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inorganic carbon reserves have played a vital role in 
supporting food production and environmental health 
through time (Laban et al. 2018; Hanan et al. 2021), a 
function today recognized as important for climate 
regulation (Van de Broek et al. 2019). These benefits 
are linked to equally significant factors that today are 
perceived as challenges to human livelihoods and 
environmental health: aridification, and low, often 
concentrated rainfall interacting with high tempera-
tures to enhance albedo effect and evapotranspiration 
rates (Prăvălie 2016).

Archaeologists have long been drawn to the study 
of drylands as environments where significant ancient 
civilizations developed – and where their remains are 
well preserved – such as the Mesopotamian empires 
and some Maya city-states (Barker & Gilbertson 2000). 
From a focus on settlements, monumental architecture, 
and material culture, regional and landscape studies 
have gradually grown to unveil long-term, spatio-
temporal dynamics and interdependencies between 
societies and drylands (e.g. Balbo et al. 2016; Bao et 
al. 2018; Nyamushosho et al. 2018; Scarborough & 
Isendahl 2020). Geoarchaeological approaches have 
played a pivotal role in placing the human record into 
its dryland context by revealing the pace and space of 
landscape evolution, resource uses and their impact 
over time. Moving across and beyond ancient sites and 
landscapes, geoarchaeology, with the formidable lens 
of soil micromorphology, has multiplied the scales 
of view into the past and its legacies by reconciling 
the contingencies of human practices and landscape 
processes with longer-term cultural and environ-
mental developments. Work by Charly French has 
been uniquely instrumental in developing theoretical 
frameworks and practices to address human-envi-
ronment interactions in dryland landscapes (French 
2010a,b). In the Rio Puerco valley of New Mexico, 
for example, French’s intuition about aggradation of 

Once home to one of southern Africa’s earliest state socie-
ties, the Mapungubwe culture (eleventh‒fifteenth centuries 
ad), the middle Limpopo basin has long been considered a 
chronically poor and unproductive dryland, becoming a 
focus for developing mining and commercial farming since 
the early twentieth century. The rise and then decline of the 
Mapungubwe culture has been linked to changing rainfall 
patterns, ultimately driving human action in the making of 
a marginal dryland. Yet, recent geoarchaeological survey, 
soil micromorphology and multi-element chemical analyses 
reveal a different scenario. Buried soil sequences capture 
the rhythm and space of slow, overbank flooding along 
the middle Limpopo River, and alluvial-colluvial feeding 
of small valleys supporting ancient settlement. Within a 
trend of prolonged landscape stability and incipient soil 
formation, there is also evidence for pulses of localized dis-
ruption. These sequences chronicle the history of a diverse 
landscape, where ecological niches supported and responded 
to changing climate and land uses over time. Seen over the 
long term, the new Mapungubwe record shows how an 
ancient society was able to adopt and adapt to an evolving 
dryland by exploiting and creating diversity.

‘...people show remarkable powers of adap-
tation, and many landscapes perceived 
as marginal regularly exhibit long-term 
resilience…’
(French 2019, 263)

Occupied by human societies for millennia, dry-
lands preserve some of the longest records of plant 
and animal domestication, social complexity, trade, 
urban and mobile lifeways in human history (Barker 
& Gilbertson 2000). Embracing a variety of ecosys-
tems, including savannas, grasslands, semi-deserts 
and forests, drylands support several habitats for a 
great diversity of biomes and human lifeways even 
today (Chakrabarti 2016). Dryland soil organic and 
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Sub-Saharan Africa remains somewhat peripheral 
to geoarchaeological research on dryland environ-
ments. Inspired by learning from, and working with 
Charly French, we initiated geoarchaeological research 
into the landscape history of Iron Age societies emerg-
ing in the drylands of southern Africa. Combining 
borehole surveys, soil micromorphology, and multi-
element chemical analyses, this chapter examines 
the long-term landscape history of the Mapungubwe 
culture in the middle Limpopo basin, South Africa.

Southern African drylands and empires
Today, drylands – regions with an Aridity Index 
of 0.65 or less, following the Nations Convention 
to Combat Desertifi cation and the United Nations 
Food and Agriculture Organization (UN Environment 
Management Group 2011) – account for over seventy 
per cent of African environments and are projected 
to expand (Cervigni & Morris 2016; Prăvălie 2016). 
Southern Africa is home to a special type of dryland: 
the miombo woodland biome, which today covers 
sparsely populated regions that are largely considered 
degraded, and not particularly hospitable for human 
sett lement. Yet, archaeological evidence shows miombo 
regions have long been sett led by human societies, with 
subsistence practices and state systems emerging as 
early as the ninth century bc in the Shashe-Limpopo 
basin of northern South Africa (Fig. 11.1; Huff man 
2000; Huff man & Woodborne 2016). Over 1750 km, 

fi ne sands and cumulic organic soil development fi rst 
revealed the fundamental nexus between fi re occur-
rences, pre-Puebloan and Puebloan occupation, and 
later channel incision – ultimately resolving a 6000 
year-long sequence of socioecological interaction 
in a dryland (French et al. 2009; French 2015, 50–4). 
French’s extraordinary ability to see pedofeatures in 
the fi eld and landscapes in thin section extended the 
frames for understanding cultural and environmental 
developments in the Dhamar highlands of Yemen, too 
(French 2003, 224‒34; 2010b). Here, organic-rich soils 
occurring over argillic (Bt) horizons showed that thick 
organic, moist and well-structured soils were available 
by the mid-Holocene, pushing a few thousand years 
earlier the potential for human exploitation ahead of 
the emergence of polities and kingdoms in the Bronze 
Age. Amongst the key lessons from French’s diverse 
works is the potential of landscape-scale approaches to 
chart human-environment interactions over time and 
across space, reaching into the present-day. And it is 
perhaps regarding sett lements that such a landscape-
scale approach has made a transformative impact. 
By looking at sett lements in their landscape over the 
long term, geoarchaeology has taken down that arti-
fi cial (if not abstract) rural-urban divide to reach into 
interdependencies and nexus relations and began to 
ask questions about food and water security, urban 
resilience, and so much more (French 2019; French et 
al. 2017; 2020).

Figure 11.1. 
Map of southern 
Africa, showing the 
distribution of major 
archaeological sites in 
the middle Limpopo 
valley and Samaria 
farm (black dott ed 
polygon). Satellite 
imagery: © CNES/
Airbus, imagery date 
12 November 2022 
(accessed through 
Google Earth v9.175). 
Image: Federica Sulas.
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Landscape sequences and Iron Age sett lement in southern Africa

Mapungubwe landscapes, ecologies, and cultures

The lowland topography of the Mapungubwe land-
scape is shaped by the interaction between the Limpopo 
River and its tributaries, and the discontinuous, under-
ground geologies that have shaped a wide fl oodplain, 
sandstone ridges, kopjes (small hills), and small val-
leys in between. At about 600–620 m above sea level, 
the Mapungubwe landscape lies over the geological 
substratum of the Limpopo Mobile Belt – an extensive 
belt of high-grade metamorphic tectonites trending 
east-northeast (Mason 1973) and shaping a granite-
greenstone terrain with common metamorphic rocks 
along with aeolian and fl uvial sediments (Van Reenen 
et al. 1992; Smit & Van Reenen 1997; Holland & Witt -
hüser 2011). These geological substrata and related 
geomorphological processes infl uence hydrologic and 
groundwater systems. Along the lower regions of the 
Shashe-Limpopo Rivers, fl oodplains are intersected 
by narrow channels where surface and underground 
aquifer systems drain north of Pafuri eastwards, toward 
Mozambique (FAO 2004; Busari 2008). Major soil types 
reported in for this region are Luvisols and Cambisols 
along the Limpopo River, and Arenosols and Regosols 
found in the inland parts of the Mapungubwe land-
scape (Gandiwa et al. 2016).

In the Shashe-Limpopo basin, local and regional 
climatic conditions are infl uenced by warm advection 
from the Indian Ocean and cool air from the South 
Atlantic Ocean, dominant atmospheric high- and 
low-pressure systems, including the migration of the 
Inter-Tropical Convergence Zone (ITCZ) (Woodborne 
et al. 2016; Pomposi et al. 2018). Oceanic and atmos-
pheric pressure systems are also infl uenced by the 
near-decadal appearance of the El Niño–Southern 
Oscillation (ENSO) (Smith et al. 2010; Pomposi et al.
2018). Rainfall is highly seasonal and follows a north-
south gradient, concentrating during summer season 
(October–March), while cooler and clear weather 
conditions appear in winter months (June–August). 
The regional annual average rainfall of 400-600 mm 
is characterized by episodic increases and decreases 
(Ekblom et al. 2012; Nxumalo 2020). Annual rainfall in 
the Mapungubwe landscape ranges between 350–400 
mm between November and April (SANParks 2019, 
21). According to regional climatic records, the region 
experiences a mean annual temperature of 20–45 
degrees C, with hot summers and mild winters (Tyson 
& Preston-Whyte 2000; Smith et al. 2007; Pomposi et 
al. 2018). Under these semi-arid conditions, a savanna 
bushveld vegetation is displaced on uneven terrain 
towards low-lying valleys and changes from dense, 
undersized bushveld and moderately open tree savan-
nah covering across most of Limpopo and the North 

the Limpopo River straddles the modern national 
boundaries of South Africa, Botswana, Zimbabwe, 
and Mozambique. Long before reaching the Indian 
Ocean, the Shashe-Limpopo confl uence feeds an 
extensive fl oodplain, which is home today to national 
and transnational parks, and nature reserves. Among 
these, the Mapungubwe National Park and UNESCO 
Cultural Landscape combines signifi cant faunal and 
fl oral diversity with equally diverse archaeological and 
heritage sites, spanning the later prehistory and the 
Iron Ages (SANParks 2019). All around it, extensive 
and intensive mining for precious stones and coal, 
game farming, and agribusinesses have grown out of 
government-led policies and international investments 
to develop South Africa’s northernmost province. 
Despite such rich natural and heritage resources, 
the Limpopo Province remains amongst the poorest 
regions in southern Africa.

The fl ourishing of complex Iron Age societies in 
what is today considered a dry, harsh environment 
has long been linked to higher rainfall recorded by 
regional paleoclimatic studies between c. ad 900 and 
1300, favouring the rise of the Mapungubwe culture 
(Huff man 2000; Manyanga 2007; Smith et al. 2007; 
Huff man & Woodborne 2021). Subsequent climate 
deterioration and water shortages might have con-
tributed to the ‘collapse’ of Mapungubwe, sett ing 
the region onto a pathway of aridifi cation and deg-
radation (Tyson & Lindesay 1992; Tyson et al. 2000; 
2002; Huff man 2000; 2010). While reconciling eastern 
and southern African climate records and cultural 
sequences (e.g. Holmgren & Öberg 2006), this narra-
tive of socioecological rise-and-fall lacks site-specifi c 
information from the Mapungubwe landscape itself. 
Macroregional climate sequences and site-specifi c 
archaeological studies provide detail on rainfall pat-
terns and sett lement dynamics in the Shashe-Limpopo 
basin (e.g. Huff man & Woodborne 2016; 2021), but 
how past societies accessed, used, and managed land 
and water, and how they negotiated changes to these 
resources, remains contested. Debates have focused 
on rainfall and the Limpopo River as the only sources 
of water for the subsistence of people and animals, 
crop growing, and spiritual services supporting Iron 
Age developments at Mapungubwe. Floodplain irri-
gation would have supported small-scale farming, 
with catt le herding and trade providing the bulk of 
the Iron Age economy (Huff man 2008). Rainmaking 
rituals have long been seen as a strategy deployed by 
ancient Mapungubwe societies to react and respond 
to droughts. Water pits (or cupules) carved into hard 
rock outcrops across the middle Limpopo valley have 
been linked to water storing practices in response to 
water stress (Schoeman 2009; Huff man 2000; 2010).
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in the growth and ‘collapse’ of the Mapungubwe 
culture. Geoarchaeological research pursued three 
fundamental questions: What is the nature of local 
soil and water resources? How did these change over 
time? How do local landscape sequences relate to the 
settlement record?

Research combined opportunistic and systematic 
surveys, test pitting, and sampling for soil chemical 
and micromorphological analyses to capture different 
landscape units and repository areas in the middle 
Limpopo floodplain and valleys within the core ancient 
Mapungubwe area (Figs 11.2 and 11.3). The selection 
of survey areas was determined by the presence and 
nature of archaeological evidence, current environ-
mental settings, and management strategies.

The environmental settings are generally consist-
ent throughout the study area, with gently sloping 
to flat lands, punctuated by (Karoo) sandstone hills 
and ridges. In the Limpopo floodplain, the Samaria-
Den Staat area was farmed until the late 2000s and 
has since been managed by South African National 
Parks but remains inaccessible to the public. Surface 
archaeological records from this area and, more gen-
erally, the eastern sector of the park have been dated 
to the K2/Mapugubwe period (c. ad 1000‒1220; Huff-
man & Hanisch 1987; Huffman 2000; Meyer 2000; 
2003; Huffman & Woodborne 2021). In 2012, our first 
reconnaissance survey recorded a chain of kraal and 
settlement complexes in this area, distributed along 
a north–south axis from the higher grounds south 
of the Samaria Citrus Farm to the Limpopo River. 
Surface artefact scatters spanning the early K2 period 
and post-Mapungubwe times (c. ad 1000‒1400) were 
found (Sulas et al. 2012). Based on these findings, we 
then conducted a systematic borehole survey and 
soil sampling over a north-south transect across the 
Samaria floodplain area (Sulas et al. 2013).

In the core Mapungubwe area, small valleys are 
shaped by sandstone kopjes and a network of seasonal 
streams and water courses feeding into the Limpopo 
River (Fig. 11.3). Here, multiple seasons of archaeologi-
cal excavations have uncovered the settlement history 
of the ancient Mapungubwe culture, exposing deep 
stratigraphies of occupation on hilltop locations. These 
include the main capital centres of Schroda, K2 on 
Bambandyanalo Hill, and Mapungubwe Hill (Meyer 

West provinces of South Africa (Ekblom et al. 2012; 
Woodborne et al. 2016; Fitchett & Bamford 2017). The 
vegetation cover is characterized by medium to dense 
mopani (Colophospermum mopani), acacias (Acacia 
tortilis) and other trees (e.g. Terminalia sericea). Recent 
mapping of tree densities has revealed positive cor-
relations between major soil types and tree height, 
with the tallest trees occurring over Cambisols in the 
floodplain, whereas short woody plants are common 
over the Arenosols and Regosols of the inland Mapun-
gubwe landscape (Gandiwa et al. 2016).

Regional paleoclimatic data and isotopic stud-
ies on archaeological fauna suggest higher rainfall 
between ad 800–1200, which would have favoured 
cattle herding, floodplain agriculture and trade expan-
sion supporting early state systems in southern Africa. 
These emerged in the Mapungubwe landscape from 
around ad 900. Archaeological studies suggest that 
the occurrence of 400–500 mm rainfall would have 
supported farming practices between c. ad 1000–1300 
(Huffman 2000; Tyson et al. 2000; Holmgren et al. 
2003). Pulses of drier conditions at around ad 1000 and 
1100–1200 would have led to the shifting of political 
centres (or capital sites) over small distances: a first 
capital settlement at Schroda (ad 900‒1000), followed 
by a second one at K2 (ad 1000‒1220), and culminat-
ing in the settlement on Mapugubwe Hill (Fig. 11.1; 
Huffman 2000; Smith et al. 2007; 2010).

Further climate deterioration associated with 
increasing drier conditions and consequent water short-
ages would have led to the ‘collapse’ of Mapungubwe 
in the late thirteenth century ad. New radiocarbon 
dates and revised ceramic typologies suggest Mapun-
gubwe was abandoned around ad 1320 (Huffman & 
Woodborne 2021).

Geoarchaeological work

In 2013‒5, geoarchaeological field investigations 
explored the buried landscape sequences within the 
perimeter of the Mapungubwe National Park and 
Cultural Landscape (Fig. 11.1). The aim was to begin 
building a local record of past environmental condi-
tions and land use, and how these related to existing 
archaeological evidence with a view of revisiting 
long-held narratives concerning the role of water 

Table 11.1. Sites, contexts and samples.

Area Profiles ICPAES Thin sections

Samaria floodplain Limpopo River 1 section DS/1 2 3

Floodplain 11 boreholes GA1–GA11 30 /

Core Mapungubwe Area Leokwe valley 2 sections LK1 and LK2 5 5

K2-Bambandyanalo valley 2 section K2/1 and K2/2 5 5
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at the McBurney Laboratory for Geoarchaeology, 
Cambridge (French & Rajkovaca 2015; Rajkovaca in 
this volume). Thin sections were analysed using petro-
graphic microscopes at different magnifications under 
plane-polarized light (PPL), cross-polarized light (XPL), 
and oblique incident light (OIL), and described follow-
ing international standards for terminology (Bullock et 
al. 1985; Stoops 2003). The identification and interpre-
tation of features in thin section followed guidelines 
from Stoops et al. (2010), Macphail & Goldberg (2018a), 
Nicosia & Stoops (2017), and relevant literature. In 
the absence of stratified organic macroremains, we 
submitted bulk soil samples (n=6) for AMS dating at 
the Poznán Radiocarbon Laboratory, which yielded 
either no or modern charcoal. Full geochemical and soil 
micromorphological data are given in the Appendix 
to this chapter (Tables A11.1 and A11.2, respectively).

1998; Huffman 2005). Geoarchaeological fieldwork 
recorded six soil profiles in the valley bottoms and 
along the K2 and Leokwe watercourses.

Samples were collected for soil chemical and 
micromorphological analyses (Table 11.1). Sub-samples 
(particles of <250 μm; 10-11.5 g) were analysed by 
ALS Global Minerals for Inductively Coupled Plasma-
Atomic Emission Spectrometry (ICPAES) to determine 
thirty-three elements using four acid digestion (ME-
ICP61; see ASL Minerals 2009; 2010). Following low 
temperature drying (< 60 degrees C) and dry sieving 
using a 180 μm (Tyler 80) mesh, 0.25 g of material 
were digested with perchloric, nitric, hydrofluoric and 
hydrochloric acids. The residues were then topped up 
with dilute hydrochloric acid and analysed by ICPAES. 
The results are corrected for spectral interferences. 
Micromorphological thin sections were manufactured 

Figure 11.2. Map of the 
Shashe-Limpopo basin 
showing the location of 
geoarchaeological survey 
transect and soil profiles 
discussed in the text. 
Image: Bongumenzi 
Nxumalo.
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below. The second soil type is a dark brown (10YR 
3/3) fine sand silty loam, with Fluvisol-like properties, 
and is found primarily on valley bottoms in the core 
ancient Mapungubwe area (e.g. Leokwe Camp, LKC2; 
see below). ICPAES measurements of topsoil samples 
from both soil types yielded similar concentrations of 
calcium (Ca 1.8 per cent), copper (Cu 30–37 ppm), iron 
(Fe 3.3–3.9 per cent), lead (Pb 4–5 ppm), strontium (Sr 
251–281 ppm), and zinc (Zn 35–46 ppm) (see Appendix, 
Table A11.1). Topsoil samples of the reddish-brown 
sandy loam returned slightly enriched levels of alumin-
ium (Al > 2 per cent), barium (Ba > 400 ppm), chromium 
(Cr > 400 ppm), potassium (K > 1 per cent), manganese 
(Mn > 500 ppm), and phosphorus (P > 1000 ppm) than 

Characterizing the Mapungubwe landscapes 
through time

Field investigations detected the presence of two main 
soil types in the wider study area. A reddish-brown 
(5YR 4/3–5/3) fine to very find sandy loam, likely 
a Cambisol originating from the weathering of red 
(Karoo) sandstone and wind-blown (Kalahari) sands, 
is present across different landscape units under open 
vegetation cover on sandstone ridges and sloping ter-
races in the Samaria floodplain area and the core ancient 
Mapungubwe area. Under relatively stable conditions, 
these sands begin to aggrade and undergo incipient 
soil development, as observed in the profiles discussed 

Figure 11.3. Mapungubwe landscapes. Top: the Limpopo River near the Shashe-Limpopo confluence; bottom: valley 
between Mapungubwe Hill and Leokwe Camp site. Images: Federica Sulas.
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the Limpopo River, there is evidence of profile devel-
opment over aggrading alluvium with a buried, light 
brown fine sand silty loam that shows incipient soil 
formation and is characterized by abundant organic 
matter, microcharcoal and anthropogenic inclusions. In 
thin section, fragments of limpid clay and iron nodules 
found in this buried soil point to a stable vegetation 
cover and well-watered environment with (seasonal) 
alternation of soil moisture content.

The river channel displays a much deeper history 
of landscape processes, capturing the pace of occupa-
tion, change of the floodplain, and water flow dynamics. 
At the Samaria Citrus Farm, the Limpopo River incises 
deeper sections, reaching over 4 m above the current 
water level. The section investigated (DS/1) shows the 
overlay of recent, very fine sandy silt alluvium over a 
deep Ah horizon of a brown sand silty loam. ICPAES 
data show no significant variation between the alluvium 

those detected in the dark brown sand silty loam topsoil. 
The latter yielded slightly enhanced contents of cobalt 
(Co > 20 per cent), magnesium (Mg > 4 per cent), and 
nickel (Ni > 200 ppm).

Samaria floodplain soil sequences
Shaped by sandstone ridges and broad, gently sloping 
terraces leading onto the Limpopo River, the Samaria 
floodplain offers differential preservation conditions 
of palaeoenvironmental and archaeological records. 
This is reflected in the thirteen soil profiles investi-
gated (Table 11.2; Fig. 11.4). By and large, the southern, 
upslope part of the floodplain displays a thin soil cover 
of reddish fine to medium sands, resting on bedrock. 
Profile development appears further downslope and 
nearby sandstone ridges, where anthropogenic inclu-
sions are sometime observed in subsoil deposits. 
Along the northern edge of the floodplain, towards 

Figure 11.4. Floodplain profiles. View of testing profile GA8 in the lower part of the floodplain and the Limpopo River 
section investigated at DS/1. Bottom sketch of soil catena across the geoarchaeological transect, profile logs not to scale. 
Images: Federica Sulas.
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Table 11.2. Floodplain profiles: field records and selected ICPAES trends. Full ICPAES results are provided in Table A11.1 in the Appendix to this chapter.

Profile cm Area Field description Selected ICPAES

DS/1 400+ South section of the Limpopo 
River near the Samaria Citrus 
Farm.

Topsoil: 40 cm-thick, light brown (7YR 3/3) fine to very fine sandy 
loam. Buried soil: Ah horizon of darker brown, fine sand silty 
loam with subangular blocky structure at c. 150–255 cm depth. 

 Al, Ba, Ca, 
Cu, Fe, K, Mn, 
Na, Zn

GA1 37+ Gently sloping land of an 
E–W-running sandstone ridge 
covered by sparse mopane and 
acacia trees, low shrubs, bushes, 
short grasses; Iron Age kraal site 
c. 20 m East.

Topsoil: light brown (7YR 2.5/3–7.5YR 4/4) fine sandy loam,  
rare silt and coarse sand; fresh fine rootlets. Buried deposit:  
15 cm-thick gravelly bed of pebbles (90%), few rock fragments 
(10–15 cm) mixed with topsoil material. 

n/a

GA2 50+ Footslope of the same ridge 
(GA1, common mopane and 
acacia trees, low shrubs, bushes, 
and stone-free.

Topsoil: reddish brown (5YR 3/4–4/6) fine sandy loam, coarse 
sand and rare silt; occasional fine rootlets; granular and loose, 
and resting on weathering bedrock (slate?).

 Ca, Co, Cr, 
Cu, Fe, K, Mg, 
Mn, Na, Ni, Sr, 
Zn

GA3 28+ Same as GA2 Topsoil: light to dark brown (7.5YR 3/4–10YR 5/4), ashy fine 
sandy loam, common coarse sand, rare silt and few pebbles; 
occasional fine rootlets; granular and loose, and resting on 
conglomerate bedrock.

n/a

GA4 54+ Test pit on open, stone-free 
flatland; sparse mopane and 
acacia trees, very short grasses. 
Low density pottery scatter on 
an area of c. 10 m radius from 
the test pit. 

Topsoil: light brown (7.5YR 3/3–5/4) medium to fine sandy 
loam, common coarse sand and rare quartz grains; granular and 
loose; covering a c. 7 cm-thick gravelly bed of whitish, rounded 
pebbles (2–5 cm). At c. 35 cm depth, the light brown medium 
to fine sandy loam exhibits poorly developed subangular 
structure, mineralized root-channels; compact and dry.

 Ba, Ca, K, Pb, 
Sr -  Al

GA5 57+ Test pit on open, stone-free 
flatland; common mopane and 
acacia trees, rare short grasses. 

Topsoil: as GA4. At c. 10 cm depth, a reddish brown (5YR 3/3–
4/4) medium to fine sandy loam, common coarse sand, rare silt 
and fine quartz grains; common very fine rootlets, amorphous 
organics; loose to granular; crumb to poorly developed 
subangular blocky over depth.

 Ba

GA6 42+ As GA5. As GA5.  Ca, Co, Cu, Fe, 
K, Mg, Mn, Na, 
Ni, Pb, Sr, Zn

GA7 55+ As GA5–6. As GA5.  Ca, Co, Cu, 
Fe, Mg, Mn, Na, 
Ni, Pb, Sr, Zn

GA8 60+ Test pit on gently N-sloping land 
at the foot of a sandstone ridge; 
open grassland with mopane 
and acacia trees at the edge of 
the dry floodplain (c. 10 m away 
from an artificial pond of the 
Samaria Citrus Farm).

Topsoil: as GA5–6. At c. 5 cm depth, c. 40 cm-thick ashy, light 
brown (7.5YR 3/3–5/3) very fine sand silty loam, rare coarse 
sand and pebbles, rare microcharcoal; loose; diffuse boundary. 
This covers an ashy brown (7.5YR 3/2–5/4) very fine sandy loam 
similar to the one recorded at c. 5 cm depth. 

 P -  Al, Ba, 
Ca, Co, Cr, Cu, 
Fe, Mg, Mn, Na, 
Ni, Sr, Zn

GA9 54+ Test pit on gently N-sloping 
land with high grasses, sparse 
acacia trees, shrubs, bushes 
and common Tribulus sp. at the 
margin of the Citrus Farm’s 
pond and next to Samaria Road 
bridge.

Topsoil: darkish brown (7.5YR 3/2–4/4) fine to medium sandy 
loam, some silt and clay, rare coarse sand and pebbles; rare 
amorphous organics, fine fresh roots, microcharcoal, potsherds 
(Iron Age?); loose and granular; diffuse boundary. At c. 20 cm 
depth, dark to reddish brown (7.5YR 2.5/3–5YR 4/4) very 
fine sand silty loam, rare coarse sand; fine fresh rootlets, 
microcharcoal and rare potsherds (Iron Age?); crumb to poorly 
developed subangular blocky structure.

 Pb -  Ba, Ca, 
Co, Cr, Cu, Fe, 
Mg, Mn, Na, Ni, 
P, Sr, Zn

GA10 55+ Test pit in the dry bottom of the 
Samaria pond, next to Samaria 
road bridge. Flatland with 
common high reeds and dead 
tree trunks.

Topsoil: darkish brown (7.5YR 3/2–4/4) very fine sand clayey 
loam, rare coarse sand and silt; common plant residues; crumb 
structure, sharp boundary. At c. 7 cm depth, over 40 cm-thick 
dark reddish brown (7.5YR 3/3–5YR 3/3) very fine sand silty 
loam, rare medium sand and clay; fine fresh rootlets; moist and 
crumb structure; black and orange mottling at the bottom. 

 Ca, Co, Cr, 
Cu, Fe, Mg, Mn, 
Na, Ni, P, Sr, Zn

GA11 34+ Test pit in margin area between 
acacia tree cover and the Citrus 
Farm’s pond (dry) with high 
reeds. 

Topsoil: dark brown (10YR 3/2–7.5YR 2.5/2) clayey loam, very 
fine sand and rare silt; common plant material, amorphous 
organics, waterlogged and increasing with depth; moist and 
crumb structure; black and orange mottling at the bottom. 

 Al -  Co, Cr, 
Mg, Ni, Sr
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sequences of high and low element concentrations 
(Table 11.2). For example, phosphorus, manganese, 
chromium, and iron contents appear to decrease follow-
ing topography: from higher grounds (profiles GA1–3) 
to the central regions (profiles GA 4–7); those situated 
further towards the Limpopo River (profiles GA 9–11), 
samples are characterized by a less coherent chemical 
distribution (see Nxumalo 2019, 72–3).

Valley soil sequences
In the core Mapungubwe area, four soil profiles were 
recorded and sampled along small watercourses drain-
ing the valleys of Leokwe and K2-Bambandyanalo. 
(Table 11.3; Fig. 11.6).

At Leokwe, two sections (LKC1 and LKC2) 
were investigated along a watercourse that drains 
the northeastern margin of a sizable valley delimited 
by sandstone ridges and hills with steep sides, and 
almost entirely denuded of soil cover. The sections 
capture a sequence of soil development, separated 
by an episode of truncation. ICPAES results yielded 
elemental concentrations generally in range with 
those detected in reference topsoil samples but for a 
peak in iron detected in the buried soil found at c. 30 
cm below the surface. This buried dark brown (10YR 
3/3) fine sand silty loam shows relatively high clay 
content, moderately developed subangular blocky 
structure, and high degree of bioturbation. The organic 
fraction contains abundant amorphous matter, excre-
mental matter (including pellets), microcharcoal, rare 
shell fragments, and fungal sclerotia. In thin section, 
distinctive pedofeatures include limpid clay coatings 
and fragments, and rare rounded, coarse aggregates 
characterized by denser fine groundmass, few quartz 
grains, and a high degree of amorphous organic/iron 
impregnation, possibly including charcoal. These 
aggregates occasionally incorporate fragments of 
microlaminated, limpid clay coatings.

The lower topsoil (10–20cm below the surface) 
shows light brown (7.5YR 4/3), poorly sorted mate-
rial, with rare angular coarse sands and pebbles, and 
subrounded medium to fine sands. In thin section, the 
groundmass is calcitic with moderate vughy poros-
ity. Organic matter is mostly amorphous, but for a 
few fresh rootlets, very fine charcoal, microcharcoal 
and rare phytoliths. Pedofeatures include a few fine 
typic iron nodules, weak to moderate iron-manganese 
impregnation, yellow to light reddish, iron-rich (dusty) 
clay coatings, bright red iron-rich, dusty clay coat-
ings and fragments, and possibly wood ash domains 
(calcium carbonate crystals mixed with amorphous 
organic matter and iron, and phytoliths). Yellowish, 
subrounded aggregates of organic-rich material are 
likely of excremental origin.

and the buried soil; both yielded distinctive enrichment 
in nutrients, salts, and metal elements (e.g. Al, Ba, Ca, 
Cu, K, Mn, P, S, Sr, Zn) against the entire sample set.

At about 40 cm below the ground surface, an 
aggrading buried soil consists of a light brown, medium 
to fine sand silty loam. The upper horizon bears signs 
of incipient soil development and rests over a mod-
erately developed Ah horizon with a subangular, 
blocky structure (150–255 cm below the surface). In 
thin section, this horizon shows very fine sand mate-
rial and weak iron-impregnation. The vughy porosity 
and common channel voids reflect a high degree 
of bioturbation. Organic and biogenic components 
include microcharcoal, shell and bone fragments, pol-
len grains, phytoliths, and calcite features. Amongst 
the pedofeatures observed, wood ash is seen in chan-
nels and vughs, and iron-rich clay coatings, dusty clay 
coatings, and rare crust fragments are present in the 
groundmass (Fig. 11.5a,b). The crust fragments show 
microlaminations with very dense, homogenized, 
and strongly iron-impregnated internal micromass 
of amorphous organic matter, occasional laminated 
clay, grass (elongate) phytoliths and microcharcoal.

At the top of the sequence, the c. 40 cm thick top-
soil (and subsoil) is associated with modern land uses. 
The studied thin section exhibits a moderately sorted, 
very fine sand silty loam with some clay, strong iron-
impregnation, amorphous iron, plant pseudomorphs, 
and rare charcoal. Porosity is vughy with rare channels. 
Distinctive pedofeatures include very common yellow 
dusty clay coatings, red iron-rich clay (Fig. 11.5c), and 
very rare crust fragments. The latter exhibit a very 
dense micromass of amorphous organic matter and 
iron, clay, and little silt with common microcharcoal, 
organic punctuations, and grass (non-smooth elongate 
and bulliform) phytoliths (Fig. 11.5d).

In the Samaria floodplain, boreholes revealed 
a complex stratigraphic sequence (Fig. 11.4). The 
southern, higher sector shows very thin topsoils of 
reddish-brown (5YR 3/3–4/4), fine-textured sandy 
material, which rests either on gravelly beds or bedrock 
(e.g. profiles GA1–3). Further into the floodplain and 
towards the Limpopo River, the topsoil thickens and 
aggrades over depth (e.g. profiles GA4–7). A differ-
ent soil cover is found on the floodplain edge where 
a darkish brown (7.5YR 3/2–4/4) fine sand silty loam 
(e.g. profiles GA9–11) exhibits horizon development 
with profiles reaching up to 60 cm deep. The transition 
between the reddish brown fine sandy loam and the 
darkish brown fine sand silty loam is illustrated in pro-
file GA8, where the reddish and sandy topsoil is resting 
on a buried dark brown fine sand silty loam. Whilst 
micromorphological data from these profiles has not 
been produced yet, ICPAES analysis shows alternating 
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Figure 11.5. Micromorphology of floodplain soils. Microphotographs in PPL (left) and XPL (right): (a) a calcium carbonate 
infilling (wood ash) and microcharcoal (red arrow), and (b) crust fragment (red arrow) at 152–160 cm below surface; (c) 
dusty clay, and (d) crust fragment (red arrow) at 30–40 cm below surface. All from the Limpopo River section, DS/1; 
micromorphological descriptions are provided in Table A11.2 in this Appendix to this chapter. Images: Federica Sulas.

100 μm

250 μm

250 μm
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Figure 11.6. Valley profiles. Top: sketch of soil catena across the Leokwe valley and view of Leokwe streambed; bottom: 
sketch of soil catena across K2 valley and view of streambed; profile logs not to scale. Images: Federica Sulas.

Table 11.3. Valley profiles: field records and selected ICPAES trends. Full ICPAES results are provided in Table A11.1 in the Appendix to this chapter.

Profile cm Area Field description
Selected 
ICPAES

LK/1 140+ NE section of Leokwe stream 
draining a narrow valley 
running NE–SW and delimited 
by steep-sided sandstone hills

Topsoil: reddish brown (7.5YR 6/6) fine sand silty loam, common 
sandstone and granitic (?) tabular rocks on surface; common amorphous 
organics; loose and dry. At c. 35 cm depth, increased content of pebbles 
(2–5 cm), possibly indicating a standstill horizon. At c. 60 cm depth, 
a reddish brown (5YR 4/4) fine to medium sand is found. At c. 80 cm, 
poorly sorted, gravelly bed with rounded pebbles resting over streambed.

 Fe

LK/2 114+ S section of Leokwe stream 
along the NE sector of a valley 
delimited to the NE by a steep-
sided, exposed sandstone hill and 
to the SW by gently sloping land 
with mopane trees and shrubs. 

Topsoil: light brown (7.5YR 4/3) fine sand silty loam, common rooting 
and coarse sand. At c. 15 cm depth, gravel bed. Buried soil: at c. 30 cm 
depth, over 40 cm-thick dark brown (10YR 3/3) fine sand silty loam, 
rare coarse sand; common very fine rootlets; moist and crumbly, with 
increasing clay and poorly developed subangular blocky structure over 
depth; moist and compact.

not 
available

K2/1 110+ S section of dry, EW-running 
stream/gully on the narrow 
valley between Bambandyanalo 
Hill and a sandstone hill, leading 
onto K2 valley; acacias, low 
shrubs and grasses.

Topsoil: light brown (7.5YR 5/4) very fine sandy loam, common medium 
and fine rootlets; loose and dry. Buried soil: at c. 40 cm depth, pink-
light brown (7.5YR 6/3) fine sandy loam, rare tabular rocks (2–5 cm), 
potsherds and bone fragments. At c. 80 cm depth, rubble deposit with 
potsherds. At c. 100 cm depth, gravelly bed resting on streambed.

 Co, 
Cr, Cu, 
Fe, Mg. 
Mn, Ni, 
P, S, Zn

K2/2 28+ As K2/1, section recorded further 
upstream adjacent to the ancient 
(Iron Age) settlement mound 
of K1.

Topsoil: reddish light brown (5YR 5/3) fine sandy loam, common coarse 
and medium sand; loose and dry. At c. 20 cm depth, fine gravelly bed. 
Buried soil: at c. 23 cm depth, a c. 40 cm-thick reddish brown (5YR 6/1) 
fine sand silty loam; slightly ashy, microcharcoal, increasing clay and 
subangular blocky structure over depth; interrupted by a 2 cm-thick 
standstill horizon at c. 28 cm depth. At c. 75 cm depth, dark pinkish 
brown (5YR 4/4) fine sandy loam, coarse sand; moist and compact. 

 Al, K, 
Pb -  
Ca, Co, 
Cr, Cu, 
Fe, Mg, 
Mn, Ni, 
Sr, Zn

Leokwe
Leokwe camp

K2 valley

B a m b a n d y a n a l o

LK/2

K2/2

K2/1

LK/1
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lower one (40–100cm) shows a distinctively clay and 
iron-rich (Bt/Bs) horizon.

To the east of Leokwe, the K2-Bambandyanalo 
valley was home to the earliest permanent settlement 
emerging in the Mapungubwe landscape, as indicated 
above. Here, geoarchaeological work investigated two 
sections from a dry watercourse draining the south-
ern foothill of Bambandyanalo Hill: one section was 

In summary, the sequence from Leokwe shows 
a 20 cm-thick topsoil of light brown fine sandy loam, 
primarily deriving from alluvial material. This is sit-
ting on about a 5 cm-thick coarse gravelly bed that 
covers a buried dark brown very fine sandy silty loam 
(30–100 cm) with possibly two distinct horizons. The 
upper deposit (30–40 cm thick) is rich in organics and 
truncated, likely reflecting a lower Ah horizon. The 

Figure 11.7. Micromorphology of valley soils. Microphotographs in PPL (left) and XPL (right): (a) wood ash and clay 
coating (red arrow), and (b) charcoal-rich domain at K2/2, 74–86 cm below surface; (c) plant (root) residues and iron 
nodule from Leokwe, LK/2 30–40 cm. Micromorphological descriptions are provided in Table A11.2 in the Appendix  
to this chapter. Images: Federica Sulas.

100 μm
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the topsoil. These are separated by a 5 cm-thick 
deposit of reddish-brown fine sand and silt, possibly 
related to aggrading alluvial material. Next, there are 
about 40 cm of largely the same fine alluvial material 
with increasing clay content and structuring down the 
profile, resembling a lower Ah horizon. Significantly, 
calcite features are only observed in the upper level, 
whereas the lower deposits exhibit higher organic 
matter contents and anthropogenic inclusions, as well 
as the clay features seen in the samples from Leokwe.

Building local landscape sequences for 
Mapungubwe

Geoarchaeological investigations revealed the pres-
ence of two main soil/sediment types in the greater 
Mapungubwe landscape. A reddish-brown fine to 
very fine sandy loam and a dark brown fine sand silty 
loam. The most common type is a reddish-brown, 
fine to very fine sandy loam that originated from the 
weathering of red (Karoo) sandstone and incorpo-
rates wind-blown (Kalahari) sands. Under relatively 
stable conditions, these sands began to aggrade and 
undergo incipient structure development, as observed 
for example in the K2-Bambandyanalo sections. The 
second type of soil is a dark brown fine sand silty loam 
that is found in the valley bottoms such as at Leokwe 
and the Samaria floodplain area. The silt and clay 
content and the darker colour point to organic-rich 
material, intense biological activity and continuous 
reworking leading to profile development.

At the edge of the floodplain, the Limpopo River 
section consists essentially of fine and nutrient-rich 
alluvial material, which from about 30 cm below 
the ground begins aggrading with the reworking of 
organic (oxidized) and soil material. Further down 
the profile, at about 150 cm, a moderately developed, 
fine-textured silty clay loam seems also a result of 
slow aggradation of fine alluvia. Rich in organic 
matter – some not yet fully oxidized – this buried 
soil displays a high degree of bioturbation, calcium 
carbonate features, and relict fragments of other 
horizons. The porosity points to wet and dry cycles 
(seasonal waterlogging) and bioturbation, but iron-
manganese features do not seem to reflect abrupt 
changes in soil moisture. Significantly, there are two 
key pedofeatures that recur throughout the profile: 
organic and iron-rich crust fragments and iron-rich 
dusty clay. The river section illustrates a prolonged 
period of profile development on the riverbank over 
secondary, alluvial material. The fine textured and 
well sorted alluvium from 40 cm below the surface 
reflects low-energy depositional processes and – con-
sidering the essentially flat nature of the surrounding 

recorded at the foot of the hill (K2/1), and a second one 
(K2/2) about 50 m further downstream immediately 
south of the eastern midden (or K1).

ICPAES results show no distinctive variabil-
ity over depth either across sections, but generally 
depleted concentrations of metallic elements, plant 
nutrients, and some salts (Co, Cr, Cu, Fe, Mg. Mn, Ni, 
P, S, Zn). Enriched levels of aluminium, potassium 
and lead were found only in section K2/2.

The two sections, about a metre high, present a 
more complicated stratigraphy than the ones encoun-
tered so far. By and large, the sequence consists of a 
reddish-brown (5YR 5.3), fine sand silty loam aggrad-
ing over depth, interspersed with two fine gravelly 
beds. At about 40 cm depth, there is evidence of 
incipient subangular blocky structure development.

Toward the base of the sequence, a reddish-
brown, very fine sand clayey loam lies on the 
weathering bedrock (80–100 cm). The upper 10 cm 
exhibit a poorly developed structure with amorphous 
organic and excremental matter, and common micro-
charcoal (Fig. 11.7a,b). Occasionally, fungal spores 
and grass phytoliths (trichome, elongate, bulliform), 
burnt bone fragments, and potsherds are also seen. 
The pedofeatures include common iron typic nodules.

At 32–44 cm depth, the same reddish brown 
fine sandy silt loam shows little clay and abundant 
organic matter, and a high degree of bioturbation 
with dominant complex packing voids and channels 
(Fig. 11.7c). Organic matter is mainly amorphous, 
including common excremental matter, rare fresh 
roots, tabular, fine charcoal. The aggradation of this 
light brown sandy silt loam is interrupted by two 
short-period standstills, indicated by two bands (2 
cm thick) of fine gravels cemented by coarse sand 
and silt at 20 cm and 28 cm depth.

The material from 10–20 cm below the ground 
surface is consistent with one observed at the top 
of the Leokwe sequence: a moderately sorted, light 
brown (5YR 5/3) medium to fine sandy silt loam with 
a crumb biostructure. The high degree of bioturbation 
is responsible for wide channels and coarse to fine 
vughs. The b-fabric is crystallitic to stipple speckled 
around grains. The organic content is dominated by 
amorphous and iron-replaced matter, with common 
very fine, tabular charcoal and some grass phytoliths. 
Rare (fresh?) bone fragments are also seen. Distinc-
tive pedofeatures include dusty clay coatings, and 
medium-fine size round aggregates of red clay, very 
fine sand and amorphous organics; iron typic nodules, 
rare calcite nodules and microsparitic intergrowth 
within voids.

In summary, the sequence from K2 shows two 
standstill levels in the thin gravelly beds just beneath 
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a result of past hydrological inundation (Nxumalo 
2020). Enhanced phosphorus levels in buried soils 
might be linked to the Iron Age and post-Iron Age 
occupation in Mapungubwe (Nxumalo 2019; 2020; 
see also Thabeng et al. 2019; 2020). Enhanced levels 
of phosphorus (e.g. 300–1900 ppm) in archaeological 
sites have been linked past human habitation and 
activities (e.g. Courty et al. 1994; Gahoonia et al. 1994;  
Holliday & Gartner 2007). Phosphorus intakes by 
biotic components serve as useful indicators of soil 
moisture (French 2017a). The soil elemental signa-
tures suggest that the Shashe-Limpopo basin might 
well have offered favourable plant growing condi-
tions and pan sediments as sources of moisture by 
which humans exploited landscapes for shelter, water 
and socio-economic development. These conditions 
would have also been influenced by the role played 
by regional climatic conditions.

Discussion and conclusions

Although geoarchaeological work has just started 
to investigate local landscape histories across the 
Shashe-Limpopo basin, the first local soil sequences 
presented here seem to support prolonged human 
settlement and bear no evidence of major changes in 
the vegetation structure. Within this general trend, 
there is evidence of localized erosion and profile 
truncation in the valley sequences. In the lower sec-
tor of the floodplain, thick buried soil deposits are 
consistent with prolonged aggrading of rich alluvial 
sediments, human settlement, and an open grassland 
vegetation cover. At a regional scale, this scenario 
resonates with evidence for prolonged settlement 
where ‘abandonment’ was previously modelled, for 
example, in contemporary settlement areas of eastern 
Botswana (Denbow et al. 2008; Forssman 2020). A 
persistence of open grassland vegetation has also been 
recorded in the southern Limpopo basin (Ekblom et 
al. 2012). At a local scale, the new geoarchaeological 
records capture important facets of landscape evolu-
tion and land-water-settlement nexus relations over 
time. These have implications for debates around 
reconstructing a cultural and environmental sequence 
for the southern African Iron Age. Mindful of the new 
geoarchaeological record, we need to carefully focus 
on the role played by people on local landscape and 
regional environmental processes. The limited avail-
ability of experimental and comparative datasets in 
geoarchaeological inquiries across the southern Afri-
can Iron Age remains a major challenge. For example, 
soil surfaces that are no longer in their original posi-
tion are difficult to examine because they might well 
have similar macro- and micro-structural features, not 

landscape – is likely the result of slow, overbank 
flooding into the wider Limpopo plain under mild 
climatic conditions. Over time, this nutrient-rich allu-
vium would favour vegetation growth and biological 
activity, in turn sustaining soil structure and profile 
development, which in this river section reaches well 
over 250 cm below the surface. Perhaps the crust frag-
ments seen in the thin section might have originated 
from a surface not too dissimilar from the one we 
find today in the floodplain: developed on a gently 
sloping to flat land with open miombo vegetation 
and dotted by sandstone outcrops and ashy circular 
patches from (Iron Age) kraal sites.

Further away from the river, small valleys 
are protected by sandstone ridges and kopjes, and 
watered by a network of (now) seasonal watercourses, 
feeding into the Limpopo. At Leokwe, the buried (and 
truncated) dark brown fine sand silty soil reflects a 
vegetated and stable landscape, rather different from 
the almost denuded one that we see today. These small 
valley bottoms might well have provided ecological 
niches for farming on land enriched by colluvial 
input from the sandstone hillsides and alluvium 
from the small streams. The sequences recorded in 
the K2 area are indicative of a rather active landscape 
with alternating periods of profile development and 
localized disruption.

Key questions remain about the timing and 
triggers of landscape disruption, as captured in the 
valley sequences. As mentioned earlier, the climate 
sequence, built using (macro-)regional palaeorainfall 
data and local isotopic signatures (Smith et al. 2010; 
Woodborne et al. 2016), starts with dryland conditions 
– rainfall below 500 mm, similar to the present-day 
– around the mid-tenth to the mid-eleventh centu-
ries ad, that are followed by a period of increased 
rainfall sustaining the emergence of the first capital at 
K2 and associated floodplain agriculture until about 
the early thirteenth century ad. A few decades later, 
dryland conditions would appear to resume, argu-
ably playing a role in the abandonment of K2 and the 
establishment of a new capital on Mapungubwe Hill 
by the mid-thirteenth century ad. The latter would 
have thrived and expanded under wetter conditions 
and higher temperatures until about the mid-fifteenth 
century ad, when Mapungubwe was abandoned.

The geoarchaeological survey records indicate 
alternating sequences of profile development and 
regional disturbances, but some soil horizons main-
tain their original structure. By and large, the general 
sequence changes from compact towards very fine 
alluvial soil deposits across the upper and lower mid-
dle Limpopo valley, a trend that can be associated 
with clastic sedimentation and channel infilling as 
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necessarily derived from the same processes (French 
2003; 2009; Macphail & Goldberg 2018a). This is likely 
to result in stratigraphic inconsistencies.

Inspired by Charly French’s research, land-
scape-scale geoarchaeological approaches are best 
suited to chart human–environment interactions at 
multiple spatiotemporal scales, tracing legacies into 
the present-day. And it is with concern to settlement 
areas that such a landscape-scale approach can have a 
transformative impact. By looking at settlements and 
cities in their long-term landscapes, geoarchaeologi-
cal research, as also shown by French (2003; 2010a), 
has unique potential to expose the strengths and 
fragilities of drylands, capturing the space and pace 
of multiscale processes, and disentangling the web 
of interactions between regional and local factors. In 
the Mapungubwe landscape, the humble soil bears 
new evidence of a prolonged dryland-settlement 
relationship that has weathered changing climate and 
political organizations for over a thousand of years.
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