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Summary 
An Investigation of Mutational Signatures in the Evolution of Oesophageal 

adenocarcinoma 
Sujath Abbas 

Oesophageal adenocarcinoma (OAC) remains a public health challenge with dismal survival 

rates and increasing incidence. This PhD study aimed to investigate how mutational processes 

act across different stages of OAC development and in metastasis for better understanding 

of the influence of mutational forces during tumour formation. To identify these signatures 

in clinical samples this study also aimed to develop a cost-effective DNA sequencing method 

in clinical formalin fixed OAC samples. A large study cohort was assembled comprising of 161 

Barrett’s, 777 OAC primary tumours and 59 metastatic samples. Mutational signature analysis 

revealed 14 distinct single base substitution (SBS) mutational signatures in these genomes, 

SBS17b/a were most prevalent and presented early in Barrett’s. Traces of BER (SBS30), 

MMR(SBS44) and colibactin associated signature (SBS41) were uncovered for the first time, 

as well as a platinum signature (SBS35). Mostly signatures increased in their proportions from 

Barrett’s to invasive tumours and further in metastasis. SBS17 showed strong bias towards 

untranscribed and lagging strands. Nucleosome periodicity patterns were similar across the 

stages and SNVs were enriched in the inward facing minor groove suggesting a common 

mutational process throughout the disease evolution. Evaluation of evolutionary bottlenecks 

uncover a distinct SBS17b shift, with a decrease sub-clonally in Barrett’s, OACs and metastasis 

and this was by far the most dominant signal during OAC evolution. Clinical risk factors 

including alcohol, smoking and NSAIDs were positively correlated with signature proportions. 

APOBEC and colibactin processes were informative for Barrett’s and OAC classification, 

suggesting a role in transformation, and the BER signature (SBS30) was most prognostic in 

our cohort. Given that signatures have the potential to be clinically informative, a novel cost-

effective DNA sequencing method to extract mutational signatures from archival FFPE tissues 

was developed successfully. Computational simulations on pan-cancer WGS and an 

experimental confirmation of the method showed very good concordance and mirrored the 

WGS-derived signatures (cosine similarity >0.9%). It is hoped that this work will pave the way 

for further studies to understand how mutations are laid down and determine their clinical 

application. 
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1.Introduction 
    

   1.1 Cancer is a “Disease of Genome” 

Cancer is a complex disease characterized by alterations in DNA. The transforming role of 

such alterations (mutations) has been under investigation since these were first reported 

in the HRAS gene (G>T in codon 12)1. With this discovery, the central focus of cancer 

research was to identify cancer associated genes with mutations that cause or “drive” the 

cancer. The COSMIC cancer gene census (CGC) has curated approximately 719 of 22,000 

(3.2%) coding genes to be associated with cancer and mutations in these genes have also 

shown to be relevant in disease progression2,3.  

Advent of next generation sequencing technologies has enabled sequencing of whole 

cancer genomes4,5; including both non-coding  (introns) as well as coding regions (exons). 

Sequencing has thus helped to catalogue and better understand the role of different types 

of mutations in genome, such as single nucleotide variants (SNVs), small insertions and 

deletions terms indels, large scale or structural rearrangements and DNA copy number 

changes6,7,8,4 . 
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1.2 The concept of mutational signatures in human cancers 

Non-inherited or somatic mutations are acquired throughout the life-time of an individual. 

It has therefore been important to distinguish between driver mutations that are involved 

in cancer progression, compared with inconsequential mutations associated with ageing 

termed “passenger mutations”. Mutations in general accumulate over time as a result of 

exposure to various endogenous and exogenous mutational processes such as defective 

DNA repair, replication errors, strand asymmetries and exogenous mutagens like UV, 

tobacco, alcohol and other chemical carcinogens2,4,9,10. However, sometimes it can be 

difficult to distinguish between passenger and driver mutations. 

Exposure to different DNA damaging processes leaves a unique array of mutations called 

“mutational signatures”11. The number of mutations, termed the mutation burden, is 

generally linked to the length of exposure to a specific mutagen. Each mutational process, 

either from endogenous or exogenous processes, will have its own mutational pattern or 

foot print that is so specific that it is possible to decipher the events causing them12 . The 

final mutational profile of a clinically discernible tumour is complex as it is derived from 

various mutational profiles accumulated during the life-history of the cancer. Thus the 

cancer genome can be thought of as an archaeological record of multiple mutational 

processes 13(Fig 1.1). 
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Figure 1.1: Mutational Processes during the phases of Cancer: Events A,B,C and D are the 

mutational processes. Event A can be due to deamination of methyl cytosines a life time 

event. B may be due to unknown mutational process(T>G at CTT), C can represent the 

defective mismatch repair like signatures. Where D can be due exposure to aristolochic acid. 

(Adapted from Serena Nik Zainal et al 2017)14  
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Single Nucleotide Variants(SNVs) can be categorized into six possible substitutions C>A, C>G, 

C>T, T>A, T>C, T>G. From a statistical perspective the mutational patterns can be best 

described when considering not only the individual base substitution but also the base on 

either side, the so called trinucleotide context11,15. Since, Crick pairing occurs there are 

therefore 96 possible combinations when a pyrimidine is mutated within its trinucleotide 

context (Figure 1.2). The proportion of substitutions within a given trinucleotide context can 

be quantified to determine the most prevalent mutational signatures within different cancer 

types9,11,15. 

 

    
Figure 1.2: Representative SBS mutational portrait : Trinucleotide mutational portrait in 

96 base substitution context(x-axis) (six pyrimidine base substitutions labelled on top of 

the figure and their flanking bases shown on x-axis) and their proportions (y-axis) 

observed in an oesophageal adenocarcinoma (OAC) patient. Plot was generated using 

Mutational patterns package in R16. 
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1.3 A comprehensive catalogue of signatures of mutational processes in 

human cancers: 

The concept of mutational signatures was proposed in 2012 and reported initially from 21 

breast cancer cases9. Alexandrov et al have developed an algorithm based on non-negative 

matrix factorization (NMF) and identified 21 to 30 signatures11. Recently, the extensive 

efforts from the International Cancer Genome Consortium-Pan Cancer Analysis of Whole 

Genomes Network (PCAWG), released a substantial analysis of 4,645 whole genomes and 

19,184 exomes across 23,829 cancer samples15. Mutational signatures were updated to 47 

single base substitution (SBS) signatures in the COSMIC mutational signatures database17. 

The aetiology of these signatures is known for some, but the majority remain unknown. 

Some of these are associated with endogenous and exogenous exposures like, age, APOBEC 

enzyme activity, Homologous Recombination-associated DNA repair (BRCA), Ultraviolet 

light exposure, smoking and others (Table 1.1). 
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SBS 
Signature 

Predominant 
feature Associated mutational process Cancer types 

1 C>T at CpG Deamination of 5 methyl-cytosine 
(age associated) In most of cancers 

2 C>T at TpCpN APOBEC related Common in cervical and 
Bladder cancers 

3  HR deficient/BRAC1, BRCA2 mutation Breast, Ovarian and 
Pancreatic cancers 

4 C>A Tobacco smoking Head & neck,liver,lung 
and Oesophageal cancers 

5 T>C Uncertain (age associated) In most of cancers 

6 C>T (and C>A and 
T>C) MMR deficient Colorectal &Uterine 

cancers 

7a C>T at TCT 

UV Skin, Head & neck cancers 
7b C>T at CCC 
7c T>A/T>C at TTT 
7d T>C at GTT) 

8 C>A amplified by HR deficiency? Breast and 
medulloblastoma 

9  Polymease h activity 
Leukaemias & 
Lymphomas 

10a C>A  
POLE e mutation 

Colorectal &Uterine 
cancers 10b C>T 

11 C>T Temozolomide treatment Melanoma & 
Glioblastoma 

12 T>C Unknown Liver cancer 

13 C>G at TpCpN APOBEC related Cervical & bladder cancers 

14 C>A and C>T POLE mutataion and MMR deficient Uterine cancers 
15 C>T MMR deficient Stomach cancers 
16 T>C at ATA Unknown Liver cancers 

17a T>G at CTT 
Unknown 

Oesophageal, stomach, 
breast, liver, lung & 

melanoma 17b T>C at CTT 

18 C>A ROS/loss of OGG1 Neuroblastoma &Stomach 
cancers 

19 C>T Unknown Pilocytic astrocytoma 

20 C>A (and C>T and 
T>C) POLD1 mutation/ MMR deficient Stomach & breast cancers 

21 T>C at GTA MMR deficient Stomach cancer 

22 T>A at CTG Aristolochic acid exposure Urothelial and liver 
cancers 

23 C>T Unknown Liver cancer 
24 C>A Aflatoxin exposure Liver cancer 

25 C>A Chemotherapy Hodgkin lymphomas 
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Table 1.1: Summary of COSMIC SBS signatures with prominent single base substitution type, 

their associated mutational process and the cancers in which these signatures were 

commonly reported11,15,17. 

Besides SBS signatures, other base substitution signatures such as 11 double base 

substitutions (DBS), and 17 small insertion and deletion signatures (ID) were reported in a 

recent update on pan-cancer data on behalf of International Cancer Genome Consortium 

(ICGC)15. Mutational signatures were also extended to large genomic rearrangements and 

copy number types, for example 6 rearrangement signatures were first reported in breast 

26 T>C MMR deficient Breast, cervical, stomach 
& Uterine carcinoma 

28 T>G at TTT Unknown Stomach cancers 

29 C>A Tobacco chewing Gingivo-buccal oral 
squamous cell carcinoma 

30 C>T Defective base excision repair-NTHL1 
mutation Breast cancers 

31 C>T at CCC Platinum Chemotherapy  Liver and Pancreatic 
cancer 

32 C>T Azathioprine Head SCC and Biliary 
Adenocarcinoma 

33 T>C at TTG Unknown Cervix, prostate and Head 
SCC 

34 T>A Unknown Oesophageal, Stomach 
and Breast cancers 

35  Platinum Chemotherapy Biliary Adenocarcinoma 
and Liver HCC 

36 C>A BER/ MUTYH mutation Oesophageal SCC and Skin 
melanoma 

37  Unknown Colorectal and liver 
cancers 

38 C>A UV? Skin melanoma 
39 C>G Unknown Breast cancers 
40  Age? Ubiquitous 
41 T>A/T>G Unknown Breast and Kidney cancers 

42 C>A/C>T Haloalkanes Biliary adenocarcinoma 

44  MMR deficient 
Oesophageal, colorectal 

and Uterus 
adenocarcinoma 
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cancers18 and 7 copy number signatures in ovarian carcinomas19. SBS type mutational 

signatures have been more extensively studied to understand the underlying  mutational 

events in cancer compared to other mutational signature types as their interpretation and 

validation in experimental models are less complex20,10,18,21–24. 

For Single Base Substitutions(SBS) signatures, analysis is generally performed according to 

six subtypes (C>A, C>G, C>T, T>A, T>C, T>G) in a trinucleotide context giving 96 classes as 

previously described11,15. In another classification, when two flanking bases at 5’ and 3’ of 

the mutated base are considered, it will lead to 1536 subclasses. Small indels are considered 

when a single base like a C or T is deleted or inserted in a mononucleotide repeat stretch. 

The length of the repeats in the vicinity of mutation are also considered and 83 subtypes are 

thus derived. 

Non-negative factorization (NMF) based methods have been adapted for analysis. One such 

approach is SigProfiler11,15, which was also used in the COSMIC signature analysis and the 

other was based on a Bayesian variant of NMF called Signature Analyzer25,26,27,15. Both of the 

methods perform consistently with little difference in the number of signatures extracted. 

Fifty-two composite signatures have also been extracted taking together the mutation 

catalogues of SBS, DBS and IDs into 257 subclasses. For example, SBS4, DBS2(CC>AA) and 

ID3(delC at short runs of cytosine) have been found in lung cancers suggesting exposure to 

tobacco. In breast and ovarian cancers SBS3 and ID6 combined with ID8 have been 

identified. These are associated with defects in homologous recombination. 

 

Rearrangement Signatures have been reported in a breast cancer cohort of 560 cases18. The 

deletions, inversions, tandem duplications and translocations were studied in 32 subclasses 

based on the length of these rearrangements. Usually the rearrangements were present 
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clustered in a region such as at the zone of gene amplification. When this information was 

also considered, and rearrangements were categorised as clustered or non-clustered, six 

such rearrangement signatures were reported18(Table 1.2).  

 

1.4 Genomic Features and associated mutational events  

Mutational processes in the genome are influenced by cellular mechanisms such as DNA 

replication and transcription. Therefore, the distribution of mutations contributing to the 

signatures are varied. For example, replication timing plays a role i.e, some of these 

mutations aggregate in late or early replicating regions. Transcription strand bias is also 

observed, whereby the mutations are distributed on the transcribed or untranscribed 

strands preferentially28,29,30,11. In general, studies have shown that, substitutions are 

associated with late replicating regions with some transcription strand bias and 

rearrangements have generally been linked  to early replicating regions in the cancer 

genomes (Table 1.2). These methods could help to shed some light on mechanistic links 

and may lead to discovery of  the possible aetiology associated with the genomic 

distribution of mutation classes with replication and transcription changes31,32,28 (Table 

1.2). 
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Mutational 
signature 

Predominant 
features of 
signature 

Associated 
mutational 

process 

Transcriptional 
strand 

Replicative 
strand 

Replication 
time 

Chromatin 
organization 

Single Base substitution mutational signatures 

1 C>T at CpG 

Deamination 
of methyl-

cytosine (age 
associated) 

 Some bias Enriched 
late 

 

5 T>C 
Uncertain 

(age 
associated) 

Some bias Some bias Enriched 
late 

Slight enrichment 
at linker 

2 C>T at TpCpN APOBEC 
related Some bias 

Strong 
lagging 

strand bias 

Enriched 
late 

 

13 C>G at TpCpN APOBEC 
related Some bias 

Strong 
lagging 

strand bias 
Flat  

6 C>T (and C>A 
and T>C) 

MMR 
deficient 

 Some bias Flat  

20 C>A (and C>T 
and T>C) 

MMR 
deficient 

 Some bias Enriched 
late 

 

26 T>C MMR 
deficient Some bias Strong bias Enriched 

late Enriched at linker 

3  HR deficient Some bias Some bias Enriched 
late 

 

8 C>A 
amplified by 

HR 
deficiency? 

Some bias  Enriched 
late 

 

18 C>A ROS? Some bias Some bias Enriched 
late 

Enriched at 
nucleosomes and 

periodic 

17 T>G Uncertain  Some bias Enriched 
late 

Enriched at 
nucleosomes and 

periodic 
30 C>T Uncertain   Flat  

Rearrangement signatures 

RS1 
Large tandem 
duplications 

(>100 kb) 

Uncertain 
type of HR 
deficiency? 

NA NA Enriched 
early 

 

RS2 Dispersed 
translocations 

 NA NA Enriched 
early 

 

RS3 
Small tandem 
duplications 

(<10 kb) 

HR deficiency 
(BRCA1) NA NA Enriched 

early 
 

RS4 Clustered 
translocations 

 NA NA Enriched 
early 

 

RS5 Deletions HR deficient NA NA Enriched 
early 

 

RS6 Other clustered 
rearrangements 

 NA NA Enriched 
early 

 

Repeat-
med 

<3 bp indel at 
polynucleotide 

repeat tract 

amplified 
when MMR 

deficient 
NA NA Enriched 

late 
Enriched at linker 

and periodic 

Microhom 

≥3 bp indel with 
microhomology 
at breakpoint 

junction 

HR deficient NA NA Enriched 
late 
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Table 1.2: Summary of single base substitution signatures and rearrangement 
signature associated with genomic features in breast cancers (Modified from Nik-
Zainal et al 201618,28). 
 

Distribution of SNVs across the regulatory regions of the genome provides hints of possible 

mutational processes linked to them. For example, a study of nucleosome periodicity in 

human cancers33 shows how the somatic mutation rate exhibits a unique 10bp periodicity 

within nucleosomes, which follows the alternation of DNA minor groove facing toward and 

away from the histones. Mutational events govern the phase and strength of the mutation 

rate periodicity(Figure 1.3). 

                              
 

Figure 1.3: Nucleosome periodicity: Mutation Rate Periodicity between Minor-In and 

Minor-Out Nucleosome-Covered DNA Stretches (Adapted from Pich et al 201833) 

A consistent 10bps periodicity patterns is followed between minor and major DNA 

grooves. 
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    1.5 DNA damage as a result of exogenous exposures and impairment of 

endogenous processes 

   Mutational signatures are the consequences or result of specific DNA damaging 

exogenous exposure and impairment in associated repair pathways, which are critical in 

shaping the mutational signatures (Table 1.3). 

 

DNA damage 
Mutational Process 
(DNA repair pathway) 

Mutational 
Signatures 

C:G>T:A at methylated  CpGs 
Correlates with age 

Replicative 
polymerases(Deamination) 1A 

APOBEC editing 

Base excision repair with A-
rule or with excess of 
deoxycytidyl transferease 
 (REV1)? 2,13 

UV radiation on pyridimines 
and dipyrimidines Transcription coupled repair 7 

Temozolomide induced 
O6-methyl-guanine lesions 

Direct repair using 
methylguanine DNA 
methyltransferease 11 

Benzo[a]pyrene 
(B[a]P)adducts on guanine Transcription coupled repair 4 
Aflatoxin adducts on guanine Transcription coupled repair 24 
Aristolochic acid (AA) adducts 
on adenine Transcription coupled repair 22 
Natural errors Mismatch repair pathway 6,20 
Natural errors Defective DNA polymerase e 10 

 
Table 1.3: Examples of some endogenous and exogenous mutagen induced DNA damage 

their affected repair pathway and associated mutational signatures. 

 
In order to more precisely understand the interaction between exposures and repair 

processes a detailed study of 79 environmental agents exposed to iPSCs (Human induced 

Pluripotent Stem Cells), were reported recently. Forty one out of fifty three (41/53) agents 

generated stable SBS signatures with a good cosine similarity with the COSMIC mutational 

signatures34 (Table 1.4), suggesting that the extent/dose of exposure to a mutagen, cell type 
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and their DNA repair efficiency may contribute towards generation of specific mutations. 

Also, mutational signatures may be an outcome of combined exposures, or the model 

system may not recapitulate the in vivo physiology.  

 
Environmental 
Agent 

Dose Category Mutational Signature 
(Cosine similarity) 

Ellipticine 0.375uM 

Drug therapy 

8(0.83) 

Temozolomide 200uM 12(0.83),21(0.83),26(0.89) 

Mechlorethamine 
(nitrogen mustard) 0.3uM 30(0.8) 

6-Nitrochrysene 12.5uM Nitro-PAHs 16(0.8) 

Aristolochic acid I 1.25uM 

others 

22(0.99) 

3-Chloro-4-(di-
chloromethyl)-5 
hydroxy-2(5H)-

furanone 

7uM 24(0.8) 

AZD7762(CHK 
inhibitor) 1.625uM 

DNA Damage 
response 
inhibitor 

25(0.82) 

N-methyl-N-
nitrosourea (MNU) 350uM Alkylating 

agent 26(0.87) 

Simulated Solar 
Radiation 1.25J Radiation 7(0.94), 11(0.83) 

 
Table 1.4: Representative environmental agents from different categories associated 

with stable SBS mutational signatures. 

 

The study of mutational signatures in a disease helps to understand the history of 

mutational events that lead to precise DNA damage. These insights can help discover 

biomarkers for diagnostics, stratification, and potential targets for therapeutics. There are 

some cancer types such Oesophageal adenocarcinoma (OAC) with poor survival and limited 

therapy options. OAC is characterised by a high mutational burden35,36 and is a good 

example for mutational signature based study approaches. 
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1.6 An ideal model for studying mutational signatures in cancer evolution is 

Barrett’s and Oesophageal adenocarcinoma: Epidemiology and clinical 

pathology 

Oesophageal cancer has two major subtypes, squamous cell carcinoma (ESCC) and 

adenocarcinoma (OAC). It is the sixth most common cause of death and eighth most 

frequent cancer type worldwide37. The ESCC subtype accounts for about ~90% cases globally 

and OAC of about ~10% with higher mortality rates than squamous cell carcinoma38. 

However, in the western world the incidence of OAC has increased 6-fold in the last 30 years 

and it is now the most common form of oesophageal cancer in white men and women in 

the UK, USA and Australia as well as in some parts of Europe. 

Oesophageal cancer including OAC tends to present at a late stage when metastases have 

already occurred leading to poor survival, with a median overall survival of less than a year39. 

The disease tends to occur in older age, being most commonly diagnosed in individuals in 

their late 60s with a median age of 67 years.  For OAC,  race and sex are also risk factors such 

that white males are at higher risk than black women which is different for ESCC where Black 

and Asian men are more prone to the disease 40,41. Common environmental risk factors are 

chronic  gastro-oesophageal  reflux disease (GERD), smoking and obesity41,42. These risk 

factors usually act over a long period of time during the genesis of the tumour and may have 

a substantial and unique influence on the development and progression of the disease for an 

individual patient. As these lifestyle exposures will leave a footprint on the genome these 

changes can be helpful to understand how the cancer developed and may even have clinical 

utility11. Although mainly linked with environmental factors, there is likely also a contribution 



 
 

34 

from germline predisposition in view of the clustering in some families and association of 

germline SNPs43.  

OAC is commonly preceded by Barrett’s Oesophagus (BE) which is a metaplastic precancerous 

stage, with 0.12% to 0.5% progression per year to oesophageal adenocarcinoma44. Multistage 

progression from Barrett’s to low grade dysplasia, high grade dysplasia and adenocarcinoma 

makes this disease an ideal study model to delineate the mechanisms causing the 

transformation from a precancerous lesion to OAC.  
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1.7 Somatic mutational signatures in Oesophageal adenocarcinoma (OAC) 

Previously our laboratory has reported six commonly observed SBS signatures in an OAC 

cohort of 129 cases35(Figure 1.4). Signature 17 (T>G, at CTT) was found in more than half of 

the cohort (53.3%). Signature 17 was reported as two subtypes. S17a with T>C substitutions 

in the CTT context and another S17b with T>G in the same context. The other signatures 

identified were: aging associated signature 1, reactive oxygen species linked signature 18, 

homologous recombination (HR) deficient associated signature 3 and APOBEC related 

signature 2. In this previous study the mutational signatures were used to classify the cohort 

into three molecular subtypes. The most prevalent of the three is the mutagenic subtype 

with T>G substitutions, signature 17. A homologous repair deficient, signature 3 (BRCA 

signature subtype) and age-related C>A/T molecular patterns-signature 1. The recent 

PCAWG mutational signature analysis with 97 OACs showed similar signatures with 

additional new signatures such as single base substitution signature SBS40, a double base 

substitution signature DBS8 and indel signatures ID1 and ID2 with unknown aetiologies45. 
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Figure 1.4: Predominant Mutational signatures in OAC: Six Single Base Substitution 

signatures were reported in 129 OACs (Adapted from Secrier et al 2016 35) 

 

1.8 Mutational signatures in the evolution of a tumour. 

The evolution of a cancer can be traced by studying the somatic mutations acquired in normal 

and precancerous tissues in molecular time and space. A few of the somatic mutations are 

subject to selective pressures which initiate sustained clonal expansions (driver events). 

These clonal expansions further divide into sub-clonal expansions, when exposed to different 

mutagenic events or selection pressures and this cascade continues with accumulation of 

exposure specific somatic mutations, encrypting patterns of DNA damage in the genome. It is 

thought that this sequence of events leads to genome instability and tumour 

transformation46,47,9,48.  

Positive selection of a mutation will reduce the variability in the mutation profile which is 

called a selective sweep. Thus, the mutation is shared in all cells of the clone. This mutation 
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emerges as a common ancestor during evolution. So, the phylogenetic tree of these events 

can be built computationally by considering mutations before and after the common 

ancestor. Recently mathematical algorithms have been designed for investigating the clonal 

history of mutational signatures in a cancer genome9,20,49,50,51. This knowledge of clonal 

evolution of mutational signatures will help understand the early and late events in the 

tumour progression. These methods can be used to study the evolution of mutational 

signatures from Barrett’s to OAC. 

Previously our laboratory has reported whole genome sequencing analysis of 23 Barrett’s and 

OAC pairs48. The single nucleotide variants (SNVs) were categorised based on the degree to 

which mutations overlapped or were shared into early (present in BE and OAC) and late SNVs 

(OAC only). A particular pattern driven by A:T>C:G at AAG context was shared between 

Barrett’s and OAC. Presence of such unique and shared patterns suggests a common 

mutagenic-processes active in the tumourigenesis48,52. Also, the differences between these 

two states were driven by A>C at CAC; C>G at CCG; A>T at CAC and C>G at TCA trinucleotide 

contexts (Figure 1.5). However, a further detailed analysis of clonal dynamics of mutational 

signatures during development of OAC from Barrett’s in much larger cohort will help better 

understand the disease progression.  
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Figure 1.5:  Shared and Unique SNVs between Barrett’s with OACs : Summary of frequency 

of specific SNVs at all possible trinucleotide contexts (adapted from Ross-Innes C.S et al 

201548). 

 

1.9 SBS 17 (T>G/C transversions at CTT trinucleotide context) in Oesophageal 

adenocarcinoma. 

Signature 17 is characterised by T>G transversions at CTT tri nucleotide context. It 

predominates in almost half of the OAC cohort (53.3%), and is also observed early in the 

disease in Barrett’s oesophagus35,48. The aetiology of this signature is poorly understood. 
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Understanding the possible causes of Signature 17 will likely help understanding how this 

cancer type arises and possibly inform sub-classification and options for cancer prevention 

strategies.  

Signature 17 has been reported to be associated with some genomic features, including a bias 

towards the lagging strand and to be linked to late replicating DNA, where there are possible 

chances of replication-based errors which might have contributed to the mutations. There is 

also  bias towards the  untranscribed strand, suggesting impaired transcription coupled repair 

(TCR)29. 

Nucleosome periodicity patterns shows that Signature 17 occurs on the DNA groove facing 

towards the nucleosome suggesting a possible endogenous mutational process involvement 

in generation of these SNVs53. 

Chemotherapy with 5-Fluro Uracil (5-FU) treatment in tumours has also been associated with 

signature 17. These T>G substitutions were studied in metastatic tumours and in studies on 

chemotherapeutic exposure to Capecitabine (a 5FU derivative) in a Leshmania model24and 

5FU exposure in intestinal organoids54. However, we have also reported that signature 17 is 

also observed in chemo-naïve tumours35. 

Since acid reflux is the most clearly defined risk factor for OAC, this signature has been dubbed 

the “acid signature” though this has not been causally proven. The role of gastro-oesophageal 

acid reflux is thought to be important in causing oxidative DNA damage. It has been suggested 

that reactive oxygen species (ROS) results in oxidation of the nucleotide pool and their mis-

incorporation during replication55,56. Oxidation of Guanines is abundantly observed in 

dysplastic Barrett’s cells and on incubation of Barrett’s tissue with a cocktail mimicking bile 

acid 57,58,59. The oxidation of Guanines in the double helical DNA strands will lead to 8-oxo-

Guanine, and in the nucleotide pool will alter dGTP to 8-oxo-dGTP. For example, the 
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mutagenicity of 8-oxo-Guanine in DNA has been shown to cause C>A substitutions upon 

mispairing with Adenine during replication in E.coli100. Recently, chemical induction of ROS by 

Peroxynitrite and Potassium bromate in human iPSCs resulted in signature 18 like C>A 

substitutions34. Mis-incorporation of dGTP during replication by Translesion DNA 

polymerases will cause T>G transversions, as reported in HEK cells60,61,62,63,64.  

DNA base excision repair pathway enzymes such DNA glycosylases (OGG1 and MUTYH) 

prevent the mispairing. OGG1 prevent 8-oxoG to A mispairing and corrects to G to C pairing. 

The mispairing of 8-oxo-dGTP has been shown to reduce in the absence of MUTYH and cause 

C>A mutations64.  Recently CRISPR-Cas9 based biallelic knockouts of DNA repair genes such 

as OGG1 and MUTYH resulted in G>T patterns at TGC>TTC, which is the mutational signature 

18 associated with reactive oxygen species22. So, T>G at CTT substitutions might be caused by 

a combination of endogenous and exogenous factors. 

 

1.10 Mutational Signatures detection in the Clinic. 

Stratification of patients based on mutational subgroups may help to tailor therapies to 

improve survival65. As discussed, our laboratory has reported three subtypes in an OAC 

cohort of 129 patients35. However, application of high-depth WGS for signature-based 

patient classification for clinical use would be expensive. Furthermore, performing this in 

fresh frozen samples would present some logistical challenges due to the infrastructure 

required and since clinical practice currently relies on FFPE tissues. Therefore, a cost 

effective sequencing assay that could be readily applied to formalin fixed paraffin 

embedded tissues would be a major advance. 

 A few different computational algorithms are being developed to identify signatures. 

These include a method  based  on a lasso   logistic   regression   model   called   HR- detect   
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that was   reported   to   identify   BRCA signatures and MMR detect for micro satellite 

instability in tumours66,22. Also, an algorithm based on multivariate analysis of signatures 

using the targeted panel data called SigMA is also developed67. These algorithms are 

dependent on WGS/targeted panel data and are not a cost-effective alternative solution 

for screening in larger cohorts. 

The low coverage methods such as 10x sequencing are mostly used to detect copy number 

variations and single nucleotide polymorphisms (SNPs). Due to the low coverage this 

method is most likely to detect only mutations with high variant allele frequencies.  

Exome sequencing is mostly used to identify SNVs that might disrupt gene function. It has 

been argued that the SNV frequencies in coding regions differ quite dramatically compared 

to the whole genome, possibly due to transcription-coupled repair. This might introduce a 

bias in the estimation of the exposure.  

A method called reduced representative sequencing (RRS), also called genotyping by 

sequencing, uses restriction enzymes and a size selection step to target the sequencing 

power to random but reproducible set of regions in the genome. It is currently mostly used 

as part of a protocol for DNA methylation analysis and for SNP detection. This protocol 

offers the flexibility to choose which regions to sequence and the choice becomes a trade-

off between sequencing as little of the genome as possible but covering as many SNVs as 

possible. It has the potential to circumvent the drawbacks of the other two methods in 

estimating the exposures (proportion of SNVs contributing for a signature) of the 

signatures. However, the resulting data might offer only a coarse picture of driver 

mutations in genes or CNVs. RRS is also referred to as restriction-site-associated DNA 

sequencing (RAD-Seq). There are several RAD Seq modified assays which were developed 

for SNP genotyping and phylogenetic analysis in plants and amphibians (Table 1.5)68,69. 
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Protocols  
No. of 

enzyme
s 

Cut 
frequency 

Shearing 
required 

Size 
selection 

Library prep 
time 

&required 
expertise 

Subsequent 
library cost 
per sample 

ezRAD 
(Any restriction 
enzyme based 

RAD seq)70 

1 or 
more Frequent No Yes Low Moderate 

RAD tags 
(Restriction site 
associated DNA 
Sequencing)71 

1 Rare Yes Yes High Low 

GBS 
(Genotyping by 
Sequencing)72 

1 Rare or 
frequent No No Moderate Moderate to 

very low 
2-enzymeGBS 

(Genotyping by 
Sequencing 

involving two 
restriction 
enzymes)73 

2 Rare 
+ frequent No No Moderate Moderate to 

very low 

ddRAD 
(double digest 

RAD seq)74 
2 Frequent No Yes Moderate Very low 

2b-RAD 
(Use of typeIIB 

restriction 
enzymes)75 

1 Frequent No No Moderate Low 

 

Table 1.5: Summary of Various RAD protocols for reduced representative sequencing. 
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Hypothesis: 

For my PhD study I hypothesised that a more in-depth characterisation of the mutational 

signatures in a larger cohort of oesophageal adenocarcinoma cases, with addition of pre-

malignant samples from Barrett’s oesophagus and more advanced metastatic lesions will 

provide additional insights into the evolution and aetiology of this cancer with relevance to 

clinical management. Further, development of a cost-effective sequencing assay for 

ascertaining of mutational signatures from FFPE material will improve clinical applicability 

with potential to improve patient stratification strategies for prognosis and therapy in 

oesophageal adenocarcinoma.  
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Aims 
 
 
Aim1: Comprehensive analysis of mutational processes in Barrett’s, OAC and 

Metastasis. 

This aim comprises several sub-aims: 

- To characterize mutational signatures in the cohort of OACs, Barrett’s and Metastasis; 

- To determine the clonal evolution and timing of mutational signatures; 

- To perform an analysis of genomic features including transcription, replication strand 

biases and nucleosome periodicity; 

- To define the clinical characteristics and their possible associations with Barrett’s and 

OAC mutational signatures. 

  

Aim2: To develop a robust, cost-effective assay to identify mutational 

signatures from clinical samples (mutREAD) with application to formalin fixed 

and paraffin embedded samples. 

 

Aim3 : To validate mutREAD in additional OACs ( 25 Cases with matched biopsy 

and resection tumours as available). 
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2.Methods 
 

2.1 Study cohort 

A cohort was assembled comprising 161 Barrett’s, 777 OACs and 59 metastatic samples that 

had been collected through a multicentre UK wide study called OCCAMS (Oesophageal Cancer 

Classification And Molecular Stratification) and which have undergone whole genome 

sequencing (WGS) as part of the ICGC-International Cancer Genome Consortium. The study 

was approved by the Institutional ethics committee (REC 07/H0305/52 and 10/H0305/1) and 

included individual informed consent. I have also included 228/777 OACs from Mutograph 

project. Clinical data for tumours from Mutographs project is incomplete and is being 

collected (Figure 2.1). The samples from Barrett’s and OAC’s were procured from different 

patients as available, some of these are pairs (Barrett’s-OACs) from the same patient. 

Metastasis samples were collected as available from OAC patients. A sample from the 

Barrett/tumour/metastatic sample was always matched with a germline reference, which 

was ideally matched blood or if not available normal squamous oesophagus as far away from 

the tumour as possible (at least 5cm) collected during surgical resection or at endoscopy. All 

samples were snap-frozen.  

Prior to sequencing a systematic pathological review was performed by a Consultant 

Histopathologist to check the cellularity of the tumour samples using hematoxylin-and eosin-

stained sections, and only samples with >70% cellularity were included. DNA was extracted 

from frozen tumours using the Allprep DNA/RNA mini kit (Qiagen, Hilden Germany) and DNA 

from blood was isolated using QIAmp DNA blood maxi kit (Qiagen, Hilden Germany).  
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Figure 2.1: Consort diagram of the cohort: Overview of the study cohort describing details of 
number of samples, their respective studies, tissue type and clinical data availability. 
 

2.2 Whole genome sequencing and mutation calling 

100bp paired-end Whole Genome Sequencing(WGS) at 50X depth for tumours and 30X for 

matched normal (blood) was performed under contract by Illumina (San Diego,US) as part of 

the International Cancer Genome Consortium. Quality checks were performed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and in-house tools.  

For mutation calling, sequencing reads were aligned against the reference genome 

(hg19/Ensembl GRCh37) using the latest version of Burrows-Wheeler alignment algorithm, 

BWA-MEM. Aligned reads were then sorted into genome coordinate order and duplicate 

Tissue typeStudyCohort

n=997

OCCAMS
n=769

Barrett’s
n=116

Barrett’s with matched OAC
Barrett’s(n=45)

OAC(n=45)

OAC
N=500

Metastases
N=59

Mutographs
n=228

OAC
N=228

Clinical data

OCCAM
S: Annotated

Mutographs:
Data collection

in process

Metastases site
Liver(n=3)
Lung(n=1)

Pancreas(n=1)
Adrenal(n=1)
Serosal(n=1)
Nodal(n=52)

Tissue type

Matched OAC
n=4
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reads were removed by using Picard (http://broadinstitute.github.io/picard). Strelka 1.0.13 

software (Saunders 2012) was used for calling single nucleotide variants and Indels. 

Functional annotation of the resulting variants was performed using Variant Effect Predictor 

(VEP release 75). 

 

2.3 Mutational signature discovery 

Mutational signature discovery in the cohort was performed using SigProfilerExtractor 76. The 

optimal signature configuration in the cohort was selected from a range of signature 

combinations from 5 to 17 based on the highest stability and lowest Frobenius reconstruction 

error for a signature combination.  A total of 14 signatures were identified as the optimal 

configuration, and this was confirmed by independent analysis using the Bayesian 

methodology from Sigminer77. Once the main mutational processes in the cohort were 

defined, we used deconstructSigs 78 to infer the mutational contributions of these processes 

to each sample. 

 

2.4 Transcription/Replication strand bias: 

The MutationalPatterns package was used to map the SNVs to either the transcribed or 

untranscribed strand. Likewise for replication bias, SNVs were assigned to lagging or leading 

strands. Non negative matrix factorization (NMF) was performed on the matrix of annotated 

SNVs to respective strands and mutational signatures and their asymmetry was examined16. 
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2.5 Nucleosome periodicity  

This part of analysis was performed in collaboration with Nuria Lopez-Bigas laboratory at 

Institute for Research in Biomedicine(IRB) Barcelona, using methodology adapted from their 

previous study (Pich O et al 2018)53.   

In brief, the nucleosome positioning was obtained from the MNase Seq data (Gaffney.D J et 

al 2012)79 and mapped to human reference genome. Phasing annotations for minor groove 

facing histones or away was obtained from (Cui.F and Zhurkin.U B et al 2010)80. Somatic 

mutations from the WGS data were mapped to the nucleosome positions and periodicity of 

change in mutation rate was calculated and plotted as described in (Pich.O et al 2018)53.  

  

2.6 Mutation clonality and timing analysis 

To infer subclonality of mutations and mutational processes, first the likelihood for any 

sample containing subclonality was assessed on the distribution of purity-corrected variant 

allele frequencies, using the Hartigan’s dip test81. Samples with no significant evidence of 

deviation from unimodal distribution were deemed as fully clonal. The remaining samples 

were assumed to contain subclones.  

Next, MutationTimer50 was used to infer the timing (early/late) of every mutation called in 

each genome as follows: for samples that were assumed to be fully clonal, MutationTimer 

was ran with default parameters (minimal read support = 3, 0 dispersion) and 100 bootstrap 

iterations; for samples with evidence of subclonality, MutationTimer was ran with modified 

input specifying the expected subclonal proportions (calculated from a Gaussian mixture 
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model with two components) and inferred both the clonality and timing of mutations. In both 

cases, the analysis was performed in a whole-genome doubling conscious manner. 

We then used the MutationTimer results to split the mutations into clonal/subclonal and 

early/late and performed mutational signature inference using deconstructSigs78 again on 

these separate populations. This allowed me to infer a time and clonality-depedent 

mutational prevalence of various signatures. 

Finally, we corroborated the clonal composition results using TrackSig51, which identifies 

cancer cell fraction bottlenecks where mutational signature proportions change. The cases 

where we observed at least one bottleneck were in agreement with cases where we observed 

subclonality using the approaches described above. 

 

2.7 DDR signature discovery 

To uncover signatures with DDR impairment in the cohort, we examined nonsynonymous 

mutations accumulated in >500 genes across 13 DDR pathways as described in Theo A et al. 

2018 82. We employed NMF via the NMF package83 in R to extract patterns of mutations 

accumulated in these pathways based on the following features: total mutation count per 

pathway per sample, total number of clonal/subclonal mutations and total number of 

early/late mutations. The optimal number of signatures in the cohort (5) was chosen based 

on the cophenetic coefficient statistic. 

 

2.8 Positive selection 

Groups were defined based on mutational signature dominance, as follows: samples where 

S17a+S17b contributed the majority of mutations in a sample were classed as “S17 
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dominant”; the rest of the samples were categorised as “Other dominance”. The dndscv tool84 

was run separately on samples from the individual groups in order to infer genes that were 

under positive selection in the respective group. Finally, genes under positive selection were 

compared between the groups with/without dominance of a particular mutational signature, 

and common as well as specifically selected genes were extracted. Among these, cancer 

driver genes were identified by cross-referencing against the COSMIC Cancer Gene Census 

database3. For genes which had not previously been documented as cancer drivers, we used 

the GTeX database85 to confirm their expression in oesophageal/gastric tissue. Olfactory 

receptors were discarded from the analysis as they are believed to be spurious hits. 

 

2.9 Machine learning for OAC stage classification 

We used a gradient boost classifier as implemented by the xgboost package(Version 1.4.1.1) 

in R to train two models to distinguish Barrett from primary tumours, and primaries from 

metastases, respectively, based on prevalence of all mutational signatures and including 

clonality and timing as covariates in the model. We split the cohort into 70% for discovery and 

30% for validation, and used 5-fold cross-validation in 100 iterations to determine the optimal 

parameters for the training. The features ranked by importance were visualised using a 

Shapley plot. The modelling procedure was repeated in a similar manner but with prevalence 

of signatures detailed based on clonality and timing. The accuracies for testing were 87% and 

94%, respectively. The analysis employed the code developed at the following github 

repository: https://github.com/pablo14/shap-values/blob/master/shap.R. 

We also built a multinomial regression model which took as features mutational signature 

exposures, timing and clonality of signatures and trained a classifier on 70% of the data to 

predict the stage of the tumour (with the 3 stages of Barrett’s, primary, metastases, predicted 
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simultaneously). We used the remaining 30% of the cohort to validate the model. This analysis 

was implemented using the glmnet package86 in R. 

 

2.10 RNA Seq  

RNA was quantified using the Qubit High Sensitivity RNA kit (Thermo Fisher) and checked for 

quality (RNA integrity number; RIN) on the Agilent 2100 Bioanalyzer® (Agilent Technologies, 

USA) using the RNA 6000 Nano kit. Samples with insufficient material, or an incalculable RIN 

were excluded. There was no other lower limit for RIN inclusion. 

Libraries were prepared with an input of 250ng RNA using the TruSeq Stranded Total RNA 

High Sensitivity protocol with ribosomal depletion. Samples with less than the specified input, 

but with >100ng total were included and this was noted for the analysis. Library quality and 

quantity were checked using the Agilent 2100 Bioanalyzer with the DNA 1000 kit and KAPA 

quantification (KAPA Biosystems, Roche, Switzerland), and were pooled according to the 

Illumina protocol. Samples were run on the HiSeq 4000 instrument to generate 75bp paired-

end reads. A mixture of normal expression controls was run on each plate: squamous 

oesophagus, gastric cardia, duodenum. Barrett’s oesophagus is a mosaic of gastric and 

intestinal cell types. Therefore, duodenum and gastric tissues are used as a control. Squamous 

oesophagus is a less useful comparison because it shares few features with the glandular 

epithelium of Barrett’s, but it was included as an adjacent tissue. 

RNA sequencing data was trimmed for poor quality bases using Trim Galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and was then aligned 

using STAR using the ENSEMBL gene annotation. Reads per gene were quantified using the 

summariseOverlaps function from the GenomicRanges package87, which was also later used 

for computing Transcripts per million (TPM).  
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2.11 Hallmarks of cancer and tumour microenvironment signatures 

The cancer hallmark signatures were obtained from the CancerSEA database88. The tumour 

microenvironment signatures and composition were inferred using ConsensusTME 89. 

 

2.12 Statistics 

Group comparisons were performed using the Student’s t test, Wilcoxon rank-sum test or 

ANOVA, as appropriate. Multiple testing correction using the Benjamini-Hochberg method 

was performed where appropriate. 

Survival analysis was performed using univariate or multivariate Cox Proportional Hazards 

models as implemented in the ggforest R package. The optimal prognostic cut-offs for 

mutational signatures were determined using the maximally selected rank statistic, as 

implemented in the survminer package(Version 0.4.9) in R. Kaplan-Meier curves were plotted 

using the survminer package(Version 0.4.9).  

 

2.13 Restriction enzyme selection criteria  

The enzyme combination is an important parameter to optimize for the mutREAD (mutational 

signature detection using REstriction enzyme Associated DNA sequencing) method. We 

focused on high-fidelity restriction enzymes provided by New England BioLabs Inc. (Ipswich, 

Massachusetts USA) to allow for fast DNA digestion and maximum target specificity under a 

broad range of experimental conditions. Since cancer samples frequently exhibit DNA hyper- 

or hypo-methylation, which could affect restriction enzyme sites, we required insensitivity to 
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CpG methylation status. To simplify the adapter design, only enzymes with a unique cut-site 

including only A, C, G and T were considered. Finally, cut sites were required to have a 

maximum length of six base pairs to increase the number of generated fragments. The tested 

list of enzymes is given in results chapter (mutREAD). 

 

2.14 Simulations 

We opted for a double-digest protocol to produce fragments that are reproducible between 

libraries. To simulate the performance of all possible enzyme combinations full-filling the 

above criteria, we use ddRADseqTools (v0.45) to perform in silico digestion of the human hg19 

reference genome and size selection for fragments of expected length between 350-450bp. 

The expected fragment size range of 350-450 base pairs was chosen as the maximum 

fragment size such that the complete library fragments (insert, adapters and primers) could 

still be sequenced on a standard Illumina HiSeq system. WGS-based mutations were selected 

if they overlapped the resulting expected fragments and mutational signatures were 

calculated based on this selection. Similarly, Whole Exome Sequencing (WES) and expanded 

WES sequencing is simulated using the target regions provided by Nextera for the rapid 

capture exome/expanded exome kit (v1.2), where the exome kit comprises 45Mbps of coding 

regions and the expanded exome kit comprises 62Mbps of coding regions, untranslated 

regions and miRNAs. Further, the 21 simulated 10x shallow Whole Genome Sequencing 

(sWGS) libraries from a previous study were used. In short, the 10x sWGS were simulated by 

down-sampling the WGS libraries and re-running the mutational calling. 
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2.15 Cosine Similarity 

We measure similarity between two mutational signature profiles P and Q using the cosine 

similarity. The cosine similarity between the non-zero vectors P and Q with n mutational 

signatures is defined as 𝑐𝑜𝑠𝑠𝑖𝑚(𝑃, 𝑄) = ∑ "!#!	
"
!#$

%∑ "!
%	"

!#$ %∑ #!
%	"

!#$

. Two mutational signature profiles 

that are independent have cosine similarity of 0. Conversely, identical mutational signature 

profiles obtain a cosine similarity of 1. 

2.16 Computational simulations using Pan-Cancer Analysis of Whole Genomes 

data 

 Computational simulations on the WGS data from the PCAWG network was performed. The 

collection was downloaded from 

https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel. We have used the signature 

compendium from COSMIC (v3, downloaded from 

https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures/SP_Signatures/SigP

rofiler_reference_signatures) to capture all mutational signatures relevant to the different 

cancer types. Only cancer types with at least 10 samples present in the collection were 

analysed. 
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2.17 Cell lines/OAC patients DNA used for mutREAD 

All optimization experiments were performed using 500 ng of genomic DNA from an OAC cell 

line (FLO-1), commercially available from culture collection of Public Health England. In-house 

STR analysis was done in the lab to confirm a >90% match prior to assay optimization. 

Experiments were then repeated with frozen tumour, matched blood and FFPE tumour DNA 

from OAC patients.  

 

2.18 DNA extraction and Quantification 

DNA was extracted from FLO-1 cell line and frozen tumours using the Allprep DNA/RNA mini 

kit (Qiagen, Hilden Germany) and DNA from blood was isolated using QIAmp DNA blood maxi 

kit (Qiagen, Hilden Germany). AllPrep DNA/RNA FFPE Kit (Qiagen, Hilden Germany) was used 

to extract DNA from FFPE tumours. DNA quantification was done using Qubit dsDNA Broad 

Range (BR) assay kit on Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham 

Massachusetts USA). 

 

2.19 Somatic mutation calling for mutREAD 

Mutation calling was performed using GATK Mutect2, taking into account for the SNV metrics: 

only reads with minimum mapping quality of 1, minimum base quality of 10 and excluding 

supplementary alignments, as well as discarding both reads in an overlapping read pair if they 

have different base calls at the locus of interest, or using just the read with highest base 

quality if they have the same base. 
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Additionally, Strelka (v 2.0.15) with disabled read depth filter was run on a subset of samples, 

taking into account for the SNV metrics only reads with minimum mapping quality of 1, 

minimum base quality of 10 and allowing a minimum alternate allele count of 2 and a 

minimum alternate allele frequency of 0.05 for a position to be considered in detecting SNV 

clusters. 

For Mutect2- and Strelka-derived mutations, low-quality and spurious mutation calls were 

filtered by applying the following criteria: VariantAlleleCountControl > 1, 

VariantMapQualMedian < 40.0, MapQualDiffMedian < -5.0 || MapQualDiffMedian > 5.0, 

LowMapQual > 0.05, VariantBaseQualMedian < 30.0, VariantAlleleCount >= 7 && 

VariantStrandBias < 0.05 && ReferenceStrandBias >= 0.2. The parameter ReadCountControl 

was set to be < 20 for the three fresh-frozen and FFPE paired samples and <10 for the 

additional FFPE samples.  

Additionally, based on the cosine similarity of WGS-derived mutational signatures and the 

mutational signatures derived for the initial three samples, we optimized the minimum 

number of reads supporting a SNV (fresh-frozen samples mutREAD = 5, WES = 7, 10x sWGS = 

5, mutREAD FFPE = 10) and the minimal variant allele frequency of a SNV (fresh-frozen 

samples mutREAD = 0.03, WES = 0.01, 10x sWGS = 0.11, mutREAD FFPE = 0.13). The cut-offs 

were optimized separately for Strelka-derived mutations (fresh-frozen samples = 20 reads 

and 0.11 variant allele frequency, mutREAD FFPE = 11 and 0.03 variant allele frequency). 
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2.20 Mutational signature profile for mutREAD 

The tri-nucleotide context for each SNV was determined using the SomaticSignatures90 R 

package. Mutational signature profiles were derived for each sample using OAC-specific 

mutational signatures. Finally, non-negative least squares91 in R was used to derive the 

contributions of each mutational signature to the overall mutational spectrum. The estimated 

coefficients were scaled to sum up to one.  

For validation analysis I used the deconstructSigs78 to obtain OAC specific signatures. Cosine 

similarities were calculated using ‘cosine()’ function in the lsa package (0.73.2) in R. 
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3.Results Chapter  

Mutational processes unveil bottlenecks that 

shape evolution of oesophageal adenocarcinoma. 
 

3.1 Attribution: 

Prof. Rebecca C Fitzgerald (RCF) , Dr Maria Secrier(MS) from UCL and I designed the study. 

RCF and MS supervised the analysis. WGS and RNA Seq data was managed by Ginny 

Devonshire. Using VCF files, I performed signature extraction analysis, I curated the clinical 

data for cohort demographics and I performed the clinical correlation analysis with 

signatures, and I performed the survival analysis. I performed genomic feature analysis: 

transcription and replication strand bias analysis. Clonality/timing analysis, machine learning 

analysis and DNA repair signature analysis was performed by MS. Nucleosome periodicity 

analysis was performed in collaboration by Dr.Oriol Pich from Prof.Nuria Lopez Bigas lab IRB 

(Institute for Research in Biomedicine) Barcelona Spain. 
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3.2 Rationale:  

The overall goal was to investigate how mutational processes shape the genome during OAC 

development from precancerous stages to advanced disease. We aimed to characterise 

mutational signatures in the precancer lesion (Barrett’s), OAC and metastasis samples, so as 

to gain insights about their dynamics. Also, to study the influence of endogenous and external 

risk factors for better understanding of modulating forces of mutational signatures during the 

course of the disease. Then, to evaluate the status of DNA repair process and their 

impairment contributing to mutagenesis, we  looked into mutational signatures in DNA repair 

pathways. In order to study the evolutionary bottle necks, we investigated clonality and 

timing of the mutational signatures at each stage of OAC development. Finally, to investigate 

prognostic value of these signature for guide patient outcome. (Figure 3.1) 
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Figure 3.1: Overview of the study design 

A study cohort was assembled, composed of 161 Barrett’s oesophagus samples, 777 primary 

OAC tumour samples and 59 metastasis samples. 50X WGS was available for all these 

samples. Mutational signatures were extracted from WGS for all of the samples and these 

proportions were used for correlative analysis with risk/tumour factors. To another end, SNVs 

from the same 50X WGS data for all samples in the cohort were used to estimate the timing 

and then the clonality. Then evolutionary bottle necks were studied. 
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3.3 Mutational signature landscape from pre-malignant to advanced OAC and 

clinical associations 

We employed whole-genome sequencing data from 161 Barrett Oesophagus samples, 777 

OAC primary tumours and 59 metastatic samples to infer and compare the signatures of 

mutational processes that operate during the course of this disease. Clinical characteristics of 

the cohort, as available, are presented in Table 3.1. As expected, the majority of patients are 

males (OAC: 86.8%; Barrett’s: 81.7%) and presented in older age (OAC: 67.1years; Barrett’s: 

68years). 

We collected data on risk exposures/habits (smoking, alcohol, obesity/BMI) and relevant 

medications such as acid suppressants and anti-inflammatory drugs. Pre-treatment TNM 

staging was recorded, and most of the tumours (69%) were T3 (Invasion into adventitia), N1 

(70.5% of nodes were positive) and since cases were recruited from a surgical pathway only 

7.1% had evidence of distant metastases. Almost half (47%) of the Gastro-Oesophageal 

Junction type tumours (Siewert classification) were type 1 meaning that they were mainly in 

the oesophagus.  Next major group (38.1%) was type 2, that is the tumours were located 

precisely at the oesophagogastric junction followed by small number (14.8%) of  tumours 

representing type 3, in which the tumour extends into the gastric cardia and fundus. Overall, 

the median survival was 109(57-188) weeks.   

 

 

 

 

 



 
 

62 

 

Variable            Measure/Level OAC(n=645)  Barrett’s (n=148) 
Age Years 

(median,IQR) 
67.1 (59.2-74.2) 68 (62.0-75.9) 

Gender Female 85 (13.2%) 26 (17.5%) 
 Male 560 (86.8%) 121 (81.7%) 

                                    Exposures  
Smoking status  535 (82.9%) 142 (95.9%) 
 Current 92 (14.2%) 84 (56.7%) 
 Former 293 (45.4%) 24 (16.2%) 
 Never 150 (23.2%) 34 (22.9%) 
 Missing data 110 (17.0%) 6 (4.0%) 
Alcohol (Units/week) Mean(min-max) 6.2 (1-70) 1.0 (1-3) 
Acid Suppressants  512 (79.4%) 140 (94.5%) 
(PPI) Current Use 255 (39.5%) 126 (85.1%) 
 Past Use 57 (8.8%) 1 (0.6%) 
 Never 200 (31.0%) 13 (8.8%) 
 Missing data 133 (20.6%) 8 (5.4%) 
Anti-inflammatory drugs  322 (49.9%) 116 (78.3%) 
(NSAIDs) Current Use 128 (19.8%) 37 (25.0%) 
 Past Use 51 (7.9%) 3 (2.0%) 
 Never 143(22.1%) 76 (51.3%) 
 Missing data 323 (50.0%) 32 (21.6%) 
BMI Kg/m2(median, 

IQR) 
27.3 (24.4-31.2) 29 (13.5-43.9) 

Overall Survival  Weeks (median, 
IQR) 

109 (57-188) Not Available 

                                      Diagnosis  
Pre-treatment Tumour Stage  511 (79.2%) 

Not Applicable 

 T0 1 (0.1%) 
 T1 15 (2.3%) 
 T1a 3 (0.4%) 
 T1b 12 (1.8%) 
 T2 83 (12.8%) 
 T3 353 (54.7%) 
 T4 14 (2.1%) 
 T4a 8 (1.2%) 
 T4b 3 (0.4%) 
 Tx 19 (2.9%) 
 Missing data 134 (20.7%) 
Pre-treatment nodal 
involvement (CT)  

 571 (88.5%) 

Not Applicable 
 Positive 403 (62.5%) 
 Negative 168 (26.0%) 
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 Missing data 74 (11.5%) 
Pre-treatment distant 
metastases (CT) 

 545 (84.5%) 

 Positive 39 (6.0%) 
 Negative 459 (71.2%) 
 Mx 47 (7.3%) 
 Missing data 100 (15.5%) 
Pre-treatment Siewert 
Classification 

 304 (47.13%) 

 Type I 143 (22.1%) 
 Type II 116 (18.0%) 
 Type III 45 (7.0%) 
 Missing data 341 (52.8%) 

Therapy 
NeoAdj.Chemotherapy  

Not Applicable 

5FU    Treated 57 (8.8%) 
 Not Treated 177 (27.4%) 
Capecitabine  Treated 276 (42.8%) 
 Not Treated 47 (7.3%) 
Cisplatin  Treated 272 (42.2%) 
 Not Treated 42 (6.5%) 
Epirubicin  Treated 271 (42.0%) 
 Not Treated 47 (7.3%) 
Oxaliplatin  Treated 49 (7.6%) 
 Not Treated 190 (29.4%) 
Lapatinib  Treated 5 (0.8%) 
 Not Treated 198 (30.7%) 
Surgery  Yes 452 (70.0%) 
 No 151 (23.4%) 

 

Table 3.1: Clinical Characteristics of the study cohort. 

 

The first stage of the mutational signature analysis was to compare the different calling 

methods to check the consistency and to understand the technical differences in extracting 

signatures (Table 3.2). I used three packages to extract signatures, SigProfiler(Version 2.5.1.9), 

deconstructSigs (Version 1.8.0) and MutationalPatterns(Version 3.2.0) and webtool Mutalisk 

(http://mutalisk.org/). I was able obtain the OAC specific signatures (Signature1, 2,8 and 17) 

across all methods with additional traces of other signatures across different methods. 
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SigProfiler the gold standard method and deconstructSigs for exposure of all the SBS 

signatures and ease were chosen for mutational signature analysis. 

 

COSMIC 
Signatures 

SigProfiler 
(Secrier & Li et 

al) 
SigProfiler deconstructSigs Mutational 

patterns Mutalisk 

Signature1 
(Age) 

✓ 
32%(1 and 18 ) 

✓ 
(20.4%) 

✓ 
(12.5%) 

✓ 
(17.1) 

✓ 
(12.2%) 

Signature2 
(APOBEC) ✓ ✓ 

(2.1%) 
✓ 

(0.5%) 
✓ 

(11.56) 
 

Signature3 
(BRCA) 

✓ 
15% 

 ✓ 
(1.2%) 

  

Signature5 
(Unknown) 

 ✓ 
(5%) 

✓ 
(3.3%) 

✓ 
(2.72) 

✓ 
(18.5%) 

Signature6 
(MMR) 

 ✓ 
(2.6%) 

✓ 
(1.9%) 

✓ 
(2.7) 

 

Signature8 
(Unknown) 

 ✓ 
(20.9%) 

✓ 
(9.3%) 

✓ 
(14.28) 

✓ 
(12.8%) 

Signature9 
(Polymerase η) 

  ✓ 
(1.4%) 

 ✓ 
(16.6%) 

Signature13 
(APOBEC) 

    ✓ 
(2.8%) 

Signature17 
(ROS?) 

✓ 
53.3% 

✓ 
(48.8%) 

✓ 
(66.6%) 

✓ 
(51.4) 

✓ 
(37%) 

Signature18 
(Unknown) ✓  ✓ 

(1.4%) 
  

 

Table 3.2: Preliminary comparative mutational signature analysis: Mostly the main 

mutational processes were stable across methods. 
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We uncovered a total of 14 mutational signatures. Signatures SBS17a/b were the most 

prevalent, along with evidence for mutational processes linked with ageing (SBS1/5/40), 

oxidative stress (SBS18), APOBEC activity (SBS2) and DNA damage repair (DDR) impairment 

(SBS3/8). We also observed evidence of base excision repair mutagenesis (SBS30), mismatch 

repair deficiency (SBS44) and a colibactin-linked mutational process (SBS41), which have not 

been described extensively in this cancer (Figure 3.2, Figure 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Landscape of Mutational signatures during course of OAC development. 

Median prevalence of mutational signatures present identified in the three disease stages. 

The magnitude of the circles is proportional to the number of SNVs specific to that mutational 

signature in the samples.  
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Figure 3.3: Mutational processes active across stages of oesophageal adenocarcinoma 

development. Relative contribution of mutational signatures, each bubble represents a 

patient and the size of the bubble is proportional to the number of mutations attributed to 

the respective mutational signature. 
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Additionally, we uncovered a signature of platinum treatment (SBS35) in primary tumours, 

which is expected, given that the majority of these tumours have been sequenced from the 

surgical resection specimen after treatment with chemotherapeutic agents and platinum is 

the backbone of treatment regimens. Indeed, this signature was increased specifically in 

chemotherapy treated samples (Figure 3.4a) and likely reflects the mutagenic effects of this 

therapy24.  We also observed MMR linked SBS44 co-occurring in these treated samples. We 

looked at the proportions of SBS17B in Barrett’s, chemo naive and treated primary tumours, 

SNVs associated with SBS17B were in abundance from early Barrett’s and observed both in 

naive and treated primary tumours(Figure 3.4b). 

 

                                       

 

Figure 3.4: Influence of chemotherapy on mutational signatures: 

(a)Proportions of mutational signatures significantly increased in chemo treated OACs for 

SBS35 (Platinum therapy associated signature) and SBS44 (Mismatch Repair signature) 

(b) Proportions of SBS17B in Barrett’s, chemo naive and treated primary tumours. 
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There was evidence for many of these mutational processes acting very early on in tumour 

evolution such that they were already present in Barrett Oesophagus, especially SBS17a/b 

and the ageing-linked signatures SBS1, 5 and 40. On average, the majority of signatures 

appeared increased in primary tumours, as expected, and tended to rise further in metastatic 

samples (particularly SBS17a/b, SBS40 and SBS41).  

Mutation rates along the genome are highly variable and influenced by several chromatin 

features. We confirmed that SBS17-associated SNVs are enriched in the untranscribed and 

lagging strands. Other signatures did not show any significant strand or replication timing bias 

(Figures 3.5, 3.6, 3.7).  

       

 

 

Figure 3.5: Transcription and Replication strand asymmetry: SNVs (C > X / T > X) were 

mapped to the transcribed/untranscribed strands and leading /lagging replicative strands. 

Significant strand asymmetries were marked by asterisks (p-value, Poisson test). (a)T>G 

mutations (Signature 17 associated) were mapped to untranscribed strands across Barrett’s, 

OAC and Metastasis. (b)Lagging replicative strand is mostly mapped by all types of 

substitutions with T>G substitutions predominantly present on lagging strand across 

Barrett’s, OAC and Metastasis. 
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Figure 3.6: Mutational signatures and Transcription strand asymmetry: 96 base substitution 

profile. Mutational signatures were extracted using the strand annotated matrices. Across 

Barrett’s, OAC and in Metastasis, signature17 showed transcription strand asymmetry. 
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Figure 3.7: Replication strand asymmetry and Mutational signatures: 96 base substitution 

profile. Mutational signatures were extracted using the replication strand annotated 

matrices. Signature17 associated mutations were present on the lagging replicative strand  

across Barrett’s, OAC and in Metastasis. Left: Leading strand, Right: Lagging strand. 
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The nucleosome periodicity patterns were similar across the stages, with maximum power 

period (MP) of 191.14bp between nucleosomes and linker DNA (Figure 3.8). The constant 

periodicity patterns between major and minor grooves with MP of ~10.3 , and with a 

significant SNR (Signal-to-Noise Ratio), The value of SNR explains the strength to the 

periodicity and provides a measurement of periodicity of a signal. The SNR values for Barrett’s 

(SNR=433.5), Barrett’s trios (SNR= 378) and OAC (SNR= 601.4) were estimated. These are 

significant SNR values for all three stages suggesting a strong periodicity of ~10.3bp across 

the stages, all were in phase 1 of the nucleosome orientation, enriched on minor-in (minor 

groove facing the nucleosomes) in keeping with what has been reported previously53 (Figure 

3.9). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Nucleosome periodicity stable patterns across stages of OAC development 

(Zoom out): Mutation rate periodicity between nucleosome-covered and linker DNA 
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Figure 3.9: Nucleosome periodicity stable patterns across stages of OAC development 

(Zoom in): Mutation rate periodicity between minor-in and minor-out nucleosome-covered 

DNA stretches. 

 

Next, we correlated mutational signatures with reported exposures in the cohort. Alcohol 

consumption, which is a modest risk factor for this cancer type92 nevertheless was correlated 

with SBS17a and SBS44 (MMR) prevalence already in Barrett Oesophagus and this association 

increased in primary tumours. Smoking was strongly associated with SBS17a in primary 

tumours only. NSAID usage was linked to increased mutagenesis from SBS2-APOBEC, SBS3-

DDRDand SBS30-BER in Barrett Oesophagus and SBS35 and SBS40 in primary tumours. No link 

was found between any signature and PPI/acid suppressant usage but this might be affected 

by the fact that the majority of patients with this disease take these medications and the 

information on dose and duration of use is limited. DDRD-SBS3 was strongly associated with 

positive nodes(Figures 3.10, 3.11, 3.12). 

Barrett’s (n=76) OACs (n=455) Barrett’s with adjacent 
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Figure 3.10: Comparative correlations between Barrett’s and OAC Clinical Factors with the 

proportion of mutational signatures. Significant positive associations are denoted(p-value). 
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Figure 3.11: Representative Positively Correlated risk factors (Exposures): (a) Alcohol 

Statistical correlations between different levels of a variable and the proportions of 

mutational signatures in OAC. 
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Figure 3.11: Representative Positively Correlated risk factors (Exposures): (b) Smoking 

Statistical correlations between different levels of a variable and the proportions of 

mutational signatures in OAC. 
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Figure 3.11: Representative Positively Correlated risk factors (Exposures): (c) NSAIDs 

Statistical correlations between different levels of a variable and the proportions of 

mutational signatures in OAC. 
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Figure 3.12: Representative Positively Correlated tumour factors of OAC with mutational 

processes. Statistical correlations between different levels of a variable and the proportions 

of mutational signatures in OAC. 
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3.4 Dynamics of mutational processes from pre-malignant to advanced disease 

Next, we examined how the impact of mutational processes active in OAC varies across stages 

of the disease. In general, we observed an increase in the contribution from APOBEC-linked 

mutagenesis (SBS2), colibactin (SBS41) and platinum treatment (SBS35) most prominently in 

primary tumours, while the SBS17 processes and MMR were most increased in metastases 

(Figure 3.13a). Ageing-associated mutational events (SBS1 and 5) mostly appeared as a 

continuous background contribution that decreases in importance with increased cancer 

stage. However, SBS40, also thought to be linked with ageing, increased from pre-malignant 

to advanced disease – suggesting that the derivation of this mutational process is different 

and may have a higher impact in this disease than previously appreciated.  

 

Comparing matched samples of Barrett Oesophagus and primary tumours from the same 

individuals further corroborated our previous findings: APOBEC mutagenesis, DDR 

impairment, the SBS40 process and the platinum signatures increase with disease 

progression, while the ageing signatures 1 and 5 and SBS18, linked to oxidative stress, seem 

to decrease (Figure 3.13b). 
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Figure 3.13: Mutational process dynamics from Barrett Oesophagus to primary tumours and 

metastases. (a) Mutational signature contributions compared across the three disease 

conditions in non-matched samples. (b) Changes in mutational signature prevalence between 

matched Barrett Oesophagus and primary tumour samples. Upward direction of triangles 

denote an increase in signature contribution in primary tumours; downward direction of 

triangles denote a decrease. Only signatures with a significant change are shown. 
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Within an individual disease stage, we observed various combinations of mutagenic processes 

acting in the genomes (Figure 3.14a), some of which were common between stages, such as 

the joint presence of SBS17a/b and SBS40, and some of which were unique, e.g. SBS41 and 

all ageing-linked signatures were only observed to co-occur in primary tumours. To make 

sense of this complexity, we asked whether we could prioritise signatures to hep distinguish 

between Barrett Oesophagus, primary tumours and metastases. To this end, we employed a 

gradient boost classifier approach to distinguish between cancer stages based on the 

mutational footprint alone (see Methods section 2.9). When considering the overall signature 

contributions in each cancer stage, the model distinguishing Barrett Oesophagus from 

primary tumour genomes had a performance of 87% AUC (Figure 3.14b). The APOBEC 

mutagenesis signature was ranked as the most predictive of primary tumour development, 

followed by the ageing-linked SBS40 and the colibactin signature SBS41, suggesting they may 

be more important in driving the malignant transformation of pre-neoplastic lesions. The 

ageing signature S1 appeared most specific to Barrett cases, which is not surprising given that 

it is the primary source of mutations in healthy tissues.  
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Figure 3.14: Mutational process dynamics from Barrett Oesophagus to primary tumours and  

metastases. (a) Prevalence of combination of mutational processes co-occurring in patients 

across stages of tumour development and spread.  
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Figure 3.14: Mutational process dynamics from Barrett Oesophagus to primary tumours and  

metastases.(b) Output of xgboost model distinguishing Barrett Oesophagus from primary 

tumours based on overall signature prevalence, while accounting for clonality and timing. 

(b)

(c)
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Features are ordered according to their ranking in the model (top ranking features first). Every 

dot is a sample and the colour corresponds to the signature contribution in that sample.  

(c) Output of xgboost model distinguishing Barrett Oesophagus from primary tumours based 

on detailed signature contributions split by clonality and timing. ns-not significant; *p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001 

 

The signature associations with the primary tumour stage were further corroborated by a 

multinomial regression analysis (Figure 3.15).   
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Figure 3.15: Multinomial regression classifier results distinguishing Barrett Oesophagus, 

primary tumours and metastases based on signature prevalence. The predictive power of 

SBS 41 in distinguishing primary tumours is exemplified. 
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Interestingly, it emerged from the model that the clonality of the mutations had a strong 

contribution to distinguishing between cancer stages (Figure 3.14b). As a result, we built a 

second gradient boost classifier that would enable us to highlight processes that act 

subclonally or later in evolution in a stage-specific manner, which had an accuracy of 86% 

(Figure 3.14c). This model confirmed the key signals from the previous analysis, but shed 

further light on the fact that the APOBEC and colibactin mutations that appear as a distinct 

signature in primary tumours are accumulated clonally later (APOBEC) and earlier (colibactin) 

in evolution, respectively. Furthermore, SBS17b clonal mutations that accumulated later in 

evolution emerged as the most specific for Barrett genomes.  

Our power to detect signature differences when comparing primary tumours to metastases 

was reduced due to the smaller size of the metastatic cohort (despite an accuracy of 94%), 

but we could observe a prominent contribution from a subclonal signature SBS17b in 

metastases and a clonal SBS30 signature distinguishing primary tumours from the advanced 

stage (Figure 3.16).  

While we are not proposing these classifiers for clinical application, this analysis does suggest 

that there are distinct contributions of mutational processes over a lifetime of a tumour which 

are prevalent enough to be somewhat predictable. 
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Figure 3.16: Gradient boost classifier results distinguishing metastases from primary 

tumours based on mutational signature prevalence, clonality and timing. Features are 

ordered according to their ranking in the model (top ranking features first). Every dot is a 

sample and the colour corresponds to the signature contribution in that sample. Features 

linked with metastasis have a positive Shapley score, those linked with primary tumours a 

negative score. 
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3.5 DNA repair pathway dysregulation modulates mutational events in OAC 

development 

We next investigated how DNA damage repair (DDR) regulation might contribute to shaping 

the mutational landscape of this disease. First, we asked whether tumours that accumulate 

higher loads of mutations due to homologous recombination (HR) deficiency, as evidenced 

by presence of mutational signatures SBS3 and SBS8, may also harbour a genomic context 

that positively selects for specific cancer drivers. Indeed, by investigating the ratios of non-

synonymous to synonymous mutational burden (dNdS) of cancer drivers in samples with a 

dominant DDR impairment phenotype versus the rest (see Method section 2.8), we identified 

the genes KMT2D, CNOT3 and ABI1 as positively selected specifically in the context of DDR 

impairment (Figure 3.17). KMT2D is a histone methyltransferase frequently altered in 

oesophageal squamous cell carcinoma93,94,95  but less well characterised in adenocarcinoma. 

Mutations in this gene have been linked with transcriptional stress and genomic instability96. 

CNOT3, part of the CCR4-NOT complex, is involved in mRNA processing and degradation and 

was shown to contribute to DNA damage and replication stress responses in yeast97,98.  

ABI1 is part of the c-Abl system facilitating signal transduction of tyrosine kinases, has been 

shown to regulate DNA damage-induced apoptosis99 and is downregulated in gastrointestinal 

cancers100. While none of these genes have been highlighted as major regulators in OAC, this 

analysis indicates they may play very specific roles in the context of high DDR deficiency. 
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Figure 3.17: DNA damage repair signatures and associated driver genes. Positively selected 

genes in primary tumours with dominant DNA damage repair impairment signatures versus 

the ones positively selected in tumours with other dominant signatures. Genes commonly 

positively selected in both categories are highlighted in blue. Genes positively selected only 

in the SDDR dominant group are highlighted in red. 
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Figure 3.18: Clinical relevance of Base Excision Repair associated signature (SBS30). 

(a) Patients with a BER signature prevalence >3% have a significantly worse overall 

survival outcome.  

(b) Multivariate Cox plot of SBS30 with other clinical factors. 
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stage etc (Figure 3.18). Patients showing any evidence for BER deficiency in their tumours 

(>3%) had a worse overall survival (Figure 3.18a ), suggesting a potential prognostic utility for 

this signature in the clinic. 

Finally, we reasoned that DDR pathways might accumulate deficiencies earlier or later during 

evolution, thus enabling the fixation of mutations generated by various neoplastic processes. 

To investigate this further, we used non-negative matrix factorisation across >400 genes 

acting in 13 DDR-related pathways to describe the temporal distribution of putative driver 

mutations across these pathways. When surveying the 300 primary tumours, 27 Barrett’s 

cases and 17 metastases which harboured nonsynonymous mutations in DDR-related genes, 

we could observe that the mutational insults favouring the evolution of OAC appear 

concentrated on certain key DDR processes, including nucleotide excision repair (NER), 

mismatch repair (MMR), homologous recombination (HR), base excision repair (BER), 

translesion synthesis (TLS) and the G1-S cell cycle checkpoint (Figure 3.19a). Across the entire 

cohort, we identified four time-dependent signatures of DDR deficiency-linked mutational 

fixation in genomes: a generic signature of coupled NER/MMR deficiency, an early clonal 

signature of G1-S checkpoint damage, a late clonal signature of deficiency in HR and Fanconi 

Anemia (FA) pathways and a subclonal signature of joint mutations across the BER/TLS 

pathways (Figure 3.19a). Surprisingly, the signature of early G1-S damage appeared relatively 

increased in metastatic samples, perhaps highlighting the importance of G1-S repair control 

in early clones seeding metastases from the primary tumour (Figure 3.19b). In contrast, 

subclonal TLS/BER deficiencies were more prevalent in Barrett Oesophagus and NER/MMR 

defects dominated primary tumours (Figure 3.19b).  

The four DDR-deficient signatures appeared largely nonconcurrent in the cohort, as shown in 

the heat map of Figure 3.19c. We confirmed that the mutated pathways were inactive in the 
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respective groups, and further observed concomitant upregulation/downregulation of other 

DDR pathways (Figure 3.19c, top). There were striking differences in the patterns of activation 

of other DDR pathways between patients with different DDR signatures. In particular, a 

multitude of single strand and double strand break repair pathways were increased in activity 

in the NER/MMR subgroup, presumably to partly compensate for the lack of repair via these 

mechanisms. The TLS/BER deficient subgroup presented a wide downregulation of most DDR 

pathways with the exception of damage repair in S phase, which appeared upregulated.  
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Figure 3.19: Mutational signatures of DNA damage repair, their timing and prevalence 

(a) Signatures of DNA damage repair impairment in oesophageal adenocarcinoma. The 

frequency of nonsynonymous mutations in distinct DDR pathways is shown along with their 

timing during evolution and subclonality. (b) Prevalence of DDR signatures across the course 

of the disease. The mutational contributions are compared between Barrett Oesophagus, 

primary tumours and metastases for the four signatures identified previously keeping the 

same order as in (a). (c) Prevalence of signatures across the entire cohort (heat map) and 

corresponding median activity in every DDR-related pathway (balloon plot), as measured 

from expression of genes implicated in the pathway using GSVA. Blue circles indicate 

downregulation, red circles upregulation. *p<0.05; **p<0.01; ***p<0.001. 
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3.6 Evolutionary bottlenecks uncover a phenotypically distinct SBS17 

mutagenic shift 

To further understand how mutational processes shape evolutionary trajectories in OAC, we 

investigated the timing of mutation accumulation due to the different neoplastic processes 

identified in the cohort. We identified frequent evolutionary bottlenecks (~51% of samples) 

where mutational pressures change (Figure 3.20). Most of these changes were consistent 

across tumour stages, with the exception of SBS18 and SBS5, which increased only at Barrett’s 

related bottlenecks, and decreased in primary tumour and metastasis subclones. The most 

notable change was a subclonal decrease in SBS17a/b mutations, corroborating the findings 

from the PCAWG consortium study in primary tumours50.  
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Figure 3.20: Evolutionary bottlenecks reveal widespread SBS17 shifts 

Changes in signature exposure at evolutionary bottlenecks. Values below 0 indicate a 

decrease in signature exposure in the sublones, values above 0 an increase. Signatures SBS17a 

and b are the only ones showing a sublconal decrease across Barrett, primary and metastatic 

stages. 

 

This decrease is observed across Barrett’s, OAC and metastasis for SBS17a/b. These were by 

far the most dominant signals of dynamic shift observed during OAC evolution.  

No association between SBS17a/b and p53 mutational status was found, but a higher 

prevalence of these signatures was more often found in tumours lacking mutations in several 

recurrent OAC drivers, including KRAS, PIK3CA, PTEN, ARID1A and APC (p<0.01). Instead, 

multiple cancer drivers involved in chromatin remodelling and transcriptional control, 

including SMARCA4, KMT2D and ARID2, were positively selected only in samples with 

abundant SBS17 signals (Figure 3.21).  
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 Figure 3.21: Positively selected genes in primary tumours with a dominant SBS17 signature 

versus the ones positively selected in tumours with other dominant signatures. Genes 

commonly positively selected in both categories are highlighted in blue. Genes positively 

selected only in the SBS17 dominant group are highlighted in red. 
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Tumours with SBS17b exposure displayed increased ploidy and chromosomal instability, as 

well as higher DDR activity, telomere maintenance, cell cycle control and angiogenesis (Figure 

3.22a). Furthermore, samples where the SBS17 process increased in intensity at the 

bottleneck were more often p53 wild type (Fisher’s exact test p = 0.0004, 1.9-fold enrichment) 

and showed a decreased CD8+/CD4+ T cell, regulatory T cell and monocyte infiltration (Figure 

3.22b). All of these aspects seem to suggest a role for SBS17 in promoting tumour progression. 
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Figure 3.22: Signature 17 associated processes influence modulation of cellular and 

microenvironmental phenotypes. (a) The presence of SBS17b is associated with an increase 

in ploidy and chromosomal instability, as well as higher activity of telomere maintenance, 

DNA damage repair, cell cycle control and angiogenesis pathways. (b) Effect of signature 17 

exposure on immune cell types. 
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Focusing on SBS17 impact, we found that SBS17a and SBS17b were individually prognostic in 

the cohort, with higher exposure correlating with better patient outcome (Figure 3.23).  

 

 

               

                     Figure 3.23:  Prognostic relevance of SBS17a/b 

                    (a)SBS17b proportions were linked to better out of the patients in OAC cohort  
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Figure 3.23:  Prognostic relevance of SBS17a/b.(b)Higher proportions of SBS17b in OAC 

Patients with adjacent Barret’s were associated with improved survival. (c) Similar trend is 

observed in patients without Barrett’s, but the association is statistically not significant. 
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3.7 Summary 

In this chapter, I have presented a comprehensive analysis of mutational signatures acting 

across different stages of OAC development. A graphical summary is presented in Figure 3.24. 

 In order to understand what mutational forces drive disease progression from pre-cancerous 

stages to advanced malignancy in OAC, we surveyed a cohort of 997 patients across different 

stages of oesophageal adenocarcinoma progression, from pre-malignant to advanced 

disease. Based on the pattern of single base substitutions observed from whole-genome 

sequencing data, I inferred the mutational processes that are likely to have acted during the 

evolution of this cancer. In addition, I have characterised the prevalence of mutational 

signatures across cancer stages and determined their association with a range of parameters 

including lifestyle factors and prognosis. I identify consistent evidence for specific DNA 

damage repair deficiencies and pinpoint evolutionary bottlenecks that play a key role in 

shaping the progression of this disease. 

I observed that SBS17b  starts early in the precancerous stage and tends to  increase in the 

late stage. Most of these tumours are chemotherapy treated and therefore the increase in 

late stage suggests that these may be treatment effects. Endogenous processes such as 

APOBEC and BER are low in magnitude but further decrease in late stages. Colibactin 

signatures were identified, hinting at the possibility of E.coli colonisation during OAC 

development. SBS35-platinum therapy signature was enriched in treated samples along with 

MMR linked SBS44 co-occurring in these samples. 

After characterising mutational signatures, I investigated how the endogenous and external 

risk factors influence and shape the mutational signatures in OAC development. I observed a 
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strand asymmetry during transcription and replication, which was explained by distribution 

of T>G SNVs to untranscribed and lagging strands of DNA. A common 10bp nucleosome 

periodicity pattern was observed across stages of OAC development, suggesting a common 

mutational process implicated in this disease. Further, I performed clinical correlation analysis 

with the risk factors (data from Barrett’s and OAC patients) and the relative proportions of 

mutational signatures. I found positive correlations with alcohol consumption (SBS8, SBS17a 

and SBS44) smoking habits (SBS1,SBS8,SBS17a, and SBS18) and use of anti-inflammatory 

drugs (NSAIDs) (SBS2,SBS3,SBS30,SBS35 and SBS40).Tumour factors such as positive 

nodes(SBS3,SBS8 andSBS17b) and Siewert classification(SBS3 and SBS8) were also positively 

correlated with OAC signatures. 

We also investigated mutational signatures co-occurring across different stages, these were 

informative to distinguish stages of cancer development. Further, we looked for SNVs and 

their timing in DNA repair pathways and identified four different signatures. These were 

clustered into four subgroups(HR-Late; NER/MMR, G1/S-Early and TLS/BER-Subclonal). Also 

identified, driver genes (KMT2D, CNOT3 and ABI1) associated with these signatures. 

We then investigated the evolutionary bottle necks for signatures during OAC development. 

We identified that SBS17b decreases sub-clonally across all the stages of OAC development 

and other signatures remain unchanged, suggesting the most dominant signals of dynamic 

shift observed during OAC development. We also investigated cellular and 

microenvironmental phenotypes being associated with SBS17b. Chromosomal instability, and 

ploidy was increased along with higher DDR activity, telomere maintenance, cell cycle control 

and angiogenesis. 
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We then investigated the clinical relevance/prognostic value of signatures, BER associated 

SBS30 was found to be strongly prognostic in our cohort. Whereas SBS17b proportions 

correlated with better patient outcome. 

Overall this study provides the evidence on how mutations shape the development of OAC 

and can be exploited to guide therapy and patient stratification. 

 

 
Figure 3.24: Key genomic signatures underlying distinct exposures, expansion and 

outcomes during OAC evolution from pre-cancerous to advanced disease. SBS17a/b 

processes show a relative decrease in the primary tumours compared to Barrett and 

metastasis cases, and are linked with alcohol and smoking exposures and better survival 

outcomes. Frequent bottlenecks appear for this signature, indicated by the symbol. SBS30 

appears elevated in Barrett and primary tumours and is linked with NSAID usage in pre-

cancerous stages and worse survival. Several signatures including SBS2/SBS40/SBS30 are 

most highly represented in primary tumours and can be used to distinguish this stage. DDR 

signatures specifically elevated at distinct points during OAC evolution are also highlighted. 
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4.Results Chapter 

A novel DNA sequencing method for quantifying 

mutational signatures in clinical cancer samples 
 

4.1 Attribution: 

This chapter is adapted from a manuscript which was published in Nature Communications in 

January 2020: 

Perner,J. #,  Abbas, S. #,  Nowicki-Osuch,K.#, Devonshire,G., Eldridge,M,D. Tavaré,S.,  Fitzgerald, 

R,C.*  The mutREAD method detects mutational signatures from low quantities of cancer DNA. 

Nat Commun 11,3166(2020). 

https://doi.org/10.1038/s41467-020-16974-3 

# Equally contributing authors; *Corresponding author  

4.2 Author Contributions: 

 Juliane Perner and my supervisor Prof. Rebecca C. Fitzgerald conceived the project concept. 

I  designed and performed the wet laboratory experiments to test the computational 

prediction. Under the supervision of postdoc Karol Nowicki-Osuch I developed the lab 

protocol to push the boundaries of making the assay as clinically relevant as possible. All the 

bioinformatic analyses were performed by Juliane Perner. Ginny Devonshire and Mathew 

Eldridge helped with sequencing data management and assisted Juliane in bioinformatic data 

analysis. Prof. Rebecca C. Fitzgerald and Prof. Simon Tavare supervised and obtained funding 
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for the study. I wrote the first draft of the paper then Juliane Perner, Karol Nowicki-Osuch 

and Prof. Rebecca C Fitzgerald helped to improve the manuscript. 

 

The contributions as noted in the paper are adapted in the below paragraph: 

 

J.P., S.A. and K.N. designed experiments, interpreted the data, and wrote the manuscript. S.A. 

and K.N. performed experiments and J.P. performed computational analysis. G.D. conducted 

sequencing data management. M.E. contributed expertise for sequencing data analysis for 

this study. R.C.F. and S.T. supervised the work and helped to write the manuscript.  R.F. 

obtained funding for the study. All authors approved the final version of the manuscript. 
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4.4 Data availability 

All mutREAD data generated for the article is available from European Genome-phenome 

Archive(accession number EGAD00001006170, https://ega-archive.org/datasets). 
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WGS data for the matched patient samples is available from the ICGC data portal 

(https://dcc.icgc.org/).  

4.5 Code availability 

All analysis code is freely available from https://github.com/jperner/mutREAD. 

4.6 Rationale 

Mutational processes acting on cancer genomes can be traced by investigating mutational 

signatures. Because high sequencing costs limit current studies to small numbers of good-

quality samples, we developed a robust, cost- and time-effective method, called mutREAD, 

to detect mutational signatures from small quantities of DNA, including degraded samples. 

We also show that mutREAD recapitulates mutational signatures identified by whole genome 

sequencing and this will ultimately allow the study of mutational signatures in larger cohorts 

and, by compatibility with formalin-fixed paraffin-embedded samples, in clinical settings.  

The method is based on the premise that obtaining a random subset of all mutations is 

sufficient to determine the presence of mutational signatures. To test this assumption, we 

first performed computational simulations (methods section 2.14) using available data from 

whole-genome sequencing of 129 esophageal adenocarcinoma (OAC) samples and the six 

mutational signatures derived from them35. 
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4.7 Mutational Signatures analysis on computationally simulated data 

The stability of the mutational signature profile was evaluated as a function of the number of 

randomly selected mutations detected in the WGS samples (Figure 4.1). The cosine similarity 

relative to the original mutational signature profile increases with the number of mutations 

available for estimation. A plateau is reached at 500 mutations, suggesting that fewer than 

the number of mutations derived from WGS (on average 26k mutations per OAC sample) are 

sufficient to obtain the mutational signature profile. The second assumption is that the 

mutation subset generated by Reduced Representative sequencing (RR-Seq) is an unbiased 

representation of the mutational spectrum. We simulated subsets of mutations for RR-seq 

using different enzyme combinations, as well as for 10x shallow Whole Genome Sequencing 

(sWGS) and Whole Exome Sequencing (WES)(methods section 2.14) In this simulation, RR-seq 

with at least 161  out of 169 enzyme combinations outperforms (expanded) WES and 10x 

sWGS in terms of average cosine similarity between the WGS-derived and simulated signature 

profile in OAC (Figure 4.2). This difference can in part be attributed to the number of 

mutations recovered by the different methods (Table 4.1). Notably, RR-seq derived mutations 

originate from a much lower proportion of the genome than (expanded) WES-based 

mutations (Table 4.2). 
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Figure 4.1 –Computationally simulated Mutational signatures: WGS v/s RR Seq 
 
Cosine similarity (y-axis) of whole genome sequencing (WGS)-derived mutational signatures 

for 129 OAC samples and signatures derived from random subsets of mutations with 

increasing size (x-axis). Boxes show the 25% and 75% quartile with the median indicated by 

the bold line. Whiskers extend to 1.5 times the interquartile range and samples outside this 

range are indicated as points. Only samples having sufficient number of mutations (at least 

the number indicated on the x-axis) contribute to the boxes. 
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Figure 4.2 – Computationally simulated Mutational signatures across different methods. 

Cosine similarity (y-axis) of WGS-derived mutational signatures for 129 OAC samples and 

signatures derived from subsets of mutations simulating different sequencing approaches (x-

axis). Points show the average cosine similarity and whiskers indicate the standard deviation 

across all 129 OAC samples. Different enzyme combinations were simulated for RR-seq, each 

shown as a different point. For 10x sWGS, the average across the 21 simulated samples is 

given as dashed horizontal line and the standard deviation given as dotted line. RR-Seq – 

reduced representation sequencing, 10x sWGS – 10x shallow whole genome sequencing, WES 

– whole exome sequencing, expanded WES – whole exome sequencing expanded to 

untranslated regions and miRNAs. 
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DNA Sequencing Method 
Number of mutations 

recovered 

Whole Exome Sequencing (WES) 211 

Expanded WES 282 

10X Shallow Whole Genome Sequencing (sWGS) 462 

Reduced Representative Sequencing 381 

Table 4.1: Comparative summary of mutations recovered by different DNA sequencing 

methods 

 
 
 
 
 

DNA Sequencing Method 

Proportion of genome covered 

Mean Mbps (percentage) 

 

Whole Exome Sequencing (WES) 46(1.39%) 

Expanded WES 62(1.88%) 

Reduced Representative Sequencing 10 (0.3%) 

Table 4.2: Comparative summary of portion of genome covered by different DNA 

sequencing methods 
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4.8 Computational simulations based Mutational Signature estimation using 

Pan-cancer WGS data 

 

We further investigated the applicability of RR-seq for estimating mutational signatures in 

different cancer types using the WGS data collected by the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) network45. RR-seq accurately estimated the mutational signature profiles 

across the majority of the 20 cancer types, including cancers with highly diverse mutational 

signature content, e.g. liver hepatocellular carcinoma (Liver HCC), and a non-solid tumour, i.e. 

B-cell non-Hodgkin lymphoma (Lymph-BNHL, Figure 4.3). As expected from our simulations 

above and in keeping with other signature algorithms, the performance of the method was 

correlated with the mutational load across cancer types (Figure 4.4). Finally, RR-seq 

outperformed (expanded) WES in all cancer types (Figure 4.5). 
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Figure 4.3: The efficiency of RR-seq-based mutational calling across the PCAWG tumour 

types.The distribution of cosine similarities between the RR-seq computational simulation-

derived (best combination of enzyme per tumour type) and WGS-based mutational 

signatures.  

Boxes show the 25% and 75% quartile with the median indicated by the bold line. Whiskers 

extend to 1.5 times the interquartile range and samples outside this range are indicated as 

points. For each cancer type the number of samples per group (N) is indicated within the x-

axis labels. 

Abbreviations: Eso-AdenoCa – Esophageal Adenocarcinoma; AdenoCA – Adenocarcinoma; 

Lymph-BNHL – B-cell Non-Hodgkin Lymphoma; HCC – Hepatocellular Carcinoma; Head-SCC – 

Head and Neck Squamous Cell Carcinoma; Panc-AdenoCA – Pancreatic Adenocarcinoma; CNS-

Medullo – Medulloblastoma and variants; RCC – Renal Clear Cell adenocarcinoma, papillary 

type; Myeloid-AML – Acute Myeloid Leukaemia; Bone-Osteosarc – Osteosarcoma; Myeloid-

MPN – Myeloproliferative neoplasm; Lymph-CLL – Chronic Lymphocytic Leukaemia; Prost-

AdenoCa – Prostate Adenocarcinoma; Bone-Epith – Adamantinoma, Chordoma; Panc-

Endocrine – Neuroendocrine carcinoma; CNS-PiloAstro – Pilocytic astrocytoma. 
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Figure 4.4: The efficiency of RR-seq-based mutational calling across the PCAWG tumour 

types(correlation).Scatterplot of the log10-scaled median number of mutations (x-axis) and 

the median performance of the RR-seq computational simulation-based mutational 

signatures measured by cosine similarity to the WGS-based mutational signatures (y-axis) per 

PCAWG cancer type. Each point represents one cancer type. 
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Figure 4.5: Mutational signatures computationally simulated across the PCAWG cohort.  

Summary of the cosine similarities (y-axis) of WGS-derived mutational signatures and 

mutational signatures derived from subsets of mutations simulating different sequencing 

approaches (x-axis) for each of the of individual tumour types from the PCAWG cohort. Boxes 

show the 25% and 75% quartile with the median across the samples indicated by the bold 

line. Whiskers extend to 1.5 times the interquartile range and samples outside this range are 

indicated as points. Different enzyme combinations were simulated for RR-seq, each shown 

as a different box. RR-Seq – reduced representation sequencing, WES – whole exome 

sequencing, expanded WES – whole exome sequencing expanded to untranslated regions and 

miRNAs. Title of each page contains abbreviated tumour name (explained in supplementary 

figure 1) and the number of samples used for the analysis. 
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Having established superiority of RR-seq over other methods in the simulation, we 

implemented our approach, which we called mutREAD (Mutational Signature Detection by 

Restriction Enzyme-Associated DNA Sequencing), by adapting and improving on the principles 

of the quaddRAD protocol68. Key features of the protocol include incorporation of Unique 

Molecular Identifiers (UMI) and inline barcodes, which allow for computational identification 

of PCR duplicates and larger multiplexing capabilities, respectively (Figure 4.6).  

We further streamlined the protocol by simultaneous enzymatic digestion and adapter 

ligation and removal of unnecessary purification steps. Here, we optimized the protocol 

towards application to OAC, for the six mutational signatures that were previously identified 

from WGS on fresh-frozen samples(Secrier et al 2016)35.  

In particular, we chose the optimal pair of enzymes based on the simulation described above. 

The enzyme combination PstI and ApoI showed one of the highest cosine similarities to WGS 

results in OAC (Figure 4.2), as well as broad genome coverage and even distribution of target 

loci throughout the genome (Figure 4.7).  

Hence, we designed adapter sequences that terminated with PstI and ApoI restriction enzyme 

compatible sites and that are devoid of PstI or ApoI restriction enzyme sites to avoid digestion 

of the adapters (Table 4.3).  
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Figure 4.6: Method overview.  

Schematic overview of the individual steps in mutREAD. Details for each step are given in the  

results section 4.9 below . SB – sample barcode, UMI – unique molecular identifier, RE – 

restriction enzyme. 
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Figure 4.7: Summaries of the genome-wide distribution of loci resulting from the different 

sequencing approaches 

A) Bar plot of the number of genome-wide consecutive 1Mbps bins that are not covered by 

at least one expected loci in the computational simulation for each RR-seq with different 

enzyme combinations and (expanded) WES (x-axis).  

B) Summary of the number of expected loci per 1Mbps bin on logarithmic scale (y-axis) for 

each RR-seq with different enzyme combinations and (expanded) WES (x-axis). Each box 

shows the 25% and 75% quartile with the median across all genome-wide consecutive 1Mpbs 

bins indicated by the bold line. Whiskers extend to 1.5 times the interquartile range and 

samples outside this range are indicated as points. 
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Here we present details of the laboratory assay development, 

 
4.9 Assay optimization 

All optimization experiments were performed using 500 ng of genomic DNA from an OAC cell 

line (FLO-1) that is commercially available from culture collection of Public Health England. 

In-house STR analysis was done in the lab to confirm a >90% match prior to assay 

optimization. Experiments were then repeated with frozen tumour, matched blood and FFPE 

tumour DNA from OAC patients.  

 

4.9.1 Restriction digestion optimization for ApoI HF-PstI HF double digest 

High-Fidelity (HF) ApoI and PstI restriction enzymes were obtained from New England BioLabs 

Inc. (Ipswich, Massachusetts USA). The optimization of restriction enzyme digestion (Figure 

4.8) was performed on 500 ng of FLO1 cell line genomic DNA and included optimization of 

enzyme concentration, library purification procedure, PCR cycle optimization and removal of 

FFPE artefacts.  

 

4.9.2 Adapter design and primers 

Adapters (i5 and i7, Table 4.3) were designed to target DNA fragments with restriction 

overhangs for the selected restriction enzymes (PstI and ApoI) and achieve specific and 

uniform sampling of the genome by modifying Illumina adapter sequences101 following the 

general principles of the quaddRAD protocol68. The random 4bp degenerate barcode included 

in both, i5 and i7, was designed to avoid creating new restriction sites. The 6bp unique inner 

barcode sequences were balanced for A/C and G/T content to increase the sequence diversity 

at each position across the inner barcodes. Additionally, PhiX control was spiked in to 20% to 

improve the overall sequencing quality. The i5 upper adapter was phosphorylated to abolish 
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the ligation at the 3’ end and the lower i5 adapter was phosphorylated for its ligation with 

the DNA insert. To avoid non-specific amplification during the PCR stage the i7 adapters were 

designed in a Y-shape conformation to amplify only those DNA fragments with specific 

adapters ligated to them. Illumina universal PCR primers (i5nn and i7nn) were used for 

amplification (Table 4.3). A phosphorothioate bond at the 3’ end of the outer 

barcodes/primers (i5nn/i7nn) was added to protect from nonspecific or proofreading 

nuclease degradation.  
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A) mutREAD adapter sequences 
Adapte
r Adapter name Sequence 

mutRE
AD-i5 

mutREAD-i5-
upper_1_ATGA
GCGA 

5'-C GCT CTT CCG ATC T HNNNATGAGCGATGCA-phos-3' 

mutREAD-i5-
lower_1_TCGCT
CAT 

5'-phos-TCGCTCATNNNDA GAT CGG AAG AGC GTC GTG TAG 
GGA AAG AGT GT-3' 

mutREAD-i5-
upper_2_GCCT
AGCG 

5'-CGCTCTTCCGATCTHNNNGCCTAGCGTGCA-phos-3' 

mutREAD-i5-
lower_2_CGCTA
GGC 

5'-phos-
CGCTAGGCNNNDAGATCGGAAGAGCGTCGTGTAGGGAAAGAG
TGT-3' 

mutRE
AD-i7 

mutREAD-i7-
upper_1_CGTG
TACC 

5'-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHNNNCGTGT
ACC-3' 

mutREAD-i7-
lower_1_GGTA
CACG 

5'-AATTGGTACACGNNNDAGATCGGAAGAGCA-3' 

mutREAD-i7-
upper_2_GCAC
ATGT 

5'-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHNNNGCACA
TGT-3' 

mutREAD-i7-
lower_2_ACAT
GTGC 

5'-AATTACATGTGCNNNDAGATCGGAAGAGCA-3' 

   

B) mutREAD primer sequences 

Primer  Primer Name Sequence 

mutRE
AD-
i5nn 

mutREAD-
i501_TATAGCCT 

5'-
AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCT
TTCCCTACACGAC*G-3' 

mutREAD-
i502_ATAGAGG
C 

5'-
AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTC
TTTCCCTACACGAC*G-3' 

mutRE
AD-
i7nn 

mutREAD-
i701_ATTACTCG 

5'-
CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAG
TTCAGACGTGTGC*T-3' 

mutREAD-
i702_TCCGGAG
A 

5'-
CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGT
TCAGACGTGTGC*T-3' 

Legend:    NNNNN = Unique Molecular Identifier 

NNNNN = Inner sample barcode 
NNNNN =Outer sample barcode 
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Table 4.3: mutREAD adapters and primers 

A) Summary of the sequences of mutREAD adapters used for ligation to DNA fragments. The 

colour of the nucleotides indicates specific elements of the adapters (unique molecular 

identifiers, inner samples barcodes). Ambiguous base codes H and D translate to bases A/C/T 

and A/G/T, respectively. Adapter names include the arm of the adapter (i5 contains PstI 

compatible end and i7 – ApoI compatible end) and the sequence of the samples barcode. 

B) Summary of the Illumina compatible primers used for amplification of the ligated libraries. 

Colour indicates the sequences and location of outer sample barcode. Adapter names include 

the arm of the primer (i5XX is compatible with i5 adapter and i7XX with i7 adapter) and the 

sequence of the samples barcode. 

Abbreviations: phos – phosphorylation of the indicated nucleotide, * - phosphorothioate 

bond between the indicated bonds.  
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Table 4.4: List of restriction enzymes tested in the computational simulation and their 

restriction site sequences 

The table lists the enzymes selected as described in the Methods section2.13 and their 

restriction sites (5'à3'), with the cutting position indicated by *, highlighting the different 

possible overhangs. Ambiguous codes R and Y translate to A/G or C/T, respectively, and 

indicate that either base at this position is accepted by the enzyme. 

 

 

 

 

 

Restriction enzyme 
Restriction site 
sequence 

AflII C*TTAAG 
ApoI R*AATTY 
BmtI GCTAG*C 
BsrGI T*GTACA 
BssSI C*ACGAG 
HindIII A*AGCTT 
KpnI GGTAC*C 
MfeI C*AATTG 
MseI T*TAA 
MspI C*CGG 
NcoI C*CATGG 
NdeI CA*TATG 
NsiI ATGCA*T 
NspI RCATG*Y 
PacI TTAAT*TAA 
PstI CTGCA*G 
SbfI CCTGCA*GG 
SpeI A*CTAGT 
SphI GCATG*C 
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4.9.3 Adapter preparation 

Lyophilized adapters obtained from Integrated DNA Technologies (IDT, Leuven Belgium) were 

reconstituted in Tris-EDTA (TE pH:8) buffer to get 100 µM stock. Complementary upper and 

lower single strands of i5 and i7 were annealed at 10 µM each using annealing buffer (500 

mM NaCl,100mM Tris-HCl, pH 7.5-8) on a thermal cycler with the following conditions: 

Denature at 97.5°C for 2.5 min and then bring down to 4°C at a rate of 3°C/min. Hold at 4°C. 

Adapters were stored in -20°C. This 10µM working dilution of adapters stock was used in 

ligation reaction. 

 

4.9.4 Library preparation and sequencing 

Double Restriction digestion and ligation reaction: Both restriction digestion and ligation 

reaction were performed simultaneously. 500ng of genomic DNA was digested with 50 U of 

PstI-HF and ApoI-HF in presence of 0.187 mM mutREAD i5 and i7 adapters, 400 U of T4 ligase 

and 1 mM ATP in 1X CutSmart buffer. The reaction was incubated on a thermal cycler at 30°C 

for 3 hours. Ligation reaction was stopped by addition of 10 µl of 50mM EDTA. 

Size selection: Two step size selection for 400-500bp inserts (DNA fragments, excluding 

adapters) was performed using Agencourt AMPure XP beads (BECKMAN COULTER, Brea 

California US). Unwanted larger fragments were removed with 0.6x ratio of AMPure beads to 

ligation product and the short fragments were removed by 0.15x size selection.  

 

PCR Amplification of Library:  

The size selected DNA fragments ligated with adapters (20µl) were amplified using PCR 

primers (i5nn/i7nn) compatible with Illumina sequencing platform. The reaction was 

performed in total volume of 100 µl with 0.8 U of Phusion high-fidelity polymerase, in the 
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presence of 0.2 mM dNTPs and 1X Phusion High Fidelity buffer. PCR was performed in the 

following conditions:  98°C/2min denaturation, 12 cycles of amplification at 98°C/10sec, 

65°C/30sec, 72°C/30sec and final extension at 72°C for 5min. Libraries were purified using 

0.8X AMPure beads (80 µl beads+100 µl library), this step was repeated one more time to 

remove all unwanted leftover reactants during PCR. Libraries were eluted in 20µl TE buffer 

(Tris-EDTA buffer 10mM TrisHCl and 0.1mM EDTA, pH8) and stored at -20°C. Quality control 

was performed on Agilent 2100 Bioanalyzer using Agilent High Sensitivity DNA kit (Santa Clara, 

California, US) or High Sensitivity D1000 TapeStation kit (Agilent). Quantification of the 

libraries was performed using KAPA Library Quantification kit (KK4953-07960573001 for 

Illumina platforms, Kapa Biosysytems Roche Holding AG Basel Switzerland) on the Light cycler 

480 (Roche Life Sciences, Basel Switzerland). Libraries with unique adapters were pooled and 

sequenced on the HiSeq4000 using paired end, 150 bps. 

After developing the lab protocol using cell line DNA, we further optimized the protocol to 

suit either fresh-frozen or FFPE samples, the latter being the standard sample preservation 

strategy in clinical practice. Restriction enzyme double digestion, adapter ligation conditions 

and size selection were optimized for optimal digestion, adapter annealing and size selection 

using an OAC cell line (FLO-1). The protocol was further adjusted for FFPE derived DNA from 

the same OAC cell line (Figure 4.8). 
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Figure 4.8: Optimization of mutREAD library preparation using FLO1 cell line 

A) Bioanalyser traces for the optimization of the single step double digestion and ligation. 500 

ng of FLO1 genomic DNA was used for ligation of mutREAD adapters in the presence of 

indicated enzymes and underwent PCR amplification (20 cycles) using Illumina compatible 

primers. Samples before (-) and after (+) PCR are shown for each enzyme combination. 

Dilution indicates dilution of samples for bioanalyzer analysis (for samples that exceeded 

recommended detection range).  

B) Bioanalyser traces for different titration of ratios of AMPure beads and ligated DNA 

solution (50ul) to optimize the double size selection of the fragments in the library. 

C) Bioanalyser traces prepared under optimised PCR cycles conditions. Note significant 

decrease in the level of ApoI only fragments when compared to 20 PCR cycles (A).  

D) Bioanalyser traces showing improved bands for FFPE samples after treatment with FFPE 

repair mix and library preparation with optimized protocol. 

All samples were run using DNA High Sensitivity Bioanalyzer kit with standard DNA ladder. 

Green and purple bands indicate lower and upper markers respectively.  



 
 

138 

 

We then applied mutREAD to fresh-frozen tumour , matched FFPE and  blood samples from 

biopsies of three different OAC patients and evaluated the quality of the library under several 

criteria (Figure 4.9, Figure 4.10, Table 4.5).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Fragment size distribution of mutREAD  libraries  

Fragment size (x-axis) distribution of sequencing libraries measured on the Tape-station. 

Electropherograms of DNA fragments from three samples derived from FFPE (neat), Fresh 

Frozen (FF, 1:4 dilution) and matching blood samples (1:4 dilution) with the average size of 

libraries highlighted above the plot. LM – lower marker, UM – upper marker, FU – fluorescent 

units. 
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 Figure 4.10: Fragment size distribution on sequencing. 

 Fragment size distribution derived from read-pairs mapped to the human genome. Each plot 

shows the number of fragments (y-axis) for each length in base pairs (x-axis). The fragment 

length was calculated as the number of base pairs between the 5’ ends of the read mates 

(including restriction site parts but not adapters or barcode sequences) and summarized to a 

histogram using Picard’s CollectInsertSizeMetrics function.  
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Patient ID 
(1) 

Sampl
e type 
(2) 

Number of 
reads after 
outer 
barcode 
demultiple
xing (3) 

Percent 
retained 
after QC (4) 

Percent 
lost due to 
unidentify
able 
barcode 
(5) 

Percent 
lost due to 
low quality 
(6) 

Percent of 
reads lost 
due to inner 
barcode 
mixup (7) 

Percent 
lost due 
to 
ambiguou
s RAD-tag 
(8) 

Estimated 
average 
fragment 
size (bp) 
(9) 

Tumour1 

FF 
158,178,06
8 94.54 0.09 0.37 3.83 1.17 260 

FFPE 
184,526,29
0 93.41 0.33 0.36 4.46 1.43 215 

Blood 
155,543,84
0 94.14 0.07 0.42 3.52 1.85 276 

Tumour2 
FF 

206,790,83
4 92.68 0.23 0.62 5.55 0.91 263 

FFPE 43,949,748 94.92 0.23 0.47 3.41 0.98 183 

Blood 
230,847,26
4 96.21 0.13 0.48 2.37 0.80 257 

Tumour3 
FF 

231,185,29
6 95.00 0.07 0.46 3.56 0.92 297 

FFPE 86,259,612 94.26 0.67 0.59 3.33 1.15 178 

Blood 
194,066,26
4 96.39 0.08 0.47 2.02 1.05 273 

Patient ID 
(1) 

Sampl
e type 
(2) 

Base pairs 
covered 
with at 
least 10x 
(10) 

Percent of 
retained 
reads 
contributin
g to 10x loci 
(11) 

Base pairs 
in 10x loci 
shared in 
tumour/bl
ood pair 
(12) 

Base pairs 
covered 
with at 
least 50x 
(13) 

Base pairs 
covered 
with at least 
100x (14) 

mutREAD 
- Number 
of 
mutation
s (15) 

WGS - 
Number of 
mutations 
(16) 

Tumour1 

FF 
175,049,80
3 96.54 

166,936,82
4 98,935,164 60,297,417 1,050 

28,732 

FFPE 
170,810,60
6 96.91 

143,331,47
3 

122,274,17
0 86,782,166 383 

Blood 
186,266,05
5 96.26 - 

103,044,36
2 60,323,363 - - 

Tumour2 
FF 

195,958,93
1 96.63 

187,858,49
4 

147,765,53
2 105,375,328 1,471 27,764 

FFPE 95,105,098 93.98 88,953,041 32,115,195 10,201,299 47 

Blood 
193,634,66
5 96.61 - 

147,906,13
1 111,689,924 - - 

Tumour3 

FF 
198,984,00
1 96.57 

170,614,31
0 

146,079,96
8 106,880,654 530 

11,068 

FFPE 
131,586,72
2 95.11 

113,854,65
4 77,474,870 36,663,830 90 

Blood 
190,613,39
3 96.49 - 

114,092,33
1 73,822,016 - - 

 

Table 4.5: Quality metrics for mutREAD libraries derived from tumour, FFPE and blood 

samples of three patients.  
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The table summarizes quality metrics for each sample, including fresh-frozen (FF) and 

formalin-fixed paraffin-embedded (FFPE) tumour, as well as blood samples (column 2) from 

three patients (column 1). Sample groups of three were sequenced on one lane, where each 

sample had a unique outer barcode. Number of reads derived from the libraries de-

multiplexed by outer barcode are listed in column 3. Percentages (with respect to column 3) 

of reads that are retained for further analysis (column 4) or filtered due to an unidentifiable 

inner barcode (column 5), low read quality (column 6), wrong/unexpected inner barcode 

(column 7), missing restriction site overhang (column 8) are listed in the respective columns. 

The average fragment size derived from read pair mates after mapping is given in column 9 

(related to Supplementary Figure 4). The number of base pairs covered with at least 10x, 50x 

and 100x is listed in column 10, 13 and 14, respectively. The percentage of retained reads 

(column 4) contributing to loci defined in column 10 is given in column 11. Finally, the overlap 

between tumour and blood samples in loci defined in column 10 is shown in column 12. The 

number of mutations used for deriving the mutational signatures is given in column 15 and 

16. 
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4.10 Comparative Mutational Signatures analysis across different methods on 

three OAC patients samples. 

The mutational signatures, derived from 530-1471 mutations detected using GATK 

Mutect2102, showed cosine similarities of 0.95-0.96 when compared with the WGS-derived 

mutational signature profiles (Figure 4.11). We observed similar cosine similarity between 

mutREAD and WGS when mutations were derived using an alternative mutation caller, 

Strelka103 (Table 4.6). In summary, the mutREAD protocol results in reproducible, good 

quality, target-specific libraries from which mutational signatures can be successfully derived. 

 

Figure 4.11: Mutational signatures derived with different sequencing methods. 

Comparison of the mutational signature profiles for three OAC samples across different 

sequencing methods (x-axis). Each bar indicates the contribution of the mutational signature 

(y-axis) to the overall mutational spectrum. Pairwise cosine similarities to WGS for mutREAD, 

WES and 10x sWGS are indicated above the bars. 
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A) Number mutations (fresh-frozen)    

  
mutREAD WGS 
Mutect2 Strelka Consensus Mutect2 Strelka Overlap 

Tumour1 1050 520 440 28732 27370 26048 
Tumour2 1471 839 714 27764 26540 25284 
Tumour3 530 339 217 11068 10398 9950 

       
B) Cosine similarity with WGS (fresh-frozen)   
  Mutect2 Strelka Consensus    
Tumour1 0.96 0.94 0.92    
Tumour2 0.95 1.00 0.99    
Tumour3 0.96 0.84 0.83    

       
C) Number mutations (FFPE)     
  Mutect2 Strelka Consensus    
Tumour1 383 811 104    
Tumour2 47 420 27    
Tumour3 90 838 45    

       
D) Cosine similarity with WGS (FFPE)    
  Mutect2 Strelka Consensus    
Tumour1 0.89 0.83 0.76    
Tumour2 0.93 0.81 0.89    
Tumour3 0.96 0.81 0.88                                   

 

Table 4.6:Comparison of Mutect2 and Strelka mutation calling pipelines 

The tables A and C summarize the number of mutations detected by Mutect2 and Strelka, as 

well as the overlap/consensus between the two mutation callers, for the three fresh-frozen 

(mutREAD and WGS) and FFPE tumour samples, respectively. The cosine similarity of 

mutREAD-derived and WGS-derived mutational signatures is summarized in tables B and D 

for the fresh-frozen and FFPE samples, respectively. For each mutation caller and the 

consensus set, the mutational signatures were calculated from respective mutREAD-derived 

and WGS-derived mutation set and compared against each other using cosine similarity. 
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Next, we compared mutREAD with WES and 10x sWGS libraries of the same samples 

sequenced to similar depth. Quality measures for the resulting libraries of the different 

methods are summarized in Table 4.7. WES resulted in 46-325 mutations per sample and 10x 

sWGS identified 21-83 mutations per sample. mutREAD consistently achieved high cosine 

similarity to the corresponding WGS-derived signatures. Conversely, WES and 10x sWGS had 

lower cosine similarities and much higher variability between patients (Figure 4.11).  
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A)  
10x 
sWGS   
Patient 
ID 

Sample 
type 

Number of 
reads after 
outer barcode 
demultiplexing 

Properly 
paired reads 

Base pairs 
covered with 
at least 10x 

Percent of 
retained 
reads 
contributing 
to 10x loci 

Base pairs in 
10x loci 
shared in 
tumour/blood 
pair 

Number 
of 
mutations 

Tumour1 FF 215,680,416 206,317,606 2,432,340,493 90.21 99,329,518 42 
  Blood 180,158,855 175,855,924 2,248,030,642 88.49 - - 
Tumour2 FF 329,742,782 321,605,192 2,646,459,519 88.55 77,553,550 21 
  Blood 217,304,771 210,403,566 2,444,354,485 88.51 - - 
Tumour3 FF 139,225,587 134,967,944 1,914,933,524 89.19 94,152,562 83 
  Blood 233,793,837 228,289,614 2,478,664,018 88.27 - - 
        
B)  
WES   
Patient 
ID 

Sample 
type 

Number of 
reads after 
outer barcode 
demultiplexing 
& PCR clone 
removal 

Properly 
paired reads 

Base pairs 
covered with 
at least 10x 

Percent of 
retained 
reads 
contributing 
to 10x loci 

Base pairs in 
10x loci 
shared in 
tumour/blood 
pair 

Number 
of 
mutations 

Tumour1 FF 149,007,546 146,883,752 228,030,295 92.41 396,961,129 325 
  Blood 72,706,935 69,490,692 165,989,267 89.08 - - 
Tumour2 FF 44,956,340 44,224,012 119,724,582 94.68 902,341,754 142 
  Blood 64,528,333 63,067,844 145,330,607 92.69 - - 
Tumour3 FF 74,142,650 72,864,976 156,263,110 82.16 251,229,586 46 
  Blood 84,750,728 79,661,310 187,169,707 92.76 - - 
         
C) 
mutREAD   
Patient 
ID 

Sample 
type 

Number of 
reads after 
outer barcode 
demultiplexing, 
PCR clone 
removal & 
mutREAD 
filtering 

Properly 
paired reads 

Base pairs 
covered with 
at least 10x 

Percent of 
retained 
reads 
contributing 
to 10x loci 

Base pairs in 
10x loci 
shared in 
tumour/blood 
pair 

Number 
of 
mutations 

Tumour1 FF 150,115,473 142,432,706 175,049,803 96.54 166,936,824 1,050 
  Blood 145,505,593 137,261,472 186,266,055 96.26 - - 
Tumour2 FF 196,879,399 195,040,496 195,958,931 96.63 187,858,494 1,471 
  Blood 219,749,023 217,691,576 193,634,665 96.61 - - 
Tumour3 FF 216,676,031 214,418,984 198,984,001 96.57 170,614,310 530 
  Blood 185,303,214 175,401,460 190,613,393 96.49 - - 
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Table 4.7: Quality metrics for 10x sWGS, WES and mutREAD libraries derived from tumour 

and blood samples of three patients. 

The table summarizes quality metrics of the libraries generated by (A) 10x sWGS, (B) WES, 

and (C) mutREAD for tumour and blood samples (column 2) of the same three patients 

(column 1). Column 3 and 4 gives the number of reads and properly paired read pairs used 

for mutation calling, respectively. The number of base pairs covered with at least 10x, the 

percentage of reads contributing to these loci and the overlap in these loci between tumour 

and normal samples is listed in column 5-7. 
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4.11 Comparative Mutational Signatures analysis between sample type: 

Frozen v/s FFPE samples 

Finally, we investigated if mutREAD can be used to study historical samples by sequencing 

FFPE specimens matching the previously analysed frozen samples. Fresh frozen and FFPE-

derived samples generated similar signature patterns (Figure 4.12), despite the lower 

sequencing depth and smaller fragment distribution of final FFPE-derived libraries (Figure 4.9, 

Figure 4.10, Table 4.5).  Cosine similarities to WGS-derived mutational signatures were 

between 0.89-0.96 based on 47-383 detected mutations.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Comparative Mutational signature analysis between Frozen and FFPE tumour 

samples. 
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Comparison of the mutational signature profiles between WGS, fresh-frozen (FF) and FFPE 

samples for the same three OAC samples as in Figure 1. Each bar indicates the contribution 

of the mutational signature (y-axis) to the overall mutational spectrum. Pairwise cosine 

similarities to WGS for the two mutREAD libraries are indicated above the bars. 

 

We replicated the good cosine similarity to WGS-derived mutational signatures in an 

additional nine FFPE samples (Table 4.8). Of note, samples were derived from tumour 

resections and pathology estimates for these samples show low tumour content (10-70%, 

Table 4.9), explaining the lower number of mutations and higher variability across samples 

compared to the previously tested biopsy samples.  

 

                                     

Table 4.8: mutREAD recapitulates mutational signatures in FFPE samples as per WGS 

Cosine similarity between mutational signatures derived from nine additional FFPE and WGS 

sample pairs and the number of detected mutations in the FFPE samples used to derive the 

mutational signatures. 
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A) Tumour biopsies 
Patient Pathologist 1 Pathologist 2 Pathologist 3 
Tumour1 70% 60% 45% 
Tumour2 50% 55% 30% 
Tumour3 30% 35% 15-20% 

   
 

B) Tumour resections 
Patient Pathologist 1 Pathologist 2 Pathologist 3 
Patient1 60% 60% 15% 
Patient2 60% 70% 20% 
Patient3 30% 60% 15% 
Patient4 N/A N/A N/A 
Patient5 30% 20% 10-15% 
Patient6 70% 40% 20% 
Patient7 20% 45% 20-25% 
Patient8 25% 45% 50% 
Patient9 50% 50% 20-25% 

 

Table 4.9: Tumour cellularity of FFPE samples estimated by pathology 

A) Estimated percent of tumour content for the three biopsy samples estimated by 

pathologist review of diagnostic slides.  

B) Estimated percent of tumour content for the nine tumour resection samples estimated by 

pathologist review of diagnostic slide 
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Basic demographics of the patients from whom tumour samples taken are listed in  

Table 4.10 

 

 

Patient ID Anonymized Name (ICGC identifier)  Age at 
diagnosis 

Sex Tumour 
Stage 

Node 
Stage 

Tumour1 a504c27a1fd7af3a53e0b5108cc052cab5
ff8d1a353800e85ea8eec766707bde 

75.4 male T3 N0 

Tumour2 fa37be85256c1efbac0501eb13ae1daf9f
0fcaff4a7cbb3d2f4420f70f75d334 

77.1 male T3 N1 

Tumour3 da859c8e95cc5acefde4e70aaed8fc8944
9c2aa5d9a6cef6202041987840e0a3 

75.3 male T2 N1 

Patient1 9a498e8b17034fd8bb534f0e65e12c83a
73aa65908fd41f4a13f86cf35b3e0cd 

80.8 female T1a Nx 

Patient2 493bf7322b8c18365466c43bf7a9e119b
d4d7782147f9bc368bf4909539c43de 

68.7 male T1b N0 

Patient3 078773cc36a9ab58ece5c92e50368462d
ea52ded70f1b0da8c66e65066a3ce53 

72.4 male T3 N1 

Patient4 3180f8e34845d13e27dddd90486dba08
3cd87a340d919f75d29859766f7faee4 

69.9 male T3 N1 

Patient5 a7376de8be895a08d2abb22b1e3ee248
3fb47abc534d7c6a066b06b2f0d4459a 

51.9 female T1 N0 

Patient6 75ce1bd6dbaf2d4ca50f51e6c1f2a09f32
75b080539a07ac7ed962ae72c5179f 

58.4 female T3 N0 

Patient7 1395dc4ab7c754e0a84c8daa3996f16e5
caf11169f8a9be6c800f6da00474321 

65.6 male T2 N1 

Patient8 934fe84809fc20a81f124747d5ed57817
eb0f9120ea63a69a1548d514710978f 

59.2 male T4a N1 

Patient9 900fdae05c90e27aba521996cc05d0a83
e32dec27c271a8f14e59fa84439ed34 

73.5 male T3 N0 

 

 

Table 4.10: Patients Clinical Characteristics 

The table lists the information about individual patients used in the study. Patient ID follows 

the convention established in figures 1 and 2. Anonymized Name provides ICGC patient ID 

that can be used to obtain the Whole Genome Sequencing data used in the study.  
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4.12 Reproducibility of mutREAD in  identification of  Mutational signatures 

from FFPE samples  

Given the high degradation expected in FFPE samples which can result in variability, we also 

tested the reproducibility of FFPE-derived mutREAD libraries. Technical replicates of the nine 

FFPE samples showed high concordance in sequenced regions and fragment size distribution 

(Figure 4.13, Figure 4.14). Hence, while it is expected that the performance on FFPE is lower 

compared to fresh-frozen samples, our results suggest that mutREAD can also be applied to 

FFPE-derived DNA samples with low tumour content and leads to reproducible results. 

 

 

 

 

  Figure 4.13: mutREAD reproducibly detects mutational signatures in FFPE samples 

Reproducibility of the sequenced regions between the first FFPE-derived technical replicate 

and the blood sample, the second FFPE-derived technical replicate and the blood sample, and 

between the two technical replicates (x-axis). The bars indicate the size of the overlapping 
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regions in Mpbs (y-axis) for each comparison. Only regions covered at least 10x contribute to 

the comparison. The second technical replicate was sequenced to lower coverage and we 

down-sampled the first technical replicate by 50% to approximately match the sequencing 

coverage for comparison. 
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Figure 4.14: Comparison of the fragment size distributions for technical replicates of FFPE 

samples and blood Fragment size distribution derived from read-pairs mapped to the human 

genome. Each plot shows the number of fragments (y-axis) for each length in base pairs (x-

axis) for the two technical replicates of FFPE tumour samples and the corresponding blood 

sample per patient. The fragment length was calculated as the number of base pairs between 

the 5’ ends of the read mates (including restriction site parts but not adapters or barcode 

sequences) and summarized to a histogram using Picard’s CollectInsertSizeMetrics function. 

 

 

 

We then evaluated the estimate of cost of mutREAD for library preparation protocol and 

compared with other methods. These are tabulated below (Table 4.11) 
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Table 4.11: Comparative cost evaluation for library preparation per sample 

A) Estimated cost of individual elements used for library preparation using the mutREAD 

protocol. The cost is estimated using reagents provided by New England Biolab, Ipswich, MA 

01938 USA 

B) Cost estimate of enrichment-based whole exome sequencing provided by Agilent, Santa 

Clara, CA 95051 USA. The cost does not include AMPure XP and Streptavidin beads required 

for the selection of target sequences.  

C) Cost estimate of the whole genome library preparation method provided by Takara Bio, 

Kusatsu, Shiga 525-0058, Japan. The cost does not include AMPure XP and Streptavidin beads 

required for the selection of target sequences.Cost of sequencing: Assuming 200x coverage 

for mutREAD, the per-sample cost is around £150. The costs for WES would be similar as both 

methods sample a comparable proportion of the genome. 10x sWGS would cost £300-£700 

depending on the chosen sequencing platform. 

A) mutREAD   

No. Reagents Size Cost (£) 
Use per 
sample 

Per 
sample (£) 

1 Adapter and Primers 400ul -- 9.5ul 2 
2 T4 ligase 20,000Units 62.58 400units 1.25 
3 ApoI-HF 1000 Units 49.6 50units 2.48 
4 PstI-HF 10,000Units 41.6 50units 0.2 
5 10mM ATP 1000ul 24 4ul 0.1 
6 Ampure XP beads 5000ul 195.26 37.5ul 1.5 
7 10mM dNTPs 800ul 49.6 2ul 0.1 
8 Phusion High fidelity polymerase 100Units 61.6 1unit 0.6 
        Total: £8.23  
            
B) WES   

Sl no Reagents Size Cost (£) 
Per sample 
(£)   

1 
DNA library preparation and 
enrichment kit 16 3,589 199   

      Total: £199    
            
C) 10x sWGS   

Sl no Reagents Size Cost (£) 
Per sample 
(£)   

1 
Thruplex library preparation and 
enrichment kit 96 3,818.59 39.7   

2 Sonication 96 352 3.7   
      Total: £43    



 
 

155 

4.13 Summary 

 
In this chapter I have presented the development of a novel DNA sequencing method, 

mutREAD, a simple yet robust protocol for detection of mutational signatures from low 

quality and quantities of DNA. We hypothesised that sampling a random subset of mutations 

from a genome will suffice the detection of mutational signatures. The RR-Seq based 

mutREAD method performed well on in-silico mutational signature analysis and we showed 

that with a small random subset of mutations we were able to recapitulate the mutational 

signatures present in WGS data. We then performed a comparative in-silico analysis across 

different methods such as WGS, WES and 10x sWGS, and RR-seq based mutREAD with 

different combinations of restriction enzymes. mutREAD out performed the other methods 

and we selected the top hit restrictions enzymes (PstI+ApoI) for development of a robust lab 

protocol. We also evaluated mutREAD across 20 different cancer types using the WGS data 

by PCAWG and showed that mutREAD accurately identified the mutational signatures specific 

to each type, thus expanding its application to other cancer types. 

We then developed the lab protocol to prepare DNA libraries. Optimization experiments were 

performed on cell line DNA and evaluated on fresh frozen tumour DNA and later DNA from 

FFPE samples. We designed enzyme specific adapters and streamlined the protocol to 

accommodation, restriction digestion, adapter ligation in one step. Unwanted purification 

steps were removed, and reproducible fragment size selection step was optimised. Minimum 

PCR cycles were used to avoid duplicates in sequencing data. To increase the diversity of reads 

during sequencing PhiX DNA was spiked. 

Two different mutation callers were employed to call mutations and we observed similar 

cosine similarity values. In the first set of experiments, we extracted mutational signatures 
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from three fresh frozen tumours and compared these with WGS, 10XsWGS and WES. 

mutREAD derived signatures showed 0.96 similarity to WGS derived signatures. Next we 

evaluated mutREAD on FFPE samples from the same three tumours, and we were able to get 

similar results (cosine value: 0.89-0.96). We then analysed data from additional 9 FFPE 

samples and were able to recapitulate the WGS based signatures with some variations in 

cosine similarities values, which were explained by the low tumour cellularity. Overall we 

showed that using mutREAD we reliably recapitulated mutational signatures specific to 

cancer type. 

The key features of mutREAD are its simple library preparation work flow and the reduced  

time required for preparing DNA for sequencing. Its flexibility and easy-to-use protocol for 

customised usage are advantageous. The lab reagents used can be easily procured which 

helps for its wider application without any need for advanced instruments, only a thermal 

cycler can be sufficient for library preparation. This reduces cost and mutREAD is thus a cost 

effective scalable and can be tailored for different applications. We have developed mutREAD 

for OAC specific mutational signature detection. For future directions this method can be 

further improved to enable detection of other signature types such as indels, structural 

variants and copy number alteration
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5.Results Chapter  

Validation of mutREAD using archival samples 

from oesophageal adenocarcinoma patients. 
 

5.1 Rationale:   

With the development of a cost-effective method for large scale screening of mutational 

signatures, we extended the method on a new cohort of FFPE samples to provide 

confirmation that it was robust. I performed mutational signature analysis on FFPE samples 

from pre(diagnostic) biopsies and matched resection tumours and compared the data to WGS 

from fresh frozen tumour from the same patient. In addition, I ascertained the influence of 

therapy on the proportions of mutational signatures obtained from mutREAD data. 

5.2 Study Cohort: 

We assembled a cohort of 25 OACs patients, for whom we had WGS data. We procured pre 

(diagnostic) and post chemotherapy treatment FFPE blocks as available for the 25 patients. 

As expected, this validation cohort was male prediminant (92%) with a mean age of 68.3 

years. Basic exposure data such as alcohol, smoking and BMI as available is presented. The 

majority of these tumours are T3(56%), more than half the patients had positive nodes (56%) 

and only a few have loco-regional metastasis since they were on a surgical pathway (16%). 

GEJ type II tumours were almost half of the cohort (56%). Overall survival was 29 weeks(21-

51). (Table 5.1)
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Variable Measure/level OAC (n=25) 

Age Years(median,IQR) 68.3 (57.1- 76.4) 

Gender Female 1 (4%) 

 Male 23 (92%) 

 Missing 1 (4%) 

Smoking status Current 2 (8%) 

 Former 11 (44%) 

 Never 4 (16%) 

 Missing 8 (32%) 

Alcohol(Units/week) Mean(min-max) 3.6 (1-21) 

BMI Kg/m2(median, IQR) 26.2 (22.6-28.2) 

Overall Survival Weeks (median, IQR) 29 (22-68) 

Pre-treatment Tumour 
Stage T2 4 (16%) 

 T3 14 (56%) 

 T4a 1 (4%) 

 Missing 6 (24%) 

Pre-treatment nodal 
involvement Positive 14 (56%) 

 Negative 7 (28%) 

 Missing 4 (16%) 

Pre-treatment loco-
regional metastasis Positive 4 (16%) 

 Negative 18 (72%) 

 Missing 3 (12%) 

Chemo treated Yes 21 (84%) 

 No 0 

 Missing 4 (16%) 

Siewert Classification Type I 3 (12%) 

 Type II 13 (52%) 
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 Missing 9 (36%) 
 

Table 5.1: Cohort Demographics 

 

5.3 mutREAD Library quality control measures 

mutREAD libraries were prepared as per the protocol I developed detailed in the results 

chapter 2(section 4.9), with some minor changes to the protocol. Library preparation and 

sequencing for 23 pre(diagnostic) biopsies and 25 resection tumours were processed in two 

batches. First batch was composed of 3 pre(diagnostic) biopsies and 5 resection tumours and 

in second batch all the remaining samples: 20 pre(diagnostic) biopsies and 20 resection 

tumours were processed.Here I used only 200-300ng of FFPE DNA as input due to the scarcity 

of material. Quality checks were performed to confirm fragment sizes of the libraries within 

the range of 250-450bps and to ensure that I had clean fragments with minimal 

contamination from un-ligated adapters during PCR amplification. Representative individual 

library traces for the first batch were shown in Figure 5.1. 
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Figure 5.1:  Representative mutREAD libraries from the first batch:  Fragment size (x-axis) 

distribution of sequencing libraries measured on the Tape-station.  

(a)Gel image of the libraries (b) Electropherograms of DNA fragments from four samples 

derived from FFPE (undiluted) with the average size of libraries highlighted above the plot.  
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DNA fragments in the libraries from the second batch of samples were checked individually 

on the bioanalyzer and then they were pooled for sequencing. In figure 5.2, I show the traces 

after pooling. Number of samples in a pool was selected to get 100Million reads/sample after 

sequencing. All 20 pre(diagnostic) were pooled together and 20 chemo treated were pooled. 

Libraries from matched blood for these cases were pooled as one. Due to varied degree of 

fragmentation of FFPE samples, different fragments length were observed. Pre(diagnostic) 

samples after pooling showed an average fragment length of 317bps. FFPE samples from 

resection tumours from treated patients showed relatively more degradation with average 

fragment size of 285bps.  As expected, DNA from matched blood samples showed an average 

fragment length of 447bps. 
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Figure 5.2: Fragment size distribution of mutREAD libraries. Bioanalyser traces for pooled 

libraries: (a)Electropherograms of DNA fragments from second batch of 20 patients taken 

from pre(diagnostic) biopsies, resection tumours after treatment and matched blood samples 

derived from FFPE (undiluted) with the average size of libraries highlighted above the plot. 

(b) Gel image of the libraries 
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5.4 Comparative analysis of mutREAD derived OAC specific mutational 

signatures with their WGS mutational profiles. 

 

We were able to get pre(diagnostic) biopsies from 23 of 25 patients and matched resection 

tumours for all 25 patients. Mutational signatures specific to OAC (S1- aging; S2-APOBEC; S3-

BRCA; S17A;S17B and S18-ROS) were extracted using the mutREAD- variant calling files (VCF) 

generated as described in the methods chapter section 2.20. 

Using mutREAD sequencing, SNVs in the range of 53 to 591 (median = 191) were obtained. 

Using these SNVs mutational signatures were extracted. Mutational signatures profiles for 

individual samples from 23 pre(diagnostic) samples were compared with the WGS data using 

cosine similarity function and recorded (Table 5.2).  

The number of samples in each signature-based comparison varies as per the prevalence of 

that signature among the pre(diagnostic) samples. In Figure 5.3, 5.4, 5.5 and 5.6 the WGS 

signature proportions are shown in comparison with the mutREAD proportions for S17, S18-

like, S1-Aging and S2-APOBEC/S3-BRCA respectively. Also, the Pearson correlation(R) was 

computed to measure the linear correlation for proportions obtained from WGS and 

mutREAD for that signature along with the p value for statistical significance. Only the cases 

with non-zero proportions were considered for the correlation analysis, hence the 

denominator for individual signature comparison is less than 23. 

S17A and B were merged into one as they are linked to one mutational process in view of 

their similarity and to ensure that there was signal for all cases. mutREAD data for 81.81% 

(9/11) of samples with non-zero signature proportions for S17 recapitulated WGS 

proportions, one outlier with four times the proportion of S17 in mutREAD data is recorded, 
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this is most probably technical artefact associated with filtering of SNVs during raw data 

processing. A strong positive linear correlation between mutREAD and WGS signature 

proportion estimates was observed with Pearson correlation R = 0.83 and significant p value 

of 0.0015(Figure 5.3). 

 

  

                                    

 

Figure 5.3: Mutational signature wise comparative analysis of mutREAD signature with 

matched WGS data: S17 comparison. 

(a)Grouped bar charts for individual pre(diagnostic) samples, first bar is for the signature from 

WGS data and is followed by the bar for signature obtained from mutREAD. X-axis is 

pre(diagnostic) samples with non-zero signature proportions. Y-axis is S17 proportions. S17A 

and B were merged into one as they are linked to one mutational process in view of their 

similarity and to ensure that there was signal for all cases.  

(b) Scatter plot showing strong positive linear correlation between WGS and mutREAD S17 

proportions. Pearson correlation (R)=0.83 with significant p=0.0015. 

 

 

S18 mutational signature was also successfully recapitulated with 10/11 (90.90%) samples 

recovering S18 proportions in mutREAD data. It also had a strong linear correlation with 

Pearson correlation R = 0.83 and significant p value of 0.0015(Figure 5.4). Aging associated 
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signature S1 was recovered in all non-zero samples (12/12). In half (6/12) of these samples, 

proportions in mutREAD data was double the proportions in WGS, hinting towards FFPE 

associated C>T contribution. Pearson correlation showed a moderate (R= 0.57) linear relation 

with a significant  p value of 0.053(Figure 5.5) 

 

Figure 5.4: ROS linked S18 comparative analysis with correlation between WGS and 

mutREAD proportions. 

(a)Individual pre(diagnostic) sample-based comparison for S18 proportions depicted in the 

bar chart, first bar is for WGS followed by mutREAD. X-axis for pre(diagnostic) samples and Y-

axis for the S18 proportions. 

(b) Strong positive Correlation between WGS and mutREAD for S18 proportions shown in the 

scatter plot. Pearson correlation (R)=0.83, p= 0.0015 
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Figure 5.5: Aging associated S1 based comparative analysis of mutREAD with matched WGS 

data.  

(a)X-axis is pre(diagnostic) samples with non-zero signature proportions. Y-axis is S1 

proportions. First bar in the grouped bar chart is WGS and second bar chart for mutREAD S1 

proportions. 

(b) A moderate positive correlation is shown between WGS and mutREAD for S1 proportions. 

Pearson correlation (R)=0.57, p= 0.053 

 

 

Figure 5.6: Sample based comparative analysis between WGS and mutREAD proportions for 

APOBEC and BRCA signatures. 

Grouped bar chart depicting S2-APOBEC and S3-BRCA mutational signatures, samples are on 

X-axis and signature proportions are on Y-axis. First bar denotes proportions from WGS and 

second bar is for mutREAD.  

 

APOBEC associated mutational signature S2 prevalence was low with only 5/23(21.7%) 

patients had a non-zero prevalence. mutREAD data was not able to recapitulate this signature 

(R = -0.49, p=0.4) as compared to the other dominant signatures like S17, S18 and S1-aging. 

Low prevalence and random sampling of SNVs in mutREAD further dilutes this signature and 

might account for this (Figure5.6). 

0.0

0.1

0.2

0.3

Case8 Case10 Case11 Case13 Case14 Case18 Case20 Case22
SBS3

Pr
op
or
tio
ns

Method
WGS
mutREAD

0.00

0.05

0.10

0.15

0.20

0.25

Case8 Case9 Case14 Case21 Case22
SBS2

Pr
op
or
tio
ns

Method
WGS
mutREAD

S2-APOBEC S3-BRCA

Samples

Pr
op

or
tio

ns

Pr
op

or
tio

ns

Samples



 
 

167 

S3-BRCA mutational signature was prevalent in 8/23(34.7%) cases, mutREAD data for this 

signature was recovered better than APOBEC but did not correlate with the WGS (R=0.054; 

p=0.9) (Figure5.6). 

In Figure 5.7, an overview of the six mutational signatures predominant in OAC are shown 

across the pre(diagnostic) samples in the cohort in a comparative analysis with matched WGS 

and the cosine similarity is indicated 

Overall good(above 0.5) cosine similarity values (Median=0.8) were obtained for all the 

pre(diagnostic) samples, 82.6% (19/23) of FFPE samples recapitulated the OAC signatures 

with a cosine similarity value ranging from 0.51 to 1.0.  Only 17.4% (4/23) poorly matched to 

WGS with low cosine values ranging from 0 to 0.50 (Table 5.2; Figure 5.7). These are outlier 

samples with more than 50% of their proportions composed of S1-aging associated 

SNVs(C>T), may be contributed by FFPE artefacts.  

 

 

Figure 5.7: Comparitive landscape of mutational signatures obtained from mutREAD to 

WGS: 
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Comparative mutational signature analysis for six OAC mutational signatures from 23 

pre(diagnostic) samples with their matched WGS data. Respective cosine similarity value  for 

mutREAD vs WGS is shown on top of each stacked bar in the plot. First bar in the grouped bar 

is for WGS and second bar is for mutREAD. X-axis, samples were labelled on top of each pair 

of grouped bars and the method from which the proportions were obtained are labelled on 

x-axis. Y-axis is for signature proportions.  

 

 

Patient ID Cosine Similarity with WGS 
(Median =0.80) 

Total number of SNVs 
(mutREAD)  

(Median =191) 
Case1_Pre(diagnostic) 0.97 474 
Case2_Pre(diagnostic) 0.65 66 
Case3_Pre(diagnostic) 0.81 591 
Case4_Pre(diagnostic) 0.41 343 
Case5_Pre(diagnostic) 0.81 334 
Case6_Pre(diagnostic) 0.92 298 
Case7_Pre(diagnostic) 0.41 65 
Case8_Pre(diagnostic) 0.71 258 
Case9_Pre(diagnostic) 0.83 268 

Case10_Pre(diagnostic) 0.85 158 
Case11_Pre(diagnostic) 0.82 242 
Case12_Pre(diagnostic) 0.71 102 
Case13_Pre(diagnostic) 0.73 139 
Case14_Pre(diagnostic) 0.91 152 
Case15_Pre(diagnostic) 0.90 291 
Case16_Pre(diagnostic) 0.51 191 
Case17_Pre(diagnostic) 0.12 78 
Case18_Pre(diagnostic) 0.61 97 
Case19_Pre(diagnostic) 0.97 341 
Case20_Pre(diagnostic) 0.90 388 
Case21_Pre(diagnostic) 0.80 169 
Case22_Pre(diagnostic) 0.70 94 
Case23_Pre(diagnostic) 0.30 53 

 
Table 5.2: Cosine similarities of mutational signatures obtained by mutREAD to WGS. 

Measure of similarity between all six mutational signatures extracted from mutREAD and 

WGS are recorded. SNVs obtained from mutREAD, which were used to extract mutational 

signatures are listed. 
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The cosine similarity trend in pre(diagnostic) samples was plotted in Figure 5.8, it shows the 

density is skewed towards the higher end of the range 0 to 1 (median= 0.8). Further, 

confirming that we were able to recapitulate the WGS mutational signatures by mutREAD. 

Some outliers as mentioned earlier contributed to low scores, mostly the SNVs associated 

with FFPE artefacts/aging (C>T). 

 

 

 
 

Figure 5.8: Trend of cosine similarity observed: Cosine similarity values between mutREAD 

derived signatures and their matched WGS were measured on a scale of 0 to 1 for the 23 
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pre(diagnostic) samples. 0= not matching ;1=100% matching. Number of cases falling in the 

range of 0 to 1 were plotted on this density histogram. 

 

When the tumour cellularity (percentage of tumour content in whole section of the tumour 

block) was compared with the cosine similarity for WGS signatures from mutREAD data 

(Figure 5.9) no pattern was observed. Furthermore, mutREAD can be used to obtain 

signatures from samples with tumour content as low as 10-20%. (Table 5.3). Tumour 

cellularity estimated from pathology is quite crude and often an over-estimate, unless it is 

estimated from the sequencing data. 

 

 

                                

Figure 5.9: Tumour Cellularity v/s Cosine similarity 
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Scatter plot comparing the tumour cellularity of pre(diagnostic) samples with cosine similarity 

obtained for mutREAD signatures with WGS data. Pearson correlation was computed with R=-

0.4, p=0.13 

 

Sample ID Pre(diagnostic) Blocks Resection Blocks (Treated) 
Case1 40% 20% 
Case2 60% 20% 
Case3 60% 60% 
Case4 70% 10-20% 
Case5 60% 30% 
Case6 20% 30% 
Case7 <5% NA 
Case8 10% 30% 
Case9 30% <5% 

Case10 60% 10% 
Case11 60% 10% 
Case12 40% 30% 
Case13 60% 20% 
Case14 20% 20% 
Case15 30% 20% 
Case16 70% 60% 
Case17 80% 30% 
Case18 40% 50% 
Case19 70% 20% 
Case20 30% <5% 
Case21 NA <10% 
Case22 70% NA 
Case23 60% 60% 
Case24 NA 60% 
Case25 40% NA 

 
Table 5.3: Tumor cellularity of FFPE samples from Pre(diagnostic) and matched resection 

samples estimated by pathology 

Estimated percent of tumour content for the twenty-five biopsy and matched resection 

samples as available, estimated by pathologist review of diagnostic slides.  
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5.5 Influence of therapy on proportions of mutREAD derived OAC signatures. 
 

Having ascertained that the mutREAD data recapitulated the signatures the next task was to 

examine the differences in proportions of OAC mutational signatures between the 

pre(diagnostic) and chemo treated tumour samples. The standard triple therapy regimen 

(ECX or EOX) was planned for all the 25 cases of the cohort that preceded the recent switch 

to FLOT chemotherapy. The aim was to see how the treatment influences proportions of a 

type of signature in these samples. Proportions obtained for a particular signature across all 

samples in each subtype was compared. Three predominant OAC signatures (S1 (Aging), S17B 

and S18-like) showed differences in their proportions before and after therapy.(Figure 5.10). 

The Proportion of the S1 signature associated with aging tended to increase after treatment 

similar to the increasing proportions of S17B. On the other hand the S18-like proportion 

decreased after treatment. However, these were not statistically significant likely due to the 

sample size. 

 
Figure 5.10: Influence of therapy on proportions of mutational signatures obtained from 

mutREAD data. Change in proportions of predominant OAC signatures between 

pre(diagnostic) biopsies and resection tumours after treatment are shown here. Three of six 

OAC signatures tend to vary between the sample type (S1.Aging- p=0.21; S17B- p=0.27; 

S18.like- p=0.05) 
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5.6 Summary 
 
In this chapter, I have presented the validation of mutREAD in a new cohort of 25 OAC  

patients, using FFPE samples from 23 pre(diagnostic) biopsies and matched post treatment 

resection tumours for all 25 patients. The experimental protocol for the mutREAD DNA library 

preparation performed well with a relatively low input of FFPE DNA (250g). The quality check 

showed that mutREAD DNA libraries had minimal to no contamination of by-products of 

ligation and amplification (un-ligated adapters). The cohort had varied quality of FFPE DNA. 

For instance the post treatment samples were relatively degraded compared to 

pre(diagnostic samples), yet across all these parameters it was possible to generate signature 

data from these cases. This suggests that the mutREAD lab protocol is reproducible, 

consistent and can be adapted to account for changes in input DNA. The method therefore 

has potential to be used for large scale clinical screening after accounting for its limitations. 

There are limitations of this method, it will not perform well for signatures at low prevalence, 

for instance S2-APOBEC in this cohort. Also, the method is designed for known signatures in 

a given cancer type. As I have shown only predominant signatures in OAC were recapitulated 

(S17, S18-like , S1-Aging and S3-BRCA). This method is not recommended for de novo 

discovery of signatures in a cohort. For faithful recapitulation of signatures, a sequencing 

depth of 100x is recommended.  

On sequencing, a range of SNVs were obtained (median 191), this can be in part explained by 

the cellularity, which was varied across blocks. DNA was extracted from whole block tumour 

sections to help ease the protocol and avoid time consuming macro-dissections. This 

contributed to varied cellularity however despite this mutREAD performed well, with 82.6% 

of samples recapitulating the WGS mutational signature profiles with a good cosine similarity 
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(median=0.8). This is an additional advantage of mutREAD for large scale applications, where 

tumour content and quality varies. 

Using the mutREAD mutational signatures data I investigated the differences in the 

proportions of the mutational signatures in pre (diagnostic) and post treatment tumours. 

While the sample size was small to make definitive conclusions, I observed an increasing trend 

for signature 1 (aging) and S17B after treatment. All the patients in this cohort were treated 

with capecitabine which has previously been shown to be linked with the S17B mutational 

signature. This is also in line with reports in pan cancer analysis of treatment tumours for 

these signatures24. In contrast we found that S18, linked to ROS, decreases after treatment - 

this observation needs to be confirmed in large cohort.  

Overall, mutREAD was shown to be a feasible method to generate data from low-input and 

poor-quality clinical samples. This method is promising for use as a cost-effective and easy 

protocol to ascertain the signature profiles in routine clinical specimens. 
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6. Discussion and Future Work 

In this thesis I have presented a comprehensive characterization of dynamics of mutational 

processes during the evolution of OAC and development of a novel cost-effective DNA 

sequencing method from small amounts of archival DNA samples. This included investigation 

of the mutational processes during the course of OAC development from pre-cancerous 

stages to advanced metastatic spread. To facilitate this analysis, I therefore gathered data 

from a large and clinically annotated cohort of 997 samples from different stages of OAC 

development. The cohort also has 45 matched Barrett’s samples from the same OAC patients.  

This extensive cohort is one of the strengths of this study. Also, tumours from 4 OAC patients 

with metastases. In total, I have 59 metastases samples and mostly these are from nodal 

spread. Building on existing knowledge of mutational signatures described in OAC tumours35, 

I have explored the details of the temporal behaviour and clinical extrinsic risk factors 

affecting these mutational processes during the evolution of OAC.  To my knowledge this 

study provides the first comprehensive description of the dynamics of mutational events 

during tumorigenesis in this disease. One of the limitations of the cohort is limited samples 

from metastases and their linked primaries. In future, enriching linked Barrett’s, OAC and 

metastases trios from same patient would be ideal for further understanding of the dynamics 

of mutational processes during OAC development. Also, it would be ideal to enrich the cohort 

with multiple samples from the same tumour to help in heterogeneity analysis. 

In this study, my focus was to study single base substitutions (SBS) type mutational signatures, 

as these are very informative and can be linked to deficiencies in cellular processes and have 

implications in disease progression. 
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I started with a comparative signature analysis, in order to rule out any bias or artefacts due 

to usage of various signature extraction methods. I evaluated three different methods, all of 

which were based on NMF but were slightly different in their statistical methods. I used 

tumour WGS data (416 samples) for ease of data handling. Overall, our analysis showed a 

coherent output across methods, I therefore extended the analysis to 997 samples.  

I have characterized and compared the landscape of mutational processes at each stage of 

the disease and the larger number of samples enabled us to capture mutational processes 

operating even in low magnitude. These results are in line with our previous study35. In 

addition I have identified new mutational signatures for the first time in OAC development, 

such as the Colibactin associated SBS41 and other signatures with small proportions such as 

SBS30, associated with impairment in the BER pathway, and the platinum therapy linked 

SBS35.As expected, aging associated processes (SBS1 and SBS5) were running constantly in 

the background during tumour evolution, whereas SBS40 which has been correlated to age 

of the patients in some cancer types 45 was relatively more prevalent at late disease stages. I 

found that a few mutational signatures are activated early, such as SBS17a/b(Unknown), 

SBS8(DDRD), SBS40(Age?), SBS41(Colibactin), and SBS44 (MMRD), and these were relatively 

enriched in the late stages of cancer and therefore might have role in tumour evolution of 

this cancer type. In future, this study can be extended to indel and rearrangement type 

signatures. To shed light into the implications of complex cellular events during disease 

development. 

I showed that OAC evolution is marked by frequent mutagenesis bottlenecks, whereby 

mutational signature dynamics change. In future, it would be helpful to look into the tumour 

heterogeneity and mutational processes using multiple samples from the same tumour.  
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The dominant SBS17b/a process appears to be triggered early in preneoplastic stages and 

increasingly accumulate during the later course of the disease. SBS17 processes were also 

reported to accumulate in late stages of breast cancers104,105. The spike in their proportions 

especially in metastatic samples might be partly contributed to by the mutagenic effects of 

therapies such as the nucleoside metabolic inhibitors (capecitabine and 5 Fluro Uracil), as 

majority of the cases studied were pre-treated resection samples after surgery. These findings 

are in agreement with a study on effects of therapies in pan cancer metastatic samples24. 

However, the prevalence of SBS17 processes in Barrett’s and in chemo naive 

tumours48suggests that the trigger for this mutational event is a combined effect of 

impairment in endogenous processes as well as the influence of exogenous exposures during 

therapy54,24. It should also be noted that, SBS17 predominates especially in OAC when 

compared to other cancer types, suggesting the influence of tissue specific mutagenesis35,45  

 

SBS17b was also accompanied by increased copy number instability (CIN), DDR and 

telomerase activity. Polyploidy representing CIN in OAC cell lines has previously been 

reported by collaborators and by our lab, caused by mitotic slippage due to impairment of 

chromosomal attachments106. SBS17b with a CIN background suggests that there maybe a 

clonal advantage for the clones harbouring these mutations for expansion107. It is possible 

that SBS17b activity may promote CIN, which will then elicit an immune response by 

activating inflammatory pathways via induction of genomic DNA into the cytosol108. Telomeric 

regions are also susceptible to oxidative DNA damage as they are enriched with guanine 

residues, SBS17b association with telomeric activity suggests partial involvement of external 

oxidative damage109.  Also, we observed a reduction of regulatory T cells and monocyte 

infiltration, which favours tumour progression. This provides an avenue for a detailed study 
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of influence of tumour microenvironment determinants, especially with regards to SBS17b 

mediated tumour evolution. In future, a IHC study to look into the tumour tissue of patients 

with SBS17 predominance for these immune cell infiltration by staining for their respective 

markers can help validate the findings of the current study. 

We also investigated positively selected genes in primary tumours with dominant SBS17 

proportions. Interestingly, genes from chromatin remodelling and transcriptional control 

pathway such as SMARCA4, KMT2D and ARID2 were positively selected compared with the 

recurrent OAC drivers such as KRAS, PIK3CA, PTEN,ARID1A and APC. In future, to validate 

these finding in OAC organoid models,  a CRISPR panel can be designed  to probe their 

influence in tumour progression. Further, we observed a common nucleosome periodicity 

pattern across cancer stages and this may be linked with changes in chromatin remodelling 

genes which appear to be selected for in the presence of this signature, as observed in the 

pan cancer data for this signature53. In future, MNaseSeq data from the OAC cell 

lines/organoids can be generated and used to obtain the nucleosome positioning to address 

any tissue specific changes in nucleosome periodicity patterns and their influence in tissue 

specific mutational events such as SBS17 associated processes. 

I also looked into the prognostic relevance of SBS17 and surprisingly patients with higher 

proportions of this signature showed a better outcome and survival. Further, I also looked 

into subset of patients with and without evidence of adjacent Barrett’s, and a similar trend 

was observed. These findings are in contrast with a small study of untreated adenocarcinoma 

of gastro oesophageal junction tumours (n=124) from Chinese patients110. Since most of the 

tumour samples are obtained after treatment, it would be helpful to investigate outcome 

with SBS17 proportions in chemo naive and chemo treated samples. This will suggest the 

influence of treatment for a good outcome. 
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Mutagenesis linked to DDR deficiencies had small, but significant contributions. In particular, 

base excision repair (BER) impairment and APOBEC associated processes appeared to be 

distinctly active after OAC transformation (OAC) and tended to be less prevalent in advanced 

disease stages. APOBEC mutagenesis has been reported to be associated with the 

development resistance for hormone therapy in breast cancer111. During the course of OAC  , 

I observed a decrease in its activity during  metastasis. BER associated mutagenesis tends to 

decrease in late stages of OAC, which was also the case in breast cancer104  

Importantly, while mutations arising due to BER deficiency were relatively few on average, 

they appeared predominantly in TP53 mutated cancers. This mutational process was 

associated with a significantly worse patient outcome, which is in line with studies in 

colorectal adenocarcinoma112, Furthermore, we uncovered signatures of early and late 

impairment of DDR processes, mainly acting on the NHEJ, HR, MMR and BER pathways. These 

findings are in agreement  with our previous study35, and suggests that DDR deficiency 

mutagenesis may be an underappreciated prognostic and therapeutic opportunity in a subset 

of OAC patients. 

We also observed the presence of a colibactin-linked mutational signature (SBS41) as an early 

event that expanded in advanced stages, this accounted for ~8% of total signatures 

proportions/sample in almost all samples (990/997). This signature has been predominately 

reported in colorectal cancers, where it was suggested to be linked with genotoxins 

originating from certain strains of E.Coli during tumour progression113,114. E.Coli has been 

reported to form part of the microbiota in Barrett’s  and OAC, and not in normal squamous 

oesophagus115. Our analysis strengthens this possible contribution of colibactin-induced 

stress with regards to OAC tumour development. For future directions, this can be further 

interrogated to identify traces of the bacterial DNA content in WGS data as well as matched 
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expression profiles. Such an analysis may be facilitated by recruiting patients with history of 

bacterial infection. This could also be interrogated experimentally by co-culturing E Coli 

genotoxins in oesophageal squamous or gastric and Barrett’sorganoids adapting 

Manzano,C.P et al  2020  methodology. This will help better understand the role of E.Coli 

infections during OAC development similar to the role of H.pylori infections in gastric cancer 

and gastric mucosa-associated lymphoid tissue (MALT) lymphoma116–118. 

In this study, I observed certain mutational processes like APOBEC and colibactin were linked 

to primary tumours than Barrett’s and advanced metastases, whereas SBS17b was linked to 

Barrett’s. With collaboration we have looked into a machine learning based tissue 

classification algorithm and were able to classify tissue type based on mutational signatures. 

This can be further developed and trained using even more large data sets and validated on  

independent cohorts. This algorithm has a potential to be used in clinical diagnosis and early 

detection. 

In addition to these processes, we found that exposure to certain risk factors may modulate 

mutagenesis in Barrett and OAC patients. In particular, we found novel associations between 

alcohol consumption or NSAID intake and DDR deficiencies in Barrett’s. The use of NSAIDs  

was reported to be linked with a reduction in mutation rate, especially of SBS17119. In primary 

tumours, new associations were discovered between SBS17 and alcohol intake as well as 

smoking. Alcohol consumption has previously been linked to SBS16 in liver and oesophageal 

squamous cell carcinoma20,120; nevertheless, SBS16 was absent in human liver stem cells 

chronically exposed to alcohol121, suggesting further investigations are needed into the 

potential mutagenic marks left by this risk factor in the genome. Also, among the tumour 

factors we studied, positive nodes were associated with SBS17b and SBS3 proportions, further 

confirming the increased prevalence of SBS17b in advanced stages122.  
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By expanding the cohorts of analysed cancer genomes, it is becoming clear that the repertoire 

of uncovered mutational processes in OAC continues to expand. While the SBS17 process 

undoubtedly dominates across tumour development stages, and APOBEC/DDRD mutagenesis 

appear particularly important in shaping primary tumours, it is likely that a variety of 

mutational processes will continue to emerge as acting in a minority of OACs, much like the 

long tail of cancer drivers.  

Despite the relatively large size of the cohort in the present study, the findings should be 

interpreted taking into account the uncertainty around the contribution of the less prevalent 

signatures. This is particularly true for pre-neoplastic stages since the size of our cohort was 

smaller and the mutation burden is smaller. In addition, our insights into metastatic disease 

are limited by the small number of metastatic and lymph node samples available for analysis. 

Though we gathered a well annotated clinical data, further data curation will help to validate 

these findings and perhaps will help in expanding on other risk exposures.  

Future research should focus on experimentally validating and further elucidating the role of 

BER and SBS17 mutagenesis in the progression of OAC, from a genetic and environmental 

perspective. Some initial experiments have already been designed towards experimental 

characterization of SBS17 but time did not permit me to complete this work. The hypothesis 

underlying these experiments is that T>G/C mutations at CTT trinucleotide may be due to 

misincorporation of oxidised guanines from the altered nucleotide pool by trans-lesion DNA 

polymerases during replication. Model cell lines for these experiments would be the gastric 

cell line (HFE-145) as a columnar normal control, since our lab has shown origins of Barrett’s  

from gastric cardia123. We would  use Barrett’s(CP-D) and OAC  (FLO-1) to provide tissue type 

context, mutation data from untreated cell lines could be used for normalisation. 
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The experimental protocol would be to treat the cell lines with a near lethal concentration, 

already determined for these cell lines, of 750uM of 8-oxo-2-deoxyguanosine-5’-triphosphate 

in the growth media, for 48hrs. Single live cells would then be sorted by flow cytometry and 

propagated. The treatment cycle is repeated to ensure, enough mutations accumulate for 

downstream signature analysis. After a few passages the cells are harvested to extract DNA 

and perform sequencing using our in house mutREAD protocol.  

Aside from the insights into cancer pathogenesis that maybe obtained from mutational 

signatures, they are also being suggested  as clinical tools for early detection, prevention and 

patient stratification23,35,66,124,125,126. Despite their enormous clinical potential, the only 

standard method available for their identification to date has been WGS. WGS is relatively 

expensive method, that requires high quality and quantities of DNA. For application at scale 

and in the clinic, it is not feasible, as the samples are usually preserved in FFPE. DNA from 

FFPE material is low in yield and quality. So, WGS will not suit the purpose as a clinical tool. 

Another key component of my PhD was therefore to develop a low cost DNA sequencing 

method for study of mutational signature from low quantities of archival clinical samples. 

mutREAD produces reproducible and highly specific reduced representation libraries and the 

derived mutational signatures mirror the WGS-derived signatures with good to high cosine 

similarity. Importantly, this method is also appliable when used with highly degraded DNA 

samples.  

When applied to tumour samples from OAC patients, I have shown that mutREAD 

outperforms the previously proposed methods WES and 10x sWGS. OAC is characterized by 

abundant somatic mutations, which are most prevalent in intergenic and intronic regions 

which are also covered by the sequenced fragments35,127. The limitation of our method is the 
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choice of library preparation protocols to study mutational signatures in other cancer types, 

which will also depend on the overall mutation rate and the genomic distribution of the 

somatic mutations. Since our method sequences 1.5% of the whole genome, it can be applied 

for identification of predominant mutational signatures in a cancer type. De novo 

identification of mutational signatures is not recommended for our method, as this was 

developed based on already informed mutational signatures. 

In terms of scalability and cost mutREAD outperforms other methods. In our hands, the cost 

associated with mutREAD libraries synthesis is 80% lower than for 10x sWGS and 96% lower 

than for WES libraries. Sequencing costs on the Illumina HiSeq 4000 are comparable for WES 

and mutREAD libraries, while sequencing 10x WGS libraries is at least three times more 

expensive. Further, due to its high multiplexing capabilities for sequencing and for library 

preparation mutREAD is highly scalable for studying larger cohorts. 

I validated mutREAD on an additional archival FFPE samples from OAC patients. I slightly 

modified the protocol so as to use relatively low quantities of DNA for library preparation and 

the coverage of sequencing was also lowered. This is a challenging test for any method. With 

these changes, I was still able to recapitulate the OAC specific six mutational signatures from 

the mutREAD data. I used tumour samples pre and post chemotherapy and I found SBS1 and 

SBS17b tend to increase after treatment in line with the literature in pan cancer data24. 

Given its ease of use and low cost, we envision a wide range of applications for mutREAD to 

study mutational signatures in basic research and translational settings. For example, clinical 

trials using mutational signature-based patient stratification to assign optimal therapies 

become feasible. mutREAD could further improve the mutational signature-based prediction 

of homologous recombination deficiency in clinical samples66,128. Together with 

computational tools for coarse-grained copy alteration detection129,130, mutREAD could 



 
 

184 

provide a detailed view of the role of mutational processes in cancer progression and 

evolution from archived material. Our method can also be extended to study other DNA 

alterations such as copy number changes, structural variations and indels.  A collaboration 

with University of Dundee is ongoing, where mutREAD is employed to screen for mutational 

signature based homologous recombination deficiency (HRD) status in treatment responders 

from a clinical trial of advanced gastroesophageal cancer patients131 It is hoped that this 

method will ultimately allow the study of mutational signatures in much larger cohorts and in 

clinical settings where FFPE-derived DNA samples are routinely collected132.  

Overall this study has made a contribution to characterisation of the mutational signatures 

across stages of OAC development to help in deepening our understanding of the active 

mutational processes. These mutational changes could help inform therapies in a stage-

dependent manner. It is hoped that development of a new cost-effective DNA sequencing 

method will allow mutational signatures to be applied in the clinic.  
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