is unknown whether the combination of 

different sex chromosome mosaicism measures can improve the detection power.   

In this chapter, I develop a new method based on read depth from WES data to estimate sex 

chromosome mosaicism events. I first introduced the method for the combined calls of the 

independent sex chromosome mosaicism variables. Then I conducted a systematic 

comparison among widely used sex chromosome mosaicism estimations including mLRR-

Y/X, dichotomous mLRR-Y/X, PAR-LOY/MoChA-LOX, sex chromosome mosaicism variables 

(Y/X dosages) estimated from WES, dichotomous Y/X dosages and the combined calls .  
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2.4 Methods 

2.4.1 Study populations 

In this chapter, all analyses were conducted using the data from UK Biobank, which contains 

around 500,000 participants aged from 40 to 70 across England, Wales, and Scotland. For 

each participant, a list of phenotypic and health-related data was collected, including 

physical measurements, lifestyle indicators, blood and urine biomarkers, imaging, and 

routine health record data50. UK Biobank has approval from the North West Multi-centre 

Research Ethics Committee (REC reference 21/NW/0157) and informed consent was 

provided by each participant.  

Two SNP genotyping arrays were used to genotype the 488,377 participants: UK Biobank 

Lung Exome Variant Evaluation (UK BiLEVE study, N=49,950) and Affymetrix Axiom UK 

Biobank array (UK Biobank Axiom (Affymetrix), N=438,427). There were 807,411 and 

825,927 SNP probes respectively, with 95% overlap between arrays.  

UK Biobank released WES data for over 450,000 participants in three batches: the first batch 

of 49,981 samples was available in Mar 2019, the second batch containing 200,602 samples 

was released in Oct 2020 and the third batch containing all 454,834 samples was released in 

Oct 2021. 

2.4.2 Estimation of intensities across the entire Y and X chromosome from SNP-array data 

To estimate the intensities across the entire X or Y chromosome from SNP-array data, I 

downloaded the genotyping fluorescence signal intensity (LRR) and quality control (QC) 

information for all SNPs on the X and Y chromosome from the UK Biobank data showcase 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22431 and 

https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=1955 ). SNPs which (i) were located 

within PARs, (ii) did not have a calculable LRR on both arrays, (iii) did not pass QC in all 106 

batches, or (iv) were flagged as failing QC by UK Biobank were excluded.  

Following this exclusion process, 16,599 SNPs on the X chromosome and 579 SNPs on the Y 

chromosome remained. The median LRR across all remaining SNPs on the X and Y 

chromosome was calculated to generate the values for mLRR-X and mLRR-Y, respectively. 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22431
https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=1955
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These values represent the median fluorescence signal intensities across the entire X or Y 

chromosome relative to all autosomal SNP signals.  

2.4.3 Dichotomous mosaic status of Y and X chromosome from SNP-array data 

The MoChA-LOX and PAR-LOY data in this study was acquired from previous studies 

conducted by Loh et al.17,23 and Thompson et al.16 For the dichotomous mosaic status of the 

X and the Y chromosome, it is necessary to know the fractions of cells without the X and the 

Y chromosomes. The affected cell fractions (AF-LOY) of LOY and LOX were also calculated 

from the same pipeline used for estimating LOY and LOX status. They were calculated from 

BAF (B-Allele Frequency) values. The formula to calculate them can be divided in to two 

parts: muDiff=2×0.01×BAF and AF=2×muDiff/(1+muDiff).  

2.4.4 Estimation of Y and X chromosome dosages from whole exome sequence data 

The pipeline used to estimate the X and the Y chromosome dosages based on WES data 

involved two steps. Firstly, I processed WES data for each sample to generate their average 

coverages of the autosomal chromosomes, the X chromosome, and the X-degenerate 

regions (XDR) of the Y chromosome. More accurate average coverage of Y chromosome can 

be estimated through just focusing on XDR, because the other male-specific regions on the Y 

chromosome are ~99% identical to the homologous region on the X chromosome or all 

highly repetitive and include palindromes (inverted repeats)53. I then extracted the regions 

of XDRs from the target regions of UK Biobank WES capture experiment according to their 

GRCh38 coordinates. The target region of the autosomal chromosomes was generated by 

excluding the target regions on the X and Y chromosomes. The target region of the X 

chromosome was generated by excluding the target regions on PARs.   

I applied Samtools (version:1.9)54 to convert the CRAM files of each sample to BAM files 

based on the GRCh38 reference sequence 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome

/GRCh38_full_analysis_set_plus_decoy_hla.fa ). To calculate the average coverages of the 

autosomal chromosomes, the X chromosome, and the XDR of Y chromosome, I converted 

the BED (Browser Extensible Data) files of the new target regions to Picard Interval Lists 

using Picard (version: 2.21.6-SNAPSHOT) function BedToIntervalList, based on the same 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa
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reference sequence. With these Picard Interval Lists, the BAM file of each participant was 

inputted to calculate the average coverages of the autosomal chromosomes, the X 

chromosome, and the XDR of Y chromosome through Picard function CollectHsMetrics. It 

took about 40 minutes for each sample to generate its average coverages of these three 

regions using one CPU. The second step was to calculate the relative read depth of XDRs and 

X chromosome, which were defined as the average coverage of XDRs and X chromosome 

divided by the average coverage of autosomal chromosomes. For males the average Y 

chromosome read depth should distribute around 0.5, as there are two copies of autosomal 

chromosomes but only one copy of the Y chromosome. Male Y dosage is therefore defined 

as the relative read depth multiplied by 2, to provide a proxy of the Y chromosome copy 

number. Female X dosage is the relative read depth of X chromosome, which is a direct 

proxy of the X chromosome copy number.  

For the first and second batch of WES data, I downloaded all the individual level WES data 

and stored in the HPC (High performance computing) system of the University of 

Cambridge, and all the above-mentioned analyses were conducted by submitting parallel 

jobs to the Slurm job allocation system. For the third batch, all the individual level WES data 

was stored and called in an online cloud system and all the analyses were transferred to the 

UK Biobank Research Analysis Platform (RAP). The new WDL (Workflow Description 

Language) pipeline was designed to conduct the analyses on AWS (Amazon Web Services). 

For the same sample from the first batch, the dosage of chrX and chrY have exactly the 

same values estimated in the HPC system and UK Biobank RAP. 

2.4.5 Combining the LOY and LOX estimates to build a new LOY and LOX estimate  

The main goal of this chapter is to explore whether the combination of these LOY and LOX 

measures estimated by the three different methods can improve the power of detecting 

LOY/X.  

For males, two LOY combined models using PAR-LOY as a baseline were proposed: 

i) LOY Combined call (2-way)=PAR-LOY (the binary LOY status estimated by PAR-

LOY)+3×AF-LOY (the estimated fraction of cells without chromosome Y)-3×mLRR-

Y (cropped to the range [0,2])  
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ii) LOY Combined call (3-way)=PAR-LOY+2×AF-LOY-2×mLRR-Y-4×(Y dosage-1) 

(cropped to the range [0,2]).  

 

For a sample with LOY, it should have PAR-LOY value equal to 1, AF-LOY value greater than 

0, mLRR-Y value less than 0 and Y dosage value less than 1. PAR-LOY and mLRR-Y are two 

independent estimates of LOY because they are derived from different regions of 

chromosome Y. For Y dosage, as it comes from WES data, it is independent of the LOY 

estimates from the array data. The value of Y dosage minus 1 represents the degree of LOY. 

These combined calls can fully utilise LOY estimates from these methods to reduce the 

number of false negative and false positive cases introduced by single LOY estimate. For 

example, if a sample is identified as without LOY by PAR-LOY, but has a positive value of AF-

LOY, a negative value of mLRR-Y and a value of Y dosage less than 1, then the combined call 

can correct the LOY estimation from PAR-LOY and provide the degree of LOY. 

The same approach was also applied to find LOX measures with the largest statistical power. 

Two LOX combined models using MoChA-LOX as the baseline were also proposed:  

i) LOX Combined call (2-way)=MoChA-LOX+3×AF-LOX-3×mLRR-Y (cropped to the 

range [0,2])  

ii) LOX Combined call (3-way)=MoChA-LOX+2×AF-LOX-2×mLRR-X-4×(X dosage-2) 

(cropped to the range [0,2]).  

 

As only LOY for 46,XY and LOX for 46,XX were analysed, for all these measures, the 

abnormal karyotypes carriers for both males and females were excluded (see chapter 4). 

Then, I performed association tests in R among the pairs of mLRR-Y/X, Y/X dosage, PAR-

LOY/MoChA-LOX, LOY/X Combined call (2-way), and LOY/X Combined call (3-way) for males 

and females, respectively. 

2.4.6 Assessment of statistical power of different LOY and LOX estimates 

Statistical analysis was performed using R software (version 3.6.2). As the mLRR-Y and Y 

dosage are continuous variables, I tested a wide range of dichotomous variables by creating 

thresholds for the mLRR-Y and the Y dosage data, respectively. By defining each centile from 

1% to 50% of the mLRR-Y and the Y dosage data as the threshold, I created 50 case/control 
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comparisons according to samples’ mLRR-Y and Y dosage values separately. For example, 

participants whose Y dosage value was less than the 1st centile of Y dosage data were 

assigned to the case group with LOY phenotype, and the remaining participants were 

assigned to the control group. I had different types of LOY including mLRR-Y, Y dosage, PAR-

LOY, two combined calls and the 100 dichotomous variables for assessing their statistical 

power. 

Previous studies had shown that the LOY phenotype such as mLRR-Y and PAR-LOY had 

strong correlations with age and 'ever smoking' status. In order to identify which LOY 

estimate maximally reflected the association with age and 'ever smoking' status, I extracted 

the data of age and 'ever smoking' status from UK Biobank. Linear regression was performed 

with genotype chip, exome batch and PC1-10 as covariates. For the linear regression against 

'ever smoking' status, age was also introduced as a covariate. I then calculated the absolute 

values of Z scores (beta/SE) from the summary statistics of linear regression and compared 

for all LOY estimates. To date, with the development and application of GWAS, several 

variants on autosomal chromosomes which had a significant association with LOY had been 

identified. Wright et al.32 identified 19 leading SNPs that are associated with LOY estimated 

from mLRR-Y based on 85,542 males in UK Biobank. Thompson et al.16 identified 156 leading 

LOY-associated signals. I calculated the Genetic Risk Scores (GRS) of the 19 SNPs and the 156 

SNPs for the UK Biobank male participants separately using PLINK. The same analysis was 

performed for these two GRS as for ‘ever smoking' status. 

The same steps were also conducted for LOX. 
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2.5 Results 

2.5.1 Summary of Sex chromosome dosage estimation from WES data and comparison 

with mLRR-X and mLRR-Y from genotyping array 

I estimated the LOY and LOX measures for each participant in UK Biobank from their SNP-

array and WES data (Table 2-1).  

Table 2-1 Different approaches used for estimating LOY/X 

 

Compared with mLRR values estimated from genotyping array, the X and Y dosage 

estimation from WES data provided clearer separation between males and females and 

normal and abnormal karyotypes (Figure 2-1). In the 205,604 males, the Y dosage ranged 

from 0.119 to 2.380 with a mean (SD) 1.013 (0.085), and the X dosage ranged from 0.904 to 

2.035 with a mean (SD) 0.983 (0.027). In the 243,765 females, the X dosage ranged from 

0.958 to 3.011 with a mean (SD) 1.957 (0.038).  

 

LOY/X estimation methods Description Data Regions on chrY/X 

mLRR-Y/X 

 (continuous) 

compute the median or mean of log R ratio 

values of the probes on male-specific regions of 

the Y chromosome/non pseudo autosomal 

regions of the X chromosome 

SNP-array MSY/nonPAR 

PAR-LOY/MoChA-LOX 

 (dichotomous) 

explore allelic imbalance on pseudo autosomal 

regions of the Y chromosome/non pseudo 

autosomal regions of the X chromosome using 

phase-based computational method (MoChA) 

SNP-array PAR/whole X 

Y/X dosage 

 (continuous) 

calculate the relative depth of the X-degenerate 

regions of the Y chromosome/non pseudo 

autosomal regions of the X chromosome 

WES XDR/nonPAR 

LOY/X Combined call 

 (2-way, continuous) 

PAR-LOY/MoChA-LOX + 3 × AF-LOY/X-3×mLRR-

Y/X (cropped to the range [0,2]) 
SNP-array MSY+PAR/nonPAR 

LOY/X Combined call 

 (3-way, continuous) 

PAR-LOY/ MoChA-LOX+2×AF-LOY/X-2 × mLRR-

Y/X-4×(Y/X dosage-1) (cropped to the range 

[0,2]) 

SNP-array and WES MSY+PAR+XDR/nonPAR 
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Figure 2-1 (A) mLRR-X and mLRR-Y for each of 205,604 males and 243,765 females. (B) X dosage and 

Y dosage for the same samples. 

There was a low to moderate positive association between sex chromosome dosages and 

mLRR values of sex chromosome. For males, the Pearson's correlation coefficient between Y 

dosage and mLRR-Y was 0.612 and the correlation coefficient between X dosage and mLRR-

X was 0.297. For females, the correlation coefficient between X dosage and mLRR-X was 

0.247.  

2.5.2 Correlation between different LOY and LOX measures 

The samples identified as LOY by PAR-LOY among 46, XY samples showed significant mean 

difference in mLRR-Y and Y-dosage (Table 2-2, Figure 2-2A, B, C).   

Table 2-2 Summary statistics of mLRR-Y/X and Y/X dosage for LOY/X cases and controls identified by 

PAR-LOY/MoChA-LOX 

 
mLRR-Y Y dosage 

  
mLRR-X X dosage 

PAR-LOY Case Control Case Control 
 

MoChA-LOX Case Control Case Control 

Mean -0.046 0.009 0.940 1.03 
 

Mean -0.002 -0.001 1.939 1.958 

Min -1.161 -1.112 0.140 0.119 
 

Min -0.169 -0.168 1.350 1.677 

Max 0.140 0.213 1.284 1.456 
 

Max 0.135 0.145 2.089 2.23 

SD 0.091 0.039 0.119 0.056 
 

SD 0.031 0.031 0.046 0.026 

PANOVA <1×10-250 <1×10-250 

 
PANOVA 1.45×10-5 <1×10-250 
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The samples identified as LOX by MoChA-LOX among 46, XX samples also showed mean 

differences from controls in mLRR-X and X-dosage. But from the PANOVA, the difference in 

mLRR-X was not as significant as in X dosage (Table 2-2, Figure 2-2D, E, F).  

 

 

Figure 2-2 (A) Y dosage plotted against mLRR-Y for 46,XY males (N=205,321). (B) Difference between 

LOY cases and controls identified by PAR-LOY in mLRR-Y. (C) Difference between LOY cases and 

controls identified by PAR-LOY in Y dosage. (D) X dosage plotted against mLRR-X for 46,XX females 

(N=243,520). (E) Difference between LOX cases and controls identified by MoChA-LOX in mLRR-X. (F) 

Difference between LOX cases and controls identified by MoChA-LOX in X dosage. 
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All of the LOY measures were significantly associated with each other (P<1×10-250), but 

Pearson's correlation coefficients varied from 0.382 to 0.971. PAR-LOY was set as a baseline 

measure for two combined calls, so it had correlation coefficients equalling 0.952 and 0.926 

with LOY Combined call (2-way) and LOY Combined call (3-way). These two combined calls 

also strongly correlated with each other (r=0.971). The smallest correlation coefficient was 

between mLRR-Y and PAR-LOY (r=-0.382) (Table 2-3A).  

Similar to the observations with LOY, all LOX measures were significantly associated with 

each other (P<1.45×10-5), however, the correlation coefficients were weak. Specifically, the 

correlation coefficient between mLRR-X and X dosage was only r=0.089 and the correlation 

coefficient between mLRR-X and MoChA-LOX was only r=-0.009 (Table 2-3B).  

Table 2-3 (A) Pairwise correlations between each LOY measures. The upper diagonal gives the T-

statistic derived using cor.test ( ) in R, and the lower diagonal gives correlation coefficient. (B) 

Pairwise correlations between each LOX measures. The upper diagonal gives the T-statistic derived 

using cor.test ( ) in R, and the lower diagonal gives correlation coefficient. 

A 

T-statistic/correlation coefficient mLRR-Y Y dosage PAR-LOY LOY (2-way) LOY (3-way) 

mLRR-Y NA 335.537 -187.255 -320.331 -294.24 

Y dosage 0.595 NA -223.018 -313.438 -408.439 

PAR-LOY -0.382 -0.442 NA 1412.486 1107.534 

LOY Combined call (2-way) -0.577 -0.569 0.952 NA 1835.657 

LOY Combined call (3-way) -0.545 -0.67 0.926 0.971 NA 

B 

T-statistic/correlation coefficient mLRR-X X dosage MoChA-LOX LOX (2-way) LOX (3-way) 

mLRR-X NA 43.868 -4.337 -122.258 -124.17 

X dosage 0.089 NA -75.831 -96.69 -279.573 

MoChA-LOX -0.009 -0.151 NA 1711.724 1046.932 

LOX Combined call (2-way) -0.24 -0.192 0.961 NA 1286.411 

LOX Combined call (3-way) -0.244 -0.493 0.905 0.934 NA 

 

2.5.3 Statistical power of different LOY and LOX measures 

I have restricted the analyses to the samples with all the available LOY or LOX measures to 

perform a systematic comparison by running regression against the benchmarking traits 

including age and smoking status and two GRS of LOY. For LOY, the LOY Combined call (3-
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way) method, consisting of all three independent LOY measures, outperformed all the other 

LOY measures for all traits and GRS we tested according to its Z scores. LOY Combined call 

(2-way) also provided a better statistical power than the LOY measures used in the previous 

studies and the new LOY measure estimated from WES. Although PAR-LOY is a binary LOY 

measure, it still generated larger Z scores than the two continuous LOY measures. The Y 

dosage estimated from WES had a better performance than mLRR-Y from genotyping array. 

For all of the dichotomous LOY measures derived from two continuous measures: mLRR-Y 

and Y dosage, their Z scores were less than the Z scores of the continuous mLRR-Y and Y 

dosage (Figure 2-3A).  

The rank of LOX measures was comparatively complicated. LOX Combined call (3-way) 

outperformed the other LOX measures for associations with age and smoking status. 

However, the WES X dosage generated the largest Z scores for associations with GRS. The 

mLRR-X did not reach a significant value for smoking status (P=0.11). If there was the same 

mechanism behind the LOX and the LOY, the LOX measures should be significantly 

associated with the LOY GRS. The results indicated a significant association of the LOX 

measures with the GRS generated from the 19 SNPs identified by mLRR-Y (P<1.40×10-7) and 

156 SNPs identified by PAR-LOY (P<2.81×10-3), the WES X dosage outperformed all other 

LOX measures. As for dichotomous LOX measures derived from mLRR-X and X dosage, under 

some settings, they had larger Z scores than other LOX measures (Figure 2-3B).  
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Figure 2-3 (A) Z scores derived from the linear regression of LOY metrics against age, ever smoking 

status, GRS (mLRR-Y), and GRS (PAR-LOY) respectively (From top left to down right). (B) Z scores 

derived from the linear regression of LOX metrics against age, ever smoking status, GRS (mLRR-Y), 

and GRS (PAR-LOY) respectively (From top left to down right). 
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2.6 Discussion 

Everyone may have sex chromosome mosaicism, just to different degrees. Who we detect 

as having LOY or LOX is a function of our detection methods and the proportion of cells 

impacted. Compared to current sex chromosome mosaicism measures, although performing 

a PCR test may provide a more accurate estimation but is expensive and time-consuming, 

particularly in studies with large sample sizes. All of the sex chromosome mosaicism 

measures mentioned in this chapter can be seen as proxies of the abundance of the X and Y 

chromosome genetical material from SNP-array and WES data. In this chapter, I aimed to 

find the measures that provide the largest statistical power to undertake downstream 

analyses, including the investigation of their causes and consequences. 

For LOY, the findings clearly show that different measures can hugely influence the 

statistical power of downstream analyses. The success of the 3-way combined call showed 

that the accuracy of LOY measure can be improved by maximally using the data from SNP 

genotyping arrays and WES. The 2-way combined call based on the independent LOY 

metrics estimated from SNP-array data was only slightly inferior to the 3-way combined 

calls. As there were just a few cohorts with WES or WGS data, this 2-way combined call 

should be the first choice for measuring LOY for the cohorts only having SNP genotyping 

array data. One advantage of PAR-LOY over mLRR-Y is that PAR-LOY allows for the detection 

of LOY events even in a smaller proportion of cells. Because mLRR-Y values can vary largely 

due to technical artefacts, the estimation from mLRR-Y was noisier. In contrast, the Y dosage 

estimation provides a cleaner continuous LOY variable. However, it should be noted that 

some samples with very small mLRR-Y and Y dosage values were not identified as LOY 

events by PAR-LOY, which might be because that the algorithm of PAR-LOY categorised 

these samples as 45, XO. In these cases, the combined call can accurately rescue them as 

LOY events. 

For LOX, the combined calls improved power. In contrast, the results showed that mLRR-X 

may not be suitable for measuring LOX, as its estimation contained lots of technical noises. 

On the contrary, WES X dosage showed potential to be a LOX measure, because it 

outperformed 2-way combined call and MoChA-LOX for age and outperformed all the other 

LOX measures for associations with the two LOY genetic risk scores. 
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The results from this chapter provide a reliable reference for choosing sex chromosome 

mosaicism variables. Using the variables with stronger power to conduct traditional 

epidemiological studies and genetic association studies can better improve the 

understanding of the causes and consequences of sex chromosome mosaicism. There are 

some limitations of this study. Firstly, I compared the sex chromosome mosaicism measures 

solely based on statistical tests, and all measures were derived from genotyping chip and 

WES. The results would be more robust if qPCR for a small set of samples could be 

performed as a control to validate the sex chromosome mosaicism estimations. Secondly, 

these LOY measures may have more complex relationships with each other. Therefore, 

more sophisticated methods, such as advanced machine learning techniques will be 

required to maximise the power of combined calls. Finally, the results for LOX were not as 

clear as LOY, which might be due to its low prevalence and the use of genetic benchmark 

traits based on LOY. Since LOX has not been extensively studied as LOY, more studies will be 

needed to generate benchmark traits for LOX. Finally, the sex chromosome mosaicism 

measures were restricted to the DNA materials from blood. Future studies will be required 

to validate these measures or develop new methods to detect sex chromosome mosaicism 

events.  

In conclusion, by combining the LOY/LOX metrics estimated from both SNP-array and WES 

data, the new proposed new Combined 3-way calls for LOY/X showed the most significant 

association with age, which is the primary risk factor for both LOY and LOX. 
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Chapter 3 Genetic analysis of Y chromosome mosaicism and 

its mechanistic link to myeloproliferative neoplasms 
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3.1 Contributions 

This chapter details the work I conducted to re-analyse existing GWAS data of LOY using an 

improved measure of LOY calling and using the summary statistics of LOY to boost the 

power to detect the loci associated with MPN. I performed the GWAS analysis for the LOY 

Combined Call (3-way), identified the novel leading signals and compared with the previous 

GWAS studies that used PAR-LOY. I performed LDSC, MR, colocalisation and MTAG analyses 

for LOY, LTL and MPN. Dr Katherine Kentistou developed the pipeline to identify the 

independent significant signals from GWAS summary statistics and highlight the likely 

functional genes. She also shared her script with me to perform the colocalisation analysis. 

Dr Felix R Day developed the MR script and shared it with me to conduct MR analysis. Prof 

John R.B. Perry and Ken K. Ong supervised the analyses and provided guidance.   
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3.2 Abstract 

Previous GWAS analyses have produced many mechanistic insights into LOY, however the 

LOY calls used in these studies were mainly based on SNP-array data. The studies still lacked 

that systematic exploration of whether combining the Y dosage estimated from next-

generation sequencing data can improve the power to detect more LOY-related signals. 

Illustrated in chapter 2, the LOY Combined Call (3-way) that combined both LOY measures 

estimated from SNP-array and whole-exome sequence data outperformed other LOY 

measures. In this chapter, I implemented in the same GWAS pipeline used by the previous 

GWAS analysis of PAR-LOY for 204,770 male participants in the UK Biobank. There were 22 

novel LOY signals identified.  

Previous analysis showed the mechanistic link between LOY, leukocyte telomere length (LTL) 

and blood cancers including myeloproliferative neoplasms (MPN). For MPN, the largest 

GWAS study identified only 17 MPN risk loci on over 1 million samples. Because it is hard to 

increase the sample size of MPN cases, instead, through combining the GWAS summary 

statistics of LOY, LTL and MPN, the shared underlying mechanisms were further revealed 

and 13 novel MPN signals were identified. Collectively, these results highlighted that the use 

of more accurate LOY estimation can improve the statistical power to detect LOY-related 

signals. Moreover, systematic evaluation of the impact of LOY-related signals on health 

outcomes can increase the power to detect loci that influence LOY-related health outcomes.  
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3.3 Introduction 

Like other types of clonal mosaicism, there has been fruitful progress in understanding the 

causes and consequences of LOY over the past 10 years, largely due to the decreased cost of 

sequencing technology, the innovation of novel bioinformatic tools and the large cohorts 

consisting of hundreds of thousands of individuals18. The largest-scale study of LOY  to date 

exploited the genotype data from SNP-based genotype array of over 200,000 males from UK 

Biobank by developing a new detection method and validated the findings of other large 

cohorts. This study substantially improved the understanding of the mechanisms behind  

LOY by conducting GWAS analysis16. However, the accurate estimation of LOY from SNP-

array data largely depended on the number of probes on the Y chromosome, which varied 

from hundreds to thousands depending on the chips used for sequencing. The limited 

number of probes introduced technical noises in the estimation of LOY16. Therefore, 

whether more Y dosage information could be generated from next-generation sequencing 

data remained uninvestigated. The newly released whole-exome sequencing data of 

450,000 samples from UK Biobank provided the chance to investigate this question. In 

chapter 2, LOY Combined Call (3-way) combined by the different LOY metrics estimated 

from both SNP-array and WES were observed to have improved statistical power. In this 

study, this variable was used to conduct the GWAS and its downstream analyses in the same 

manner as previous analyses conducted for PAR-LOY. 

Previous analyses on LOY demonstrated that LOY plays a role as a biomarker of the 

defective DNA damage response and cell cycle regulation, which suggests that the genetic 

analysis of LOY represents an exclusive opportunity to identify variants associated with DNA 

damage response and cell cycle regulation that influence the risk of multiple types of 

cancer. This can be supported by the observations that the LOY-predisposing alleles carriers 

have a higher risk of breast, prostate, testicular, brain and renal cell cancers16. Arising from 

similar origins in haematopoietic stem and progenitor cells (HSPCs)55–57, myeloid 

malignancies, such as myeloproliferative neoplasms (MPN), myelodysplastic syndromes 

(MDS) and acute myeloid leukaemia (AML)18 become the primary diseases of interest due to 

the shared mechanisms with LOY. Based on nearly 1 million people, the largest scale GWAS 
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of MPN only identified 17 leading loci. The very low incidence (less than 1/100,000)58 of 

MPN meant that it would be very difficult to get more cases to expend the scale of GWAS. 

Given that it has a shared genetic architecture, to test the assumption that LOY can be used 

to detect more MPN risk loci and reveal any shared mechanisms, I also investigated 

leukocyte telomere length (LTL), which is associated with MPN, and performed several 

analyses, including LDSC59, MR60, Co-localisation61 and MTAG62 analyses. 

In this chapter, the newly proposed LOY call not only increased the power of the known 

signals but also identified 22 novel LOY signals. Taken together, these results demonstrate 

the power of this novel approach. Furthermore, by integrating different methods based on 

GWAS summary statistics, 13 MPN risk loci were identified and the shared mechanisms of 

LOY, LTL and MPN were illustrated.  

In summary, the improvement of LOY metric identified novel signals compared to the 

previous method using the same sample. Additionally, the analyses on MPN significantly 

increased the power to detect loci that influence MPN via the same mechanism that causes 

LOY.   
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3.4 Methods 

3.4.1 Genetic association testing in the UK Biobank for newly proposed LOY metric 

The study implemented the same pipeline to conduct GWAS for the new LOY measure as 

the previous analysis using PAR-LOY16.  

The linear mixed model implemented in BOLT-LMM (version: 2.3.2)63 was performed to 

conduct the common variants genetics association testing, which can account for the cryptic 

population structure and relatedness. The genetic data with bgen format from V350 release 

of UK Biobank containing the complete set of Haplotype Reference Consortium (HRC) and 

1K Genomes imputed variants were used as genotype input. The k-means clustering method 

was applied to the first four genetic principal components8 to cluster the participants. Only 

participants identified as having “White European” ancestry were included in this study. 

Participants with inconsistent ancestry identification answers in the questionnaire were  

excluded. Additionally, participants who were with abnormal sex chromosome karyotypes, 

failed to pass the criteria of quality control, withdrew their consent were also removed from 

the analysis.  

Different from the previous GWAS on LOY, I used the novel LOY Combined Call (3-way) as 

the LOY metric. Because not all participants in UK Biobank had WES data, I imputed the LOY 

Combined Call (2-way) values for the samples without WES data. Therefore, the analysis 

included both genotype and phenotype data for 204,770 male participants. For BOLT-LMM, 

the genetic relationship matrix was included as a covariate, which was calculated from the 

genotyped variants  which were: on autosomes with minor allele frequency (MAF)>1%, 

included in both genotyping arrays, and passed QC in all 106 batches16. The other covariates 

included genotyping chips, age at first check, and the first 10 genetic principal components. 

All the common variants genetic association testing analyses  were conducted in the High-

Performance Computing (HPC) system maintained by University of Cambridge. 

A clumping algorithm was used to select the signals with a P<5×10−8, an imputation quality 

score (INFO)>0.5, and a MAF>0.1% at a 1-Mb window16. If the genome-wide significant 

leading signals  shared any correlation with each other due to the long-range linkage 

disequilibrium (r2> 0.05), these signals were excluded from further analysis. The 
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approximate conditional analyses implemented in GCTA (Genome-wide Complex Trait 

Analysis)64 were conducted to augment the leading loci. Signals which were uncorrelated 

(r2<0.05) with previous identified leading signals and  with P<5×10−8 before and after 

conditional analysis were also identified as leading signals.  

Then, all leading signals were extracted from the published summary statistics of PAR-LOY, 

and all the signals with P<5 × 10−8 for LOY Combined Call (3-way) but not for PAR-LOY were 

considered  potential novel signals. Extra conditional analyses were performed for all 

potential novel signals. If there were any signals correlated with one potential novel signal 

(r2>0.05) or within a 1-Mb window and with P<5×10−8 or for PAR-LOY, this signal was not 

considered a novel signal for LOY. All the remaining signals were considered  novel signals 

associated with LOY. These SNPs were mapped to the nearest protein coding gene within a 

1-Mb window, according to its GRCh37 coordinates.  

3.4.2 Exploring the mechanistic link between LOY, LTL and MPN 

Previous epidemiological studies made it clear that LOY is associated with blood cancer. 

Myeloproliferative neoplasms are a group of blood cancers that are characterized by the 

excessive production of mature myeloid cells57. This study conducted further systematic 

analyses to explore the relationship among LOY and MPN. Additionally, the telomere length 

of leukocyte was also included in this study, as the identified 17 MPN risk loci include two 

telomere length associated genes MECOM and TERT57. The measured LTL GWAS summary 

statistics for the 472,174 UK Biobank participants was taken from Codd et al.65 For MPN, the 

summary statistics of largest scale GWAS for MPN containing 2,949 cases of MPN and 

835,554 controls was taken from Bao et al.57  

3.4.2.1 LD Score regression 

Linkage disequilibrium score regression (LDSC)59 was used to calculate the pairwise genetic 

correlations between LOY, LTL and MPN. The basic European LD score reference panel was 

used, which was provided by the developers of LDSC and downloaded from their website 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). The LD scores 

were generated from 1000 Genomes and contained 1,217,312 SNPs. For the GWAS 

summary statistics used in LDSC, the SNPs with INFO≤0.9 and MAF≤0.01 were removed. 
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3.4.2.2 Mendelian randomisation 

I conducted the Bi-directional Mendelian Randomisation (MR) analyses between LOY, LTL 

and MPN. MR analyses are often used to estimate the directional association between 

exposure and outcome traits, using signals from GWAS summary statistics as instrumental 

variables (IVs). The advantage of MR is that it can mimic the biological link between 

exposure and outcome traits66. The IV for MR analyses must satisfy three assumptions: 1) it 

is associated with the risk factor, 2) it is not associated with any confounder of the risk 

factor–outcome association, 3) it is conditionally independent of the outcome given the risk 

factor and confounders67,68.  

I chose the leading signals identified from GWAS of LOY Combined Call (3-way) as the IVs for 

LOY. The independent sentinel variants associated with LTL were used as the IVs for LTL65. 

For MPN, due to the limited number of its associated signals, I used both signals that 

reached genome-wide significance (P<5×10−8) or suggestive significance (P<1×10−6)57 as IVs. 

As LOY is specific to males, I removed the IVs on the X chromosome from all MR analyses. If 

any signals were missing in the outcome summary statistics, I collected proxies for these 

signals using GCTA with European UK Biobank individuals as reference (within 1 MB of 

reported signals and r2>0.4). I chose the proxy of each missing signal with the largest r2 

value as the replacement IV, which was contained in both GWAS summary statistics of the 

exposure and outcome. 

I extracted the summary statistics of IVs for both exposure and outcome phenotype from 

the original GWAS summary statistics files. Then, I aligned the IVs of exposure phenotype to 

increasing allele and the IVs of outcome phenotype were subsequently realigned 

accordingly. Steiger filtering as implemented in R package 'TwoSampleMR' 69  was used to 

filter out IVs which may lead to reverse causality, due to them having a more significant 

association with the outcome than the exposure. Next, the IVs that were identified as 

outliers according to Rücker’s Q′ statistic70 were further excluded. The remaining IVs were 

used to conduct the MR analysis.  

The MR inverse-variance weighted (MR-IVW) model was used as the primary model to 

conduct MR60. Compared with other MR methods, the MR-IVW can provide high statistical 

power. I checked the sensitivity of MR models based on the degree of heterogeneity (I2 
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statistics and Cochran’s Q-derived P-value), horizontal pleiotropy (MR-Egger Pintercept< 0.05), 

and funnel and dosage plots. To account for potential horizontal pleiotropy and 

heterogeneity, three additional MR tests were performed: MR-EGGER71, weighted median 

(MR-WM)72, and penalised weighted median (MR-PWM). 

3.4.2.3 Co-localisation analysis 

Bayesian testing was used to assess whether two association signals were consistent with a 

shared causal variant, looking for colocalisation between pairs of both LTL and MPN, and 

LOY and MPN, and using their summary statistics and the leading signals through 

implementation of R package 'coloc' (Version: 5.1.0)61. SNPs with h4.pp (the posterior 

probability that both traits are associated and share a single causal variant)≥0.75 were 

defined as co-localised causal variants for both traits.  

3.4.2.4 Multi-trait analysis of GWAS 

GWAS summary statistics for LOY, LTL and MPN were used to conduct a meta-analysis by 

implementing the multi-trait analysis of GWAS (MTAG)62,73.  

Based on the summary statistics from GWAS of multiple correlated traits, MTAG can 

enhance the statistical power to identify genetic associations for each trait included in the 

analysis. There are several advantages of MTAG: 1. It works on an arbitrary number of traits’ 

GWAS summary statistics and doesn’t require individual-level data; 2. The summary 

statistics aren't needed to generate from independent study cohorts: MATG can account for 

the sample overlap between GWAS summary statistics by conducting bivariate LDSC59; 3. 

MTAG can provide the effect size estimation of all SNPs for all traits analysed; 4. Even when 

many traits are included, MTAG is computationally quick because every step has a closed-

form solution62.  

For an individual SNP, the MTAG results were calculated in three steps: 1. Estimation of the 

variance-covariance matrix of GWAS estimation error using a sequence of LD score 

regression; 2. Estimation of the variance-covariance matrix of the SNP effects using the 

method of moments; 3. Finally, for each SNP, these estimates were substituted into the 

equation described by Turley et al62.   
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I performed the MTAG analysis using the Python command line tool. Prior to the analysis, I 

excluded the variants with MAF<0.01 from the summary statistics of all three traits. A 

potential problem for MTAG is that SNPs can be totally flat for one trait but not flat for 

another trait, but this can cause the MTAG's effect size estimations of these SNPs for the 

first trait to shift away from 0. Then, this causes the false positive rate (FDR) to increase.62,73 

Therefore, I estimated the max FDR for each trait by invoking “—fdr” when running MTAG in 

command line.  

The same clumping algorithm used for LOY was applied on the summary statistics of MPN 

generated from MTAG. For all leading signals, I extracted their summary statistics from the 

original GWAS summary statistics. In total, 35 independent leading signals were identified. I 

then applied the Bonferroni correction for the identified signals. I further excluded the 

signals with P>0.05/35=0.00143 in the original GWAS to avoid the issues mentioned above, 

as GWAS for both LOY and LTL identified many more leading signals than MPN, which thus 

increased the FDR for MPN. 
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3.5 Results 

3.5.1 Identifying novel leading signals for LOY 

This study identified 20,025 Genome-wide significant (P<5×10−8 ) SNPs and 173 independent 

signals (Figure 3-2). The most significant associated SNP (rs2887399, P=8×10−164) was in the 

first identified LOY-related gene, TCL1A30. Among these SNPs all the 156 signals16 identified 

by previous GWAS of PAR-LOY passed genome-wide significance, with the exception of 

three signals with p-value (P<7.1×10−7) . For all 156 previously identified signals using PAR-

LOY, there was an average 11% increase in test statistic (χ2 value) in my new GWAS using 

LOY Combined Call (3-way) (Figure 3-1). Compared with the PAR-LOY GWAS, the genomic 

inflation factor lambda GC (the ratio of expected to observed median test statistics) of this 

study remained at 1.2, but the overall mean χ2 value increased from 1.47 to 1.54. There was 

no evidence of signal inflation due to population structure, as the LDSC intercept was 1.01. 

This evidence illustrates that the GWAS of LOY Combined Call (3-way) has stronger statistical 

power than the PAR-LOY GWAS. After clumping and excluding the previously identified 

signals, 22 novel LOY-associated leading signals  remained, with p-values ranging from 

7.1×10−10 to 4.8×10−8 (Table 3-1). These signals were also nominally significantly associated 

with PAR-LOY with p-values from 6.8×10−8 to 1.9×10−5. 

 

Figure 3-1 The comparison of estimated -log10(p-value) (left) and effect size (right) of 173 

independent signals from the GWAS of LOY Combined Call (3-way) (x-axis) and PAR-LOY (y-axis).  
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Figure 3-2 Manhattan plot and quantile–quantile (Q-Q) plot illustrating the results of the GWAS of LOY Combined Call (3-way) in 204,770 male participants 

in UK Biobank. Orange dotted line indicates genome-wide significance level (P<5×10−8). 
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Table 3-1 Novel signals identified for LOY based on LOY Combined Call (3-way). Their summary statistics for PAR-LOY are also shown. All alleles are aligned to 

LOY-increasing alleles. A1/A0: effect/non-effect allele,  A1FREQ: allele frequency of effect allele, BETA: estimated effect size of the effect allele, SE: standard 

error, P: P-values from BOLT-LMM models. 

 

LOY (3WAY) PAR-LOY (Thompson et al.16, 2019)   

SNP CHR BP A1/A0 A1FREQ BETA SE P BETA SE P Nearest Gene 

rs6427752 1 198795389 C/T 0.483 0.010 0.002 9.10E-10 0.006 0.001 2.50E-06 PTPRC  

rs11211005 1 44937451 G/A 0.785 0.012 0.002 1.30E-09 0.008 0.001 1.30E-07 RNF220 

rs34985293 1 65654059 CAG/C 0.318 0.010 0.002 1.50E-08 0.006 0.001 2.50E-06 AK4 

1:33418349_CAA_C 1 33418349 C/CAA 0.291 0.009 0.002 4.40E-08 0.006 0.001 1.50E-06 RNF19B 

rs11121242 1 8906301 G/A 0.513 0.009 0.002 4.80E-08 0.006 0.001 3.60E-06 ENO1 

rs77552263 2 43786818 G/A 0.922 0.017 0.003 1.20E-09 0.011 0.002 6.50E-07 THADA 

rs113823725 5 131563501 C/G 0.539 0.008 0.002 3.20E-08 0.006 0.001 6.70E-07 P4HA2 

rs1124275 6 158622125 A/G 0.861 0.013 0.002 9.00E-09 0.008 0.002 1.50E-06 GTF2H5 

6:37938688_ACAAAC_A 6 37938688 A/ACAAAC 0.091 0.014 0.003 4.50E-08 0.009 0.002 2.50E-06 ZFAND3 

rs79516659 9 93942899 C/T 0.932 0.016 0.003 3.80E-08 0.009 0.002 1.90E-05 AUH  

rs7116797 11 116707338 G/A 0.893 0.014 0.003 2.10E-08 0.009 0.002 8.00E-07 APOA1 

rs73031459 11 124636645 A/G 0.031 0.028 0.005 3.10E-08 0.018 0.004 1.40E-06 MSANTD2 

rs663503 11 128587411 T/C 0.641 0.009 0.002 4.60E-08 0.006 0.001 3.30E-06 FLI1 

rs2159599 12 710441 G/A 0.257 0.010 0.002 1.70E-08 0.006 0.001 8.70E-07 NINJ2 

rs61976859 14 31583512 T/C 0.102 0.015 0.003 1.90E-08 0.009 0.002 1.50E-05 HECTD1 

rs62057094 16 31128004 G/T 0.892 0.014 0.003 2.70E-08 0.009 0.002 1.40E-06 KAT8 

rs11077394 17 76693711 G/A 0.554 0.009 0.002 3.70E-08 0.006 0.001 1.60E-06 CYTH1 

rs62131484 19 4012097 G/A 0.895 0.016 0.003 7.10E-10 0.010 0.002 7.80E-08 PIAS4 

rs11701821 21 38892075 T/C 0.347 0.010 0.002 1.30E-08 0.006 0.001 1.90E-06 DYRK1A 

rs5996675 22 24618331 A/G 0.790 0.011 0.002 3.40E-08 0.007 0.001 5.50E-07 GGT5 

rs769428149 23 66944119 C/CA 0.859 0.010 0.002 3.50E-09 0.006 0.001 8.30E-07 AR 

23:24064168_CAT_C 23 24064168 CAT/C 0.413 0.007 0.001 7.00E-09 0.005 0.001 6.50E-08 EIF2S3 
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3.5.2 Mechanistic links between LOY, LTL and MPN 

To check the genetic correlations between LOY, LTL and MPN, I conducted the LDSC using 

their GWAS summary statistics. The p-value for all three LDSC was not significant, but LOY 

and MPN showed a positive trend (rg=0.34). In contrast, the genetic correlation coefficients 

for LTL and LOY and for LTL and MPN were negligible,  -0.05 and 0.02 respectively (Table 3-

2).  

Table 3-2 The test statistics for the pair-wise LD Score regression among LOY, LTL and MPN. p1: trait 1, 

p2: trait 2, rg: genetic correlation, se: standard error of rg, z: Z-score, p:  p-value 

p1 p2 rg se z p 

LOY (3WAY) MPN 0.34 0.21 1.62 0.11 

LOY (3WAY) LTL -0.05 0.05 -0.98 0.33 

MPN LTL 0.02 0.10 0.20 0.84 

 

I conducted MR analyses to check whether there were directional associations among LOY, 

MPN and LTL. From MR results after applying both radial and Steiger filters, higher LOY was 

associated with increased risk of MPN (betaMR-IVW=0.98, SEMR-IVW=0.18, PMR-IVW=1.6×10−7 ) but 

MPN was not correspondingly associated with risk of LOY (PMR-IVW>0.05). In addition, longer 

LTL was associated with higher risk of MPN (betaMR-IVW=0.71, SEMR-IVW=0.13, PMR-IVW=2×10−7 ) 

but, conversely, MPN was associated with shorter LTL (betaMR-IVW=-0.01, SEMR-IVW=0.002, 

PMR-IVW=5×10−4 ). On the other hand, longer LTL was associated with less LOY (betaMR-IVW=-

0.06, SEMR-IVW=0.01, PMR-IVW=5.8×10−11 ) but there was no significant effect of LOY on LTL 

(PMR-IVW>0.05). Other than the primary model MR-IVW, all other sensitivity MR models 

generated consistent estimates (Table 3-3, Figure 3-4). 
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Table 3-3 Bi-directional pair-wise Mendelian randomisation results among LOY, LTL and MPN with Steiger and Radial filters. n_IVs: number of instrumental 

variables, betaIVW: effect size estimated from MR-IVW model, sebetaIVW: standard error of effect size of MR-IVW model, pIVW: p-value of MR-IVW model, 

CochQp: Cochran’s Q-derived P-value, Isq: I2 statistics, , betaEGGER: effect size estimated from MR-EGGER model, sebetaEGGER: standard error of effect size 

of MR-EGGER model, pEGGER: p-value of MR-EGGER model, interEGGER: intercept estimated from MR-EGGER model, seinterEGGER: standard error of the 

intercept of MR-EGGER model, pinterEGGER: p-value of the intercept of MR-EGGER, betaWM: effect size estimated from MR-WM model, sebetaWM: 

standard error of effect size of MR-WM model, pWM: p-value of MR-WM model, betaPWM: effect size estimated from MR-PWM model, sebetaPWM: 

standard error of effect size of MR-PWM model, pPWM: p-value of MR-PWM model 

Exposure Outcome n_IVs betaIVW sebetaIVW pIVW CochQp Isq betaEGGER sebetaEGGER pEGGER 

LOY (3WAY) MPN 114 0.98 0.18 1.6E-07 0.34 4.65 1.04 0.34 3.1E-03 

LOY (3WAY) LTL 91 -0.01 0.02 4.5E-01 0.34 5.38 -0.01 0.04 7.7E-01 

MPN 
LOY 

(3WAY) 
8 0.00 0.00 4.2E-01 0.53 0.00 0.00 0.01 9.9E-01 

MPN LTL 12 -0.01 0.00 5.0E-04 0.42 2.02 -0.01 0.00 1.2E-02 

LTL 
LOY 

(3WAY) 
84 -0.06 0.01 5.8E-11 0.45 1.30 -0.07 0.01 3.4E-06 

LTL MPN 97 0.71 0.13 2.0E-07 0.53 0.00 1.29 0.24 4.2E-07 

           

Exposure Outcome interEGGER seinterEGGER pinterEGGER betaWM sebetaWM pWM betaPWM sebetaPWM pPWM 

LOY (3WAY) MPN -0.001 0.01 8.5E-01 0.89 0.28 1.7E-03 0.89 0.29 2.6E-03 

LOY (3WAY) LTL 0.000 0.00 9.6E-01 -0.04 0.03 1.6E-01 -0.04 0.02 1.5E-01 

MPN 
LOY 

(3WAY) 
0.001 0.00 6.8E-01 0.00 0.01 7.0E-01 0.00 0.01 6.8E-01 

MPN LTL 0.000 0.00 8.9E-01 -0.01 0.00 2.0E-03 -0.01 0.00 2.0E-03 

LTL 
LOY 

(3WAY) 
0.000 0.00 4.7E-01 -0.07 0.01 1.1E-07 -0.07 0.01 1.9E-07 

LTL MPN -0.018 0.01 3.1E-03 0.97 0.22 3.3E-05 0.89 0.21 6.4E-05 
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Figure 3-3 Scatter and funnel plots for the MR analyses.  
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Based on co-localisation analysis, 12 leading SNPs for LOY co-localised with MPN. These 

mapped to identified MPN genes including: NPAT, MECOM, TET2, TERT, ATM and GFI1B  and 

other genes at sub genome-wide significance for MPN (P<3.5×10−5) including PARP1, DLK1, 

TP53, NREP, MAD1L1 and RBPMS. In addition, 5 leading SNPs for LTL co-localised with MPN. 

These mapped to TERT, NFE2, PARP1 and ATM. Of note, leading SNPs at TERT, PARP1 and 

ATM colocalised with all 3 traits, LOY, LTL and MPN (Table 3-4, Table 3-5).  

  



66 
 

Table 3-4 Co-localised SNPs between LOY and MPN and their nearest mapped genes. h0.pp: posterior probability of the hypothesis that no association with 

either trait, h1.pp: posterior probability of the hypothesis that association with trait 1, not with trait 2, h2.pp: posterior probability of the hypothesis that 

association with trait 2, not with trait 1, h3.pp: posterior probability of the hypothesis that association with trait 1 and trait 2, two independent SNPs, h4.pp: 

posterior probability of the hypothesis that association with trait 1 and trait 2, one shared SNP, coloc_SNP_a0_a1: the shared SNP associated with both trait 

1 and trait 2.  

 

Table 3-5 Co-localised SNPs between LTL and MPN and their nearest mapped genes. 

 

 co-localisation test statistics LOY (3WAY) MPN  

LOY (3WAY) signal h0.pp h1.pp h2.pp h3.pp h4.pp coloc_SNP_a0_a1 SNP CHR BP A1/A0 A1FREQ BETA SE P BETA SE P Nearest Gene 

rs138994074 2.5E-06 1.3E-02 7.3E-06 3.6E-02 0.95 1_226537388_T_C rs4653728 1 226537388 C/T 0.85 0.014 0.002 8.5E-10 0.18 0.04 1.8E-06 PARP1 

rs7129527 3.8E-44 3.6E-05 1.7E-40 1.6E-01 0.84 11_108105593_A_G rs228595 11 108105593 A/G 0.41 0.023 0.002 2.1E-46 0.16 0.03 1.9E-09 ATM 

rs56116444 2.5E-38 7.6E-03 2.2E-38 5.7E-03 0.99 5_111061847_G_T rs56116444 5 111061847 G/T 0.07 0.041 0.003 9.9E-45 -0.27 0.06 2.8E-06 NREP 

rs2280548 4.9E-55 2.0E-02 1.5E-54 6.0E-02 0.92 7_1976457_T_C rs1801368 7 1976457 T/C 0.40 0.027 0.002 2.5E-61 0.13 0.03 4.0E-06 MAD1L1 

rs1824914 4.0E-20 4.4E-04 1.1E-17 1.2E-01 0.88 3_168838408_A_G rs2293661 3 168838408 G/A 0.45 0.016 0.002 4.8E-23 0.14 0.03 5.1E-08 MECOM 

4:105864529_ACT_A 1.3E-23 3.0E-22 5.3E-04 1.1E-02 0.99 4_105806108_T_A rs144317085 4 105806108 A/T 0.97 0.025 0.004 5.9E-09 -0.72 0.07 7.2E-26 TET2 

rs72698720 4.5E-63 1.9E-02 6.2E-63 2.6E-02 0.96 14_101178555_A_G rs72698718 14 101178555 G/A 0.87 0.041 0.002 6.3E-68 0.18 0.04 4.5E-06 DLK1 

rs13167280 2.0E-51 2.7E-48 3.0E-05 4.0E-02 0.96 5_1285974_A_C rs7705526 5 1285974 A/C 0.33 0.010 0.002 3.9E-09 0.46 0.03 4.8E-54 TERT 

rs2853677 2.0E-51 2.7E-48 3.0E-05 4.0E-02 0.96 5_1285974_A_C rs7705526 5 1285974 A/C 0.33 0.010 0.002 3.9E-09 0.46 0.03 4.8E-54 TERT 

rs2979469 1.9E-31 4.7E-02 4.9E-32 1.1E-02 0.94 8_30285091_C_G rs2979469 8 30285091 C/G 0.74 0.023 0.002 1.8E-40 0.14 0.03 8.8E-06 RBPMS 

rs78378222 6.0E-38 5.3E-02 5.5E-39 3.9E-03 0.94 17_7578671_T_C rs35850753 17 7578671 T/C 0.02 0.079 0.006 6.3E-47 0.37 0.09 3.5E-05 TP53 

rs621940 5.1E-15 4.0E-05 2.5E-12 1.9E-02 0.98 9_135870130_G_C rs621940 9 135870130 C/G 0.84 0.018 0.002 2.4E-17 -0.20 0.04 5.8E-09 GFI1B 

 co-localisation test statistics LTL MPN  

LTL signal h0.pp h1.pp h2.pp h3.pp h4.pp coloc_SNP_a0_a1 SNP CHR BP A1/A0 A1FREQ BETA SE P BETA SE P Nearest Gene 

rs61748181 0.0E+00 6.6E-50 8.6E-278 1.4E-13 1.00 5_1285974_A_C rs7705526 5 1285974 A/C 0.327 0.078 0.002 2.4E-282 0.46 0.03 4.8E-54 TERT 

rs7705526 0.0E+00 6.6E-50 8.6E-278 1.4E-13 1.00 5_1285974_A_C rs7705526 5 1285974 A/C 0.327 0.078 0.002 2.4E-282 0.46 0.03 4.8E-54 TERT 

rs79977579 1.1E-11 6.0E-03 4.7E-12 1.7E-03 0.99 12_54698408_A_G rs79755767 12 54698408 A/G 0.096 0.028 0.003 4.8E-16 0.21 0.04 1.5E-06 NFE2 

rs932002 3.0E-42 1.7E-02 8.9E-42 4.9E-02 0.93 1_226577306_T_C rs932002 1 226577306 C/T 0.849 0.040 0.003 7.3E-47 0.17 0.04 2.6E-06 PARP1 

rs611646 4.0E-71 2.4E-05 1.8E-67 1.1E-01 0.89 11_108141701_T_G rs651030 11 108141701 G/T 0.592 0.037 0.002 6.0E-73 -0.16 0.03 2.0E-09 ATM 
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Finally, I performed MTAG analysis to boost the power of MPN GWAS to identify more MPN-

associated signals. According to the output of MTAG, the max FDR of MPN was 0.1, which 

meant that some of the leading MPN signals were driven by LOY and LTL. The same 

clumping algorithm was applied to the GWAS summary statistics of MPN generated from 

MTAG. 35 independent MPN signals were identified after clumping and conditional & joint 

association analysis. However, 12 of these signals showed weak associations (P>1.4×10−3) in 

the original MPN GWAS and these were dropped to avoid reporting false positive signals. 

Among the remaining 23 MPN signals, 10 were identified by the original MPN GWAS 

analysis as having a genome-significant P-value. Finally, 13 novel signals for MPN were 

identified from MTAG analysis, which included co-localised SNPs near PARP1, MAD1L1, DLK1 

and RBPMS and TP53, in which missense mutations are the most common mutations in 

human cancers (Figure 3-4, Table 3-6).  

To reveal the biological functions of these MPN leading signals, enrichment analysis was 

conducted based on the list of nearest genes mapped by these signals. There were 37 

pathways from different databases with evidence of enrichment. The results from both 

KEGG and WP showed associations with the apoptosis pathway. Besides, the associated 

pathways from KEGG included many cancer-related pathways including human T-cell 

leukaemia virus 1 infection, chronic myeloid leukaemia, small cell lung cancer, viral 

carcinogenesis, and pancreatic cancer, which were driven by the known cancer related 

genes PARP1, NFKBIA, TP53, BCL2L1 and MAD1L1. 
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Figure 3-4 Manhattan plot and quantile–quantile (Q-Q) plot illustrating the summary statistics for MPN from MTAG. Pink dot line indicates genome-wide 

significance level (P<5×10−8).  
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Table 3-6 Novel signals identified for MPN from MTAG and the comparison with summary statistics from the original MPN GWAS.  

MPN (MTAG) MPN (Bao et al.57, 2020)  

SNP CHR BP A1/A0 A1FREQ BETA SE P BETA SE P Nearest Gene 

rs76887998 1 226539353 T/C 0.83 0.014 0.002 1.36E-14 0.176 0.037 1.71E-06 PARP1 

rs2712431 3 128316890 A/C 0.69 0.011 0.002 5.54E-13 0.144 0.029 6.72E-07 GATA2 

rs1920123 3 169506173 C/T 0.73 0.009 0.002 3.70E-09 0.100 0.030 9.13E-04 MYNN 

rs3951348 4 7040389 T/C 0.78 0.009 0.002 4.53E-08 0.129 0.033 9.07E-05 CCDC96 

rs4719366 7 1977906 A/G 0.37 0.014 0.001 6.57E-23 0.129 0.027 2.65E-06 MAD1L1 

rs2979488 8 30280630 G/A 0.74 0.013 0.002 3.39E-16 0.135 0.030 9.48E-06 RBPMS 

rs72698718 14 101178555 G/A 0.85 0.020 0.002 1.84E-24 0.177 0.039 4.48E-06 DLK1 

rs2233406 14 35874799 G/A 0.72 0.008 0.002 3.61E-08 0.124 0.030 3.46E-05 NFKBIA 

rs35850753 17 7578671 T/C 0.02 0.041 0.005 1.11E-16 0.367 0.089 3.48E-05 TP53 

rs118035610 17 47804307 C/T 0.94 0.022 0.003 2.66E-14 0.202 0.060 7.70E-04 FAM117A 

rs11082395 18 42072716 T/C 0.13 0.023 0.002 6.89E-30 0.150 0.038 8.09E-05 SETBP1 

rs291688 20 32009341 A/C 0.10 0.014 0.002 2.11E-09 0.155 0.043 3.14E-04 SNTA1 

rs6089050 20 30312945 C/T 0.78 0.017 0.002 5.91E-23 0.123 0.037 7.77E-04 BCL2L1 
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3.6 Discussion 

Using the newly proposed LOY call incorporating whole-exome sequence read depth 

information in UK Biobank male participants, this study identified 20 more novel LOY 

signals, which proved the power of the strategy. However, compared with the 2.5-fold 

increase in the χ2  association statistics from mLRR-Y to PAR-LOY16, only an 11% increment 

was observed and most of the signals already had sub genome-wide significant p-values in 

PAR-LOY models, which means that the method only provides a small boost in power. 

Importantly, this study only analysed the white-European males in UK Biobank. With the 

growing number of other large cohorts with more diverse participants around the world, it 

is important to extend the analysis by including more samples from different ancestries, in 

order to increase the detection power. The trans-ethnic meta-analysis approach could also 

increase the ability to fine-map the causal variants, due to reduced linkage disequilibrium 

windows. 

As a relatively high prevalent genetic biomarker indicating the status of defective DNA 

damage response and cell cycle regulation, evidence on the functional consequences of LOY 

is still very limited, but previous epidemiological studies already identified the associations 

between LOY and a wide range of health outcomes. This study aimed to examine whether 

LOY can improve knowledge about these health outcomes. By using the summary statistics 

for LOY, LTL and MPN and conducting LDSC, bi-directional MR, colocalisation and MTAG 

analyses, the shared mechanism behind these three traits were revealed. From LDSC 

analyses, no significant genetic correlation was observed between LOY, LTL and MPN. 

However, the MR results demonstrated significant positive associations between LOY, LTL 

and MPN. This apparent inconsistency might be because there are directional differences 

and heterogeneous relationships between these 3 traits. Additionally, both colocalisation 

and MTAG analyses identified PARP1, whose inhibitor was approved to use as a treatment 

of BRCA1/2 deficient cancers74. From the summary statistics of MPN generated by MTAG, 

more MPN associated signals were identified, which illustrated the power of using LOY as an 

DNA damage indicator.  
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In the future, this approach could be implemented in other LOY-associated health outcomes 

beyond MPN in order to provide mechanistic insights into the links between LOY, DNA 

damage response, and these health outcomes. They will also identify novel targets of 

disease susceptibility which will likely not be identified through the conventional 

approaches. Although these in-silico analyses provided reliable evidence about the 

mechanisms of LOY and its related health outcomes, more experimental work will be 

needed to illuminate the mechanisms and then help to develop any potential therapeutic 

targets. 
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4.1 Contributions 

This chapter describes the work I performed on male sex chromosome abnormalities in the 

UK Biobank study. I identified the males with sex chromosome abnormalities from their 

mLRR-Y and mLRR-X values and then validated them using WES data. I extracted and 

processed the phenotypes from UK Biobank and performed the regression analyses using 

both BOLT and GLM pipelines. I drafted this chapter with the help of Prof Ken K. Ong and Dr 

Eugene J. Gardner. Prof Claudia Langenberg, Dr Maik Pietzner and Mine Koprulu conducted 

the PheWAS analysis of this paper. Raina Y. Jia performed the analyses for NMR metabolic 

biomarkers. Dr Hana Lango Allen designed the pipeline to estimate read depth from WES 

data. Dr Felix R. Day prepared some phenotypes used in this chapter. Dr Eugene J. Gardner 

helped to draft the method part and provided many useful advice on the analyses. The 

other colleagues from University of Exeter ran the same analyses for most of traits 

mentioned in this chapter independently, which replicated the results generated from this 

chapter. Prof John R.B. Perry, Prof Ken K. Ong and Prof Anna Murray supervised the work 

conducted in this chapter. All the contributors of this chapter reviewed and checked writing 

of this chapter. 

  



74 
 

4.2 Abstract 

To systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter 

syndrome) and 47,XYY, and characterise their risks of adverse health outcomes. I analysed 

genotyping array or exome sequence data in 207,067 men of European ancestry aged 40-70 

from the UK Biobank and related these to extensive routine health record data. Only 49/213 

(23%) of men whom we identified with Klinefelter syndrome and only 1/143 (0.7%) with 

47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We 

observed expected associations for Klinefelter syndrome with reproductive dysfunction (late 

puberty: risk ratio, RR=2.7; childlessness: RR=4.2; testosterone concentration -3.8 nmol/L, 

all P<2×10-8), whereas XYY men appeared to have normal reproductive function. Despite this 

difference, we identified several higher disease risks shared across both Klinefelter 

syndrome and 47,XYY, including Type 2 diabetes (RR=3.0 and 2.6, respectively), venous 

thrombosis (RR=6.4 and 7.4), pulmonary embolism (RR=3.3 and 3.7), and chronic 

obstructive pulmonary disease (RR=4.4 and 4.6; all P<7×10-6). Klinefelter syndrome and 

47,XYY were mostly unrecognised but conferred substantially higher risks of metabolic, 

vascular and respiratory diseases, which were only partially explained by higher levels of 

BMI, deprivation and smoking. 
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4.3 Introduction 

The most common sex chromosome aneuploidies in men are 47,XXY (Klinefelter syndrome) 

and 47,XYY, with population prevalence estimates of 100 per 100,000 and 18-100 per 

100,000,75,76 respectively. Men with Klinefelter syndrome typically present during 

adolescence with delayed puberty or as adults with infertility. Other recognised features 

include tall adult stature, high body fat percentage,77 poor muscle tone, low bone mineral 

density, and increased risks of neurocognitive disability, psychoses, and disorders of 

personality.78 Klinefelter syndrome has also been associated with higher risks of Type 2 

diabetes and venous thromboembolism.79,80 By contrast, 47,XYY is less well characterised as 

many of these individuals may not present to health services and thus are unaware of their 

karyotype. Reported features associated with 47,XYY may therefore be affected by sampling 

bias. These include tall stature, scoliosis, learning difficulties,81 poor muscle tone,82 

increased central fat, and increased risks of seizures, asthma, and emotional and 

behavioural problems (e.g., autism and attention deficit disorder).83 While infertility has 

been reported in some men with XYY, most studies report normal sexual development and 

fertility.84  

Previous studies identified men with Klinefelter syndrome or 47,XYY from medical records, 

and therefore case ascertainment was based on recognition of their typical phenotypic 

features. Therefore, the reported penetrance of these features may have been biased and 

the full spectrum of clinical features overlooked. A more robust alternative approach is to 

identify such individuals from large population-based studies using systematic 

measurements to produce unbiased estimates of the effects of sex chromosome aneuploidy 

on unselected diseases. We recently used this approach to show that mosaic X chromosome 

aneuploidy in women (mosaic Turner’s syndrome, 45,X) conferred a lower penetrance of 

infertility than had been reported by earlier clinic-based studies.85  

Here, I analysed single-nucleotide polymorphism (SNP) array genotype data in 207,067 men 

of European ancestry aged 40-70 from the UK Biobank. I identified 213 men with sex 

chromosome aneuploidy indicative of Klinefelter syndrome and 143 men with 47,XYY, and 

related these karyotypes to extensive study data and medical records to understand the 



76 
 

penetrance of male sex chromosome aneuploidy on typical reproductive outcomes and its 

wider clinical impacts. 
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4.4 Methods  

4.4.1 Study population 

The UK Biobank is a large prospective cohort which recruited approximately 500,000 

participants aged 40 to 70 years across the island of Great Britain. A broad range of 

phenotypic and health-related information was collected from each participant, including 

physical measurements, lifestyle indicators, biomarkers in blood and urine, imaging and 

routine health record data.50 UK Biobank has approval from the North West Multi-centre 

Research Ethics Committee (REC reference 21/NW/0157) and informed consent was 

provided by each participant. 

In the UK Biobank, 488,377 participants had DNA samples assayed using one of two 

genotyping arrays: UK Biobank Lung Exome Variant Evaluation (UK BiLEVE study, N=49,950) 

and Affymetrix Axiom UK Biobank array (UK Biobank Axiom (Affymetrix), N=438,427). These 

two arrays tested 807,411 and 825,927 SNPs respectively, with 95% overlap between 

arrays.50 We restricted our analysis to men of ‘white European’ genetic ancestry as classified 

by the approach previously described by Thompson et al.16 Briefly, this approach uses k-

means-clustering to group individuals by the first four genetic principal components. 

Additionally, I excluded individuals who were classified as White European by our k-means 

approach but self-identified as being of ancestry other than White European.16 I further 

excluded individuals whose samples failed UK Biobank genotyping quality control 

parameters and those who withdrew consent. Accordingly, 207,067 men were included in 

all association testing analyses. I was unable to incorporate non-European individuals when 

modelling the relationship between abnormal karyotypes and phenotypes outlined in this 

manuscript. I identified only 16 non-white European males with abnormal karyotypes: 9 

with 47,XXY and 7 with 47,XYY. 

4.4.2 Identification of male sex chromosome aneuploidy heterozygotes from SNP array 

data 

To identify men with sex chromosome aneuploidy, I downloaded genotyping fluorescence 

signal intensity (log2ratios, LRR) and quality control (QC) information for all SNPs on the X 
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(chrX) and Y chromosomes (chrY) from the UK Biobank data showcase 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22431 and 

https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=1955 ). I excluded SNPs that: i. were 

located within Pseudo-Autosomal Regions (PAR),86 ii. Did not have a calculable LRR on both 

arrays, iii. Did not pass QC in all 106 batches, or iv. Were flagged as failing QC by UK Biobank. 

After these steps, 16,599 chrX SNPs and 579 chrY SNPs remained. I then calculated the 

median LRR across all remaining SNPs on chrX and chrY to generate the values mLRR-X and 

mLRR-Y, respectively. These values represent the median fluorescence signal intensities 

across the entire X or Y chromosome.32 Using the thresholds described by Bycroft et al.,50 

men with [-1≤mLRR-Y<0.23 and mLRR-X>-0.2] were categorised as having 47,XXY (Klinefelter 

syndrome) and men with [mLRR-Y≥0.23 and mLRR-X<-0.2] as 47,XYY (men with [mLRR-

Y≥0.23 and mLRR-X>-0.2] were categorised as 48,XXYY and were not included in further 

analyses).  

4.4.3 Confirmation of male sex chromosome aneuploidy heterozygotes from exome 

sequencing data 

To confirm sex chromosome aneuploidy status using an orthogonal approach, we used 

exome sequencing data available for 83,104 white European men in UK Biobank.87,88 To 

estimate sex chromosome dosage, I calculated the average read depth of three target 

regions: i. non-PAR regions on chrX, ii. X-degenerate regions (XDRs) on chrY as defined by 

Skov et al.,53 and iii. Autosomes. First, we used samtools (version: 1.9) to convert the 

provided CRAM files for each participant to Binary Alignment Map (BAM) files based on the 

GRCh38 reference sequence 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome

/GRCh38_full_analysis_set_plus_decoy_hla.fa). UK Biobank provided the GRCh38 

coordinates of the targeted regions for its exome sequencing design with a BED (Browser 

Extensible Data) file 

(https://biobank.ndph.ox.ac.uk/showcase/ukb/auxdata/xgen_plus_spikein.GRCh38.bed). I 

created three subsets of this BED file by extracting the overlap between the target regions 

and non-PAR regions on chrX, XDRs on chrY, and autosomes according to their GRCh38 

coordinates. Then, they were converted to Picard Interval Lists using the Picard (version: 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22431
https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=1955
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa
https://biobank.ndph.ox.ac.uk/showcase/ukb/auxdata/xgen_plus_spikein.GRCh38.bed
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2.21.6-SNAPSHOT) function BedToIntervalList, based on the same reference sequence. Using 

these Picard Interval Lists, the BAM file of each participant was inputted to calculate the 

average coverages of non-PAR regions on chrX, XDRs on chrY, and autosomes using the 

Picard function CollectHsMetrics. The relative read depth of non-PAR regions on chrX and 

XDRs on chrY were defined as the average coverage in each of these regions divided by the 

average coverage across the autosomes. The relative read depth of non-PAR regions on chrX 

and XDRs on chrY multiplied by 2 were used as a proxy of chrX dosage and chrY dosage, 

respectively. Men with [X dosage>1.2] were categorised as having 47,XXY (Klinefelter 

syndrome) and men with [Y dosage>1.5] as 47,XYY. Men with [X dosage>1.2 and Y 

dosage>1.5] were categorised as 48,XXYY. 

4.4.4 Disease association testing  

To test for the disease burden associated with male sex chromosome aneuploidies, we 

performed logistic regression models with Klinefelter syndrome or 47,XYY (coded ‘1’) 

compared to the normal male karyotype 46,XY (coded ‘0’) as the exposure. Outcomes 

comprised 875 ICD-10 coded diseases amalgamated from death registries, hospital episode 

statistics, primary care records (in a subset, N=94,959), and self-reported conditions (from 

the ‘first occurrence of disease’ dataset released by UK Biobank). The dataset contains 

further 19 case definitions from dedicated working groups that used multiple sources for 

case identifications, such as for chronic obstructive pulmonary disease or end stage renal 

disease. For each participant, all events from all sources were mapped to an ICD-10 code 

and the date of the first disease occurrence from any source was taken as the event date. 

From this dataset, we filtered out likely erroneous disease events if the disease occurrence 

date: (i) was unknown or missing, ii) matched or preceded the date or year of birth, (iii) 

occurred after the dataset release date. We performed logistic regression models in R 

(version: 3.6.0) among unrelated men of ’white European’ genetic ancestry (maximum 

N=162,322) and adjusted for age at study baseline, test centre, and the first 10 genetically 

derived principal components. Resulting odds ratios (OR) were converted to risk ratios (RR) 

using the formula described by Zhang and Yu.89 We applied a stringent Bonferroni corrected 

p-value threshold of P<0.05/875=5.7×10-5 to define statistical significance (Supplementary 

Table 4-1 (Appendix B), Figure 4-1).  
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Figure 4-1 Circos plot summarizing phenome-wide disease association tests for KS and 47,XYY 

compared to 46,XY. Each segment represents each ICD-10 chapter in lexicographical order. P-values 

(on a negative logarithmic scale) were from logistic regression models for KS (outer circle) and XYY 

(inner circle) with each of 875 ICD-10 coded disease outcomes, adjusted for age and ten principal 

genetic components. Outcomes reaching the multiple testing corrected statistical significance 

threshold (P<0.05/875=5.7×10-5; dashed line) are indicated by large circles (for positive associations) 

and diamonds (for negative associations). SASATCODCTOC=streptococcus and staphylococcus as the 

cause of diseases classified to other chapters; OBAATCODCTOC=other bacterial agents as the cause 

of diseases classified to other chapters; MABDDTUOT=mental and behavioural disorders due to use 

of tobacco; SDDOSS=specific developmental disorders of scholastic skills; OEAMD=other 

extrapyramidal and movement disorders; PIDCE=polyneuropathy in diseases classified elsewhere; 

DOAAACIDCE=disorders of arteries, arterioles and capillaries in diseases classified elsewhere; 

ONDOLVALN=other non-infective disorders of lymphatic vessels and lymph nodes; UALRI=unspecified 

acute lower respiratory infection; OCOPD=other chronic obstructive pulmonary disease; 

ONGAC=other non-infective gastro-enteritis and colitis; CAFAC=cutaneous abscess, furuncle and 

carbuncle; OLIOSAST=other local infections of skin and subcutaneous tissue; AIODCE=arthropathies 

in other diseases classified elsewhere; OWPF=osteoporosis without pathological fracture; 

OSCAMPN=other sex chromosome abnormalities, male phenotype, NEC; NEC=not elsewhere 

classified 
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4.4.5 Study phenotype association testing 

To test the association of male sex chromosome aneuploidy status against selected 

anthropometric, reproductive, metabolic, cardiovascular, learning/memory, and 

behavioural study-measured traits (Supplementary Table 4-2 (Appendix B)), I used a linear 

mixed model implemented in BOLT-LMM (version: 2.3.2)63. The outcome ‘childlessness‘ was 

derived from the response ‘zero’ to the question “How many children have you fathered?” 

among men aged 55 and older. The Townsend Deprivation index was used as an indicator of 

socio-economic status, based on participants’ home postcodes. The two binary exposure 

variables described above were converted to BGEN file format using PLINK2 (version:2.00-

alpha) and inputted to BOLT-LMM via the bgenFile flag. A genetic relationship matrix (GRM) 

was generated based on all autosomal variants which had minor allele frequency (MAF)>1%, 

passed QC in all 106 batches and were present on both genotyping arrays. Genotyping chip, 

age at baseline, and the first 10 genetically derived principal components were included as 

covariates. For binary outcomes, we also performed logistic regression and calculated the 

RR from the OR as described above. 

4.4.6 NMR metabolic biomarkers association testing 

We analysed 168 circulating metabolic traits measured by proton nuclear magnetic 

resonance (NMR) spectroscopy (Nightingale Health Plc.) in non-fasting plasma samples in UK 

Biobank men with 46,XY (N=49,806), Klinefelter syndrome (N=48) or 47,XYY (N=38). For 

each metabolic traits we first performed adjustment for technical variations using the R 

package ukbnmr (https://www.medrxiv.org/content/10.1101/2021.09.24.21264079v2.), 

then performed inverse rank normalisation, and then further adjusted for sex, age at the 

first study visit, BMI and the first 10 genetically derived principal components. Associations 

between abnormal karyotype and each metabolic trait were tested in separate linear 

regression models (Supplementary Figure 4-1 (Appendix B)). 
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4.5 Results  

4.5.1 Prevalence of Male Sex Chromosome Aneuploidy in a Population Scale Biobank 

Using genotyping array data, of 207,067 men of European ancestry, we identified 213 men 

with 47,XXY (Klinefelter syndrome (KS), prevalence 103/100,000) and 143 with 47,XYY 

(69/100,000; Figure 2A). Of these cases who also had exome sequencing data, we observed 

100% confirmation of aneuploidy status (62/62 men with KS and 54/54 men with 47,XYY) 

(Figure 4-2B,C). 

 

Figure 4-2 (A) Median array genotype intensity on the X (mLRR-X) and Y (mLRR-Y) chromosomes for 

each of N=207,067 men, including 213 with 47,XXY (Klinefelter syndrome), 143 with 47,XYY and 2 with 

48,XXYY. (B) X dosage estimated from exome sequencing plotted against mLRR-X (N=83,104). (C) Y 

dosage estimated from exome sequencing plotted against mLRR-Y (N=83,104). 

Only 49/213 (23.0%) of men with KS and 1/143 (0.7%) with 47,XYY had a diagnosis of sex 

chromosome abnormality on routine medical records or self-reported data (ICD10: Q98 

Other sex chromosome abnormalities, male phenotype, not elsewhere classified). Similar 
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proportions were found in the subsample of men who had primary care data: only 24/89 

(27.0%) with KS and 1/76 (1.3%) with 47,XYY had known sex chromosome abnormality. 

Conversely, of the men with a diagnosis of sex chromosome abnormality on their health 

record, by our analysis we classified four as 46,XX (mLRR-Y<-1) and a further eight as having 

a normal male karyotype. 

4.5.2 Quantification of typical features of 47,XXY and 47,XYY 

Compared to men with a normal karyotype (46,XY), men with KS and 47,XYY had taller adult 

height, by 2.7 cm (P=7×10-15) and 7.9 cm (P=8×10-77), respectively, and were more likely to 

have ‘taller than average’ childhood height (RR=1.3, P=0.01 and RR=1.7, P=5×10-10, 

respectively). Men with KS and 47,XYY were more likely to be childless (RR=4.2, P=4×10-117 

and RR=2.4, P=2×10-17, respectively), but only those with KS (not 47,XYY) were more likely to 

report later than average puberty timing (RR=2.7, P=2×10-8) (Table 4-1).  

In addition, men with KS and 47,XYY were less likely to have a university or college degree 

(RR=0.39, P=5×10-8 and RR=0.50, P=9×10-5, respectively) and had lower fluid intelligence test 

scores (beta=-2.1, P=3×10-15 and -1.6, P=5×10-8, respectively), were more likely to be 

smokers (RR=1.1, P= 0.28 and RR=1.2, P=8×10-3, respectively), report depressive episodes 

(RR=2.4, P=6×10-10 and RR=2.7, P=3×10-9) and live in areas with higher deprivation index 

(beta=1.6, P=1×10-15 and 1.6, P=1×10-10, respectively). Men with KS and 47,XYY were also 

more likely to live without a partner (RR=2.2, P=4×10-20 and RR=2.1, P=1×10-12) and report 

loneliness and isolation (RR=2.2, P=4×10-13 and RR=2.5, P=3×10-13) and poor overall health 

(RR=4.2, P=2×10-26 and RR=3.8, P=2×10-14) (Table 4-1). 
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Table 4-1 Typical features of Klinefelter syndrome and 47,XYY compared to men with normal (46,XY) karyotypes 

 

KS, Klinefelter syndrome 

Beta, Regression coefficient from linear regression models 

RR, Relative risk from logistic regression models 

 

 
46,XY KS 47,XYY  KS vs. 46,XY 47,XYY vs. 46,XY 

Continuous traits Mean (SD)  Mean (SD) Mean (SD) Beta 95% CI P Beta 95% CI P 

Height (cm) 175.9 (6.8) 178.7 (7.6) 184.4 (7.6) 2.7 2.0 - 2.7 7×10-15 7.9 7.0 - 7.9 8×10-77 

Fluid intelligence test scores 6.3 (2.2) 4.2 (1.9) 4.7 (1.9) -2.2 -2.7 to -2.2 3×10-15 -1.6 -2.1 to -1.6 5×10-8 

Townsend deprivation index -1.4 (3.0) 0.3 (3.5) 0.2 (3.5) 1.6 1.2 - 1.6 1×10-15 1.6 1.1 - 1.6 1×10-10 

Binary traits % % % RR 95% CI P RR 95% CI P 

Childless 21.2% 87.6% 51.8% 4.1 3.9 - 4.3 4×10-117 2.4 2.0 - 2.8 2×10-17 

‘Taller than average’ childhood height 31.7% 39.9% 55.6% 1.3 1.0 - 1.5 1×10-2 1.7 1.5 - 2.2 5×10-10 

Late puberty timing 6.2% 17.4% 7.3% 2.7 1.8 - 3.8 2×10-8 1.1 0.5 - 2.0 8×10-1 

University or college degree 40.4% 16.3% 20.2% 0.39 0.3 - 0.6 5×10-8 0.50 0.3 - 0.7 9×10-5 

Depressive episodes 9.1% 22.1% 24.5% 2.4 1.9 - 3.0 6×10-10 2.7 2.0 - 3.5 3×10-9 

Ever smoked 51.6% 54.5% 61.0% 1.1 0.95 - 1.2 3×10-1 1.2 1.1 - 1.4 8×10-3 

Lives alone 17.2% 37.4% 35.3% 2.1 1.8 - 2.5 3×10-14 2.1 1.6 - 2.5 2×10-8 

Lives without a partner 22.7% 50.0% 48.6% 2.2 1.9 - 2.5 4×10-20 2.1 1.8 - 2.5 1×10-12 

Loneliness, isolation 14.8% 33.3% 37.5% 2.2 1.8 - 2.6 4×10-13 2.5 2.0 - 3.0 3×10-13 

Poor overall health 5.0% 21.1% 19.1% 4.2 3.2 - 5.3 2×10-26 3.8 2.6 - 5.2 2×10-14 

Long-standing illness or infirmity 35.7% 65.7% 63.8% 1.9 1.7 - 2.1 1×10-19 1.8 1.6 - 2.1 4×10-13 
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4.5.3 Anthropometric features of men with 47,XXY and 47,XYY 

Compared to 46,XY men, those with KS and 47,XYY had higher BMI (beta=1.8 Kg/m2, 

P=8×10-11 and 2.2, P=5×10-11, respectively), higher percent total body fat (beta=4.8%, 

P=8×10-40 and 2.2%, P=3×10-7) and weaker hand grip strength (beta=-7.1 Kg, P=1×10-36 and -

2.6, P=3×10-4) (Table 2). Other features differed between the groups. Even after accounting 

for their taller adult heights, men with 47,XYY (but not KS) had higher total fat-free mass 

(beta=3.8 Kg, P=4×10-15). Furthermore, men with 47,XYY had slightly higher bone mineral 

density (BMD) (beta=0.04 g/cm2, P=2×10-2), whereas men with KS had lower BMD (-0.05, 

P=5×10-6) and higher likelihood of osteoporosis with pathological fracture (RR=10.8, P=2×10-

7) (Table 4-2).  
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Table 4-2 Anthropometric characteristics of Klinefelter syndrome and 47,XYY compared to men with normal (46,XY) karyotypes 

 

KS, Klinefelter syndrome 

Beta, Regression coefficient from linear regression models 

RR, Relative risk from logistic regression models

 
46,XY KS 47,XYY  KS vs. 46,XY 47,XYY vs. 46,XY 

Continuous traits Mean (SD) Mean (SD) Mean (SD) Beta 95% CI P Beta 95% CI P 

BMI (Kg/m2) 27.9 (4.2) 29.7 (5.7) 30.2 (5.7) 1.8 1.2 - 2.3 8×10-11 2.2 1.6 - 2.9 5×10-11 

Body fat percentage (%) 29.5 (5.4) 34.3 (6.0) 31.6 (5.7) 4.8 4.1 - 5.6 9×10-40 2.2 1.4 - 3.1 4×10-7 

Hand grip strength (Kg) 41.9 (8.9) 35.2 (8.9) 39.9 (9.7) -7.1 -8.2 to -6.0 1×10-36 -2.6 -3.9 to -1.2 3×10-4 

Fat-free mass, adj. height (Kg) 63.9 (7.7) 66.1 (9.4) 73.5 (9.2) 0.2 -0.6 to 0.9 6×10-1 3.8 2.8 - 4.7 4×10-15 

Bone mineral density (g/cm2) 0.6 (0.2) 0.5 (0.2) 0.6 (0.2) -0.05 -0.08 to -0.03 5×10-6 0.04 0.01 - 0.08 2×10-2 

Binary traits % % % RR 95% CI P RR 95% CI P 

Osteoporosis with pathological fracture 0.3% 2.4% 0.7% 10.8 4.5 - 25.3 2×10-7 3.1 0.4 - 20.6 3×10-1 

Osteoporosis without pathological fracture 1.6% 8.9% 0.7% 6.2 4.0 - 8.9 5×10-15 0.5 0.1 - 3.4 5×10-1 
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4.5.4 Hormonal, metabolic and vascular features of men with 47,XXY and 47,XYY 

Compared to 46,XY men, those with KS (but not 47,XYY) had lower plasma total 

testosterone concentration (beta=-3.8 nmol/L, P=2×10-50). Both KS and 47,XYY men had 

lower plasma IGF-1 concentrations (beta=-1.7 nmol/L, P=1×10-6 and -2.3, P=3×10-8, 

respectively).  

We also identified several adverse metabolic and vascular health outcomes shared across 

both KS and 47,XYY, including higher risks for Type 2 diabetes (RR=3.0, P=2×10-20 and 

RR=2.6, P=3×10-10, respectively), albuminuria (RR=1.9, P=5x10-4 and RR=2.4, P=5x10-6), 

venous thrombosis (RR=6.4, P=3x10-23 and RR=7.4, P=7x10-22), pulmonary embolism 

(RR=3.3, P=2x10-6 and RR=3.7, P=7x10-6) and atherosclerosis (RR=3.1, P=6x10-3 and RR=5.5, 

P=8x10-6). These disease associations were only partially attenuated after adjustments for 

BMI, household deprivation and smoking (Table 4-3). Exploration of red blood cell and 

platelet traits showed lower haematocrit and haemoglobin concentrations in KS (but not 

47,XYY) men, but no obvious explanation for higher thrombosis risk was found 

(Supplementary Table 4-2 (Appendix B)). 

Men with KS and 47,XYY had lower levels of HDL cholesterol (beta=-0.11 mmol/L, P=2×10-7 

and -0.17, P=3×10-11, respectively) and men with 47,XYY (but not KS) had higher triglycerides 

(beta=0.32 mmol/L, P=1×10-3). In the subgroup with NMR metabolic data, we observed that 

KS (n=48) and XYY (n=38) men had lower levels of most HDL-related traits. Furthermore, 

47,XYY (but not KS) men showed lower levels across all lipid classes, apart from triglycerides 

(Supplementary Figure 4-1 (Appendix B)). 

4.5.5 Respiratory features of men with 47,XXY and 47,XYY 

Compared to 46,XY men, those with KS and 47,XYY had lower forced expiratory volume 

(beta=-0.68 L, P=1×10-46 and -0.26, P=2×10-5, respectively) peak expiratory flow (beta=-125 

L/min, P=2×10-38 and -68, P=4×10-8) and vital capacity (beta=-0.93 L, P=2×10-50 and -0.25, 

P=3×10-3), and higher risks for chronic obstructive pulmonary disease (RR=4.4, P=5×10-18 and 

RR=4.6, P=2×10-13) and asthma (RR=2.0, P=9×10-9 and RR=1.7, P=4×10-3). Again, these 
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disease associations were only partially attenuated after adjustments for BMI, household 

deprivation and smoking (Table 4-3).  
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Table 4-3 Hormonal, metabolic, vascular and respiratory characteristics of men with Klinefelter syndrome and 47,XYY compared to men with normal (46,XY) 
karyotypes 

 

KS, Klinefelter syndrome 

Beta, Regression coefficient from linear regression models 

RR, Relative risk from logistic regression models 

TDI, Townsend Deprivation Index 

 46,XY KS 47,XYY  KS vs. 46,XY     47,XYY vs. 46,XY 

    Baseline model adj. BMI, TDI and smoking Baseline model adj. BMI, TDI and smoking 

Continuous traits Mean (SD) Mean (SD) Mean (SD) Beta 95% CI P Beta 95% CI P Beta 95% CI P Beta 95% CI P 

Testosterone (nmol/L) 12.0 (3.7) 8.2 (6.0) 11.5 (4.7) -3.8 -4.3 to -3.3 2×10-50 -3.3 -3.8 to -2.8 2×10-41 -0.5 -1.1 to 0.1 9×10-2 0.1 -0.5 to 0.7 8×10-1 

SHBG (nmol/L) 39.9 (16.8) 41.1 (22.7) 40.3 (20.4) 2.3 0.1 - 4.4 2×10-2 4.2 2.1 - 6.2 3×10-5 1.3 -1.4 to 4.0 3×10-1 3.7 1.1 - 6.2 2×10-3 

IGF-1 (nmol/L) 21.9 (5.5) 20.4 (6.5) 20.0 (5.7) -1.7 -2.3 to -1.0 1×10-6 -1.2 -1.9 to -0.5 7×10-4 -2.3 -3.1 to -1.4 3×10-8 -1.8 -2.6 to -0.9 2×10-5 

HDL cholesterol (mmol/L) 1.3 (0.3) 1.2 (0.3) 1.1 (0.3) -0.11 -0.15 to -0.07 2×10-7 -0.06 -0.10 to -0.02 5×10-3 -0.17 -0.22 to -0.12 3×10-11 -0.10 -0.15 to -0.06 1×10-5 

LDL cholesterol (mmol/L) 3.5 (0.9) 3.4 (0.9) 3.4 (0.9) -0.10 -0.22 to 0.01 6×10-2 -0.06 -0.18 to 0.05 3×10-1 -0.15 -0.29 to -0.01 2×10-2 -0.11 -0.25 to 0.03 9×10-2 

Triglycerides (mmol/L) 2.0 (1.2) 2.1 (1.0) 2.3 (1.4) 0.10 -0.05 to 0.25 2×10-1 -0.01 -0.16 to 0.13 8×10-1 0.32 0.14 - 0.51 1×10-3 0.13 -0.05 to 0.31 3×10-1 

Forced expiratory volume (L) 3.3 (0.8) 2.7 (0.8) 3.2 (0.9) -0.7 -0.8 to -0.6 1×10-46 -0.6 -0.7 to -0.5 1×10-39 -0.3 -0.4 to -0.1 2×10-5 -0.2 -0.3 to -0.1 5×10-3 

Peak expiratory flow (L/min) 469 (138) 348 (132) 408 (132) -125 -144 to -106 2×10-38 -117 -136 to -98 3×10-34 -68 -92 to -44 4×10-8 -58 -81 to -34 4×10-6 

Vital capacity (L) 4.5 (1.0) 3.5 (0.9) 4.3 (1.0) -0.9 -1.1 to -0.8 2×10-50 -0.8 -0.9 to -0.7 4×10-41 -0.2 -0.4 to -0.1 3×10-3 -0.1 -0.03 to 0.03 2×10-1 

Binary traits % % % RR 95% CI P RR 95% CI P RR 95% CI P RR 95% CI P 

Type 2 diabetes 10.3% 28.6% 25.0% 3.0 2.4 - 3.6 2×10-20 2.3 1.7 - 2.9 5×10-12 2.6 1.9 - 3.4 3×10-10 1.8 1.2 - 2.5 3×10-5 

Albuminuria  13.9% 26.6% 30.3% 1.9 1.3 - 2.6 5×10-4 1.7 1.2 - 2.4 4×10-3 2.4 1.7 - 3.2 5×10-6 2.1 1.4 - 2.9 1×10-4 

Venous thrombosis 1.8% 10.9% 12.6% 6.4 4.2 - 9.1 3×10-23 5.4 3.5 - 7.8 2×10-22 7.4 4.6 - 10.9 7×10-22 5.6 3.4 - 8.6 2×10-18 

Pulmonary embolism 2.5% 4.9% 7.5% 3.3 2.0 - 5.2 2×10-6 2.8 1.7 - 4.5 5×10-5 3.7 2.1 - 6.2 7×10-6 2.8 1.5 - 4.9 9×10-4 

Atherosclerosis 1.0% 2.8% 4.9% 3.1 1.4 - 6.8 6×10-3 2.2 0.9 - 5.2 9×10-2 5.5 2.6 - 11.2 8×10-6 4.4 2.1 - 9.1 1×10-4 

COPD 4.2% 16.4% 16.8% 4.4 3.2 - 6.0 5×10-18 3.7 2.6 - 5.1 2×10-12 4.6 3.1 - 6.5 2×10-13 3.3 2.1 - 5.0 2×10-7 

Asthma 11.8% 23.5% 19.6% 2.0 1.6 - 2.6 1×10-7 1.9 1.5 - 2.5 1×10-6 1.7 1.2 - 2.3 4×10-3 1.6 1.1 - 2.2 1×10-2 
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4.6 Discussion  

Using systematic case ascertainment in a large, unselected population of men of European 

ancestry aged 40-70, we report the prevalence of KS (103/100,000) and 47,XYY 

(69/100,000). Notably, only a small minority of these men had a diagnosis of sex 

chromosome abnormality on their medical records or by self-report (23% of KS and 0.7% of 

47,XYY) and yet these conditions conferred substantially increased risks for multiple, 

potentially preventable diseases.   

The under-diagnosis of KS and 47,XYY has been previously indirectly quantified in other 

settings, based on the differences in their clinical prevalence compared to estimates from 

population-based cytogenetic surveys in new-born infants. Such studies estimated that only 

between 7% (in UK) and 57% (in Australia) of expected KS cases were diagnosed based on 

clinical presentation. For XYY, only between 3% (in UK) and 18% (in Denmark) of expected 

cases were diagnosed.76  

Our prevalence estimates in an adult study population are somewhat lower than those 

reported by those new-born infants (KS: 152/100,000; and 47,XYY: 98/100,000 males).76 

While this could be interpreted as indicating higher mortality rates, it is recognised that UK 

Biobank comprises a more educated and healthier sample compared to the general 

population, likely due to ‘healthy volunteer’ bias.90 Similarly, the prevalence of other 

adverse genetic conditions is reportedly lower in UK Biobank than in other more 

representative studies.91  

Previous studies have highlighted higher disease risks in men with KS. Bojesen et al.92 

identified 832 men with KS from hospital records in Denmark and reported higher risks for 

venous thrombosis (hazard ratio=5.3, 95% CI 3.3–8.5), pulmonary embolism (3.6, 1.9–6.7), 

chronic obstructive pulmonary disease (3.9, 2.5–6.1), Type 2 diabetes (3.7, 2.1–6.4), and 

atherosclerosis (4.5, 2.8–7.1). Swerdlow et al.80 accessed data on 3,518 UK patients with KS 

diagnosed since 1959 and followed to mid-2003 and reported higher mortality from 

Diabetes mellitus (standardized mortality ratio: 5.8, 95% CI, 3.4–9.3), pulmonary embolism 

(5.7, 2.5–11.3) and chronic lower respiratory disease (2.1, 1.4–3.0). Zöller et al.79 reported a 

higher risk for venous thromboembolism (incidence rate ratio, IRR=6.4, 95% CI 5.1-7.9) in 
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1,085 men diagnosed with KS between 1969 and 2010 in Sweden. Our findings confirm 

these strong disease associations and also the reported higher risks of psychiatric illness and 

osteoporosis.  

By contrast, few studies have reported on disease risks in men with 47,XYY. Berglund et al. 

identified 255 men with 47,XYY from hospital records in Denmark and reported higher risks 

for venous thrombosis (IRR=10.2, 95% CI 4.6–22.6), and chronic obstructive pulmonary 

disease (IRR=5.8, 2.4–15.1).93 Our findings confirm those observations and extend the list of 

diseases strongly associated with 47,XYY to also include Type 2 diabetes, pulmonary 

embolism and atherosclerosis.  

We observed some notable differences between KS and 47,XYY. KS is a well-recognised 

cause of reproductive dysfunction, and this was reflected in our data by their later age at 

puberty, lower testosterone levels and high risk of being childless. Reproductive dysfunction 

likely also contributes to their tall stature (due to later pubertal growth completion), lower 

bone density and muscle strength and greater adiposity. By contrast, men with 47,XYY 

appeared to have normal reproductive function, with no alteration in their puberty timing 

or testosterone levels, and a more modestly higher risk of being childless which could be 

explained by their similarly higher chance of living without a partner. 

Hence, despite these marked differences in reproductive function, it is unclear why both KS 

and 47,XYY should show striking similarities in conferring substantially higher risks for many 

diseases in common – Type 2 diabetes, atherosclerosis, venous thrombosis, pulmonary 

embolism, and COPD, which persisted after adjustments for several lifestyle behavioural-

related traits (BMI, smoking, deprivation). Higher risks of Type 2 diabetes, atherosclerosis 

and microalbuminuria, with lower HDL cholesterol and higher adiposity, together indicate 

higher insulin resistance in both KS and 47,XYY men. Both conditions confer a triple dose of 

the pseudo-autosomal region, which contains the growth-related SHOX gene, which likely 

partially contributes to their tall stature, and there are case reports of insulin resistance in 

other conditions characterised by SHOX excess.94,95 However, the underlying mechanisms 

are yet unknown.  
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Similarly, it is unclear why risks for venous thrombosis and pulmonary embolism are raised 

in both KS and 47,XYY to a similar substantial degree, around 6-7 fold higher risk for venous 

thrombosis. This is a similar or even higher than that conferred by Factor V Leiden, a genetic 

variant carried by around 5% of white and of European descent.96 Hence, it might be 

considered to add sex chromosome aneuploidy to the screening for genetic causes of 

thrombophilia. Furthermore, as KS and 47,XYY confer higher risks for multiple potentially 

preventable diseases, future studies should explore the potential benefits of wider testing.  

Strengths of our study include the use of systematic case ascertainment and 100% 

confirmation of GWAS array-based categorisation using exome sequencing data in a large 

sub-sample. Furthermore, our numbers of individuals with a male sex chromosome 

aneuploidy are similar to those reported by UK Biobank, which found 355 such individuals 

(99.2% of our 358 cases).50 GWAS array genotyping and exome sequencing are increasingly 

performed in clinical settings, however male sex chromosome aneuploidy status is not 

routinely derived. In addition, the wide range of traits and diseases available in UK Biobank 

allowed us to systematically quantify the disease and phenotypic impacts of male sex 

chromosome aneuploidy. 

Limitations include the ‘healthy volunteer’ bias of the UK Biobank sample and the yet 

incomplete linkage to primary care health data. Hence it is likely that the true disease risks 

associated with KS and 47,XYY analyses are even higher than the substantial estimates that 

we observed.  

In conclusion, our findings show that male sex chromosome aneuploidy can be reliably 

detected using GWAS or exome sequencing data. Klinefelter syndrome and 47,XYY were 

mostly unrecognised but conferred substantially higher risks of diverse potentially 

preventable diseases, including metabolic and vascular diseases, which were only partially 

explained by higher levels of BMI, deprivation, and smoking. Future studies should consider 

the utility of deriving male sex chromosome aneuploidy status when genetic testing is 

undertaken for existing clinical indications, e.g., for thrombosis risk. Furthermore, our 

findings add significantly to ongoing debates regarding the potential benefits of wider 

population genetic screening. 
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5.1 Contributions 

This chapter describes the work I performed on the first exome-wide gene burden testing 

for LOY. I processed the WES data for over 200,000 participants from UK Biobank by 

implementing several QC procedures under the guidance of Dr Hana Lango Allen. I set up 

and tested the analysis pipeline of STAAR and conducted the leave-one-out analysis. Prof 

John R.B. Perry set up the analysis pipeline of BOLT-LMM and conducted the sensitivity 

analyses. Stasa Stankovic and Mine Koprulu annotated the variants using the VEP. Dr 

Eleanor Wheeler performed the multi-tissue eQTL associations in GTEx. Dr Felix R Day 

prepared the phenotypes and checked principal components and geographical distribution 

of GIGYF1 loss of function carriers. Nicola D Kerrison checked the details of the GIGYF1 loss 

of function carriers with T2D. Prof Po-Ru Loh proposed the formula of PAR-LOYq. Dr Maik 

Pietzner, Prof Nicholas J Wareham, Prof Claudia Langenberg and Prof Ken K Ong provided 

valuable advice on the analyses and writing.  
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5.2 Abstract 

Mosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal 

mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways. 

Previous genetic studies have focussed on identifying common variants associated with LOY, 

which we now extend to rarer, protein-coding, variation using exome sequences from 

82,277 male UK Biobank participants. Loss of function of two genes – CHEK2 and GIGYF1 - 

reached exome-wide significance. Rare alleles in GIGYF1 have not previously been 

implicated in any complex trait, but here loss-of-function carriers exhibit six-fold increased 

susceptibility to LOY (OR=5.99 [3.04-11.81], P=1.3×10-10). These same alleles were also 

associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes 

(OR=6.10 [3.51-10.61], P=1.8×10-12), 4kg higher fat mass (P=1.3×10-4), 2.32 nmol/L lower 

serum IGF1 levels (P=1.5×10-4) and 4.5kg reduced handgrip strength (P=4.7×10-7). These 

associations were mirrored by a common variant nearby associated with expression of 

GIGYF1. Our observations are consistent with GIGYF1 enhancing insulin and IGF-1 receptor 

signaling, highlighting a potential direct connection between clonal mosaicism and 

metabolic health. 
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5.3 Introduction 

Mosaic loss of the Y chromosome in leukocytes (LOY) is the most common form of clonal 

mosaicism, first noted over fifty years ago97,98. It has been associated with risk of a number 

of complex diseases and traits, however the biological mechanisms underpinning these 

observations are unclear. Like other forms of clonal mosaicism, LOY is strongly associated 

with age, reflecting greater opportunity for mitotic errors in haemopoietic stem cell division 

and subsequent clonal expansion to occur. Predisposition to LOY also has a heritable 

component and to date, over 150 associated common genetic variants have been 

identified16,30,32,33. These loci have implicated genes involved in cell-cycle fidelity and DNA 

damage response (DDR), supporting the idea that LOY is a readily detectable manifestation 

of subtle defects in these processes16,32. We have hypothesized that predisposition to 

genomic instability that is shared across multiple cell types, including leukocytes, may 

explain the observational associations between LOY and other health outcomes16. This 

concept is most apparent for CHEK2 loss of function, which both promotes LOY in men and 

extends reproductive life in women through the shared mechanism of inhibiting DNA 

damage sensing and apoptosis. Identifying novel genetic determinants associated with LOY 

has the potential, therefore, to not only increase our knowledge of clonal haematopoiesis, 

but also to identify loci that underlie susceptibility to other complex traits through shared 

biological mechanisms. We previously demonstrated this with Type 2 Diabetes (T2D), where 

overlap with LOY highlights loci which likely impact cellular homeostasis in metabolic 

tissues. For example, alleles in CCND2 both increase the risk of T2D and LOY16, with this 

gene encoding the major D-type cyclin that is expressed in pancreatic β-cells and is essential 

for adult β cell growth99. 

To date, genetic studies for LOY have focussed on genotype-array imputed common genetic 

variation, which largely misses the contributions of rarer, often more deleterious, 

alleles16,30,32. To address this, we perform the first exome-sequence GWAS for LOY, assessing 

the role of rare protein-coding variation. We extend and confirm previous observations 

supporting the role of CHEK2 and identify a novel association with GIGYF1 loss of function, 

highlighting an intriguing link between LOY and metabolic health. 
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5.4 Methods 

5.4.1 Phenotype definitions 

Until now, there were two established LOY estimation methods based on SNP-array data: (1) 

the median or mean of log R ratio (mLRR-Y) genotyping intensity values of the probes on the 

male-specific regions of chromosome Y (MSY); and (2) the phase-based computational 

method that estimates allelic imbalance using only the pseudo autosomal regions (PAR-LOY) 

detailed by previously16. The mLRR-Y and PAR-LOY are independent approaches as they are 

estimated from non-overlapping regions of the Y chromosome. Although there is 

considerable correlation in the LOY estimates produced by these two methods, we sought 

to combine the independent information considered by the two approaches to gain 

increased power for genetic association analyses. We combined PAR-LOY and mLRR-Y with 

an additional measure, the estimated fraction of cells with LOY (AF-LOY) which was 

estimated when generating PAR-LOY16. Our new combined call of LOY (PAR-LOYq) is defined 

as PAR-LOY+ 3×AF-LOY– 3×mLRR-Y (cropped to the range [0,2]). The intuition behind this 

formula is to augment the binary PAR-LOY variable by up-weighting individuals who have a 

larger LOY cell fraction (as estimated by AF-LOY and mLRR-Y), which may be more strongly 

associated with risk alleles. 

We compared the performance of the three LOY estimates derived from the genotyping 

array data using the full set of male UKBB participants16. We performed association testing 

with age and ever smoking status, which are two established risk factors for LOY27,28, and 

the 156 previously reported LOY-associated loci16. For both age and smoking status, PAR-

LOYq outperformed than two established LOY estimation methods using the same sample; 

the t-test statistic of PAR-LOYq for age increased 65.4% and 5.2% respectively and the t-test 

statistic of PAR-LOYq for ever smoking status increased 44.9% and 11.1% respectively. 

Improvement of PAR-LOYq over PAR-LOY was also evaluated for the 156 previously 

identified variants by assessing the median improvement in chisq statistic. 

Participants were classified as cases of type 2 diabetes (T2D) according to the previously 

published UKBB probable T2D algorithm100 based on baseline self-reported diabetes or 

medications, in addition to evidence from electronic health records (Hospital Episode 

Statistics or Death Registration) consistent with T2D (International Statistical Classification 
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of Diseases and Related Health Problems Tenth Revision code E11). Any possible or 

probable type 1 diabetes cases were excluded. Controls were participants without evidence 

of T2D as defined above. The GWAS on random glucose and HbA1C – using BOLT-LMM 

pipeline described below – was performed after excluding individuals with our defined T2D 

criteria. The T2D test statistic for the common variant was taken from the DIAMANTE 

consortium GWAS meta-analysis101. All other phenotypes used in this study were available 

from UK Biobank and any applied transformations described in the relevant results tables. 

5.4.2 UK Biobank exome-sequence data processing and QC 

We downloaded VCF and PLINK format files for whole exome sequencing (WES) data of 

200,643 UK Biobank participants, which were made available in October 2020. The overview 

of this 200K WES release is described at  

https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=170. Details of sequence data processing 

(read alignment, variant calling etc.) are described in papers of Szustakowski et al.87 and Yun 

et al.88 

I merged individual VCF files into a single VCF file of each chromosome using BCFtools 

v1.9102. I converted each chromosome file losslessly to a GDS (Genomic Data Structure) 

format file (an RData object) using the seqVCF2GDS () function from the R package SeqArray 

v1.30.0103. I used SeqArray package and GDS data object to extract the dosage matrix and 

perform additional variant and genotype level filtering below. Such genotype data 

processing is faster than using a flat text VCF file because GDS is implemented using an 

optimized C++ library and a high-level R interface is provided by the platform-independent R 

package gdsfmt103,104. 

I used SeqArray package to calculate and extract the QC metrics. Firstly, I identified and 

flagged 7,913,671 on-target variants (those defined by the xgen_plus_spikein.GRCh38.bed 

file genomic coordinates) among the total of 15,916,398 called variants on autosomes and 

chromosome X. The UKBB released VCF file has a number of QC metrics which can be used 

for variant site and individual genotype filtering: QUAL (variant site-level quality score, 

Phred scale); AQ (variant site-level allele quality score reflecting evidence for each alternate 

allele, Phred scale); DP (individual genotype call-level approximate read depth (reads with 

MQ=255 or with bad mates had already been filtered out)); AD (individual genotype call-

https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=170
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level allelic depths for the ref and alt alleles in the order listed); GQ (individual genotype 

call-level Genotype Quality, Phred scale). I additionally calculated the site-level genotype 

missingness (the number of samples at each site without genotype call).  

After generating the summary statistics of QUAL and AQ metrics, I noted that the released 

UKBB 200K WES data already had some QC filters applied. The values of QUAL and AQ 

ranged from 20 (error rate=1%) to 99 (error rate<0.0001%) with mean 44.5 (error 

rate<0.01%). For all chromosomes the distributions of the values of QUAL and AQ are nearly 

the same. I decided not to apply additional stricter filters on these two site-level metrics. I 

calculated summary statistics (minimum, maximum, mean, and 1st, 2nd and 3rd quartile) for 

DP and GQ for each variant based on all 200,643 samples for autosomes and 110,438 female 

samples for the X chromosome. I recorded the number of samples with GQ<20 at each 

variant. I calculated allelic balance for each heterozygous genotype calls at on-target bi-

allelic sites (ABratio), defined as the number of alternate allele’s reads (provided in the AD 

field) divided by the total depth which equals to the sum of read depths of reference allele 

and alternative allele. I then generated the same per-site summary statistics as above for 

ABratio. I defined and excluded a heterozygous genotype call as imbalanced if ABratio≤0.25 

or ABratio≥0.8. 

In our sensitivity analysis, I applied three variant-level filters to exclude variants at 

potentially poorly performing sites: filter 1:>5% missingness (samples without genotype 

calls); filter 2: the maximum of the read depth of genotype calls (DP) across samples<10; 

and filter 3:>20% genotype calls with GQ<20. After applying these three filters, 1,161,679 

(7.3%) of the initial 15,916,398 variants, and 96,640 (1.2%) of the 7,913,671 on-target 

variants were excluded. For the variants included in our variant-set analysis, I also generated 

the same QC metrics restricted only to rare allele carriers.  Ultimately all of these metrics 

were used to filter out variants in sensitivity analyses that were initially performed using the 

default QC parameters applied to the UKBB released dataset. 

5.4.3 Variant annotation and definition of gene burden sets 

We annotated variants released in UK Biobank (UKBB) 200K whole exome sequencing (WES) 

VCF files using the Ensembl Variant Effect Predictor tool release 99 based on build hg38105. 

For each uploaded variant, the default VEP features include consequence and impact of the 
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variant, overlapping gene, position at cDNA and protein level and amino acid change, if 

applicable. In addition to the default features, the following plugins from VEP were used: (i) 

SIFT106, which predicts whether an amino acid substitution affects protein function based on 

sequence homology and the physical properties of the amino acid, (ii) Polyphen-249, which 

predicts possible impact of an amino acid substitution on the structure and function of a 

protein, (iii) CADD46 which provides deleteriousness prediction scores for all variants based 

on diverse genomic features and (iv) LOFTEE107 which provides loss of function prediction for 

variants. The variants were annotated for every available overlapping transcript in Ensembl. 

We used the most severe variant definition for each variant-gene pair, which provides the 

annotation of the variant for the transcript it has the most severe consequence on.  

We defined loss of function variants as those with ‘high impact’ prediction by VEP. This 

includes frameshift variants, transcript ablating or transcript amplifying variants, splice 

acceptor or splice donor variants, stop lost, start gained or stop gained variants. ‘Moderate 

impact’ variants include missense variants, inframe deletion or insertions, missense variants 

and protein altering variants.  

5.4.4 Gene association testing 

Gene burden scores were created by collapsing all annotated rare alleles together to define 

a binary call denoting whether an individual carries none versus one or more rare alleles at a 

given gene. Reported effect estimates therefore represent the trait difference between 

carriers and non-carriers of these alleles. These dummy variables were then transformed 

into BGEN file format genotype call files for association testing using a linear mixed model 

implemented in BOLT-LMM63 to account for cryptic population structure and relatedness. 

Only autosomal genetic variants that were common (minor allele frequency (MAF)>1%), 

passed quality control in all 106 batches and were present on both genotyping arrays were 

included in the genetic relationship matrix (GRM). Genotyping chip, age at baseline and ten 

genetically derived principal components were included as covariates. Samples were 

excluded from analysis if they failed UK Biobank quality control parameters, were of non-

European ancestry or if the participant withdrew consent from the study. 
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5.4.5 Secondary association testing 

I applied STAAR (variant-Set Test for Association using Annotation infoRmation)45 as a 

secondary analytical approach for associated genes. STAAR is a general framework for 

performing a rare variants association study at scale, suitable for whole exome or genome 

population-level datasets such as UKBB. STAAR accounts for population structure and 

relatedness, by fitting linear and logistic mixed models for quantitative and dichotomous 

traits. It takes as input individual data frames for genotypes, phenotypes, covariates 

including age, age2, sex, chip, PC1-PC10 were generated from the SNP array data and 

(sparse) GRM.   

I used the basic function of STAAR (with CADD-score weighting additionally performed in a 

sensitivity analysis) and set the thresholds of MAF≤0.5% and ≥2 rare variants count in a 

gene. The output of STAAR provides p-values for a number of different rare variant set 

burden tests including SKAT (sequence kernel association test), Burden test and ACAT-V 

(set-based aggregated Cauchy association test). Additionally, STAAR provides an omnibus 

test result by using the combined Cauchy association test to aggregate the association 

across the different tests.  

To ensure that the individual gene-level result is not disproportionally affected by a single 

variant of considerably larger effect and that the others are part of the same variant set, I 

performed a drop-one-out analysis using STAAR for our target gene. 

Effect estimates for dichotomous traits were estimated by using logistic regression 

performed in R (3.3.3). Where these are reported they include the P-value obtained from 

the linear mixed-model generated by BOLT-LMM. 
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5.5 Results 

Previous studies have quantified LOY using either a quantitative measure derived from the 

mean log2-transformed R ratio of signal intensity (mLRR-Y)30, or more recently a more-

powered dichotomous measure (PAR-LOY) using allele-specific genotyping intensities in the 

sex chromosome pseudo-autosomal region (PAR)16. We note that both measures are proxies 

for the abundance of Y chromosome genetic material in the measured biological samples, 

derived from intensity data which contains a lot of experimental ‘noise’. As these measures 

are independent – one relies on PAR genotypes only whilst the other excludes them – we 

hypothesised that an aggregate of the two would further help improve the signal to noise 

ratio of these measures and therefore increase statistical power to detect genetic 

associations. We name this combined quantitative measure PAR-LOYq and estimated it in 

the same UK Biobank participants who were previously studied for PAR-LOY (N=205,011 

men). As expected, PAR-LOYq calls provided a more powerful measure for discovery 

analysis, with a median 10.6% increase in chi-square association statistic for the 156 LOY loci 

previously identified by PAR-LOY (Supplementary Table 5-1 (Appendix C))16.  

To identify genes associated with LOY, we performed gene burden analyses for PAR-LOYq in 

82,277 male UK Biobank participants with exome sequence data. Two models were tested 

exome-wide, by collapsing together rare (MAF<0.5%) loss of function or moderate-impact 

variants in each individual gene. The association of burden test in two genes, CHEK2 and 

GIGYF1, were statistically significant exome-wide (P<1.6x10-6) across these analyses (Figure 

5-1). Loss of function variants in CHEK2 (N=543 carriers, effect=0.23 SD increase in PAR-

LOYq between rare allele carriers vs non-carriers, P=3.4x10-9) have previously been 

implicated with LOY as the most common frameshift variant (1100delC, MAF~0.2%) is well 

captured by GWAS imputation and directly genotyped on the UKBB array. This single variant 

accounted for 76% of loss of function carriers and the CHEK2 association was nominally 

significant when it was excluded (P=0.02, effect=0.18 SD). An independent burden test of 

rare moderate-impact alleles in CHEK2 (not including 1100delC and other loss of function 

alleles) was also associated with PAR-LOYq (Supplementary Table 5-2 (Appendix C), N=1057 

carriers, effect=0.11 SDs, P=1.7×10-4).  
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Figure 5-1 Manhattan plot for exome-wide gene burden test statistics. Dashed line denotes the 

multiple test adjusted P-value threshold (P<1.6×10-6). 
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Figure 5-2 Relationship between bioinformatically predicted function and LOY association for GIGYF1 and CHEK2 moderate-impact variants. Y-axis shows the 

PAR-LOYq association of each variant assessed by absolute Z-score divided by minor allele count. 
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GIGYF1 loss of function (N=40 carriers) was associated with a 0.93 (0.64-1.21, P=1.3×10-10) 

standard deviation higher PAR-LOYq. This burden signal combined the effects of 27 rare 

variants: a single base insertion frameshift with 10 carriers, 4 doubletons and 22 singleton 

rare alleles. No individual variant was more significant than the overall GIGYF1 test result, 

which remained significant in a leave-one-out analysis of each variant (Table 5-1). Rare 

moderate-impact alleles were not associated with LOY in aggregate (P=0.70), however 

several individual moderate-impact variants exhibited nominally significant associations 

(Supplementary Table 5-3 (Appendix C)). We note that missense alleles will likely represent 

a heterogeneous collection of loss of function, gain of function and benign effects. As with 

CHEK2, bioinformatic filters were a poor predictor of which missense variants in GIGYF1 

were associated with LOY (Figure 5-2). Furthermore, running genome-wide burden analyses 

in STAAR, weighting each variant by its CADD score did not identify additional genes 

(Supplementary Table 5-4 (Appendix C)). 
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Table 5-1 Leave-one-out gene burden association analyses for GIGYF1  

  
STAAR Association Test P-value 

Variant MAC STAAR_O SKAT_1_25 SKAT_1_1 Burden_1_25 Burden_1_1 ACAT-V_1_25 ACAT-V_1_1 

ALL 40 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100687545:D:1 10 1.10E-07 7.56E-06 7.58E-06 7.40E-08 7.40E-08 7.40E-08 7.40E-08 

7:100687546:I:1 2 1.02E-09 2.70E-05 2.71E-05 6.82E-10 6.82E-10 6.82E-10 6.82E-10 

7:100687532:G:A 2 2.40E-11 1.88E-05 1.89E-05 1.60E-11 1.60E-11 1.60E-11 1.60E-11 

7:100683017:G:A 2 2.47E-11 1.88E-05 1.89E-05 1.65E-11 1.65E-11 1.65E-11 1.65E-11 

7:100687357:G:A 2 3.03E-11 1.85E-05 1.87E-05 2.02E-11 2.02E-11 2.02E-11 2.02E-11 

7:100684236:C:T 1 6.19E-11 1.96E-05 1.97E-05 4.13E-11 4.13E-11 4.13E-11 4.13E-11 

7:100688238:T:C 1 1.31E-10 1.95E-05 1.96E-05 8.75E-11 8.75E-11 8.75E-11 8.75E-11 

7:100686356:G:A 1 8.04E-11 1.94E-05 1.96E-05 5.36E-11 5.36E-11 5.36E-11 5.36E-11 

7:100683366:G:A 1 9.52E-11 1.94E-05 1.95E-05 6.34E-11 6.35E-11 6.34E-11 6.35E-11 

7:100686365:G:A 1 5.28E-11 1.98E-05 1.99E-05 3.52E-11 3.52E-11 3.52E-11 3.52E-11 

7:100685129:G:A 1 9.52E-10 2.48E-05 2.50E-05 6.35E-10 6.34E-10 6.35E-10 6.34E-10 

7:100687297:C:T 1 6.44E-10 2.29E-05 2.31E-05 4.29E-10 4.29E-10 4.29E-10 4.29E-10 

7:100682749:I:1 1 2.11E-10 1.99E-05 2.01E-05 1.40E-10 1.40E-10 1.40E-10 1.40E-10 

7:100687045:I:1 1 1.95E-09 2.99E-05 3.01E-05 1.30E-09 1.30E-09 1.30E-09 1.30E-09 

7:100683122:D:2 1 5.80E-11 1.97E-05 1.98E-05 3.87E-11 3.87E-11 3.87E-11 3.87E-11 

7:100683112:I:20 1 9.49E-11 1.94E-05 1.95E-05 6.33E-11 6.33E-11 6.33E-11 6.33E-11 

7:100682484:T:C 1 1.14E-10 1.94E-05 1.96E-05 7.60E-11 7.60E-11 7.60E-11 7.60E-11 

7:100683231:C:T 1 1.21E-10 1.94E-05 1.96E-05 8.05E-11 8.05E-11 8.05E-11 8.05E-11 

7:100686817:G:A 1 4.60E-10 2.17E-05 2.18E-05 3.07E-10 3.07E-10 3.07E-10 3.07E-10 

7:100682700:D:2 1 6.64E-10 2.30E-05 2.32E-05 4.43E-10 4.43E-10 4.43E-10 4.43E-10 

7:100682387:D:1 1 6.75E-10 2.31E-05 2.33E-05 4.50E-10 4.50E-10 4.50E-10 4.50E-10 

7:100683374:D:5 1 1.17E-09 2.60E-05 2.62E-05 7.82E-10 7.81E-10 7.82E-10 7.81E-10 

7:100687408:T:C 1 1.27E-09 2.66E-05 2.67E-05 8.46E-10 8.45E-10 8.46E-10 8.45E-10 

7:100686749:C:T 1 1.79E-09 2.92E-05 2.94E-05 1.19E-09 1.19E-09 1.19E-09 1.19E-09 

7:100682120:D:1 1 2.06E-09 3.05E-05 3.07E-05 1.38E-09 1.37E-09 1.38E-09 1.37E-09 

7:100687323:G:A 1 3.27E-09 3.56E-05 3.58E-05 2.18E-09 2.18E-09 2.18E-09 2.18E-09 

7:100682198:I:2 1 3.97E-09 3.83E-05 3.85E-05 2.65E-09 2.65E-09 2.65E-09 2.65E-09 

7:100682071:C:T 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100688225:D:2 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100685054:G:A 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100686182:D:2 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100681994:C:T 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100683218:C:A 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100683303:C:T 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100683548:A:C 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100683585:D:2 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100684338:C:G 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 

7:100684339:T:G 0 1.73E-10 2.05E-05 2.07E-05 1.15E-10 1.15E-10 1.15E-10 1.15E-10 
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We next performed several sensitivity analyses to further explore the genetic architecture 

of this GIGYF1-LOY association. Firstly, we observed consistent effects using the two 

previous LOY traits, with a 6-fold (OR=5.99 [3.04-11.81], P=6×10-7) higher risk of a PAR-LOY 

dichotomous call and a -0.038 (~0.81 SD, P=8.8×10-9) reduction in mLRR-Y. Secondly, in a 

sensitivity analysis, PAR-LOYq association results were highly consistent when excluding 

multi-allelic sites (P=8.4×10-9) or indels (P=9.9×10-3) and when restricting to high-confidence 

loss of function variants defined by LOFTEE (P=4.1×10-13)107. Sequencing quality control 

parameters for each individual variant appeared robust. Thirdly, we reproduced the same 

association signal using a second analytical pipeline implemented in STAAR (P=1.73×10-10)45. 

Finally, we showed that GIGYF1 loss of function was not associated with any genetically 

derived principal component and carriers were geographically dispersed across the UK 

(Figure 5-3, 5-4). 

 

 

 

Figure 5-3 Impact of GIGYF1 loss of function carriers on genetically-defined principal components. 

GIGYF1 carriers are highlighted in red, all other analysed samples in black. Analysis performed in 

maximum available sample-size (N=184,972). 
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Figure 5-4 Geographical distribution of GIGYF1 loss of function carriers by location of birth. GIGYF1 

carriers are highlighted in red, all other analysed samples in black. Analysis performed in maximum 

available sample-size (N=184,972). 

GIGYF1 is named after its known binding to growth factor receptor-bound protein 10 

(GRB10) and interacts with both the insulin and IGF1 receptors108. We therefore postulated 

that loss of function alleles may also impact on metabolic health, and, therefore, repeated 

the GIGYF1 association analyses across 17 metabolic-health related traits in men and 

women (Table 5-2).GIGYF1 loss of function (N=64 carriers) was associated with higher 

susceptibility to type 2 diabetes (OR=6.10 [3.51-10.61], P=1.8×10-12) and higher acute and 

longer-term average levels of glycaemia in non-diabetic individuals (random glucose 

P=2.6x10-5 and HbA1c P=6.6×10-7). Of the 64 carriers, 19 (30%) had T2D, compared to 7.1% 

in the population of UK Biobank in whom sequence data is available. Carrier status was also 

associated with a 1.85 kg/m2 higher body mass index (P=5.3×10-4), 4 kg higher fat mass 

(P=1.3×10-4), 1.85 kg higher lean mass (P=5.2×10-3), 0.04 higher waist-to-hip ratio (P=1.8x10-

6), -0.01 lower sitting to standing height ratio (P=4.3×10-7), 4.5 kg lower grip strength 

(P=4.7×10-7) and 2.32 nmol/L lower serum IGF1 levels (P=1.5×10-4). The T2D association was 

largely unattenuated by adjustment for BMI (OR 5.07 [2.78-9.27] P=8.9×10-11) and the 

clinical characteristics of the rare allele carriers with T2D did not provide any evidence of 

phenotype distinct from typical T2D (Supplementary Table 5-5 (Appendix C)). Notably 

GIGYF1 loss of function was not associated with birthweight, puberty timing, childhood body 

size or adult height (P>0.05). 
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Table 5-2 The association of GIGYF1 loss of function on metabolic traits 

Trait Units N MAC BETA SE P_BOLT_LMM 

T2D binary (estimate on linear scale) 184972 64 (19 cases) 0.22 0.03 1.80E-12 

T2D (adj BMI) binary (estimate on linear scale) 184344 64 (19 cases) 0.19 0.03 8.90E-11 

Sitting / standing height ratio ratio 184111 64 -0.01 0.00 4.30E-07 

Handgrip strength Kilograms 184493 64 -4.50 0.88 4.70E-07 

HbA1C (exlcuding T2D) rank normalised 163960 45 0.55 0.12 6.60E-07 

Waist to Hip ratio ratio 184594 64 0.04 0.01 1.80E-06 

Glucose (excluding t2d) rank normalised 150285 42 0.55 0.14 2.60E-05 

Total fat mass grams 178001 60 4051 1104 1.30E-04 

IGF1 nmol/L 175034 63 -2.32 0.64 1.50E-04 

BMI kg/m2 184305 64 1.85 0.56 5.30E-04 

body fat % percentage 178149 60 2.33 0.73 8.60E-04 

Total lean mass grams 178147 60 1853 681 5.20E-03 

Childhood height (age 10) categorical 181949 61 0.10 0.08 2.30E-01 

Voice breaking categorical 77054 37 -0.05 0.05 3.30E-01 

birth weight Standard Deviations 90770 28 0.18 0.19 3.80E-01 

height centimetres 184536 64 0.51 0.66 5.80E-01 

Childhood body size (age 10) categorical 181868 61 0.01 0.08 7.70E-01 

menarche years 98880 22 -0.05 0.33 8.10E-01 

 

We next examined whether common genetic variation in GIGYF1 was also associated with 

LOY and metabolic health parameters. We observed that an intergenic variant (rs221781, 

MAF=11%, Table 5-3 and Figure 5-5) ~25kb from GIGYF1 was significantly associated with 

higher glucose (P=4.80×10-15) and HbA1c (P=3.40×10-10). This same allele was associated 

with increased risk of T2D (OR adj BMI=1.06 (1.04-1.09), P=8.50×10-8) and LOY (P=3.00×10-

6), but with lower circulating LDL (P=3.40×10-10) and HDL (P=1.90×10-18) levels. The variant 

was not associated with BMI (P=0.09). The lead signal for T2D (rs221781) is also the lead 

conditionally independent eQTL for GIGYF1 across a number of GTEx tissues including 

subcutaneous adipose (Figure 5-6), in which we observed that increased expression of 

GIGYF1 was associated with lower risk of T2D. The lead eQTL for GIGYF1 is rs221792 in 

cultured fibroblasts (P=1.3×10-32) which is in high LD (r2=0.71, D’=1) with rs221781. The 

association of common GIGYF1 variants with T2D was also confirmed in Million Veteran 

Program data, in which we found a previously reported lead SNP for T2D was in high LD with 

rs221781 (rs534043, r2=1, P=8.03×10-10) with a consistent direction of effect109. 
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Table 5-3 Common variant associations on metabolic health at the GIGYF1 locus. 

 

Trait  SNP* CHR BP (b37) 
Effect 
Allele 

Other 
Allele 

EAF BETA SE P value OR (95%CI) 

T2D (DIAMANTE T2DadjBMI, Neff=157384) Lead T2D SNP rs221781 7 100295908 A G 0.11 -0.06 0.01 8.50E-08 0.94 (0.92,0.96) 

T2D (DIAMANTE T2DadjBMI, Neff=157384) Lead eQTL SNP rs221792 7 100278657 A G 0.16 -0.03 0.01 9.50E-04 0.97 (0.95,0.99) 

T2D (DIAMANTE T2Dunadjusted, Neff=231,420) Lead T2D SNP rs221781 7 100295908 A G 0.11 -0.05 0.01 3.10E-06 0.95 (0.93,0.97) 

T2D (DIAMANTE T2Dunadjusted, Neff=231,420) Lead eQTL SNP rs221792 7 100278657 A G 0.15 -0.01 0.01 1.20E-01 0.99 (0.97,1.00) 

PoRu_Males_LOY_combined_Imputed (N=205,011) Lead T2D SNP rs221781 7 100295908 A G 0.11 -0.01 0.00 1.30E-05 - 

PoRu_Males_LOY_combined_Imputed (N=205,011) Lead eQTL SNP rs221792 7 100278657 A G 0.15 -0.01 0.00 4.20E-03 - 

PoRu_Males_mosaicY_likelyLOY_Imputed (N=205,011) Lead T2D SNP rs221781 7 100295908 A G 0.11 -0.01 0.00 3.00E-06 - 

PoRu_Males_mosaicY_likelyLOY_Imputed (N=205,011) Lead eQTL SNP rs221792 7 100278657 A G 0.15 -0.01 0.00 1.70E-03 - 

Invn HbA1c (UKBB, N=431,089) Lead T2D SNP rs221781 7 100295908 A G 0.11 -0.02 0.00 3.40E-10 - 

Invn HbA1c (UKBB, N=431,089) Lead eQTL SNP rs221792 7 100278657 A G 0.15 -0.01 0.00 7.30E-04 - 

Invn Glucose (UKBB, N=394,144) Lead T2D SNP rs221781 7 100295908 A G 0.11 -0.03 0.00 4.80E-15 - 

Invn Glucose (UKBB, N=394,144) Lead eQTL SNP rs221792 7 100278657 A G 0.15 -0.02 0.00 1.70E-11 - 

Invn BMI (UKBB, N=450,669) Lead T2D SNP rs221781 7 100295908 A G 0.11 0.01 0.00 9.30E-02 - 

Invn BMI (UKBB, N=450,669) Lead eQTL SNP rs221792 7 100278657 A G 0.15 0.01 0.00 4.30E-04 - 

BOLT_UKBBGWAS_invn_hdl_nostatin-imputed.txt.gz (N=430,960) Lead T2D SNP rs221781 7 100295908 A G 0.11 0.03 0.00 1.90E-18 - 

BOLT_UKBBGWAS_invn_hdl_nostatin-imputed.txt.gz (N=430,960) Lead eQTL SNP rs221792 7 100278657 A G 0.15 0.01 0.00 2.30E-06 - 

BOLT_UKBBGWAS_invn_ldl_adjLipids-imputed.txt.gz (N=430,160) Lead T2D SNP rs221781 7 100295908 A G 0.11 0.03 0.00 3.40E-10 - 

BOLT_UKBBGWAS_invn_ldl_adjLipids-imputed.txt.gz (N=430,160) Lead eQTL SNP rs221792 7 100278657 A G 0.15 0.01 0.00 2.00E-04 - 

*LD between rs221781 and rs221792: r2=0.71, D'=1 (in phase alleles are AA/GG)            
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Figure 5-5 Regional association of common variants with Type 2 Diabetes, LOY and related traits in 

the region around GIGYF1 (+/- 500kb). Highlighted variants are the lead variant associated with T2D 

r2221781 (red) and lead eQTL for GIGYF1 rs221792 (purple).  
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Figure 5-6 Multi-tissue eQTL associations in GTEx for common variant rs221781. The solid pink line 

represents the null effect. Each square represents the beta estimate from a linear regression model 

of the variant against mRNA transcript abundance. Test statistic is a two-sided P-value and no 

correction for multiple testing has been made.  
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5.6 Discussion 

In summary, this exome-wide approach identified rare loss of function alleles in GIGYF1 

exhibiting an effect on LOY ~5 times larger than any genetic variants previously identified by 

GWAS. Similarly, these alleles confer effect sizes on a number of metabolic outcomes far 

larger than those previously identified by imputed GWAS and other smaller sequencing 

studies. For example, rare variants in PDX1, CCND2, SLC30A8 and PAM are associated with 

double the odds of T2D110–112, whereas GIGYF1 loss of function is associated with a six-fold 

increased risk (OR=5.96[3.43-10.38]). The majority of common variants associated with T2D 

confer much more modest effects (OR<1.5)101. 

GIGYF1 encodes a member of the gyf family of adaptor proteins. It binds growth factor 

receptor bound 10 (GRB10), which is another adaptor protein that binds activated insulin 

receptors and insulin-like growth factor-1 (IGF-1) receptors to negatively regulate receptor 

signaling, metabolic responses and IGF1-induced mitogenesis108,113,114. Transfection of cells 

with GRB10-binding fragments of GIGYF1 leads to greater activation of both the insulin 

receptor and the IGF-1 receptor115. Our findings relating loss of function variants in GIGYF1 

to metabolic and anthropometric outcomes are broadly consistent with the notion that in 

wild-type carriers GIGYF1 enhances insulin and IGF-1 receptor signaling, leading to greater 

handgrip strength (relative to loss of function carriers), sitting height and circulating IGF-1 

levels (due to increased insulin signaling), and lower % body fat, WHR, HbA1c, glucose levels 

and susceptibility to T2D. We previously highlighted the potential role of IGF signalling in 

promoting chromosomal instability and the cellular accumulation of DNA damage and 

reported that genetically higher IGF-1 levels are related to greater LOY116. It may therefore 

appear paradoxical that here we find that loss of function in GIGYF1 (putatively leading to 

decreased IGF-1 signalling) should be associated with increased rather than decreased LOY. 

We hypothesize that GIGYF1 might enhance DDR mechanisms to protect DNA integrity in 

the face of IGF-1-mediated tissue growth and differentiation. GIGYF1 and the related 

protein GIGYF2 are implicated in translational repression117 and translation-coupled mRNA 

decay118, which suggests that they may have biological roles beyond insulin and IGF-1 

receptor signaling. Although GIGYF1 is broadly expressed119, the lack of associations in our 

data with some established IGF-1-related traits, such as birthweight and adult height, might 
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reflect tissue or developmental specificity in its effects. We anticipate that future 

experimental work will shed light on these questions to better understand the links 

between clonal mosaicism and metabolic health. 
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Chapter 6 Identification of rare non-synonymous variants 

affecting sex chromosome mosaicism 
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6.1 Contributions 

This chapter describes the work I conducted to perform exome-wide gene burden 

testing for LOY and LOX based on the 450,000 participants from UK Biobank. In this 

chapter, I ran the burden testing and sensitivity analyses for both LOY and LOX. I also 

performed the PheWAS analysis for identified genes whose non-synonymous 

variants affect LOY or LOX. Additionally, I compared the effects on LOY and LOX for 

the identified genes. Dr Eugene J. Gardner designed, tested, and implemented the 

QC, annotation, and burden testing pipelines for the WES data on the UKBB RAP. Dr 

Eugene J. Gardner also performed the LOY and CHIP genes association check. Prof 

John R.B. Perry and Ken K. Ong supervised and provided guidance on the analyses.   
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6.2 Abstract 

Mosaic Y chromosome loss (LOY) in circulating leukocytes is the most common form 

of clonal mosaicism. Previous studies of common germline genetic variants have 

identified over 150 LOY associated genomic loci, and the exome-wide gene burden 

analysis described in chapter 5 identified two genes, GIGYF1 and CHEK2, that had a 

large effect on the risk of LOY, which was estimated from SNP array data in over 

82,277 men recruited by the UK Biobank.  

In this chapter, the exome-wide gene burden analysis was re-conducted with an 

extended sample size of 190,573 men and using an improved measure of LOY based 

on SNP array data combined with Y dosage information estimated from whole-

exome sequencing data, which was described in chapter 2. In addition, rare genetic 

determinants of LOX were sought using a similar approach in 226,125 UK Biobank 

women.  

My results, replicated the previously reported associations between LOY and GIGYF1 

and CHEK2 with increased statistical confidence. Additionally, rare variants in three 

known clonal haematopoiesis of indeterminate potential (CHIP) genes (ASXL1, TET2 

and DNMT3A) were associated with a decreased risk of LOY. Among females, carriers 

of rare variants in FBXO10, which may play a role in apoptosis, showed increased 

mosaic LOX. These findings revealed the relationship between different CHIP events. 

More in-depth experimental work will be needed to investigate the mechanisms 

behind these associations.  
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6.3 Introduction 

Identified over fifty years ago, mosaic Loss of the Y chromosome (LOY) in leukocytes 

is the most common form of clonal mosaicism97,98,120. In a recent study based on UK 

Biobank, one in five male participants aged from 40 to 70 have LOY16. Numerous 

epidemiological studies have demonstrated the association between LOY and health 

conditions including a wide range of cancers31,36,121,122, type 2 diabetes34,36 , 

neurodegenerative diseases26,123 , obesity34,36 , and all-cause mortality31. But the 

causes and consequences of LOY remain limited. The emergence of large cohorts 

with SNP-array data provides the opportunity to investigate the genetic 

predisposition to LOY by conducting large-scale GWAS studies in hundreds of 

thousands of individuals16,30,32,33.  

Since the first identification of LOY-associated loci near TCL1A30, there have been 

over 150 SNPs identified that predispose individuals to mosaic LOY16. The implicated 

genes mapped by these SNPs involve many aspects of cell-cycle regulation and DNA 

damage response (DDR) pathway16,32, which could explain the mechanisms behind 

LOY. In chapter 5, I described an exome-wide, rare variant gene burden test for LOY  

in over 80,000 males recruited by the UK Biobank124. In this chapter, I showed that 

rare LOF variants in GIGYF1 result in a 6-fold increase in risk of LOY  

In contrast to LOY, the number of epidemiological and genetic studies on mosaic loss 

of the X chromosome (LOX) in females is comparatively limited, largely due to LOX 

being significantly less prevalent than LOY35; approximately 8% of women aged over 

65 have detectable somatic mosaic X chromosome loss17,18. 

Both LOY and LOX are the special common type of clonal haematopoiesis, the other 

types of clonal haematopoiesis include mosaic chromosomal alterations (mCAs) and 

clonal haematopoiesis of indeterminate potential (CHIP) defined as clonal 

haematopoiesis arise through the age-related acquisition of somatic mutations in the 

myeloid-associated genes18,24. Previously GWAS studies identified several shared 

genetic risk variants between LOY and the other types of clonal haematopoiesis 
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including variants mapped to TET2 shared between LOY and CHIP,  TCL1A shared 

between LOY, CHIP and DNMT3A-CH, CHEK2 and ATM shared between LOY, CHIP 

and JAK2-CH, TERT shared between LOY, CHIP and mCAs, and HLA, DLK1 and 

MAD1L1 shared between LOY and mCAs18. In this chapter, both the loss of function 

with MAF< 0.1% and missense variants with CADD scores>25 and MAF<0.1% of 

CHEK2 were identified significantly associated with LOY and nominally associated 

with LOX, which further confirmed the role of CHEK2 on clonal haematopoiesis. 

Additionally, the loss of function variants with MAF<0.1% of three typical clonal 

haematopoiesis of indeterminate potential genes including ASXL1, TET2 and 

DNMT3A were identified to significantly decrease the risk of LOY, which may reveal 

the relationships between LOY and CHIP. 

In this chapter, I used the combined measures of sex chromosome mosaicism 

presented in chapter 2 from an extended collection of 416,698 individuals recruited 

by the UK Biobank (190,573 males and 226,125 females), to explore the effects of 

rare nonsynonymous variants on mosaic sex chromosome loss. 
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6.4 Methods 

6.4.1 LOY and LOX measures for analysis 

The LOY and LOX measures used in this chapter were described in chapter 2. 

Compared with other LOY and LOX measures, the LOY/X Combined Call (3-way) 

exploited the sex chromosome dosage information generated from both SNP array 

and whole-exome sequence data. To compare the statistical power of these LOY and 

LOX measures, in the benchmark test against age, the primary risk factor for LOY and 

LOX, both variables showed the most significant association. The formula used to 

calculate LOY/X Combined Call (3-way) was: 

LOY/X Combined Call (3-way)=PAR-LOY/MoChA-LOX+2×AF-LOY/X-2×mLRR-Y/X - 

4×(Y/X dosage-1/2) (cropped to the range [0,2]) 

6.4.2 Study population  

The analyses described in this chapter were conducted on the samples from UK 

Biobank. The samples for the gene-burden testing were restricted to “white 

European” as defined in previous chapters. The samples with abnormal karyotypes, 

including male 47, XXY, 47, XYY, 48, XXYY and female 45, XO and 47, XXX were 

excluded from the analysis as defined in chapter 4. Individual samples with an excess 

of heterozygosity or autosomal variant missingness≥5% on released SNP-array data, 

or not contained in the subset of phased samples as defined in Bycroft et al.50 were 

also set as missing.  

6.4.3 Defining rare variant masks 

Before conducting the rare variants gene-burden testing, several quality control and 

data format conversion procedures were performed on both participants and 

genotypes125. The whole-exome-sequencing data in the VCF format for 454,787 

participants was extracted via the UK Biobank Research Access Platform (UK Biobank 

RAP, https://ukbiobank.dnanexus.com/ )126.  

https://ukbiobank.dnanexus.com/


 

122 
 

 

For the gVCF files of genotype data, BCFtools54 was implemented to split and left-

normalise multi-allelic sites. A missingness-based approach was used to filter 

variants. Based on this approach, genotype calls in the following categories were set 

as missing (i.e.,”. /.”):  

1. Single nucleotide variants (SNVs) with sequencing depth (DP) less than 7, 

Genotype Quality (GQ) less than 20, and with an allelic balance p. value<0.001  

2. Small insertions and deletions (InDels) with DP less than 10 and GQ less than 20  

After setting all genotype calls in these categories as missing, variants with greater 

than 50% missing genotype calls were excluded from further analysis. 

To annotate the remaining variants on the autosomal and X chromosomes, the 

ENSEMBL Variant Effect Predictor (VEP) (version:104)105 was used with the 

“everything” flag and LOFTEE plugin. The predicted consequence of each variant was 

estimated by comparison to a single MANE (version:0.97) or VEP canonical ENSEMBL 

transcript and the most damaging consequence as defined by VEP defaults. The 

variants with high confidence (HC, as defined by LOFTEE107) stop gained, splice 

donor/acceptor, and frameshift consequences were grouped as protein-truncating 

variants (PTVs). CADD (version:1.6) was used to calculate the Combined Annotation 

Dependent Depletion (CADD) scores for all variants127.  

6.4.4 Rare variants gene-burden testing  

Using BOLT-LMM (version:2.3.5)63, I performed rare variants gene-burden testing 

using provided  UK Biobank WES data . After dropping individuals with missing data, 

190,573 males with LOY Combined Call (3-way) and 226,125 females with LOX 

Combined Call (3-way) data remained for association testing. To compute the GRM 

required for BOLT-LMM, I inputted genotyping data for variants with allele counts 

greater than 100. Additionally, I also performed single marker tests for all variants 

genotyped from WES passing QC as defined above. A set of dummy genotypes were 
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generated, which represented participant carrier status per-gene for PTVs, missense 

variants with CADD scores ≥ 25 (MISS_CADD25) and damaging variants that are the 

combination of the PTV with high confidence and the missense variants with CADD 

scores ≥ 25 (HC_PTV + MISS_CADD25) respectively. The Minor Allele Frequency 

(MAF) threshold for these rare non-synonymous variants was set as 0.1%. For each 

gene, carriers with non-synonymous variants were set as heterozygous (“0/1”) and 

the non-carriers were set as homozygous reference  (“0/0”). All models were 

controlled for age, age2, WES batch, sex, and the first ten genetic ancestry principal 

components (PCs) as described in Bycroft et al.50  

I further excluded genes with less than 50 carriers, resulting in the final inclusion of 

8,975, 14,682 and 16,064 genes with PTV, MISS_CADD25 and DMG variant masks, 

respectively for LOY, and 9,858, 15,144 and 16,493 genes with PTV, MISS_CADD25 

and DMG masks, respectively for LOX. After Bonferroni multiple testing correction, 

the exome-wide significant threshold for a statistically significant association was set 

as 0.05/39,721=1.26×10-6 and 0.05/41,495=1.20×10-6 for LOY and LOX, respectively.  

For significant genes, I conducted a leave-one-out analysis using a generalised linear 

model (GLM) with the `glm` function in R to identify gene associations driven by a 

single variant. As BOLT does not provide accurate odds ratio (OR) estimates for 

binary traits, ORs were extracted from GLMs for PAR-LOY and MoChA-LOX in R.  

As an orthogonal approach for gene burden testing, I applied STAAR45 using identical 

dummy genotype and covariates as BOLT-LMM. Gene burden p-values from STAAR 

output were extracted and compared with BOLT p-values. 

6.4.5 Associations between the CHIP loss of function variants and LOY 

To investigate whether rare variants within these genes might have arisen 

somatically, we queried per-genotype allelic depth (the number of reads from 

sequencing supporting each of the alleles of that site) information from quality-
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controlled and annotated variant call format (VCF) files generated for rare variant 

burden testing. 

Allelic depth (i.e., the number of sequencing reads supporting the alternative and 

reference alleles) was extracted for all carriers of PTV variants with MAF<0.1% for 

genes associated with LOY. Variant Allele Fraction (VAF) for each genotype call was 

calculated for each genotype using the following formula:  

AD_alt / (AD_alt + AD_ref) 

A VAF of 0.5 indicates that the balance of reads supporting the alternative and 

reference alleles is the same, and thus consistent with heterozygous germline 

inheritance. Significant departures from this ratio may indicate somatic events.  

All variants of these genes were annotated based on whether they were known, or 

likely CHIP driver mutations based on the criteria proposed by Bick et al.24. For each 

gene, the association tests between PTV carrier status and LOY were performed 

under six different settings by excluding the individuals carrying the variants with the 

following characteristics: 

1. Frameshift InDels with a binomial test p. value for allele balance < 0.001 (i.e., 

filtering InDels identically to SNVs, see section 11.4.3). 

2. Any variant with VAF<0.25 or>0.75. 

3. Any variant with VAF<0.4 or>0.6. 

4. Any variant with VAF>0.35. 

5. A variant explicitly listed in Supplementary Table 3 from Bick et al.24  

6. As above in (5), but also matching the criteria in Supplementary Table 2 from 

Bick et al.24 

All these association tests were conducted separately for each gene using a linear 

regression model with the same covariates as used in the rare variant burden tests 

described above. 
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6.4.6 PheWAS analysis 

To explore the wider health consequences of rare variants, we assessed several 

phenotypes representing a wide range of health conditions including cancers, 

metabolic traits, reproductive traits, basic anthropometric measures, blood 

biomarkers and behaviours. All these analyses were performed independently by 

using the pipeline described above. For each identified LOY and LOX related gene, I 

extracted test statistics for each trait. The exome-wide significant multiple-testing 

threshold was set the same as the threshold used for discovering LOY and LOX 

related genes.  
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6.5 Results 

6.5.1 Non-synonymous variants affecting LOY 

I performed an exome-wide gene-burden analysis for LOY in male participants from 

UK Biobank. As in the results presented as part of Chapter 9, My analysis confirmed 

that carriers of loss of function  variants within GIGYF1 and CHEK2  were more likely 

to have mosaic LOY. My analysis also identified three novel genes including ASXL1, 

TET2 and DNMT3A, which are all known CHIP genes24,25 (Figure 6-1, Table 6-1). The 

carriers with loss of function variants with MAF<0.1% in GIGYF1 still showed the 

most significant combined association with higher risk of having LOY (N=81 carriers, 

beta=0.451, SE=0.056, P=9.20×10-16). For CHEK2, not only the carriers with loss of 

function variants with MAF < 0.1% had more risk to have LOY (N=325 carriers, 

beta=0.143, SE=0.028, P=3.50×10-7), but also the carriers with missense variants with 

CADD scores>25 and MAF<0.1% (N=811 carriers, beta=0.096, SE=0.018, P=6.30×10-8) 

variants and the carriers with damaging variants with MAF<0.1% (N=1136 carriers, 

beta=0.110, SE=0.015, P=2.80×10-13).  

Different from GIGYF1 and CHEK2, the carriers with loss of function variants with 

MAF<0.1% within three known CHIP genes are associated with a decreased risk of 

having LOY. Additionally, the carriers with damaging variants with MAF<0.1% in 

DNMT3A also significantly decreased the risk to have LOY. The carriers with loss of 

function variants with MAF<0.1% in ASXL1, which is one of the most frequently 

mutated genes in all subtypes of myeloid malignancies128, were associated with 

decreased risk of LOY (N=212 carriers, beta=-0.264, SE=0.035, P=3×10-14). For TET2, 

which can drive tumorigenesis in several blood cancers as well as in solid cancers129, 

the carriers of loss of function variants with MAF< 0.1% in TET2 had a decreased risk 

of LOY (N=192 carriers, beta=-0.261, SE=0.036, P=8.4×10-13). DNMT3A is frequently 

mutated in a large variety of immature and mature hematologic neoplasms130. The 

carriers of both loss of function variants with MAF<0.1% (N=89 carriers, beta=-0.278, 

SE=0.053, P=2.1×10-7) and damaging variants with MAF<0.1% (N=270 carriers, beta=-
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0.173, SE=0.031, P=1.9×10-8) in DNMT3A were associated with decreased risk of 

having LOY.  

 

Figure 6-1 Manhattan and Quantile-Quantile (Q-Q) plots for rare variants gene-burden test 

statistics for LOY. The dashed blue denotes the exome-wide significance threshold 

(P<1.26×10-6). The Genomic Inflation Factor (λ) is 1.05 and the sample size is 190,573.  

Several sensitivity analyses were performed for these significant associations. None 

of these gene burden associations were driven by single variants, as shown by leave-

one-out analyses (Table 6-2). All these gene burden associations still reached 

nominal significance (P<4.38×10-5) after dropping the most significant single variant. 

To estimate the relative risk of having LOY, logistic regressions were conducted for 

the binary PAR-LOY measure (Table 6-1). The loss of function variants with 

MAF<0.1% carriers of GIGYF1 conferred a 5-fold (OR=4.9, 95% C.I.=3 to 8, P=1.51×10-

10) higher risk to have LOY. The carriers with loss of function  (OR=1.8, 95% C.I.=1.4 to 

2.3, P=1.18×10-5), missense variants with CADD scores>25 (OR=1.6, 95% C.I.=1.3 to 

1.9, P=9.76×10-8) and damaging (OR=1.6, 95% C.I.= 1.4 to 1.9, P=6.81×10-12) variants 

with MAF<0.1% of CHEK2 had a 2-fold increased risk to have LOY. 

In contrast, the loss of function variants with MAF<0.1% carriers of TET2 had a 6-fold 

(OR=0.16, 95% C.I.= 0.09 to 0.29, P=1.51×10-10) lower risk to have LOY. Both the loss 

of function variants with MAF<0.1% carriers of ASXL1 (OR=0.32, 95% C.I.= 0.21 to 

0.49, P=6.53×10-8) and DNMT3A (OR=0.3, 95% C.I.= 0.16 to 0.59, P=4.44×10-4) had 3-

fold lower risks to have LOY. The damaging variants with MAF<0.1% of DNMT3A had 

2-fold lower risk (OR=0.44, 95% C.I.= 0.31 to 0.62, P=3.22×10-6). The orthogonal 
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approach, STAAR, generated consistent significant p-values for all identified genes 

(Table 6-1). There was no gene identified from synonymous variants mask. 
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Table 6-1 Exome-wide significant gene burden associations with LOY and LOX 

BOLT_LMM Logistic Regression STAAR 

PHENOTYPE SYMBOL FREQ BETA SE CHISQ P MASK MAF AC OR P P (STAAR-O) P (SKAT) P (Burden) P (ACAT) 

LOY (3WAY) 

GIGYF1 2.13E-04 0.45 0.06 64.59 9.20E-16 PTV MAF_01 81 4.92[3.02, 8] 1.51E-10 1.33E-15 6.08E-05 4.38E-16 7.67E-13 

CHEK2 2.98E-03 0.11 0.02 53.35 2.80E-13 DMG MAF_01 1136 1.63[1.42, 1.88] 6.81E-12 1.59E-13 2.43E-06 5.33E-14 1.19E-03 

CHEK2 2.13E-03 0.10 0.02 29.26 6.30E-08 MISS_CADD25 MAF_01 811 1.57[1.33, 1.86] 9.76E-08 8.59E-08 1.73E-04 2.87E-08 1.91E-03 

CHEK2 8.53E-04 0.14 0.03 25.95 3.50E-07 PTV MAF_01 325 1.78[1.37, 2.3] 1.18E-05 3.81E-07 7.19E-04 1.28E-07 1.05E-03 

ASXL1 5.56E-04 -0.26 0.03 57.72 3.00E-14 PTV MAF_01 212 0.32[0.21, 0.49] 6.53E-08 4.85E-12 6.05E-09 1.60E-12 1.16E-08 

TET2 5.04E-04 -0.26 0.04 51.19 8.40E-13 PTV MAF_01 192 0.16[0.09, 0.29] 9.27E-10 2.21E-11 1.38E-01 1.47E-11 1.47E-11 

DNMT3A 7.08E-04 -0.17 0.03 31.61 1.90E-08 DMG MAF_01 270 0.44[0.31, 0.62] 3.22E-06 7.52E-08 9.90E-04 2.51E-08 1.53E-05 

DNMT3A 2.34E-04 -0.28 0.05 26.98 2.10E-07 PTV MAF_01 89 0.3[0.16, 0.59] 4.44E-04 3.44E-07 7.94E-01 2.29E-07 2.29E-07 

LOX (3WAY) 
FBXO10 1.28E-03 0.06 0.01 27.21 1.80E-07 MISS_CADD25 MAF_01 581 1.97[1.53, 2.54] 1.35E-07 6.81E-07 2.87E-06 2.48E-07 5.38E-05 

FBXO10 1.44E-03 0.05 0.01 24.44 7.70E-07 DMG MAF_01 650 2.06[1.59,2.68] 6.34E-08 1.99E-06 3.29E-06 8.39E-07 5.71E-05 

 

Table 6-2 Test statistics after dropping the variant with most significant effect on the burden test 

PHENOTYPE SYMBOL MASK VAR dropped BETA SE T-statistics P 

LOY (3WAY) 

GIGYF1 PTV 7:100687545:CA:C 0.50 0.07 7.51 5.73E-14 

CHEK2 PTV 22:28695238:TA:T 0.16 0.04 4.09 4.38E-05 

CHEK2 MISS_CADD25 22:28725338:T:C 0.09 0.02 4.43 9.36E-06 

CHEK2 DMG 22:28725338:T:C 0.11 0.02 6.57 4.91E-11 

ASXL1 PTV 20:32434638:A:AG -0.21 0.05 -4.40 1.06E-05 

TET2 PTV 4:105234885:TC:T -0.26 0.04 -6.95 3.78E-12 

DNMT3A PTV 2:25247049:A:C -0.27 0.06 -4.92 8.60E-07 

DNMT3A DMG 2:25234374:G:A -0.16 0.03 -4.99 5.98E-07 

LOX (3WAY) 
FBXO10 DMG 9:37518378:G:A 0.05 0.01 4.25 2.16E-05 

FBXO10 MISS_CADD25 9:37518378:G:A 0.05 0.01 4.45 8.45E-06 
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6.5.2 Somatic and germline mutations in CHIP genes show similar effects on LOY 

Clonal Haematopoiesis of Indeterminate Potential (CHIP) can be defined as the 

accumulation of somatic mutations over time that lead to clonal expansion in 

regenerating haematopoietic stem cell populations24. Rare variant gene-burden 

testing identified 3 known CHIP genes associated with LOY24,25: ASXL1 (N=212 

carriers), DNMT3A (N=89), and TET2 (N=192). Yet it was unclear if these associations 

were due to reverse-causality; somatic genome instability, consequent to LOY, could 

cause or occur in parallel with somatic mutations arising within CHIP genes. As part 

of WES variant quality control (section 6.4.3), a filter on variant allele frequency 

(VAF) had applied to heterozygous alleles for all variants. This filtering approach will 

exclude variants with strong VAF imbalance but, due to the characteristics of CHIP 

genes, it was further explored whether the associations between the CHIP genes and 

LOY were driven by variants with more marginal VAF scores, which could be 

indicative of somatic mutation. Compared with the LOY associated variants in 

GIGYF1 whose VAF distributions showed a mean close to 0.5, the VAF distribution of 

the three CHIP genes was skewed to the left (i.e.,<< 0.5), which indicates that some 

identified variants might be of somatic origin (Figure 6-2); variants that arose only in 

a single white blood stem-cell population will exist in a lower fraction of cells in the 

entire blood cell population and thus appear to be at lower VAF. Therefore, different 

VAF and variants category filters were tested to distinguish the effects of germline 

and somatic mutations (Figure 6-3). Although the p-values varied between the 

different variant filters (likely due to differences in numbers of tested variants), the 

effect size of CHIP genes kept consistent, which indicated that both somatic (VAF< 

0.35) and germline mutations of CHIP genes can decrease the risk of LOY (Figure 6-

3). As a positive control, we also performed the same analysis for GIGYF1, which is 

associated with LOY but not involved in CHIP. GIGYF1 also showed highly consistent 

positive effects on LOY, except for when variants were restricted to potential 

somatic mutations. This is because most variants on GIGYF1 are likely to be of 

germline origin, and thus the number of carriers of potential somatic mutations is 
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very small. Therefore, the P value became non-significant, but the effect size was still 

consistent. 

 

 

 

 

 

 

 

Figure 6-2 Variant Allele Frequency (VAF) histograms for the four genes DNMT3A, TET2, 

ASXL1 and GIGYF1. Bars indicate total number of genotypes in 0.05 VAF bins. 

 

Figure 6-3 Plotted are beta ± 95% CI (left), -log10 (p. value) (middle) and proportion of 

variants remaining after filtering (right) for each gene/model combination. ”No CHIP Vars” 

and ”No CHIP Vars Strict” indicate models excluding known CHIP variants or known CHIP 

variants and variants identified by a broader set of criteria presented in Bick et al.24 , 

respectively. No variants remained for DNMT3A after performing filtering according to 

criteria outlined in Bick et al.24, thus beta and p. value estimates are not presented for this 

model. Also plotted are unfiltered models for all four genes for comparative purposes (Null).  
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6.5.3 PheWAS of LOY-related genes 

To further explore the associations between the identified LOY-associated genes and 

other health related traits, the phenome-wide association study (PheWAS) was 

conducted (Table 6-3). Apart from GIGYF1, the damaging variants with MAF< 0.1% of 

DNMT3A and CHEK2 and the loss of function variants with MAF<0.1% of ASXL1, TET2 

and DNMT3A were significantly associated with increased risks of blood cancers. This 

was consistent with previous observations128–130. Moreover, the loss of function 

variants with MAF<0.1% of ASXL1 and TET2 were associated with shorter leukocyte 

telomere length. For CHEK2, the reported association with later age at natural 

menopause was also identified in this analysis131 - its loss of function and damaging 

variants with MAF<0.1% were also associated with increased combined risk of a 

female hormone-sensitive cancer (breast cancer, ovarian cancer, or uterine cancer) 

and its loss of function variants with MAF<0.1% were associated with an increased 

risk of male prostate cancer. The previously reported significant associations 

between the loss of function variants with MAF<0.1% of GIGYF1 and metabolic-

health related traits were replicated in this analysis in a more than doubled sample 

size. 
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Table 6-3 Significant associations identified for LOY and LOX associated genes from the 

PheWAS analysis 

PHENOTYPE SYMBOL A1FREQ BETA SE CHISQ P MASK MAF AC 

Adjusted leukocyte telomere length ASXL1 3.96E-04 -0.07 0.01 88.01 6.50E-21 PTV MAF_01 324 

Cancers(any type, male only) ASXL1 5.56E-04 0.15 0.03 27.60 1.50E-07 PTV MAF_01 214 

Cancers(excluding skin cancers) ASXL1 3.91E-04 0.14 0.02 44.74 2.30E-11 PTV MAF_01 329 

Cancers(excluding skin cancers, male only) ASXL1 5.56E-04 0.17 0.03 46.46 9.30E-12 PTV MAF_01 214 

Blood cancers ASXL1 3.91E-04 0.10 0.01 185.48 3.10E-42 PTV MAF_01 329 

Blood cancers(female only) ASXL1 2.52E-04 0.07 0.01 38.82 4.70E-10 PTV MAF_01 115 

Blood cancers(male only) ASXL1 5.56E-04 0.11 0.01 131.59 1.80E-30 PTV MAF_01 214 

Cancers(any type) CHEK2 2.20E-03 0.05 0.01 25.21 5.10E-07 MISS_CADD25 MAF_01 1856 

Cancers(any type) CHEK2 3.02E-03 0.05 0.01 43.51 4.20E-11 DMG MAF_01 2542 

Cancers(any type, male only) CHEK2 2.98E-03 0.06 0.01 24.89 6.10E-07 DMG MAF_01 1149 

Cancers(excluding blood cancers) CHEK2 3.02E-03 0.05 0.01 32.57 1.20E-08 DMG MAF_01 2542 

Cancers(excluding skin cancer) CHEK2 2.20E-03 0.05 0.01 36.28 1.70E-09 MISS_CADD25 MAF_01 1856 

Cancers(excluding skin cancer) CHEK2 3.02E-03 0.06 0.01 70.32 5.00E-17 DMG MAF_01 2542 

Cancers(excluding skin cancer) CHEK2 8.15E-04 0.09 0.01 38.61 5.20E-10 PTV MAF_01 686 

Cancers(excluding skin cancers, female only) CHEK2 3.05E-03 0.06 0.01 35.20 3.00E-09 DMG MAF_01 1393 

Cancers(excluding skin cancers, male only) CHEK2 2.98E-03 0.07 0.01 35.43 2.60E-09 DMG MAF_01 1149 

Blood cancer CHEK2 3.02E-03 0.02 0.00 34.29 4.80E-09 DMG MAF_01 2542 

Blood cancer(male only) CHEK2 2.98E-03 0.02 0.00 28.63 8.70E-08 DMG MAF_01 1149 

Hormone sensitive cancer(female only) CHEK2 3.05E-03 0.05 0.01 44.38 2.70E-11 DMG MAF_01 1393 

Hormone sensitive cancer(female only) CHEK2 7.79E-04 0.10 0.02 35.78 2.20E-09 PTV MAF_01 356 

Hormone sensitive cancer(male only) CHEK2 2.98E-03 0.04 0.01 29.90 4.60E-08 DMG MAF_01 1149 

Age at menopause CHEK2 2.01E-03 1.25 0.21 35.47 2.60E-09 MISS_CADD25 MAF_01 431 

Age at menopause CHEK2 2.70E-03 1.58 0.18 75.64 3.40E-18 DMG MAF_01 578 

Age at menopause CHEK2 6.87E-04 2.53 0.36 49.40 2.10E-12 PTV MAF_01 147 

Blood cancers DNMT3A 7.27E-04 0.04 0.01 46.09 1.10E-11 DMG MAF_01 612 

Blood cancers DNMT3A 2.56E-04 0.06 0.01 50.61 1.10E-12 PTV MAF_01 216 

Blood cancers(female only) DNMT3A 7.48E-04 0.03 0.01 24.31 8.20E-07 DMG MAF_01 342 

Blood cancers(male only) DNMT3A 2.31E-04 0.10 0.02 40.39 2.10E-10 PTV MAF_01 89 

glucose GIGYF1 1.64E-04 0.62 0.07 70.48 4.60E-17 PTV MAF_01 120 

glucose(excluding T2D cases) GIGYF1 1.28E-04 0.40 0.07 32.60 1.10E-08 PTV MAF_01 87 

HbA1c GIGYF1 1.64E-04 4.41 0.41 118.07 1.70E-27 PTV MAF_01 131 

HbA1c(excluding T2D cases) GIGYF1 1.31E-04 2.61 0.36 52.31 4.70E-13 PTV MAF_01 97 

HDL GIGYF1 1.68E-04 -0.15 0.03 28.31 1.00E-07 PTV MAF_01 124 

LDL GIGYF1 1.64E-04 -0.48 0.07 50.94 9.50E-13 PTV MAF_01 132 

T2D GIGYF1 1.59E-04 0.18 0.02 66.06 4.40E-16 PTV MAF_01 133 

T2D(female only) GIGYF1 1.17E-04 0.16 0.03 26.33 2.90E-07 PTV MAF_01 53 

T2D(male only) GIGYF1 2.09E-04 0.20 0.03 36.02 2.00E-09 PTV MAF_01 80 

waist-to-hip ratio adjusted for BMI(male only) GIGYF1 2.14E-04 0.03 0.01 23.72 1.10E-06 PTV MAF_01 82 

Adjusted leukocyte telomere length TET2 4.49E-04 -0.05 0.01 62.52 2.60E-15 PTV MAF_01 367 

Cancers(any type) TET2 4.56E-04 0.12 0.02 31.00 2.60E-08 PTV MAF_01 384 

Cancers(any type, male only) TET2 5.01E-04 0.15 0.03 24.41 7.80E-07 PTV MAF_01 193 

Cancers(excluding skin cancers) TET2 4.56E-04 0.11 0.02 36.92 1.20E-09 PTV MAF_01 384 

Cancers(excluding skin cancers, male only) TET2 5.01E-04 0.17 0.03 39.29 3.70E-10 PTV MAF_01 193 

Blood cancers TET2 4.56E-04 0.12 0.01 343.62 1.00E-76 PTV MAF_01 384 

Blood cancers(female only) TET2 4.18E-04 0.10 0.01 138.49 5.70E-32 PTV MAF_01 191 

Blood cancers(male only) TET2 5.01E-04 0.15 0.01 198.18 5.20E-45 PTV MAF_01 193 
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6.5.4 Damaging variants in FBXO10 associated with LOX 

To identify genes, whose non-synonymous variants were associated with LOX, the 

exome-wide rare variants genes burden tests were performed for 226,125 females 

with the LOX Combined Call (3-way) (Figure 6-4, Table 6-1). Only one gene, FBXO10 

(F-Box Protein 10), reached statistically significant (P<1.24×10-6) . Both the carriers 

with missense variants with CADD scores>25 (n=581 carriers) and the carriers 

damaging variants (n=650 carriers) with MAF<0.1% of FBXO10 were associated with 

an increased risk of LOX with P=1.8×10-7 (beta=0.059, SE=0.011) and 7.7×10-7 

(beta=0.052, SE=0.01), respectively. To estimate the relative risk of having LOX, I 

conducted a logistic regression for dichotomous LOX-status. The carriers of missense 

variants with CADD scores> 25 and damaging variants with MAF<0.1% of FBXO10 

had 2-fold increased risk of having LOX (OR=2.1, 95% C.I.= 1.6 to 2.7, P=1.35×10-7 and 

OR=2.0, 95% C.I.= 1.5 to 2.5, P=6.34×10-8 ).  

In sensitivity analyses, to exclude the possibility of one single variant driving the 

association, after dropping any variant, the association between FBXO10 and LOX 

remained significant (P<8.45×10-6 for missense variants with CADD scores> 25 and 

MAF<0.1%, and P<2.16×10-5 for damaging variants with MAF<0.1%) (Table 6-1). By 

implementing the orthogonal analytical pipeline STAAR, the association between 

FBXO10 and LOX was confirmed (P<2.48×10-7 for missense variants with CADD 

scores> 25 and MAF< 0.1%, and P<8.39×10-7 for damaging variants with MAF< 0.1%) 

(Table 6-1). There was no gene identified from synonymous variants mask. 

FBXO10 is located on 9p13.2, which is the substrate-recognition component of SCF 

(SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. The SCF(FBXO10) 

complex mediates ubiquitination and degradation of the antiapoptotic protein, BCL2 

(BCL2 Apoptosis Regulator), thereby playing a role in apoptosis by controlling the 

stability of BCL2132, which is a LOY associated gene from previous GWAS study16. 

There was no association between FBXO10 and diseases or other traits in PheWAS. 

The most significant nominal association was with shorter height of the carriers 
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(P=2.4×10-6, beta=-0.71, SE=0.15, for missense variants with CADD scores>25 and 

MAF<0.1%, and P=1.7×10-6, beta=-0.68, SE=0.14, for damaging variants with 

MAF<0.1%). 

 

Figure 6-4 Manhattan and Quantile-Quantile (Q-Q) plots for rare variants gene-burden test 

statistics. The dashed blue denotes the exome-wide significance threshold (P<1.20×10-6). The 

Genomic Inflation Factor is 1.002 and the sample size is 226,125. 
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6.5.5 Comparison between the effect on LOY and LOX for the identified genes 

In order to explore whether the LOY-associated genes can affect LOX and vice versa, the 

summary statistics of these gene settings were extracted (Table 6-4). ASXL1, CHEK2 and 

TET2 were nominally associated (P<0.05) with an increased risk of LOX. In contrast, FBXO10 

was not associated with LOY. It should be noted that there were 100 more male carriers of 

ASXL1 than females (212 vs. 113; test of equal proportions P=2.5×10−12). This sex imbalance 

might reflect that ASXL1 may mutate much more frequently in males. The same pattern was 

also observed on the loss of function variants of GIGYF1 (81 vs. 52; P=6.2×10−4).  

Table 6-4 Test statistics of LOY and LOX for all LOY and LOX associated variant masks 

 LOX (3WAY) LOY (3WAY) 

SYMBOL MASK MAF AC BETA SE P AC BETA SE P 

ASXL1 PTV MAF_01 113 0.064 0.026 1.30E-02 212 -0.264 0.035 3.00E-14 

CHEK2 MISS_CADD25 MAF_01 1028 0.024 0.009 4.80E-03 811 0.096 0.018 6.30E-08 

CHEK2 DMG MAF_01 1381 0.030 0.007 3.90E-05 1136 0.110 0.015 2.80E-13 

CHEK2 PTV MAF_01 353 0.048 0.015 9.10E-04 325 0.143 0.028 3.50E-07 

DNMT3A DMG MAF_01 336 -0.021 0.015 0.16 270 -0.173 0.031 1.90E-08 

DNMT3A PTV MAF_01 125 -0.010 0.024 0.69 89 -0.278 0.054 2.10E-07 

GIGYF1 PTV MAF_01 52 0.054 0.038 0.15 81 0.451 0.056 9.20E-16 

TET2 PTV MAF_01 190 0.051 0.020 1.00E-02 192 -0.261 0.037 8.40E-13 

FBXO10 MISS_CADD25 MAF_01 581 0.059 0.011 1.80E-07 469 -0.030 0.023 0.20 

FBXO10 DMG MAF_01 650 0.053 0.011 7.70E-07 519 -0.025 0.022 0.26 
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6.6 Discussion 

In summary, this study substantially increased the power to identify genes in which loss-of-

function or missense variants may have a direct effect on LOY or LOX, by increasing the 

sample size and using improved LOY and LOX measures with stronger statistical power. The 

p-value for GIGYF1 loss of function variants with MAF<0.1% was boosted after increasing 

the sample size (from P=1.3×10−10 to 5.4×10-14 using PAR-LOYq), and still further by using the 

LOY 3-way Combined Call (to P=9.2×10-16).  Furthermore, the significant associations 

between GIGYF1 loss of function variants with MAF<0.1% and the adverse effects on 

metabolic health were further confirmed, which had also been replicated by other 

independent groups133–135. As the current knowledge about GIGYF1 was very limited, more 

function validations are needed to reveal the mechanism behind the strong association 

between LOY and T2D. 

In chapter 5, only the loss of function variants of CHEK2 were associated with LOY, which 

was driven by the most common single frameshift variant (1100delC, MAF~0.2%) in CHEK2. 

After excluding this variant, the p-value for CHEK2 decreased to 0.02. In this study, both loss 

of function and missense variants with CADD score>25 were significantly associated with 

LOY without including the aforementioned frameshift variant. This confirmed the effect of 

CHEK2 on LOY. Additionally, CHEK2 was also associated at nominal significance with an 

increased risk of LOX. Moreover, CHEK2 was associated with later menopause, increased 

risk of having hormone-sensitive cancers, and blood cancers. The serine/threonine-protein 

kinase coded by CHEK2 is necessary for checkpoint-mediated cell cycle arrest, activation of 

DNA repair and apoptosis in response to the presence of DNA double-strand breaks136,137. 

All the evidence about CHEK2 indicated that defects of DNA damage response may be a 

driver of both LOY and LOX. Therefore, LOY for males and LOX for females may represent a 

valuable biomarker of DDR which can be measured at a population scale. If LOY and LOX can 

be treated as a biomarker to measure DDR, further longitudinal studies might be conducted 

to explore how LOY and LOX were progressed and their association with the development of 

cancers. 

This study firstly identified that three typical CHIP genes, ASXL1, DNMT3A and TET2, were 

negatively associated with LOY. The hypothesis of the underlying mechanisms might be that 
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LOY is deleterious for clonal expansion if other driver mutations are present. More 

comprehensive studies are needed to understand the relationship between these two types 

of CH. 

Finally, the knowledge about the only LOX-associated gene FBXO10 was also limited. From 

the known biological pathway that this gene participates in, FBXO10 might play a role in 

apoptosis by controlling the stability of BCL2, which supports the hypothesis that defects of 

cell-cycle regulation and DDR might also be a driver for LOX. More in-depth studies on 

FBXO10 will be needed to further illustrate the roles it played in LOX. 

In this study, due to the limited number of non-Europeans in the UK Biobank, the analyses 

were restricted to Europeans. However, previous studies showed that the prevalence of LOY 

was different among genetic ancestry groups34 and the variant allele frequency might also 

vary. Therefore, the multi-ancestry analysis is required for future analysis. Moreover, the 

participants in UK Biobank have a better average health condition than the general 

population, which may underestimate the prevalence of LOY and LOX and the true genetic 

effect sizes. Sample size is key in conducting rare variant gene burden testing. After more 

than doubling the sample size, more genes were identified for LOY. Due to the low 

prevalence of LOX and possibly less heritable than LOY, more samples may be required to 

identify signals for LOX. 
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Chapter 7 Conclusions 

7.1 Overview of the thesis  

This thesis systematically investigated the detection, causes and consequences of sex 

chromosome mosaicism by fully exploiting the sequence and phenotype data from large 

cohorts such as UK Biobank. The thesis can be divided into two major parts: exploration of 

sex chromosome mosaicism and detection and characteristics of male sex chromosome 

aneuploidies. Chapters 2, 3, 5, 6 focused on the first part and chapter 4 focused on the 

second part.  

For the sex chromosome mosaicism, this thesis mainly focused on the LOY and extended the 

same analyses to LOX. In the last ten years, there have been lots of genetic and 

epidemiological studies on LOY. On the contrary, the studies on LOX are very limited. 

Therefore, based on the current studies on LOY, I can easily evaluate the results for LOY but 

cannot find reliable references for LOX. However, the analytical pipeline can be robustly 

implemented on the analyses on LOX, which may provide some preliminary insights on the 

mechanisms that contribute to LOX. The whole thesis primarily tried to improve the 

understanding of sex chromosome mosaicism. However, the individuals with chromosome 

aneuploidies can also be identified when I used our methods to estimate the level of sex 

chromosome mosaicism. As the study on females with sex chromosome aneuploidies based 

on the same study participants had previously been published85, in this thesis, the males 

with sex chromosome aneuploidies were studied.  

In chapter 2, I showed that the LOY/ LOX calls can be further enhanced by incorporating the 

exome sequence read depth information of the sex chromosomes. The new LOY/LOX calls 

were calculated by combining the calls from the SNP-array and the exome sequence to get 

the continuous call capturing the presence and degree of LOY and LOX. Additionally, the 

new LOY/LOX calls also were compared with previous widely used LOY/LOX calls. The 

improved statistical power of the new LOY call was shown by benchmarking the strength of 

associations against age, smoking, and known genetic determinants. However, the power 

improvement of the LOX call was not as clear as the LOY call.  
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In chapter 3, I used the new LOY call to conduct the GWAS and compared the results with 

the previous published LOY GWAS results. From the results, the statistical power was slightly 

boosted, and 22 new LOY-associated signals were identified. By implementing the statistical 

methods and software including LDSC, MR, colocalisation and MTAG, I illustrated the 

directional correlation among LOY, LTL and MPN, identified the colocalised signals and 

boosted the signal detection power for MPN. These results increased the understanding of 

the mechanistic links between LOY and MPN. The analytical pipelines can be extended to 

other health outcomes in the future. 

In chapter 4, the males with sex chromosome aneuploidies were identified from the UK 

Biobank by exploiting the sequence intensity data on the non-PARs of  X and Y 

chromosomes and validated by calculating the relative read depth of the non-PARs of  X and 

Y chromosomes. From the results, about 1/500 males in UK Biobank have an extra sex 

chromosome and just a few of them know their sex chromosome aneuploidies condition. By 

conducting the association tests against a wide range of health conditions, it was shown 

that both men with one extra X and Y chromosome had increased risks of several health 

conditions including T2D and COPD. 

In chapter 5, the first exome-wide association test analysis was conducted for LOY using 

both the basic burden test and novel omnibus test methods for rare non-synonymous 

variants based on over 80,000 male UK Biobank participants with WES data. These analyses 

not only identified the known LOY-associated gene, CHEK2 but also a novel LOY-associated 

gene, GIGYF1. Based on the potential biological function of GIGYF1, the significant 

associations between the LOF variants of GIGYF1 and metabolic-related traits were revealed 

by conducting the gene-burden test, which linked the underlying mechanisms between LOY 

and metabolism.  

In chapter 6, ExWAS was conducted for LOY and LOX using the LOY/LOX calls that combined 

the LOY/LOX calls from both SNP-array and WES for over 450,000 UK Biobank participants. 

For LOY, both CHEK2 and GIGYF1 identified in chapter 5 were replicated. Some CHIP genes 

including TET2, ASXL1 and DNMT3A showed a negative association with LOY. After further 

checking the allele frequency of the variants for each carrier of these genes to distinguish 

the germline and somatic mutation, it was revealed that both germline and somatic 
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mutations of these CHIP genes had a negative association with LOY. In addition, the first 

LOX-associated gene, FBXO10, was identified from ExWAS. 

Overall, this thesis provided a reference for future studies on LOY and LOX in choosing the 

best variable. By fully using the analytical pipelines for common variants and rare non-

synonymous variants, the thesis revealed the full spectrum of variants affecting the sex 

chromosome mosaicism, which improved the understanding of the genetic predisposition to 

LOY and LOX. At the same time, our pilot study on MPN using LOY as a tool illuminated the 

future path to other health outcomes which have been observationally associated with LOY. 

Additionally, the study on male sex chromosome aneuploidies had clear clinical implications, 

which can improve the awareness of male sex chromosome aneuploidies and encourage 

routine tests for them due to the relatively high prevalence and multiple adverse health 

consequences. The analytical pipelines on genetic data mentioned in this thesis were very 

robust and can be easily implemented on other phenotypes, which can help to gain more 

mechanistic insights of genetic causes.  

However, there were still some limitations of this thesis. Firstly, the LOY and LOX variables 

developed and used in this thesis were derived from the sequence data of bulk DNA from 

blood samples, but no qPCR test was conducted to validate the calling.  Secondly, as the 

thesis only used the samples from UK Biobank, only “White European” samples were 

analysed because the majority of the population in UK Biobank is white British. Finally, as 

the thesis mainly focused on the detection, causes and consequences of LOY and LOX from 

genetic prospects, a deeper investigation of the specific biological mechanisms of both LOY 

and LOX was still lacking. 
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7.2 Future Avenues 

7.2.1 Multi-ancestry analyses on LOY and LOX 

Like most current genetic analyses138, the genetic analysis on LOY also suffered from the 

issue of lack of diversity. Restricting the samples to European also affected the ability to 

identify more ancestry-specific loci and further affect the understanding of the underlying 

mechanism. For LOX, large-scale genetic analysis is still lacking. In the future, my colleagues, 

collaborators, and I are planning to collaborate with other large population studies with 

genotype data to conduct the multi-ancestry meta-analysis for both LOY and LOX. The target 

population included in this study will contain White European, African American, Latino, 

East Asian, and South Asian, which can represent most of the population in the world. 

Except for White European, most of them are underrepresented in current genetic studies. 

The increased sample size can not only enhance the power to detect the LOY/LOX 

associated loci but provide a valuable chance to explore the difference in the pattern of 

LOY/LOX among different ancestral groups. Additionally, the multi-ancestry meta-analysis 

can also increase the power to fine map the causal variants due to the reduced linkage 

disequilibrium windows.  

7.2.2 Identification LOY and LOX associated genes using proteomic and single-cell 

sequencing data 

The recent progress on proteomic technologies has made measuring thousands of blood 

circulating proteins for thousands of participants in the large population studies possible. In 

MRC Epidemiology Unit, we have used SomaLogic platform to measure 4775 plasma 

proteins in 10,708 samples from Fenland study139. Recently, Sun et al. described the 

characteristics of proteomic study from UK Biobank, which measured 1,463 proteins for 

54,306 participants using Olink Explore 1536 platform140. The proteomics data from UK 

Biobank will be available for my study in Q4, 2022. By combining the data from Fenland, UK 

Biobank, and other studies such as deCODE141, more novel and reproducible findings might 

be identified. I will systematically investigate the associations between individual plasma 

protein and LOY/LOX by conducting the linear regression model adjusting for age, smoking 

status, and other study related covariates. After getting the results from individual study, 
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my colleagues and I will also conduct a fix-effects meta-analysis for the proteins measured 

in different study and report the significant protein-LOY/LOX association after Bonferroni 

correction. The LOY-associated proteins can improve our understanding of underlying 

mechanisms of LOY and illuminate the mechanistic link between LOY/LOX and other health 

outcomes. Additionally, the protein data can also be used to check whether the identified 

LOY/LOX-associated can be mapped to the putatively causal genes.  

The most recent LOY study investigated the single-cell RNA sequencing data in 86,160 cells 

from 19 men aged from 64 to 89 and found that about 16% of cells lacked the Y 

chromosome16. This study further showed that the LOY cells were overexpressed T-cell 

leukaemia/lymphoma protein 1A relative (Tcl1a) to the normal cells without LOY. Notably, 

the germline variation in TCL1A is the first identified LOY-associated loci30, which was 

confirmed by the following studying on LOY. These observations suggested that there might 

be a bi-directional relationship between LOY and Tcl1a function16. In my future study, my 

colleagues, collaborators, and I will detect the normal expression of 20 protein-coding genes 

on the male-specific regions of the Y chromosome, which are normally expressed in 

leukocytes. Therefore, single cells lacking the Y chromosome can be identified by the 

absence of the sequence reads from these genes. By comparing the gene expressions 

between the cells lacking and not lacking the Y chromosome, the dysregulations of 

autosomally expressed genes will be identified. For the single cell data, I hope to work with 

Sarah Teichmann (Wellcome Sanger Institute), who is the co-founder and principal leader of 

the Human Cell Atlas international consortium. These analyses will provide unique insight 

into the cellular consequences of LOY, shedding further light on how to genetic perturbation 

of white blood cells might directly impact the disease risk. The same analyses can also be 

easily to extend to LOX. 

Additionally, with the GWAS summary statistics and single-cell sequencing data, I am also 

planning to implement novel methods (SCAVENGE142 and scDRS143) which can help to 

explore the pathology and cellular origin of LOY and LOX. 
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7.2.3 Using a systems biology approach to systematically link LOY and LOX associated 

variants to genes 

The important and necessary step for the GWAS studies is to identify the genes that might 

be the causal risk factors and illustrate the mechanisms. With the list of significant LOY and 

LOX associated variants and the summary statistics generated from above-mentioned multi-

ancestry meta-analysis, my colleagues and I will implement the pipeline based on the 

systems biology approach to link these variants to their potential causal effector genes. 

Previous studies showed that the closest gene of a given leading signals are often causal 

gene144,145, but it’s imperfect to be a predictor of causality. The novel pipeline developed by 

our group can fully exploit the information generated from several current widely used 

variants to genes software and approaches and aggregate them to reveal more biological 

mechanisms of LOY/LOX.  

By integrating the publicly available expression-QTL and protein-QTL data, the pipeline 

firstly will assess whether the leading signals directly impact the transcription and/or 

translation of target genes. The tissue enrichment analysis via LD score regression applied to 

specifically expressed genes (LDSC-SEG)146 and Cell type-specific analyses 

(https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses) can be conducted. The 

tissues with p<0.05 will be used, alongside the data from GTEx tissue fixed-effects meta-

analysis (V7)147, eQTLGen148 and Brain-eMeta149. Co-localisation will be performed using the 

summary-data-based Mendelian randomisation (SMR) and heterogeneity in dependent 

instruments (HEIDI) tests (SMR-HEIDI)150 and the fully Bayesian colocalisation analysis using 

Bayes Factors (Coloc-ABF)61 to avoid coincidental overlap of signals due to extend patterns 

of LD. By incorporating the protein quantitative trait loci (pQTL) data from the Fenland 

study139, the above analyses will be conducted as well. 

The activity-by-contact (ABC)151 model has created an enhancer-gene map across 131 

human cell types and tissues. For each identified LOY/LOX leading signal, the lists of proxy 

signals with high LD (r2>0.8) of that signal will be calculated. With the data generated from 

the ABC model, individual genes will be scored if the leading signal or proxy signals fall with 

one of these identified enhancer regions.  
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If there were coding variants among the list of proxy signals, they will be annotated by 

SIFT152 and POLYPHEN49. The gene-level coding variant Multi-marker Analysis of GenoMic 

Annotation (MAGMA)153 analysis and Polygenic Priority Score (PoPS)154 to estimate the 

effect on the LOY/LOX of the given genes will be performed as well.  

After obtaining the list of genes from each of these analyses, the scores based on different 

categories will be assigned to each gene and will be summed up for each gene. According to 

the ranks based on the summed scores, the high confidence causal genes will be prioritised, 

which might unlock the biological insights that can be learned from GWAS summary 

statistics.  

7.2.4 GIGYF1 function follow-up  

In chapter 5, it was observed that the loss of function variants of GIGYF1 can 6-fold increase 

the risk of LOY and T2D. Not just LOY and T2D, the loss of function variants of GIGYF1 were 

significantly associated with several metabolic traits including BMI, waist-hip ratio, HbA1c, 

glucose, grip strength and body fat mass. In chapter 6, these associations were replicated, 

and more associations were found including LDL and HDL. The evidence together illustrated 

the important but long-time neglected biological functions of GIGYF1. In order the decipher 

the underlying mechanisms of GIGYF1, I am planning to collaborate with wet lab researchers 

to build the GIGYF1 KO mice models and replicate the phenotypes observed from human 

genetic studies. Then, comprehensive molecular and cellular experiments will be conducted 

to illuminate how GIGYF1 can affect such a wide range of phenotypes, which may reveal the 

new biology and then guide to the novel therapeutic targets. 

 

 

 

 

 

 

 



 

146 
 

References  

1. Ellegren, H. Sex-chromosome evolution: recent progress and the influence of male 

and female heterogamety. Nat Rev Genet 12, 157–166 (2011). 

2. Berglund, A., Stochholm, K. & Gravholt, C. H. The epidemiology of sex chromosome 

abnormalities. Am J Med Genet C Semin Med Genet 184, 202–215 (2020). 

3. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic 

of discrete sequence classes. Nature 423, 825–837 (2003). 

4. Graves, J. A. M. Sex chromosome specialization and degeneration in mammals. Cell 

124, 901–914 (2006). 

5. Graves, J. A. M. In retrospect: Twenty-five years of the sex-determining gene. Nature 

528, 343–344 (2015). 

6. Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein 

with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990). 

7. Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science 

278, 675–680 (1997). 

8. Maan, A. A. et al. The Y chromosome: a blueprint for men’s health? European Journal 

of Human Genetics 2017 25:11 25, 1181–1188 (2017). 

9. Quintana-Murci, L. & Fellous, M. The human Y chromosome: the biological role of a 

“functional wasteland.” Journal of Biomedicine and Biotechnology 1, 18 (2001). 

10. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). 

Nature 190, 372–373 (1961). 

11. Lucchesi, J. C., Kelly, W. G. & Panning, B. Chromatin remodeling in dosage 

compensation. Annu Rev Genet 39, 615–651 (2005). 

12. Gale, R. E., Wheadon, H., Boulos, P. & Linch, D. C. Tissue Specificity of X-Chromosome 

Inactivation Patterns. Blood 83, 2899–2905 (1994). 

13. Nonrandom X-Inactivation Patterns in Normal Females: Lyonization Ratios Vary With 

Age. Blood 88, 59–65 (1996). 



 

147 
 

14. Vijg, J. & Dong, X. Pathogenic Mechanisms of Somatic Mutation and Genome 

Mosaicism in Aging. Cell 182, 12–23 (2020). 

15. Forsberg, L. A., Gisselsson, D. & Dumanski, J. P. Mosaicism in health and disease-

clones picking up speed. Nature Reviews Genetics 18, 128–142 (2017). 

16. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. 

Nature 575, 652–657 (2019). 

17. Loh, P. R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal 

alterations. Nature 559, 350–355 (2018). 

18. Silver, A. J., Bick, A. G. & Savona, M. R. Germline risk of clonal haematopoiesis. Nat 

Rev Genet 22, 603–617 (2021). 

19. Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its 

relationship to cancer. Nature Genetics 44, 642–650 (2012). 

20. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and 

cancer. Nature Genetics 44, 651–658 (2012). 

21. Machiela, M. J. et al. Characterization of large structural genetic mosaicism in human 

autosomes. American Journal of Human Genetics 96, 487–497 (2015). 

22. Vattathil, S. & Scheet, P. Extensive Hidden Genomic Mosaicism Revealed in Normal 

Tissue. American Journal of Human Genetics 98, 571–578 (2016). 

23. Loh, P. R., Genovese, G. & McCarroll, S. A. Monogenic and polygenic inheritance 

become instruments for clonal selection. Nature 584, 136–141 (2020). 

24. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. 

Nature 586, 763–768 (2020). 

25. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into 

the causes and consequences of clonal hematopoiesis. Nature Genetics 2022 1–12 

(2022) doi:10.1038/s41588-022-01121-z. 

26. Dumanski, J. P. et al. Mosaic Loss of Chromosome y in Blood Is Associated with 

Alzheimer Disease. American Journal of Human Genetics 98, 1208–1219 (2016). 



 

148 
 

27. Dumanski, J. P. et al. Smoking is associated with mosaic loss of chromosome Y. 

Science (1979) 347, 81–83 (2015). 

28. Forsberg, L. A. Loss of chromosome Y (LOY) in blood cells is associated with increased 

risk for disease and mortality in aging men. Human Genetics 136, 657–663 (2017). 

29. Guo, X. et al. Mosaic loss of human Y chromosome: what, how and why. Human 

Genetics (2020) doi:10.1007/s00439-020-02114-w. 

30. Zhou, W. et al. Mosaic loss of chromosome Y is associated with common variation 

near TCL1A. Nature Genetics 48, 563–568 (2016). 

31. Forsberg, L. A. et al. Mosaic loss of chromosome y in peripheral blood is associated 

with shorter survival and higher risk of cancer. Nature Genetics 46, 624–628 (2014). 

32. Wright, D. J. et al. Genetic variants associated with mosaic Y chromosome loss 

highlight cell cycle genes and overlap with cancer susceptibility. Nature Genetics 49, 

674–679 (2017). 

33. Terao, C. et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on 

blood cell differentiation. Nat Commun 10, (2019). 

34. Loftfield, E. et al. Predictors of mosaic chromosome Y loss and associations with 

mortality in the UK Biobank. Scientific Reports 8, 1–10 (2018). 

35. MacHiela, M. J. et al. Female chromosome X mosaicism is age-related and 

preferentially affects the inactivated X chromosome. Nat Commun 7, (2016). 

36. Lin, S. H. et al. Incident disease associations with mosaic chromosomal alterations on 

autosomes, X and Y chromosomes: insights from a phenome-wide association study 

in the UK Biobank. Cell Biosci 11, (2021). 

37. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk 

for diverse types of infection. Nat Med 27, 1012–1024 (2021). 

38. Zhou, W. et al. Detectable chromosome X mosaicism in males is rarely tolerated in 

peripheral leukocytes. Scientific Reports 2021 11:1 11, 1–5 (2021). 



 

149 
 

39. Brown, D. W. et al. Shared and distinct genetic etiologies for different types of clonal 

hematopoiesis. (2022). 

40. Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: Study 

designs and statistical tests. American Journal of Human Genetics 95, 5–23 (2014). 

41. Gibson, G. Rare and common variants: twenty arguments. Nat Rev Genet 13, 135–145 

(2012). 

42. Kryukov, G. v., Shpunt, A., Stamatoyannopoulos, J. A. & Sunyaev, S. R. Power of deep, 

all-exon resequencing for discovery of human trait genes. Proc Natl Acad Sci U S A 

106, 3871–3876 (2009). 

43. Liu, J. Z., Chen, C., Tsai, E. A., Whelan, C. D. & Sexton, D. The burden of rare protein-

truncating genetic variants on human lifespan. 1–18 (2020). 

44. Wu, M. C. et al. Rare-variant association testing for sequencing data with the 

sequence kernel association test. Am J Hum Genet 89, 82–93 (2011). 

45. Li, X. et al. Dynamic incorporation of multiple in silico functional annotations 

empowers rare variant association analysis of large whole-genome sequencing 

studies at scale. Nature Genetics vol. 35 57 Preprint at 

https://doi.org/10.1038/s41588-020-0676-4 (2020). 

46. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting 

the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47, 

D886–D894 (2019). 

47. Ioannidis, N. M. et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of 

Rare Missense Variants. Am J Hum Genet 99, 877–885 (2016). 

48. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res 

11, 863–874 (2001). 

49. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting Functional Effect of Human 

Missense Mutations Using PolyPhen-2. Current protocols in human genetics / editorial 

board, Jonathan L. Haines ... [et al.] 0 7, Unit7.20 (2013). 



 

150 
 

50. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 

Nature 562, 203–209 (2018). 

51. Challen, G. A. & Goodell, M. A. Clonal hematopoiesis: mechanisms driving dominance 

of stem cell clones. Blood 136, 1590–1598 (2020). 

52. Dumanski, J. P., Sundström, J. & Forsberg, L. A. Loss of Chromosome y in Leukocytes 

and Major Cardiovascular Events. Circulation: Cardiovascular Genetics 10, 1–2 (2017). 

53. Skov, L. & Schierup, M. H. Analysis of 62 hybrid assembled human Y chromosomes 

exposes rapid structural changes and high rates of gene conversion. PLOS Genetics 

13, e1006834 (2017). 

54. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021). 

55. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its 

distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015). 

56. Sperling, A. S., Gibson, C. J. & Ebert, B. L. The genetics of myelodysplastic syndrome: 

from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer 17, 5–19 (2017). 

57. Bao, E. L. et al. Inherited myeloproliferative neoplasm risk affects haematopoietic 

stem cells. Nature 2020 586:7831 586, 769–775 (2020). 

58. Titmarsh, G. J. et al. How common are myeloproliferative neoplasms? A systematic 

review and meta-analysis. Am J Hematol 89, 581–587 (2014). 

59. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and 

traits. Nature Genetics 2015 47:11 47, 1236–1241 (2015). 

60. Slob, E. A. W. & Burgess, S. A comparison of robust Mendelian randomization 

methods using summary data. Genet Epidemiol 44, 313–329 (2020). 

61. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 

association studies using summary statistics. PLoS Genet 10, (2014). 

62. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics 

using MTAG. Nat Genet 50, 229–237 (2018). 



 

151 
 

63. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power 

in large cohorts. Nature Genetics 2015 47:3 47, 284–290 (2015). 

64. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 

complex trait analysis. Am J Hum Genet 88, 76–82 (2011). 

65. Codd, V. et al. Polygenic basis and biomedical consequences of telomere length 

variation. Nat Genet 53, 1425–1433 (2021). 

66. Smith, G. D. & Ebrahim, S. “Mendelian randomization”: can genetic epidemiology 

contribute to understanding environmental determinants of disease? Int J Epidemiol 

32, 1–22 (2003). 

67. Didelez, V. & Sheehan, N. Mendelian randomization as an instrumental variable 

approach to causal inference. Stat Methods Med Res 16, 309–330 (2007). 

68. Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of 

pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181, 251–260 

(2015). 

69. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between 

imprecisely measured traits using GWAS summary data. PLoS Genet 13, (2017). 

70. Bowden, J. et al. Improving the accuracy of two-sample summary-data Mendelian 

randomization: moving beyond the NOME assumption. Int J Epidemiol 48, 728–742 

(2019). 

71. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization 

using the MR-Egger method. Eur J Epidemiol 32, 377–389 (2017). 

72. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent Estimation in 

Mendelian Randomization with Some Invalid Instruments Using a Weighted Median 

Estimator. Genet Epidemiol 40, 304–314 (2016). 

73. Hollis, B. et al. Genomic analysis of male puberty timing highlights shared genetic 

basis with hair colour and lifespan. Nat Commun 11, (2020). 

74. Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic Potential of NAD-Boosting 

Molecules: The In Vivo Evidence. Cell Metab 27, 529–547 (2018). 



 

152 
 

75. Ratcliffe, S. Long term outcome in children of sex chromosome abnormalities. 

Archives of Disease in Childhood 80, 192–195 (1999). 

76. Berglund, A. et al. Changes in the cohort composition of turner syndrome and severe 

non-diagnosis of Klinefelter, 47,XXX and 47,XYY syndrome: A nationwide cohort study 

11 Medical and Health Sciences 1117 Public Health and Health Services. Orphanet 

Journal of Rare Diseases 14, 1–9 (2019). 

77. Chang, S. et al. Anthropometry in Klinefelter syndrome - Multifactorial influences due 

to CAG length, testosterone treatment and possibly intrauterine hypogonadism. 

Journal of Clinical Endocrinology and Metabolism 100, E508–E517 (2015). 

78. Skakkebæk, A. et al. The role of genes, intelligence, personality, and social 

engagement in cognitive performance in Klinefelter syndrome. Brain and Behavior 7, 

1–11 (2017). 

79. Zöller, B., Ji, J., Sundquist, J. & Sundquist, K. High Risk of Venous Thromboembolism in 

Klinefelter Syndrome. J Am Heart Assoc 5, 1–6 (2016). 

80. Swerdlow, A. J., Higgins, C. D., Schoemaker, M. J., Wright, A. F. & Jacobs, P. A. 

Mortality in patients with Klinefelter syndrome in britain: A cohort study. Journal of 

Clinical Endocrinology and Metabolism 90, 6516–6522 (2005). 

81. Leggett, V., Jacobs, P., Nation, K., Scerif, G. & Bishop, D. V. M. Neurocognitive 

outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: A 

systematic review. Developmental Medicine and Child Neurology 52, 119–129 (2010). 

82. Asano, A. et al. Myotonic dystrophy associated with 47 XYY syndrome. Psychiatry and 

Clinical Neurosciences 54, 113–116 (2000). 

83. Tartaglia, N. R. et al. Autism spectrum disorder in males with sex chromosome 

aneuploidy. Journal of Developmental & Behavioral Pediatrics 38, 197–207 (2017). 

84. Borjian Boroujeni, P. et al. Clinical aspects of infertile 47,XYY patients: a retrospective 

study. Human Fertility 22, 88–93 (2019). 

85. Tuke, M. A. et al. Mosaic Turner syndrome shows reduced penetrance in an adult 

population study. Genetics in Medicine 21, 877–886 (2019). 



 

153 
 

86. Flaquer, A., Rappold, G. A., Wienker, T. F. & Fischer, C. The human pseudoautosomal 

regions: A review for genetic epidemiologists. European Journal of Human Genetics 

16, 771–779 (2008). 

87. Szustakowski, J. D. et al. Advancing human genetics research and drug discovery 

through exome sequencing of the UK Biobank. Nature Genetics 53, 942–948 (2021). 

88. Yun, T. et al. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. 

Bioinformatics 36, 5582–5589 (2020). 

89. Zhang, J. & Yu, K. F. What’s the relative risk? A method of correcting the odds ratio in 

cohort studies of common outcomes. J Am Med Assoc 280, 1690–1691 (1998). 

90. Fry, A. et al. Comparison of Sociodemographic and Health-Related Characteristics of 

UK Biobank Participants with Those of the General Population. American Journal of 

Epidemiology 186, 1026–1034 (2017). 

91. Wade, K. H. et al. Loss-of-function mutations in the melanocortin 4 receptor in a UK 

birth cohort. Nature Medicine 27, 1088–1096 (2021). 

92. Bojesen, A., Juul, S., Birkebæk, N. H. & Gravholt, C. H. Morbidity in Klinefelter 

syndrome: A Danish register study based on hospital discharge diagnoses. Journal of 

Clinical Endocrinology and Metabolism 91, 1254–1260 (2006). 

93. Berglund, A., Stochholm, K. & Gravholt, C. H. Morbidity in 47,XYY syndrome: a 

nationwide epidemiological study of hospital diagnoses and medication use. Genetics 

in Medicine 22, 1542–1551 (2020). 

94. Kanaka-Gantenbein, C. et al. Tall stature, insulin resistance, and disturbed behavior in 

a girl with the triple X syndrome harboring three SHOX genes: Offspring of a father 

with mosaic Klinefelter syndrome but with two maternal X chromosomes. Horm Res 

61, 205–210 (2004). 

95. Lanktree, M. B., Fantus, I. G. & Hegele, R. A. Triple X syndrome in a patient with 

partial lipodystrophy discovered using a high-density oligonucleotide microarray: A 

case report. Journal of Medical Case Reports 3, 1–5 (2009). 



 

154 
 

96. Van Langevelde, K., Flinterman, L. E., Vlieg, A. V. H., Rosendaal, F. R. & Cannegieter, S. 

C. Broadening the factor V Leiden paradox: Pulmonary embolism and deep-vein 

thrombosis as 2 sides of the spectrum. Blood 120, 933–946 (2012). 

97. Jacobs, P. A., Brunton, M., Brown, W. M. C., Doll, R. & Goldstein, H. Change of human 

chromosome count distribution with age: evidence for a sex differences. Nature 197, 

1080–1081 (1963). 

98. Jacobs, P. A., Court Brown, W. M. & Doll, R. Distribution of human chromosome 

counts in relation to age. Nature 191, 1178–1180 (1961). 

99. He, L. M. et al. Cyclin D2 protein stability is regulated in pancreatic beta-cells. Mol 

Endocrinol 23, 1865–1875 (2009). 

100. Eastwood, S. V et al. Algorithms for the Capture and Adjudication of Prevalent and 

Incident Diabetes in UK Biobank. PLoS One 11, e0162388 (2016). 

101. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using 

high-density imputation and islet-specific epigenome maps. Nat Genet 50, 1505–1513 

(2018). 

102. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 

2078–2079 (2009). 

103. Zheng, X. et al. SeqArray-a storage-efficient high-performance data format for WGS 

variant calls. Bioinformatics 33, 2251–2257 (2017). 

104. Zheng, X. et al. A high-performance computing toolset for relatedness and principal 

component analysis of SNP data. Bioinformatics 28, 3326–8 (2012). 

105. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, (2016). 

106. Sim, N.-L. et al. SIFT web server: predicting effects of amino acid substitutions on 

proteins. Nucleic Acids Res 40, W452-7 (2012). 

107. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation 

in 141,456 humans. Nature 2020 581:7809 581, 434–443 (2020). 



 

155 
 

108. Giovannone, B. et al. Two novel proteins that are linked to insulin-like growth factor 

(IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling. J Biol Chem 278, 

31564–73 (2003). 

109. Vujkovic, M. et al. Discovery of 318 new risk loci for type 2 diabetes and related 

vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. 

Nat Genet 52, 680–691 (2020). 

110. Steinthorsdottir, V. et al. Identification of low-frequency and rare sequence variants 

associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46, 294–8 

(2014). 

111. Huyghe, J. R. et al. Exome array analysis identifies new loci and low-frequency 

variants influencing insulin processing and secretion. Nat Genet 45, 197–201 (2013). 

112. Flannick, J. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 

controls. Nature 570, 71–76 (2019). 

113. Dufresne, A. M. & Smith, R. J. The adapter protein GRB10 is an endogenous negative 

regulator of insulin-like growth factor signaling. Endocrinology 146, 4399–409 (2005). 

114. Holt, L. J. & Siddle, K. Grb10 and Grb14: enigmatic regulators of insulin action--and 

more? Biochem J 388, 393–406 (2005). 

115. Preston, E., Butler, K. & Haas, N. Does magnetic resonance imaging compromise 

integrity of the blood-brain barrier? Neurosci Lett 101, 46–50 (1989). 

116. Stankovic, S. et al. Elucidating the genetic architecture underlying IGF1 levels and its 

impact on genomic instability and cancer risk. Wellcome Open Research 6, 20 (2021). 

117. Peter, D. et al. GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP 

and repress target mRNA expression. Genes Dev 31, 1147–1161 (2017). 

118. Weber, R. et al. 4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA 

Decay. Cell Rep 33, 108262 (2020). 

119. GTEx Consortium et al. Genetic effects on gene expression across human tissues. 

Nature 550, 204–213 (2017). 



 

156 
 

120. Forsberg, L. A. et al. Mosaic loss of chromosome Y in leukocytes matters. Nat Genet 

51, 4–7 (2019). 

121. Loftfield, E. et al. Mosaic Y Loss Is Moderately Associated with Solid Tumor Risk. 

Cancer Res 79, 461–466 (2019). 

122. Machiela, M. J. et al. Mosaic chromosome Y loss and testicular germ cell tumor risk. J 

Hum Genet 62, 637–640 (2017). 

123. Dumanski, J. P. et al. Immune cells lacking Y chromosome show dysregulation of 

autosomal gene expression. Cell Mol Life Sci 78, 4019–4033 (2021). 

124. Zhao, Y. et al. GIGYF1 loss of function is associated with clonal mosaicism and adverse 

metabolic health. Nat Commun 12, (2021). 

125. Gardner, E. J. et al. Damaging missense variants in IGF1R implicate a role for IGF-1 

resistance in the aetiology of type 2 diabetes. medRxiv 2022.03.26.22272972 (2022) 

doi:10.1101/2022.03.26.22272972. 

126. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank 

participants. Nature 599, 628–634 (2021). 

127. Kircher, M. et al. A general framework for estimating the relative pathogenicity of 

human genetic variants. Nat Genet 46, 310–315 (2014). 

128. Asada, S., Fujino, T., Goyama, S. & Kitamura, T. The role of ASXL1 in hematopoiesis 

and myeloid malignancies. Cell Mol Life Sci 76, (2019). 

129. Jiang, S. Tet2 at the interface between cancer and immunity. Commun Biol 3, (2020). 

130. Brunetti, L., Gundry, M. C. & Goodell, M. A. DNMT3A in Leukemia. Cold Spring Harb 

Perspect Med 7, (2017). 

131. Ruth, K. S. et al. Genetic insights into biological mechanisms governing human ovarian 

ageing. Nature 596, 393–397 (2021). 

132. Chiorazzi, M. et al. Related F-box proteins control cell death in Caenorhabditis elegans 

and human lymphoma. Proc Natl Acad Sci U S A 110, 3943–3948 (2013). 



 

157 
 

133. Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic 

diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet 54, 

(2022). 

134. Curtis, D. Analysis of rare coding variants in 200,000 exome-sequenced subjects 

reveals novel genetic risk factors for type 2 diabetes. Diabetes Metab Res Rev 38, 

(2022). 

135. Deaton, A. M. et al. Gene-level analysis of rare variants in 379,066 whole exome 

sequences identifies an association of GIGYF1 loss of function with type 2 diabetes. 

Sci Rep 11, 21565 (2021). 

136. Waterman, D. P., Haber, J. E. & Smolka, M. B. Checkpoint Responses to DNA Double-

Strand Breaks. Annu Rev Biochem 89, 103–133 (2020). 

137. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the 

Chk2 protein kinase. Science 282, 1893–1897 (1998). 

138. Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing 

down. Nature Communications 2020 11:1 11, 1–3 (2020). 

139. Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. 

Science 374, (2021). 

140. Sun, B. B. et al. Genetic regulation of the human plasma proteome in 54,306 UK 

Biobank participants. bioRxiv 20, 2022.06.17.496443 (2022). 

141. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics 

and disease. Nature Genetics 2021 53:12 53, 1712–1721 (2021). 

142. Yu, F. et al. Variant to function mapping at single-cell resolution through network 

propagation. Nature Biotechnology 2022 1–10 (2022) doi:10.1038/s41587-022-

01341-y. 

143. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of 

individual cells in single-cell RNA-seq data. bioRxiv 2021.09.24.461597 (2022) 

doi:10.1101/2021.09.24.461597. 



 

158 
 

144. Stacey, D. et al. ProGeM: a framework for the prioritization of candidate causal genes 

at molecular quantitative trait loci. Nucleic Acids Res 47, (2019). 

145. Aragam, K. G. et al. Discovery and systematic characterization of risk variants and 

genes for coronary artery disease in over a million participants. medRxiv 28, 

2021.05.24.21257377 (2021). 

146. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies 

disease-relevant tissues and cell types. Nat Genet 50, 621–629 (2018). 

147. Ardlie, K. G. et al. Human genomics. The Genotype-Tissue Expression (GTEx) pilot 

analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015). 

148. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic 

loci and polygenic scores that regulate blood gene expression. Nature Genetics 2021 

53:9 53, 1300–1310 (2021). 

149. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and 

methylomic data from blood. Nat Commun 9, (2018). 

150. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 

complex trait gene targets. Nat Genet 48, 481–487 (2016). 

151. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. 

Nature 593, 238–243 (2021). 

152. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for 

genomes. Nat Protoc 11, 1–9 (2016). 

153. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-

set analysis of GWAS data. PLoS Comput Biol 11, (2015). 

154. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict 

genes underlying complex traits and diseases. medRxiv 23, 2020.09.08.20190561 

(2020). 

  

 



 

159 
 

Appendix A  

List of publications (Equal 1st Authors - *) 

Liu A*, Genovese G*, Zhao Y*, et al. Genetic investigation of mosaic loss of the X 

chromosome in peripheral leukocytes of 918,085 women identifies germline predisposition 

and strong signals of haplotype selection. In Preparation (2022). 

Stankovic S*, Shekari S*, Huang QQ*, Gardner EJ*, Owens NDL*, (5 other authors), Zhao Y, 

et al.  Genetic susceptibility to earlier ovarian ageing increases de novo mutation rate in 

offspring. medRxiv. Published online June 23, 2022:2022.06.23.22276698. 

doi:10.1101/2022.06.23.22276698 

Zhao Y, Gardner EJ, Tuke MA, et al. Detection and characterization of male sex chromosome 

abnormalities in the UK Biobank study. Genetics in Medicine. Published online June 9, 2022. 

doi:10.1016/J.GIM.2022.05.011 

Brown DW*, Cato LD*, Zhao Y*, et al. Shared and distinct genetic etiologies for different 

types of clonal hematopoiesis. bioRxiv. Published online March 14, 

2022:2022.03.14.483644. doi:10.1101/2022.03.14.483644  

Koprulu M*, Zhao Y*, Wheeler E, et al. Identification of Rare Loss-of-Function Genetic 

Variation Regulating Body Fat Distribution. The Journal of Clinical Endocrinology & 

Metabolism. 2022;107(4):1065-1077. doi:10.1210/CLINEM/DGAB877 

Zhao Y, Stankovic S, Koprulu M, et al. GIGYF1 loss of function is associated with clonal 

mosaicism and adverse metabolic health. Nature Communications. 2021;12(1). 

doi:10.1038/S41467-021-24504-Y 

Stankovic S, Day FR, Zhao Y, et al. Elucidating the genetic architecture underlying IGF1 levels 

and its impact on genomic instability and cancer risk. Wellcome Open Research 2021 6:20. 

2021;6:20. doi:10.12688/wellcomeopenres.16417.1 



 

160 
 

Appendix B 

Supplementary Tables and Figures of Chapter 4 

This file can be found attached to the electronic version of this thesis and can also be 

download from the following links. 

Supplementary Table 4-1: 

Description: Summary of phenome-wide disease association tests for KS and 47,XYY 

compared to 46,XY with each of 875 ICD-10 coded disease outcomes, from logistic 

regression models adjusted for age and ten principal genetic components. Outcomes 

reaching the multiple testing corrected statistical significance threshold 

(P<0.05/875=5.7x10-5) are indicated in bold. (https://ars.els-cdn.com/content/image/1-s2.0-

S1098360022007778-mmc2.xlsx )  
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Supplementary Table 4-2:  

Description: Summary of association tests for KS and 47,XYY compared to 46,XY with each 

of 18 red blood cell or platelet traits, from linear regression models adjusted for age and ten 

principal genetic components. Outcomes reaching the multiple testing corrected statistical 

significance threshold (P<0.05/18=2.8x10-3) are highlighted. 

    linear regression 

trait karyotype Estimate Std. Error t value Pr(>|t|)   2.5% C.I. 97.5% C.I. 

Red blood cells               

Haematocrit percentage KS -1.510 0.213 -7.084 1.41E-12 -1.928 -1.093 

Haematocrit percentage XYY 0.155 0.251 0.619 5.36E-01 -0.336 0.647 

Red blood cell (erythrocyte) count KS -0.151 0.026 -5.766 8.13E-09 -0.202 -0.100 

Red blood cell (erythrocyte) count XYY 0.062 0.031 2.015 4.39E-02 0.002 0.122 

Mean corpuscular volume KS -0.233 0.301 -0.774 4.39E-01 -0.822 0.357 

Mean corpuscular volume XYY -0.852 0.354 -2.408 1.60E-02 -1.546 -0.158 

Mean sphered cell volume KS 0.231 0.372 0.621 5.34E-01 -0.498 0.961 

Mean sphered cell volume XYY -0.048 0.438 -0.109 9.13E-01 -0.907 0.811 

Red blood cell (erythrocyte) distribution width KS 0.679 0.061 11.160 6.51E-29 0.560 0.798 

Red blood cell (erythrocyte) distribution width XYY 0.716 0.072 10.011 1.38E-23 0.576 0.857 

Early RBCs               

Reticulocyte count KS 0.000 0.003 0.074 9.41E-01 -0.006 0.006 

Reticulocyte count XYY 0.001 0.003 0.360 7.19E-01 -0.006 0.008 

Reticulocyte percentage KS 0.054 0.063 0.844 3.99E-01 -0.071 0.178 

Reticulocyte percentage XYY 0.010 0.075 0.137 8.91E-01 -0.136 0.157 

Immature reticulocyte fraction KS 0.017 0.004 4.024 5.71E-05 0.009 0.026 

Immature reticulocyte fraction XYY 0.016 0.005 3.102 1.92E-03 0.006 0.025 

Mean reticulocyte volume KS 1.510 0.547 2.759 5.81E-03 0.437 2.583 

Mean reticulocyte volume XYY 2.097 0.645 3.252 1.14E-03 0.833 3.360 

Nucleated red blood cell count KS 0.000 0.002 -0.199 8.42E-01 -0.005 0.004 

Nucleated red blood cell count XYY -0.002 0.003 -0.638 5.24E-01 -0.007 0.003 

Nucleated red blood cell percentage KS -0.005 0.027 -0.173 8.63E-01 -0.058 0.049 

Nucleated red blood cell percentage XYY -0.026 0.032 -0.799 4.24E-01 -0.089 0.037 

Haemoglobin               

Haemoglobin concentration KS -0.638 0.072 -8.831 1.04E-18 -0.780 -0.496 

Haemoglobin concentration XYY -0.025 0.085 -0.296 7.67E-01 -0.192 0.141 

Mean corpuscular haemoglobin KS -0.342 0.124 -2.752 5.92E-03 -0.586 -0.098 

Mean corpuscular haemoglobin XYY -0.466 0.146 -3.185 1.45E-03 -0.752 -0.179 

Mean corpuscular haemoglobin concentration KS -0.279 0.074 -3.766 1.66E-04 -0.425 -0.134 

Mean corpuscular haemoglobin concentration XYY -0.183 0.087 -2.098 3.59E-02 -0.354 -0.012 

Platelets        

Platelet count KS -9.640 3.957 -2.436 1.48E-02 -17.395 -1.884 

Platelet count XYY -10.360 4.656 -2.225 2.61E-02 -19.485 -1.235 

Platelet crit KS -0.006 0.003 -1.845 6.50E-02 -0.012 0.000 

Platelet crit XYY -0.012 0.004 -3.194 1.40E-03 -0.019 -0.005 

Mean platelet (thrombocyte) volume KS 0.122 0.076 1.605 1.08E-01 -0.027 0.271 

Mean platelet (thrombocyte) volume XYY -0.085 0.089 -0.957 3.39E-01 -0.261 0.090 

Platelet distribution width KS 0.067 0.037 1.793 7.30E-02 -0.006 0.140 

Platelet distribution width XYY 0.001 0.044 0.018 9.86E-01 -0.085 0.087 
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   Summary(heterozygotes) Summary(Non-heterozygotes) 

trait karyotype 
no. 

carriers 
Min. 1st Qu. Median Mean 3rd Qu. Max. s.d. 

no. non-
carriers 

Min. 1st Qu. Median Mean 
3rd 
Qu. 

Max. s.d. 

Red blood cells                                   

Haematocrit percentage KS 198 30.5 39.7 41.7 41.8 44.0 58.4 3.5 201035 0.1 41.5 43.3 43.3 45.2 71.1 3.0 

Haematocrit percentage XYY 143 31.5 41.7 43.4 43.5 45.2 55.8 3.4 201035 0.1 41.5 43.3 43.3 45.2 71.1 3.0 

Red blood cell (erythrocyte) count KS 198 3.3 4.3 4.6 4.6 4.9 6.0 0.4 201035 0.0 4.5 4.7 4.7 5.0 7.8 0.4 

Red blood cell (erythrocyte) count XYY 143 3.6 4.5 4.8 4.8 5.1 5.8 0.4 201035 0.0 4.5 4.7 4.7 5.0 7.8 0.4 

Mean corpuscular volume KS 198 77.3 88.5 91.0 91.3 93.9 107.8 4.8 201034 53.5 89.0 91.6 91.6 94.2 160.3 4.3 

Mean corpuscular volume XYY 143 78.6 87.9 90.7 90.7 92.7 112.0 4.7 201034 53.5 89.0 91.6 91.6 94.2 160.3 4.3 

Mean sphered cell volume KS 197 68.2 79.6 82.3 82.9 86.2 97.6 5.4 197819 44.5 79.3 82.5 82.8 86.0 175.6 5.3 

Mean sphered cell volume XYY 142 70.9 79.5 82.5 82.6 85.5 109.6 5.4 197819 44.5 79.3 82.5 82.8 86.0 175.6 5.3 

Red blood cell (erythrocyte) distribution width KS 198 12.3 13.4 13.9 14.1 14.4 22.7 1.1 201034 11.1 12.9 13.3 13.4 13.8 38.3 0.9 

Red blood cell (erythrocyte) distribution width XYY 143 12.2 13.6 14.0 14.1 14.5 19.3 0.9 201034 11.1 12.9 13.3 13.4 13.8 38.3 0.9 

Early RBCs                  

Reticulocyte count KS 197 0.0 0.1 0.1 0.1 0.1 0.3 0.0 197819 0.0 0.0 0.1 0.1 0.1 2.4 0.0 

Reticulocyte count XYY 142 0.0 0.0 0.1 0.1 0.1 0.1 0.0 197819 0.0 0.0 0.1 0.1 0.1 2.4 0.0 

Reticulocyte percentage KS 197 0.4 1.1 1.4 1.4 1.7 6.6 0.6 197818 0.0 1.0 1.3 1.4 1.7 66.7 0.9 

Reticulocyte percentage XYY 142 0.4 1.0 1.3 1.4 1.7 2.7 0.5 197818 0.0 1.0 1.3 1.4 1.7 66.7 0.9 

Immature reticulocyte fraction KS 197 0.0 0.3 0.3 0.3 0.4 0.5 0.1 197819 0.0 0.3 0.3 0.3 0.3 0.8 0.1 

Immature reticulocyte fraction XYY 142 0.1 0.3 0.3 0.3 0.3 0.5 0.1 197819 0.0 0.3 0.3 0.3 0.3 0.8 0.1 

Mean reticulocyte volume KS 197 73.7 102.2 106.7 107.6 113.3 126.0 8.3 197819 46.9 101.8 106.2 106.3 110.9 204.5 7.8 

Mean reticulocyte volume XYY 142 83.4 103.5 108.3 108.2 113.3 132.9 7.8 197819 46.9 101.8 106.2 106.3 110.9 204.5 7.8 

Nucleated red blood cell count KS 198 0.0 0.0 0.0 0.0 0.0 0.1 0.0 200659 0.0 0.0 0.0 0.0 0.0 6.9 0.0 

Nucleated red blood cell count XYY 143 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200659 0.0 0.0 0.0 0.0 0.0 6.9 0.0 

Nucleated red blood cell percentage KS 198 0.0 0.0 0.0 0.0 0.0 2.0 0.2 200657 0.0 0.0 0.0 0.0 0.0 41.2 0.4 

Nucleated red blood cell percentage XYY 143 0.0 0.0 0.0 0.0 0.0 0.0 0.0 200657 0.0 0.0 0.0 0.0 0.0 41.2 0.4 

Haemoglobin                  

Haemoglobin concentration KS 198 10.2 13.7 14.4 14.4 15.2 19.8 1.2 201034 0.1 14.4 15.0 15.0 15.7 20.5 1.0 

Haemoglobin concentration XYY 143 10.4 14.3 15.0 15.0 15.6 18.2 1.1 201034 0.1 14.4 15.0 15.0 15.7 20.5 1.0 

Mean corpuscular haemoglobin KS 198 22.5 30.4 31.3 31.4 32.4 36.8 1.7 201034 0.0 30.8 31.7 31.8 32.7 93.9 1.8 

Mean corpuscular haemoglobin XYY 143 25.6 30.3 31.2 31.3 32.2 37.7 1.7 201034 0.0 30.8 31.7 31.8 32.7 93.9 1.8 

Mean corpuscular haemoglobin concentration KS 198 29.1 33.7 34.3 34.4 35.0 36.9 1.0 201032 19.4 34.0 34.6 34.7 35.3 83.0 1.0 

Mean corpuscular haemoglobin concentration XYY 143 32.0 33.8 34.4 34.5 35.2 36.9 1.0 201032 19.4 34.0 34.6 34.7 35.3 83.0 1.0 

Platelets                  

Platelet count KS 198 62.0 193.4 225.5 229.8 262.7 425.3 54.1 201034 0.3 202.0 234.0 238.4 269.4 1488.0 55.9 

Platelet count XYY 143 106.5 190.6 224.0 228.9 261.9 445.4 58.3 201034 0.3 202.0 234.0 238.4 269.4 1488.0 55.9 

Platelet crit KS 198 0.1 0.2 0.2 0.2 0.2 0.4 0.0 201032 0.0 0.2 0.2 0.2 0.2 1.2 0.0 

Platelet crit XYY 143 0.1 0.2 0.2 0.2 0.2 0.4 0.0 201032 0.0 0.2 0.2 0.2 0.2 1.2 0.0 

Mean platelet (thrombocyte) volume KS 198 6.9 8.7 9.3 9.4 10.1 14.4 1.1 201032 5.7 8.5 9.2 9.3 9.9 15.8 1.1 

Mean platelet (thrombocyte) volume XYY 143 6.9 8.5 9.1 9.2 9.8 12.5 1.1 201032 5.7 8.5 9.2 9.3 9.9 15.8 1.1 

Platelet distribution width KS 198 15.4 16.2 16.6 16.6 16.9 18.7 0.6 201032 13.9 16.2 16.5 16.6 16.9 20.0 0.5 

Platelet distribution width XYY 143 15.6 16.2 16.5 16.6 16.9 17.9 0.5 201032 13.9 16.2 16.5 16.6 16.9 20.0 0.5 
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Supplementary Figure 4-1:  

Description: Forest plots showing mean differences (and 95% CI) in plasma metabolic traits 

measured by nuclear magnetic resonance (NMR) spectroscopy in men with Klinefelter 

syndrome (47,XXY, KS, left) and 47,XYY (right) compared to men with normal (46,XY) 

karyotypes. 
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Appendix C 

Supplementary Tables of Chapter 5 

These files can be found attached to the electronic version of this thesis and can also be 

download from the following links. 

Supplementary Table 5-1:  

Description: A comparison of PAR-LOY vs PAR-LOYq association statistics for the previously 

reported LOY signals (https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-

021-24504-y/MediaObjects/41467_2021_24504_MOESM3_ESM.xlsx )  

Supplementary Table 5-2:  

Description: Exome-wide gene-burden association test statistics for LOY (https://static-

content.springer.com/esm/art%3A10.1038%2Fs41467-021-24504-

y/MediaObjects/41467_2021_24504_MOESM4_ESM.xlsx  )  

Supplementary Table 5-3:  

Description: Moderate and high impact coding variants identified in GIGYF1 (https://static-

content.springer.com/esm/art%3A10.1038%2Fs41467-021-24504-

y/MediaObjects/41467_2021_24504_MOESM5_ESM.xlsx  )  

Supplementary Table 5-4:  

Description: The impact of CADD variant weighting using STAAR for LOY gene burden 

testing. (https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-021-24504-

y/MediaObjects/41467_2021_24504_MOESM7_ESM.xlsx ) 

Supplementary Table 5-5: 

Description: Phenotypic characteristics of GIGYF1 loss of function carriers. 
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Variant carried by individual 
Number of 
rare alleles 

sex T2D 
T2D age (group) 

of onset 
BMI category 

(baseline) 
HbA1C category ( at 

baseline(mmol/mol)) 

chr7_100684236_C_T 1 Male 1 30-39 30-35 >48 

chr7_100686356_G_A 1 Male 1 40-49 30-35 >48 

chr7_100682120_CA_C 1 Male 1 60-69 <25 >48 

chr7_100682387_TG_T 1 Male 1 50-59 25-30 42-48 

chr7_100683218_C_A 1 Female 1 60-69 25-30 >48 

chr7_100683374_TTCTCC_T 1 Male 1 40-49 25-30 <42 

chr7_100685054_G_A 1 Female 1 40-49 30-35 <42 

chr7_100686033_TG_T 1 Female 1 70-79 35+ <42 

chr7_100686749_C_T 1 Male 1 50-59 <25 42-48 

chr7_100687045_C_CT 1 Male 1 50-59 25-30 42-48 

chr7_100687297_C_T 1 Male 1 50-59 35+ >48 

chr7_100687323_G_A 1 Male 1 60-69 35+ 42-48 

chr7_100687357_G_A 1 Female 1 60-69 35+ >48 

chr7_100687545_CA_C 1 Male 1 40-49 30-35 >48 

chr7_100687545_CA_C 1 Male 1 50-59 35+ 42-48 

chr7_100687545_CA_C 1 Male 1 50-59 30-35 >48 

chr7_100687545_CA_C 1 Male 1 40-49 30-35 >48 

chr7_100687545_CA_C 1 Female 1 60-69 30-35 >48 

chr7_100687546_A_AG 1 Male 1 50-59 35+ 42-48 

chr7_100688238_T_C 1 Male 1 50-59 30-35 <42 

chr7_100684338_C_G, 
chr7_100684339_T_G 

2 Female 1 70-79 30-35 42-48 

chr7_100681994_C_T 1 Female 0 - 25-30 <42 

chr7_100682071_C_T 1 Female 0 - 25-30 <42 

chr7_100682071_C_T 1 Female 0 - 30-35 <42 

chr7_100682198_G_GGA 1 Male 0 - 25-30 <42 

chr7_100682484_T_C 1 Male 0 - 25-30 <42 

chr7_100682700_CTT_C 1 Male 0 - <25 <42 

chr7_100682700_CTT_C 1 Female 0 - <25 <42 

chr7_100682749_A_AG 1 Male 0 - 25-30 <42 

chr7_100682749_A_AG 1 Female 0 - <25 <42 

chr7_100683017_G_A 1 Male 0 - 25-30 <42 

chr7_100683017_G_A 1 Male 0 - 25-30 >48 

chr7_100683017_G_A 1 Female 0 - <25 <42 

chr7_100683017_G_A 1 Female 0 - 30-35 <42 

chr7_100683112_A_ATGGACAG
CCCCTGCTTGGCC 

1 Male 0 - <25 <42 

chr7_100683122_CCT_C 1 Male 0 - 25-30 <42 

chr7_100683231_C_T 1 Male 0 - 30-35 <42 

chr7_100683303_C_T 1 Female 0 - 25-30 <42 

chr7_100683366_G_A 1 Male 0 - 30-35 <42 

chr7_100683548_A_C 1 Female 0 - 35+ <42 

chr7_100683585_CCT_C 1 Female 0 - <25 <42 

chr7_100685129_G_A 1 Male 0 - 35+ <42 

chr7_100686182_TGA_T 1 Male 0 - 25-30 <42 
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chr7_100686365_G_A 1 Male 0 - 25-30 <42 

chr7_100686817_G_A 1 Male 0 - 30-35 <42 

chr7_100687357_G_A 1 Male 0 - 25-30 <42 

chr7_100687357_G_A 1 Male 0 - 25-30 <42 

chr7_100687357_G_A 1 Female 0 - 30-35 <42 

chr7_100687357_G_A 1 Female 0 - 25-30 <42 

chr7_100687408_T_C 1 Male 0 - 30-35 42-48 

chr7_100687532_G_A 1 Male 0 - 25-30 <42 

chr7_100687532_G_A 1 Male 0 - <25 <42 

chr7_100687545_CA_C 1 Male 0 - 25-30 <42 

chr7_100687545_CA_C 1 Female 0 - <25 <42 

chr7_100687545_CA_C 1 Female 0 - 35+ >48 

chr7_100687545_CA_C 1 Male 0 - 25-30 <42 

chr7_100687545_CA_C 1 Female 0 - 30-35 <42 

chr7_100687545_CA_C 1 Male 0 - <25 <42 

chr7_100687545_CA_C 1 Male 0 - <25 <42 

chr7_100687545_CA_C 1 Male 0 - 30-35 <42 

chr7_100687545_CA_C 1 Female 0 - <25 <42 

chr7_100687545_CA_C 1 Male 0 - 25-30 <42 

chr7_100687546_A_AG 1 Male 0 - 30-35 <42 

chr7_100688225_GTC_G 1 Female 0 - 25-30 42-48 

chr7_100687545_CA_C 1 Male 0 - 25-30 <42 

 

Variant carried by 
individual 

Self-reported 
insulin use 

Self-reported use of 
biguanide drugs 

Self-reported use of other 
oral antidiabetic drugs 

Insulin 
within 1 

year  

Family history 
of diabetes 

chr7_100684236_C_T 1 - - 1 0 

chr7_100686356_G_A 1 - - 1 0 

chr7_100682120_CA_C - 1 1 0 0 

chr7_100682387_TG_T - - - - 0 

chr7_100683218_C_A - 1 - 0 0 

chr7_100683374_TTCTCC_T - 1 - 0 1 

chr7_100685054_G_A - - - 0 1 

chr7_100686033_TG_T - - - - 1 

chr7_100686749_C_T - 1 1 0 0 

chr7_100687045_C_CT - - 1 0 1 

chr7_100687297_C_T - - - 0 1 

chr7_100687323_G_A - - - - 0 

chr7_100687357_G_A - 1 - 0 0 

chr7_100687545_CA_C - 1 1 0 1 

chr7_100687545_CA_C - 1 1 0 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C 1 1 1 0 0 

chr7_100687545_CA_C - 1 - 0 0 

chr7_100687546_A_AG - 1 1 0 0 

chr7_100688238_T_C - - - - 1 

chr7_100684338_C_G, 
chr7_100684339_T_G 

- - - - 0 
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chr7_100681994_C_T - - - - 1 

chr7_100682071_C_T - - - - 0 

chr7_100682071_C_T - - - - 0 

chr7_100682198_G_GGA - - - - 0 

chr7_100682484_T_C - - - - 0 

chr7_100682700_CTT_C - - - - 0 

chr7_100682700_CTT_C - - - - 0 

chr7_100682749_A_AG - - - - 0 

chr7_100682749_A_AG - - - - 1 

chr7_100683017_G_A - - - - 0 

chr7_100683017_G_A - - - - 0 

chr7_100683017_G_A - - - - 1 

chr7_100683017_G_A - - - - 0 

chr7_100683112_A_ATGGA
CAGCCCCTGCTTGGCC 

- - - - 0 

chr7_100683122_CCT_C - - - - 0 

chr7_100683231_C_T - - - - 0 

chr7_100683303_C_T - - - - 0 

chr7_100683366_G_A - - - - 0 

chr7_100683548_A_C - - - - 0 

chr7_100683585_CCT_C - - - - 0 

chr7_100685129_G_A - - - - 0 

chr7_100686182_TGA_T - - - - 0 

chr7_100686365_G_A - - - - 0 

chr7_100686817_G_A - - - - 1 

chr7_100687357_G_A - - - - 0 

chr7_100687357_G_A - - - - 1 

chr7_100687357_G_A - - - - 1 

chr7_100687357_G_A - - - - 1 

chr7_100687408_T_C - - - - 0 

chr7_100687532_G_A - - - - 0 

chr7_100687532_G_A - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 1 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687545_CA_C - - - - 0 

chr7_100687546_A_AG - - - - 0 

chr7_100688225_GTC_G - - - - 0 

chr7_100687545_CA_C - - - - 0 

 


