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Summary/ Abstract 

The Artificial Pancreas in Children and Adolescents with Type 1 Diabetes: 

Bringing Closed-Loop Home 

Martin Tauschmann 

Type 1 diabetes is one of the most common chronic conditions in childhood and 

adolescence. Despite ongoing development of more physiological insulin preparations, 

recent advancements in insulin pump technology and more accurate blood glucose 

monitoring, in clinical practice it remains challenging to achieve normoglycaemia whilst 

reducing the risk of hypoglycaemia, particularly in young people with type 1 diabetes.  

Closed-loop insulin delivery (the artificial pancreas) is an emerging technology 

gradually progressing from bench to clinical practice. Closed-loop systems combine 

glucose sensing with computer-based algorithm informed insulin delivery to provide 

real-time glucose-responsive insulin administration.  

The key objective of my thesis is to evaluate the safety, efficacy and utility of closed-

loop insulin delivery in children and adolescents with type 1 diabetes outside of the 

research facility setting. Results of five clinical trials are presented in the main chapters 

of this thesis.  

In a mechanistic study, the impact of glucose sensor operation duration on efficacy of 

overnight closed-loop was investigated comparing closed-loop performance on day 1 

of sensor insertion to day 3 to 4 of sensor. Twelve adolescents with type 1 diabetes 

attended the research facility for two overnight visits. The sequence of the 

interventions was random. In spite of differences in sensor accuracy, overnight CL 

glucose control informed by sensor glucose on day 1 or day 3-4 after sensor insertion 

was comparable. The model predictive controller appears to mitigate against sensor 

inaccuracies. 

In home settings, overnight closed-loop application was evaluated over three months 

in 25 children and adolescents with type 1 diabetes aged six to 18 years. The study was 
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conducted at three centres in the UK and adopted a randomised cross-over design. 

Compared to sensor-augmented pump therapy, overnight home use of closed-loop 

increased the proportion of time sensor glucose was in target and reduced mean 

glucose and hypoglycaemia.  

Two randomised crossover studies evaluated the safety and efficacy of day-and-night 

hybrid closed-loop insulin delivery in young people with type 1 diabetes aged 10 to 18 

years over seven days, and 21 days, respectively. A total of 24 subjects were enrolled 

in this single centre trial. Free-living home use of day-and-night closed-loop in 

suboptimally controlled adolescents with type 1 diabetes was safe, and improved 

glucose control without increasing the risk of hypoglycaemia. 

Finally, closed-loop technology was assessed in five very young children (aged one to 

seven years) with type 1 diabetes in a two-period, crossover study. Closed-loop was 

used during both 3-week intervention periods, either with standard strength insulin 

(U100), or with diluted insulin (U20). The order of intervention was random. Free-living 

home use of day-and-night hybrid closed-loop in very young children with type 1 

diabetes was feasible and safe. Glucose control was comparable during both 

intervention periods. Thus, use of diluted insulin during closed-loop insulin delivery 

might not be of additional benefit in this population. 

In conclusion, studies conducted as part of my thesis demonstrate that use of hybrid 

closed-loop insulin delivery systems in children and adolescents aged one to 18 years 

in free daily living without remote monitoring or supervision is feasible, safe and 

effective. My work supports the progression of this technology from research to 

mainstream clinical practice.  
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1 Introduction 

1.1 RATIONALE 

Type 1 diabetes represents 5-10% of diabetes cases worldwide and is characterised by 

increasing incidence and no immediate prospect of cure. Despite advances in insulin 

replacement therapy with more physiological insulin preparations, ongoing 

developments in insulin pump therapy and glucose monitoring, it remains challenging 

to achieve normoglycaemia whilst reducing the risk of hypoglycaemia in daily living, 

particularly for children and adolescents with type 1 diabetes.  

Closed-loop insulin delivery (the artificial pancreas) is an emerging technology 

gradually progressing from bench to clinical practice. Closed-loop systems combine 

glucose sensing with computer-based algorithm informed insulin delivery to provide 

real-time glucose-responsive insulin administration. First evaluations of closed-loop 

insulin delivery in controlled laboratory settings have demonstrated the great potential 

of this novel therapeutic approach to ameliorate shortcomings of the current 

management practice. Homes studies of closed-loop use in free daily living represent 

the ultimate test-bed for a true assessment of the merits of closed-loop treatment.  

1.2 AIM 

The aim of my thesis was to evaluate the safety and efficacy of closed-loop insulin 

delivery in children and adolescents with type 1 diabetes focussing on closed-loop 

applications in real-life conditions.  

1.3 STRUCTURE AND OUTLINE 

Chapter 2 is dedicated to childhood type 1 diabetes per se to set the framework and 

context of this thesis. Disease-related complications and challenges in the 

management of type 1 diabetes in children are listed and current treatment modalities 

and their limitations are described. In the second part of this chapter, I introduce the 

concept of closed-loop insulin delivery and review results of clinical evaluations in 
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paediatric populations in various settings, including laboratory conditions and first 

outpatient studies. 

In the main body of my thesis (Chapters 3 to 6), clinical studies and related journal 

articles (Chapters 3, 4 and 5) or manuscripts in preparation for publication (Chapter 6) 

are featured. These chapters are similarly structured, each with a brief introductory 

section, and separate ‘methods’, ‘results’ and ‘discussion’ sections. 

Clinical trials included in my thesis were all conducted from December 2013 to 

December 2017. The majority of the work presented in this thesis was undertaken by 

myself. For all the included studies, I was majorly involved in the design and planning 

of the clinical studies, the actual study conduct and data collection, and the analyses 

and dissemination of study findings. My responsibilities included preparation of study 

protocols and documents for regulatory approvals, attending the Research Ethics 

Committee (REC) meetings and follow up with the REC, recruitment and training of 

participants and families, planning and conduct of study visits and contacts, study 

device management, data management and adverse event reporting. After completion 

of the studies, I was responsible for data preparation and statistical analyses, and I 

wrote up and submitted manuscripts to peer reviewed journals. Additionally, I 

presented results at diverse national and international conferences. A more detailed 

description of my study specific responsibilities, as well as any collaboration and 

assistance are included in the appendix (Appendix B: Assistance, collaboration and 

funding). Achievements related to the work presented in my thesis (including peer-

reviewed publications and presentations at scientific meetings) are summarised in 

Appendix C: Achievements. 

In Chapter 3, I present results from a clinical research facility- based overnight trial in 

adolescents evaluating the impact of glucose sensor operation duration after 

subcutaneous insertion and associated variability in sensor accuracy on the efficacy 

and safety of a closed-loop system.  

Chapter 4 describes the feasibility and efficacy of prolonged overnight closed-loop 

application during free daily living over a 3-month period in children and adolescents 
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with type 1 diabetes aged six to 18 years, representing the longest randomised home 

study of closed-loop use in this population up until then. In a randomised controlled 

crossover multicentre study, we compared closed-loop to state-of-the-art sensor-

augmented pump therapy. 

In Chapter 5, outcomes of two clinical trials are presented evaluating day-and-night 

application of closed-loop in pre-adolescent children and adolescents aged 10 to 18 

years, a 1-week trial, and a 3-week trial. Both trials adopted a single centre, randomised 

cross-over design and were conducted at home under free-living conditions without 

supervision or remote monitoring. The control intervention in both studies was sensor-

augmented pump therapy.  

In Chapter 6, I present preliminary results of a multicentre, multinational trial 

evaluating the use of closed-loop insulin delivery in very young children (aged one to 

seven years) with type 1 diabetes. It is the first home study in free daily living without 

supervision in this population. In a randomised two-period cross-over design study, we 

evaluated the use of closed-loop insulin delivery with diluted insulin (U20) compared 

to that of closed-loop with standard strength insulin (U100) with both intervention 

periods lasting 3 weeks.  

Chapter 7 comprises a summary of the results and conclusions from the evidence 

collated in my thesis, along with an outlook on currently ongoing and future studies in 

the set-up and conduction of which I have been majorly involved. Finally, current 

challenges to closed-loop technologies and possible future directions are outlined.
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2 Background 

2.1 CHILDHOOD ONSET TYPE 1 DIABETES 

2.1.1 Definition, classification and epidemiology 

Diabetes mellitus is a chronic metabolic condition caused by either the lack of insulin 

secretion or insulin action, or both. The current World Health Organisation (WHO) 

diagnostic criteria for diabetes are fasting plasma glucose ≥ 7.0 mmol/l or two-hour 

plasma glucose ≥ 11.1 mmol/l1. The condition is clinically classified, according to 

aetiologies, into type 1 diabetes, type 2 diabetes, gestational diabetes, and other 

specific types of diabetes2. Type 1 and type 2 diabetes are the two main subtypes, with 

the latter accounting for more than 95% of all cases. Type 2 diabetes is a 

heterogeneous condition, ranging from predominantly insulin resistant states with 

relative insulin deficiency to predominantly secretory defect states with or without 

insulin resistance2. 

Type 1 diabetes is characterised by a cell-mediated autoimmune destruction of the 

pancreatic beta-cells triggered by a complex interaction between environmental and 

genetic factors leading to absolute insulin deficiency and hyperglycaemia3. Markers of 

immune destruction include islet cell autoantibodies (ICA), autoantibodies to glutamic 

acid decarboxylase (65 K GAD isoform), insulin autoantibodies (IAA), autoantibodies to 

the tyrosine phosphatases IA-2 and IA-2β, and beta-cell-specific zinc transporter 8 

autoantibodies (ZnT8)4.  

The incidence of type 2 diabetes in children and adolescents is increasing in parallel 

with the rising incidence of childhood overweight and obesity5-7. However, type 1 

diabetes remains the predominant aetiological type in childhood diabetes in most 

regions of the world. Type 1 diabetes is one of the most common chronic conditions in 

childhood and adolescence. It is estimated that around 490,000 children under the age 

of 15 are affected by type 1 diabetes, approximately 76,000 children are diagnosed 

each year8. Despite different geographical trends (see Figure 2.1), its incidence is 

increasing worldwide9, with an estimated overall annual rate of up to 3%2, particularly 

in the youngest age group10. 
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Figure 2.1. Estimated geographical incidence of type 1 diabetes in children <15 years of age. 
Incidence is reported as number of cases per 100,000 per year. Data adapted from the International 
Diabetes Federation (IDF) diabetes atlas – 7th edition, 20158. 

 

2.1.2 Complications 

Type 1 diabetes is characterised by life-long dependency on insulin administration due 

to absolute insulin deficiency. It is associated with significant morbidity and decreased 

life expectancy due to acute and long-term complications11.  

2.1.2.1 Acute complications 

Acute complications include hyperglycaemia and hypoglycaemia. Acute 

hyperglycaemia is caused by insufficient insulin supply, and might lead to diabetic 

ketoacidosis (DKA). Hypoglycaemia is based on a mismatch between insulin 

administration with glucose appearance and glucose disposal potentially leading to 

unconsciousness or seizures if not remedied. Both hyperglycaemia and hypoglycaemia 

go along with significant symptoms affecting cognitive and physical functioning, and 

negatively impact on the quality of life of children and adolescents with type 1 diabetes 

and their caregivers. DKA and severe hypoglycaemia are associated with significant 

morbidity, and occasionally, mortality12,13.  
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2.1.2.1.1 Hypoglycaemia and severe hypoglycaemia 

Hypoglycaemia is the most common acute complication of type 1 diabetes14,15. Every 

aspect of the lives of both children and their carers can be affected, such as 

performance and concentration at school, sport, during play activities or sleep. 

Symptoms include signs of autonomic (adrenergic) activation (e.g. shakiness, 

weakness, hunger, sweating) and/or neurological dysfunction (neuroglycopenia) 

resulting from brain glucose deprivation (e.g. headache, difficulty concentrating, 

blurred vision, difficulty hearing, slurred speech, confusion)16, or may result from a 

combination of neuroglycopenic and autonomic responses (e.g. behavioural changes, 

particularly seen in children, including irritability, agitation, quietness, stubbornness)17. 

Hypoglycaemic episodes might also be asymptomatic. The risk of hypoglycaemia 

causes significant anxiety and emotional morbidity for patients with type 1 diabetes 

and their families, and is a barrier to achieving optimal glycaemic control18.  

There is no consistent numerical definition of hypoglycaemia as regards children with 

diabetes. Glycaemic thresholds for symptoms, central nervous system dysfunction and 

hormonal counter-regulation might vary between individuals and in the same 

individual over time19,20. However, blood glucose levels of <3.3-3.9 mmol/l are 

generally used as threshold values for identifying and treating of hypoglycaemia in 

children and adolescents with diabetes. Severe hypoglycaemia in the paediatric 

population is generally defined as an event associated with severe neuroglycopenia 

usually resulting in coma or seizure and requiring parenteral therapy (i.e. glucagon or 

intravenous glucose)21,22. Recently, the International Society for Pediatric and 

Adolescent Diabetes (ISPAD) hypoglycaemia guidelines working group have suggested 

three levels for children and adolescents23 in alignment with recommendations by the 

European Association for the Study of Diabetes (EASD) and the International 

Hypoglycaemia Study Group (IHSG)24: these included an “alert” value of less than 3.9 

mmol/L, a biochemically defined glucose level that may be considered clinically 

important or serious of <3.0 mmol/L, and a clinically defined level of severe 

hypoglycaemia with severe cognitive impairment (including coma or convulsion) 

requiring external assistance of another person to actively administer carbohydrates, 

glucagon, or take other corrective actions. 
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The incidence of mild to moderate hypoglycaemia in individuals with type 1 diabetes 

remains unknown. Mild episodes do occur frequently amongst patients treated with 

insulin, and are often underreported or unrecognised, particularly overnight22. The 

prevalence of prolonged, nocturnal hypoglycaemia is high in children and adolescents 

(up to 40% on any given night)25-27, and almost 50% of these episodes are undetected 

by individuals affected or carers28.  

Severe hypoglycaemia is more likely to be recognised, and thus easier to track. There 

is emerging evidence that rates of severe hypoglycaemia may be declining, potentially 

due to changes in clinical practice including more widespread use of new insulin 

analogues, better understanding of insulin dose adjustments21,29, new insulin regimen, 

more intensive glucose monitoring or improved management guidelines. Data from 

the T1D Exchange Registry, a registry of >25 000 individuals with type 1 diabetes at 67 

centres in the USA, described a 12-month frequency of 6.2% of one or more severe 

hypoglycaemia events in their cohort of 2 to 26-year olds30. Severe hypoglycaemia is 

accounting for an estimated 4-10% of disease related mortality in children and 

adolescents31-33 

2.1.2.1.2 Diabetic ketoacidosis 

Diabetic ketoacidosis (DKA) results from insulin deficiency and increased levels of 

counterregulatory hormones such as catecholamines, glucagon, cortisol and growth 

hormone, and leads to an accelerated catabolic state with increased glucose 

production by the liver and kidney via gluconeogenesis and glycogenolysis, 

simultaneously impaired peripheral glucose utilisation, and increased lipolysis and 

ketogenesis34-36. This results in hyperglycaemia, hyperosmolarity, ketonaemia and 

metabolic acidosis, requiring complex management and hospitalisation. Biochemical 

criteria for the diagnosis of DKA are (A) hyperglycaemia (blood glucose>11 mmol/l), (B) 

venous pH<7.3 or bicarbonate <15mmol/l, and (C) ketonaemia and ketonuria36. The 

risk of DKA in established type 1 diabetes is 1-10% per patient per year30,37-39. The 

mortality rate from DKA in children is 0.15-0.30%40-42 and may be decreasing42.  

2.1.2.2 Long-term complications 
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The relationship between chronic hyperglycaemia and vascular damage has been 

established by the Diabetes Control and Complications Trial (DCCT)43. Microvascular 

and macrovascular changes are the cause of diabetes-related long-term complications 

such as retinopathy, nephropathy, neuropathy (all microvascular), and cardio-vascular 

diseases (macrovascular), all leading to increased morbidity and mortality amongst 

people affected by diabetes. 

Long-term complications usually start to develop years or decades after diabetes 

onset, initially being asymptomatic, or showing very subtle clinical manifestation 

during their early stages44. Hence, clinically evident complications are rarely seen 

among children and young people with type 1 diabetes. Notwithstanding, childhood 

and adolescence seem to be particularly vulnerable periods for onset and priming of 

microvascular complications45,46. Thus, early identification of complications is 

important47. Good metabolic control facilitated by intensive education and treatment 

is essential to prevent or delay the onset or progression of complications48. Lower 

glycated haemoglobin A1c (HbA1c) levels are associated with fewer and delayed micro-

and macrovascular complications43,48,49.  

2.1.3 Management and treatment 

2.1.3.1 Treatment goals 

The ultimate goal of diabetes care in childhood diabetes is to reduce the risk of acute 

and long-term complications while ensuring a good quality of life, normal growth and 

development. The care of children and young people with diabetes should take into 

account the specific needs of these age groups. Ideally, a multidisciplinary team 

including a paediatric diabetologist, a diabetes specialist nurse educator, a dietician, a 

social worker and /or psychologist/psychiatrist should take care of children with 

diabetes and their families50. Recent consensus guidelines by both the American 

Diabetes Association (ADA) and the International Society for Pediatric and Adolescent 

Diabetes (ISPAD) suggest overall target HbA1c levels of below 7.5% (58 mmol/mol) 

across all paediatric age groups49,51. Treatment goals might be individualised to achieve 

HbA1c levels as close to normal as possible while avoiding hypoglycaemia.  
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Despite advances in therapy, data from big western diabetes registries suggests that 

the majority of people with type 1 diabetes still fail to achieve recommended glycaemic 

targets52-54. This is particularly evident in paediatric age groups. Above all, adolescents 

and young adults seem to struggle most (see Figure 2.2.)  

 

Figure 2.2. Percent of patients achieving HbA1c ADA targets by age-group (T1D Exchange registry). 
HbA1c target for those aged <18 years is <7.5% (<58 mmol/mol). HbA1c target for those aged ≥18 
years is <7.0% (<53 mmol/mol). Adapted from Millter et al54.  

 

2.1.3.2 Insulin replacement therapy 

Insulin therapy regimen should mimic non-diabetic insulin secretion profiles in 

response to dietary intake, exercise levels, and the underlying metabolic state, keeping 

plasma concentrations in the euglycaemic range55. Physiological patterns include (A) a 

continuous basal insulin secretion that regulates lipolysis and restrains hepatic 

gluconeogenesis to keep blood glucose levels at equilibrium with basal glucose 

utilisation by the brain and other tissues that are obligate glucose consumers, and (B) 

a prandial insulin release to control meal-related glucose excursion by stimulating 

glucose utilisation and storage, while inhibiting hepatic glucose output (see Figure 

2.3)56.  
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Figure 2.3. Normal (non-diabetic) blood glucose (top panel) and insulin levels (bottom panel) over 
24 hours. Adapted from Jacobs et al57. 

 

Following results from Diabetes Control and Complications Trial (DCCT) and the 

Epidemiology of Diabetes Interventions and Complications (EDIC) trial, there has been 

a paradigm shift towards intensive insulin therapies such as multiple daily injection 

therapy (MDI) or insulin pump therapy43,58. Intensive management comprises frequent 

blood glucose monitoring, meal planning, attention to exercise and flexible multiple 

daily insulin administrations, either using an insulin pen as in MDI therapy, or using an 

insulin pump as in continuous subcutaneous insulin infusion therapy (CSII).  

2.1.3.2.1 Multiple daily injections 

In MDI therapy, different insulin formulations are used, each characterised by a specific 

profile of action. The basal secretion of insulin by the healthy pancreas is replaced by 

once or twice daily injections of intermediate-acting or long-acting insulins or insulin 

analogues. Short-acting or rapid-acting insulins or insulin analogue formulations are 

used to mimic higher-rate secretion of insulin with meals. Various combination of short 

or- rapid-acting insulin with intermediate- or long-acting insulin can be employed. MDI 
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usually involves three to five (or more) injections per day. A clinical superiority of a 

specific insulin regimen for glycaemic control has not yet been clearly established59. 

2.1.3.2.1.1 Insulin pens 

Insulin pens contain insulin in a cartridge and incorporate a fine replaceable needle. 

Introduced in 1981 as convenient, easy to use injection devices60, pens are widely used 

as a part of multiple daily injection (MDI) therapy and are continuously evolving. Pens 

with memory functions (e.g. HumaPen® Memoir, Ely Lilly, Indianapolis, IN, USA; 

NovoPen Echo®, Novo Nordisk, Bagsværd, Denmark) or pen caps that track past doses 

(e.g. Timesulin®, Patients Pending Ltd, London, UK; GoCap®, Common Sensing, 

Cambridge, MA, USA) are available. Recently, pens with built-in Bluetooth connectivity 

have received regulatory approvals (e.g. InPen®, Companion Medical, San Diego, CA, 

USA; Esysta® pen, Emperra Digital Diabetes Care, Potsdam, Germany). These smart 

pens allow users to track doses, and automatically transfer data via Bluetooth to 

diabetes management apps on smartphones for convenience and automatic cloud 

upload for sharing data with health care professionals. However, no studies have been 

reported on superiority of smart pens over conventional pens.  

2.1.3.2.2 Continuous subcutaneous insulin pump therapy 

Insulin pumps date back to 1970s61, but it took another 20 years for insulin pump 

therapy to become widely available. The increasing utilisation of insulin pump therapy 

over the last 20 years has resulted from improvements and increased, albeit still 

imperfect, reliability of pump technology documented health benefits, and availability 

of rapid acting insulin analogues, and has been further amplified through coverage by 

private insurance and public health care systems. Uptake and availability of insulin 

pump therapy varies considerably between and within countries62, with pump users 

representing 40 to 60% of the type 1 diabetes population in countries most adept to 

pump use53,63. 

2.1.3.2.2.1 Types of insulin pumps 

Insulin pumps deliver short- or rapid acting insulin into the subcutaneous tissue at pre-

programmed rates, normally half-hourly to hourly adjustable, with user-activated 

boosts/boluses at mealtimes via self-inserted Teflon or steel catheters. In conventional 
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or tethered pumps, the pump’s insulin reservoir and the transcutaneously placed 

cannula are connected via tubes with a length of 18-42 inches. Patch pumps comprise 

a very short insulin infusion set typically embedded inside the pump housing or within 

the base part of the modular designed pump64. While tethered pumps are usually 

tucked into pockets or carried in pump pouches, patch pumps are directly attached to 

the user’s skin. A recent retrospective observational study did not demonstrate any 

differences in HbA1c when comparing patch pumps vs. traditional tethered pumps65. 

2.1.3.2.2.2 Adjunctive technologies 

Modern insulin pumps usually come with adjunctive features such as bolus calculators 

to ease calculation of meal and correction boluses, bolus profiles including immediate 

and/or extended delivery of calculated bolus dose to meet postprandial insulin 

requirements, and temporary basal rates to accommodate physical activity resulting in 

acutely lower insulin needs, or stress or illness resulting in acutely higher insulin needs. 

Use of these advanced features may improve glycaemic outcomes including HbA1c66, 

and postprandial glycaemic excursions67,68. 

2.1.3.2.2.3 Efficacy of insulin pump therapy  

In adults with type 1 diabetes, the use of insulin pump is associated with a modest 0.3 

to 0.6% reduction in HbA1c compared to MDI therapy69-73, with those most poorly 

controlled on MDI experiencing the greatest, and often a substantial and clinically 

valuable improvement in HbA1c69. A comparable to lower risk of severe hypoglycaemia 

has been documented, while quality of life in pump users is higher compared to MDI69-

73. Despite the high appeal for children and adolescents due to more flexible and subtly 

customisable insulin delivery essential to paediatric needs, meta-analyses and 

systematic reviews of RCTs including paediatric populations69-72,74 are not as conclusive 

as in adults. Similar to adults, slightly lower HbA1c levels and apparently no difference 

in severe hypoglycaemia risk were reported in meta-analyses of paediatric pump users 

compared to MDI therapy. 

With respect to severe hypoglycaemia, however, these meta-analyses should be 

interpreted with caution due to several issues, for example, clinical trials were too 

short for severe hypoglycaemia to occur or participation was limited intentionally or 
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unintentionally to those with a very low rate of baseline hypoglycaemia. Severe 

hypoglycaemia or hypoglycaemia unawareness might have been listed as specific 

exclusion criteria in these trials, or early generation pumps and pump insulins were 

used. In a meta-regression analysis, Pickup et al. demonstrated that there is significant 

hypoglycaemia reduction even in children and adolescents on pump therapy compared 

to MDI, though to a lesser degree than in adults69. Greatest reductions in severe 

hypoglycaemia occurred in those with highest baseline hypoglycaemia and in elderly. 

Insulin requirements are usually lower on pump, while rates of DKA do not differ 

between pump and MDI therapy. Lifestyle flexibility and reduced blood glucose 

variability is also regarded an advantage of insulin pump therapy75. Improved quality 

of life and reduced fear of hypoglycaemia in both parents and children were 

documented when switching from MDI to insulin pump therapy76. 

While on the whole, the above mentioned meta-analyses of RCTs in paediatric and 

adult type 1 diabetes are cautiously favouring insulin pump therapy compared to MDI 

therapy, recent observational studies more optimistically documented sustained 

benefit over prolonged periods of pump use across different populations including 

reductions in DKA and severe hypoglycaemia13,77-81. This may reflect that non-minority 

and less social deprived users more frequently adopt insulin pump therapy53,82. 

Systematic reviews and meta-analyses documented improved HbA1c levels and 

reduced risk of severe hypoglycaemia compared to MDI69,83,84. 

Disadvantages of insulin pump therapy include skin infection and dermatological 

changes at the site of infusion. Despite standard clinical practise involves changing the 

infusion set and site, usually every 2-3 days, as well as a no-touch-technique for 

insertion, local skin infections still occur but are rarely serious85. The pump is more 

complex to set up and liable to malfunctions than the pens, syringes, and needles. 

Though current pumps are robust and reliable, malfunctions still occur frequently. 

Problems with blocked, kinked or leaking cannulas, and priming failures are common86. 

Given the smaller subcutaneous depot of insulin during insulin pump therapy, stopped 

delivery of insulin may lead to rapid metabolic disturbances. Yet available evidence 
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suggests that insulin pump therapy poses a risk of diabetic ketoacidosis (DKA) similar 

to or smaller than that associated with MDI in children and adolescents74. 

2.1.3.3 Glucose monitoring 

Blood glucose monitoring is an essential tool in optimal diabetes management in 

childhood and adolescence, as it facilitates detection of hypo- or hyperglycaemia, 

insulin dose adjustments, and optimisation of treatment. 

2.1.3.3.1 Self-monitoring of blood glucose 

Handheld, portable meters measuring capillary blood glucose are used by patients at 

home for the purpose of self-monitoring of blood glucose (SMBG). The frequency of 

SMBG measurements has been associated with improved HbA1c levels and reduced 

acute complications87-89. Successful implementation of intensified diabetes 

management usually requires four to six measurements per day (though the actual 

number should be individualised), and regular review of the results49. 

Similar to bolus calculators on insulin pumps, recently introduced expert meters 

comprise integrated bolus advisors to calculate insulin dosages. Recent randomised 

controlled trials have shown a significant increase in the number of people achieving 

HbA1c targets90-92 in the bolus calculator group and a reduction in hypoglycaemia 

compared to controls91,92. 

Capillary blood glucose monitoring has its drawbacks as blood is sampled 

intermittently providing only snapshots of glucose concentrations even if performed 

frequently. Episodes of hyper- and hypoglycaemia may be missed and not factored into 

treatment decisions.  
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2.1.3.3.2 Continuous glucose monitoring 

The emergence of continuous glucose monitoring (CGM) has been an important step 

in glucose monitoring. Currently available CGM devices measure interstitial glucose 

concentrations subcutaneously at one- to five-minute intervals utilizing enzyme-tipped 

electrodes or fluorescence technology. Readers - either in the form of stand-alone 

devices or integrated into insulin pumps or mobile phones - display transmitted 

interstitial glucose readings either in real-time (real-time CGM), or on demand when 

scanning (flash glucose monitoring), or simply collect data for retrospective read-out 

and analysis (professional, masked or blinded CGM).  

Real-time CGM systems automatically display glucose readings at regular intervals and 

utilise real-time alarms when sensor glucose levels reach pre-defined thresholds 

regarding hypo- and hyperglycaemia, as well as rate of change alarms for rapid 

glycaemic excursion. Recently introduced flash glucose monitoring systems (FreeStyle 

Libre, Abbott Diabetes Care, Alameda, CA, USA) report glucose levels only when the 

user scans the sensor by holding a reader or a cell phone close to the sensor. Blinded 

CGMs are applied intermittently over a short period of time to provide more 

information about glycaemic excursions and patterns to the healthcare professional in 

order to facilitate changes in therapy and could serve as educational tools. Blinded 

CGM and flash glucose monitoring systems do not provide alarms. 

 

While most CGMs still require calibration using capillary blood glucose readings, the 

Libre flash glucose monitoring system is factory calibrated and does not require re-

calibration by the user93. Most CGM systems are minimally invasive and have a life time 

of 6 to 14 days. A longer-term sensor implantable up to 6 months (Eversense®, 

Senseonics Inc, Germantown, MD, USA) is available in Europe.94Unlike short term CGM 

systems, which are self-inserted by the user, sensor implantation and removal require 

a minor surgical procedure by a trained health care professional.  

2.1.3.3.2.1 CGM uptake and use 

A niche product in the recent past, CGM has now become the standard of care for 

people with type 1 diabetes in certain countries and clinics95. Recent data from the DPV 
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registry in Germany and Austria, and the T1D Exchange registry in the USA suggest that 

overall CGM use for all registry participants (DPV: n=20,938; T1D: n= 8,186) is 18.4% 

(DPV) and 21.7% (T1D), respectively96. Overall accuracy of the latest sensor generations 

measured as the mean relative absolute difference (MARD) versus a given laboratory 

standard is between 8% to14%93,94,97-99 with lower accuracy in the hypoglycaemic range 

and at rapidly changing glucose levels100,101. The technology has reached the proposed 

mark sufficient to allow self-adjustment of insulin dosage without confirmatory 

capillary blood glucose measurements (MARD <10%)102,103. CGM systems have 

received approvals for non-adjunctive use in the USA (G5™ Mobile, Dexcom, San Diego, 

California, USA; Libre Flash Glucose Monitor, Abbott Diabetes Care, Alameda, CA) and 

in the EU (G5™ Mobile, Dexcom; Libre Flash Glucose Monitor and FreeStyle Navigator 

II, Abbott Diabetes Care, Alameda, CA). Confirmatory capillary glucose measurement is 

suggested at hypoglycaemia with Libre. 

Data provided by CGM devices allow limitations of the traditional glucose metrics such 

HbA1c and capillary glucose measurements to be overcome. A recent consensus report 

defined measures of glycaemic control based on CGM highlighting the significance of 

CGM technology in modern diabetes care104,105. 

2.1.3.3.2.2 Efficacy of CGM 

RCTs and meta-analyses using early generation devices were cautious with respect to 

the overall benefit of CGM systems, particularly in children and young people with type 

1 diabetes70,106-111. More recent data more consistently report that use of CGM is 

associated with an improvement in HbA1c, reduction in mild to moderate 

hypoglycaemia, and reduced glucose variability112-117. While earlier analysis and 

guidelines were favouring CGM in combination with pump therapy49,70,108,118, emerging 

evidence supports use of CGM as part of MDI117,119-121. As the technology is evolving 

fast, the older RTCs and meta-analyses have limited validity.   

2.1.3.3.2.3 Flash glucose monitoring 

With a 2-week sensor life, factory calibration, satisfactory accuracy with overall MARD 

of 11% to 14%, its small size and light weight, the recently introduced Libre flash 

glucose monitoring system is particularly appealing and convenient to assess glucose 
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levels121,122. However, evidence on its effectiveness is limited121,123-125. An RCT showed 

that flash glucose monitoring in adults with well controlled type 1 diabetes reduced 

time spent in hypoglycaemia, reduced glucose variability, and improved the 

percentage of time with glucose readings in the near-normoglycaemic range compared 

to self-monitoring of capillary blood glucose with median 15 scans per day121. Benefits 

were identical for users of insulin pump therapy and MDI. In a recent head-to-head 

comparison of flash glucose monitoring and conventional CGM in adults with type 1 

diabetes and impaired awareness of hypoglycaemia, CGM more effectively reduced 

time spent in hypoglycaemia compared with flash glucose monitoring126. In the 

paediatric population, there is currently no evidence regarding effectiveness of flash 

glucose monitoring122. Observational data link frequent scanning to improved 

outcomes127. 

2.1.3.4 Sensor-augmented pump therapy 

Sensor-augmented pump (SAP) therapy combines insulin pump and glucose sensor, 

the latter wirelessly transmitting data to a handheld receiver or insulin pump. Usually, 

the continuously measured readings can be viewed on the pump’s screen or a separate 

monitor, and glucose trend arrows and warnings against pre-set parameters are 

provided. In standard SAP, insulin is delivered according to manually entered and pre-

programmed infusion rates. More advanced approaches based on automated adaptive 

glucose responsive regulation of insulin delivery are extensively discussed in 

subsequent sub-chapters. 

Following RCTs evaluating CGM alone use in children and adults with T1D on 

intensive128 and insulin pump therapy129, multicentre RCTs on SAP therapy including 

children and adolescents with intervention periods up to 12 months have been 

conducted, e.g. RealTrend130, Star3131, Onset132 and SWITCH116. SAP therapy was 

investigated in participants with newly diagnosed T1D132, when switching from MDI 

with insulin analogues130,131, or in those already on insulin pump therapy116. SAP 

therapy was either compared to MDI and SMBG131, or insulin pump therapy and 

SMBG116,130,132. Most trials were conducted in inadequately controlled 
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patients116,130,131, and usually excluded those with recurrent severe hypoglycaemia 

and/or hypoglycaemia unawareness116,131.  

SAP therapy resulted in significant improvement in HbA1c compared to MDI and SMBG 

in the paediatric population131. SAP therapy, in particular in those participants with 

higher sensor use, was more likely to meet age-appropriate HbA1c targets131. However, 

studies investigating whether SAP therapy can further improve HbA1c in participants 

with T1D already using insulin pump therapy have yielded conflicting results ranging 

from no significant benefit130,132 to significantly improved glycaemic control116. The 

beneficial effect of SAP therapy became more prominent with increasing sensor 

use116,129-132, reaching significance in subgroup analysis in participants who wore CGM 

more than 60%129 or 70%130 of the time. A reduced effect of SAP therapy was seen in 

adolescents wearing the sensor less frequently128,131 compared to children131. 

The rate of severe hypoglycaemia in the SAP group did not differ significantly from that 

in the MDI group131 or in the insulin pump therapy only group116,130,132. This lack of 

significance might be due to very low baseline rates of severe hypoglycaemic episodes. 

SAP therapy was associated with decreased time spent in hypoglycaemia compared to 

MDI131 or conventional insulin pump therapy116.  

The time spent in the hyperglycaemic range was significantly decreased with SAP 

therapy116,131.Glucose variability favours SAP therapy116,131,132 but a significant 

difference in children and adolescents was only reached when calculating the standard 

deviation (SD) of sensor glucose values131 or 24h SD of mean glucose rather than the 

mean amplitude of glycaemic excursions (MAGE)116,131. 

Interestingly, results from the ONSET trial indicate that SAP therapy from the onset of 

diabetes may lead to better long-term glycaemic control and possibly preserve 

endogenous beta-cell function, if users comply with frequent sensor use132,133. 

Following data from the DCCT showing that assignment to the intensively managed 

group reduced the risk for loss of C-peptide134, this approach aims to optimise 

metabolic control as soon as possible after diagnosis. In vitro data has shown that 

resting b -cells are less immunogenic and more resistant to autoimmune damage 
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compared to active b -cells135. In the biobreeding (BB) rats’ model, tight glycaemic 

control at the onset of type 1 diabetes was shown to protect against insulitis136,137. In 

humans, b-cell rest induced by closed-loop therapy shortly after the diagnosis of type 

1 diabetes was reported to preserve b-cell function as assessed by C-peptide levels 1 

year after diagnosis138. However, Buckingham and colleagues did not observe 

beneficial effects on beta-cell preservation in youth at 12 months of diagnosis following 

a brief spell of inpatient hybrid closed-loop control shortly after the diagnosis of T1D 

followed by SAP therapy in both control and intervention groups139. 

In summary, SAP therapy has been demonstrated to improve glycaemic control in 

children and adolescents without increasing the risk of hypoglycaemia. Frequent 

sensor use is vital to the success. 

2.1.3.5 Sensor-augmented pump therapy with hypoglycaemia protection feature 

Automated suspension of insulin delivery at low glucose levels or when low glucose 

levels are predicted represent the early embodiments of technology-enabled glucose 

responsive regulation of insulin delivery to address the issue of hypoglycaemia. Closed-

loop approaches are more complex and address both the issues of hypoglycaemia and 

hyperglycaemia 

2.1.3.5.1 Threshold-based insulin suspend 

Released in 2009, the Medtronic Paradigm Veo (Medtronic Diabetes, Northridge, CA, 

USA) implements threshold-based insulin suspension. A revised version was approved 

in the USA in 2013 (MiniMed 530G). The available systems suspend insulin delivery for 

up to 2 h or until the user responds to the hypoglycaemic alarm when a low-glucose 

threshold is reached.  

Multicentre randomised controlled140-142 and non-randomised studies143-145 including 

in children and adolescents140,141,143 in real life settings have demonstrated that 

automated insulin suspension is safe and reduces the frequency and duration of overall 

and nocturnal hypoglycaemic episodes compared to insulin pump therapy alone140 or 

sensor augmented pump therapy141,143 . Threshold-based suspend was shown to 

reduce the overall risk of severe and moderate hypoglycaemia in those with the highest 
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risk, impaired hypoglycaemia awareness and the highest frequency of severe 

hypoglycaemia.140,144 

2.1.3.5.2 Predictive low glucose suspension  

Predictive low glucose insulin suspend discontinues insulin delivery when 

hypoglycaemia is predicted by an algorithm to occur within a specified time limit, or 

horizon. Thus, insulin delivery is suspended before hypoglycaemia occurs. This feature 

was introduced in Europe and Australia in 2015 (MiniMed 640G pump; Medtronic 

Diabetes). A revised version of this pump was approved in the USA for those aged 

sixteen and older (MiniMed 630G pump). 

In RCTs including adults146, and children and adolescents146-148, the use of predictive 

low glucose suspend technology was shown to reduce the exposure to nocturnal146-148 

and overall hypoglycaemia148, including reduced frequency of nocturnal and diurnal 

episodes and a reduction of prolonged nocturnal events. These benefits were achieved 

at the expense of mildly elevated overnight and morning glucose146,147 or increased 

time in moderate hyperglycaemia.148 
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2.2 CLOSED-LOOP INSULIN DELIVERY 

2.2.1 Overview 

The artificial pancreas or closed-loop systems refer to a range of applications which 

expand on the concept of sensor responsive insulin delivery using a control algorithm 

that automatically directs insulin delivery, and in some instances other hormones 

including glucagon, below and above pre-set insulin pump delivery based on real-time 

sensor glucose levels149-152. The degree of automation varies between different 

categories of closed-loop systems and according to treatment objectives (Table 2.1). 

The concept of closed-loop insulin delivery was first proposed over five decades ago153. 

The Biostator was introduced in the late 1970s utilizing intravenous insulin infusion and 

intravenous glucose sampling. With advances in subcutaneous insulin pump and sensor 

technology, the focus moved to body worn and not implantable devices, combining 

insulin delivery and glucose sensing in the subcutaneous tissue. Current closed-loop 

systems consist of three main components: a real-time CGM, an insulin pump and a 

control algorithm (Figure 2.4) although the control algorithm could be incorporated in 

the insulin pump. 

 

 

Figure 2.4. Closed-loop insulin delivery.A closed-loop system comprising a glucose sensor (black 
rectangle on the left-hand side of the abdomen), an insulin pump (device in the pocket), and a mobile-
sized device containing the control algorithm (in patient’s hand). Each component communicates with 
the other wirelessly (adapted from Hovorka149). (B) The closed-loop system mimics the physiological 
feedback normally provided by the β-cell. 
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Table 2.1. Closed-loop approaches according to treatment objective. 

Objective Modulation of insulin delivery 

Reduction of severity and/or 
duration of hypoglycaemia 

Suspension of insulin delivery at low glucose 
threshold 

Hypoglycaemia prevention Suspension/reduction of insulin delivery when 
hypoglycaemia is predicted 

Control to range Modulation of insulin delivery outside target 
range to reduce hypoglycaemic and 
hyperglycaemic excursions 

Overnight glucose control Modulation of insulin delivery for nocturnal 
glucose control 

Closed-loop system with meal/exercise 
announcement, hybrid closed-loop systems 

Modulation of insulin delivery when control 
algorithm is aware of exercises and meals as 
announced by user; meal boluses are 
administered by user; glucagon or other 
hormone may be co-administered 

Fully closed-loop system Modulation of insulin delivery when the control 
algorithm is unaware of meals, exercise, stress 
and other lifestyle disturbances that affect 
glucose control; glucagon or other hormone may 
be co-administered 

 

 

2.2.2 Control algorithms 

The control algorithm is the core of a closed-loop system and directs the delivery of insulin to 

mimic physiologic glucose homeostasis. Two main categories of control algorithms have been 

employed, the proportional-integral-derivative (PID) controller154,155, a classic feedback control 

mechanism, and the model predictive controller (MPC)156. Other clinically evaluated 

approaches include controllers based on fuzzy logic157 or a combination of MPC and PID for 

insulin and glucagon co-delivery158. 

2.2.2.1 Proportional-integral-derivative algorithm 

A PID controller is a generic control loop feedback mechanism widely used in industrial control 

systems. It adjusts insulin delivery by assessing glucose excursions as deviations from a target 

glucose level (proportional component), the area under the curve between the measured and 
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the target glucose level (integral component) and the rate of change in the measured glucose 

levels (derivative component). Figure 2.5 provides a schematic description of the PID controller 

approach for insulin delivery. PID algorithms are considered to be reactive given that they 

respond to observed glucose levels149. 

 

Figure 2.5. Schematic representation of the PID controller. The respective insulin infusion rate (IIR) at 
time point ti is comprised of a component, Kp, that is proportional to the difference between sensor 
and target glucose (∆G); an integral component, KI, that increments a basal rate in proportion to the 
difference between sensor and target glucose (AUC); and a component, KD, that adjusts insulin 
delivery in proportion to the rate of change of sensor glucose (dG/dt). Adapted from Steil et al.154 

 

2.2.2.2 Model predictive control  

Model predictive controllers (MPC) rely on dynamic models of the glucoregulatory process to 

forecast glucose excursions159. The MPC approach is the algorithm employed in the studies 

described in this thesis (Chapters 3 to 6). Insulin delivery is calculated based on previous 

information of glucose levels and insulin infusion rates. MPC controller work by optimising 

insulin delivery to minimize the difference between model predicted glucose levels and the 

target glucose trajectory over a prediction window. MPC algorithms can be regarded as 
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proactive and are suitable to handle delays associated with insulin absorption, and account for 

announced disturbances such as meal intake and physical activity149. 

The Cambridge MPC controller utilises a compartment model of glucose kinetics describing the 

effect of rapid-acting insulin and the carbohydrate content of meals on sensor glucose 

excursions160. The model facilitates simulation of ‘what if’ scenarios, particularly the prediction 

of future glucose excursions resulting from past and proposed insulin infusion delivery. These 

prediction capabilities enable the calculation of insulin infusion rates expecting to lead to 

predefined target glucose excursions. The insulin infusion rate is obtained by minimizing the 

difference between the model-predicted glucose concentration and the target glucose 

trajectory over, e.g. a two to four-hour prediction window that corresponds to the duration of 

action of rapid-acting insulin analogues. At each control step, normally every 10 minutes, the 

minimisation is carried out. Figure 2.6 provides a schematic description of the MPC controller 

approach used in the studies presented in this thesis. 

Algorithms often include a safety layer or supervisor that constraints insulin delivery. This 

supervisory module may monitor and limit insulin ‘on board’ (i.e. insulin delivered but yet to 

exert its action) or a maximum insulin infusion rate or may stop insulin delivery at low glucose 

levels or when glucose is falling rapidly149. The Cambridge algorithm comprises two supervisory 

modules which may modify both the generation of the original advice and after the advice is 

generated. The algorithm aims to achieve glucose levels between 5.8 and 7.3mmol/l and 

adjusts the actual level depending on fasting versus postprandial status and the accuracy of 

model-based glucose predictions. The maximum insulin infusion rate is limited, and safety rules 

suspend insulin delivery at sensor glucose at or below 4.3 mmol/l or when glucose is decreasing 

rapidly. The stepwise generation of the algorithm advice is shown in Figure 2.7. 
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Figure 2.6. Schematic view of the Model Predictive Control (MPC) approach. The blue vertical line 
represents each time step ti when previous glucose measurements (red curve) and insulin delivery 
(green curve) is known. The controller calculates a set of M current and future insulin delivery rates in 
order for the model to predict glucose levels to reach a desired target trajectory over a future horizon 
of P time steps. Adapted from Hovorka161  

 

 

Figure 2.7. Generation of insulin delivery advice by the Cambridge MPC controller. 
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2.2.3 Bi-hormonal closed-loop 

Bi-hormonal (also known as dual-hormone) closed-loop systems also deliver 

subcutaneous glucagon in addition to insulin when hypoglycaemia is observed or 

predicted and may provide additional benefit in terms of safety and further reduction 

of hypoglycaemia risk150. Two different approaches have been taken by scientists 

developing such systems. One aims to improve glucose control by tuning insulin 

delivery in a similar way to that of a single hormone artificial pancreas, adding glucagon 

as an additional safety layer only to further reduce hypoglycaemia. The other delivers 

insulin more aggressively to rapidly achieve lower insulin levels, and counteract it with 

glucagon, if necessary, to mitigate the risk of insulin overdosing162.  

2.2.4 Other adjunctive approaches with closed-loop insulin delivery 

Closed-loop effectively maintains glucose overnight, but meals are still challenging. 

Adjunctive therapies including pramlitide and glucagon-like peptide-1 (GLP-1) to 

suppress post-prandial hyperglucagonaemia and associated hyperglycaemia were 

evaluated in combination with close-loop insulin delivery in adolescents and young 

adults in research facility settings163-165. 
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2.2.5 Clinical evaluation of closed-loop insulin delivery 

Studies of closed-loop insulin delivery have evolved from small pilots undertaken in 

laboratory settings over single night, to larger trials in outpatient settings such as 

diabetes camps and hotels for over up to 6 days, to medium-term multicentre 

unsupervised studies in home settings with a duration of up to 6 months. 

Most prototypes of closed-loop systems follow a hybrid approach characterised by 

manual delivery of prandial insulin. In September 2016 the FDA approved the first 

hybrid closed-loop system (MiniMed 670G pump, Medtronic, Northridge, CA) based on 

safety outcomes of a non-randomised pivotal trial including 124 adolescents and 

adults99,166. 

Henceforth I discuss results of closed-loop applications in laboratory, inpatient 

environments, and transitional outpatient settings, as well as evaluations in home 

settings from a paediatric perspective. The focus is on randomised controlled trials. 

Evaluations of bi-hormonal systems, as well as other adjunctive approaches with 

closed-loop insulin delivery are discussed separately. Randomised controlled studies in 

transitional outpatient settings and home environments are summarised in Table 2.2.  

2.2.5.1 Laboratory studies 

Overnight closed-loop is not complicated by meals or physical activity. More than half 

of episodes of severe hypoglycaemia occur during sleep167 with up to 75% of 

hypoglycaemic seizures occurring at night14. Hyperglycaemia, resulting from 

inadequate insulin delivery or parenteral fear of hypoglycaemia, is associated with 

structural brain alterations168,169. Overnight closed-loop may provide a solution to the 

important clinical problem of nocturnal glucose control, a major source of concern to 

parents and caregivers170. 

Evaluations of overnight closed-loop systems in laboratory settings documented a 

reduced risk of hypoglycaemia and improved glycaemic control149,152. RCTs in the young 

using an MPC algorithm156 showed that overnight closed-loop increases the percentage 

of time during which plasma glucose levels are within a target range (between 3.9 and 



2 Background 

29 

8.0mmol/l) from 40% to 60%. Closed-loop resulted in a significantly reduced time spent 

with glucose below 3.9 mmol/l (from 4.1% to 2.1%). No nocturnal episodes of 

hypoglycaemia were documented. 

Using a PID algorithm, O’Grady et al. demonstrated the efficacy and safety of a portable 

automated closed-loop system in adolescents and young adults171. The proportion of 

time during which overnight sensor glucose values were maintained between 3.9 and 

8 mmol/l was greater during closed-loop and time spent below 3.3 mmol/l was 

reduced. An evaluation of a PID algorithm in adolescents and young adults by Sherr et 

al.172 demonstrated the benefits of overnight closed-loop insulin delivery following 

antecedent afternoon exercise in inpatient settings. Closed-loop was effective in 

reducing nocturnal hypoglycaemia whilst increasing the percentage of time spent in 

the target range. This effect was observed regardless of activity level in the mid-

afternoon. In a randomized multicentre multinational crossover trial, Nimri et al. 

showed the ability of a fuzzy logic-based algorithm to improve overnight glucose 

control without increasing hypoglycaemic risk in children and adolescents in laboratory 

settings173. 

Maintaining tight glucose control during waking hours, as opposed to overnight 

control, is complicated by meal intake and exercise activity. Early postprandial 

hyperglycaemia followed by a late post-meal hypoglycaemia is common and can be 

attributed to slow insulin absorption, insulin stacking, and overshooting 

hyperinsulinemia154. A practical approach is to combine closed-loop operation for 

determining insulin delivery between meals with manual delivery of partial or full 

prandial boluses. Such a hybrid closed-loop system using a PID algorithm has been 

shown to improve postprandial glucose levels compared to a fully closed-loop PID 

algorithm155.  

In a day and night study including regular meals and unannounced periods of exercise, 

Elleri et al. showed that closed-loop insulin delivery in adolescents using a hybrid MPC 

approach increased percentage time when glucose was in the target range with 

greatest benefit observed overnight, including significantly reduced mean plasma 

glucose without increasing the risk of hypoglycaemia174. 
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Furthermore, day and night systems were evaluated in the very young age group (less 

than seven years) and in young people with recent onset T1D.  Buckingham et al. 

demonstrated the efficacy and safety of an inpatient hybrid closed-loop system 

initiated within seven days of diagnosis of T1D in young people for up to 93 hours175. 

Dauber et al. investigated a PID approach in children younger than seven years and 

showed improved re-establishment of target glucose levels after meals compared to 

standard insulin therapy and a reduced overnight exposure to hyperglycaemia without 

increasing the incidence of hypoglycaemia176. 

2.2.5.2 Transitional phase closed-loop studies 

Many transitional outpatient studies have been performed in camp settings with 

children and adolescents (Table 2.2). Whilst participants are studied in “real-world” 

surroundings, monitoring by medical and research personnel allows interventions to 

take place in case of safety concerns or system malfunctions. Hypoglycaemia is a well-

recognised complication at diabetes camps often attributed to increased exercise and 

dietary alterations177. Thus, camp settings provide a challenging testbed for closed-

loop systems. Given the higher hypoglycaemia burden, studies in camp environments 

are more likely to show benefits with respect to hypoglycaemia reduction. 

In one of the first outpatient studies adopting a multicentre randomised design, an 

MD-logic control algorithm was evaluated over a single night in fifty-six children and 

adolescents in a diabetes camp and compared to sensor augmented pump therapy178. 

The number of hypoglycaemia events with sensor glucose values below 3.5mmol/l was 

significantly reduced during closed-loop use with comparable median glucose levels 

during the two interventions. 

The use of a closed-loop system with an MPC control algorithm in a diabetes camp in 

children and adolescents in a diabetes camp for over five to six nights significantly 

reduced the time spent in hypoglycaemia overnight (<2.8mmol/l, <3.3mmol/l, and 

<3.9mmol/l) but did not improve time spent in the target range from 3.9 to 8.3 mmol/l 

nor mean glucose levels compared to sensor augmented pump therapy as per 

intention-to-treat analysis179. Using a similar system day-and-night in a diabetes camp 
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over five to six days in adolescents with type 1 diabetes, the percentage of time spent 

with sensor readings below 3.9mmol/l overnight was significantly reduced with the 

closed-loop system compared to sensor augmented pump therapy, as were mean 

overnight glucose and time spent in hyperglycaemic glucose ranges, while overnight 

time in target between 3.9 and 10.0mmol/l was increased180.  

Comparing the use of a closed-loop system utilising a modified PID controller181 with 

sensor augmented pump therapy at a diabetes camp in 21 children and adolescents for 

up to six nights, nocturnal hypoglycaemia was reduced and overnight time spent in the 

target range 3.9 to 8.3mmol/l was greater with closed-loop182. Using the same 

algorithm in a fully integrated hybrid day-and-night closed-loop system in 21 

adolescents and young adults over up to six days in a diabetes camp, there was no 

additional benefit with regards to nocturnal hypoglycaemia, time in target range and 

mean overnight glucose when compared with sensor augmented pump therapy 

combined with low glucose suspension183. 

Focusing on younger children, Del Favero et al. conducted a camp trial in children aged 

five to nine years184. A hybrid closed-loop system was compared against sensor 

augmented pump therapy over three days. Closed-loop use resulted in a significant 

reduction of nocturnal time spent with sensor glucose readings below 3.9mmol/l. Time 

in range overnight was similar between interventions, but mean overnight glucose was 

higher with closed-loop. 

In a hotel setting, outpatient use of closed-loop in young children aged five to eight 

years was compared with standard SAP use at home over two 68-hours study 

periods185. Compared to home care, the closed-loop use resulted in increased time 

with blood glucose in the target range of 3.9 to 10.0 mmol/l (73% vs. 47%) and lower 

mean glucose (8.4 mmol/l vs. 10.6 mmol/l), both P < 0.001. Occurrence of 

hypoglycaemia was similar between sessions without differences in time <3.9mmol/l 

(1.1% ± 1.1% vs. 1.6% ± 1.2%, closed-loop vs. SAP). 
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2.2.5.3 Closed-loop home studies 

At diabetes camps, hypoglycaemia is a well-recognised complication due to increased 

exercise and dietary changes impacting on glucose control177, which certainly pose a 

challenge to closed-loop systems. On the other hand, given the higher exposure, 

studies in camp environments are more likely to show benefits with respect to 

hypoglycaemia reduction. Home studies, however, more accurately mimic anticipated 

use of closed-loop systems in clinical practice. Evaluations without supervision or close 

remote monitoring represent the ultimate challenge in providing unequivocal 

assessment of closed-loop performance under free-living conditions. 

Overnight closed-loop insulin delivery with remote monitoring supervision was tested 

in 24 participants including adolescents for six weeks using the MD-logic algorithm 

applying sensor augmented pump therapy as comparator186. The use of overnight 

closed-loop showed significant reduction of time spent hypoglycaemic by nearly two-

fold (p=0.02) while improving time spent within range by 14% (p=0.003). Similar results 

were observed in a multicentre, multinational study using the MD-logic system in 75 

patients aged 10 to 54 years over four consecutive nights with sensor augmented pump 

therapy as a comparator187 

Unsupervised free living overnight use of a MPC algorithm driven closed-loop in 

adolescents over a period of three weeks showed significant improvements in time 

spent within range by a median 15 percentage points (p<0.001), reduced mean glucose 

by a mean 0.8 mmol/l (p<0.001) and number of nights with glucose readings below 3.5 

mmol/l (p=0.01) compared to sensor-augmented pump therapy188.  

Unsupervised free living overnight use of a MPC algorithm driven closed-loop in 

adolescents over a period of three weeks showed significant improvements in time 

spent within target range by a median 15 percentage points, reduced mean glucose by 

a mean 0.8 mmol/l, and reduced the number of nights with glucose readings below 3.5 

mmol/l compared to sensor augmented pump therapy188. A slightly revised version of 

this closed-loop system was tested in the longest randomised home study in children 

and adolescents to date. Over a period of three months, the overnight closed-loop 
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application was compared to sensor augmented pump therapy during free-living 

conditions in 6 to 18 year youth189. Closed-loop improved the overnight time in target 

range between 3.9 and 8.0mmol/l by 25 percentage points and reduced overnight 

mean glucose by 1.6mmol/l. Extended benefits of overnight closed-loop use were seen 

over the full 24-hour period including greater percentage of time in target range, lower 

mean glucose, and significantly reduced burden of hypoglycaemia. Results of this trial 

are extensively discussed in Chapter 4 of this theses. In two recent day-and-night trials 

conducted in adolescents over one 190 and three week duration191 we could 

demonstrate improved overnight time spent within target range compared to sensor 

augmented pump therapy and reduced mean overnight sensor glucose without 

increasing the risk of hypoglycaemia. More details regarding these trials are presented 

in Chapter 5 of this thesis. 

The overnight application of a hybrid closed-loop system using a modified PID 

algorithm was compared to sensor augmented pump therapy with low-glucose 

suspend function over four consecutive nights in a study including 12 adolescents192. 

Closed-loop resulted in a reduced time spent with sensor readings below 3.9%; no 

difference in the percentage of time in the target range between 4.0 and 8.0 mmol/l 

was observed, but mean overnight glucose was slightly elevated during closed-loop 

use. 

Recently, Spaic et al. compared predictive hyperglycaemia and hypoglycaemia 

minimization system with predictive low glucose suspend in the home setting in 

adolescents and adults over 42 nights193. The addition of the predictive hyperglycaemia 

minimisation component increased the time spent in the target range between 3.9 and 

10.0 mmol/l, significantly reduced mean overnight and morning blood glucose levels, 

and performed equally well with respect to hypoglycaemia outcomes.  

In adults, two multicentre trials of two- to three-month application of evening-and-

overnight closed-loop 194, and day-and-night closed-loop 195, respectively, showed 

improved time spent in target range, reduced mean glucose and time spent 

hypoglycaemic, as well as statistical significant reduction in HbA1c levels.  
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These results of extended closed-loop use in home settings are promising and 

demonstrate the unique ability of such systems to reduce both mean glucose and the 

risk of hypoglycaemia, a feat almost unachievable with other therapeutic modalities so 

far. 

2.2.5.4 Evaluations of bi-hormonal closed-loop systems 

Day and night bi-hormonal insulin-aggressively-tuned closed-loop system was studied 

over five days in adolescent participants in a diabetes camp setting196. Conventional 

insulin pump therapy was the comparator. Overall, mean plasma glucose was 

significantly reduced during the closed-loop period (p=0.004), the percentage of time 

spent with low plasma glucose readings was similar during the two interventions 

(p=0.23), but the frequency of interventions for hypoglycaemia was lower during 

closed-loop (one per 1.6 days, vs. one per 0.8 days, p<0.001). Time spent 

hypoglycaemic in adults was significantly reduced compared to conventional insulin 

pump therapy (p=0.01). The bi-hormonal system delivered an average 0.7 mg of 

subcutaneous glucagon per day. In another outpatient diabetes camp bi-hormonal 

closed-loop was tested in preadolescent children aged 6-11 years for five days197. 

Compared to conventional insulin pump therapy, mean sensor glucose on days 2-5 

were reduced by 1.7mmol/l (p=0.0037) and the time spent hypoglycaemia was also 

reduced (p<0.0001). The bi-hormonal system reduced the need for rescue 

carbohydrates (p=0·037). Mean plasma glucagon levels were projected to be above the 

normal fasting range. 

Non-aggressive bi-hormonal, insulin-alone closed-loop systems and conventional 

pump therapy were compared in children and adolescents in a diabetes camp over 

three consecutive nights198. The nocturnal time spent in hypoglycaemia with the bi-

hormonal system was significantly reduced compared to the insulin-alone system 

(p=0·032) and insulin pump therapy alone (p=0.005). The number of hypoglycaemic 

events overnight was reduced from 15 events during nights with conventional pump 

therapy to four events with the insulin-alone system and to none with the bi-hormonal 

system. 
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2.2.5.5 Evaluations of other adjunctive approaches with closed-loop insulin delivery 

Weinzimer and colleagues compared closed-loop insulin delivery alone to closed-loop 

insulin delivery with subcutaneous pramlintide before meals during two 24-hour 

periods163 . No pre-meal insulin boluses or meal announcement were provided during 

both visits. Compared to closed-loop alone, pramlintide co-delivery significantly 

reduced the postprandial time to peak plasma glucose (p<0.0001), plasma glucose 

excursion (p=0.006), and the meal-related area under the curve glucose excursion 

(p=0.04). 

The use of either pramlintide or GLP-1 during closed-loop insulin delivery were 

compared to closed-loop insulin delivery alone in a 27-hour trial164. Co-administration 

of exenatide, but not pramlintide, led to significantly greater reduction of blood 

glucose after lunch and dinner (p<0.03 and p>0.05, respectively). Glucagon 

suppression compared to closed-loop insulin delivery alone was significantly greater 

with exenatide (p<0.03) but not pramlintide (p>0.05). The investigators reported no 

increase in hypoglycaemia episodes with either exenatide or pramlitide. 

A different trial165 showed that adjunctive pramlintide to closed-loop without meal 

announcement significantly delayed the time to peak plasma glucose (p>0.001) with 

concomitant blunting of peak postprandial increments (p>0.001) and reductions in 

postmeal incremental plasma glucose area under the curve. Similarly, adjunctive 

liraglutide led to reductions in postprandial glucose excursions (p=0.005) and 

incremental meal-related area under the curve glucose excursion (p=0.004) along with 

a 28% reduction in prandial insulin delivery. 

2.2.6 Psychosocial aspects 

Until recently, the use of closed-loop systems has been restricted to hospital-based 

trials. Elleri et al. evaluated parental attitudes towards closed-loop systems. The 

majority of parents of children and adolescents with T1D expressed trust and felt 

positive about these systems170.With the emergence of home studies and more 

advanced closed-loop prototypes, the evaluation of closed-loop user feedback and 
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experience have become increasingly important as they may guide and inform future 

directions of closed-loop system development.  

In a quantitative and qualitative psychosocial analysis of experiences of home trial 

participants, adolescent users of overnight closed-loop and their parents, widely 

reported benefits including reassurance/peace of mind, having “time-off” from 

managing their diabetes, improved overnight control leading to improved daily 

functioning and diabetes control, and improved sleep199. The key negative aspects 

mentioned related mainly to technical difficulties (e.g. device connectivity and sensor 

calibration), intrusiveness of alarms, and size of the devices. Overall, for adolescents 

benefits of a closed-loop system seemed to outweigh practical challenges199. 

This is in line with experiences from a study testing overnight predictive low glucose 

management systems at home where participants perceived the PLGM as a much 

deserved break from the daily burden of diabetes care200. In another overnight home 

trial, closed-loop application was found to have a positive impact on hypoglycaemia 

fear and other indices of health-related quality of life outcomes201. 

2.3 CAMBRIDGE CLOSED-LOOP SYSTEM PROTOTYPES 

During my years of study in Cambridge, different closed-loop system prototypes were 

used which differed in terms of the computer algorithm hosting device, connectivity to 

the CGM receiver, and remote data upload, but which all used the same Cambridge 

control algorithm. Descriptions of the specific closed-loop system prototypes used in 

each trial are included in the respective chapters. The prototypes were all developed 

by the University of Cambridge and collaborators; components were modified as 

diabetes specific (e.g. CGM and pump technology) and non-specific technologies 

evolved (e.g. tablet, smartphones). Along with smaller device size, and better 

connectivity and portability, the focus has shifted from closed-loop applications 

overnight only to day-and-night use of portable, wireless systems. As the emphasis of 

this thesis is on clinical evaluations, the issue of prototype and algorithm development 

is not discussed in greater detail. 
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2.4 OUTCOME MEASURES 

Efficacy and safety are important outcome measures for closed-loop trials. The main 

safety outcomes are diabetic ketoacidosis and severe hypoglycaemia. Efficacy equates 

with improved glycaemic control, a reduction in mean glucose, and/or reduction in 

hypo- or hyperglycaemia. Thus, HbA1c and CGM-derived metrics seem to be most 

suitable efficacy outcome measures for closed-loop trials.  

Measurement of HbA1c has been the gold standard method for assessing glycaemic 

control. HbA1c reflects mean glycaemia over the previous 8 to 12 weeks. It can be 

measured with a high degree of precision in a central laboratory and is not dependent 

on the continuous use of a devices such as a blood glucose meter or CGM. Lower HbA1c 

levels are associated with lower risk of chronic diabetes complications as shown in the 

Diabetes Control and Complications Trial (DCCT)43. However, there are certain 

limitations using HbA1c as the primary outcome measure in closed-loop trials: The 

intervention duration of close loop trials might not be long enough to show meaningful 

changes in HbA1 levels. Secondly, HbA1c provides only an average of glucose levels 

over the previous past two to three months and does not provide information 

regarding intra- and inter-day glycaemic excursions, nor information regarding 

hypoglycaemia or hyperglycaemia frequency and patterns that might lead to hypo- or 

hyperglycaemia. Thirdly, it is an unreliable measure in patient with anaemia, 

haemoglobinopathies or iron deficiency and during pregnancy202-204. 

Data provided by CGM devices allow the limitations of traditional metrics of glycaemic 

control to be overcome. CGM provides the opportunity to measure actual glucose 

values during daily living and provides assessments of both hyperglycaemia and 

hypoglycaemia. Additionally, CGM can be used to separately analyse glycaemic control 

during the daytime and overnight. As such, it could be considered the optimal method 

for assessing outcomes in a closed-loop study. The value of CGM as a primary endpoint 

measure has been shown in long-term randomised trials assessing CGM as an 

intervention in participants with type 1 diabetes115,205. Indeed, a consensus report 

published in 2017 defined measures of glycaemic control based on CGM and 

highlighted the importance of CGM technology in modern diabetes care104,105. CGM 
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metrics used for outcome assessment should include metrics that provide a measure 

of overall control (mean glucose, time within a target range), hyperglycaemia, 

hypoglycaemia, and glucose variability104,105,206. 

Glycaemic variability as a clinically valuable marker of glucose control has greatly 

expanded the understanding of glucose control beyond HbA1c alone207-210. There are 

various metrics to assess glucose variability including standard deviation (SD), 

coefficient of variation (CV), interquartile range, mean amplitude of glycaemic 

excursion (MAGE), continuous overall net glycaemic action (CONGA), mean of daily 

differences (MODD), and others211. SD and MAGE typically increase with mean glucose, 

which makes it difficult to separate the effect of the intervention on glucose variability 

from the effect on the mean glucose itself. The CV, which is the SD divided by the mean 

glucose, has the advantage of being a metric relative to the mean, which makes it more 

descriptive of hypoglycaemic excursions than the SD alone105. 

Potential limitations using CGM glucose metrics as efficacy outcomes include sensor 

inaccuracies which might inflate or deflate closed-loop performance compared to 

actual glucose levels. However, overall accuracy of the latest sensor generations has 

tremendously improved compared to previous generations93,94,97,98,212. Additionally, 

potential sensor inaccuracy might be addressed in the study design by increasing 

sample size to account for greater variance of continuous outcome variables. Another 

issue is that outcome data might not be available for certain study participants due to 

sensor malfunction or limited sensor usage or in those who completely discontinue 

CGM. Redundant sensor technology using identical or differing sensing approach in 

study participants or additional blinded sensors in those who discontinue CGM might 

help mitigate these issues213. Alternatively, for short-duration inpatient trials, outcome 

measures based on frequent plasma or capillary glucose sampling might be an 

alternative. But this is not a feasible approach as far as home trials are concerned. 

Depending on the sampling frequency, a lot of information regarding glucose 

excursions might be lost. With respect to long-term studies, HbA1c could be used as an 

overall marker of metabolic control. Again, this is associated with a significant loss of 

information as regards actual glycaemic excursions.  
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Given the relatively short duration of the trials included in my thesis, and in line with 

above mentioned consensus statements and considerations, the time spent with 

glucose levels within the target range has been chosen as primary efficacy outcome in 

all studies. The target range was defined as glucose levels between 3.9 and 8.0mmol/l 

for overnight studies (Chapters 3 and 4), and 3.9 to 10.0mmol/l for day-and-night 

studies (Chapters 5 and 6). For the 12-week trial long enough to report meaningful 

results for HbA1c, changes in HbA1c levels were also analysed (Chapter 4). Other CGM-

based secondary outcomes included the times below and above target ranges, using a 

few severity thresholds for each level. Additionally, the coefficient of variation (CV) as 

the recommended primary measure of variability, as well as the standard deviation of 

glucose as the key secondary glycaemic variability measure were reported105. Safety 

outcomes for all trials included the frequency of severe hypoglycaemia and diabetic 

ketoacidosis episodes as well as the nature and severity of all other adverse events. 
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Table 2.2. List of transitional and home closed-loop studies in the paediatric population.  

Reference (year) 

Study population 

Age inclusion 
criterion 

Mean age ± SD 

N Study design Study setting 
Closed-loop 

system 
Comparator 

Duration of 
intervention 

Primary/co-primary outcome(s) 

DeBoer et al.185 

(May 2017) 

5–8 years 

Median age: 7 
12 

Randomised, two-

period crossover 
Research House/Hotel Single hormone SAP 

Day-and-night 

68 hours 

% of time in target range (3.9-10.0 mmol/l): 73% vs. 47%, 

CL vs. SAP (p < 0.001) 

Nimri et al.187 

(Apr 2017) 

10-65 years 

19.5±10.0 
75 

Randomised, two-

period crossover 
At home  Single hormone SAP 

Overnight 

4 nights 

% of time with sensor glucose <3.9 mmol/l: median 2.1 

vs. 2.6%, CL vs. SAP (p=0.004); % of nights with a mean 

overnight glucose level in range (3.9 to 7.8 mmol/l): 

median 75% vs. 50%, CL vs. SAP (p = 0.008). 

Spaic et al.193 

(Mar 2017) 

15-45 years 

Median age: 31 
30  

Randomised each 

night 
At home Single hormone PLGS 

Overnight 

42 nights 

% of time in  range (3.9-10.0 mmol/l): mean 78 vs. 71%, 

CL vs. PLGS (p<0.001) 

Sharifi et al.192 

(Dec 2016) 

> 14 years 

15.2± 1.6 
12 

Randomised, two-

period crossover 
At home  Single hormone SAP+TS 

Overnight 

4 nights 

% of time in overnight target range (3.9-8.0 mmol/l): ): 

61.7 vs. 64.9%, CL vs. SAP+TS (p=0.62) 

Tauschmann et al.191 

(Nov 2016)  

10-18 years  

14.6 ± 3.1 
12 

Randomised, two-

period crossover 
At home  Single hormone SAP 

Day-and-night 

21 days 

% of time in range (3.9 to 8.0 mmol/l): mean 54.4% vs. 

33.4%, CL vs. SAP (p<0.001) 

Ly et al.180 

(Aug 2016) 

10-35 years 

17.9 ± 5.5 
33  Diabetes Camp Single hormone SAP 

Day-and-night 

5 days 

% of time in target range (3.9 o 10.0 mmol/l): mean 90.3 

vs. 67.2%, CL vs. SAP (p<0.001) 

Tauschmann M et 

al.190 (Jan 2016) 

10-18 years 

15.4±2.6 years 
12 

Randomised, two 

period crossover 

Home without remote 

monitoring/supervision 
Single hormone SAP 

Day-and-night 

1 week 

% of time in target range (3.9-10mmol/l): mean 72% vs. 

53%, CL vs. SAP (p< 0.001) 

Ly TT et al.182 

(Jun 2016) 

10-35 years 

15.9±2.5 years 
21 

Randomised, 

crossover 
Diabetes camp Single hormone SAP 

Overnight 

Up to 6 days 

% of time in target range (3.9-8.3 mmol/l): median 66.4% 

vs. 50.6% (p=0.0004) 

Del Favero et al.184 

(Jun 2016) 

5-9 years 

7.6±1.2 years 
30 

Randomised, two 

period crossover 
Diabetes camp Single hormone SAP 

Day-and-night 

3 days 
% of time sensor glucose <3.9mmol/l and % of time in 

target range (3.9-10mmol/l): median 2.0% vs. 6.7%, CL vs. 
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SAP (p<0.001), and mean 56.8% vs. 63.1%, CL vs. SAP 

(p=0.022) 

Russell SJ et al.197  

(Mar 2016) 

6-11 years 

9.8±1.6 years 
19 

Randomised, two 

period crossover 
Diabetes camp Bi-hormonal  Insulin pump 

Day-and-night 

5 days 

Mean glucose and % of time sensor glucose <3.3mmol/l: 

mean 7.6 vs. 9.3mmol/l, CL vs. pump (p=0.00037) and 

mean 1.2% vs. 2.8% (p<0.0001) 

Thabit H et al.195 

(Sep 2015) 

6-18 years 

12.0±3.4 years 
25 

Randomised, two 

period crossover 

Home without remote 

monitoring/supervision 
Single hormone SAP 

Overnight 

12 weeks 

% of time in sensor target range (3.9-8mmol/l):  

mean 59.7% vs. 34.4% CL vs. SAP (p=0.004) 

Haidar et al. 

(Aug 2015) 

9-17 years 

13.3±2.3 years 
33 

Randomised, 

three period 

crossover 

Diabetes camp Bi-hormonal 

Single 

hormone, 

Insulin pump 

Overnight 

3 days 

% of time sensor glucose <4.0mmol/l: 

median 0% (bi-hormonal CL) vs. 3.1% (single hormone CL) 

(p=0.032) vs. 3.4% (conventional pump therapy) (p=0.005 

compared with bi-hormonal CL; p=0.32 compared with 

single hormone CL) 

Ly TT et al.183 

(Jun 2015) 

14-40 years 

18.6±3.7 years 
21 

Randomised, two 

group parallel  
Diabetes camp Single hormone SAP+LGS 

Day-and-night 

6 days 

% of time in sensor target range (3.9-10mmol/l): mean 

69.9% vs. 73.1% vs., CL vs. SAP+LGS (p = 0.580) 

Nimri R et al.186  

(Nov 2014) 

12-64 years 

21.2±8.9 years 
24 

Randomised, two 

period crossover 

Home with remote 

monitoring/supervision 
Single hormone SAP 

Overnight  

6 weeks  

% of time below 3.9mmol/l: median 2.5% vs. 5.2%, CL vs. 

SAP (p=0.02) 

Russell SJ et al.196 

 (Jun 2014) 

12-21 years 

16±3 years 
32 

Randomised, two-

period crossover 
Diabetes camp Bi-hormonal Insulin pump 

Day-and-night 

5 days 

Mean plasma glucose and % of time plasma glucose 

<3.9mmol/l: mean 7.7 vs. 8.7 mmol/l, CL vs. pump 

(p=0.004) and mean 6.1% vs. 7.6% (p=0.23) 

Ly TT et al.179  

(May 2014) 

10-35 years 

15.3±2.9 years 
20 

Randomised, 

crossover 
Diabetes camp Single hormone SAP 

Overnight 

5 – 6 days 

% of time in sensor target range (3.9-8.3mmol/l): median 

62% vs. 55%, CL vs. SAP (p =0.233) 

Hovorka et al.188 

(May 2014) 

12-18 years 

15.6±2.1 years 
 

Randomised, two-

period crossover 

Home without remote 

monitoring/supervision 
Single hormone SAP 

Overnight 

3 weeks 

% of time in target range (3.9-8mmol/l): median 68% vs. 

46%, CL vs. SAP (p< 0.001) 

Phillip M et al.178 

(Feb 2013) 

10-18 years, 

Mean age 

13.8±1.8 

56 
Randomised, two-

period crossover 
Diabetes camp Single hormone SAP One night 

Number of hypoglycaemic events (sensor glucose 

<3.5mmol/l for ≥ 10 consecutive minutes): median 7 vs. 22, 

CL vs. SAP (p=0.003)  
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3 Sensor operation duration and closed-loop 
efficacy (APCam09) 

3.1 BACKGROUND 

Glucose control during closed-loop application to a large extend depends on the 

accuracy and reliability of CGM systems. CGM accuracy and reliability have improved 

due to advances in sensor technology, data processing and calibration algorithms 

214,215. However, consistent glucose sensor function over the full lifetime of a sensor 

may be unattainable and sensors are least accurate in the 24-hour period immediately 

post-insertion compared to half-way through sensor life (say days 3 to 4) 216,217. This 

may relate to insertion trauma causing onset of an inflammatory response and tissue 

microhemorrhage which may resolve with time218-220. 

3.2 STUDY OBJECTIVES 

The purpose of the present study was to evaluate the effect of sensor life on closed-

loop performance comparing closed-loop efficacy and safety on day 1 of sensor 

insertion to day 3 to 4 of sensor insertion in young people with type 1 diabetes over an 

overnight period at a clinical research facility. We hypothesized that more accurate 

sensor performance as usually seen half-way through sensor life, could lead to better 

closed-loop performance as assessed by frequent plasma glucose measurements. 

3.3 RESEARCH DESIGN AND METHODS 

3.3.1 Study participants  

The study was conducted at the Wellcome Trust Clinical Research Facility at 

Addenbrooke’s Hospital, Cambridge, between May 2014 and April 2015. Children and 

adolescents aged 6-18 years were recruited from three paediatric diabetes clinics at 

Cambridge, London University College Hospital, and Peterborough. Eligibility criteria 

included type 1 diabetes (WHO criteria) for at least 12 months, insulin pump therapy 

for at least 3 months, glycated haemoglobin (HbA1c) below 97mmol/mol (11%) based 

on analysis from local laboratory within 3 months. Exclusion criteria included any 

physical or psychological disease likely to interfere with the normal conduct of the 
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study and data interpretation or current treatment with drugs likely to interfere with 

glucose metabolism. 

3.3.2 Study design 

An open label randomized two-period crossover study compared overnight closed-loop 

insulin delivery on day 1 of sensor insertion versus day 3 to 4 of sensor insertion (Figure 

3.1) Prior to study initialization, approval was sought and received from the local 

independent research ethics committee and the UK regulatory authority (Medicines & 

Health products Regulatory Agency). Participants aged ≥16 years and parents or 

guardians of participants aged <16 years signed informed consent; written assent was 

obtained from minors. 

 

 

Figure 3.1. Study design 

3.3.3 Study procedures 

Medtronic MiniMed Paradigm® Veo™ insulin pumps (MMT-554 or MMT-754) with 

second generation Enlite™ CGM sensors (Medtronic Minimed, Northridge, CA, USA) 

were used as study pump and continuous glucose monitoring systems (CGM). At 

recruitment, participants received training on real-time CGM component of the Veo 

system, and participants’ competency in using CGM was assessed and documented by 

the clinical investigators. No additional pump training was provided as all participants 

recruited for this trial had already been using Veo™ insulin pump prior to enrolment. 

CGM calibration followed manufacturer’s instructions using finger-stick glucose 
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measurements taken every 12 h on CONTOUR XT Meter (Bayer, Leverkusen, Germany) 

which was checked for accuracy by calibration fluid.  

Participants attended the clinical research facility for two overnight periods, 2 to 

6 weeks apart, with the identical study protocol performed on both occasions. On one 

occasion, the closed-loop system was informed by a glucose sensor inserted in the 

morning of the study visit, and on the other occasion study participants had been fitted 

with a CGM sensor 3 to 4 days prior to the study visit. The order of the interventions 

was random according to a computer-generated allocation sequence with permuted 

blocks (Figure 3.1). 

On each occasion, participants were admitted at 17:00 and stayed until 08:00 the 

following day (Figure 3.2). An intravenous cannula was placed for blood sampling 

starting at 18:00. Participants consumed an evening meal at 18:30 (74±27 g 

carbohydrates) and an optional bedtime snack at 21:00 (23±15 g carbohydrates). The 

meals and snacks were identical on the two occasions. Meals and carbohydrate content 

were chosen by the children and their families based on individual preferences and 

reflecting usual practice at home. Meals were accompanied by insulin boluses 

calculated using participants’ standard insulin pump bolus calculator settings and pre-

meal finger-stick glucose levels. Rapid acting insulin analogue aspart (Novo Nordisk, 

Bagsvaerd, Denmark) was used.  
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Figure 3.2. Schematic presentation of overnight study visits. Identical procedures were followed 
during both study visits. 

 

3.3.4 Closed-loop system 

The Amber system Android closed-loop platform employed an Android smartphone 

(Nexus 4, LG, South Korea) running a model predictive control algorithm (version 

0.3.30, University of Cambridge) embedded in user interface module and 

communicating with a Bluetooth to radiofrequency translator module linked to Veo 

pump (all Medtronic Minimed; Figure 3.3). Every 15 min, the control algorithm 

automatically initiated a new insulin infusion rate based on sensor glucose through 

wireless communication. The calculations utilised a compartment model of glucose 

kinetics describing the effect of rapid-acting insulin analogues and the carbohydrate 

content of meals on glucose levels. The control algorithm was initialized by 

downloading preprogrammed basal insulin doses from the pump. Additionally, 

information about participants’ weight and total daily insulin dose were entered at 

setup. No plasma glucose data were provided to the algorithm. 



3 Sensor operation duration and closed-loop efficacy (APCam09) 

47 

 

 

Figure 3.3. Amber closed-loop platform. 

 

3.3.5 Sampling and assays 

For the measurement of glucose and insulin concentration, venous blood samples were 

obtained every 30 minutes until 23:30, then hourly from 23:30 to 07:30. Plasma was 

immediately separated by centrifugation. Plasma glucose levels were determined in 

real time by YSI2300 STAT Plus analyser (Yellow Springs Instrument, Farnborough, UK) 

but were not used to inform the algorithm. Plasma insulin concentration was measured 

by immunochemiluminometric assay (IV2-001; Invitron Ltd, Monmouth UK) with an 

inter-assay variation of 7.1%, 2.4% and 7.1% at 89pmol/L, 488pmol/L and 873pmol/L, 

and an analytical sensitivity of 0.12pmol/L). 

3.3.6 Study outcomes 

The primary outcome was the time during closed-loop when plasma glucose levels 

were within the target range from 3.9 to 8.0 mmol/l in the overnight period from 22:30 

until 7:30 on the following day.  

Secondary outcomes included mean plasma glucose levels, glucose variability, time 

spent below and above the target range during observation period (22:30 to 07:30). All 

glucose outcomes were also compared with CGM sensor values. Glucose variability was 
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assessed by the standard deviation and the coefficient of variation. Hypoglycaemia 

burden was assessed by calculating the glucose area under the curve less than 3.5 

mmol/l. Insulin delivery amounts were reported as total overnight basal insulin 

delivery. Sensor accuracy for each study arm was assessed using paired sensor and 

plasma glucose points. The bias (sensor minus plasma value) and relative absolute 

difference (RAD) (absolute difference divided by the reference value, expressed as 

percentage) were computed for each pair. Numerical accuracy outcomes were 

calculated across the whole range of measured glucose levels, as well as for 

euglycaemic (3.9–10.0 mmol/l), hypoglycaemic (<3.9 mmol/l), and hyperglycaemic 

(>10.0 mmol/l) ranges stratified according to plasma glucose measurements. Clinical 

accuracy was assessed by Clarke error grid analysis. 

3.3.7 Statistical analysis 

The statistical analysis plan was agreed upon by investigators in advance. All analyses 

were undertaken on an intention-to-treat basis. The respective values obtained during 

the two overnight randomized interventions were compared using a least-square 

regression model. Glucose outcomes and insulin outcomes were adjusted for period 

effect. Rank normal transformation analyses were used for highly skewed endpoints. 

Outcomes were presented as mean ± SD for normally distributed values or as median 

(interquartile range) for non-normally distributed values. Accuracy outcomes were 

summarized using descriptive statistics. Efficacy and accuracy metrics were calculated 

by GStat software (University of Cambridge, version 2.2), and statistical tests were 

carried out using SPSS software (IBM Software, Hampshire, UK version 21). A 5% 

significance level was used to declare statistical significance for all comparisons. All 

p values are two-sided. 

3.4 RESULTS 

3.4.1 Participants 

We approached 15 patients with type 1 diabetes, 13 participants of which were 

consented (Figure 3.4). One participant dropped out during run-in (loss to follow-up). 
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12 subjects were randomised, completed both study periods, and provided data for 

analyses ( 

Table 3.1). 

 

Figure 3.4. Flow of participants through the trial. 

 

 

Table 3.1. Baseline characteristics of study participants. 

 
n=12 

(mean ± SD) 

Age (years) 16.7±1.9 

Gender (male/female) 9/3 

Weight (kg) 68.6±16.8 

BMI (kg/m2) 21.6±3.3 

BMI z-score 0.26±1.26 

Glycated haemoglobin at screening (%) 6.8±1.1 

Glycated haemoglobin at screening (mmol/mol) 66±10 

Duration of diabetes (years) 8.7±3.6 

Duration on pump (years) 6.0±2.7 
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Total daily insulin (U/kg/day) 0.90±0.29 

3.4.2 Overnight glucose control 

Study outcomes during the overnight closed-loop periods (22:30 to 07:30) are 

summarized in Table 3.2. Plasma glucose and sensor glucose profiles during closed-

loop on day 1 and day 3 to 4 after sensor insertion are shown in Figure 3.5. 

3.4.2.1 Plasma glucose outcomes 

Plasma glucose levels remained within the target range of 3.9 to 8.0 mmol/l (primary 

endpoint) for 58% and 56% of the time, respectively, when closed-loop was applied on 

day 1 or on day 3 to 4 (p=0.30, Table 3.2). No difference was found in the mean plasma 

glucose concentration (7.9±1.6 vs 7.8±1.8mmol/l, p=0.26). The proportion of time 

when plasma glucose was in hypoglycemic range (below 3.9mmol/l) and the area under 

the curve when plasma glucose was less than 3.5mmol/l were very low and comparable 

during the study periods. There was no difference in glucose variability between the 

study periods as measured by the standard deviation and coefficient of variation of 

plasma glucose.  

3.4.2.2 Sensor glucose outcomes 

The proportion of time that sensor glucose was in the target glucose range of 3.9 to 

8.0mmol/l during closed-loop was comparable on day 1 and day 3 to 4 of sensor use 

(73±25% vs 71±21%, p=0.72; Table 3.2). Similarly, there was no difference in mean 

sensor glucose levels, the proportion of time above and below the target range, and 

variability in glucose readings during the two overnight study periods (Table 3.2). 

3.4.2.3 Plasma vs sensor glucose 

Despite similar closed-loop outcomes between interventions, direct comparison of 

sensor glucose readings and plasma glucose derived indices showed marked 

differences (Table 3.2). The proportion of time spent in target range of 3.9 to 8.0 

mmol/l was significantly higher when calculations were based on sensor readings than 

for plasma glucose based calculations (p=0.014). Mean sensor glucose levels were 
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significantly lower than mean plasma glucose readings (p=0.010) as was time spent 

above target range (p=0.005). 

3.4.2.4 Insulin delivery 

Total overnight insulin delivery (22:30 to 07:30) did not differ between interventions 

(8.4 [6.0 to 14.4]U on day 1 of sensor insertion vs 11.3 [8.8 to 15.3]U on day 3 to 4, 

p=0.13), and resulted in similar plasma insulin levels (Figure 3.6). Variability in insulin 

delivery was similar during the two overnight visits (SD 0.7[0.6 to 1.0]U vs 0.8 [0.6 to 

0.9]U, p=0.84).  
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Table 3.2. Comparison of overnight glucose outcomes. Plasma glucose and sensor glucose outcomes during overnight (22:30 to 07:30) closed-loop (CL) on day 1 of sensor 
insertion vs day 3 to 4 of sensor insertion. Data are mean ± SD or median (interquartile range). 

 Plasma glucose Sensor glucose Plasma vs. sensor 
glucose 

 CL day 1 
(n=12) 

CL day 3 to 4 
(n=12) 

P value CL on day 1 
(n=12) 

CL on day 3 to 4  
(n=12) 

P value P value 

Time in target 3.9-8.0mmol/l (%)* 58±32 56±36 0.30 73±25 71±21 0.72 0.014 

Time in target 3.9-10.0 mmol/l (%) 87 (63 to 100) 92 (72 to 99) 0.30 90 (79 to 100) 92 (84 to 98) 0.33 0.34 

Mean glucose (mmol/l) 7.9±1.6 7.8±1.8 0.26 6.8±1.4 7.1±0.9 0.65 0.010 

Hypoglycemia        

Less than 3.9mmol/l (%) 0.0 (0.0 to 3.2) 0.0 (0.0 to 1.8) 0.93 1.0 (0.0 to 4.4) 0.0 (0.0 to 3.5) 0.41 0.30 

AUCday <3.5mmol/l (mmol/l x min) † 0.0 (0.0 to 5.1) 0.0 (0.0 to 0.0) 0.11 0.0 (0.0 to 3.6) 0.0 (0.0 to 0.0) 0.37 0.96 

Hyperglycemia        

Time spent at glucose levels (%)        

>8.0mmol/l 39±33 43±36 0.49 21±23 26±22 0.78 0.005 

>10.0 mmol/l 0 (0 to 37) 9 (0 to 27) 0.58 1 (0 to 15) 4 (0 to 12) 0.68 0.23 

Glucose variability        

SD of glucose (mmol/l) 1.2 (1.2 to 2.1) 1.4 (1.0 to 2.0) 0.26 1.5 (0.8 to 2.3) 1.4 (0.5 to 1.4) 0.29 0.92 

CV of glucose (%) 18 (15 to 28) 18 (14 to 23) 0.38 22 (13 to 34) 20 (14 to 25) 0.15 0.63 

* Primary endpoint: % of time with plasma glucose readings in target 3.9-8.0mmol/l 
† AUCday, Glucose area under curve below 3.5mmol/l per day 
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Figure 3.5. Overnight plasma and sensor glucose profiles. Median (interquartile range) of plasma 
glucose (top panel) and sensor glucose (bottom panel) during overnight closed-loop on day 1 of 
sensor insertion (solid red line and red shaded area) and closed-loop on day 3 to 4 of sensor 
insertion period (dashed black line and grey shaded area). The glucose range 3.9 to 8.0 mmol/l is 
indicated by horizontal dashed lines. 

 

 



3 Sensor operation duration and closed-loop efficacy (APCam09) 

54 

 

 

 

Figure 3.6. Overnight insulin infusion and plasma insulin profiles. Insulin infusion rates (top panel), 
and plasma insulin (bottom panel) are shown for closed-loop on day 1 of sensor insertion (black 
line) and closed-loop on day 3 to 4 of sensor insertion (grey line; median (IQR). The vertical dashed 
line indicates when closed-loop started and when the evening meal was consumed. 

3.4.3 Sensor accuracy 

Sensor accuracy evaluation is summarized in Table 3.3. On the closed-loop nights 

between 22:30 and 07:30, 126 sensor - plasma glucose pairs were analysed on day 1 

after sensor insertion, and 123 on day 3 to 4. Across the whole glucose range, 

numerical sensor accuracy expressed as mean ARD was 19.8±15.0% on day 1 and 

13.7±10.2% on day 3 to 4, respectively (separate sensor performance matrices for 

euglycaemic, hypo-and hyperglycaemic ranges are shown in Table 3.3). Mean bias for 

sensors on day 1 was -0.9±1.9mmol/l, and -0.7±1.4mmol/l on day 3 to 4, respectively. 

On day 1 of insertion the new generation Enlite sensor had 96.8% of measurements in 

Clarke Error Grid Zones A+B (Zone A, 61.9%; Zone B, 34.9%; Zone C, 0%; Zone D, 3.2%; 
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Zone E, 0%). On day 3 to 4, 98.3% of paired sensor data points were in Zones A+B (Zone 

A, 71.5%; Zone B, 26.8%; Zone C, 0%; Zone D, 1.6%; Zone E, 0%) (Table 3.3 and Figure 

3.7). 

Table 3.3. Numerical and clinical accuracy on day 1 compared to day 3 to 4 after sensor insertion 
(evaluated from 2230h to 0730h). 

 
Closed-loop on day 1 of 

sensor insertion 
(n=12) 

Closed-loop on day 3 to 4 of 
sensor insertion 

(n=12) 

Number of paired points 126 123 

Mean plasma glucose (mmol/l) 7.9±1.6 7.8±1.8 

Clarke error grid (%)   

Zone A 61.9  71.5 

Zone B 34.9 26.8 

Zone C 0 0 

Zone D 3.2 1.6 

Zone E 0 0 

Median bias (mmol/l) -0.6 (-1.6 to 0.4) -0.2 (-1.7 to 0.3) 

Mean bias (mmol/l) -0.9±1.9 -0.7±1.4 

Whole range (2.2–17.9mmol/l)   

Median AD (mmol/l) 1.1 (0.5 to 1.8) 0.8 (0.3 to 1.7) 

Median ARD (%) 16.3 (7.5 to 28.6) 12.6 (4.7 to 20.9) 

Mean AD (mmol/l) 1.5±1.5 1.1±1.0 

Mean ARD (%) 19.8±15.0 13.7±10.2 

Euglycaemia (3.9-8.0mmol/l)   

Number of paired points 71 (56%) 64 (52%) 

Median ARD (%) 12.9 (7.5 to 28.5) 8.5 (4.2 to 16.9) 

Hypoglycaemia (<3.9mmol/l)   

Number of paired points 8 (6%) 6 (5%) 

Median ARD (%) 37.0 (31.0 to 40.2) 8.5 (5.0 to 17.8) 

Hyperglycaemia (>8.0mmol/l)   

Number of paired points 47 (37%) 64 (43%) 

Median ARD (%) 20.0 (7.4 to 37.4) 18.6 (7.0 to 25.2) 

Bias - plasma glucose minus sensor glucose 
AD – absolute difference  
ARD – absolute relative difference 
Values are mean ± SD or median (interquartile range) 
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Figure 3.7. Clarke error grid of sensor and plasma glucose levels shown for closed-loop on day 1 of 
sensor insertion (blue dots) and closed-loop on day 3 to 4 of sensor insertion (yellow dots). Data 
collected from 2230h to 0730h are presented. 

 

3.5 DISCUSSION 

We document that overnight closed-loop glucose control using a model predictive 

control algorithm informed by sensor glucose on day 1 after insertion was similar to 

that achieved when closed-loop was initiated on day 3 to 4 of sensor life. Glucose levels 

were maintained between 3.9 and 8.0 mmol/l for a similar proportion of time, mean 

plasma glucose readings were comparable, and there were no differences in 

hypoglycaemia burden.  

We observed sensor accuracy comparable to previously reported data 100,216,217,221,222, 

including reduced accuracy on day 1 of sensor insertion100,216,217. Notwithstanding the 

reduced accuracy on day 1, sensor life did not affect performance of our closed-loop 

system. We hypothesise that this is related to the robustness of our model predictive 

algorithm, which mitigates against sensor inaccuracy and has been safely and 
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effectively used in a range of populations and settings including pregnant women, 

adults, adolescents and children in unsupervised home application190,195,223. 

Outcomes based on sensor readings significantly inflated closed-loop performance 

compared to plasma glucose outcomes. This is in contrast to findings from an overnight 

inpatient study with a similar design conducted in young children using another sensor  

make, when plasma and sensor based outcomes were comparable224. In the present 

study, sensor-reported glucose levels were significantly lower than plasma glucose 

values. A similar trend was described by Calhoun et al.217. In view of these results, 

previously reported glucose outcomes based on Enlite sensor, including to benefits of 

sensor-based therapy regimen (e.g. sensor-augmented pump therapy, low glucose 

suspension, closed-loop trials), should be interpreted with caution. 

The current study was limited by the relatively small sample size and short overnight 

intervention periods. A limited number of data points for sensor accuracy assessment 

were collected, particularly with respect to the hypoglycaemic range. The strengths of 

our study are the crossover randomized design, and the controlled environment to 

exclude potential confounders with respect to this particular research question. 

In conclusion, overnight closed-loop glucose control in adolescents informed by Enlite 

glucose sensor on day 1 or day 3 to 4 after sensor insertion was comparable. The model 

predictive controller appears to mitigate against sensor inaccuracies. 
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4 Home use of overnight closed-loop in children 
and adolescents (APCam08) 

4.1 BACKGROUND 

Following extensive studies under controlled laboratory settings223,225-228, 

investigations of closed-loop in transitional outpatient settings, incorporating remote 

monitoring and supervision by research staff in hotels229 or at diabetes camps178,179, 

have demonstrated improved glucose control and hypoglycaemia 

reduction178,179,196,198. However, first at-home unsupervised studies in adolescents 

have been limited to three to six weeks application of overnight close-loop 186,230,231. 

There has been no previous evaluation of unsupervised closed-loop in free-living 

settings in children aged 12 years and younger. 

4.2 STUDY OBJECTIVES 

In the following, I present results of a multicentre twelve-week trial using overnight 

closed-loop in children and adolescents aged six to 18 years in free-living home 

settings. The hypothesis was that extended use of closed-loop insulin delivery without 

remote monitoring is feasible, improves glycaemic control and minimises the risk of 

hypoglycaemia in these age groups. 

4.3 RESEARCH DESIGN AND METHODS 

4.3.1 Study participants 

Children and adolescents were recruited from paediatric diabetes centres at 

Addenbrooke’s Hospital, Cambridge, UK, University College London Hospital, London, 

UK, and Leeds Teaching Hospital, Leeds, UK. Participants were at least six years of age 

and had been on insulin pump therapy for at least 3 months with good knowledge of 

insulin self-adjustment and carbohydrate counting, had glycated haemoglobin level 

below 86mmol/mol (10%), and were willing to use a closed-loop system overnight at 

home. Female participants of childbearing age had a negative urine human chorionic 

gonadotrophin pregnancy test at screening. The exclusion criteria included total daily 

insulin dose greater than 2 IU kg/day or less than 10 IU/day, recurrent incidents of 
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severe hypoglycaemia as defined by the International Society for Pediatric and 

Adolescent Diabetes in preceding six months (adolescents: severe hypoglycaemia is 

defined as an event requiring assistance of another person to actively administer 

carbohydrates, glucagon, or take other corrective actions including episodes of 

hypoglycaemia severe enough to cause unconsciousness, seizures or attendance at 

hospital; children: severe hypoglycaemia is defined as an event associated with severe 

neuroglycopenia usually resulting in coma or seizure and requiring parenteral therapy 

– glucagon or intravenous glucose), untreated celiac disease, history of clinically 

significant nephropathy, neuropathy or proliferative retinopathy as judged by the 

investigator, and on medication known to have significant interference with glucose 

metabolism, such as systemic corticosteroids, as judged by the investigator. 

The study protocol was approved by an independent research ethics committee, and 

received approval from regulatory authority in the UK (Medicines & Health products 

Regulatory Agency).  

Participants aged ≥16 years and parents or guardians of participants aged <16 years 

signed informed consent; written assent was obtained from minors. The safety aspects 

of both studies were overseen by an independent Data Monitoring and Ethics 

Committee.  

4.3.2 Study design 

The study adopted an open label multicentre crossover randomized controlled design 

(see Figure 4.1). Following training on use of study insulin pump (Dana R Diabecare, 

Sooil, Seoul, South Korea) and CGM device (FreeStyle Navigator II, Abbott Diabetes 

Care, Alameda, California, USA), participants underwent a 2- to 8-week run-in period. 

Compliance on use of study pump and continuous glucose monitor for at least 10 days 

in the last 2 weeks of the run-in period were assessed prior to randomisation. 

All participants were randomly assigned to twelve-weeks of automated closed-loop 

insulin delivery during the intervention period. The treatment periods were separated 

by a three to four-week washout during which they could continue to wear the 
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continuous glucose monitor and the study insulin pump and during which their 

standard pump settings were applied. 

 

Figure 4.1. Study design 

4.3.3 Study procedures 

After consent, all participants and their caregivers were trained on the use of study 

pump and the study CGM device by experienced pump educators. Identical study 

insulin pump and CGM device were used during the two treatment periods. Each 

participants' usual basal insulin settings, insulin carbohydrate ratios and correction 

factors were programmed into the study pump. Participants’ and caregivers’ 

competency in using the study devices were assessed and documented by the 

respective pump educators. Additional device training was provided as required. 

Participants who were competent in using the study devices then underwent a 

minimum of a two-week run-in period. Data obtained from CGM device during run-in 
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was utilized for therapy optimisation. Adjustments of insulin therapy were carried out 

by members of the research team together with subjects’ treating clinicians and 

specialist diabetes nurses. There was no written optimisation curriculum including 

formal tests to assess the adequacy of basal and bolus setup of participants’ usual 

insulin pump therapy. At the end of the run-in period, compliance of study pump and 

the study continuous glucose monitoring device use were assessed. Those who had at 

least 12 days’ worth of continuous glucose monitoring data were eligible to be 

randomized.  

Randomization to the order of the two study interventions (closed-loop and control) 

was performed using a permuted block randomisation stratified by centre using a 

computer-generated random code. Masking was not applied. 

On the first day of the closed-loop period, a training session on the use of the closed-

loop system was provided by the research team at the participants’ homes or at the 

clinical research facility. The session included training on connection and disconnection 

of closed-loop system, switching between closed-loop and usual pump therapy, 

responding to alarms and calibrating the system during the closed-loop mode. At the 

end of the training visit, competency in the use of the closed-loop system was assessed 

by the study team and blood samples for glycated haemoglobin were drawn and sent 

to the laboratory for analysis. Participants were instructed to initiate the system at 

home following their evening meal or at bedtime, and to discontinue it before 

breakfast the next morning. Participants used the closed-loop system at home without 

supervision for a total duration of 12 weeks. All participants were provided with a 24-

hour telephone helpline to contact the study team in the event of any technical issues.  

During the 12-week home study phase, standard local hypoglycaemia and 

hyperglycaemia treatment guidelines were followed. Participants were not restricted 

in their dietary intake or daily activities including physical activity. The application of 

the closed-loop system by participants during the trial was not limited to use within 

the UK and international travel was allowed. 
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Participants had identical planned contact with the study team during the two 

treatment periods. This included weekly phone or email contacts, and monthly study 

visits for data download, either conducted at the local hospital clinic or arranged at 

home/office/other meeting place according to the subjects’ convenience. Each study 

intervention period lasted 12 weeks, with a 3-to 4-week washout period. Participants 

were allowed to continue to wear the study pump applying their standard pump 

settings, and the study continuous glucose monitoring device could be used as part of 

their standard diabetes management during the washout period.  Blood sample was 

drawn for HbA1c analysis at the beginning and the end of each study intervention. 

HbA1c measurements for the children and adolescents study were performed centrally 

at Cambridge, UK.  

4.3.4 Closed-loop system  

The FlorenceD2W closed-loop system (University of Cambridge, Cambridge, UK) used 

in the study comprised a model predictive control algorithm on a tablet computer 

(Latitude 10, Dell, TX, USA), which was linked by cable to the continuous glucose 

monitoring receiver (FreeStyle Navigator II, Abbott Diabetes Care, Alameda, CA, USA). 

The tablet communicated with the study pump (Dana R Diabecare, Sooil, Seoul, South 

Korea) via Bluetooth wireless communication (see Figure 4.2). 

Every 12 minutes, the control algorithm calculated an insulin infusion rate which was 

automatically sent to the study insulin pump. The control algorithm was initialised 

using pre-programmed basal insulin delivery downloaded from the study pump. 

Additionally, information about participant's weight and total daily insulin dose were 

entered at setup. During closed-loop operation, the algorithm adapted itself to the 

respective participant. The treat-to-target control algorithm aimed to achieve glucose 

levels between 5.8 and 7.3mmol/l and adjusted the actual level depending on fasting 

versus postprandial status and the accuracy of model-based glucose predictions. 

Control algorithm version 0.3.30 was used (University of Cambridge, Cambridge UK). 
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Figure 4.2. FlorenceD2W closed-loop system. 

 

The continuous glucose monitoring receiver provided hypoglycaemia and 

hyperglycaemia alarms, the insulin pump provided standard alarms related to insulin 

delivery issues, and the smartphone alerted the user about aspects related to closed-

loop operation such as when closed-loop was started, stopped or terminated. The 

tablet also visualized sensor glucose, insulin delivery, carbohydrate content, and other 

relevant data. 

Participants were trained to perform a calibration check before starting closed-loop in 

the evening. If sensor glucose was above fingerstick glucose by more than 3 mmol/l, 

participants were advised to recalibrate the continuous glucose monitoring device. . If 

sensor glucose became unavailable, pre-programmed insulin delivery was 

automatically restarted within 30 minutes or within 1 hour in case of other failures.  

4.3.5 Study outcomes 

The primary outcome was the proportion of time when nocturnal sensor glucose was 

in the target glucose range between 3.9 mmol/l and 8.0 mmol/l during the 12 week-

long interventions.  

Secondary outcomes included glycated haemoglobin, mean sensor glucose levels, 

glucose variability, time spent below and above the relevant glucose ranges during day-
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and-night, daytime and overnight periods. Daytime was defined as between 08:00 and 

midnight; nighttime was classified as between midnight and 08:00. Glucose variability 

was assessed by the standard deviation and the coefficient of variation of sensor 

glucose. Hypoglycaemia burden was assessed by calculating the glucose sensor area 

under the curve less than 3.5 mmol/l. Insulin delivery amounts were reported as total 

daily, bolus and basal insulin doses, as well as total daytime and overnight insulin doses. 

Sensor glucose use and closed-loop use were evaluated. 

4.3.6 Assays 

C-peptide measurements were performed centrally in Swansea using 

chemiluminescence immunoassay (IV2-004; Invitron Ltd, Monmouth UK). Inter-assay 

variation was 7.8%, 4.3% and 6.7% at 268pmol/L, 990pmol/L and 1862pmol/L 

respectively. Analytical sensitivity for the C-peptide assay was 5pmol/L. Glycated 

haemoglobin was measured centrally in Cambridge using IFCC compliant ion exchange 

high performance liquid chromatography (G8 HPLC Analyzer, Tosoh Bioscience Inc., CA, 

USA; interassay CVs 1.3% at 31.2mmol/mol, 0.8% at 80.5mmol/mol).  

4.3.7 Statistical analysis 

The statistical analysis plan was agreed upon by investigators in advance. The analyses 

were performed on an intention-to-treat basis. Efficacy and safety data from all 

randomized participants with or without protocol violation including dropouts and 

withdrawals were included in the analyses. The respective values obtained during the 

12-week randomized interventions contrasting the closed-loop system with the sensor 

augmented pump therapy were compared using a regression model that accounts for 

period effect. Residual values from the regression model were examined for an 

approximate normal distribution. Log transformed analyses were used for highly 

skewed values. Values were presented as mean±SD or as median (interquartile range) 

for each treatment (closed-loop or control). We calculated outcomes with GStat 

software (University of Cambridge, version 2.2). We did analyses with SPSS (IBM 

Software, Hampshire, UK version 21). A 5% significance level was used to declare 

statistical significance for all comparisons. All p values are two-sided. 
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4.4 RESULTS 

4.4.1 Participants 

29 participants were screened. 25 eligible participants were randomized. One 

participant voluntarily withdrew during the washout phase due to issues unrelated to 

closed-loop (see Figure 4.3). Baseline characteristics of study participants are shown in 

Table 4.1. 

 

Figure 4.3. Study flow diagram.  

Table 4.1. Baseline characteristics of study participants. 

 n=25* 
(mean ± SD) 

Age (years) 12.0±3.4 

Gender (male/female) 14/11 

Weight (kg) 43.9±16.6 

BMI (kg/m2) 18.9±3.5 

BMI z-score 0.3±1.0 

Glycated haemoglobin at screening (%) 8.1±0.9 

Glycated haemoglobin at screening (mmol/mol) 65±10 

Duration of diabetes (years) 4.7±2.6 

Duration on pump (years) 3.3±1.8 

Total daily insulin (U/kg/day) 0.89±0.24 

*All C-peptide negative at non-hypoglycaemia (C-peptide less than 33pmol/l at fingerstick glucose equal or greater 
than 4mmol/l) except for 4 subjects with random c-peptide of 40, 40, 170, 530 (2 missed samples) 

4.4.2 Outcomes 
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The primary and secondary glucose endpoints are shown in Table 4.2. The proportion 

of nocturnal time when glucose was in target range increased significantly during 

closed-loop intervention compared with control by mean of 24.5% (95% CI 20.6% to 

28.4%, p<0.001; primary endpoint). Closed-loop significantly reduced overnight mean 

glucose (p<0.001, Figure 4.4) and time spent above target (p<0.001) compared to 

control. Proportion of time when sensor glucose was in hypoglycaemia (below 3.9 

mmol/l and 2.8 mmol/l) and the area under the curve when sensor glucose was less 

than 3.5 mmol/l were low and comparable during the study periods. Closed-loop 

significantly reduced glucose variability measured by standard deviation of overnight 

sensor glucose and coefficient of variation between nights.  

Table 4.2. Overnight glucose control (00:00 to 08:00) during closed-loop and control period. 

 Closed-
loop 

(n=25) 

Control 
(n=24) 

Paired 
difference*/ 

Paired ratio** 
(95% CI) 

P 
value 

Time spent at glucose level (%)      

3.9 to 8.0 mmol/l† 59.7 ± 11.5 34.4 ± 11.0 24.5 (20.6 to 

28.4) 

<0.001 

>8.0 mmol/l 37.1 ± 12.1 60.7 ± 13.2 -22.8 (-27.9 to -

17.7) 

<0.001 

< 3.9 mmol/l 2.2 (1.8, 4.5) 3.5 (1.2, 5.9) 0.9 (0.6 to 1.5) 0.69 

<2.8 mmol/l 0.3 (0.1, 0.5) 0.6 (0.1, 1.1) 0.7 (0.3 to 1.5) 0.19 

AUC < 3.5 mmol/l (mol/l x min)‡ 7.6 (3.0, 16.5) 16.4 (3.9, 31.4) 0.8 (0.3 to 1.9) 0.57 

Mean glucose (mmol/l) 8.1 ± 1.2 9.8 ± 1.6 -1.6 (-2.1 to -1.2) <0.001 

SD of glucose (mmol/l) 3.3 ± 0.9 3.9 ± 0.7 -0.6 (-0.9 to -0.3) <0.001 

CV of glucose within days (%) 40.4 ± 6.8 40.6 ± 7.0 0.2 (-3.7 to 4.0) 0.95 

CV of glucose between days (%) 27.6 ± 8.0 33.3 ± 6.5 -5.4 (-9.4 to -1.4) 0.013 

HbA1c (mmol/mol)     

HbA1c pre-intervention 62±8 62±7 - - 

HbA1c post-intervention 60±12 63±7 -3 (-7 to 1) 0.17 

Data shown are mean ± SD or median (IQR) 
* Normally distributed data are presented as mean difference of closed-loop minus control, with 95% CI for mean. 
Positive value indicates measurement was higher during closed-loop period compared with control 
** Non-normally distributed data are presented as ratio of closed-loop over control, with 95% CI for ratio. Value 
greater than unity indicates measurement was higher during closed-loop period compared with control 
† Primary endpoint 
‡ AUCday, Glucose area under curve below 3.5mmol/l per day 
 

Following optimisation of sensor-augmented pump therapy during the run-in phase 

(HbA1c at recruitment: 65±10mmol/mol; HbA1c pre-intervention: 62±8 closed-loop, 



4 Home use of overnight closed-loop in children and adolescents (APCam08) 

68 

62±7mmol/mol), there was no statistically significant difference between groups in 

HbA1 at the end of the intervention periods (p=0.17), but a trend to further reduction 

of HbA1c achieved by overnight closed-loop insulin delivery compared to control 

could be observed (Table 4.2). 

 

Figure 4.4. Individual values of overnight mean sensor glucose during overnight closed-loop 
study. The size of the bubble indicates the proportion of overnight time spent with low glucose 
below 2.8 mmol/l. 

 

Twenty-four-hour sensor glucose and insulin delivery profiles (median and 

interquartile range) are shown in Figure 4.5. Glucose endpoints calculated over the 

24-hour period are shown in Table 4.3. Application of overnight closed-loop 

significantly reduced 24-hour mean glucose (p=0.012) and increased proportion time 

spent within target range from 3.9 to 10 mmol/l (p<0.001). Closed-loop reduce the 

relative risk of time spent below 2.8 mmol/l over the 24h-period (p=0.028). The 

burden of hypoglycaemia during 24-hour period as measured by the area under the 

curve when sensor glucose was less than 3.5 mmol/l was significantly lower during 

closed-loop period (p=0.029). 
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Figure 4.5. Sensor glucose and insulin profiles. Median (interquartile range) of sensor glucose (top 
panel) and insulin delivery (bottom panel) during closed-loop (solid red line and red shaded area) 
and control period (dashed black line and grey shaded area). 
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Table 4.3. Comparison of 24-hour glucose outcomes (midnight to midnight) during overnight closed-
loop and control period. 
 

 Closed-loop 
(n=25) 

SAP 
(n=24) 

Paired 
difference*/ 

Paired ratio** 
(95% CI) 

P value 

Time spent at glucose level (%)     

3.9 to 10.0 mmol/l 61.2 ± 11.9 51.6 ± 11.8 8.8 (6.1 to 11.6) <0.001 

>10.0 mmol/l 36.0 ± 12.5 44.5 ± 12.7 -7.7 (-10.8 to -4.5) <0.001 

< 3.9 mmol/l 3.1 (1.7, 3.5) 3.8 (1.4, 5.3) 0.8 (0.6 to 1.1) 0.23 

< 2.8 mmol/l 0.2 (0.1, 0.4) 0.6 (0.1. 0.7) 0.4 (0.2 to 0.9) 0.028 

AUC < 3.5 mmol/l (mmol/l x min)† 8.1 (4.1, 12.3) 12.3 (5.1, 21.5) 0.6 (0.4 to 0.9) 0.029 

Mean glucose (mmol/l) 9.5 ± 1.6 10.1 ± 1.5 -0.5 (-0.9 to -0.1) 0.012 

SD of glucose (mmol/l) 4.3 ± 1.0 4.3 ± 0.8 0.0 (-0.2 to 0.2) 0.96 

CV of glucose within days (%) 44.6 ± 4.8 43.0 ± 5.1 1.9 (0.2 to 3.6) 0.039 

CV of glucose between days (%) 20.3 ± 4.7 21.6 ± 3.9 -1.1 (-3.1 to 0.9) 0.29 

Data shown are mean ± SD or median (IQR) 
* Normally distributed data are presented as mean difference of closed-loop minus control, with 95% CI for mean. 
Positive value indicates measurement was higher during closed-loop period compared with control 
** Non-normally distributed data are presented as ratio of closed-loop over control, with 95% CI for ratio. Value 
greater than unity indicates measurement was higher during closed-loop period compared with control 
† AUCday, Glucose area under curve below 3.5mmol/l per day 

 

Daytime (08:00 to midnight) endpoints comparison is shown in Table 4.4. Mean 

glucose, proportions of time spent within, above, and below target range (3.9 to 

10mmol/l) were comparable during the study periods. The area under the curve when 

sensor glucose was less than 3.5mmol/l (p=0.031) and the time spent below 2.8mmol/l 

(p=0.028) was significantly lower during closed-loop period. This was mainly attributed 

to 79% lower relative risk of time spent below 2.8mmol/l (95% CI 34% to 93%, p=0.010) 

compared to control during the post-breakfast period (08:00 to 12:00). 
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Table 4.4. Comparison of daytime glucose outcomes (08:00 to midnight) during overnight closed-loop 
and control period. 

 Closed-loop 
(n=25) 

SAP 
(n=24) 

Paired 
difference*/ 

Paired ratio** 
(95% CI) 

P value 

Time spent at glucose level (%)l     

3.9 to 10.0 mmol/l 54.0 ± 12.8 51.3 ± 11.7 1.9 (-0.7 to 4.5) 0.18 

>10.0 mmol/l 43.4 ± 13.7 45.3 ± 12.8 -1.0 (-4.0 to 2.0)_ 0.56 

< 3.9 mmol/l 2.5 (1.6, 3.6) 2.9 (1.3, 5.0) 0.8 (0.6 to 1.1) 0.12 

<2.8 mmol/l 0.2 (0.4, 0.6) 0.4 (0.2 to 0.7) 0.4 (0.2 to 1.1) 0.028 

AUC < 3.5 mmol/l (mmol/l x min)† 6.5 (3.2, 11.4) 9.8 (3.9, 22.8) 0.6 (0.4 to 1.0) 0.031 

Mean glucose (mmol/l) 10.2 ± 1.8 10.3 ± 1.6 0.1 (-0.3 to 0.5) 0.69 

SD of glucose (mmol/l) 4.5 ±1.0 4.5 ± 0.8 0.1 (-0.1 to 0.3) 0.36 

Within days CV of glucose (%) 43.7 ± 4.7 43.6 ± 5.0 0.3 (-0.9 to 1.6) 0.60 

Between days CV of glucose (%) 23.4 ± 5.0 23.6 ± 4.6 -0.3 (-2.2 to 2.1) 0.97 

Data shown are mean ± SD or median (IQR) 
* Normally distributed data are presented as mean difference of closed-loop minus control, with 95% CI for mean. 
Positive value indicates measurement was higher during closed-loop period compared with control 
** Non-normally distributed data are presented as ratio of closed-loop over control, with 95% CI for ratio. Value 
greater than unity indicates measurement was higher during closed-loop period compared with control 
† AUCday, Glucose area under curve below 3.5mmol/l per day 

 

Improved glycaemic control, particularly overnight, was achieved during closed-loop 

without increasing total overnight insulin dose (p=0.10, Table 4.5). Similarly, daytime 

insulin delivery and total daily insulin dose were comparable during the two 

interventions (Table 4.5). Overnight closed-loop was operating over a median of 

9.3hours (7.7 to 10.6) per day. Participants wore the study continuous glucose monitor 

for a median of 22.1hours (21.3 to 22.8) per day during closed-loop, and for a median 

of 20.3hours (18.1 to 22.0) per day during control period.  
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Table 4.5. Insulin delivery overnight (midnight to 08:00), during the day (08:00 to midnight) and over 
24 hours (midnight to midnight). 

 Closed-loop 

(n=25) 

SAP 

(n=24) 

Paired 
difference*/ 

Paired ratio** 
(95% CI) 

P value 

Overnight (00:00 to 
08:00) insulin (U) 

7.6 
(5.0 to 12.5) 

7.7  
(5.0 to 12.3) 

1.05 
(0.99 to 1.11) 

0.10 

Daytime (08:00 to 
00:00) insulin (U) 

36.3 
(16.5 to 42.8) 

29.7 
(17.9 to 45.5) 

1.00 
(0.95 to 1.05) 

0.92 

Total daily insulin 
(U/day) 

41.4±20.3 40.9±20.6 0.3 
(-1.5 to 2.0) 

0.79 

Total bolus insulin 
(U/day) 

18.8  
(13.4 to 33.2) 

20.4 
(14.0 to 37.6) 

0.91 
(0.86 to 0.97) 

0.008 

Total basal insulin 
(U/day) 

18.5±10.0 16.1±9.6) 2.2 
(1.6 to 2.8) 

<0.001 

Data shown median (IQR) 
* Normally distributed data are presented as mean difference of closed-loop minus control, with 95% CI for mean. 
Positive value indicates measurement was higher during closed-loop period compared with control 
** Non-normally distributed data are presented as ratio of closed-loop over control, with 95% CI for ratio. Value 
greater than unity indicates measurement was higher during closed-loop period compared with control 

4.4.3 Adverse events 

Three serious adverse events unrelated to study devices occurred in this trial. One 

participant during closed-loop was hospitalized due to a viral gastroenteritis receiving 

rehydration therapy. Two episodes of severe hypoglycemia (hypoglycaemic seizures) 

not attributable to control algorithm insulin advice occurred in one and the same 

participant during the closed-loop period. No hospitalisation took place. On both 

occasions closed-loop was not operational when the event occurred, and the 

participant was receiving own standard insulin pump therapy insulin rate. The first 

event happened in the evening before the closed-loop system was set-up and started. 

When regaining consciousness again, hypoglycemia was treated orally by paramedics, 

glucose levels normalised and full clinical recovery ensued. The second event happened 

mid-morning. Post-hoc analysis identified that closed-loop had been interrupted about 

three hours prior to the event. The participant’s mother was woken up by the low 

sensor glucose alarm, and started to treat the hypoglycemia episode orally, when 

tonic-clonic activity started. The mother then proceeded to administer intramuscular 

glucagon. The seizure activity ceased and glucose level normalised. There were no long-
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term sequelae, and no further medical attention was needed. Details of all adverse 

events are provided in Table 4.6. 

Table 4.6. List of adverse events. 

 Run-in 
period 

Closed-loop 
period 

Open-loop 
period 

Washout 
period 

Respiratory tract infections - - - 1 

Fractured finger - 
1 - 

- 

Sensor insertion site inflammation - 1 - - 

Ketonaemia related to intercurrent 
illness 

- 2 - - 

Hyperglycemia related to infusion set 
occlusion 

- 2 - - 

Severe hypoglycemia - 2 - - 

Hospitalization due to gastroenteritis 1 - - - 
 

4.5 DISCUSSION 

Our findings show the feasibility, safety, and efficacy of twelve-week overnight 

application of unsupervised closed-loop insulin delivery in children and adolescents. 

Overnight closed-loop use significantly increased time when nocturnal sensor glucose 

was within target range and reduced mean glucose. Extended benefits from overnight 

closed-loop use in children and adolescents were seen over the daytime and full 24-

hour-period including reduced time spent with sensor readings in significant 

hypoglycaemia (below 2.8mmol/l) and reduced burden of hypoglycaemia, which was 

mainly accredited to the post-breakfast period. 

Hypoglycaemia presents a challenge and limitation to intensive insulin therapy in 

type 1 diabetes232. The advent of threshold-suspend pump therapy140 and more 

recently predictive low glucose suspend147 may reduce the burden of hypoglycaemia. 

However, these approaches are not designed to step up insulin delivery and do not 

address the issue of hyperglycaemia. The advantage of a closed-loop system is the 

finely-tuned instantaneously responsive modulation of insulin delivery both below and 

above the pre-set pump regimen, allowing for improvements in time spent in target 

glucose range and lowering of mean glucose without increasing time spent in 

hypoglycaemia.  
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In spite of improvements in glycaemic control during the run-in period, a trend towards 

further reduction in glycated haemoglobin was achieved following overnight closed-

loop use. Closed-loop achieved more consistent glucose values despite high night-to-

night variability in insulin requirements. This explains the reduction in glucose 

variability observed between nights.  

The current results build upon our experience and previous findings from shorter trials 

of unsupervised closed-loop studies during free daily living230,231,233. Other closed-loop 

studies in the outpatient or home setting have been performed over a shorter duration 

and under remote monitoring or close supervision183,186,234. Adults and adolescents 

using a dual-hormone (insulin and glucagon) closed-loop system in an outpatient 

setting for five days had reduction in mean sensor glucose level compared to standard 

pump therapy, with significant reduction in percentage time spent below 3.9mmol/l in 

adults but not adolescent participants196. Compared to insulin-alone closed-loop, 

children and adolescents using a dual-hormone closed-loop system for three nights at 

a diabetes camp had significantly reduced nocturnal hypoglycaemia events and time 

spent below 3.9 mmol/l with comparable mean sensor glucose levels198.  

The strength of our studies is the multicentre design allowing safety and efficacy to be 

evaluated over wider participant demographic, thus supporting generalisability. The 

studies were performed without remote monitoring or close supervision, thereby 

providing an opportunity to assess the real-world use and applicability of a novel 

technology. We did not restrict participants’ dietary intake, and after the initial two 

weeks physical activity or geographical movements were also permitted. Participants 

were allowed to travel and use the system when driving or when abroad. The 

comparator was ‘state-of-the-art’ sensor augmented insulin pump therapy. A 

crossover design was adopted, which had the benefit of enabling each participant to 

act as his/her own control; confounding period or carry-over effects were not detected. 

Sensor glucose wear in both groups was high and comparable (>20 hours per day) 

between study periods. The study was limited by the number of devices each 

participant had to use. Technological progress may allow further integration of devices 

and reduce this burden.  

https://www.google.com/search?client=firefox-a&hs=h7B&rls=org.mozilla:en-US:official&channel=sb&q=generalizability&spell=1&sa=X&ei=boUIU-KMD4GShQeQ9YHgBQ&ved=0CCMQvwUoAA
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In conclusion, we demonstrated that extended use of overnight closed-loop at home 

over twelve weeks during free daily living without supervision is feasible in children 

and adolescents with type 1 diabetes. Improvements in glucose control and reductions 

in hypoglycaemia burden were observed. Our results pave the way for adoption of 

closed-loop technologies in clinical practice. 
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5 Home use of day-and-night closed-loop in 
adolescents (Dan04 studies) 

5.1 BACKGROUND 

The majority of adolescents and young adults with type 1 diabetes are poorly 

controlled54,235,236 accelerating the onset of early micro- and macrovascular 

complications 45,46. Diabetes management in adolescence is complicated by 

psychological and physiological changes accompanying puberty237. Apart from 

hypoglycemia232, reduced therapy adherence is a major obstacle to achieving tight 

glucose control238. Diabetic ketoacidosis is more common30,239, omission of or delayed 

insulin boluses with meals or snacks is widespread238,240, and discontinuation of insulin 

pump therapy is highest among adolescents241. Sensor-augmented insulin pump 

therapy113 and threshold-suspend features may alleviate the burden of hypoglycaemia 

and improve outcomes141,147, but acceptance and use of continuous glucose 

monitoring systems is notably reduced amongst teenagers108,113. Furthermore, 

threshold-suspend and predictive low glucose management insulin pump therapy do 

not address the issue of hyperglycaemia, the major challenge of diabetes management 

in adolescence. 

The artificial pancreas (closed-loop systems) modulates insulin delivery below and 

above pre-set insulin pump delivery in response to real-time sensor glucose levels and 

can potentially reduce both hypo- and hyperglycaemia. Following evaluations in 

children and adolescents in laboratory settings 156,173,174 and diabetes camps 196-198, first 

at-home studies of up to three-month applications of overnight closed-loop have 

demonstrated improved glucose control and reduced the burden of hypoglycaemia 

188,242,243.  However, prior to below mentioned trials, home studies of unsupervised day-

and-night closed-loop application have been restricted to adults only243,244. There has 

been no previous evaluation of unsupervised day-and-night closed-loop in free-living 

settings in adolescents aged 10 to 18 years. 
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5.2 STUDY OBJECTIVES 

In this chapter, I summarise the results of two home trials conducted in adolescents 

with type 1 diabetes: The Dan04 studies. Day-and-night closed-loop was applied over 

7-days (Dan04 Study 1), and 21-days, respectively (Dan04 Study 2). We hypothesized 

that day-and-night use of hybrid closed-loop insulin delivery without remote 

monitoring would be feasible, safe and could improve glycaemic control compared to 

sensor-augmented pump therapy in this population. 

5.3 RESEARCH DESIGNS AND METHODS 

5.3.1 Study participants 

Study participants for both trials were identified from paediatric diabetes clinics at 

Addenbrooke’s Hospital (Cambridge, United Kingdom) and University College London 

Hospital (London, United Kingdom). Study 1 was conducted between September and 

November 2014, Study 2 was carried out between May and July 2015. Key inclusion 

criteria were age 10-18 years, diagnosis of type 1 diabetes, treatment with insulin 

pump therapy for at least three months, willingness to perform at least four fingerstick 

glucose measurements per day, and HbA1c ≤11% (97mmol/mol). Exclusion criteria 

included established nephropathy, neuropathy, or proliferative retinopathy, total daily 

insulin dose ≥2.0 U/kg or <10 U/day, significant hypoglycaemia unawareness, more 

than one incident of severe hypoglycaemia within 6 months prior to enrolment, more 

than one episode of diabetic ketoacidosis within 12 months prior to enrolment, 

pregnancy and breast-feeding. Participants aged ≥16 years and parents or guardians of 

participants aged <16 years signed informed consent; written assent was obtained 

from minors before study related activities. 

Prior to initialization of the studies, approval was sought and received from the local 

independent research ethics committee and the UK regulatory authority (Medicines & 

Health products Regulatory Agency). An independent Data Safety and Monitoring 

Board oversaw the studies and was informed of all unanticipated adverse events that 

occurred during the studies. 
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5.3.2 Study designs  

Both studies adopted an open-label prospective single centre randomized crossover 

design contrasting automated closed-loop insulin delivery and sensor-augmented 

pump therapy (Figure 5.1). Study intervention periods lasted one week (Study 1) and 

three weeks (Study 2) each with a 1 to 4-week washout period. The studies were 

performed under free-living home conditions without remote monitoring or 

supervision by research staff, and participants went about their usual daily routines 

and activities. The participants were free to consume any meals of their choice and no 

restrictions were imposed on travelling or moderate exercise. All participants had 

access to a 24-hour telephone helpline to contact the study team in the event of study-

related issues. 

 

 

Figure 5.1. Study designs (Study 1 and Study 2).  

  

5.3.3 Study procedures 

Blood samples for baseline HbA1c and non-hypoglycaemia C-peptide levels were taken 

at enrolment in both trials. At the start of the run-in phases, participants were trained 

on the use of the study insulin pump (DANA Diabecare R; Sooil, Seoul, South Korea) 
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and study real-time continuous glucose monitoring device (FreeStyle Navigator II; 

Abbott Diabetes Care, Alameda, CA), which are off-the-shelf devices and do not offer 

low glucose suspend functionality. The study insulin pump was programmed with the 

respective participant’s usual basal settings, usual insulin-to-carbohydrate ratios and 

correction factors and delivered rapid-acting insulin analogue (insulin aspart, Novo 

Nordisk, Bagsvaerd, Denmark; or insulin lispro, Eli Lilly, Indianapolis, US). Participants 

were advised to use the bolus calculator for all meals during the entire study. Ability 

and competency to use study devices was formally assessed and additional training 

was provided as required. Over a one to two-week run-in phase, participants in both 

trials were required to use the study pump and collect at least five days’ worth of 

sensor glucose to pass the compliance assessment. Data obtained during run-in phases 

were utilized for therapy optimisation as per usual clinical practice. 

After the run-in periods, participants underwent two seven-day periods (Study 1) or 

two 21-day periods (Study 2) respectively, in random order, during which glucose was 

controlled either by sensor-augmented insulin pump therapy or by hybrid closed-loop 

insulin delivery. The two treatment interventions were separated by one to four-week 

wash-out periods during which the participants could continue using the study insulin 

pump applying their standard pump settings. Continuous glucose monitoring was 

discontinued during wash-out. 

Randomisation assignments were unblinded, but allocation between treatment 

sequences was concealed from the study staff until after randomisation, which was 

conducted the day prior to the first interventions. Random permuted blocks were used 

for treatment sequence allocation. 

On the first day of the closed-loop periods, a two- to three-hour training session was 

provided by the investigators at the clinical research facility, including initiation and 

discontinuation of the closed-loop system, switching between closed-loop and usual 

pump therapy, meal bolus procedure, and the use of study devices during exercise. 

Prandial boluses were advised to be delivered before the meals using the pump’s 

standard bolus calculator. Competency in the use of closed-loop system was assessed 

prior to discharge. After the training session, participants continued the study 
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intervention for the next seven days (Study 1) or 21 days (Study 2), respectively, under 

free-living conditions in their home and school environment. Automated closed-loop 

insulin delivery was continued during exercise of mild to moderate intensity, and 

exercise was announced to the algorithm. Participants were advised to discontinue 

closed-loop and follow their usual insulin pump therapy for certain activities such as 

periods of strenuous exercise, diving or contact sports. 

The number of planned contacts with the study team was identical during the two 

study periods. Participants used the study pump and the study real-time continuous 

glucose monitoring device during both study periods and were advised to calibrate the 

continuous glucose monitoring device according to the manufacturer’s instructions. 

The built-in glucometer was used for all fingerstick measurements; participants were 

free to decide on alarm thresholds for the continuous glucose monitoring device. 

Standard clinic guidelines for hypoglycaemia and hyperglycaemia treatment were 

followed. All participants were provided with a 24-hour telephone helpline to contact 

the study team in the event of study-related issues. 

5.3.4 Closed-loop system 

The FlorenceD2A closed-loop system (University of Cambridge, Cambridge, UK)245 

comprised a model predictive control algorithm (Study 1: Version 0.3.30; Study 2: 

Version 0.3.41, University of Cambridge) residing on a smartphone (Study 1: Nexus 4, 

LG, South Korea; Study 2: Galaxy S4, Samsung, South Korea), which communicated 

wirelessly with continuous glucose monitoring receiver through a purpose made 

translator unit (Triteq, Hungerford, UK) (see Figure 5.2). Every 12 min, the control 

algorithm calculated a new insulin infusion rate which was automatically set on the 

study insulin pump. The calculations utilized a compartment model of glucose 

kinetics246 describing the effect of rapid-acting insulin analogues and the carbohydrate 

content of meals on glucose levels. In these trials, a hybrid closed-loop approach was 

applied, in which participants additionally administered prandial insulin for all meals 

using the standard bolus calculator. Bolus calculations as provided by the study pump’s 

built-in bolus calculator took into account carbohydrate content of meals, insulin on 

board, and entered capillary blood glucose readings. The control algorithm was 
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initialized using pre-programmed basal insulin doses downloaded from the study 

pump. Additionally, information about participant's weight and total daily insulin dose 

were entered at setup. During closed-loop operation, the algorithm adapted itself to 

the particular participant. The apparent total daily dose was modified based on sensor 

glucose levels achieved during closed-loop on previous days. In the algorithm version 

used in Study 2 (Version 0.3.41), this learning capability was made more responsive 

compared to versions 0.3.30 (Study 1). Enhanced adaptability was further supported 

by additional adaptation to varied insulin needs during the daytime and overnight 

periods. In both trials, the treat-to-target control algorithms aimed to achieve glucose 

levels between 5.8mmol/l and 7.3mmol/l and adjusted the actual level depending on 

fasting versus postprandial status and the accuracy of model-based glucose 

predictions. Though devices were advised to be kept in vicinity of each other, a wireless 

transmission range of several meters allowed for flexibility in terms of device wear, and 

appropriate cases, clips and pouches were provided. 

Participants performed a calibration check before breakfast and the evening meal. If 

the sensor glucose was above the fingerstick glucose by >3.0mmol/l, the continuous 

glucose monitoring device was manually recalibrated. There was no recalibration for 

sensor under reading. These instructions resulted from an in silico evaluation of 

hypoglycaemia and hyperglycaemia risk247 using the validated Cambridge simulator248. 

If sensor glucose became unavailable or in case of other failures, pre-programmed 

insulin delivery automatically restarted within 30-60 min. This limited the risk of insulin 

under- and over delivery247. Safety rules limited maximum insulin infusion and 

suspended insulin delivery if glucose was ≤4.3 mmol/l or when sensor glucose was 

rapidly decreasing.  

The continuous glucose monitoring receiver provided hypoglycaemia and 

hyperglycaemia alarms, the insulin pump provided standard alarms, and the 

smartphone alerted the user about aspects related to closed-loop operation such as 

when closed-loop started or stopped.  
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Figure 5.2. FlorenceD2A closed-loop system. 

 

5.3.5 Study outcomes 

The primary outcome in both studies was the proportion of time when glucose was in 

the target range (3.9-10.0mmol/l) during the seven-day study periods (Study 1) or 21-

day periods (Study 2), respectively. Secondary outcomes included mean sensor glucose 

levels, glucose variability, and time spent below and above glucose target. Outcomes 

were calculated during day-and-night, daytime and overnight periods; daytime was 

classified as between 08:00 and midnight, and night-time as between midnight and 

08:00. Glucose variability was assessed by the standard deviation and the coefficient 

of variation of sensor glucose. Hypoglycaemia burden was assessed by calculating the 

glucose sensor area under the curve less than 3.5mmol/l. 

5.3.6 Participant-reported outcomes (Study 2 only) 

In Study 2, a trial experience questionnaire was completed by participants at the 

conclusion of the closed-loop phase. The questionnaire was composed of seven 

questions, four of which were closed questions. The three open questions requested 

comments and suggestions from participants regarding (1) what they liked about the 
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closed-loop system, (2) what they did not like about the system, and (3) what additional 

features they would like to have in a closed-loop system.  

5.3.7 Assays 

In both trials, HbA1c was measured using ion exchange high performance liquid 

chromatography (G8 HPLC Analyzer, Tosoh Bioscience Inc., CA, US; interassay CVs 1.3% 

at 31.2mmol/mol, 0.8% at 80.5mmol/mol). C-peptide measurements were performed 

using chemiluminescence immunoassay (IV2-004; Invitron Ltd, Monmouth UK; inter-

assay variation 7.8%, 4.3% and 6.7% at 268pmol/l, 990pmol/l and 1,862pmol/l, 

respectively). Analytical sensitivity for the C-peptide assay was 5pmol/l. 

5.3.8 Statistical analyses 

The statistical analysis plans were agreed upon by investigators in advance. All analyses 

were undertaken on an intention-to-treat basis. Efficacy and safety data from all 

randomized participants with or without protocol violation were included in the 

analyses. The respective values obtained during the seven-day (Study 1) and 21-day 

(Study 2) intervention periods contrasting the closed-loop system against the sensor-

augmented pump therapy were compared using a least-square regression model. 

Sensor glucose outcomes were adjusted for baseline glucose level and period effect; 

insulin outcomes for period effect. Rank normal transformation analyses were used for 

highly skewed endpoints. Outcomes were presented as mean ± SD for normally 

distributed values or as median (interquartile range) for non-normally distributed 

values. In Study 1, secondary outcomes for daytime and nighttime periods were 

excluded from calculating p-values to limit multiple comparisons. Outcomes were 

calculated using GStat software (University of Cambridge, version 2.2). Analysis was 

done using SPSS (IBM Software, Hampshire, UK version 21). A 5% significance level was 

used to declare statistical significance. All p-values are two-sided. 
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5.4 RESULTS  

5.4.1 Study 1 

5.4.1.1 Participants 

Fourteen subjects were screened. The flow of participants through the study is shown 

in Figure 5.3. One participant did not meet the inclusion/exclusion criteria, and another 

voluntarily withdrew consent and did not complete the run-in phase. Twelve eligible 

participants were randomized, completed the study, and provided data for analyses (8 

males; age 15.4±2.6 years; diabetes duration 8.2±3.4 years; HbA1c 8.3±0.9% 

[68±10mmol/mol]; insulin pump therapy duration 5.6±2.9years; total daily insulin dose 

0.84±0.22 U/kg/day]) (see Table 5.1). 

 

Figure 5.3. Flow of participants through the trial (Study 1). 
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Table 5.1. Baseline characteristics of study participants (Study 1). 
 

 n=12* 
(mean ± SD) 

Age (years) 15.4±2.6 

Gender (male/female) 8/4 

BMI (kg/m2) 21.4±2.7 

BMI z-score 0.57±0.80 

Glycated haemoglobin at screening (%) 8.3 ± 0.9 

Glycated haemoglobin at screening (mmol/mol) 68±10 

Duration of diabetes (years) 8.2±3.4 

Duration on pump (years) 5.6±2.9 

Total daily insulin (U/kg/day) 0.84±0.22 

* All C-peptide negative at non-hypoglycaemia (C-peptide less than 33pmol/l at fingerstick glucose equal 
or greater than 4mmol/l) except for one participant with a level of 262 pmol/l 

 

5.4.1.2 Day-and-night glucose control and insulin delivery  

The primary endpoint - the proportion of time sensor glucose was in the target glucose 

range of 3.9 to 10.0mmol/l - significantly increased during closed-loop (p<0.001, Table 

5.2). 24-hour sensor glucose and insulin delivery profiles are shown in Figure 5.4. 

Closed-loop significantly reduced the mean glucose (p=0.001) and time spent above 

target glucose level (p<0.001) without increasing time spent in hypoglycaemia (Table 

5.2 and Figure 5.4). Proportion of time when sensor glucose was in hypoglycaemic 

range (below 3.9mmol/l and 2.8mmol/l) and the area under the curve when sensor 

glucose was less than 3.5mmol/l were low and comparable during the study periods. 

There was a difference in glucose variability between study periods as measured by the 

standard deviation (p=0.044), but no difference when calculating the coefficient of 

variation of sensor glucose. Increased time when glucose was in target range and 

reduced mean glucose was achieved by closed-loop through increased variability of 

basal insulin delivery (p<0.001) but without increasing total daily insulin (p=0.50). 

Higher total basal insulin delivery during closed-loop (p=0.001) was offset by a trend 

towards lower bolus delivery (p=0.09) presumably due to lower glucose levels resulting 

in reduced correction boluses (Table 5.2). 
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Table 5.2. Comparison of glucose control and insulin delivery over 7 days during closed-loop and 
control period (Study 1) 
 

 Closed-loop 

(n=12) 

SAP 

(n=12) 

Paired 

difference* 

P value 

Time spent at glucose  
level (%) 

    

3.9 to 10.0 mmol/l† 72 (59 to 77) 53 (46 to 59) 19 (5 to 25) <0.001 

>10.0 mmol/l 26 (21 to 35) 43 (38 to 52) -17 (-26 to -7) <0.001 

< 3.9 mmol/l 2.9 (1.8 to 4.8) 1.8 (0.9 to 5.1) 0.9 (-1.6 to 3.1) 0.21 

<2.8 mmol/l 0.2 (0.0 to 0.6) 0.1 (0.0 to 0.6) 0.1 (-0.1 to 0.6) 0.63 

AUC < 3.5 mmol/l 
(mol/l x min)‡ 

6.4 (2.8 to 23.7) 4.3 (1.8 to 13.6) 2.5 (-2.8 to 19.2) 0.40 

Mean glucose (mmol/l) 8.7±1.1 10.1±1.3 -1.4±1.1  0.001 

SD of glucose (mmol/l) 3.5 (3.3 to 4.2) 4.0 (3.6 to 4.6) -0.5 (-1.1 to 0.3) 0.044 

CV of glucose within 
days (%) 

41 (40 to 45) 39 (38 to 44) 5 (-3 to 7) 0.32 

CV of glucose between 
days (%) 

18 (11 to 22) 19 (17 to 25) 0 (-11 to 8) 0.55 

Total daily dose 
(U/day) 

57.3 (45.6 to 65.2) 56.6 (44.7 to 61.3) 0.3 (-4.0 to 4.6) 0.50 

Total bolus (U/day) 31.8 (21.2 to 41.0) 38.3 (26.4 to 41.4) -5.1 (-6.5 to -0.7) 0.09 

Total basal (U/day) 24.3 (22.8 to 28.8) 20.3 (19.1 to 22.1) 6.6 (1.7 to 9.1) 0.001 

CV of basal insulin (%) 94 (91 to 104) 16 (13 to 26) 78 (67 to 88) <0.001 

Data are presented as mean ± SD or median (interquartile range). p-values adjusted for period effect. 
*Closed-loop minus control. A positive value indicates the value was higher on the closed-loop compared with 
control 
† Primary endpoint 
‡AUCday, Glucose area under curve below 3.5mmol/l per day 
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Figure 5.4. 24-hour sensor glucose and insulin profiles. Median (interquartile range) of sensor 
glucose (top panel) and insulin delivery (bottom panel) during closed-loop (solid red line and red 
shaded area) and control period (dashed black line and grey shaded area) from midnight to 
midnight. The glucose range 3.9 to 10.0 mmol/l is denoted by horizontal dashed lines (top panel). 

 

 

Figure 5.5. Individual values of mean sensor glucose during day-and-night closed-loop study. The 
size of bubble indicates the proportion of time spent with low glucose below 2.8mmol/l. 
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5.4.1.3 Daytime and overnight glucose control and insulin delivery  

Secondary outcomes calculated for daytime and overnight periods are shown in Table 

5.3. Daytime and overnight outcomes were similar to outcomes over day-and-night. 

Proportion of time when sensor glucose was in daytime target range (3.9 to 

10.0mmol/l) and overnight target range (3.9 to 8.0mmol/l) tended to be higher during 

closed-loop compared to control [daytime: 66% (55% to 68%) vs. 49% (46% to 51%); 

overnight: 63% (49% to 78%) vs. 40% (30% to 48%)]. Daytime mean glucose 

(9.4±1.2mmol/l vs. 10.3±1.4mmol/l) and overnight mean glucose (7.8±1.8mmol/l vs. 

9.7±1.8mmol/l) tended to be lower during closed-loop without a difference in total 

daytime and overnight insulin amount. 

5.4.1.4 Adverse events 

No serious adverse events or severe hypoglycaemic episodes were observed during 

either study period. Two participants measured mild to moderate elevated blood 

ketones (>2.00mmol/l) associated with hyperglycaemia, one participant during closed-

loop and one participant in the control period. These events were attributed to infusion 

set failures and were all self-managed.  

5.4.1.5 Utility analysis 

Closed-loop was operational over a median of 82 % (75% to 96%) of time. Availability 

of sensor glucose was 98% (93% to 100%) during closed-loop and 97% (92% to 100%) 

during control period. On average, closed-loop was interrupted 1.1 times (0.6 to 1.5) 

per subject per day. Apart from two occasions requiring closed-loop system reset by 

research staff, the participants were able to resolve issues on their own, such as 

restarting closed-loop after loss of pump connectivity or sensor data unavailability.  
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Table 5.3. Daytime and nighttime glucose control and insulin delivery during closed-loop and control 
period (Study 1).  

 Closed-loop 

(n=12) 

Control 

(n=12) 

Daytime 

(from 08:01 to 23:59) 

  

Time spent at glucose level (%)   

 3.9 to 10.0mmol/l 66 (55 to 68) 49 (46 to 51) 

 >10.0mmol/l 31 (29 to 44) 48 (40 to 53) 

 <3.9mmol/l 2.5 (1.2 to 4.4) 2.4 (0.7 to 4.5) 

AUCday <3.5mmol/l (mmol/l x min)*  6.4 (1.0 to 12.1) 4.4 (0.0 to 9.9) 

Mean glucose (mmol/l) 9.4±1.2 10.3±1.4 

Within day SD of glucose (mmol/l) 3.1 (3.0 to 3.6) 3.4 (3.1 to 3.8) 

CV of glucose within day (%) 35 (31 to 39) 33 (31 to 36) 

CV of glucose between days (%) 18 (14 to 27) 21 (18 to 25) 

Daytime insulin delivery (U) 44.5 (35.0 to 47.8) 44.3 (33.2 to 52.0) 

Nighttime 

(from midnight to 08:00) 
  

Time spent at glucose level (%)   

 3.9 to 8.0mmol/l 63 (49 to 78) 40 (30 to 48) 

 >8.0mmol/l 31 (18 to 43) 56 (50 to 68) 

 <3.9mmol/l 2.3 (0.9 to 5.4) 1.1 (0.0 to 5.4) 

AUCday <3.5mmol/l (mmol/l x min)†  6.1 (0.0 to 26.1) 2.3 (0.0 to 5.4) 

Mean glucose (mmol/l) 7.8±1.8 9.7±1.8 

Within night SD of glucose (mmol/l) 1.7 (1.4 to 2.2) 1.8 (1.6 to 1.9) 

CV of glucose within night (%) 23 (22 to 26) 19 (17 to 22) 

CV of glucose between nights (%) 26 (15 to 35) 31 (28 to 39) 

Overnight insulin delivery (U) 11.5 (10.2 to 18.6) 11.3 (8.9 to 17.2) 

Data are presented as mean ± SD or median (interquartile range). p-values adjusted for period effect. 
*AUCday, Glucose area under curve below 3.5mmol/l per day 

  



5 Home use of day-and-night closed-loop in adolescents (Dan04 studies) 

91 

5.4.2 Study 2 

5.4.2.1 Participants 

We approached 17 subjects, 12 of which gave consent/assent and completed the study 

(7 males; age 14.6±3.1 years; diabetes duration 7.8±3.5 years; HbA1c 8.5±0.7% 

[69±8mmol/mol]; insulin pump therapy duration 5.5±2.6years; total daily insulin dose 

0.82±0.18 U/kg/day], all C-peptide negative except for two participants with levels of 

61 and 262 pmol/l) (see Figure 5.6 and Table 5.4). 

 

Figure 5.6. Flow of participants through the trial (Study 2). 
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Table 5.4. Baseline characteristics of study participants (Study 2).  

 n=12* 
(mean ± SD) 

Age (years) 14.6±3.1 

Gender (male/female) 7/5 

Weight (kg)  

BMI (kg/m2) 21.3±4.4 

BMI z-score 0.56±1.19 

Glycated haemoglobin at screening (%) 8.5±0.7 

Glycated haemoglobin at screening (mmol/mol) 69±8 

Duration of diabetes (years) 7.8±3.5 

Duration on pump (years) 5.5±2.6 

Total daily insulin (U/kg/day) 0.82±0.18 

* All C-peptide negative at non-hypoglycaemia (C-peptide less than 33pmol/l at fingerstick glucose equal or greater than 4mmol/l) 

except for two participants with levels of 61 and 262 pmol/l 

5.4.2.2 Day-and-night glucose control and insulin delivery 

Primary and secondary endpoints are summarized in Table 5.5. Twenty-four-hour 

sensor glucose and insulin delivery profiles are shown in Figure 5.7. The proportion of 

time that sensor glucose was in the target glucose range of 3.9 to 10.0mmol/l (primary 

endpoint), was increased during closed-loop compared to control period (p<0.001). 

The mean glucose level was significantly lower with closed-loop use (p=0.001, Figure 

5.8) as was the time spent above the target glucose range (p<0.001). The proportion 

of time spent with sensor readings in hypoglycaemia (below 3.9mmol/l and 2.8mmol/l, 

) and the area under the curve when sensor glucose was less than 3.5mmol/l were low 

and comparable during the study interventions.  

Glucose variability, measured as the standard deviation and the coefficient of variation 

of sensor glucose level within 24 hours and between days, did not differ between study 

periods. Higher percentage of time when glucose was in target range and lower mean 

glucose levels were achieved by closed-loop through increased variability of basal 

insulin delivery (p<0.001; Table 5.5 and Figure 5.7) and slightly higher total daily insulin 

dose (p=0.006). Basal insulin delivery during closed-loop was significantly higher than 

during control intervention (p=0.001). Overall bolus insulin requirements during 

closed-loop were significantly lower (p=0.009), as was the number of overall bolus 

administrations per day (p=0.015). Fewer correction boluses [0.2 (0.1 to 0.4) vs. 0.9 



5 Home use of day-and-night closed-loop in adolescents (Dan04 studies) 

93 

(0.1 to 1.4) per day, closed-loop vs. control, p=0.015] but not meal boluses [4.8 (4.6 to 

6.1) vs. 5.8 (4.1 to 7.0), p=0.48) were observed during closed-loop. 

 

Table 5.5. Comparison of glucose control and insulin delivery over 21 days during closed-loop and 
control period. 

 Closed-loop 

(n=12) 

Control 

(n=12) 

Paired  

difference* 

P value 

 
Day-and-night glucose control 

    

Time spent at glucose level (%)     

 3.9 to 10.0mmol/l† 66.6±7.9 47.7±14.4 18.8±9.8 <0.001 

 >10.0mmol/l 29.7±9.2 49.1±16.5 -19.3±11.3 <0.001 

 >16.7mmol/l 5.1 (0.8 to 5.6) 8.0 (1.9 to 17.4) -3.6 (-11.9 to -0.65) <0.001 

 <3.9mmol/l 4.3 (1.4 to 5.2) 2.4 (0.3 to 5.7) 0.4 (-2.2 to 1.3) 0.33 

 <2.8mmol/l 0.3 (0.0 to 0.5) 0.1 (0.0 to 0.7) -0.1 (-0.4 to 0.2) 0.49 

AUCday <3.5mmol/l (mmol/l x min) ‡ 11.1 (1.2 to 17.4) 2.7 (0.2 to 20.4) 0.0 (-10.5 to 6.8) 0.21 

Mean glucose (mmol/l) 8.7±0.9 10.5±1.8 -1.8±1.3 0.001 

Within day SD of glucose (mmol/l) 3.7±0.7 4.2±0.8 -0.5±0.7 0.013 

CV of glucose within day (%) 40.5 (38.1 to 47.7) 38.3 (36.7 to 43.7) 1.2 (-2.6 to 6.7) 0.18 

CV of glucose between days (%) 19.0 (13.8 to 23.7) 17.4 (14.9 to 24.0) -0.5 (-3.9 to 6.0) 0.94 

Day-and-night insulin delivery     

Total daily insulin (U/day) 53.5 (39.5 to 72.1) 51.5 (37.6 to 64.3) 4.5 (1.6 to 6.5) 0.006 

Total bolus insulin (U/day) 28.3 (16.7 to 32.6) 29.4 (23.6 to 37.6) -4.4 (-8.1 to -1.4) 0.009 

Total basal insulin (U/day) 25.8 (23.0 to 41.2) 19.9 (14.8 to 26.3) 7.6 (3.8 to 14.4) 0.001 

SD of basal insulin delivery (U/hour) 1.2 (1.0 to 1.9) 0.3 (0.1 to 0.3) 1.1 (0.8 to 1.6) <0.001 

CV of basal insulin delivery 106.7 (97.2 to 

111.1) 

23.9 (12.8 to 35.2) 79.2 (77.1 to 91.3) <0.001 

Bolus administrations (Number/day) 4.9 (4.8 to 6.3) 6.3 (5.1 to 7.6) -1.1 (-1.5 to -0.2) 0.015 

Data are presented as mean ± SD or median (interquartile range). p-values adjusted for period effect. 
*Closed-loop minus control. A positive value indicates the value was higher on the closed-loop compared with 
control 
† Primary endpoint 
‡AUCday, Glucose area under curve below 3.5mmol/l per day 
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Figure 5.7. 24-hour sensor glucose and insulin profile. Median (interquartile range) of sensor 
glucose (top panel) and insulin delivery (bottom panel) during closed-loop (solid red line and red 
shaded area) and control period (dashed black line and grey shaded area) from midnight to 
midnight. The glucose range 3.9 to 10.0 mmol/l is denoted by horizontal dashed lines (top panel). 

 

 

 

Figure 5.8. Individual values of mean sensor glucose during day-and-night closed-loop study. The 
size of bubble indicates the proportion of time spent with low glucose below 2.8mmol/l 
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5.4.2.3 Daytime and overnight glucose control and insulin delivery  

Secondary outcomes calculated for daytime (08:00 to midnight) and overnight periods 

(midnight to 08:00) are shown in Table 5.6. The daytime (p=0.002) and overnight 

(p=0.002) mean glucose were significantly lower during closed-loop use (p=0.002). The 

proportion of time that the glucose level was within the wide target range (3.9 to 

10.0mmol/l) and overnight target range (3.9 to 8.0mmol/l) were higher during closed-

loop compared to control (p<0.001) without a difference in total daytime and overnight 

insulin amount. The percentage of time spent with sensor readings below target range 

did not differ between the two interventions during daytime and overnight. 

5.4.2.4 Adverse events 

No serious adverse events or severe hypoglycaemic episodes were observed during 

either study period. Three adverse events were documented, none of which was 

related to study devices or study procedures. One participants during control 

intervention measured elevated urine ketone levels associated with hyperglycaemia. 

This event was attributed to a viral infection and was self-managed. One participant 

during closed-loop and another participant during control period required oral 

antibiotic treatment due to respiratory tract infections without metabolic 

deterioration.  

5.4.2.5 Utility analysis 

Availability of sensor glucose data was 95% (91% to 98%) during closed-loop and higher 

than 90% (73% to 96%) recorded during control period (p=0.036). Closed-loop was 

operational over 82% (76% to 88%) of time. 
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Table 5.6. Daytime and nighttime glucose control and insulin delivery during closed-loop and control 
period. 

 Closed-loop 

(n=12) 

Control 

(n=12) 

Paired  

difference* 
P value 

Daytime 

(from 08:01 to 23:59) 

  
 

 

Time spent at glucose level (%)     

 3.9 to 10.0mmol/l 62.9±8.9 45.7±13.7 17.1±12.2 0.001 

 >10.0mmol/l 33.0±10.7 51.8±15.7 -18.7±13.7 0.001 

 <3.9mmol/l 4.2 (1.0 to 6.5) 1.2 (0.3 to 3.9)  0.3 (-0.8 to 4.1) 0.15 

AUCday <3.5mmol/l (mmol/l x min)† 11.2 (0.9 to 17.0) 2.0 (0.2 to 12.3) -0.4 (-5.0 to 12.8) 0.26 

Mean glucose (mmol/l) 9.0±1.0 10.8±1.9 -1.8±1.5 0.002 

Within day SD of glucose (mmol/l) 3.9±0.8 4.3±0.9 -0.4±0.9 0.10 

CV of glucose within day (%) 42.8 (37.9 to 49.8) 39.0 (36.0 to 42.6) 3.0 (-3.7 to 8.7) 0.20 

CV of glucose between days (%) 19.2 (17.4 to 25.6) 21.6 (16.5 to 23.1) -2.4 (-5.8 to 3.5) 0.86 

Daytime insulin delivery (U) 42.7 (31.2 to 53.6) 42.8 (30.9 to 48.4) 3.5 (0.0 to 6.3) 0.24 

Nighttime 

(from midnight to 08:00) 
    

Time spent at glucose level (%)     

 3.9 to 8.0mmol/l 54.4±13.8 33.4±16.3 20.9±12.7 <0.001 

 >8.0mmol/l 42.8±14.0 62.0±19.4 -19.3±14.5 0.001 

 <3.9mmol/l 2.5 (1.1 to 4.2) 3.9 (0.3 to 7.2) -1.3 (-4.9 to 1.4) 0.70 

AUCday <3.5mmol/l (mmol/l x min)*  5.3 (1.6 to 19.7) 4.7 (0.0 to 21.8) 1.2 (-20.0 to 5.9) 0.56 

Mean glucose (mmol/l) 8.2±1.1 9.8±2.0 -1.6±1.4 0.002 

Within night SD of glucose (mmol/l) 3.1±0.9 3.8±0.7 -0.7±0.7 0.008 

CV of glucose within night (%) 37.3±6.8 39.3±7.3 -2.0±9.9 0.53 

CV of glucose between nights (%) 26.7±8.5 30.9±6.4 -4.2±10.1) 0.20 

Overnight insulin delivery (U) 11.5 (9.5 to 17.3) 11.0 (8.5 to 15.0) 0.6 (-0.5 to 3.5) 0.18 

Data are presented as mean ± SD, median (interquartile range) 

* Closed-loop minus control. A positive value indicates the value was higher on the closed-loop compared with control 

†AUCday, glucose area under curve below 3.5mmol/l per day 
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5.4.2.6 Questionnaire 

All 12 participants completed the questionnaire. Results of the four closed questions 

are shown in Figure 5.9. 100% (12/12) of the participants were confident with the 

closed-loop system regulating their blood glucose and insulin delivery. 83.3% (10/ 12) 

of subjects stated that using the closed-loop system, they required less time managing 

their diabetes, and two participants (16.7%) were unsure about this statement. The 

majority of participants (91.7% [11/12]) expressed fewer concerns about their glucose 

control while using closed-loop. Improved sleep was indicated by 75% (9/12) of 

participants, whereas 8.3% (1/12) slept worse, and 16.7% (2/12) were unsure about 

the impact of the closed-loop system on their sleep. 

Key positive themes of the closed-loop system as described by participants in the free-

text section of the questionnaire were improved glucose control, a relief of diabetes 

management, and specific features of the closed-loop handset allowing remote meal 

bolusing and data review. Key negative themes were the number and size of devices, 

the necessity to carry around the equipment all the time, CGM and pump alarms, 

connectivity and CGM calibration issues. According to participants, future closed-loop 

systems should be smaller, ideally integrating all different devices into one single 

device. Sensor life should be longer, and additional features to facilitate carbohydrate 

estimation should be implemented. 
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Figure 5.9. Questionnaire results. The numbers at the top of each graph indicate the total number of 
answers out of 12 responses. 

5.5 DISCUSSION 

These are the first trials investigating day-and-night application of closed-loop insulin 

delivery under free-living conditions in adolescents with type 1 diabetes. Results of the 

presented studies demonstrate the feasibility of unsupervised free-living home use of 

24/7 hybrid closed-loop in this challenging population. Closed-loop increased the time 

when glucose was in the target range while reducing the mean glucose. These 

improvements were achieved without increasing the risk of hypoglycaemia. Total daily 

insulin dose delivered during closed-loop intervention was similar (Study 1) or slightly 

increased (Study 2) compared to control intervention.  

The occurrence of hypoglycaemia exposure in the present studies was low. Compared 

with previously published day-and-night adult outpatient studies using single-
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hormone243,244 or dual-hormone approaches with glucagon co-administration196, 

participants in the present studies spent less time at glucose levels below 3.9mmol/l 

during control period. During the closed-loop study arm our results matched the 

findings observed in adults (Table 5.7). In our adolescent cohorts, the 24/7 hybrid 

closed-loop system managed to keep time in hypoglycaemia at a low level while 

significant reductions in hypoglycaemia risk using closed-loop in outpatient settings 

were observed in populations with greater rates of hypoglycaemia or in more 

challenging environments such as diabetes camps during prolonged outpatient closed-

loop studies in adults using single-hormone243,249 or dual hormone (glucagon co-

administration) closed-loop approaches across different age groups 196-198. We 

instructed study participants to perform calibration checks twice a day and to 

recalibrate the sensor when large over-reading but not under-reading occurred, to 

reduce the risk of sensor-error induced hypoglycaemia which is of particular concern 

during closed-loop insulin delivery. The advent of novel technologies such as threshold-

suspend insulin pump therapy141 and more recently predictive low glucose suspend147 

may reduce hypoglycaemia risk. However, these approaches are not designed to 

increase insulin delivery and do not address the issue of hyperglycaemia, which poses 

major challenges in diabetes management of adolescents. The important advantage of 

a closed-loop system is highly responsive graduated modulation of insulin delivery both 

below and above the pre-set pump regimen, allowing for improvements in time spent 

with target glucose values and reduction of mean glucose without increased 

hypoglycaemia. 

Findings from Study 2 trial extends findings from our previous home trials in children 

and adolescents (including Study 1)188,190,243, which were limited by either overnight 

application 188,243 or a shorter intervention period (Study1)190. While benefits of closed-

loop in these trials as well as in our previous adult trials243,244 tended to be greater 

overnight compared to daytime, results of Study 2 study show consistent 

improvements in glucose levels overnight and during daytime. Possible explanations 

include closed-loop mitigating against missed meal boluses in suboptimally controlled 

adolescents. Additionally, we applied control algorithm with enhanced adaptivity. 
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Poorly controlled teenagers may be among those most benefiting from closed-loop 

systems. 

In Study 2, prolonged periods of sensor under-reading resulting in hypoglycaemia over-

reporting were identified in one participant during closed-loop intervention 

underscoring challenges associated with quantifying hypoglycaemia using glucose 

sensor data. No similar findings were observed during control intervention. While 

results in Table 5.5 and Table 5.6 and in the results section are based on the original 

data, Figure 5.8 shows data excluding periods of sensor under-reading (see Appendix 

D, Figures 8.1 to 8.5 for details of excluded data).  

Table 5.7. Comparison of percentage of time spent below 3.9 mmol/l during day-and-night closed-
loop studies in outpatient settings. 

Study 
population 

Settings Sample 
size 

Interventio
n period 

Time spent at glucose level below 
3.9mmol/l (%) 

Reference 

Closed-loop Control  

       

Adults* mixed† 20 5 days 4.1±3.5 7.3±4.7 196 

Adults‡ home 17 1 week 3.1±2.6 4.3±3.6 244 

Adults‡ home 33 12 weeks 3.1±1.9 4.3±3.9 243 

Adolescents‡ home 12 1 week 3.7±2.7 3.3±3.7 Dan04 Study 1 

Adolescents‡ home 12 3 weeks 3.7±2.2 3.2±3.3 Dan04 Study 2  

Data are presented as mean ± SD 
* Dual-hormone closed-loop vs. usual care (45% of participants used real-time continuous glucose monitoring 
during usual care) 
† Control: home; closed-loop: restricted geographical area during day & hotel overnight 
‡ Single-hormone closed-loop vs. sensor-augmented pump therapy 

 
In Study 2, total daily insulin requirements during closed-loop were modestly higher 

than during control intervention, which was due to higher basal insulin delivery. 

Inherent to closed-loop systems, algorithm directed insulin delivery was more variable 

than basal insulin delivery during the control period. More pronounced increases in 

total insulin delivery during closed-loop intervention [24%250 to 33%196 of total daily 

insulin dose] were previously described in studies of dual hormone systems, where 

potential insulin overdosing can be mitigated by co-administration of glucagon. Higher 

insulin requirements during closed-loop in the present study may reflect under-
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insulinisation in sub-optimally controlled adolescents. Interestingly, we observed 

reduced bolus amounts and fewer boluses per day during closed-loop intervention. We 

attribute this finding to fewer correction doses, but the observation might also reflect 

reduced bolus adherence for meals and snacks during closed-loop. The unsupervised 

design of the study precludes reliable interpretation of the finding.  

Closed-loop use and sensor wear were high in our cohorts. The closed-loop technology 

was well perceived in line with previously published data 199. Though the number of 

devices and system alarms were reported to be drawbacks, participants expressed 

trust in the technology, and reduced burden of diabetes including less time spent 

managing diabetes and fewer worries about glycaemic control. Further miniaturization 

and integration of devices, prolonged sensor life, and simplified meal management are 

preferable features of future closed-loop systems which may enhance usability. Given 

high closed-loop utilisation in adolescents, the positive perception of this technology 

and its benefits in terms of glycaemic control demonstrated by the present study, 

closed-loop represents a promising tool to address glycaemic deterioration commonly 

seen in adolescence48,237.  

A fully closed-loop system without meal announcement would be particularly 

applicable in the adolescent population. However, the absorption rate of currently 

available rapid acting insulin analogues is not fast enough to effectively control 

postprandial glucose excursions without anticipatory insulin bolus. Our premise is that 

present closed-loop systems will benefit from meal announcement but have to be able 

to cope with missed meal boluses safely and efficaciously, should these occur.  

The strengths of our studies include the integration of closed-loop into normal life 

including use at school, during weekends and on holidays. The studies were performed 

without remote monitoring or close supervision. No restrictions were imposed on 

dietary intake, moderate physical activity or travel. The comparator was ‘state-of-the-

art’ sensor-augmented insulin pump therapy. A crossover design had the benefit of 

each participant acting as his/her own control. Weaknesses include the small sample 

sizes, the still relatively short study duration, and restricted use of the closed-loop 

system during strenuous exercise. The current closed-loop prototype system requires 
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participants to wear and carry multiple devices. Further integration of devices may 

reduce this burden and enhance usability of closed-loop systems, particularly during 

physical activity. 

In conclusion, we have demonstrated that day-and-night hybrid closed-loop can be 

used safely in suboptimally controlled adolescents at home without supervision over a 

period of up to 21 days. Its benefits include increased time when glucose is in the target 

range and reduced mean glucose. Larger and longer studies are warranted. 
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6 Home use of day-and-night closed-loop in very 
young children (KidsAP) 

6.1 BACKGROUND 

Despite advances in insulin pump and sensor technology, the majority of small children 

with type 1 diabetes are still unable to achieve optimal glycaemic control. Application 

of closed-loop insulin delivery systems in a range of populations and settings, including 

children and adolescents in home settings, has been shown to improve glycaemic 

control and reduce the burden of hypoglycaemia191,243,251. Only a few closed-loop 

studies have been performed in very young children with type 1 diabetes184,185,224. All 

of them were of very short duration, and were conducted under close supervision by 

research staff, e.g. at research facilities or diabetes camps. Performance of closed-loop 

systems in small children in unsupervised home settings is yet to be determined. 

Current insulin pumps allow the adjustment of small basal rates, but accurate dosing 

becomes difficult with the small increments needed in very young children252: 

Frequently less than 0.1U/h of insulin are delivered compared to 1.0U/h in adults. 

Dosing accuracy of commonly used insulin pumps was shown to be lower at 0.1 U/h 

than at a 1 U/h rate with an at least three times higher flow error over 1 hour at 0.1 

U/h and a deviation from the scheduled rate of up to 13%.253 Diluting insulin in children 

with very low insulin requirements as commonly applied in many paediatric diabetes 

centres might help mitigate this issue. Compelling evidence, however, for the use of 

diluted insulin is missing; hardly any studies using diluted insulin have been performed. 

Anecdotal data suggest that use of diluted insulin in small children on insulin pump 

therapy might be beneficial, with positive effects such as decreased glycaemic 

variability, reduced occurrence of unexplained hyperglycaemia and reduced frequency 

of insulin infusion set issues (i.e. air bubbles)254. In a closed-loop setting, results from 

an overnight research facility based RCT suggest that use of diluted insulin in very 

young children might lead to reduced hypoglycaemia and reduced glucose variability, 

as well as less variable insulin absorption.224,255 
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6.2 STUDY OBJECTIVES 

The clinical trial described in this chapter is part of the KidsAP project funded by the 

European Commission’s Horizon 2020 Framework Programme. The multinational, 

multi-centre project assesses the ability of closed-loop insulin delivery to improve 

glucose control in the most vulnerable population with type 1 diabetes: children aged 

1 to 7 years. In a pilot study, we aimed to evaluate the feasibility of closed-loop in home 

settings and the potential benefit of diluted insulin use during closed-loop in this 

population. In the following, I present the results of the first 5 participants completing 

the trial at the Cambridge study site.  

6.3 RESEARCH DESIGNS AND METHODS 

6.3.1 Study participants 

Study participants included in this analysis were identified from paediatric diabetes 

outpatient clinics at Addenbrooke’s Hospital (Cambridge, United Kingdom) and 

University College London Hospital (London, United Kingdom). Recruitment of these 

participants took place between August and October 2017. Key inclusion criteria were 

age between 1 and 7 years (inclusive), diagnosis of type 1 diabetes for at least six 

months, treatment with insulin pump therapy for at least three months, and HbA1c 

≤11% (97mmol/mol). Exclusion criteria included total daily insulin dose ≥2.0 U/kg/day, 

and more than two incidents of severe hypoglycaemia within 6 months prior to 

enrolment. Parents or guardians of participants signed informed consent before study 

related activities were initiated. Whenever possible, assent of study participants was 

obtained in addition to the consent of the parents or legal representatives. 

6.3.2 Study design  

The study adopted an open-label, randomised, two-period crossover design 

contrasting closed-loop glucose control using diluted insulin (U20) and closed-loop 

using standard insulin strength (U100) in young children with type 1 diabetes in the 

home setting. Two intervention periods lasted three weeks each with one to four 
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weeks of washout in between. The order of the two interventions was random (see 

Figure 6.1)  

 

Figure 6.1. Study design  

 

6.3.3 Study procedures 

At enrolment, capillary blood samples were taken for analysis of HbA1c. At the start of 

the run-in phase, participants received training regarding the use of the study pump 

and the study real-time continuous glucose monitoring system (Medtronic 640G 

system; Medtronic, Northridge, CA) including low glucose suspend functionality. 

Participants used the study pump’s standard bolus calculator for all meals throughout 

the study. 

At the end of the 1 to 2-week run-in period, compliance in the use of study pump and 

continuous glucose monitoring were assessed. Participants with at least 8 days’ worth 

of continuous glucose monitoring data were randomly assigned to receive either 3 

weeks of hybrid closed-loop insulin delivery with standard insulin aspart (U100) 

followed by hybrid closed-loop insulin delivery with diluted insulin aspart (U20), or vice 

versa. Permuted block randomization was applied and assignment was unblinded.  

The two intervention periods were separated by a 1 to 4-week washout period during 

which the participants could continue using the study insulin pump and real time 

continuous glucose monitoring system. 
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On the first day of the first closed-loop period, participants attended the clinical 

research facility. This 1- to 2-hour visit included training on initiation and 

discontinuation of the closed-loop system, switching between closed-loop and usual 

pump therapy, meal bolus procedure, and the use of study devices during periods of 

increased physical activity. Competency in using closed-loop system was assessed. 

Following discharge, participants continued the study intervention for the next 21 days 

under free-living settings in their home and school environment. Participants were not 

remotely monitored or supervised. The participants were free to consume meals of 

their choice and no restrictions were imposed on travelling. We encouraged 

participants to continue closed-loop use during periods of increased physical activity 

including PE and organised sports, and to announce these periods to the algorithm. At 

the start of the closed-loop arm using diluted insulin, closed-loop training additionally 

covered use of diluted insulin. Prior to starting closed-loop with diluted insulin, pump 

settings were adapted accordingly and reviewed by two members of the research 

team. Carers at nursery or school also received closed-loop training by the study team 

as required. 

Participants were advised to calibrate the continuous glucose monitoring device 

according to the manufacturer’s instructions; they were free to decide on alarm 

settings for the continuous glucose monitoring device. All participants were provided 

with a 24-hour telephone helpline to contact the study team in the event of study-

related issues.  

6.3.4 Insulin dilution 

Rapid-acting insulin analog aspart (Novo Nordisk, Bagsvaerd, Denmark) only was 

administered by the study pump. Standard U-100 insulin aspart (100U/ml) was used 

during run-in, washout, and in the study arm using standard strength insulin. U-20 

insulin aspart (20U/ml) was used during the study arm using closed-loop with diluted 

insulin. Dilution of insulin aspart was performed by qualified members of the study 

team using ‘Insulin diluting Medium for NovoRapid (insulin aspart) and Levemir (insulin 

detemir)’ (Novo Nordisk, Bagvaerd, Denmark). A fixed 1:5 dilution ratio (U20 insulin) 

was used across all study participants rather than individual ratios based on individual 
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insulin needs: The reasons for this were threefold A) to allow better comparability 

between the interventions when using two standardised insulin formulations B) 

previously published data using the Cambridge MPC algorithm also compared use of 

U20 insulin and use of U100 insulin aspart C) 1:5 dilution was deemed to be a good 

compromise to guarantee insulin delivery at reasonable volumes across the expected 

distribution of insulin requirements in this age range (a few units per day in toddlers  

aged 1 year up to 20 units per day in gradeschoolers aged 7 years) 

6.3.5 Closed-loop system 

The FlorenceM closed-loop system (University of Cambridge, Cambridge, UK) 

comprised a next generation sensor augmented Medtronic insulin pump 640G 

(Medtronic Minimed, CA, USA) incorporating the Medtronic Enlite 3 family real time 

CGM and low glucose feature (predictive low glucose management and low glucose 

suspend) and a model predictive control algorithm (version 0.3.41, University of 

Cambridge) on a smartphone (Galaxy S4, Samsung, South Korea), which communicated 

wirelessly with the insulin pump through a proprietary translator device included in the 

smartphone’s enclosure (see Figure 6.2). The smartphone was locked down to 

exclusively run the control algorithm. All other applications and functionality (e.g. 

making and receiving calls, text messaging, internet browsing and playing games) were 

not available. Every 10 min, the control algorithm calculated an insulin infusion rate 

which was set on the study insulin pump. In this trial, a hybrid closed-loop approach 

was applied, which required participants/guardians to count carbohydrates and use a 

standard bolus calculator for premeal boluses as per usual practice. The control 

algorithm was initialized using pre-programmed basal insulin delivery downloaded 

from the study pump. Additionally, information about participant's weight and total 

daily insulin dose were entered at setup. During closed-loop operation, the algorithm 

adapted itself to the respective participant. The apparent total daily dose was modified 

based on sensor glucose levels achieved during closed-loop on previous days. The 

treat-to-target control algorithm aimed to achieve glucose levels between 5.8mmol/l 

and 7.3mmol/l and adjusted the actual target glucose level depending on fasting versus 

postprandial status and the accuracy of model-based glucose predictions. 
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Figure 6.2.  FlorenceM closed-loop system prototype. (A) The system consists of a continuous glucose 
monitoring (CGM) transmitter with Enlite 3 sensor, an insulin pump (modified 640G pump) integrated 
with the CGM receiver and a mobile phone running the control algorithm. (B) and (C) Photos of a 
participant (obtained with consent) using the closed-loop system. 

6.3.5.1 Safety precautions during closed-loop 

Participants were trained to perform a calibration check before breakfast and evening 

meal. If the sensor glucose was above the fingerstick glucose by >3.0mmol/l, the 

continuous glucose monitoring device was recalibrated. These instructions resulted 

from an in silico evaluation of hypoglycaemia and hyperglyacemia risk247  using the 

validated Cambridge simulator248. 

If sensor glucose became unavailable or in case of other failures, pre-programmed 

insulin delivery automatically restarted within 30-60 min. This limited the risk of insulin 

under- and over delivery (36). Safety rules limited maximum insulin infusion and 

suspended insulin delivery if glucose was ≤4.3mmol/l or when sensor glucose was 

rapidly decreasing. The low glucose suspend feature had to be turned on during closed-

loop operation as additional safety layer in case of communication failure between the 
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smartphone and the insulin pump. The low glucose threshold was set between 2.8 and 

3.9 mmol/l as per decision of local principle investigators and family preferences. 

6.3.6 Study outcomes 

The primary efficacy outcome was the proportion of time when glucose was in the 

target range (3.9-10.0mmol/l) during the 21-day study periods as recorded by 

continuous glucose monitoring. Secondary outcomes included mean sensor glucose 

concentrations, glucose variability, time spent at glucose levels <3.9mmol/l 

(hypoglycaemia) and >10.0mmol/l (hyperglycaemia), and insulin delivery. Secondary 

outcomes were calculated over 24h, daytime and overnight periods; daytime was 

classified between 08:00 and midnight, and nighttime between midnight and 08:00. 

Glucose variability was assessed by the standard deviation and the coefficient of 

variation of sensor glucose. Hypoglycaemia burden was assessed by calculating the 

glucose sensor area under the curve less than 3.5mmol/l. 

6.3.7 Assays 

HbA1c at recruitment for characterization of the study population was measured 

locally using an International Federation of Clinical Chemistry and Laboratory Medicine 

(IFCC) aligned method and following National Glycohaemoglobin Standardization 

Program (NGSP) standards. 

6.3.8 Statistical analyses 

The statistical analysis plan was agreed upon by investigators in advance. All analyses 

were carried out on an intention-to-treat basis. Efficacy and safety data from all 

randomized participants were included in the analyses. The respective values obtained 

during the 21-day randomized interventions were compared using a least-square 

regression model. Sensor glucose and insulin outcomes were adjusted for period 

effect. Rank normal transformation analyses were used for highly skewed endpoints. 

Outcomes were presented as mean ± SD for normally distributed values or as median 

(interquartile range) for non-normally distributed values. Outcomes were calculated 

using GStat software (University of Cambridge, version 2.3). Analysis was done using 
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SPSS (IBM Software, Hampshire, UK version 25). A 5% significance level was used to 

declare statistical significance. All p-values are two-sided. 

6.3.9 Sample size 

To estimate the total sample size, data were taken from our overnight closed-loop 

study in young children224. Based on estimate of 10% improvement in time in target 

with an SD of 13%, 20 subjects are required to achieve the desired 90% power and an 

alpha level of 0.05 (two-tailed). Up to 30 subjects were planned to be recruited, 24 to 

be randomised; applying a 20% dropout rate following randomisation provided 20 

completed subjects. 

For the purpose of my thesis, I focused on the participants recruited and followed up 

in Cambridge only, who were the first subjects to complete this multicentre trial. 

Hence, my sample size is under-powered, and results have to be interpreted cautiously.  

6.4 RESULTS  

6.4.1 Participants 

14 subjects were screened. The flow of participants through the trial is shown in Figure 

6.3. Five eligible participants were randomized, completed the study, and provided 

data for analyses (2 males; age 3.7±2.1 years; diabetes duration 2.0±1.8 years; HbA1c 

7.7±0.9% [60±9mmol/mol]; total daily insulin dose 10.9±3.7 U/day]) (see Table 6.1).  
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Figure 6.3  Flow of participants through the trial 

 

 

Table 6.1  Baseline characteristics of study participants 

 n=5 
(mean ± SD) 

Age (years) 3.7±2.1 

Gender (male/female) 2/3 

Height (cm) 98.7±18.2 

Weight (kg) 16.5±4.9 

BMI (kg/m2) 16.9±2.0 

BMI z-score 0.5±1.1 

Glycated haemoglobin at screening (%) 7.7±0.9 

Glycated haemoglobin at screening (mmol/mol) 60±9 

Duration of diabetes (years) 2.0±1.8 

Duration on pump (years) 1.9±1,7 

Total daily insulin (U/day) 10.9±3.7 

 

6.4.2 Outcomes 

6.4.2.1 Day-and-night glucose control, insulin delivery and utility analysis 

Primary and secondary outcomes are shown in Table 6.2. The primary endpoint - the 

proportion of time sensor glucose was in the target glucose range of 3.9 to 10.0mmol/l 
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- was similar and not statistically different between interventions (63.7 ± 5.3% vs. 67.5 

± 6.6%; closed-loop with diluted insulin [U20] vs. closed-loop with standard insulin 

[U100]; p=0.60). The twenty-four-hour sensor glucose profile is shown in Figure 6.4. 

There was no difference in achieved mean glucose levels (8.7 ± 0.6mmol/l vs. 8.5 ± 

0.6mmol/l; U20 vs. U100; p=0.85) and glucose variability (within day standard 

deviation [SD] of glucose, coefficient of variation [CV] within day, and CV of glucose 

between days; see Table 6.2) between both interventions. 

The proportion of time when sensor glucose was below 3.9mmol/l (5.0% [3.0% to 5.1%] 

vs. 4.7% [3.8% to 4.9%]; U20 vs. U100; p=0.88] and the area under the curve when 

sensor glucose was less than 3.5mmol/l (see Table 6.2) were low and comparable 

during the study periods. The proportion of time spent with sensor readings in clinically 

significant hypoglycaemia, i.e. <3.0mmol/l, was not different between interventions 

either (1.1% [0.4% to 1.5%] vs. 1.2% [0.9% to 1.7%]; U20 vs. U100; p=0.70). 

Total daily insulin delivery did not differ between interventions (12.5U [9.6U to 12.5U] 

vs. 12.2 [9.0 to 12.5]; U20 vs. U100; p=0.28). There was no difference in total basal 

(p=0.55) nor total bolus insulin requirements either (p=0.70; see Table 6.2).  

Closed-loop was operating over a median of 82% (75 to 85) of time during the closed-

loop arm using diluted insulin, and 83% (78 to 88) during closed-loop with standard 

strength insulin (p = 0.43). Participants wore the study continuous glucose monitor for 

a median of 94% of time during both closed-loop intervention arms (see Table 6.2).  
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Table 6.2  Comparison of glucose control and insulin delivery over 21 days during closed-loop with 
diluted insulin (U20) and closed-loop with standard strength insulin (U100). 

 Diluted (U20) 
(n=5) 

Non-diluted (U100) 
(n=5) 

P value 

Primary endpoint    

% Time in range (3.9-10.0 mmol/L) 63.7 ± 5.3 67.5 ± 6.6 0.60 

Overall glucose control    

Mean glucose (mmol/L) 8.7 ± 0.6 8.5 ± 0.6 0.85 

Within day SD of glucose (mmol/l) 3.6 ± 0.4 3.4 ± 0.4 0.52 

CV of glucose within day (%) 41.3± 1.4 39.5± 2.6 0.10 

CV of glucose between days (%) 13.3 ± 0.8 12.6± 2.2 0.37 

Hypoglycaemia    

% Time <3.9 mmol/L  5.0 (3.0 to 5.1) 4.7 (3.8 to 4.9) 0.88 

% Time <3.5 mmol/L 2.8 (1.1 to 2.8) 2.7 (1.8 to 3.1) 0.75 

% Time <3.0 mmol/L 1.1 (0.4 to 1.5) 1.2 (0.9 to 1.7) 0.70 

AUCday <3.5mmol/l (mmol/l)† 20.0 (6.2 to 23.1) 19.8 (13.4 to 27.8) 0.50 

Hyperglycaemia    

% Time >10.0 mmol/L  33.0 (29.1 to 35.9) 26.7 (23.2 to 29.8) 0.62 

% Time >16.7 mmol/L  3.1 (1.5 to 3.5) 1.7 (1.1 to 4.2) 0.78 

Insulin delivery    

Total insulin (U/day) 12.5 (9.6 to 12.5) 12.2 (9.0 to 12.5) 0.28 

Basal insulin (U/day) 5.9 (5.7 to 6.7) 5.5 (5.3 to 6.1) 0.55 

Bolus insulin (U/day) 5.8 (4.4 to 6.8) 6.4 (4.3 to 6.7) 0.70 

Utility    

CGM use (% of time) 94 (92 to 94) 94 (91 to 95) 0.80 

CL use (% of time) 82 (75 to 85) 83 (78 to 88) 0.43 

Data are presented as mean ± SD or median (interquartile range). p-values adjusted for period effect. 
† AUCday, Glucose area under curve below 3.5mmol/l per day 
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Figure 6.4  24-hour sensor glucose profiles. Median (interquartile range) of sensor glucose during 
closed-loop with diluted insulin (solid red line and red shaded area) and closed-loop with standard 
strength insulin (dashed black line and grey shaded area) from midnight to midnight. The glucose 

range 3.9 to 10.0 mmol/l is denoted by horizontal dashed lines.Daytime and overnight glucose 

control and insulin delivery  

Secondary outcomes calculated for daytime (from 08:01 to 23:59) and overnight (from 

midnight to 08:00) periods are shown in Table 6.3. The proportion of time when 

daytime sensor glucose was in target range (3.9 to 10.0mmol/l) tended to be slightly 

lower during closed-loop with diluted insulin compared to closed-loop with standard 

insulin (53.4 ± 6.6% vs. 59.7 ± 7.8%; U20 vs. U100), while the proportion of time spent 

with sensor readings below 3.9mmol/l (5.5% [2.7% to 6.4%] vs. 4.3% [3.8% to 5.5%]; 

U20 vs. U100) and daytime mean glucose (9.5 ± 0.8mmol/l vs. 9.1 ± 0.8mmol/l; U20 vs. 

U100) tended to be slightly higher when using diluted insulin. There was no difference 

in daytime insulin requirements between interventions (see Table 6.3). The proportion 

of time when sensor glucose was in target range overnight (3.9 to 10.0mmol/l) was 

high and very similar during closed-loop with diluted insulin and closed-loop with 

standard insulin (84.1 ± 4.8% vs 83.0 ± 10.0%; U20 vs. U100). When looking at a tighter 

overnight target range (3.9 to 8.0 mmol/l), the percentage of time in range as achieved 

with diluted insulin seemed to be higher (71.0 ± 9.8 vs. 62.9 ± 13.5; U20 vs. U100). 

Nighttime mean glucose tended to be slightly lower during closed-loop with diluted 

insulin (7.1 ± 0.6mmo/l vs. 7.4 ± 0.7mmol/l; U20 vs. U100). The percentage of time with 

sensor glucose levels below 3.9 mmol/l and the percentage of time spent in clinically 
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significant hypoglycaemia (below 3.0 mmol/l) were low and comparable between 

interventions (see Table 6.3). There was no difference with respect to overnight insulin 

requirements (Table 6.3).  

Table 6.3  Daytime and nighttime glucose control and insulin delivery during both closed-loop 
intervention arms  

 Diluted (U20) 

(n=5) 

Non-diluted (U100) 

(n=5) 

Daytime 

(from 08:01 to 23:59) 

  

Overall glucose control   

% Time in range (3.9-10.0 mmol/l) 53.4 ± 6.6 59.7 ± 7.8 

Mean glucose (mmol/l) 9.5 ± 0.8 9.1 ± 0.8 

Standard deviation (mmol/l) 3.9 (3.6 to 3.9) 3.4 (3.3 to 4.0) 

Hypoglycaemia   

% Time <3.9 mmol/l 5.5 (2.7 to 6.4) 4.3 (3.8 to 5.5) 

% Time <3.0 mmol/l 1.4 (0.5 to 2.0) 1.1 (1.1 to 1.9) 

Insulin Delivery   

Total insulin (U/day) 9.7 (7.9 to 10.9) 9.8 (7.5 to 10.7) 

Nighttime 

(from midnight to 08:00) 
  

Overall glucose control   

% Time in range (3.9-10.0 mmol/l) 84.1 ± 4.8 83.0 ± 10.0 

% Time in range (3.9-8.0 mmol/l) 71.0 ± 9.8 62.9 ± 13.5 

Mean glucose (mmol/l) 7.1 ± 0.6 7.4 ± 0.7 

Standard deviation (mmol/l) 2.4 ± 0.4 2.3 ± 0.5 

Hypoglycaemia   

% Time <3.9 mmol/l  3.5 (2.9 to 4.0) 3.7 (3.7 to 4.3) 

% Time <3.0 mmol/l 0.6 (0.5 to 0.7) 0.8 (0.3 to 1.3) 

Insulin delivery   

Total insulin (U/day) 3.3 (3.1 to 4.0) 3.0 (2.9 to 4.2) 

Data are presented as mean ± SD or median (interquartile range). 
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6.4.2.3 Adverse events 

No severe hypoglycaemia, no diabetic ketoacidosis, nor any other adverse event 

occurred during the whole study period (run-in, intervention arms, wash-out) in these 

5 subjects. 

6.5 DISCUSSION 

To our knowledge, this is the first and longest randomised controlled trial investigating 

day-and-night application of closed-loop insulin delivery in very young children with 

type 1 diabetes during free-living conditions. Preliminary results of my analysis 

including data from the first five participants completing this multicentre trial suggest 

that single hormone 24/7 hybrid closed-loop insulin delivery can be safely and 

effectively applied in young children aged one to seven years with type 1 diabetes in 

unsupervised home settings. 

The present study builds on previous observations in older children, adolescents and 

adults about benefits of day-and-night closed-loop therapy using Cambridge model 

predictive control in free living conditions190,191,243,256. In the present analysis, we 

document good glucose control in younger children who may greatly benefit from 

closed-loop technology. Similar results with respect to the percentage of time spent in 

the target range and in hypoglycaemia were obtained in this population as compared 

with older children and adolescents using the same algorithm190,191,243. 

Automated insulin delivery using a modular model predictive control approach in 

children aged five to nine years was investigated by Del Favero et al. documenting 

reduced overnight exposure to hypoglycaemia as compared with sensor-augmented 

insulin pump therapy in a camp setting with close supervision by research staff184. 

Although closed-loop was not associated with improvements in the time spent in target 

and even led to increased mean glucose levels, the study was the first to evaluate 

closed-loop therapy in pre-schoolers and children in outpatient settings. The achieved 

time in target (56.8±13.5%) using their closed-loop system was lower than the findings 

from our study in free-living conditions without supervision. 
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Other than closed-loop use in children as young as 1 years and older, the novelty of our 

study is the use of diluted insulin to enhance the accuracy of delivery of small insulin 

doses. However, preliminary results suggest that there is no benefit of using diluted 

insulin in a closed-loop setting. Across the whole range of insulin requirements used in 

this age group, insulin delivery via latest generation Medtronic 640G insulin pump 

seems to work equally well at very low rates compared to insulin delivery at standard 

rates. Of course, data from this preliminary analysis need to be interpreted cautiously. 

Results from all 24 randomised participants and additional sub-group analyses will 

more reliably clarify the role of diluted insulin; use of diluted insulin in those with very 

little insulin requirements might still be beneficial. 

In our study, closed-loop system performed particularly well overnight compared with 

daytime. A similar trend - though not as pronounced as in very young children - was 

also observed in our previous trials in older populations190,191,243. With over 80% spent 

in target range of 3.9 to 10.0mmol/l (84.1± 4.8% and 83.0± 10.0%, respectively; U20 

and U100) mean overnight glucose levels just above 7 (7.1± 0.6 mmol/l and 7.4 ± 0.7 

mmol/l; U20 and U100), our closed-loop system seems to outperform other systems 

of automated insulin delivery evaluated in outpatient settings in younger age groups: 

Del Favero reported overnight percentage in target (3.9 to 10.0mmol/l) of 56.0± 22.5% 

and a mean glucose of 9.6± 2.0 mmol/l in 5 to 9-year olds184. 6 to 14-year-old patients 

enrolled in the RCT by Forlenza et al. achieved a proportion of time with sensor reading 

in the target range of 76±9% and mean glucose levels of 8.2 ± 0.7mmol/l257. 

The current analysis was limited by the small number of patients included. The 

estimated sample size from our power calculation for the entire trial was 24 

randomised subjects who will be recruited at seven clinical sites. Moreover, a 

prototype modular closed-loop system was used with the size of the devices as well as 

connectivity issues being the main drawbacks for outpatient use. Nevertheless, sensor 

glucose wear (median 94% for both arms) and closed-loop use (median 82% and 83% 

of time, respectively; U20 and U100) in both groups was high and comparable between 

study periods. Technological progress may allow further integration of devices and 

reduce this burden. Detailed feedback from users was collected separately and will be 
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analysed along with a battery of questionnaires evaluating the psychosocial impact of 

closed-loop technology.  

The strengths of our study included the crossover randomized design that had the 

benefit of each participant acting as his/her own control. The studies were performed 

without remote monitoring or close supervision, thereby providing an opportunity to 

assess the real-world use and applicability of a novel technology. We did not restrict 

participants’ dietary intake, physical activity or geographical movements. 

In conclusion, results from this preliminary analysis suggest that hybrid closed-loop 

insulin delivery using the model predictive control approach is safe and efficacious to 

maintain day-and night glycaemic control in young children with type 1 diabetes in free 

daily living. In very young children, insulin dilution to potentially enhance accuracy of 

insulin delivery does not appear to be of additional benefit using automated insulin 

delivery and latest generation insulin pump technology. Our findings support research 

into closed-loop therapy in preschool children, who may greatly benefit from this novel 

therapeutic approach. 
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7 Conclusions 

7.1 SUMMARY OF RESULTS AND IMPLICATIONS 

My thesis comprises a series of five randomised clinical trials evaluating safety, 

feasibility, and efficacy of closed-loop insulin delivery systems in children and 

adolescents with type 1 diabetes. Automated closed-loop insulin delivery was mainly 

applied in free-living conditions during overnight and day-and-night periods in 

different paediatric populations and age groups including children as young as 1 year 

of age up to 18-year-old young adults. 

In Chapter 3, I presented results from a mechanistic inpatient study. I demonstrated 

that in spite of differences in sensor accuracy, sensor life did not affect closed-loop 

performance or safety of its use. We hypothesised that this was related to the 

robustness of our control algorithm, apparently mitigating against sensor inaccuracy. 

Given the inconsistency of glucose sensor function over the full lifetime of sensors used 

at this stage, these findings were encouraging with respect to the home application of 

the closed-loop systems.  

Results from studies in Chapters 4 to 6 showed the benefit of closed-loop insulin 

delivery during overnight as well as day-and-night applications across all paediatric age 

groups in free daily living. The unsupervised nature of these home studies allowed a 

more realistic estimation on actual closed-loop performance in real-life and utility of 

closed-loop systems. Participants’ use of day-and-night closed-loop was high, i.e. over 

80% of time, in all three day-and-night studies. 

In the overnight study (Chapter 4), I showed the feasibility of extended use of overnight 

closed-loop systems in home settings over a period of three months in children aged 

six years and older. Overnight closed-loop significantly improved glycaemic control in 

terms of increased time spent within normal glucose range, reduced mean glucose and 

reduced time spent hyperglycaemic. Extended benefits from overnight closed-loop use 

were seen over the full 24-hour period including reduced burden of hypoglycaemia. 

This was achieved by greater variability of insulin delivery by closed-loop, with 

comparable total insulin delivery overnight to sensor-augmented pump therapy.  
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Using a portable, wireless closed-loop system (Chapter 5), day-and-night application 

was tested in adolescents with type 1 diabetes within two clinical studies with up to 3-

week intervention periods. Results of these studies demonstrated that the use of 

closed-loop in this challenging population is safe, feasible and efficacious. It increased 

time when glucose was in the target range (3.9 to 10.0mmol/l) while reducing the 

mean glucose. These improvements were achieved without increasing the risk of 

hypoglycaemia. The technology, despite its ‘prototype status’, was well perceived by 

adolescents, and might be a promising tool to address glycaemic deterioration usually 

seen in this population. 

In very young children aged one to seven years, preliminary findings from a multi-

centre, multinational trial suggest that day-and-night application of closed-loop insulin 

delivery in free daily living is feasible, safe and efficacious (Chapter 6). Though insulin 

requirements were low in our participants, dilution of insulin in a closed-loop setting 

might not be of additional benefit. Given the multiple challenges of diabetes 

management in this age group, these results are particularly encouraging. 

Overall, the research described in my thesis provides key insights into the clinical 

evaluation of closed-loop technology. My work highlights the great potential of this 

technology to improve glucose control in children and adolescents with type 1 diabetes 

and helps build a strong body of evidence for the use of closed-loop in clinical practice.  

7.2 STRENGTHS 

The closed-loop studies as described in Chapters 4 to 6 were performed without 

supervision in real world free-living conditions. Evaluations without supervision or 

close remote monitoring represent the ultimate challenge in providing unequivocal 

assessment of closed-loop performance under free living conditions. Study participants 

used closed-loop on their own accord, therefore allowing accurate assessment of 

usability by the intended user of the technology.  

All studies adopted a randomised crossover-design. Statistical plans for all studies were 

agreed upon by investigators in advance thereby reducing bias, and all data analyses 

were performed on an intention-to-treat basis.  
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The studies included in my thesis were among the first outpatient closed-loop studies 

conducted in children and adolescent with type 1 diabetes. The 3-month overnight 

study in Chapter 4 is the longest randomised closed-loop home study in children and 

adolescents to date. The studies summarised in Chapter 5 represent the first trials 

investigating day-and-night application of closed-loop insulin delivery under free-living 

conditions in adolescents with type 1 diabetes. In Chapter 6, preliminary results of the 

first evaluation of closed-loop technology in free daily living in very young children with 

type 1 diabetes aged one to seven years are presented. With our group’s pioneering 

role in the closed-loop field, we helped pave the way for future real life closed-loop 

use in children and adolescents with type 1 diabetes.  

The Cambridge model-predictive hybrid closed-loop approach was successfully 

evaluated in children and adolescents with type 1 diabetes across all age groups from 

1-year-old toddlers to 18-year-old young adults. Complementary to our group’s work 

on closed-loop use in adults with type 1 diabetes including pregnant women, this 

supports the application of our closed-loop technology in a wide range of people with 

type 1 diabetes.  

For studies described in Chapters 4 and 5, the comparator was “state-of-the-art” 

sensor-augmented pump therapy without any degree of glucose responsive regulation 

of insulin delivery. Closed-loop outperformed the best, most widely available 

technology in terms of efficacy. Therefore, the studies may facilitate future analyses 

including health economic evaluations by organisations providing reimbursement 

guidelines.  
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7.3 LIMITATIONS 

The studies described in this thesis have a number of limitations. The total number of 

patients studied - five to 25 per trial - is still small. Additionally, closed-loop technology 

in home settings was mainly assessed in less well controlled diabetes (mean HbA1c 

ranging from 7.7% to 8.5% in the studied populations). Well controlled patients (HbA1c 

<7.5%), patients with poorly controlled diabetes, and other groups such as patients 

with impaired awareness of hypoglycaemia or history of recurrent severe 

hypoglycaemia, have not been studied so far, though these subgroups might benefit 

most from automated insulin delivery systems. 

All studies included in this thesis focused on ‘time in range’ as the primary outcome. 

As baseline hypoglycaemia rates were low in our populations, particularly among 

teenagers, most studies failed to demonstrate a significant or relevant reduction in 

mild hypoglycaemia. The trials included were too short for severe hypoglycaemia to 

occur. Moreover, recurrent severe hypoglycaemia or hypoglycaemia unawareness 

have been listed as specific exclusion criteria in the trials. Hence, the impact of our 

closed-loop approach on severe hypoglycaemia remains unclear. 

Compared to a fully integrated closed-loop system, our modular prototype systems 

consisted of more than one device. The number and actual size of study devices that 

needed to be carried by participants during closed-loop home use were perceived as a 

burden and major limitation. Although progress was made from the overnight to the 

day-and-night studies with respect to wireless communication and device size, further 

integration is certainly needed if consistent use of the technology in long-term studies 

and outside the research setting is to be sustained. 

In all our studies, benefits of closed-loop use during the day remain less pronounced 

relative to the overnight period. Limiting factors include sub-optimal meal 

management by participants using our hybrid closed-loop approach (sub-optimal 

carbohydrate counting, insulin-to-carbohydrate ratios and timing of bolus delivery), 

pharmacokinetic delays of CGM sensor reliability and subcutaneous rapid acting 

analogues, and utility restriction due to number and size of devices, particularly during 

physical activity. In our free-living settings, data on physical activity were not 
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systematically tracked and not reliably collected, and limited information related to 

exercise was used to inform the algorithm.  

7.4 ONGOING STUDIES 

Following these evaluations of closed-loop use in short to medium term studies, larger 

controlled trials of longer duration were needed for a true assessment of the merits of 

closed-loop treatment. Since the completion of the studies described in my thesis, 

together with my supervisor and the Cambridge AP team I have substantially 

contributed to the setup and conduction of a number of large-scale, multicentre trials 

which are still ongoing. As no interim or final analysis was performed during my time 

of studies in Cambridge, I was not able to include results from these trials in my thesis. 

However, a brief description of the studies is given below. My duties and 

responsibilities for each of these trials are summarised in Appendix A. Study synopses 

of the trials can be found in Appendix E, F, G.   

7.4.1 APCam11 

The APCam11 trial is a 3-month home study evaluating the efficacy, utility and safety 

of day-and-night hybrid closed-loop in children, adolescents and adults with type 1 

diabetes aged six years and older. The comparator is sensor-augmented pump therapy. 

The study adopts an open-label, multi-centre, randomised, single-period, parallel 

design. Paediatric and adult sites in the UK and the US were involved. 84 subjects were 

included. Primary endpoint will be the percentage of time spent with sensor readings 

in the target glucose range (3.9 to 10.0 mmol/l).  

7.4.2 DAN05 

In DAN05 trial, we evaluate 6-month use of day-and-night hybrid closed-loop in 

children and adolescents aged six to 18 years. It is an open-label, multi-centre, 

randomized, single-period, parallel design study. The comparator is insulin pump 

therapy alone. Paediatric sites in the UK and in the US will be involved. 130 subjects 

will be included. Primary endpoint will be HbA1c at the 6-month visit.  
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7.4.3 CLOuD 

In CLOuD we assess 24-month closed-loop use from onset of type 1 diabetes in youth 

aged 10 to 18 years.  The purpose of this study is to test the impact of continued 

intensive metabolic control using closed-loop insulin delivery after diagnosis on 

residual beta cell function compared to standard insulin therapy. It adopts an open-

label, multicentre, randomised, single-period, parallel design study. Beta-cell function 

is assessed by mixed-meal-tolerance test. The primary endpoint is the area under the 

meal stimulated C-peptide curve during a mixed-meal-tolerance test at 12 months post 

diagnosis. We will aim to recruit 96 subjects from six UK sites within two weeks of 

diagnosis. 

7.5 CONCLUDING REMARKS AND PERSPECTIVE 

The research studies described in my thesis highlight the current status and the 

roadmap for the development of closed-loop insulin delivery systems in children and 

adolescents with type 1 diabetes. My work provides the evidence that real-world 

application of closed-loop technology is feasible, safe and effective. 

With the approval of the first hybrid closed-loop system (MiniMed 670G pump, 

Medtronic) by the FDA in September 2016 based on a safety study99,166 and its market 

introduction in the USA in early 2017, single hormone closed-loop systems have 

entered mainstream clinical practice. Further tuning and refinements of the first 

generation of artificial pancreas systems are expected.  

Optimising glucose control during rapid glycaemic fluctuations observed during meal-

times and exercise is still challenging for closed-loop systems. The absorption rate of 

rapid acting insulin analogues is not fast enough which delays onset and prolongs 

insulin action258. These delays are complicated by the inherent 5-15 minutes’ lag 

between glucose levels in the vascular and interstitial space259,260 . Both factors may 

damp closed loop performance during daytime. Adjunctive therapies including 

pramlintide and glucagon-like peptide-1, both delaying gastric emptying and 

suppressing meal-induced glucagon secretion163-165, or use of inhaled insulin 261, which 

acutely increases systemic insulin levels, might mitigate against meal-induced rise in 
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glucose levels. Ancillary technologies such as site-warming262 and co-administration of 

hyaluronidase263 accelerate absorption and action of rapid-acting insulin analogues. 

The advent of faster insulin aspart with an earlier onset of appearance, and four-and-

a half times greater serum exposure in the first 15-minutes post-injection, or similar 

ultra-rapid insulin analogues may help address some of these issues. 

Integrating inputs from activity trackers such as accelerometers and heart rate 

monitors into closed-loop systems may further improve closed-loop performance 

during physical activity264, but valid and reliable methods to assess exercise duration 

and modalities, and thus accurately inform control algorithms are still lacking.  

Bi-hormonal artificial pancreas may provide additional benefit and reduce 

hypoglycaemia or mean glucose. Current limitations, however, are increased device 

complexity and cost compared to single hormone system, unavailability of dual 

chamber pumps and instability of current glucagon preparation during extended pump 

use. Developments are ongoing to establish dual-chamber pump devices and stable 

glucagon preparation for use in bi-hormonal closed-loop systems265. Regarding 

uncertainty of safety and tolerability associated with chronic subcutaneous glucagon, 

long-term data from human studies are needed. 

Smaller and more user-friendly devices may be particularly important for children170. 

At present, modular systems are most commonly used including multiple handheld 

research devices to receive signals, compute and control insulin delivery in closed-loop 

prototypes. This complexity might increase risk of communication and connectivity 

problems. As closed-loop devices may be vulnerable to cybersecurity threats, e.g. 

interference with wireless protocols and unauthorised data retrieval266, 

implementation of secure communications protocols will be needed. The development 

of fully integrated systems might overcome these issues, and may additionally reduce 

the burden of devices.  

In most closed-loop studies, study participation is limited to pump users only, who are 

– despite increased popularity of insulin pumps – still not reflective of the overall 

population of children and adolescents with type 1. This selection bias inevitably 
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diminishes overall generalisability of study findings with respect to glycaemic control, 

hypoglycaemia and psychosocial outcomes. In fact, better glycaemic control and 

reduced patient effort may entice a larger proportion of patients currently managing 

their diabetes with multiple daily injections without CGM. Future studies need to enrol 

a sufficient number of pump and CGM naïve patients. Other subgroups including 

patients with hypoglycaemia unawareness and complications of diabetes should be 

enrolled so that safety, efficacy and utility analysis can be performed in these. Future 

research may include identifying sub-populations which may benefit most. 

The timeline to application of further closed-loop systems in clinical practice 

encompasses regulatory approvals with reassuring attitudes of regulatory agencies 

such as the US Food and Drug Administration. Multinational closed-loop clinical trials 

and pivotal studies of prolonged 6 to 24-month duration are underway or in 

preparation including adults and paediatric populations. 

Cost-effectiveness evaluation of closed-loop is to be determined to support access and 

inform reimbursement decision-making. In addition to conventional endpoints such as 

glycated haemoglobin, quality of life is to be included to assess burden of disease 

management and hypoglycaemia. A concerted effort is underway to develop measures 

that more adequately than existing tools capture the extent to which human and 

psychological factors play a role in the uptake and efficient use of AP systems267,268. 

Altogether, my thesis outlines the feasibility of real-world use of closed-loop 

applications in children and adolescents with type 1 diabetes. I highlight the progress 

made so far and the potential of this technology. Future studies by our group and 

others will further advance the field. Over the past decade, international and national 

funders provided grants of more 200M USD for closed-loop academic research, and 

device manufacturers have committed significant resources towards 

commercialisation. A notable milestone has been achieved with the translation of 

research into clinical use of algorithm-driven glucose responsive insulin delivery in the 

form of a hybrid artificial pancreas system. Further success and wider availability of this 

technology will largely be dependent upon further regulatory approvals and upon 

ensuring that infrastructures and support are in place for healthcare professionals 
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providing clinical care, including training resources, and that structured education is 

provided for patients. 

At present, industry-driven and academic research teams working on closed-loop 

technology are occupied with phase 3 trials or earlier, suggesting that other 

commercially viable products will not emerge from these projects for some time. In the 

meantime, a small but vocal community of people rallying behind the mantra 

#WeAreNotWaiting are designing and operating their own do-it-yourself artificial 

pancreas systems (DIY APS) by reverse-engineering standard continuous glucose 

monitors and insulin pumps269. Traditional regulatory approval pathways for medical 

devices are bypassed. The DIY APS community is an example of open-source 

collaboration providing more advanced (although not fully tested), customisable, and 

modular functionality, which pushes and stimulates the whole field in terms of system 

and algorithm design. 

Apart from fully integrated hybrid closed-loop systems developed by a single 

manufacturer combining insulin pump, CGM and control algorithm in a single device 

(e.g. the already available Medtronic 670G system), modular systems will sooner or 

later enter the market utilising open-protocol-based control through different 

commercially developed devices and software. Standard insulin pumps and CGM 

devices from different manufacturers will seamlessly and securely connect with mobile 

phones or other portable devices (e.g., by using Bluetooth technology) running either 

a DIY algorithm application or a mobile medical application fully approved for 

algorithm-driven insulin delivery. 

The coming decade will be marked by more and more advanced closed-loop insulin 

delivery systems which will become the standard of care for people with type 1 

diabetes including children and adolescents. More biological technologies such as the 

bioartificial pancreas and ‘smart’ insulin strategies (including encapsulated islets, 

glucose- responsive polymer encapsulation of insulin and molecular modification of 

insulin) will follow but will take considerably longer to demonstrate safety and efficacy 

in humans270,271. Alongside with interventions to preserve b-cell function, artificial 
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pancreas approaches will serve as a solid bridge to a cure for type 1 diabetes until stem-

cell therapy or other curative interventions become available. 
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8 Appendices 

8.1 APPENDIX A: STUDY SPECIFIC RESPONSIBILITIES 

CHAPTER 2 – APCAM09 STUDY 

1. Development of study design and protocol 

2. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

3. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

4. Recruitment of participants 

5. Training participants on the use of study insulin pump and CGM devices 

6. Conducting overnight closed-loop studies including venous sampling for plasma 

glucose at the clinical research facility.  

7. Development of statistical analysis plan 

8. Data and statistical analysis 

9. Writing manuscript and manuscript submission 

10. Presentation of results at the 9th International Conference on Advanced 

Technologies & Treatments for Diabetes in Milan, Italy, in 2016.  

 

CHAPTER 3 – APCAM08 STUDY 

1. Development of study design and protocol 

2. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

3. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

4. Recruitment of participants 

5. Training participants on the use of study insulin pump and CGM devices 

6. Conducting closed-loop clinical studies in Cambridge 

7. Training and supervising collaborators in Leeds and at UCLH London on study 

conduct and use of closed-loop system 
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8. Providing report and update to the Data and Safety Monitoring Board  

9. Development of statistical analysis plan 

10. Data and statistical analysis 

11. Writing manuscript 

 

CHAPTER 4 – DAN04 STUDIES 

1. Development of study designs and protocols 

2. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

3. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

4. Recruitment of participants 

5. Training participants on the use of study insulin pump and CGM devices 

6. Conducting closed-loop clinical studies in Cambridge 

7. Providing reports and update to the Data and Safety Monitoring Board  

8. Development of statistical analysis plans 

9. Data and statistical analyses 

10. Writing manuscripts and manuscript submissions 

11. Presentation of results at the ADA (75th scientific sessions) in Boston, USA, in 

2015 (Study 1), at the 9th International Conference on Advanced Technologies 

& Treatments for Diabetes in Milan, Italy, in 2016 (Study 2), and at the 42nd 

Annual Conference of the International Society for Pediatric and Adolescent 

Diabetes in Valencia, Spain, in 2016 (pooled analysis Study 1 & Study 2) 

 

CHAPTER 5 - KIDSAP01 STUDY 

1. Preparation of documents for the research proposal submitted to the European 

Commission’s Horizon2020 programme 

2. Development of study design and protocol 
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3. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

4. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

5. Recruitment of participants 

6. Training participants on the use of study insulin pump and CGM devices 

7. Conducting closed-loop clinical studies in Cambridge 

8. Training and supervising collaborators in the UK, Luxembourg, Germany and 

Austria on study conduct and use of closed-loop system 

9. Providing report and update to the Data and Safety Monitoring Board  

10. Development of statistical analysis plan 

11. Data and statistical analysis 

12. Writing manuscript 

 

CHAPTER 6 

APCAM11 STUDY 

1. Development of study design and protocol 

2. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

3. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

4. Recruitment of participants 

5. Training participants on the use of study insulin pump and CGM devices 

6. Conducting closed-loop clinical studies in Cambridge 

7. Training and supervising collaborators in Leeds and at Edinburgh on study 

conduct and use of closed-loop system 

8. Providing report and update to the Data and Safety Monitoring Board 

9. Writing manuscript 
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DAN05 STUDY: 

1. Development of study design and protocol 

2. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

3. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

4. Recruitment of participants 

5. Training participants on the use of study insulin pump and CGM devices 

6. Conducting closed-loop clinical studies in Cambridge 

7. Providing report and update to the Data and Safety Monitoring Board  

 

CLOUD STUDY 

1. Development of study design and protocol 

2. Preparation of documents for regulatory approvals (including consent/assent 

forms, patient information sheets, etc) 

3. Attending the Research Ethics Committee (REC) meeting and follow up with the 

REC regarding any open queries 

4. Recruitment of participants 

5. Training participants on the use of study insulin pump and CGM devices 

6. Conducting closed-loop clinical studies in Cambridge 

7. Training and supervising collaborators in Liverpool, Nottingham, Oxford and 

Southampton on study conduct and use of closed-loop system 

8. Providing report and update to the Data and Safety Monitoring Board  
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8.2 APPENDIX B: ASSISTANCE, COLLABORATION AND FUNDING 

CHAPTER3– APCAM09  

The following investigators from University of Cambridge contributed to the work. 

Janet M. Allen, Research Nurse (RN), Dr Malgorzata E. Wilinska, Dr Yue Ruan, Dr Hood 

Thabit, Dr Carlo L. Acerini, Prof David B. Dunger, and Dr Roman Hovorka. Prof Peter C 

Hindmarsh (University College, London, UK) and Dr Vijith Puthi (Peterborough District 

Hospital, Peterborough, UK) helped in identifying potential recruits. Staff at the 

Addenbrooke’s Wellcome Trust Clinical Research Facility provided support during 

overnight visits. Josephine Hayes (University of Cambridge) provided administrative 

support. Karen Whitehead (University of Cambridge) provided laboratory support. Sara 

Hartnell (Addenbrooke’s Hospital) supported study pump and CGM training. Jino Han 

(Medtronic) and Barry Keenan (Medtronic, presently Alfred Mann Foundation) 

supported the development of the Amber system. The Core Biochemical Assay 

Laboratory (Keith Burling), University of Cambridge, the Institute of Life Sciences 

(Gareth Dunseath), Swansea University, carried out biochemical analyses. 

Funding: This work was funded by the JDRF (#22-2011-668). Additional support for the 

Artificial Pancreas work by National Institute for Health Research Cambridge 

Biomedical Research Centre and Wellcome Strategic Award (100574/Z/12/Z).  

CHAPTER 4 – APCAM08 

The following investigators from the APCam Consortium contributed to the work: 

University of Cambridge, Cambridge, UK – Dr Carlo L Acerini, Janet M Allen RN, Prof 

David B Dunger, Dr Daniela Elleri, Samantha J Goode, Josephine Hayes, Dr Roman 

Hovorka, Dr Helen R Murphy, Dr Zoe A Stewart, Dr Hood Thabit, Dr Malgorzata E 

Wilinska; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK - Sara 

Hartnell BSc; Leeds Children's Hospital, Leeds, UK – Dr Fiona M Campbell MD, Jane Exall 

RN, Dr James Yong; Institute of Child Health, University College London Hospital, 

London, UK – Prof Peter C Hindmarsh, Jennifer Pichierri MSc; Jaeb Center, Tampa, FL, 

USA – Peiyao Cheng MPH, Dr Craig Kollman, John Lum MS, Nelly Njeru BA, Judy Sibayan 

MPH; Leicester University Hospitals NHS Trust, Leicester, UK – Jasdip Mangat MSc. 
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Funding: Supported by grant from the JDRF (22-2011-668), with additional support for 

the artificial pancreas work from a National Institute for Health Research Cambridge 

Biomedical Research Centre and Wellcome Strategic Award (100574/Z/12/Z). 

CHAPTER5– DAN04 STUDIES 

The following investigators contributed to the work and served as co-authors of the 

published manuscript: University of Cambridge, UK: Janet M. Allen RN, Dr Malgorzata 

E. Wilinska, Dr Hood Thabit, Dr Zoe Stewart, Dr Carlo L. Acerini, Prof David B. Dunger, 

Dr Roman Hovora; Jaeb Center, Tampa, FL – Peiyao Cheng MPH, Dr Craig Kollman. I 

also thank the staff at the Addenbrooke’s Wellcome Trust Clinical Research Facility for 

their support. In addition, I thank Jasdip Mangat and John Lum (Jaeb Center) for their 

support of the development and validation of the closed-loop system; Josephine Hayes 

(University of Cambridge) for administrative support; Karen Whitehead (University of 

Cambridge) for laboratory support; the staff at Addenbrooke’s Hospital for their 

support; Sara Hartnell and Sonja Slegtenhorst for study pump training; and The Core 

Biochemical Assay Laboratory (Keith Burling), University of Cambridge, and the 

Institute of Life Sciences (Gareth Dunseath), Swansea University, for carrying out the 

biochemical analyses, Prof Peter Hindmarsh (University College, London, U.K.) for help 

in identifying potential recruits, and Prof John Pickup (Guy’s Hospital, London, U.K.), 

Prof Irl Hirsch (University of Washington School of Medicine), and Prof Howard Wolpert 

(Joslin Diabetes Center) for serving on the data safety and monitoring board. 

Funding: This study received support from the National Institute of Diabetes and 

Digestive and Kidney Diseases (1R01-DK-085621-01). Additional support for the 

artificial pancreas work was received from JDRF, National Institute for Health Research 

Cambridge Biomedical Research Centre, and the Wellcome Strategic Award 

(100574/Z/12/Z).  
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CHAPTER 6 – KIDSAP01 

The following investigators from the KidsAP Consortium contributed to the work: 

University of Cambridge, Cambridge, UK: Dr Carlo L Acerini, Janet M Allen RN, Nicole 

Barber, Josephine Hayes, Dr Roman Hovorka, Dr Malgorzata E Wilinska; Cambridge 

University Hospitals NHS Foundation Trust, Cambridge, UK: Sara Hartnell, Sonja 

Slegtenhorst; Medical University of Graz, Graz, Austria: Dr Elke Fröhlich-Reiterer; 

Medical University of Innsbruck, Innsbruck, Austria: Dr Sabine Hofer; Jaeb Centre for 

Health Research, Tampa, FL, USA: Nathan Cohen, Dr Craig Kollman; University of Leeds, 

Leeds, UK: Dr Fiona Campbell;  University of Leipzig, Leipzig, Germany: Dr Thomas 

Kapellen; University of Luxembourg, Luxembourg: Dr Carine de Beaufort;  Medical 

University of Vienna, Vienna, Austria: Prof Birgit Rami-Merhar 

Funding: This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under the grant agreement No 731560. The Jaeb 

Center for Health Research is funded by JDRF under the grant 3-SRA-2016-297-M-N. 
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8.3 APPENDIX C: ACHIEVEMENTS 

Awards: 

American Diabetes Association Young Investigator Travel Grant Award 2015 

ISPAD Young Investigator Award 2018 

 

Publications directly linked to work described in my thesis: 

CHAPTER 2 

▪ Tauschmann M, Hovorka R. Insulin pump therapy in youth with type 1 diabetes: 
toward closed-loop systems. Expert Opin Drug Deliv. 2014 Jun;11(6):943-55. 

▪ Tauschmann M, Hovorka R. 2016. Glucose monitoring and insulin pump 
therapy in the management of children and adolescents with type 1 diabetes. 
In: Scaramuzza A et al. eds. Research into childhood-onset diabetes. Cham: 
Springer International Publishing Switzerland 

▪ Tauschmann M, Hovorka R. Insulin delivery and nocturnal glucose control in 
children and adolescents with type 1 diabetes. Expert Opin Drug Deliv. 2017 
Dec;14(12):1367-1377. 

▪ Tauschmann M, Hovorka R. Technology in the management of type 1 diabetes 
– present status and future prospects. Nat Rev Endocrinol. 2018 Aug;14(8):464-
475. 

CHAPTER 3 

▪ Tauschmann M, Allen JM, Wilinska ME, Ruan Y, Thabit H, Acerini CL, Dunger DB, 
Hovorka R. Sensor life and overnight closed-loop: A randomized clinical trial. J 
Diabetes Sci Technol. 2017 May;11(3):513-521. 

CHAPTER 4 

▪ Thabit H*, Tauschmann M*, Allen JM, Leelarathna L, Hartnell S, Wilinska ME, 
Acerini CL, Dellweg S, Benesch C, Heinemann L, Mader JK, Holzer M, Kojzar H, 
Exall J, Yong J, Pichierri J, Barnard KD, Kollman C, Cheng P, Hindmarsh PC, 
Campbell FM, Arnolds S, Pieber TR, Evans ML, Dunger DB, Hovorka R; APCam 
Consortium; AP@home Consortium. Home use of an artificial beta cell in Type 
1 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2129-40. 

 * Drs. Thabit and Tauschmann contributed equally to this article.  
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CHAPTER 5 

▪ Tauschmann M, Allen JM, Wilinska ME, Thabit H, Stewart Z, Cheng P, Kollman 
C, Acerini CL, Dunger DB, Hovorka R. Day-and-night hybrid closed-loop insulin 
delivery in adolescents with type 1 diabetes: A free-living, randomized clinical 
trial. Diabetes Care. 2016 Jul; 39(7):1168-74. 

▪ Tauschmann M, Allen JM, Wilinska ME, Thabit H, Acerini CL, Dunger DB, 
Hovorka R. Home use of day-and-night hybrid closed-loop insulin delivery in 
suboptimally controlled adolescents with type 1 diabetes: a 3-week, free-living, 
randomized cross-over trial. Diabetes Care. 2016 Nov;39(11):2019-2025. 

CHAPTER 6 

▪ Tauschmann M, Allen JM, Slegtenhorst S, Barber N, Wilinska ME, Ruan Y, Cohen 
N, Kollman C, Acerini CL, De Beaufort C, Campbell F, Fröhlich-Reiterer EE, Hofer 
S, Kapellen T, Rami-Merhar B, Hovorka R. KidsAP - Home use of day-and-night 
hybrid closed-loop insulin delivery in very young children with type 1 diabetes: 
a 3-week, randomized pilot trial. [Manuscript in preparation for submission to 
peer-reviewed journal] 

 

Other publications: 

▪ Elleri D, Allen JM, Tauschmann M, El-Khairi R, Benitez-Aguirre P, Acerini CL, 
Dunger DB, Hovorka R. Feasibility of overnight closed-loop therapy in young 
children with type 1 diabetes aged 3-6 years: comparison between diluted and 
standard insulin strength. BMJ Open Diabetes Res Care. 2014 Dec 
11;2(1):e000040. 

▪ Ruan Y, Elleri D, Allen JM, Tauschmann M, Wilinska ME, Dunger DB, Hovorka R. 
Pharmacokinetics of diluted (U20) insulin aspart compared with standard 
(U100) in children aged 3-6 years with type 1 diabetes during closed-loop 
insulin delivery: a randomised clinical trial. Diabetologia. 2015 Apr;58(4):687-
90. 

▪ Tauschmann M, Thabit H, Leelarathna L, Elleri D, Allen JM, Lubina-Solomon A, 
Stadler M, Walkinshaw E, Iqbal A, Choudhary P, Wilinska ME, Heller SR, Amiel 
SA, Evans ML, Dunger DB, Hovorka R. Factors associated with glycemic control 
during free-living overnight closed-loop insulin delivery in children and adults 
with type 1 diabetes. J Diabetes Sci Technol. 2015 Oct 7;9(6):1346-7. 

▪ Farrington C, Allen J, Tauschmann M, Randell T, Trevelyan N, Hovorka R. Factors 
affecting recruitment of participants for studies of diabetes technology in newly 
diagnosed youth with type 1 diabetes: A qualitative focus group study with 
parents and children. Diabetes Technol Ther. 2016 Sep;18(9):568-73. 
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▪ Bally L, Thabit H, Kojzar H, Mader JK, Qerimi-Hyseni J, Hartnell S, Tauschmann 
M, Allen JM, Wilinska ME, Pieber TR, Evans ML, Hovorka R. Day-and-night 
glycaemic control with closed-loop insulin delivery versus conventional insulin 
pump therapy in free-living adults with well controlled type 1 diabetes: an 
open-label, randomised, crossover study. Lancet Diabetes Endocrinol. 2017 
Apr;5(4):261-270. 

▪ Barnard KD, Wysocki T, Ully V, Mader JK, Pieber TR, Thabit H, Tauschmann M, 
Leelarathna L, Hartnell S, Acerini CL, Wilinska ME, Dellweg S, Benesch C, Arnolds 
S, Holzer M, Kojzar H, Campbell F, Yong J, Pichierri J, Hindmarsh P, Heinemann 
L, Evans ML, Hovorka R. Closing the loop in adults, children and adolescents 
with suboptimally controlled type 1 diabetes under free living conditions: A 
psychosocial substudy. J Diabetes Sci Technol. 2017 Nov;11(6):1080-1088. 

▪ Ruan Y, Thabit H, Leelarathna L, Hartnell S, Wilinska ME, Tauschmann M, 
Dellweg S, Benesch C, Mader JK, Holzer M, Kojzar H, Evans ML, Pieber TR, 
Arnolds S, Hovorka R; AP@home consortium. Faster insulin action is associated 
with improved glycaemic outcomes during closed-loop insulin delivery and 
sensor-augmented pump therapy in adults with type 1 diabetes. Diabetes Obes 
Metab. 2017 Oct;19(10):1485-1489. 

▪ Bally L, Thabit H, Tauschmann M, Allen JM, Hartnell S, Wilinska ME, Exall J, 
Huegel V, Sibayan J, Borgman S, Cheng P, Blackburn M, Lawton J, Elleri D, 
Leelarathna L, Acerini CL, Campbell F, Shah VN, Criego A, Evans ML, Dunger DB, 
Kollman C, Bergenstal RM, Hovorka R. Assessing the effectiveness of a 3-month 
day-and-night home closed-loop control combined with pump suspend feature 
compared with sensor-augmented pump therapy in youths and adults with 
suboptimally controlled type 1 diabetes: a randomised parallel study protocol. 
BMJ Open. 2017 Jul 13;7(7):e016738. 

▪ Lawton J, Blackburn M, Allen J, Campbell F, Elleri D, Leelarathna L, Rankin D, 
Tauschmann M, Thabit H, Hovorka R. Patients' and caregivers' experiences of 
using continuous glucose monitoring to support diabetes self-management: 
qualitative study. BMC Endocr Disord. 2018 Feb 20;18(1):12. 

▪ Ruan Y, Bally L, Thabit H, Leelarathna L, Hartnell S, Tauschmann M, Wilinska 
ME, Evans ML, Mader JK, Kojzar H, Dellweg S, Benesch C, Arnolds S, Pieber TR, 
Hovorka R. Hypoglycaemia Incidence and Recovery During Home Use of Hybrid 
Closed-Loop Insulin Delivery in Adults with Type 1 Diabetes. Diabetes Obes 
Metab. 2018 Mar 25. doi: 10.1111/dom.13304. [Epub ahead of print] 

▪ Bekiari E, Kitsios K, Thabit H, Tauschmann M, Athanasiadou E, Karagiannis T, 
Haidich AB, Hovorka R, Tsapas A. Artificial pancreas treatment for outpatients 
with type 1 diabetes: systematic review and meta-analysis. BMJ. 2018 Apr 
18;361:k1310 

▪ Abraham MB, Jones TW, Naranjo D, Karges B, Oduwole A, Tauschmann M, 
Maahs DM. ISPAD Clinical Practice Consensus Guidelines 2018: Assessment and 
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management of hypoglycemia in children and adolescents with diabetes. 
Pediatr Diabetes. 2018 Oct;19 Suppl 27:178-192. 

▪ Sherr JL, Tauschmann M, Battelino T, de Bock M, Forlenza G, Roman R, Hood 
KK, Maahs DM. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes 
technologies. Pediatr Diabetes. 2018 Oct;19 Suppl 27:302-325. 

▪ DeSalvo DJ, Miller KM, Hermann JM, Maahs DM, Hofer SE, Clements MA, 
Lilienthal E, Sherr JL, Tauschmann M, Holl RW; T1D Exchange and DPV registries. 
Continuous Glucose Monitoring (CGM) and Glycemic Control Among Youth 
with Type 1 Diabetes (T1D): International comparison from the T1D Exchange 
and DPV Initiative. Pediatr Diabetes. 2018 Nov;19(7):1271-1275. 

▪ Tauschmann M, Thabit H, Bally L, Allen JM, Hartnell S, Wilinska ME, Ruan Y, 
Sibayan J, Kollman C, Cheng P, Beck RW, Acerini CL, Evans ML, Dunger DB, Elleri 
D, Campbell F, Bergenstal RM, Criego A, Shah VN, Leelarathna L, Hovorka R; 
APCam11 Consortium. Closed-loop insulin delivery in suboptimally controlled 
type 1 diabetes: a multicentre, 12-week randomised trial. Lancet. 2018 Oct 
13;392(10155):1321-1329. 
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Presentations at scientific meetings (international): 

▪ Tauschmann M, Allen JH, Slegtenhorst S, Barber N, Wilinska ME, Ruan Y, Cohen 
N, Kollman C, Acerini CL, De Beaufort C, Campbell F, Fröhlich-Reiterer EE, Hofer 
S, Kapellen T, Rami-Merhar B, Hovorka R on behalf of KidsAP Consortium. 
KiDSAP - Home use of the Artificial Pancreas in very young children with type 1 
diabetes: The pilot study. 11th International Conference on Advanced 
Technologies & Treatments for Diabetes; 14-17 Feb 2018; Vienna, Austria 
[poster] 

▪ Tauschmann M, Allen JH, Slegtenhorst S, Wilinska ME, Barber N, Thorpe A, Scott 
EM, Northam L, Lawton J, Farrington C, Roze S, Cohen N, Kollman C, Dunger DB, 
Acerini CL, Ghatak A, Randell T, Besser R, Trevelyan N, and Hovorka R. Closed-
loop from onset in childhood type-1 diabetes (CLOuD): A randomised controlled 
trial to assess the effect of closed-loop insulin delivery on residual beta-cell 
function. 11th International Conference on Advanced Technologies & 
Treatments for Diabetes; 14-17 Feb 2018; Vienna, Austria [poster] 

▪ Tauschmann M. Update on Artificial Pancreas Research in Cambridge, 43th 
Annual Conference of the International Society for Pediatric and Adolescent 
Diabetes; 18-21 Oct 2017, Innsbruck, Austria [oral presentation] 

▪ Tauschmann M, Allen JH, Wilinska ME, Thabit H, Acerini CL, Dunger DB, Hovorka 
R. Unsupervised home use of day-and-night closed-loop insulin delivery: A 
pooled analysis of randomized controlled studies in adolescents with type 1 
diabetes. the 42nd Annual Conference of the International Society for Pediatric 
and Adolescent Diabetes; 26-29 Oct 2016, Valencia, Spain [poster presentation] 

▪ Tauschmann M, Allen JH, Wilinska ME, Thabit H, Acerini CL, Dunger DB, Hovorka 
R. Home us of day-and-night closed-loop insulin delivery in adolescents with 
type 1 diabetes: A randomised clinical trial. 9th International Conference on 
Advanced Technologies & Treatments for Diabetes; 03-06 Feb 2016; Milan, Italy 
[oral presentation] 

▪ Tauschmann M, Allen JH, Wilinska ME, Thabit H, Acerini CL, Dunger DB, Hovorka 
R. Sensor operation duration does not affect overnight closed loop efficacy: A 
randomised clinical trial. 9th International Conference on Advanced 
Technologies & Treatments for Diabetes; 18-21 Feb 2016; Milan, Italy [poster] 

▪ Tauschmann M, Allen JM, Wilinska ME, Thabit H, Stewart Z, Cheng P, Kollman 
C, Acerini CL, Dunger DB, Hovorka R. Day and Night Closed Loop Insulin Delivery 
in Young People with Type 1 Diabetes: A Free-Living, Randomised Clinical Trial. 
ADA 75th scientific sessions; 05-09 Jun 2015; Boston, MA, US [oral 
presentation, Young Investigator Travel Grant Award] 

▪ Tauschmann M, Thabit H, Elleri D, Lubina-Solomon A, Stadler M, Heller SR, 
Amiel SA, Evans ML , Dunger DB, Hovorka R. Performance during unsupervised 
closed loop in children and adults with type 1 diabetes: What makes the 
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difference?; 8th International Conference on Advanced Technologies & 
Treatments for Diabetes; 18-21 Feb 2015; Paris, France [poster] 

▪ Tauschmann M, Thabit H, Leelarathna L, Elleri D, Allen JM, Lubina-Solomon A, 
Stadler M, Walkinshaw E, Iqbal A, Choudhary P, Heller SR, Amiel SA, Evans ML , 
Dunger DB, Hovorka R. Factors influencing overnight closed loop performance 
during free living in children and adults with type 1 diabetes. Diabetes 
Technology Meeting; 06-08 Nov 2014, Bethesda, Maryland, US [Poster] 

▪ Tauschmann M, Thabit H, Leelarathna L, Elleri D, Allen JM, Lubina-Solomon A, 
Stadler M, Walkinshaw E, Iqbal A, Choudhary P, Heller SR, Amiel SA, Evans ML , 
Dunger DB,  Hovorka R. Factors predictive of overnight closed loop 
performance during free living in children and adults with type 1 diabetes. 50th 
EASD Annual Meeting; 15-19 Sep 2014; Vienna, Austria [Poster] 
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8.4 APPENDIX D: DAN04 SUPPLEMENTARY APPENDIX 

A 

 
 

B

 

  

Figure 8.1. Individual values of mean sensor glucose values during closed-loop and control periods. 
The size of bubble indicates the proportion of time spent with low glucose below 2.8mmol/l. Panel A: 
Blue line indicates Subject 21 when mean glucose and percentage of time spent below 2.8 mmol/l are 
calculated using original data. Panel B: Red line indicates Subject 21 when mean glucose and 
percentage of time spent below 2.8 mmol/l are calculated based on cleaned data with excluded sensor 
under-reading (erroneously low glucose sensor values). 
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Figure 8.2. Subject 21, 28 June 2015: Sensor under-reading starting at 15:32 and 
ending at 16:40 (denoted by blue shaded area). Discrepancy noted between capillary 
blood glucose measurements (dark red squares) and sensor glucose levels (light red 
line) red during this period (at 16:19 capillary glucose 5.7 mmol/l vs sensor glucose 
1.0 mmol/l). A period of 01:08 hours was excluded during exploratory analysis. 

 

 

Figure 8.3. Subject 21, 02 July 2015: Sensor under-reading starting at 12:31 and 
ending at 14:52 (denoted by blue shaded area). Discrepancy noted between capillary 
blood glucose measurements (dark red squares) and sensor glucose levels (light red 
line) during this period (at 12:31 capillary glucose 4.4mmol/l vs. sensor glucose 1.4 
mmol/l; at 14.52 capillary glucose 5.8 mmol/l vs. sensor glucose 2.2 mmol/l). A 
period of 02:21 hours was excluded during exploratory analysis. 
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Figure 8.4. Subject 21, 03 July 2015: Sensor under-reading starting at 12:01 and 
ending at 14:09 (denoted by blue shaded area). Discrepancy noted between capillary 
blood glucose measurements (dark red squares) and sensor glucose levels (light red 
line) during this period (at 12:01 capillary glucose 5.3 mmol/l vs. sensor glucose 3.2 
mmol/l; at 12.26 capillary glucose 4.4 mmol/l vs. sensor glucose 1.3 mmol/l; at 14.09 
capillary glucose 7.5 mmol/l vs. sensor glucose 3.8 mmol/l). A period of 02:08 hours 
was excluded during exploratory analysis. 

 

 

Figure 85. Subject 21, 05 July 2015: Sensor under-reading starting at 21:35 and ending 
at 00:30 (denoted by blue shaded area). Discrepancy noted between capillary blood 
glucose measurements (dark red squares) and sensor glucose levels (light red line) 
during this period (at 21.35 capillary glucose 4.0 mmol/l vs. sensor glucose 2.5 
mmol/l; at 22:07 capillary glucose 5.4 mmol/l vs. sensor glucose 1.0 mmol/l; at 22:38 
capillary glucose 4.1 mmol/l vs. sensor glucose 1.0mmol/l; at 22:52 capillary glucose 
4.6 mmol/l vs sensor glucose 1.0 mmol/l; at 23:19 capillary glucose 6.7 mmol/l vs. 
sensor glucose 1.1 mmol/l; at 00:21 capillary glucose 10.7 mmol/l vs sensor glucose 
1.1 mmol/l). A period of 02:55 hours was excluded during exploratory analysis. 
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8.5 APPENDIX E: APCAM11 STUDY SYNOPSIS  

Title Day and night closed-loop with pump suspend 
feature in sub-optimally controlled type 1 diabetes 
under free living conditions (APCam11) 

Purpose of clinical trial To determine whether day and night automated 
closed-loop glucose control combined with pump 
suspend feature will improve glucose control as 
measured by CGM time in range and reduce the 
burden of hypoglycaemia compared to sensor 
augmented insulin pump therapy. 

Study objectives 1. EFFICACY: The objective is to assess efficacy of day 
and night automated closed-loop glucose control 
combined with pump suspend feature in maintaining 
CGM glucose levels within the target range from 3.9 
to 10 mmol/l (70 to 180mg/dl), as compared to 
sensor augmented insulin pump therapy. 

2. SAFETY: The objective is to evaluate the safety of 
day and night automated closed-loop glucose control 
combined with pump suspend feature, in terms of 
episodes of severe hypoglycaemia and other adverse 
events. 

3. UTILITY: The objective is to determine the 
frequency and duration of the use of the automated 
closed-loop system.  

4. PSYCHOSOCIAL: Subjects’ and family members’ 
perception in terms of life-style change, diabetes 
management and fear of hypoglycaemia will be 
assessed using validated questionnaires and semi-
structured qualitative interviews.  

Study design  An open-label, multi-centre, multi-national, 
randomised, single-period, parallel group study, 
contrasting day and night automated closed-loop 
glucose control combined with pump suspend 
feature with sensor augmented insulin pump 
therapy. 

Primary endpoint Time spent in the target glucose range (3.9 to 

10mmol/l) (70 to 180mg/dl) 
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Secondary endpoint(s) • Time spent below target glucose 
(3.9mmol/l)(70mg/dl) 

• Time spent above target glucose (10.0 
mmol/l) (180 mg/dl)  

• HbA1c levels at 12 weeks 

• Average, standard deviation, and coefficient 
of variation of glucose levels 

• Time with glucose levels < 3.5 mmol/l  (63 
mg/dl) and <2.8 mmol/l (50 mg/dl) 

• Time with glucose levels in significant 
hyperglycaemia (glucose levels > 16.7 mmol/l) 
(300mg/dl) 

• Total, basal and bolus insulin dose  

• AUC of glucose below 3.5mmol/l (63mg/dl) 

• Number of pump suspend events (applicable 
to intervention arm) 

• Change in body weight from screening to end 
of study 

Safety evaluation Frequency of severe hypoglycaemic episodes. 
Frequency of severe hyperglycaemia (>16.7 
mmol/l)(>300mg/dl) with significant ketosis (plasma 
ketones >0.6mmol/l) and nature and severity of other 
adverse events. 

Utility evaluation Assessment of the frequency and duration of use of 
the closed-loop system.  

Psychosocial evaluation Evaluation of subjects’ response in terms of life-style 
change, daily diabetes management, fear of 
hypoglycaemia, and cognitive functions. 

Sample size 84 participants randomised (42 youth and 42 adults). 
Each centre will aim to recruit between 05 and 20 
participants 

Summary of eligibility criteria Key inclusion criteria: 

• The subject is at least 6 years or older with 
equal proportion of youth (6 to 21 years) and 
adults (22 years and older) 

• The subject has type 1 diabetes, as defined by 
WHO for at least 1 year or is confirmed C-
peptide negative 

• The subject/carer will have been an insulin 
pump user for at least 3 months, with good 
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knowledge of insulin self-adjustment as 
judged by the investigator 

• The subject is treated with one of the U-100 
rapid acting insulin analogues only (insulin 
Aspart, Lispro but not Glulisine) 

• The subject/carer is willing to perform regular 
finger-prick blood glucose monitoring, with at 
least 4 blood glucose measurements taken 
every day 

• HbA1c  ≥ 7.5% (58.5mmol/mol) and ≤ 10 % 
(86mmol/mol) based on analysis from local 
laboratory with equal proportion of subjects 
above and below HbA1c 8.5% (69mmol/mol)  

• The subject is literate in English 

• The subject lives with someone who is trained 
to administer intramuscular glucagon and is 
able to seek emergency assistance   

 

Key exclusion criteria: 

• Non-type 1 diabetes mellitus including those 
secondary to chronic disease 

• Subject is using real-time CGM on regular 
basis 

• Any other physical or psychological disease 
likely to interfere with the normal conduct of 
the study and interpretation of the study 
results as judged by the investigator 

• Untreated coeliac disease, adrenal 
insufficiency or hypothyroidism 

• Current treatment with drugs known to 
interfere with glucose metabolism, e.g. 
systemic corticosteroids, non-selective beta-
blockers and MAO inhibitors etc. 

• Known or suspected allergy against insulin 

• Subjects with clinically significant 
nephropathy, neuropathy or proliferative 
retinopathy as judged by the investigator  

• Total daily insulin dose  2 IU/kg/day 

• Total daily insulin dose < 15 IU/day 

• Pregnancy, planned pregnancy, or breast 
feeding  

• Severe visual impairment  

• Severe hearing impairment 
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• Significantly reduced hypoglycaemia 
awareness in subjects 18 year and older (Gold 
score > 4) 

• Any episode of severe hypoglycaemia within 
the last 6 months 

• Subjects using implanted internal pace-maker 

• Random C-peptide > 100pmol/l with 

concomitant blood glucose >4 mmol/l (72 

mg/dl) 

• Regular use of acetaminophen 

Maximum duration of study for 

a subject 

18 weeks 

Recruitment The subjects will be recruited through the paediatric 
and adult diabetes outpatient clinics at each centre.  

Consent Written consent/assent will be obtained from 
participants and/or guardians according to REC/IRB 
requirements. 

Screening assessment Eligible participants will undergo a screening 
evaluation where blood samples for full blood count, 
renal, liver, thyroid function and anti-
transglutaminase antibodies with IgA levels will be 
taken (if not done in the previous 3 months). Random 
C-peptide, glucose and HbA1c will also be measured, 
and a urine pregnancy test in females of child-bearing 
potential.   

Questionnaires investigating participants’ quality of 
life, psychosocial functioning and response to their 
current treatment will be distributed.  

Study Training  Training sessions on the use of study CGM, insulin 
pump (and closed-loop system for those randomised 
to the intervention group) will be provided by the 
research team. Training session on the use of real-
time CGM and on how to interpret real-time and 
retrospective stored data will be provided to all 
subjects/carers using written material.  

Run-in Period During a 4-week run-in period, subjects will use study 
CGM and insulin pump. The research team will 
contact subject once weekly during the run-in period, 
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and subjects will also be able to contact the research 
team for support and treatment optimisation as 
necessary. For compliance and to assess the ability of 
the subject to use the CGM and study pump safely, at 
least 12 days of CGM data need to be recorded and 
safe use of study insulin pump demonstrated during 
the last 14 days of run-in period.  

Competency assessment Competency on the use of study insulin pump and 
study CGM will be evaluated using a competency 
assessment tool developed by the research team. 
Further training may be delivered as required. 

Randomisation Eligible subjects will be randomised using 
randomisation software to the use of real-time CGM 
and pump suspend feature combined with day and 
night closed-loop or to sensor augmented insulin 
pump therapy.  

1.  Automated day and night 
closed-loop insulin delivery 
(intervention arm) combined 
with pump suspend feature 
(interventional arm) 

 

 

 

 

 

 

At the start, a blood sample will be taken for the 
measurement of HbA1c and a urine pregnancy test in 
females of child-bearing potential.  

A subset of participants will be interviewed to enable 
their historical diabetes management practices, 
everyday work and family lives, and their initial 
expectations of using closed-loop technology to be 
captured and explored in-depth. 

Subjects will be admitted to the clinical facility on Day 
1. Training on the use of closed-loop and pump 
suspend feature will be provided by the research 
team. During the next 2-4 hours patient will operate 
the system under the supervision of the clinical team. 
Competency on the use of closed-loop system will be 
evaluated.  Subjects will use closed-loop and pump 
suspend feature for 12 weeks. 

2. Sensor augmented insulin 
pump therapy (control arm) 

A blood sample will be taken for the measurement of 
HbA1c and a urine pregnancy test in females of child-
bearing potential. Subjects will use sensor 
augmented insulin pump therapy without pump 
suspend feature for 12 weeks. 
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End of study assessments A blood sample will be taken for measurement of 
HbA1c. 

- Validated questionnaires evaluating the impact of 
the devices employed on life change, diabetes 
management will be completed. 

- Follow-up interviews will be undertaken with the 
subset of participants/family members at the end of 
the closed-loop intervention. 
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8.6 APPENDIX F: CLOUD STUDY SYNOPSIS 

Short title Effect of closed-loop from onset on progression of T1D 
(CLOuD) 

Purpose of clinical trial To determine whether continued intensive 
metabolic control using closed-loop insulin delivery 
(CL) following diagnosis of type 1 diabetes can 
preserve C-peptide secretion as a marker of residual 
beta cell function compared to standard multiple 
daily injections (MDI) therapy 

Study objectives Primary objective: 

• To assess residual C-peptide secretion 
12 months after diagnosis of type 1 diabetes in 
participants receiving either CL insulin delivery 
or standard MDI therapy  

Secondary Objectives: 

• Biochemical: 

o To compare effects of study 
interventions on residual C-peptide 
secretion over 24 months following 
diagnosis 

o To examine how intensive diabetes 
management using CL insulin delivery 
affects glucose control in terms of 
safety and efficacy over 24 months 

• Human Factors: To assess cognitive, emotional, 
and behavioural characteristics of participating 
subjects and family members and their 
response to closed-loop insulin delivery and 
clinical trial 

• Health economics: To perform cost utility 
analysis and inform reimbursement decision-
making  

Study design  An open-label, multi-centre, randomised, single 
period, two-arm parallel group study with internal 
pilot, contrasting closed-loop with MDI 

Primary endpoint 

 

Area under the meal stimulated C-peptide curve 
(AUC) during a mixed meal tolerance test (MMTT) at 
12 months post diagnosis 
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Secondary endpoint(s) • Mean stimulated C-peptide AUC at baseline, 
6 and 24 months 

• Overall glucose control and glucose variability 
o HbA1c levels  
o Percentage of patients in each group 

with HbA1c <7.5% (58 mmol/mol) 
o Percentage of time spent with sensor 

glucose readings in the target range (3.9 
to 10mmol/l) 

o Average, standard deviation, and 
coefficient of variation of sensor glucose 
levels 

• Hypoglycaemia 
o Percentage of time spent below target 

glucose (3.9mmol/l)* 
o Percentage of time with sensor glucose 

levels <3.5 mmol/l and <2.8 mmol/l 

o AUC of sensor glucose below 3.5mmol/l 

• Hyperglycaemia  
o Time spent with sensor glucose above 

target (10.0 mmol/l) 
o Time with sensor glucose levels in 

significant hyperglycaemia (glucose levels > 
16.7 mmol/l) 

• Insulin requirements 
o Total, basal and bolus insulin dose 

(U/kg) 

• Weight 
o Change in body mass index (BMI) 

standard deviation score 

Safety evaluation • Frequency of severe hypoglycaemic episodes 

• Frequency of diabetic ketoacidosis 

• Number, nature and severity of other adverse 
events 

Utility evaluation Assessment of the frequency and duration of use of 
the closed-loop system 

Human factors assessment Cognitive, emotional, and behavioural 
characteristics of participating subjects and family 
members and their response to the closed-loop 
system and clinical trial will be assessed gathering 
both quantitative (validated surveys and tests) and 
qualitative data (interviews and focus groups). 

Health economic evaluation Cost utility analysis on the benefits of closed-loop 
insulin delivery to inform reimbursement decision-
making 
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Sample size 96 participants randomised (48 per group); each 
clinical site will aim to recruit between 15 and 20 
participants 

Summary of eligibility criteria Key inclusion criteria: 
1. Diagnosis of type 1 diabetes within previous 

10 working days 
2. Age 10 to 16.9 years 
3. Willingness to monitor blood glucose four 

or more times daily 
4. Literate in English 
5. Willingness to wear study devices  

Key exclusion criteria: 
1. Physical or psychological condition likely to 

interfere with the normal conduct of the 
study  

2. Current treatment with drugs known to 
interfere with glucose metabolism  

3. Known or suspected allergy to insulin 
4. Regular use of acetaminophen 
5. Lack of reliable telephone facility for 

contact 
6. Pregnancy, planned pregnancy, or breast 

feeding  
7. Living alone 
8. Severe visual impairment  
9. Severe hearing impairment 
10. Medically documented allergy towards the 

adhesive (glue) of plasters  
11. Serious skin diseases located at places of 

the body, which potentially are possible to 
be used for localisation of the glucose 
sensor 

12. Illicit drugs abuse 
13. Prescription drugs abuse 
14. Alcohol abuse 
15. Sickle cell disease or haemoglobinopathy 
16. Eating disorder such as anorexia or bulimia 

 

Maximum duration of study for a 
subject 

24 months 

Recruitment Recruitment will take place at Addenbrooke’s 
Hospital, Cambridge, Leeds Teaching Hospital, 
Leeds, Alder Hey Children’s Hospital, Liverpool, 
Nottingham Hospital, Nottingham, Oxford 
Children's Hospital, Oxford, Southampton 
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Children’s Hospital, Southampton and Royal 
Hospital for Sick Children, Edinburgh. 

Screening and baseline 
assessment 

Eligible participants will undergo a screening 
evaluation including the following activities: 

• medical (diabetes) history 

• body weight, height and blood pressure 
measurement 

• record of current insulin therapy 

• screening and baseline blood sampling 

During a baseline visit, the following assessments/ 
interventions will be carried out at the clinical 
research facility: 

• mixed meal tolerance test (MMTT) 

• blood sampling for lipid profile, centrally 
measured HbA1c, and subsequent 
immunological analyses 

• questionnaires 

• computerised cognitive testing 

• initiating blinded CGM to assess baseline 
glycaemic control 

Run in period  Following consent/screening and baseline 
assessment, multiple daily injection therapy will be 
continued in all participants. All participants will 
receive non study related core diabetes training as 
per usual clinical practice for a period of up to three 
weeks.  

All subjects will be provided with 24 hour telephone 
helpline and will also be given written instructions 
about when to contact clinical team. 

Randomisation Eligible participants will be randomised in a 1:1 ratio 
using central randomisation software to either 
closed-loop or standard therapy i.e. MDI.  

1.  Closed-loop (interventional 
arm) 

 

Following randomisation, participants in the closed-
loop group will receive additional training sessions 
to cover key aspects of insulin pump use and CGM, 
prior to starting closed-loop insulin delivery. 
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Once competent in the use of the study pump and 
CGM system, participants will receive training 
required for safe and effective use of the closed-
loop system. During a 2-4 hour session participants 
will operate the system under the supervision of the 
clinical team. Competency on the use of closed-loop 
system will be evaluated. Thereafter, participants 
are expected to use closed-loop for 24 months 
without supervision or remote monitoring. The 24 
hour support helpline will be available in case of 
problems.  

2. Multiple daily injections 
(control arm) 

Participants in the control group will receive 
additional training sessions following randomisation 
including a refresher on carbohydrate counting 
skills, and insulin dose adjustments. 

Standard therapy (i.e. MDI) will be applied for 
24 months. Participants will be allowed to switch to 
insulin pump therapy if clinically indicated. 

Follow up assessments 

(3-, 6-, 9-, 12-, 15-, 18-, 21-
months) 

Both arms. Follow up study visits will be conducted 
3 monthly including data downloads/recording of 
insulin requirements, adverse event recording, and 
blood sampling (HbA1c). 

Participants will be fitted with blinded CGM systems 
at the end of each follow up visit. The sensors will 
be worn at home for up to 14 days and will be sent 
back to the research team. 

MMTTs will be performed at 6 month and 12 month 
follow up visit. 

Sleep will be assessed using a wristwatch device for 
7 days following study visits at 6 and 12 months post 
diagnosis. Concomitantly, a sleep diary and sleep 
quality questionnaire will be distributed. 

Validated questionnaires evaluating the impact of 
the technology on quality of life, life change, 
diabetes management and fear of hypoglycaemia 
will be completed at the 12 month visit. 

At 12 months, participants will repeat the 
computerised cognitive tests first administered at 
baseline. 
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Qualitative interviews will be conducted at month 
12 in a subset of subjects and parents.  

End of study assessments (24 
months) 

A MMTT will be performed. 
A blood sample will be taken for measurement of HbA1c, 
lipids and immunological analyses. 

Validated questionnaires evaluating the impact of 
the technology on quality of life, life change, 
diabetes management and fear of hypoglycaemia 
will be completed. 

Participants will repeat the computerised cognitive 
tests first administered at baseline. 

Sleep will be assessed using a wristwatch device for 7 
days within the last month of the trial. Concomitantly, a 
sleep diary and sleep quality questionnaire will be 
distributed. 

Participants and families will be invited to attend 
focus group discussions. 
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8.7 APPENDIX G: DAN05 STUDY SYNOPSIS 

Short title Day and night closed-loop in young people with type 1 
diabetes 

Purpose of clinical trial To determine whether 24/7 automated closed-loop glucose 

control will improve glucose control as measured by glycated 

haemoglobin and reduce the burden of hypoglycaemia 

compared to usual care  (conventional or sensor-augmented 

insulin pump therapy) 

Study objectives 1. EFFICACY: The objective is to assess efficacy of day and 
night automated closed-loop glucose control in improving 
glucose control as measured by glycated haemoglobin, as 
compared to insulin pump therapy alone. 

2. SAFETY: The objective is to evaluate the safety of day 
and night automated closed-loop glucose control, in terms 
of episodes of severe hypoglycaemia and other adverse 
events. 

3. UTILITY: The objective is to determine the 
frequency and duration of the use of the automated 
closed-loop system.  

4. HUMAN FACTORS: The objective is to assess 
cognitive, emotional, and behavioural characteristics 
of participating subjects and family members and 
their response to the closed-loop system and clinical 
trial using validated surveys and focus groups. 

5. HEALTH ECONOMICS: The objective is to perform 
a cost utility analysis to inform reimbursement 
decision-making. 

 

Study design  An open-label, multi-centre, randomised, single-
period parallel study, contrasting day-and-night 
automated closed-loop glucose control with insulin 
pump therapy 

Primary endpoint 

 

The primary outcome is the centralised measurement 
of glycated haemoglobin (HbA1c) at 6 months. 

Secondary endpoint(s) • Time spent in the target glucose range (3.9 to 
10mmol/l) (70 to 180mg/dl) 
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• Time spent below target glucose 
(3.9mmol/l)(70mg/dl) 

• Time spent above target glucose (10.0 mmol/l) (180 
mg/dl)  

• Average, standard deviation, and coefficient of 
variation of glucose levels 

• The time with glucose levels < 3.5 mmol/l  (63 mg/dl) 
and <3.0 mmol/l (54mg/dl)  

• Time with glucose levels in significant hyperglycaemia 
(glucose levels > 16.7 mmol/l) (300mg/dl) 

• Total, basal and bolus insulin dose  

• AUC of glucose below 3.5mmol/l (63mg/dl) 

 

Secondary endpoints regarding glucose levels will be 
based on sensor glucose data.  

Safety evaluation Frequency of severe hypoglycaemic episodes, 
frequency of diabetic ketoacidosis (DKA) and nature 
and severity of other adverse events 

Utility evaluation Assessment of the frequency and duration of use of 
the closed-loop system 

Human factors assessment Cognitive, emotional, and behavioural characteristics 
of participating subjects and family members and 
their response to the closed-loop system and clinical 
trial will be assessed gathering both quantitative 
(validated surveys) and qualitative data (focus 
groups) 

Health economic evaluation Cost utility analysis on the benefits of closed-loop 
insulin delivery to inform reimbursement decision-
making 

Sample size 130 participants randomised (equal proportion of 
those aged 6 to 12 years and 13 to 18 years, a 
minimum quota of 25% participants with baseline 
HbA1c >8.5% 

Summary of eligibility criteria Key inclusion criteria: 

1. Age ≥ 6 and <19 years 
2. Type 1 diabetes as defined by WHO for at 

least 1 year  
3. Use of an insulin pump for at least 3 

months, with good knowledge by subject or 
caregiver of insulin self-adjustment as 
judged by the investigator 
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4. Using U-100 rapid acting insulin analogues 
Aspart or Lispro only) 

5. Willing to perform regular finger-prick 
blood glucose monitoring, with at least 4 
blood glucose measurements per day 

6. HbA1c  ≥ 7.5% (58 mmol/mol) and ≤ 10% 
(86mmol/mol) based on analysis from local 
laboratory 

7. Literate in English 
8. Willing to wear study devices 
9. Access to WiFi  
10. The subject lives with someone who is 

trained to administer intramuscular 
glucagon and is able to seek emergency 
assistance   

 

Key exclusion criteria: 

1. Living alone 
2. Current use of any closed-loop system 
3. Any other physical or psychological disease 

likely to interfere with the normal conduct 
of the study and interpretation of the study 
results as judged by the investigator 

4. Untreated coeliac disease, adrenal 
insufficiency or thyroid disease  

5. Current treatment with drugs known to 
interfere with glucose metabolism, e.g. 
systemic corticosteroids, non-selective 
beta-blockers and MAO inhibitors etc. 

6. Known or suspected allergy against insulin 
7. Clinical significant nephropathy, neuropathy 

or retinopathy as judged by the investigator  
8. Recurrent incidents of severe 

hypoglycaemia during previous 6 months 
9. Recurrent incidents of diabetic ketoacidosis 

during previous 6 months.  
10. Unwilling to avoid regular use of 

acetaminophen 
11. Lack of reliable telephone facility for 

contact 

12. Total daily insulin dose  2 IU/kg/day 
13. Total daily insulin dose < 15 IU/day 
14. Pregnancy, planned pregnancy, or breast 

feeding  
15. Severe visual impairment  
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16. Severe hearing impairment 
17. Seizure disorder 
18. Medically documented allergy towards the 

adhesive 
19. Serious skin diseases 
20. Illicit drugs abuse 
21. Prescription drugs abuse 
22. Alcohol abuse 
23. Use of pramlintide (Symlin), sulphonylureas, 

biguanides, DPP4-Inhibitors, , GLP-1 
analogues, SGLT-1/ 2 inhibitors at time of 
screening  

24. Shift work with working hours between 
10pm and 8am 

25. Sickle cell disease or haemoglobinopathy 
26. Eating disorder such as anorexia or bulimia 
27. Employed by Medtronic Diabetes or with 

immediate family members employed by 
Medtronic Diabetes 

 

Maximum duration of study for 
a subject 

8 months 

Recruitment The subjects will be recruited through the paediatric 
diabetes outpatient clinics at each centre 

Screening and baseline 
assessment 

Eligible participants will undergo a screening 
evaluation where blood samples for full blood count, 
liver, thyroid function and anti-transglutaminase 
antibodies (with IgA levels if not done within previous 
12 months) will be taken. Non-hypoglycaemia C-
peptide, glucose and HbA1c will also be measured, 
and a urine pregnancy test in females of child-bearing 
potential will be performed. 

 

Surveys investigating participants’ quality of life, 
psychosocial and cognitive functioning, and response 
to their current treatment will be distributed. 

Participants will be fitted with a blinded continuous 
glucose monitoring (CGM) device to assess baseline 
glycaemic control. Instructions on how to safely use, 
remove and send back the device will be provided. 
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Run-in Period During a 1-2 week run-in period, subjects will 
continue using their own insulin pump. Data obtained 
from blinded CGM and pump downloads may be 
utilised for therapy adjustment. 

Randomisation Eligible subjects will be randomised using 
randomisation software to the use of real-time CGM 
and low glucose feature combined with day and night 
closed-loop or to conventional insulin pump therapy 
alone.  

A blood sample for centralised analysis of HbA1c will 
be taken if screening and randomisation are >28 days 
apart.  

A urine pregnancy test in females of child-bearing 
potential will be performed. 

1.  Automated day and night 
closed-loop insulin delivery 
(intervention arm) combined 
with low glucose feature 
(interventional arm) 

 

 

 

 

 

 

Participants in the closed-loop group will receive 
additional training sessions following randomisation 
covering the use of the study insulin pump and real-
time CGM, prior to starting closed-loop insulin 
delivery. 

Once confident with the use of the study pump and 
CGM system, participants will receive training 
required for safe and effective use of the closed-loop 
system approximately 2-4 weeks after 
randomisation. During this 2-4 hour session 
participants will operate the system under the 
supervision of the clinical team. Competency on the 
use of closed-loop system will be evaluated. 

Thereafter, participants are expected to use closed-
loop for 6 months without direct real-time remote 
monitoring. 

2. Usual care (conventional or 
sensor-augmented pump 
therapy)  

(control arm) 

Refresher training on key aspects of insulin pump 
therapy will be provided.  

Subjects will continue using their own insulin pump 
and CGM if a regular CGM user for 6 months. 
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3-month and 6-month 
assessments 

A blood sample will be taken for measurement of HbA1c.  
A urine pregnancy test in females of child-bearing 
potential will be performed during the 3-month visit. 
Validated surveys evaluating the impact of the devices 
employed on quality of life, psychosocial and cognitive 
functioning, diabetes management and treatment 
satisfaction will be completed. 
 
Participants of both study arms will be fitted with blinded 
CGM systems at the end of each follow up visit. The 
sensors will be worn at home for up to 14 days and will be 
sent back to the research team. 
 
6 months only: Subjects/guardians will be invited to join 
follow-up focus groups to gather feedback and reactions 
to their current treatment (closed-loop or insulin pump), 
the clinical trial, and quality of life changes. 
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