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Abstract

Chemical Softness as a Predictor for Reactivity at Metal Surfaces

Amy Louise Gunton

Heterogeneous catalysis is an important global industry, but there are many
gaps in our understanding of catalytic selectivity. Reactivity indices are
helpful for predicting selectivity, and it would be useful to have a reactivity
index which can be applied to metal surfaces and adsorbates. The local
softness is a reactivity index based on Pearson’s theory of hard and soft
acids and bases. It is the derivative of the local electron density with respect
to the chemical potential, at constant external electric potential. It can
be calculated simply for molecules or nanoparticles which have a band gap.
However, the calculation for conductors is less straightforward.

In this work, a method was developed to calculate the local softness of metal
surfaces using density functional theory. This required a solution to the
problem of increasing the chemical potential while keeping the external elec-
tric potential constant, which is difficult to do in charged cells with periodic
boundary conditions. This problem was solved by correcting for a shift in
energy reference with charge and by extrapolating to an infinitely sized unit
cell. The local softness was visualised using isosurfaces and colourplots and
was used to compare predicted reactivity between different sites on various
metal surfaces.

In order to get a measure of the softness of individual atoms on a surface,
Bader’s theory of atoms in molecules was used to integrate the local soft-
ness over the regions of atomic volume. The resulting reactivity index, the
atomic softness, was used to predict the adsorption energy of carbon monox-
ide on eighteen different metal surfaces. The local and atomic reactivity
indices were also used to study directing effects for aromatic adsorbates on
the Pt{111} surface. The local and atomic softness were found to be useful
for predicting reactivity trends between different sites on metal surfaces and
for adsorbates.
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Chapter 1

Introduction

The use of metals as structural materials, catalysts and in other applications

represents a significant percentage of the world’s Gross Domestic Product

(GDP).1,2 In all of these applications a surface or interface will be present.

In many cases this is key to material or catalyst performance.3 The impor-

tance of understanding the properties of metal surfaces and interfaces may

be exemplified by the problems of corrosion. Corrosion at metal surfaces is

a hugely significant industrial problem worldwide.4 In fact, for most coun-

tries corrosion costs between 2-5% of the Gross National Product (GNP).5

Controlling the properties of metal surfaces to prevent corrosion is essential

in order to ensure the safety of industrial workers and others.6 However, the

prevention of corrosion, while necessary for safety and economy, itself comes

with an environmental cost. For example, one of the main methods used to

prevent corrosion is painting, but paint, for example on ships, degrades with

time to release toxic particles which can poison marine organisms.7

Another important use of metals where understanding of the surface is needed

is heterogeneous catalysis. The use of metal nanoparticles and metal-oxide

surfaces as catalysts is key for the production of many important chemicals

used worldwide.8–10 The properties of heterogeneous catalysts are dominated

by the characteristics of the surface.3 Due to the importance of the proper-

ties of metals in general and their surfaces in particular, it is desirable to
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understand these as well as possible. This would enable a more informed

approach to catalyst design and corrosion prevention.

1.1 Heterogeneous catalysis

Heterogeneous catalysis is the process where fluid reactants (i.e. liquids or

gases) are passed over a finely-divided metal or metal-oxide surface.11 This

finely-divided surface often consists of metal nanoparticles on a metal-oxide

support.2 The support stabilises the nanoparticles and prevents coarsening.

The interaction between reactant molecules and the catalyst allows a different

reaction mechanism to occur to form the product. This mechanism has

a lower thermodynamic barrier than for the reaction without the catalyst.

A lower reaction-energy barrier results in a faster reaction rate at a given

temperature and pressure. This also allows the reaction to happen in milder

conditions, which is generally more environmentally friendly.12 The catalyst

surface enables a higher rate of reaction and can be used multiple times for

this purpose without being consumed.12 The advantages of heterogeneous

catalysts (over homogeneous catalysts which are in the same phase as the

reactants and products) include high durability, the potential for continuous

flow reactions and the potential for lower cost.13 Ease of separating catalyst

and products results from the catalyst being in the solid phase whereas the

reactants and products are in the gas or liquid phase.11

Control of catalytic processes is very important, as it enables production of

the desired product in high yield. It is very rare for any reaction to only

have one product, as generally a variety of products are formed. For a given

catalytic process, the desired product is rarely the most thermodynamically

stable of a set of possible products.12 There are two key concepts which de-

scribe the behaviour of a catalyst. These are activity and selectivity. Activity

is a measure of the rate of the catalysed reaction. Selectivity is a measure

of the extent to which a catalyst promotes one specific reaction resulting

in the desired product over those which produce by-products.11 A catalyst

may be highly active but produce a mixture of products, where the desired
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product is a small minority. In contrast, a selective catalyst results in a high

proportion of the desired product.

For a reaction with several possible products, the catalyst modifies the kinetic

favourability of the formation of products and intermediates.12 An optimal

catalyst will be selective - it will make forming the desired product more

kinetically favourable and forming undesirable by-products less favourable

(or at least relatively less favourable). In this way, the equilibrium of species

in the reaction chamber will be shifted towards the desired product as op-

posed to starting material or by-products. In addition it is important for the

catalyst to be as active as possible, so that the rate of reaction is high.

The catalyst surface has a subtle set of roles, including slowing undesirable

processes while enabling desirable processes. In order for a catalyst to be op-

timal for a given reaction, the catalyst surface must bind reactants strongly

enough for activation. However, if the reactants are too strongly bound the

reaction will not proceed. Also, if products or by-products bind to the cata-

lyst too strongly there will be less catalyst surface available. This will result

in a lower rate (i.e. poisoning). These observations led to the Sabatier prin-

ciple, which is a theory that intermediate reactivity is best for catalysts.14

Very reactive catalysts do not allow products to leave, whereas very unre-

active catalysts do not form a strong enough interaction with reactants to

influence the reaction rate.1

1.2 Active sites in catalysis

An important measure of catalytic activity is the turnover frequency (TOF),

otherwise known as the turnover rate (TOR).15 This is the number of product

molecules formed per second per active site.15,16 An active site is the site at

which the catalysis occurs (the site at which reactants bind and are converted

to products). In homogeneous catalysis, where the catalyst consists of a small

metal complex, there is one active site per catalyst particle, which makes the

turnover frequency easy to calculate.16
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In comparison, heterogeneous catalysts, consisting generally of nanoparti-

cles on a support, have a multitude of different sites present. The nature and

number of these sites is generally not known, unlike in homogeneous catalysis.

In calculating the TOF for heterogeneous catalysts, it is generally assumed

that every surface atom is an active site. This estimate allows the nominal

TOF to be calculated, which will be a lower limit to the real TOF.15 For

some heterogeneous catalytic processes, the nominal TOF is a good approx-

imation. The number of active sites is proportional to the number of atomic

sites.15 The processes for which this is true are known as structure-insensitive

reactions.15

However, this is not always the case. For many catalytic processes the major-

ity of the reaction turnover occurs on only a small subsection of the available

sites.17 These active sites consist of an ensemble of atoms, and different sur-

face facets and different nanoparticle sizes can have dramatically different

TOFs. This class of catalytic processes are known as structure-sensitive

reactions.15 For catalytic processes that are structure-sensitive, rates of re-

action on different facets may vary by up to two orders of magnitude.18,19

Examples of structure-sensitive reactions include the dehydrocyclisation of

alkanes to aromatic hydrocarbons on platinum and ammonia synthesis on

iron.19,20

For structure-sensitive catalytic processes, the large number of different sites

which are present can cause a problem. The reaction will occur at different

rates in different localities. Different sites may have varying selectivity for

particular reactions. Some sites may catalyse side reactions resulting in the

formation of unwanted by-products, which may even poison the catalyst

itself.10,21 If it is known what type of sites catalyse the desired reaction

and which catalyse unhelpful side reactions, then catalyst selectivity can be

systematically improved. For example, sites which catalyse unhelpful side

reactions could be selectively blocked.

There are great advantages to identifying and characterising active sites. For

structure-sensitive reactions the number of active sites is highly dependent

on catalyst geometry. Therefore it can be deduced that knowledge of the
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active sites can allow rational catalyst design.22,23 This should allow more

active and selective catalysts to be made. This would reduce the cost of a

catalytic procedure and reduce wasteful side reactions.

1.2.1 Disambiguation: ‘active sites’ in heterogeneous

and homogeneous catalysis

The term ‘active site’ is used in both homogeneous and heterogeneous catal-

ysis. It is important to note several key differences in heterogeneous catalysis

in comparison to homogeneous catalysis. This makes active sites much more

difficult to identify and characterise in heterogeneous catalysis. In hetero-

geneous catalysis, the active site is the location or set of locations at which

the rate of the desired reaction is locally maximised. Reactions that occur

at the active site have the most favourable rate and yield of the desired

product.

Homogeneous catalysts are molecular complexes with well defined structures.

While there may be changes to the structure of the catalyst during the course

of a reaction this is between two or three known structures. The structure of

homogeneous catalysts varies little in reaction conditions and can be charac-

terised. This helps in finding and characterising active sites. Homogeneous

catalysts tend to have only one active site which can be found, controlled

and modified with relative ease.13

In contrast, the structure of working heterogeneous catalysts is very difficult

to study. The clean catalyst surface may little resemble the catalyst surface

found under reaction conditions. In particular, the so called temperature

and pressure gap makes it difficult to study active catalysts as many of the

best structural characterisation techniques work best at high (or even ultra-

high) vacuum and low temperature. The structure of the working catalyst is

rarely fully characterised. In many systems, the catalyst structure used for

calculations can be thought of as an educated guess.22

In addition to the problems of characterising heterogeneous catalyst struc-

ture, it is known that a multitude of different sites will be present.24 All
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of these sites can be expected to have some catalytic ability either for the

desired reaction or for side reactions. Generally it is difficult to characterise

the properties of individual sites on a catalytic surface. Identifying active

sites in heterogeneous catalysis is therefore extremely challenging. There

have been, however, various studies where active sites have been found, of-

ten by extensive experimental work involving several complementary tech-

niques.25,26

Obtaining physical insight into the reactivity of catalytic materials is highly

desirable. This may allow greater control of heterogeneous processes and the

systematic design of catalytic processes. In particular, an important area of

research is searching for a way to predict the active sites for stereospecific re-

actions.2 Studying the reactivity of molecules adsorbed on metal surfaces may

provide insight into the mechanism of reactions. Together, these increases in

understanding could enable the design of more specific heterogeneous cata-

lysts. This could enable heterogeneous catalysts to make progress towards

the degree of control available with homogeneous catalysts.2

Properties of heterogeneous catalysts include turnover frequency, activity,

selectivity, stability, lifetime and resistance to poisoning.12,20 To understand

the behaviour of heterogeneous catalysts it is important to characterise these

properties. Many of these properties are strongly related to reactivity. There-

fore it is desirable to understand the reactivity of metal surfaces better, both

with and without adsorbates. This may then allow greater understanding of

the impact of reactivity on properties such as activity and selectivity.

1.2.2 Finding active sites for heterogeneous catalysts

As discussed above, finding the active sites for a given process allows for sys-

tematic catalyst design and improvement. Different sites on a metal catalyst

often catalyse different reactions.27 For example, Pestman and co-workers27

investigated the Fischer-Tropsch reaction and found that while step-edge

sites were important for chain elongation, the terrace sites were important

for chain termination. Therefore, by modifying the composition of sites in the
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catalyst, it was possible to modify the length of the hydrocarbon molecules

formed.27 Many studies have also found that the rate of the CO dissociation

step in Fischer-Tropsch synthesis is higher for step-edge sites than for ter-

race sites.28 It would be valuable to have a descriptor that can compare the

properties of step-edge sites with those of terrace sites. This would enable

processes such as Fischer-Tropsch synthesis to be better understood.

1.3 Surface science approach to catalysis

Heterogeneous catalysts tend to consist of metal nanoparticles on an ox-

ide support.20 Industrial catalytic processes occur at high temperatures and

pressures. These extreme conditions limit the number of techniques which

can be used to study working catalysts. In addition, at the high tempera-

tures and pressures of a working catalyst, it can be expected that there may

be significant disorder.29 The nanoparticles may not be well defined in their

shape and other properties but may fluctuate between different shapes and

sizes based on what adsorbates are bound. This results in a dynamic and

highly-correlated system. It can be clearly seen that there will be a large

number of different sites present on a working catalyst but it is difficult to

know what those sites will be like.

The traditional way to study catalysis is to look at the behaviour of the

catalyst under realistic working conditions. By controlling and varying the

temperature, pressure and flow of reactants, and by measuring the synthesis

of products, a great deal of information can be deduced indirectly.24 Benefits

of this approach are that any conclusions drawn must be true of the real in-

dustrial system. However, this indirect approach has drawbacks, for example

in terms of finding out exactly what geometry the active sites might have.

Most techniques which could be used to study surfaces only work at low tem-

perature and ultra-high vacuum. This problem is known as the temperature

and pressure gap.

In contrast to the catalysis approach, the surface science approach involves

studying a model catalyst that is much simpler than the real catalyst, but can

8



be investigated thoroughly using surface science techniques. Unfortunately,

these techniques generally require ultra-high vacuum and low temperature,

which differs from reaction conditions, but they allow the catalyst surface to

be very precisely characterised. One example of this approach was used by

Sabatier and others to characterise a model catalyst before and after opera-

tion.18,21 This surface science approach to catalysis can be used to understand

the structural sensitivity of reactions and to find the active sites.18

Many aspects of the reactivity of surfaces are still not well understood. Metal

surfaces are typically very rough with a vast number of different microfacets

each containing a variety of different sites. The behaviour of catalysts as

a whole is difficult to categorise in terms of individual sites and often a

more general system approach is taken. An example of this is microkinetic

modelling, which involves various assumptions.30 One of these assumptions

involves generalising from many sites at which catalytic events take place to

one type of site for a given catalytic process. The properties of these sites

are found from the average properties of the catalyst as a whole.30,31

However, since the work of Langmuir, Armstrong, Hilditch and Taylor, it

has long been hypothesised that the majority of catalytic events take place

on a minority of the sites.17,32,33 In particular, their work found that a very

small amount of poisoning agent reduced the catalytic activity by several

orders of magnitude.32 This is consistent with a small number of active sites

accounting for the majority of catalytic events.17,33 More recently the active

sites for various reactions have been found.34

In order to test this hypothesis it is necessary to build greater understanding

of the properties of individual sites on a metal surface. This may confirm the

‘active sites hypothesis’, in which case it would be highly desirable to identify

and characterise the active sites. The identification and characterisation

of the active sites would have great potential for the systematic design of

heterogeneous catalysts.

9



1.4 Scaling relations and volcano plots

It has generally been observed in surface processes that the activation en-

ergy for catalytic properties tends to be a linear function of the reaction

energy.1,35,36 These linear Brønsted-Evans-Polanyi (BEP) relations can be

deduced by considering the transition state as the position where two hy-

pothetical potential-energy curves (one for the reactants and one for the

products) intersect. An increase in the reaction enthalpy would result in

one of the potential-energy curves being rigidly shifted relative to the other,

with a resulting linear change in activation energy.36 Therefore there is a

linear relationship between the reaction enthalpy and the activation energy

of a given process. Plots of these relations can be very useful in rationalising

the differences in the reactivity of surfaces. In particular the BEP approach

allows the activation energy Ea to be expressed as

Ea = α∆E + β (1.1)

where ∆E is the reaction energy. Equation 1.1 is taken from the 2008 review

by Nørskov et al.36 The authors suggested that the slope (α) of a BEP line

gives information about the electronic component of reactivity, whereas the

offset (β) gives information about the purely geometric part.36

It can be argued from BEP relations that as the reactivity of a surface in-

creases, the activation energy of adsorption steps will decrease due to reac-

tants binding more strongly to the surface. However, this will be offset by

an increase in activation energy of desorption of products and for on-surface

reactions.10 Therefore, as observed much earlier by Sabatier14, the activation

energy for the reaction as a whole indicates a minimum for metal surfaces

which are neither highly reactive nor highly noble.1 This can be rationalised

in terms of very reactive metals having a high barrier for desorption, whereas

very noble metals have a high barrier for forming metal-adsorbate bonds.36

Therefore for a series of metal species of increasing reactivity, the activation

energy will first increase, then reach a peak and then decrease. A plot of

the activation energy with respect to the reactivity of catalytic materials is
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therefore called a volcano plot.10

The Sabatier approach, as discussed above, can be used to predict the cat-

alytic activity of individual sites. However, this involves making certain

assumptions implicit in the surface science approach to catalysis. For ex-

ample, this analysis involves making the assumption that catalytic surfaces,

which generally are made up of nanoparticles on a support, can be thought

of as consisting of various crystal facets with sites such as step edges and

kink atoms.1,35 The question of to what extent the behaviour of a catalyst

can be divided up into a set of more or less independent sites is one of some

debate.12,18,21,31,37

There are a variety of different properties that characterise a particular site

on a surface. These include activity (turnover frequency) and reactivity

(binding strength). The latter is often studied directly through the binding

energy of a set of adsorbates, as described above. However, the binding

energy is a property of both the metal and the adsorbate. In order to gain

physical insight into the reactivity of the metal itself and make comparisons

and predictions for metals in general, it is desirable to use a reactivity index.

This enables a quantitative comparison of the reactivity of different sites,

metals and adsorbates to be made.

1.5 Reactivity indices

Reactivity indices can, following the approach of Chermette, be separated

into three main groups.38 The first of these groups comprises electronegativity

and global reactivity indices based on the theory of hard and soft acids and

bases (HSAB). The other groups are local reactivity indices and non-local

response functions. There can also be reactivity indices which fall into two

of these groups, for example the Fukui function is a local reactivity index

based on HSAB theory.39,40

11



1.5.1 Hard and soft acids and bases

The concept of hard and soft acids and bases, developed by Pearson in 1963,

has inspired the development of many global, local and non-local reactivity

indices.41 This theory states that soft acids will be most reactive with soft

bases. Softness qualitatively implies low net charge and high polarizability,

whereas hardness means the opposite.42 Pearson’s theory was made quanti-

tative after the advent of conceptual DFT with the global reactivity indices

of hardness and softness.43 The global hardness and softness are sometimes

called molecular properties as they give a single number to characterise the

reactivity of a whole molecule. The use of these descriptors, however, is not

restricted to organic molecules and they have even been used for nanopar-

ticles.44 The global hardness, η, characterises the hardness of a molecule or

nanoparticle. η is defined in DFT as

2η =

(
∂µ

∂N

)
v

=

(
∂2E

∂N2

)
v

(1.2)

where µ is the chemical potential, N is the number of electrons, E is the

energy as obtained by DFT and v is the external potential.45 The chemical

potential is defined as the energy of an infinitesimally small test charge when

added to a system. Within the conceptual framework of density functional

theory the chemical potential can be expressed as

µ =
δE

δρ(r)
(1.3)

where the quantity on the right is a functional derivative of the energy with

respect to the electron density.43 The global softness, the inverse of the global

hardness, is defined as

S =

(
∂N

∂µ

)
v

=
1

2η
(1.4)

where N , µ, and v are defined as above for Eqn. 1.2.40 Generally, the chemical

potential, hardness and softness are approximated using a finite-difference
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approximation. Within this approach µ is approximated as

µ ≈ I + A

2
(1.5)

where I and A are the ionisation potential and the electron affinity respec-

tively.43 Similarly the hardness can be approximated as

η ≈ I − A
2

(1.6)

where it is important to note that this relies on the band gap being non-

zero.43 This assumption is valid for organic molecules and nanoparticles but

can be expected to break down for bulk metal surfaces. By substituting

Eqn. 1.6 into Eqn. 1.4, the finite-difference approximation to the global soft-

ness,

S ≈ 1

I − A
(1.7)

is obtained.46 It can be deduced that the denominator of Eqn. 1.7 would go

to zero for a bulk conductor with no band gap. This would then mean that

the local softness itself would therefore diverge.

1.6 Local reactivity indices

Global reactivity indices are useful for understanding the reactivity of whole

nanoparticles, which can elucidate the reactivity of catalytic surfaces. It is

also helpful, however, to have a measure of the relative reactivity of different

sites on a surface. Local reactivity indices quantify reactivity as a function in

three-dimensional space. The main local reactivity indices in use for studying

catalytic systems fall into two main groups. Some, such as the Wilke function

and d-band centre, can only be used to describe the reactivity of metals.

Others, such as the Fukui function and local softness, are derived from HSAB

theory (discussed earlier in Section 1.5.1) and can be used for metals and

adsorbates.
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1.6.1 Reactivity indices based on

metallic electronic theory

The d-band centre

The d-band centre was developed by Hammer, Nørskov and co-workers as a

measure of transition-metal reactivity.1,47,48 Essentially the d-band centre is a

measure of energy of the ‘centre of mass’ of the d band at a particular point in

space.1 In order to find this quantity, first the local Density of States (DOS)

must be calculated and then projected onto the metal d orbitals.47 Then the

resulting spectrum of DOS for different energy can be analysed to find the

energy of the ‘centre of mass’ of the d band, as illustrated in Fig. 1.1.49 This

energy, εd, is measured relative to the Fermi level, following the convention

that the Fermi level is set as zero on DOS spectra. The d-band centre is

shown for an example metal in Fig. 1.1.

The difference in energy between the d-band centre and the Fermi level has

been shown to be related to the reactivity. This is because the closer the

d-band centre is to the Fermi level, the more the d-band states can interact

with the frontier orbitals of adsorbed molecules. This means there will be

more antibonding orbitals pushed high in energy above the Fermi level, which

can then become unoccupied. Alternatively, bonding states can be shifted

down in energy below the Fermi level and become occupied.1

The d-band centre has been extensively used to explain trends in reactivity

between different transition metals, surfaces and catalysts.1,49 For example,

Hammer and co-workers found that there was a strong linear trend between

the d-band centre and the adsorption energy of CO at different sites on flat,

stepped and kinked platinum surfaces.50 Recent applications of the d-band

centre include elucidating activity of single cluster catalysts51 and predicting

hydrogen diffusion on different gold facets52. However, the limitation of this

reactivity index is that in being specific to transition-metal atoms, only some

of the reactivity of a catalytic system can be studied with it. This method

therefore cannot be used to predict the reactivity of adsorbate atoms.
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Figure 1.1: Hypothetical DOS for a transition metal, illustrating the
location of the d-band centre.
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The Wilke function

The Wilke function, wN(r), is defined as

wN(r) =
1

k2BTel

(
∂ρ(r)

∂Tel

)
v(r),N

(1.8)

where Tel is the electron temperature, ρ(r) is the local electron density, v(r)

is the local potential and N is the number of electrons.53 The advantages of

the Wilke function include the fact that wN(r) is defined with respect to a

fixed number of electrons. This is more computationally advantageous than

the HSAB approach (described in Section 1.6.2) which requires properties to

be calculated for different number of electrons. However, the Wilke function

has not been much calculated, in comparison to the d-band centre which is

very frequently used. More importantly, the Wilke function can only be used

for metals, which makes it less useful as a reactivity index.

The local electron attachment energy

The local electron attachment energy was proposed by Stenlid and co-workers54

as a measure of the accessibility of states above the Fermi level. If the local

electron attachment energy is high above the Fermi level, this will mean that

the lowest unoccupied state is not easily accessed at that location, and a

reaction is less likely. In comparison, if the electron attachment energy is

close to the Fermi level then the lowest unoccupied state is close in energy

to the Fermi level and a reaction is likely. This local reactivity index is, like

the Wilke function and the d-band centre, restricted to metals only. This is

because it is based on theory related specifically to metals rather than on

reactivity more generally. As mentioned above, there is a unifying theory

for understanding reactivity called hard and soft acids and bases (HSAB).

This is the theoretical basis for various reactivity indices, which will now be

discussed.
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1.6.2 Local reactivity indices based on HSAB

The Fukui function

Within the HSAB framework outlined in Section 1.5.1 the Fukui function,

f(r), was defined by Parr and Yang in 1984 as

f(r) =

(
∂ρ(r)

∂N

)
v(r)

(1.9)

where ρ(r) is the local electron density, N is the number of electrons and

v(r) is the local external potential.40 The integral of the Fukui function over

a molecule is ∫
f(r)drmolecule = 1 (1.10)

where drmolecule is the volume element.40

The Fukui function is easy to calculate for molecules, nanoparticles and metal

surfaces.38 In addition the Fukui function can be experimentally determined

via STM measurements.55 However, the Fukui function is a measure of the

relative distribution of reactivity over a surface rather than an absolute mea-

sure of reactivity. Therefore the Fukui function cannot be used for inter-

molecular comparisons or comparisons between catalytic surfaces.

Condensation of reactivity indices

Expressions such as Eqn. 1.9 yield a local reactivity index which needs to be

visualised in three dimensions. This is relatively labour intensive and requires

a careful choice of presentation method, e.g. isosurface threshold. Condensa-

tion methods have therefore been developed by Yang and Mortier for use in

conceptual DFT.46 These methods yield greater chemical insight into reac-

tivity at atomic sites. The method involves an atomic rendering of the Fukui

function within a molecule. This allows the spatial variation of the Fukui

function within the molecule to be captured in a coarse-grained way. This

atomic rendering of reactivity is often more useful to experimentalists than

local indices. The condensed Fukui function can be used to make predictions,
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for example at which atom a reaction may occur. Yang and Mortier46 devel-

oped a finite-difference approximation to calculate a condensed nucleophilic

Fukui function for an atom or molecule labelled i,

(fi)
+ = qi(N + 1)− qi(N) (1.11)

where qi(N) and qi(N+1) are the numbers of electrons in the neutral molecule

and anionic form respectively. The same authors also developed a corre-

sponding expression for the condensed electrophilic Fukui function

(fi)
− = qi(N)− qi(N − 1) (1.12)

where qi(N + 1), qi(N − 1) and qi(N) were obtained by a Mulliken analysis

using gross charges.

The dual descriptor

Another reactivity index which has been developed within the framework of

conceptual DFT is the dual descriptor56

∆f(r, N) =

(
∂2ρ(r, N)

∂N2

)
v(r)

(1.13)

This has been proposed as a predictor of electrophilicity (positive ∆f) and

nucleophilicity (negative ∆f) for regions within molecules.56 This formula-

tion of the dual descriptor has been used to explain the reactivity of carbo-

cations and to predict the formation of halogen bonds.57

The local softness

The local softness, s(r), is defined as

s(r) =

(
∂ρ(r)

∂µ

)
v(r),T

(1.14)
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where ρ(r) is the local electron density at a position r and µ is the chemical

potential. The external potential, v(r), and the temperature T must be kept

constant. The local softness is a reactivity index closely related to the Fukui

function and Wilke function as it too involves a partial derivative of the local

electron density.38

The local softness and Fukui function are related by the global softness

s(r) = Sf(r) (1.15)

due to the normalisation of the Fukui function as shown in Eqn. 1.10.43

Therefore the local softness can be considered to be the global softness

weighted by the distribution of the Fukui function.38

The local softness can be integrated over space to find the global softness, S,

of an atom, molecule or site.

S =

∫
s(r)dr (1.16)

In order to find the softness of an atom i, Eqn. 1.16 can be applied over a re-

stricted volume corresponding to that individual atom. The atomic softness,

si, is defined as

si =

∫
i

s(r)dr (1.17)

where the integral is over the volume associated with atom i.

The local softness is an extremely useful reactivity index as, unlike the Fukui

function, s(r) is an absolute measure of reactivity. Therefore s(r) can be used

to compare the reactivity of sites within different molecules or nanoparticles

with a different value of global softness S. In metal surfaces, for example, the

local softness can be used to compare the reactivity of a step-edge site with a

terrace site. As comparing the active sites in different surfaces is very useful

for designing catalysts, this makes s(r) very well suited for this purpose.
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Likewise the local softness has advantages over the Wilke function and the

d-band centre as it is not restricted to metal atoms. In particular, the local

softness can be calculated for adsorbates on metal surfaces. In addition,

unlike the Wilke function, the local softness can be calculated for systems

such as MOFs where no bulk conducting metal framework is present.

1.7 Calculating the local softness

As can be seen above, the local softness is a particularly valuable reactivity

index which lends physical insight to the reactivity of surfaces. s(r) can be

used for absolute comparisons and to find the reactivity of adsorbates and

metal surface sites. However, a disadvantage of the local softness is that

at present, it is difficult to calculate the local softness in the exact form

of Eqn. 1.14 for extended systems, e.g. surfaces or bulk materials. This is

because extended systems require periodic boundary conditions. It is difficult

to vary the chemical potential without changing the charge, and therefore (in

periodic boundary conditions) the external potential.

As discussed in the previous section, Yang and Mortier46 proposed a scheme

where some local information can be gained of the reactivity within a molecule

or nanoparticle, while retaining the convenience of the approximations used

for the global measures in Eqns. 1.6 and 1.7. These are the so-called con-

densed local reactivity indices, though in reality they are closer to being a

global measure for a given atom in a molecule or nanoparticle than to a lo-

cal reactivity index. The Fukui function is discontinuous for molecules and

nanoparticles, so there are two functions; the nucleophilic Fukui function de-

fined in Eqn. 1.11 and the electrophilic descriptor, 1.12. There is a similar

expression for the condensed local softness of an atom i,

sαi = fαi S
α (1.18)

where α may be + or − for the nucleophilic and electrophilic softness, respec-

tively. The vast majority of studies of the local softness use this method.58 In

particular this method has been used to predict the reactivity of transition-
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metal nanoparticles, both with and without CO adsorbed.44 This allowed

the reactivity of different sites on different facets to be compared and the

electronic effects of an adsorbate molecule to be studied.44 However, it is

important to note that the finite-difference approach of Yang and Mortier is

a relatively crude approximation.58 In addition it is necessary to estimate the

global softness using the finite-difference method of Eqn. 1.7. This is a prob-

lem for bulk metals as the global softness is then not defined, as discussed in

Section 1.5.1.

1.8 Approximating the local softness:

The Fermi softness

Recent work by Huang and co-workers59 provided a method to estimate the

local softness. This was by calculating a reactivity index which they named

the Fermi softness. This quantity can be defined as either a local or a global

function. The global Fermi softness was defined by Huang et al as

sF =

∫
g(E)w(E)dE = −

∫
g(E)f ′(E − EF)dE (1.19)

where g(E) is the density of states and w(E) is a weighting function defined as

the derivative of the Fermi-Dirac function, f(E−EF), with respect to energy

E. Equation 1.19 is taken from the paper by Huang and co-workers.59 Huang

and co-workers expressed the global chemical softness in terms of the DOS.

Their result is analogous to Eqn. 1.4 in Section 1.5.1. This defines the global

softness as

s =

(
∂N

∂µ

)
v(r),T

=
∂

∂EF

[ ∫
g(E)f(E − EF)dE

]
(1.20)

where the other quantities are defined as above. In the expression on the

right hand side of Eqn. 1.20 the order of differentiation and integration can

be swapped. It is then possible to use the product rule to expand out the
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right hand side of the equation:

s =

∫
∂

∂EF

[
g(E)f(E−EF)

]
dE =

∫ [∂g(E)

∂EF

f(E−EF)+g(E)
∂f(E − EF)

∂EF

]
dE

(1.21)

where it can be recognised that if g(E) were constant with respect to changes

in the Fermi level then the first term in the expression in square brackets will

be zero. The second term can be simplified by noting that the derivative

of the Fermi-Dirac function with respect to the Fermi level is equal to the

derivative with respect to energy multiplied by minus one. Therefore, in the

case that the DOS does not depend on the Fermi level, Eqn. 1.21 can be

simplified to result in the right hand side of Eqn. 1.19. In other words, the

Fermi softness is equal to the global softness where the DOS is independent

of the Fermi level. This result simplifies the calculation of the local softness

considerably, as all that is needed is to calculate the DOS for a neutrally

charged calculation and multiply by a weighting function. The authors also

suggest a local reactivity index, the local Fermi softness, based on Eqn. 1.19

but replacing the DOS with the Local Density of States (LDOS). This equa-

tion is an approximation to the local softness based on the assumption that

the LDOS will be independent of the Fermi level.

Another way of considering the assumption that the DOS will not vary with

Fermi level is to consider the situation of applying a fictitious potential v(r)

in order to stop the electrons from moving in response to an increase in

the number of electrons as the Fermi level increases. This would therefore

break the requirement for the external electric potential to remain constant

when increasing the chemical potential, as noted earlier in Eqn. 1.19. This

suggests that there will be a problem with the approach used to approximate

the softness based on the Fermi softness. In fact, it it is certainly the case

that the DOS does vary with a change in the Fermi level, as will be discussed

later in this work concerning Fig. 3.21. To conclude, the Fermi softness

has the advantage of being easy to calculate, but it is only an approximate

measure of the softness. It would be helpful to have a method of calculating
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the local softness more exactly, provided that this can be done for constant

potential.

1.9 New method of calculating local softness

As discussed earlier in Section 1.7 the local softness has so far only been

calculated for molecules and nanoparticles, rather than for surfaces. This is

due to inherent problems with the method set out above in Section 1.7, of

working via the global softness which is undefined for metal surfaces. An

alternative way of thinking of this is that metals, as conductors, have an

infinitely small band gap.44 It is therefore desirable to find a new method of

calculating the local softness of surfaces.

An obvious way to calculate local softness is to directly calculate the local

softness via Eqn. 1.14. In particular, the local softness can be calculated by

splitting the partial derivative using the chain rule:

s(r) =

(
∂ρ(r)

∂µ

)
v(r),T

=
(∂ρ(r)/∂σ)v(r),T

(∂µ/∂σ)v(r),T
(1.22)

where ρ(r), µ and v(r) are defined as in Section 1.6. σ is the surface

charge,

σ = Q/A (1.23)

where Q is the charge in the supercell and A is the total area (of both surfaces

in a slab simulation supercell). The numerator of local softness is, like the

Fukui function, a relative measure of reactivity within a surface. The name

relative local softness has been suggested60 for this quantity, srel(r), defined

as

srel(r) =

(
∂ρ(r)

∂σ

)
v(r),T

=
dρ(r)

dσ
(1.24)

which can be expected to be independent of any external potential. The

temperature can be expected to be constant for DFT calculations, therefore

the right hand equality of Eqn. 1.24 should hold. srel(r) can be expected to
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vary within three-dimensional space, but to be independent of the external

potential applied by a plane-wave code. In comparison, the denominator of

local softness can be expected to be a function of the external potential when

calculated by a plane-wave code with periodic boundary conditions. This

is because the practical method of changing the surface charge necessarily

involves adding or subtracting electrons. However, this will certainly change

the external potential. (
∂µ

∂σ

)
v(r),T

6= dµ

dσ
(1.25)

In this case, a plane-wave code imposes an external potential to prevent di-

vergence of energy in charged cells with periodic boundary conditions. This

potential is not constant with respect to changes in simulation supercell ge-

ometry.61,62 The quantity on the right hand side of Eqn. 1.25 is the quantity

that would be calculated naively by a plane-wave code such as CASTEP and

can certainly be expected to differ from the true value of the denominator of

local softness. This problem must be solved in order to calculate the local

softness.

1.10 Summary of this thesis

As discussed above, it would be desirable to calculate s(r) for metal surfaces

in order to gain physical insight into catalyst reactivity. This requires the

calculation of the denominator of local softness in a way that excludes the de-

pendence on the external potential imposed by plane-wave codes for charged

systems. However, there are various problems which need to be overcome

in order to do this. In Chapter 2, a method is presented by which the true

denominator of s(r) can be calculated.

This requires solving a problem with convergence by correcting the chemical

potential. The results obtained using this correction are discussed in Chap-

ter 3. Isosurfaces and colourplots of the local softness for eighteen metal

surfaces are analysed in Chapter 4. The atomic softness is calculated and

shown to correlate with CO adsorption energy in Chapter 5. The local and
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atomic softness are used to explain directing effects in aromatic adsorbates

on Pt{111} in Chapter 6. Chapter 7 discusses the potential applications for

solving the problem of selectivity in heterogeneous catalysis.
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Chapter 2

Methodology

In this chapter, the methods used for this thesis will be discussed. The general

concepts of electronic structure theory and its application within plane-wave

codes such as CASTEP will be explained in Sections 2.1-2.4. Sections 2.5-

2.10 are concerned with the specific use of CASTEP in this work to calculate

the chemical softness for particular systems.

2.1 Electronic structure theory

The postulates of quantum mechanics were developed in the 1920’s by Heisen-

berg, Schrödinger and others. They provide a mathematical approach for

modelling chemical systems.63–65

Two postulates of quantum mechanics are particularly relevant to this work.

The first of these defines a wavefunction that (amongst other things) can be

used to model chemical behaviour mathematically. A system of n particles

labelled with an index i at positions ri at time t can be mathematically

modelled using the time-dependent wavefunction, Ψ(r1, r2, ...rn, t)
66

The second postulate is the time-dependent Schrödinger equation. This ex-

presses how the wavefunction Ψ changes with time.66
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i~
∂Ψ

∂t
= ĤΨ (2.1)

In Eqn. 2.1, ~ is the reduced Planck’s constant and Ĥ is the Hamiltonian

operator, which corresponds with the total energy of the system. The Hamil-

tonian can be expressed as

Ĥ = T̂ + V̂ (2.2)

where T̂ is the kinetic energy operator and V̂ is the potential energy opera-

tor.66

For cases where the potential energy operator V̂ from Eqn. 2.2 is indepen-

dent of time, the differential Eqn. 2.1 can be simplified. Valid wavefunctions

will then be the product of a time-independent wavefunction ψ and a time-

dependent complex exponential

Ψ = ψe−iEt/~ (2.3)

where the time-independent wavefunction, ψ, is a function of spatial coordi-

nates alone.66 E is the energy eigenvalue, which can be calculated using the

time-independent Schrödinger equation:

Ĥψ = Eψ (2.4)

Equation 2.4 provides a way to calculate the energy of any system of electrons

and nuclei. This is useful as many important physical properties can be

calculated using the energy.67
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2.2 Approximations often used for chemistry

There are many problems in chemistry that would benefit from the electronic-

structure-theory approach. In principle, any chemical system can be mod-

elled theoretically, but the resulting equations are too difficult to solve for all

but the simplest of systems.68 For example, even the smallest molecule, H2
+,

has three particles, which means the Schrödinger equation cannot be solved

analytically.66 Various approximations must be made to apply Electronic

Structure theory to chemically relevant systems.

2.2.1 Born-Oppenheimer approximation

One of the most fundamental approximations is the Born-Oppenheimer ap-

proach. This involves simplifying the treatment of the interaction between

electrons and nuclei. This approximation is needed to solve the problem

mentioned above in applying electronic structure theory to molecules such

as H2
+. The Born-Oppenheimer approach is based on the observation that

electrons have much smaller mass than nuclei (electron mass is 0.000549 amu

whereas the lightest nucleus weighs 1.01 amu).66 This factor of three orders

of magnitude in the masses corresponds to a large difference in the speed of

movement of electrons and nuclei.69

Based on this large difference, it may be assumed that electron movement

is effectively instantaneous relative to the timescale of nuclear movement.

In most cases this is a reasonable approximation, though there are cases

where the Born-Oppenheimer approach cannot be used. This is partic-

ularly likely for light atoms such as hydrogen. For example, the Born-

Oppenheimer approach fails to correctly model the diffusion of atomic hy-

drogen in palladium.70 Nevertheless, for the vast majority of systems, the

Born-Oppenheimer approximation gives accurate results.66

The Born-Oppenheimer approach involves calculating the electron energy

for a variety of fixed nuclear coordinates. This is then used to construct a

potential energy surface. The nuclear coordinates of stable structures corre-

spond to minima in the potential energy surface.66 An example of a typical
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Born-Oppenheimer procedure is as follows:

1. Choose a set of nuclear coordinates.

2. Minimise the energy over electron degrees of freedom while keeping

nuclear coordinates fixed.

3. Calculate forces acting on the nuclei (based on the results from step 2)

and use these to find new lower-energy nuclear coordinates. For more

detail see Section 2.4.4.

4. Repeat steps 2-3 until the coordinates that minimise the energy are

obtained. Depending on the starting coordinates and minimisation

scheme used, this may be a local minimum on the potential energy

landscape, rather than the global minimum.71.

The electronic wavefunction ψ(r;R) can be defined as depending directly on

electron positions r and only parametrically on nuclear coordinates R. The

corresponding electronic Schrödinger equation,

Ĥψ(r;R) = E(R)ψ(r;R) (2.5)

can be solved to find the electronic energy E(R) for a fixed set of nuclear

positions R.66

2.3 Density functional theory

Density Functional Theory (DFT) is an electronic structure method for cal-

culating the electronic energy. The theoretical justification for DFT as an

ab initio approach was developed by Hohenberg and Kohn.72,73
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2.3.1 Hohenberg-Kohn theorems

Hohenberg-Kohn existence theorem

Hohenberg and Kohn showed that two systems that have the same ground

state electron density, ρ(r), must also have the same external potential

v(r).72,73 Hohenberg and Kohn used this result to show that in principle

all ground-state properties can be found from ρ(r).66 In particular it follows

that the ground-state energy E is a functional of ρ(r)72 and the energy can

therefore be expressed as

E = E[ρ] = T [ρ] + V [ρ] (2.6)

where E[ρ] is the energy functional, and T [ρ] and V [ρ] are the kinetic and

potential energy functionals. A functional, such as E[ρ], T [ρ] or V [ρ], acts

on a function to produce a number.66 Functionals have special mathematical

properties, as they have contributions from the whole range of values of a

function such as ρ(r).66

The potential energy functional, V [ρ], can be separated into two components

from nuclear and electronic interactions, resulting in the following expression

for the energy functional

E[ρ] = T [ρ] + Vee[ρ] + Vext[ρ] (2.7)

where Vee[ρ] is the electron-electron interaction energy and Vext[ρ] is the total

external potential, giving the energy of interaction between electrons and nu-

clei.66 The total external potential can be calculated by integrating the prod-

uct of electron density and local external potential v(r) over all space.

Vext[ρ] =

∫
ρ(r)v(r)dr (2.8)
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Hohenberg-Kohn variational theorem

Hohenberg and Kohn also showed that the variational principle can be ap-

plied to iteratively find the ground-state density ρ from considering a set of

valid trial densities, {ρ̃}. This requires an expression for the energy functional

E[ρ]. Valid ρ̃ must contain the correct number of electrons:

∫
ρ̃(r)dr = N (2.9)

Among trial densities ρ̃ that conform to Eqn. 2.9, the correct ground-state

electron density will minimise the energy.

E[ρ̃] ≥ E[ρ] (2.10)

Equation 2.10 means that the energy is minimised for the ground-state elec-

tron density. At the minimum energy the derivative will be zero. This result

can be used in the following differential equation,

δE[ρ]− µ.δ
[∫

ρ(r)dr −N
]

= 0 (2.11)

where µ is the chemical potential, which is also the Lagrange multiplier

associated with condition 2.9.72,74

There is a corresponding Euler-Lagrange expression for the chemical poten-

tial,

µ = v(r) +
δT [ρ]

δρ(r)
+

δVee[ρ]

δρ(r)
(2.12)

where the second and third terms are functional derivatives.74

Equations 2.10-2.12 provide a way to model ground-state atoms or molecules,

given an initial guess at the electron density and the correct energy func-

tional. This approach confers a great reduction in computational cost over
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wavefunction methods. The N -electron wavefunction is a 3N -dimensional

function whereas ρ(r) is only a local function in three dimensions. However,

an analytic expression for E[ρ] is required, and this is not known. This prob-

lem makes it difficult to make use of Eqn. 2.6. A potential way forward would

be to find a way of approximating E[ρ]. Equation 2.10 would then provide

a way of finding the best density for a given energy functional.66

2.3.2 Thomas-Fermi theory

An early contribution to the search for approximate energy functionals was

made by Llewellyn Thomas and Enrico Fermi in 1927 and 1928.75,76 They

used Eqn. 2.7 and made several approximations to result in more easily-

calculated terms. They substituted the kinetic energy of a homogeneous

electron gas for T [ρ] and used the classical Hartree model for Vee[ρ].

ETF [ρ] = Thom[ρ] + VHart[ρ] + Vext[ρ] (2.13)

These are relatively drastic approximations, especially to the kinetic energy.77

Also, Eqn. 2.13 neglects the effects of electron correlation and exchange.66

The application of Thomas-Fermi theory to metal surfaces can be consid-

ered using a jellium model. The jellium or free electron model is a simple

way to approximate the behaviour of metals in an extended solid and at a

surface.78–80

In the jellium model, only the electrostatic behaviour of the ion cores is

considered, and this only in a spatially averaged way. The positive charge

from ion cores is treated as constant in an extended solid and as a step

function for a solid that is extended in two dimensions and with a surface

in the third dimension.79 Several researchers have applied the Thomas-Fermi

approximation for the jellium model of a metal surface.79,81 For a semi-infinite

slab, there would be negative surface energies and the work function would

be zero.79

The vanishing work function means that there would be no difference in
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energy between an electron at the Fermi level and an electron in the vacuum.

This means there would be no energy barrier to remove the highest energy

electron from the metal slab. Negative surface energy implies it would always

be energetically favourable to divide the jellium solid up into smaller and

smaller pieces. This is equivalent to Teller’s non-binding theorem for atoms in

molecules, which states that in the Thomas-Fermi approximation a molecule

would not be stable but would dissociate into its constituent atoms.82

This is a catastrophic failure of the Thomas-Fermi method to model basic

chemical behaviour. This failure shows that both kinetic energy and exchange

and correlation effects are important to model electron binding properly.

A more accurate energy functional is needed in order to correctly model

chemistry. In particular, more accuracy is needed to calculate the kinetic

energy, as the failures of Thomas-Fermi theory show that the effect of errors

in T [ρ] is considerable. In order to do this, a different approach is needed.

This was developed several decades later by Kohn and Sham.

2.3.3 Kohn-Sham equations

The Kohn-Sham equations provide a way to formulate an approximate ex-

pression for the energy functional.73 Kohn and Sham re-expressed Eqn. 2.7

in terms of the energy of a more computationally-tractable reference system.

They added a small, approximate correction term to account for differences

between the real system and the reference system, including exchange and

correlation effects. This approximate inclusion of exchange and correlation

is an improvement compared with Thomas-Fermi theory, which did not con-

sider them at all.

Unlike the Thomas-Fermi model, the Kohn-Sham approach uses an exact

expression for the kinetic energy. However, there were still challenges in

finding the correct functional for the potential in Eqn. 2.6. Finding the exact

V [ρ] functional was too theoretically and computationally difficult. Instead,

Kohn and Sham considered a reference system of non-interacting electrons.73

In this system the potential vref(r) is chosen to make sure that the density of
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the reference system ρref(r) is the same as the ground-state electron density

of a system of interest ρ(r).

The Hamiltonian of the reference system, Ĥref , can be expressed as

Ĥref =
Ne∑
i=1

ĤKS
i (2.14)

where Ne is the number of electrons. The right hand side of Eqn. 2.14 is a

sum over one-electron Kohn-Sham Hamiltonians ĤKS
i

ĤKS
i = − ~2

2me

∇2
i + vref(ri) (2.15)

where ∇2
i is the Laplacian operator for electron i.66 This approach simplifies

the calculation of energy considerably. The energy functional can therefore

be expressed as

E[ρ] = Ts[ρ] + J [ρ] + Vext[ρ] + [(T [ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ])] (2.16)

Where Ts[ρ] is the non-interacting kinetic energy, J [ρ] is the coulomb po-

tential and the quantity in square brackets is a correction term to take into

account the effects of electron correlation and exchange. This correction term

is needed to find the energy of the real system from that of the non-interacting

reference system. It is called the exchange-correlation functional,

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ]) (2.17)

To summarise, the Kohn-Sham approach describes the complex effects of

electron exchange and correlation using a single functional, Exc[ρ], which

makes a small but significant contribution to the overall energy.83

The problem is that there is no understanding of what form this functional
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will take. A comparison with wavefunction methods may help to illustrate

why this is such a significant issue. In wavefunction methods, the mathe-

matical form of the exact Hamiltonian is well defined and is known. This

means that different levels of approximations can be compared with that of

the exact expression. Knowing the form of the exact Hamiltonian allows

for systematic improvement of approximations.84 In comparison, in DFT the

form of Exc[ρ] is not known.74 Therefore it is hard to know where to start and

from an initial guess, it is hard to systematically improve models for Exc[ρ].84

However, not all is dark. There are a few things that can be predicted about

how Exc[ρ] should behave.

Electrons are charged particles that repel each other and therefore instanta-

neously are less likely to be found near to each other (Coulomb correlation).

Electrons are fermions and therefore two electrons of the same spin cannot be

in the same location instantaneously (exchange or Fermi correlation). These

dynamic interactions mean that around the instantaneous position of each

electron in a system there will be an area of depleted electron density.84

These ‘exchange-correlation holes’ have a particular set of physical proper-

ties. In particular, the exchange or ‘Fermi’ hole will be negative everywhere

and integrate over all space to −1. This sum rule is useful for checking if a

functional is modelling holes well.

2.3.4 Local density approximation

The Local Density Approximation (LDA) is a way of tackling the problem of

exchange and correlation by comparison with the uniform electron gas. This

way of approximating Exc involves considering a simple system for which the

exchange energy can be calculated exactly. This approach was used by Kohn

and Sham in 1965 to find an expression for the exchange-correlation energy

of the uniform electron gas,73

ELDA
xc =

∫
εxc(ρ)ρ(r)dr (2.18)
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where εxc is the exchange-correlation energy per particle of the uniform elec-

tron gas of density ρ. This can be expressed as

εxc = εc + εx (2.19)

where εc and εx are the correlation and exchange contributions. For the

uniform electron gas, there is an exact expression for the exchange term,

εx = −3

4

(
3

π

) 1
3

ρ(r)
1
3 (2.20)

By contrast there is no known analytic expression for the correlation of the

uniform electron gas.84 However, it is possible to fit an approximate expres-

sion to data from highly accurate Monte Carlo calculations performed by

Ceperley and Alder in 1980.85. In order to do this it is helpful to re-express

the density in terms of the local Seitz radius,

rs =

(
3

4πρ

) 1
3

(2.21)

which is the radius of a sphere enclosing a volume that, for a given density,

would contain exactly one electron. Perdew and Wang used the numerical

values from Ceperley and Alder to derive the following expression for the

correlation energy per particle as a function of the relative spin polarisation

ζ = (ρα − ρβ)/ρ and the local Seitz radius,

εc (rs, ζ) = εc(rs, 0)+αc(rs)
f (ζ)

f ′′ (0)
(1−ζ4)+ [εc(rs, 1)− εc(rs, 0)]f(ζ)ζ4 (2.22)

f(ζ) =

[
(1 + ζ)4/3 + (1− ζ)4/3 − 2

]
24/3 − 2

(2.23)

where αc(rs) is the spin stiffness ∂2εc(rs, ζ = 0)/δζ2.86 The exchange-correlation
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energy per particle can be found by substituting Eqns. 2.20 and 2.22 into

Eqn. 2.19. The key step in this approach is to compute εxc for each infinitessimally-

small portion of space as if it were part of a uniform electron gas of that den-

sity. These individual contributions are added up to form Exc using Eqn. 2.18.

This is a good approximation in the limit of a slowly-varying density.74 How-

ever, for atoms and molecules the electron density varies sharply near the

nuclei. Therefore an approach like LDA, which approximates Exc based on

only the local density at each point, seems likely to be inaccurate for these

systems.84

2.3.5 Generalised gradient approximation

In order to go beyond the local density approximation, one intuitive approach

is to consider the LDA as the first step in a Taylor-series expansion in terms

of the density. For example, this allows the effects of inhomogeneity to be

included by considering Exc to be a function not only of the local density but

of its gradient ∇ρ(r).

Exc =

∫
f (ρ(r),∇ρ(r)) dr (2.24)

Rather than using a homogeneous electron gas as a model, this involves com-

parison with a slightly inhomogeneous electron gas.84 This model system of

slowly-varying density can be expected to be at least somewhat more realis-

tic for inhomogeneous real systems of atoms and molecules. However, rather

counter-intuitively, the addition of successive terms in a gradient expansion

generally gives worse results than LDA.74 This is partly because the LDA

model of exchange-correlation holes are relatively close to the holes found in

real systems.84

The Generalised Gradient Approximation (GGA) is a modification of this

approach where the functional is not a simple Taylor expansion in terms

of the density, but is also constrained to follow certain rules. These rules

enforce particular conditions for the exchange-correlation holes generated
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by the GGA method. This should mean GGA exchange and correlation

functionals will model real systems more accurately.84

GGA functionals often model exchange and correlation separately. A commonly-

used GGA exchange functional is the PBE functional,

EPBE
x = ELDA

x − CD

∑
σ

∫
ρ4/3σ

(
κ− κ

1 + µs2

κ

)
dr (2.25)

where s is a dimensionless reduced density, CD is the Dirac exchange constant

and κ and µ are constants chosen to maintain certain performance criteria.87

The authors focussed on those known features of the exact functional that

would have the largest impact on the energy. This includes accurate mod-

elling of systems with density that is close to uniform, which is important

for correct treatment of metals.87 Also, they made sure the functional would

satisfy the Lieb-Oxford bound.87

The same authors also developed a correlation functional,

EPBE
c =

∫
ρ(r)

[
εunifc (rs, ζ) +H (rs, ζ, t)

]
dr (2.26)

where εunifc is the uniform electron gas expression found in Eqn. 2.22, t is

a dimensionless density gradient and H is a fitted analytic function with

parameters chosen to satisfy energetically important correlation behaviour,

especially the condition that the integral of the correlation functional over all

space should be zero, which means that for rapidly-varying densities t→∞,

correlation should vanish.87 The PBE functional performs well for a wide va-

riety of systems and is one of the most commonly-used functionals, especially

for materials applications.83

2.3.6 Costs and accuracy of DFT

The computational cost of DFT generally scales as N3, where N is the num-

ber of electrons.38 This represents a significant advantage over wavefunc-
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tion methods. For example CCSD(T), which is often regarded as the gold-

standard technique, scales with the sixth order of system size.88,89 DFT has

the potential to be exact, provided that the analytical form of the exchange-

correlation functional is known. However, this is not currently possible except

for the simplest of cases.90

2.4 Plane-wave pseudopotential method

In Section 2.3 it was established that DFT can be used along with an ap-

proximate exchange-correlation functional to model the behaviour of the elec-

trons in chemical systems. There are several other related approximations

and techniques that are useful. These include periodic boundary conditions,

plane waves, pseudopotentials, fast-Fourier transforms (FFT’s) and energy-

minimisation algorithms.91,92 Periodic boundary conditions allow the treat-

ment of extended solids or surfaces with computational methods, by avoiding

the need to simulate an infinite number of particles.

2.4.1 Plane waves

A basis set of plane waves can be used to form the one-electron wavefunctions

required by Kohn-Sham theory. Any periodic function can be modelled by

an infinite set of plane waves. Bloch’s theorem can be used to represent the

one-electron wavefunctions as a product of a plane wave, which represents

the long-range part of the wavefunction, and a periodic Bloch function,

ψn,k(r) = uk(r)exp(ik · r) (2.27)

Where k is the wavevector of a plane wave in reciprocal space and uk(r) is

a Bloch function defined to have periodic symmetry to match that of the

real-space system such that

uk(r) = uk(r + R) (2.28)
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where R is an arbitrarily chosen real-space lattice vector.

Equation 2.27 is the form of the set of one-electron eigenfunctions that satisfy

the symmetry imposed by periodic boundary conditions. There are an infi-

nite number of eigenfunctions specified by their wavevector k, which can be

used as a quantum number. Each will have a different value of the wavevec-

tor k. The Bloch factorisation is not unique, which means that for each k

wavevector there are an infinite number of possible factorisations based on

whether the exponential of a general reciprocal lattice vector Gj is in the

Bloch function or plane-wave part of the Bloch factorisation. The index j

denotes which Brillouin zone the reciprocal lattice vector points into.

The reduced-zone scheme involves choosing to always put this exponential

factor in the Bloch function. Therefore the plane-wave part of Eqn. 2.27 will

always point within the first Brillouin zone in reciprocal space. However, for

each wavevector k in the reduced-zone scheme there will be an infinite set

of different eigenfunctions. These will differ in their Bloch functions, which

will take the form

uj,k(r) = ukj
(r)exp(iGj · r) (2.29)

where ukj
(r) is the factor of the Bloch function from the alternative factori-

sation method where the Bloch function is chosen to be as small as possible

(the extended-zone scheme). In the reduced-zone scheme, j is an additional

quantum number which specifies the correct Brillouin zone. The lowest en-

ergy eigenvalues for a given value of k will correspond to Bloch functions

where both factors in Eqn. 2.29 have mostly in-phase bonding interactions

rather than anti-bonding. For the exp(iGj ·r) factor this will be achieved for

zero or small values of Gj. Instead of finding all the eigenfunctions (which are

infinite), a helpful approach is to note that the eigenfunctions at very nearby

regions in reciprocal space will be very similar. Therefore a finite set of grid

points in reciprocal space within the first Brillouin zone can be assumed to

be representative of the finite region of reciprocal space surrounding them.

Electrons can then be allocated to the lowest-energy eigenfunctions up to the

40



Fermi level. The eigenvalues of occupied eigenfunctions can be added up to

find the total energy.

The Bloch functions can be expressed as a Fourier series. This would be

possible for any periodic function, but due to the special symmetry of the

Bloch function, the basis set of plane waves must be commensurate with

the real-space lattice. This means suitable wavevectors for the plane-wave

expansion are restricted to the smaller but still infinite set of reciprocal lattice

vectors G,

uj,k(r) =
∑
G

AG
j,kexp(iG · r) (2.30)

where {AG
j,k} are a set of coefficients. Equation 2.30 can be substituted into

Eqn. 2.27 to form a new expression for the one-electron wavefunctions,

ψn,k(r) =
∑
G

AG
j,kexp(i(k + G) · r) (2.31)

where the sum is over an infinite sum of plane-waves with wavevector equal to

reciprocal lattice vectors G. In order to make the calculations possible, the

plane-wave basis set can be restricted to include only those plane waves with

energy below a certain energy cutoff. This will be a good approximation

in most cases, although the number of plane waves required for accuracy

increases with the highest curvature of the real-space function modelled.92

Unfortunately, this means that using plane waves to model the core electrons

would be very expensive. To avoid this it is helpful to use a pseudopotential

to collectively model the nuclei and core electrons as ion cores.92

2.4.2 Pseudopotentials

Core-electron wavefunctions are difficult to model as they vary sharply, which

means they are difficult to model using plane waves. One way round this

problem is to develop approximate pseudopotential functions to model the
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interaction between valence electrons and ion cores. There are certain re-

quirements of the core-electron wavefunctions that must be met by the pseu-

dopotential functions. For example, core one-electron wavefunctions must

be orthogonal to each other and also to valence wavefunctions. Therefore

pseudopotentials are constructed to conform to the orthogonality require-

ment between core and valence states.92 Norm-conserving pseudopotentials

are also constructed to have the correct amount of charge within the core re-

gion compared with the case where all electrons are accounted for explicitly.

Pseudopotentials are constructed to be weaker than the true potential, which

means that there is less curvature in the core region for valence states, which

can therefore be modelled using fewer plane waves. One assumption of the

pseudopotential approach is that all core electrons of the same element can

be modelled using the same pseudopotential, even in different environments.

This is a reasonable assumption as the behaviour of core electrons is similar

for atoms of a given element whatever the surrounding system.

An approach which can be used to reduce the cost of electronic-structure-

theory calculations is to relax the norm-conservation requirement for the

pseudopotentials. This means that the pseudopotentials will be made softer

(i.e. requiring a smaller kinetic-energy cutoff for the plane waves in any given

calculation). The functions used in this approach are called ultrasoft pseu-

dopotential functions.93 The relaxation of the norm-conservation requirement

introduces an error. However, this error is easy to quantify and can be easily

and cheaply corrected. The extra cost of correcting the error is much smaller

in magnitude than the saving acheived by using a smaller kinetic-energy

cutoff in the calculation. Therefore ultrasoft pseudopotentials are generally

much cheaper to use than traditional norm-conserving ones. Overall, the

use of pseudopotentials saves a lot of computational cost as it avoids the

need to use so many plane waves as the core electrons (which would have

needed the largest number of plane waves for accuracy) are modelled using

the pseudopotential instead. This allows a smaller cutoff energy to be used.

The pseudopotential approximation is the second-largest source of error in

the calculations after Exc.
92 However, it is still a reasonable approximation,
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and has substantial benefits for system scaling.92

2.4.3 Fast Fourier transforms

In the plane-wave pseudopotential method, some calculations can be more

easily performed in real space whereas others are cheaper and simpler in

reciprocal space. For example, calculating the kinetic energy is much sim-

pler in reciprocal space.92 Fast-Fourier-transform algorithms allow exact and

efficient conversion of functions between their values at a set of real-space

grid points and the corresponding values at a set of grid points in reciprocal

space. This means the wavefunctions and electron density can be quickly

and cheaply converted between real and reciprocal space. This allows the

Schrödinger equation to be split up, and components calculated in whichever

space is cheaper. This is of particular benefit for larger systems.92

2.4.4 Energy-minimisation algorithms

As mentioned in Section 2.2.1 the Born-Oppenheimer approximation is used

to separate electronic and nuclear degrees of freedom. DFT can be used to

calculate the electronic energy for a given set of nuclear coordinates. Starting

from a given set of coordinates, an energy-minimisation algorithm can be

used to calculate forces acting on nuclei and move them downhill to find

new positions. This can be repeated until a minimum is reached and the

equations are self-consistent. There are several different types of energy-

minimisation algorithm. Some of the most common types are the conjugate-

gradient minimisation method, Newton-Raphson and quasi-Newton-Raphson

methods.94

In a conjugate-gradient method the energy is minimised along a single direc-

tion in multi-dimensional phase space, then along a direction that is orthogo-

nal to the previous choice. This is continued until the energy converges. In a

Newton-Raphson method the Hessian is calculated in full at every step. This

means there will be fewer, more expensive steps. In a quasi-Newton-Raphson

method the Hessian is approximated and this approximation is steadily im-
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proved each step using information from all previous steps. An example

of this class of methods is the Broyden–Fletcher–Goldfarb-Shanno (BFGS)

quasi-Newton scheme.71

Note that plane-wave pseudopotential methods require an energy-minimisation

algorithm for several purposes. An energy-minimistion algorithm is required

to relax nuclear coordinates. Based on the Born-Oppenheimer approxima-

tion, a Self-Consistent Field (SCF) electronic minimization procedure is re-

quired as well. This iterative procedure minimises the electronic energy for

each set of nuclear positions. For each step in this SCF process the electronic

wavefunction must be calculated for a given potential. It is standard prac-

tice to use another energy-minimisation algorithm to find the lowest-energy

eigensolutions corresponding to a given potential, rather than solving them

directly by matrix inversion. For example, the CASTEP plane-wave code

uses the conjugate gradient method for this.92

2.5 Surfaces studied

Six metals were investigated using the local softness. These comprised three

transition metals (rhodium, palladium and platinum) and three coinage met-

als (copper, silver and gold). Working catalysts consist of a range of mostly

low-index facets. However, there will be a variety of facets and sites present,

including defect sites with low coordination number that may be particularly

important for catalysis. As mentioned in Section 1.2, a large number of im-

portant catalytic processes are structurally sensitive. In particular, in various

catalytic processes the more reactive, higher-index surfaces are more active

in catalysis, particularly in bond-dissociation reactions.18 It is thought that

the particular electronic properties of step-edge and kink sites, such as lower

work function, make these ideal for breaking bonds.19,21 For example, the

very strong CO bond can be broken by kink atoms on platinum, but not by

any other platinum surface sites.95 Higher-index facets, which contain defect

sites such as step edges or kinks, are therefore important for catalysis.

The analysis of Jenkins and Pratt provides a method of categorising surfaces
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based on their symmetry and structure.96 Surfaces containing two or more

close-packed rows are classed as flat. These flat surfaces include fcc {111} and

{100}. Surfaces containing only one close-packed row are classed as stepped.

Examples include the fcc {110} surface. Kinked surfaces contain no close-

packed rows and include the fcc {210} and {531} surfaces. Higher-index

surfaces require a larger unit cell for CASTEP calculations. The computa-

tional cost of CASTEP calculations scales with roughly N3, where N is the

number of atoms in the unit cell. This was a factor in choosing which systems

to study. In order to study a range of surfaces but minimise computational

cost, relatively low-index flat and stepped surfaces were chosen for the study

of local softness. Flat surfaces studied were the fcc {111} and {100}. The

stepped {110} surface was also studied. The geometries of these three fcc

surfaces are illustrated in Figs. 2.1, 2.2 and 2.3 respectively.

2.6 Computational details

CASTEP, a plane-wave code for implementing DFT using periodic boundary

conditions, was used for all calculations.67,97 The version of CASTEP used

was 6.11 (released in 2013) for earlier calculations and then 18.1 (released in

2017) for later calculations. 1 There was no significant difference in energies

obtained using different versions of CASTEP. This similarity in energies is not

very surprising as the CASTEP releases between 2013-2017 mostly consisted

of minor additions to functionality and a few bug fixes, rather than funda-

mental changes to the way the code worked. The exchange and correlation

functional used within CASTEP was that of Perdew, Burke and Ernzerhof.87

The plane-wave-basis-set energy cutoff was 340 eV. The standard CASTEP

library pseudopotentials were used for all calculations.67

The geometry of the unit cell was of a double-sided slab symmetrically placed

in the centre of the supercell. The lateral dimensions of all surfaces were cho-

1The reader should not be alarmed at the apparent large jump in version numbers. In
2015 the CASTEP developers increased their version number from 8 to version 16. This
jump of eight version numbers was due to CASTEP becoming partners with the company
Biovia, and did not correspond with a large change in the function of the CASTEP code.
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Figure 2.1: Face centred cubic {111} facet

Figure 2.2: Face centred cubic {100} facet

Figure 2.3: Face centred cubic {110} facet
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sen to be the smallest possible unit cell retaining the surface symmetry. For

the {100}, {111} and {110} surfaces this was the (1 × 1) cell. Geometry

optimisations were performed using the BFGS quasi-Newton optimisation

method implemented in CASTEP.71 The force tolerance for geometry op-

timisations was 0.05 eV Å
−1

. The energy tolerance per atom for geometry

optimisations was 2× 10−5 eV. The outermost layers of atoms on both sides

of the clean slab were allowed to relax. The inner layers of atoms were con-

strained along x, y and z axes. The number of layers that were allowed to

relax varied according to the layer spacing. See the start of Chapter 3, Sec-

tion 6.2 and the Appendix for more detail on the number of relaxed layers.

The electronic energy tolerance per atom was 10−7 eV in single point calcu-

lations. The convergence testing of dµ/dσ was performed for the smallest

lateral dimensions that preserved the symmetry for each surface.

As explained in Section 2.4.1, calculating the electronic structure requires

sampling the first Brillouin zone at a mesh of k points in reciprocal space.98

The sampling along each reciprocal lattice vector bn should be inversely pro-

portional to the length of the corresponding real-space vector an. For the

{100} and {111} surfaces the real-space vectors a1 and a2 are the same

length whereas for the {110} surface the ratio of |a1| to |a2| is 1 :
√

2 which

(to the nearest integer) corresponds with a Monkhorst-Pack k-point mesh of

8 × 6 × 1. Therefore the Brillouin-zone integration was performed using an

8 × 8 × 1 Monkhorst-Pack k-point mesh for the {100} and {111} surfaces

and a 8× 6× 1 mesh for the {110} surfaces.

An energy cutoff of 340 eV was used for all surfaces. This was chosen so

that oxygen or oxygen-containing molecules (such as CO) could be added to

the surfaces without needing to change the energy cutoff. Oxygen requires a

higher cutoff energy than most commonly used elements. A cutoff of 340 eV

is high enough for oxygen and more than high enough for metals and other

elements found in common adsorbates such as C and H. The surface-normal

dimension of the supercell and the thickness of the slab and vacuum layers

were varied systematically and the softness was calculated.
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2.7 Notation to describe supercell geometry

A particular CASTEP repeat supercell geometry will be described in terms of

the number of layers of slab and vacuum. The latter will always be in terms

of the spacing of the metal surface d{hkl}. For example, to specify a certain

number of slab and vacuum layers of Cu{100}, the simplified notation

ns + nv

means a supercell with ns layers of Cu{100} and nv layers of vacuum of

thickness d(100), where d(100) is the spacing of the Cu{100} planes. For

example a calculation with a repeat unit of 9 layers of Cu{100} slab and 8

layers of vacuum would be referred to as a 9 + 8 calculation. A series with

a given constant vacuum thickness and variable ns can be described using

the same notation. For example the series with variable slab thickness and

constant nv = 8 would be referred to as the ns + 8 series. Similarly the series

with constant ns = 13 layers and variable nv would be referred to as the

13 + nv series. A series with a constant ratio of ns to nv is referred to as

α% where α is the percentage of vacuum. For example, the 50% series is one

where the ratio of ns to nv is 1 : 1. The length of the supercell surface-normal

dimension is referred to as c with the total number of layers ns + nv.

2.7.1 Choice of slab and vacuum thickness

The slab thickness should be large enough that there are negligible inter-

actions between the two surfaces through the slab. Due to the nature of

the CASTEP implementaion of DFT as a plane-wave calculation, periodic

boundary conditions are necessary. Therefore the supercell has an infinite

number of repeat images. The vacuum thickness needs to be sufficient that

there is negligible interaction between the surfaces and their images in neigh-

bouring supercells.
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2.8 Problems calculating local softness

2.8.1 Charged calculations in CASTEP

It is possible to perform charged calculations in CASTEP61 but their inter-

pretation is not straightforward. CASTEP applies periodic boundary con-

ditions in order to model periodic systems.62 This results in problems when

doing a calculation of a surface with non-zero charge. The charge of a metal

slab localises on the surface (for a two-sided slab at both surfaces). Due to

the periodic boundary conditions the system behaves, from an electrostatic

point of view, like an infinite number of charged plates at a regular spacing

determined by the slab and vacuum thickness. This is a problem as the en-

ergy of an infinite set of charged plates would diverge. The way in which

CASTEP solves this probelm is that an external electric potential is applied

so that the overall charge for the supercell is neutral.62 There is more detail

on how this affects the chemical potential in Section 2.10.1.

2.8.2 CASTEP energy reference

The energies reported by CASTEP are based on an energy reference that

is arbitrarily defined based on the average potential over the whole super-

cell.99 The energies obtained by a CASTEP calculation, for example the

total energy, chemical potential and other energies, can be compared with

each other for a given supercell composition. However, if another calculation

is performed with a different number of slab or vacuum layers, then energies

will differ due to the difference in energy reference. Similarly, a CASTEP

calculation with a different charge will also have a different energy reference,

as the compensatory potential that CASTEP adds to neutralise the charge

will be different in this case.

One energy reference is defined for each CASTEP calculation. There is no

reason to expect the energy reference for two CASTEP calculations to be the

same, if the supercells differ. For two calculations with different numbers of

vacuum layers, one would expect all energies to be the same from a physical
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point of view, provided that both vacuum thicknesses were sufficient to screen

fictitious interactions between the metal surfaces. However, the difference in

reference energy would cause all CASTEP reported energies to be shifted

rigidly between calculations.

Figure 2.4 shows the effect of a change in vacuum thickness on the CASTEP

reported energies. The DOS for supercells a and b should be identical as long

as the vacuum thickness for both is enough to screen fictitious interactions.

However, the slab and vacuum regions have different potentials. Therefore

increasing the vacuum thickness changes the average cell potential. This

means the CASTEP energy reference used to calculate the energies is dif-

ferent, so all energies are rigidly shifted for calculation b. There are the

same number of electrons in each supercell so the difference in the chemical

potential is simply the difference in the energy reference R.

2.9 Calculating the local softness

As the numerator of local softness, srel(r), is known to vary in three-dimensional

space but not with external potential, this can be calculated using a single

supercell geometry. A simple linear approximation was made in order to

calculate the numerator of local softness,

srel(r) =
dρ(r)

dσ
≈ ρ(r)+ − ρ(r)−

σ+ − σ−
(2.32)

where a + or − subscript indicates a quantity calculated for positive and

negative surface charge, σ, respectively. It should be noted that it is advan-

tageous to use as small a value of σ as possible, so as to better approximate

the derivative. However, below a certain value, numerical accuracy would be-

gin to become a problem. The denominator of local softness is invariant with

position in space, but can be expected to be dependent on external potential.

The external potential can be expected to vary with supercell geometry for

charged calculations. However, unlike srel(r) the denominator of local soft-

ness is a global quantity. Therefore if the dependence on external field can be
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Figure 2.4: Hypothetical DOS for two CASTEP supercells a and b.
Supercells are identical except that b has a different vacuum thickness.
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corrected to find the true denominator of local softness, (∂µ/∂σ)v(r),T , then

this can be used to calculate the local softness by simple division.

2.10 Calculating the chemical potential

In order to calculate the denominator of local softness, the chemical potential

must first be calculated for different values of surface charge. CASTEP was

used to calculate the Fermi level and local potential for each geometry of

supercell. For the purposes of this study, it was assumed that the Fermi

level was equal to the chemical potential. This is reasonable for a metal with

no band gap.100 Several methods of calculating the chemical potential were

investigated.

2.10.1 Uncorrected chemical potential

The denominator of local softness can be calculated using the CASTEP re-

ported values of the chemical potential for different surface charges. How-

ever, there is a problem with calculating the chemical potential this way. As

explained in Section 2.8.1, CASTEP applies periodic boundary conditions.

The energy of an infinite set of charged plates would diverge. CASTEP

solves the problem of charge by applying an external potential. However,

from Eqn. 1.22, it can be seen that the external potential v(r) should be

constant. One way of solving this problem is to extrapolate to infinite slab

and vacuum thickness. For an infinitely large cell, there would be no periodic

neighbours and so there would be no charge interaction. Therefore the po-

tential applied by CASTEP would approach zero as the cell size approached

infinity.

A second problem comes from the way in which CASTEP defines the ref-

erence potential. The CASTEP reference potential cannot be expected to

be constant with charge or supercell geometry. Therefore it is not straight-

forward to compare the energy or chemical potential of two surfaces with a

different vacuum thickness, even though they should be identical. In addi-

tion, changing the charge would also change the reference potential.
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2.10.2 The CASTEP energy reference

The CASTEP estimate of the denominator of the local softness, dµ/dσ, was

calculated using a linear approximation:

dµ

dσ
≈ µ+ − µ−
σ+ − σ−

(2.33)

where µ+ is the chemical potential for a given positive surface charge σ+ and

µ− is the chemical potential for a given negative surface charge σ−. This

method was used irrespective of whether µ was corrected as described in

Section 2.10.3. In order for the linear approximation to hold, a small surface

charge was chosen equivalent to ±0.1 e per supercell. The problem with the

approach in Eqn. 2.33 is that the outputted chemical potential, µCASTEP,

is relative to an unknown energy reference that changes with charge and

supercell dimensions.

µCASTEP
+ = µ+ −R+ (2.34)

where µ+ is the true chemical potential for a given positive charge and R+

is the CASTEP energy reference for the same charge. There is an equivalent

expression for the outputted chemical potential for negative charge,

µCASTEP
− = µ− −R− (2.35)

where µ− is the true chemical potential for a given negative charge and R−

is the CASTEP energy reference for the same charge.

All energies outputted by CASTEP for a single calculation are relative to

the same energy reference. Therefore it would be helpful to find an energy C

(or set of energies) that can be expected to be constant with added charge

and supercell dimensions. The expression for this energy as outputted by

CASTEP would therefore be
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CCASTEP
+ = C −R+ (2.36)

where C is a constant energy that can be expected to be invariant with chang-

ing charge and supercell dimensions. CCASTEP
+ is the CASTEP outputted

value of C relative to the CASTEP energy reference for a given supercell and

for +σ surface charge. The equivalent expression for negative charge would

be

CCASTEP
− = C −R− (2.37)

where C and R− are defined as above. CCASTEP
+ and CCASTEP

− can be used to

correct the CASTEP outputted chemical potential so it is no longer de-

pendent on the CASTEP energy reference. This is done by subtracting

CCASTEP. When Eqns. 2.34 and 2.36 are substituted in, the terms in R+

cancel out.

µcorr
+ = µCASTEP

+ − CCASTEP
+ = µ+ − C (2.38)

There is an equivalent expression for negative charge,

µcorr
− = µCASTEP

− − CCASTEP
− = µ− − C (2.39)

Equations 2.38 and 2.39 can be subtracted to cancel out the dependence on

C

µcorr
+ − µcorr

− = µ+ − µ− (2.40)

Equation 2.40 can then be substituted into Eqn. 2.33, resulting in the fol-

lowing expression for the corrected denominator of local softness:
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dµ

dσ
≈
µcorr
+ − µcorr

−

σ+ − σ−
(2.41)

Several methods of correcting the chemical potential were investigated:

• Correcting the chemical potential using the slab average potential

• Correcting the chemical potential using the bulk slab average potential

(excluding a number of surface layers)

• Correcting the chemical potential using the DOS obtained from a sim-

ple CASTEP tool

• Performing an extremely precise DOS calculation using OptaDOS, then

using cross-correlation of the DOS for positive and negative charge to

obtain the shift. This shift can then be used to correct the shift in

chemical potential for different charges.

2.10.3 Slab average potential correction

One approach used to try to solve the problem of the variable CASTEP

energy reference was to correct the chemical potential using the average po-

tential of the slab. In this approach, the corrected chemical potential, µcorr,

is defined as

µcorr = µcalc − Vslab (2.42)

where µcalc is the uncorrected chemical potential reported by CASTEP rela-

tive to the CASTEP reference potential. Vslab is the average bulk potential,

which is also calculated by CASTEP relative to the reference it uses. How-

ever, the physical value of the average slab potential should certainly be

constant for all supercell geometries. Therefore the calculated value of µcorr

should be a true measure of the chemical potential.

In order to calculate the slab average potential, the CASTEP formatted po-

tential file was used. This was averaged along the x and y coordinates so

that only the dependence on the surface-normal direction was kept. This

produces data of the sort shown in Fig. 2.5. The positions of the outermost
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minima are found and then an average is performed over the whole of the x

and y dimensions and over the region of the slab indicated with the solid hor-

izontal line in Fig. 2.5. This method averages between the outermost minima

in the xy-average potential. This should be relatively constant with added

charge. In order to improve this and make sure that Vslab was independent

of charge as required by the approach in Eqns. 2.41-2.38, I also investigated

a modified method where one, two or three of the outermost minima were

excluded from the average.

Figure 2.5: Method of calculating the slab average potential
Vertical lines indicate positions of outermost minima between which the
average is performed

In Fig. 2.5 the xy-average potential shows a variation with z coordinate.

Minima in the potential correspond to the the z coordinates of layers of

atoms. In this figure it can be seen that the surface layers of atoms at each

side of the slab are slightly higher in potential than bulk layers. This is a

result similar to that for most low-index surfaces.

As mentioned in Section 1.9, the calculated value of dµ/dσ cannot be ex-

pected to be equal to the denominator of local softness, (∂µ/∂σ)v(r). This

will be the case even for the corrected denominator calculated using µcorr.
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Therefore as the CASTEP energy reference can be expected to be dependent

on the supercell geometry, whereas the true denominator is not, convergence

testing was performed with respect to the supercell dimensions. This was

performed for dµ/dσ and the quantities connected to it, the chemical poten-

tial and average slab potential. The convergence of the corrected dµ/dσ was

analysed with ns, nv and supercell surface-normal repeat length c. This will

be discussed in Chapter 3.

(∂µ/∂σ)v(r) = (dµ/dσ)c→∞ (2.43)

2.10.4 DOS correction method: bands2dos

CASTEP has a utility called bands2dos that can be used to obtain simple

Densities of States (DOS). As the shift in reference potential should affect all

energies reported by CASTEP in the same way, the DOS could be used to

correct for the effects of shifting energy reference. Unfortunately, although

the bands2dos method is cheap, the DOS produced is not precise enough to

be able to calculate an accurate value for the shift in energy reference. A

more accurate DOS would be needed to correct the chemical potential.

2.10.5 DOS correction method: OptaDOS

The OptaDOS code was developed by Andrew Morris, Chris Pickard Re-

becca Nicholls, Jonathan Yates and others to calculate very accurate density

of states (DOS) and spectra.101,102 They developed a way to obtain accu-

rate DOS by integrating over the Brillouin zone using a linear extrapolation

broadening method.103,104

As explained in Section 2.10.1, all energies in CASTEP are reported relative

to an energy reference, which changes with charge and supercell dimensions.

In Section 3.1.3 it was suggested that if dµ/dσ is calculated relative to this

changing energy reference then it will never converge with supercell dimen-

sions. It would be helpful to know the CASTEP energy reference for each

calculation so it could be corrected for. However, this energy reference is not
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outputted by the CASTEP code.

One way of solving this problem is to find an energy or set of energies that

should remain constant with added charge as well as with supercell dimen-

sions. Therefore any change in these energies with charge and supercell di-

mensions simply reflects the change in the CASTEP energy reference, which

can therefore be corrected for. An example of a set of energies that should

be constant with changing charge is the occupied density of states (DOS)

well below the Fermi level. As these states are occupied, they are not likely

to change with added electrons. This means that the only change in the

DOS well below the Fermi level with increasing charge is due to the change

in CASTEP energy reference. Therefore the DOS well below the Fermi level

can be used to correct for changes in CASTEP energy reference.

A standard CASTEP calculation does not output the DOS but a tool called

OptaDOS can be used to calculate an accurate DOS from the band structure

outputted by CASTEP.101–105 As the DOS is a function of energy, the best

way to calculate an accurate shift in energy with changing energy reference

is to calculate the cross-correlation of the DOS for negative charge with the

DOS for positive charge. The DOS in general would be a continuous function

with energy D(E). However, the DOS can only realistically be calculated

when sampled at a set of energy points with index m. This is a discrete

function D(Em). The cross-correlation of two discrete functions f and g is

defined as

(f ? g)[n] =
∑
m

f ∗[m]g[m+ n] (2.44)

where f ∗[m] denotes the complex conjugate of f [m]. n is the index by which

the two functions are shifted relative to each other.106,107 The value of the

shift index n that results in the maximum value of (f ? g)[n] can be used to

calculate the shift in energy reference with varying charge. This can then

be used to correct the chemical potential and calculate an accurate value for

dµ/dσ.
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Eshift = CCASTEP
+ − CCASTEP

− (2.45)

Equations 2.36 and 2.37 can be substituted in for CCASTEP
+ and CCASTEP

− and

terms in C cancel, resulting in the following equation

Eshift = −(R+ −R−) (2.46)

It would be helpful to express Eqn. 2.33 in terms of µCASTEP
+ , µCASTEP

− and

Eshift. In order to do this, Eqns. 2.34 and 2.35 can be substituted into an ex-

pression of the difference between the CASTEP reported chemical potentials.

This can then be used to find an alternative expression for the numerator of

Eqn. 2.33.

µCASTEP
+ − µCASTEP

− = µ+ − µ− − (R+ −R−) (2.47)

The third term on the right of Eqn. 2.47 can be recognised from Eqn. 2.46

as Eshift. This can be used to express the numerator of Eqn. 2.33 in terms of

µCASTEP
+ , µCASTEP

− and Eshift.

µ+ − µ− = µCASTEP
+ − µCASTEP

+ − Eshift (2.48)

Equation 2.48 can then be substituted into Eqn. 2.33 to result in an ex-

pression that does not require an expression for the unmeasurable CASTEP

energy reference.

dµ

dσ
≈
µCASTEP
+ − µCASTEP

+ − Eshift

σ+ − σ−
(2.49)
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2.10.6 Computational details for spectral tasks and

OptaDOS

There are three options for estimating the broadening in OptaDOS (in or-

der to estimate the DOS based on spectra specified at a finite number of

k points). These are adaptive, linear and fixed broadening. For adaptive

and linear broadening, an optics spectral task was performed using CASTEP

and then OptaDOS was run using the CASTEP optical matrix elements and

band structure. For fixed broadening, a DOS spectral task was performed

using CASTEP and then OptaDOS was run with fixed broadening using the

band structure as outputted by CASTEP. The smearing widths used for fixed

broadening were 0.1, 0.2, 0.3 and 0.4 eV. For all the broadening types, the

spectral task k point grid was 30× 30× 1 for the {111} and {100} surfaces

and 30×21×1 for the {110} surfaces. The other computational details were

as specified in Section 2.6. It should be noted that while a large number of

k points were used for the spectral tasks, each spectral task started with a

singlepoint calculation for which the k points used were those specified in

Section 2.6.
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Chapter 3

Calculating the Denominator of

Local Softness

As discussed in the previous chapter, there are various problems with using

energies as outputted directly by CASTEP, as these are relative to an arbi-

trarily defined energy reference. Also, the external potential is not constant

when supercell dimensions and charge are varied. The effect this has on the

quantities that are outputted directly by CASTEP will be discussed in Sec-

tion 3.1 below. As explained in the previous chapter in Section 2.10.2, there

are several possible methods of correcting the energies obtained by CASTEP.

These methods involve subtraction of the energy of a quantity that should

be constant with increasing supercell dimensions and charge. The methods

that were investigated to correct the chemical potential were subtracting the

slab average potential (which will be discussed in Section 3.2) and cross-

correlating the DOS (which will be discussed in Section 3.3). The latter

method was found to be preferable, and therefore was used to calculate the

denominator for eighteen metal surfaces, in Section 3.4. Throughout this

chapter, the (1 × 1) lateral dimensions were used. As will be discussed in

the following sections, the number of slab and vacuum layers were varied,

but in all cases a double-sided slab was used and the outermost layers were

allowed to relax. For the {100} and {111} surfaces, three layers were allowed
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to relax on either side of the slab. The {110} surface had a smaller layer

spacing, so four layers were relaxed on each side of the slab.

3.1 Convergence of uncorrected properties

As mentioned above, the thickness of the slab and vacuum layers in the repeat

unit should have no physical effect on s(r). This would be expected to be

true provided the number of slab layers, ns, is large enough to prevent finite

size effects.108 However, the number of vacuum and slab layers is expected to

have a computational effect, following the argument set out in Sections 1.9

and 2.9. This would arise as CASTEP applies a fictitious potential to offset

the effect of charge distributions in the unit cell. As charge in a metal

slab generally is found at the surface, effectively a charged calculation with

periodic boundary conditions will consist of an infinite number of charged

sheets. The potential of an infinitely repeating set of sheets of charge can

be expected to be a function of the spacing between them. Therefore it can

likewise be expected that the corrective potential applied by CASTEP may

vary according to the vacuum and slab layer spacings.

The convergence of the CASTEP ‘out of the box’ properties was tested with

respect to supercell dimensions for the Cu{100} surface. These were tested

for certain datasets where either the slab or vacuum thickness was varied,

keeping the other thickness constant. The datasets tested included two that

kept the slab thickness constant and varied the vacuum thickness (referred to

as 10 + nv and 23 + nv). There were also two datasets that kept the vacuum

thickness constant and varied the slab thickness (referred to as ns + 8 and

ns + 18)

3.1.1 Convergence of the numerator of local softness

The numerator of local softness, dρ/dσ, can be expected to be constant

with supercell dimensions as the local electron density is conserved when the

dimensions of the supercell are increased. Therefore if the local softness itself

is not constant with increasing supercell dimensions then this can be expected
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to be as a result of a change to the denominator of local softness.

3.1.2 Uncorrected denominator convergence

The denominator of local softness as defined in Eqn. (1.22) is an intensive

quantity that should be constant with supercell dimensions. However, as

explained above in Section 3.1, this was not found to be the case due to

problems with the way CASTEP defines the energy reference and due to

the potential CASTEP adds to neutralise the charge. Figure 3.1 shows a

strong positive correlation between ns and dµ/dσ. For both values of nv =

8 and 18 the value of dµ/dσ increases with increasing ns to a maximum

value. However, the asymptotic value is different for each dataset, at about

0 eV Å
2
e−1 for the ns + 8 dataset and −50 eV Å

2
e−1 for the ns + 18 dataset.

The shape of the curve of dµ/dσ with respect to ns is strongly dependent on

nv for a given dataset of constant nv.

In contrast, Fig. 3.2 shows a clear decrease in dµ/dσ as the number of vacuum

layers increases. In addition, the relationship is nearly linear. The slopes of

the lines differ but are relatively similar, in contrast to the significant differ-

ence in curve shape between the two constant nv datasets in Fig. 3.1. The

magnitude of the change in dµ/dσ with increasing nv is significantly larger

than the change with increasing ns. The addition of 20 layers of vacuum

decreases dµ/dσ by 500 eV Å
2
e−1 whereas in Fig. 3.1 dµ/dσ increases by

150 eV Å
2
e−1 when 20 layers of slab are added in the ns + 18 dataset.

As can be observed in Figs. 3.1 and 3.2, the denominator of local softness as

calculated from the CASTEP value of the Fermi level scales approximately

linearly with vacuum thickness and exponentially with slab thickness. This

suggests that the denominator of local softness is not constant with supercell

dimensions. There is no physical reason to expect this. It can therefore be

deduced that the strong relationship between dµ/dσ and supercell dimensions

is due to the way in which CASTEP defines the reference energy, and also

due to the way in which CASTEP applies a potential to balance the applied

charge. This would match the predictions made in Section 2.10.2.
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3.1.3 Convergence of µ and slab average potential

As the surface charge will be constant with respect to surface-normal super-

cell dimensions, the variation of dµ/dσ with different slab and vacuum thick-

ness must be due to changes in the chemical potential. Therefore it would be

helpful to look at the convergence of µ with respect to supercell dimensions.

The uncorrected chemical potential was calculated for the Cu{100} surface.

The 10 + nv, 23 + nv, ns + 8 and ns + 18 datasets were studied. It would

be helpful to test the hypothesis that the variation in the energies obtained

with different charge and supercell dimensions was partly due to a change

in the supercell average potential and therefore the energy reference. This

hypothesis could be tested by looking at the convergence of an energy as cal-

culated by CASTEP that should be constant with supercell dimensions, as

discussed in Section 2.10.2. An example of an energy that should be suitable

for this purpose is the average potential in the slab, Vslab. If the hypothesis

about the impact of the changing reference potential were correct, then one

would expect to see the same shape in the convergence of µ as of Vslab with

respect to supercell dimensions. This hypothesis was tested by comparing

the convergence of µ with that of Vslab in Figs. 3.3-3.10 below.

In order to test the dependence of properties calculated by CASTEP upon

the CASTEP reference energy, it would be helpful to consider a system that

has neutral charge. This will mean that CASTEP will not need to add

a compensating external potential, so the potential will be constant with

changing geometry. Figures 3.3-3.6 show the convergence of the uncorrected

chemical potential (in the upper panels) and the slab average potential (in

the lower panels). Figures 3.3 and 3.4 show the convergence with respect to

the number of slab layers for supercells with a constant vacuum thickness

with nv = 8. Figures 3.5 and 3.6 show the convergence with respect to nv

for supercells with a constant slab thickness of 10 layers of Cu{100}.

Figures 3.3 and 3.4 have shapes that are very similar to each other. Therefore

the convergence with respect to the number of slab layers is very similar for

the chemical potential and the slab average potential. Both µ and Vslab
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Layers for the Cu{100} ns + 8 zero-charge dataset
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Figure 3.6: Convergence of Average Slab Potential with Number of Vac-
uum Layers for the Cu{100} 10 + nv zero-charge dataset
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increase exponentially with increasing slab thickness towards a plateau. The

main difference between the two is that there is more numerical noise in the

plot of the average slab potential. This increased amount of noise is probably

due to the averaging process.

Figures 3.5 and 3.6 also have shapes that are similar to each other, though dif-

ferent from the shape of the convergence with slab thickness in Figs. 3.3 and

3.4. In particular, the chemical potential and slab average potential decrease

with increasing vacuum thickness. The shape of the curve is quasi-linear in

both cases, which may simply be noise around a linear trend. Alternatively,

it may just be a very slowly changing exponential, which would mean that

eventually for large enough vacuum thickness the chemical potential and slab

average potential would converge to a constant value.

For the zero-charge case it appears that most of the change in the chemical

potential with varying supercell dimensions is because of a change in the

CASTEP reference energy. It would be interesting to see how the picture

changes with added charge. Also it would be interesting to see whether

datasets with different constant values of slab or vacuum thickness would fall

on the same curve. Therefore the convergence of µ and Vslab was compared

for different charges in Figs. 3.7-3.10.

Figures 3.7 and 3.8 show the convergence with respect to slab thickness for

supercells with a constant nv of 8 (circles) and 18 (crosses). The upper panel

shows the convergence of the chemical potential and the lower panel that of

the slab average potential. As for the zero-charge calculation, the chemical

potential and slab average potential show very similar convergence with re-

spect to the slab thickness. Irrespective of charge and whether nv is 8 or

18 layers, the curves in both panels increase with increasing slab thickness

towards a constant value for high slab thickness. Therefore both the slab

average potential and the uncorrected chemical potential, µ, increase with ns

for a dataset of constant nv. Negatively-charged supercells have a higher un-

corrected chemical potential. This is to be expected as the chemical potential

is essentially a measure of the highest filled energy level at a temperature of

0 K. Interestingly, the increase in uncorrected µ with charge is much larger
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in magnitude for the dataset with a larger number of vacuum layers.

In general as ns increases the chemical potential increases towards an asymp-

totic value of approximately 6 eV for the ns + 8 dataset and 4.5 eV for the

ns + 18 dataset. The energy difference between the curves with positive and

negative charge decreases with increasing ns, especially for the dataset with a

larger number of vacuum layers. This matches the trend in Fig. 3.1 where the

denominator takes a larger magnitude (more negative value) for 18 vacuum

layers compared with that for 8 vacuum layers.

Figure 3.8 shows a remarkably similar convergence of the average slab poten-

tial with ns to that shown in Fig. 3.7. The average slab potential increases

with increasing ns and also appears to have an exponential relationship. For

ns → ∞ the slab average potential approaches a constant value of approx-

imately −13 eV for the ns + 8 dataset and −15 eV for the ns + 18 dataset.

There is a very strong relationship between the shapes of the Vslab curves

and the uncorrected µ curves. This suggests that the reason for most of

the change in both Vslab and uncorrected µ is the change in the CASTEP

reference potential with supercell dimensions. This is consistent with the

argument put forth in the previous chapter in Section 2.10.2.

Figure 3.9 shows a clear decrease in uncorrected µ with increasing nv. How-

ever, the mathematical form of the relationship differs markedly between

differently-charged supercells. The uncharged and negatively-charged calcu-

lations show an exponential decay towards a constant value of approximately

0 eV for the 10 + nv dataset and -3 eV for the 23 + nv dataset. In contrast,

the positively-charged supercell shows a very strong linear dependence for

both datasets. This is very interesting as the difference in charge is not

very great. In addition this implies that if dµ/dσ is calculated using the

uncorrected chemical potential then dµ/dσ would never converge with su-

percell dimensions. This is the trend observed in Fig. 3.2. This suggests that

using the CASTEP raw value of µ to calculate dµ/dσ will not enable the

calculation of the denominator of local softness.

Figure 3.10 shows a similar dependence on nv as that seen in Fig. 3.9. In
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particular, Vslab decays exponentially towards a constant value for neutral

or negatively-charged supercells. As for Fig. 3.9, the slab average potential

decreases linearly with nv for positively-charged supercells in both datasets.

The curve shapes and gradients in Figs. 3.9 and 3.10 are very strongly cor-

related. Combined with the similarity of the behaviour with increasing ns

this is strong evidence that the main change in both uncorrected µ and Vslab

is due to the change in the CASTEP reference potential, as suggested in the

previous subsection.

3.1.4 Implications for the method of calculating µ

The correlation of curve shape and slope between uncorrected µ and Vslab

is strong evidence in favour of using the correction procedure of Eqns. 2.42.

It can be expected that the resultant values of µcorr will be independent of

the CASTEP reference potential. This method can therefore be expected

to produce a value of dµ/dσ that will vary with supercell dimensions only

due to physical reasons or changes in the CASTEP applied potential. The

convergence of the denominator that was corrected by subtracting the slab

average potential from the chemical potential will be discussed in the next

section.

3.2 Slab average potential correction

Having established that correcting the chemical potential is advisable, the

corrected denominator of local softness was calculated. This involved cor-

recting the chemical potential for changes in the CASTEP energy reference

by subtracting the slab average potential. The convergence with respect to

the supercell dimensions was analysed. As explained earlier in the chapter,

there is no physical reason to expect that the denominator of local softness

should depend on supercell dimensions, provided that the vacuum and slab

layers are thick enough to prevent self-image interactions and finite-size ef-

fects. However, it can be predicted that as CASTEP applies a fictitious

potential to correct for charged calculations this could have an impact on
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convergence. The convergence of the corrected denominator of local softness

with slab thickness, vacuum thickness and overall surface-normal supercell

dimension was evaluated.

3.2.1 Convergence with slab thickness

Figure 3.11 shows the convergence of
dµ

dσ
(corrected by the slab average po-

tential) with respect to slab thickness. The two datasets in the figure have

different constant vacuum thickness, with either eight or eighteen vacuum

layers. There is a similar convergence with slab thickness for both the 8 vac-

uum layer and 18 vacuum layer datasets. In both datasets the denominator of

local softness increases with slab thickness and seems to tend towards a con-

stant value for infinite slab thickness. However, the asymptotic limits of the

curves differ, being higher for a larger vacuum thickness. Also it seems that

the errors increase with vacuum thickness, as the dataset with 18 vacuum

layers is significantly more noisy than that with 8 vacuum layers.

One interesting feature of the datasets in Fig. 3.11 is that there is a great

deal of oscillation for small slab thickness. These oscillations occur for both

vacuum thicknesses where the slab thickness is . 25 Å. As the layer spac-

ing for Cu{100} is about 1.81 Å, this slab thickness is equivalent to 14 slab

layers. The oscillations decay quickly with increasing slab thickness, becom-

ing negligible for ns & 18, or slab thickness & 33 Å. Figure 3.12 shows a

zoomed-in view of the oscillations for ns = 10− 13, which is equivalent to a

thickness of 18-23.5 Å. There are eleven datasets in the figure, each with a

different constant vacuum thickness. For all datasets, there is the same trend

that with increasing slab thickness the corrected denominator first decreases

and then increases again. It is clear from Fig. 3.12 that oscillations with slab

thickness dominate over the differences between series with different vacuum

thickness. For example, adding one layer of atoms from 10 to 11 decreases

dµ/dσ by 3.5 eV Å
2
e−1 whereas adding ten layers of vacuum from 8 to 18

changes dµ/dσ by only 1 eV Å
2
e−1.

The eleven series in Fig. 3.12, each with different vacuum thickness, have

73



20 30 40 50 60 70 80

−
5

−
4

−
3

−
2

−
1

Slab Thickness / A°

C
or

re
ct

ed
 d

µ
dσ

  /
 e

V
 A°2  e

−1

ns + 8
A+Bexp(kz)  A = −0.9694, B = −5.0419, k = −0.0339
ns + 18
A+Bexp(kz)  A = −0.402, B = −3.0239, k = −0.0193

Figure 3.11: Convergence of corrected
dµ

dσ
with slab thickness for

Cu{100}

●

●

●

●

18 19 20 21 22 23

−
5

−
4

−
3

−
2

−
1

Slab Thickness / A°

C
or

re
ct

ed
 d

µ
dσ

  /
 e

V
 A°2  e

−1

●

●

●

●

●

●

ns + 8
ns + 9
ns + 10
ns + 11
ns + 12
ns + 13
ns + 14
ns + 15
ns + 16
ns + 17
ns + 18

Figure 3.12: Oscillations of corrected
dµ

dσ
with slab thickness for thin

slabs for Cu{100}

74



20 30 40 50 60 70 80

−
5

−
4

−
3

−
2

−
1

0

Vacuum Thickness / A°

C
or

re
ct

ed
 d

µ
dσ

  /
 e

V
 A°2  e

−1

10 + nv
11 + nv
12 + nv
13 + nv
23 + nv

Figure 3.13: Convergence of Corrected
dµ

dσ
with Vacuum Thickness for

Cu{100}

75



the same oscillatory ‘V’ shape with increasing slab thickness. This ‘V’ shape

is rigidly displaced to higher
dµ

dσ
for each dataset with larger vacuum thick-

ness. The magnitude of the oscillations with increasing slab thickness is the

same for all series in Fig. 3.12. This suggests the slab and vacuum degrees

of freedom are not strongly coupled in this region. The oscillations with slab

thickness decay rapidly to become negligible for ns & 18. They are inde-

pendent of the vacuum thickness. This suggests that the oscillations may

arise due to electrostatic coupling between the charged surfaces through the

slab. The rapid oscillations as the slab thickness increases is typical of finite-

size effects, which have been observed, for example, in thin aluminium films

by Aballe and co-workers.108 The physical cause of these is likely to be the

coupling of surface resonances across the slab.109–111

3.2.2 Convergence with vacuum thickness

Figure 3.13 shows the convergence of the denominator (corrected using the

slab average potential) with respect to the vacuum thickness. There are

five datasets in the graph, each with a different fixed number of slab lay-

ers, from 10-23. As observed earlier in Figs. 3.11 and 3.12 corrected dµ/dσ

increases with increasing vacuum thickness. In Fig. 3.13 it is clear that

the corrected dµ/dσ increases towards a maximum with increasing vacuum

thickness. This is similar to the behaviour with increasing slab thickness

but without the oscillatory behaviour for thin layers that is so marked in

Figs. 3.11 and 3.12.

Four of the datasets have a small enough number of slab layers (10-13) that

finite-size effects can be expected to be significant, based on the discussion

in the previous subsection. In Fig. 3.12 the convergence of corrected dµ/dσ

with respect to the number of slab layers forms a ‘V’ shape where for 10 slab

layers the denominator is very high, then for 11 slab layers it is very low.

The denominator then increases for 12 and then 13 slab layers. These trends

in the denominator with respect to slab thickness are the case for all the

curves with varying vacuum thickness. As noted before in Section 3.2.1 the

oscillations for small slab thickness are much greater in magnitude than the
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magnitude of variation with increasing vacuum thickness. The curves of the

denominator with increasing vacuum thickness are rigidly shifted and appear

to be converging to different values where the finite-size effects apply. The

datasets with a constant ns . 15 appear to be converging to very different

values for infinite vacuum thickness. This effect is especially pronounced for

10, 11 and 12 slab layers in Fig. 3.13.

The converged value of dµ/dσ with vacuum thickness is very sensitive to

slab thickness for ns . 15 in Fig. 3.13. Also as noted in Section 3.2.1 the

magnitude of oscillations with slab thickness is the same for all nv series

in Fig. 3.12. This has implications for how meaningful extrapolating
dµ

dσ
to

large vacuum thickness is if this is done for finite slab thickness. In particular,

the extrapolated value would be very far from the true converged value of
dµ

dσ
if this was done for a constant slab thickness that was in the oscillatory

region.

3.2.3 Convergence with surface-normal supercell di-

mension

Figure 3.14 shows the convergence of the corrected denominator of local

softness with the surface-normal supercell dimension. The datasets either

have a constant fixed slab thickness and varying vacuum, constant fixed

vacuum thickness and varying slab thickness, or a constant ratio of slab to

vacuum and varying total supercell thickness. It can be seen from Fig. 3.14

that the corrected denominator of local softness increases as the total surface-

normal supercell size, c, increases for all datasets. The gradient decreases

with increasing supercell size and it appears that the datasets in all cases are

converging to a constant value. However, there is quite a lot of noise in the

graph, which makes it difficult to know this for certain.

As long as the slab layer thickness is larger than about 32 Å the data points

for all datasets appear to lie on the same curve and be converging to the same

constant value. This can be seen more clearly in Fig. 3.15. Once the physical

effect of insufficient slab thickness is excluded there should be no physical
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reason for the size of the supercell to change the electronic properties of the

system. The remaining curve, which fits all the data, depends only on the

surface-normal repeat length, not the composition of the supercell itself. The

surface-normal repeat length (c) is the length governing the strength of self-

image interactions between repeats of the supercell. In particular, this will

be the length scale over which a charged surface will interact electrostatically

with its images.

This suggests that while the method of correcting the chemical potential by

subtracting the average slab potential works well at removing the effect of the

CASTEP reference potential, there is a weak interaction between each surface

and its repeat images that remains even after this correction has been made.

This interaction decays for increasing supercell size c which gives some hope

that, at least for Cu{100}, the denominator may converge in a well-behaved

manner. However, it will be shown later in Section 3.3 that this is not always

guaranteed. However, it was assumed that it was possible to extrapolate to

infinite supercell surface-normal dimensions for Cu{100}. The denominator

of local softness for Cu{100} was estimated from the fitted parameter A in

Fig. 3.15. The denominator of local softness for the Cu{100} surface was

therefore calculated as -0.71 eV Å
2
e−1.

3.2.4 Problems with slab average potential correction

In Section 3.2.3 the denominator was corrected using the slab average po-

tential, followed by an extrapolation to infinite surface-normal supercell size.

The slab average potential was calculated between the outermost minima in

the xy-average potential, as shown in Fig. 2.5. However, there were several

problems with this approach, particularly that there was a lot of numerical

noise.

In addition, the basis for correcting the chemical potential as in Eqns. 2.38

and 2.42 is in order to remove the dependence on the CASTEP variable en-

ergy reference. This only works if the quantity used to correct the chemical

potential is itself invariant with charge. The charge on a metal slab accumu-
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lates at the surface. Therefore an average potential between the outermost

minima in the xy-average potential would include this charged surface re-

gion. An alternative approach was tried that would alleviate this problem,

by calculating the average over a region that excludes a certain number of

minima from the xy-average potential. This would mean that the charged

surface region was excluded from the slab average potential, which should

mean that Vslab was independent of charge. In this case, Eqn. 2.41 can be

used to calculate the denominator of local softness.

While this approach of excluding several of the outermost minima from the

slab average potential is more theoretically justifiable, it does not solve the

problem of numerical noise. Also there were Friedel oscillations in the xy-

average potential for some surfaces.78 This made it difficult to have a sys-

tematic way of choosing the region over which to calculate the slab average

potential.
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Figure 3.16: xy-average potential as a function of surface-normal super-
cell index k for the Cu{100} 12 + 10 supercell
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Figure 3.17: xy-average potential as a function of surface-normal super-
cell index k for a Cu{531} 41 + 24 supercell Panels show progressively
more zoomed-in versions of the same data.

3.2.5 Friedel oscillations in the xy-average potential

The method of calculating the slab average potential detailed in Section 2.10.3

involves averaging over the region between the outermost minima in the xy-

average potential. This method can be expected to work well where the bulk

average potential is very similar to the average potential near the surface.

For the Cu{100} surface this is the case, as shown in Fig. 3.16. In Fig. 3.16,

there are twelve minima in the xy-average potential that correspond with

the twelve layers of atoms in the surface-normal dimension. These minima

all have similar energy values. Excluding the outermost minima from the

region over which the average is conducted would result in a slab average

potential that would be very similar to that obtained from the method in

Section 2.10.3. In contrast, in Fig. 3.17, calculated for the Cu{531} 41 + 24

supercell, there are 29 minima, fewer minima than layers of atoms. This is

because of Friedel oscillations that affect the surface region.78 The outermost

minima are very low in energy compared with the bulk region. Excluding

the outermost minima from the region to be averaged over would affect the
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slab average potential significantly.

To conclude, there are two main problems with using the slab average poten-

tial to correct the denominator of local softness. These are numerical noise

and Friedel oscillations. The effect of these issues is that while a converged

value for the denominator can be obtained using this correction method,

there is considerable uncertainty in its value. A different method of correct-

ing the chemical potential is desirable, particularly if it could result in less

noise. This would allow a more reliable measure of the converged corrected

denominator of local softness.

3.3 DOS cross-correlation correction

As discussed in Section 2.10.5, the DOS below the Fermi level can be ex-

pected to be constant with respect to different charge and supercell dimen-

sions. Therefore a cross-correlation of the DOS obtained for positive charge

with the DOS obtained for negative charge should give the shift in energy

reference between a positively-charged calculation and a negatively-charged

calculation. This can then be used to correct the difference in chemical poten-

tial, which allows the denominator to be calculated in a way that should be

independent of the energy reference, as expressed in Eqn. 2.41. This method

of correcting the denominator was tested for a range of surfaces.

There are various options for how to calculate the band structure and how

to perform the cross-correlation of the DOS. The DOS was calculated both

by bands2dos and OptaDOS. The former was found to produce a DOS that

did not have enough detail to perform an accurate cross-correlation, whereas

OptaDOS produces a DOS with plenty of detail to fit a cross-correlation

and find an accurate shift. Therefore OptaDOS was used. However, there

are several options within OptaDOS that were investigated. In particular,

OptaDOS has an option to use adaptive, linear or fixed broadening. The

broadening is required to obtain the DOS by integrating over the eigenfunc-

tions, which are approximated at a set of discrete k points in the Brillouin

zone. There are various different methods which OptaDOS can use in order
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to solve this problem and approximate the broadening.

Fixed broadening is the simplest method, where band dispersion is accounted

for by using a Gaussian broadening function of fixed width ω.102 This does not

require an optics spectral task, but does require a large number of k points

in order to obtain an accurate result.102 Linear broadening divides recipro-

cal space into a series of tetrahedra, and calculates the broadening based on

a linear interpolation. This approach results in a DOS that retains sharp

features, which is more accurate, and is also helpful from a point of view of

cross-correlating the DOS.102 However, linear broadening requires the opti-

cal matrix elements, which need to be calculated in an expensive CASTEP

optics spectral task. The third option is adaptive broadening, which was

developed in order to try to combine the advantages of the linear and fixed

broadening.102 The convergence of the denominator calculated using different

types of broadening was compared. This required a spectral task followed

by an OptaDOS calculation. The computational details for the spectral task

and OptaDOS calculations are described in Section 2.10.6.

3.3.1 Comparing OptaDOS broadening methods

OptaDOS calculates the density of states based on an integration over the

Brillouin zone.102 This integration is performed for data recorded at a fi-

nite set of k points. Therefore in order to find the integral, some kind of

broadening function must be used at each k point. It is well established to

use Gaussian functions for this. As discussed above, there are three possible

broadening methods, fixed, linear or adaptive. The three types of broaden-

ing were compared and it was found that the linear and adaptive broadening

were much more expensive. This is because they require a CASTEP optics

spectral task.

There was also a problem with some of the CASTEP output files needed for

linear or adaptive broadening. The optical matrix elements file sometimes

contained entries which were ‘not a number’ (NaN). This probably implies

that at some point in the CASTEP code a number was divided by zero.
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This error caused some spectral tasks to fail completely. In other cases, even

though the spectral task appeared to succeed, there were NaN entries in the

optical matrix elements CASTEP output file, which meant OptaDOS then

failed to calculate the DOS. These problems arose due to a ghost peak in the

unoccupied region of the DOS. A ghost peak is a non-physical, extremely

sharp peak that arises due to the pseudopotential. These problems affected

the optics spectral tasks that were required for linear or adaptive broaden-

ing.

Fixed broadening avoids the problem of the ghost peak, which meant that all

the spectral tasks and OptaDOS jobs succeeded. It requires a DOS spectral

task that was computationally simpler and cheaper than the optics spectral

task required for linear or adaptive broadening. There was also less noise in

the DOS and the denominator of local softness obtained using fixed broad-

ening compared with linear broadening. However, one of the disadvantages

of using fixed broadening was that as the broadening width is specified, the

DOS produced was a function of the broadening width. This had an effect

on the value of the corrected denominator. In order to give a qualitative

indication of the uncertainty in the corrected denominator of local softness,

the fixed broadening was computed for four different broadening widths of

0.1, 0.2, 0.3 and 0.4 eV. For more details see Section 2.10.6. In the figures

that follow, the average was plotted, with the standard deviation plotted

as an error bar. It should be noted that this is a qualitative measure and

not intended to be read as the actual error, which may be greater. As fixed

broadening was more reliable and cheaper, this method was chosen for all

calculations reported below.

3.3.2 Convergence with surface-normal

supercell dimension

The denominator was calculated using fixed broadening. As mentioned

above, it was unclear what value of the smearing width should be used,

so four different values of 0.1, 0.2, 0.3 and 0.4 eV were used and the mean

was calculated between all four. This mean is plotted against surface-normal
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Figure 3.18: Graphs of the denominator of local softness obtained us-
ing fixed broadening for four different coinage-metal surfaces. Data was
plotted for a variety of slab to vacuum ratios. The dotted line shows the
extrapolated denominator at infinite supercell surface-normal dimension
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Figure 3.19: Graph of the denominator of local softness obtained using
fixed broadening for Pd{110}.
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supercell dimension in Fig. 3.18. Error bars in Fig. 3.18 are from the stan-

dard deviation of the denominator for each smearing width. They reflect the

uncertainty in the denominator due to the choice of smearing width.

As earlier results for the denominator corrected by the slab average potential

had suggested that the ratio of slab to vacuum thickness was not impor-

tant once the slab thickness was great enough, a variety of slab to vacuum

ratios were used. The error bars were much larger for datapoints with a

large vacuum thickness. This means that for a large vacuum thickness the

denominator of local softness is more dependent on the choice of smearing

width. For small vacuum thickness there is very little difference between the

smearing widths. For example, all the data in the Au{111} dataset is for

a small vacuum thickness, and the data points were very similar for all the

different smearing widths, so the resulting error bars are small.

Convergence with supercell surface-normal dimension was analysed for a va-

riety of metal surfaces. The convergence of the corrected denominator of

local softness was plotted as a function of the surface-normal dimension of

the supercell. Generally for coinage metals it was found that it was pos-

sible to fit an exponential to the total supercell surface-normal dimension

and that it did not matter if slab or vacuum thickness was varied. This is

similar to the results obtained for Cu{100} with the slab average potential

correction method, as discussed in Section 3.2.3. In contrast, this was less

frequently the case for transition-metal surfaces, where the ratio of slab to

vacuum thickness appeared to matter a great deal. This is shown in Fig. 3.19

where the curve bifurcates to form two separate exponentials for increasing

slab versus increasing vacuum. As a result of this, the effect of changing the

ratio of slab to vacuum was investigated directly and the results of this are

shown in Fig. 3.20

In Fig. 3.18, there are a variety of datasets which have all been plotted with

respect to surface-normal supercell dimension. These datasets may have a

variety of ratios of slab to vacuum thickness. For example, the Au{111}
dataset consists only of the ns + 7 dataset (vacuum thickness was constant

and only slab thickness was varied). In contrast, for Ag{100} a mixture of
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the ns + 8 and 23 + nv datasets were plotted. The latter datapoints were

observed to have larger error bars at higher vacuum thickness. Similarly in

the figure obtained for Ag{110}, the first nine datapoints are the ns + 12

series and the last three the 33 + nv data series. The latter three datapoints

have much larger error bars, as well as large vacuum thickness. Likewise for

Cu{100}, the third and the last three datapoints are in the 23 + nv series

and have much larger error bars than the other datapoints, which are in the

ns + 8 series.

Implicit in the choice of plotting Fig. 3.18 as a function of surface-normal

dimension rather than making separate graphs of convergence with ns and

nv is an assumption that increasing ns or nv by the same amount will be

equivalent. As the previous paragraph mentioned that the amount of vacuum

had an effect on the spread for different smearing widths, this may not be

the case. The effect of adding a layer of vacuum may be different from the

effect of adding a layer of slab. Also, if the effect of adding a layer of vacuum

is not equivalent to adding a layer of slab, then ns and nv may or may not

be independent of each other. In other words, the convergence with slab

thickness may be dependent on what the vacuum thickness is. It appears

based on the results for Pd{110} that slab and vacuum thickness cannot be

decoupled. Based on this, it is necessary to vary both together in order to

reach a meaningful converged denominator. However, it is worth checking if

the convergence is conditional on the ratio of slab to vacuum thickness.

3.3.3 Varying ratio of slab to vacuum thickness

Figure 3.20 shows the convergence of Pd{110} and Au{111} for three differ-

ent series with different ratios of slab to vacuum thickness. In Fig. 3.20 there

is a difference between the convergence for Au{111} and Pd{110}. The for-

mer appears to converge absolutely to about -0.5 eV regardless of the choice

of ratio. In comparison, the convergence of Pd{110} is conditional on the

ratio of slab to vacuum thickness. As in Fig. 3.18, the error bars show the

standard deviation and are a measure of the uncertainty due to the choice

of smearing width. As was previously observed in Fig. 3.18, these error bars
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Figure 3.20: Comparison of convergence with different ratios of slab to
vacuum thickness for Pd{110} and Au{111}. The cross-correlation of the
DOS was calculated using a Fermi-Dirac function at the Fermi level.
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are larger for larger vacuum thickness.

The difference between the two metals might be due to gold being a coinage

metal with low DOS at the Fermi level, whereas palladium is a transition

metal with higher DOS at the Fermi level. The correction method involved

cross-correlation of the occupied DOS. This should be the same shape for

states well below the Fermi level, and will simply be shifted rigidly. However,

close to the Fermi level there may be a small change in shape of the DOS

with increased charge. This means that the cross-correlation may leave some

dependence on the potential. This would have more of an effect where the

DOS at the Fermi level is higher. In order to test this hypothesis, it would be

helpful to plot the fixed-broadening DOS for a transition metal and a coinage

metal and see how these are aligned using the cross-correlation method. Also

it would be interesting to compare how well aligned the curves are based on

where the DOS is shifted based on a cross-correlation over a DOS region

below the Fermi level or for a DOS region substantially lower in energy that

the Fermi level. This was investigated in Section 3.3.4.

3.3.4 Varying the DOS range for cross-correlation

Figures 3.21-3.22 show the DOS for Au{111} and Pd{110} as shifted by the

cross-correlation of the whole occupied DOS. This cross-correlation was done

after the DOS was multiplied by a Fermi-Dirac function with a width of 2.2

eV, positioned at the Fermi level. In Fig. 3.21 the graphs for positive and

negative charge are well aligned by the cross-correlation of the DOS below

the Fermi level. Even in Fig. 3.21 d the two curves are almost completely

superimposed. As Au is a coinage metal, the DOS at the Fermi level is low

(see Fig. 3.21 a). This means that the region close to the Fermi level will

have a small effect on the cross-correlation. This might be one reason that

the lower edge of the DOS is so well aligned.

In contrast, in Fig. 3.22 a it can be seen that the DOS at the Fermi level is

high for Pd{110}. Palladium is a transition metal and the Fermi level lies

in the d band. This means that if the region for the cross-correlation is the
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Figure 3.21: Graphs of the DOS for Au{111} for positive and negative
charge, shifted by the energy corresponding to the maximum in the cross-
correlation over the whole occupied DOS. The graphs are shifted so that
the average of the negative and positive Fermi levels is zero. Panels a-d
show progressively more zoomed-in versions of the same data.
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Figure 3.22: Graphs of the DOS for Pd{110} for positive and negative
charge, shifted by the energy corresponding to the maximum in the cross-
correlation over the whole occupied DOS. The graphs are shifted so that
the average of the negative and positive Fermi levels is zero. Panels a-d
show progressively more zoomed-in versions of the same data.
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Figure 3.23: Graphs of the DOS for Au{111} for positive and negative
charge, shifted by the energy corresponding to the maximum in the cross-
correlation over the lowest 5 eV of the DOS. The graphs are shifted so
that the average of the negative and positive Fermi levels is zero. Panels
a-d show progressively more zoomed-in versions of the same data.
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Figure 3.24: Graphs of the DOS for Pd{110} for positive and negative
charge, shifted by the energy corresponding to the maximum in the cross-
correlation over the lowest 5 eV of the DOS. The graphs are shifted so
that the average of the negative and positive Fermi levels is zero. Panels
a-d show progressively more zoomed-in versions of the same data.
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Figure 3.25: Comparison of convergence with different ratios of slab to
vacuum thickness for four different metals. Correction method involved
cross-correlation over the lowest 5 eV of the DOS.

95



whole of the occupied d band then the region close to the Fermi level will

have a large effect on the cross-correlation. The effect of this can be seen in

Fig. 3.22 d, which shows that the lower band edge is not very well aligned by

cross-correlation over the whole occupied DOS. There are two ways in which

the DOS will change when the charge is varied. First, there will be a change

in Fermi level and some states near the Fermi level will change. Second, the

whole DOS will be rigidly shifted due to the change in potential. For coinage

metals, the DOS close to the Fermi level was different for different charge,

but the DOS close to the Fermi level was small so these differences did not

affect the cross-correlation much. However, for transition metals the DOS

at the Fermi level is higher and the DOS close to the Fermi level is more

different. This affects the value of the denominator.

As the DOS close to the Fermi level changes with different charge, it would

be better to perform the cross-correlation over a region of the DOS that is

well below the Fermi level. I tried using a Fermi-Dirac function that instead

of being positioned at the Fermi level, was instead positioned 5 eV above the

lowest energy band. The results for Au and Pd can be seen in Fig. 3.23 and

Fig. 3.24 respectively. Figure 3.23 is very similar to Fig. 3.21. In Fig. 3.23

d the curves are well aligned. However, the effect of moving the Fermi-

Dirac function to 5 eV above the lowest energy band is more pronounced

for Palladium as it is a transition metal. In Fig. 3.24 the DOS are well

aligned even in the close up in Fig. 3.24 d. Therefore, shifting the position of

the Fermi-Dirac function improves the performance of the cross-correlation

for transition metals. Based on this, it is best to position the Fermi-Dirac

function 5 eV above the lowest band energy rather than at the Fermi level,

especially for transition metals. As a result, this method was used from here

on.

Figure 3.25 shows the convergence with the surface-normal supercell dimen-

sion of the denominator. The denominator was corrected using the cross-

correlation of the DOS up to 5 eV above the lowest band energy. The results

are somewhat similar to those obtained by cross-correlation over the whole

DOS, which are shown in Fig. 3.20. There are similar trends, in that the
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denominator is less negative for larger vacuum thickness. Also the error bars

are larger for larger vacuum thickness. However, the extrapolated value of

the denominator is always negative in Fig. 3.25, whereas for Fig. 3.20 it is

positive for the 1:2 ratio of Pd{110}. A negative value of the denominator

corresponds with a positive value of the local softness and is more physically

reasonable. Also there is less variation between different ratios for Pd{110}
in Fig. 3.25 than in Fig. 3.20. Overall, the cross-correlation over a restricted

range of the DOS seems to lead to better results compared with using the

whole occupied DOS. Therefore this approach was used for the rest of the

surfaces considered in this thesis.

It should be noted that even with the new location of the Fermi-Dirac func-

tion, the converged value of the denominator of local softness still varies in

response to a change in the ratio of slab to vacuum. This result is disappoint-

ing as it shows that rather than being absolutely convergent, the denominator

of local softness is conditionally convergent on the composition of the super-

cell. In order to have a consistent way of defining the denominator of local

softness it would be helpful to have a standard choice of slab to vacuum ratio.

An arbitrary choice of a 1:1 slab to vacuum ratio was made, and this was

used for all the following results.

3.4 Denominator convergence for eighteen metal

surfaces

Figures 3.26, 3.27 and 3.28 show the convergence of the corrected denomina-

tor with surface-normal supercell dimension c for 18 different metal surfaces.

As mentioned above, this was carried out for a 1:1 slab to vacuum ratio.

All the graphs show an exponential trend where the corrected denominator

of the local softness approaches a constant negative value. In comparison

to previous methods of correcting the denominator of local softness, this

method results in less numerical noise. There seems to be a trend where as

the metal becomes more reactive the denominator becomes a smaller, less

negative, number. Table 3.1 shows the parameters which were used for the
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Figure 3.26: Comparison of denominator convergence for {111} surfaces
of different metals. A constant 1:1 slab to vacuum ratio was used.
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Figure 3.27: Comparison of denominator convergence for {100} surfaces
of different metals. A constant 1:1 slab to vacuum ratio was used.
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Figure 3.28: Comparison of denominator convergence for {110} surfaces
of different metals. A constant 1:1 slab to vacuum ratio was used.
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fitted curves in Figs. 3.26, 3.27 and 3.28. The table shows a smaller mag-

nitude of fitted parameter A for the three transition metals compared with

the coinage metals. This makes sense as the local softness is inversely pro-

portional to the denominator of local softness. Therefore if the numerator

of local softness remains constant, as the denominator becomes smaller, the

local softness would become larger.

Surface A / eV Å
2
e−1 B / eV Å

2
e−1 k / Å

−1

Rh{111} -0.273 -2.65 -0.0309
Rh{100} -0.260 -2.58 -0.0299
Rh{110} -0.235 -2.54 -0.0276
Pd{111} -0.217 -2.24 -0.0265
Pd{100} -0.215 -2.44 -0.0277
Pd{110} -0.210 -2.28 -0.0259
Pt{111} -0.254 -2.77 -0.0265
Pt{100} -0.308 -3.30 -0.0314
Pt{110} -0.267 -2.78 -0.0274
Cu{111} -0.549 -5.80 -0.0305
Cu{100} -0.562 -6.00 -0.0305
Cu{110} -0.628 -6.43 -0.0324
Ag{111} -0.615 -8.26 -0.0280
Ag{100} -0.724 -9.62 -0.0285
Ag{110} -0.824 -9.21 -0.0317
Au{111} -0.456 -8.46 -0.0251
Au{100} -0.748 -10.9 -0.0319
Au{110} -0.784 -13.2 -0.0368

Table 3.1: Table of parameters fitted to the A+B exp(kc) exponential
curves shown in Figs. 3.26, 3.27 and 3.28. The value of fitted parameter
A was used as the converged value of the denominator of local softness.

3.5 Summary

It was established in Section 3.1 that there are two problems with the chem-

ical potential and other energies as outputted by CASTEP. Firstly, energies

are reported relative to the supercell average potential, which will vary with

supercell size and composition. Secondly, there is a problem with CASTEP

adding a compensatory potential to help the charged calculations converge,
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and that this potential affects the energies. Several approaches of correct-

ing for the change in reference energy were considered in Sections 3.2 and

3.3.

In Section 3.2, the method of subtracting the slab average potential was in-

vestigated. This method worked relatively well but had several issues. There

was a lot of numerical noise and also there were problems with Friedel os-

cillations in the average potential along the surface-normal dimension. This

made it difficult to define a consistent region of space over which to calculate

the slab average potential. As there were several drawbacks to the slab aver-

age potential method, a different method of correcting the chemical potential

was needed. By cross-correlating the DOS below the Fermi level obtained

for positive and negative charge, the shift in energy due to the change in

charge can be found. This method was evaluated in Section 3.3. Several

variants of the method were investigated in order to generate the DOS, and

it was concluded that the best results were found using OptaDOS with fixed

broadening.

The cross-correlation of the occupied DOS was calculated after multiplying

the DOS by a Fermi-Dirac function. Initially this Fermi-Dirac function was

located at the Fermi level, which worked well for coinage metals but less

well for transition metals. This was due to transition metals having a higher

DOS at the Fermi level. Positioning the Fermi-Dirac function 5 eV above the

lowest energy band was found to improve the cross-correlation. Therefore this

method was used to correct for the change in reference energy with different

charge and supercell geometry. Once the change in reference energy was

corrected, the denominator of local softness could be calculated for a range of

supercell dimensions, and extrapolated to infinite supercell dimensions.

This extrapolation to infinite supercell dimensions was initially done based

on an assumption that adding a layer of slab would be equivalent to adding

a layer of vacuum. This was found to be a reasonable assumption for coinage

metals but not for transition metals. Datasets with different ratios of slab

to vacuum converged to slightly different values for large surface-normal su-

percell dimension. The convergence was not absolute but was conditional on
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the ratio of slab to vacuum thickness. To avoid this conditionality, it was de-

cided to standardise upon an arbitrarily chosen ratio of 1:1 for all subsequent

calculations. This approach was used to calculate the denominator of local

softness for eighteen different metal surfaces in Section 3.4. An exponential

A + B exp(kc) was used to fit the data and the resulting converged values

of the denominator of local softness, fitted parameter A, are summarised in

Table 3.1. These values of the converged denominator of local softness were

then used to calculate the local softness, which will be discussed in the next

chapter.
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Chapter 4

Visualising the Local Softness

of Clean Metal Surfaces

Using the methods described in Section 2.9 and Section 2.10.5, the numerator

and denominator of local softness were calculated for a range of copper and

other surfaces. Isosurfaces of the local softness were plotted for three copper

surfaces using Jmol: an open-source java viewer for chemical structures in

three dimensions. http://www.jmol.org/ The threshold values for the pos-

itive and negative isosurfaces were +0.75 and -0.075 eV−1 Å
−3

respectively.

The shape of the positive and negative isosurfaces of local softness was then

compared. This analysis can be found in Section 4.1. Isosurfaces were also

plotted of the local softness with an isosurface threshold of 0.6 eV−1 Å
−3

in

order to display the regions of large local softness. Isosurfaces were com-

pared for three different copper surfaces, the {111}, {100} and {110}. These

surfaces are all relatively low index. Based on the analysis by Pratt and

Jenkins they can be categorised as flat (two or more close-packed rows in

the top layer) or stepped (one close-packed row in the top layer).96 Based on

this analysis the {100} and {111} surfaces are flat and the {110} surface is

stepped.

Isosurfaces are a good way of obtaining insight into the shape of regions of

space above a given value of the local softness. However, they are restricted
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to a particular threshold value so do not give information about the range of

values of the local softness in space. It is not easy to make a volume-filling

three-dimensional view, so it seems sensible to plot values of the local softness

on a two-dimensional surface. A sensible choice of a two-dimensional surface

might be an isosurface of constant electron density. This then raises the

question of what threshold to plot the electron density isosurface for. This is

by nature an arbitrary choice, but some fraction of the bulk valence-electron

density would be a reasonable choice, as it would vary proportionately when

going from one metal to another. What fraction to use is another relatively

arbitrary decision. Having tried several fractions of the bulk valence-electron

density, 1/3 and 1/5 fractions of the bulk valence-electron density seemed to

look good, so these were chosen for the following colourplots, which will be

analysed in Section 4.2. However, for the moment, let us return to isosurfaces

of the local softness itself, which will be discussed in Section 4.1.

4.1 Isosurfaces of local softness for copper

4.1.1 Cu{100}

Figures 4.1 and 4.2 show isosurfaces of the local softness of Cu{100} plotted

with threshold values of +0.75 and −0.075 eV−1 Å
−3

. In these figures the

regions of large positive values of local softness are centred above the top

layer of atoms. It is important to bear in mind that the isosurfaces of the

positive and negative local softness have a threshold that differs by an order of

magnitude. Therefore, although the positive and negative isosurfaces appear

to contain a similar volume of space, in fact the regions of positive local

softness contain values that are an order of magnitude larger.

Positive local softness implies a region where electrons accumulate in response

to an overall increase in chemical potential. Negative local softness indicates

a region where electrons are depleted in response to an overall increase in

chemical potential. Therefore in most regions the electrons accumulate in re-

sponse to a global increase in µ. There are clearly defined, roughly p-orbital-

shaped regions centred roughly on the atoms where electrons are depleted in
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response to a global increase in µ. The regions of large positive local softness

are centred above the top layer of atoms. Their shape is roughly that of an

oblate spheroid, with more flattening on the surface closer to the atoms. The

regions of maximum local softness appear to be situated quite far from the

atom centres. However, comparison with Fig. 4.4 makes it clear that in fact

the regions of maximum local softness are centred only just above the atoms

when the atoms are visualised at a touching-sphere radius.

Figures 4.3 and 4.4 show the local softness of Cu{100} with an isosurface

threshold of 0.6 eV−1 Å
−3

. In these diagrams the atoms were rendered at

a touching-sphere radius. At the isosurface setting of 0.6 eV−1 Å
−3

and

−0.6 eV−1 Å
−3

, only the positive local softness isosurface would be visible

at either of the atomic radius settings considered. Therefore only the posi-

tive local softness isosurface was plotted. In Fig. 4.3 it appears that regions

of maximum local softness have a roughly square shape when viewed from

above the surface. It seems that regions of higher local softness run along

rows of close-packed atoms in the top layer of the Cu{100} surface. Figure 4.4

allows the shape of the side-section through the local softness isosurface to be

evaluated. It would seem that the surface-normal cross-section of the local

softness at this isosurface is similar to that at the higher threshold value of

0.75 eV−1 Å
−3

. Predictions can be made from this study for soft adsorbates

on Cu{100} where the governing effect was electronic. These, based on this

study, would be predicted to adsorb preferentially on atop sites on the top

layer of the Cu{100} surface. After this the preference would be probably for

the bridge sites along close-packed rows. This could be tested using a range

of experimental techniques, including STM and LEED.

4.1.2 Cu{111}

In Figs. 4.5 and 4.6 the local softness is shown as isosurfaces with a threshold

of 0.75 eV−1 Å
−3

and −0.075 eV−1 Å
−3

. The regions of positive local softness

are oblate-spheroid shapes centred above the top-layer atoms. The regions

of negative local softness are have a roughly p-orbital shape centred on top-

layer atoms. Viewed from above, these regions of negative local softness have
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Figure 4.1: Isosurface plot of local softness for the Cu{100} sur-
face viewed from above. Positive isosurface is red with a thresh-
old of 0.75 eV−1 Å

−3
. Negative isosurface is blue with a threshold of

−0.075 eV−1 Å
−3

.

Figure 4.2: Isosurface plot of local softness for the surface viewed from
the side. Isosurface colours and threshold values as for Fig. 4.1.
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Figure 4.3: Isosurface plot of local softness for the Cu{100} surface

viewed from above. Isosurface has a threshold of 0.6 eV−1 Å
−3

Figure 4.4: Isosurface plot of local softness for the surface viewed from

the side. Isosurface has a threshold of 0.6 eV−1 Å
−3

.
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Figure 4.5: Isosurface plot showing the local softness for the Cu{111}
surface viewed from above. Positive isosurface is red with a thresh-
old of 0.75 eV−1 Å

−3
. Negative isosurface is blue with a threshold of

−0.075 eV−1 Å
−3

.

Figure 4.6: Isosurface plot showing the local softness for the surface
viewed from the side. Isosurface colours and threshold as for Fig. 4.5.
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Figure 4.7: Isosurface plot of local softness for the Cu{111} surface

viewed from above. Isosurface has a threshold of 0.6 eV−1 Å
−3

Figure 4.8: Isosurface plot of the local softness for the surface viewed
from the side. Isosurface threshold as for Fig. 4.7.
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Figure 4.9: Isosurface plot showing the local softness for the Cu{110}
surface viewed from above. Positive isosurface is red with a thresh-
old of 0.75 eV−1 Å

−3
. Negative isosurface is blue with a threshold of

−0.075 eV−1 Å
−3

.

Figure 4.10: Isosurface plot showing the local softness for the surface
viewed from the side. Isosurface threshold as for Fig. 4.9.
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Figure 4.11: Isosurface plot of local softness for the Cu{110} surface

viewed from above. Isosurface has a threshold of 0.6 eV−1 Å
−3

Figure 4.12: Isosurface plot of the local softness for the surface viewed
from the side. Isosurface threshold as for Fig. 4.11.
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a roughly rectangular shape. This is surprising as it breaks the three-fold

symmetry of the surface. On the next layer down there are smaller regions of

negative local softness, which have a roughly d-orbital shape, centred above

second-layer atoms.

The threshold is an order of magnitude smaller for the negative isosurface

compared to the positive isosurface. This allows the relative size of regions of

positive and negative local softness to be compared. For the {111} surface,

unlike the {100}, the regions of negative local softness at a threshold of

−0.075 eV−1 Å
−3

are larger than the regions of positive local softness at a

threshold of 0.75 eV−1 Å
−3

. This was not the case for the {100} surface or

the {110} surface, and is probably a measure of the softness being lower for

{111} than for the other surfaces.

The positive isosurface with threshold of 0.75 eV−1 Å
−3

for Cu{111} fills

slightly less volume than for the Cu{100} surface at the same threshold. The

fact that the regions of high positive local softness are larger for Cu{100}
suggests that the local softness is larger for Cu{100} than for Cu{111}. In

Chapter 5 the softness of individual atoms on the surfaces were compared

in Table 5.3, and this was found to be the case. Figures 4.7 and 4.8 show

the local softness at a threshold of 0.6 eV−1 Å
−3

. For these diagrams, atoms

were rendered using a touching-sphere radius. As for the higher threshold,

the regions of positive local softness are roughly oblate-spheroid and centred

above top-layer atoms. At this threshold the regions of high positive local

softness are smaller then those for the {100} surface, which take larger values

along close-packed rows. This is in keeping with the greater atomic softness

for the {100} surface as opposed to the {111} surface (see Chapter 5).

4.1.3 Cu{110}

Figures 4.9 and 4.10 show the local softness isosurfaces of threshold 0.75 eV−1 Å
−3

and−0.075 eV−1 Å
−3

. The regions of positive local softness above 0.75 eV−1 Å
−3

form oblate-spheroid shapes above the step-edge atoms. This is similar be-

haviour to that found for the same threshold on the Cu{100} surface, but the
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volume of space bounded by the isosurface is slightly larger for the Cu{110}
surface. This suggests that the local softness is larger for the Cu{110} sur-

face than for the Cu{100} surface, which is in fact borne out by the softness

of individual top-layer atoms, which is compared in Chapter 5.

Viewed from the side, it can be seen that there are also tiny regions of

positive local softness below top-layer atoms. The regions of negative lo-

cal softness form roughly oblate-spheroid shapes above top-layer atoms and

banana-shaped regions below the top-layer atoms. This is somewhat simi-

lar to the shapes of the negative regions of local softness obtained for the

Cu{100} and Cu{111} surfaces. There are also roughly p-orbital-shaped re-

gions of negative local softness centred on second-layer atoms. The isosurface

for a lower threshold of 0.6 eV−1 Å
−3

is shown in Figs. 4.11 and 4.12. The

regions of local softness above 0.6 eV−1 Å
−3

form roughly prolate-spheroid

shapes centred above top-layer, step-edge atoms. The longest axes of these

spheroids are oriented along the close-packed row of the step edge.

It can be predicted based on the local softness that adsorbates would pref-

erentially adsorb atop on step-edge atoms or on the bridge sites along the

step edge. The experimentally determined binding site for CO on Cu{110}
corresponds with this prediction, as CO binds atop on step-edge atoms, as

will be discussed further in Chapter 5.112

4.2 Colourplots of the local softness for eigh-

teen surfaces

The isosurfaces in Section 4.1.1 give an impression of the shape of regions

of high local softness but they are by necessity only plotted at one local

softness threshold value. Therefore they do not give much information about

the range of values taken by the local softness in three dimensions. Another

graphical method of plotting the local softness would be useful, in order

to provide some complementary information to the isosurfaces. In order to

get an impression of what a molecule would experience when approaching
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a surface, it would be interesting to visualise what values the local softness

takes upon an isosurface of constant density. This approach was taken and

the softness was plotted on density isosurfaces. It was found that the range

of softness values was different based on what value of threshold was used

for the density isosurface. This could be expected, as at a different density

threshold, the density isosurface will cut through different regions of space,

which are likely to have different values of the local softness.

In order to plot a top-down view, the colourplot will be clearer if the density

isosurface is continuous. Therefore, it is helpful if the density threshold is

relatively small, so that the density over the whole of the metal surface is

greater than the threshold. Therefore a threshold of 1/5 of the bulk valence-

electron density was chosen. Colourplots of the local softness plotted on

these density isosurfaces and viewed from above are shown in Figs. 4.13-

4.15. This approach of making colourplots to illustrate a local reactivity

index at various positions on a density isosurface was also used by Huang

and co-workers59. They used this method to plot their approximate measure

of the local softness, the local Fermi softness. The Fermi softness and how

it relates to the local softness was discussed earlier in Section 1.8. In their

Fig. 2 the authors presented colourplots of the local Fermi softness for {111}
facets of Rh, Pd, Pt, Cu, Ag and Au. The colourplots in this work and in

the paper by Huang et al have a similar distribution of regions of higher

values, which are above the atom centres, and regions of lower values, at the

three-fold-hollow sites. This is as might be expected as the Fermi softness is

an approximation to the local softness.

At a density threshold of 1/5 of the bulk valence-electron density, the den-

sity isosurface forms a continuous corrugated surface above the top layer of

atoms. In order to look at how the softness changes as a function of depth

within a supercell, it is helpful to also plot the density isosurface at a higher

threshold. In Figs. 4.16-4.18 the local softness was plotted as a colourmap

on a density isosurface with a threshold of 1/3 of the bulk valence-electron

density. For most of the metal surfaces this results in an isosurface forming

a semi-atomistic, continuous network through the cell.
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The same colour range of -0.1-3.7 eV−1 Å
−3

was used for all colourplots. The

maximum in this range was chosen to be greater than the largest value of

the local softness found on any of the density isosurfaces. The minimum was

chosen to be lower than the local softness in the middle of the slab, which

was in all cases within 0.1 eV−1 Å
−3

of zero. Using the same range for all

colourplots meant that different metals and facets plotted at different density

thresholds could be quantitatively compared. There was a greater range of

values of the local softness over the density isosurface with a threshold of

1/3 of the bulk valence-electron density compared with the threshold of 1/5.

For the maximum values of the local softness along the density isosurface at

both thresholds, see Table 4.1. A range of -0.1-3.7 eV−1 Å
−3

contains all the

values along the isosurfaces for both density thresholds.

The threshold of 1/3 of the bulk valence-electron density resulted in the

largest value (3.675 eV−1 Å
−3

for the Pd{110} surface). The minimum values

for all isosurfaces were similar irrespective of density threshold, therefore the

range was greater for the larger density threshold. This greater range for the

local softness at the larger density threshold can be explained in terms of

the density isosurface cutting closer to the ion cores, where the local softness

can be expected to vary more. As shown in Figs. 4.2, 4.6 and 4.10, there are

regions of large positive local softness near the nuclei, so these regions will

be cut by a density isosurface that is nearer the centre of the atoms.

4.2.1 Top-down views

Top-down views of the local softness mapped onto the density isosurface

with a density threshold of 1/5 the bulk valence-electron density are shown

in Figs. 4.13-4.15. All these figures show an increase in local softness go-

ing from the coinage metals to the transition metals. The range of colours

for the coinage metals is between dark blue and teal (0-1.12 eV−1 Å
−3

),

whereas the transition metals have a range between dark blue and orange

(0-3.05 eV−1 Å
−3

). This trend in the local softness for coinage as opposed to

transition metals matches the generally observed reactivity trends for these

metals113. The overall range of the local softness for all surfaces at this den-
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Surface ρ/5 / Å
−3

smax(r)/ eV−1 Å
−3

ρ/3 / Å
−3

smax(r)/ eV−1 Å
−3

Rh{111} 0.127 2.106 0.211 2.639
Rh{100} 0.127 2.270 0.211 2.705
Rh{110} 0.127 2.542 0.211 3.061
Pd{111} 0.135 2.749 0.224 3.236
Pd{100} 0.135 2.817 0.224 3.217
Pd{110} 0.135 3.051 0.224 3.675
Pt{111} 0.129 2.362 0.215 2.964
Pt{100} 0.129 2.016 0.215 2.431
Pt{110} 0.129 2.927 0.215 3.562
Cu{111} 0.188 0.857 0.314 0.937
Cu{100} 0.188 0.963 0.314 1.050
Cu{110} 0.188 1.048 0.314 1.175
Ag{111} 0.126 0.740 0.210 0.835
Ag{100} 0.126 0.663 0.210 0.751
Ag{110} 0.126 0.587 0.210 0.644
Au{111} 0.122 1.115 0.203 1.330
Au{100} 0.122 0.739 0.203 0.870
Au{110} 0.122 0.808 0.203 0.956

Table 4.1: Table showing the maximum values of local softness along
a density isosurface with a threshold of a fifth and a third of the bulk
valence-electron density.
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Rh{111} Cu{111}

Pd{111} Ag{111}

Pt{111} Au{111}

Figure 4.13: Colourplots of the local softness for {111} surfaces viewed
from above. The plots consist of isosurfaces of the density with a threshold
of 1/5 of the bulk valence-electron density. The isosurface is coloured
based on the local softness. The range of the colourplots was between

-0.1 and 3.7 eV−1 Å
−3

.
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Rh{100} Cu{100}

Pd{100} Ag{100}

Pt{100} Au{100}

Figure 4.14: Colourplots of the local softness for {100} surfaces viewed
from above. The plots consist of isosurfaces of the density with a threshold
of 1/5 of the bulk valence-electron density. The isosurface is coloured
based on the local softness. The range of the colourplots was between

-0.1 and 3.7 eV−1 Å
−3
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Rh{110} Cu{110}

Pd{110} Ag{110}

Pt{110} Au{110}

Figure 4.15: Colourplots of the local softness for {110} surfaces viewed
from above. The plots consist of isosurfaces of the density with a threshold
of 1/5 of the bulk valence-electron density. The isosurface is coloured
based on the local softness. The range of the colourplots was between

-0.1 and 3.7 eV−1 Å
−3

.
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Rh{111} Cu{111}

Pd{111} Ag{111}

Pt{111} Au{111}

Figure 4.16: Colourplots of the local softness for {111} surfaces viewed
from the side. The plots consist of isosurfaces of the density with a
threshold of 1/3 of the bulk valence-electron density. The isosurface is
coloured based on the local softness. The range of the colourplots was

between -0.1 and 3.7 eV−1 Å
−3

.
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Rh{100} Cu{100}

Pd{100} Ag{100}

Pt{100} Au{100}

Figure 4.17: Colourplots of the local softness for {100} surfaces viewed
from the side. The plots consist of isosurfaces of the density with a
threshold of 1/3 of the bulk valence-electron density. The isosurface is
coloured based on the local softness. The range of the colourplots was

between -0.1 and 3.7 eV−1 Å
−3

.
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Rh{110}
Cu{110}

Pd{110} Ag{110}

Pt{110} Au{110}

Figure 4.18: Colourplots of the local softness for {110} surfaces viewed
from the side. The plots consist of isosurfaces of the density with a
threshold of 1/3 of the bulk valence-electron density. The isosurface is
coloured based on the local softness. The range of the colourplots was

between -0.1 and 3.7 eV−1 Å
−3

.
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sity threshold was from about zero to 3.05 eV−1 Å
−3

. This was smaller than

the range of local softness for the higher density threshold.

There is a clear distinction between the values of the local softness for coinage

metals as opposed to the transition metals for all facets. For both flat and

stepped surfaces, the local softness for coinage metals, in the right hand

panels, takes values close to or below 1 eV−1 Å
−3

. There is much more

variety in the values of local softness for the transition metals. This was

particularly pronounced for the stepped surfaces. For the transition metals,

the stepped surfaces show more variation in the level of reactivity within each

surface than the flat surfaces. For example Pd{110} had the greatest range

of values, from about zero to 3.05 eV−1 Å
−3

. Palladium can be predicted to

be the most reactive metal of those studied, as for both density threshold

values and all three facets the local softness is higher for Pd than for any

other metal. Conversely, silver can be predicted to be the least reactive metal

of those studied, as for both density threshold values and all three facets the

local softness is lower for Ag than for any other metal.

The shape of regions of high local softness varies between different surface

facets. The local softness generally seems to be higher along close-packed

rows for all surfaces and to reach a maximum above top-layer atom centres.

This is consistent with the shape of the local softness isosurfaces in Figs. 4.2-

4.12. For the transition metals, the {111} surfaces have the smallest range

at the surface, from cyan to yellow, or about 0.8-2.7 eV−1 Å
−3

. The {100}
transition-metal surfaces, which exhibit a fourfold-hollow site, have a greater

range of local softness values, from zero to 2.8 eV−1 Å
−3

. The lower reactivity

of the fourfold hollow on the {100} surfaces as opposed to the three-fold

hollow on the {111} surfaces suggests that the larger the hollow site, the

lower the hollow-site local softness.

It should be noted that the local softness was calculated for slabs where the

outermost layers were allowed to relax. Where the outermost layers were

constrained to have the same coordinates as those in the bulk, the local

softness was a little higher for those constrained atoms. This was a very
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small difference of about 0.4%. This difference can be understood as the

atoms being forced into a higher energy position, which therefore causes

them to be more reactive.

4.2.2 Side views

Figures 4.16-4.18 show side views of the local softness mapped onto a density

isosurface with a threshold of 1/3 of the bulk valence-electron density. This

density isosurface has a larger threshold than that for the previous section

and therefore cuts through space closer to the ion cores. As a result, the

range of local softness values are greater. As for the lower density isosurface

threshold, in these figures the local softness is lower for the coinage metals

than for the transition metals. The coinage metals have a local softness from

about zero (dark blue) to about 1.3 (teal). In contrast the local softness

at the surface of the transition metals ranges from about 0.1 (dark blue) to

about 3.7 (red). The ‘hot spots’ are found on top of the top-layer atoms for

all surfaces.

The side view allows the local softness of the surface to be compared with

that of the bulk region. The local softness decreases rapidly as one goes

further down from the surface. The local softness of second-layer atoms for

the {110} surface (fourfold-hollow sites) is much lower than that for the top-

layer, step-edge atoms. For the coinage metals there is no visible difference

between the colour of the second layer and the lower layers. In contrast,

for the transition-metal {110} surfaces the second layer of atoms is slightly

more reactive than for the third layer of atoms and below, with a difference

of about 0.1 eV−1 Å
−3

.

4.3 Summary

In this chapter, the local softness was visualised in two ways. First, in Sec-

tion 4.1, isosurfaces of the local softness were plotted at a variety of threshold

values. This approach had the advantages of being relatively simple and giv-

ing a qualitative understanding of the shapes of regions of large local softness.
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However, no information was given about the distribution of regions of local

softness which were above or below the threshold. An alternative, comple-

mentary approach was used to make colourplots of the local softness, as

described in Section 4.2. This method involved plotting an isosurface of the

electron density at a threshold which is a fraction of the bulk valence-electron

density. This will form a corrugated surface which can be coloured according

to the value of the local softness at each position on the two-dimensional

electron density isosurface. Both of the methods of visualising the local soft-

ness yielded chemical insight which could be used to make predictions about

reactivity.

The local softness above a metal surface is related to reactivity and could

be used to predict how strongly an adsorbate might stick to the surface at

different positions. The colourplots suggest that the most reactive site on the

{110} surfaces would be the atop step-edge site, followed by the short bridge

sites along the step edges. Likewise for the {100} surface, the colourplots

suggest that the most reactive sites would be the atop site, followed closely

by the bridge site. CO is a good example of a small adsorbate which can be

used to model adsorption on metal surfaces. The preference for atop binding

which can be predicted from the local softness matches that found in the

literature for the CO molecule.112 For the {111} surfaces, the atop site has

the highest softness but there is less difference between the softness of the

bridge sites compared to the three-fold-hollow sites. Therefore, while the atop

site is predicted to be the most favourable for all the facets, if an adsorbate

was found to bind on the hollow site, it would be most likely to happen on

a transition-metal {111} facet. In the next chapter, the adsorption site of

CO on the same eighteen surfaces will be discussed (see Table 5.1). The only

hollow-site binding on all eighteen surfaces was observed for Pd{111}, which

is in line with the predictions which could be made from the local softness.112

The local softness is a useful measure but it would be helpful to have a more

granular index of reactivity, which could be used to predict the adsorption

energy at different sites. In the next chapter, the softness of top-layer atoms

will be used to predict CO adsorption energy.
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Chapter 5

Atomic Softness:

Predicting CO Adsorption

Energy

As mentioned in Section 1.4, there is a need in surface science and catalysis

for the comparison of the properties of sites on different metals and facets.

For example, it would be helpful to be able to compare a step-edge site on

Pd{110} with a terrace site on Rh{111}. A useful contribution towards this

site-specific picture would be to calculate the softness of individual atoms on a

surface. This atomic softness would be a measure of the reactivity at specific

locations and could be quantitatively compared between surfaces and metals.

The atomic softness of an atom i was defined in Eqn. 1.17 as the integral

of the local softness over the volume element ri, which contains atom i. In

order to integrate the local softness over the volume of an atom, a method

of assigning regions of space to different atoms is needed. One particularly

successful and established method of partitioning space is Bader’s theory of

atoms in molecules.114,115
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Nuclei: local maxima

1

2

3

A

B

C

Figure 5.1: An illustration of Bader theory for an ABC triatomic. The
black lines are contours of electron density as measured in a plane cutting
through all three atoms. Space is partitioned by into three regions, labelled
1, 2 and 3, that contain nuclei A, B and C respectively.

5.1 Bader’s theory of atoms in molecules

Bader’s theory is a method of partitioning space within a molecule, solid or

surface based on the electron density. The main principle is that the electron

density can be expected to reach maxima at atomic centres and decrease

away from atoms. In a simple AB diatomic, for example, the electron density

would reach maxima at the centres of atoms A and B. In cartesian coordinates

chosen with dimension z parallel to the bond, the bond between A and B

would represent a maximum in electron density along the x and y coordinates.

However, the electron density travelling along the bond from A to B would

reach a minima - in other words, the centre of the bond would be a saddle

point. The position of the minimum electron density along the bond can be

used to assign points in space between atoms A and B.
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Figure 5.1 shows the electron density for a simple ABC triatomic. Here the

atom centres show as local maxima in the electron density. The bonds will

represent the paths of highest electron density between nuclei. Somewhere

along each bond will be a minimum along the bond coordinate. As moving

perpendicularly to the bond would result in a decrease in electron density

this is a saddle point. The saddle point can be seen as the boundary between

space associated with atoms A and B. More generally, there will be a surface

between atoms A and B over which the normal component of the density

gradient is zero. One-dimensional cuts through this surface are shown in

Fig. 5.1. By finding the location of the two-dimensional surface, the volume

can be partitioned between atoms.

5.2 Calculating atomic softness

CASTEP outputs the electron density as a matrix with three indices. The

indices correspond to the position within the three-dimensional cell at which

density and other volumetric data were recorded. This can be used in con-

junction with code adapted from the Jenkins group topology code (Stephen

Jenkins, personal communication, Feb. 16th, 2016) in order to find which

locations correspond to which atoms. The local softness was calculated at

the same grid of points within the cell as that used for the density. This

set of values at discrete points was then interpolated and integrated over the

volume of individual atoms to give the atomic softness. The atomic soft-

ness of top-layer atoms, s1, was calculated using this method for eighteen

metal surfaces. These were the {111}, {100} and {110} facets of gold, silver,

copper, platinum, palladium and rhodium.

5.3 Calculating CO adsorption energy

5.3.1 Literature review of CO binding sites

Table 5.1 summarises the experimental literature reports on the structure of

the surfaces, both with and without a CO overlayer. Figure 5.2 illustrates
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the geometry at which CO was assumed to adsorb in this study. For most

cases, there was consensus in the literature about the structures, but for some

surfaces there was less agreement.112

There is some uncertainty about the adsorption site for CO on Rh{110}.112

While it is known that CO adsorbs on the short bridge site with a p2mg (2×1)

structure at 1 ML coverage, there is little consensus in the literature about

whether CO adsorbs at the same site or atop in the 0.5 ML coverage c(2×2)

structure.112,116 An early study by Marbrow and Lambert117 found that the

temperature programmed desorption (TPD) spectra had a single peak. They

suggested from this that the adsorption site at 0.5 ML must match that for

1 ML. As Batteas116 and others112 found that the adsorption site for 1 ML of

CO on Rh{110} is the short bridge, this suggests that the 0.5 ML adsorption

site must be the same. However, Dhanak and co-workers118 performed an X-

ray photoelectron spectroscopy (XPS) study that suggested that CO adsorbs

atop at 0.5 ML and transitions to the short bridge site at higher coverages.

Wei and co-workers112 made a thorough review of the literature prior to 1997

and said that while no firm conclusion could be made, the evidence better

supported the short bridge site at 0.5 ML.

CO adsorbs on the Pd{110} surface to form an ordered overlayer with a

distinctive LEED pattern indicating a (2 × 1) cell with p2mg symmetry.112

The glide symmetry arises from CO having alternating tilts along the close-

packed rows. The Pt{110} surface exhibits a missing row reconstruction

under UHV conditions, which is lifted in the presence of CO.119 Comrie

and Lambert119 found that this overlayer was analogous to that formed on

Pd{110}.

There are not many literature reports on CO adsorption on gold and silver

and what reports there are often disagree.128,134 The adsorption heat is small,

and for some surfaces there may be no ordered overlayer.125 Interestingly, the

adsorption heat for CO on silver was found by several studies to be lower

than that for gold, in contradiction to conventional wisdom regarding the

relative reactivities of these metals.134 For the purposes of this thesis I have

assumed CO adsorbs on the {111}, {100} and {110} gold and silver surfaces
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Rh{111} Rh{100} Rh{110}

Pd{111} Pd{100}
Pd{110}

Pt{111} Pt{100} Pt{110}

Cu{111} Cu{100} Cu{110}

Ag{111} Ag{100} Ag{110}

Au{111} Au{100} Au{110}

Figure 5.2: Figures showing the CO adsorption geometries for each sur-
face, calculated using DFT (with CO starting positions based on the lit-
erature).
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in an ordered overlayer. I have further assumed that this ordered overlayer

has the same structure as the overlayer of CO on the equivalent copper

surface. These assumptions are summarised in Table 5.2, and illustrated in

Fig. 5.2.

Concerning adsorption of CO on the Au{110} surface, some studies sug-

gest an ordered CO overlayer and a lifting of the reconstruction, whereas

others differed.129,135 One study, by Gottfried and co-workers136, found no

long-range order to the CO overlayer on Au{110}. They also did some

angle-resolved ultra-violet photoemission spectroscopy (ARUPS) measure-

ments that suggested that CO may adsorb parallel to the surface. Meyer

et al135 report that for a wide range of temperatures and pressures of CO

the reconstruction was not lifted. In contrast to these findings, Jugnet et

al133 suggest that CO lifts the reconstruction to result in a (1× 1) cell. The

same authors thought that CO linearly chemisorbs in an atop position.133

However, it should be noted that just because the reconstruction was lifted

to form a (1× 1) cell in the presence of CO, that does not necessarily mean

that an ordered overlayer of CO formed with (1× 1) symmetry.119 LEED is

a diffraction technique and therefore only shows ordered surface structure.

A disordered overlayer would therefore be invisible to LEED, other than

contributing to a diffuse background.

In a similar case to Au{110}, early studies of Au{100} found no ordered

CO overlayer.135 However, later studies by Pierce and co-workers have found

that at higher pressures of CO there is a stable overlayer formed.129,131 The

same authors also found that CO adsorption lifted the hexagonal reconstruc-

tion of Au{100} to a (1 × 1) structure.131 Pierce et al131 did not report an

adsorption site for CO on Au{100}, but Nakamura and co-workers132 found

that their polarization modulation infrared reflection absorption spectroscopy

(PM-IRAS) results were consistent with CO adsorbing atop Au atoms.

Similarly, for Au{111}, early studies found that adsorption of CO lifted the

herringbone (23×
√

3) reconstruction and (under certain conditions of high

temperature and CO pressure) restored the (1 × 1) structure.135,137 How-

ever, they also found that the surface might not form an ordered (1 × 1)
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overlayer.135,137 In contrast, while later authors agreed with Peters et al in

finding that CO lifted the herringbone reconstruction, they also found that

the reconstruction was completely lifted at 250 Torr, resulting in a (1 × 1)

structure, with CO adsorbed atop.130 For the purposes of this thesis I have

assumed that CO forms an ordered overlayer on Au{111} that has the same

structure as that formed by CO on Cu{111}.

In terms of CO adsorption on Ag{111}, Abild-Pedersen and co-workers report

that CO adsorbs atop.113 However, other literature reports suggest that there

is no ordered overlayer for CO on Ag{111}.125,126 Work by Hansen and co-

workers126 suggests the CO molecules have a random orientation on Ag{111}.
For the Ag{110} surface, the literature suggests the CO is very weakly bound,

and may even be bound with a random orientation, or with the CO bond

parallel to the surface.128 I was unable to find any literature reference for the

adsorption of CO on a clean Ag{100} surface. However, work by Burghaus

and co-workers127 suggests that the clean surface does not reconstruct.

5.3.2 Slab and vacuum thickness

In making supercells for CO adsorption calculations, there are some restric-

tions on which combinations of slab and vacuum thickness are possible. In

particular, it is not possible to have a non-integer number of slab layers,

therefore the slab thickness must be an integer multiple of the layer spac-

ing, dhkl. Therefore I could not use exactly the same slab thickness for all

calculations as different surfaces have a different layer spacing, dhkl. I used

the first integer multiple of dhkl that exceeded 18 Å. In addition, the code I

used in order to make cell files for CASTEP calculations makes cell files with

an integer number of vacuum layers. Although it is not necessary to make

the vacuum thickness an integer multiple of dhkl, doing so made the process

of making cell files simpler. For this reason I decided to make the vacuum

thickness for CO adsorption calculations the first integer multiple of dhkl that

exceeded 18 Å. For a summary of the numbers of slab and vacuum layers

and the resulting slab and vacuum thickness see Section A.2. I arranged the

cell files so that the slab was more or less centred in the middle of the cell.
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This makes it easier to be sure that the CO molecule will not be near the

edge of the supercell. It should be noted that whilst having the molecule

cross the supercell boundary would be no problem for the CASTEP calcula-

tion, it would make the output of the Bader analysis code more awkward to

interpret.

5.3.3 Adsorption energy calculation methodology

The adsorption energy of an adsorbate A, Eads, is defined as

Eads = Esys − Esurf − nEA (5.1)

Where Esys is the energy of the system with n adsorbed molecules of A, Esurf

is the energy of the clean surface and EA is the energy of a single molecule of

A in a vacuum. These vacuum calculations were performed in a large cubic

cell (where the length of each of the three axes of the supercell was 10 Å) Due

to the large size of the real-space unit cell, the reciprocal unit cell was small,

and therefore one k point was used. In each case energies were obtained for

the optimised atomic positions.

5.4 Predicting CO adsorption energy from atomic

softness

5.4.1 Predicting CO adsorption: experimental sites

Table 5.3 compares the atomic softness of top-layer atoms with the CO ad-

sorption energy calculated by DFT at the preferred adsorption sites from the

experimental literature. The geometry of these literature-preferred sites was

illustrated in Fig. 5.2, above. The data in Table 5.3 is also displayed in graph-

ical form in Fig. 5.3. Figure 5.3 shows the correlation between the top-layer

atomic softness and the minimum CO adsorption energy (i.e. strongest bind-

ing to the surface). There is a linear trend with a large amount of scatter. In

each case the data falls into two main groups, with coinage metals (copper,
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silver and gold) in the top left and with transition metals (rhodium, platinum

and Palladium) in the bottom right. The different colours show whether the

facets were {111}, {100} or {110}. While there is a linear trend overall, there

is a large amount of scatter and there is not a strong linear trend within the

two individual sets of data for coinage and transition metals, which suggests

that the atomic softness is not strongly correlated with CO adsorption energy

when compared between very similar metals and surfaces.

The adsorption energies in Table 5.3 were obtained by DFT calculations.

They should be compared with accurate experimental data to see how much

confidence can be placed in the trends in Fig. 5.3. One of the most accurate

methods of finding the experimental adsorption energy is single crystal ad-

sorption calorimetry (SCAC).138 The DFT values of the adsorption energy

were compared with the integral adsorption heats listed in Table 1 of the

review by Ge and co-workers.139 For the Pd{100} surface, the experimental

integral adsorption energy was -1.27 eV whereas from Table 5.3 it was found

to be -2.10 eV. This is a difference of 49%. Similarly for the Rh{100} sur-

face the DFT adsorption energy of -2.00 eV was much more negative than

the SCAC integral value of -1.19 eV, with a percentage difference of 51%.

In contrast the DFT adsorption energy for Pt{110} only had a difference of

19% between the theoretical value of -2.20 eV and the SCAC integral value

of -1.81 eV. For the Pt{111} surface, there was no integral heat listed in

the review by Ge and co-workers.139 However, it is possible to estimate the

experimental heat from an integral of their graph of the differential heat.

My estimate was based on SCAC differential adsorption heats listed in the

review by Brown and co-workers.138 I estimated that the integral adsorption

heat for Pt{111} was about 1.8 eV, which is very similar to my DFT value

of -1.74 eV, with a percentage difference of 2%.

I generally found that the DFT result was more negative than the experi-

mental result. This is what could be predicted as DFT tends to over-bind

adsorbates on transition metals.139,140 For example, of the theoretical and ex-

perimental values listed in Ge and co-workers’ review, the theoretical values

are almost always more negative than the experimental values.139
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Surface s1s1 / eV−1 CO Adsorption
Energy/ eV

Coverage/ ML

Cu{111} 5.573 -1.099 1/3
Ag{110} 6.541 -0.625 1/2
Ag{100} 6.605 -0.548 1/2
Au{100} 7.039 -0.621 1/2
Cu{100} 7.104 -1.288 1/2
Ag{111} 7.288 -0.479 1/3
Cu{110} 7.981 -1.323 1/2
Au{110} 8.304 -0.843 1/2
Au{111} 9.697 -0.481 1/3
Pd{100} 11.222 -2.101 1/2
Rh{111} 14.558 -1.960 1/3
Pt{100} 15.517 -2.050 1/2
Rh{100} 16.058 -1.998 1/2
Pt{111} 16.443 -1.736 1/3
Pd{111} 18.827 -2.219 1/3
Rh{110} 20.058 -2.098 1/2
Pt{110} 22.388 -1.981 1
Pd{110} 26.723 -1.491 1

Table 5.3: Table showing the top-layer atomic softness, s1, and calcu-
lated CO adsorption energy at the literature adsorption site for eighteen
different metal surfaces. The adsorption energies are all for the most
favourable site based on the experimental literature.
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Figure 5.3: Upper panel shows the correlation between top-layer atomic
softness and the calculated CO adsorption energy at the adsorption site
favoured in the experimental literature. Lower panel shows the residuals.
In both panels the black data points refer to {111} surfaces, the blue
data points to the {100} surfaces and the red data points to the {110}
surfaces. The fitted equation was Eads = −0.0722s1 − 0.471 and the R2

value was 0.497. 139



5.4.2 Predicting CO adsorption: atop sites

Table 5.3 in the previous section describes the trend between the atomic

softness of top-layer atoms and the adsorption energy of CO at the preferred

adsorption sites from the literature. On the other hand, for ease of compari-

son between surfaces, unencumbered by possible changes in adsorption site,

the data in Table 5.4 only uses the atop site, even when this does not seem to

be the most favourable. There is also a restriction to low coverages of 0.5 ML

and below, whereas coverages as high as 1 ML were considered in the previ-

ous section where they were found in the literature-preferred CO geometry.

The same data from the atop site is presented in graphical form in Fig. 5.4

In summary, whereas Fig. 5.3 is plotted for the most favourable literature

CO site and coverage, Fig. 5.4 is plotted for atop CO adsorption and 0.5 ML

or less coverage, even when that was not the most favourable.

Table 5.4 shows the atomic softness of top-layer atoms and the atop CO ad-

sorption energy for different surfaces. The same data is illustrated graphically

in Fig. 5.4. The data falls into two groups, with the atomic softness correctly

predicting that the coinage metals will be less reactive. This matches the

observations made in the previous section for the CO adsorption at the pre-

ferred literature adsorption sites in Fig. 5.3 and Table 5.3. There is no over-

lap between the coinage and transition-metal groups. All the coinage-metal

surfaces had lower atomic softness and smaller (less negative) atop site CO

adsorption energy than any of the transition-metal surfaces. There is no par-

ticular trend to the distribution of atomic softness for different facets within

the coinage-metal group. In contrast to this, for the transition-metal group,

the three {110} facets had the highest atomic softness for top-layer atoms.

Based on this is might be predicted that the adsorption energy for the {110}
facets would be more exothermic than for the flat {100} and {111} surfaces.

However, the atop adsorption energy for the stepped transition-metal sur-

faces was not as negative as might be expected based on these values of the

atomic softness. In particular, the Pd{110} surface is an outlier in Fig. 5.4

as it has less negative adsorption energy than might be expected. This may

be partly because actually the surface would reconstruct at that coverage of
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Surface s1 / eV−1 CO Adsorption
Energy/ eV

Coverage/ ML

Cu {111} 5.573 -1.099 1/3
Ag {110} 6.541 -0.625 1/2
Ag {100} 6.605 -0.548 1/2
Au {100} 7.039 -0.621 1/2
Cu {100} 7.104 -1.288 1/2
Ag {111} 7.288 -0.479 1/3
Cu {110} 7.981 -1.323 1/2
Au {110} 8.304 -0.843 1/2
Au {111} 9.697 -0.481 1/3
Pd {100} 11.222 -1.568 ∗ 1/2
Rh {111} 14.558 -1.960 1/3
Pt {100} 15.517 -2.050 1/2
Rh {100} 16.058 -1.998 1/2
Pt {111} 16.443 -1.736 1/3
Pd {111} 18.827 -1.464 ∗ 1/3
Rh {110} 20.058 -1.998 ∗ 1/2
Pt {110} 22.388 -2.201 1/2 †
Pd {110} 26.723 -1.666 1/2 †

Table 5.4: Table showing the top-layer atomic softness and calculated
atop site CO adsorption energy for eighteen different metal surfaces. The
adsorption energies are all for CO adsorption at the atop site, even where
a different site would have a more exothermic adsorption (marked ∗). Also
the coverages were kept at 0.5 ML or below, and the un-reconstructed
surfaces were used, even where this was found not to be the case experi-
mentally (marked †).
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Figure 5.4: Upper panel shows the correlation between atomic softness
of top-layer atoms, s1 , and the calculated CO adsorption energy at the
atop adsorption site for coverages of 0.5 ML and less. Lower panel shows
the residuals from the upper plot. The colour coding is the same as for
Fig. 5.3. Eads = −0.0722s1 − 0.416 The R2 value was 0.574.
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CO, to form a lower-energy structure.112,122

5.4.3 General observations

The implication of Figs. 5.3 and 5.4 is that there is a large-scale trend

where metal surfaces with very soft top-layer atoms tend to have higher CO

adsorption energy. Therefore the atomic softness can be used to predict large-

scale trends in reactivity, such as the difference between coinage metals and

transition metals. However, within these two groups of metals, the atomic

softness fails to accurately predict the differences in reactivity of similar metal

surfaces as there is too much scatter on the graph. For example, the atomic

softness of the gold {111} surface is anomalously high.

The general trend is that the adsorption heat becomes more negative as the

atomic softness increases. This represents stronger binding for larger atomic

softness values. The atomic softness can therefore be used to predict the

order of reactivity of CO binding to these surfaces. The observed trend

was between top-layer atomic softness and the adsorption energy of CO at

the site of strongest binding. This was obtained for low coverage, where

the metal-adsorbate interaction is the dominant feature of binding. The

low coverages were chosen so that the metal-adsorbate binding was the main

effect studied. This means that the direct effect of the metal surface reactivity

on the strength of the metal-adsorbate bond can be observed. At higher

coverages the adsorbate-adsorbate interactions (repulsive in this case) can

be predicted to dominate the adsorption energy.

It should be noted that in Figs. 5.3-5.4 and Tables 5.3-5.4 the adsorption

heats for the coinage metals were calculated using the Tkatchenko-Scheffler

(TS) Van der Waals correction.141 This is a semi-empirical method that has

been found to improve the binding strength of adsorbates on coinage met-

als.141 However, the TS Van der Waals correction was not used for Rh, Pd

or Pt. It should be noted that since TS causes an increase in calculated

binding strengths,142 if TS had been switched on for both groups of metals

or neither, then this would have caused the linear trend to have a higher
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gradient. Therefore we can be relatively confident that the gradient of the

trend line shown is a lower bound to the true gradient, and we can be fairly

confident that there is a significant difference between the CO adsorption

energy of coinage and transition metals. If anything, the trend shown is an

under-estimate of the actual trend between atomic softness and CO adsorp-

tion energy.

Figures 5.3 and 5.4 have the same fitted gradient of -0.0722 eV2 but different

intercepts of -0.471 eV and -0.416 eV respectively. In both Fig. 5.3 and

5.4 the scatter (as shown in the right hand panels, which plot the residuals)

seems relatively random, which suggests a straight line plot is the best model

to fit the data. For Fig. 5.3 there is more scatter then in Fig. 5.4. This is

characterised by the R2 values, which are 0.497 for Fig. 5.3 and 0.574 for

Fig. 5.4. The greater scatter for the graph showing the literature minimum

adsorption energy position may be because the atomic softness of top-layer

atoms is better suited to predicting the atop adsorption energy. Also in

Fig. 5.3 two of the data points for the {110} surfaces are for 1 ML coverage

and therefore are higher in energy compared to the trendline (due to greater

adsorbate-adsorbate repulsion). In Fig. 5.4 these points are lower in energy

and therefore closer to the trendline. As the fit was better for the atop site

adsorption with coverages of 0.5 ML and lower, this was used for the graphs

of individual facets in Fig. 5.5, as will be discussed below.

5.4.4 Trends for individual facets

Figure 5.5 shows the correlation between atomic softness and atop site CO

adsorption energy for coverages of 0.5 ML and below for individual sur-

face structures. For each surface, there is a roughly linear trend where the

adsorption energy becomes more negative as the atomic softness increases.

The trend is best for the {100} surface, which has an R2 value of 0.848.

The trend is worst for the {111} surface, which has an R2 value of 0.498.

In all the graphs, as in the graph of all the data together, the data points

fall roughly into two clusters, one for the coinage metals and one for the

transition metals.

144



The gradient for the {100} surface was quite a bit larger than the gradient

for all the data together. In comparison, the gradient for the {110} surface

was smaller than that obtained for the whole dataset. This is probably due

to the random scatter of the data, which gives rise to a great deal of error in

the calculated gradient, especially where the number of datapoints used to

calculate the gradient is smaller.
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Figure 5.5: Correlation between atomic softness and atop CO adsorption
energy for coverages of 0.5 ML and less, for the {111}, {100} and {110}
surfaces. Table in bottom right panel shows the coefficients of the fitted
line from each graph.
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5.5 Summary

There is a linear trend where as the atomic softness increases the adsorption

energy becomes more exothermic. This is particularly apparent where the

atomic softness is compared with the atop adsorption energy at coverages

of 0.5 ML or below. While the trend between the atomic softness and the

adsorption energies calculated at the adsorption sites preferred in the exper-

imental literature is still a relatively clear linear trend, it has a larger scatter

and correspondingly smaller R2 value. The atomic softness also predicts that

step-edge atoms will be more reactive than terrace atoms, which is generally

the case.96

The results in this chapter show that the atomic softness can be useful for

predicting large-scale trends in reactivity. For example, all the coinage metals

studied had lower atomic softness than any of the transition-metal surfaces

studied. However, for more similar systems, the atomic softness does not

necessarily predict the reactivity so well. Overall, despite these limitations,

the atomic softness is a promising reactivity index for predicting the reac-

tivity of metal atoms on surfaces. It would be interesting to see whether the

atomic softness would also be useful to predict the reactivity of adsorbates

on a metal surface. This will be investigated in the next chapter.
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Chapter 6

The Local and Atomic Softness

of Aromatic Adsorbates

One of the key problems in catalysis is understanding how the surface of

a catalyst affects the reactivity of adsorbed reactants. The surface science

approach involves calculating the electronic structure of an adsorbate on a

metal surface and trying from this to draw conclusions about how a catalyst

might affect the molecule, using the metal surface as a model system. It

would be helpful to have a reactivity index that could be used to make qual-

itative and quantitative comparisons of reactivity between different atoms

within an adsorbed molecule on a metal surface. It would also be useful to

be able to compare an atom from one adsorbate on one metal surface with

an atom in a different adsorbate on a different surface. For example, it would

be interesting to investigate directing effects on different aromatic rings and

see how they are affected by adsorption on a metal surface.

The main reactivity index used in surface science is the d-band centre, which

was developed by Nørskov and co-workers as a measure of transition-metal

reactivity.1 As previously discussed in Section 1.6.1, the d-band centre is

effectively the energy of the ‘centre of mass’ of the d band in the band struc-

ture. The d-band centre has been very successful in predicting the reactivity

of transition-metal atoms. However, due to the nature of its formulation as
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a function of the d-band structure, it is not suitable as a reactivity index for

any element other than transition metals. Therefore it cannot be used for

adsorbates.

One of the advantages of the local softness is that it can be calculated for

adsorbates on a metal surface. In order to do this, it is helpful to make the

assumption that the electronic properties of the metal-adsorbate system are

mostly determined by the electronic properties of the clean metal surface.

Therefore it can be assumed that the denominator of the local softness for

an adsorbate on a metal surface is the same as the denominator of local

softness for the clean metal surface.

This makes it much easier to calculate the local and atomic softness of ad-

sorbates on metal surfaces. This is because performing spectral tasks is rela-

tively expensive, especially for larger unit cells. As discussed in Section 3.4,

a large number of spectral tasks need to be performed in order to find the

denominator of local softness. As the corrected denominator converges ex-

ponentially towards the large-cell limit, it requires calculations with a range

of increasingly larger surface-normal supercell dimensions. For a clean sur-

face this is not too much of a problem as (1 × 1) lateral dimensions are

sufficient.

However, in order to perform a calculation with a large adsorbate, it becomes

necessary to increase the lateral dimensions. As DFT calculations scale by

N3 or higher with system size N , calculating the denominator for a surface

with an adsorbate would be very expensive. By assuming that the denomi-

nator will be the same in each case, the denominator from a set of cheaper

calculations for a (1× 1) clean cell can be used to calculate the local softness

for a cell with an adsorbate that has larger lateral dimensions.

This approximation is helpful but makes it more difficult to compare the re-

activity of an atom on an adsorbate with the reactivity of a different atom on

a different adsorbate. However, the local softness, which has been calculated

using this approximation, can still be compared between sites for a given

metal-adsorbate system. Depending on how similar the denominator would
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be for different adsorbates compared to the clean metal, it may be reason-

able to make comparisons of the local and atomic softness between surfaces

with different adsorbates as well. A good way of testing this hypothesis, and

seeing how good the approximation of using the denominator from the clean

surface is, would be to compare the atomic softness of middle-layer atoms

between the clean surface and the surface with different adsorbates. This

was done in Section 6.6.

6.1 Directing effects in aromatic adsorbates

It is a matter of some debate at present what constitutes an active site and

whether an active site can be present in the absence of adsorbates.12 For the

processes where the active sites are known it would be very interesting to

study the local softness of the active site with and without adsorbates. In

particular this would also enable the effect of adsorbates on reactivity of the

metal surface to be studied. In addition, it would be interesting to study the

effect of the metal surface on the reactivity of the adsorbate.

An interesting problem in organic chemistry is understanding how the re-

activity of benzene is modified by adding a side group.143 Figure 6.1 shows

the three distinct types of position on an aromatic ring with a side group

(denoted by R). Of these positions, the ortho position is nearest to R, fol-

lowed by meta, and para is opposite the side group. If R is a π-donating

or π-withdrawing group, then it will conjugate with the aromatic ring in

particular ways. Electron-donating groups such as OMe increase the rate of

electrophillic attack at the ortho and para positions. This is due to the way

in which the lone pairs of the oxygen conjugate with the aromatic ring.143 In

contrast, electron-withdrawing groups such as NO2 make the aromatic ring

less reactive to electrophilic attack. However, when they do react, the side

group will direct electrophiles to the meta positions on the ring. In particu-

lar, groups that withdraw π electrons from the aromatic ring do so especially

at the ortho and para positions. Therefore the ‘least unreactive’ sites are the

meta sites, which do not conjugate as strongly with the side group.
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It would be interesting to see how adsorption on a metal surface affects the

conjugation of π-donating and π-withdrawing groups with the benzyl ring.

This was investigated by Tan and co-workers in 2005.144 They conducted a

theoretical study of anisole on Pt{111}. The authors assumed that anisole

adsorbed on the bridge site. They found that the metal significantly changed

the nature of bonding in the aromatic ring. The reactivity was more affected

by the metal surface than by the side group, and the ring was similar to ben-

zene in its electronic properties. In particular, they found that the HOMO

and LUMO of the adsorbed molecule had more similarity with those of ad-

sorbed benzene than with free anisole. It would be interesting to calculate the

local and atomic softness of anisole and see if it contributes some additional

insight into reactivity.

Anisole, as an aromatic ring with a π-donor side group, only represents half

the picture of directing effects in aromatic molecules. It would be interesting

to also consider the reactivity of a conjugated electron-withdrawing group

such as NO2. This would allow the local and atomic softness of a molecule

with a group that should be ortho and para directing to be compared with

that of a molecule with a group which should be meta directing. It would

also be interesting to compare the reactivity of both with the reactivity of

benzene, as a control for the study. Therefore, the local and atomic soft-

ness was calculated for anisole, nitrobenzene and benzene on the Pt{111}
surface.

6.2 Computational methods used to study

aromatic adsorption

As for the work in Chapters 3-5, calculations were done in CASTEP with

the PBE exchange and correlation functional, which is a GGA functional. It

should be noted that Tan and co-workers used a different GGA functional,

that was developed by Perdew and Wang.86,144 However, the two functionals

are relatively similar and produce very similar results, for example the O-Me

bond length and Ph-O-Me angle were almost identical. There was more of
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a difference with the Ph-O bond length, which the PBE functional found to

be 0.1 Å shorter than that found by Tan et al. The plane-wave basis set

cutoff energy was 340 eV, which matches that used by Tan et al, as well as

that used in previous chapters of this work. The standard CASTEP library

pseudopotentials were used, as for Chapters 3-5.

Anisole, benzene and nitrobenzene were adsorbed at a coverage of 0.11 ML,

which matches that used by Tan et al for anisole. The cell used was (3 × 3)

and there were four slab layers and seven vacuum layers. The top two metal

layers were allowed to relax. This is the same as the supercell geometry used

by Tan et al, with the exception that Tan et al used eight vacuum layers. The

Brillouin-zone integration was performed using a 3× 3× 1 Monkhorst-Pack

k-point mesh. This is a finer mesh than that used by Tan et al.

The starting geometry for anisole was based upon Fig. 5 from Tan et al, with

the ring planar and centred on a bridge site. It should be noted that Tan

and co-workers did not do a comprehensive search of all the possible starting

geometries, but used a starting structure that matched the minimum-energy

structure found for benzene on Ni{111}.145 In determining the starting ge-

ometry for benzene I made the positions of the carbon and hydrogen atoms

analogous to those used by Tan et al for anisole. Likewise, the starting ge-

ometry for nitrobenzene was at the same bridge site and with the NO2 group

attached to the same carbon that the OMe group had been in anisole. The

geometry optimisations were performed with and without the Tkatchenko-

Scheffler (TS) Van der Waals correction.141 All other computational details,

such as tolerances, were the same as those used elsewhere in this thesis, and

are described in Section 2.6.

6.3 Adsorption energy and optimised

geometry for aromatic adsorbates

The adsorption energy was calculated for anisole, benzene and nitrobenzene

on Pt{111}, both with and without using the TS Van der Waals correction.
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The results are shown in Table 6.1. The TS correction results in adsorption

energies that are much more exothermic (by a factor of two to three). This

is consistent with the overbinding that can be predicted by the TS correc-

tion.142

Adsorbate Eads/ eV Eads with TS / eV
anisole -0.783 -2.19
benzene -0.993 -2.09
nitrobenzene -0.737 -2.08

Table 6.1: Table showing the adsorption energy with and without the
TS Van der Waals correction.

The more surprising result is that the order of the adsorption energies of

anisole and benzene changes when the Van der Waals correction is switched

on. Anisole is predicted to be bound less strongly than benzene without Van

der Waals but with Van der Waals the prediction is for anisole to have the

most exothermic binding of the three adsorbates. This can be understood

as the methyl group of anisole causing only steric repulsion when Van der

Waals interactions are not considered, but having favourable Van der Waals

interactions that are included by the TS method. As there was very little

difference in the geometries found with and without Van der Waals correction,

the geometry found without Van der Waals was used to calculate the local

and atomic softness.

Figure 6.2 shows the bond lengths and angles for anisole on Pt{111}. The

diagrams in the upper and lower panels are top-down and side views illustrat-

ing the optimised structure obtained without using Van der Waals correction.

With Van der Waals correction, the bond lengths were identical to 3 signifi-

cant figures. The bond angles were also very similar with and without Van

der Waals, except that the tilt between the oxygen and the methyl carbon

was smaller with the TS correction, about 8◦ compared with 13◦ without Van

der Waals. This smaller tilt from the plane parallel with the surface may be

because of a weak Van der Waals attraction of the methyl group towards the

surface, which is modelled more accurately using the TS correction.

The diagrams in Fig. 6.3 show the bond lengths and angles for nitrobenzene
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orthometa
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Figure 6.1: Positions on an aromatic ring

121 ◦

1.3 Å

1.4 Å

31◦

13◦

Figure 6.2: Calculated bond lengths and angles for anisole on Pt{111}

153



25◦

1.25 Å
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123 ◦

12◦
11◦

Figure 6.3: Calculated bond lengths and angles for nitrobenzene on
Pt{111}
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on Pt{111}. These were obtained for the optimised structure without using

Van der Waals correction. With Van der Waals correction, the labelled bonds

were the same length to three significant figures. The angles were also very

similar, with the O-N-O angle identical to four significant figures. The tilt

of the N-O bonds were slightly larger with Van der Waals, a percentage

difference of one to two percent.

6.4 Local softness of aromatic adsorbates

Figures 6.4-6.7 show colourplots of the local softness calculated for the Pt{111}
surface, with and without different aromatic adsorbates. Within the central

unit cell, the local softness is plotted on an isosurface with a threshold of a

fifth of the bulk valence-electron density. It should be noted that Figs. 6.4-6.7

use a different colourscale to Figs. 4.13-4.18 in Chapter 4. The colourplots

in Chapter 4 use a scale from -0.1 to 3.7 eV−1 Å
−3

whereas the colourplots

in this chapter use a scale from -1 to 3 eV−1 Å
−3

.

Surface smin(r)/ eV−1 Å
−3

smax(r)/ eV−1 Å
−3

clean Pt{111} (1 × 1) 8+8 0.09 2.36
clean Pt{111} (3 × 3) 4+7 0.176 2.94
Pt{111}-benzene -0.10 2.91
Pt{111}-anisole -0.87 2.83
Pd{111}-nitrobenzene -0.65 2.94

Table 6.2: Maximum values of local softness along a density isosurface
with a threshold of a fifth of the bulk valence-electron density.

The minimum and maximum values of the local softness are compared in

Table 6.2. The minimum value for the clean surfaces and for benzene were

similar at about zero. The maximum values for the clean (3 × 3) 4+7

surface with and without benzene adsorbed were also very similar to each

other. However, the local softness of the (1 × 1) surface with eight layers of

slab and vacuum had a maximum that was smaller by about 22% than the

(3 × 3) with four layers of slab and seven of vacuum. It may be that the

higher softness of the latter surface was due to finite-size effects as the slab
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Figure 6.4: Colourplots of the local softness for the clean Pt{111} surface
viewed from above (upper panel) and from the side (lower panel). The
plots consist of isosurfaces of the density with a threshold of 1/5 of the
bulk valence-electron density. The isosurface is coloured based on the local

softness. The range of the colourplots was between -1 and 3 eV−1 Å
−3

.
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Figure 6.5: Colourplots of the local softness for benzene on the Pt{111}
surfaces viewed from above (upper panel) and from the side (lower panel).
The plots consist of isosurfaces of the density with a threshold of 1/5 of
the bulk valence-electron density. The isosurface is coloured based on
the local softness. The range of the colourplots was between -1 and

3 eV−1 Å
−3

.
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Figure 6.6: Colourplots of the local softness for anisole on the Pt{111}
surfaces viewed from above (upper panel) and from the side (lower panel).
The plots consist of isosurfaces of the density with a threshold of 1/5 of
the bulk valence-electron density. The isosurface is coloured based on
the local softness. The range of the colourplots was between -1 and

3 eV−1 Å
−3

.
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Figure 6.7: Colourplots of the local softness for nitrobenzene on the
Pt{111} surfaces viewed from above (upper panel) and from the side
(lower panel). The plots consist of isosurfaces of the density with a thresh-
old of 1/5 of the bulk valence-electron density. The isosurface is coloured
based on the local softness. The range of the colourplots was between -1

and 3 eV−1 Å
−3

.
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had only four layers. This higher softness means that it can be predicted

that a thin metal film with only four metal layers would be more reactive

than a metal slab with eight metal layers. This would generally be expected

to be the case. While the (3 × 3) 4+7 surface with and without aromatic

adsorbates had a maximum value of about 2.9 eV−1 Å
−3

, the minimum values

differed. In all the clean surfaces studied in Chapter 4, the minimum value

was very near zero. This was also the case for the clean (3 × 3) 4+7 supercell.

However, with anisole and nitrobenzene adsorbed the minimum local softness

was much lower, at -0.87 and -0.65 eV−1 Å
−3

respectively.

Figure 6.5 shows the local softness of benzene on Pt{111}. The values are

plotted on a density isosurface with a threshold of a fifth of the bulk valence-

electron density. In Fig. 6.5 the absolute range of values of the local softness is

similar to that of the clean surface in Fig. 6.4. However, the way that regions

of high local softness are distributed is rather different. For example, the local

softness above the top layer of platinum atoms is much less with benzene

adsorbed than for the clean surface. The local softness above the top layer

of the clean metal surface ranges from about 1-2.9 eV−1 Å
−3

. In contrast,

the local softness above top-layer atoms with benzene adsorbed ranges from

about 1-1.8 eV−1 Å
−3

. This predicts that even metal atoms that are not

directly obscured by the benzene molecule will nevertheless be somewhat

deactivated electronically. The range of local softness above the top layer

of metal atoms is very similar with anisole and nitrobenzene compared with

benzene, which suggests that the deactivation would be similar for these

different adsorbates.

In order to be sure that this deactivation of the top layer of atoms is a valid

result and not a feature of the denominator being different for the surfaces

with adsorbates, the atomic softness was compared for different layers with

and without adsorbates. This is discussed in Section 6.6. It was found

that the middle layers of the slab had very similar atomic softness with and

without different adsorbates. This suggests that the difference in the local

softness of the top layer is a genuine effect.

The density isosurface the local softness is plotted on for Pt{111} - benzene
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bounds a roughly crown-shaped region. The highest values of the local soft-

ness are on the upper surface of this shape, not on the sides. Platinum atoms

fall into one of three groups based on whether they are bound to two, one

or zero carbons. Based on the approach of Yamagishi et al145 these were

designated type I, II or III respectively. Similarly, the carbon atoms fall into

two distinct groups. The carbons bound to type I Pt atoms (carbons which

share their Pt atom with another carbon) had higher local softness than those

bound to type II platinum atoms. The hydrogen atoms of the benzene also

fall into two groups, those that are bound to a carbon that is in turn bound

to a type I or a type II platinum atom. The maximum in the local softness

(about 2.9 eV−1 Å
−3

) is found over the two hydrogens that are above type II

sites. This means that the hydrogens that have the highest local softness are

bound to carbons that do not have to share their platinum atom with any

other carbons. The hydrogens above type II sites are apparently softer than

the carbons they are bonded to. In contrast, the hydrogens above the type I

sites are harder than the hydrogens above type II sites and also harder than

the carbon atoms they are bonded to.

Figures 6.6 and 6.7 show the local softness plotted on a density isosurface

for anisole and nitrobenzene. In each case, the patterns of the local softness

within the ring are similar to those obtained for benzene, which suggests that

the electronic interaction with the metal is more important for determining

the directing effects than the interaction with the side group. This is similar

to the results found by Tan and co-workers.144 For example, there is more

difference between the local softness over hydrogens above type II sites versus

type I sites than between hydrogens above type I sites that are at ortho, meta

and para positions relative to the side group. This suggests that the binding

to the metal weakens the π conjugation with the side group.

For anisole on Pt{111}, the highest local softness (2.2-2.9 eV−1 Å
−3

) is on the

upper surface of the molecule, specifically above the hydrogens on the methyl

group that point away from the surface. Of those two hydrogens, the one

that points towards the ring has higher local softness of about 2.9 eV−1 Å
−3

.

Interestingly, the region below the methyl group (below and to the side of
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the methyl hydrogen that points towards the surface) has negative local

softness of about -0.8 eV−1 Å
−3

. This suggests that the hydrogen that points

down towards the surface is much harder than the two hydrogens that point

up.

For nitrobenzene, the highest values of local softness are again on the upper

surface of the molecule. These high values are localised above the oxygen

atoms and above the carbon atom that is bound to the nitrogen of the NO2

group. There are also higher values over the two hydrogens on the phenyl

ring that are directly above type II atoms. The oxygens on the NO2 group

exhibit an interesting pattern of local softness as above they are positive but

below they are negative. Analogously to the side group of anisole, below the

NO2 group on nitrobenzene there is a region of negative local softness, of

about -0.6 eV−1 Å
−3

. The regions of negative local softness below the side

groups of anisole and nitrobenzene may be due to the strain of the groups

that are repelled away from the surface. It would be interesting to look at

this in more detail in the future.

Interestingly, there does appear to be a difference between the reactivity of

the carbons that are bound to type I platinum atoms and that are para and

meta as opposed to ortho to the side group. The carbons that are para and

meta to the side group have a higher softness (about 2.5 eV−1 Å
−3

) compared

with the carbon at the ortho position (about 2.1 eV−1 Å
−3

). However, this is

less of a difference than that between the hydrogens above type I and type II

platinum atoms. It may be that the lower local softness at the ortho positions

is due to the electronegative and σ-withdrawing NO2 group. If it was due

to π conjugation with the NO2 group then one would expect the ortho and

para positions to be similar rather than the actual observed similarity, which

is between the para and meta positions.

It should be noted that while the local softness is a measure of which areas

in a molecule can be predicted to respond to an increase in electron density,

regions of high local softness will not necessarily be the most reactive. In

order for a reaction to occur, bonds would need to be broken, so there are

other factors (such as bond strength) that determine the rate of reactions at
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different sites on the molecule and surface. Nevertheless, the local softness

of aromatic adsorbates gives useful data for understanding directing effects

and predicting reactivity. In order to find complementary insight to the

picture obtained from the local softness, it would be interesting to look at

the softness of individual atoms on adsorbates as well. For this reason, the

atomic softness of aromatic molecules was studied on platinum.

6.5 Visualising the atomic softness of

aromatic molecules on platinum

Figures 6.8 and 6.9 show the atomic softness of Pt{111} with and without

aromatic molecules adsorbed. The platinum atoms on the top layer of the

clean metal surface had a much higher atomic softness (about 21 eV−1) com-

pared to those with adsorbates present (from about 6-12 eV−1). For type I

platinum atoms, which were bound to two carbon atoms, the atomic softness

was about 6 eV−1. For type II platinum atoms, which were bound to one car-

bon atom, the atomic softness was about 8 eV−1. Type III platinum atoms,

which were not bound to any carbon atoms, had the highest atomic softness

in the top layer, of about 11-12 eV−1. This variation in deactivation over

the surface could be used to make predictions of where additional molecules

might adsorb. It could also be predicted that the clean metal surface is more

reactive than the same metal surface with a molecule adsorbed. The atomic

softness shows the patterns of deactivation of Pt more clearly than the local

softness, due to the way in which the local softness is displayed on a density

isosurface.

The directing effects for benzene are similar to those already noted for the

local softness. The hydrogens above the type II sites have an atomic softness

of about 20, which is significantly higher than than those above the type

I sites by about 13.5 eV−1. In contrast, the carbon atoms bound to type

II platinum atoms have a lower local softness than those bound to type I

platinum atoms. In the anisole and nitrobenzene aromatic rings, the directing

effects are relatively similar to those for benzene. The overall directing effects
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Benzene on Pt{111}

Clean Pt{111} surface

Figure 6.8: Atomic softness of the Pt{111} surface, with and without
benzene adsorbed. The atoms in the central unit cell are coloured accord-
ing to the values of the atomic softness. The range of the atomic softness
was between -2 and 34 eV−1.
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Anisole on Pt{111}

Nitrobenzene on Pt{111}

Figure 6.9: Atomic softness of the Pt{111} surface, with anisole and
nitrobenzene adsorbed. The atoms in the central unit cell are coloured
according to the values of the atomic softness. The range of the atomic
softness was between -2 and 34 eV−1.
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are a little less clear in the atomic softness compared with the local softness.

This is probably because the local softness was plotted on an isosurface above

the molecule, and that happens to be where the highest values of the local

softness are.

The atomic softness of the side group in anisole is a little surprising in that

the set of hydrogens on the methyl group in anisole contain both the softest

and hardest atoms in the molecule, at 33 and -1.2 eV−1 respectively. The

carbon on the methyl group is relatively hard as well, with a softness of about

2.3 eV−1. The oxygen has a larger value of the atomic softness than any of

the carbons on the ring, at about 11 eV−1.

For nitrobenzene the softest atoms were the oxygens in the NO2 group, at

22.3 and 23.2 eV−1. The nitrogen in the NO2 group had a similar atomic

softness to the carbons in the ring, at about 6 eV−1. Within the anisole

phenyl ring, the hardest carbons were those attached to a type II platinum.

This matches the trends for benzene. However, for nitrobenzene, while these

atoms are among the hardest carbon atoms, they are joined by the carbon

directly bonded to the nitrogen, which is also relatively harder. This may

be due to the NO2 group withdrawing electron density. As mentioned in

terms of the trends in the local softness, among the three carbons that are

bound to type I platinum atoms, the one at the para position is more similar

in softness to that at the meta position than to that at the ortho position.

This suggests that σ induction of electrons from the electron withdrawing

NO2 group is more important than π conjugation in determining the local

softness of phenyl carbon atoms.

6.6 Testing the approximation of using the

clean-surface denominator

A measure of how reasonable it might be to compare the absolute values of

the local and atomic softness between sites on surfaces with different adsor-

bates can be obtained by comparing the softness of the metal atoms in the
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middle of the slab. When this was done, the atomic softness of middle-layer

atoms was very similar for the clean (3 × 3) calculation and for those with

benzene, anisole and nitrobenzene adsorbed. The percentage difference be-

tween the middle-layer atoms with different adsorbates was 0.2-1.5%. The

difference between the atoms in the middle two layers for the clean (3 × 3)

surface compared with that with adsorbates was only slightly larger, at about

2.5%.

The average atomic softness of the bottom layer was a bit more surprising,

as the atomic softness decreased in the presence of adsorbates, despite the

two metal atom layers separating the bottom layer and the top layer the

adsorbates were placed on. The percentage difference was about 11-15%.

This was a smaller change than that for the type III atoms in the top layer,

which decreased in atomic softness by about 50%. It is likely that if the

number of slab layers was increased, then there would be more screening

between the top and bottom layers and then the bottom layer would not

be significantly affected by the presence of an adsorbate on the opposite

surface of the slab. However, the key result is that the atomic softness in

the middle of the slab is very similar with and without different adsorbates.

This suggests that the approximation that the denominator will be the same

for the clean surface as for the surfaces with adsorbates is a reasonable one,

at least for these three adsorbates.

6.7 Summary

The local and atomic softness of aromatic molecules on Pt{111} yield in-

teresting information about directing effects. In particular, the hydrogens

and carbons in the benzene ring could be classified as two groups based on

whether the carbon is bound to a type I or type II platinum atom, with dis-

tinct local and atomic softness for each. This could lead to predictions about

reactivity. The effect of the metal surface on the electronic properties of the

ring was found to be more significant than the effect of π conjugation with the

side group. However, for anisole and nitrobenzene there was some difference
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between the carbons attached to type I platinum atoms in the ortho, meta

and para positions relative to the side group. The carbons at the para and

meta positions had similar softness, whereas the ortho position carbon had

lower local and atomic softness. As π conjugation would generally lead to

similar reactivity at the ortho and para positions, this suggests that the side

group influences the reactivity of the ring through σ inductive effects due

to the electronegative heteroatom more than by π conjugation. The local

and atomic softness give understanding that is complementary to the more

standard DFT approach followed by Tan et al. To summarise, the local and

atomic softness predicts that for these aromatic adsorbates the interaction

with the metal was more important than the side group for determining the

softness of atoms in the aromatic ring.

168



Chapter 7

Summary and Outlook

Understanding the reactivity of metal surfaces is an important problem in

catalysis. Reactivity indices are a helpful tool in order to predict the proper-

ties of different sites in model catalysts. For metal surfaces, various reactivity

indices have been proposed. These have a variety of limitations and draw-

backs. There is a need for a reactivity index that can be calculated for

metal surfaces and adsorbates and that can yield both local and atomistic

information about reactivity.

In this work a new method for calculating the local softness was developed.

This method used the theoretical framework of DFT, using the plane-wave

code CASTEP. The key step in the calculation of the local softness was

using the chain rule to calculate the partial derivative of the local electron

density by the chemical potential, in terms of derivatives by the surface charge

σ. This approach allows the problem to be divided in order to calculate

the numerator and denominator of local softness. The former is the partial

derivative of ρ(r) with respect to the surface charge and the latter is the

partial derivative of µ with respect to the surface charge.

While the numerator of local softness was relatively easy to calculate, finding

the denominator was more challenging. This was because of the limitations

of using a plane-wave code, which requires periodic boundary conditions.
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Calculating the derivative of the chemical potential with respect to the sur-

face charge requires calculating energies for charged calculations. This is a

problem as the local softness is defined as the derivative of the local electron

density with respect to the chemical potential, at constant external poten-

tial v(r). Unfortunately, the way CASTEP deals with charge in periodic

boundary conditions involves adding a corrective potential. In order to find

the derivative in a way that is independent of the external potential it is

necessary to extrapolate to find the denominator of local softness at infinite

slab and vacuum thickness.

An additional problem arises from the way in which CASTEP defines the

energy origin. The problem with this is that the potential of the supercell is

different for different supercell geometries and for different charges, therefore

the energy reference for different calculations varies. This meant that it is

difficult to extrapolate the denominator of local softness to infinite slab and

vacuum thickness. In order to solve this problem, it is necessary to correct

for the change in energy reference by subtracting an energy that should

be constant with respect to supercell geometry and charge. Therefore this

quantity only varies due to the change in energy reference and can be used

to eliminate the dependence on energy reference.

Several different properties were investigated in order to correct the denom-

inator. The most promising method was performing a spectral task to find

an accurate band structure, then using OptaDOS to calculate a very accu-

rate DOS. The cross-correlation of the lowest 5 eV of the DOS could then

be used to find the energy shift with charge, and correct the denominator

of local softness. This method was used in order to correct the dependence

on the CASTEP energy reference, and then the result was extrapolated to

infinite slab and vacuum thickness for a constant ratio of 1:1 slab to vacuum

thickness.
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7.1 Analysing the local softness of clean metal

surfaces

The above method was used to find the local softness for eighteen metal

surfaces. These consisted of three coinage metals (copper, silver and gold)

and three transition metals (rhodium, palladium and platinum). Three facets

were studied: the flat {111} and {100} facets and the stepped {110} facet.

As the local softness is a scalar field in three dimensions, it was necessary to

find a way to visualise it. Criteria for visualisation of complex data include

clarity and chemical insight. The local softness was visualised as isosurfaces

for the copper surfaces. These isosurfaces showed that the regions of highest

local softness were above the top layer of atoms. There were also regions of

higher local softness along close-packed rows. There appeared to be higher

local softness for the stepped Cu{110} surface than the flat copper surfaces,

based on comparing the volume of space that had values of s(r) within the

local softness threshold value.

In order to gain additional insight into the range of local softness values at

the surface, colourmaps were plotted. These consisted of a density isosurface

at a particular density threshold value, which was coloured based on the local

softness at each point on the surface. By increasing the density isosurface

threshold then points closer and closer to the atom centres will be sampled.

For the figures in Chapter 4, two density thresholds were used, of 1/5 and

1/3 the bulk valence-electron density. The former resulted in a corrugated

surface that would be similar to the topology experienced by an approaching

molecule. The latter resulted in a more atomistic region, which did not form

a continuous surface when viewed from above.

The local softness colourplots gave insight into predicting reactivity on the

surfaces studied. For example, the maximum values on the density isosurfaces

for the nine transition-metal surfaces were all larger than any of the maximum

values for the nine coinage-metal surfaces. This suggests that the adsorption

energy for a molecule like CO will be more exothermic for the transition

metals than for the coinage metals (which was later found to be the case).
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Also, the three-fold hollows on the {111} surfaces were found to have a higher

local softness than the four-fold hollows on the {100} surfaces. This suggests

that small molecules such as CO would be more likely to bind in a hollow

site on {111} than on {100}.

7.2 Calculating the atomic softness for clean

metal surfaces

The local softness gives useful information that can be used to predict the

reactivity of different surfaces at a range of locations. However, it would be

useful to have a measure of the softness of an individual site or atom. There-

fore the atomic softness was calculated, as the integral of the local softness

over the volume of space occupied by a specific atom. The atomic softness

was calculated for the same 18 surfaces and was used to predict the adsorp-

tion energy of CO at both the literature-preferred adsorption site and at the

atop site. It was found that large-scale trends in CO adsorption energy were

predicted well by the atomic softness of top-layer atoms. The atomic softness

of top-layer transition-metal atoms was higher than the atomic softness of

any of the top-layer coinage-metal atoms. This result was matched by the

CO adsorption energies, which also fell into two discrete groups of coinage

and transition metals, with no crossover between the two sets. Overall there

was a linear trend where for larger atomic softness, the adsorption energy

was more negative (exothermic).

However, there were some limitations to using the atomic softness to predict

the CO adsorption energy. The atomic softness was not so good at predict-

ing differences in reactivity between elements that were similar to each other.

There was also a lot of noise in the graph of atomic softness versus adsorp-

tion energy, especially for the adsorption energy at the literature-reported

minimum-energy adsorption site. For example, the atomic softness of step-

edge atoms was higher for the stepped transition-metal surfaces than for any

of the terrace atoms on the flat surfaces. This means that the CO adsorption

energy could be expected to be higher for these surfaces. However, this was
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not necessarily the case, and while the most negative atop adsorption energy

was obtained for the stepped Pt{110} surface, the next lowest adsorption

energy was for the flat Pt{100} surface. Therefore, while the atomic soft-

ness is good at predicting large scale differences, it may be less accurate at

predicting the fine detail between surfaces that are similar in reactivity.

7.3 Using the chemical softness to predict

directing effects in aromatic adsorbates

As described in Sections 7.1-7.2, the local and atomic softness can be useful

for studying the reactivity of clean metal surfaces and for predicting the ad-

sorption energy of a small, simple adsorbate on different surfaces. One of the

most interesting applications for a reactivity index is studying the properties

of adsorbates as well as clean metal surfaces. In particular, directing effects

in aromatic rings are an interesting application where it would be helpful to

have more understanding of the relative strength of electronic coupling with

the side group versus the metal surface. For this reason, the local and atomic

softness were calculated for a Pt{111} (3 × 3) surface, both with and with-

out three aromatic adsorbates. The adsorbates studied included a π-acceptor

(nitrobenzene), a π-donor (anisole), and a control aromatic molecule with no

π-conjugating side group (benzene). Benzene represents the simplest case,

where the only modification to the π-bonding within the ring would be due to

the metal surface. As discussed in Section 6.4, the platinum atoms with ben-

zene adsorbed fall into three groups, depending on whether they are bound

to two carbons (type I), bound to one carbon (type II) or not bound to any

carbons (type III).

In all cases, the local softness was highest over the adsorbates rather than over

the uncovered metal atoms between adsorbates. For benzene, the maxima in

the local softness occurred above the hydrogens above type II platinum atoms

and (to a lesser extent) the carbons above the type I platinum atoms. For

anisole and nitrobenzene, the picture was made more complex by adding a

side group. The three carbon atoms above type I platinum atoms, which are
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not directly bound to the side group, can be classified as ortho, meta or para,

depending on how near to the side group they are (for a labelled diagram, see

Fig. 6.1). There are also two carbon atoms above type II platinum atoms,

one ortho and one meta. Based on conventional wisdom, one would expect

to see similar local and atomic softness on the ortho and para carbons and

different reactivity for the meta carbons. However, the clearest trend is for

the reactivity of the carbons above type I platinum atoms to be different to

the carbons above type II platinum atoms, irrespective of whether they are

ortho, meta or para. This suggests that the interaction with the metal surface

is more important than the interaction with the side group for determining

reactivity. In other words, the interaction of the ring with the metal surface

decreases the π conjugation with the side group. There is a difference between

the ortho carbons above type II platinum atoms and the meta and para

carbons above type II platinum atoms for nitrobenzene, but this is more

likely to be consistent with σ induction than π conjugation with the side

group.

In addition to the directing effects in the aromatic ring, the local and atomic

softness of the side groups themselves were investigated. For anisole, the

lowest and highest local softness were found for different hydrogen atoms on

the methyl group. In fact, the atomic softness for the atom that pointed

down, towards the surface, was negative. This suggests that based on con-

formation with respect to the metal surface, the hydrogens in the methyl

group of anisole have very distinct reactivity. The theme of the underside of

the side group having negative local softness was continued for nitrobenzene,

where the local softness of the underside of the NO2 group was also nega-

tive, though not as negative as the underside of the OMe group in anisole.

These negative regions of the local softness represent areas where the local

electron density would decrease in response to an overall increase in chemical

potential. It is possible that this occurs due to strain on the side of the bond

that might be expected to be tilting away from the surface (due to steric

repulsion). It would be interesting to look at this in more detail in further

work.
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In terms of the reactivity of the platinum atoms, the general trend is de-

activation in the presence of any adsorbate. This is the case even for type

III platinum atoms which do not directly bind to any carbon atoms. How-

ever, the strongest deactivating effect is for type I platinum atoms (which are

bound to two carbon atoms), followed by type II and then type III. It would

be interesting to do more work on understanding the effect of deactivation

of metal surfaces when different adsorbates are present.

7.4 Further work

As mentioned in the previous section, it would be interesting to further in-

vestigate the possible effects of strain in causing negative local softness. The

strain under the side group arises due to steric repulsion with the metal sur-

face. It would be helpful to investigate how the local softness is affected by

other types of strain in an adsorbate. For example, the adsorption of cy-

cloalkanes could be used to compare transannular strain with the effect of

ring strain.

Another application for further research is the observation that the local and

atomic softness can yield insight into the deactivation of a metal surface

in the presence of an adsorbate. It would be interesting to compare the

deactivation region for larger and larger lateral dimensions of the supercell.

Then it could be found what size of supercell is needed in order for the type

III platinum atoms to have an atomic and local softness that is similar to that

of the clean surface. It would also be helpful to compare the deactivating

effects for different adsorbates. The effect of the three aromatic adsorbates

appeared to be similar but perhaps certain classes of molecule might be

more or less deactivating. In particular, it would be interesting to study the

electronic effect of poisoning on a catalytically relevant metal surface. This

would give insight into a catalytically important problem, and might result in

understanding that could help solve the problem of catalyst poisoning.

In the literature it is well documented that step-edge and kink sites are

more reactive than any terrace sites on flat surfaces such as Cu{111} and
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Cu{100}.18,146 However, there is some debate over the relative order of re-

activity of kink sites and step-edge sites.30 It would be interesting to have

a quantitative measure of the reactivity of step and kink sites from a vari-

ety of surfaces. The local softness could be used to predict whether there

will be a quantitative difference in the reactivity, and whether more highly-

corrugated surfaces have more reactive step and kink atoms. This kind of

analysis using s(r) would be helpful in finding and characterising active sites.

In order to investigate this, the local and atomic softness could, for instance,

be calculated for the stepped {331} and the kinked {210} surfaces.

In addition, it has been shown in Chapter 5 that there is a correlation between

the atomic softness of top-layer atoms and the adsorption energy of CO. It

would be interesting to compare the atomic softness of top-layer atoms with

the adsorption energy of some other small inorganic molecules (e.g. NO, O2,

H2O and H2S). The correlation between the atomic softness and adsorption

energy could then be compared between different adsorbates. It would be

interesting to see how the correlation varied between the adsorption energy of

softer or harder adsorbates. For example, whether the adsorption energy of

H2S had a stronger correlation with the atomic softness than the analogous

harder molecule, H2O.

As mentioned earlier in Section 1.4, BEP linear relations are found to gen-

erally hold for most metal-adsorbate combinations. They are a convenient

way to separate electronic and geometric effects. In addition they have use-

ful predictive power that extends to enabling catalyst design via Sabatier

analysis.1 As the slope of a BEP line is related to the electronic properties of

the system, it may be well predicted by the local softness. Therefore study-

ing the relation with the activation energy for activation and desorption and

local softness would be interesting, as these should be linearly related also.

Predicting BEP lines as mentioned above would be a test of to what extent

catalytic activity can be predicted from the clean metal and adsorbate alone.

This may shed light on the ongoing debate in this topic.12

176



7.5 Conclusions

The local softness and atomic softness are promising reactivity indices for

studying heterogeneous catalysis. The local softness gives chemical insight

into how the reactivity of different regions in space varies close to a surface.

It can also be used to make quantitative predictions of the reactivity of

different sites on various surfaces. The atomic softness gives insight into the

overall reactivity of specific metal or adsorbate atoms on a surface. Both

measures can be used to predict the reactivity of clean metal surfaces. The

atomic softness can also be used to predict the adsorption of small molecules

such as CO. In addition, unlike some other reactivity indices, the local and

atomic softness can be calculated for both metal surfaces and adsorbates and

have yielded significant insight into the ring directing effects for aromatic

adsorbates. Overall, the local and atomic softness are useful tools in order

to study heterogeneous catalysis.

177



Appendix A

Computational Details

A.1 Calculation of lattice constants

The lattice constants were calculated using CASTEP with an energy cutoff

of 340 eV. The k points used to calculate the lattice constant were 6× 6× 6

in most cases as by then there was not much difference in energy when more

k points were added.

It should be noted that a slightly different lattice constant was inadvertently

used for the Pd{111} and Cu{100} surfaces compared with the other sur-

faces of each metal. The lattice constant used for the Pd{100} and Pd{110}
surfaces was calculated using 12×12×12 k points. For the Cu{100} a value

calculated earlier by a co-worker was used inadvertently (Marco Sacchi, per-

sonal communication, Nov. 13th, 2013) The percentage difference between

lattice constants for the copper surfaces was about half a percent so is un-

likely to have affected calculations much. Similarly, the percentage difference

between the lattice constant used for the palladium surfaces was only about

a quarter of a percent.
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Surface Lattice constant / Å k points
Rh{111} 3.84 6× 6× 6
Rh{100} 3.84 6× 6× 6
Rh{110} 3.84 6× 6× 6
Pd{111} 3.90 6× 6× 6
Pd{100} 3.89 12× 12× 12
Pd{110} 3.89 12× 12× 12
Pt{111} 3.96 6× 6× 6
Pt{100} 3.96 6× 6× 6
Pt{110} 3.96 6× 6× 6
Cu{111} 3.60 6× 6× 6
Cu{100} 3.62 unknown
Cu{110} 3.60 6× 6× 6
Ag{111} 4.12 6× 6× 6
Ag{100} 4.12 6× 6× 6
Ag{110} 4.12 6× 6× 6
Au{111} 4.17 6× 6× 6
Au{100} 4.17 6× 6× 6
Au{110} 4.17 6× 6× 6

Table A.1: Table showing the lattice constants and the number of k
points which were used to calculate them.
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A.2 Supercell geometries for CO adsorption

calculations

Table A.2 shows the supercell geometries which were used for the CO ad-

sorption energy calculations. As explained earlier, ns and nv are the number

of slab and vacuum layers respectively.

The slab thickness was calculated as

ds = c
ns

ns + nv

(A.1)

where c is the supercell surface-normal dimension. There is a similar expres-

sion for the vacuum thickness,

dv = c
nv

ns + nv

(A.2)

A.3 Aromatic adsorption computational de-

tails

As described in Section 6.2, a smaller number of layers of slab and vacuum

were used for the aromatic adsorption calculations on Pt{111}. This was

in order to reduce the computational cost due to the larger (3 × 3) lateral

dimensions. Four slab layers and seven vacuum layers were used. A single-

sided slab was used, where the top two layers were allowed to relax. As for

previous chapters, a lattice constant of 3.96 Åwas used for Pt.
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Surface ns nv nrelax ds/Å dv/Å c/Å
Rh{111} 9 9 3 20.0 20.0 39.9
Rh{100} 10 10 3 19.2 19.2 38.4
Rh{110} 14 14 4 19.0 19.0 38.1
Pd{111} 8 8 3 18.0 18.0 36.1
Pd{100} 10 10 3 19.5 19.5 38.9
Pd{110} 14 14 4 19.3 19.3 38.5
Pt{111} 8 8 3 18.3 18.3 36.6
Pt{100} 10 10 3 19.8 19.8 39.6
Pt{110} 13 13 4 18.2 18.2 36.4
Cu{111} 9 9 3 18.7 18.7 37.4
Cu{100} 10 10 3 18.1 18.1 36.2
Cu{110} 15 15 4 19.1 19.1 38.2
Ag{111} 8 8 3 19.0 19.0 38.0
Ag{100} 9 9 3 18.5 18.5 37.0
Ag{110} 13 13 4 18.9 18.9 37.8
Au{111} 8 8 3 19.2 19.2 38.5
Au{100} 9 9 3 18.7 18.7 37.5
Au{110} 13 13 4 19.1 19.1 38.3

Table A.2: Table showing the numbers of slab and vacuum layers, the
number of layers of metal which were relaxed on each side of the slab, the
thickness of slab and vacuum and the surface-normal supercell dimension
c.
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[12] R. Schlögl, Angew. Chem. Int. Ed., 2015, 54, 3465–3520.

[13] S. Bhaduri and D. Mukesh, Homogeneous Catalysis : Mechanisms and

Industrial Applications, Wiley, 2nd edn., 2014.

[14] P. Sabatier, Ber. Dtsch. Chem. Ges., 1911, 44, 1984–2001.

[15] F. H. Ribeiro, A. E. S. VonWittenau, C. H. Bartholomew and G. A.

Somorjai, Catal. Rev. - Sci. Eng., 1997, 39, 49–76.
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[71] B. G. Pfrommer, M. Côté, S. G. Louie and M. L. Cohen, J. Comput.

Phys., 1997, 131, 233–240.

[72] P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864–B871.

[73] W. Kohn and LJ. Sham, Phys. Rev., 1965, 140, A1133–A1138.

[74] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and

Molecules, Oxford University Press, 1989.

[75] L. H. Thomas, Proc. Cambridge Philos. Soc., 1927, 23, 542–548.

[76] E. Fermi, Z. Physik, 1928, 48, 73–79.

186



[77] R. G. Parr and W. Yang, Annu. Rev. Phys. Chem., 1995, 46, 701–728.

[78] N. Lang, Solid State Commun., 1969, 7, 1047–1050.

[79] N. D. Lang and W. Kohn, Phys. Rev. B, 1970, 1, 4555–4568.

[80] N. Lang and W. Kohn, Phys. Rev. B, 1971, 3, 1215–1223.

[81] B. Mrowka and A. Recknagel, Phys. Z., 1937, 38, 758.

[82] E. Teller, Rev. Mod. Phys., 1962, 34, 627–631.

[83] K. Burke, J. Chem. Phys., 2012, 136, 150901.

[84] M. C. Holthausen and W. Koch, A Chemist’s Guide to Density Func-

tional Theory, Wiley, 2nd edn., 2007.

[85] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett., 1980, 45, 566–569.

[86] J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 13244–13249.

[87] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77,

3865–3868.

[88] R. J. Bartlett and M. Musia l, Rev. Mod. Phys., 2007, 79, 291–352.

[89] A. J. W. Thom, Phys. Rev. Lett., 2010, 105, 263004.

[90] W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem., 1996, 100,

12974–12980.

[91] R. Car and M. Parrinello, Phys. Rev. Lett., 1985, 55, 2471–2474.

[92] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J.

Hasnip, S. J. Clark and M. C. Payne, J. Phys. Condens. Matter, 2002,

14, 2717–2744.

[93] D. Vanderbilt, Phys. Rev. B, 1990, 41, 7892–7895.

[94] V. Eyert, J. Comput. Phys., 1996, 124, 271–285.

[95] Y. Iwasawa, R. Mason, M. Textor and G. A. Somorjai, Chem. Phys.

Lett., 1976, 44, 468–470.

187



[96] S. J. Jenkins and S. J. Pratt, Surf. Sci. Rep., 2007, 62, 373–429.

[97] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert,

K. Refson and M. C. Payne, Z. Kristallogr. Cryst. Mater., 2005, 220,

567–570.

[98] H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188–5192.

[99] H. M. Al-Allak and S. J. Clark, Phys. Rev. B, 2001, 63, 033311.

[100] M. Stengel and N. Spaldin, Phys. Rev. B, 2007, 75, 205121.

[101] R. J. Nicholls, A. J. Morris, C. J. Pickard and J. R. Yates, J. Phys.:

Conf. Ser., 2012, 371, 012062.

[102] A. J. Morris, R. J. Nicholls, C. J. Pickard and J. R. Yates, Comput.

Phys. Commun., 2014, 185, 1477–1485.

[103] C. J. Pickard and M. C. Payne, Phys. Rev. B, 1999, 59, 4685–4693.

[104] C. J. Pickard and M. C. Payne, Phys. Rev. B, 2000, 62, 4383–4388.

[105] J. R. Yates, X. Wang, D. Vanderbilt and I. Souza, Phys. Rev. B, 2007,

75, 195121.

[106] L. R. Rabiner, Theory and Application of Digital Signal Processing,

Prentice-Hall, 1975.

[107] L. R. Rabiner, Digital Processing of Speech Signals, Prentice-Hall, 1978.
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