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Abstract

Out-of-distribution generalisation in machine learning
Agnieszka Słowik

Machine learning has proven extremely useful in many applications in recent years. However,
a lot of these success stories stem from evaluating the algorithms on data very similar to
that they were trained on. When applied to a new data distribution, machine learning
algorithms have been shown to fail. Given the non-stationary and heterogeneous nature of
real-world data, a better grasp of out-of-distribution generalisation is needed for algorithms
to be widely deployed and trusted.

My thesis presents three research studies that aim to investigate and develop the field of out-
of-distribution generalisation. The central goal of these research efforts is to produce new
tools, such as algorithms, theoretical results, experimental results and datasets, to improve
understanding and performance of machine learning methods in the face of distribution
shift. The high-level idea that drives these research efforts across three machine learning
scenarios is modularity – the quality of consisting of separate parts that form a whole when
combined. Modular approaches are hypothesised to steer the machine learning methods
away from rigid memorisation of examples and towards more flexible and ‘more intelligent’
learning that supports generalisation.

In my first contribution, I approach the thesis goal from the perspective of learning
from multiple training distributions. The contribution to this line of research is twofold.
First, I present a new standardised suite of tasks for evaluation and comparison of out-of-
distribution generalisation algorithms. Second, I state a set of new theoretical results that
fill an existing gap between data-centric and algorithmic approaches to out-of-distribution
generalisation. These theoretical findings guide a new set of practical recommendations on
how to employ the algorithmic approach.

In the second contribution, I tackle generalisation in the common learning setup of
supervised image recognition. In this context, I first investigate the effect of multi-level
feature aggregation on generalisation, and demonstrate that augmentation with one of
the considered methods consistently improves the performance. Second, I propose a set of



simple image datasets that can be used as a stepping stone for evaluation and comparison
of image classification methods in terms of out-of-distribution generalisation.

Finally, I delve into the learning scenarios where multiple neural networks communicate
to solve a shared task. This work supports the thesis goal in two ways. First, I propose a
new environment, graph referential games, and present results on the influence of data
representation and the corresponding data representation learning methods on out-of-
distribution generalisation. These results connect the previously disjoint fields of graph
representation learning and emergent communication. Second, I tackle the challenging
domain of population-based communication grounded in realistic images.

The datasets, algorithms, theorems and experimental results in this thesis represent a few
steps towards understanding and improving out-of-distribution generalisation in machine
learning. They provide researchers with new tools and results that aim to foster research
in this field, some of which have already proved useful to the research community. Finally,
this work suggests important future directions in the machine learning subfields of learning
from multiple distributions, image classification and multi-agent communication.

Agnieszka Słowik
December 2022
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Chapter 1

Introduction

It is good to have an end to journey towards;
but it is the journey that matters, in the end.

–Ursula K. Le Guin,
The Left Hand of Darkness (1969)

My thesis explores the circumstances under which machine learning models fail when given
inputs dissimilar from the ones encountered during their training, and explores techniques
that address or aim to prevent such failures.

I divide this introduction into four sections: Section 1.1 motivates the research through
an explanation and discussion of out-of-distribution generalisation, and failure modes
when not addressed; Section 1.2 poses the set of research questions and the hypothesis
investigated in this thesis; Section 1.3 provides an outline of the remainder of this thesis;
finally, Section 1.4 presents the publications that I have produced and presented during
my PhD, the content of which overlaps with the content of this thesis.

1.1 Motivation

Is memorisation the same as learning? Funes the Memorious, a short story by writer Jorge
Luis Borges (translated to English by James E. Irby [71, p.59–66]), describes a boy called
Funes who gains perfect memory after receiving a head injury. He starts to remember
every moment of his life in great detail. At the same time, he loses the ability to generalise:
his memories are disconnected from each other. For example, he sees the same dog from
different angles only to consider each side of the same dog as an independent piece of
information. He does not even understand what his own body looks like (‘His own face in

21



the mirror, his own hands, surprised him every time he saw them’), which leads to the
conclusion: ‘To think is to forget a difference, to generalise, to abstract. In the overly
replete world of Funes, there were nothing but details.’.

Much like Funes, modern neural networks with millions of parameters have been shown
to memorise training examples, which can lead to an array of problems such as (1) high
sensitivity to noisy data [150, 221], (2) falling for adversarial attacks [271, 87, 269, 287],
(3) sample inefficiency in comparison to human learning [302, 303, 275], and (4) poor
generalisation to new data [62], even when new data samples bare intuitive similarities to
what the model has been trained on [61, 251]. These problems can arise in any domain
where modern machine learning is applied. They can lead to further practical consequences
over the course of use of machine learning systems, such as opaque failure modes, resulting
in a lack of trust in machine learning systems [297].

Out-of-distribution generalisation is a missing ability in standard machine learning methods.
These methods are backed by statistical learning theory [279], which justifies the use
of average-based optimisation (Empirical Risk Minimisation [279]) and the practice of
estimating generalisation error using a test set. However, this theory assumes that training
(past) and test (future) data are independent and identically distributed. This assumption
is incorrect in many practical domains where machine learning is applied: real-world
data is heterogeneous and its distribution usually shifts over time. Practical sources of
distribution shifts include changes in the characteristics of the users of machine learning
systems, or changes in the environment where an embodied agent is placed. Another
common example of distribution shift is a result of the dynamic nature of language,
including the languages used online. The constant evolution of natural language has been
shown to change the perplexity of language models when applied repeatedly across several
months [164]. Section 2.4 in the Background chapter covers more types of distribution
shift and corresponding examples. As a result of these shifts, achieving nearly 100% on
the commonly used in-distribution test sets is not always indicative of future performance,
as has been demonstrated by numerous papers [137, 15, 61, 235, 204, 62].

The topic of out-of-distribution generalisation (OOD generalisation) in machine learning
is essentially as broad and complex as the field of machine learning itself, and equally
prone to passing trends and opposing views within the research community. In my view,
improved generalisation in the face of distribution shifts is needed because of the following
sets of reasons:

• engineering reasons – to improve sample efficiency and to improve performance in
low-resource domains without thousands of training examples [110];
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• scientific reasons – to gain insight into how neural networks learn and to potentially
bring machine learning closer to human learning;

• business reasons – to employ neural networks in increasingly nuanced tasks currently
performed by humans;

• and societal reasons – to debias machine learning systems by controlling the simplicity
bias [246]. Exploiting ‘shortcuts’ in data can lead to unfair solutions (for instance, this
can be seen in recruitment tools exploiting gender information [59]).

During my PhD, I have been asking myself:

What kind of tools would the machine learning research communities working
on on out-of-distribution generalisation benefit from the most?

This thesis aims to provide such tools in the form of new datasets, new theoretical results,
new testbeds, new experimental results and new algorithms. The concrete outcomes of
these research efforts are summarised in Figure 1.1.

The research efforts that led to this thesis have been carried out within three subfields of
machine learning: learning from multiple distributions (Chapter 3), image classification
(Chapter 4) and multi-agent communication (Chapter 5). This broad perspective allows
me to gather more evidence to support the central hypothesis and to explore the research
questions (Section 1.2). At the same time, the tools presented in this thesis aim to
be of use to several machine learning communities that I have been fortunate to work
with and to learn from during my PhD: (1) the invariant learning and group robustness
communities (Chapter 3), (2) the vision community (Chapter 4), and (3) the emergent
communication community (Chapter 5). All of these communities have been independently
investigating out-of-distribution generalisation in machine learning, as I have reviewed in
the background chapter (Chapter 2) and in the respective contribution chapters. This
thesis connects previously disjoint communities within which I pursued my research,
such as graph neural networks [141] with emergent communication [43] (Chapter 5), as
well as data-oriented approach to group robustness [36] with Distributionally Robust
Optimisation [21] (Chapter 3).

1.2 Research questions

Out-of-distribution generalisation in machine learning is a broad and challenging topic.
The contributions of this thesis are guided by a high-level idea:

Modularity can improve out-of-distribution generalisation in machine learning.
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Chapter 5

Multi-agent
communication

Chapter 3

Learning from
multiple

distributions
– new dataset
(linear unit tests)
– theorems
– practical
recommendations

– novel architecture
in the context of OOD
generalisation (NFM)
– new experimental
results
– new OOD image
        datasets

– new experimental
results using graphs,
bags-of-words, sequences
and images as input data
– novel problem
environment
(graph referential games)

environment

architecture

data

Chapter 4

        types of
modularity

Image
classification

Out-o
f-d

istribution generalisation in machine learning

Figure 1.1: A visual summary of the research directions within out-of-distribution general-
isation that are explored in this thesis.
Concrete research outputs are summarised and listed for each chapter.
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This hypothesis is loosely inspired by cognitive neuroscience and global workspace the-
ory [12], which posits that brain is composed of specialised modules (‘experts’) that
communicate sparingly. In contrast, most neural networks are monolithic architectures
that learn from a single dataset under the independent and identically distributed data
assumption.

At the conceptual level, replacing monolithic approaches with modular solutions seems
promising in the context of improving out-of-distribution generalisation. Many instances
of OOD generalisation, such as compositional generalisation investigated in Chapter 4 and
Chapter 5, are problems that can be solved by extracting reusable pieces from data and
by recomposing them according to some rules. Having learnt the meaning of a red square
and a blue circle, a human is capable of observing two distinct concepts that jointly define
these examples: shape and colour. With these separate mental modules, it is possible to
understand the new concept of a red circle by reusing the pieces of information obtained
through different, yet systematically and structurally similar examples seen in the past.
Non-modular understanding driven by raw memorisation of examples and their meanings
can yield a high accuracy on familiar data, however, it fails to extract meaningful patterns,
such as compositional rules, that can be used to generalise to a new data distribution.
Modularity is only one of the possible inductive biases [90] that might allow humans to
generalise – however, it is an important first step which can be incorporated at various
stages of the standard machine learning setup.

Chapter 3 incorporates the concept of modularity at the data level by acknowledging that
data often come from multiple heterogenous sources. This is in contrast to the standard
monolithic approach of learning from a single training dataset under the independent
and identically distributed data assumption. I discuss how a modular cost function (with
components corresponding to different data sources) can be used to find a model with
more consistent performance across different input distributions. Chapter 4 incorporates
modularity at the architecture level by proposing Neural Function Modules [159], a design
choice that increases modularity of a neural network and specialisation of its layers, along
with new extensive results in the context of out-of-distribution generalisation. Finally,
Chapter 5 investigates modularity at the environment level by using a learning setup with
two or more neural networks separated by a discrete communication channel. Additionally,
this chapter also approaches the main hypothesis by comparing data representations of
the varying degree of modularity and structure in terms of OOD generalisation in the
proposed graph referential games [259].

Apart from exploring the umbrella hypothesis on the benefits of modularity in the context
of out-of-distribution generalisation, the research efforts presented in this thesis also aim
to answer a set of focused, fine-grained research questions.
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1. What is the relation between existing data-centric and algorithmic approaches to im-
proving OOD generalisation (and group robustness)?

As further described in Section 2.4, generalisation has been previously approached
through data-centric methods, such as re-weighting the training examples, or algorithmic
methods, such as Distributionally Robust Optimisation (DRO) [21]. The existing gap
between these two approaches leads to contentious debates on the origins of machine
learning bias. Chapter 3 provides new theorems (Theorem 1 and Theorem 2) that
address this gap along with a set of new practical recommendations (Section 3.4.3) on
how to use DRO in light of the new theoretical findings.

2. Do methods that encourage multi-level feature aggregation help in improving OOD
generalisation in image classification?

Convolutional Neural Networks (Section A.1.2) are the standard backbone of vision
algorithms, and they are known to focus on local features in an image. However,
there exist variants of convolution that aim to integrate both local and global features,
such as dilated convolutions (Section 4.1.1.1). For example, Dilated DenseNets [119]
(Section 4.1.1.2) have been shown to improve the performance in relational reasoning [6],
which is a task that requires scene understanding through the use of both local and
global image features. Neural Function Modules (Section 4.1.2) are another approach
to multi-level feature aggregation by using attention (Section 2.3.2) and by combining
bottom-up and top-down feedback (Figure 4.4). Chapter 4 investigates whether these
approaches to multi-level feature aggregation are useful in the context of improving
out-of-distribution generalisation, which leads to a new set of strong results in favour
of using Neural Function Modules specifically in the context of out-of-distribution
generalisation in image classification.

3. Do graph reprentations induce a better OOD generalisation in multi-agent games? Does
increasing the number and diversity of agents improve OOD generalisation?

These two questions are investigated in Chapter 5. Graph representations have been
hypothesised to improve combinatorial generalisation broadly in machine learning [19].
The degree of structure in input data to multi-agent communication games has been
hypothesised to be correlated with generalisation and language compositionality [262]
– however, graph representations have not been previously attempted in emergent
communication previously. I investigate this hypothesis by proposing graph referential
games, where graph representations are compared with the corresponding baselines in
terms of both out-of-distribution generalisation and the related concept of language
compositionality. The final study in this chapter aims to explore the effect of the
number and diversity of agents on the out-of-distribution generalisation in multi-agent
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games grounded in images. The conclusion corroborates the results obtained in the
similar context of reconstruction games [232]: unlike in the human studies [191, 181],
the increase in the population size does not lead to an increase in in-distribution or
out-of-distribution performance and language interpretability.

1.3 Thesis outline

Figure 1.1 shows a visual summary of the core research chapters and their roles in the
main story.

This thesis is structured as described below. The order of chapters represents progression to-
wards increasingly noisy and complex machine learning scenarios, where out-of-distribution
generalisation is investigated. First, I approach the thesis goals using mathematical tools
and linearly separable data, where spurious and invariant features can be perfectly
disentangled. Next, I delve into out-of-distribution generalisation from the perspective of
image classification, where meaningful features are derived from entangled pixel data by
a neural network. Finally, I explore out-of-distribution generalisation in a setting where
multiple neural networks solve a shared task through multi-agent communication.

Chapter 2: Background This chapter starts with a brief overview of the research
methodology used throughout the contribution chapters. The next section is an overview
of the necessary technical background that was required to carry out the research presented
in Chapter 4 and Chapter 5. The last section defines out-of-distribution generalisation and
reviews existing literature on this topic, with the focus on the perspectives that are later
expanded in the contribution chapters: data-driven and algorithmic approaches (Chapter 3),
image classification (Chapter 4) and multi-agent communication (Chapter 5).

Chapter 3: Learning from multiple distributions Training data often come
from multiple systematically different sources. This chapter presents research on out-
of-distribution generalisation in machine learning from the perspective of learning from
multiple training distributions. I present two novel contributions: (1) Linear unit tests,
a set of tasks that probe OOD algorithms, and (2) new theoretical results (Theorem 1
and Theorem 2) that fill the gap between data-driven and algorithmic approaches to
generalisation, along with a set of practical recommnedations. This work aims to increase
transparency and understanding in evaluation of OOD algorithms: on the one hand, by
proposing a standardised battery of unit tests, and on the other hand, by explaining
the relation between two previously disjoint approaches in the context of learning from
multiple distributions.
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Chapter 4: Out-of-distribution generalisation in image classification This
contribution is focused on image classification under the assumption of a single training
distribution, which is the most prevalent learning setup in machine learning. I expand
this line of research by (1) presenting Neural Function Modules with an array of new
experimental results (Section 4.2) that show the advantages that Neural Function Modules
bring in the context of out-of-distribution generalisation in image classification, and (2)
releasing a set of lightweight OOD image datasets that can be used as the first stepping
stone in evaluation and comparison of new image classification methods. This work
demonstrates the advantages and flexibility of Neural Function Modules in the context of
out-of-distribution generalisation in image classification.

Chapter 5: Out-of-distribution generalisation in multi-agent systems This
contribution is focused on out-of-distribution generalisation from the perspective of multi-
agent communication, where agents are parameterised by neural networks. Firstly, I
contribute to this field by introducing graph referential games along with the results on
the influence of data representation and the corresponding data representation learning
methods on out-of-distribution generalisation. The results bridge two previously disjoint
fields of graph representation learning and emergent communication. Secondly, I investigate
OOD generalisation in the challenging task of many-to-many communication grounded in
realistic images. The results presented in this chapter corroborate the hypotheses that (1)
more structured input data lead to more structured/compositional language [262, 163] and
(2) graph representation learning can improve compositional generalisation in machine
learning [19].

Chapter 6: Conclusion and further directions This final chapter summarises my
contributions and the main takeaways of the thesis with respect to the research questions
that were investigated. The conclusion is followed by a discussion of future research
directions in out-of-distribution generalisation in machine learning.

1.4 Publications

The research efforts I carried out during my PhD have led to the publications and workshop
presentations listed below in chronological order.

1. Antoniou, A., Słowik, A., Crowley, E. J., and Storkey, A. J. (2019) Dilated DenseNets
for Relational Reasoning [6]. Oral presentation. I also presented the same talk at
the Artificial Intelligence Research Group Talks (Computer Laboratory) series.

2. Słowik, A., Mangla, C., Jamnik, M., Holden, S. B., Paulson, L. C. (2019) Bayesian
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Optimisation for Heuristic Configuration in Automated Theorem Prov-
ing [257]. Oral presentation.

3. Słowik, A., Mangla, C., Jamnik, M., Holden, S. B., Paulson, L. C. (2020) Bayesian
Optimisation for Premise Selection in Automated Theorem Proving (Student
Abstract) [258]. Poster presentation.

4. Danel T., Spurek P., Tabor J., Śmieja M., Struski Ł., Słowik A., Maziarka Ł. (2020)
Spatial Graph Convolutional Networks [265, 58].

5. Słowik, A.*, Gupta, A.*, Hamilton, W. L., Jamnik, M., Holden, S. B. (2020) Towards
Graph Representation Learning in Emergent Communication [255]. Poster
presentation.

6. Guo, S.*, Słowik, A.*, Ren, Y.*, Mathewson, K. (2020) Inductive Bias and
Language Expressivity in Emergent Communication [95]. Poster presentation.

7. Aubin, B., Słowik, A., Arjovsky, M., Bottou, L., Lopez-Paz, D. (2020) Linear
unit-tests for invariance discovery [10]. Oral presentation.

8. Słowik, A.*, Gupta, A.*, Hamilton, W. L., Jamnik, M., Holden, S. B., Pal, C.
(2021) Structural Inductive Biases in Emergent Communication [97, 256]. Oral
presentation.

9. Lamb, A., Goyal, A., Słowik, A., Beaudoin, P., Mozer, M., Bengio, Y. (2021) Neu-
ral Function Modules with Sparse Arguments: A Dynamic Approach to
Integrating Information across Layers [160]. Oral presentation.1

10. Słowik, A., Bottou, L. (2021) Algorithmic Bias and Data Bias: Understand-
ing the Relation between Distributionally Robust Optimization and Data
Curation [252]. Contributed talk.

11. Słowik, A., Bottou L. (2022) On Distributionally Robust Optimization and
Data Rebalancing [253]. Oral presentation.

12. Słowik, A., Bottou, L., Holden, S. B., Jamnik, M. (2022) On the Relation be-
tween Distributionally Robust Optimization and Data Curation (Student
Abstract) [260]. Oral presentation. AAAI 2022 Best Student Abstract Honor-
1Alex Lamb is the lead author of this paper. I contributed with research, implementation and

experimental results on NFM in the context of visual-question answering and OOD generalisation, as well
as by producing results that show that the benefits of using NFM extend beyond the benefit of additional
model capacity for the AISTATS rebuttal. In Chapter 4, I expand substantially on my contribution to
this paper and I include only the results of my individual follow-up research and experiments.
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able Mention (conference acceptance rate: 15%, with 19 out of 111 accepted abstracts
selected for an oral presentation, and 3 out of 19 receiving a mention).

All figures in this thesis are my original work unless otherwise credited in the captions.

The research carried out during my PhD led to the Young AI Researcher 2022 Award
(https://www.cst.cam.ac.uk/news/award-students-work-addressing-bias-machi
ne-learning) and Myson College Exhibition for Personal Achievement 2022 (awarded by
Lucy Cavendish College).

I was also awarded the departmental Wiseman Prize (https://www.cst.cam.ac.uk/wi
seman-prize) for my teaching, mentoring and community-building activities.
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Chapter 2

Background

When I was a student, old
professors called photocopiers a
xerox machine. Today, we call

__call__ the forward pass.
–Ferenc Huszár (2022)

This chapter describes the notation used throughout the thesis (Section 2.1), the research
methodology and metrics used throughout the contribution chapters (Section 2.2), an
overview of concepts essential to the work undertaken in the thesis but not crucial in
all chapters (Section 2.3.1), and a summary of an extensive literature review on out-of-
distribution generalisation in machine learning (Section 2.4).

The research literature review for this dissertation is further organised into three sections.
Sections 2.4.1 and 2.4.2 contain a review that is relevant to this dissertation as a single
body of work, and which helps in placing this dissertation into a wider context of research
on out-of-distribution generalisation in machine learning. These sections define the types
of distribution shift studied in machine learning and link them to the new contributions
presented in the core research chapters. This is a result of a bird’s-eye, domain-agnostic
view of the field of out-of-distribution generalisation in machine learning. Section 2.4.3
then presents a detailed, low-level summary of key papers relevant to each of the three
main settings covered in this dissertation: learning from multiple distributions, image
classification and multi-agent communication. Despite all these settings living under the
umbrella of modern machine learning, each of them treats the topic of out-of-distribution
generalisation in a slightly different way, and each of them comes with its own domain-
specific characteristics (including the commonly used terminology).
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2.1 Notation

In this section, I introduce consistent notation that is respected throughout the thesis.
All of the descriptions are given with the assumption that the reader is familiar with the
underlying concepts.

• Vectors and matrices are written in boldface when only one letter is used to represent
them. Matrices are typically capitalised (A, M , Σ), and vectors are written in lowercase
(u, x, µ). The components of a vector (or matrix) are written using the same letter as
the vector (or matrix), with added subscript(s):

v =




v1
...
vd


 A =




A11 · · · A1m

...
...

An1 · · · Anm




• Sets of numbers and vector spaces are written in blackboard bold – for example, R for
the set of real numbers.

• The following are equivalent ways of stating the components of a vector v ∈ Rd:

v = (v1, . . . , vd) v = [ v1 · · · vd ]T =




v1
...
vd




• If a ∈ Rm and b ∈ Rn, then c = (a, b) is the result of concatenating a and b, which
formally means c ∈ Rm+n and:

∀i ∈ {1, . . . ,m+ n}. ci =

{
ai, i ≤ m

bi−m, i > m

• The univariate normal distribution with mean µ and variance σ2 is written as N (µ, σ2).
A d-dimensional normal distribution with mean µ and covariance matrix Σ is written
as Nd(µ,Σ).

The calligraphic font is also used to represent other probability distributions: uniform
(U(a, b)), categorical (C(p1, . . . , pn)), Gumbel (G(µ, β)).

Where appropriate, an upright serif font is used instead (for example, Geometric(p)).

• The notation EX∼P [f(X)] is the expectation of the quantity f(X), where X is a random
variable with probability distribution P .
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• For a probability distribution P , p is either a probability mass function or probability
density function (depending on whether P is discrete or continuous).

• Model parameters are represented by the letter Θ. When considering neural networks,
w is used to represent the network weights (including biases). When discussing
subsets/projections of Θ, we sometimes write θ or ω.

• Functions that depend on data points, but also model parameters – for example, model
errors – separate the two using semicolons: L(X,y;Θ).

• Data point inputs are usually represented as matrices X, with individual data points
x1, x2, . . . , xn. These are rows or columns of X depending on the setting. The j-th
component of xi is written x

(j)
i unless stated otherwise.

Outputs are typically one-dimensional vectors y = (y1, . . . , yn).

• Commonly used functions operating on vectors or neuron outputs are written in an
upright, sans-serif font when they appear in equations: Softmax(v), ReLU(v). They are
not written in this font when they appear in prose (‘softmax’, ‘ReLU’).

• All vector norms, represented by ∥x∥, refer to the Euclidean norm.

• In data generation descriptions, the notation x ∼ P means that a vector x is randomly
generated according to distribution P . For example, x ∼ N3(0, 1).

The notation x← E means that x is assigned a value deterministically by evaluating
the expression E. For example, x← 2y − z.

2.2 Methodology

This thesis contains both theoretical (Chapter 3) and experimental results (Chapter 4
and Chapter 5) on the topic of out-of-distribution generalisation in machine learning.
Throughout the experiments, I aim to vary one ‘parameter’ at a time in order to draw
conclusions about the impact of this parameter (for example, DenseNet is compared with the
same model augmented with dilated convolutions in Chapter 4). Where existing (published)
results from a comparable setting are available, they are included for comparison.

Training/validation/test splits The standard machine learning practice is to split the
available data into random training, validation and test subsets. A training subset (the
largest one, for instance, 80% of all the available data) is used to fit the parameters of a
model (the process referred to as learning or training and described briefly in Section A.2).
A validation set is used to evaluate the model throughout training (for example, after
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every epoch in the case of a neural network), and to compare different model parameters
before arriving at the final model. A test set is used to evaluate the model after training
is completed.

As further discussed in Chapter 3, this way of partitioning the dataset relies on the
assumption that data is identically and independently distributed. The samples are
shuffled in order to bring the real data closer to the i.i.d assumption (even though in
reality there might be multiple data sources that are systematically different). Training,
validation and test splits are assumed to come from the same distribution as they are
random partitions of the shuffled dataset.

In this dissertation, the main focus is the out-of-distribution (OOD) test performance
rather than the standard in-distribution test performance. The OOD test samples are
created in several purposeful ways to evaluate the robustness with respect to common
distribution shifts. In the OOD tests, the test samples are systematically different from
the training samples in a controlled way (for example, in Linear unit tests in Chapter 3,
training samples contain spurious correlations that are removed from the test samples in
the OOD evaluation).

Metrics Accuracy on the out-of-distribution subsets is the main quantitative metric
throughout this dissertation. There are also domain-specific metrics where appropriate (for
example, topographic similarity in Chapter 5). Randomly sampled qualitative examples
are shown in each chapter for illustration.

Early stopping During training, the performance of the model on training data improves.
On the test set, this trend is observed up to a point, after which the model performance on
test data decreases. This is referred to as overfitting (Figure 2.1) and should be avoided in
deployed machine learning models. A simple way of avoiding overfitting is by stopping
training early, before training performance converges and when test performance is at
the highest point. However, the test set must not be seen during training. The point at
which training stops is determined by performance on the validation set: the validation
performance of a model is used as a proxy for test performance, thus training stops once
validation performance starts decreasing.

2.3 Key techniques

In this section, I describe several algorithms and mathematical concepts that are referenced
throughout the thesis. These are specialised topics that are not found in standard machine
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Epochs

Performance Training
Test

Figure 2.1: An illustration of overfitting (for an abstract notion of performance).
The dashed line represents the point at which training should stop. In early stopping,
validation performance is used as a proxy for test performance.

learning textbooks as of writing this thesis. More fundamental ideas that are also referenced
throughout the thesis but are well-known are included in Appendix A.1.

This section is divided into two parts. Section 2.3.1 covers several operations and methods:
Softmax,1 Gumbel-Softmax trick, and Gaussian Blobs. In contrast to these concepts,
attention requires more motivation and description, given in Section 2.3.2.

2.3.1 Simple concepts

2.3.1.1 Softmax

In many machine learning tasks, it is required to produce a discrete probability distri-
bution from a real vector. This is especially common when neural networks are used for
classification tasks: the values output by the n output neurons need to be converted into
probabilities that the input belong to the corresponding class, out of n in total. To this
end, we use the Softmax function. When applied to a vector v = (v1, . . . , vn) ∈ Rn, it
produces another vector Softmax(v) = p = (p1, . . . , pn) ∈ Rn using the following formula
(for all i, 1 ≤ i ≤ n):

pi =
eλvj
n∑

j=1

eλvj
,

for some choice of λ ≥ 0.

It is not difficult to verify that the components of p give the probability mass function of
a categorical distribution C(p1, . . . , pn): the value of eλvj is positive for all values of λ and
vj, so the values of all pi are non-negative, less than 1, and they sum to 1.

1Softmax is important in every classification task, including those presented in Chapters 3, 4 and 5, as
well as in all “fits” to probability distributions discussed and proposed in this thesis. These include the
Gumbel-softmax trick, attention mechanisms, and Neural Function Modules.
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The role of λ is in determining how differences in the values of vi translate into differences
in probabilities pi. When λ = 0, all values of pi equal 1/n. As λ→ +∞, all values of pi
approach to 0 except for one, corresponding to the largest value of vi.2

All problems presented in Chapter 4 and Chapter 5 are variants of multi-class classification.
The Softmax function is then used in all the methods presented in these chapters. The
Softmax function is also necessary for describing how the agents are trained in the referential
games presented in Chapter 5 (Section 5.1.2.1 on game dynamics).

2.3.1.2 Gumbel-softmax relaxation

Consider a categorical distribution C(p1, . . . , pn). Rather than having one-hot outputs
w of this distribution, obtain n samples {uk}nk=1 from the uniformly distributed random
variable U ∼ U(0, 1) and transform each sample to obtain gk = − log(− log uk). These
gk follow the Gumbel distribution G(0, 1). Use these samples to obtain a continuous
relaxation GumbelSoftmax(p1, . . . , pn) = w̃ = (w̃1, . . . , w̃n) of the one-hot vector, defined
as follows:

w̃k =
e(log pk+gk)/τ

n∑

i=1

e(log pi+gi)/τ

where τ is the temperature of the trick. The role of the temperature is to control the
accuracy of the approximation of argmax (which outputs a one-hot vector) with Softmax:
when τ → 0, the samples from the Gumbel-softmax distribution become one-hot vectors;
when τ → +∞, all components becomes 1/n.

Gumbel-softmax relaxation (sometimes referred to as the Gumbel-softmax trick) was first
introduced independently by Jang et al. and Maddison et al. [126, 183] in order to turn
discrete inputs – one-hot encoding of category membership based on applying the argmax

function – into continuous and easily differentiable inputs. In this thesis, it is used for the
same reason – in the context of multi-agent communication.

2.3.1.3 Gaussian Blobs

In both synthetic and real-world data, noise follows a Gaussian distribution. A model that
fits and interprets the data well is expected to be robust to the noise. Finding a pattern
in such high-entropy noise is indicative of overfitting, and it is likely that the model fails
to generalise.

Communicating normally-distributed noise is used in multi-agent communication in order
to provide a sanity check of whether agents are learning to successfully interpret messages

2modulo the pathological cases where there are multiple maxima among the components of v
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or if they are erroneously learning the noise [163, 29]. This is the context in which Gaussian
Blobs are used in this thesis.

2.3.2 Attention

The idea behind the design of many neural networks is to mimic the cognitive processes
with which humans solve tasks. A common mechanism in reasoning is to use important
historical and contextual information, requiring mental focus. Humans ‘pay attention’ to
the relevant parts and roles of an input in order to solve a particular problem. Based on
this idea, the powerful concept of attention in a neural network has been developed.

The need for attention is best seen in the setting of natural language processing, where
humans infer the meaning and roles of words based on relevant parts of the rest of
the sentence. Consider the following example of machine translation, from English to
Polish:

I like strawberries. ⇝ Lubię truskawki.

Translating each part of the sentence and the sentence as a whole relies mostly on
translating the main concept (‘strawberries’), but also its relations to other words. The
word ‘strawberries’ serves the role of the object in this sentence and its translation needs
to be in the accusative case (as seen from ‘lubię’), so we use the form ‘truskawki’, as
opposed to, for instance, ‘truskawkom’ or ‘truskawkami’. On the other hand, the word ‘I’
does not affect the translation of the word ‘strawberries’ and attention should not be paid
to it while translating.

In short, the effect of using attention is to enhance some parts of the input data in
computing the output while diminishing the others.

I first give an outline of attention mechanisms (Section 2.3.2.1), before focusing on the
attention mechanism of the Transformer architecture – multi-headed scaled dot-product
attention – used by Neural Function Modules and the most popular attention mechanism
as of time of writing this paragraph3 (Section 2.3.2.2).

2.3.2.1 Brief overview of attention mechanisms

The basic idea of attention can arguably be seen in the design of recurrent neural networks
(RNNs) [236]. Recurrent neural networks typically operate on sequential inputs such as
sentences – seen as sequences of words – and their operation considers each symbol in

3The most talked-about topic in machine learning in 2023, attracting unprecedented levels of public
attention, are large language models such as GPT-4. This has resulted in widespread interest in the
Transformer architecture.
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the sequence in turn. They maintain a hidden state which gets updated as symbols are
processed: the new hidden state ht+1 depends on the previous hidden state ht and the next
symbol, encoded as xt+1: ht+1 = f(xt+1,ht) for some function f . The main disadvantage
of RNNs is that too much emphasis is placed on words being close to one another and
long-range dependencies can be missed. Early references to mimicking attention (for
example, Align & Translate by Bahdanau et al. [13]) are based on RNNs and fix this
problem. In the setting of machine translation, attention establishes connections between
parts of a sentence even if the word order is not the same in two languages. In short, a
model is capable of learning complex relationships between the input and the output.

Some attention mechanisms go beyond the basic sequence-to-sequence (Seq2Seq) problems,
as in machine translation. Attention can be applied in the setting of visual reasoning. Xu
et al. [295] use attention mechanisms in the context of automatic image captioning. Their
method is based on feature extraction in convolutional neural networks, after which the
caption (word sequence) is constructed.

Using RNNs and CNNs as the basis for attention mechanisms has a significant flaw:
recurrences and convolutions are non-linear operations (cannot be expressed as matrix
multiplication) that are difficult to parallelise. Early neural networks with attention mech-
anisms were mostly based on an encoder-decoder architectures based on these operations.
The Transformer model [280] is an influential architecture which dispensed with these
operations. The Transformer is based only on attention mechanisms (‘Attention is all
you need’, as the title of the seminal paper goes) and is thus easily parallelisable on a
GPU.

2.3.2.2 Attention mechanism of Transformer

I describe the Transformer attention mechanism both to provide an example to the previous
discussion and to provide background for Chapter 4, where it plays a key role in the design
of Neural Function Modules.

The attention function is based on the analogy with querying the map (sometimes also
called a table) data structure. A map is a set of key-value pairs (a value associated with
each key), and a query might request retrieval of a value associated with a particular key.
In the context of attention, the query, keys and values are input vectors, and the result is
the output vector. The result is a weighted sum of the values, where the weight associated
with each value is based on the compatibility of the query with the corresponding key.

Scaled dot-product attention Suppose each key k is a dk-dimensional real vector
and that values v are dv-dimensional real vectors (k ∈ Rdk , v ∈ Rdv). The compatibility
of a query q ∈ Rdk with a key k ∈ Rdk is their dot product qTk. The whole map and a
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set of queries are considered in parallel: the n keys and values are packed into matrices
K ∈ Rn×dk and V ∈ Rn×dv , and a set of m queries is also packed into a matrix Q ∈ Rm×dk .
The attention function is thus defined as follows:

Attention(Q,K,V ) = Softmax

(
QKT

√
dk

)
V .

The intuition is that QKT determines the significance of each key-value pair for all queries.
The Softmax function is here assumed to operate on each row separately and its goal
is to smooth the coefficients associated with values and make them sum up to 1. The
scaling factor

√
dk is used in practice in order to prevent the softmax function from being

applied to regions with extremely small gradients when dk is large (which tends to worsen
performance). Finally, the values are selected and their weighted sum is the result for each
query.

Multi-head attention The Transformer architecture introduced the idea of multi-head
attention. Instead of performing a single attention function with all keys, values and queries
being dmodel-dimensional vectors (where dmodel is the dimension of the input embedding),
each query, key and value is projected to smaller subspaces h times. These projections
are represented by matrices WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk and W V

i ∈ Rdmodel×dv

with learned parameters, where i ∈ {1, . . . , h}. Attention is then separately performed on
projected versions by the multiple heads, the output vectors are all concatenated and then
finally projected to give the final values using a matrix WO ∈ R(hdv)×dmodel :

MultiHead(Q,K,V ) = (head1, . . . , headh)W
O

where head i = Attention(QWQ
i ,KWK

i ,V W V
i ).

2.4 Out-of-distribution generalisation

Historically, research on neural networks was focused on improving the in-distribution
rather than out-of-distribution performance. Recent widespread adoption of machine
learning algorithms, encountered every day by a variety of users, has shown the limitations
of this approach.

The first part of this section (Section 2.4.1) describes the common changes in the distri-
bution between the training and the test scenarios (distribution shift) and their relation
to the contributions presented in this dissertation. The second part (Section 2.4.2) dis-
cusses compositional generalisation, the ability to combine known components in order
to systematically generalise when a distribution shift occurs, and gives the context in
which this is studied in the thesis. The third part (Section 2.4.3) systematises existing
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Figure 2.2: A diagrammatic representation of the attention mechanism used in the
Transformer architecture.

research on out-of-distribution generalisation in a way that corresponds to the three core
contribution chapters: existing work on algorithmic and data-driven approaches to OOD
generalisation (expanded in Chapter 3), existing work on OOD generalisation in image
classification (expanded in Chapter 4) and finally, prior work on OOD generalisation in
multi-agent communication (expanded in Chapter 5).

2.4.1 Types of distribution shift

Distribution shift refers to the change in the input data to a trained model, which causes
it to become less accurate when evaluated on the test set.

Assume input data X and the corresponding outputs Y . In supervised learning, the
training data can be viewed as a set of samples from the joint distribution P(X, Y ). The
purpose of a standard supervised model is to represent P(Y |X), that is, the conditional
probability of an output given an input. The joint distribution P(X, Y ) can be decomposed
in two ways:

P(X, Y ) = P(Y |X)P(X)

P(X, Y ) = P(X|Y )P(Y )

where P(X) denotes the probability distribution of the input and P(Y ) denotes the
probability distribution of the output.4

There is an infinite number of possible changes in the data distribution. Based on the
previously defined concepts and the classification of distribution shifts from the seminal

4‘Distribution’ refers to the probability mass function when referring to discrete random variables and
the probability density function when referring to continuous random variables. In classification problems
Y is discrete, while in regression Y is continuous. X is usually continuous in both cases.
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Figure 2.3: A diagrammatic representation of the six common types of distribution shift.
In each example, the arrows represent the invariant conditional probabilities. The shaded
circles represent the data that changes between the training and test set: for instance,
in the case of a covariate shift P(X) changes and the conditional probabilities P(Y |X)
remain the same. Note that more variables than the shaded one can change, but the
shaded variable is the defining shift that drives the change in each type of distribution
shift. V is a selection variable, which indicates if an example is included in the respective
dataset or not. f is a representation function, for instance, whether an image is framed or
not. S refers to source proportions which can vary between training and testing.

book ‘Dataset shift in Machine Learning’ [220], Figure 2.3 shows the common differences
between the training and the test distribution.

The following subsections discuss the various types of distribution shifts (illustrated
in Figure 2.3): covariate shift (Section 2.4.1.1), sample selection bias (Section 2.4.1.2),
prior probability shift (Section 2.4.1.3), imbalanced data (Section 2.4.1.4), domain shift
(Section 2.4.1.5) and source component shift (Section 2.4.1.6). Finally, I include an
aside on adversarial machine learning as an example of robustness to distribution shifts
(Section 2.4.1.7).

2.4.1.1 Covariate shift

Covariate shift (Figure 2.3a) means that P(X) changes and the conditional probabilities
P(Y |X) remain the same. Covariate shift is one of the most widely studied distribution
shifts in machine learning. It commonly occurs as a result of a selection bias (Figure 2.3b),
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or missing data. For instance, consider the task of detecting breast cancer5. The risk of
breast cancer is higher for women over the age of 40. Consider a simple model that is
meant to predict the risk based on the age of the patient. If there are more women over
the age of 40 in the training data than in the inference data (for instance, because the
women over the age of 40 are encouraged to get tested and they provide training samples,
but random people can sign up to be tested using the trained model), P(X) changes at
the inference stage. However, for an example with a given age, such as above 40, the
probability that this example has breast cancer P(Y |X) is constant. This is an example of
a covariate shift. Covariate shift notoriously occurs in practical applications when a model
trained on the past data (for example, the records from the past 5 years) is meant to be
used in the future (for example, a year from now). Even if P(Y |X) is assumed to stay the
same, there will often be differences in the future samples in comparison to the samples
from the past due to various changes that occur in the meantime.

Connection to the thesis Covariate shift is the canonical instance of distribution
shift (at times used as a synonym of ‘distribution shift’) and it is relevant to all of the
contribution chapters in this dissertation. Chapter 3 presents the approaches to mitigate
such shift based on learning an invariant representation and ignoring spurious features
(Section 3.3), as well as the approaches based on optimising for the most challenging data
distribution that can be modelled at the training stage (Section 3.4). Chapter 4 shows
results of the experiments using a wide array of the instances of a covariate shift in image
data (for example, changes in the colour or object count between the training and the test
images). Chapter 5 shows experiments that use several examples of covariate shift in the
domain of graphs and realistic images in a multi-agent setting.

2.4.1.2 Selection bias

Selection bias (Figure 2.3b) refers to the situation when the training and test distributions
differ as a result of a sample rejection process [109]. For instance, public opinion polling
conducted via landline phones can lead to an under-representation of the views of the
young people who do not have landline phones. Another example that links selection bias
to covariate shift: women over the age of 40 are reminded to have breast scans, which
might lead to their over-representation in the training dataset in comparison to the entire
population of women.

Connection to the thesis Chapter 3 mentions the problem of selection bias in the
context of the prevalence of the ‘minority’ and the ‘majority’ groups that are often

5An example from the Machine Learning Systems Design course at Stanford University (CS 329S by
Chip Huyen, 2022).
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combined into a single training dataset. Due to selection bias that favours the majority
group, the samples of certain properties might be more prevalent in the training data,
which means that the solution based on the average error on the entire training dataset
might be similar to a solution that represents only the majority group (Figure 3.1 in
Chapter 3). Survival bias is a common intuitive instance of selection bias – for instance,
the approach of using only the records of successful start-ups as an indicator of economy
without including the failed companies that fell out of view. Section 3.4 presents my
contributions to the research on addressing the problems often caused by selection bias,
such as the issue of over- and under-representation.

2.4.1.3 Prior probability shift

Prior probability shift (also referred to as label shift; Figure 2.3c) refers to the situation
when P(Y ) changes and P(X | Y ) remains unchanged. In other words, the output
distribution changes but for a given output, the input distribution stays the same. In the
breast cancer example, if there are more women over 40 in the training data than in the
test data, the percentage of POSITIVE labels might be higher during training than at test
time. Another example of the prior probability shift occurs in various ML-based failure
detection systems, when a change in the maintenance policy results in fewer failures and a
new distribution of the positive and negative examples [148]. Covariate shift and prior
probability shift often occur simultanously – if one occurs without the other, it means that
at least one of the conditional probabilities changes (as seen from the joint probability
decomposition).

Connection to the thesis Both covariate shift and prior probability shift occur in
the compositional generalisation/systematic generalisation (Section 2.4.2) tasks studied
in Chapter 4 and Chapter 5: the distribution of features P(X) shifts due to the test
examples that contain new feature combinations (for instance, an algorithm trained on the
examples of a ‘red square’ and ‘blue circle’ is tested on the ‘red circle’ example), and the
label distribution P(Y ) changes since the label is assigned based on the features that are
recomposed (for example, the figures are assigned the labels corresponding to their shapes
and colours). Section 4.2 presents new results in compositional generalisation using image
data, and Section 5.1.4 presents new results in compositional generalisation in the context
of multi-agent communication.

2.4.1.4 Imbalanced data

Imbalanced data (Figure 2.3d) refers to a multi-class machine learning problem where
one or more classes are very rare compared to the other classes. It happens by design in
systems that predict very rare events. In the case of imbalanced data, the shift depends
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on the labels alone, whereas in the case of selection bias, the shift depends both on the
features and the labels (Figure 2.3b and Figure 2.3d). Since it might be infeasible to
collect more samples from the rare class, the samples from the more prevalent class are
sometimes discarded at the training stage to create a more balanced dataset. However, this
leads to the distribution shift between the training stage that uses an artificially balanced
dataset and the evaluation stage when the model is deployed on the real, imbalanced
population.

Connection to the thesis Imbalanced datasets are not the focus of this dissertation;
however, there is ample literature on addressing this problem [218, 129].

2.4.1.5 Domain shift

Domain shift (Figure 2.3e) occurs when the representation of the problem changes. Consider
a latent variable X0 referring to the unchanging meaning of the input data. The output Y
is dependent solely on the underlying latent variable X0. However, X0 is not explicitly
observed, as the input X is the result of a mapping from X0: X = f(X0) for some function
f . Domain shift refers to a different f in the test scenario compared to the training stage.
Using an example from Chapter 3, X0 might refer to information that uniquely identifies
the type of an animal in an image classification system, Y is the label corresponding to the
animal type, and X is the image data. However, f might change if it represents a different
environment (meadow or beach, day or night). The feature distribution P(X) changes if
the representation mapping f changes. Unlike in the case of covariate shift, there is no
requirement that P(Y | X) remains the same. The conditional probability P(Y | X0) stays
the same, but P(Y | X) changes if the transformation f changes.

Connection to the thesis Linear unit tests (Section 3.3 in Chapter 3) are all examples
of domain shift, where the domain change from training to testing is manifested in shuffling
spurious features to remove the spurious links. The test domain includes only the invariant
links to test whether the algorithms are able to learn them from the training domain,
while ignoring spurious links.

2.4.1.6 Source component shift

Source component shift (Figure 2.3f) is a type of distribution shift that directly relates
to the problem of data coming from multiple sources rather than being independently
and identically distributed. Each data source can have its own characteristics, and the
proportions of the samples from those sources can vary between the training and test
stages. The data source (also referred to as the ‘environment’ [7]) is a confounding factor
that affects the X and Y values.
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Figure 2.4: An example that illustrates vulnerability of neural networks in the face of
distribution shifts (even those undetectable by humans).
The authors [88] generate this example using a powerful GoogLeNet architecture [273],
ImageNet dataset [65], the weight ϵ = 0.007 and a noise perturbation. The perturbed
input image results in the model outputting an incorrect answer (‘gibbon’) with high
confidence.
Vulnerability to insignificant input perturbations further motivates the research into
understanding distribution shifts in machine learning.

Connection to the thesis The entire Chapter 3 assumes the setting of data coming
from multiple sources. Section 3.3 presents a set of tasks that evaluate whether algorithms
can learn invariant features across multiple data sources. Section 3.4 shows new results in
the field of research focused on minimising the error on the most difficult data source.

These types of distribution shifts are closely related, and a model can suffer from multiple
types of shifts at the same time. In order to generalise in the presence of a distribution shift,
the training and test distributions have to be related in an exploitable way. A practical
example of such a relation between the training distribution and the test distribution
is exploited in the case of compositional generalisation [133, 4, 208, 173, 24, 201, 291, 9,
238].

2.4.1.7 Digression: adversarial machine learning

The fragility of neural networks optimised for the highest in-distribution accuracy came
to light with the work on adversarial robustness showing that neural networks cannot
generalise even to visually indistinguishable changes in image data [272]. There is a
close interplay between adversarial robustness and out-of-distribution generalisation, with
methods such as Distributionally Robust Optimisation (Chapter 3) being adapted to tackle
both problems [7, 267]. Figure 2.4 shows a motivating example.

2.4.2 Compositional generalisation

The idea of compositional generalisation in machine learning is inspired by the principle
of compositionality from logic and semantics: The meaning of a complex expression is
determined by the meanings of its parts and the way they are syntactically combined [212].
The principle appears in formal reasoning about both programming and natural languages,
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in which an interpretation function [[·]] maps expressions to their semantics and its definition
follows the syntax. For example, the meaning of ‘two plus three’ depends on the meanings
of ‘two’, ‘plus’ and ‘three’, so its translation into the semantic domain (the domain of
numbers) is as follows:

[[two plus three]] = [[plus]]([[two]], [[three]]) = add(2, 3) = 5.

In some cases, the meaning of a complex expression can be predicted in a rigorous way
based on the meanings of its constituents (for example, when mathematical functions or
operations in a computer program are composed, as is the case in Scott’s denotational
approach to formal semantics of programming languages [245]). In other cases the inference
can be noisy and complex, such as in human language (for example, in the sentences ‘time
flies like an arrow’ and ‘fruit flies like a banana’ the meaning of a single constituent ‘flies’
changes depending on the context). Rule-based, symbolic approaches (such as pre-2010
research in natural language processing) have struggled with semantic compositionality ‘in
the wild’ due to the number of exceptions and subtleties in interpreting the combinations
of real-world data, such as words or visual stimuli.

2.4.2.1 General machine learning perspective

In machine learning, compositional generalisation (also referred to as systematic gener-
alisation or systematic compositionality) refers to the algebraic capacity to understand
and produce novel combinations from known components (a definition by Brenden Lake,
one of the main contributors to this field)6. On the other hand, Dieuwke et al. [122]
propose an extended definition of compositional generalisation in the context of natural
language processing and machine learning as an umbrella term for five compositional
properties: (i) systematicity : the ability to recombine known components and rules (used
in a synonymous way to ‘compositional generalisation’ in Chapter 4 and Chapter 5 in
this dissertation), (ii) productivity : the ability to generalise to longer data samples than
those seen in training (most applicable in the context of language data), (iii) substitutivity :
robustness to synonym substitutions (related to the substitutions of similar colours and
shapes in Chapter 4), (iv) localism: are local compositions evaluated before the global
compositions? and (v) overgeneralisation: the ability to extract rules from data and the
ability to accommodate exceptions. Figure 2.5 shows a reproduced illustration of this
classification of the main types of compositional generalisation.

6Source: the talk ‘Compositional generalisation beyond the training distribution in minds and machines’
at ICLR 2021.
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Connection to the thesis Chapter 4 is mostly focused on compositional generalisation
in image recognition in the form of systematicity (Figure 2.5 (a)), where the recomposable
building blocks are interpretable visual features such as colour and shape. Specifically,
systematicity with respect to shape and colour is studied in visual question answering
tasks (Section 4.2.1). The experiments on generalisation in font and letter recognition
(Section 4.2.3) are also an example of systematicity. The experiments on generalisation
with respect to a varying number of objects in a scene (Section 4.2.4) can be seen as an
instance of productivity (Figure 2.5 (b)) because models are tested on their ability to
extrapolate to a larger number of objects than seen in training. Section 5.1.4 presents a
study on systematicity in multi-agent games. The idea of localism (Figure 2.5 (d)) relates
to the hierarchical learning of local and global features, which is the motivation behind
the idea to probe Dilated DenseNets (Section 4.1.1.2) in their ability to generalise to a
systematically different distribution.

2.4.2.2 Neural networks context

Neural networks are a promising alternative to previously popular rule-based systems in
terms of compositional generalisation on real-world data due to their data-driven approach
to memory and learning. The principle of learning from data might allow neural networks
to grasp the complex contextual information that cannot be hard-coded as a set of fixed
rules, and this context can be helpful in distinguishing between subtle rules that govern
compositional inputs in the domains of vision, language and real-world concepts. For
instance, humans know that a ‘wine hangover’ is a hangover caused by wine, a ‘college town’
is a town that has a college, and ‘honey bee’ produces honey.7 Moreover, we can usually
infer the role of a new word in a familiar context, for example, based on the sentence ‘we
will gfdgsdf like there is no tomorrow’ we can infer that ‘gfdgsdf’ is a verb. Early research
on neural networks and generalisation also points to the role of distributed representations
in the ability to generalise to a new yet somewhat similar distribution.8

Despite the conceptual advantages of neural networks in terms of compositional gener-
alisation, empirical evidence shows that standard neural networks with no additional
mechanisms to account for the compositionality of the input data (such as inductive
biases [19]) fail even at simple compositional generalisation tasks that humans can do very
well. To quote Hudson and Manning, 2018 [120]:

Most neural networks are essentially very large correlation engines that will
7Examples from the a post by Felix Hill: https://fh295.github.io/noncompositional.html.
8Geoffrey Hinton writes about the advantages of distributed representations learned by neural networks

(the many-to-many mapping between input concepts and neurons in a network) in terms of generalisation
through the ability to exploit the similarity of new information to the previous observations [113].
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(a) Systematicity
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(b) Productivity
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(d) Localism (e) Overgeneralisation

Figure 2.5: Classification of the main instances of compositional generalisation [123].
(a) Systematicity refers to the most common understanding of compositional generalisation,
where familiar components are recombined according to a familiar rule. Humans are able
to infer meanings for sentences they have never seen before, which means they use the
notion of sytematicity rather than memorising each sentence they encounter in a brute
force way.
(b) Productivity is a related skill that allows a model to extend beyond the sample length
encountered in training. It is best seen in the case of language data (‘language makes
infinite use of finite means’ [54]; under the natural constraints such as human memory or
human lifespan).
(c) Substitivity is also closely related to systematicity and language: it extends the
idea of systematicity to the ability of replacing words with previously unseen synonyms.
Substitivity covers the case when the meaning of a complex whole is not changed as a
result of the replacement – in this case, the distribution of features P(X) might change
but the distribution of the descriptive labels that capture the meaning of a sample P(Y )
stays the same.
(d) Localism tests whether a model prioritises global or local compositions. It can be
tested by comparing the outputs of a model (for example, a sequence-to-sequence network)
for certain stand-alone sentences to the outputs the model assigns to the same sentences,
this time presented as part of a longer complex sentence. Finally,
(e) overgeneralisation is tested by using a presumably compositional model on a non-
compositional sample (an exception). Most real-world tasks, such as learning a foreign
language, require the ability to balance compositional skills (for example, adding the
suffix ‘-ed’ to a verb in English tends to result in a past-tense form), and the awereness of
exceptions (‘broke’, ‘went’).
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hone in on any statistical, potentially spurious pattern that allows them to
model the observed data more accurately.

Brute memorisation hinders out-of-distribution generalisation, including compositional
generalisation.

For instance, Johnson et al. [128] show the results of compositional generalisation experi-
ments designed by swapping the colour palette in a visual question answering task [185]
based on images containing 3D shapes. In the training set (‘Condition A’) all cubes are
gray, blue, brown, or yellow and all cylinders are red, green, purple, or cyan. In the
OOD test set (‘Condition B’) colour palettes are swapped. The authors find that the
performance of the visual-language model (CNN+LSTM+SA) drops from 85% to 51%

due to the change of the colour palettes, which shows that the model fails to generalise to
new combinations of familiar shapes and colours.

Connection to the thesis Section 4.2.1 and Section 4.2.2 present the results of two
studies based on variants of the visual question answering task introduced by Johnson et
al. [128]. In terms of compositional generalisation, Section 4.2.1 studies a more complex
task than Johnson et al. [128]: instead of swapping the colour palettes based on the shape,
I consider all possible colour-shape combinations and include the results of generalisation
to an increasing number of omitted shape-colour combinations up to the maximum number
of shape-colour combinations that can be excluded without changing the total number
of objects in a scene (Table 4.1). Section 4.2.1 additionally compares the accuracy of
answering the relational and non-relational questions in the face of new colour-shape
combinations in the test set. Section 4.2.2 is loosely related to Johnson et al. [128]: the
dataset contains only two opposite questions (’Are they different?’ and ’Are they the
same?’) paired with images depicting two objects.

In the context of sequence-to-sequence models [270], the results about compositionality and
systematicity are mixed. Lake and Baroni [152] show that standard sequence-to-sequence
models perform very well in terms of systematicity based on familiar commands (being
trained on the examples such as ‘jump opposite right after turn opposite right’ and ‘jump
right twice after walk around right thrice’, the model was tested on new combinations
of familiar subcommands such as ‘jump opposite right after walk around right thrice’).
However, using the same dataset of commands and actions, the authors found that the
models cannot generalise to a longer sequence of actions than seen in training (with the
best accuracy of only approx. 20%). Systematicity was also lower when the commands
were presented only in their basic form in the training dataset (‘jump’, ‘walk’, ‘run twice’
etc), which suggests that combining basic commands is more challenging than recombining
previously observed complex commands.
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Connection to the thesis Section 5.1 uses sequence-to-sequence models as baseline
methods to explore the hypothesis that graph representation learning induces better results
in terms of compositional generalisation. This hypothesis was coined by Battaglia et al. [19]
in the context of machine learning in general, and Section 5.1 empirically investigates it in
the context of multi-agent communication. Productivity is studied in Section 4.2.4 with
the promising results of using Neural Function Modules to improve generalisation to a
larger number of objects in the context of multi-object classification (Table 4.4).

A recent paper in the domain of video data by Kipf et al. [140] introduces an extension
of Slot Attention [177] to achieve productivity with respect to the video length and
generalisation to new objects, new backgrounds, and a combination of both. This work
shows the potential of methods based on attention (see Section 2.3.2) and object-centric
learning [91] in compositional generalisation in challenging setups such as analysing video
data. SIMONe [131] is another example of research on compositional generalisation in
video. The authors present a Transformer-based model [280] that learns to separate
object-specific features (such as size and position) from the features that vary in time as
the video progresses.

Connection to the thesis Similarly to the methods mentioned above, Neural Function
Modules (Section 4.1.2) use Transformer-based attention (Section 2.3.2.2) as one of the key
components. The works such as Slot Attention [177] and SIMONe [131] motivate the use
of Neural Function Modules and their variants in the new tasks involving compositional
generalisation with respect to interpretable visual features, such as colour and shape
(Section 4.2.1 and Section 4.2.2), the font and size of letters (Section 4.2.3) and the number
of objects in an image (Section 4.2.4).

To conclude, there is an ongoing debate in the research community on whether neural
networks can or cannot generalise in a systematic or compositional way [112], whether
such ability is necessary [134] and even what compositional generalisation means [123].
Regardless of the machine learning research, compositionality is studied in semantics, logic
and cognitive science, and it is often argued to be one of the most important characteristics
of human intelligence [197, 79, 244, 215, 157]9. Practical advantages of compositional
generalisation in the context of machine learning include improved sample efficiency and a
higher potential for transfer learning and domain adaptation.

9Schulz et al. [244] conducted human experiments based on extrapolation and completion of math-
ematical functions, and concluded that the human problem-solving strategy is best described as com-
positional. They also show that people perceive compositional functions as more predictable than their
non-compositional counterparts. Piantadosi and Aslin [215] have shown that children as young as 3.5
years old can generalise the idea of function composition with the accuracy above chance, even when they
have not been explicitly taught how to compose functions.
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2.4.3 OOD generalisation: literature review

So far, this chapter has covered the background that is important for placing the entire
dissertation in a wider research context in machine learning. The following part of
the chapter systematises more specialised and recent knowledge (prior, concurrent and
subsequent papers relevant to the new contributions presented in this dissertation), and
breaks it down into sections that correspond to the focus of each of the contribution
chapters.

• Chapter 3 contributes to the research on model-agnostic, data-driven and algorithmic ap-
proaches to OOD generalisation, in particular to the ‘pessimism-based’ Distributionally
Robust Optimisation approach [21] and to the approach of learning ‘invariant features’
(where the key previous work is Invariant Risk Minimisation [7]). Section 2.4.3.1 and
Section 2.4.3.2 include the part of the literature review focused on Chapter 3.

• Chapter 4 focuses on image recognition, arguably the key application of modern neural
networks. Section 2.4.3.3 provides a review of existing work in out-of-distribution
generalisation in image classification.

• Chapter 5 addresses the setting of multi-agent games, in particular multi-agent commu-
nication using the setting of ‘emergent communication’. Section 2.4.3.4 covers existing
work on out-of-distribution generalisation in emergent communication.

2.4.3.1 Data-oriented approaches to OOD generalisation

Simple changes in the available training data can lead to an increase of out-of-distribution
generalisation and a decrease in the observable bias [114] in machine learning models. For
example, an under-represented group can be upsampled to create a training dataset that
is more representative of the possible future samples by duplicating the rare samples or
removing a number of the most common samples. This approach is motivated further in
various instances of problem detection: upsampling the rare problematic events (fraud
in the banking context, or a malignant cancer in healthcare applications) is beneficial
if the goal is to improve recall and false negatives have greater consequences than false
positives.

Hooker [114] argues that it is often infeasible to weigh the training dataset in an appropriate
way in practical applications. In order to increase representation of the under-represented
subsets at the training stage, we need a priori knowledge of which groups might be under-
represented with respect to the future uses of the model. Such information is sometimes
included in the metadata (for instance, additional information on the image source), or it
is encoded in the features (for instance, a flag that indicates scarcity or low data quality
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for a certain distribution, or the presence of known sensitive attributes such as race or
gender).

If the probability density function of the future data distribution Q is available and has a
density q(x), and P is the source data distribution with density P(x) (from which training
samples are drawn), the training samples can be weighed in a principled way according to
the likelihood ratio q(x)/p(x) (often referred to as Importance Sampling [116]). A machine
learning model is then found using Weighted Empirical Risk Minimisation (WERM)
instead of standard empirical risk minimisation (ERM) based on an unweighted average of
the values of the loss function on the entire training dataset. In the case of covariate shift
(Figure 2.3a), the weights per sample are obtained as a function of the input features x

(q(x)/p(x)), whereas in the presence of label shift (Figure 2.3c) the probabilities of labels
y are used (q(y)/p(y)). WERM in the former case starts from the assumption that the
desired loss function can be seen as an estimate of the expectation Ex∼Q[ℓ(x, y;Θ)], which
is equivalently expressed as:

Ex∼Q[ℓ(x, y;Θ)] =

∫

D

q(x)ℓ(x, y;Θ)dx =

∫

D

p(x)
q(x)

p(x)
ℓ(x, y;Θ)dx

= Ex∼P

[
q(x)

p(x)
ℓ(x, y;Θ)

]
.

In the equation above, D is the domain over which x ranges – meaning (−∞,+∞) for
real scalars and simple product domains when x is a vector.

As Vogel et al. [282] point out, it is unrealistic to assume that q(x)/p(x) or q(y)/p(y) ratios
are known in real machine learning scenarios, where out-of-distribution generalisation is of
high importance. Nevertheless, variants of Importance Sampling and Weighted Empirical
Risk Minimisation are used to train neural networks and to compensate for different sizes
of treatment groups in healthcare applications [247], to counter known label shift [172], and
in off-policy reinforcement learning [217], among others. Byrd and Lipton [37] investigate
the effect of Importance Sampling on the training of overparametrised neural networks,
and find that the impact of Importance Sampling diminishes over consecutive epochs, and
so Importance Sampling needs to be combined with early stopping to avoid the asymptotic
vanishing effect.

Liu et al [174] describe a simple approach to finding the data points that should be
upsampled. First, they train a neural network on the entire dataset, and identify the
samples for which the model produces incorrect outputs. Next, these data points are
upsampled and a final, new model is trained on an updated dataset. The authors find
that this method performs as well as Group DRO [240] on several datasets. They also
find that removing the majority (over-represented) samples from the dataset harms the
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performance in the minority group, which suggests that there is useful information in the
over-represented samples as well.

Finally, a common approach to improving generalisation in machine learning is to collect
‘more data’. This might refer to adding more data samples (to counter the errors caused
by high variance; for example, language models are prone to high variance due to a large
feature space [100]), or adding new features to the existing samples (to counter the errors
caused by high bias). Overparametrised neural networks defy the intuition derived from
the classical distinction of underfitting (high bias models) and overfitting (high variance
models), with performance gains observed past the point of overfitting (double descent [205]
and ‘grokking’ [216]). It is possible that increasing both the amount of data and the
model size suffices to achieve many practical aspects of generalisation. However, it is
not yet fully understood how such generalisation is achieved. New caveats are regularly
discovered: for example, Transformers [280] can achieve few-shot generalisation based
on scale alone [35] but only when the data is distributed in a particular way [46]. A
popular school of thought in machine learning in 2022 is to work towards combining the
advantages of scale (where scale is feasible [27]) with the research developments in theory,
interpretability and fairness.

Connection to the thesis Chapter 3 provides new theoretical results on the topic
of re-weighting the training distribution, which clarify the relationship between algorith-
mic approaches to out-of-distribution generalisation (based on Distributionally Robust
Optimisation), data-oriented approaches to out-of-distribution generalisation (based on
Importance Sampling) and bias mitigation in order to increase fairness in machine learning
systems. These results fill the existing gap between the work on algorithmic approaches
to OOD generalisation (based on Distributionally Robust Optimisation) and the various
approaches based on re-weighting the training data mentioned above [116, 247]. The
theoretical results followed by practical recommendations presented in Section 3.4 also aim
to increase the existing understanding of the algorithmic and data-based biases mentioned
in the literature on fairness in machine learning [114], and in particular to contribute to the
fundamental ’is machine learning bias a data problem or a model problem’ debate.

2.4.3.2 Algorithmic approaches to OOD generalisation

Algorithmic tools for addressing distribution shift can be divided into methods based on
the principles of pessimism, adaptation and anticipation10.

The pessimism principle assumes the future distribution to be similar to the most difficult
subset of the training data and it is implemented under the name of Distributionally

10A classification by Chelsea Finn [77].
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Robust Optimisation [21]. In the general case, the Distribution Robust Optimisation
(DRO) objective is as follows:

min
Θ

sup
Q∈Q

E(x,y)∼Q[ℓ(f(x;Θ), y)]

where Q is a set of probability distributions, and f is a model.

Connection to the thesis As discussed later in Section 3.4, we often know that a
certain amount of error is unavoidable for a given distribution. The unavoidable error per
distribution is expressed via calibration coefficients [193, 93]. The efficacy of using DRO
largely depends on setting the calibration coefficients, yet, there is no principled way of
doing it. Section 3.4.3 proposes a guideline for using DRO including the choice of calibration
coefficients based on the newly established theoretical results (Section 3.4.2).

Applications of DRO The definitions of Q vary depending on the use case of DRO.
In one example, for a fixed distribution P we define Q = {Q | Wp(P,Q) ≤ ϵ} where
Wp is the Wasserstein distance between two distributions (Wasserstein DRO [149]). In
Wasserstein DRO, the distributions considered in Q are small perturbations of the empirical
distribution P . In another instance of DRO called Conditional Value at Risk (α-CVaR
DRO) [300], the loss is defined as the average loss over the worst α ∈ (0, 1) fraction of
the training samples. In α-CVaR DRO, the set of probability distributions Q is defined
as all possible distributions over the α fraction of the dataset. Finally, Group DRO [240]
assumes that data comes from distinct (and known) groups, and the performance on
the most difficult group is optimised. The group membership per data point has to be
known at the training time, but not at test time. During training, the respective group
accuracies are re-evaluated and the ‘worst’ group can change based on the recent results
(to encourage good performance across all groups rather than only on the group that is the
most difficult initially).11 A possible disadvantage of Group DRO is that it requires access
to group membership at training time (it works in the setting of learning from multiple
data distributions, as described in Chapter 3). However, Group DRO is shown to lead to
a higher robustness to spurious correlations (that harm generalisation) than Empirical
Risk Minimisation, even in realistic text and image datasets such as CelebA [176] and
MultiNLI [289].

Adaptation-based approaches assume access to unlabelled ‘out-of-distribution’ data at test
time. The unlabelled samples might come only from one of the possible future distributions
(for instance, handwriting samples from a single new user in a digit recognition system

11See Algorithm 1 for an illustration of how to obtain a DRO solution.
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that strives to be robust with respect to individual handwriting styles). Adaptive Risk
Minimisation (ARM) [305] implements this approach by using meta learning [78].

Anticipation-based approaches assume that the data distribution changes over time. This
is most applicable in the context of repetitive distribution shifts in reinforcement learning.
For example, a goal that the agent is approaching might oscillate, or the physical conditions
(wind, velocity) might change in the context of robotics or autonomous driving. Formally,
classical reinforcement learning assumes that the state at step t+ 1, st+1, depends on the
state at step t and the action taken by the agent: st+1 = S(st, at); the state transition
function S is assumed to be constant across episodes. When the state transition function
varies in each episode, meaning we have a sequence of state transition functions S1, . . . ,
Si, . . . , any useful inference relies on our ability to find a link between the consecutive
transition functions Si and Si+1. In cases when model dynamics are known, it is possible
to train the agent with a suitable choice of objective (as in Xie et al. [293]). When
the environment changes are predictable, the trained agent can thus ‘get ahead’ of the
environment shift by anticipating it.

2.4.3.3 OOD generalisation in image classification

Modern image classification mostly involves the use of Convolutional Neural Networks
(CNNs; Section A.1.2.2) as the main building block of vision models. Motivated by the
biological provenance of the idea behind CNNs, Geirhos et al. [85] published an extensive
comparison of the generalisation ability of humans and CNNs. They find that humans
are more robust than state-of-the-art CNNs to all image manipulations considered (noise,
contrast, rotation and more). Interestingly, they show that CNNs trained on a certain
image distortion surpass human performance on the exact same distortion type. However,
CNNs do not generalise across different distortion types such as different types of noise (salt-
and-pepper versus white noise) that are trivial for humans. There are multiple other tasks
where CNNs have been shown to exceed human in-distribution performance [146, 105, 250],
yet at the same time these models struggle on trivial, visually indistinguishable changes in
the image distribution (as shown in adverarial learning; Figure 2.4).

Madan et al. [182] shows that increasing the diversity of in-distribution training data helps
CNNs generalise out-of-distribution, even when the number of training samples does not
increase (there is a similar existing result in the setting of emergent communication [44];
Section 2.4.3.4). They also show that increased specialisation of parts of a neural network
helps in improving the out-of-distribution performance.

Connection to the thesis The design of Neural Function Modules (NFMs; Section 4.1.2)
and the idea to evaluate them in the context of out-of-distribution generalisation (Sec-
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tion 4.2) relies on the benefits of specialised components in a neural network [44, 182].
NFMs allow the mechanism of specialisation to be easily added to any neural network (not
only CNNs). The previous approaches to specialisation of the individual layers are limited
in that they still process the entire hidden state [119, 52], while NFMs allow for dynamic
selection of the parts of the current hidden state via attention. NFMs also extend the
idea of layer specialisation by combining them with a proposal on how to implement the
biologically-inspired ’top-down’ feedback in neural networks (Section 4.1.2).

Failure modes of existing CNNs: a broader context Apart from the tasks where
CNNs perform to a high standard in the in-distribution case but struggle in the out-of-
distribution case (such as image classification given enough data), there are also problems
where CNNs fall short of human performance even in the in-distribution scenario. Brenden
Lake investigates concept learning from a small number of image examples [155] in humans
and CNNs. While humans can obtain a rich representation of a concept from a few
examples (for example, after seeing a single segway for the first time, humans can parse
it into the most important parts such as wheels and the handlebar). On the contrary,
much of the progress in CNNs has been enabled by training them on large datasets such
as ImageNet [146] (1.2 million images in total and around 1200 images per class). The
authors propose a dataset for probing concept learning and generalisation in visual models
(Omniglot stimulus set [155]) with ‘visual Turing tests’ that require generalisation, and they
aim to recreate the human approach to decomposing unfamiliar concepts using Bayesian
Program Learning [155]. Finally, Lake et al. [156] argue that the ability to infer causal
relations is missing from the existing CNNs used in image classification (as an example, a
picture of people running away from a house destroyed by the waves is captioned by an
image captioning model as ‘a group of people standing on top of a beach’ [156]).

Chapter 4 aims to separate the problem of studying out-of-distribution generalisation
in image recognition from the tasks of processing a noisy image and extracting complex
visual features. This is approached by using a suite of synthetic tasks (Section 4.2) that
allow a full control over the distribution shift between training and test scenarios.

2.4.3.4 OOD generalisation in multi-agent communication

Existing research on emergent communication is focused on symbolic input data (vectors
interpreted as properties) [143, 38, 30, 42, 98, 43, 230, 96] and image input data [162,
163, 104, 75, 130, 29, 103, 135, 95, 69]. The work presented in Chapter 5 shows the first
results of using graphs (including trees) as input data in the emergent communication
setting.

56



There are a few studies that use out-of-distribution input data in emergent communica-
tion.

Bouchacourt and Baroni [30] use out-of-domain data in a cooperative game with a
symmetric communication channel, where agents learn to choose an appropriate tool to
eat a given fruit. One agent observes a fruit (for example, a ‘pear’) and the other agent
observes two possible tools (for example, a ‘spoon’ and a ‘hammer’). There are multiple
rounds of communication and at each stage either of the agents can choose to stop (and
choose one of the tools) or to continue the exchange by sending another message. Tools and
fruits are represented by property vectors (symbolic data). The agents are rewarded if the
tool choice is optimal given a fruit. In this game, the authors test the ability to generalise
to five unseen fruit types. The authors find that the performance on the new fruit types
nearly matches the standard in-distribution case. This might be the case because all of
the fruit types are represented by fixed properties such as ‘is crunchy’, ‘is small’ etc (the
agents might learn a property-to-tool mapping), as well as due to the limited number of
out-of-domain categories (five).

Connection the the thesis In contrast to Bouchacourt and Baroni [30], Chapter 5
studies problems where the accuracy of a random baseline is much lower than 50% (in the
games analysed in Figure 5.10, the accuracies of random baselines are 2%, 5% and 10%).
However, the methodology and observations overlap: the out-of-distribution accuracy in
graph referential games is relatively good (approx. 80% on average in Figure 5.10) and
the ‘properties’ in the baseline methods are modeled in a similar way to Bouchacourt
and Baroni [30] with the key addition of graph representations in Game-1 and Game-2
(Section 5.1.2.2).

Chaabouni et al. [44] contribute to the discussion on language compositionality and
compositional generalisation in emergent communication. In the generalisation experiments,
the set of all possible distinct input samples is partitioned so that the OOD test samples
contain only the feature combinations not seen in training (similar to Section 5.1.4).
The agent that recives the message has to reconstruct the original input rather than
recognising it among similar samples, and the input data is symbolic. While some
authors use compositional generalisation (the agents’ accuracy on the samples consisting
of new combinations of familiar features) as a measure for how compositional the emerged
language is [57, 142], Chaabouni et al. [44] show that empirically observed compositional
generalisation can be achieved without a compositional language (that is, without the
signs that the agents learn to communicate and disentagle the compositional input in a
compositional way). The authors find that the agents in an emergent communication
game defined over symbols can generalise to unseen combinations of familiar features if the
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input space is ‘sufficiently large’. For instance, if the agents see 900 distinct combinations
in the training set, they achieve a higher accuracy on the held-out 100 out-of-domain
distinct combinations than in the case of observing 90 combinations and being evaluated
on 10. This is shown to hold regardless of the number of training samples. A large variety
of compositional inputs might give the agents a stronger cue about the compositional
nature of the data. The authors conclude that the languages emerged in these games
are not compositional because the channel capacity C to input size |I| ratio is C

|I| ≈ 6,
whereas it is C

|I| = 1 for a perfectly compositional language. The authors also stipulate
that compositionality is a stronger condition than compositional generalisation, with
language compositionality being a sufficient but not necessary condition for compositional
generalisation. Finally, the authors show that compositional languages are easier to teach
to new agents (Spearman correlation 0.9), and these new agents are more likely to be
able to generalise in a compositional way if they are taught a compositional language
(Spearman correlation 0.8).

Connection to the thesis The experiments on graph referential games in Chapter 5
(Section 5.1) use a similar high-level design of OOD generalisation experiments, however,
input data includes graphs, sequences and bag-of-words, and the goal of the agent who
receives the message is to recognise the original input among similar samples (distrac-
tors).

A recent paper by Mu and Goodman [203] proposes communication over a set of images
rather than a single image at a time (the idea previously investigated by Guo et al. [94]).
The authors use the idea that human language might have emerged in order to communicate
‘generalisations’, for instance, to use the word ‘lion’ for as many real examples of a lion as
possible, including those that have not yet been seen [158]. In the games proposed by Mu
and Goodman [203], the agents are explicitly encouraged to generalise: the agent with
the role of a ‘teacher’ communicates a group of images belonging to a single concept (for
instance, images of a ‘red triangle’), and the games vary depending on how many agents
see the images and how different the images belonging to a single concept are (for instance,
the ‘red square’ on a dark background might have a different rotation and size). In the
games defined over images of geometric shapes, the authors use 10 images per target and
10 distractors, and the communication channel has the same bandwith as the number
of features needed to recognise the ground-truth concept combinations. Apart from the
geometrical shapes, the authors also use images of birds (100 classes at training time and
50 classes at test time, 40-60 images per class). In terms of language compositionality, the
authors find that in the games defined over a set the language is more systematic, regardless
of whether the input images are shared or unshared between the agents. However, the
authors find that the accuracy achieved by the emergent language fails to approach the
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accuracy of referential games: it is more difficult to learn to communicate based on sets
than to communicate specific references.

Connection to the thesis Section 5.2 investigates image-based emergent communica-
tion. However, it is focused on learning to describe an image at a time, and the images are
sourced from a dataset of realistic images. Additionally, the main research questions in
Section 5.2 concern the effect of model complexity and population size on generalisation
in image-based emergent communication.

2.5 Summary

This chapter describes relevant background for the thesis. Section 2.2 presents methodology
used to obtain the experimental results presented throughout the contribution chapters.
Section 2.1 sets the notation used throughout the thesis. Section 2.3 describes important
concepts such as attention, which are some of the building blocks of the novel work in
this thesis. Section 2.4 presents an overview of the existing research on out-of-distribution
generalisation in machine learning, with the focus on the learning scenarios investigated in
this thesis.

The remaining relevant background material is in the Appendix – it contains minimal
background on neural networks, the main building block of the work shown in Chapter 4
and Chapter 5.

2.5.1 Gaps in existing work

The contribution chapters address the following gaps in existing work:

• The practice of processing the entire hidden state (the entire unprocessed output of a
hidden layer is the input to the consecutive layer; Figure A.2) in neural networks as
described in Section A.1 and Section 2.4.3.3. This is addressed by the introduction of
Neural Function Modules (Section 4.1.2) and by providing new results on their ability to
improve out-of-distribution generalisation across an extensive lists of tasks and models
in the context of image classification (Section 4.2).

• The lack of studies on graph representation learning in emergent communication;
in particular, on the influence of data representation and the corresponding data
representation method in the face of a covariate shift in input data (Section 2.4.3.4).
This is addressed in Section 5.1.4 by the introduction of graph referential games, and
by providing the results of a comparison of representation learning methods in terms of
compositional generalisation and language compositionality.
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• The lack of a standardised set of tasks (unit tests) to evaluate algorithms in terms of
the ability to tackle domain shifts by learning invariant features. This is addressed by
the introduction of Linear unit tests and by providing the results of a comparison of
existing methods using Linear unit tests (Section 3.3).

• The lack of a full understanding of the connection between re-weighting training
examples (Section 2.4.3.1) and applying the algorithmic approach to bias mitigation
(Distributionally Robust Optimisation; Section 2.4.3.2). This is addressed by providing
a set of theoretical results on the equivalence of these approaches (Section 3.4).

• The lack of a principled way of setting calibrated coefficients in DRO (Section 2.4.3.2).
This is remedied by providing a set of practical recommendations on using DRO and
setting calibration coefficients based on the new theoretical findings (Section 3.4.3).

• The lack of studies on the influence of population size and model diversity on generali-
sation in emergent communication (in the most common setting of referential games)
with realistic images (Section 2.4.3.4). These research questions are investigated in
Section 5.2.

The list above is a brief summary of the ways existing work presented in this chapter
motivates the contributions made in this thesis. Each of the contribution chapters expands
on its respective contributions.
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Chapter 3

Learning from multiple distributions

Nature does not shuffle the data,
so we should not either.

–Léon Bottou (2019)

This chapter focuses on algorithms that learn from multiple training distributions si-
multaneously, as opposed to the standard practice of an algorithm learning from one
training dataset under independent and identically distributed (i.i.d) data assumptions.
In addition to exploring the framework of multiple training distributions, this chapter is
model-agnostic, as opposed to the later chapters focused on neural networks. The main
results presented in Section 3.3 and Section 3.4 reveal limitations of the error minimisation
algorithms that are currently used to improve distribution robustness in machine learning.
On one hand, a new dataset reveals that existing optimisation methods fail to generalise
in presence of spurious correlations, even if data is linearly separable (Section 3.3). On the
other hand, new theoretical results show that a commonly used practical formulation of
out-of-distribution generalisation, Distributionally Robust Optimisation [21], is equivalent
to standard Empirical Risk Minimisation [279] on an adequately weighted training dataset
(Section 3.4).

Chapter structure

Section 3.1 briefly describes the limitations of the standard approach of learning under
the i.i.d assumption and motivates the framework of using multiple distinct training
distributions instead of shuffling all the available data at random, and assuming a single
training dataset that represents a single distribution.
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Section 3.2 formally defines the framework of learning from multiple training distributions,
which is used in practice in the results sections, Section 3.3 and Section 3.4.

Section 3.3 describes a set of new datasests developed to standardise the evaluation of
out-of-distribution generalisation algorithms. I present the datasets and an extensive
evaluation of the existing algorithms. This work shows that problems typically considered
to be domain-specific challenges (for example, recognising the actual object of interest in
an image rather than exploiting image background in image recognition tasks [20, 292])
are challenging even in simplified, linearly separable instances. It also provides the
first standardised testbed for comparing and evaluating algorithms from the fields of
causality [301], invariace discovery and out-of-distribution generalisation, with the goal of
reducing the risk of duplicating efforts in these closely related lines of work.

Section 3.4 presents a set of new theorems, which establish the conditions under which a
robust solution to learning from multiple training distributions corresponds to optimising
a mixture of distributions. The approach considered here is Distributionally Robust
Optimisation (DRO) [21]. Based on the theorems, I propose new guidelines for applying
DRO in scenarios where there is an imbalance between the training distributions; for
instance, when there is data scarcity or lack of quality data to represent one of the
distributions. This work shows that the performance of DRO measured on a particular
dataset from the set of training datasets (that might represent different distributions) can
be no better than the performance of the best solution optimised specifically for the given
dataset. I discuss ramifications of this result for fairness in machine learning systems.

Related publications I presented some of the results from Section 3.3 at the competitive
NeurIPS Workshop on Causal Discovery and Causality-Inspired Machine Learning (oral
presentation).

I presented the results from Section 3.4 at the NeurIPS Workshop on Optimization for
Machine Learning (OPT 2021) (oral presentation) and at the NeurIPS workshop on
Algorithmic Fairness through the Lens of Causality and Robustness (AFCR 2021) (oral
presentation). The results were later published at The Thirty-Sixth AAAI Conference
on Artificial Intelligence (AAAI 2022) as a student abstract (oral presentation), which
received the AAAI-22 Best Student Abstract Honorable Mention (conference acceptance
rate: 15%, with 19 out of 111 accepted abstracts selected for an oral presentation, and 3
out of 19 receiving a mention).

I also gave a presentation on existing work in learning from multiple distributions at the
Causality & Domain Adaptation Reading & Work Group (the group of Ferenc Huszár).
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3.1 How the i.i.d assumption fails

The standard practice of shuffling the training and test examples at random brings the
test distribution closer to the training distribution, and it allows the use of algorithms
that assume i.i.d data [279]. On the other hand, this practice is also motivated by the use
of data-hungry methods such as neural networks, which encourages the curation of large
datasets. The pooled, shuffled and randomly split samples are convenient, however, they
might not correspond to real future examples, to which an algorithm deployed in practice
is exposed. In fact, it has been frequently shown that optimising for the in-distribution test
performance does not translate to good performance in presence of realistic distribution
shifts [20, 187, 189, 86, 228, 231]. The discrepancy between the performance on shuffled
data in the synthetic research scenario, and the performance on the future examples when
deploying a model in practice, plays the critical role in machine learning failing to fulfil
the promises of aritificial intelligence. Paraphrasing Zoubin Ghahramani (the quote from
the panel discussion at the Workshop on Advances in Approximate Bayesian Inference,
2017):

The big lie in machine learning is that testing data comes from the same
distribution as training data.

Apart from the risk of obtaining a lower future performance than estimated based on
the in-distribution test accuracy, in certain scenarios pooling all the available examples
and shuffling them at random can reinforce systemic biases against pre-existing minority
subpopulations represented in the data. Algorithms that optimise for the minimum
average error over the entire dataset, such as the ubiquitous Empirical Risk Minimisation
(ERM) [278], yield models that perform poorly on subpopulations that are already at risk
due to pre-existing biases. This is most pronounced when ERM (based on minimising the
average prediction error) produces solutions that privilege the latent majority populations
over the latent minority groups (Figure 3.1). This is a simple phenomenon in terms of
the underlying mathematics, however, it can have serious negative practical consequences.
The solutions that are skewed towards the majority subpopulations have been shown to
be consequential in scenarios such as court verdicts, loan applications and healthcare
interventions [219, 56, 223, 194, 5]. For example, hiring systems and ad-targeting algorithms
based on minimising average error were found to discriminate against female users by
more frequently proposing executive and technical jobs to men [59, 60].

There is clearly a challenging trade-off between the wish to collect as many relevant samples
as possible and the wish to keep the i.i.d assumption. An alternative is to assume the
presence of several disjoint training datasets, each representing a meaningful subpopulation
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(for instance, each subpopulation corresponds to the samples collected in a different country,
or under different technical conditions).

Figure 3.1 compares these two approaches using the same classifier (linear SVM [108]).
When using the i.i.d assumption, the inferred model misclassifies the visible minority
subpopulation at the level of a random choice model, while performing nearly perfectly
when evaluated on the majority subpopulation. When the assumption of multiple disjoint
datasets is used, both the majority and the minority subpopulations are classified with
the accuracy of approx. 85%. The latter solution is preferred in the applications where
fairness and group robustness [118] are crucial; for example, when the majority and the
minority groups represent different demographic groups in machine learning applications
such as disease prediction.

3.2 Generalisation from multiple distributions

This section defines a framework for learning to generalise from multiple distributions,
which will be used for the rest of this chapter. This section explains how the multi-
distribution setup differs from the standard practice of using Empirical Risk Minimisation,
and how it is motivated by out-of-distribution generalisation.

Consider a dataset of N examples xn ∈ Rd (all d-dimensional vectors) and corresponding
labels yn ∈ R. Here, we focus on the supervised learning setting with access to a set
of pairs {(x1, y1), . . . , (xN , yN)}. The goal of learning is to estimate parameters Θ of a
function f(·,Θ) : Rd → R based on training data. While out-of-distribution generalisation
is equally important in unsupervised, semi-supervised and reinforcement learning settings,
the contributions presented in this chapter consider the setting of supervised learning.

In supervised learning, the i.i.d assumption implies that 1) training and test data samples
stem from the same data generative process (distribution) D, meaning all (xi, yi) ∼ D;
2) the generative process has no memory of past generated samples, that is, any two
data points (xi, yi) and (xj, yj) are statistically independent.1 This assumption is used
when measuring the ubiquitous in-distribution generalisation performance metrics (for
instance, standard test accuracy in classification) that assume no difference between the
data generating process for the training and test examples. The i.i.d assumption holds for
the outcomes of a generative process (usually unknown) that produces both the training
and test examples. However, the assumption is unrealistic when applied to data coming
from multiple generative processes in practical applications. Large datasets used in modern

1Recall the definition of independence is stronger than pairwise independence, which is what the
formulation of ‘no memory’ means here. For i.i.d random samples, we have that for joint distribution p of
n variables with density pD, p(X,y) =

∏n
i=1 pD(xi, yi).
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Majority subpopulation
Class 0
Class 1

Minority subpopulation
Class 0
Class 1

Entire population (ERM solution)

Class 0, majority
Class 1, majority
Class 0, minority
Class 1, minority

Entire population (DRO solution)

Class 0, majority
Class 1, majority
Class 0, minority
Class 1, minority

Figure 3.1: Illustration of the failings of ERM and i.i.d assumption in a linear binary
classification problem, where the training dataset can be partitioned to a majority and a
minority subpopulation.
When ERM is applied to the entire dataset, a significant proportion of the minority
subpopulation is misclassified. The training accuracy of the ERM solution (bottom left
plot) is 95.8% for the majority subpopulation and 48% for the minority subpopulation.
DRO (investigated in Section 3.4) uses the approach of learning from multiple distribu-
tions instead of assuming i.i.d data, which improves the performance in the minority
subpopulation (bottom right plot, 84%) while keeping the performance on the majority
subpopulation at an acceptable level (85%). The criterion of ‘acceptable’ performance
and the trade-off between the performance on individual subpopulations will be discussed
in Section 3.4. In this example, the two decision boundaries are obtained using a linear
Support Vector Machine (SVM) [108].
DRO leads to a more balanced solution than ERM with respect to the majority and
minority subpopulations.
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machine learning are often curated based on samples coming from systematically different
generative processes (for instance, MNIST dataset [168] was collected by pooling and
shuffling smaller datasets corresponding to different authors, each with an individual
handwriting style). Practical sources of statistical differences between training and test
data include changes in the behaviour of machine learning system’s users and systematically
reduced (or improved) quality of data over time. For instance, if a system works poorly for
a certain group of users, those users are more likely to avoid using it and to contribute fewer
new data samples, which can lead to disparity amplification over time [186] – meaning
that the performance on the test data set for these groups will deteriorate over time.

In an in-distribution setting with the i.i.d assumption, Empirical Risk Minimisation is the
most commonly used method in supervised learning. Recall that we can define the risk
for a predictor f(·;Θ) : Rd → R as a function R that depends only on f :

R(f) = Ex,y[ℓ(f(x;Θ), y)] =

∫

x,y

ℓ(f(x;Θ), y)p(x, y)d(x, y) (3.1)

where ℓ is a loss function that measures the ‘deviation’ between the ground truth label
and the predicted label and p is the joint probability density function. In practice, we have
a finite sample of inputs and outputs. Hence we define empirical risk Remp as a quantity
that depends on a predictor f and observed data X,y (as defined above). Empirical risk
is then simply defined as:

Remp(f,X,y) =
1

N

N∑

n=1

ℓ(ŷn, yn) (3.2)

where ŷn = f(xn,Θ).

A crucial limitation of this approach is that machine learning systems use large datasets
consisting of data samples coming from multiple generative processes. Data samples are
obtained under varying conditions, such as time, location or preprocessing techniques,
which affect data distribution. Shuffling those samples destroys information on which data
features stem from data collection details (for instance, artifacts from a medical device
such as a frame or a foreground timestamp), and which features describe the phenomenon
of interest (for instance, the presence of an illness).

Paraphrasing Léon Bottou, Nature does not shuffle data [7]. Since the i.i.d assumption
is artificially introduced in the training data, we cannot expect that future examples
will be i.i.d. Frequently, we cannot afford to only use data coming from one generative
process due to data scarcity. Instead, consider using multiple training environments or
subpopulations e representing different sources of data, with the main parallel aims of 1)
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achieving a low error on realistic future examples and 2) discovering features that describe
the pheonomenon of interest (invariant features) rather than data collection idiosyncrasies
that are unlikely to be stable in the future (spurious features).

Formally, the environments e are drawn from a large set of environments Eall, out of which
we only observe the set of training environments Etr ⊂ Eall. For each environment e we
associate random variables xe and ye and a generative process defining them (hence they
may have different distributions across environments). The task is to learn a predictor f

that performs well on all environments. Namely, we wish to minimise:

ROOD(f) = max
e∈Eall

Re(f) (3.3)

where Re(f) = Exe,ye [ℓ(f(x
e), ye)] is the risk for a predictor f associated with environment

e. In other words, the out-of-distribution risk ROOD(f) corresponds to the worst possible
performance of f on any environment.

Following this theoretical framework, we define a more practical Distributionally Robust
Optimisation statement, which only considers the environments seen during training:

RDRO(f) = max
e∈Etr

Re(f) (3.4)

The assumption is that the observed environments are representative of Eall. In practice
we use the empirical risk Re

emp as an estimate of Re. For minority subpopulations we
might have additional problems in the form of data scarcity or low data quality, making a
subpopulation inherently more difficult to classify. Since achieving a high performance on
such ‘hard’ environments might come at the expense of significantly lowering performance
in other environments, we introduce calibration coefficients re that adjust the subpopulation
risks in line with this inherent difficulty of an environment. DRO is thus sometimes (such
as in Sagawa et al. [240], where calibration coefficients are called generalisation gaps) seen
in the following form, which in this thesis we refer to as Calibrated DRO :

RDRO(f) = max
e∈Etr

(Re(f)− re) (3.5)

There are several ways of choosing these coefficients. We discuss the implications of this
choice in Section 3.4.

How do invariant and spurious features relate to out-of-distribution generalisation? If
Eall is the set of all hypothetical and observable conditions under which data describing
our problem can be collected, Etr ⊂ Eall is the set of observed environments used in
training. Such a set can be processed by a standard supervised learning algorithm if
the environments are pooled and shufffled. Shuffling removes the information about how

67



the data distribution changes depending on different conditions (data sources and data
generation specifics). This information is useful for predicting whether a feature will hold
in the unseen future examples (invariant feature), or if it is an idiosyncrasy of no relevance
to the problem at hand (spurious feature). Each environment represents an arbitrary
training distribution, and features that are stable across these collected environments are
expected to hold in the future.

3.3 Linear unit tests

This section presents a new standardised suite of synthetic linear unit tests. These
problems aim to cover a wide range of challenging discrepancies between training and test
distributions. I will start by describing the unit tests and specific challenges they pose,
continuing with presentation of the results using the most recent algorithms from the fields
of out-of-distribution generalisation and causality, concluding by ablation studies and a
summary of the results.

The name ‘unit tests’ is inspired by the related concept in software engineering: they are
small examples used to determine whether the basic functionality is correct. A unit test
usually probes the smallest piece of code that can be logically isolated in a system. Similarly,
linear unit tests probe machine learning models on simple inputs with a clear expected
output. Such tests were missing in prior work on out-of-distribution generalisation, and
in machine learning research in general. I hope this contribution will be used to foster
test-driven development practices in machine learning research.

Generating linear unit tests In every problem, we consider a set of environments
E = {Ej}nenv

j=1 , where nenv is the number of environments. For each of these environments
e ∈ E , we generate a dataset De = {(xe

i , y
e
i )}ne

i=1, where ne is the number of samples and
each xe

i ∈ Rd for a fixed dimension d. This dimension d represents the total number
of features, both spurious (of which there are dspu) and invariant (of which there are
dinv). Any input vector x in a dataset De is a concatenation of features xinv ∈ Rdinv and
xspu ∈ Rdspu . The goal is to learn an invariant predictor that estimates the target variable
y by relying on xinv, and ignoring xspu.

Train, validation and test splits are sampled per problem and per environment. In order
to render the association between spurious features and labels irrelevant (and to ensure
that only the algorithms ignoring spurious features achieve a low test error), values of
spurious features in the test set are randomly permuted across examples. Specifically, the
ne
test × dspu matrix of values of spurious features in test examples has its rows (each row

representing spurious features of one example) shuffled per each environment. This is
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not the standard practice in machine learning, where test error is usually measured on a
sample coming from the same distribution as the examples used in training, which tends
to yield higher results.

The following discussion is divided into six sections. In Section 3.3.1, I discuss existing work
on evaluating OOD generalisation – these are various toy problems that show how various
models fail to develop distributionally robust solutions. They provide inspiration for the
three sets of linear unit tests – Example1, Example2, Example3 – which are respectively
described in Sections 3.3.2, 3.3.3 and 3.3.4. I then describe the scrambled variations of
these problems in Section 3.3.5. Finally, Section 3.3.6 describes the results of evaluating
existing algorithms on the proposed ‘unit tests’.

3.3.1 Related work in evaluating OOD generalisation

Existing datasets for studying out-of-distribution generalisation are limited to the domain
adaptation setting [82] with an access to prior knowledge on the structure of the test
distribution in the form of unlabelled examples or a small number of labelled examples.
Those are typically image datasets where high dimensional, non-linear features reduce in-
terpretability of the results. [111] use the standard computer vision datasets (MNIST [167],
CIFAR [276]) split into realistic and perturbed examples to measure out-of-distribution
generalisation. By contrast, the aim of the linear unit tests is to evaluate the methods in
the ability to learn a representation that remains stable across changing environments. If
an algorithm can learn an invariant representation, it is robust to spurious, environment-
dependent features with no assumptions on the particular distribution of the spurious
features. Moreover, all of the examples are linear and explicitly tested in their ability to
ignore spurious features, which makes it harder to exploit shortcuts that are common in
more complex and noisy data, such as images or language.

Arjovsky et al. [7] introduced Colored MNIST, an image binary classification task derived
from MNIST, where each digit image is coloured based on the class label. In the test
dataset, the correspondence between the label and the colour disappears, so algorithms
based on minimising average training error fail due to exploiting the unstable colour-label
correlation at the expense of learning the meaningful digit-label correlation. Regression
from causes and effects (Section 3.3.2) explores a similar problem in the setting of linear
regression.

Another related problem was proposed by Parascandolo et al. [210] and is illustrated in
Figure 3.2. In order to extract invariant features in this task, an algorithm must learn
a highly non-linear decision boundary (spiral). Spurious features offer a linear decision
boundary: a vertical one in the environment A and a horizontal one in the environment B.
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Figure 3.2: A binary classification problem with four features – two spurious and two
invariant.
When data points are projected onto the invariant features, the decision boundary follows a
‘spiral’-like pattern. When the points are projected onto the spurious features, the decision
boundaries are linear but differ across environments. The spurious features might be used
to find the decision boundary even for the entire training set (pooled environments A and
B), in which case the decision boundary is still linear. However, this connection disappears
when probing an algorithm for out-of-distribution generalisation in the test case, where the
spurious features (that lead to the linear ‘shortcut’ solutions) are identically distributed.
Figure by Parascandolo et al. [210].

If the training environments are pooled and shuffled, data is still linearly separable due to
a diagonal decision boundary along the dimensions represented by spurious features. This
solution can be obtained by minimising training error, however, in the test dataset spurious
features are replaced with random samples. Small invariant margin (Section 3.3.4) shows
that this problem poses a difficulty to existing algorithms even when the invariant decision
boundary is linear.

3.3.2 Regression from causes and effects

This section describes a linear least-squares regression problem where features contain
causes and effects of the target variable (based on Arjovsky’s example [7], but with
slight modifications). First, I describe an example of such a problem to show why the
distribution of the invariant features changes across environments, while an invariant
solution using these features can be obtained. Next, I present a general definition which
can be used to generate a family of specific instances of regression from causes and effects.
Finally, I discuss challenges this family of problems poses to existing out-of-distribution
generalisation algorithms.

Consider the following toy problem. Suppose we have three environments E1, E2, E3 in
which the features and the outputs are generated using the same process: a normally-
distributed random variable Xinv centred at 0 is generated, after which it gets multiplied by
2 and a Gaussian noise of environment-dependent variance is added to produce the output
Y . The spurious feature Xspu which acts as the effect of Y is produced by multiplying
Y by an environment-dependent constant and adding Gaussian noise with environment-
agnostic noise. The spurious features Xe

spu and invariant features Xe
inv are thus generated
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Xe
1 Y e Xe

2
2 w(e)

Figure 3.3: Regression from causes and effects.
The numbers on the arrows represent multiplication, whereas noise terms are not shown.
The label w(e) represents the fact that the factor by which the output Y e is multiplied to
get the spurious feature Xe

2 is a function of the environment e. For example, in the toy
problem, w(E1) = 1, w(E2) = 3, w(E3) = −1.

as follows:

XE1
inv ∼ N (0, 10), XE2

inv ∼ N (0, 50), XE3
inv ∼ N (0, 20),

Y E1 ∼ 2XE1
inv +N (0, 10), Y E2 ∼ 2XE2

inv +N (0, 50), Y E3 ∼ 2XE3
inv +N (0, 20),

XE1
spu ∼ Y E1 +N (0, 1), XE2

spu ∼ 3Y E2 +N (0, 1), XE3
spu ∼ −Y E3 +N (0, 1).

The input data for each environment e is the vector [Xe
inv, X

e
spu]

T and the solution to the
linear regression problem Y e ≈ α1X

e
inv +α2X

e
spu that we want to find is α̂1 = 2 and α̂2 = 0.

However, a predictor trained on an individual environment attaches a high significance
to the spurious feature and might prefer an erroneous solution because of the high noise
variance in the process generating Y . The predictor (α̂′

1, α̂
′
2) = (0, 1) is preferred in the

first environment, but this clearly does not generalise to the other environments. The
causal relations between the variables are visualised in Figure 3.3.

We extend this example to a more general setting. We generate a dataset in which the
target variable y depends on the result ỹ ∈ Rdinv of a linear mapping from the set of
invariant features, and the spurious features are the result of applying a linear mapping
on ỹ that depends on the environment. In other words, the causes of the target variable
are the invariant features and the effects of the target variable are the spurious features.
Each dataset De for every e ∈ E is constructed by sampling for each i = 1, . . . , ne:

xe
inv,i ∼ Ndinv(0, (σ

e)2),

ỹe
i ∼ Ndinv(Wyxx

e
inv,i, (σ

e)2), yei ← 2
d
1T
dinv

ỹe
i ,

xe
spu,i ∼ Ndspu(W

e
xyỹ

e
i , 1), xe

i ← (xe
inv,i,x

e
spu,i);

where matrices Wyx ∈ Rdinv×dinv and W e
xy ∈ Rdspu×dinv have all their entries i.i.d from the

standard normal distribution (mean 0, variance 1), and they represent the linear mappings
(causes to target, target to effects). The superscript in W e

xy denotes the fact that the
mapping from ỹ to xspu varies across environments.

The invariant solution y ≈ 2
dinv

1T
dinv

(Wyxxinv) leads to the only linear regression model
whose coefficients are independent of the environment e.

Invariant features do not need to come from the same distribution across environments.
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The word ‘invariant’ refers to the fact that the link between xe
inv and ye is the same

regardless of the environment. In practice, we are interested not only in an invariant
model, but also in one that has a strong predictive power (for instance, regression from an
empty set of features to ye is invariant, yet it does not capture the relation between the
input data and the target variable).

This problem poses several challenges to out-of-distribution generalisation algorithms:

1. The distribution of the invariant features xe
inv differs depending on the environment

(note that the standard deviation is σe). This disallows the use of methods which seek
features with matching distributions across environments, such as domain-adversarial
methods [82].

2. The distribution of the residuals yei−Wxe
i varies across environments for any appropriately-

sized matrix W due to the inclusion of spurious features. This proves to be important
because standard invariance discovery methods such as Invariant Causal Prediction [213]
find a solution only when residuals are sufficiently similar across environments.

3. Most of the existing out-of-distribution generalisation algorithms focus on the classi-
fication setting. Here, the target variable is continuous, which disallows the use of
techniques such as domain classification networks [82]. An existing classification variant
of prediction from causes and effects is seen in Colored MNIST [7].

3.3.3 Cows and camels

Existing computer vision algorithms show excellent performance when trained and evalu-
ated on images with a consistent background, yet the performance drastically decreases
when the background (a spurious feature2) changes. For instance, in a binary classification
of images of cows and images of camels, state-of-the-art models can successfully minimise
the training error by exploiting a shortcut: ‘a green background constitutes a cow, a
beige background constitutes a camel’. This example is seen in the ‘Recognition in Terra
Incognita’ paper by Beery et al. [20].

This section presents a linear instance of this problem under the assumption that a
background does not, in fact, determine the identity of an object in the foreground.
Invariant features in a certain representation constitute a causal explanation of the object
(What is a cow? ), similarly as in Section 3.3.2. Figure 3.4 illustrates this problem in the
presence of three environments.

2Here, we assume that the goal is to correctly label the foreground object regardless of the image
background, following Beery at al [20].
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Let:

µcow = 1dinv , µcamel = −µcow, νanimal = 10−2 ,

µgrass = 1dspu , µsand = −µgrass, νbackground = 1.

Here 1k is a k-dimensional vector whose components all equal 1, and νanimal and νbackground

are fixed constants representing how strongly the ‘animal’ and ‘background’ features affect
the class label in the training set. The choice of νanimal and νbackground values aims to
represent the problem of background features giving a stronger signal in training (for
instance, in an image a background often contains a larger number of pixels than the
object of interest).

For each environment e, we define pe as the proportion of ‘images’ with ‘grass’ as the back-
ground, and se as the proportion of ‘images’ with cows as the target object. The datasets
De are sampled for every environment e ∈ E and each data point i = 1, . . . , ne:

jei ∼ C(pese, (1− pe)se, pe(1− se), (1− pe)(1− se));

xe
inv,i ∼

{
(Ndinv(0, 10

−1) + µcow) · νanimal if jei ∈ {1, 2},
(Ndinv(0, 10

−1) + µcamel) · νanimal if jei ∈ {3, 4},

xe
spu,i ∼

{
(Ndspu(0, 10

−1) + µgrass) · νbackground if jei ∈ {1, 4},
(Ndspu(0, 10

−1) + µsand) · νbackground if jei ∈ {2, 3},

xe
i ← (xe

inv,i,x
e
spu,i); yei ←

{
1, if 1T

dinv
xe

inv,i > 0,

0, else;

In this definition, background features are fully spurious, and animal features are fully
invariant. Learning invariant features is more difficult than absorbing spurious features (see
note below), yet it is more desirable, as an invariant predictor will correctly classify cows
and camels both in the pooled grass and sand examples, and in each of the environments
respectively.

This problem is highly relevant to out-of-distribution generalisation algorithms due to the
following facts:

1. Achieving zero training error while using only xe
inv is difficult because of small numbers

and small distance between the means of cow and camel distributions (due to the scaling
factor νanimal). This can lead to learning large weights in neural networks. Gradient
descent with most forms of regularisation penalises large weights: for example, L2
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Figure 3.4: Illustration of the cows and camels challenge in two dimensions.
In this instance of cows and camels, there is one spurious feature (that represents back-
ground) and one invariant feature (that represents foreground; the actual animal). The
scale of the spurious feature is of an order of magnitude larger than the scale of the
invariant feature, which makes it easier to fit a spurious classifier.
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regularisation for a loss function ℓ optimises an objective function F defined as follows:

F (w) =
1

N

N∑

i=1

ℓ(h(xi;w), yi) + λ∥w∥2,

meaning that large weights amplify the objective function.

2. The probability of achieving zero training error using only xe
spu increases rapidly with

the increasing number of spurious features. Invariance penalties based on training error
will learn spurious features.

3.3.4 Small invariant margin

In binary classification, a model learns a decision boundary, that is a hypersurface
partitioning the data space into two sets. The smallest perpendicular distance between any
of the data points and the decision boundary is referred to as the margin [26]. Support
Vector Machines are based on maximising the margin.

This section presents the challenging problem of learning an invariant small-margin decision
boundary in the presence of a spurious large-margin decision boundary.

Let γ = 0.1 · 1dinv and µe ∼ Ndspu(0, 1) for all environments. From the property of normal
random variables (sum of squares), we expect that ∥µe∥ > ∥γ∥ in each environment e –
therefore, the spurious solution has a larger margin than the invariant solution in each
environment.

The datasets De are sampled for every environment e ∈ E and each data point i = 1, . . . , ne:

yei ∼ Bernoulli
(
1

2

)
,

xe
inv,i ∼

{
Ndinv(+γ, 10−1) if yei = 0,

Ndinv(−γ, 10−1) if yei = 1;

xe
spu,i ∼

{
Ndspu(+µe, 10−1) if yei = 0,

Ndspu(−µe, 10−1) if yei = 1;

xe
i ← (xe

inv,i,x
e
spu,i).

An example of such datasets, using three environments, is given in Figure 3.5.

This is also challenging for existing OOD generalisation algorithms. We can solve this
problem to zero training error with high probability using spurious features alone. Things
are additionally complicated because solving this task using only the invariant features
necessarily results in a small amount of training error. Hence, learning algorithms should
learn to sacrifice training error to realise that invariant features lead to the same maximum
margin classifier across environments (even though the environment-dependent margin
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Figure 3.5: Illustration of the small invariant margin challenge in two dimensions.
A vertical decision boundary at x = 0 is invariant across all the environments. However,
it is not possible to achieve training error equal to zero using this decision boundary,
which makes the spurious horizontal decision boundaries more compelling for standard
ERM-based methods.
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based on the spurious features is larger). While the predictor based on invariant features is
optimal in terms of worst-case out-of-distribution generalisation, it is not a causal predictor
of the target y since it comes with an error.

3.3.5 Scrambled variations

In the three families of linear unit tests described in the previous sections, features are
explicitly given. In practice, an algorithm observes a transformation of features, and
it must infer whether the latent feature is spurious or invariant (for instance, in image
recognition, an observed feature is a pixel, and a latent feature is a specific object).

In order to evaluate if an out-of-distribution generalisation algorithm can learn a data
representation on top of discovering the invariance, I use a random rotation matrix
S ∈ Rd×d to transform the features, such that De = {(STxe

i , y
e
i )}ne

i=1. Recall that a
rotation matrix is an orthogonal matrix whose determinant is 1, and orthogonal matrices
are used for mapping orthonormal bases to orthonormal bases.

Scrambled variations are created for each of the linear unit tests independently.

3.3.6 Experiments

This section presents the results of evaluating existing out-of-distribution generalisation
algorithms on the proposed linear unit tests. We refer to the three main examples as
Example1, Example2, Example3 and their scrambled variants are Example1s, Example2s,
Example3s, using the linear unit definitions from the previous sections. The implemented
algorithms, and their short descriptions, are as follows:

• Empirical Risk Minimization (ERM) [279] minimises the error on the union of all the
training splits.

• Invariant Risk Minimization (IRM) [7] finds a representation of the features such
that the optimal classifier, on top of that representation, is the same function for all
environments. A practical formulation of IRM, used in this evaluation, is IRMv1 (from
Arjovsky’s paper cited above).

• Inter-environmental Gradient Alignment (IGA) [144] minimises the error on the training
splits while reducing the variance of the gradient of the loss per environment.

• AND-mask [210] minimises the error on the training splits by updating the model
on those directions where the sign of the gradient of the loss is the same for most
environments.

77



Ex.Env Algorithm

ANDMask ERM IGA IRMv1 SD CLRG Oracle
Example1.E1 0.11 ± 0.04 1.62 ± 0.60 4.47 ± 1.16 0.20 ± 0.04 0.14 ± 0.00 2.49 ± 0.06 0.05± 0.00
Example1.E2 11.39± 0.18 14.25 ± 1.52 18.46 ± 2.14 11.98± 0.75 23.28 ± 0.11 29.27 ± 0.66 11.27± 0.17
Example1.E3 20.28± 0.30 24.22 ± 2.34 29.48 ± 3.19 21.27± 1.34 31.75 ± 1.11 40.23 ± 0.87 19.93± 0.31
Example1s.E1 0.07 ± 0.01 1.61 ± 0.59 4.55 ± 1.79 0.19 ± 0.04 0.17 ± 0.00 2.51 ± 0.03 0.05± 0.00
Example1s.E2 12.13± 0.80 14.23 ± 1.49 18.68 ± 3.37 11.92 ± 0.69 22.47 ± 0.13 29.08 ± 0.49 11.24± 0.19
Example1s.E3 21.52± 1.42 24.14 ± 2.39 29.81 ± 4.78 21.08± 1.31 30.40 ± 0.42 40.80 ± 0.75 20.06± 0.37

Table 3.1: Out-of-distribution regression error on the regression from causes and effects
problem (Example1-Example1s) with five spurious features and five invariant features.
Errors (Mean Squared Errors) are reported for all algorithms and three environments (E1,
E2, E3). Average errors and standard deviations are computed using 50 independent runs.
The lowest errors are written in bold.

Ex.Env Algorithm

ANDMask ERM IGA IRMv1 SD CLRG Oracle
Example2.E1 0.42 ± 0.02 0.40 ± 0.01 0.43 ± 0.00 0.43 ± 0.00 0.43 ± 0.00 0.17 ± 0.16 0.00± 0.00
Example2.E2 0.49 ± 0.03 0.47 ± 0.01 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.01 0.20 ± 0.18 0.00± 0.00
Example2.E3 0.42 ± 0.02 0.40 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.17 ± 0.16 0.00± 0.00
Example2s.E1 0.43 ± 0.01 0.43 ± 0.01 0.43 ± 0.01 0.43 ± 0.01 0.47 ± 0.08 0.35 ± 0.08 0.00± 0.00
Example2s.E2 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.01 0.41 ± 0.08 0.00± 0.00
Example2s.E3 0.42 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.47 ± 0.09 0.38 ± 0.04 0.00± 0.00

Example3.E1 0.35 ± 0.22 0.48 ± 0.09 0.47 ± 0.10 0.49 ± 0.07 0.50 ± 0.01 0.50 ± 0.01 0.00± 0.00
Example3.E2 0.36 ± 0.22 0.48 ± 0.07 0.48 ± 0.08 0.49 ± 0.06 0.48 ± 0.01 0.50 ± 0.01 0.00± 0.00
Example3.E3 0.32 ± 0.22 0.47 ± 0.12 0.46 ± 0.12 0.48 ± 0.07 0.50 ± 0.00 0.50 ± 0.00 0.00± 0.00
Example3s.E1 0.45 ± 0.13 0.48 ± 0.08 0.48 ± 0.09 0.49 ± 0.07 0.50 ± 0.01 0.52 ± 0.04 0.00± 0.00
Example3s.E2 0.49 ± 0.05 0.49 ± 0.05 0.48 ± 0.07 0.49 ± 0.06 0.50 ± 0.00 0.50 ± 0.00 0.00± 0.00
Example3s.E3 0.46 ± 0.12 0.47 ± 0.09 0.47 ± 0.11 0.48 ± 0.07 0.50 ± 0.00 0.50 ± 0.00 0.00± 0.00

Table 3.2: Out-of-distribution classification error on the cows and camels (Example2-
Example2s) and small invariant margin (Example3-Example3s) problems.
Errors (accuracy) are reported for all algorithms and three environments (E1, E2, E3).
Average errors and standard deviations are computed using 50 independent runs. The
lowest errors are written in bold.

• Spectral Decoupling (SD) [214] is a regularisation method introduced to combat gradient
starvation in neural networks (the phenomenon of only learning a few of the easiest-to-
learn features [67]).

• Constrained Linear Regression Game (CLRG) [3] is a state-of-the-art OOD generalisa-
tion algorithm for linear regression games.

• Oracle is a version of ERM where all data splits contain randomised spurious features,
which are therefore trivial to ignore. The purpose of this method is to understand the
achievable upper bound performance in our problems.

Averaged results in Figure 3.6 and Figure 3.7 show that no method is able to match the
Oracle’s performance on all of the proposed problems. Table 3.1 and Table 3.2 show
detailed results per environment.
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Figure 3.6: Regression errors (Table 3.1) averaged across environments.
The error bars (standard deviation for the estimate of the average MSE) are computed
with the assumption that the environments are independent.
ANDMask and IRM are on a par with the Oracle’s performance, which means that they
are able to ignore the spurious features in regression from causes and effects. IRM is
more robust to scrambling than ANDMask, most likely because this method learns an
invariance-friendly representation of the features before it finds the model weights, while
ANDMask relies on the original data representation.
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Figure 3.7: Classification errors (Table 3.2) averaged across environments.
The error bars (standard deviation for the estimate of the average classification error) are
computed with the assumption that the environments are independent.
Performance of ANDMask is the closest to Oracle in Example2 and Example3. However,
the error increases on scrambled variations. It is expected given that ANDMask relies
on the consensus in sign between gradients in different environments. In the scrambled
variations (Example2s, Example3s) the link between basis vectors and the notion of
invariance is broken, which renders them difficult for ANDMask.
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Figure 3.8: Test error averaged across environments for ANDMask, ERM, IGA, IRMv1
and Oracle on the unit tests as a function of the ratio δenv = nenv

dspu
at fixed dimensions

(dinv, dspu) = (5, 5) (top) and as a function of δspu = dspu
dinv

for (dinv, nenv) = (5, 3) (bottom).
Figure produced by Benjamin Aubin.
All methods are sensitive to the number of environments and to the number of features,
which makes Linear unit tests additionally challenging. The most promising methods
based on the previous experiments (ANDMask and IRM) struggle when the number of
environments increases. In the IRM solution, the risks become larger for the spurious
features when nenv increases. In the ANDMask solution, the gradient consensus based on
the spurious solution is less likely to be achieved when nenv > dspu.
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Discussion In Regression from causes and effects (Example1, Example1s), IRM and
ANDMask achieve the lowest error up to the noise. IRM has been shown to exceed ERM
on the classification variant of prediction from causes and effects (Colored MNIST [7]). A
low error on the regression variant confirms that IRM can learn invariant features in the
presence of spurious features that are caused by the target.

Classification problems (Example2, Example2s, Example3 and Example3s) turn out to
be more challenging in practice than the regression problem. Note that the random
choice model obtains the accuracy of 50% in binary classification. In the Cows and camels
problem (Example2, Example2s) the most promising algorithm turns out to be the recently
proposed CLRG method. In the Small invariant margin problem, the only method which
improves over random choice performance is ANDMask (Figure 3.7).

Linear unit tests are meant to be an initial stepping stone for evaluating and comparing
the algorithms that aim to learn invariant features. The results shown here indicate that
state-of-the-art out-of-distribution generalisation algorithms are unable to consistently
learn robust features, even in low-dimensional linear problems.

Ablation studies Linear unit tests can be used to study the role of the number of
environments nenv for fixed numbers of invariant and spurious dimensions. We define
the ratio δenv = nenv

dspu
to illustrate the relation between the number of environments

and the number of spurious dimensions. The experiments are conducted for a varying
number of environments nenv ∈ [2 : 10] and a fixed number of spurious dimensions
dspu = dinv = 5. The averaged test errors are shown in Figure 3.8 (top) for the algorithms
ANDMask, ERM, IGA, IRMv1 and Oracle. On Example1-Example1s, both ANDMask
and IRMv1 approach the perfect results obtained by Oracle, while on Example2-Example2s
simple ERM outperforms them. On the contrary, ANDMask and IRMv1 achieve good
performances on Example3. As expected, these algorithms approach an optimal solution
for nenv ≈ dspu + 1. Moreover, while IRMv1 performances do not suffer due to scrambling,
ANDMask collapses on Example3s.

The next experiment (Figure 3.8, bottom) uses a fixed number of environments nenv = 3

and a fixed number of invariant dimensions dinv = 5 for a varying number of spurious
dimensions δspu = dspu

dinv
. We observe that for Example1-Example1s, ANDMask and IRMv1

do not suffer because of the additional spurious dimensions, while IGA crumbles as soon a
spurious feature is added. On Example3-Example3s, we observe that increasing the number
of spurious dimensions with a fixed number of environments decreases the performances of
all algorithms. Example2-Example2s show the same phenomenon for δspu ≤ 1.
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Hyperparameters and implementation details In the results presented in this
section, each algorithm is optimised using a random hyperparameter search of 20 trials
with the optimisation procedure based on the popular 104 full-batch Adam [138] updates.
The hyperparameters for each algorithm are chosen to minimise the error on the validation
splits of all environments. Finally, we report the error of these selected models on the test
splits, where the spurious links are destroyed (as defined in the Generating linear units
paragraph Section 3.3). To provide error bars, this entire process, including data sampling,
is repeated 50 times – 50 independently sampled problems × 20 evaluated hyperparameter
sets. In all experiments, the number of samples per environment is equal to ne = 104.

Summary of the results The proposed three problems prove challenging for existing
algorithms for OOD generalisation. We notice that the classification tasks (Example2,
Example2s, Example3, Example3s) are particularly difficult and no method consistently
achieves a better performance than a fair coin flip on all problem variants and environments.
While admittedly synthetic, this collection of problems covers a range of challenging
distributional discrepancies that may arise across training and testing conditions. This
work is a part of the modularity story (Chapter 1) through assuming multiple training
distributions (analogous to incorporating the concept of a module at the data level) instead
of a single monolithic training dataset.

Impact of Linear unit tests Linear unit tests have been widely used to evaluate and
compare new methods that aim to improve out-of-distribution generalisation [248, 50, 136,
72, 171, 184, 49, 80, 283, 51, 64, 207]. Recent work by De Bartolomeis et al. [17] extends
Cows and camels and Small invariant margin problems: among other contributions, the
authors propose to rank the algorithms by how much weight is placed on the spurious
features rather than by the OOD test error. The authors also show that the Cows and
camels problem can be solved by using a high learning rate. Finally, the authors provide a
theoretical analysis of why ANDMask was shown to fail at solving the linear Small invariant
margin problem (Figure 3.7), and argue that this problem can be solved by ANDMask
with a particular weight initialisation and a sufficiently large number of environments.
Future work should explore this claim further.

3.4 Learning from multiple distributions and fairness

This section focuses on Distributionally Robust Optimisation (DRO), as defined in Equa-
tion (3.5), repeated here for clarity:

RDRO(f) = max
e∈Etr

(Re(f)− re)
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Rather than focusing on the aspect of discovering invariant features as in the Linear unit
tests section, this section is focused on another side of learning from multiple distributions:
ensuring an acceptable performance across all training distributions (Figure 3.1). Given
that in practice, these distributions might represent distinct gender and ethnic groups, this
work is related to the contentious debate on the data bias vs algorithmic bias ingredients
in the instances of machine learning bias observed in practice.

I first discuss DRO and its relation to data curation in Section 3.4.1. Afterwards, I state
and prove two important theorems on the relation between the DRO solution and the
ERM solution for a mixture of distribution in Section 3.4.2. Finally, I discuss the practical
implications of the results of these theorems, especially how to avoid mistakes when using
DRO in out-of-distribution generalisation problems, in Section 3.4.3.

3.4.1 DRO versus data curation

Recall that, traditionally, training a model in machine learning seeks parameters, such as
the weights w of a neural network, that minimise a risk defined as the expectation of a loss
function with respect to a single distribution of training examples (Equation (3.2)).

Alas, even when the training distribution is representative of the actual testing conditions,
the trained system might perform very poorly on selected subsets of examples. For instance,
Figure 3.1 describes a training problem where a majority population and a minority
population have different classification boundaries. Minimising the expected loss over the
full dataset (bottom left plot) yields a system whose performance is skewed towards the
majority population at the expense of a random choice performance (48%) in the minority
population.

Distributionally Robust Optimisation (DRO) seemingly addresses this problem by con-
sidering instead a collection of ‘training distributions’ and minimising the expected risk
observed on the most adverse distribution (Equation (3.5)). For instance, using DRO with
a set of two distributions representing the majority and minority populations leads to the
classifier illustrated in Figure 3.1 (bottom right plot).

This viewpoint can be simplistic. For instance, minority groups pose a bigger challenge
due to limited data accessibility (representation disparity) and bias amplification over
time (disparity amplification) [192]. However, DRO remains an interesting building block
because it provides a bridge between two common approaches to this problem, namely, 1)
ensuring that the trained system has consistent performance across subpopulations, and
2) curating the training set by remixing the populations until a more acceptable result is
obtained. I elaborate on these points later in the chapter.
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DRO is commonly defined using the following notation [222]:

Definition 1. For a set of probability distributions Q and a corresponding family of
cost functions CP (Θ) over model parameters Θ, the distributionally robust optimisation
problem is the problem of finding parameters Θ̂ that minimise the maximum risk across
all distributions in Q:

Θ̂ = argmin
Θ

max
P∈Q

CP (Θ) (3.6)

In the basic version of DRO, we use the definition CP (Θ) = Ez∼P [ℓ(z;Θ)] for any
distribution P , where z is the data (both input and output) drawn from distribution P

and ℓ(z;Θ) is the loss for z given parameters Θ (elsewhere we would write this ℓ(h(x;Θ), y)

for z = (x, y)). Calibrated DRO instead uses the definition CP (Θ) = Ez∼P [ℓ(z;Θ)− rP ]

for a set of calibration coefficients rP .

For remainder of this chapter we assume that the family Q is finite, meaning Q =

{P1, . . . , PK} for some distributions P1, . . . , PK .

3.4.2 Results

I present theoretical results that clarify the relation between finding a local minimum of
the DRO problem and minimising the usual expected risk with respect to a single training
distribution.

DRO has been suggested as a method for combatting bias and achieving out-of-distribution
generalisation. The intuition is that we want to find a solution that works well across all
environments. However, it turns out that any DRO solution is also a stationary point of an
ERM solution for a probability distribution Pmix that is a mixture of the distributions in
Q: Pmix =

∑K
k=1 λkPk, where

∑K
k=1 λk = 1 and all λk ≥ 0. Formally, this correspondence

is stated by the following theorem:

Theorem 1. Let Q = {P1, . . . , PK} be a finite set of probability distributions on Rn and
let Θ∗ be a local minimum of the DRO problem minΘ {maxP∈Q {CP (Θ)}}. Let the costs
CP (Θ) be differentiable at Θ∗ for all P ∈ Q. Then there exists a mixture distribution
Pmix =

∑K
k=1 λkPk such that ∇CPmix

(Θ∗) = 0.

Theorem 1 shows that when the collection of distributions Q is finite, under weak regularity
assumptions, a DRO local minimum is always a stationary point of the expectation of the
loss function with respect to a suitable mixture of the DRO training distributions. This
result generalises that of Arjovsky [7]: previously KKT differentiability was assumed.

The proof of Theorem 1 relies on a lemma which generalises to n dimensions the following
trivial fact on a line: for a closed interval A ⊆ R, A either constains 0 or there is a number
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Figure 3.9: A graphical illustration of Lemma 1, in the case of R2.
If A does not contain the origin, there exist a vector u and a scalar c such that, for any
point x ∈ A, the inequality uTx ≥ c. This means that there exists a hyperplane normal
to u such that the origin is on the opposite side of the divided space as all points in A. In
the R2 space, this separating hyperplane is a line.

c > 0 such that all x ∈ A satisfy c < |x|. This hyperplane separation lemma is closely
related to Farkas’ lemma [31, Sec.2.5 and Ex.2.20].

Lemma 1. A nonempty closed convex subset A of Rn either contains the origin or is
strictly separated from the origin by a certain hyperplane, that is, there exists a vector
u ∈ Rn and a scalar c > 0 such that, for all x ∈ A, uTx ≥ c.

Proof. Assume 0 ̸∈ A. Let u ∈ A be the projection of the origin onto the closed convex
set A. For all x ∈ A and all t, 0 ≤ t ≤ 1, the point r(t) = u+ t(x− u) also belongs to
the convex set A. Since u is the point of A closest to the origin, we have ∥r(t)∥ ≥ ∥u∥ for
all t ∈ [0, 1]. In other words:

∀t ∈ [0, 1] ∥r(t)∥2 = ∥u+ t(x− u)∥2 = u2 + 2tuT(x− u) + t2∥x− u∥2 ≥ ∥u∥2.

The derivative of ∥r∥2 with respect to t, when evaluated at 0, is 2uT(x− u). Therefore
uTx ≥ uTu = ∥u∥2 > 0 for any x ∈ A.

Proof of Theorem 1. Consider the convex hull of the gk = ∇CPk
(Θ∗) for k = 1 . . . K and

call it A. By definition of convex hull, A is closed and convex. If A does not contain the
origin 0, according to the lemma, there exist u and c such that ∀x ∈ A, uTx ≥ c > 0.
From Taylor expansion, for all t > 0, moving from Θ∗ to (Θ∗ − tu) reduces all costs CPk

by at least tc + o(t). As a consequence, maxk CPk
is also reduced by at least tc + o(t),

contradicting the assumption that Θ∗ is a local minimum. Hence A contains the origin,
and by closure this means that there are non-negative mixture coefficients λk summing to
one such that

∑K
k=1 λk∇CPk

(Θ∗) = ∇ΘCPmix
(Θ∗) = 0.

A simple question to consider is whether the converse holds: do minima of weighted loss
mixtures correspond to minima of the Calibrated DRO problem? The answer is yes – in
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fact, the folowing theorem states that a local minimum Θ∗ of CPmix
is also a local minimum

of Calibrated DRO (3.5) with calibration constants rP equal to the costs CP (Θ
∗).

Theorem 2 (Converse). Let Pmix =
∑

k λkPk be an arbitrary mixture of distributions
Pk ∈ Q. If Θ∗ is a local minimum of CPmix

, then Θ∗ is a local minimum of the Calibrated
DRO problem (3.5) with calibration coefficients rP = CP (Θ

∗).

Proof. By contradiction, assume that Θ∗ is not a local minimum of (3.5), that is,
for all ϵ > 0 there exists u such that ∥u∥ < ϵ and maxP∈Q {CP (Θ

∗ + u)− rP} <

maxP∈Q {CP (Θ
∗)− rP}. Recalling our choice of rP yields:

max
P∈Q
{CP (Θ

∗ + u)− CP (Θ
∗)} < 0.

Since CP (Θ
∗ + u) < CP (Θ

∗) for all P ∈ Q, we conclude CPmix
(Θ∗ + u) < CPmix

(Θ∗).
Thus Θ∗ cannot be a local minimum of CPmix

.

Theorems 1 and 2 establish a practical duality between finding a solution to the Calibrated
DRO problem and the ERM solution for a given set of mixture coefficients. I argue
calibration coefficients rP are a more useful way of describing the difficulties of accurately
classifying a subpopulation than the mixture coefficients, and the following section gives a
practical use and interpretation of calibration coefficients. However, there is a discrepancy
between the statements of these two theorems: Theorem 1 only provides a stationary
point, whereas Theorem 2 requires a local minimum of the expected loss mixture. This
distinction disappears if we assume the loss function ℓ(z;Θ) is convex in Θ – all stationary
points become global minima – so the two theorems then provide an exact equivalence
between the two problems.

3.4.3 Practical recommendations

How can the result above influence the way DRO is calibrated in practice? From a
mathematical perspective, one interesting approach is to choose, for each distribution P ,
a calibration constant r∗P that represents the best performance we can reach with our
machine learning model on this distribution in isolation:

r∗P = min
Θ

CP (Θ). (3.7)

In practice, in order to estimate r∗P , we might have to use regularisation terms in order
to counter the effects of finite training data. Such regularisation terms could even make
use of the training data for other populations or distributions. Let Θ∗

DRO be a solution
of the Calibrated DRO problem using these particular calibration constants. Because
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Algorithm 1: Obtaining a DRO solution in practice.
Data: Training sets Dk for k = 1 . . . K.

Data: Minimum cost obtained for each Dk alone, i.e. rk.

Data: Stopping parameter ϵ.

// ϵ is the ‘acceptable‘ performance gap.

Result: A parameter vector Θ∗.

1 λ1, . . . , λK ← 1/K; d← 0 // d is the current iteration count.

// Loop invariant:
∑K

k=1 λk = 1.

2 repeat

3 Θ∗ ← OptimizeΘ(
∑K

i=1 λi(CPi
(Θ)− rPi

))

4 worst_risk ← max
i
{CPi

(Θ∗)− rPi
}

5 best_risk ← min
i
{CPi

(Θ∗)− rPi
}

6 worst_risk_idx ← argmax
i
{CPi

(Θ∗)− rPi
}

// Identify the most vulnerable subpopulation.

7 if worst_risk − best_risk > ϵ then

8 ∀k ∈ {1, . . . , K}. λk ←
{

d+K
d+K+1

λk k ̸= worst_risk_idx

1−∑i ̸=k
d+K

d+K+1
λi k = worst_risk_idx

9 end

10 d← d+ 1

11 until worst_risk − best_risk ≤ ϵ

12 return Θ∗

of the definition of r∗P , we know that CP (Θ
∗
DRO) ≥ r∗P . In other words, this particular

formulation of DRO tries to construct a single machine learning system that performs
almost as well on each distribution P as a dedicated machine learning system specifically
trained for distribution P only. Whether the outcome is acceptable for the real-world
problem depends on whether the best distribution-specific performances r∗P are themselves
acceptable.

Based on this observation and the underlying mathematics (Section 3.4.2), we formu-
late practical recommendations for machine learning engineers facing real-world bias
issues.

Model-agnostic recommendations for solving DRO
based on the new theorems

1. Define subpopulations in the available data.
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2. Compute the best performance for each of these subpopulations in isolation.

3. Decide whether any subpopulation is at risk and possibly repeat steps 1–2 with
improved models and investigate possible data issues.

4. Use the obtained minimum risks as calibration coefficients.

5. Use an iterative algorithm for obtaining a DRO solution, for example, Algorithm 1.

6. Perform an a posteriori analysis of the DRO solution to see if any vulnerable
subpopulation was initially undiscovered.

We now elaborate on what these steps mean and entail:

Elaboration of steps

1. Metadata and domain knowledge can be used to partition the dataset into subpop-
ulations. For instance, in a face recognition system, subpopulations might contain
images of people representing distinct ethnicities.

2. Data available for minority subpopulations might be limited. In such cases, remain-
ing subpopulations can be used as an auxiliary task or as a regulariser to improve
performance on an individual subpopulation.

3. We now have K subpopulations, parameters for the trained subpopulation-specific
models Θ1, . . . , ΘK and the lowest possible risk for each subpopulation CP1(Θ1),
. . . , CPK

(ΘK). At this stage, the problem of deciding whether the lowest achievable
risk is acceptable depends on the specific problem at hand, and it is up to the
practitioners as it is not a mathematical problem.

4. If minimum cost that can be achieved using available data is acceptable, we can use it
to equalize performance according to the Calibrated DRO framework. Calibration
coefficients rP per each subpopulation are going to be equal to the optimum
expected risk for that subpopulation alone, rP = minΘ CP (Θ). We can also adjust
the calibration coefficients to prevent overfitting to individual subpopulations. For
nP examples in a certain subpopulation P , the expected risk CP (Θ) can be replaced
by its empirical estimate CPn(Θ) augmented with a calibration constant 1√

nP
that

decreases when the number n of training examples increases [240]a.

5. If the performance on the entire population is unsatisfactory, it might be because
of data issues such as inconsistent classes across subpopulations, or due to an
insufficient capacity of the model when applied to the entire population. One might
need to increase the model capacity before applying it to the entire population. If
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the performance is satisfactory and practical considerations are carefully understood,
an iterative algorithm for obtaining a revised DRO solution can be used.

6. The examples where the model performs the worst should be examined for any
consistent patterns, which might suggest they belong to a vulnerable subpopulation
that was not discovered in the initial step. In this case, such subpopulation should
be added to the set of subpopulations, and the whole process can be repeated.
aNote that Theorem 1 and Algorithm 1 do not assume an equal number of samples per population.

A small number of samples nP can lead to overfitting to the population P , which is partially mitigated
by augmenting calibration coefficients with the 1√

nP
penalty.

Let us briefly turn to Algorithm 1. It is based on iteration until a sufficiently good
solution is found. We introduce coefficients λ1, . . . , λK that weigh the significance of
individual subpopulations. These coefficients are initially all set to 1/K. The objective to
be optimised is a mixture of the risks for each subpopulation weighed by the corresponding
λk. If the performance on some subpopulation significantly deviates from that of the best
subpopulation, we adjust the coefficients so that the worst subpopulation’s coefficient
increases. This is done by incrementing the common denominator of all coefficients
(initially K). This is repeated until the performance is sufficiently equalised. A variant of
this algorithm was implemented to produce the DRO solution in Figure 3.1.

3.5 Summary

This chapter is focused on the framework of learning from multiple training distributions,
regardless of the model choice. I motivate and define this framework in Section 3.1
and Section 3.2, respectively. I explore two facets of this framework: achieving out-of-
distribution generalisation through discovering stable features (Linear units, Section 3.3)
and ensuring consistent performance across training distributions (DRO recommendations,
Section 3.4). As mentioned in the previous section, even if training and test distributions are
close enough for us not to worry about out-of-distribution performance, there are significant
risks associated with models of inconsistent performance across known distributions.

Specifically, 1) I present a standardised suite of linear unit tests for measuring out-of-
distribution generalisation. I include results of the evaluation using these tests and
state-of-the-art out-of-distribution generalisation algorithms. This work shows that the
model behaviour which causes problems in computer vision or natural language processing
occurs even in a linear case. 2) I present a clarification of the conditions under which a
robust solution to multiple training distributions corresponds to optimising a mixture of
distributions. Guided by the theoretical results, I propose a new set of recommendations
for ensuring fairness in multiple distributions.
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To summarise, the existing approaches to out-of-distribution generalisation in the frame-
work of multiple training distributions have nuances which require careful consideration.
In regression problems, IRM and ANDMask are promising even in the challenging problem
of the regression from causes and effects. In classification, ANDMask and CLRG obtain
the best performance, which is however still far from the perfectly invariant model that
achieves 0 out-of-distribution error. DRO is a useful framework both for out-of-distribution
generalisation and for ensuring consistent performance across available distributions. How-
ever, the best performance obtained using an algorithm for DRO can only be as high as
the best performances for individual training distributions. In other words, in certain
scenarios the only solution to improving fairness and OOD generalisation appears to be
improving data quality and quantity.

Regarding the connection with the research hypothesis and the research questions posed
in Chapter 1, the contributions in this chapter investigate modularity at the data level,
by considering several disjoint training datasets with no i.i.d assumption. Section 3.4
provides an answer to the first research question stated in Section 1.2, namely the What
is the relation between the existing data-centric and algorithmic approaches to improving
OOD generalisation and robustness? question. The set of new theorems presented in
Section 3.4 clarifies that under the typical assumption of a differentiable cost function,
the most popular algorithmic approach (DRO) is equivalent to curating training data by
setting appropriate weights, under the assumption of convex costs.

The next chapter approaches the thesis goal by introducing a new neural architecture and
presenting new empirical results in image classification with neural networks, which sets
the stage for the final contribution chapter focused on multi-agent communication using
neural networks.

90



Chapter 4

Out-of-distribution generalisation in
image classification

Humans are efficient learners. Once
someone has seen a single example of a
wampimuk, they know how to recognize

a small wampimuk.
–Laura Ruis (2022)

Modern Convolutional Neural Networks [165] (Section A.1.2) are largely responsible for the
renaissance of neural networks due to the vast amount of image data available online and the
online competitions such as ImageNet [65] (among others). However, even the architectures
that achieve in-distribution test accuracy of over 90% notoriously underperform or fail if
there is a distribution shift between the training and test data [266, 74, 11, 7, 137, 20].
This has been studied in the context of generalisation across spatial transformations
such as two-dimensional rotation and translation [266, 74, 11], generalisation to different
viewpoints (for example, ‘Can a network shown only the Ford Thunderbird from the
front and the Mitsubishi Lancer from the side generalise to classify the category and
viewpoint for a Thunderbird seen from the side?’ [182]), reasoning about new object pairs
in the context of visual question answering [15], and generalisation with respect to new
shape-colour combinations using toy datasets [7, 137]. In Chapter 3 (Learning from
multiple distributions) I mention the ‘cows and camels’ problem [20], which further
illustrates how CNNs fail at out-of-distribution generalisation by using shortcuts such as
image background, even when it is irrelevant to the classification task.

In Chapter 3, I approached the problem of out-of-distribution generalisation by exploiting
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the fact that separate training datasets are formed by sampling from multiple distributions.
In contrast, this chapter assumes a single training dataset, which is the most common
assumption in image classification. Under this assumption, it proposes modifications to
the existing architectures with the goal of improving out-of-distribution generalisation. I
investigate several types of distribution shift, including the one studied in Chapter 5 in the
context of multi-agent games – compositional generalisation, where a model is evaluated
on new combinations of familiar features (for example, a red circle might be present in the
test examples but not seen during training, but red squares and blue circles are present in
the training set).

The goal of this thesis is to improve the understanding and the results of out-of-distribution
generalisation across several domains where machine learning is used. This chapter seeks
the same goal, from the perspective of image classification.

The main research hypothesis of this chapter is:

Multi-level feature aggregation improves out-of-distribution generalisation in
image classification.

This hypothesis is explored using two different approaches to multi-level feature aggre-
gation: dilated convolutions [298] (Section 4.1.1) and Neural Function Modules [159]
(Section 4.1.2).

The main research objectives of this chapter are:

• to introduce Neural Function Modules and to provide evidence on their impact on
Convolutional Neural Networks in out-of-distribution generalisation tasks;

• to provide evidence on the impact of using dilated convolutions in out-of-distribution
generalisation tasks.

The results show that one of the proposed designs (Neural Function Modules) is beneficial
in a variety of image classification tasks: compositional generalisation in visual question
answering (including relational and non-relational questions; Section 4.2.1), the previously
unsolved same/different OOD problem (Section 4.2.2), generalisation with respect to the
changes in fonts, scale, rotation, translation, and compositional generalisation with respect
to scale-rotation combinations in a single-object classification task (Section 4.2.3), and
finally generalisation to a new number of objects in a multi-object classification task
(Section 4.2.4).
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Chapter structure

Section 4.1 provides a detailed description of two design choices, dilated convolutions and
Neural Function Modules (NFMs), which are promising from the perspective of improving
out-of-distribution generalisation in image classification. Dilated convolution is an existing
concept that was previously used in multi-scale context aggregation [298]. This section
revisits it from the perspective of the new hypothesis:

Dilated convolutions can improve out-of-distribution generalisation in Convo-
lutional Neural Networks.

Neural Function Modules are a new method, which is also investigated here from the angle
of out-of-distribution generalisation in Convolutional Neural Networks.

Section 4.2 shows the results of extensive experiments using dilated convolutions and
Neural Function Modules on four sets of OOD problems in image classification. The design
choices proposed in this chapter are incorporated into various convolutional architectures
(a vanilla CNN written from scratch as well as existing, commonly used architectures such
as ResNet [106]). The datasets used in this section cover a variety of image classifica-
tion applications: visual question answering, single-object classification and multi-object
classification. This work extends my previous work on NFMs and dilated convolutions
by providing new evidence in the setting of out-of-distribution generalisation. In several
datasets, the results of the NFM-augmented architectures improve over the best results
published on these datasets to date (Section 4.2.2 and Section 4.2.3).

Related publications The main work for this chapter – designing new experiments
and implementing them, producing all of the results included in Section 4.2, revisiting
the proposed methods in the context of out-of-distribution generalisation – I conducted
independently for the purpose of this thesis.

The first architecture (Section 4.1.1) is based on a relational reasoning architecture from
my Master thesis (Relational reasoning with neural networks at the University of
Edinburgh) which was based on a common DenseNet [119] architecture – this chapter
shows new results of my individual work in the context of out-of-distribution generalisation.
I co-authored the second method (Section 4.1.2) in a collaboration led by Alex Lamb [159].
In this chapter, I show the results of my individual work based on my contribution to the
NFM paper.
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4.1 Architectures

This section presents the architectural choices investigated here as potential improvements
over existing Convolutional Neural Networks in terms of out-of-distribution generalisation
in image classification. Both of these design choices – dilated convolution and Neural
Function Modules – can be incorporated into plain CNNs as well as into the existing
complex and specialised architectures with a CNN component (for example, Relation
Networks [241]).

In Section 4.1.1, I describe Dense Dilated Convolutional Neural Networks, or Dilated
DenseNets. The second architecture, described in Section 4.1.2, is Neural Function
Modules.

4.1.1 Dilated convolutional networks

Out-of-distribution generalisation in the context of image processing requires understanding
both local features (such as pixel intensities) and global features (such as semantic
interpretation of the image content). If a model can understand a scene (for instance, the
spatial relations between semantically different segments of an image), it is more likely to
generalise with respect to the properties of individual objects, such as colour, shape and
size. Generalisation with respect to human-interpretable properties of an image can make
the models more robust to real-life changes in the data, such as changing product trends
that currently affect image-based recommender systems [107].

Convolutional neural networks are commonly seen as the go-to architecture when it comes
to interpreting local and global features in an image. Dilated convolutional neural networks
generalise them by utilising a generalisation of the convolution operation. The remainder
of this section first described dilated convolutions, and then proceeds by describing Dilated
Dense Convolutional Neural Networks.

4.1.1.1 Dilated convolution

A dilated convolution [298] is a more general form of the standard discrete convolution
(Equation (A.2)):

s[t] = (f ∗ g)(t) =
∞∑

x=−∞

f [x]g[t− lx] (4.1)

In a dilated convolution, kernel weights are applied to the input only every lth value
along both axes, where l is the dilation factor (l = 1 for a standard convolution). We use
the term l-convolution to refer to the variant seen in Equation (4.1). The extension to
multidimensional data is straightforward.
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Traditional convolutions have a receptive field (number of inputs that influence a particular
value in the output) of the same size as the convolution kernel, meaning that only the
immediate neighbourhood of an input influences the value of the output. A dilated
convolution has the same receptive field, except the inputs are more ‘spread out’. Dilated
convolutions enter practical use if an input signal f0 is initially 1-convolved with a given
kernel k to obtain f1, after which f1 is 2-convolved with k to obtain f2, then f2 is 4-
convolved with k to obtain f3 – with the dilation factor doubling at each step. It is easily
seen that for a 2d kernel k of size 3 × 3, the receptive field of the output fi consists of
(2i+1 − 1) × (2i+1 − 1) values in f0.1 This enables a balance between processing pixel-
level information and integrating the wider context (such as object arrangement, image
background, etc.), without increasing the number of model parameters. An illustration of
this procedure is seen in Figure 4.1.

In the context of multi-scale context aggregation in image segmentation tasks [298],
dilated convolutions are successfully used in the form of an exponential schedule of dilated
convolutions. In such case, the dilation factor l increases exponentially with the number of
layers (l = 1, 2, 4, ...). This means that the first convolutional layer in the network performs
a standard convolution which detects local features. Consecutive layers employ increasingly
sparse filters that integrate the image context at an increasingly larger scale.

Dilated convolutions were experimentally shown to improve various instances of semantic
segmentation tasks including modeling of long-distance dependencies [99] [268], the ex-
traction of very small objects [101], and integration of local and global semantics [6]. This
modification to the standard convolutional layer does not introduce additional trainable pa-
rameters, and it should allow for a better understanding of the scene due to the combination
of extracting the local and global features. Here, the questions is: do dilated convolutions
improve out-of-distribution generalisation, compared to regular convolutions?

4.1.1.2 Dilated DenseNet

The Dense Convolutional Network (DenseNet) [119] is one of the network topologies
commonly used in CNNs. It is a powerful family of architectures that encourage feature
reuse, which might be beneficial for out-of-distribution generalisation. A DenseNet contains
structural units called blocks, where each layer is connected to every other layer in place of
the standard one-to-one connections in adjacent layers in a neural network. The input to
a single layer consists of a concatenation of the outputs of all the preceding layers, which
means that the model preserves the features extracted by individual layers. A single dense
block is shown in Figure 4.2.

1Contrast this with stacking i 1-convolutions with a 3× 3 kernel, which results in a receptive field of
size (2i+ 1)× (2i+ 1).
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(a) l = 1,
i = 1

(b) l = 2, i = 2 (c) l = 4, i = 3

Figure 4.1: Illustration of three dilated convolutions for a base 3 × 3 kernel and an
exponential schedule. Source: https://www.inference.vc/dilated-convolutions-a
nd-kronecker-factorisation/.
The red circles represent the pixels in fi−1 that the central pixel of fi depends on. The
shading refers to the significance of each pixel in f0 (original image) for determining the
value of the central pixel in fi.
This shows that, with the stacking approach, the immediate neighbourhood of a pixel is
still more significant in determining the final output than more distant pixels.

Dilated convolutions can in principle replace standard convolutions in any architecture.
DenseNet is an example of a strong baseline of a modular structure (based on blocks) which
is convenient in an implementation of the exponential schedule of dilated convolutions. In
a Dilated DenseNet, the exponential schedule of dilated convolutions is used independently
in each of the dense blocks. As a result, each block integrates both local and global
information. The blocks themselves are connected in a standard feed-forward way with
one-to-one connections.

Here, a DenseNet containing three blocks is used as a fixed baseline compared with a
Dilated DenseNet, having the same architecture but with the convolutional layers replaced
by the exponential schedules of dilated convolutions. In my previous work (Master thesis
and a workshop paper [6]), the Dilated DenseNet was proposed in the context of relational
reasoning as an alternative to Relation Networks. In this chapter, I use a more general
variant of DenseNets/Dilated DenseNets that can learn any image classification task, and
compare these two models in the context of out-of-distribution generalisation. The premise
is that a standard convolutional architecture (for example, a DenseNet) might overfit to
the local information in an image, and adding dilational convolutions (for example, a
Dilated DenseNet) should help in learning a wider, more abstract context that might help
in generalising to out-of-distribution examples.

Apart from relational reasoning [6], variants of Dilated DenseNets have been previously used
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Figure 4.2: An illustration of the operation of a single 3-layer block in a Dense Convolutional
Neural Network.
The stacked squares represent convolutional layers. The boxes labeled ‘concatenate’
construct concatenated vectors out of all the input vectors. Each concatenation in this
sequence considers the input image and the output of all of the previous convolutional
layers. As a result, the architecture supports multi-level feature aggregation.

in domains such as audio and speech processing [274] and macromolecule classification [83].
Here, the method is seen as on of the ways to endow Convolutional Neural Networks with
the ability to aggregate local and global features. This method is then investigated in the
context of out-of-distribution generalisation in image classification (Section 4.2).

4.1.2 Neural Function Modules

Similarly to dilated convolutions, Neural Function Modules (NFMs) [159] are a design
choice that can be incorporated into existing architectures. While dilated convolutions
aim to integrate the local and global context, NFMs aim to increase the specialisation of
layers in a neural network, by mimicking the concept of subroutines used in programming
languages: rather than applying an operation to the entire hidden state of a network, the
operation can be performed on its subsets. This is in contrast to the standard practice
of designing feed-forward neural networks as a sequence of layers, in which each layer
processes the entire output of the antecedent layer (Figure A.2).

For example, let a program state consist of the variables a, b, c, d, e, f, g. According to
the logic of programming languages, a subroutine may be applied to appropriate actual
parameters to introduce a new variable or otherwise modify the program state – for
instance, for a two-parameter function z, the instruction x = z(a, f) leads to a new
program state with variables x, a, b, c, d, e, f, g; we may also mutate e with e = z(b, c).
Advantages of this logic are: (1) it allows the programmer to avoid overwriting variables
unrelated to the currently used function parameters, (2) it is easier to track down mistakes
to changes in specific variables, (3) the programmer can use either the recently computed
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input outputL1 Concat L2 Concat L3 Concat

(a) 3-layer dense block in a DenseNet

input outputL1 Att + L2 Att + L3 Att +
γ(1) γ(2) γ(3)

(b) 3-layer NFM

Figure 4.3: Illustration of how Neural Function Modules are directly inspired by DenseNets.
In a dense block of a DenseNet, the input and the layer output are passed to all subsequent
layers. This means that the dimension of the input to Lk+1 is not the same as the dimension
of the output of Lk. Neural Function Modules avoid this issue by using attention blocks
that attend over all previously computed representations. Concatenation is then replaced
by a weighted sum of the output of Lk and the computed attention.
NFMs extend the idea of multi-level feature aggregation by allowing a dynamic choice of
relevant information using attention mechanism.
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variables, or the variables that were computed much earlier and remained in the scope of
the program state.

In contrast, according to the logic of standard feed-forward neural networks (Figure A.2),
a layer is seen as a function that gets applied to all of the arguments and overwrites
the entire state. NFMs aim to incorporate the logic of subroutines from programming
languages into existing neural networks by allowing each layer to decide which parts of
the hidden state it processes.

In the DenseNet architecture described in the previous section, each layer takes as input all
previous layers within the same block, which reduces the need to store redundant informa-
tion in multiple layers, as a layer can directly use information from any prior layer within
the block, and not just from the antecedent layer as in Figure A.2. NFMs expand on this
idea and allow the layers to dynamically choose which past information to take. An NFM
allows the layers to attend over the previously computed outputs to construct their input
(Algorithm 2 and Figure 4.4), which is done using attention mechanisms (Section 2.3.2).
In particular, NFMs use multi-headed attention [280] (Section 2.3.2.2).

The NFMs are inspired by multi-headed attention from the widely-used Transformer
architecture [53]. The key differences between NFMs and Transformers are: (1) NFM is a
design choice that can be used on top of any existing neural architecture, rather than a
standalone architecture as is the case for Transformers, (2) The Transformer architecture
uses attention over positions of the output of the antecedent layer only. In contrast,
NFM attends over outputs of all the previous layers. The methods share the high-level
motivation of allowing parts of a neural network to dynamically select their inputs using
attention.

Apart from the specialisation/attention component, NFMs aim to implement the idea of
using top-down feedback in the context of neural networks. Existing neural networks rely
on the bottom-up feedback. For instance, in a feed-forward neural network in Figure A.2,
the first layer processes the input, and each of the subsequent layers processes the output
of its antecedent layer. In the bottom-up processing, the network does not have access to
a previously computed representation of the input. An analogy can be drawn between the
bottom-up feedback in a standard neural network and the biological ability to process a
new visual signal for the first time.

Top-down feedback is inspired by cognitive psychology, where it refers to the brain’s ability
to use the contextual information of things that are already known in combination with our
senses to perceive new information [92]. NFMs aim to implement top-down feedback using
multiple passes. Each pass corresponds to running the original forward pass of the network
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Algorithm 2: The forward pass of a Neural Function Module (NFM)
Data: Input x.
Data: Number of passes K.
Data: A neural network with N layers for each k ∈ {1, . . . , K}:

f
(1)
θk

, f
(2)
θk

, f
(3)
θk

, . . . , f
(N)
θk

Data: Attention modules Attention(i)ωk
for each layer i and each pass k, where

parameters ωk represent key, value and query embeddings (all together). These
embeddings are followed by an attention function (in the implementation used
in this thesis, this is multi-headed scaled dot-product attention described in
Section 2.3.2.2).

Data: Trainable factors γ
(i)
k . They increase the significance of the output of the

attention module a compared to the output of the previous layer y.
Result: Final hidden state h(N).

1 M← List .Empty // List of outputs of all previous layers
2 for k ← 1 to K do
3 h(0) ← x
4 for i← 1 to N do
5 y ← f

(i)
θk
(h(i−1)) // Output of the i-th layer of the network

6 M.append(y)

7 M̃ ← List .Empty
// List of outputs of previous layers, all scaled to have the

same shape as y (so that keys and the query have compatible
sizes)

8 foreach m ∈M do
9 M̃.append(rescale(m, shape = shapeOf (y)))

10 end
11 a← Attention(i)ωk

(Keys = M̃,Values = M̃,Query = y)

// Attention function preceded by embeddings for keys, values
and the query

12 h(i) ← y + γ
(i)
k a

13 end
14 end
15 return h(N)
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(a) K = 1 (b) K = 2

Figure 4.4: A high-level illustration of the NFM principle.
Given a neural network with a feed-forward structure – here with four hidden layers – the
1-pass NFM (left) appends an attention module after each hidden layer. This makes the
attention module act as a ‘subroutine’: it accepts different subsets of ‘working memory’ of
the neural network, and thus aims to specialise the roles of layers and neurons.
Not shown in the diagram is the fact that the keys and values in each attention block
attend over all of the previously seen hidden layer outputs.
The 2-pass NFM (right) has twice as many layers as the 1-pass: after the final hidden layer
of the original network of four hidden layers, the output is discarded and the procedure is
repeated. The copy of the original network in the second pass shares the weights with the
original network from the first pass – however, in the second pass the keys and values fed
into attention modules are based on the keys and values computed in the first pass. Note
that NFM can take as input any feed-forward neural network, either written from scratch or
one of the commonly used architectures as ResNet [106] (as demonstrated in Section 4.2).
The official source code (https://github.com/Slowika/NeuralFunctionModules)
contains an implementation of the attention block and an example of applying an NFM in
a neural network.
Algorithm 2 includes a detailed description of each step.

that is augmented with an NFM, computing the attention weights, and then repeating
this process while allowing the NFM to attend over all of the previous passes.

In Figure 4.4, the first pass corresponds to the ‘bottom-up’ feedback directly from the
input, which is what most neural networks exclusively rely on. We can think of the output
of each hidden layer as representing successive compressed representations of the input
stimulus – starting from unstructured raw data, each layer of a neural network is a step
towards getting to the final result, for example one of two classes in a binary classification
problem. The second pass corresponds to ‘top-down’ feedback, because the information
comes from the layers that already have a compressed representation of the entire input
thanks to the hidden layer outputs from the previous pass forming the basis of the keys and
values of the attention modules (Figure 4.4). The 2-pass variant of NFM allows attention
modules to have a richer set of keys and values. Since in an NFM each layer has a choice
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of outputs from not only all of the previous layers but also the previous passes, NFMs
allow for a higher diversity of specialised layers in comparison to the existing architectures
that promote layer specialisation, such as DenseNet [119] and Neural ODEs [47].

Algorithm 2 presents a detailed description of each step in a forward pass of an NFM-
augmented neural network. The attention module implements multi-headed scaled dot-
product attention described in Section 2.3.2.2. Trainable factors γ

(i)
k were previously used

in a similar way in Self-Attention Generative Adversarial Networks [304] to increase the
importance of the output of the attention module. The rescale function uses either down-
sampling or up-sampling on each previously seen output m so that all previously computed
outputs are given in the same format. The internal structure of NFM (Algorithm 2) can
remain the same regardless of the specifics of a neural network that is augmented with
NFM.

The NFM is a promising idea from the perspective of handling distribution shifts due
to the increased specialisation of the layers and the ability to dynamically choose which
previous information to use. This is particularly interesting in the context of Convolutional
Neural Networks and image classification. For instance, a convolutional layer which
learns fine-grained visual features may be difficult to use early in the network, but its
output might come in handy in deeper layers of the network, allowing the model to better
understand an image by combining low-level and high-level features. In this way, NFMs
are complementary to dilated convolutions (Section 4.1.1) as another design choice which
allows multi-level aggregation of features. The fact that NFM can be used to augment any
feed-forward neural network rather than constituting a standalone architecture makes it a
great choice for the experiments that aim to answer research questions based on varying
a single ‘parameter’ at a time (instead of comparing the results of using very different
architectures, as described in the methodology section Section 2.2). Moreover, in the paper
that introduces NFMs [159] we focus mostly on standard supervised learning, generative
modelling and reinforcement learning, with little evidence in the context of distribution
shifts. The next section extends my previous work on NFMs by providing new evidence in
the context of out-of-distribution generalisation using four sets of OOD problems in visual
question answering, single-object classification and multi-object classification.

4.2 Experiments

This section presents new results on the relation between design choices in convolutional
architectures and the ability to generalise out-of-distribution. Specifically, it shows the
results of using dilated convolutions and Neural Function Modules as two different ways of
enhancing multi-level feature aggregation in various instances of image classification tasks:
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visual question answering (including relational and non-relational questions; Section 4.2.1
and Section 4.2.2), single-object classification (letter recognition; Section 4.2.3) and
multi-object classification (digit recognition; Section 4.2.4). In each task, the appropriate
baselines are augmented with either NFM or dilated convolutions, in order to investigate the
influence of these two architectural choices in isolation on out-of-distribution generalisation.
In-distribution performance is also included for reference.

Research questions The main hypothesis of this chapter:

Multi-level feature aggregation improves out-of-distribution generalisation in
image classification

is explored using two approaches to multi-level feature aggregation: Dilated DenseNets
(Section 4.1.1) and Neural Function Modules (Section 4.1.2).

The experiments in this section aim to explore this hypothesis in several instances of image
classification by answering the following sets of research questions:

• Visual question answering: What is the effect of augmenting a baseline model with
NFMs? What is the effect of augmenting a baseline model with dilated convolutions? Is
there a systematic difference in the performance on the relational and the non-relational
questions in a visual question answering task? (Section 4.2.1) Can NFMs or dilated
convolutions improve the accuracy in the instance of a visual question answering task
where only the random chance performance has been reported previously? (Section 4.2.2)

• Single-object classification: Can NFMs strengthen the existing baselines, in com-
parison with the published results and the reproduced results? Is there a systematic
difference in the performance on the compositional OOD partitions (based on two
features) and stratified OOD partitions (based on one feature)? (Section 4.2.3)

• Multi-object classification: Can NFMs improve the performance of a baseline model
in generalisation from a smaller to larger number of objects in an image and vice versa?
(Section 4.2.4)

Architectures In this section, experiments compare the performances of the same
underlying architectures, with only different input lengths affecting the sizes of individual
layers in these neural networks. All of the baselines are chosen based on the existing papers
that use the same (Section 4.2.3) or related (Section 4.2.1, Section 4.2.2 and Section 4.2.4)
datasets in order to have a point of comparison with the related work. 2-pass NFM is
used to test the combination of bottom-up (the first pass) and top-down (the second pass)
feedback in out-of-distribution scenarios. The following classifiers were used:
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• CNN (or Conv_4): a generic 4-layer convolutional neural network, with ReLU and
batch normalisation [125] layers following each convolutional layer (each of which has a
stride of 2 and doubles the number of channels), with a final layer of average pooling,
and a dropout rate of 0.1. This is the same architecture as used in the paper that
introduces the in-distribution version of the Sort-of-CLEVR dataset [241] investigated
in Section 4.2.1. As the most lightweight and generic convolutional neural network, this
method and its NFM-augmented counterpart are used in each set of experiments in
this chapter;

• CNN+NFM: just like CNN, but extended with a two-pass (K = 2) NFM;

• ResNet_12: a residual network [106] of width 1, with five building blocks of three
convolutional layers each (with batch normalisation) and ‘shortcut’ weights, with
dropout rate 0.1. This method is used in the paper [151] that introduces the Synbols
dataset investigated in Section 4.2.3;

• ResNet_12+NFM: ResNet12 with a two-pass NFM;

• WRN_28: a 28-layer wide residual network [299] with three groups of four residual
blocks with two convolutions per block, with a dropout rate of 0.1 after the first
convolution of each block (following Lacoste et al. [151], the paper that introduces the
Synbols dataset used throughout Section 4.2.3);

• WRN_28+NFM: WRN_28 with an added two-pass NFM;

• Relational Networks: a 4-layer CNN followed by four fully-connected layers (with output
sizes 256) that process all pairwise combinations of the CNN embeddings [241]. This is
the same architecture as used in the papers that introduce the in-distribution version
of the Sort-of-CLEVR dataset [241] and the Not-so-CLEVR dataset [231]. These two
datasets are used in Section 4.2.1 and Section 4.2.2, respectively;

• Relational Networks+NFM: a relational network with an added two-pass NFM;

• DenseNet: a DenseNet [119] with growth rate 8, depth 16 (3 blocks with 4 layers each
and 4 non-convolutional layers), reduction rate 0.5 and dropout 0.2. This method is
used in my previous research on the effect of dilated convolutions in in-distribution
relational reasoning [6];

• DilatedDenseNet: a Dilated DenseNet with the same parameters as DenseNet, with
dilation parameters within each block being 2i for the i-th convolutional layer (for
i ∈ {0, 1, 2, 3}). This is an implementation of the exponential schedule of dilated
convolutions presented in Figure 4.1.
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The Neural Function Modules are all 4-headed, with key size and value size 16.2 In order
to answer the research questions posed in this section (Paragraph 4.2), the parameters
described above are fixed and the design choices (NFM, dilated convolution) are the most
meaningful axes of variation. The baseline architectures to be augmented with either NFM
or dilated convolutions are based on their relevance to the datasets used in this chapter –
that is, there are existing results using the same baseline with the same parameters on
the same or related datasets. The baselines are also chosen such that they work well on
the in-distribution variants of the datasets used in the chapter, in order to focus on the
difficulty of moving to out-of-distribution evaluation.

In the following subsections, I describe the OOD generalisation experiments that were run
in a variety of image reasoning contexts: visual question answering on the Sort-of-CLEVR
dataset (Section 4.2.1); learning the ‘same/different’ concept in image reasoning, using the
Not-so-CLEVR dataset and its variants (Section 4.2.2); letter and font recognition using
the Synbols dataset (Section 4.2.3); multi-object classification in digit recognition, using
a dataset derived from MNIST (Section 4.2.4). While describing the experiments, I first
define the dataset, and then provide experimental results.

4.2.1 OOD generalisation in visual question answering

4.2.1.1 Data

The Sort-of-CLEVR dataset [241] was first introduced to probe Convolutional Neural
Networks in their ability to answer relational questions such as ‘What is the shape of
the object closest to the red object?’ based on an image (Figure 4.5). Each data sample
consists of an image and a question regarding the image content. Each image has a total
of 6 ‘objects’, where each object has a randomly chosen shape (square or circle) and a
randomly chosen colour (red, blue, green, orange, yellow, gray). The colour unambigously
identifies the object.

The dataset contains 9800 distinct images in the training set and 200 distinct images in
the test set. The training and test samples are generated by pairing each of these images
with 10 relational and 10 non-relational questions. Similarly as in Santoro et al. [241],
the questions are encoded as binary vectors of length 11. The first 6 values identify the
colour of the object addressed in the question, the next 2 values encode the question type
(relational or non-relational), and the last 3 values indicate the question subtype (1, 2 or
3). The object referred to in each question is chosen uniformly at random, so that each of
the objects (identifiable by their colours) is mentioned an approximately equal number of

2Furthermore, the NFM implementation does not use the ‘textbook’ variant of scaled dot-product
attention explained in this thesis – it uses a variant (Sparse Attention) based on the idea that the attention
matrix is sparse. This improves overall NFM performance.
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Relational questions:

1. What is the shape of the object closest to the red object? ⇒ square

2. What is the shape of the object furthest to the orange object? ⇒ circle

3. How many objects have same shape with the blue object? ⇒ 3

Non-relational questions:

1. What is the shape of the red object? ⇒ Circle

2. Is green object placed on the left side of the image? ⇒ yes

3. Is orange object placed on the upside of the image? ⇒ no

Figure 4.5: In Sort-of-CLEVR, a data sample consists of an image and a question to be
answered based on a particular image. The questions belong to 2 categories (relational and
non-relational), with the relational questions being more challenging for non-specialised
CNNs, even in the in-distribution case – in the results reported in the original paper, a
CNN plateaus at 63% test accuracy on the relational questions [241]. When answering
non-relational questions, it is sufficient for a model to learn the properties of individual
objects without referring to the whole scene, while the relational questions require learning
the idea of spacial distance between the objects (‘closest/furthest’), the concept of a
same/different relation (‘same shape with the blue object’) and counting (‘how many
objects’).

times. The question subtype is also chosen at random. Each image is of size 75× 75 pixels
with each object of a fixed diameter (circles)/side length (squares) of 10 pixels (Figure 4.6
and Figure 4.7 contain random image samples).

In the original Sort-of-CLEVR [241], all the possible 12 shape and colour combinations
are included both in the training set and in the test set. The authors of this dataset and
the subsequent paper [117] focus only on the in-distribution variant. For the purpose of
the experiments in this section, I re-generate the in-distribution variant (Figure 4.6), in
which all shapes and colours appear in the training set and in the test set. I additionally
generate new out-of-distribution variants of Sort-of-CLEVR with an increasing number of
shape-colour combinations that are omitted in the training set but nevertheless appear
in the test set (Figure 4.7). In these out-of-distribution variants of Sort-of-CLEVR, the
architectures are tested on the ability to answer questions based on images containing
objects of previously unencountered shape-colour combinations. This is an example
of an out-of-distribution generalisation task that is often referred to as compositional
generalisation [154] (described in Section 2.4.2). In compositional generalisation tasks,
a model is evaluated on the examples containing new combinations of familiar features,
which is also investigated in Chapter 5 in the context of multi-agent systems.
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[In-distribution] Sort-of-CLEVR: training examples

[In-distribution] Sort-of-CLEVR: test examples

Q: What is the shape of the red object?
A: Square

Q: Is the green object on the
upper side of the image?

A: No

Q: How many objects have the same shape
as the blue object?

A: 4

Q: Is the orange object on the
left side of the image?

A: Yes

Q: What is the shape of the object
furthest to the blue object?

A: Circle

Q: How many objects have the same shape
as the red object?

A: 4

Figure 4.6: In-distribution Sort-of-CLEVR: random samples from the generated training
and test data (both the relational and non-relational questions).

[Out-of-distribution] Sort-of-CLEVR: training examples

[Out-of-distribution] Sort-of-CLEVR: test examples

Q: What is the shape of
the orange object?

A: Square

Q: Is the yellow object on the
left side of the image?

A: No

Q: How many objects have the same shape
as the black object?

A: 3

Q: Is the red object on the upper side
of the image?

A: No

Q: What is the shape of the object furthest
to the yellow object?

A: Square

Q: How many objects have the same shape
as the green object?

A: 4

Figure 4.7: Out-of-distribution Sort-of-CLEVR: random samples from the generated
training and test data (both the relational and non-relational questions). In this example,
there is one held-out combination that appears in the test set and not in the training set:
red circle. The combinations to be held-out are randomly chosen.
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4.2.1.2 Results

The experiments on Sort-of-CLEVR are meant to answer the following research ques-
tions:

• Q1: What is the effect of augmenting a baseline model with NFM in terms of out-of-
distribution generalisation?

• Q2: What is the effect of augmenting a baseline model with dilated convolutions in
terms of out-of-distribution generalisation?

• Q3: In the out-of-distribution variants of Sort-of-CLEVR, is there a systematic difference
in the performance on the relational and the non-relational questions?

Q1: Table 4.1 shows the results per number of held-out combinations N (where N = 0

is the standard in-distribution Sort-of-CLEVR and N = 6 is the maximum number of
combinations that can be held-out without changing the number of objects in the scene).
NFM improves the performance of a standard convolutional baseline both in terms of the
in-distribution and out-of-distribution performance, with overlapping error margins for
some of the combinations (for example, non-relational questions in the N = 3 case). On
average (Figure 4.8) augmenting the convolutional baseline with NFM leads to a higher
accuracy in the out-of-distribution scenarios, both in the relational and non-relational
tasks.

Q2: In both the relational and non-relational task, the accuracies of Dilated DenseNet and
DenseNet overlap on average (Figure 4.8). There is no evidence that Dilated DenseNet
improves over DenseNet in this task. However, in the case of relational questions, dilated
convolutions appear to help for N = 0, 1, 2 (Table 4.1). This might be because a dilated
convolution allows for integrating a bigger context (as opposed to local features learnt
by the standard convolutional layers), which helps in answering questions about the
relations between objects in a scene. This means that the effect previously observed in
the in-distribution relational setting [6] extends to simple out-of-distribution relational
settings where one or two new colour-shape combinations are introduced.

Q3: The relational and non-relational accuracies are analysed separately, which uncovers
two different trends. For all models, the performance on the relational questions is linearly
decreasing with the number of held-out combinations. However, in the case of CNN and
CNN+NFM, the performance on the non-relational questions seems to oscillate between
approx. 76% and approx. 87% regardless of the number of the held-out examples. This is
possibly due to (1) non-relational questions being easier, both in terms of the conceptual
difficulty and in terms of the random baseline performance: 50% for the non-relational
questions and 38.89% for the relational questions (the counting question has the random
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Figure 4.8: Average out-of-distribution generalisation accuracy in Sort-of-CLEVR.
The error margins are computed based on the results in Table 4.1 and the rule for
computing a standard deviation of a mean of independent variables: StDev

(
X+Y

2

)
=

1
2

√
(StDevX)2 + (StDev Y )2. Each average value is computed for 3 random seeds and 6

OOD Sort-of-CLEVR variants (18 independent runs).

baseline performance of 16.67%); (2) each relational question requires detection and analysis
of each of the 6 objects in the scene, which means that the model ‘pays attention to’ the
unseen colour-shape combinations more frequently than when answering the non-relational
questions centered on a single object in isolation. Each model performs better on the
non-relational than relational questions in the in-distribution case (Table 4.1), and this
discrepancy increases substantially in the out-of-distribution setting (Figure 4.8).

4.2.2 OOD generalisation in learning the ‘same/different’ con-

cept

4.2.2.1 Data

Kim et al. [137], inspired by Sort-of-CLEVR, proposed a variant of this dataset – Not-
so-CLEVR – where (1) the number of objects is reduced from six to two per image; (2)
the set of possible questions is reduced to two opposite questions: ‘Are they the same?’
and ‘Are they different?’ (that is, whether two objects in an image have the same shape
and the same colour); (3) one colour-shape combination is excluded in the training set
in order to test the algorithms in their ability to transfer the skill of recognising same-
different relations to unseen objects. Similarly as in my out-of-distribution variant of
Sort-of-CLEVR (Figure 4.7), both the colour and the shape from the held-out combination
appear in different combinations in the training set.

This dataset is inherently out-of-distribution. The authors found that a specialised
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Not-so-CLEVR: training examples

Not-so-CLEVR: test examples

Q: Are they different?
A: No

Q: Are they the same?
A: Yes

Q: Are they the same?
A: No

Q: Are they the same?
A: No

Q: Are they different?
A: No

Q: Are they the same?
A: Yes

Figure 4.9: Samples from the Not-so-CLEVR task, held out configuration: red square.

relational architecture (Relation Networks [241]) that achieves 94% test accuracy on the
original in-distribution Sort-of-CLEVR [241] achieves only the random baseline performance
on the Not-so-CLEVR task.

This seemingly straightforward task highlights a significant, unresolved challenge in image
classification. To the best of my knowledge, nobody has proposed a model that would
exceed the accuracy of approximately 50% (random baseline performance) on the original,
out-of-distribution Not-so-CLEVR task. In the main follow-up work, Liu et al. [175] use a
single-object, greyscale version of Not-so-CLEVR for coordinate classification (where each
pixel is a separate object) in an in-distribution context.

Here, I generate the original Not-so-CLEVR dataset following the description by Kim et
al. [137]. Figure 4.9 shows an example where the held-out combination is a red square.
Similarly as in the original paper, half of the examples in my test set contain images
of the same pair of held-out objects (for example, two red squares) and the other half
contains images where the held-out configuration (for example, a red square) is paired with
a randomly chosen familiar configuration (for example, a red square paired with a dark
blue circle). Hence, the held-out configuration appears in each of the test examples, and
the ability to correctly classify a pair of equal objects has the same weight as the ability
to correctly classify a pair of different objects. Additionally, the samples are generated
by pairing each image with one of the two questions: ‘Are they the same?’ or ‘Are they
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different?’ (assigned with the probability of 50% and encoded as binary vectors, similarly
to Sort-of-CLEVR). This makes it harder for the models to learn the mapping between
the set of images and the set of the {Yes ,No} answers – the model is forced to use the
information encoded in the question in order to give a correct answer.

Similarly as in the original Not-so-CLEVR paper by Kim et al. [137], I generate 12 versions
of the Not-so-CLEVR dataset, each one missing one of the 12 possible colour-shape
combinations. For each variant, the number of training and test examples is equal to 9800
and 200, respectively (each image is randomly paired with either ‘Are they the same?’ or
‘Are they different?’).

4.2.2.2 Results

The starting point for the experiments in this section is the research question:

Can NFMs or dilated convolutions improve the accuracy in the out-of-distribution
generalisation task of Not-so-CLEVR?

Here, CNN, CNN+NFM, DenseNet and Dilated DenseNet models are the same as in the
previous section, with the only change coming from the difference in the question length
in Not-so-CLEVR. They are trained and tested independently on each of the 12 variants
of Not-so-CLEVR (one per colour-shape combination that is omitted in the training set).
Each variant should pose a problem that is conceptually the same, as they only differ in
the held-out colour-shape combinations used in the OOD test set.

Based on the average results (Table 4.2 and Figure 4.10), the only method proposed in this
dissertation that slightly improves over the random baseline accuracy of 50% is CNN+NFM.
However, I also tried to reproduce the results from the original Not-so-CLEVR paper,
and I found that Relation Networks (RN), that were reported to oscillate around the test
accuracy of 50%, reach accuracy of around 67% in 100 epochs. The experimental setup
in this section differs from the original paper (1) possibly in the number of epochs (not
included in the paper); (2) in the size of the image: here, it is 75× 75 pixels (the same
as the Sort-of-CLEVR images in the previous section), and in the paper it is reported
as 128× 128 pixels. The authors do mention that the small size of the Sort-of-CLEVR
images might be responsible for the high performance of Relation Networks, and they aim
to increase the difficulty by increasing the image dimensions. However, changing the image
size from 75× 75 to 128× 128 should not influence the task of recognising same/different
objects to this extent: as seen in this section, the size of 75 × 75 is sufficient to break
several convolutional architectures, while Relational Networks perform significantly better
(Table 4.2 and Figure 4.10).
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Model OOD Test Accuracy

CNN 49.16± 0.55
CNN+NFM 51.14± 0.60
DenseNet 49.91± 0.47

DilatedDenseNet 49.87± 0.45
Relation Networks 67.19± 1.74

Relation Networks+NFM 79.83± 2.04

Table 4.2: Out-of-distribution generalisation in learning the idea of ‘sameness’ (Not-so-
CLEVR dataset). OOD test accuracy is averaged across all 12 possible instances of the
Not-so-CLEVR dataset and 3 random seeds (36 independent runs).
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Figure 4.10: Training and test accuracy in Not-so-CLEVR: same/different task.
All methods apart from Relation Networks (RN) converge in 100 epochs in terms of
training accuracy. However, only Relation Networks and NFM-augmented Relation
Networks improve throughout training in terms of test accuracy, and reach a result above
the random baseline performance. NFM-augmented Relations Networks (RN+NFM) learn
quickly in the first epochs and achieve the highest final test accuracy of around 80%.
Both training and test accuracies are averaged across 12 variants of Not-so-CLEVR and 3
random seeds (36 independent runs), and standard errors are plotted.

Another interesting finding is that augmenting the convolutional part of Relation Networks
with NFM leads to a significant gain in OOD test accuracy: the performance increases from
67.19± 1.74 to 79.83± 2.04 (Table 4.2). It shows that NFM can be integrated into various
existing architectures and increase their performance. As seen from the training curves
(Figure 4.10), NFM significantly speeds up the optimisation of Relation Networks in terms
of the number of required epochs. A plausible explanation is that multi-stage architectures
such as Relation Networks are aided by the NFM effect on layer specialisation: if layer
roles are inferred earlier during training, the optimiser can achieve better performance in
fewer epochs.
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4.2.3 OOD generalisation in letter and font recognition

4.2.3.1 Data

Previous experiments evaluate convolutional baselines augmented with dilated convolutions
and Neural Function Modules on image classification tasks in the context of visual question
answering (using variants of the Sort-of-CLEVR dataset). In this section, I use a data
generator for a letter recognition task that lends itself well to creating out-of-distribution
splits – the Synthetic Symbols (Synbols) generator proposed by Lacoste et al. [151].

Here, I use Synbols3 to generate the default Synbols dataset that contains 100k images of
lower case Latin letters, written using a font that is uniformly selected from a collection of
1120 open-source fonts (Figure 4.11). The second dataset, Less Variation, contains 100k
easier to read letters (no bold/italic options, less variation in scale and rotation) and the
target classes of 1120 fonts.

These two image datasets (Synbols Default for letter classifications and Less Variation for
font classification) are used to generate an array of out-of-distribution tasks.

Motivated by the out-of-distribution experiments ran by Lacoste et al. (Table 2 in the
Synbols paper [151]), I reproduce 5 out-of-distribution splits using the default letter
classification dataset:

• Stratified partitions:

– Stratified Font

– Stratified Scale

– Stratified Rotation

– Stratified x-Translation

• Compositional partitions:

– Compositional Scale-Rotation

and 1 out-of-distribution split for the font classification dataset – Stratified Char.

For the continuous attributes (Scale, Rotation, x-Translation), the stratified partitions are
generated by assigning the first and last 20 percentiles of a continuous latent factor as
the validation and test set respectively, and leaving the remaining samples for training.
For discrete attributes (Font, Char), the sets of possible values are randomly partitioned

3The official implementation: https://github.com/ElementAI/synbols.
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Figure 4.11: 100 randomly sampled images from the default Synbols dataset. The task
is to assign each image to a class corresponding to the appropriate letter/symbol. The
images vary in difficulty due to the diversity of fonts, image resolutions, translation, scale
and rotation of the letter. There are 48 distinct classes, and consequently the random
baseline performance is 2.1%.
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Figure 4.12: 100 randomly sampled images from the Less Variation font classification
dataset. There are 1120 distinct fonts, and consequently the random baseline performance
is only 0.09%.
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Figure 4.13: Illustration of the method for generating out-of-distribution splits in Synbols
proposed by Lacoste et al. [151].
This example uses continous attributes of Scale (size of the letter relative to the image size)
and Rotation (unit: radians). In the compositional partitions, the splits are representative
with respect to each attribute in isolation (marginal distributions are very similar), however,
the models are validated and tested on the distributions that are systematically different
than the training distribution. In the stratified partitions, the first and the last 20
percentiles of a continuous latent factor are used as the validation and test set, respectively,
while the remaining data points are used for training.
Figure produced by Lacoste et al. [151].

instead of using fixed thresholds (such as the threshold of 20 percentiles). Figure 4.13
shows an example of creating stratified and compositional splits.

4.2.3.2 Results

The experiments on Synbols aim to answer the following research questions:

• Q1: How do the results of incorporating NFM into several different convolutional
architectures compare to their NFM-less counterparts (both the reproduced baseline
results and the official results of these architectures reported in the Synbols paper [151])?

• Q2: Is there a systematic difference in the performance on the compositional partition
and the stratified partitions?

Table 4.3 includes reproduced results from Table 2 containing the set of OOD experiments
performed by the authors of Synbols [151] (Conv_4, ResNet_12, WRN_28), the exact
results reported by the authors, and the results of augmenting each of these architectures
with NFM (Conv_4+NFM, ResNet_12+NFM, WRN_28+NFM).

Q1: Despite following all the information in the paper and using the official implementation
of both the baseline architectures and the Synbols dataset, the results reproduced for the
sake of this chapter differ slightly from the results published in the original paper. In
Table 4.3, all of the results are included so that NFM variants can be compared both with
the individually reproduced results and with the results published by the authors. For
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Figure 4.14: OOD test accuracy on the Synbols dataset.
The upper histogram contains average results for 5 OOD splits based on the default Synbols
dataset (5 variants and 3 random seeds, that is, 15 independent runs). The histogram below
shows OOD performance in the more challenging task of font classification. Following the
Synbols paper, the experiments are run on one OOD variant of the Less Variation dataset
(3 random seeds).
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clarity, histograms in Figure 4.14 contain a comparison of the reproduced baseline results
and their NFM-augmented counterparts.

In the new experiments performed for this section, adding NFM improves the average
accuracy of each of the convolutional baselines (Figure 4.14) – the averages in the Synbols-
100K case (the default dataset) are computed for the 5 OOD tasks and 3 random seeds
based on the full set of the results (Table 4.3). In the case of the more challenging Less
Variation task, NFM-augmented CNN and NFM-augmented WRN overlap with their
respective baselines. However, there is an improvement in the performance of ResNet due
to extending it with NFM.

When comparing the new NFM variants to the results published by the authors (Table 4.3),
it turns out that CNN+NFM improves over CNN by a larger margin than in the case
of an attempt to reproduce the original CNN baseline. CNN+NFM improves over the
published CNN results in each in-distribution and out-of-distribution scenario apart from
Stratified Scale, where the published result is higher (in the comparison of the reproduced
results, the error margins overlap for Stratified Scale). In the case of a vanilla CNN, it is
clear that NFM is beneficial regardless of whether the reported or the reproduced results
are used.

The reported results of ResNet are higher than I could reproduce (using the code published
by the authors). In this comparison, ResNet+NFM is slightly less successful than ResNet.
In the new experiments, ResNet+NFM is slightly better than ResNet.

Finally, WRN+NFM improves over the published WRN results for the in-distribution
Synbols Default, Stratified Font, Stratified Scale and Stratified x-Translation. In the
remaining cases, the error bars overlap.

The conclusion is then that augmentation with NFMs increase the accuracy of the majority
of the baselines that were previously used in Synbols-based tasks. Augmentation with NFMs
also leads to an improvement over the majority of the published results on Synbols.

Q2: By design, the Compositional Scale-Rotation dataset is more challenging than the
Stratified variants. In practice, all architectures are more sensitive to the Stratified
Rotation split than to the Compositional Scale-Rotation variant. This is possibly due
to the lack of an explicit rotation-robust mechanism (for example, data augmentation).
In the Stratified Rotation split, the models see new angles at test time, whereas in the
Compositional Scale-Rotation variant all possible rotations are seen in training (in different
Scale-Rotation combinations). This is an interesting example of how Convolutional Neural
Networks can exploit partial information in a (seemingly more difficult) compositional
generalisation task, yet struggle when confronted with a new value in a single feature.
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4.2.4 OOD generalisation in digit recognition (multi-object classi-

fication)

4.2.4.1 Data

For this last study, I generate out-of-distribution and multi-object variants of the classic
MNIST digit classification dataset [66].

Unlike the visual question answering tasks based on Sort-of-CLEVR and Not-so-CLEVR,
and the single-object classification tasks based on Synbols, this section covers multi-object
classification. In the multi-object MNIST, each image contains from 1 to 5 hand-written
digits sampled with replacement from the original MNIST dataset. The goal is to predict
whether a certain digit appears in the image. For instance, for an image containing the
digits 5 and 4, the model has to detect that these two digits are visible. Figure 4.15 shows
several images sampled from the generated multi-object MNIST.

In the OOD variants of this task, the models are tested on their ability to generalise to
a new number of digits. This completes the investigation in terms of the most human-
interpretable changes to the distribution of image data: the experiments on Sort-of-CLEVR
and Not-so-CLEVR presented in the earlier sections are focused on generalisation in terms
of the shape and colour. Here, OOD splits are generated by pairing a test set containing a
held-out number of digits per image (for example, 2 digits per image) with a training set
where the images of the held-out digit cardinality are not present.

4.2.4.2 Results

The experiments in this section aim to answer the question:

Can NFMs improve the performance of a baseline model in generalisation to a
new number of digits in a multi-object classification task?

The CNN baseline and CNN+NFM were trained on four separate datasets and evaluated
on five test sets (Table 4.4). For each training dataset, there are two in-distribution test
sets (samples of images containing the number of digits present in the test example) and
three out-of-distribution test sets (where the model has to generalise to a new number of
digits).

As a sanity check, one of the in-distribution test sets contains single-object images only.
All methods perform above 90% on this dataset, apart from the vanilla CNN trained on
the images containing 1 and 5 digits. However, the same method in the same configuration
improves from 87.23± 6.51 to 96.06± 0.31 after incorporating NFM in the architecture.
This might be due to the increased specialisation and modularity introduced by NFM
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Figure 4.15: Example images sampled from the multi-object MNIST.
All possible numbers of digits per image are shown. Each image has 64× 64 pixels. Each
digit from the original MNIST is downsampled from the original size of 28× 28 pixels to
16× 16 pixels and then pasted into a random position within the frame. The positions of
digits in an image can overlap. Each training set has 16000 images and each test set has
4000 images.

Tested on Trained on
1&2 1&3 1&4 1&5

CNN 1 90.77± 5.40 95.72± 0.14 94.73± 1.01 87.23± 6.51
2 73.08± 8.16 83.97± 0.12 75.45± 6.60 69.35± 6.94
3 53.39± 1.00 66.55± 1.37 61.39± 0.93 46.62± 3.70
4 20.46± 5.12 44.80± 1.44 43.97± 6.79 36.71± 3.33
5 9.09± 1.07 22.92± 1.12 28.53± 4.86 26.46± 2.75

CNN+NFM 1 96.37± 0.18 96.29± 0.19 95.55± 0.37 96.06± 0.31
2 82.42± 0.67 83.27± 0.08 82.78± 0.33 85.20± 0.92
3 56.68± 1.21 64.43± 0.32 63.55± 1.94 64.40± 1.37
4 27.39± 1.31 42.78± 0.46 49.94± 1.74 52.10± 1.35
5 11.66± 0.62 21.73± 1.74 36.27± 1.57 41.81± 1.92

Table 4.4: In-distribution and out-of-distribution results on the multi-object MNIST.
OOD test sets are highlighted. The instances when CNN or CNN+NFM is better than the
alternative method are in bold. In the remaining entries, error margins overlap for CNN
and CNN+NFM. ‘Trained on 1&3’ etc. refers to using a training dataset that contains
images of these two digit cardinalities. All models were trained for 500 epochs. Error bars
are computed for three independent runs.
CNN+NFM consistently outperforms CNN in extrapolation to a larger number of digits
in an image.

122



(distinct layers might learn to detect distinct digits), which makes the method more robust
to the changes in the digit count.

Incorporating NFM improves the OOD performance in eight instances, whereas the vanilla
CNN is better only in one instance (for the remaining configurations, error margins overlap).
NFM is the most beneficial to the model trained on the training sets containing 1 and
2 digits, and to the model trained on the images of 1 and 5 digits. In these cases, the
performance is improved for all of the in-distribution and out-of-distribution test sets.
CNN+NFM tends to have smaller standard errors than CNN.

4.3 Summary

This chapter investigates two designs – dilated convolutions and Neural Function Modules
– in the context of out-of-distribution generalisation in image classification.

Dilated DenseNets have previously been used in in-distribution relational reasoning, where
they can match the performance of specialised Relation Networks. Dilated DenseNets share
a similar motivation as Neural Function Modules; in particular, in the context of multi-level
feature aggregation that – I hypothesise – improves out-of-distribution generalisation in
image classification. In the out-of-distribution experiments conducted in Section 4.2.1,
there is a small improvement in the set of relational questions after introducing dilated
convolutions to a generic DenseNet architecture. However, this can only be seen for a
small number of omitted shape-colour combinations. There is no evidence that Dilated
DenseNets help in a larger study where the number of omitted shape-colour combinations
varies up to N (N ∈ {1, 2, 3, 4, 5, 6}). There is also no evidence in the non-relational
set of questions and in the case of learning the same-different relation (Section 4.2.2),
where augmentation with NFM is able to improve even a very weak CNN baseline, while
Dilated DenseNet does not improve over DenseNet. Since Dilated DenseNet does not look
promising in these extensive experiments (18, 18 and 36 independent runs, respectively),
the focus of the remaining sections is on the NFM architecture, which appears to be more
useful in practice. Based on the DenseNet/Dilated DenseNet results, it seems that dilated
convolutions are helpful in addressing small distribution shifts in the context of relational
reasoning, but there is no evidence that they help in broader OOD contexts.

Neural Function Modules are consistently beneficial when incorporated into different
architectures (a simple CNN, Relation Networks, ResNet, Wide ResNet) and evaluated on
different OOD tasks (relational questions, non-relational questions, same-different relation,
generalisation to new fonts, new characters and a new number of objects in multi-object
classification). These results show the great flexibility of NFM and suggest that there is
a relation between using NFM and out-of-distribution generalisation, regardless of the
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architecture and the task. They also show that NFM can be successfully incorporated
both into CNNs written from scratch and into existing, specialised architectures such as
Relation Networks.

This work also connects to the well-known reproducibility issue in machine learning.
Despite using the official implementation and the information provided in the published
papers, some of the baseline results differ. I include both the individually reproduced and
the previously published baseline results.

Finally, since the OOD Sort-of-CLEVR and OOD multi-object MNIST are proposed
and implemented for this chapter, they are released to foster the research on out-of-
distribution generalisation in image classification: https://github.com/Slowika/ood

-dataset-generators. I believe these datasets can be useful in evaluating CNN-based
methods in terms of out-of-distribution generalisation because they are simple while posing
unresolved problems that strain existing methods. These problems include generalisation
to an increasing number of digits (productivity [281]) and generalisation in the context of
learning spatial relations and counting, which is challenging already in the in-distribution
setting.

This chapter approaches the modularity theme at the architecture level. Neural Func-
tion Modules (Section 4.1.2) can be used to increase modularity of any neural network
through the mechanism of dynamic selection of the outputs of the previous layers, and
the combination of top-down and bottom-up feedback. Both of these mechanisms are
loosely inspired by the global workspace theory, which posits that brain has a modular
structure [12]. Attention allows dynamic, sparse connections that are more akin to what
might be happening in the cortex than fixed connections in a standard neural network [90].
Top-down feedback is a simplified implementation of the ability to use the contextual
information apart from the sensory input. It provides the attention modules with a richer
choice of both low-level and high-level information.

This chapter also tackles the second research question posed in Section 1.2: Do methods that
encourage multi-level feature aggregation help in improving out-of-distribution generalisation
in image classification?. To this end, it evalutes two different approaches to integrating
low-level and high-level features: Dilated DenseNets and Neural Function Modules across
several different instances of image classification. One of the architectures (Neural Function
Modules) turns out to be more promising, which suggests that dilated convolutions, while
beneficial in the relational reasoning tasks [6], might not be the right direction for increasing
out-of-distribution generalisation.

To conclude, this chapter presents a new method, Neural Function Modules, with the
motivation of improving out-of-distribution generalisation in image classification, and
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provides new evidence on how NFMs improve the OOD accuracy across several types of
image classification. This accomplishes the goal of the thesis, that is, to improve out-of-
distribution generalisation in machine learning, from the perspective of image classification.
Image classification is a single-agent task and one of the main applications of modern
machine learning. The next chapter contributes to the research on out-of-distribution
generalisation from the perspective of multi-agent communication.
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Chapter 5

Out-of-distribution generalisation in
multi-agent systems

To understand language is to
understand generalisation.

–Eric Jang (2021)

This chapter presents my work on out-of-distribution generalisation in multi-agent systems
where several intelligent agents (each agent corresponding to a separate neural network)
interact and communicate with each other. In contrast to previous chapters, in which
a single model learns from the examples coming from a predefined and fixed dataset
with regression or classification labels, the agents in a multi-agent setup learn through
simulations and interactions.

In a realistic multi-agent scenario, such as team cooperation towards a shared goal, the
agents must adapt to the outcomes of their own previous actions as well as to the actions
of their partners. As a result, a multi-agent scenario inherently requires the agents to be
resilient to changes in data distribution [23].

In the previous chapter, dedicated to out-of-distribution generalisation in single-agent
classification tasks, the agent is introduced to out-of-distribution data samples in the
form of new combinations of the constituents previously seen in a limited number of
combinations: for instance, having learnt the meaning of a ‘red square’ and a ‘blue circle’,
the agent is tested on the ability to correctly classify a ‘red circle’. The assumptions are
that a future distribution in a fixed task is not completely different from the training
distributions, and that the semantic interpretation of the data is important (for example,
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in practical image recognition tasks, the semantic, human-like interpretation of images is
more important than detection of perturbations to individual pixels).

In this chapter, the agents are tested on the ability to communicate out-of-distribution
data samples, and act upon the messages describing these samples: after learning to
communicate the concepts of ‘red square’ and ‘blue circle’, are they able to successfully
communicate ‘red circle’?

The two main research questions explored in this chapter are:

• How does data representation affect the ability to learn to generalise out-of-distribution
in a multi-agent setting?

• How does the number of agents affect the ability to learn to generalise out-of-distribution
in a multi-agent setting?

Chapter structure

The chapter presents the results of research in multi-agent systems with graphs (Section 5.1)
and images (Section 5.2) as input data.

Graphs can represent arbitrary relational and hierarchical information; these have not yet
been studied in the framework of multi-agent/emergent communication used throughout
this chapter. Images have been previously used in multi-agent communication [163, 69],
yet developing an interpretable or compositional language based on image data remains a
challenge [163]. Using realistic images in this framework is interesting in the context of
the research goal of learning succinct, practical image representations, that can be used to
solve downstream tasks.

Section 5.1 shows the results of the out-of-distribution experiments with more commonly
used bags-of-words and sequential representations, and goes a step beyond by proposing and
analysing multi-agent systems defined over graph input data in the form of graph referential
games. This multi-agent framework is used to test the influence of data representation
and corresponding learning methods on generalisation and language properties. This
section contains motivation and the context, description of the games and their main
components, research questions posed, and empirical results with analysis and conclusion.
This section defines the notion of a referential game, used throughout the chapter. Apart
from directly measuring the ability to generalise out-of-distribution by measuring the
accuracy on out-of-distribution samples, this section introduces the concept of language
compositionality, which helps as a proxy measure for the agents’ ability to readily recombine
the descriptions of the basic concepts in the data.
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Section 5.2 presents the results of research on generalisation in visual referential games
with realistic images as input (where agents learn to communicate about images). This
section contains motivation and the context, description of the games and the experimental
method, research questions posed, and experimental results with analysis and conclusion.
This section approaches the problem of implementing out-of-distribution experiments by
modifying a labelled image dataset and adapting it to the framework of multi-agent games.
The sampled out-of-distribution categories strike a balance between grounding in the
training data and sufficient difference with respect to the standard in-distribution testing
examples.

Related publications Section 5.1 shows the results from two first-authored publications:
a workshop paper that I presented at the Workshop on Reinforcement Learning in Games
at The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020) [254] and
an article published in the Proceedings of the 43rd Annual Meeting of the Cognitive Science
Society (and presented at the CogSci 2021 conference) [259]. I also covered the material from
this section in a well-attended long talk Emergent Multi-Agent Communication: The story
so far at the Artificial Intelligence Research Group Talks (Computer Laboratory).

Section 5.2 presents the results of experiments I conducted in a collaboration with the
authors of Interpretable agent communication from scratch [69] that have not been published
yet.

5.1 Graph referential games

This section presents graph referential games, a framework for testing the effect of data
representation on out-of-distribution generalisation in multi-agent games. The graph
referential games are fully cooperative: the agents learn to communicate with each other
in a series of simulations in order to solve a shared task.

I first motivate the idea of communicating graphs in Section 5.1.1. Afterwards, in
Section 5.1.2 I define graph referential games in multi-agent communication. This sets the
stage for describing the experiments. The initial experiments, described in Section 5.1.3,
explore the performance of graph agents in graph referential games. The main experiments
are described in Section 5.1.4. The research questions are given in the experimental
sections.

5.1.1 Motivation and related work

This work is loosely motivated by two findings regarding the acquisition of the ability to
generalise in biological and artificial systems.
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Figure 5.1: An illustration of the main idea behind the OOD evaluation in graph referential
games (Section 5.1).
This instance of an out-of-distribution generalisation task follows the principle of composi-
tionality : ‘The meaning of a complex expression is determined by its structure and the
meanings of its constituents’ [127], and it has been shown to be difficult for deep neural
networks to learn [170, 15]. See Section 2.4.2 for an in-depth review of compositional
generalisation in machine learning.
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Structured representations lead to a structured language, which might lead to
a better generalisation. Lazaridou et al. [163] show that the emergence of a structured,
compositional language in a multi-agent game is tied to the degree of structure in the input.
This in turn is said to corroborate a hypothesis on the influence of structured semantic
representations [263] on language compositionality from human language evolution studies.
Compositionality is believed to be a sufficient (even if not necessary) condition for being
able to generalise to new combinations of familiar constituents [43, 201]. For instance,
Figure 5.1 shows training examples (‘Alice ran away’, ‘Bob ate pizza’, ‘Sean bought a car’)
consisting of two parts connected in a regular way: one of the possible subjects (‘Alice’,
‘Bob’, ‘Sean’) and a possible action (‘ran away’, ‘ate pizza’, ‘bought a car’). If an agent
learns to separate the concepts of the subject and the action, and to communicate them
in a compositional way, it will at least generalise to new combinations of familiar words
(‘Sean ate pizza’), which is often referred to as compositional generalisation or systematic
generalisation in the context of machine learning (for example, in the work of Brenden
Lake [153, 235], Dzmitry Bahdanau [14, 24], and their collaborators). The hypothesis and
the empirical results on structured representations inducing a structured language lead
to the idea of representing input data as trees and graphs in multi-agent communication
games.

Another important result from the paper by Lazaridou et al. [163], which helps in the
interpretation of the experimental results presented in this chapter, is that more information
in the input and a higher complexity of the agents does not translate to a more compositional
language or to a higher generalisation to unseen objects (as shown using images and
symbolic representations, and agents with and without a neural visual module, respectively).
This key prior work shows that structure precedes semantics in emergent communication,
as vision models applied to unstructured image data struggled to produce structured
language. This work motivates the main experimental results presented in this chapter
(Section 5.1.4).

Representing knowledge in terms of relations and hierarchies might help in
understanding new information. Humans’ ability to solve previously unseen problems
by composing familiar skills relies on our ability to represent knowledge in a relational and
hierarchical way [206, 89]. David Navon [206] studies extrapolation based on hierarchical
reasoning in the context of global and local visual features. He shows that global analysis
of the scene and the context precedes local analysis of its constituents, which highlights the
importance of the relations between the ‘building blocks’ in learning to solve various tasks
requiring inference and extrapolation. In linguistics, it is generally agreed that various
aspects of human language have a natural representation as trees or graphs [55, 25], which
are flattened into a linear sequence of words when humans communicate. For example, the
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∀x∃y(P (x) ∧Q(x, y)) ∀ ∃ ∧

P

Q

VAR

VAR

Figure 5.2: An example of a logical statement represented as a graph, recreated from the
paper by Mingzhe et al. [285].

relationship between words in a sentence is frequently modelled using formal grammars
(for instance, context-free grammars) – and the parse trees for sentences matching a
desired non-terminal symbol show these relations. Such non-linear representation is more
flexible when it comes to understanding new sentences as it captures the relations between
words and the rules of a grammar. In natural language processing and machine learning,
this hypothesis leads to a number of studies empirically showing that graph and tree
representations improve generalisation [251, 1, 239]. Similarly, graphs prove to be a useful
and flexible data representation in scene understanding in computer vision [145, 294] and
in automated theorem proving [209] due to the potential to represent relations between
constituents (for instance, relations between the elements of a scene in computer vision, or
syntactic and semantic structures of a mathematical formula such as variable binding).
Graph representations allow invariance to variable renaming: for example, the graph
representing the formula in Figure 5.2 is the same regardless of how the variables are
named in the sequential representation, which allows a greater robustness to systematic
changes in the input than a sequential representation.

5.1.2 Problem setting

This section describes the design of graph referential games: the basic components of each
game and the way the agents learn (Section 5.1.2.1), input data (Section 5.1.2.2) and the
agents’ architectures (Section 5.1.2.3).

5.1.2.1 Game

In the work presented in this chapter, each agent takes the role of either a speaker (fθ)
or a listener (yϕ) (Figure 5.3). The speaker has access to input data (target d∗) and is
tasked with describing the input to the listener, using a message m of predefined maximum
length l. The listener receives the message from the speaker as well as a set consisting of
the target and distractors – new objects sampled without replacement from the target
data distribution. The agents are rewarded if and only if the listener recognises the target
among distractors. None of the agents has a predefined knowledge of the language the
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Figure 5.3: An illustration of a referential game used throughout this chapter.
The game is a variant of the Lewis signalling game [169] from game theory, which since
then has been used in the studies on language evolution [33, 264] and in multi-agent
research in machine learning [162, 163, 45].
A referential game involves two agents with fixed roles: the speaker and the listener. Here,
the agents are represented by neural networks fθ and yϕ.
The speaker has access to input data and is tasked with describing the input to the listener.
The listener receives the message from the speaker and a set consisting of the target and
distractors – new objects sampled without replacement from the target data distribution.
A set that consists of a target and distractors is referred to as a game sample.
In standard in-distribution experiments, each sample contains a target and
distractors sampled without replacement from the same input distribution.
The agents are rewarded if and only if the listener recognises the target among distractors.
In existing work, target and distractors are typically represented as bags-of-words or
sequences [41], with more recent studies focusing on images in referential games [69]. The
work presented in this chapter contains the first studies on using graph representations
and graph representation learning methods in referential games.
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speaker uses to describe the targets – instead, they learn to communicate with each other
by simulations of trial and error based on the speaker’s utterances.

Depending on the input representation, both the speaker and the listener must have an
appropriate encoder to process the target and distractors (for example, a convolutional
neural network for image data or a graph neural network to process graphs). The speaker
also has a decoder capable of generating discrete messages. The decoder is based on
the sequence-to-sequence encoder-decoder method proposed by Sutskever et al. [270] and
adapted for referential games by Havrylov and Titov Havrylov and Titov [104]. The
decoder architecture remains the same regardless of the encoder/representation learning
method used by the agent in the game.

One of the key challenges of training a referential game is its non-differentiability. This is
a consequence of the fact that each of the symbols (also referred to as words, following
the convention in emergent communication literature [161, 203]) in the message is seen
as a one-hot vector with |V | components, where V is the vocabulary (set of all available
symbols), with the i-th component equal to 1 if and only if the i-th symbol is used. A
training algorithm, when it processes sample messages, is actually working over a vector
of such one-hot vectors. Non-differentiability is overcome by the agents learning jointly
using REINFORCE [290] or using a Gumbel-softmax relaxation (Section 2.3.1.2). Either
of these approaches renders the game differentiable, and they are both widely used in
the existing literature on referential games (REINFORCE in referential games [163, 162];
Gumbel-softmax in referential games [104, 63, 68, 69]). The latter approach is used in
graph referential games and I briefly describe it and motivate it below.

The graph referential games presented in this chapter use the Straight-through Gumbel-
softmax estimator (STGS) introduced by Bengio et al. [22] – in brief, allowing the game
to be learned using backpropagation by using continuous relaxation in the backward pass.
Unlike REINFORCE, the method based on Gumbel-softmax trick allows propagation
of the gradients from the listener to the speaker. Denamganaï et al. [63] argue that
STGS gives a richer signal towards solving the credit assignment problem1 in emergent
communication than REINFORCE. In the context of graph referential games, the most
important axis of variation is the choice of an input representation and a corresponding
representation learning method. The optimisation method is fixed to be STGS in each
configuration.

In each simulation, the speaker receives the target graph d∗ as input and produces a
message m, in which each word is drawn from the vocabulary V , where V refers to the

1Credit assingment in machine learning refers to the analysis of which weights in neural networks are
responsible for their success or failure, and how changing these weights can improve the performance [196].
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finite set of all distinct words that the speaker can generate. The speaker creates m by
using an encoder-decoder architecture fθ, in which the Gumbel-softmax trick is used in
the decoding step. The input to the listener consists of the message m sent by the speaker
along with the set K of distractors and the target d∗. The listener then produces an
output o, which is a vector in R|K|+1. Softmax is then applied to o to produce a categorical
distribution over the set K ∪ {d∗}. We formally write this as follows:

m← fθ(d
∗)

o = yϕ(m,K ∪ {d∗})

The complexity of graph referential games is controlled through the parameters |V |
(vocabulary size: the number of categories in the distribution from which each symbol/word
is drawn), the number of distractors |K| and maximum length of the message l. The
first experimental section (Section 5.1.3) shows the results of an initial exploration using
one-word messages (l = 1).

A sample in this environment consists of a target graph d∗ and a set of |K| distractors:

• In in-distribution samples, the target and each of the distractors are sampled from a
single set of graphs G without replacement. The resulting collection of samples is split
into train, validation and test subsets. Therefore, in the in-distribution case the agents
might see familiar graphs in new target-distractors configurations at the testing stage.
This is the standard practice for creating train/test or train/validation/test partitions
in existing referential games [75, 163].

• In out-of-distribution samples, the set of graphs G is partitioned into Gtrain and Gtest.
The train split contains as the target and the distractors only graphs drawn from Gtrain,
whereas the test split contains only graphs drawn from Gtest. Therefore, the agents see
not only new samples but also new sample constituents (new graphs) at the testing
stage. This is a novel approach in testing the agents in referential games.

5.1.2.2 Data

Graph referential games contain Game-1 with tree representations including an empty
root, and Game-2 with arbitrary graphs (Figure 5.4).

Game-1: hierarchy of concepts and properties In this game, a tree is constructed
from a vector of [p1, p2, . . . , pn], where n corresponds to the number of nodes (concepts) and
p1, p2, . . . , pn denote the numbers of possible node values (properties). This is a proposed
implementation of the idea of describing an object via communicating fixed concepts and
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Figure 5.4: Structural biases in the game input.
Baseline representations of sequences and bags-of-words are constructed as in the existing
work on emergent communication [142, 163]. Graph inputs are processed using graph
encoders, while sequences and bags-of-words use a recurrent neural network and a linear
layer, respectively. The sequences preserve the order of properties, while in the bags-of-
words representation the properties are shuffled and concatenated before applying a linear
layer. In Game-1, letters represent concept vectors, while digits represent property vectors.

the observed properties assigned to the concepts. For example, a visual object can be
described using the concepts of ‘colour’ and ‘shape’. For a specific visual object, such as a
‘red square’, the concepts of ‘colour’ and ‘shape’ are assigned the properties of ‘red’ and
‘square’, respectively. Each tree has the same number of concepts n and they only differ in
the property values. Formally, each tree is an undirected graph G(V , E) where V is the set
of all nodes representing unique properties along with a ‘central’ node, and E is the set
of edges. The central node corresponds to the latent representation of the entire input,
such as of a ‘red square’ as a single entity, which is initially empty and then learned by
a graph agent based on the properties of the concepts. The node features consist of a
concatenation of the property encoding and the type encoding (represented as one-hot
vectors), to disambiguate between the concepts of the equal number of possible properties.
The information distinguishing the target from the distractors comes from at least one
difference in properties (for example, a property ‘red’ of the concept ‘colour’ distinguishes
a ‘red circle’ from a ‘blue circle’).

Game-2: relational concepts In this game, graph agents learn to communicate about
arbitrary undirected graphs with a varying number of edges. Such graphs are meant to
represent relations between arbitrary entities; for example, connections between users of
a social media platform. In Game-2, each undirected graph G(V , E) is defined over the
set of nodes V and the set of edges E . In a given instance of the game, |V| is fixed for all
targets and distractors. The number of edges varies across the graphs. Each node has a
self-loop in order to include its own features in the node representation aggregated through
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message passing from the neighbouring nodes. We use node degrees converted to one-hot
vectors as the initial node features. The information distinguishing the target from the
distractors comes from the graph topology (node degrees). Game-2 extends Game-1 by
allowing the agents to communicate arbitrary relations, without using the ‘hierarchy’ of
an empty node.

The baseline data representations of bags-of-words and sequences contain the same features
(the same vectors) as the nodes in the graph representation. Sequence representations
follow a fixed order of nodes for each graph (based on the matrix representation of nodes in
the Deep Graph Library [286] used in the implementation of graph data and graph agents).
Bag-of-words representations are the least structured, with no ordering or relations between
the values.

5.1.2.3 Agents

Graph referential games come with three groups of generic encoders: bag-of-words encoder,
sequence encoder and graph encoders. These encoders use a comparable number and
size of the hidden layers so that the main axis of variation between them is the degree
of structure in the input. Bag-of-words and sequence encoders are typically used in
multi-agent communication [163, 44] whereas graph encoders have not been used before in
this setting.

A graph encoder generates node embeddings for each node, and then it uses them to
construct an embedding of the entire graph. Node representations are computed for each
node vi through neighborhood aggregation that follows the general formula

h(l+1)
vi

= ReLU

(∑

j∈Ni

h(l)
vj
W (l)

)
,

where l corresponds to the layer index, hvi are the features of node vi, W refers to the
weight matrix, and Ni denotes the neighborhood of node vi. Graph referential games
use encoders parametrised by a Graph Convolutional Network (GraphConv [141]) and
GraphSAGE [102], an extension of GraphConv that allows modification of the trainable
aggregation function beyond a simple convolution. An embedding of an entire graph is
obtained through pooling the node features using average, sum or max functions. A graph
embedding vector is used in the same way as the hidden state (context) in a sequence-to-
sequence model; that is, a graph speaker is a graph-to-sequence encoder-decoder.

Figure 5.5 shows a comparison between the graph encoders considered. The purpose of
this experiment is to choose a variant of a graph neural network for the speaker and the
listener. GraphConv with sum pooling outperforms its extension GraphSAGE in a graph
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Figure 5.5: Ablation studies on different parameters of graph neural networks in Game-1.
GraphConv is the standard graph representation learning method [141] and SAGE-
Conv/GraphSAGE is an extension capable of handling dynamic graphs [102] (right plot).
An embedding of an entire graph is computed through aggregation of the node embeddings
using functions such as max, mean or sum (left plot: the results of varying the node pool-
ing method in GraphConv). GraphConv uses convolution at the stage of learning node
embeddings: SAGEConv allows for replacing this function with a mean aggregator or a
pooling aggregator, which uses an additional neural layer to learn the node embedding [102]
(middle plot: the effect of varying the aggregator in SAGEConv). The y-axis in all plots
represents test accuracy. All the runs are averaged across three different random seeds
and standard error bars are shown.
Figure produced by Abhinav Gupta.
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referential game, which leads to the choice of this method for the remaining experiments.
This choice also aligns well with the goal of keeping the methods simple and generic, with
the degree of input structure as the main axis of variation.

5.1.3 Initial experiments with one-word messages
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Figure 5.6: Learning curves showing the performance of the agents on the test set in
Game-1 (p = 3 concepts of t = 4 properties each).
Train, validation and test split is 6:2:2. Left: The vocabulary size varies with a fixed
number of distractors (4). Right: The number of distractors varies with a fixed vocabulary
size (25). The results are averaged across five independent runs and error bars are shown.

This subsection shows initial experiments using graph agents and one-word messages in
graph referential games (message length 1). This part is focused on looking into the efficacy
of graph agents in referential games before comparing them to the representation learning
methods relying on a lower degree of structure in the input (sequences and bags-of-words).
The research questions are:

• Q1: Does the game difficulty increase with the increase in the number of distractors?
(Figure 5.6, right.)

• Q2: Does the speaker make use of the entire vocabulary? (Figure 5.6, left and Table 5.1.)

• Q3: Is the listener able to solve the task without the signal from the speaker? (Fig-
ure 5.7)

Q1: Given a set of |K| distractors, a random baseline in a graph referential game has
the accuracy of 1

|K|+1
(probability of selecting the target uniformly at random in the set

of |K|+ 1 objects). Figure 5.6, right shows a comparison in test accuracy depending on
the number of distractors, for |K| = 2, 4, 9. The corresponding accuracies of the random
baselines for these variants of the game are 33%, 20% and 10%. While the graph agents
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|V | 2 distractors 4 distractors 9 distractors

5 5.0± 0.0 (100± 0) 5.0± 0.0 (100± 0) 5.0± 0.0 (100± 0)
10 9.33± 0.47 (93.33± 4.71) 9.33± 0.47 (93.33± 4.71) 9.0± 0.81 (90± 8.16)
25 12.66± 0.47 (50.66± 1.88) 14.66± 0.47 (58.66± 1.88) 13.33± 0.47 (53.33± 1.88)
50 14.0± 1.41 (28.0± 2.83) 16.33± 0.94 (32.66± 1.89) 16.66± 0.47 (33.33± 0.94)

Table 5.1: The number of symbols the system used per number of distractors in the
games that converged in terms of training accuracy. The parentheses show the percentage
of symbols used for the given vocabulary size. All the values are averaged across three
different random seeds and standard errors are shown. There is little increase in the
number of symbols used in the game even if the vocabulary size is doubled.

perform well above the random baseline in each configuration, there is a drop in test
accuracy in a game with 9 distractors. The task of recognising the target becomes more
difficult as the number of distractors increases.

Q2: A naive way to solve the game is to learn a unique symbol for each graph. The
example shown in Figure 5.6 involves 43 = 64 unique trees as described in the Game-1
paragraph (Section 5.1.2.2). The naive approach requires a vocabulary V of at least
|V | = 64 symbols. However, increasing the vocabulary beyond |V | = 25 symbols brings
little improvement in test accuracy (Figure 5.6, left). Interestingly, in the games that
converged in terms of the training accuracy, the agents only use around 10 symbols
(Table 5.1) regardless of the number of distractors. It suggests that the language they
learn has little to do with the interpretation of concepts and properties, possibly due
to the constraint of describing each graph in a single symbol, which does not allow
compositionality. Such language might grant out-of-distribution generalisation to some
examples in practice (given that several distinct in-distribution graphs are successfully
described using a single symbol, the protocol might be robust enough to handle out-of-
distribution examples) but it is not interpretable. One-word signalling is replaced with
longer messages in Section 5.1.4, which leads to a more interpretable and compositional
protocol.

Q3: The listener itself is an end-to-end differentiable architecture, which makes the
gradients of the loss function with respect to its parameters easier to estimate than the
parameters of the speaker, who is preceded by a discrete channel (Section 5.1.2.1, [104]).
The final experiment from the initial exploration targets the question of whether the
listener relies on the messages from the speaker in order to identify the correct input, or
whether it learns on its own in an opaque way, without propagating the signal to the
speaker. Figure 5.7 shows that for all words/symbols in the vocabulary the symbol sent
by the speaker is the one that most frequently leads to the correct choice made by the
listener (identification of the target among distractors). This suggests that the listener
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actually cooperates with the speaker and the agents arrive at a graph-symbol mapping
which allows them to solve the referential game.

Conclusion from the initial experiments using graph referential games Graph
agents are able to recognise the target among distractors with accuracy of over 90% on new
in-distribution test samples. The accuracy is decreasing with an increase in the number of
distractors (Q1), the agents only use a fraction of the available symbols for vocabulary
size |V | > 10 (Q2), and the agents converge to a mapping which most frequently allows
them to solve the task (Q3).
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Figure 5.7: Robustness of the communication protocol learnt by the agents.
For each available symbol i = 0, 1, . . . , 9 in the vocabulary of size |V | = 10, y-axis
corresponds to the number of successful test samples – the samples where the listener
correctly identified the target based on the symbol. Each subplot represents a distribution
over the vocabulary. In each subplot the black bar corresponds to the symbol which
the agents converged to after training (also in the subplot titles). The remaining blue
bars correspond to the symbols that are not learnt in training, and only inputted to the
trained listener to check whether it can correctly classify a sample based on the remaining
symbols from the vocabulary. The above chart is for vocabulary size |V | = 10 and |K| = 4
distractors. There were no test samples found with the message m = 3 – the agents do
not use the entire vocabulary (see Table 5.1).

5.1.4 The main experiments and analysis

This section presents experiments that aim to answer three research questions:

• Q1: What is the effect of data representation (of the target and the distractors) and
the corresponding representation learning model on the compositionality of the emerged
language (Section 5.1.4.1 and Section 5.1.4.2)?

• Q2: What is the effect of data representation and the corresponding representation
learning model on the ability to generalise out-of-distribution (Section 5.1.4.3)?

• Q3: Can the listener identify the target if it receives a distorted message? (Sec-
tion 5.1.4.4).
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5.1.4.1 Qualitative analysis

Sample input data Data representation

Bag-of-words Sequence Graph
A2 B4 C6 [1 4 4] [5 1 3] [7 1 4]
A2 B4 C5 [1 0 0] [8 3 2] [4 7 2]
A2 B2 C6 [6 4 1] [9 9 1] [9 4 1]
A5 B4 C6 [8 8 9] [3 5 2] [6 6 1]

Table 5.2: Random samples of input-message pairs across all three representations (in this
game, there are 10 ∗ 6 ∗ 8 = 480 distinct inputs in total).
In the example, the vocabulary size is |V | = 10 with messages of length l = 3 and three
concepts of the respective property space being equal to 10, 6, 8. Similarly as in Figure 5.4,
the capital letters correspond to the concepts and the numbers correspond to the properties.
We assume the language is order-invariant (for example, a message [7 1 4] is equivalent
to a message [4 7 1]). In the games where graph representations and graph agents are
used, varying one input property (for example, replacing ‘C6’ with ‘C5’ for the concept
‘C’) changes only one symbol in the message (the speaker replaces the symbol/word ‘1’
with ‘2’ in the utterance). In the games with sequential agents, changing the same symbol
in the input leads to a change of two symbols in the transmitted messages (‘5’ → ‘8’, ‘1’
→ ‘2’), and similarly for bags-of-words (‘4’ → ‘0’, ‘4’ → ‘0’).

Table 5.2 shows a symbolic representation of the input data and the corresponding messages
in Game-1. In this game, the length of the messages is equal to the number of concepts,
which might act as an additional supervision and pressure the agents to represent each
concept as one symbol (in more recent variants of referential games, for instance, Dessì
et al. [69], vocabulary size is larger than the number of distinct concepts to avoid such
supervision). The random samples illustrate how graph representations might induce a
more compositional language. Due to the large input space, qualitative analysis has to be
accompanied by quantitative analysis to draw conclusions.

5.1.4.2 Quantitative analysis: Topographic similarity

A quantitative metric is needed to discuss the entire language and draw conclusions. There
is no definitive quantitative measure of language compositionality. However, topographic
similarity (Figure 5.8) is most commonly used as a proxy for compositionality in language
evolution studies [32] and in the existing research on referential games [163, 44]. The
metric is applied in the graph referential games as follows (using agents that converged in
terms of training accuracy):

1. All target inputs and the corresponding messages from the speaker are enumerated.

2. A vector of cosine similarities s between all pairs of the input objects is computed.

3. A vector of edit distances d between all pairs of the messages is computed.
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Input dataMessage space

red inflated balloon

blue inflated balloon

edit distance

cosine similarityρ < 0

Figure 5.8: Topographic similarity (−ρ) is computed as the negative Spearman correlation
between distances in the target space (inputs to the speaker) and the distances in the
message space (outputs of the speaker) of all input-message pairs.
The negative correlation is used because of the negative relation between distance metrics
and similarity metrics. In the example in the figure, similar messages (low edit distance)
are expected to be inversely correlated (ρ < 0) with the similarity between their original
representations in the input space (high cosine similarity; assuming the language is
compositional). Topographic similarity is the negative of such correlation so that the
higher the topographic similarity, the more similar the relations between the message and
the input space are; that is, similar inputs are described in similar sentences.

4. The topographic similarity is equal to the negative Spearman correlation ρ between s

and d.

The steps above are repeated for each data representation separately. In case of graph
representations, the nodes are concatenated in the same order as in the corresponding
sequences before computing cosine similarities. Across different numbers of distractors
(|K| = 19, 29, 49) graph representations lead to a more compositional language, followed
by sequential representations (Figure 5.9). A compositional language is more desirable
as it broadens the scope of the concepts the agents can communicate, bringing them
closer to the idea of ‘making an infinite use of finite means’ [121, 54]. This result further
corroborates the hypothesis that a compositional language is more likely to emerge when
the agents receive structured prelinguistic representations as input [163, 262].

5.1.4.3 Out-of-distribution generalisation

Does a higher compositionality translate to a better performance on out-of-distribution
examples?

In out-of-distribution examples, both the target and the distractors are new to the agents,
that is, the agents did not see any of them in the training data – however, they do follow
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Figure 5.9: Topographic similarity in Game-1 with perceptual dimensions [10, 6, 8, 9,
10], a message length of size 3, and a vocabulary size of 50. The means and standard
deviations are computed across five random seeds.

the same general structure as the training examples (the same number of nodes). Because
of this implementation, both agents have to generalise out-of-distribution to successfully
solve the test cases: the speaker has to learn to describe out-of-distribution graphs, and
the listener has to learn to distinguish between the out-of-distribution graphs. This is a
new approach to evaluation of the agents in referential games.

Figure 5.10 shows the results of experiments using |K| = 9, 19, 49 distractors. Graph
representations outperform the baselines of a lower degree of structure, in particular as
the number of distractors increases and the game becomes more difficult (|K| = 19, 49).
This result suggests that graph representations and graph representation learning methods
are able to better exploit transferable information in the training data, and apply it to
new examples. This is an interesting result in the context of using referential games in
data-scarce regimes, and it adds another argument in favour of the hypothesis that graph
representations improve compositional generalisation in machine learning [19].

5.1.4.4 Do agents rely on the communication channel in solving the game?

The final experiment is similar to the robustness test in Section 5.1.3, where the entire
one-word message is varied to test if the listener relies on the message from the speaker
to identify the target. Figure 5.11 shows the results of this analysis for longer messages
(l = 3) being distorted by replacing the first symbol m1 by each of the possible remaining
symbols from the vocabulary of size |V | = 10. As shown in the Figure 5.11, for all emerged
messages, distorting the first symbol leads to a decrease in test accuracy. The highest test
accuracy attained by the agents in each case is dependent on receiving the original target
encoding produced by the trained graph speaker. This suggests that the listener relies on
the message in learning to solve the task, and individual symbols carry meaning that is
useful for recognising the target.
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Figure 5.10: Standard test accuracy (Test) and out-of-distribution (OOD) generalisation
in Game-2 for graphs (Graph), sequences (Seq) and bags-of-words (BoW). Number of
nodes, message length and vocabulary size are equal to 25. Mean and standard deviation
is computed across three runs.
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Figure 5.11: Robustness of the communication protocol in graph referential games with
messages of the length l > 1.
Results shown for trained speakers and emerged messages from Game-1 with perceptual
dimensions [10, 6, 8], a message length of size l = 3, and a vocabulary size of |V | = 10. In
each subplot, the title corresponds to the symbol m1 in the original message developed
through playing the game. The dark bar corresponds to the number of correctly classified
samples given the original message (also included in the subplot title, for example, Symbol
0: 39.2%). The light blue bars correspond to the results of replacing the first symbol m1

in the messages with each of the remaining symbols from the vocabulary. The rest of the
message (symbols m2 and m3) remains fixed.

Conclusion from the main experiments using graph referential games The
choice of data representation for the target and distractors in referential games influences
the compositionality of the emerged languages, as measured by topographic similarity
(Figure 5.9) and qualitative analysis of samples (Table 5.2) (Q1), graph representations
lead to a higher accuracy on out-of-distribution samples than sequences and bag-of-words,
especially as the number of distractors and the difficulty of the game increase (Figure 5.10)
(Q2), and the agents converge to a language which allows them to solve the task most
frequently, with even one word changes leading to a decrease in test accuracy (Figure 5.11)
(Q3).

The work presented in this section connects two previously disjoint subfields of machine
learning: 1) multi-agent systems with a discrete channel (specifically, referential games, or
emergent communication) and 2) graph neural networks. Introducing graph representations
and graph representational learning methods to referential games opens a new line of
research on communicating complex structures and relational information in multi-agent
systems with a discrete channel. The main and most promising result is in out-of-
distribution generalisation – graph representations lead to a higher out-of-distribution
generalisation, which suggests that organising data as graphs can allow the agents to
make a better use of the training dataset, and potentially reduce the number of training
samples needed to successfully train the agents. This result echoes previous results on the
generalisation potential of graph representations in machine learning [19], and structured
data representations leading to a compositional language and better generalisation to new
samples [262, 163].
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5.2 Visual referential games

This section presents my work on out-of-distribution generalisation in referential games
with images as input (visual referential games), using agents parametrised by convolutional
neural networks [166]. In contrast to the previous section, this work refutes the initial
hypothesis, which is still useful from the perspective of increasing the current state of
knowledge on out-of-distribution generalisation in multi-agent games.

I first define the type of game considered in this problem – population games, in which
the number of speakers and listeners is not always 1 – in Section 5.2.1. Afterwards, in
Section 5.2.2 I describe the experiments conducted in the setting of visual referential
games.

5.2.1 Population games

Population games are an extension to the standard referential game with N speakers
and N listeners (where N ≥ 1). At each optimisation step, one speaker and one listener
are uniformly sampled and paired together. The chosen agents proceed as in the classic
one-pair referential game and receive weight updates based on a batch of inputs. This
process is repeated until all speaker-listener pairs converge in terms of training loss (or
training accuracy).

5.2.2 Experiments

I consider the problem of using realistic images (taken from ImageNet) as inputs to
referential games. My work is based on prior work by Dessì et al. [69]. The setup of
their game is as follows: the sender receives as input a target picture, and it produces as
output one symbol; the receiver network receives in input this symbol, as well as a list of n
pictures – one of them being the input given to the send, and the others being distractors;
receiver produces a categorical probability distribution over the images, representing the
probabilities that each of the presented images is the target.

Dessì et al. conclude that the accuracy drops in the OOD set in comparison to the standard
in-distribution set, yet it remains well above chance. The language that emerged in a
visual referential game is partially interpretable with the use of a qualitative analysis
(Figure 5.12) and a quantitative analysis (Table 5.3 and Table 5.4, Trained from scratch
rows).

In contrast to the previous work focused on a single pair of agents in a referential game, the
new work presented in this section increases the number of speakers and listeners.

In this section, I aim to answer the following research questions:
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• The authors in the existing work train the agents (including the convolutional encoders)
from scratch in a referential game. This warrants the question (Q1):

How does training from scratch compare to using agents pretrained on ImageNet before
they engage in a referential game?

Using pretrained modules is a standard approach in large-scale machine learning
applications with realistic image or language data [106, 306, 229] and it speeds up
training, allowing the task complexity to increase.

• Dessì et al. [69] use a fixed vision model ResNet50 [106] as a convolutional encoder of
the speaker and the listener. As a preliminary experiment before the main population
experiment, I look into the effect of increasing the complexity of the vision module on
generalisation and language properties to answer the question (Q2):

How does the increase in the model complexity affect generalisation in a visual
referential game?

• As in the previous section on graph referential games, inspiration is drawn from the
literature on language evolution in biological systems. This time, the focus is on the
number of speakers, with the goal of replacing the standard two-agent framework with a
community (population) of speakers and listeners. Human languages are affected by the
size of the linguistic communities, with a small number of language users leading to more
complex languages, while larger communities give rise to easier and more transferable
languages [191, 181]. This leads to the question of whether a similar pattern occurs in
artificial multi-agent communication. Out of various properties of the emerged language
that could be studied, such as whether it follows Zipf distribution, I am most interested
in the question (Q3):

How does increasing the number of speakers and listeners affect out-of-distribution
generalisation in a visual referential game?

My hypothesis was that increasing the number of agents would improve out-of-distribution
generalisation: if there are more speakers and listeners that need to learn a shared
language, over time they develop a more robust communication than if the community
is smaller.

At the end of this section, I briefly discuss connections of this work to unsupervised
learning and self-supervised learning.

Game setup The game presented in this section follows the referential game framework
described in Section 5.1.2.1, with a few differences: 1) here, the speakers and the listeners
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are parameterised by an example of a convolutional neural network, ResNet50 [106] 2)
the input data (target and distractors) are realistic images from ImageNet (1000 image
categories; examples of the images are shown in Figure 5.12) 3) the number of distractors
|K| = 128, which means that the accuracy of a random choice model is only 0.8%.

Data The base work uses realistic images (1.3M natural images from 1K distinct cat-
egories from ImageNet [65]) as input to referential games. Apart from the standard
in-distribution set included in ImageNet (the ILSVRC-2012 validation set, containing
around 50K images from the same categories as the training data), I use an out-of-
distribution test set (OOD set) proposed by Dessì et al. [69].

The OOD set contains 80 categories that were neither in the training set nor hypernyms
or hyponyms2 of the classes present in the training set (for example, since images labelled
as ‘hamster’ are present in the training set, the OOD set excludes not only the ‘hamster’
images but also the images labelled as ‘rodent’ and ‘golden hamster’). However, the OOD
categories are not entirely different: they belong to the same high-level domains as those
used in training (for example, images of fish, images of furniture). The similarity between
these images is controlled using WordNet-derived hierarchy [76] (in ImageNet, each node
from WordNet is depicted by hundreds and thousands of images).

5.2.2.1 Pretrained vision modules in the game by Dessì et al. (Q1)

Experimental method The results obtained by Dessì et al. [69] are compared with the
results obtained in the same setup by replacing tabula rasa agents (trained from scratch)
with the agents equipped with pretrained vision modules, as this is a common practice in
machine learning tasks that rely on a large, realistic dataset. If the pretrained modules
can be safely used in visual referential games, it might speed up training in the costly
population experiments where 2+ agents are trained.

All axes of variation and evaluation procedures in Table 5.3 follow the experiments by
Dessì et al. [69] apart from the new comparison between using trained from scratch and
pretrained convolutional modules. The parameters ±augmentations mark whether the
game was trained using data augmentation and ±shared indicates whether the weights
of the vision module are shared between the speaker and the listener. In the ‘pretrained’
option, the vision modules of both the speaker and the listener are frozen during the game,
and so it only makes sense to share the module between the speaker and the listener
(+shared option). In case of the agents trained from scratch, sharing visual module was
found to make little difference in terms of test and OOD test accuracies (Table 5.3),

2A word A is a hyponym of word B, and B is a hypernym of A, when the concept referred to by A is
subsumed by the concept referred to by B. For example, ‘mammal’ is a hyponym of ‘animal’.
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Figure 5.12: Qualitative analysis of a game with single-word messages by Dessì et al. [69].
The agents learn to assign the words (symbols) to the input images in an interpretable
way: for instance, Symbol 1 corresponds to images of birds on branches, and Symbol 3
corresponds to human artifacts with flat shapes. There is no direct supervision encouraging
the agents to learn such mappings – as in the previous section on graph referential games,
the agents are only rewarded for recognising the target among distractors. The capacity
to learn this level of abstraction (for example, grouping all dogs under one symbol rather
than learning different symbols for each dog breed) might help the agents generalise with
respect to fine-grained ImageNet categories – even if the ‘poodle’ category is excluded
from the training dataset, the agents might be able to successfully recognise such images
at test time as they learn to recognise high-level dog features (Symbol 6).
Figure produced by Dessì et al. [69].
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which is encouraging from the perspective of using diverse architectures in a referential
game. This is particularly relevant in the cases when the agents would not be able to
share weights. For example, in future applications where models developed by different
companies learn to coordinate on a shared task, there may be no access to their internal
parameters due to the use of proprietary systems by different companies.

Gaussian Blobs [163, 29] (previously described in general in Section 2.3.1.3) refers to a
sanity check of whether the agents can successfully describe and recognize images of pixels
drawn from the standard Gaussian distribution. The goal is to make this unlikely: agents
succeeding in this task are likely to be directly communicating the values of individual
noisy pixels as opposed to devising a general language. The higher the accuracy in the
game with blobs of Gaussian noise, the more the agents rely on low-level uninterpretable
aspects of images. Instead, the goal is to encourage them to describe semantic information,
such as ImageNet categories or the features that are human-interpretable (Figure 5.12).
The baseline (chance) performance in this game is 0.8%.

The agents were trained using Layer-wise Adaptive Rate Scaling (LARS) [296], an extension
of Stochastic Gradient Descent (SGD) which improves training using a larger batch size
(useful when training a model on a large dataset).

Results Using a pretrained vision module instead of training the agents from scratch
leads to comparable results in terms of the standard test accuracy and OOD generalisation
in ImageNet (Table 5.3: -augmentations +shared setup with and without the pretrained
module). A pretrained module seems to be significantly more robust to Gaussian noise
than the same model trained from scratch, without data augmentations (the pretrained
module leads to a close to random choice performance on Gaussian Blobs, which is what is
hoped for in successfully trained agents, as in the Gaussian test the agents do not have any
semantic information to rely on). This suggests that using a pretrained module prevents a
model from adopting degenerate strategies based on low-level pixel information.

In the original game [69], the setup of -augmentations, +shared gave the highest results
of all the considered configurations, apart from being the most susceptible to developing
an opaque protocol. Using a pretrained module alleviates the last problem.3

The agents evaluated in Table 5.3 can be used to analyse the mapping between images
(their labels) and the corresponding utterences by a trained speaker. In order to better
understand the results of using pretrained vision modules, I repeat the quantitative analysis

3LARS improves the performance in the visual referential game with ImageNet (the results with a
pretrained vision model and a standard SGD without LARS are ILSVRC-val : 85.1%, OOD set : 84.3%,
Gaussian Blobs : 0.78%). The main conclusion regarding the use of a pretrained module to avoid a protocol
based on pixel-level information holds, regardless of employing LARS.
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Model Test set

ILSVRC-val OOD set Gaussian Blobs
Pretrained vision module:
-augmentations, +shared 92.8% 92.6% 1.6%

Trained from scratch:
-augmentations, -shared 91.2% 90.8% 43.4%
-augmentations, +shared 92.8% 92.7% 84.7%
+augmentations, -shared 81.5% 72.0% 0.8%
+augmentations, +shared 82.2% 73.7% 0.8%

Table 5.3: Accuracy in the referential game using the full ImageNet dataset.
ILSVRC-val, OOD set and Gaussian Blobs refer to the datasets used by Dessì et al. [69]:
namely, a validation set containing around 50K images from the same categories as
the training data, a custom ‘out-of-distribution’ validation set containing unseen image
categories, and a sanity check using blobs of Gaussian noise as targets and distractors [29].
The first row of values contains the results of experiments I ran, whereas the remaining
rows are taken from Dessì et al. [69] and are included for the sake of comparison.

Model nMI |P |
ILSVRC-val OOD set ILSVRC-val OOD set

Pretrained vision module:
-augmentations, +shared 0.52 0.47 1137 1127

Trained from scratch:
-augmentations, -shared 0.5 0.45 2044 1921
-augmentations, +shared NS NS 2048 2025
+augmentations, -shared 0.58 0.53 2042 1752
+augmentations, +shared 0.56 0.51 2046 1765

Table 5.4: Protocol analysis (normalised mutual information nMI and the observed protocol
size |P |).
NS corresponds to the cases where the obtained scores were not significantly different
from chance according to a permutation test. In the pretrained experiment (unlike in its
trained from scratch counterpart) the obtained scores pass the significance permutation
test. The remark in Table 5.3 applies here as well.
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from Dessì et al. [69] on the communication protocol that emerged in the game where the
speaker and the listener share a pretrained convolutional network.

Normalised mutual information (nMI) is computed by dividing mutual information between
the ground-truth image labels and the messages produced for those images by the average
entropy of messages and labels:

nMI(X, Y ) =
I(X;Y )

1
2
(H(X) +H(Y ))

.

The value of nMI ranges between 0 and 1 (since I(X;Y ) ≤ H(X) and I(X;Y ) ≤
H(Y )). The metric denotes whether the agents’ language associates symbols with human-
intepretable categories from ImageNet. The protocol size |P | is the observed protocol size
at test time, that is, the number of distinct symbols the speaker uses on the test/OOD
set.

The language analysis in terms of normalised mutual information (Table 5.4) suggests that
even though a pretrained module leads to a more interpretable language than when training
from scratch (nMI = 0.52 and nMI = 0.47 vs the results not passing the significance
test [69] in the trained from scratch counterpart), data augmentations are still beneficial in
learning to express semantic content of the image (the highest nMI for the +augmentations,
-shared configuration).

The pretrained variant is using fewer symbols than the models trained from scratch
(|P | = 1137 and |P | = 1127 vs |P | = 2044 and |P | = 1921). Since the vision module is
pretrained on ImageNet, the learned visual features might be disentangled in a way that
helps to disambiguate the actual number of ImageNet classes (1000). This might also
explain its robustness to learning low-level image information.

In conclusion, using a pretrained visual module is a valid choice in visual referential games.
It combines the advantages of training without data augmentations (high in-distribution
and out-of-distribution test accuracies; Table 5.3) with the advantages of training with data
augmentation (robustness to non-intepretable pixel-based information and higher mutual
information between the image labels and the symbols; Table 5.3 and Table 5.4).

5.2.2.2 Model complexity in visual referential games (Q2)

Table 5.5 shows the results of increasing the complexity of the visual module in a one-pair
visual referential game. There is practically no difference when introducing a larger
number of layers, which suggests that ResNet50 is the appropriate choice due to a smaller
computational complexity.
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5.2.2.3 Population size and out-of-distribution generalisation (Q3)

This section investigates the effect of increasing the number of speakers and listeners on
generalisation in a visual referential game.

Table 5.6 shows the results of increasing the number of speakers and listeners in terms
of the performance and language analysis. The performance is measured using accuracy
and the language properties are measured using normalised mutual information nMI, the
overlap between the languages, and the number of distinct symbols used at test time. The
metrics other than train accuracy and convergence time correspond to the analysis using
test data on three different test sets: in-distribution, out-of-distribution and the Gaussian
sanity check. The axis of variation is the number of speaker-listener pairs used in the
game.

In terms of the in-distribution performance, there is a small decrease in test accuracy with
the increase in the number of agents. There is also a decrease in the normalised mutual
information. A similar pattern can be observed in the out-of-distribution case.

The main conclusions from this experiment are:

• It is possible to successfully train a larger community of speakers and listeners to solve a
visual referential game with realistic images. Both in-distribution and out-of-distribution
test accuracy values are above 90%.

• Despite the high test accuracy, normalised mutual information does not exceed 0.52

in any configuration (for a value ranging from 0 to 1). This means that the agents
learn a different mapping than the ground-truth image-label mapping from ImageNet.
However, this likely plays to their advantage when evaluated on the OOD set, which
contains images from the categories unseen in training, yet belonging to the same high
level categories (for example, images of plants, fish and furniture). This communication
protocol is intuitively similar to how humans describe new data, for example, a person
not versed in marine biology might describe several species of fish as ‘fish’ instead of
distinguishing them with the granularity of their Latin names.

• Unlike in biological systems, where the increase of the community size leads to a more
structured and more comprehensible language, there seems to be no such pattern in
visual referential games. The results across the games with 1, 9 (3× 3) and 25 (5× 5)
speaker-listener pairs are comparable in terms of accuracy and language interpretability
(as measured by nMI and the Gaussian sanity check), with a possible trend of a decline
in performance as the number of agents grows. The initial hypothesis inspired by the
biological multi-agent systems turned out not to apply in the artificial multi-agent
systems.
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Figure 5.13: Variational Autoencoder (VAE) [139] cast as an image reconstruction game
with a message z.

5.2.2.4 Discussion: Links to unsupervised and self-supervised learning

This chapter focuses on referential games, which can be seen as a classification problem
over a set of the target input and distractors. Unlike in standard classification, a referential
game comes with an additional challenge of a discrete bottleneck through which the
weight updates propagate from the listener to the speaker. Since the agents are trained to
distinguish the target object from the distractors, they tend to use shortcuts that allow
them to solve this task, instead of learning a comprehensive input representation that
could be used across different downstream tasks. For instance, in Section 5.1.3, the agents
in a one-word graph referential game converge to a language with a vocabulary smaller
than the total number of unique input graphs, which means that the agents learn to solve
the task by mapping several graphs to a single symbol.

An emergent communication game that lends itself better to the idea of learning reusable
discrete representations is referred to as reconstruction game [44] (Figure 5.13). In this
game, the listener learns to reconstruct the original input representation based on a discrete
message from the speaker. This is similar to unsupervised methods such as Variational
Autoencoder (VAE) [139], where the latent representation can be later reused in tasks
such as image generation [227]. Autoencoders can be investigated through the lens of
emergent communication, using tools such as topographic similarity and disentanglement
metrics proposed in the context of reconstruction games [44].

A link between visual referential games and self-supervised learning [39] has been investi-
gated by Dessì et al. [69]. The authors evaluated the speaker in a visual referential game
(described in Section 5.2.2) as a feature extractor on external classification tasks. They
found that the performance of this feature extractor is comparable to SimCLR [48], a
self-supervised method. They also argue that data augmentation benefits both emergent
communication and self-supervised learning, in particular in the context of image data.
Future work should focus on contrasting the benefits and limitations of a discrete informa-
tion bottleneck used in emergent communication with those of a continuous representation
used in SimCLR.
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5.3 Summary

This chapter presents my contributions to the field of multi-agent systems with a com-
munication channel. This aspect of machine learning requires the ability to generalise
out-of-distribution to be deployed in real applications (for example, Internet of Things),
as the listeners have to adapt to the speakers’ actions.

Section 5.1 presents a new framework developed with the main goal of studying the
influence of data representation on the ability to generalise in referential games, and with a
further objective of expanding the research on how to represent and communicate relational
information. This work connects the previously disjoint fields of graph representation
learning and emergent communication. The experimental results corroborate the hypothesis
that graph representations lead to a better compositional generalisation in machine
learning [19], in the context of multi-agent systems with a discrete communication channel.
This work is also grounded in the previous research on language evolution in biological
and artificial systems [262, 163], confirming that more structured inputs lead to more
structured/compositional language. From initial experiments we conclude:

• graph agents are able to recognise the target among distractors with accuracy of up to
90% even when using one-word messages;

• the accuracy is decreasing with the increase in the number of distractors;

• agents converge to a mapping which most frequently allows them to solve the task.

The main experiments show that:

• graph representations improve the compositionality of the emerged languages as mea-
sured by topographic similarity;

• graph representations lead to a higher accuracy on out-of-distribution samples than the
counterpart representations of sequences and bags-of-words, especially as the number
of distractors increases;

• agents converge to a language which allows them to solve the task most frequently, with
even single-symbol distortions leading to a decrease in test accuracy.

The results suggest that organising data as graphs allows the agents to make a better
use of the training dataset, which can potentially reduce the number of training samples
needed to successfully train the agents in a referential game.

Section 5.2 shows the results of taking on the challenging topic of using realistic images
in a referential game. The work builds upon Dessì et al. [69], where the authors use
ImageNet in a visual referential game. Our new experiments show that using a pretrained
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visual module is a valid choice in visual referential games, and can replace the costly data
augmentation. The experiments varying the population size show that:

• it is possible to train a larger community of speakers and listeners with test accuracy
above 90% both on the in-distribution and out-of-distribution examples;

• the agents do not reproduce the ground-truth ImageNet labels, which might be cor-
related with their ability to describe high-level domains and perform well on the
out-of-distribution set;

• the increase in the population size does not lead to an increase in in-distribution or
out-of-distribution performance and language interpretability.4

This chapter plays with the modularity theme at the environment level – instead of
using a single agent, there are at least two neural networks separated with a discrete
communication channel. This setup can be thought of as a modular system with the
modules communicating in order to solve a shared task. Section 5.1 and Section 5.2 answer
two respective parts of the last research question formulated in Section 1.2: Do graph
reprentations induce a better OOD generalisation in multi-agent games? Does increasing
the number and diversity of agents improve OOD generalisation? Regarding both parts
of this question, the results in this chapter corroborate relevant findings and hypotheses
in existing literature. At the same time, they expand what has already been done by (1)
providing the first set of results of using graph representations in emergent communication,
and comparing them with corresponding baselines in terms of OOD generalisation and
language compositionality, (2) extending the work by Dessì et al. [69] with a population
setup using pretrained visual modules.

4After these experiments were completed, the work of Rita et al. [232] appeared with a similar conclusion
in the context of reconstruction games, where the listener reconstructs the original target rather than
recognising it among the distractors. The authors find that language properties, including the ability to
generalise to unseen objects, are not enhanced with an increase in the size of homogenous populations.
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Chapter 6

Conclusion and further directions

So long, and thanks for all the fish.
–Douglas Adams (1984)

This dissertation presents the outcomes of research conducted during my PhD. My goal
has been to contribute to the field of out-of-distribution generalisation in machine learning
from multiple angles. The motivation behind this research goal stems from the astonishing
shortcomings of existing methods when evaluated on new data [249, 40]. In order for
the machine learning systems to be truly intelligent and reliable in practical applications,
they need to become more robust to distribution shifts that come naturally from using
a machine learning system over time and applying it to real, changing data. The work
presented in this thesis answers some of the research questions posed in Chapter 1 and it
uncovers new avenues for further research on out-of-distribution generalisation in machine
learning.

6.1 Thesis summary

The first research effort (Chapter 3) is model-agnostic and it focuses on linear data and
theoretical results, which makes it a natural beginning of the story on out-of-distribution
generalisation in increasingly complex learning scenarios. Chapter 3 focuses on the approach
of learning from multiple training distributions. I contribute to this well-established line of
research on out-of-distribution generalisation [147] by (1) introducing Linear unit tests, a
new set of tasks that probe the algorithms in their ability to learn invariant features while
ignoring spurious features, which is one of the approaches to improving out-of-distribution
generalisation by discarding the irrelevant noise in data, (2) introducing new theorems
that explain the connection between assigning appropriate weights to training examples
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and Distributionally Robust Optimisation (DRO) [21], the objective that represents the
pessimism-based model of out-of-distribution generalisation [7]. Since publication, Linear
unit tests presented in this thesis have been used to evaluate and compare new algorithms in
research on out-of-distribution generalisation [248, 50, 136, 72, 184, 49, 80, 283, 64, 200] and
learning invariant features [171, 51, 207]. The results on DRO fill an existing gap between
the line of research on data-centric approaches and the line of research on algorithmic
approaches to generalisation and fairness.

The second contribution (Chapter 4) focuses on the single-agent scenario under the
assumption of a single training distribution, which is the standard learning setup in
machine learning. Unlike Chapter 3 – which uses mathematical tools and unit tests where
invariant and spurious features can be perfectly separated – Chapter 4 explores the angle of
out-of-distribution generalisation to latent, higher-level features such as colour and shape.
Chapter 4 approaches the goal of the thesis from the perspective of image classification, the
application of machine learning that arguably enabled the resurgence of neural networks in
late 1980s and their current popularity. This chapter contributes to the existing work on
out-of-distribution generalisation in image classification by (1) introducing Neural Function
Modules and new results that show the advantages that Neural Function Modules bring
in the context of out-of-distribution generalisation, and (2) releasing a set of simple image
datasets that can be used as a stepping stone for evaluation and comparison of new models
and algorithms in the context of out-of-distribution generalisation in image classification,
including the tasks of relational reasoning and multi-object classification. The results in
Chapter 4 show my individual work based on my previous collaborative work on Neural
Function Modules [159]. Chapter 4 also explores Dilated DenseNets as another approach to
improving out-of-distribution generalisation through multi-level feature aggregation. Here,
the results are not as encouraging outside of the context of relational reasoning, which
suggests that Neural Function Modules are a more promising direction when tackling
distribution shifts in broad image classification. Chapter 4 also provides the first results
on compositional generalisation (Section 2.4.2), which is later explored in the context of
multi-agent games (Chapter 5).

Chapter 5 seeks the thesis goal in the learning scenario of multi-agent interaction, with focus
on multi-agent communication with both one-to-one and many-to-many interactions. This
chapter contributes to the existing literature on generalisation and compositionality in multi-
agent games in two major ways. First, it introduces graph referential games along with the
results on the influence of data representation and the corresponding data representation
learning models on out-of-distribution generalisation. These results connect the previously
disjoint fields of graph representation learning and emergent communication. Second, it
provides a negative result in the challenging domain of population-based communication

162



grounded in realistic images. While we show that it is possible to train a population of
agents with a high accuracy on both in-distribution and out-of-distribution examples,
the increase in the population size does not lead to an increase in out-of-distribution
generalisation unlike it is hypothesised to be the case in human populations [191, 181].
This chapter investigates research questions at the intersection of several ideas that are
important from the perspective of out-of-distribution generalisation in complex scenarios:
data representation and representation learning, efficiency as the drive for emergence of
reusable representations [224, 195, 242, 16, 70], and compositional languages. The results
corroborate the previous hypotheses that (1) more structured input data lead to more
structured/compositional language [262, 163] and (2) graph representation learning can
improve compositional generalisation in machine learning [19].

The theme of modularity has turned out to be a fruitful source of inspiration. The benefits
of modularity in the context of out-of-distribution generalisation are most apparent at the
architecture level in Chapter 4, where Neural Function Modules consistently outperform
the appropriate baselines. The research questions posed in Section 1.2 have been explored,
which has led to tangible contributions to machine learning that I presented and discussed
in the core research chapters.

6.2 Further work

Out-of-distribution generalisation is one of the most challenging and pressing issues in
machine learning. The core research chapters in this dissertation cover a broad spec-
trum of machine learning tasks and aim to foster future research on out-of-distribution
generalisation from multiple perspectives.

In the context of learning from multiple distributions, the crucial effort is directed at
obtaining fair and reliable metrics of performance, as the average-based metrics and
objectives that are typically used in single-distribution learning fail to capture the nuances
of learning from multiple heterogeneous data sources (Section 3.2). Research in this
direction should focus on providing more tools for a reliable and fine-grained evaluation
of algorithms that learn from multiple distributions. The work of De Bartolomeis et
al. [17] is a step in this direction based on using and extending Linear unit tests. Another
future avenue of research in the context of learning from multiple distributions is to
investigate the connection between Distributionally Robust Optimisation (as well as
related recent methods that aim to improve worst-case error [8, 178, 124]) and federated
learning [81, 115], as these approaches share the setup and the motivation of learning from
disjoint and heterogeneous data sources. Distributionally Robust Optimisation can address
the Inter-client data heterogeneity [132] which occurs in the applications of federated
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learning; for example, in machine learning-driven drug discovery based on data produced by
different pharmaceutical companies with their own screening methods. Finally, the related
quests of improving out-of-distribution generalisation and learning invariant features across
multiple distributions can benefit from the recent advances in causal machine learning
from heterogeneous data [226], which will provide tools to answer questions beyond the
associative statistical relations modelled by standard supervised learning methods.

The future directions presented above in the context of learning from multiple distributions
(reliable evaluation tools, filling the gaps between different approaches to closely related
problems, causal machine learning) are equally worth exploring in the context of out-of-
distribution generalisation in complex domains such as image classification and multi-agent
games. In both of these domains, modularity appears to be a promising concept [90]. In
the single-agent setting, modularity can be incorporated into the agent architecture by
encouraging a neural network to arrive at specialised layers, as it is the case in Neural
Function Modules. Multi-agent games with a discrete channel are another instance of
replacing a standard monolithic neural network with interactive components. Finally,
graph representations incorporate modularity at the data level, and they have been shown
to improve out-of-distribution generalisation (Chapter 5). Modularity as a learning
paradigm is further motivated by neuroscience, with the global workspace theory positing
that the brain is composed of a set of specialised modules that communicate using
a shared ‘language’. Future research should explore different ways of incorporating
modularity in machine learning systems at different levels to improve out-of-distribution
generalisation [202, 288, 84, 277]. For instance, future research questions might concern
hierarchical vs relational connections in modular data and in modular architectures, as
well as new tools to dissect the learning process based on entangled, noisy data such as
images and sound.

Finally, this thesis is focused on zero-shot out-of-distribution generalisation – we assume
no access to any samples from the future OOD test distribution. In certain applications,
it is possible to access a small number of samples from a new distribution, and use them
to update the trained model so that it takes into account both the original training
distribution and the scarcely represented new distribution [73, 18, 284, 34, 188]. In my
future work, I aim to contribute to this line of research on generalisation in machine
learning.
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6.3 Contemporary challenges and out-of-distribution

generalisation

At the time of submission of this thesis for examination, the ubiquity of machine learning
algorithms in people’s everyday lives is entering public consciousness. This is attracting
many legal, ethical, and political concerns regarding how models are used and trained.
Discussions about bias and out-of-distribution generalisation might become more prevalent
in the coming years. As this is mainly a thesis with a focus on technical contributions, and
not their effect on society, I will not weigh in on these questions. However, I will briefly
give my view on how the contributions in this thesis and out-of-distribution generalisation
research relate to contemporary challenges in machine learning.

Large language models In 2022, OpenAI released ChatGPT1, primarily a chatbot
application utilising the GPT-3 large language model (LLM), and attracted widespread
public attention. In January 2023, ChatGPT had around 100 million active users. Shortly
thereafter, competitors released similar LLM-based products across various applications,
with the most promising being those dealing with information retrieval such as advanced
search engines. With all this interest, reports appeared of unexplainable strange responses
given by large language models to their users, with popular press often anthromorphising
such ‘behaviour’.2 [261, 233] While part of the reason for these responses stemmed from
users’ fundamental misunderstanding of the role and capabilities of LLMs, these issues –
as well as reproducing human biases, despite the developers’ best efforts – are instances of
failure of OOD generalisation.

Large language models are based on training a Transformers-derived model on unprece-
dented amount of natural language data. Central in these architectures is attention, which
is also key in Neural Function Models (introduced in Chapter 4). In this thesis, my
hypothesis was that attention blocks help with out-of-distribution generalisation tasks in
visual reasoning (using architectures based on convolutional neural networks), and there is
evidence supporting this claim. The reported OOD failures in LLMs show that, contrary
to the statement made in the title of a famous paper, attention is not all you need when
dealing with distribution shift. Due to the closed-source nature of some of these LLMs, it
is difficult to determine whether and how they attempt to deal with OOD generalisation.
I believe this question will become more relevant in the coming years.

1chat.openai.com
2As an article in Science by Mitchell [199] discusses, humans are prone to anthromorphising AI –

we talk about ‘machines that think’ and see intelligence in systems that show the slightest linguistic
competence. While possibly interesting from a science-fiction or futurist perspective, this is not helpful in
considering true ethical implications of AI. Even in the most society-oriented discussions on AI, I think
Dijkstra’s remark applies: ‘the question of whether machines can think is no more interesting than the
question of whether a submarine can swim’ (paraphrased).
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Vision Some time before the widespread media attention given to ChatGPT, the most
visible area of machine learning put into practice were vision applications. Of particular
attention were self-driving vehicles and generative AI in images and video. These still
attract a lot of interest given their potential to change many industries. From a non-
technical and business standpoints, the issues raised regarding labour, copyright, legal
liability and ethics have been the most salient and notable. Particular attention has been
paid to the danger of AI-generated images and video in spreading fake news. However, I
will consider those issues that have technical definitions and can be observed as instance
of distribution shift.

The safety and reliability of autonomous vehicles is a somewhat contentious topic, for
reasons already alluded to. An important consideration is the data they were trained on
and how compliance with local laws and customs regarding driving can be achieved, in
the interest of all road users. Models which determine the behaviour of a vehicle ought to
consider a variety of settings in which a vehicle operates: a sparsely populated car-centric
city, cities with widely used public transport, pedestrisan-friendly streets, low-visibility
residential neighbourhoods with many parked vehicles, mountainous and curved rural
roads. . . The fact that the majority of training images in some models seem to originate
from high-visibility daytime photos leads to entertaining failure modes – for example, a
full moon is interpreted as an amber traffic light by a self-driving car [190]. In my view,
the presence of such multiple environments is a good opportunity for considering questions
raised in Chapter 3 in the interest of public safety.

Text-to-image systems (e.g., Dall-E [225]) can exhibit harmful societal biases, such as
associating gender and ethnicity with attributes such as criminality or profession. A
recent paper by Luccioni et al. [180] analyses the lack of diversity of generated images
of professionals. This is yet another example in which methods such as distributionally
robust optimisation might be applied, while keeping in mind the usual caveats with the
ways they should be applied (for example, by considering the practical recommendations
given in Section 3.4.3).

My aim in writing this thesis was to shed light on challenges in out-of-distribution
generalisation across a wide spectrum of machine learning problems and settings. I
considered three paradigms under which out-of-distribution data can be precisely defined:
learning from multiple distributions, visual reasoning, and multi-agent communication. In
all of these cases, I considered whether some notion of modularity helps agents generalise.
In the simplest words, this problem is hard, and the proposed solutions come with many
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caveats. Nevertheless, the overall conclusion I draw from this research is that modularity
– in data representation, environment, or model design – helps tackle distribution shift.
In my opinion, there are many opportunities to build upon this thesis, especially in light
of contemporary widespread use of machine learning applications. If I have convinced
the reader that the proposed methods and the problems they address are interesting and
significant, then I have fulfilled my goal.
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Appendix A

Additional background

This Appendix aims to cover a minimal background on neural networks and their training
with the goal of producing a self-contained thesis that is accessible to general technical
audience. However, these are the basic concepts seen in most machine learning textbooks,
which is why they are not in the core part of this thesis.

A.1 Neural networks

All architectures used in Chapter 4 and Chapter 5 are neural networks, motivated by the
rich visual and relational input data used in these chapters (for which neural networks are
the ‘gold standard’ solution). Chapter 3 contains model-agnostic results: a set of problems
where any classification/regression model can be applied, and a set of theoretical results
that hold for any machine learning model (including neural networks).

A.1.1 Multi-layer perceptron

This section introduces the terminology which is used throughout the experimental chapters
focused on neural networks (Chapter 4 and Chapter 5). The architectures used in the
experiments in this thesis (Dilated DenseNets, Neural Function Modules and the baseline
methods in Chapter 4, variants of graph neural networks, variants of convolutional neural
networks and the baseline methods in Chapter 5) are all extensions of the multi-layer
perceptron described in this section.

The multi-layer perceptron [234, 198, 243] is one of the simplest neural network architectures.
Its aim is to learn to approximate a function mapping some input vectors x (features) into
outputs r. It consists of several layers of neurons, also called perceptrons. The concept of
features is used throughout the dissertation, with a distinction between raw input features,
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Figure A.1: A perceptron. The bias term is w0, and the inputs fi are multiplied by the
corresponding weights wi. The weighted sum is passed to the activation function ϕ and
produces the output z of the perceptron.
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Figure A.2: A multi-layer perceptron neural network with three inputs and two outputs.
Bias terms of each perceptron are represented as vertical arrows above the neuron. There
are two hidden layers: one with four and another with five neurons.

such as image pixels throughout Chapter 4, and higher-level features, such as image shapes
in Chapter 4.

Each perceptron (Figure A.1) is a function mapping k inputs f1, . . . , fk into a single
output z (k is not necessarily the same for all neurons). The output is computed by
evaluating a weighted sum w0 +

∑k
i=1wifi, where the parameters w0, w1, . . . , wn are

called weights and w0 in particular is the bias term. This weighted sum is then given as
input to a function ϕ called the activation function, whose role is usually to add more
complexity to the representation and introduce non-linearity. There are several commonly
used activation functions:

Rectified linear unit (ReLU) ReLU(x) = max(0, x).

Sigmoid Sigmoid(x) =
1

1 + exp(−sx) for some s > 0, which is a monotonically increasing

function with asymptotes y = 0 for x→ −∞ and y = 1 for x→ +∞.

Hyperbolic tangent tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x) , whose shape is similar to the sig-

moid.

206



In a multi-layer perceptron (Figure A.2), the output of a perceptron in one hidden layer
(not the last layer) is used as the input for a perceptron in the next layer. The standard
practice of using the entire output of a hidden layer as the input to the consecutive
layer is modified in both Dilated DenseNets (Section 4.1.1) and Neural Function Modules
(Section 4.1.2) with the aim of improving generalisation. The outputs of the final layer,
the output layer, are the outputs of the neural network as a whole. Each neuron has a
distinct set of weights.

In regression tasks, there is usually only one output neuron. In binary classification tasks,
we can also get away with using only one output neuron, and the value of the output is
used to assign the input to one of two classes by thresholding (for example, assign to class
A if the output is less than 0.5, otherwise assign to class B). For more general classification
tasks with C > 2 classes, we typically use C output neurons whose outputs need to then
be transformed into a probability distribution over classes (indicating how likely it is that
a particular input belongs to the corresponding class). The Softmax function serves this
purpose – see Section 2.3.1.1.

A.1.2 Convolutional Neural Networks

All contributions made in Chapter 4 are based on Convolutional Neural Networks
(CNNs) [165] and their shortcomings in the context of out-of-distribution generalisa-
tion in image recognition. This section describes Convolutional Neural Networks and how
they learn local image features through the use of a small ‘sliding window’ known as kernel
(Section A.1.2.2). The topic of learning local features by CNNs is later revisited in the
description of Dilated DenseNets (Section 4.1.1), a CNN variant able to capture global
features as well as local features. CNNs are also used in the second part of Chapter 5 in
the experiments on multi-agent communication based on image data (Section 5.2). All
methods that are applied to image data in this dissertation use a CNN as the backbone
component.

It is a standard practice to use CNNs for processing data of a regular grid-like topology,
such as images (two-dimensional grids of pixels) or time series (a one-dimensional grid
of samples taken at regular time intervals). CNNs differ from other families of neural
networks in using convolution instead of matrix multiplication in at least one of their
layers [23]. CNNs are an appropriate choice for processing images due to parameter
sharing – unlike in matrix multiplication, the number of parameters is constant with
respect to the input size, which allows handling of large inputs and reduces the memory
requirements. Furthermore, convolutions are ubiquitous in computer vision, since image
processing operations such as Gaussian blurring and edge detection can be represented
using convolutions.
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A.1.2.1 Convolution

This section describes the concept of a convolution, on which dilated convolution described
in Section 4.1.1.1 and used throughout the Chapter 4 is based.

A convolution of real functions f : R → R and g : R → R is a function f ∗ g defined as
follows:

(f ∗ g)(t) =
∫ +∞

−∞
f(x)g(t− x) dx. (A.1)

As values stored in a digital form are necessarily discrete (for example, pixel intensities),
convolution in the context of CNNs refers to a discrete convolution:

s[t] = (f ∗ g)(t) =
∞∑

x=−∞

f [x]g[t− x]. (A.2)

Equation (A.2) refers to convolution of two 1-dimensional signals. When working with
images, the signals are 2-dimensional and they are represented as matrices I and K, where
I is the input image and K is the kernel representing an image processing operation (the
values are the inferred weights in a CNN). To implement an infinite sum over a finite
number of elements, the functions are assumed to be equal to zero outside of the matrix
dimensions. The convolution is applied over both axes of the input matrices:

S[i, j] = (I ∗K)[i, j] =
∞∑

n1=−∞

∞∑

n2=−∞

I(n1, n2)K(i− n1, j − n2). (A.3)

where i, j are discrete values indexing the matrices. Convolution is commutative, so
Equation (A.3) is equivalent to:

S[i, j] = (I ∗K)[i, j] =
∞∑

n1=−∞

∞∑

n2=−∞

I(i− n1, j − n2)K(n1, n2). (A.4)

An example of a two-dimensional discrete convolution is shown in Figure A.3.

A standard image I has three channels (red, green and blue), and each of them can be
represented as a matrix of pixel intensity values in the range of 0 to 255. Therefore, the
Equation (A.3) is applied to the three matrices that represent the separate colour channels
of I: IR, IG, IB. In this case, each channel has a unique convolution kernel K.

Many neural network libraries (such as PyTorch [211]) implement a related operation
called cross-correlation but call it convolution. Cross-correlation is the same as convolution
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Figure A.3: Discrete convolution on a binary input. The first matrix represents an input
I, the second one the kernel K, and the last one the output S. The middle cell in K is
K[0, 0].

but the kernel is not flipped:

S[i, j] = (K ∗ I)[i, j] =
+∞∑

n1=−∞

+∞∑

n2=−∞

I[i+ n1, j + n2]K[n1, n2]. (A.5)

In this thesis I follow the convention of referring to both convolution and cross-correlation
as convolution.

A.1.2.2 Convolutional neural networks

In the simplest case, a convolutional neural network is a sequence of convolutional layers
(implementations of a convolution), non-linear activation functions, pooling layers and
fully connected layers (matrix multiplication, as in a standard neural network).

The input I to the first convolutional layer in the network is the original image, and the
consecutive layers receive a transformed representation of that image as an input.

The matrix K (kernel) contains the parameters to be learned through optimisation.
Analogously to signal processing, a kernel can be viewed as a sliding window of a relatively
small size that is convolved step by step with the whole image area (Figure A.3). The
size of the kernel is typically much smaller than the image size, which leads to the desired
properties of parameter efficiency and parameter sharing mentioned earlier. The output S
represents local patterns in the image, such as corners and edges of shapes.

Non-linear activation functions are used to represent non-linearity in real image data. The
Rectified Linear Unit (ReLU) (defined in Section A.1.1) has become the most popular
choice since the publication of AlexNet [146]. The ReLU induces a sparse representation
which has regularising properties [2]. The gradient of the ReLU function is either 0 for
a < 0, or 1 for a > 0, which accelerates convergence in comparison to other conventional
activation functions (sigmoid, tanh). These properties bring a substantial reduction in the
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Figure A.4: Average 2D pooling of stride 2, kernel 2× 2.

computational cost and learning time, which is particularly important in computationally
expensive computer vision applications.

The final building block, pooling, replaces values in a matrix with a summary statistic of
their neighborhoods (Figure A.4). Similarly to the convolution, the function is applied
to each rectangular neighborhood of a given size. It reduces the spatial size of the
representation, and the number of model parameters. As a result, it also controls overfitting.
Moreover, pooling introduces approximate invariance to small local translations. This is
desirable in image classification tasks since the existence of certain features is often more
important than their precise locations. Similarly as in a convolutional layer, pooling is
parametrised by the window size and stride (shift value at each step).

A.2 Training

The chapters focused on the experimental results obtained using neural networks (Chapter 4
and Chapter 5) mention training, for instance, in the context of the number of the training
epochs (for instance, Section 4.2.2.2) and the distinction between training accuracy and
test accuracy (for instance, Figure 4.10). This section contains a minimal description of
how all the neural networks described in this thesis were trained in order to obtain the
results shown in Chapter 4 and in Chapter 5.

To train a neural network means to find a set of weights that best fit the training inputs
to the corresponding labels. This can be phrased as minimising a error function L which
represents the deviation between expected outputs and the outputs computed by the
neural network.1 The error function is equal to the arithmetic mean of the values of an
loss function ℓ when all data points are considered. The choice of loss function depends
on the nature of the problem being solved (regression or classification) and the data

1In optimisation, when finding the set of parameters maximising some function, we usually refer to it
as the objective function.
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distribution (for example, if it is likely that a model is going to overfit to the training data,
a regularisation term is added to the loss function).

Let the input to a neural network be a vector x ∈ Rdin and let the expected output
be y ∈ Rdout . The operation of the neural network is described by a function f which
takes the input features x and a vector of weights w (which includes bias terms). We
denote the output computed by such a neural network with f(x;w). The loss function L
takes as arguments a sequence of n inputs X = (x1, . . . ,xn), a sequence of corresponding
labels Y = (y1, . . . ,yn), and weights w, and we use a semicolon to separate the learned
parameters w from the data operated on: L(X,Y ;w). The goal is to find weights w∗

minimising the error function:

w∗ = argmin
w
L(X,Y ;w). (A.6)

The following discussion about loss functions and solving Equation (A.6) is model-agnostic,
since it applies to machine learning approaches beyond neural networks. The parameters
being optimised are not necessarily neural network weights, so I use the symbol Θ to refer
to the more general setting. Equation (A.6) can thus be written more generally as:

Θ∗ = argmin
Θ
L(X,Y ;Θ). (A.7)

A.2.1 Loss functions and regularisation

In regression tasks, there is usually one output of the function being approximated by a
neural network. The output vectors yi have a dimension of 1, indicating that they are
scalars and we instead write yi. In these tasks, a popular choice of error function is mean
squared error (MSE), inspired by least-squares curve fitting:

MSE(X,Y ;Θ) =
1

n

n∑

i=1

(f(xi;Θ)− yi)
2.

Optimising MSE can be shown to be equivalent to finding the maximum likelihood estimator,
under the assumption of Gaussian noise. The maximum a posteriori estimator, in which
the prior distribution exhibits a preference for smaller weights,2 is achieved by using
L2-regularised MSE with a hyperparameter λ:

MSE_L2(X,Y ;Θ) =
1

n

n∑

i=1

(f(xi;Θ)− yi)
2 + λ∥Θ∥2.

2Specifically, the prior distribution on Θ is a zero-mean multivariate normal distribution in which the
variance along each coordinate is λ.
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Figure A.5: Illustration of the first few three steps of the basic gradient descent algorithm
(for 1-dimensional inputs) for a function g(θ). A sequence of solutions θ0, θ1, . . . is con-
structed recurrently by computing the gradients ∇g(θi) – the greater the magnitude of
the gradient, the greater the distance to the next approximate solution θi+1. The tangent
(gradient in the 1-dimensional case) at x = θ0 is very steep, so a large correction in the
direction of ∇g(θ0) is made. As we approach the minimum of g, the steps become smaller.
Note that the function is not convex on its entire domain; if we are unlucky with the initial
solution θ0, the sequence might converge to another (local) minimum.

In classification tasks, loss functions based on entropy are more common.

A.2.2 Gradient descent

Finding an approximate solution to Equation (A.7) is possible numerically when the region
within which a function is optimised is convex. Gradient descent is a local search algorithm
based on the observation that, if the gradient ∇g(x) of a convex function g evaluated at
x has a large magnitude (the length of the vector), it is likely to be further away from the
minimum than if it is small. The gradient is usually interpreted as the direction in which
the function is the steepest, meaning that x − η∇g(x) for a small η > 0 is likely to be
closer to the minimum of the function than x.

Assuming the initial values of the parameters are given by Θ0, the algorithm proceeds by
generating the sequence {Θi}∞i=0 as follows:

Θi+1 = Θi − η∇ΘL(x,y;Θi). (A.8)

The constant η > 0 is called the learning rate and it affects the speed of convergence of
the sequence: higher values may get the sequence into a close neighbourhood of the true
solution but have the risk of oscillating around it once they get there, whereas lower values
risk taking too many steps to get to the close neighbourhood in the first place.

Optimisation algorithms based on gradient descent are commonly used in machine learning.
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Examples of frequently used modern optimisation algorithms include Adam [138], also
frequently used throughout this dissertation (Chapter 3 and Chapter 4), and Stochastic
Gradient Descent [28] (Chapter 5).

A.2.3 Computing gradients

To use gradient descent for training neural networks such as MLPs, it is necessary to
compute gradients of the loss function – meaning its partial derivatives with respect to all
of the weights of the neural network. Assuming MSE, this means computing:

∂

∂wk

[
1

n

n∑

i=1

(f(xi;w)− yi)
2

]
=

2

n

n∑

i=1

[
(f(xi;w)− yi)

∂f(xi;w)

∂wk

]
.

It suffices to compute the partial derivatives of f with respect to the weights (∂f/∂wk).
The backpropagation algorithm [237] is used to achieve this and it relies on each operation
of the neural network – trivially the weighted sums, but also the activation functions –
being differentiable.

Chapter 3 discusses the limitations of the training method presented in this section.
Minimising the average error over the entire dataset can lead to poor performance on under-
represented groups (Section 3.2). Distributionally Robust Optimisation (Section 2.4.3.2
and Section 3.4) is an alternative to the Equation (A.6) and it aims to minimise the largest
error over the set of predefined groups.
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