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All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures
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The silicon-vacancy center in diamond offers attractive opportunities in quantum photonics due

to its favorable optical properties and optically addressable electronic spin.

Here, we combine

both to achieve all-optical coherent control of its spin states. We utilize this method to explore
spin dephasing effects in an impurity-rich sample beyond the limit of phonon-induced decoherence:
Employing Ramsey and Hahn-echo techniques at temperatures down to 40 mK we identify resonant
coupling to a substitutional nitrogen spin bath as the limiting decoherence source for the electron

spin.
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FIG. 1. (color online) (a) Electronic level scheme of the SiV~
at B=0T (left) and B=0.21 T (right). Optical transitions are
indicated by blue arrows, splittings by red arrows. (b) Photo-
luminescence excitation spectrum of the transitions between
the lowest ground and excited state spin doublets at 3.7 K.

Colour centers in diamond are atomic-sized optically
active impurities incorporated in the diamond lattice.
During the past decade, they have been established
as versatile tools for solid-state quantum information
processing (QIP), quantum-enhanced sensing as well as
biolabelling applications [1]. While the nitrogen-vacancy
center (NV7) so far largely dominates this field of
research, its poor optical properties, such as intense
phonon sidebands, highly limit its applicability in QIP
and its future success depends on the development of
efficient photonic interfaces [2]. In contrast, the nega-
tively charged silicon-vacancy center (SiV™) in diamond
offers remarkable optical properties [3-5], among which
fluorescence concentrated into the zero-phonon line at
737nm and low inhomogeneous broadening, making
it a promising building block for photonic quantum
networks [6, 7]. The energy levels of the SiV™ can also
be used to store and process information and thus their

interfacing with photons is an enabling step for the
implementation of QIP [8]. Towards this goal, ultrafast
all-optical control of the orbital degree of freedom of the
SiV™ has been achieved recently [9, 10]. However, the
short coherence times associated with these orbital levels
limits their usability. On the contrary, the spin S=1/2 of
the SiV~ offers longer coherence times [11-13] and thus
presents itself as a desirable qubit. While microwave-
based coherent control of the spin has been reported
[13], all-optical control gives access to ultra-fast spin
manipulation, allowing for thousands of spin rotations,
even in the presence of fast decoherence processes as
they are common in solid-state matrices. Furthermore,
the low power typically required for all-optical coherent
control schemes circumvents heating effects often present
with microwave control. In this Letter, we demonstrate
all-optical control of the SiV~ electronic spin. We then
make use of this control to probe and analyse spin
decoherence of the center at millikelvin temperatures.

In experiments performed at 4K, the spin dephasing
time is limited to approximately 100ns [11-13] with
spin decoherence being dominated by transitions among
orbital ground-state branches mediated by phonons
at appromimately 50 GHz [13, 14]. To circumscribe
this limitation, several methods have been proposed,
such as reducing the phonon density of states using
nanostructures or applying strain to the SiV~ to split the
ground state levels apart [15]. A more straightforward
approach consists in operating at lower temperatures to
reduce the 50-GHz phonon population to a negligible
level, which we realize here using a dilution refrigerator
reaching a base temperature of 12mK, measured at
the mixing chamber plate. The suppression of phonon-
induced spin decoherence allows to analyse the spin
dephasing processes due to coupling to the environment
of a sample with a considerable spin impurity level. We
find that the dominant mechanism arises from resonant
interaction of the SiV™ spin with the spin bath formed



by substitutional nitrogen atoms.

We investigate a single SiV™ center hosted in a (111)-
oriented HPHT Ila bulk diamond containing a large
concentration of substitutional nitrogen impurities, a
common residual impurity in this type of diamond
[16]. This is the same emitter used in [9] and the
spectroscopic characterization of this emitter at zero
magnetic field can be found therein. The diamond
sample is cooled down to millikelvin temperatures in a
dilution refrigerator with free-space optical access using
a home-built confocal setup [17]. The setup is capable
of operating at millikelvin temperatures and consists of
a copper cage carrying a titanium slip-stick positioner
stack with a copper sample holder containing a SmCo
permanent magnet and a numerical aperture of 0.9
achromatic microscope objective [18]. In the absence of
external magnetic field, the energy levels of the SiV-,
displayed in Fig. 1(a), consists of two-fold orbitally split
ground and excited states, with a splitting of 48 GHz
between the two branches of the ground state. We lift
the degeneracy of the electronic spin S=1/2 by applying
a magnetic field of 0.21 T at an angle of 70.5° with the
SiV™ symmetry axis, resulting in the Zeeman splitting of
the orbital branches, as shown in Fig. 1(a) with the spin
projection indicated for each level. At such an angle
between the applied magnetic field and the SiV™ axis,
optical transitions between all levels are allowed due to a
difference in ground and excited state quantization axes
[3, 11]. This is exemplified by scanning the frequency of
a Ti:Sapphire laser to excite resonantly the transitions
labelled by blue arrows in Fig.1(a) and detecting the
resulting fluorescence on the phonon sideband of the
SiV- (photoluminescence excitation spectrum, PLE),
as shown in Fig.1(b). During cooldown to base tem-
perature a broadening of the linewidths in the PLE
can be observed, as the vanishing phonon-induced
transitions between the ground states cause an increase
in the effective spin-pumping rates. Since this pumping
becomes significantly stronger for smaller detuning at
millikelvin temperatures, intensities in the center of the
optical lines are reduced and hence the lines appear
broadened. This can be remedied by adding a second
laser to counteract spin-initialization [18].

Next, we use the laser carrier and sideband generated by
an electro-optical modulator (EOM) to excite resonantly
transitions Al and A2 simultaneously, which form a
A-system between two ground state levels |1) and |2)
of opposite spin, as seen in Fig.1(a). Moreover, we
use acousto-optical modulators (AOMs) to generate
10-ns pulses resonant with each transition, thus driving
Raman transitions between |1) and |2). We measure
the fluorescence arising from residual excitation into the
excited state as a function of time during the laser pulses,
as displayed in Fig.2(inset). The fluorescence oscillates
in time, indicating Raman-Rabi oscillations between
the two ground state levels, as shown in Fig.2(a), thus
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FIG. 2. (color online) All-optical Rabi oscillations between
the two lowest ground state spin sublevels |1) and |2) using
a bi-chromatic Raman pulse at 40mK (effective SiV"~ tem-
perature extracted from T; measurements below). As ex-
pected for two-photon Rabi oscillations, the Rabi frequencies
scales linearly (2(20nW)=1.54 MHz, (40nW)=2.48 MHz,
Q(80nW)=4.13MHz) with power. Blue lines represent sim-
ulations using a four-level Bloch equation model discussed in
[11].

demonstrating all-optical control of the spin of the SiV-.
A four-level master equation model described in Ref. [11]
reproduces the Rabi oscillations very well, as shown by
solid blue curves. The downward drift of the oscillations
is due to a combination of the imperfect optical pulse
shape featuring a slowly decaying falling edge and the
spontaneous decay from the excited state. Both effects
lead to an exponential drop-off of the mean fluorescence
level. The combined effect has been taken into account
by introducing a common exponential amplitude fit
factor to the model which however leaves contrast
and frequency of the Rabi oscillations unaltered. The
experiment is repeated at several laser powers shown
in Fig.2(b,c) to confirm that the Rabi frequency scales
linearly with laser power, as expected for two-photon
transitions.

We make use of the all-optical spin control to explore
spin coherence via Ramsey interferometry using two /2
pulses separated by a variable delay 7, as illustrated in
Fig. 3(a,inset), for a temperature of 40mK. The spin
population is read out by measuring the fluorescence
emitted during the second m/2-pulse. The envelope
of the interference pattern, displayed in Fig.3(a) as
blue dots, is seen to decrease exponentially with the
delay 7, yielding a spin dephasing time T5=29(3)ns,
in good agreement with the value extracted through
an independent experiment using coherent population
trapping [18]. In order to explore the limits of the phase
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FIG. 3. (color online) (a) Ramsey interference envelope mea-
sured at 40 mK by applying two subsequent 4ns long 7 Ra-
man pulses (average power P=0.5n1W) with a number of fixed
delays and maximizing the fluorescence in the second pulse by
fine-tuning their temporal spacing. (b) Spin echo measure-
ment using a simple three pulse echo sequence with a single
refocusing 7 pulse (average power P=1nW). Blue lines in are
simulations using the above-mentioned density matrix model
with the power ratio of both Raman components as well as
the ground state decoherence rate as free parameters.

coherence, we implement a Hahn-echo sequence whereby
we add a refocusing 7-pulse between the two 7/2-pulses
of the Ramsey sequence, as depicted in Fig. 3(b,inset).
Fig. 3(b) displays the decay of the envelope of the signal.
Using an exponential fit, we obtain a spin echo time
T echo=138(43) ns at 40 mK.

The above-discussed improvement by a factor 4.8 com-
pared to T% owing to the refocusing m-pulse indicates
a non-Markovian dephasing mechanism. It is also

interesting to note that the spin dephasing time T3
does not change considerably when cooling from 3.7K
(T5=20ns [18]) to 40mK (T5=29ns). To understand
this unexpected scaling we in the following further
investigate the contributions of different decoherence
mechanisms.  First, we measure the spin relaxation
time T between |1) and |2) using optical pumping
[12], showing an improvement by a factor of 300 upon
cool-down, starting from T3""=303(8)ns at 3.7K and
reaching T5P"=108(24)ps at 40mK (Fig.4(a)). This
result confirms the suppression of phonon-driven relax-
ation processes via cooling and sets an ultimate limit
of T5=2T1=216ps to the spin coherence time in the
absence of any additional dephasing. The long relaxation
time now allows for efficient state initialization: By
pumping into the lower spin sublevel |1) via transition
A2, a spin initialization fidelity of at least 99.93%,
limited by detector dark counts, has been achieved [18].
From temperature-dependent T  measurements
(Fig.4(b)) we identify four different regimes: (i)
for T<50mK a saturation indicating an effective
temperature of the SiV of about 40mK [19]; for
50 mK<T<500mK a linear variation pointing at a direct
spin relaxation process [20]; (iii) for 500 mK<T<2.3K a
non-linear temperature dependence of T5"™ hinting at
higher order phonon processes like Raman or Orbach
processes [20, 21]. To further investigate the exact nature
of this process additional measurements at intermediate
temperatures are necessary but not feasible with the
employed cryostat. (iv) For T>2.3K the relaxation
rate then scales again linearly due to the dominant
one-phonon process involving excitation to the upper
orbital ground state branch as discussed above. In this
temperature regime, the spin relaxation T7"" is however
slower than the orbital relaxation T$™* (red dots in
Fig.4(b)). We note that the measured spin coherence
times ranging from T5=20ns at 3.7K to T5=29ns at
40mK [18] are not limited by any of these effects but
have to be influenced by further decoherence processes.
To identify the source of residual spin decoherence we
performed temperature dependent spin-echo measure-
ments, displayed in Fig.4(c). We attribute the spin
decoherence to an interaction with the substitutional
nitrogen (P1 center, S=1/2, g=2) spin bath typically
present in HPHT diamond. This is supported by
the observed temperature dependence which can be
well-fitted by a model of the form

L C
= (1 —|—exp(%))(1 +exp(—%)) +Tes. (1)

T27ech0

This model contains two decoherence processes associ-
ated with the spin bath [22, 23]: (i) the first term repre-
sents decoherence caused by magnetic field fluctuations
created by energy-conserving spin flip-flop processes be-
tween bath spins. The rephasing of this noise is what
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FIG. 4. (color online) (a) Spin relaxation measured via a two-pulse optical pumping sequence on transitions Bl and A2 for
different temperatures between 3.7 K and 40 mK and an average optical power of P=50nW. An exponential fit to the decay
of the fluorescence signal yields the spin relaxation time T7"™. (b) Temperature-dependent spin (blue) and orbital relaxation
rates (red) indicating single-phonon spin relaxation processes below 300 mK and above 2.3 K as well as non-linear multi-phonon
processes in between. Insert shows zoom of the low temperature region. Further details can be found in the main text.
The grey temperature region (1-3.7K) is unaccessible with the cryostat used in this study. (c¢) Temperature-dependent spin
echo measurements according to the scheme in Fig.3(b). Blue line corresponds to an analytical model including a residual
decoherence rate at 0 K as well as a temperature- and magnetic field-dependent decoherence rate describing field fluctuations

generated by flip-flop processes in a spin bath (C=27-6.34kHz, I';es=27-1.15 MHz, Tz=280 mK).

causes the improvement of T ¢cho compared to T5. Since
the frequency of this noise increases with the flip-flop rate
at higher temperatures or lower magnetic fields, this noise
becomes more and more Markovian and hence will be
rephased less well for increasing temperatures. (ii) The
second term, I',c, corresponds to a residual decoherence
rate at 0 K, caused by a resonant dipolar coupling of the
SiV~ to the surrounding bath spins. This occurs since the
SiV7, like the bath spins, is a S=1/2 spin system with g2
and therefore experiences the same Zeeman splitting as
the P1 bath at all magnetic fields. This process is en-
tirely Markovian in nature and cannot be counteracted
by spin-echo or dynamic decoupling sequences. This ef-
fect can also be observed in the NV~ for specific magnetic
field strengths at which its |ms = 1) — |m, = 0) transi-
tion is tuned into resonance with the bath, resulting in a
strongly enhanced decoherence by several orders of mag-
nitude [24]. The zero-field splitting of the NV~ results
in reaching resonance with the P1 bath only at 0.054 T
and thus operating away from this condition results in
much longer coherence times, even in nitrogen-rich di-
amonds. For the SiV", we expect this coupling to de-
crease significantly by improving sample purities, mak-
ing longer coherence times feasible. For quantum tech-
nology applications, the SiV™ spin qubit coherence will
then be ultimately limited by the much weaker dephas-
ing due to a residual nuclear spin bath (e.g. 13C) or the
T, limits as explored above. Such a reduced coupling
has been observed recently in a CVD diamond sample
of higher purity ([N]<5ppb, [B]<1ppb, [**C]<1073%)
showing long coherence times of To=13ms, utilizing a

microwave-based 32-pulse CPMG dynamic decoupling
sequence [25].

Assuming pure dipolar coupling, we can calculate an
order-of-magnitude estimation of the average spin bath
density from the observed spin echo decay time via the
dipolar linewidth [26, 27] which yields a concentration of
about 13 ppm [18], about two orders of magnitude higher
than what is expected for high-quality type Ila diamond
[16]. The spin bath density might however vary strongly
across the sample [28]. Additionally, we would like to
point out the possibility that other S=1/2 defects such
as charged vacancies [29] created during ion implanta-
tion might contribute to the observed decoherence of the
SiV™ as they are created in the SiV™ layer during ion
implantation and might therefore also contribute to the
measured local spin bath density. These local variations
also account for the severe difference in coherence times
observed for (bright) SiV™ centers in different locations of
the sample (e.g. T35 =45ns for the emitter investigated
by Pingault et al.[11] in the same sample). By selecting
exceptionally bright SiV™ centers for the investigations
we might undeliberately target high density regions of
the sample: The SiV~ centers in the HPHT Ila mate-
rial used here overall show an emission enhanced by one
to two orders of magnitude compared to centers in e.g.
chemical-vapor deposited ITa diamond containing consid-
erably less nitrogen. This as well as additional diamond
growth experiments [30] suggests a correlation between
brightness and stability of the SiV™ emission as well as
the abundance of electron donors such as P1. Further-
more, another SiV™ in identical type Ila HPHT material



which has recently been used in [13], shows practically
identical T$™* times to the ones obtained here but a
spin coherence nicely matching T5=2T¢"*=134(4) ns at
3.5 K. This suggests that this SiV~ is located in a rela-
tively pure region of the sample and, in accordance with
the above-mentioned hypothesis, this SiV~ displayed sig-
nificantly lower count rates under resonant excitation, in-
dicating potential charge state issues. Thus we conclude
that electron donor impurities like the P1 on the one
hand can severely affect the spin coherence time of the
SiV™ but might on the other hand be responsible for the
significant fluorescence enhancement observed for SiV-
centers examined in type [Ta HPHT material compared
to centers in the much purer electronic grade CVD di-
amond, enabling the all-optical spin control presented
here.

In conclusion, we here have demonstrated all-optical co-
herent control of the SiV™ electron spin at millikelvin tem-
peratures, laying the foundation for ultrafast spin qubit
manipulation in future experiments. We utilized this
technique to measure the coherence properties of single
SiV™ centers in an impurity-rich bulk diamond at tem-
peratures as low as 40 mK. The suppression of phonon
population leads to an improvement in spin relaxation
times by a factor of 300. The spin coherence, however, is
only weakly affected by the phonon suppression: we find
T5=29ns at 40 mK and a simple spin echo technique
improves the coherence time by a factor of 5, partially
remedying slow magnetic field noise created by an elec-
tron spin bath of the sample. While this noise contri-
bution can be further suppressed in future experiments
by employing more complex dynamic decoupling pulse
sequences [31] an ultimate limit is set by a resonant cou-
pling to the nitrogen bath which cannot be rephased or
decoupled and can only be improved in samples contain-
ing less nitrogen. This emphasizes the need for a de-
tailed diamond growth study to fabricate SiV™ samples
combining the excellent optical properties of the SiV-
with good spin properties paving the way towards ef-
ficient spin photon interfaces [32], especially in combi-
nation with integrated diamond nanophotonic platforms
[8]. On the other hand, the dipolar coupling of the in-
dividually adressable central SiV spin to the resonant
spin bath constitutes a unique model system for studying
the central spin decoherence problem [33]. Eventually,
the confocal setup operating at millikelvin temperatures
will be a highly valuable tool beyond the scope of this
work to probe the physics of e.g. single rare earth ions
or molecules in the still largely unexplored millikelvin
regime.
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