
Human population history and its 

interplay with natural selection 

 

 

 

 

Veronika Siska 

Department of Zoology 

University of Cambridge 

 

This dissertation is submitted for the degree of 

Doctor of Philosophy 

 

 

Trinity College 2018 September 

 



ii 

 

Human population history and its 

interplay with natural selection 
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Summary 

The complex demographic changes that underlie the expansion of anatomically modern 
humans out of Africa have important consequences on the dynamics of natural selection and 
our ability to detect it. In this thesis, I aimed to refine our knowledge on human population 
history using ancient genomes, and then used a climate-informed, spatially explicit 
framework to explore the interplay between complex demographies and selection. 

I first analysed a high-coverage genome from Upper Palaeolithic Romania from ~37.8 kya, 
and demonstrated an early diversification of multiple lineages shortly after the out-of-Africa 
expansion (Chapter 2). I then investigated Late Upper Palaeolithic (~13.3ky old) and 
Mesolithic (~9.7 ky old) samples from the Caucasus and a Late Upper Palaeolithic (~13.7ky 
old) sample from Western Europe, and found that these two groups belong to distinct 
lineages that also diverged shortly after the out of Africa, ~45-60 ky ago (Chapter 3). Finally, 
I used East Asian samples from ~7.7ky ago to show that there has been a greater degree of 
genetic continuity in this region compared to Europe (Chapter 4). 

In the second part of my thesis, I used a climate-informed, spatially explicit demographic 
model that captures the out-of-Africa expansion to explore natural selection. I first 
investigated whether the model can represent the confounding effect of demography on 
selection statistics, when applied to neutral part of the genome (Chapter 5). Whilst the 
overlap between different selection statistics was somewhat underestimated by the model, the 
relationship between signals from different populations is generally well-captured. I then 
modelled natural selection in the same framework and investigated the spatial distribution of 
two genetic variants associated with a protective effect against malaria, sickle-cell anaemia 
and β0 thalassemia (Chapter 6). I found that although this model can reproduce the disjoint 
ranges of different variants typical of the former, it is incompatible with overlapping 
distributions characteristic of the latter. Furthermore, our model is compatible with the 
inferred single origin of sickle-cell disease in most regions, but it can not reproduce the 
presence of this disorder in India without long-distance migrations.  
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Chapter 1 General introduction 

1.1 History of anatomically modern humans 

1.1.1 Evolution of anatomically modern humans 

Anatomically modern humans evolved through a long and non-linear process, starting with 

the separation of the hominins (species closer to humans than to the closest relative, the 

chimpanzee). The current, widely accepted model of hominin origins is termed “Out of 

Asia”: according to this, apes evolved in Africa and then dispersed over Eurasia in the Middle 

Miocene, once a landbridge was established. Climate change then lead to the disappearance 

of primitive apes from Africa (by roughly 9 million years ago), until its recolonization in the 

Late Miocene (roughly 4-8 million years ago)1,2. These modern apes then evolved into 

diverse groups through a so-called adaptive dispersal, since they were faced with a new, 

heterogeneous environment following climate change (e.g. forest cover breaking up)
3
. In this 

view, hominins were just one of the resulting groups, together with other African apes like 

gorillas or chimpanzees. 

A combination of fossil evidence, genetics and paleoclimate reconstructions support this “Out 

of Asia” model of hominin origins1,2.  Palaeontology provides evidence for when different 

clades appeared and how they were related morphologically, genetics establishes their 

phylogenetic relation, and past climate dates when the necessary land-bridge existed and 

when the climate changed. Genetics was crucial to disentangle the relationship between 

hominins and African apes, supporting that hominins and chimpanzees form a clade, as 
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opposed to earlier models that placed all non-hominin apes into one clade based on their 

morphology. 

However, the timing and process of the separation of hominins and other apes is far from 

clear. Palaeontology struggles with a combination of sparsity and unclear classification of 

fossil specimens, carrying a mosaic of archaic and modern morphological features. Regarding 

genetics, we can only rely on the difference between living species due to a lack of genetic 

data from ancient hominins1,2. Based on modern genetic data, the separation occurred around 

6 million years ago, but a large variation of estimated divergence times between humans and 

chimpanzees across the genome and a shorter divergence time on the X chromosome was 

inferred
4
. This could be due to incomplete lineage sorting

5
, the different mutation rate of the 

X chromosome
5,6

 and/or natural selection acting differentially
6
, but could also be the sign of a 

complex speciation-hybridisation process as opposed to a clean split
4
 (). 

After the separation of the hominin clade, a long and winding evolutionary road leads to the 

genus Homo, following the same pattern of complex relationships among different taxa. 

There is no clear definition of the genus Homo, but broadly speaking, members of the family 

are those either ancestral to or closely related to modern humans. There is an observed, 

continual increase in cranial capacity throughout the evolution of the genus, which is also 

associated with the advent of tool use
2
. These signs separate them from their ancestors, the 

early hominins and Australopithecines, as well as the robust Australopithecines who took an 

alternative evolutionary path and did not leave any present-day descendants. 

Classification of the Homo genus into species and subspecies is challenging, due to 

incomplete information and complex relationships within the genus; I here present the 

summary of a widely accepted view1,2. The first accepted species is Homo habilis, the 

initiators of tool use, with an evolutionary history in Africa. This species is followed by the 

more human-like Homo ergaster in Africa and the Homo erectus inside and outside Africa, 

with even more derived features. According to the currently most accepted view, Homo 

erectus evolved through a radiation out of Africa, where Homo ergaster was its ancestral or 
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sister species. Homo erectus then spread over Eurasia and separated into diverse groups with 

different variants inhabiting different areas, from Spain and Georgia all the way to South-East 

Asia. However, the classification of these variants is still debated: whether they are separate 

species, ancestral to each other, or simply regional variants originating from the same 

dispersal event remains unclear. What we know for certain is that they represent a wide range 

of morphological variation, but due to the limited number of remains in each group, it is 

difficult to judge the level of differentiation. 

Homo heidelbergensis appeared around 700kya
2
. They reached the range of cranial capacity 

of anatomically modern humans and possessed material culture hardly distinguishable from 

that of early Homo sapiens, including tool use and even signs of social structures, such as 

care of the old or infirm or interpersonal violence. The evolution and classification of Homo 

heidelbergensis mimic that of Homo erectus, with unclear boundaries between groups, a 

plausible origin in Africa, a successive spread over Eurasia and divergent evolution in 

geographically different areas. Neanderthals and Denisovans in Eurasia, and Homo sapiens, 

also called anatomically modern humans (AMHs) in Africa are all thought to have evolved 

from Homo heidelbergensis, with African and Eurasian groups possibly separated  due to 

climatic changes (an arid phase in the Near East)
2
.   

1.1.2 The expansion of anatomically modern humans out of Africa 

Evidence for the African origin of Homo sapiens comes from a combination of archaeology 

and genetics. The earliest fossils classified as Homo sapiens all originate from Africa Omo 

Valley, Ethiopia ~190kya
7
, Herto, Ethiopia ~160kya

8
 and Pinnacle Point, South Africa 

~164kya
9
). However, the recent dating to ~300kya of a Homo sapiens fossil from Jebel 

Irhoud, Morocco
10,11

, implies that modern humans may have evolved earlier and could have 

had a wider distribution than previously thought. In contrast, the earliest fossils outside 

Africa is only 92kya (Skuhl & Quafzeh, Israel
2
), but even those have archaic features and are 

regarded by many scholars as not directly ancestral to present-day non-Africans. The first 
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finding from outside the Near East is from China (Daoxian teeth ~80kya
12

), followed by 

archaeological and palaeontological evidence showing that anatomically modern humans 

spread out from Africa from 60kya onwards, reaching all corners of Eurasia by about 

45kya
13–15

 and crossing into the Sahul somewhere between 60kya and 40kya
14

. 

Genetics played a crucial role in establishing the African origin of anatomically modern 

humans. The first line of evidence comes from the present-day diversity of uniparental 

haplotypes (mtDNA
16,17

 and Y-chromosome
17,18

), which date last common ancestor to 

between 200 and 130kya, before the appearance of modern human fossils outside Africa. 

These dates rely heavily on estimates of the mutation rate, which provide the conversion 

between mutational distance and time. However, by now, accurate estimates are available 

using Next-Generation Sequencing data for the Y chromosome
19

 and ancient data for 

mtDNA
20

. Second, the modern-day non-African genetic diversity lies within that of Africans, 

both regarding uniparental markers and the nuclear genome. Therefore, populations within 

Africa carry the deepest separations, with the oldest (more than 100kya) separating the South 

African Khoe San people from all other populations
19

. Last, genetic diversity on mtDNA
21

 

and nuclear markers
22,23

, but even phenotypic diversity estimated based on cranial 

metrics
22,24

, decreases with distance from Africa. This pattern of decreasing diversity with 

distance from the origin is typical after the expansion of a species. 

Many aspects of the exit out of Africa are well understood. The most commonly accepted 

timing is around 50-60 kya, supported by the appearance of unambiguously classified Homo 

sapiens fossils outside of Africa
2
, the times to the common origin of non-African mtDNA

25
 

haplogroups, as well as estimated exit times based on  modelling using nuclear genetic 

diversity
26,27

. Furthermore, this period coincides with a window of climate favourable for 

humans in the otherwise arid and impassable Arabian peninsula around 60-70kya
27

. 

However, there are also several aspects of the so-called Out-of-Africa event that remain 

unclear. First, there is a possibility of earlier exit(s) out of Africa, which are difficult to detect 
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if they were overwhelmed by a subsequent larger wave. There was a favourable climatic 

window about 130kya, accompanied by a similarity in lithics inside and outside of Africa
28

 

and some genetic studies also point to a small amount of genetic material from such an early 

wave in Papuans
29

. However, other studies, also including samples from the same region, 

failed to reject the single-wave scenario
30,31

, and the broad pattern of diversity in non-African 

populations is also consistent with a single expansion wave
22,27

. This implies that 

anatomically modern humans (AMHs) mainly originate from a single wave, which could 

have been preceded by a smaller one. Chapter 2 explores the diversity of AMHs in Eurasia 

shortly after the main wave out of Africa in light of a ~37.8 ky old genome from present-day 

Romania. 

The relationship between modern and archaic humans (Neanderthals and Denisovans, the 

latter only known by its DNA) is an additional debated point in the early evolution of AMHs. 

Certain modern-day non-Africans show an increased affinity to Neanderthals
32,33

 and 

Denisovans
34

. Neanderthal ancestry is estimated at roughly 1.5-2.1 in all non-Africans
33

, 

whereas Denisovan ancestry is estimated at around 2-4% in Oceania
35

 and Melanesia
36

. 

However, it is also possible that substructure within Africa
37

 or a difference in mutation rates 

between modern Africans and non-Africans
38

 can explain at least part of this signal.  

1.1.3 Neolithic transition 

After the spread of humans out of Africa, a structured population of hunter-gatherers existed 

all over Eurasia. In addition to their cultural relations from archaeological studies, we are 

now starting to understand their genetic composition, with the help of ancient genomes. 

There is genetic material available from Eurasia in the Upper Paleolithic, the period 

stretching from the dispersal of anatomically modern humans out of Africa until the advent of 

the Holocene roughly 10 kya. Some samples are associated with different groups of modern 

populations (e.g. Europeans
39–41

, East Asians
42

, Native Americans
43

 or Central Asians from 

the Caucasus
40

), but others did not seem to contribute substantially to extant populations 
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(Ust’Ishim from Asia
44

 and several European samples from 40-30,000 years ago
41,45

). 

Chapter 3 explores data from one of the early European lineages that appear to be a dead end, 

whereas Chapter 4 presents an Upper Paleolithic lineage that left its footprint on modern 

populations across Eurasia. 

The next large shift in the history of anatomically modern humans was brought by the so-

called Neolithic transition, coinciding with the beginning of the Holocene in West Eurasia 

and characterised by the advent of agriculture, industrial developments (pottery, textile) and a 

sedentary lifestyle. The transition is well-studied in archaeology, but genetic data is necessary 

to determine the extent to which the Neolithic spread through cultural transmission or the 

movement of people. Ancient genomes have revealed a major population replacement in 

West Eurasia during the transition from hunting-gathering to agriculture from ~10.5 kya 

onwards, followed by a progressive “resurgence” of local hunter-gatherer population ancestry 

and later, coinciding with the advent of the Bronze age ~5.5 kya, a major contribution from 

the Asian Steppe
39,46

. The process in Asia is less well-known: archaeology shows multiple 

origins of the Neolithic and a lack of the strong association between its components (pottery, 

farming and animal husbandry) that was observed in Europe, but ancient DNA is still missing 

from the relevant time period in the region. In Chapter 5, I analyse such data and explore its 

implications on the Neolithic transition on the northern periphery of East Asia. 

1.2 Genome sequencing 

1.2.1 Introduction to genome sequencing 

One of the main sources of information on human population history is genetic data. The 

genetic data used in this thesis is mainly the sequence of DNA from the 22 nuclear 

chromosomes, the sex chromosomes and the mitochondrial chromosome, encoded in a four-

letter alphabet of base pairs. In the case of whole-genome sequencing, we are interested in all 
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positions, but one can also focus on only single nucleotides at given polymorphic positions 

(single nucleotide polymorphisms or SNPs). 

The process of determining the DNA sequence is called sequencing. The most common 

technology used nowadays is Next-Generation Sequencing (NGS)
47

, where the target 

sequence is broken up into pieces and then amplified before the base pairs are determined (in 

other words, the sequence is read). These short, generally 50-100 base pair long segments 

(reads) are then mapped (aligned) to the sequence of the organism in question (the reference 

sequence), according to where they fit well. Finally, the bases that the sample most likely had 

at locations of interest (genotypes) can be determined. 

1.2.2 Ancient DNA 

Sequencing ancient DNA (aDNA), that is, DNA from specimens not preserved for DNA 

analysis (e.g. bones from archaeological sites, mummies, hair, tissues from the permafrost) is 

technologically challenging. The first such study in 1984 reported DNA traces from an 

ancient horse species, the Quagga, sampled over 150 years after the organism’s death
48

. 

Unfortunately several early ancient DNA studies proved to be only contamination, including 

claims of obtaining DNA from a dinosaur
49

. These false positives, together with the laborious 

process of sequencing DNA at the time before NGS, hindered advances in the field
50–52

. 

However, with technological progress and rigorous laboratory procedures, it became possible 

to routinely sequence ancient DNA; first from the abundantly available mitochondria and 

later also from the nuclear genome. The age of sequenced samples is continuously pushed 

back: the oldest sequenced sample to date is a horse from the permafrost that lived over half a 

million years ago
53

, but several modern
44

 and ancient
33,35

 hominins over 40,000 years-old 

have also been sequenced.  

There are three main families of problems that make the sequencing of ancient DNA 

challenging
50–52

. First, as DNA breaks down, the segments get shorter. With NGS, these 

segments can be sequenced, but the difficulty of alignment increases with decreasing segment 
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length. Even intermediate read lengths make de novo assembly impossible, and parts of the 

genome that are particularly difficult to align to (e.g. repetitive regions) become inaccessible. 

At even shorter read lengths, any kind of alignment becomes infeasible. Second, chemical 

processes, deamination in particular, can change the sequence and cause spurious mutations, 

especially at the end of the fragments. Third, contamination leads to only a small proportion 

of the DNA originating from the ancient specimen. Including these fragments in the analysis 

can lead to erroneous conclusions, and they are especially difficult to filter out if the ancient 

sample is contaminated by modern DNA of the same or similar species. 

There are several ways to assess the quality of ancient genomes and to deal with the 

challenges described above. Both fragment length and the presence of deaminated bases at 

the end of fragments can be used to assess the authenticity of the sample. Afterwards, a 

minimum read length is usually imposed and the (likely damaged) ends are clipped before 

further processing. It is also possible to chemically reverse deamination, in which case a 

small portion of the DNA is kept in its original form for authenticity assessment. Regarding 

contamination, sequences from organisms different from the sample (e.g. soil bacteria on a 

human sample) can be separated during alignment on the basis of their low similarity to the 

target reference sequence. Contamination from modern sources of the same or closely related 

organism (e.g. humans handling an ancient human sample) is more challenging to handle. In 

addition to authenticity based on damage patterns, the level of such contamination can be 

estimated using uniparental markers (by looking at the proportion of sequencing not matching 

the consensus haplotype) or, for male specimens, using the X chromosome (by looking at 

polymorphisms). 
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1.3 Modelling 

1.3.1 Demography 

The goal of demographic modelling is to provide a simplified framework of demographic 

processes, such as natural birth and death or population admixture. Such models track the size 

of populations over time, given the rules governing its change. These models can be discrete 

or continuous in how they represent population size, space and time. Discrete and continuous 

models can be each other’s approximation and the choice of framework depends on the 

system studied and the features of its behaviour that one is trying to capture. For instance, a 

discrete-time model is more suited for a system with separate generations, whereas one with 

overlapping generations with incremental changes is easier to represent using a continuous-

time framework. 

Deterministic and stochastic demographic models are fundamentally different in terms of 

their mathematics, but can be used to model similar systems. Just like with continuous and 

discrete models, deterministic and stochastic models can be equivalent under certain 

conditions, and the choice between them depends on the system. Deterministic models are 

usually easier to handle mathematically and often have a smaller computational footprint, but 

the effects of stochasticity can be important for certain systems. Natural systems are usually 

stochastic by nature, but in the case of large systems, where fluctuations even out, a 

deterministic approximation can be sufficient. However, when the population sizes are low or 

changes are abrupt (e.g. large fluctuations or small subpopulations), stochastic effects have to 

be taken into account explicitly. 

Population substructure can further complicate demographic models. Real systems are 

usually not completely homogeneous, but it depends on the level of inhomogeneity whether 

such substructure can be neglected. There are numerous ways to represent substructure, from 

toy models consisting of a few separate populations through metapopulation models where 

populations are connected in a network all the way to complex, spatially explicit frameworks 
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that attempt to capture geographical substructure. However, in addition to the obvious trade-

off between simplicity and computational time, fitting the model to the real system also has to 

be considered. Often there is not enough data to set all parameters in a structured model, even 

if it is clear that the structure exists. In such cases there are two possibilities: one can either 

use a simplified model (e.g. only a few populations) or make assumptions about the 

underlying structure (e.g. assume that inhomogeneities and/or connectivity are a function of a 

measurable quantity). Simple tree-like models (Chapters 2 and 3) are examples for the 

former, whereas spatially explicit models with environment-dependent carrying capacities 

and connectivity (Chapters 5 and 6) for the latter. 

1.3.2 Genetics 

Once we have a demographic model, we can use it to also study the genetic composition of 

samples from the population, that is, the DNA sequences of each sample. Depending on the 

organism, a single individual can contain one (haploid) or two (diploid) sequences, which can 

change from generation to generation through mutation and recombination. Tracking a 

certain variant or sequence is equivalent to differentiating between different types of 

individuals in the population. In addition to the sequences, the relationship between different 

samples can also be relevant. For instance, for analysis based on genealogical trees (the 

ancestry tree of sampled genetic markers), we need to track the ancestry of individuals in our 

demographic model. 

The simplest genetic models assume that there are no new mutations and individuals 

randomly mate with each other (no selection) in an infinite population, with non-overlapping 

generations. A diploid organism with two alleles in such a model is described by the Hardy-

Weinberg model, where frequencies of the three possible diploid genotypes will be constant 

and only dependent on the frequencies of the two alleles54. 

One of the simplest deviations from the above model is to relax the assumption of an infinite 

population and instead work with a finite number of discrete individuals. Such a system can 
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be described in a simple stochastic framework, where individuals are still mating randomly 

within a population, with each offspring originating from two randomly chosen ancestors in 

the previous generation54. The case with non-overlapping populations is described by the 

Wright-Fisher model, where the whole population is replaced by a new set of individuals in 

each generation. The other extreme is the Moran model, where generations overlap and only 

a single individual is replaced by a new one in each step. In both of these models, the change 

in the number of alleles from generation to generation can be described by a random walk on 

a bounded interval, and the corresponding mathematical results (time to fixation, diffusion 

approximation, etc.) apply. 

Once we have a model to describe the dynamics of different alleles in a population and a set 

of samples we are interested in at a given generation, we can build the ancestral relationship 

between these (genealogical tree). The genealogy can then be used to calculate when the most 

recent common ancestor between any two samples lived, or to track where a certain mutation 

occurred and which samples it affects. Observed data generally comes in the form of a set of 

samples, which can be used to estimate the corresponding genealogies and through that, to 

make inferences about past population history. 

A further complication in a diploid population comes from recombination. Recombination is 

when the two ancestral sequences are combined to form a diploid sample in the next 

generation, but with both sequences in the new sample containing material from both of the 

two ancestral sequences. The process mixes up the genealogical trees from the sequences, 

resulting in a genealogical network. Furthermore, since recombination only occurs through a 

set of breakpoints along a sequence, it takes time to de-couple nearby section of the sequence. 

As a consequence, mutations close to each other on the sequence will occur more frequently 

together, forming linked sections or haplotypes. Patterns of such haplotypes can also be used 

to infer the population history of the sample, and are particularly informative on the timing 

and extent of admixture events between populations
55,56

. 
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1.4 Natural selection 

1.4.1 Introduction to natural selection 

Natural selection is the main process behind evolution, where individuals better adapted to 

their environment tend to be more successful in survival and reproducing, thus changing the 

distribution of heritable biological traits in the population. By studying the dynamics of 

adaptation to different environments, it is possible to uncover population history, speciation 

and demonstrate evolution at work (e.g. spread of lactase persistence in humans in response 

to consuming dairy products
57

 or change in pigmentation of peppered moths in response to 

industrial development
58

). Detecting signals of selection also has important implications for 

medical applications. Since selection acts on the phenotype, segments under selection are 

often of functional importance, associated for instance with resistance against pathogens or 

genetic diseases (e.g. sickle cell trait offering partial protection against malaria
59

, deleterious 

mutation in Siberians originally providing an advantage to a high-fat diet or cold 

environment
60

). Strong signals of selection in the genome thus have the potential to guide 

association studies looking for the underlying genetic causes of medical conditions. 

There are several different modes in which selection can act. It can be simply directional, 

where an allele is either advantageous and increases in frequency (positive selection) or the 

opposite (negative selection). Most new mutations are disadvantageous, leading to constant 

negative selection against new variants, called background or purifying selection. In non-

haploid organisms, selection can also act in more complex ways. Balancing selection favours 

intermediate frequencies of multiple alleles, for example when the heterozygote is favoured 

in a diploid organism. The signature of selection in the genome also depends on whether a 

newly arisen mutation is quickly increasing in frequency (hard sweep) or whether it is an 

existing variant, part of standing variation, that is becoming favoured (soft sweep). In 

humans, the spread of lactase persistence in humans in response to pastorialism
57

 is a typical 
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example of a sweep, while the HLA locus has long been shown to be under balancing 

selection
61

. 

The availability of dense genetic data has made it possible to detect signals of natural 

selection. Selection can be studied either by directly investigating the time series of 

occurrence of traits and/or genetic composition (e.g. from experiments or ancient DNA), 

looking for associations with certain environments, or by studying signatures of past selection 

in the genome. For humans, long-term experiments are unavailable and the quantity and 

quality of ancient DNA is just now becoming sufficient to study selection. Two successful 

examples for the study of selection using ancient DNA are the detection of derived immune 

and ancestral pigmentation alleles in a single 7,000 year old European hunter-gatherer
62

 and 

direct evidence for selection acting on pigmentation in Europeans during the last 5,000 

years
63

. Associations with the environment provide strong indicators (e.g. between latitude 

and skin pigmentation in humans
64

), but require assumptions about what the important 

environmental factors are, as well as about past climate and the selected population’s history. 

Furthermore, spatial boundaries between different genetically incompatible variants (alleles 

neutral on the native background, but disadvantageous when occurring together) tend to 

become trapped by environmental boundaries even without any kind of selection
65

. 

Therefore, for humans, most effort has been dedicated to the indirect method of looking for 

signals of past selection in the genomes from present-day genomes. 

1.4.2 Confounding effects 

Interpreting the results of indirect methods can be challenging, as they are influenced by the 

demographic history of the studied populations, including changes in population size, 

population substructure or admixture
66

. Neutral demographic events can create signals similar 

to those left by natural selection, making it difficult to assess the significance of any given 

finding. There are two strategies commonly adopted to deal with this issue: to use a simple 

demographic model to define the null distribution of the signal of interest in the absence of 



Chapter 1  General introduction  

 

24 

 

selection
57,63

 or to focus on a fixed quantile (e.g. top 1%) of the loci with strongest signal
60,67–

70
. Each of these solutions can be problematic, since simple demographic models often fail to 

fully capture the confounding processes of interest, and defining a quantile of how much of 

the genome is under strong selection is arbitrary (and does not really solve the confounding 

effect of demography).  A strong warning of the lack of precision in these methods comes 

from the low congruence in the sites detected as under selection by different methods – 

although we also have to keep in mind that some methods are sensitive for different kinds of 

selection and/or on different timescales than others. 

To mitigate the confounding effects, some researchers combine multiple metrics into 

composite measures to look for regions consistently scoring highly using different methods 

(e.g. composite likelihood ratio
71

). However, without knowing the correlations between the 

individual measures and how they relate to different cases of selection, statistical significance 

still cannot be calculated. In order to disentangle signals of selection from false positives 

caused by demographic events and assess significance, we would ideally need a more 

realistic demographic model. 
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Chapter 2 Palaeolithic Oase genome implies 

diversification and extinction events across Eurasia 

2.1 Abstract 

We sequenced to high coverage (~20X) the genome of Oase 2, a ~34-38 ky old individual 

from the Pestera cu Oase cave in Romania, where a specimen (Oase 1) with a recent 

Neanderthal ancestor was found. Oase 2 has a lower Neanderthal contribution than 

Oase 1, and is from a related, but not identical population. Oase 2 is highly divergent 

from modern day populations, but more related to modern and ancient East Asian and 

Native American populations than to Western Eurasians. A joint analysis with other 

high-quality Upper Palaeolithic samples from Eurasia (~32ky old Sunghir and ~45ky 

old Ust’Ishim from Siberia) shows that the genetic affinity of these populations does not 

follow present-day geographical patterns. Furthermore, coalescent modelling implies 

that the populations that these three genomes belong to separated around the same 

time, around 45-60ky ago. This is consistent with temporally close diversifications 

between early Upper Palaeolithic populations across Eurasia shortly after the exit out of 

Africa, followed by population extinctions and the establishment of structured genetic 

landscape seen in modern-day populations only later on. 
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2.2 Contribution 

I performed all population genetics analysis and wrote the manuscript, except for the sections 

detailed below. Gloria González Fortes conducted DNA extraction, sequencing, mapping and 

mitochondrial haplogroup analysis and wrote the corresponding sections (2.4.1, 2.4.2 and 

2.6.1 to 2.6.4). Michi Hofreiter helped provide the archaeological context and also 

contributed to the writing process. Serena Tucci gave comments on the text. Neutral windows 

for the G-PhoCS analysis were extracted using a modified version of scripts written by 

Anders Eriksson for Jones et al. 2015
1
. 

2.3 Introduction 

The dynamics of how anatomically modern humans expanded out of Africa and colonised 

Eurasia is still highly debated
2
. Genetic evidence, such as the age of the most recent common 

ancestor of non-African mtDNA
3
 haplogroups and estimated exit times from  models using 

nuclear genetic diversity
4,5

, point to a relatively recent out of Africa expansion around 50-

60kya. This timing is supported by the appearance of morphologically distinct Homo sapiens 

fossils outside of Africa
6
, and it coincides with a window of favourable climate around 60-

70kya in the otherwise arid and impassable Arabian peninsula
5
. Based on early fossil remains 

from the Arabian Peninsula and China, an earlier exit has also been suggested, possibly 

taking advantage of a favourable climatic window about 130kya. This early exit is also 

supported by the similarity of lithics inside and outside of Africa
5
 during this period. Whilst 

some genetic studies have found signals compatible with a small amount of genetic material 

from such an early wave in Papuans
7
, other studies, also including samples from the same 

region, failed to reject the single-wave scenario
8,9

. Whilst the extent of this earlier wave is 

unclear, all genetic lines of evidence point to a major expansion wave about 50-60kya, from 

which all modern populations derive the majority or entirety of their ancestry. 
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After the spread of humans out of Africa during this recent exit, a structured population of 

hunter-gatherers existed all over Eurasia by about 50-40kya
10–12

. Based on the nearly 

synchronous appearance of fossils all over Eurasia, stretching from Europe to South-East 

Asia and Australia, archaeologists postulated a fast expansion in all directions
2
. The sparsity 

of the fossil record, however, prevents us from reconstructing the dynamics of expansion in 

any detail. Genetic data from this era are also limited to a handful of anatomically modern 

humans, mostly captured rather than shotgun-sequenced (thus preventing accurate timing of 

the splits among these populations). Some, such as 40kya Tianyuan
13

 from China, samples 

from 37kya onwards in Europe
14

 or 13kya Satsurblia
1
 from Georgia are associated with 

modern populations of the same region. Other, especially older, samples, are either not 

directly related to any modern population (37-42kya Oase 1
15

 and 45kya Ust’Ishim
16

 from 

Central Siberia) or their closest relationship is not to populations currently living in the same 

area (24kya MA1
17

 from Central Siberia). In modern genetic data, there is a clear separation 

into a European and an Asian major lineage
18

, with estimated split times shortly after the exit 

out of Africa
7,9

. However, the origin of these lineages and how they became so diverged is 

unclear, since there is no clear geographic barrier leading to such a separation. 

To shed light on the population history of anatomically modern humans in Eurasia in the 

Upper Palaeolithic and their relationship to modern lineages, we sequenced to high coverage 

(~20X, Figure 2.2) an anatomically modern human (Oase 2) from the Upper Palaeolithic 

(~34-38 ky old, based on association with directly dated finds from the site
19–21

) from Pestera 

cu Oase in Romania
19–21

. A sample from the same cave and of a similar age (Oase 1), dated to 

~37.8kya
20

 was captured using an enrichment strategy with a panel of ~2.2 million SNPs 

(2.2M panel), to extract information on sites informative about its relationship to 

Neanderthals and present-day humans
15

. However, the low coverage and high contamination 

of this sample did not allow for detailed demographic analysis. The high quality of Oase 2 

enabled us to conduct haplotype-based demographic analysis and to compare it to other high-

quality Upper Palaeolithic genomes. I also conducted a SNP-based analysis using a panel 
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consisting of modern populations from the Human Origins panel
14

, as well as ancient 

African
22

 and Eurasian
16,17,14,13

 samples (Figure 2.1 for key ancient samples). 

Upper Palaeolithic genomes also inform us on the extent of Neanderthal admixture. 

Neanderthal ancestry in modern living individuals has been mostly ascribed to one pulse of 

admixture at a very early stage of the out of Africa expansion, with possible minor events 

later on. The observed relationship of decreasing Neanderthal ancestry with time is attributed 

to negative selection acting on such genetic segments
14,16

, although the topic is still debated. 

So far, Oase 1 is the only sample that stands out in this regard: it had an unusually high 

proportion of its genome derived from Neanderthals DNA: 6-9%, more than expected given 

its age (up to ~6%)
15

. Furthermore, this ancestry was distributed in very long segments, 

indicative of a Neanderthal ancestor as recent as 4-6 generations back
15

. Whether Oase 2 is 

also special in this extent can inform us on the dynamics of Neanderthal interbreeding in 

early humans.  



Chapter 2  Palaeolithic Oase genome implies diversification and extinction 

events across Eurasia 

 

 

36 

 

 

Figure 2.1 Location of Oase 2 and the key ancient samples mentioned in this study. GoyetQ116-1, Kostenki, 

Sunghir, Ust’Ishim and Tianyuan are shown, with their estimated ages displayed. 

2.4 Results 

2.4.1 DNA extraction, sequencing and authentification 

DNA was extracted from a fragment of Oase 2’s petrous bone. A total of eight extracts were 

obtained and one single stranded library was built from each of them. Seven of these libraries 

yielded percentages of endogenous DNA above 20% in a test run on the NextSeq500 

Illumina platform (Supplementary Table A.1) and were selected for high through-put 

sequencing on a HiSeq2500. After mapping and filtering, the aligned reads of these libraries 

(with the exception of Oa2, see Methods section for details) were merged getting an average 

coverage of ~20x for the complete nuclear genome of Oase 2, as calculated by 

genomeCoverageBed from bedtools v2.25.023.  
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All libraries showed typical patterns of molecular damage, with deamination frequencies 

ranging from 5 to 15% in UDG-treated libraries and higher than 30% in a non-UDG treated 

library (Oa2, Figure 2.3 A and C). Treatment with UDG (Uracil-DNA glycosylase) is applied 

to repair damage in ancient DNA samples. The average read length was around 40 bp in all 

libraries, in agreement with expected DNA fragmentation in ancient remains
24,25

 (Figure 2.3 

B and D). The percentage of contaminating sequences was estimated to 1.29% based on the 

presence of non-consensus bases in the haploid mitochondrial genome. When only 

transversions were considered, which are invariant to damage patterns through deamination, 

the percentage of contamination decreased to 0.18%. 

 

 

Figure 2.2 Depth of coverage for Oase 2, as calculated by genomeCoverageBed from bedtools v2.25.0
23

. The 

figure shows the percentage of reads in a given bin, with the black line marking the average coverage 

(~20.12X). 
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Figure 2.3 Patterns of damage in Oase’s libraries. A. Percentages of deamination and B. read length distribution 

of mapped reads from a non-UDG treatment library (Oa2). C. Patterns of deamination and D. reads length 

distribution of the merged reads mapping to the reference in UDG treatment libraries (Oa1, Oa1b, Oa3, Oa4, 

Oa5 and Oa5b). 

2.4.2 Mitochondrial haplogroup assignment 

The mitochondrial genome of Oase 2 was sequenced to an average depth of coverage of 

479.61x. Supplementary Table A.3 reports the polymorphic positions in Oase 2’s consensus 

mitochondrial sequence with regards to the Revised Cambridge Reference Sequence 

(rCRS)
26

. Oase 2 carries the same defining positions already reported in Oase 1 for 

haplogroup N
15

, but both individuals carry ancestral alleles at positions 8701 and 9540, where 

all present day lineages within the macrohaplogroup N carry the derived allele. This has been 

interpreted as the sign of an ancient mitochondrial haplogroup that is related to the 
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macrohaplogroup N, which nowadays includes all Eurasian mitochondrial diversity, but 

diverged from its base
15

. The fact that Oase 1 and Oase 2 belong to the same, previously 

unobserved mtDNA haplogroup also implies a relatively close relationship between these 

samples on the maternal line. 

2.4.3 Comparison of Oase 1 and Oase 2 

Oase 1 and Oase 2 appear to be from related, but not identical populations. Their outgroup f3 

profiles are different: they are closest to each other, but Oase 1 shows a similarity to 

European Ice Age genomes that is absent from Oase 2, whereas the increased similarity to 

Asian populations is slightly more pronounced in Oase 2 than in Oase 1 (Figure 2.4 and 

Supplementary Figure A.1), even when only positions called in Oase 1 are considered 

(Supplementary Figure A.2 and Supplementary Figure A.3). A further peculiarity is the close 

relatedness between Muierii2 and Oase 1, which is missing in Oase 2. Muierii2 is a ~33ky 

old sample from Romania, not assigned to any lineage that contributed to later European 

hunter-gatherers. This also supports the differences between Oase 1 and Oase 2, and points to 

a complicated genetic landscape in Upper Palaeolithic Eurasia with multiple, differentially 

related populations, many of which did not contribute to modern-day diversity. 

A formal test of whether the two samples from Pestera cu Oase form a clade, using D 

statistics
27 

with an African outgroup of the form D(Oase 1, Oase 2; X, Yoruba), is also 

violated (absolute value of Z scores up to 4.2). However, this signal appears to be dominated 

by the unusually high Neanderthal proportion in Oase 1: Oase 1 is significantly closer to 

ancient hominids and Oase 2 to most modern populations; only deeply divergent populations 

from sub-Saharan Africa are neutral (Figure 2.5 and Figure 2.6). This suggests that the two 

samples are probably from related, but not identical populations, but we need to control for 

the difference in Neanderthal ancestry to be able to reach a firm conclusion. 
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Figure 2.4 Outgroup f3 statistics of the form f3(Oase, X; Yoruba). A. 150 modern populations with the highest 

score for Oase 2. B. and C. 20 populations with the highest score for Oase 2 and Oase 1, respectively. Ancient 

populations displayed in red and moderns in black. 

 



Chapter 2  Palaeolithic Oase genome implies diversification and extinction 

events across Eurasia 

 

 

41 

 

 

 

Figure 2.5 Absolute value of Z scores from the statistic D(X, Yoruba; Oase 2, Oase 1). Positive D statistics (X 

closer to Oase 2 than to Oase 1) are displayed in red and negative in red. The 20 populations with the highest 

absolute value of Z scores are displayed. More information on the samples is available in section 2.6.5. 

 

 

 

 

 

 

 

 

|Z| for D(X, Yoruba; Oase 2, Oase 1) 
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Figure 2.6 Z scores from the statistic D(Y, Yoruba; Oase 1, Oase 2). 150 highest scoring modern populations are 

displayed. 

2.4.4 Neanderthal ancestry 

Oase 1 harbours a high amount of Neanderthal-related ancestry
15

 (6-9%), and it also has a 

morphology that is a mixture of anatomically modern and archaic features
20

. I found that 

although Oase 2 features a similar mosaic of morphological features
21

, it has a lower 

Neanderthal proportion than Oase 1 (about 6.06% as measured by an f4 ratio, Figure 2.7 and 

Table 2.1; for details see Methods). This is still significantly higher than what would be 

expected based on its age: the 95% confidence interval of an ordinary least squares linear fit 

on all samples but Oase1 and Oase 2 in Figure 2.7 is 4.23%-4.36%. This does not take the 

SNP-wise correlations between estimates from different samples into account, but even the 

|Z| for D(X, Yoruba; Oase 2, Oase 1) 



Chapter 2  Palaeolithic Oase genome implies diversification and extinction 

events across Eurasia 

 

 

43 

 

more sophisticated method using a Weighted Block Jackknife method presented in Fu et al. 

2016 puts the top of the 95% CI of Neanderthal ancestry at a time well before Oase 2, 50ky 

ago, at ~5.4%. However, Oase 2 is far from being such a pronounced outlier as Oase 1. My 

collaborators are currently investigating the pattern of haplotypes related to Neanderthals in 

Oase 2, which will give further information about the timing of admixture that gave rise these 

ancestry tracts and allow us to identify genes with alleles of a Neanderthal origin. 

 

 

Figure 2.7 Estimated proportion of Neanderthal genetic material in Oase 2, Sunghir and genomes analysed in14. 

Data for Oase 2 and Sunghir were calculated and merged with the published proportions from14. Blue line 

marks the result of a linear fit on all genomes except Oase 1, with the 95% confidence interval (CI) marked in 

grey. 
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Table 2.1 Estimated proportion of Neanderthal genetic material in selected ancient genomes. 

Population Age [years] No. of SNPs f4 estimate 95% CI minimum 95% CI maximum 

Ust’Ishim 45,020 2,137,615 4.40% 3.60% 5.30% 

Tianyuan 40,328 2,137,258 4.70% 3.83% 5.57% 

Oase 1 39,610 285,076 9.90% 8.40% 11.40% 

Oase 2 39,610 2,000,000 6.06% 5.54% 6.58% 

Kostenki 37,470 1,774,156 3.60% 2.70% 4.40% 

GoyetQ116-1 34,795 846,983 3.40% 2.40% 4.30% 

Sunghir 32,000 2,000,000 4.40% 3.60% 5.30% 

 

2.4.5 Comparison of Oase 2 and other modern and ancient samples  

Oase 2 did not leave considerable ancestry in modern populations: it is not particularly close 

to any modern population as measured by outgroup f3 statistics, similarly to Ust’Ishim
16

 and 

Oase 1
15

 (Figure 2.4A and Supplementary Figure A.1). It is slightly, but significantly closer 

to Asians and Native Americans than to Europeans, but this pattern is much weaker than that 

seen for East Asian ancient genomes, like Tianyuan
28

 or the 7.7kya Devil’s Gate
29

, or even 

for European ancient genomes with a clear European affinity, like Kostenki
30

 or Sunghir
31

. 

When ancient samples are also considered, Oase 1 stands out as the sample closest to Oase 2 

(Figure 2.4B and C, Supplementary Figure A.1), implying that they at least come from 

related populations. Out of the rest of the ancient samples, Tianyuan is the closest to Oase 2, 

but its affinity is only as strong as that of modern East Asians. The fact that Oase 2 is closer 

to Tianyuan than to ancient European genomes implies that its Asian affinity seen in modern 

populations can not be attributed to the Near Eastern gene flow into Europe during the 

Neolithic. Taken together, these results suggest that Oase 2 is a representative of a group of 

out-of-Africa humans that was an outgroup to the direct ancestors of current populations, but, 

similarly to Ust’Ishim, was closer to the ancestors of Asian than to European populations. 
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2.4.6 African origins 

I found that the relationships of these Late Pleistocene samples to ancient and modern 

Africans resemble that of modern Eurasians: they are closest to North Africans, followed by 

East Africans and then other sub-Saharan populations and without any population standing 

out (Figure 2.8, Supplementary Figure A.4 to Supplementary Figure A.10). One ancient East 

African sample from ~3.1ky ago (Tanzania_Luxmanda_3100BP) was close to Upper 

Palaeolithic Eurasians, but it was found to harbour ancestry related to early, pre-pottery 

farmers from the Levant
22

. This implies that the African groups directly ancestral to the first 

wave of Eurasians disappeared or got diluted, implying a lack of population continuity in 

Africa that mirrors what is seen in Eurasia.  
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Figure 2.8 Outgroup f3 statistics of the form f3 (Oase 2, X; Yoruba) for modern and ancient African populations. 
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2.4.7 Demographic analysis on high-quality Upper Palaeolithic genomes 

The high coverage of Oase 2 enables detailed coalescent modelling of how the three Upper 

Palaeolithic lineages with available high-coverage data, namely Sunghir, Oase 2 and 

Ust’Ishim, are related to each other. I used G-PhoCS
32

 to estimate branch lengths, population 

sizes and migration rates upon a tree of the populations associated with these three Upper 

Palaeolithic genomes, the Neanderthal from the Altai Mountains
33

 and an African outgroup, 

represented by a high coverage San genome
33

 (see Figure 2.9 for the general topology). I first 

attempted to establish the topology of the tree using D-statistics of the form D(X, Y; Z, 

Yoruba), with X, Y and Z being a sample from the three modelled lineages: Sunghir and 

Kostenki for the “European” branch, Oase 1 and Oase 2 for inhabitants of Pestera cu Oase 

and Ust’Ishim separately, as it had no close relatives. Statistics were consistently non-

significant only when Oase 1 or Oase 2 is population Z (Figure 2.10, Supplementary Table 

A.4 and A.5), implying that samples from Pestera cu Oase are the outgroup out of the three 

Upper Palaeolithic lineages. However, the signal was not strong and these statistics can be 

influenced by the differing levels of Neanderthal ancestry in the three genomes. I thus 

estimated split times between the Upper Palaeolithic populations in all possible topologies, 

accounting for the Neanderthal ancestry by explicitly modelling it in G-PhoCS
32

. 
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Figure 2.9 General topology of the tree used in the demographic analysis. Arrows mark migration bands and all 

possible permutations of Upper Palaeolithic genomes were explored. 

 

Figure 2.10 D statistics exploring the relationship between different Upper Palaeolithic lineages. Oase 1 and 

Oase 2 were explored as representatives of the population inhabiting Pestera cu Oase, Kostenki and Sunghir of 

the branch related to modern-day Europeans and Ust’Ishim was considered individually. 
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I first only included pairs of the Upper Palaeolithic genomes in addition to the San and the 

Neanderthal, which resulted in very similar split times between Oase 2 and Ust’Ishim 

(median 52.34 kya), Sunghir and Ust’Ishim (50.43 kya) and Sunghir and Oase 2 (52.86 kya). 

For detailed results and confidence intervals, see Supplementary Table A.6-6 to. This is in 

line with the lack of a close connection between any pairs of these genomes from our SNP-

based analysis. I then estimated three-way split times, again investigating all three possible 

topologies, and obtained a near star-shaped split with median split times between the Upper 

Palaeolithic populations roughly 46-49kya for the first and 48-49 kya for the second level 

(range of medians; for full results and confidence intervals, see Supplementary Table A.6 to 

Supplementary Table A.11), depending on the topology (Figure 2.11). 

The estimated Neanderthal proportions from this analysis for Oase 2 (range of medians 

3.25%-3.70%), Ust’Ishim (1.59%-1.75%) and Sunghir (1.93%-2.13%) were lower than, but 

proportionally similar to the f4 estimates (Table 2.1), depending on the topology. There was 

also a clear difference in estimated ancestral population sizes for our samples:  the effective 

population size for Oase 2 (~2,300-4,300) was much lower than that of the San (~17,400-

25,300), slightly lower than Ust’Ishim (~5,100-15,700), similar to the Altai Neanderthal 

(~3,800-3,900) and larger than Sunghir (~1,100-1,600). This is in agreement with previous 

reports of very small population sizes for the Neanderthals
33

 and ancient hunter-gatherers 

from various regions (Western Europe
1,34,35

, the Caucasus
1
 or Siberia

31
) and the generally 

higher effective population sizes of African populations
32,36

; the order of the population sizes 

(smallest for Sunghir, followed by the Altai Neanderthal, Ust’Ishim and then Africans) is the 

same as that found by Sikora et al.
31. 
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Figure 2.11 Estimated split times between the three high-quality Upper Palaeolithic genomes in all three 

possible topologies. Tree depicts the median estimate and grey bars mark the 95% confidence interval. 

2.5 Conclusions 

We sequenced to high coverage the genome of Oase 2, a sample from the same location 

where an anatomically modern human with a recent Neanderthal ancestor (Oase 1) was 

found. Compared to Oase 1, Oase 2 features a lower Neanderthal proportion, which is still 

significantly higher than what would be expected based on its age and what is seen in other 

Upper Palaeolithic genomes. The two samples from the cave probably originate from closely 

related, but not identical groups. However, for a formal statistical test, we would need to 

control for portions of the genome that originate from Neanderthals, which will be possible 

by identifying such haplotypes and excluding them from our analysis. This section of our 

analysis is performed by our collaborators and is still on-going.  

Haplotype-based modelling implies a nearly simultaneous diversification event that led to 

various Upper Palaeolithic groups scattered across Eurasia. The timing of the event is in 

agreement with estimated exit times out of Africa roughly 50-60kya
32

 and the estimated 

population sizes show the expected pattern from an out of Africa bottleneck. The simultaneity 

of the split implies that diversification started right after the exit out of Africa, but not 

necessarily meaning that these populations were fully separated into disjoint lineages. The 

timing of the split is consistent with a single exit out of Africa leading to all samples studied, 
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but the reason why we do not see signs of an earlier exit in the form of an older split time, 

despite favourable climatic conditions, is not known. Competition with archaic hominins 

could have been a preventive factor, but the sparsity of ancient data does not yet allow for a 

formal test of such a hypothesis. 

Oase 2 did not leave its ancestry in modern populations, similarly to some samples of a 

similar age, such as Oase 1
15

, Ust’Ishim
16

 and multiple early Upper Palaeolithic European 

samples
14

, but unlike others that are related to modern populations from their respective 

regions (e.g. Tianyuan
28

, Kostenki
30

, Sunghir
31

 and numerous other European samples
14

). 

The varying affinities of early Eurasian populations show a restructuring of genetic diversity 

between the Upper Palaeolithic and present day, including several extinction events. 

Numerous factors could play a role in such changes, such as climate affecting areas 

differentially (e.g. harsh conditions in Europe and Siberia only leaving few survivors, but not 

in East Asia), or geographic connectivity affecting how easily different areas can be 

repopulated. Furthermore, I did not find any particular pattern of similarity between Upper 

Palaeolithic samples and modern Africans, which could be a sign of similar extinction events 

in Africa and/or successive admixture within the continent. There is a wide range of evidence 

for the latter, for example through the admixed ancestry of most modern African 

populations
22

. 

The lineages leading to modern populations could originate from the surviving groups all 

over Eurasia, but could also be a result of large-scale movements from refugia with 

favourable conditions, such as the Near East or southern parts of Asia. Although genetic data 

from the period directly following the exit out of Africa is sparse, given that many of the 

observed Upper Paleolithic samples did not leave considerable ancestry, it is reasonable to 

suppose that this disappearance of an observable genetic trace (through extinction and/or 

admixture) was not a rare, special event. Consequentially, the signatures of events we can 

infer based on their signature in modern genomes (e.g. genes obtained via introgression, 
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population bottlenecks) are probably only a subset of all such events and only give insight 

into the history of the fittest, or, more likely, the luckiest populations that contributed their 

genetic material to modern human diversity. 

2.6 Methods 

2.6.1 DNA extraction and library preparation 

All decontamination steps and laboratory procedures before PCR amplification were carried 

out in ancient DNA dedicated facilities at the University of Potsdam. All tools used in these 

stages were decontaminated with bleach, DNA-ExitusPlusTM and UV radiation.  

DNA was extracted from a fragment of petrous bone sampled in Bucharest (Romania) in 

2013. Before extraction, the bone fragment was exposed to UV radiation for 10 minutes on 

each side. Afterwards, the bone surface was physically removed using a dental drill attached 

to a dremel saw. A new drill was then used to remove all the porous parts until we got to the 

dense walls forming the inner ear channels. After cleaning, two fragments of compact bone, 

172 mg and 212 mg respectively, were obtained. Both fragments were ground to fine bone 

powder using mortars and pestles. 

Six DNA extracts were prepared from a starting amount of 50 mg of bone powder each (from 

now onwards we are referring to these extracts as: Oa1, Oa2, Oa3, Oa4, Oa5 and Oa6). We 

followed the DNA extraction protocol described in Dabney et al (2013)
37

, which is specially 

optimized to recover short DNA fragments (from 30-40 bp length). In extracts Oa1 and Oa5, 

the bone powder was not completely digested after overnight incubation with proteinase K 

(PK), thus we add new digestion buffer with PK and performed a secondary extraction (Oa1b 

and Oa5b). Finally, we obtained eight DNA extracts, each in 25 µl of elution buffer. 
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One single stranded library was built from each extract following the protocol described by 

Gansauge and Meyer (2013)
38

. This protocol includes UDG treatment before library building 

in order to reduce the presence of uracils in aDNA molecules. We applied these treatments to 

all our extracts with the exception of Oa2, in order to accurately measure the deamination 

patterns in Oase’s DNA molecules and thus support the authenticity of the sequences. 

The number of cycles for the amplification of each library was estimated based on qPCR. We 

used Accuprime Pfx (Invitrogen
TM

) for the amplification of the UDG treated libraries, while 

Oa2 was amplified using Accuprime SM (Invitrogen
TM

), which is able to read over uracils. A 

different index sequence was incorporated during this amplification of each library, in order 

to be able to pool them for sequencing. Finally, each library was amplified in four parallel 

reactions with 4 µl of template and 16 µl of master mix each. PCR amplification conditions 

were as specified by the manufacture. 

The amplified libraries were purified using a MinElute kit (Qiagen) and quantified using a 

2200 TapeStation (Agilent Technologies). The libraries were pooled in equimolar quantities 

and sequenced on an Illumina NextSeq500 platform in 75PE mode. The output from this run 

(around 20 to 50 million reads per library) was used to estimate the percentage of endogenous 

DNA in each library. After this test, libraries Oa4 and Oa2a were discarded from further 

sequencing because of high duplication levels in Oa4 and the presence of uracils in Oa2a. All 

the other libraries showed percentages of endogenous DNA higher than 20% and low 

clonality, and they were selected for high through-put sequencing.  

High throughput sequencing was carried out at TheragenEtex (Suwon, South Korea), using 

four whole flow cells of an Illumina HiSeq2500 platform. Two of the sequencing runs were 

set to 50 cycles in single end mode (50SE) and another two to 50 cycles in paired end mode 

(50PE). Libraries were selected for these runs based on their performance in the test 

NextSeq500 run, but also on the availability of enough library volume left to fill the 

flowcells.  
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2.6.2 Processing and mapping of NGS data 

After sequencing, the raw BCL files were converted to fastq format following the Illumina 

base-calling pipeline (Illumina Pipeline v1.4). Raw reads were assigned to the corresponding 

libraries based on the barcode sequences, no mismatches were allowed in the first base of the 

barcode and a single mismatch was allowed at any other position. The software SeqPrep 

(https://github.com/jstjohn/SeqPrep) was used to trim and merge the forward (R1) and 

reverse (R2) reads from pair end (PE) runs, while cutadapt-1.3
39

 was used to trim SE reads. 

In both cases, a minimum length of 25 bases was set as threshold after trimming. 

The trimmed and merged reads were aligned to the human reference genome (GRCh37 build) 

using the software Burrows-Wheeler Aligner (BWA) version 0.7.5a-r405
40

, with default 

parameters and seed option disabled (-l 1000). Prior to the alignment, the mitochondrial 

sequences in the GRCh37 reference were replaced by the Revised Cambridge Reference 

Sequence (NC_012920
26

). 

After mapping, clonal sequences were removed from the alignment using the 

MarkDuplicates.jar tool in picards-1.98 (http://broadinstitute.github.io/picard/). Also, reads 

were realigned around indels using the RealignerTargetCreator and IndelRealigner tools in 

GATK-3.0-0
41

. The resulting bam files were filtered for mapping quality of 30 using 

Samtools-0.1.19
40

. Finally, we used Mapdamage
42

 to downscale the quality score of bases at 

the end of the reads, in order to diminish possible errors when calling SNPs at likely damaged 

positions.  

The mapped reads from the downscaled alignments were merged in a single bam file using 

picards-1.98. This merged file was used to estimate the whole genome coverage, as well as 

for SNP calling and downstream analysis described below. 

http://broadinstitute.github.io/picard/
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2.6.3 Mitochondrial DNA 

The mitochondrial genome of Oase 2 was reconstructed from the NGS output of the first run 

on the HiSeq2500 (Supplementary Table A.2). Seven libraries (Oa1a, Oa1b, Oa2, Oa3, Oa4, 

Oa5a, Oa5b and Oa6) were sequenced in 50PE mode and the output reads were processed as 

described in the previous section, with the only difference that the Revised Cambridge 

Reference Sequence (rCRS, NC_012920
26

) was used at the mapping stage. 

Polymorphic positions with regards to the reference were called using the samtools-0.1.19 

mpileup function
40

. Mapping and base quality scores equal to or higher than 30 were required 

for the base calling. The identified polymorphic positions were directly checked by 

visualizing the mitochondrial alignment in Tablet
43

. Finally, the confirmed polymorphisms 

were uploaded to Haplogrep
44

, which bases the identification of the haplogroup on the 

updated mitochondrial phylogeny of PhyloTree (http://www.phylotree.org/). The resulting 

mitochondrial haplogroup was N, but in fact Oase 2 carried the ancestral allele at positions 

7801 and 9540 instead of the defining derived alleles. 

2.6.4 Authenticity of ancient DNA molecules 

Negative controls were included during the extraction and library building procedures, and 

sequenced together with the libraries in the NextSeq500 run (Supplementary Table A.1). The 

percentage of reads mapping to the reference in these blanks ranged from 0.2 to 2.3%. 

Also, we used MapDamage
42

 to assess the patterns of molecular damage in Oase 2’s libraries. 

Finally, the percentage of modern human contamination was estimated by measuring the 

frequency of non-consensus calls at haplogroup defining positions in Oase 2’s mitochondrial 

DNA (mtDNA) sequences.  

http://www.phylotree.org/
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2.6.5 SNP calling and merging with reference panel 

To compare our sample to modern and ancient human genetic variation, I called SNPs from 

the BAMfiles of Oase 2 and Sunghir using SAMtools 1.6
40

 and the hg19 reference FASTA 

file. I only called positions overlapping with the ~600k SNPs from the Human Origins 

panel
45

, also part of the 2.2M panel used in the study of Oase 1
15

 and the genetic history of 

Ice Age Europe
14

. Bases were required to have a minimum mapping quality of 30 and base 

quality of 20. The resulting SNP data was then merged using Plink1.9
46

 with the panels used 

in Fu et al. 2016
14

 , Lazaridis et al. 2017
47

 and Skoglund et al. 2017
22

, as well as with a 

version of the Tianyuan genome
28

 called on the same 2.2M SNP panel as in Fu et al. 2016
14

, 

kindly sent by the authors( 2423 individuals in total). SNPs were restricted to triallelic SNPs, 

which resulted in 587,247 SNPs (133,069 called in Oase 1). 

2.6.6 Calculating statistics 

2.6.6.1 D and outgroup f3 statistics 

D statistics
27

 and f3 statistics
48,49

 were used to formally assess the relationships between the 

samples using the qpDstat (D statistics) and qp3PopTest (f3 statistics) programs from the 

ADMIXTOOLS package
49

. Significance was assessed by these programs using a block 

jackknife over 5-centimorgan chunks of the genome, and statistics were considered 

significant if their Z score was of magnitude greater than 2, or, for admixture f3 scores, if they 

were smaller than −2. These correspond approximately to P values of 0.046 and 0.023, 

respectively. Outgroup f3 scores were filtered to include populations with at least 20,000 

SNPs overlapping; 10,000 SNPs when the low coverage Oase 1 was the focal sample. 

D statistics of the form D(X, Y; Z, Yoruba) were used first to formally assess the relationship 

between the three Upper Palaeolithic lineages that I later used in our demographic analysis: 
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Oase (Oase 1 or Oase 2), Ust’Ishim and Upper Palaeolithic Europeans (Kostenki14 or 

Sunghir). 

2.6.6.2 Estimating the proportion of Neanderthal ancestry 

f4 ratios were used to estimate the proportion of Neanderthal ancestry in our samples, 

following 
14

. I used the equation below: 

𝑄(𝑥) = 1 −
𝑓4(𝑊𝑒𝑠𝑡 𝑎𝑛𝑑 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠,𝐶ℎ𝑖𝑚𝑝;𝑋,𝐴𝑟𝑐ℎ𝑎𝑖𝑐)

𝑓4(𝑊𝑒𝑠𝑡 𝑎𝑛𝑑 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠,𝐶ℎ𝑖𝑚𝑝;𝐷𝑖𝑛𝑘𝑎 𝐴𝑟𝑐ℎ𝑎𝑖𝑐)
  

I computed allele frequencies by pooling data from each of the following sets of samples: 

 West and Central Africans: a pool of 9 samples from the Mbuti, Yoruba and Mende 

populations (S_Mbuti-1, S_Mbuti-2, S_Mbuti-3, B_Mbuti-4, S_Yoruba-1, S_Yoruba-

2, S_Yoruba-3, S_Mende-1, S_Mende-2) 

 Dinka: a pool of 3 samples (S_Dinka-1, S_Dinka-2, B_Dinka-3) 

 Archaic: a pool of 2 samples (Altai Neanderthal and the Siberian Denisova) 

This data was acquired from the Simons Genome Diversity Project (SGDP, 

https://www.simonsfoundation.org/simons-genome-diversity-project/)
9
. I downloaded v3 of 

the compressed SGDP-lite version and used Ctools to query the samples in question. I then 

merged these samples with Oase 2, Sunghir and ancient genomes used in 
14

, subsetting to the 

~2.2 million SNPs used in 
14

 to stay directly comparable to those estimates. I finally merged 

the resulting proportions with those calculated using the same method from Fu et al. 2016
14

. 

For Oase 1, estimates using multiple methods and either using all SNPs or only transversions, 

were available from the original publication
15

. However, I decided to use the values 

recalculated in Fu et al. 2015
14

 to be consistent in the method of estimating Neanderthal 

ancestry proportions. 

https://www.simonsfoundation.org/simons-genome-diversity-project/
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2.6.7 G-PhoCS analysis for Oase 

I used G-PhoCS 1.2.3
50

 to reconstruct the joint demographic history of high-coverage Upper 

Palaeolithic samples from Europe. In addition to the three available high-coverage samples 

(Oase 2, Ust’Ishim and Sunghir), I also included the Altai Neanderthal
33

 for information on 

Neanderthal admixture and a modern African as a reference sample largely free from the 

Neanderthal admixture
51

. I chose to use a high-quality San genome from the same publication 

as the Altai Neanderthal
33 

(HGDP01037 from Panel B). This analysis estimates split times, 

population sizes and migration rates on a tree with a given topology, given sequence data 

from short, homologous windows from (some) samples at the leaves of the tree. 

2.6.7.1 Topology of the tree 

G-PhoCS represents the demographic history of a collection of samples by a binary tree in 

which each branch is a population, with each sample belonging to a different leaf branch and 

interior branches corresponding to (unsampled) ancestral populations. In addition, the 

sampling time of leaves and unidirectional migration bands between any two branches can be 

defined. I based the topology of our tree (Figure 2.9) on the literature and our previous 

analysis, the former showing that Neanderthals are an outgroup to anatomically modern 

humans and the San Pygmies are an outgroup to Eurasians. In order to establish the 

relationship between our three Upper Palaeolithic genomes, I first tried topologies with each 

pair of them, before running the final tree with all three genomes. 

I set the sample ages to zero for the modern San Pygmy, to the age estimated using G-PhoCS 

for the Altai Neanderthal
50

 and to the mean estimates from the radiocarbon dating of 

Sunghir
31

and Ust’Ishim
16

 (Table 2.2). The radiocarbon dating for Oase 2 failed and since the 

human remains in Pestera cu Oase are a palaeo-surface find, stratigraphic dating is also not 

possible
19

. However, the morphological similarities point to contemporaneity between Oase 1 
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and Oase 2, so I decided to take the radiocarbon date for Oase 1 (~37.8 kya) as the estimated 

age of Oase 2. 

Table 2.2 Sample ages used in the G-PhoCS analysis. 

Sample Age [years] 

Altai Neanderthal 90,000 

San Pygmy 0 

Sunghir 32,000 

Oase 2 37,800 

Ust’Ishim 45,000 

 

I only had migration bands from the Neanderthal to the Upper Palaeolithic tips of the tree, to 

estimate the proportion of their ancestry originating from Neanderthals. Migration to modern 

Africans was not allowed, as they are not thought to have a considerable Neanderthal 

component: the size of such a component was estimated to be only up to 0.7% using an 

ancient African reference
51

 and the 95% confidence interval of the estimated migration rates 

overlapped with zero in a previous analysis using G-PhoCS
50

. 

2.6.7.2 Genome-wide windows of high sample coverage for 

demographic analysis 

For each of our high-coverage samples, high-coverage, 1kb long windows were extracted. To 

find a good set of windows, I first generated all-sites coverage information for all 

chromosomes. I excluded problematic regions in the genome considered as: regions with 

poor alignment quality, recombination hotspots, regions of poor mapping quality, 

duplications, regions under selection (genes and conserved elements), repetitive regions and 
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positions with systematic sequencing errors, using the following filters from Kuhlwilm et al. 

2016
50

, sent kindly by Ilan Gronau: 

 filter_hotspot1000g: Recombination hotspots 

 filter_Map20: Sites with poor mapping quality 

 filter_rmsk20: Recent duplications 

 filter_segDups: Recent segmental duplications 

 filter_selection_10000_100: Gene exons together with the 1 kbp flanking regions in 

each direction and conserved non-coding sequences corresponding to PhastCons 

elements 

 filter_simpleRepeat: Simple repeats 

 filter_SysErrHCB and filter_SysErr: Positions with systematic sequencing errors 

For more details, see Supplementary SI 8 in Kuhlwilm et al. 2016
50

. 

 I then extracted the depth information using a custom code written in C, again filtering for 

sites with read depth between 10 and twice the average coverage of the sample:.  

samtools-0.1.19 mpileup -C50 -uRID -f $FASTA  -r chr$CHR -l Beds/chr${CHR}.bed 

$FILES $DINKA_DIR/chr$CHR.dedup.realign.recal.bam 

$SAN_DIR/chr$CHR.dedup.realign.recal.bam $ALTAI_NEA.$CHR.dq.chr.bam 

2>Genotypes/log.geno.chr$CHR.txt | bcftools-0.1.19 view -gc - 

2>>Genotypes/log.geno.chr$CHR.txt | ./get_genotypes dpMin=10 maxDpProp=2.0 

1>Genotypes/geno.chr$CHR.txt 2>>Genotypes/log.geno.chr$CHR.txt 

Sites with very low and very high coverage were avoided because alignment and genotyping 

can be problematic
52

 – for example, heterozygous calls are unreliable if coverage is too low, 

whereas a coverage unusually high given the average sample coverage can signal repetitive 

regions and spurious alignment. 
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I then scanned each chromosome for good windows, using a simple heuristic to maximise the 

sample coverage. I start by finding the first 1kb window with at least 80% coverage. I then 

search locally for a window within the next 10 kb for the 1kb window with the highest 

coverage. Finally, I jump 5 kb forward from the chosen location and repeat the process until I 

reach the end of the chromosome. For the whole genome, this yielded a total of 45759 

windows. I then used SAMtools/BCFtools 0.1.19 
40

(using flags as above) and custom 

programs written in C and MATLAB to extract genotypes or the windows and converted the 

genotypes into FASTA files for G-PhoCS. To deal with DNA damage in ancient samples, I 

“in vitro” deaminated all our sequences, as already done for previous analyses of aDNA
27

. 

2.6.7.3 G-PhoCS setup 

Gamma distributed priors were used for all observables. The shape parameter was set to an 

intermediate value of 1 for both population sizes and split times, to obtain a mean to standard 

deviation ratio of unity and allow sufficient exploration of the parameter space without an 

overly long convergence time. The rate parameter was set to result in means in the correct 

range, based on previous knowledge on population sizes of hunter-gatherers and the split 

times between Neanderthals and modern humans, Africans and non-Africans and within 

Eurasia. I also ran initial exploratory runs with a variety of starting values, using a single 

MCMC chain with 200,000 iterations, out of which, the first 100,000 were discarded as burn-

in. Furthermore, it was shown that the initial value for MCMC chains in G-PhoCS hardly 

affects the resulting means, it only slows down convergence
32

. The rate parameters used are 

shown in Table 2.3. 
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Table 2.3 Rate parameters used in the priors for the G-PhoCS analysis. 

Parameter Rate parameter Mean 

N (for all populations) 10,000 6,667 individuals 

tUP1-UP2 100,000 66,667 years 

tUP1-UP2-UP3 80,000 82,500 years 

tUP -San 33,333 200,000 years 

tUP-San-Neanderthal 11,111 600,000 years 

 

For all our migration bands, I used a weak prior with a shape parameter of 0.002 and a mean 

of 200 to allow exploration of the whole space, as in previous publications
32,50

. 

I used G-PhoCS’s automatic feature to set step sizes (finetune parameters) of the Markov 

chain for each parameter, which aims for intermediate acceptance ratios. During this 

procedure, the first 10,000 steps were used to find appropriate step sizes, by updating 

parameters every 100 MCMC steps and performing 100 updates. After step sizes were set, 

250,000 MCMC steps were performed and the first 100,000 steps were discarded as burn-in. 

After observing traces of observables, I found that our demographic parameters of interest 

converged well before the end of the burn-in period (Supplementary Figure A.11 to 

Supplementary Figure A.17). I ran two independent chains for each setting to assess 

appropriate mixing of the chain, and observed no problems. 

2.6.7.4 Converting dates 

G-PhoCS reports mutation-scaled split times, which I converted back into calendar years 

based on the mutation rate calibrated on aDNA from the high quality Ust’Ishim
16

 individual 

(0.5e-9 per site per year), which is also in line with estimates from high quality modern 
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genomes
53

. I converted this mutation rate for our in vitro deaminated sequences by 

multiplying it with a factor of 0.3, based on the ratio of average levels of polymorphism 

before and after deamination on our modern genomes. 
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Chapter 3 Upper Palaeolithic genomes reveal deep 

roots of modern Eurasians 

3.1 Abstract 

We extend the scope of European palaeogenomics by sequencing the genomes of Late 

Upper Palaeolithic (13,300-year-old, 1.4-fold coverage) and Mesolithic (9,700-year-old, 

15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic 

(13,700-year-old, 9.5-fold) male from Switzerland.  While we detect genomic continuity 

from the Late Palaeolithic to the Mesolithic in both regions, we find that Caucasus 

hunter-gatherers (CHG) belong to a distinct ancient clade that split from western 

hunter-gatherers ~45 kya, shortly after the expansion of anatomically modern humans 

into Europe and from Neolithic farmers ~25 kya, around the Last Glacial Maximum. 

Relatives of the CHG genomes significantly contributed to the Yamnaya steppe herders 

who migrated into Europe ~3,000 BC, supporting a formative Caucasus influence on 

this important Early Bronze age culture. CHG-related populations also left their 

imprint on modern populations from the Caucasus and also central and south Asia, 

possibly marking the arrival of Indo-Aryan languages.  
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3.2 Contribution 

This study was published as part of Jones et al., 2016
1
. I was responsible for performing the 

model-based clustering analysis and the coalescent-based modelling using the softwares 

ADMIXTURE and G-PhoCS, respectively. 

3.3 Introduction 

Ancient genomes from Eurasia have revealed three ancestral populations that contributed to 

contemporary Europeans in varying degrees
2
. Mesolithic individuals, sampled from Spain all 

the way to Hungary
2–4

, belong to a relatively homogenous group, termed western hunter-

gatherers (WHG). The expansion of early farmers (EF) out of South-West Asia during the 

Neolithic transition led to major changes in the European gene pool, with almost complete 

replacement in the south and increased mixing with local WHG further north and west
2–6

. 

Finally, a later wave represented by the Early Bronze Age Yamnaya from the Pontic steppe, 

carrying partial ancestry from ancient north Eurasians (ANE) and from a second, 

undetermined source, arrived from the east, profoundly changing populations and leaving a 

cline of admixture in Eastern and Central Europe
2,4,7

. This view, which was initially based on 

a handful of genomes, was recently confirmed by extensive surveys of Eurasian samples from 

the Holocene
6,8

.  

Since the publication that forms the basis of this chapter, additional data from the Near East 

and South-West Asia has become available, which expanded our views on the spread of 

farming in Western Eurasia. First, ancient genomes from the European and Asian sides of the 

Aegan uncovered a line of ancestry stretching from the Near East to early farmers from 

Europe
9
. Then, Early Neolithic genomes from Iran revealed an eastern group of farmers that 

was genetically different from their early European counterparts and was related more 

(although not directly descendant) to the samples from the Caucasus presented here
10,11

. 
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Finally, data from the southern Caucasus (Armenia), northwestern Anatolia (Turkey), Iran, 

and the southern Levant (Israel and Jordan) including hunter-gatherers, early farmers and 

samples from later ages
12

 confirmed that the first farmers were highly differentiated and 

related to local hunter-gatherers. This study also validated the link between early farmers 

from northwestern Anatolia and Europe and showed that relatives of Iranian farmers 

expanded north, towards the Eurasian steppe and contributed to the steppe herders. Together, 

these studies showed that pre-agricultural populations in the Near East were highly 

structured, and that the earliest farmers were related to local hunter-gatherers, thus preserving 

this structure. These distinct ancestries were then spread by the expansion of early farmers, 

but then mixed again through subsequent migrations, such as those during the Bronze Age. I 

will reflect on these results and on how they relate to the presented body of work in the 

discussion of this chapter. 

In this study, we extended our view of the genetic makeup of early Europeans by both 

looking further back in time and sampling from the crossroads between the European and 

Asian continents. We sequenced a Late Upper Palaeolithic (‘Satsurblia’ from Satsurblia cave, 

13,300-year-old, 1.4-fold coverage) and a Mesolithic genome (‘Kotias’ from Kotias Klde 

cave, 9,700-year-old, 15.4-fold) from western Georgia, at the very eastern boundary of 

Europe. We term these two individuals Caucasus hunter-gatherers (CHG). To extend our 

overview of WHG to a time depth similar to the one available for our samples from the 

Caucasus, we also sequenced a western European Late Upper Palaeolithic genome, ‘Bichon’ 

(13,700-year-old, 9.5-fold) from Grotte du Bichon, Switzerland. These new genomes, 

together with already published data, provide us with a much-improved geographic and 

temporal coverage of genetic diversity across Europe after the Last Glacial Maximum 

(LGM)
13

. We show that CHG belong to a new, distinct ancient clade that split from WHG 

~45kya and from Neolithic farmers ~25kya. In our panel, this clade represents the best 

surrogate for the previously undetermined source of ancestry to the Yamnaya, and its 

relatives contributed to modern populations from the Caucasus all the way to Central Asia. 
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3.4 Results 

3.4.1 Samples, sequencing and authenticity  

Recent excavations of Satsurblia cave in western Georgia yielded a human right temporal 

bone, dated to the Late Upper Palaeolithic 13,132-13,380 cal. BP.  Following the approach of 

Gamba et al.
4
, extractions from the dense part of the petrous bone yielded sequencing 

libraries comprising 13.8% alignable human sequence which were used to generate 1.4-fold 

genome coverage. A molar tooth sampled from a later Mesolithic (9,529-9,895 cal. BP) 

burial in Kotias Klde, a rock shelter also in western Georgia showed excellent preservation, 

with endogenous human DNA content of 76.9%.  This was sequenced to 15.4-fold genome 

coverage.  Grotte du Bichon is a cave situated in the Swiss Jura Mountains where a skeleton 

of a young male of Cro-magnon type was found and dated to the late Upper Palaeolithic 

13,560- 13,770 cal. BP.  A petrous bone sample extraction from this also gave excellent 

endogenous content at 71.5% and was sequenced to 9.5-fold coverage. The sequence data 

from each genome showed sequence length and nucleotide misincorporation patterns which 

were indicative of post-mortem damage and contamination estimates, based on X 

chromosome and mitochondrial DNA tests (see methods), were less than 1%; comparable to 

those found in other ancient genomes 
3,4,13

.  

3.4.2 Continuity across the Palaeolithic-Mesolithic boundary 

Kotias and Satsurblia, the two Caucasus hunter gatherer genomes (CHG), are genetically 

different from all other early Holocene (i.e. Mesolithic and Neolithic) ancient genomes
2–7,13–

15
, while Bichon is similar to other younger WHG. The distinctness of CHG can be clearly 

seen on a principal component analysis (PCA) plot
16

 where ancient samples were projected 

on contemporary Eurasian populations
2
. CHG genomes fall between modern Caucasian and 

South-Central Asian populations in a region of the graph separated from both other hunter 

gatherer and early farmer samples (Figure 3.1A). Clustering using ADMIXTURE software
17
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confirms this pattern, with CHG forming their own homogenous cluster (Figure 3.1B). The 

close genetic proximity between Satsurblia and Kotias is also formally supported by D-

statistics
18 

, indicating the two CHG genomes form a clade to the exclusion of other pre-

Bronze Age ancient genomes (Supplementary Table B.3), suggesting continuity across the 

Late Upper Palaeolithic and Mesolithic periods. This result is mirrored in western Europe as 

Bichon: i) is close to other WHG on the first two dimensions in the PCA space (Figure 3.1A) 

and outgroup f3 analysis (Supplementary Figure B.1), ii) belongs to the same cluster as other 

WHG in ADMIXTURE analysis (Figure 3.1B) and iii) forms a clade with other WHG to the 

exclusion of other ancient genomes based on D-statistics (Supplementary Table B.4). Thus, 

these new data indicate genomic persistence between the Late Upper Palaeolithic and 

Mesolithic both within western Europe and, separately, within the Caucasus. 
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Figure 3.1 Genetic structure of ancient Europe.  A. Principal component analysis.  Ancient data from Bichon, 

Kotias and Satsurblia genomes were projected
11

 onto the first two principal components defined by selected 

Eurasians from the Human Origins dataset
1
. The percentage of variance explained by each component 

accompanies the titles of the axes. For context we included data from published Eurasian ancient genomes 

sampled from the Late Pleistocene and Holocene where at least 200,000 SNPs were called
1–7,9

 (Supplementary 

Table B.1). Among ancients, the early farmer and western hunter-gatherer (including Bichon) clusters are 

clearly identifiable, and the influence of ancient north Eurasians is discernible in the separation of eastern 

hunter-gatherers and the Upper Palaeolithic Siberian sample MA1. The two Caucasus hunter-gatherers occupy a 

distinct region of the plot suggesting a Eurasian lineage distinct from previously described ancestral 

components. The Yamnaya are located in an intermediate position between CHG and EHG. B. ADMIXTURE 

ancestry components
12

 for ancient genomes (K=17) showing a CHG component (Kotias, Satsurblia) which also 

segregates in the Yamnaya and later European populations. 

  

https://paperpile.com/c/ojeZP2/27DyZ
https://paperpile.com/c/ojeZP2/BwBz
https://paperpile.com/c/ojeZP2/BwBz+I1Tv+Mpso+TDbf+NwsdM+SrUw+B87WK+Jldfl
https://paperpile.com/c/ojeZP2/hHYQJ
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3.4.3 Deep coalescence of early Holocene lineages 

The geographical proximity of the southern Caucasus to the Levant begs the question of 

whether CHG might be related to early Neolithic farmers with Near Eastern heritage. To 

formally address this question, we reconstructed the relationship among WHG, CHG and EF 

using available high quality ancient genomes
2–4

. Outgroup f3-statistics
19

 were used to 

compare the three possible topologies, with the correct relationship being characterised by the 

largest amount of shared drift between the two groups that form a clade with respect to the 

outgroup (Figure 3.2A; Supplementary Table B.5). A scenario in which the population 

ancestral to both CHG and EF split from WHG receives the highest support, implying that 

CHG and EF form a clade with respect to WHG. A scenario in which CHG and WHG form a 

distinct clade with respect to EF can be rejected. The known admixture of WHG with EF
2,4–6

 

(WHG component in our EF samples) implies that some shared drift is found between WHG 

and EF with respect to CHG, but this is much smaller than the shared drift between CHG and 

EF. Thus, WHG split first, with CHG and EF separating only at a later stage. 

I next dated the splits among WHG, CHG and EF using a coalescent model implemented in 

G-PhoCS
20

, based on the high coverage genomes in our dataset (Figure 3.2B for a model 

using the German farmer Stuttgart
2
 to represent EF; Supplementary Table B.6 for models 

using the Hungarian farmer NE1
4
) and taking advantage of the mutation rate recently derived 

from Ust’-Ishim
15

. G-PhoCS dates the split between WHG and the population ancestral to 

CHG and EF at ~40-50 kya (range of best estimates depending on which genomes are used; 

see Supplementary Table B.6 for details), implying that they diverged early on during the 

colonisation of Europe
21

, and well before the LGM. On the WHG branch, the split between 

Bichon and Loschbour
2
 is dated to ~16-18 kya (just older than the age of Bichon), implying 

continuity in western Europe, which supports the conclusions from our previous analyses. 

The split between CHG and EF is dated at ~20-30 kya, emerging from a common basal 

Eurasian lineage
2
 (Supplementary Figure B.2) and suggesting a possible link with the LGM, 

although the broad confidence intervals require some caution with this interpretation. Overall, 
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the sharp genomic distinctions between these post-LGM populations contrasts with the 

comparative lack of differentiation between the earlier Eurasian genomes, e.g. as visualised 

in the ADMIXTURE analysis (Figure 3.1A), and it seems likely that this structure could have 

emerged as a result of ice age habitat restriction. WHG and CHG also carry different markers 

with known links to their phenotypes. For example, like EF, but in contrast to WHG, CHG 

carry a variant of the SLC24A5 gene
22

 associated with light skin pigmentation (rs1426654, 

see Supplementary Information). This trait, which is believed to have risen to high frequency 

during the Neolithic expansion
23

, may thus have a relatively long history in Eurasia, with its 

origin probably predating the LGM, if the variant in EF and CHG has a common origin. 
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Figure 3.2 The relationship between Caucasus hunter-gatherers, western hunter-gatherers and early farmers. A. 

Alternative phylogenies relating western hunter-gatherers (WHG), Caucasus hunter-gatherers (CHG), and early 

farmers (EF, highlighted in orange), with the appropriate outgroup f3-statistics. B. The best supported 

relationship among CHG (Kotias), WHG (Bichon, Loschbour), and EF (Stuttgart), with split times estimates 

using G-Phocs
20

. Oxygen 18 values (per mile) from the NGRIP core provide the climatic context; the grey box 

shows the extent of the Last Glacial Maximum (LGM). 
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We also investigated the relationship between a partial genome from a 24,000 year old 

individual (MA1) from Mal’ta, Siberia
7
 and CHG. MA1 had been shown to be divergent 

from other ancient samples and to have more shared alleles with nearly all modern Europeans 

than with an EF genome by Lazaridis et al.
2
.  This allowed inference of an ancient north 

Eurasian (ANE) component in European ancestry, which was subsequently shown to have an 

influence in later eastern hunter gatherers and to have spread into Europe via incoming 

Steppe herders beginning ~4,500 years ago
6,8

.  Several analyses indicate that CHG genomes 

are not a subset of this ANE lineage.  First, MA1 and CHG fall in distinct regions of the PCA 

plot and also have very different profiles in the ADMIXTURE analysis (Figure 3.1).  Second, 

when we test if CHG shows any evidence of excess allele sharing with MA1 or with EHG  

relative to western hunter gatherers using tests of the form  D(Yoruba, CHG; MA1, WHG), 

no combinations were significantly positive (Supplementary Table B.7).  Although such a test 

loses power when the number of overlapping SNPs is low, in this case, we had a high number 

of markers for the comparison (over 200,000 for MA1 and over 100,000 for EHG). Last, we 

also tested whether the ancestral component inferred in modern Europeans from MA1 was 

distinct from any that may have been donated from CHG using tests of the form  D(Yoruba, 

MA1; CHG, modern north European population) (Supplementary Table B.8).  All northern 

Europeans showed a significant amount of shared alleles with MA1 separate to any they 

shared with CHG. 

We have shown that WHG and CHG are the descendants of two ancient populations that 

appear to have persisted in Europe since the mid Upper Palaeolithic and survived the LGM 

separately. We looked at runs of homozygosity (ROH: Figure 3.3) which inform on past 

population size or inbreeding
4,24,25

. Both WHG and CHG have a high frequency of ROH and 

in particular, the older CHG, Satsurblia, shows signs of recent consanguinity, with a high 

frequency of longer (>4Mb) ROH. In contrast, EF are characterised by lower frequency of 

ROH of all sizes, suggesting a less constricted population history with larger population sizes 

and/or less inbreeding
25,26

, perhaps associated with a more benign passage through the LGM 

than the more northern populations. 
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Figure 3.3 Distribution of ROH. A. The total length of short ROH (<1.6Mb) plotted against the total length of 

long ROH (≥1.6 Mb) and B. mean total ROH length for a range of length categories. ROH were calculated 

using a panel of 199,868 autosomal SNPs. For Kotias we analysed both high-coverage genotypes and genotypes 

imputed from down-sampled data (marked in italics; see Supplementary Information). Diploid genotypes 

imputed from low-coverage variant calls were used for Satsurblia and high coverage genotypes were used for all 

other samples. A clear distinction is visible between both WHG and CHG who display an excess of shorter 

ROH, akin to modern Oceanic and Onge populations, and EF who resemble other populations with sustained 

larger ancestral population sizes. 
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3.4.4 Caucasus hunter-gatherer contribution to subsequent 

populations 

We next explored the extent to which Bichon and CHG contributed to contemporary 

populations using outgroup f3(African; modern, ancient) statistics, which measure the shared 

genetic history between an ancient genome and a modern population since they diverged 

from an African outgroup. Bichon, like younger WHG, shows strongest affinity to northern 

Europeans (Supplementary Figure B.3), whilst contemporary southern Caucasus populations 

are the closest to CHG (Figure 3.4A & Supplementary Figure B.3), thus implying a degree of 

continuity in both regions stretching back at least 13,000 years to the late Upper Palaeolithic. 

Continuity in the Caucasus is also supported by the mitochondrial and Y-chromosomal 

haplogroups of Kotias (H13c and J2a respectively) and Satsurblia (K3 and J), which are all 

found at high frequencies in Georgia today
27–29

 (see Supplementary Information for further 

details). 

EF share greater genetic affinity to populations from southern Europe than to those from 

northern Europe with an inverted pattern for WHG
2–6

. Surprisingly, we find that CHG 

influence is stronger in northern than southern Europe (Figure 3.4A & Supplementary Figure 

B.3) despite the closer relationship between CHG and EF compared to WHG, suggesting an 

increase of CHG ancestry in western Europeans subsequent to the early Neolithic period.  We 

investigated this further using D-statistics of the form D(Yoruba, Kotias; EF, modern western 

European population), which confirmed a significant introgression from CHG into modern 

northern European genomes after the early Neolithic period (Supplementary Figure B.4).  
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Figure 3.4 The relationship of Caucasus hunter-gatherers to modern populations. A. Genomic affinity of modern 

populations
2
 to Kotias, quantified by the outgroup f3-statistics of the form  f3(Kotias, modern population; 

Yoruba). Kotias shares the most genetic drift with populations from the Caucasus with high values also found 

for northern Europe and central Asia. B.  Sources of admixture into modern populations: semicircles indicate 

those that provide the most negative outgroup f3 statistic for that population. Populations for which a 

significantly negative statistic could not be determined are marked in white. Populations for which the ancient 

Caucasus genomes are best ancestral approximations include those of the southern Caucasus and interestingly, 

south and central Asia. Western Europe tends to be a mix of early farmers and western/eastern hunter-gatherers 

while Middle Eastern genomes are described as a mix of early farmers and Africans. 
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3.4.5 CHG origins of migrating Early Bronze Age herders 

We investigated the temporal stratigraphy of CHG influence by comparing these data to 

previously published ancient genomes. We find that CHG, or a population close to them, 

contributed to the genetic make-up of individuals from the Yamnaya culture, which have 

been implicated as vectors for the profound influx of Pontic steppe ancestry that spread 

westwards into Europe and east into central Asia with metallurgy, horse-riding and possibly 

Indo-European languages in the third millenium BC
6,8

. CHG ancestry in these groups is 

supported by ADMIXTURE analysis (Figure 3.1B) and admixture f3-statistics
19,30

 (Figure 

3.5), which best describe the Yamnaya as a mix of CHG and Eastern European hunter-

gatherers.  

The Yamnaya were semi-nomadic pastoralists, mainly dependent on stock-keeping but with 

some evidence for agriculture, including incorporation of a plow into one burial
31

.  As such, 

it is interesting that they lack an ancestral component of the EF genome (Figure 3.1B), which 

permeates through western European Neolithic and subsequent agricultural populations. 

During the Early Bronze Age, the Caucasus was in communication with the steppe, 

particularly via the Maikop culture
32

, which emerged in the first half of the fourth millennium 

BC. The Maikop culture predated and, possibly with earlier southern influences, contributed 

to the formation of the adjacent Yamnaya culture that emerged further to the north and may 

be a candidate for the transmission of CHG ancestry. In the ADMIXTURE analysis of later 

ancient genomes (Figure 3.1B) the Caucasus component gives a marker for the extension of 

Yamnaya admixture, with substantial contribution to both western and eastern Bronze Age 

samples. However, this is not completely coincident with metallurgy; Copper Age genomes 

from Northern Italy and Hungary show no contribution and neither does the earlier of two 

Hungarian Bronze Age individuals. 
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Figure 3.5 Lowest admixture f3-statistics of the form f3 (X, Y; Yamnaya). These statistics represent the Yamnaya 

as a mix of two populations with a more negative result signifying the more likely admixture event. A. All 

negative statistics found for the test f3(X, Y; Yamnaya) with the most negative result f3(CHG, EHG; Yamnaya) 

highlighted in purple. Lines bisecting the points show the standard error. B. The most significantly negative 

statistics which are highlighted by the yellow box in A. Greatest support is found for Yamnaya being a mix of 

Caucasus hunter gatherers (CHG) and Russian hunter gatherers who belong to the eastern extension of the 

WHG clade (EHG). 
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3.4.6 Modern impact of CHG ancestry 

In modern populations, the impact of CHG also stretches beyond Europe to the east. Central 

and south Asian populations received genetic input from CHG (or a population close to 

them), as indicated by a prominent CHG component in ADMIXTURE (Supplementary 

Figure B.5) and admixture f3-statistics, which represent many samples as a mix of CHG and 

another south Asian population (Figure 3.4B; Supplementary Table B.10). It has been 

proposed that modern Indians are a mixture of two ancestral components, an Ancestral North 

Indian (ANI) component related to modern west Eurasians and an Ancestral South Indian 

component related more distantly to the Onge
30

. Kotias provides the majority best surrogate 

for the former
33,34

 (Supplementary Table B.11): it has the highest D(Yoruba,ANI; Onge, 

Indian population) score for 5 out of the 9 Indian populations in our panel. However, samples 

from the Afanasievo culture, relatives of the Early Bronze Age Yamnaya, are also a good 

proxy: they score highest for 3 populations, with Z scores higher than that for Kotias. A third 

population, the South Indian Mala is the best ANI proxy for the Kharia, but the Kharia tends 

to differ from other Indian populations on genetic analysis (e.g. ADMIXTURE). It is 

estimated that this admixture in the ancestors of Indian populations occurred relatively 

recently, 1,900-4,200 years BP, and is possibly linked with migrations introducing Indo-

European languages and Vedic religion to the region
33

.  

3.5 Conclusions 

Given their geographic origin, it seems likely that CHG and EF are the descendants of early 

colonists from Africa who stopped south of the Caucasus, in an area stretching south to the 

Levant and possibly east towards central and south Asia. WHG, on the other hand, are likely 

the descendants of a wave that expanded further into Europe.  The separation of these 

populations is one that stretches back before the Holocene as indicated by local continuity 

through the Late Palaeolithic/Mesolithic boundary and deep coalescence estimates which date 
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to around the LGM and earlier. Several analyses indicate that CHG are distinct from another 

inferred minority ancestor, ANE, making them a divergent fourth strand of Eurasian ancestry 

that expands the model of human colonisation of Europe. 

The separation between CHG and both EF and WHG ended during the Early Bronze Age 

when a major ancestral component linked to CHG was carried west by migrating herders 

from the Eurasian Steppe. The foundation group for this seismic change was the Yamnaya, 

who we estimate to owe half of their ancestry to CHG-linked sources. These sources may be 

linked to the Maikop culture, which predated the Yamnaya and was located further south, 

closer to the Southern Caucasus. Through the Yamanya, the CHG-related ancestral strand 

contributed to most modern European populations, especially in the northern part of the 

continent. The link we found between CHG and the Yamnaya also agrees with Broushaki et 

al.
10

 and Lazaridis et al.
12

, where the the Yamnaya is modelled as a mixture of two sources, 

one of which is related to EHG and the other to a population from the western Near East. 

Although Broushaki et al. 
10

 found that the CHG was a better proxy than early Iranian 

farmers for this second component, additional, younger Iranian samples from the 

Chalcolithic, published by Lazaridis et al. 
12

 were an even better surrogate than the CHG. 

Finally, we found that CHG-related ancestry was also carried east to become a major 

contributor to the Ancestral North Indian component found in the Indian subcontinent. The 

additional genomes from the Near East also failed to pinpoint the direct source of the ANI 

component, but found that it was related to both Iranian farmers and to populations from the 

Eurasian steppe
10,12

. Given that these two populations are both also related to the CHG, the 

similarity we found between CHG and ANI was not surprising. Exactly when the eastwards 

movement related to the ANI component occurred is unknown, but it likely included 

migration around the same time as their contribution to the western European gene pool and 

may be linked with the spread of Indo-European languages. However, earlier movements 

associated with other advancements, such as cereal farming and herding, are also plausible. 
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The discovery of CHG as a fourth ancestral component of the European gene pool 

underscores the importance of a dense geographical sampling of human palaeogenomes, 

especially among diverse geographical regions. Its separation from other European ancestral 

strands ended dramatically with the extensive population, linguistic and technological 

upheavals of the Early Bronze Age resulting in a wide impact of this ancestral strand on 

contemporary populations, stretching from the Atlantic to Central and South Asia. 

3.6 Methods  

3.6.1 Sample preparation and DNA sequencing 

DNA was extracted from three samples: two from Georgia (Kotias and Satsurblia) and one 

from Switzerland (Bichon; Supplementary Figure B.6). Sample preparation, DNA extraction 

and library construction were carried out in dedicated ancient DNA facilities at Trinity 

College Dublin (Kotias and Satsurblia) and at the University of York, England (Bichon). 

DNA was extracted from Kotias and Satsurblia following a silica column based protocol
3
 

based on Yang et al.
35

 and libraries were prepared and amplified with AccuPrime
TM 

Pfx 

Supermix (Life Technology), using a modified version of 
36

 as outlined in 
3
. For the ancient 

Swiss sample Bichon, DNA was extracted following 
37

 and libraries were built as described 

above with the exception that enzymatic end-repair was arrested using heat inactivation rather 

than a silica-column purification step
38,39

. Libraries were first screened to assess their human 

DNA content on an Illumina MiSeq platform at TrinSeq, Dublin using 50 base pair (bp) 

single-end sequencing (Supplementary Table B.12). Selected libraries were further sequenced 

on a HiSeq 2000 platform using 100 bp single-end sequencing (Supplementary Table B.13). 

3.6.2 Sequence processing and alignment 

To reduce the effects of post-indexing contamination, raw reads were retained if the 

Hamming distance for the observed index was within 1 base of the expected index. Adapter 

https://paperpile.com/c/ojeZP2/Mpso
https://paperpile.com/c/ojeZP2/Mpso
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sequences were trimmed from the 3’ ends of reads using cutadapt version 1.3
40

, requiring an 

overlap of 1 bp between the adapter and the read. As ancient DNA damage is more apparent 

at the ends of sequences
41,42

, the first and last two base pairs of all reads from the deep 

sequencing phase of analysis (Supplementary Table B.13) were removed using SeqTK 

(https://github.com/lh3/seqtk). A minimum read length of 30 bp was also imposed.       

Sequences were aligned using Burrows-Wheeler Aligner (BWA) version 0.7
43

, with the seed 

region disabled, to the GRCh37 build of the human genome with the mitochondrial sequence 

replaced by the revised Cambridge reference sequence (NCBI accession number 

NC_012920.1). Sequences from the same sample were merged using Picard MergeSamFiles 

(http://picard.sourceforge.net/) and duplicate reads were removed using SAMtools version 

0.1.19
44

. Average depth of coverage was calculated using genome analysis toolkit (GATK) 

Depth of Coverage and indels were realigned using RealignerTargetCreator and 

IndelRealigner from the same suite of tools
45

. Reads with a mapping quality of at least 30 

were retained using SAMtools
39

, and mapDamage 2.0
46

 was used with default parameters to 

downscale the quality scores of likely damaged bases, reducing the influence of nucleotide 

misincorporation on results. Only data from the deep sequencing phase of the project (100 bp 

single-end sequencing on a HiSeq 2,000) were used in the subsequent analyses. 

Alignment data are available through the Sequence Read Archive (SRA) under the project 

accession number PRJNA284219. 

3.6.3 Authenticity of results 

Rigorous measures were taken during laboratory work in an effort to minimize DNA 

contamination
4
 and negative controls were processed in parallel with samples. The 

authenticity of the data was further assessed in silico in a number of ways. The data were 

examined for the presence of short average sequence length and nucleotide misincorporation 

patterns which are characteristic of aDNA
41,42

 (Supplementary Figure B.7 and Supplementary 

https://paperpile.com/c/ojeZP2/xpN2y
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Figure B.8). The degree of mitochondrial DNA contamination
4,47

 (Supplementary Table 

B.14) and X chromosome contamination in male samples
3
 (Supplementary Table B.15 to 16) 

was also assessed. 

3.6.3.1 Estimation of molecular damage and sequence length 

Ancient DNA molecules are subject to post-mortem degradation typified by short sequence 

length and an over-representation of nucleotide misincorporation sites at the ends of 

reads
41,42

. Using a subsample of 500,000 reads per sample, which had been processed as 

described in the methods section with the SeqTK step omitted, we examined the sequence 

length distribution of our reads (Supplementary Figure B.7) and patterns of molecular 

damage using mapDamage 2.0
46

 (Supplementary Figure B.8). Only bases with a minimum 

quality of 30 were considered when running mapDamage. 

Endogenous DNA sequences from ancient samples tend to have an average sequence length 

of less than 100 bp
48

 and for Kotias and Satsurblia a peak in DNA sequence length was 

observed at 47 bp and 48 bp respectively, with a second peak at 100bp (Supplementary 

Figure B.7A&B). As 100 bp sequencing was performed, all sequences greater than this length 

are truncated, inflating the count of 100 bp reads. The peaks at < 50 bp are more likely an 

accurate reflection of the modal sequence length of the molecules. Bichon shows a large peak 

at 100 bp with a longer, flatter distribution of reads than that from the Georgian samples 

(Supplementary Fig. 7C). A different extraction protocol was used for Bichon
37

 compared to 

Satsurblia and Kotias
4
. Different extraction protocols can result in distinctive sequence length 

distributions for ancient next-generation sequencing data
49

 and this, along with variation in 

DNA preservation, may have contributed to the observed differences in the length of 

sequences between the Caucasus hunter-gatherers (CHG) samples and Bichon. 

For each sample a clear increase in C to T and G to A transitions can be seen at the 5’ and 3’ 

ends of molecules respectively (Supplementary Figure B.8), a typical hallmark of aDNA
41,42

. 

https://paperpile.com/c/ojeZP2/Mpso
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Misincorporation frequencies at the start and end of reads (>20% for the Georgian samples 

and >7% for Bichon) are consistent with levels present in other similarly aged specimens
2–4,6

. 

Bichon may have less damage at the 5’ ends of molecules (the 3’ ends were not always 

completely sequenced) than CHG because DNA fragments retrieved from Bichon tended to 

be longer (Supplementary Figure B.7) and thus better preserved.  

3.6.3.2 Mitochondrial DNA contamination 

Mitochondrial DNA contamination was evaluated by assessing the proportion of secondary 

(non-consensus) bases at haplogroup defining positions in our ancient samples
4,50

. 

Haplogroup defining positions determined using HAPLOFIND
51

 were called in our samples 

using GATK Pileup
45

 and filtered to remove bases with a quality < 30. The contamination 

rate (“C + MD”) was determined by calculating the secondary base count as a fraction of the 

total base count at all haplogroup-defining positions
4,47

. Because of the possible influence of 

residual molecular damage on estimates, this was also repeated omitting sites where the 

secondary base could be explained by deamination (“C”) 
4,47

. We found low contamination 

rates of ≤ 0.62% for all samples (Supplementary Table B.14). 

3.6.3.3 X-chromosomal contamination estimates 

As all our samples were male (Supplementary Table B.18), we were able to assess the level 

of X chromosome contamination in our samples as described in 
4
 which was based on

52
. The 

X chromosome is found in single copy in males and therefore two or more different alleles 

found at a given site along this chromosome may be due to contamination, damage, sequence 

error or mismapping. Assuming a similar background site error rate, it is expected that 

contamination will be more conspicuous at polymorphic sites than at neighbouring 

monomorphic sites due to the increased propensity for allelic diversity at these sites in 

contaminating populations. We examined discordance in the rate of heterozygous calls 

between known polymorphic sites on the non-pseudoautosomal region of the X chromosome 
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reported in the 1,000 Genomes Project
53

 and their adjacent sites. Genotypes in the 1,000 

Genomes dataset and ancient samples were called and filtered according to 
4
 with a minimum 

sequence depth of 5 required for genotypes called in Kotias and Bichon and 3 for loci called 

in Satsurblia (a lower threshold was used for Satsurblia due to its comparatively lower 

coverage). Two tests, which employ a maximum likelihood based approach, were performed 

to evaluate the rate of contamination. “Test 1” uses all high quality reads provided per sample 

while “test 2” removes the assumption of independent error rates by only sampling a single 

read per site (Supplementary Table B.15 & 16)
52

. A very low contamination rate of 0.99% (p-

value < 2.2 × 10
-16

) was found for Kotias with similarly low levels of 0.56-0.58% (p-value = 

0.001) for Satsurblia and 0.45-0.54% (p-value < 2.2 × 10
-16

) for Bichon (Supplementary 

Table B.17). 

3.6.4 Molecular sex and uniparental haplogroups 

Genetic sex was determined by examining the ratio of Y chromosome reads to reads aligning 

to both sex chromosomes
54 

(Supplementary Table B.18). Mitochondrial haplogroups were 

assigned following 
5
 with coverage determined using GATK Depth of Coverage

45 

(Supplementary Table B.19). YFitter
55

, which employs a maximum likelihood based 

approach, was used to determine Y-chromosomal haplogroups for our ancient male samples 

(Supplementary Table B.20). 

3.6.4.1 Mitochondrial haplogroups 

Kotias (425x-fold coverage of the mitochondria) was assigned to haplogroup H13c. 

Mitochondrial haplogroup H, the most prevalent and diverse haplogroup found in west 

Eurasia, peaks in frequency in western Europe, accounting for more than 40% of total 

mtDNA diversity with a decreasing yet still appreciable frequency towards the Near East, the 

Caucasus and Central Asia (10-30%)
50

. Coalescence age estimates are considerably older for 

H in the Near East (23-28 kya) than in Europe (19-21 kya) and it has been proposed that H 



Chapter 3  Upper Palaeolithic genomes reveal deep roots of modern Eurasians  

 

91 

 

may have evolved in the southern Caucasus and northern part of the Near East where the 

most ancient clades of H are present
28,50,56

. Sub-haplogroup H13 is most common in the Near 

East and Caucasus reaching highest frequencies in Georgia and Daghestan
28

. Interestingly 

this sub-haplogroup has been found in individuals from the Late Neolithic Bell Beaker 

culture in Germany and the Early Bronze Age Yamnaya culture from the Pontic Steppe
6
. 

Individuals from these cultures are proposed to have a component of Near Eastern ancestry 

distinct from that of Early European farmers
6
. H13 has an estimated coalescence time of 20-

24 kya (17-24 kya for H13c) thus placing the origin of this subclade during the LGM or even 

before
28

.  

Satsurblia (144x -fold coverage) was assigned to haplogroup K3. Satsurblia lacked 5 of the 

11 mutations associated with the K3 haplogroup (Supplementary Table B.19)
51,57

. These 

"missing" mutations (all sites had a minimum of 119x coverage) are all on the branch leading 

from K to K3 suggesting that the haplotype of Satsurblia could represent an early 

manifestation of the K3 haplogroup. Haplogroup K is found at about 11% frequency in 

Georgia today with similarly high level found in the Near East
58

. Its average European 

frequency is 5.6%
58

 however it has been a found at higher frequencies in Early European 

Neolithic farmers and its diffusion in Europe has been associated with the Neolithic 

transition
59

. Haplogroup K was found to be the predominant haplogroup among samples from 

Pre-Pottery Neolithic B sites in Syria
60

. This culture is thought to represent one of the 

original Near Eastern Neolithic communities. 

Bichon (314x) belongs to haplogroup U5b1h. The U branch, especially haplogroup U5, has 

been found to be a dominant mitochondrial haplogroup among European hunter-gatherer 

communities
2,3,5,6,38,47,61

. 
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3.6.4.2 Y-chromosomal haplogroups 

Both Georgian hunter-gatherer samples were assigned to haplogroup J with Kotias belonging 

to the subhaplogroup J2a. Haplogroup J is estimated to have arisen 31.7 kya in the Middle 

East and is widely distributed in Eurasia, the Middle East and North Africa
27,29

. Patterns of 

haplogroup frequency are consistent with an expansion from the Middle East towards Europe 

which has been suggested to have accompanied the Neolithic transition in Europe
27,62,63

. In a 

study exploring J haplogroups in 445 individuals from Eurasia, J2a was found at highest 

frequency in Georgia and Iraq
27

. It is intriguing that the mitochondrial haplogroup of 

Satsurblia and the Y-chromosomal haplogroups of both our ancient Georgian samples have 

been associated with the Neolithization of Europe. This tentatively suggests a genetic link 

between Georgian hunter-gatherers and early European migrants from the Near East.  

Bichon belongs to Y haplogroup  I2a (see methods). Haplogroup I has been found at high 

frequencies in Europe but is virtually absent elsewhere
64

. This haplogroup is suggested to 

have a European pre-LGM origin
65

 and has been found in ancient samples with hunter-

gatherer backgrounds from central and northern Europe
2,4–6

. 

3.6.5 Merging ancient data with published data 

3.6.5.1 Modern reference dataset 

Genotype calls from Kotias, Satsurblia, Bichon and selected Eurasian samples 

(Supplementary Table B.1) were merged with modern genotype calls from the Human 

Origins dataset
2 

using PLINK
66

. This dataset was first filtered to exclude genotypes which 

had a minor allele frequency of zero in the modern populations, non-autosomal sites and 

modern populations with less than 4 individuals. Genotypes where neither allele was 

consistent with the GRCh37 orientation of the human genome were also removed. 
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3.6.5.2 Ancient reference dataset 

3.6.5.2.1 Data sources and pre-processing 

Hungarian ancient data: MapDamage 2.0
46

 was used to rescale selected high coverage 

BAM files (Supplementary Table B.1) from Hungary
4
 using default parameters. 

Swedish Samples, Loschbour and Stuttgart: BAM files with genome-level coverage 

(Supplementary Table B.1) from 
5
 and 

2
 were realigned to the human genome as outlined 

before. MapDamage rescaling
46

 was not performed on data from 
2
 as these samples had been 

molecularly treated to remove deaminated cytosines, reducing DNA damage associated 

errors.  

Mal’ta (MA1)  and La Braña: FASTQ files from 
7
 and 

3
 were aligned to the GRCh37 build 

of the human genome with the mitochondrial sequence removed. For MA1, mapDamage 

rescaling
46

 was omitted due to the low deamination rates found in this sample
7
. 

Ust’-Ishim: A BAM file containing sequences from the Ust’-Ishim genome
15

 was filtered to 

remove reads with mapping quality of less than 30. This sample had been molecularly treated 

to remove deaminated cytosines so mapDamage rescaling
46

 was not performed. 

Kostenki: A BAM file containing sequences from the Kostenki genome was downloaded 

from 
13

 and duplicate reads were removed. Sequences had already been filtered to have 

mapping quality > 30 and the first and last 5 bp of all reads had been soft-clipped to a base 

quality of zero. As terminal bases had been soft-clipped and the sample had been molecularly 

treated to remove deaminated cytosines, mapDamage rescaling
46

 was not carried out.  

Otzi the Tyrolean Iceman: Forward FASTQ files were downloaded from 
14

 and realigned to 

the GRCh37 build of the human genome with the mitochondrial sequence removed. Reads 

were not rescaled using mapDamage as the substitution frequencies were outside the bounds 

of the posterior predictive distribution intervals set by the mapDamage model
46

. 
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Haak ancient data: Genotypes for Eurasian ancient samples (Supplementary Table B.1) 

which overlapped the Human Origins array
2
 were downloaded from

6
. Only samples with at 

least 200,000 called genotypes were used, in-keeping with the level of data from other 

samples used in analyses. Genotypes had not been called in the first and last two bases of 

sequence reads and all samples had been UDG-treated (molecularly treated to remove 

deaminated cytosines) to reduce the influence of deaminated cytosines on analyses
6
.  

Allentoft ancient data: Genotypes for Bronze and Iron Age ancient samples published in 
8
 

were kindly provided by GeoGenetics, Copenhagen. Only samples with at least 200,000 

called genotypes were used (Supplementary Table B.1).  

3.6.5.2.2 Genotype calling 

For ancient samples with > 8x genome-wide coverage (namely Kotias, Bichon, Ust’-Ishim, 

Loschbour, Stuttgart, NE1 and BR2 (Supplementary Table B.1)) genotypes were determined 

using GATK Unified Genotyper
45

. Genotypes were called at SNP positions observed in the 

Human Origins dataset using sequencing data with a base quality ≥ 30, depth ≥ 8 and 

genotype quality ≥ 20. The resulting VCF files were converted to PLINK format using 

VCFtools
67

. 

For lower coverage samples genotypes were called at positions that overlapped with the 

Human Origins dataset using GATK Pileup
45

. Bases were required to have a minimum 

quality of 30 and all triallelic SNPs were discarded. For SNP positions with more than one 

base call, one allele was randomly chosen with a probability equal to the frequency of the 

base at that position. This allele was duplicated to form a homozygous diploid genotype 

which was used to represent the individual at that SNP position
68

. This merged dataset was 

used for PCA, ADMIXTURE, f3-statistics, D-statistics and ROH analysis. This number of 

SNPs per sample for those ancient samples that were recalled is shown in Supplementary 

Table B.2. 
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3.6.5.2.3 Soft-clipping ancient data  

Due to the SeqTK step carried out prior to alignment (see methods), Kotias, Satsurblia, and 

Bichon had the first and last two bases of all reads removed. To mirror this step in published 

ancient data which had not been trimmed in this way, the first and last 2 bp of all sequences 

were soft-clipped to a base quality of two before genotypes were called (with the exception of 

data from 
6
 and 

8
 for which genotypes were already called). 

3.6.6 Population genetic analyses 

PCA was performed by projecting selected ancient Eurasian data onto the first two principal 

components defined by a subset of the filtered Human Origins dataset (Fig. 1A). This 

analysis was carried out using EIGENSOFT 5.0.1 smartpca
16

 with the lsqproject option on 

and the outlier removal option off. One SNP from each pair in linkage disequilibrium with r
2
 

> 0.2 was removed
68

. 

A clustering analysis was performed using ADMIXTURE version 1.23
17

. Genotypes were 

restricted to those that overlapped with the SNP capture panel described in 
 6

. SNPs in linkage 

disequilibrium were thinned
 
using PLINK (v1.07)

66
 with parameters --indep-pairwise 200 25 

0.5
6
 resulting in a set of 229,695 SNPs for analysis. 2 to 20 clusters (K) were explored using 

10 runs with 5-fold cross validation at each K with different random seeds (Supplementary 

Figure B.5). The minimal cross-validation error was found at K=17, but the error already 

starts plateauing from roughly K=10, implying little improvement from this point onwards. 

(Supplementary Figure B.9).  

D-statistics
18

 and f3-statistics
19,30

 were used to formally assess the relationships between 

samples. Statistics were computed using the qpDstat (D-statistics) and 3PopTest (f3-statistics) 

programs from the ADMIXTOOLS package
19

. Significance was assessed using a block 

jackknife over 5cM chunks of the genome
19

 and statistics were considered significant if their 
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Z-score was of magnitude greater than 3
30

 corresponding approximately to a p-value of less 

than 0.001. For f3-statistics where the test population was ancient the inbreed:YES option was 

used.  

3.6.6.1 ADMIXTURE analysis 

The admixture proportions are shown on Supplementary Figure B.5 for all samples and in 

Figure 3.1 for ancient individuals at K=17 (the minimal cross validation error;Supplementary 

Figure B.9). In Supplementary Figure B.5, samples are hierarchically clustered by region (as 

on the PCA plot) and population. For better visibility, ancient samples are positioned on the 

left side of the figure and represented as bars with a width corresponding to five individuals. 

There are no clear outliers in any population, suggesting that they were well-defined and that 

the number of SNPs was sufficient to correctly define the clusters, even after LD-based 

pruning. 

The cluster membership of published modern and ancient samples is similar to previous 

analyses
6
. Modern individuals harbour components as expected from their location and 

history, and ancient samples have components similar to those seen in 
7
 and other studies. 

European hunter-gatherers from the Mesolithic form a distinct component (“light blue”), 

which is also present in most Europeans and many populations from Western Asia. Early 

European farmers as well as modern European and West Asian groups additionally harbour a 

component dominant in the Middle East (“magenta”), appearing at K=9, in agreement with a 

Middle Eastern source of early Neolithic farmers. European groups from the late Neolithic 

onwards and many West Asian groups also possess a component prevalent in South Asia, as 

soon as this appears at K=7. This component is at first the same one that is prevalent in India 

(“dark purple”), but is later replaced by the Caucasus-related component (“lime green”). 

Bichon, our Upper Palaeolithic hunter-gatherer from Switzerland, harbours mainly the 

European Mesolithic hunter-gatherer component, in agreement with our PCA analysis while 

the Caucasus hunter-gatherers look unlike any other modern or ancient group. From K=9 to 
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K=14, when both the South Asian “dark purple” and the Near Eastern “magenta” are present, 

they mainly consist of those two components, with a small fraction of Western hunter-

gatherer related ancestry. Modern populations from the Caucasus and West Asia harbour the 

same components, but with an increased fraction of the Near Eastern “magenta” component. 

From K=15 onwards, a new cluster nearly completely describing CHG (“lime green”) 

appears. Out of the two CHG samples, the older Satsurblia is fully assigned to the “lime 

green” cluster, whereas the later sample Kotias also features minor (<10%) Near Eastern 

ancestry. This new CHG-related component also appears in modern populations in west 

Eurasia, but no modern population belongs purely to this cluster. Even modern populations 

from the Caucasus continue to harbour a large amount (close to 50%) of the Near Eastern 

“magenta” component. 

Both Kotias and Satsurblia show a certain similarity to the early European Farmers (EF) and 

the Yamnaya, in that they feature both the Middle Eastern component of the EF and the 

South Asian of the Yamnaya. However, in contrast to EF and the Yamnaya and in agreement 

with a deep CHG-WHG split, they only harbour a minor proportion (<10%) of the European 

hunter-gatherer ancestry. Also from K=15 onwards, the new CHG-related component 

replaces the South Asian “dark purple” and reduces the Near Eastern “magenta” component 

in the Yamnaya and all Neolithic and later European populations. 

The components characteristic of Native American populations (“dark green”, “light brown”, 

“dark grey” and “dark blue”) are also worth noting. These components are present in MA1 

and eastern hunter-gatherers, in agreement with previous studies
6,7

, but are at very low levels 

in the Yamnaya and virtually absent from our samples from the Caucasus. These components 

may point to the presence of the Ancient North Eurasian ancestry of both Native Americans 

and eastern hunter-gatherers. Their absence in Caucasus hunter-gatherers is in agreement 

with their southern geographical position and their separation from northern Eurasia by the 

Caucasus mountain range. 
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3.6.6.2 Relationship of Satsurblia, Kotias and Bichon to other samples 

D-statistics of the form D(Yoruba, OA; Satsurblia, Kotias) and D(Yoruba, OA; Bichon, 

WHG) were used to assess whether the pairs of samples (Kotias, Satsurblia) and (Bichon, 

WHG) are compatible with forming a clade in an unrooted tree with respect to an African 

outgroup and other ancient samples (OA). For the test D(Yoruba, OA; Satsurblia, Kotias) we 

found most statistics to have non-significant (zero) values (Supplementary Table B.3) which 

support Kotias and Satsurblia forming a clade to the exclusion of other branches of ancient 

ancestry. The only population for which a positive value was observed was the Sintasha 

Bronze Age culture. These Uralic people are genetically similar to Corded Ware populations
8
 

and this result could be explained by the temporally closer Kotias representing a better donor 

for CHG ancestry than the older Satsurblia for this population. These D-statistics confirm 

inferences from PCA and ADMIXTURE that Kotias and Satsurblia are genetically distinct 

from other broadly contemporaneous ancient genomes. When we performed the tests 

D(Yoruba, Satsurblia; OA, Kotias) and D(Yoruba, Kotias; OA, Satsurblia) we found positive 

values of 0.07 to0.16 with associated Z-scores of 9.66 to 24.18, depending on the CHG 

sample and the other ancient (OA) population. This shows that there is enough power to 

detect signals of admixture using this dataset and that the zero values found above are not due 

to paucity of data.  

The test D(Yoruba, OA; Bichon, WHG) (where WHG were represented by the highest 

coverage WHG genomes, Loschbour
2
 and La Braña

4
) resulted in non-significant values for 

95% of tests consistent with Bichon having more recent shared ancestry with WHG than with 

most other ancient lineages (Supplementary Table B.4). We consistently found zero-values 

when the OA involved was an eastern hunter-gatherer (EHG), a CHG or a Pleistocene hunter-

gatherer showing that Bichon forms a clade with WHG to the exclusion of these other hunter-

gatherer groups. However, we did not always find zero-values when we let OA be a 

Scandinavian hunter-gatherer (SHG; Supplementary Table B.4). WHG are proposed to be 

part of a hunter-gatherer metapopulation, which also encompasses SHG and EHG and ranges 
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over northern Europe from as far west as Spain to as far east as Russia
7
. These three hunter-

gatherer groups cannot be related by a simple tree as there are signals of admixture between 

these groups
7
.  This explains why Bichon does not always form a clade with other WHG to 

the exclusion of SHG.  

When we inverted the statistics and evaluated D(Yoruba, Bichon; OA, WHG) and D(Yoruba, 

WHG; OA, Bichon) we consistently found statistically significant values (Z >3). This shows 

that admixture can be detected for the genotype coverage found in this dataset. We also found 

similar results when we let the Hungarian sample KO1
4
 represent WHG. It is interesting to 

note that Bichon, as well as other WHG, form a clade with both MA1 and EHG to the 

exclusion of CHG (Supplementary Table B.7). This suggests the Ancient North Eurasian 

(ANE) ancestry and WHG ancestry may have shallower roots and diverged subsequent to 

splitting from CHG (Supplementary Figure B.2). This is consistent with ADMIXTURE 

analysis and the geographic range of these groups - CHG were separated from these North 

Eurasian hunter-gatherers by the Caucasus mountain range.  

We also explored the relationships between ancient samples by performing outgroup f3-

statistics of the form f3(X, OA; Yoruba) where we let X be Kotias, Satsurblia and Bichon in 

turn and OA be all other ancient groups in the dataset (Supplementary Fig. 1). These statistics 

are informative as their magnitude is proportional to the amount of shared genetic history 

between the ancient individuals (X and OA) since they diverged from an African (in this case 

Yoruba) outgroup. 

We found that CHG share the most drift with each other and the least drift with the 

Pleistocene sample Ust’-Ishim (Supplementary Figure B.1A&B). Other ancient samples 

share an intermediate amount of drift with no obvious pattern to the distribution of allele 

sharing. Bichon shares the most genetic drift with other western hunter-gatherers, followed 

by Scandinavian and eastern hunter-gatherers (Supplementary Figure B.1C). The fact that 

Bichon is closest to other WHG, and not equally close to SHG and EHG, suggests that there 
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may have already been sub-structure between these hunter-gatherer groups 13,700 years ago 

when Bichon was alive. 

3.6.7 Dating split times using G-PhoCS.  

A coalescent model implemented with G-PhoCS
20

 was used to reconstruct the joint 

demographic history of western and Caucasus hunter -gatherers (WHG and CHG 

respectively) and early farmers (EF). This analysis requires (1) the topology of the underlying 

population tree; (2) sequence data from short, homologous windows; and (3) specified 

directional gene flow between branches (migration bands).  

3.6.7.1 Topology of population tree 

G-PhoCS represents the demographic history of a collection of samples by a (binary) tree in 

which each branch is a population, with each sample belonging to a different leaf branch and 

interior branches corresponding to ancestral populations. To find the most likely topology of 

this tree, we used f3 analysis to determine the most likely ordering of the population splits 

(see Figure 3.2B for a graphical representation). For the G-PhoCS analyses, we considered 

both a tree with only the ancient genomes, and a tree with an African San Pygmy
69

 as the 

outgroup. 

To explore the topology between CHG, WHG and early farmers (EF) we used available high 

coverage data and performed f3-statistics (see methods), attempting all possible triplet 

combinations for these three groups (Figure 3.2A; Supplementary Table B.5). When we did 

this we presumed that two samples form a clade and the other sample is the outgroup to this 

clade. For the correct topology we would expect f3 > 0, as the two correctly grouped samples 

will have shared drift since they diverged from the outgroup. For incorrect topologies we 

would expect f3 = 0 as the incorrectly grouped samples will not have shared drift exclusive to 

themselves. We found that  f3(WHG, CHG; EF) tended to equal zero, depending on the 

representing samples used and gave the smallest values of all our tests. This makes it unlikely 
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that WHG and CHG are sister groups to the exclusion of EF. The largest values were found 

for f3(CHG, EF; WHG) (Z > 14.4) suggesting that CHG and EF form a clade to the exclusion 

of WHG. However, we did also find positive statistics for the test f3(WHG, EF; CHG) (Z > 

8.5) but these were not as significant as for the former topology. WHG introgression into EF 

has been previously proposed
2,4,7,13

 and positive statistics for f3(WHG, EF; CHG) could be a 

function of this admixture (admixture is also suggested by D-statistics of the form D(Yoruba, 

WHG; CHG, EF) (Supplementary Table B.9) and ADMIXTURE analysis (Figure 3.1B)). As 

the signal for EF and CHG forming a clade is much stronger than for the other two topologies 

we consider the most parsimonious scenario to be that farmers and CHG are sister groups that 

diverged from each other after splitting from WHG. 

Unfortunately we did not have a high coverage diploid sample representing ANE to include 

in this approach. Analyses using D-statistics (Supplementary Table B.7) revealed however 

that ANE and WHG group together to the exclusion of CHG. It therefore seems likely that an 

ancient south (Neolithic farmers and CHG) divergence from the ancient North (WHG and 

ANE) was the earliest split for these groups. This is shown in Supplementary Figure B.2 

which extends the model proposed in 
2
 to include CHG. To fit this proposed model, CHG and 

EF should form a clade to the exclusion of Eastern non-Africans which is indeed supported 

by zero values for D(Yoruba, eastern non-African, CHG, EF) (Supplementary Table B.9).  

CHG and EF also form a clade to the exclusion of ANE as represented by MA1 

(Supplementary Table B.9).  

3.6.7.2 Genome-wide windows of high sample coverage for 

demographic analyses 

Since this analysis requires sequence data from all genomes in short (1 kilobase (kb)) 

homologous windows, we chose high-coverage genomes to represent each group: Bichon and 

Loschbour to represent WHG, Kotias to represent CHG, and either Stuttgart or NE1 to 

represent EF. In addition, we used a high-quality San Pygmy genome
69

 as an outgroup. To 
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find the best set of windows, we first generated all-sites coverage information from 

chromosomes 1 to 22, restricted to regions classified as “neutral” according to the filters in
20

 

(using UCSC liftOver tool to translate coordinates from hg18 to hg19), and extracted the 

depth information using a program written in C, again filtering for sites with read depth 

between 10 and 35 (we avoid sites with very low and very high coverage because alignment 

and genotyping is problematic (for more details see
70

): 

samtools mpileup -C50 -uDI -f <reference.fa>  -r <chromosome> \ 

-l <bedfile with accepted regions> <bamfiles> | bcftools view -gc – \ 

| get_depth_intervals minCover=10 maxCover=35  

interval_file=<chromosome> 

We then scanned each chromosome for windows satisfying the previous criteria, using a 

simple heuristic approach to maximise the sample coverage. We start by finding the first 1 kb 

window with at least 80% coverage. We then search within the next 10 kb to find the 1 kb 

window with the highest coverage. Finally, we jump 5 kb forward from the chosen location 

and repeat the process until we reach the end of the chromosome. For the whole genome, this 

search yielded a total of 152,883 high-quality windows. We then used SAMtools/BCFtools
44

 

(using flags as above) and custom programs written in C and MATLAB to extract genotypes 

for the windows and converted the genotypes into fasta files for G-PhoCS. To deal with DNA 

damage in ancient samples, we “in vitro” deaminated all our sequences, as already done for 

previous studies
18

. 

3.6.7.3 Directional gene flow between branches 

Because our WHG samples predate the arrival of farming to central and northern Europe
21

, 

any gene flow creating shared drift between EF and WHG must be from WHG to EF. Ideally, 

we would like our model to only allow gene flow between WHG and EF after the arrival of 

farming to the WHG locations. However, G-PhoCS requires migration to start or stop at time 
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where populations split. Fortunately, our analysis puts the split between the two WHG, 

Bichon and Loschbour, at around 14k years ago, just a few thousand years prior to farming. 

We therefore allow gene flow between WHG and EF only after this split. Because Loschbour 

is temporally and geographically closer than Bichon to the EF, we allow only gene flow from 

Loschbour to the EF. 

3.6.7.4 G-PhoCS set up 

Gamma distributed priors were used for all observables (split times, population sizes and 

migration rates). The shape parameter 𝛼 was set to an intermediate value of 1 for both 

population sizes and split times, to obtain a mean to standard deviation ratio of unity and 

allow sufficient exploration of the parameter space without an overly long convergence time. 

The rate parameter 𝛽 was set to result in means in the correct range, based on initial 

exploratory runs with a variety of starting values (running two MCMC chains of 1,000,000 

steps for each set of starting values, which is enough to get an order of magnitude estimate of 

variables of interest; see below for details of how chains were set up). For 𝜃, the effective 

population sizes, we set 𝛽=2,500 for the San (i.e. for 𝜃San), and 𝛽=10,000 for all other 

populations, corresponding to mean effective population sizes of 26,667 and 6,667, 

respectively. The rate parameters were 𝛽=1,000,000 (mean split time of 6,667 years) for the 

Bichon-Loschbour and Stuttgart-Kotias splits, 𝛽=250,000 (mean split time of 26,667 years) 

for the (Bichon-Loschbour)-(Stuttgart-Kotias split) and 𝛽=30,000 (mean split time of 222,222 

years) for the San and ancient genomes. 

With regards to migration from Loschbour to Stuttgart, we explored three different settings: 

no migration and migrations bands with either a strong or a weak prior. In the case of a weak 

prior, the shape parameter was set to 0.002 and the mean to 200, to allow exploration of the 

whole space. With such a broad distribution, the value of the mean hardly influenced our 

results, based on exploratory runs. As for the strong prior, the shape parameter was set to 1 

and the mean to 20,000, corresponding to ~18% of the genealogies sampled as Stuttgart 
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actually originating from Loschbour, with a Loschbour-Bichon split time of 6,666 years (the 

prior mean). Migration had a negligible effect on split times. The only exception was the split 

between EF and Caucasus Hunter Gatherers, which was approximately 4-10 thousand year 

younger without migration; however, the confidence interval for this split was similar, and 

very broad, for levels of migration, suggesting that this split is difficult to date with the 

current data. In this supplementary, we present the results with the strong prior, since 

previous studies
1,7,46

 have pointed to mixing between hunter-gatherers and early farmers. We 

also explored models with migration going in the opposite direction or bidirectional, but this 

did not affect the results (as already noted in the original paper describing G-Phocs
54

, the 

direction of migration tends not to be captured by this method).  

We used G-PhoCS's automatic feature to set step sizes (finetune parameters) of the Markov 

chain for each parameter, which aims for intermediate acceptance ratios. During this 

procedure, the first 10,000 steps were used to find appropriate step sizes, by updating the 

parameters every 100 MCMC steps and performing 100 updates. After the step sizes were 

set, 3,000,000 MCMC steps were performed, with the first 100,000 steps discarded as burn-

in. After observing traces of observables, we found that our demographic parameters of 

interest converged well before the end of the burn-in period. We started two independent 

chains for each setting in order to assess appropriate mixing of the chain, and observed no 

problems in any setting. 

3.6.7.5 Converting dates from ancient genomes 

The available version of G-PhoCS assumed samples to be contemporaneous. The ages of our 

ancient genomes all fell within a range of about 6 thousand years (about 7 thousand years for 

the youngest, EF, to about 13 thousand years for the oldest, Bichon). This discrepancy is 

relatively small compared to the ages of the splits of interest, and will not affect estimates in a 

qualitative way (especially given the size of the confidence interval of this type of analysis). 

To convert split times for a given node as computed by G-PhoCS into calendar dates, we 

https://paperpile.com/c/mD8sBP/oRoQ3+NAQHX+B2KVG
https://paperpile.com/c/mD8sBP/kNOqk
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added the mean of the ages of the samples that defined that node. The only modern genome is 

the San, which is only used as an outgroup; as such, the age of that split between the San and 

the ancient genomes is not of interest (and given how old that split is, a difference of 10k 

years in age of the genomes has negligible consequences on the estimates). 

Split times estimates from G-PhoCS have to be converted into calendar years based on a 

mutation rate. Recent work on the high quality genome from Ust’Ishim
3
 provides a mutation 

rate calibrated on ancient DNA, (0.5 × 10−9 per site per year)
 
which is also in line with 

estimates from high quality modern genomes
71

. We converted this mutation rate into an 

appropriate substitution rate for our in vitro deaminated sequences. 

3.6.7.6 G-PhoCS Results 

If we consider the model with Stuttgart to represent EF, and San as an outgroup, we find that 

the split between WHG and the population ancestral to CHG and EF is dated at around ~46 

kya, implying an early divergence at the time of, or shortly after, the colonisation of Europe. 

On the WHG branch, the split between Bichon and Loschbour is dated to ~18 kya (just older 

than the age of Bichon), implying continuity in western Europe. The split between CHG and 

EF is dated at ~24 kya, thus suggesting a possible link with the LGM, although the broad 

confidence intervals require some caution with this interpretation. 

Our conclusions are qualitatively similar for other models, irrespective of which genome 

(Stuttgart or NE1) was used to represent EF, nor whether we used an outgroup (San) or not. 

In the main text and in Figure 3.2B, we report the dates from the model including Stuttgart 

and San, but details of the other models are available in Supplementary Table B.6. 

3.6.8 Runs of homozygosity 

To gain an insight into past population structure we examined runs of homozygosity (ROH) 

in our ancient samples. ROH occur when identical extended regions of the genome are 

https://paperpile.com/c/mD8sBP/eYwXZ
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inherited from both parents and their distribution can be informative about past population 

demography
4,25,26,72

. Long homozygous genomic stretches provide evidence for recent 

endogamy because recombination has not acted to break down these long tracts which are 

identical by descent. In contrast short runs can be indicative of an ancient population 

bottleneck. After such a constrictive event a population will experience a period of increased 

inbreeding creating long homozygous haplotypes but these segments can be broken up by 

recombination over time as the population expands, creating short homozygous runs. 

Examination of ROH requires dense diploid genotypes. We used imputation to maximise the 

information content of our most ancient sample, Satsurblia, which was sequenced to 1.44x, 

following the procedure described in
15

. Imputation allows the inference of missing genotypes 

by comparing surrounding haplotypes in the sample to those found in a phased reference 

panel and has been shown to be a valid method for leveraging palaeogenomic data
4
. We were 

concerned that the haplotypes present in Satsurblia may not be well represented by 

haplogroups in our modern dataset. To test if CHG genotypes could be accurately imputed 

we down-sampled our high coverage genome Kotias to ~1x and compared 546,625 imputed 

genotypes which overlapped with our confidently called high coverage genotypes for the 

filtered Human Origins dataset (Supplementary Figure B.10). When we imposed a genotype 

probability of 0.99 we found that 85% of loci were retained and of those 99.41% (97.91% of 

heterozygotes) matched our high coverage calls (Supplementary Figure B.8). This high 

concordance rate supports the use of imputed CHG data in our analyses.  

Imputed data for Satsurblia and downsampled-Kotias, implementing a genotype probability 

threshold of 0.99 (Supplementary Figure B.10), was merged with high confidence diploid 

calls for selected ancient samples (namely Bichon, Loschbour, NE1, Stuttgart and Kotias) as 

well as with SNP data from modern samples using PLINK
66

. This resulted in 199,868 

overlapping high-quality diploid loci for ROH analysis which was carried out using PLINK
66

 

as described in
15

. When we plotted short ROH (<1.6 Mb) against long ROH (≥ 1.6 

Mb)  (Figure 3.3A)
4,26

 we found that our three hunter-gatherer samples, Satsurblia, Kotias 
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and Bichon locate with other hunter-gatherer samples in a region of the plot with a relative 

excess of both short and long ROH compared to Neolithic farmers. These short runs suggest 

an ancestrally restricted population size for CHG as well as WHG which could reflect the 

effect of a reduced population size in glacial refugia. This contrasts with the relatively low 

frequency ROH found for Neolithic samples, perhaps because the ancestors of these people 

resided in a location further south with a more moderate climate during the LGM, permissive 

of a larger effective population size. Longer runs of ROH found in hunter-gatherer samples 

are compatible with more recent consanguinity in their family lines than that experienced by 

Neolithic farmers. 

Kotias, Bichon and Loschbour all overlap with individuals from America with the former two 

samples also overlapping Oceanic individuals. Both American and Oceanic populations have 

experienced a population bottleneck during their histories
25

. Of all the ancient samples 

Satsurblia has the most long ROH and lies closest to the Onge, indigenous people from the 

Andaman islands. This island population has experienced long term isolation resulting in a 

small ancestral population size
30

 and recent population reduction after colonisation by the 

British in 1858
73

.  

We also placed our ROH into size bins
25

 (Figure 3.2B) and found Neolithic farmers to have a 

ROH distribution that follows a similar pattern to modern Eurasian groups. In contrast 

hunter-gatherers had a relative excess of ROH <4 Mb in size, a signature of a small ancestral 

population size. Compared to other hunter-gatherer samples, Satsurblia has an excess of long 

ROH 4-16 Mb in size suggestive of a more recent interbreeding event in the family history of 

this individual.  

3.6.9 Phenotypes of interest 

We called genotypes in Bichon, Kotias and Satsurblia using GATK Unified Genotyper
45

. For 

each position under investigation we only called alleles which were present in the 1,000 

Genomes dataset
53

, using bases with a quality ≥ 30 in positions with a depth  ≥ 4. Due to the 
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low average coverage of Satsurblia (1.44x) we also used imputed genotypes for this sample 

(see above) imposing a genotype probability cut-off of 0.85
4
. We used the 8-plex

74 
and 

Hirisplex
75 

prediction models to predict hair, eye and skin colour for our samples. Other loci 

investigated are discussed in the Supplementary Information. 

To get a picture of the phenotypic characteristics of our samples, we examined genes which 

have been associated with particular phenotypes in modern populations, including some loci 

which have been subject to selection in European populations. To investigate skin tone in our 

samples we began by using the 8-plex prediction model
74

, a tool developed for forensic 

applications. We found the skin colour results for Kotias, Satsurblia and Bichon to be 

inconclusive (Supplementary Table B.21). To explore further we looked at genotypes in two 

pigmentation genes proposed to have been strongly selected in the ancestors of modern 

Europeans, namely SLC45A2 and SLC24A5
22,76,77,77–79

. Skin colour tends to get progressively 

paler with increasing distance from the equator
80

 and this pattern is thought be the result of 

natural selection. In higher latitudes, with restricted ultraviolet radiation exposure, lighter 

skin colour confers a selective advantage as it allows increased dermal vitamin D 

synthesis
81,82

. Selected SNPs in the SLC45A2 and SLC24A5 genes (rs16891982 and 

rs1426654 respectively) contribute to lightening of skin and are almost fixed in modern 

Europeans
22,76,77,77–79

. We found that Kotias and Satsurblia have the ancestral version of the 

SLC45A2 (rs16891982) variant but both CHG have the selected version of the SLC24A5 

(rs1426654) gene (Supplementary Table B.22) encompassed by the most commonly 

associated haplotype (C11) found in modern populations
76

. Bichon on the other hand has the 

ancestral version of both genes suggesting that our Caucasus hunter-gatherers may have had 

lighter skin than our western hunter-gatherer, Bichon (Supplementary Table 20). 

We used the Hirisplex online tool to predict hair and eye colour for our samples
75

. We found 

it most likely that Bichon, Kotias and Satsurblia had dark/black hair and brown eyes (  
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Supplementary Table B.23 & 24). It is unlikely that any of our samples was able to drink 

milk into adulthood as all samples had the ancestral genotype at two positions (rs4988235 

and rs182549) upstream of the LCT locus where the derived genotype is associated in 

Europeans with the ability to process lactose. The ability to digest milk is thought to have 

been driven to high frequencies in Europe subsequent to the introduction of farming
4,83

. 
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Chapter 4 Genome-wide data from two early 

Neolithic East Asian individuals dating to 7,700 

years ago 

4.1 Abstract 

Ancient genomes have revolutionized our understanding of Holocene prehistory and, 

particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so 

far received little attention, despite representing a core region at which the Neolithic 

transition took place independently ~3 millennia after its onset in the Near East. I 

report genome-wide data from two hunter-gatherers from Devil’s Gate, an early 

Neolithic cave site (dated to ~7.7 thousand years ago) located in East Asia, on the border 

between Russia and Korea. Both of these individuals are genetically most similar to 

geographically close modern populations from the Amur Basin, all speaking Tungusic 

languages, and in particular to the Ulchi. The similarity to nearby modern populations 

and the low levels of additional genetic material in the Ulchi imply a high level of 

genetic continuity in this region during the Holocene, a pattern that markedly contrasts 

with that reported for Europe. 
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4.2 Contribution 

This study was published in Siska et al. 2017
1
. I was responsible for the computational 

population genetics analysis of the nuclear genome, for coordinating the project and for 

writing the manuscript. Sequencing, the analysis of uniparental markers, and predicting 

phenotypes were conducted by my collaborators. All co-authors gave their input on the 

manuscript. 

4.3 Introduction 

Ancient genomes from western Asia have revealed a degree of genetic continuity between 

preagricultural hunter-gatherers and early farmers 12 to 8 thousand years ago (ka)
2,3

. In 

contrast, studies on southeast and central Europe indicate a major population replacement of 

Mesolithic hunter-gatherers by Neolithic farmers of a Near Eastern origin during the period 

8.5 to 7 ka
4
. This is then followed by a progressive “resurgence” of local hunter-gatherer 

lineages in some regions during the Middle/Late Neolithic and Eneolithic periods and a major 

contribution from the Asian Steppe later, ~5.5 ka, coinciding with the advent of the Bronze 

Age
4–6

.  

Compared to western Eurasia, for which hundreds of partial ancient genomes have already 

been sequenced, East Asia has been largely neglected by ancient DNA studies to date. The 

only exceptions are the Siberian Arctic belt, which has received attention in the context of the 

colonization of the Americas
7,8

 and a 40,000 year-old Chinese sample (Tianyuan) which was 

more similar to modern Asians and South Americans than to ancient or modern 

Europeans
9,10

. However, East Asia represents an extremely interesting region as the shift to 

reliance on agriculture appears to have taken a different course from that in western Eurasia. 

In the latter region, pottery, farming, and animal husbandry were closely associated. In 

contrast, Early Neolithic societies in the Russian Far East, Japan, and Korea started to 
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manufacture and use pottery and basketry 10.5 to 15 ka, but domesticated crops and livestock 

arrived several millennia later
11,12

. Because of the current lack of ancient genomes from East 

Asia, we do not know the extent to which this gradual Neolithic transition, which is generally 

considered to have happened independently from the one taking place in western Eurasia, 

reflected actual migrations, as found in Europe, or cultural diffusion associated with a higher 

level of population continuity. 

4.4 Results  

4.4.1 Samples, sequencing and authenticity 

To fill this gap in our knowledge about the Neolithic in East Asia, we sequenced to low 

coverage five genomes (DevilsGate1, 0.059-fold coverage; DevilsGate2, 0.023-fold 

coverage; and DevilsGate3, DevilsGate4 and DevilsGate5 under 0.001-fold coverage) of five 

early Neolithic burials from a single occupational phase at Devil’s Gate (Chertovy Vorota) 

Cave in the Russian Far East, close to the border with China and North Korea (see Suppl. 

Mat.). This site dates back to 9.4-7.2 kya, with the human remains dating to ~7.7 kya, and 

includes some of the world’s earliest evidence of ancient textiles
13

. The people inhabiting 

Devil’s Gate were hunter-fisher-gatherers with no evidence of farming, and even the main 

raw material for textile production were fibres of wild plants
13

.  

I focus the analysis on the two samples with the highest coverage, DevilsGate1 and 

DevilsGate2, both of which were female. DevilsGate1’s sex is in accordance with that 

inferred from archaeology, but DevilsGate2 was thought to be male based on its skull. 

DevilsGate1 was directly radiocarbon dated to 6756±37 uncalibrated bp (OxA 27678) and 

DevilsGate2 to 6765±40 uncalibrated before present (OxA 27677). The calibrated range of 

both dates is 5726-5622 cal BC (2 SD. 95.4% confidence interval range, Supplementary 

Figure C.1).  
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The mitochondrial DNA (mtDNA) of the individual with higher coverage (DevilsGate1, 

coverage of the mtDNA ~9.76-fold) could be assigned to haplogroup D4. DevilsGate1 has 

one of the two mutations which define haplogroup D (T16362C, 13-fold coverage; the other 

position had no spanning sequence data) and all three mutations which are associated with 

haplogroup D4 (G3010A, 2-fold coverage; C8414T, 3-fold coverage; C14668T, 6-fold 

coverage). Haplogroup D4 is found in present day populations in East Asia
14

, and has also 

been found in Jomon skeletons in northern Japan
15,16

. The other individual with lower 

coverage (DevilsGate2, coverage of the mtDNA ~2.75-fold), had three of the four mutations 

which define haplogroup M (T489C, 7-fold coverage; C10400T, 3-fold coverage; T14783C, 

2 -fold coverage), to which D4 belongs. DevilsGate2 was assigned with equal likelihood to 

subhaplogroups M9 and M13’46’61; suggesting that this sample may not be accurately 

assigned to a subhaplogroup due to low sequence coverage. 

Contamination, estimated from the number of discordant calls in the mtDNA on non-

consensus bases at haplogroup-defining positions, was low: 0.87% [95% confidence interval 

(CI), 0.28 to 2.37%] and 0.59% [95% CI, 0.03 to 3.753%] for DevilsGate1 and DevilsGate2, 

respectively. These were reduced to 0% for both samples when non-consensus base calls 

which could be explained by deamination were omitted from the analysis. Using schmutzi
17

 

on the higher-coverage genome, DevilsGate1, also gives low contamination levels (1% [95% 

CI, 0 to 2%]). As a further check against the possible confounding effect of contamination, 

we made sure that our most important analyses, outgroup f3 scores and principal components 

analysis (PCA), were qualitatively replicated using only reads showing evidence of 

postmortem damage
18

 (see Supplementary Figure C.4, Supplementary Figure C.5 and 

Supplementary Figure C.7), although these latter results had a high level of noise due to the 

low coverage (0.005X for DevilsGate1 and 0.001X for DevilsGate2). 



Chapter 4  Genome-wide data from two early Neolithic East Asian individuals 

dating to 7,700 years ago 

 

 

123 

 

4.4.2 Relation to modern populations 

I compared the individuals from Devil’s Gate to a large panel of modern-day Eurasians and 

examined their genetic relationships to published ancient genomes
5,6,19–22

 (Figure 4.1) using 

Principal Component Analysis (PCA)
23

, an unsupervised clustering approach, 

ADMIXTURE
24

, and outgroup f3 statistics
25

. I investigated two different reference panels for 

both PCA and ADMIXTURE, the first consisting of all modern individuals in our worldwide 

set of populations and the second of a regional panel.  

On the PCA analysis using the worldwide panel, samples from Devil’s Gate clearly clustered 

with northern Asian populations, in particular with those from East Asia, Central Asia and 

Siberia (see Supplementary Figure C.5 and Supplementary Figure C.6 for the full analysis on 

all SNPs or only transversion SNPs, respectively). We then restricted our panel to these 

populations, to which we refer as the regional panel from now on. Here, both Devil’s Gate 

individuals were close to populations from the Amur Basin, particularly to the Ulchi, Oroqen, 

and Hezhen (see Figure 4.1 for the first two components and Supplementary Figure C.7 and 

Supplementary Figure C.8 for the full analysis on all SNPs or only transversion SNPs, 

respectively). This is also the geographic region where Devil’s Gate is located (Figure 4.1), 

which contrasts with observations in Western Eurasia, where, due to a number of major 

intervening migration waves, hunter-gatherers of a similar age fall outside modern genetic 

variation
4,26

.  

For ADMIXTURE on both panels, the main clusters reported in previous analyses were 

found
4–6

 (see Figure 4.1 for K=5 and K=8 number of clusters and Supplementary Figure C.11 

to Supplementary Figure C.14 for K up to 20 panels, using all SNPs or transversions only). 

Except for higher K-s (all K-s for the global and up to K=7 for the regional panel), Devil’s 

Gate consisted of two components in roughly equal proportions. The first is an “East Asian” 

component, prevalent in the Han Chinese, Koreans and Japanese, among others, and the 
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second is a “Siberian” component, typical for the Nganasan. Other populations from the 

Amur Basin, but also the Koreans and the Japanese, had the same components, but with a 

higher proportion of “East Asian” ancestry, and, for the Koreans and Japanese, also a small 

amount from a different component which is common in South-East Asia. On the regional 

panel from K=8 onwards, a new component corresponding to Devil’s Gate appeared. It also 

contributed to various other East Asian populations, including those from the Amur Basin 

(especially the Ulchi), and from modern-day China, Japan and Korea. 

I further confirmed the affinity between Devil’s Gate and modern-day Amur Basin 

populations by using outgroup f3 statistics in the form, f3(African; DevilsGate, X), which 

measures the amount of shared genetic drift between a Devil’s Gate individual and X, a 

modern or ancient population, since they diverged from an African outgroup. Modern 

populations that live in the same geographic region as Devil’s Gate have the highest genetic 

affinity to our ancient genome (Figure 4.2), with a progressive decline in affinity with 

increasing geographic distance (R
2
 = 0.756, F1,96=301, p < 0.001,Figure 4.3), in agreement 

with neutral drift leading to a simple isolation-by-distance pattern. The Ulchi, traditionally 

fishermen who live geographically very close to Devil’s Gate, are the genetically most 

similar samples in our panel. Other populations that show high affinity to Devil’s Gate are 

Oroqen and Hezhen, also from the Amur Basin, as well as Koreans and Japanese. Given their 

geographic distance from Devil’s Gate (Figure 4.3), Amerindian populations are unusually 

genetically close to samples from this site; in agreement with their previously reported 

relationship to Siberian and other north Asian populations. 
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Figure 4.1 Regional reference panel, Principal Component analysis and ADMIXTURE analysis. (A) Map of 

Asia showing the location of Devil’s Gate (black triangle) and of modern populations forming the regional panel 

of our analysis. (B) Plot of the first two Principal Component Analysis as defined by our regional panel of 

modern populations from East and Central Asia shown on panel (A), with the two samples from Devil’s Gate 

(black triangles) projected upon them23. (C) ADMIXTURE analysis24 performed on Devil’s Gate and our 

regional panel, for k=5 (lowest cross-validation error) and k=8 (appearance of Devil’s Gate-specific cluster). 
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Figure 4.2 Outgroup f3 statistics. Outgroup f3 measuring shared drift between Devil’s Gate (black triangle shows 

sampling location) and modern populations with respect to an African outgroup (Khomani). (A) Map of the 

whole world. (B) 15 populations with the highest shared drift with Devil’s Gate, color-coded by regions as on 

Figure PCA. Error bars represent one standard error. 
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Figure 4.3 Spatial pattern of outgroup f3 statistics. Relationship between outgroup f3(X,Devil’s Gate; Khomani) 

and distance on land from Devil’s Gate, using DevilsGate1 and all SNPs. Populations up to 9000 km-s away 

from Devil’s Gate were considered when computing correlation. The highest distance considered was chosen to 

acquire the highest Pearson correlation in steps of 500 km-s. Best linear fit (R2 = 0.772, F1,108=368.4, p < 

0.001) is shown as blue line, with 95% confidence interval indicated by the shaded area. 

The languages spoken by the Ulchi and by other populations from the Amur Basin all belong 

to the Tungusic language family, and the Ulchi are the only Tungusic-speaking population 

from the Amur Basin sampled in Russia. The rest were sampled in China, which is in 

agreement with their higher similarity to East Asian populations living south of the Amur 

Basin.  Although some scholars consider the Tungusic languages as part of the Altaic 

language family, together with the Mongolic and Turkic groups and sometimes even 

including Koreanic and Japonic, this theory is not widely accepted
27

. The isolated nature of 

the Tungusic language family and the close connection between its speakers and our ancient 

samples point to the deep roots of these populations. 



Chapter 4  Genome-wide data from two early Neolithic East Asian individuals 

dating to 7,700 years ago 

 

 

128 

 

4.4.3 Relation to ancient genomes from Asia 

No previously published ancient genome shows marked genetic affinity to Devil’s Gate: the 

top 50 populations in our outgroup f3 statistic were all modern, an unsurprising result given 

that all other ancient genomes are either geographically or temporally very distant from 

Devil’s Gate. Amongst these ancient genomes, the closest to Devil’s Gate are from Steppe 

populations dating from the Bronze onwards and mesolithic European hunter-gatherers, but 

they are at most as close as modern populations from the same regions (e.g. Tuvinian, 

Kalmyk, Russian, Finnish). The two ancient genomes geographically closest to Devil’s Gate, 

Mal’ta (MA1) and Ust’-Ishim, also do not show high genetic affinity, probably due to them 

both dating to a much earlier time period. MA1 is genetically closer to Devil’s Gate, but it is 

equally distant from Devil’s Gate and from other East Asians (Supplementary Figure C.15-

17). A similar pattern is found for Ust’Ishim, which is basal to all Eurasians, including 

Devil’s Gate (Supplementary Figure C.18-20).  

At the time of this work, only a very limited amount of data (chromosome 21 and an 

additional ~3000 polymorphic sites) was available from the single sequenced ancient genome 

with clear affinities to East Asians, Tianyuan
9
; which did not allow a direct comparison with 

the Devil’s Gate samples. In 2017, the whole genome of this individual was published
10

, but 

it revealed no particular similarities with the samples from Devil’s Gate, or even with modern 

populations close to them (Ulchi and the other Amur Basin populations). 

4.4.4 Continuity between Devil’s Gate and the Ulchi 

As Devil’s Gate falls within the range of modern variability in a number of analyses and 

shows a high genetic affinity to the Ulchi, I investigated the extent of genetic continuity 

within this region. I modelled the Ulchi as a mixture of Devil’s Gate and other modern 

populations, using admixture f3 statistics. Despite a large panel of possible modern sources, 

the Ulchi are best represented by Devil’s Gate alone without any further contribution (no 
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admixture f3 gave a significant negative result, Supplementary Table C.20-21). In contrast, 

European populations gave significantly negative f3 statistics with numerous pairs of 

populations even on our smallest SNP panel consisting of those called in DevilsGate2. (e.g. 

Lithuanians, the population with the highest hunter-gatherer-related component: 

Supplementary Table C.23 and Sardinians, harbouring the highest early farmer-related 

component: Supplementary Table C.22). 

Since admixture f3 can be affected by demographic events such as bottlenecks, I also tested 

whether Devil’s Gate formed a clade with the Ulchi using a D statistic in the form D(African 

outgroup, X; Ulchi, Devil’s Gate). A number of primarily modern populations worldwide 

gave significantly non-zero results (|Z| > 2), which, together with the additional components 

for the Ulchi in the ADMIXTURE analysis implies that the continuity is not perfect. 

Populations from Central Asia scored highest, but for DevilsGate1 on the total SNP panel 

(the case with the highest power), a very wide range of populations from all over the world 

also gave smaller, but still significantly non-zero scores, in the direction indicating that they 

are closer to the Ulchi than to Devil’s Gate. The high-scoring Central Asian populations are 

in agreement with the Central Asian-related ADMIXTURE ancestry components in the 

Ulchi, but the wide variety of the rest of the populations is difficult to explain. Possible 

contributors to this result could be the large uncertainty in SNP calling due to our very low 

coverage (even data from SNPs covered only originate from a single read in most cases), and 

errors from DNA degradation, which can also decrease the inferred level of continuity. 

To compare the inferred level of continuity between the Ulchi and inhabitants of Devil’s Gate 

to that between modern Europeans and European hunter-gatherers, I compared the sizes of 

ancestry proportions as inferred by ADMIXTURE. I found that the proportion of Devil’s 

Gate-related ancestry in the Ulchi was significantly higher than that for the local hunter-

gatherer related ancestry in any European population (t=3.10, df=27.23, p=0.002 using all 

SNPs for modern Lithuanians who have the largest European hunter-gatherer component and 
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p < 0.001 for all other populations, Supplementary Table C.6-11). Even when not only the 

hunter-gatherer-related components were considered, the difference was significant for every 

comparison except for the early European farmer-related component in the Sardinians 

(Supplementary Table C.7 and Supplementary Table C.10), a pair where a high level of 

continuity was observed in other analysis already. 

These results suggest a relatively high degree of population continuity in this region; the 

Ulchi are likely descendants of Devil’s Gate or a population genetically very close to it, but 

connectivity among populations in the region means that this modern population also shows 

increased association with related modern populations. Compared to Europe, these results 

suggest a higher level of genetic continuity in this region of northern East Asia over the last 

~7.7 ky, without any major population turnover since the early Neolithic. 

4.4.5 Southern and Northern genetic material in the Japanese and the 

Korean 

The high genetic affinity between Devil’s Gate and modern Japanese and Koreans, who live 

further south, is also of interest. Japanese have been argued, based on archaeology
28

 and 

genetic analyses
29–32

, to have a dual origin, descending from an admixture event between 

hunter-gatherers of the Jomon culture (16 kya – 3 kya) and migrants of the Yayoi culture (3 

kya – 1.7 kya), who brought wet rice agriculture from the Yangtze estuary in southern China 

through Korea. The few ancient mtDNA samples available from Jomon sites on the northern 

Hokkaido island show an enrichment of particular haplotypes (N9b and M7a, with D1, D4, 

and G1 also detected) present in modern Japanese populations, particularly the Ainu and 

Ryukyuans, and also in southern Siberians (for example, Udegey and Ulchi)
15,16

. Recently, 

nuclear genetic data from two Jomon samples also confirmed the dual origin hypothesis and 

implied that the Jomon diverged before the diversification of present-day East Asians
33

. The 

mtDNA haplogroups of our samples from Devil’s Gate (D4 and M) are also present in Jomon 
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samples, although they are not the most common ones (N9b and M7a). Unfortunately the low 

coverage of both our and the Jomon samples did not allow for a direct comparison of nuclear 

genetic data. 

I investigated whether it was possible to recover these two components by modelling modern 

Japanese as a mixture of all possible pairs of sources, including modern Asian populations 

and Devil’s Gate, using admixture f3 statistics. The clearest signal was given by a 

combination of Devil’s Gate and aboriginal populations from Taiwan, southern China and 

Vietnam (Figure 4.4), which could represent hunter-gatherer and agriculturalist components, 

respectively. However, it is important to note that these scores were just about significant (-3 

< Z < -2) and that some modern pairs also gave negative scores, even if not reaching our 

significance threshold (Z scores as low as -1.9, see Supplementary Table C.28-31). The 

origin of Koreans has received less attention, and, because of their location on the mainland, 

they likely experienced a greater degree of contact with neighbouring populations through 

history. However, they show similar characteristics to the Japanese on genome-wide SNP 

data
34

 (Supplementary Table C.24-27) and are also shown to harbour mtDNA
35

 and Y 

chromosomal haplogroups
35,36

 common in both northern and southern Asian populations.  

Unfortunately our coverage and sample size from Devil’s Gate was not enough to reliably 

estimate mixture coefficients or to use linkage disequilibrium-based methods to investigate 

whether the components originate from secondary contact (admixture) or continuous 

differentiation, and if the former is the case, to date the admixture event. 
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Figure 4.4 Admixture f3 statistics. Admixture f3 representing modern Koreans and Japanese as a mixture of two 

populations, X and Y, colour coded by regions as on Figure 4.1. (A) 30 pairs with the lowest f3 score for the 

Koreans as the target, out of those giving a significantly (Z < -2) value. (B) All 4 pairs giving a significantly (Z 

< -2) negative score for the Japanese as the target. Error bars represent one standard error. 
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4.4.6 Phenotypic prediction 

The low coverage of our sample does not allow for direct observation of most SNPs linked to 

phenotypic traits of interest, but imputation based on modern-day populations can provide 

some information (although locations under selection can still be problematic). I focussed on 

the genome with the highest coverage, DevilsGate1, using the same imputation approach that 

has previously been used to estimate genotype probabilities (GP) for ancient European 

samples
6,21,22

. For the detailed results, see Supplementary Table C.32. DevilsGate1 likely had 

brown eyes (rs12913832 on HERC2; GP=0.905) and, where it could be determined, had 

pigmentation-associated variants which are common in East Asia
37

. She appears to have had 

at least one copy of the derived EDAR allele (rs3827760, GP = 0.865) common in East Asia, 

which gives increased odds of straight, thick hair
38,39

 as well as shovel-shaped incisors 
40

. She 

almost certainly lacked the most common Eurasian allele for lactase persistance
41

 

(rs4988235, LCT gene, GP>0.999), and was unlikely to have suffered from alcohol flush
42

 

(rs671, ALDH2 gene; GP=0.847). Thus, at least with regard to those phenotypic traits for 

which the genetic basis is known, there also seems to have been some degree of phenotypic 

continuity. 

4.5 Conclusions 

By sequencing two ancient East Asians who lived at the beginning of the Neolithic period in 

this region, I was able to demonstrate a high level of genetic continuity over the last ~7.7 ky 

in the northern part of this region, both demographically and phenotypically. The cold 

climate experienced in this area, where modern populations still rely on a number of hunter-

gatherer-fishing practices, likely played a role in preventing major settlements of migrating 

Neolithic food-producers. Thus, it seems plausible that the local hunter-gatherers 

progressively added food-producing practices to their original lifestyle. However, it is 
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interesting to note that in Europe, even at very high latitudes where hunter-gathering practices 

were still similarly important until very recent times, the Neolithic expansion left a significant 

genetic signature in modern populations, albeit attenuated when compared to the southern 

part of the continent. Our ancient genomes thus provide evidence for a qualitatively different 

population prehistory during the Neolithic transition in this part of East Asia compared to 

Western Eurasia, suggesting stronger genetic continuity in the former region. These results 

encourage further study of the East Asian Neolithic, which would greatly benefit from 

genetic data from early agriculturalists (ideally from areas near the origin of wet rice 

cultivation and other types of agriculture in southern East Asia), as well as higher coverage 

hunter-gatherer samples from different regions in order to quantify population structure 

before intensive agriculture. 

4.6 Methods 

4.6.1 Experimental Design 

4.6.1.1 Radiocarbon dates 

Direct AMS radiocarbon dates were obtained at the Oxford AMS Radiocarbon Laboratory for 

the two highest-coverage individuals, DevilsGate1 and DevilsGate2. 

4.6.1.2 Sample preparation and sequencing 

Molecular analyses were carried out in dedicated ancient DNA facilities at Trinity College 

Dublin, Ireland. Samples were prepared and DNA extracted using a silica column based 

protocol following Gamba et al.
22

 which was based on Yang et al.
43

. DNA extracted from 

both the first and second lysis buffers
22

 were used for library preparation which was carried 

out using a modified version of Meyer & Kircher
44

 as described in Gamba et al.
22

. Libraries 
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were sequenced on either an Illumina MiSeq or HiSeq platform (for further details and 

sequencing statistics see Supplementary Table C.1). 

4.6.1.3 Data processing and alignment 

For single-end sequencing data (Supplementary Table C.1), adapter sequences were trimmed 

from the ends of reads using cutadapt
45

 allowing an overlap of only 1 base pair (bp) between 

the adapter and the read. For paired end data (Supplementary Table C.1), adapters were 

trimmed using leeHom
46

. This was run using the --ancientdna option and paired end reads 

which overlapped were merged. For paired end reads that could not be overlapped only data 

from read 1 were used in downstream analyses. Reads were aligned using BWA
47

, with the 

seed region disabled, to the GRCh37 build of the human genome with the mitochondrial 

sequence replaced by the revised Cambridge reference sequence (National Centre for 

Biotechnology Information (NCBI) accession number NC_012920.1). Reads from different 

sequencing experiments were merged using Picard MergeSamFiles 

(http://picard.sourceforge.net/) and clonal reads were removed using SAMtools
48

. A 

minimum read length of 30 bp was imposed and for the higher coverage (above 0.01X) 

samples, DevilsGate1 and DevilsGate2, indels were realigned using RealignerTargetCreator 

and IndelRealigner from the Genome Analysis Toolkit (GATK
49

). SAMtools
48

 was used to 

filter out reads with a mapping quality of less than 30 and reads were rescaled using 

mapDamage 2.0
50

 to reduce the qualities of likely damaged bases, therefore lessening the 

effects of ancient DNA damage associated errors on analysis
50

. Average genomic depth of 

coverage was calculated using the genomecov function of bedtools
51

.  

4.6.1.4 Authenticity of results 

Patterns of molecular damage and the length distribution of reads were assessed using all 

reads for DevilsGate3, DevilsGate4, and DevilsGate5. As a portion of the reads from 
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DevilsGate1 and DevilsGate2 derived from 50 bp single end sequencing, only reads 

sequenced with 150 bp paired end sequencing were considered in the following analyses in 

order to avoid using truncated reads (library ID MOS5A.E1 for DevilsGate1 and MOS4A.E1 

for DevilsGate2). MapDamage 2.0
50

 was used to assess patterns of molecular damage which 

are typical of ancient DNA. Only reads with mapping quality ⩾ 20 were considered. An 

increased rate (up to 11%) of C to T misincorporations was found at the 5’ ends of reads with 

reciprocal patterns of G to A misincorporations at the 3’ read termini (Supplementary Figure 

C.2). The sequence length distribution was analysed as in 
52

. For all samples a peak in DNA 

sequence length is visible at <70 bp, consistent with the short fragment length expected for 

ancient molecules
53

 (Supplementary Figure C.3).  

Low coverage data like ours often does not provide sufficient information to distinguish the C 

to T mutations on the sample relative to the reference sequence, which appear close to the 5’ 

terminus, from damage. Thus, such positions can be downscaled in quality and dropped, 

which can lead to a bias pulling the ancient sample closer to the human reference genome. On 

the other hand, not applying MapDamage can lead to the opposite bias due to damage. Thus, 

I also replicated our analysis on versions of Devil’s Gate samples without MapDamage 

rescaling, to confirm that neither of these biases affect our conclusions. 

4.6.1.5 Contamination estimates 

The rate of mitochondrial contamination was assessed for our highest coverage samples, 

DevilsGate1 and DevilsGate2. This was calculated by evaluating the percentage of non-

consensus bases at haplogroup-defining positions (haplogroup D4 for DevilsGate1 and M for 

DevilsGate2) using bases with quality ⩾ 20
22,26

.   

Schmutzi, a tool which employs a Bayesian maximum a posteriori algorithm
17

, was also used 

to estimate the mitochondrial contamination for DevilsGate1 (the contamination rate for 

DevilsGate2 was not estimated using this tool, as it estimates a contamination prior using 
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deamination frequencies at read termini and as 99% of reads from DevilsGate2 derive from 

50 bp sequencing, its read termini are likely truncated).  For DevilsGate1 only reads from 

>=100bp sequencing were used in the analysis. The contDeam.pl script was run using the --

library double option followed by the schmutzi.pl script with default parameters, using a 

dataset of putative contaminants provided with the schmutzi package. It should be noted that 

this program will underestimate the contamination rate if the contaminating molecules are 

deaminated or if there are multiple contaminating sources. 

Since other ways of estimating contamination were not possible (e.g. based on the X-

chromosome), I also attempted to replicate our main results using only reads with evidence of 

postmortem damage. I applied PMDtools (9), a framework assigning likelihood scores to 

degraded sequences that are unlikely to originate from modern contamination. In this part of 

the analysis, I restricted our reads to those with a PMD score of at least 3. This greatly 

decreased our coverage, to 0.0050X for DevilsGate1 and 0.0012X for DevilsGate2, but it was 

still enough to perform two of our most robust analysis: the outgroup f3 statistics 

(Supplementary Figure C.4) and a Principal Component Analysis (Supplementary Figure C.5 

and Supplementary Figure C.7 using the world-wide or the reginal panel, respectively).  

4.6.2 Statistical Analysis 

4.6.2.1 Mitochondrial Haplogroup Determination 

Mitochondrial consensus sequences were generated for DevilsGate1 and DevilsGate2 using 

ANGSD
54

. Called positions were required to have a depth of coverage ⩾ 3 and only bases 

with quality ⩾ 20 were considered. The resulting FASTA files were uploaded to 

HAPLOFIND
55

 for haplogroup determination. Mutations defining the assigned haplogroup 

were also manually checked. Coverage was calculated using GATK DepthOfCoverage
49

.  
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4.6.2.2  Sex determination 

Sex was assigned using the script described by Skoglund et al.
56

. The observed fraction of Y 

chromosome alignments compared to the total number of alignments to the X and Y 

chromosome and it’s estimated 95% confidence interval was RY = 0.0057 (0.0053-0.0061) 

and RY = 0.0059 (0.0054-0.0064) for DevilsGate1 and DevilsGate2, respectively, implying 

that both of them were females.  

4.6.2.3 SNP calling and merging with reference panel 

In order to compare our sample to modern and ancient human genetic variation, we called 

SNPs using the hg19 reference FASTA file at positions overlapping with the Human Origins 

(HO) reference panel (591,356 positions)
25

, using Samtools 1.2
48

. Bases were required to 

have a minimum mapping quality of 30, base quality of 20, and all triallelic SNPs were 

discarded.  Then, a read was chosen uniformly at random, since our low coverage does not 

provide sufficient information to infer diploid genotypes. This allele was duplicated to form a 

homozygous diploid genotype which was used to represent the individual at that SNP 

position
56

. This method of SNP calling, referred to as the proportional method from now on, 

will artificially increase the appearance of drift on the lineage leading to the ancient 

individual; however, this drift is not expected to be in any particular direction and therefore 

should not bias inferences about population relationships 
4
. A total of 35,903 positions in 

DevilsGate1 and 14,739 in DevilsGate2 were covered by at least one high-quality read. 

The resulting SNP data for Devil’s Gate 1 and 2 were then merged with a reference panel 

containing modern genomes from the HO panel and selected ancient genomes (this dataset 

was described in 
6
) as well as an additional 45 Korean genomes from the Personal Genome 

Project Korea (http://opengenome.net/) using PLINK 1.07
57

.  Additional sample information 

is available in Supplementary Table C.2 to Supplementary Table C.5, including sample ID-s, 
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populations and groupings used throughout the manuscript. Finally, a transversion-only 

version of all the above data was created, by converting all T-s to C-s and G-s to A-s and 

keeping only SNPs still polymorphic. This alternative dataset was used to confirm that biases 

originating from ancient DNA damage do not influence our conclusions. 

In the later analyses (outgroup and admixture f3 statistics, Principal Component Analysis and 

ADMIXTURE analysis), results from the two different calling methods were qualitatively 

equivalent. Results using all mutations or only transversions were also qualitatively similar, 

apart from increased noise in the transversion-only data due to the reduced information 

content. Thus, in the main text, I will only report results using all mutations and the default 

calling method, referred to as the proportional method (choosing a read uniformly at random 

from the reads covering any given position). I present results using the Khomani San as our 

African outgroup for outgroup f3 and D statistics, but other populations (the Yoruba, the 

Mbuti and the Dinka) gave equivalent results. 

4.6.2.4 Affinities of the samples from Devil’s Gate 

a. Principal Component Analysis 

In order to explore where our samples from Devil’s Gate are placed in the context of the main 

axes defining modern genetic variation, I performed a Principal Component Analysis (PCA) 

with two different reference panels, both subset of the worldwide panel of contemporary and 

ancient individuals from 
6
. The analysis was carried out using EIGENSOFT 6.0.1 smartpca

23
 

with the lsqproject and normalisation options on, the outlier removal option off and one SNP 

from each pair in linkage disequilibrium with r
2
>0.2 removed. Ancient samples were 

projected onto the Principal Components defined by modern populations.  
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b. ADMIXTURE analysis 

A clustering analysis was performed using ADMIXTURE version 1.23
24

 SNPs in linkage 

disequilibrium were thinned using PLINK 1.07 with parameters –indep-pairwise 200 25 0.5 

resulting in a set of 334,359 SNPs for analysis (91,379 transversions). K=2-20 clusters were 

explored for the global panel and K=1-10 for the regional panel, using 10 independent runs 

with fivefold cross-validation at each K with different random seeds. The minimal cross-

validation error was found at K=17 for the global panel (Supplementary Figure C.9) and K=5 

for the regional (East & Central Asian) panel (Supplementary Figure C.10), but the error 

already started plateauing around K=9 for the global, suggesting little improvement.  

I further used the ADMIXTURE results to compare the levels of Devil’s Gate-related 

ancestry in the Ulchi to hunter-gatherer, Early European Farmer and Bronze Age steppe-

related ancestries in modern Europeans. Supplementary Table C.6-11 shows the p-values 

from T-tests for each European population in our panel. I investigated both K=8, where the 

Devil’s Gate-specific cluster first. For the Europeans, I used k=18, where cross-validation 

error is the lowest (although the proportions hardly change once the three main European 

clusters corresponding to hunter-gatherers, Neolithic farmers and steppe ancestry are all 

present).  

The proportion of Devil’s Gate-related ancestry depends on the choice of K for the 

ADMIXTURE analysis. However, K=8, which was chosen (lowest k with a defined Devil’s 

Gate cluster on both all SNPs and transversion only SNPs) results in the lowest Devil’s Gate-

related ancestry components in the Ulchi. Therefore, higher K-s would only increase the 

significance in the difference from European proportions. 
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c. Outgroup f3 statistics 

I used outgroup f3-statistics to estimate the amount of shared drift between inhabitants of 

Devil’s Gate and a range of modern-day and ancient populations. I computed f3(X, 

DevilsGate; Khomani), where X was a population from our panel, and the Khomani 

(Khoisan) acted as our outgroup.  f3 statistics were calculated with the 3PopTest tool from the 

AdmixTools
25

. Figure 2 shows results using all SNP-s and MapDamage treatment, 

Supplementary Figure C.4 those using PMD-filtered data and all other results are shown on 

Supplementary Table C.12-15.  

4.6.2.5 Relation to MA1 and Ust’Ishim 

d. Outgroup  f3 

Outgroup f3 with MA1 

First, I used the outgroup f3-statistics to investigate if the inhabitants of Devil’s Gate were 

related to the ancient lineages represented by MA1 and Ust’Ishim. I considered all modern-

day and ancient populations in our panel, including the two new samples from Devil’s Gate. I 

computed f3(X, MA1; Khomani), where X was a population from our panel, and the Khomani 

(Khoisan) acted as outgroup. f3 statistics were calculated with the 3PopTest tool from the 

AdmixTools package
25

. 

e. D statistics  

Next, I used D statistics to investigate how MA1 and Ust’Ishim and Devil’s Gate are related 

to modern populations. I considered all modern-day and ancient populations in our panel, 

including the two new samples from Devil’s Gate. I computed D(X, Khomani; MA1, 



Chapter 4  Genome-wide data from two early Neolithic East Asian individuals 

dating to 7,700 years ago 

 

 

142 

 

DevilsGate1), where X was a population from our panel, and the Khomani (Khoisan) acted as 

outgroup. D-statistics were calculated with the qpDstat tool from the AdmixTools package
25

. 

4.6.2.6 Searching for signals of admixture in the Ulchi 

f. Admixture f3 shows no signal of admixture 

In order to search for signals of admixture in the Ulchi, I first used the admixture f3-statistics 

in the form f3(X, Y; Ulchi), using the pq3Pop tools from the AdmixTools package
25

. I scanned 

every possible pair of populations X and Y, taken from our global panel of modern and 

ancient populations and Devil’s Gate. Only considered pairs with at least 1000 SNPs in 

common were considered. This statistic can be significantly negative if the target population 

(in this case, the Ulchi) has genetic material from both populations X and Y. 

In order to test for signals of admixture in the Ulchi, I tested the statistics of the form f3(X, Y; 

Ulchi), scanning every possible pair of populations X and Y in our global panel (including 

Devil’s Gate). Pairs of populations with Z<-1 and at least 1000 SNPs covered are 

Supplementary Table C.20 and Supplementary Table C.21, using all SNPs or transversions 

only. As a comparison, I conducted the same analysis for the Lithuanians (Supplementary 

Table C.23), who harbour the highest hunter-gatherer component on ADMIXTURE and the 

Sardinians (Supplementary Table C.22) who are closest to Early European Farmers on 

numerous analysis. 

g. D statistics can’t reject a breach of continuity 

I then tested if the samples from Devil’s Gate and the Ulchi form a clade against other 

populations by examining D statistics of the form D(Khomani, X; Ulchi, Devil’s Gate). This 

statistic deviates from zero if the Ulchi or Devil’s Gate are not symmetrically related to 

population X when compared to an outgroup population (I used the African Khomani San). 
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For both DevilsGate1 and DevilsGate2, populations with a significantly non-zero score (|Z| > 

2) are shown on Supplementary Table C.16-19).  

4.6.2.7 Dual origin of the Koreans and the Japanese  

In order to search for signals of multiple components in the Koreans and the Japanese, I again 

used the admixture f3-statistics in the form f3(X, Y; Target) for the Japanese and the Koreans 

as target populations, using the pq3Pop tools from the AdmixTools package
25

. I scanned 

every possible pair of populations X and Y, taken from our global panel of modern and 

ancient populations and Devil’s Gate. Only pairs with at least 1000 SNPs in common were 

considered. This statistic can be significantly negative if the target population has genetic 

material from both populations X and Y (this does not exclude additional populations also 

contributing to the target population). In order to investigate the origin of the northern 

component and whether it is related to the occupants of Devil’s Gate, I calculated admixture 

f3 statistics of the form f3 (X, Y; Korean) and f3 (X, Y; Japanese). Pairs giving significantly 

negative admixture f3 statistics at a significance level of Z<-2 and at least 1000 SNPs are 

included on Supplementary Table C.24-31.  

4.6.2.8 Phenotypic prediction 

Phenotypes of interest were investigated in our highest coverage sample, DevilsGate1, 

including some loci known to have been under selection in Eurasian populations. Due to the 

low quality of our samples, BEAGLE
58

 was used to impute genotypes using a reference panel 

containing phased genomes from the 1,000 Genomes Project (26 different populations). 

Following 
22

, GATK Unified genotyper
49

 was used to call genotype likelihoods at SNP sites 

in Phase 3 of the 1,000 Genomes Project. Equal likelihoods were set for positions with no 

spanning sequence data as well as positions where the observed genotype could be explained 

by deamination
22

. At least 1Mb upstream and downstream from the loci of interest was 
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imputed, using 10 iterations to estimate genotypes at ungenotyped markers. The only position 

covered by a read was rs74653330 SNP on the OCA2 gene. It had 1x coverage of a C allele 

(the allele predicted using imputation). The summary of our results is shown in 

Supplementary Table C.32.  
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Chapter 5 Behaviour of selection statistics in a 

spatially explicit, neutral demographic model 

5.1 Abstract 

Natural selection is the main driving process behind adaptive evolution. Detecting 

signals of selection in the genome is not only useful for medical genetics, but can also 

uncover key processes in the dynamics of speciation and the population histories of 

species. However, complex demographic processes can confound signals and are one of 

the likely causes of the commonly observed contradicting results between different 

studies. Here I made use of a paleoclimate-informed, spatially explicit demographic 

model to explore the behaviour of commonly used selection statistics. I investigated how 

different statistics behave when the confounding effects of space and population history 

are taken into account. I focused on three statistics: allele frequency spectrum-based 

Tajima’s D, population differentiation-based FST and linkage disequilibrium-based iHS. 

To investigate which statistics are linked to similar processes and to what extent purely 

demographic signals in different populations are correlated, I measured the amount of 

overlap between signals from different statistics or different populations and compared 

them to those from the 1000 Genomes Phase 3 dataset. I found that different statistics 

overlap to a smaller extent in the neutral simulations than in observed data, but the 

relationships between signals from different populations were better captured by our 

model. 
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5.2 Contribution 

The base demographic model that generated recombining and non-recombining genealogies 

and TMRCA-s was created by Anders Eriksson. The non-recombining version was used in 

publications concerning the spread of anatomically modern humans
1
 and the population 

history of the Americas
2
, but this chapter is the first use case for the model including 

recombination. I implemented modules in this existing C++ modelling framework for 

sequence generation upon both non-recombining (tree-like) and recombining (network-like) 

genealogies, as well as to calculate Tajima’s D. I also performed the complete analysis 

outside the modelling framework: processed the observed data, calculated selection statistics 

on both observed and simulated data, compared them to each other and created this 

manuscript. 

5.3 Introduction 

The availability of high-resolution genetic datasets made it possible to detect signals of 

natural selection in observed data. For humans, most efforts have been dedicated to the 

indirect method of looking for signals of past selection in present-day genomes by scanning 

the whole genomes for outlier segments on the basis of different statistics. Such outliers can 

arise from a scenario where a single, new allele has a beneficial effect (positive selection) and 

rapidly spreads to high frequencies or fixation in a population (a hard sweep). As a 

consequence, diversity in the region surrounding the beneficial allele’s locus is reduced, until 

mutation and recombination together restore it to values typical of neutral variation. 

Additionally, in the case of localised selection pressures, the target population becomes 

unusually differentiated from others around the selected locus. There are three basic families 

of methods to detect signals of positive selection that exploit these signatures: allele 

frequency spectrum-, population differentiation- and linkage disequilibrium-based methods
3
. 
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The first family, based on the allele frequency spectrum, uses the distribution of alleles in a 

population to detect deviations from neutral expectation. For instance, Tajima’s D
4
 looks for 

a departure from neutrality as reflected by the difference between low-frequency and 

intermediate frequency variants, and Fay and Wu’s H
5
 focuses on differences between high 

and intermediate frequency variants whilst also using ancestral state information.  

The second family, based on population differentiation, focuses on population-specific 

selection pressures and looks for loci where allele frequencies differ between populations to a 

greater extent than expected. As a result, population differentiation-based statistics have the 

highest power to detect selection in variants that are fixed in a given population – in contrast 

to the previous measures comparing different variants at a given locus and thus suitable only 

for incomplete sweeps. Typical examples of this family are statistical tests based on Wright’s 

fixation index (FST)
6
. This index measures the proportion of genetic variance contained in a 

subpopulation, relative to the total population: 𝐹𝑆𝑇 =
𝜎𝑆

2

𝜎𝑇
2, where 𝜎𝑆

2 is the variance in the 

frequency of an allele between different subpopulations, weighted by the sizes of the 

subpopulations and 𝜎𝑇
2 is the variance of the allelic state in the total population. 

The third family, based on linkage disequilibrium (LD), looks for regions of strong LD 

surrounding the beneficial allele; in other words, it focuses on the low diversity around a 

given allele at a specific location (long linked regions, also called haplotypes). Two common 

examples of such tests are the integrated Haplotype Score
7
 (iHS) and the number of 

Segregating sites by Length
8
 (nSL), with the only difference being in the distance measure 

they use. Both statistics begin by calculating the probability that any two haplotypes carrying 

a chosen allele at a chosen, focal SNP are identical up to a certain distance away from the 

focal SNP. This probability is then integrated over all possible distances and compared to the 

integral from other variants at the same locus as a baseline. iHS, the most commonly used 

LD-based selection test, measures distance in the metric 4Nr, where N is the effective 

population size and r is the recombination rate per generation. nSL is a more recent statistic; it 



Chapter 5  Behaviour of selection statistics in a spatially explicit, neutral 

demographic model 

 

 

156 

 

uses the number of alleles in the remaining haplotypes in the data set in the same region as a 

distance measure. Therefore, nSL does not require a fine estimation of recombination rates 

and was shown to be more robust to recombination rate variation
8
. A third LD-based statistic 

is the cross-population extended haplotype homozygosity
9
 (XP-EHH), which is similar to 

iHS but compares integrated haplotype homozygosities between variants in different 

populations instead of different variants in the same set of individuals. Therefore, XP-EHH 

does not require the presence of alternative alleles at the focal locus and can work also for 

fixed variants, similarly to population differentiation-based statistics. 

A strong warning that using different methods together is not without problems comes from 

the low congruence in the loci they detect as under selection. Some researchers combine 

multiple metrics to look for regions that consistently score highly, either through composite 

measures (e.g. composite likelihood ratio
10

), or by applying the methods separately, and 

focusing on shared outlier windows
3,11,12

. Both of these approaches are based on the 

assumption that false signals would be correlated to a lesser extent than those arising from 

selection, and thus false positives would be excluded from shared signals. However, the 

extent to which signals become more correlated under different cases of selection is not well 

known, and different statistics are sensitive for different kinds of selection and/or selection 

acting on different timescales. Furthermore, a complete lack of correlation would not be 

expected even in genomic regions that are completely neutral. In fact, multiple populations 

are likely to be influenced by the same confounding demographic processes and, from the 

signal side, different statistics can be sensitive to similar confounding effects. In order to 

disentangle signals of selection from false positives caused by demographic events and assess 

significance, we need a realistic demographic model to explore the null distributions of these 

quantities. 
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5.4 Methods 

5.4.1 Spatially explicit demographic model 

Here I applied an individual-based, climate-driven, spatially explicit demographic model 

(Figure 5.1) created in C++, which was previously used to investigate the effect of climate on 

human dispersal
1
 (using data from microsatellite markers) and the peopling of the Americas

2
 

(based on SNP-data).  

In the model, the Earth was divided into hexagons that could be inhabited by separate 

populations (Figure 5.1A). Each hexagon was roughly 100km wide and was characterised by 

the maximum number of individuals it could sustain (carrying capacity), with local 

population growth following a simple logistic growth model. Palaeoclimate reconstructions 

based on the Hadley Centre model HadCM3 were used to determine sea level (defining 

which hexagons were above water at any point in time), ice coverage (which made some land 

hexagons uninhabitable), and vegetation. Vegetation was quantified in terms of Net Primary 

Productivity (NPP), which was used as a measure of available resources. The local carrying 

capacities were then scaled by a saturating function (Figure 5.1B) of the local NPP. The 

relationship between carrying capacity and NPP was a continuous, piecewise linear function: 

zero below a lower habitability threshold, the maximal carrying capacity above an upper NPP 

threshold and linearly increasing in-between. 

Migration was allowed between neighbouring hexagons, with empty hexagons potentially 

colonised from inhabited neighbours if the neighbours’ carrying capacity was reached (Figure 

5.1C). The simulation was initiated with a population in a single hexagon in East Africa, 

spreading by the successive colonisation of neighbouring.  

The parameters determining the conversion between NPP and carrying capacity (threshold 

NPP values for inhabitability and for reaching maximal carrying capacity), as well as 
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unknown demographic parameters (growth, migration and colonisation rates), the length of 

the simulation and the global maximal carrying capacity were fitted based on genetic data 

(see section 5.4.2).  The resulting demography was simulated in a stochastic, individual-based 

framework. 

While running the demography forward, reconstructing the last 120k years of human 

demographic history and the major expansion out of Africa, time-series of population sizes 

and migration events were recorded. Using these time-series, genealogies were simulated 

backwards based on the Fisher-Wright coalescent model, with or without recombination. 

Non-recombining sequences were used to fit the model and recombining ones to calculate the 

amount of overlap between statistics/populations. Finally, sequences of fixed length were 

generated by distributing mutations along the genealogies with a constant rate and inferring 

the resulting alleles at the tips of the genealogies. 

The whole simulation framework was coded in C++. The modules for sequence generation 

upon both non-recombining (tree-like) and recombining (network-like) genealogies were 

developed as part of the work for this chapter, while the upstream part of the framework 

(demographic simulation and genealogy generation) were developed by Anders Eriksson for 

previous projects
1,2

. 
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Figure 5.1 Illustration of the spatial demographic model. A. Carrying capacities are a saturating function of 

NPP. B. The Earth is divided into equally-sized, roughly 100km wide hexagons. C. Neighbouring cells are 

connected through migration and colonisation. D. Genealogies are simulated given the number of individuals 

per cell and generation and the number of migrants per pairs of cells and generation. Mutations are generated on 

these genealogies and their effects on the sequences of each simulated sample is inferred. 
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5.4.2 Refitting the model 

5.4.2.1 Rationale and comparison to previous versions 

To make the existing model suitable for the study of selection, a few adjustments had to be 

made to the original framework
1,2

: we had to use a different dataset and an additional 

summary statistic during the fitting procedure. Given these changes, I needed to refit our 

model to acquire realistic demographic parameter sets. 

Selection scans are generally based on a large number of whole genomes. However, in the 

previous model versions, only microsatellite
1
 and SNP-based

2
 panels were used, mostly with 

small sample sizes per population (down to a single representative diploid sample). To enable 

direct comparison between data and model output, I chose to use the 1000 Genomes Phase 3 

dataset
13,14

 instead, which includes whole-genome data from a high number of samples per 

population. Furthermore, this dataset has previously been used to study selection
15–17

, and 

consists of populations covering most large geographic areas (with the exception of Oceania 

and Australia). 

Furthermore, our initial investigations showed that although I acquired well-fitting values for 

FST and iHS using demographic parameters fitted through TMRCA values only
1,2

, in that the 

model output was within the variation seen in data, I generally did not get realistic Tajima’s 

D values. Although the general trend of increasing mean D values with distance from Africa 

was present to a similar extent in both observed data and our simulations, the mean values 

were higher in the former, with the exception of a subset of parameter values associated with 

stronger bottlenecks. Therefore, I supplemented the TMRCA-based summary statistics 

previously used to fit the model
1,2

 with continental-level means of Tajima’s D.  
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5.4.2.2 Statistics from the spatial simulation 

The following summary statistics were calculated on the simulated data: average times to the 

most recent common ancestor (TMRCA) within and between populations, as well as 

Tajima’s D for each population. To save computational time, TMRCA was calculated 

directly from the simulated genealogies, but it was also verified using the 𝜋-based estimator 

from section 1.4.1.2, applied on the generated sequences. The results from the 𝜋-based 

estimator were more noisy than those directly from genealogies, but converged to the same 

results given enough (more than ~1000) generated genealogies. All statistics were calculated 

in modules within the modelling framework coded in C++. 

Average nucleotide diversity (𝜋) and Tajima’s D were calculated according to definition: 

〈𝜋〉𝑎𝑏 =
1

2𝑁𝑎(2𝑁𝑏 − 𝛿𝑎𝑏)
∑ ∑ 𝜋𝑖𝑗

2𝑁𝑏

𝑗=1

,

2𝑁𝑎

𝑖=1

 

𝐷𝑎 =
〈𝜋〉𝑎𝑎 −

𝑆𝑎

𝑎1

√𝑒1𝑆𝑎 + 𝑒2𝑆𝑎(𝑆𝑎 − 1)
, 

Where 〈𝜋〉𝑎𝑏 is the average nucleotide difference between populations a and b, 2𝑁𝑎 and 2𝑁𝑏 

are the number of haploid sequences in populations a and b, 𝜋𝑖𝑗 is the number of nucleotide 

differences between sequences i and j, 𝑆𝑎 is the total number of polymorphisms in population 

a, and a1, e1 and e2 are normalising factors calculated as follows: 
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𝑒1 =
𝑐1

𝑎1
 𝑒2 =

𝑐2

𝑎1
2 + 𝑎2

 

𝑐1 = 𝑏1 −
1

𝑎1
 𝑐2 = 𝑏2 −

𝑛 + 2

𝑎1𝑛
+  

𝑎2

𝑎1
2  

𝑏1 =
𝑛 + 1

3(𝑛 − 1)
 𝑏2 =

2(𝑛2 + 𝑛 + 3)

9𝑛(𝑛 − 1)
 

𝑎1 = ∑
1

𝑖

𝑛−1

𝑖=1

 𝑎2 = ∑
1

𝑖2

𝑛−1

𝑖=1

 

 

 I then scaled π values by the mutation rate to obtain an estimate of TMRCA, as follows: 

𝑇𝑎𝑏 =
〈𝜋〉𝑎𝑏

2𝜇𝐿
, 

where 𝑇𝑎𝑏 is the estimated TMRCA between populations a and b, µ is the mutation rate per 

nucleotide and time unit, L is the number of loci and 〈𝜋〉𝑎𝑏 is the average nucleotide 

difference between populations a and b. 

I used a mutation rate of 1.276x10
-8

 per nucleotide per generation, which was calculated by 

counting the number of mutations in one generation in our 10k windows from 
18

. This 

mutation rate was similar to the mean mutation rate over the whole genome (1.202 x10
-8

 per 

nucleotide per generation), as calculated in the same publication
18

. 

5.4.2.3 Statistics from the 1000 Genomes data 

I estimated the summary statistics, Tajima’s D and TMRCA, from the 1000 Genomes Phase 3 

dataset
13,14

. I first downloaded vcf files of genotype data from all populations from the 1000 

genomes data portal (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) and then 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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filtered both genetic positions and populations before extracting windows from which to 

calculate the statistics. 

○ Filtering samples 

I excluded populations of African origin that were sampled in the Americas (ASW and 

ACB), due to their mixed origin within Africa and the presence of European admixture in 

their genomes
13

. I also excluded the Finnish samples because they had an unusually high 

Tajima’s D value compared to other European populations, likely because they are 

genetically isolated with severe bottlenecks in their history, experienced an unusually low 

amount of admixture and could have less internal structure than other, larger populations
19

. I 

also excluded highly admixed Native American populations (CLM, PUR and MXL), as seen 

on the ADMIXTURE analysis
13

. I kept the least admixed Native American population in the 

dataset, the Peruvians (PEL), but I only considered data with Native American ancestry on 

both chromosomes. Ancestry was inferred using RFMix in Martin et al. 2017
20

, and the data 

was provided by Alicia Martin. I selected the 10,000 windows (for details, see “Filtering 

positions”) in regions with the highest amount of Peruvian samples with purely Native 

American ancestry available, which increased the number of such samples available at all of 

our windows to 45. The selected populations, their size and their assignment to continental-

level groupings are shown in Table 5.1. 
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Table 5.1 Populations from the from the 1000 Genomes Phase 3 dataset
13,14

 that were used to fit the model. 

Population 
code 

Population 
name 

Superpopulation 
name 

Number of 
samples 

Longitude Latitude 

PEL Peruvian American 45* -12.06 -77.02 

GWD Gambian African 113 13.38 -16.33 

MSL Mende African 85 8.52 -11.84 

ESN Esan African 99 9.06 7.35 

YRI Yoruba African 108 7.52 3.9 

LWK Luhya African 99 0.6 34.78 

TSI Tuscan European 107 43.52 11.33 

IBS Spanish European 107 40.39 -3.7 

GBR British European 91 51.61 0.1 

CEU CEPH European 99 46.74 2.48 

PJL Punjabi South Asian 96 31.54 74.35 

ITU Indian South Asian 102 17.47 78.69 

BEB Bengali South Asian 86 23.68 90.22 

STU Sri Lankan South Asian 102 7.19 80.61 

GIH Gujarati South Asian 103 23.26 71.06 

CHS Southern Han 
Chinese 

East Asian 105 22.65 113.99 

KHV Kinh Vietnamese East Asian 99 10.81 106.65 

CDX Dai Chinese East Asian 93 22.01 100.81 

CHB Han Chinese East Asian 103 40.09 116.24 

*Restricted to samples with purely Native American ancestry in the selected 10,000 windows. The windows 

could come from a different set of Peruvian individuals for different windows. 
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○ Filtering positions 

I excluded the following regions in the genome considered as problematic: regions with poor 

alignment quality, recombination hotspots, regions of poor mapping quality, duplications, 

regions under selection (genes and conserved elements), repetitive regions and positions with 

systematic sequencing errors. I applied the following filters from Kuhlwilm et al. 2016
21

, 

provided by Ilan Gronau: 

 filter_hotspot1000g: Recombination hotspots 

 filter_Map20: Sites with poor mapping quality 

 filter_rmsk20: Recent duplications 

 filter_segDups: Recent segmental duplications 

 filter_selection_10000_100: Gene exons together with the 1 kbp flanking regions in 

each direction and conserved non-coding sequences corresponding to PhastCons 

elements 

 filter_simpleRepeat: Simple repeats 

 filter_SysErrHCB and filter_SysErr: Positions with systematic sequencing errors 

For more details, see Supplementary SI 8 in Kuhlwilm et al. 2016
21

. 

I then considered windows containing 10kb unfiltered sites with at most 30% of the sites 

missing. I did not impose a minimal separation between the windows, but my previous 

investigation on 1kb windows with/without 10kb separation showed no change in the 

resulting statistics. This procedure yielded in 12,662 windows. 

Last, I pruned our windows to increase the number of available Peruvian individuals with 

purely Native American diploid ancestry tracts at all of our windows. At keeping the 10,000 

windows with the highest number of available such tracts, I could acquire data from 45 

individuals (down from the original 85 diploid samples). For each window, I choose 45 
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individuals at random out of those with Native American ancestry on both chromosomes, 

thus potentially using different sets of individuals for different windows. This procedure 

generated diploid individuals that were a mosaic of Native American tracts from different 

samples. I then treated these generated diploid individuals in the same way as the rest of our 

samples.  

I also attempted to keep Mexican individuals, but I only managed to keep 18 of them out of 

the original 64, even with a strong pruning down to 5000 windows. Such a low number of 

windows resulted in an unequal distribution of windows across chromosomes, and reduced 

the number of available Peruvians down to 37. I thus decided to keep only the Peruvians in 

the final dataset. I also attempted to allow a mix of individuals within a single window, but 

the Native American ancestry tracts were long enough in comparison to our window size so 

that this would not have increased the number of retained samples. 

○ Calculating statistics 

I extracted the chosen 10,000 windows from the filtered population set, applied the above 

mentioned filters and considered only biallelic sites; using vcftools 0.1.15
22

. I then calculated 

counts of the two alleles per population and chromosome, also using vcftools 0.1.15
22

. For 

the Peruvians, I first created per-individual filters, including only those windows where that 

particular individual was chosen. I then used these allele counts to calculate average pairwise 

π within and between populations, as well as Tajima’s D within populations, using custom 

scripts in Python based on their definitions (for the formulas, see Section 5.4.2.2). 

In the final step, I calculated mean TMRCA-s and Tajima’s D for our continental groups: 

Africa, Europe, Asia and America. I pooled South Asian and East Asian population, since 

their corresponding summary statistics were linearly dependent on each other. I chose a 

subset of the summary statistics for fitting the model, to exclude statistics linearly dependent 

on each other (Supplementary Figure D.1-7 in Appendix D.1). In particular, TMRCA within 
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Africa was determined by TMRCA between African and Europe and TMRCA-s between 

non-neighbouring continental groups were determined by neighbouring ones (Africa – Asia 

by Africa – Europe, Africa – America by Asia – America, etc.). Finally, the statistics I used 

were mean Tajima’s D from all four continental groups, mean TMRCA from all groups 

except Africa and mean between-population TMRCA between neighbouring groups (Africa – 

Europe, Europe – Asia and Asia – America). The observed summary statistics are shown in 

Table 5.2. 

 

Table 5.2 Observed summary statistics from the 1000 genomes data. 

Summary statistic Acronym Value 

Tajima’s D within Africa D_AF -0.6195 

Tajima’s D within Europe D_EU -0.0974 

Tajima’s D within Asia D_AS -0.1433 

Tajima’s D within America D_AM 0.5654 

TMRCA between Africa and Europe T_AF_EU [years] 57791.69 

TMRCA within Europe T_EU_EU [years] 43545.74 

TMRCA between Europe and Asia T_EU_AS [years] 51362.65 

TMRCA within Asia T_AS_AS [years] 44450.85 

TMRCA between Asia and America T_AS_AM [years] 48151.22 

TMRCA within America T_AM_AM [years] 34784.69 
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5.4.2.4 Fitting procedure 

To fit the model, I sampled 100,000 input parameter sets, performed a single demographic 

run and simulated 200x10kb sequences along independent (non-recombining) genealogies for 

each. I first sampled the input parameters from wide prior distributions (Table 5.3) for the 

demographic input parameters and recorded TMRCA-s and Tajima’s D at the population-

level for all simulations. Due to problems with the resulting posterior distribution of 

parameters, I also sampled parameter sets from the central 99% of the posterior distributions 

of each parameter from Raghavan et al.
2
 (Table 5.4), which was obtained through fitting to a 

panel of genomes more densely and homogeneously distributed across the globe but with a 

lower sample size per population, up to only 2 diploid genomes per population. This latter, 

narrow posterior is what I used for further investigations. 

 

Table 5.3 Wide parameter ranges for ABC sampling. Generation time is assumed to be 25 years
1
. 

Parameter Acronym Low limit High limit Sampling 

Simulation time [generation] tSim 1000 8000 Linear 

Migration rate [1/generation] m 0.0001 0.166666 Logarithmic 

Colonisation number c 10.0 5000.0 Logarithmic 

Growth rate [1/generation] r 0.3 1.00 Logarithmic 

Maximal carrying capacity K 1000 100000 Logarithmic 

Low NPP offset npp_offs_low 0.001 0.1 Linear 

High NPP offset npp_offs_high 0.001 0.5 Linear 

Ancestral carrying capacity Ka 1000 100000 Logarithmic 

Initial carrying capacity K0 22000 30000 Logarithmic 
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Table 5.4 Narrow parameter ranges for ABC sampling. Generation time is assumed to be 25 years 
1
. 

Parameter Acronym Low limit High limit Sampling 

Simulation time [generation] tSim 4677 8172 Linear 

Migration rate [1/generation] m 0.0000575 0.16666 Logarithmic 

Colonisation number c 33.60 1817.61 Logarithmic 

Growth rate [1/generation] r 0.370 1.000 Logarithmic 

Maximal carrying capacity K 872.57 14269.21 Logarithmic 

Low NPP offset npp_offs_low 0.0191 0.0388 Linear 

High NPP offset npp_offs_high 0.0134 0.0872 Linear 

Ancestral carrying capacity Ka 88.49 14167.72 Logarithmic 

Initial carrying capacity K0 17290.02 29737.19 Logarithmic 

 

I filtered out simulations where any cell with a sampled population was empty. For these 

runs, I first calculated TMRCA-s directly from the genealogies and Tajima’s D from the 

generated sequences and then used a custom Matlab script to aggregate population-level 

means into continental-level quantities, used as summary statistics. Finally, I used 

ABCestimator from ABC toolbox
23

 to estimate posterior distributions for all inputs. I used 

the standard ABC-GLM estimator in the toolbox, standardizing all statistics prior to the 

estimation, retaining 200 simulations for the posterior estimation, using Dirac peaks with a 

width of 0.01 for smoothing the marginal posterior distribution and calculating the marginal 

posterior density on 200 points. 

5.4.3 Overlap between different statistics 

I used the neutral demographic model to investigate how different statistics behave when the 

confounding effects of space and population history are taken into account. I focused on a 
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commonly used statistic from each group: allele frequency spectrum-based Tajima’s D, 

population differentiation-based FST and linkage disequilibrium-based iHS. I measured the 

amount of overlap between different statistics and different populations and compared our 

estimates to the relevant quantities computed for neutral genomic windows from the 1000 

Genomes Phase 3 dataset
13,14

, in order to investigate which statistics suggest similar 

processes and to what extent purely demographic signals in different populations are 

correlated. 

5.4.3.1 1000 Genomes data 

For the 1000 genomes data, I used the same windows as used for fitting TMRCAs and 

Tajima’s D. I estimated FST using vcftools 0.1.15
22

, implementing Weir and Cockerham’s 

estimator
24

 and used Tajima’s D as calculated when fitting the model.  

To calculate iHS
7
, I first estimated genetic distances in these windows. To acquire data for all 

our SNP-s, I linearly interpolated the genetic map generated by the HapMap 2 Project
25

. This 

map, which is an average over recombination rates in the CEU, YRI, and ASN populations, 

was lifted over to hg19 by Adam Auton and is available at ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_hotspots/. I 

then calculated iHS scores on the vcf-formatted data from the chosen populations and 

windows using selscan
26

, a multi-threaded program capable of calculating linkage-based 

selection statistics efficiently. I finally calculated the proportion of significant (|Z| > 2) iHS 

scores in each 10kb-long window, as suggested by Voight et al.
7
 and following Clemente et 

al.
11

. 

  

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_hotspots/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106_recombination_hotspots/
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5.4.3.2 Simulation 

I used our spatial model to generate data equivalent to the windows from the 1000 genomes 

data. To simulate recombining sequences needed for linkage disequilibrium-based statistics 

like iHS, I used a modified version of our spatial framework, which generated a network of 

recombining genealogies instead of separate trees. I generated sequences upon these 

networks, which could then be analysed in the same way as for the 1000 Genomes data. 

Generating such sequences is computationally expensive, therefore I used only the 5 best-

fitting demographic parameter sets (Table 5.5). For each parameter set, I simulated five 

4Mbp-long recombining sequences either with a constant or a variable recombination rate. In 

order to set recombination rates, I estimated the mean recombination rate in each 10kb 

window by summing the genetic distances within that window from the HapMap 2 Project
25

, 

linearly interpolating the distance at the border of the windows, and scaled genetic distances 

back to recombination rates. I used the mean recombination rate over all 10kb windows, 

0.7961 cM/Mbp, as our constant recombination rate.  

Since a study found that the effect of a varying recombination rate was necessary to reach 

realistic levels of signal-sharing
27

, I also generated equivalent data with a non-uniform 

recombination rate in our model. For this investigation, I chose a recombination rate 

uniformly at random for each simulated window from the 10,000 mean recombination rates 

from the windows used for fitting the model, calculated as detailed before. 
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Table 5.5 Parameters for the five best-fitting simulations 

Parameter 1 2 3 4 5 

Simulation time [generation] 5821 5533 7634 4840 6309 

Migration rate [1/generation] 0.000160 0.000401 0.000104 0.001138 0.000162 

Colonisation number 0.0267 0.0355 0.0254 0.0935 0.0851 

Growth rate [1/generation] 0.3975 0.4976 0.5851 0.9964 0.3838 

Maximal carrying capacity 13696.6 6747.3 14245.6 5348.1 12719.6 

Low NPP offset 0.0252 0.0245 0.0293 0.0245 0.0253 

High NPP offset 0.0290 0.0256 0.0351 0.0344 0.0399 

Ancestral carrying capacity 1114.2 565.9 1318.7 174.3 457.5 

Initial carrying capacity 26370.5 27397.3 26383.7 26731.6 26726.2 

 

5.4.3.3 Calculating overlaps 

Finally, I calculated the amount of overlap between pairs of statistics and populations 

focusing on one population per continental group: the Yoruba (YRI) for Africa, Utah 

residents (CEPH) with Northern and Western European ancestry (CEU) for Europe, the Han 

Chinese (CHB) for Asia and the Peruvians (PEL) for the Americas. In each case, I ordered 

the windows according to their significance and calculated the proportion of windows in the 

top X percent on one statistic which is included in the top Y percent of the other statistic; 

keeping Y fixed and varying X. 

To compare the closeness of populations and the overlap between different populations using 

the same statistics, I calculated the mean FST values. For each pair out of the four chosen 

populations, I averaged FST values over all 10,000 windows. The resulting values are shown 

in Table 5.6. 
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Table 5.6 Average FST 

 YRI CEU CHB PEL 

YRI  0.1322 0.1539 0.1765 

CEU 0.1322  0.0971 0.1283 

CHB 0.1539 0.0971  0.0974 

PEL 0.1765 0.1283 0.0974  

5.5 Results 

5.5.1 Refitting the model 

First, I refitted our model to a curated version of the 1000 Genomes Phase 3 dataset
13,14

. 

When I fitted the simulated data to the observed quantities from the 1000 Genomes using a 

wide prior distribution (Table 5.3), I found that a proportion of the best fits came from 

unusually short simulations (Figure 5.2). These resulted in a rapid dispersal all across the 

globe, unrealistically uniform arrival times and hardly any effect of climate: even very low 

lower npp thresholds (npp_offs_low) were possible, meaning that areas with unfavourable 

climate were still habitable. This was not only contrary to the current consensus view of 

human evolution, but had also not been found in previous applications of the framework
1,2

. A 

possible reason to this discrepancy could be the sparse spatial distribution of the populations 

in the 1000 Genomes dataset, not providing enough information to distinguish between 

alternative dynamics on a fine geographic and temporal scale. 
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Figure 5.2 Posterior distributions of each parameter after fitting the model the original, wide priors (Table 5.3). 

Each panel shows the estimated posterior density as a function of parameter value for different demographic 

parameters. The x axis is on a log-scale for parameters with a logarithmic prior. The red vertical bars represent 

the median, with its value displayed.. 

 

When I used the narrow ranges for the prior distribution (Table 5.4),  the posterior 

distributions of fitted demographic parameters were similar to those seen in previous 

applications of this modelling framework
1,2

 (Figure 5.3). These parameters highlighted the 

effect of climate on population history by requiring a high lower npp threshold 

(npp_offs_low), which prevents humans from inhabiting areas with an unfavourable climate. 

Furthermore, I obtained values of TMRCA and Tajima’s D with these priors which were 

equally well-fitting to the data, but derived from globally feasible scenarios and only used 

realistic areas of the parameter space. Therefore, I used the parameter sets obtained from this 

second fit for the rest of my results. 
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Figure 5.3 Posterior distributions of each parameter after fitting the model on priors in the central 95% interval 

of posteriors from Raghavan et al
2
 (Table 5.4). Each panel shows the estimated posterior density as a function of 

parameter value for different demographic parameters. The x axis is on a log-scale for parameters with a 

logarithmic prior. The red vertical bars represent the median, with its value displayed.. 

5.5.2 Overlap between different statistics and populations 

I then compared neutral windows from the 1000 Genomes Phase 3 dataset
13,14

 with simulated 

recombining windows from our neutral model, with a constant or a varying recombination 

rate. The amount of overlap between different statistics was generally higher in the 1000 

Genomes data than what our model produced, regardless of whether the recombination rate 

was fixed or variable (Figure 5.4 to Figure 5.7). This is in contrast with Pagani et al.
27

, who 

obtained similar levels of between-statistic overlap from a simple demographic model to what 

was seen in the data, as long as recombination rate was not fixed. Potential causes for this 

difference are that our model struggles to capture severe bottlenecks and extinction-

recolonisation events, or the effect of selection in the human genome even in regions flagged 

as “neutral”. 
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Figure 5.4 Overlap between different statistics for the Yoruba (YRI). First 5% of the windows that scored 

highest on statistic 1 were chosen. Then, a fixed percentile (x axis) of the windows that scored highest on 

statistic 2 was recorded. Finally, the amount of overlap was measured as the proportion of high-scoring 

windows from statistic 2 that were also in the top 5% windows on statistic 1. The legend displays the names of 

statistics 1 and 2, in that order. Black line marks 0.05, which is the expectation from purely random, 

independent statistics. A. Simulation with a fixed recombination rate. B. Simulation with a variable 

recombination rate. C. 10,000 selected neutral windows from the 1000 Genomes data. 
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Figure 5.5 Overlap between different statistics for Utah residents of European ancestry (CEU). First 5% of the 

windows that scored highest on statistic 1 were chosen. Then, a fixed percentile (x axis) of the windows that 

scored highest on statistic 2 was recorded. Finally, the amount of overlap was measured as the proportion of 

high-scoring windows from statistic 2 that were also in the top 5% windows on statistic 1. The legend displays 

the names of statistics 1 and 2, in that order. Black line marks 0.05, which is the expectation from purely 

random, independent statistics. A. Simulation with a fixed recombination rate. B. Simulation with a variable 

recombination rate. C. 10,000 selected neutral windows in the 1000 genomes data. 
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Figure 5.6 Overlap between different statistics for the Han Chinese (CHB). First 5% of the windows that scored 

highest on statistic 1 were chosen. Then, a fixed percentile (x axis) of the windows that scored highest on 

statistic 2 was recorded. Finally, the amount of overlap was measured as the proportion of high-scoring 

windows from statistic 2 that were also in the top 5% windows on statistic 1. The legend displays the names of 

statistics 1 and 2, in that order. A. Simulation with a fixed recombination rate. B. Simulation with a variable 

recombination rate. C. 10,000 selected neutral windows in the 1000 genomes data. 
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Figure 5.7 Overlap between different statistics for the Native American segments in Peruvians (PEL). First 5% 

of the windows that scored highest on statistic 1 were chosen. Then, a fixed percentile (x axis) of the windows 

that scored highest on statistic 2 was recorded. Finally, the amount of overlap was measured as the proportion of 

high-scoring windows from statistic 2 that were also in the top 5% windows on statistic 1. The legend displays 

the names of statistics 1 and 2, in that order. Black line marks 0.05, which is the expectation from purely 

random, independent statistics. A. Simulation with a fixed recombination rate. B. Simulation with a variable 

recombination rate. C. 10,000 selected neutral windows in the 1000 genomes data. 

 

Regarding the amount of signal-sharing between different populations, the model could 

reproduce what is seen in the data for populations from the same continent on Tajima’s D 

(Figure 5.8). The amount of overlaps from populations in different continents was slightly 

lower in the simulation than in the data. This could be because our model does not facilitate 

high levels of mixing between populations: it is based on hunter-gatherers and cannot capture 

the increase in mobility that started after the Neolithic transition and accelerated in modern 

times. An alternative explanation would be, if the parts of the human genome not flagged as 

under selection are still affected by natural selection (particularly background selection), for 

example through linkage to loci under selection
28

 or due to their regulatory functions
29

. In 

this case, populations living far away from each other could be subject to different selection 
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pressures, such as through background selection acting against continuously arising new 

alleles, which would decrease the amount of signals they share. For iHS, on the other hand, 

the amount of signal sharing was grossly underestimated in our model (Figure 5.9). I suspect 

that the unusual behaviour of iHS on the neutral windows could be due to the gaps between 

the windows: iHS is not suited for the study of short segments, but there are not enough long 

neutral segments in observed genomes to allow a realistic comparison with our simulations. 

As expected, the amount of signal sharing was highly correlated to how close the populations 

were to each other genetically (Figure 5.10 and Figure 5.11): the highest amount of overlap 

was observed between Eurasian populations, followed by comparisons between neighbouring 

continents (Africa-Eurasia, America-Eurasia) and the lowest concordance was between 

populations from Africa and America.  

 

Figure 5.8 Overlap between pairs of populations in Tajima’s D. First 5% of the windows that scored highest on 

Tajima’s D from population 1 (statistic 1) were chosen. Then, a fixed percentile (x axis) of the windows that 

scored highest on Tajima’s D from population 3 (statistic 3) was recorded. Finally, the amount of overlap was 

measured as the proportion of high-scoring windows from statistic 2 that were also in the top 5% windows on 

statistic 1. The legend displays the names of populations 1 and 2, in that order. Black line marks 0.05, which is 

the expectation from purely random, independent statistics. A. Simulation with a fixed recombination rate. B. 

Simulation with a variable recombination rate. C. 10,000 selected neutral windows in the 1000 genomes data. 
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Figure 5.9 Overlap between pairs of populations in iHS. First 5% of the windows that scored highest on iHS 

from population 1 (statistic 1) were chosen. Then, a fixed percentile (x axis) of the windows that scored highest 

on iHS from population 3 (statistic 3) was recorded. Finally, the amount of overlap was measured as the 

proportion of high-scoring windows from statistic 2 that were also in the top 5% windows on statistic 1.The 

legend displays the names of populations 1 and 2, in that order.  Black line marks 0.05, which is the expectation 

from purely random, independent statistics. A. Simulation with a fixed recombination rate. B. Simulation with a 

variable recombination rate. C. 10,000 selected neutral windows from the 1000 Genomes data. 
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Figure 5.10 Relationship between population differentiation as measured by FST and the amount of overlap of 

Tajima’s D between different populations. The amount of overlap is measured by the proportion of windows in 

the top 5% for both populations, relative to the number of windows in the top 5% on one population. Each dot 

represents a pair out of the four modelled populations (YRI, CEU, CHB and PEL) and the blue line marks the 

result of a linear fit with the shaded area marking its 95% confidence interval, using the ggplot2 package in R
30

. 

A. Simulation with a fixed recombination rate. B. Simulation with a variable recombination rate. C. 10,000 

selected neutral windows from the 1000 Genomes data. 

 

Figure 5.11 Relationship between population differentiation as measured by FST and the amount of overlap of 

iHS between different populations. The amount of overlap is measured by the proportion of windows in the top 

5% for both populations, relative to the number of windows in the top 5% on one population. Each dot 

represents a pair out of the four modelled populations (YRI, CEU, CHB and PEL) and the blue line marks the 

result of a linear fit with the shaded area marking its 95% confidence interval, using the ggplot2 package in R
30

. 

A. Simulation with a fixed recombination rate. B. Simulation with a variable recombination rate. C. 10,000 

selected neutral windows from the 1000 Genomes data 
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5.6 Discussion 

We used a uniquely realistic, neutral demographic model and showed that it could produce 

selection statistics similar to what is seen in neutral parts of the genome. The advantages of 

this model derive from its mechanistic nature: assumptions are only made regarding the 

underlying demographic processes, such as isotropic migration and colonisation and linear 

population growth up to the carrying capacity. Furthermore, the resulting spatial 

reconstruction of human population history can be used to simulate genetic data for any 

chosen population. However, in addition to sufficient computational capacity, the model 

requires detailed geographical and climate data to infer the ecology and therefore the local 

carrying capacities. Furthermore, it only captures the effect of climate, but might miss other 

factors such as cultural or linguistic differences that could also influence population 

demography. Therefore, this model works best for events occurring during the early parts of 

the out-of-Africa expansion, rather than for recent processes such as the Neolithic expansion. 

Even though our model could produce realistic selection statistics, we first had to adjust it to 

the statistics we aimed to reproduce. Some statistics, such as Tajima’s D, were very sensitive 

to demographic parameters: without fitting the model accordingly, we could not obtain values 

similar to those observed. It was also difficult to capture fine-scale geographic patterns: using 

the only dataset available with large enough population sizes, the 1000 Genomes dataset, the 

signal was still not strong enough to distinguish populations from the same continent. 

The quality of our fit could have been improved by using a larger dataset, or by combining 

multiple sources. Unfortunately the latter is particularly problematic, due to incompatibilities 

in the bioinformatics pipeline between different commonly used datasets. For example, the 

1000 Genomes data was treated with a custom pipeline that does not allow for integration 

with other datasets. In the future, such datasets should be reanalysed using a standard pipeline 

and combined with different datasets that provide more spatial breadth in sampling, to 
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compile a reference set with both a high spatial resolution and high enough samples sizes that 

allow scans for natural selection. 

Finally, we found that the amount of signal sharing between different populations within the 

same continent was closely matched between observed and simulated data. However, the 

level of overlap between high-scoring regions for populations from different continents was 

lower in the data than in the simulation, which could be due to the high level of mixing in 

historical times. Signals from different statistics were shared to a lower extent in the 

simulation than in the data, which could point to either our model not capturing certain 

demographic events or that regions of the human genomes that are flagged as “neutral” are 

still affected by natural selection. The latter is also not unreasonable given that signals of 

purifying selection have been detected even in non-coding regions
31

. In this case, populations 

in different continents would be subject to different selection pressures, decreasing signal 

sharing, whereas different selection statistics in the same populations could pick up the same 

signal, thus increasing overlaps.  
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Chapter 6 Explaining spatial patterns of 

adaptation against malaria 

6.1 Abstract 

Malaria is a widespread disease that placed one of the highest selective pressures on the 

human genome over the last 5-10 ky. Numerous alleles provide a level of genetic 

resistance, most of which are associated with blood disorders and thus lead to an 

evolutionary trade-off. These alleles have different spatial distributions, some global 

and some present only in certain populations, with disjoint or overlapping distributions 

between different variants of the same genetic disorder, and the reason for these 

dissimilarities is not well understood. I use a spatially explicit, climate-conditioned 

demographic framework and an empirical map of malaria presence to study the 

dynamics of variants offering genetic resistance against the disease. I aim to infer the 

likely origins of the different variants and to determine which factors are necessary to 

explain the main characteristics of their spatial distribution. I find that our framework 

is incompatible with a single origin for sickle-cell disease and that it can reproduce the 

spatial distribution of variants for sickle-cell disease (disjoint ranges) but not for β
0
 

thalassemia (overlapping pattern). The ability to recover the observed distribution for 

sickle-cell variants show the power of a spatially explicit framework, but the 

incompatibilities with thalassemia highlight the importance of additional mechanisms 

not represented in our model, such as long-distance and/or large-scale migrations and 

differences in the time of appearance of different variants and selection pressures. 
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6.2 Contribution 

I conducted the analysis and wrote the manuscript for this chapter, with the exception of the 

following two points. The map for the spatial distribution of malaria endemicity was 

digitalised by Michela Leonardi and the base of the demographic model was created by 

Anders Eriksson (for the description and contributions to the model, see Chapter 5). 

6.3 Introduction 

6.3.1 Malaria and protective genetic disorders 

Malaria is linked to one of the strongest selection pressures in the population history of 

anatomically modern humans and multiple alleles are associated with a protective effect 

against it. Due to this strong environmental connection, malaria also lead to one of the 

earliest hypothesis about the relationship between an infection and a genetic disease, 

proposed by Haldane in 1948
1,2

. Protective alleles most commonly affect the hemoglobin or 

other molecules that are essential for red blood cell function and are associated with a 

negative effect on fitness in malaria-free regions through the corresponding blood disorders. 

Balancing selection maintains these alleles despite their deleterious effect and they appear at 

high frequencies in regions where malaria is endemic
3
. The selection pressure associated with 

malaria is thought to be recent (last 5-10k years or less)
3,4

 and linked to the lifestyle changes 

and increased population density following the Neolithic transition. 

Sickle cell disease (β
S
) and the severe form of β

.
thalassemia, β

0
 thalassemia, are two 

particularly well-studied, classical examples of genetic disorders that increase resistance to 

malaria. In the heterozygous form, these alleles offer a protective effect against malaria with 

hardly any negative effects, whereas homozygote mutants suffer from the associated severe 

blood disorders. In the absence of early diagnosis and treatment, these disorders generally 

lead to death within the first few years of life. Both sickle cell disease and β
0
 thalassemia are 
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inherited through a set of different haplotypes, i.e. a set of genetic alleles, including the 

variant under selection, that are located on the same chromosome within close proximity and 

are inherited together. Sickle-cell disease is caused by a single mutation (HBB c. 20 A → T; 

p. Glu6-Val) and is associated with five “classical” restriction fragment length polymorphism 

haplotypes
5,6

 named Bantu, Benin, Arab-Indian, Senegal and Cameroon haplotypes after the 

areas where they were first discovered. β
0 

thalassemia, on the other hand, can be caused by 

any mutation that completely eliminates protein production from the β-globin gene. As a 

result, there are many more β
0
 thalassemia variants than sickle-cell disease variants: 163 

different mutations are reported (as queried from http://globin.bx.psu.edu/cgi-

bin/hbvar/query_vars3 on 22 April 2018), and many of them can appear on multiple 

haplotypes. 

6.3.2 Variants of protective disorders 

The origins of the different variants are still not well-understood, even though this is a crucial 

piece of information for modelling studies. Most variants offering resistance to malaria are 

thought to be the result of recent mutations that arose at most 5-10k years ago
3
. For sickle-

cell disease, the five “classical” haplotypes were traditionally thought to be the result of 

independent mutations
5
. However, a recent study by Shriner & Rotimi

7
, based on the analysis 

of whole-genome sequence data and a systematic identification of haplotypes, points to a 

single origin roughly 259 generations ago (~6,5ky ago using a generation time of 25 years). 

This would then be followed by a spatial expansion and diversification and finally an increase 

in frequency due to the appearance of the strong malaria-related selection pressure. The 

authors inferred that the single original mutation arose in West or Central Africa 395-123 

generations ago, possibly linked to the last Green Sahara phase in the middle of the Holocene 

Wet Phase that lasted from 9,500-9,000 years ago until 5,500-5,000 years ago.  

Different causal mutations for the β
0
 haplotypes, on the other hand, are clearly independent, 

but different haplotypes with the same causal mutation are thought to be the result of gene 

http://globin.bx.psu.edu/cgi-bin/hbvar/query_vars3
http://globin.bx.psu.edu/cgi-bin/hbvar/query_vars3
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conversion
8
. Since gene conversion is not represented in our framework, we modelled 

haplotypes as variants for sickle-cell disease, but different causal mutations, regardless of the 

haplotype background, as variants for β
0
 thalassemia. 

The spatial distributions of different variants for these two disorders are remarkably different. 

Neither of them is present globally, but both have a wide distribution: sickle-cell disease is 

prevalent all over Africa, the Near East and in India, and β
0
 thalassemia is found throughout 

Eurasia
9
.  The five “classical” sickle-cell haplotypes have largely disjoint spatial 

distributions
10

 (Table 6.2 and Figure 6.1), but β
0
 thalassemia shows an overlapping 

distribution, with multiple variants present in any studied region
10

 (Table 6.4, Table 6.5 and 

Figure 6.2). Previous modelling work using a homogeneous metapopulation model inferred 

that the prerequisites of a disjoint, sickle cell-like pattern were high population subdivision, 

low migration rate and the absence of long-distance migration, whereas the opposite was true 

for overlapping, thalassemia-like patterns. 

6.3.3 Aim of this study 

In this chapter, I explore whether a discrete-time, spatially explicit model can explain these 

two contrasting patterns. I aim to answer three questions: where different variants of the same 

disorder originated from, whether our model can produce realistic variant distributions (both 

disjoint sickle-cell-like and overlapping thalassemia-like patterns) and if a single origin for 

sickle-cell disease is plausible even in the absence of long-distance migrations.  
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6.4 Methods 

6.4.1 Model 

6.4.1.1 Base model 

The model in this chapter is based on the climate-informed, spatially explicit framework 

introduced in Chapter 5. Only its demographic module was used, but with multiple layers of 

populations to represent the different genetic variants. In the original model, the demographic 

processes were fitted using genetic data (SNP-data) to produce a realistic structure of genetic 

diversity
11,12

, and thus population subdivision and migration rates were constant. The spatial 

structure of populations was explicitly taken into account, but long-distance migrations were 

not included. 

For the main results, I used the best-fitting parameter set from Raghavan et al
12

 (Table 6.1). 

These parameters were fitted using world-wide genetic data and represent the demographic 

parameters suitable to describe human populations in general. The hexagon where the whole 

human population originated from was still the same as in Chapter 5, located at -9.23° 

latitude and 33.25° longitude.  For a sensitivity analysis on parameters that were pre-defined 

using previous results (selection coefficient, demographic parameters and the starting time of 

selection), see Appendix E.2.    
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Table 6.1 Three best-fitting parameter sets from Raghavan et al
12

, used for the main results. 

Parameter 1 2 3 

Simulation time [generation] 6263 6978 5121 

Migration rate [1/generation] 0.00512 0. 001628 0.00144 

Colonisation number 0.00973 0.02820 0.0254 

Growth rate [1/generation] 0.82870 0.60289 0.81939 

Maximal carrying capacity 8952.78 4300.57 6557.33 

Low NPP offset 0.02305 0.02442 0.03144 

High NPP offset 0.02456 0.02504 0.03338 

Ancestral carrying capacity 2587.71 1666.55 1782.3 

 

6.4.1.2 Selection in the framework 

In the new version of the model, each cell could potentially be the home to individuals from 

multiple layers, representing different alleles. Migration was possible between neighbouring 

populations in the same layer, or between different layers in the same cell. For the purpose of 

this study, migration was only modelled within layers: conversion (mutation) between 

different, pre-defined genetic variants was not allowed. The population was initially 

monomorphic for the ancestral allele and the malaria-related alleles all appeared at the same, 

pre-defined time and were characterised by the same selection-related parameters. 

I implemented selection in the framework as a Moran process, with the overall population 

dynamics (growth, migration and colonisation) independent of selection. These processes 

followed the same rules as in the original model described in Chapter 5, but the number of 

individuals affected was calculated based on the total number of individuals in the cell, and 

then re-distributed between variants to represent natural selection. Homozygote mutants were 
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modelled as deleterious, while heterozygotes had an advantage in malarious regions 

(selection coefficient, 𝑠 ≈ 0.1523
) and were neutral otherwise. 

The implemented steps in each generation were therefore as follows, in order of execution: 

1. Count the total number of individuals per cell. 

2. Apply the same rules as in the original model (Chapter 5) to the total number of 

individuals per cell to determine the new population sizes and the number of colonists 

and exchanged migrants. 

3. Re-distribute the number of individuals per layer (including colonists) to represent the 

effect of diploid natural selection with deleterious homozygote mutants: 

𝑝𝑖
′ =

𝑝𝑖(1 − ∑ 𝑝𝑗𝑗 )𝑤𝑖

(1 − ∑ 𝑝𝑗𝑗 )
2

𝑤0 +  2 ∑ 𝑝𝑗𝑗 (1 − ∑ 𝑝𝑘𝑘 )𝑤𝑗

, 

where 𝑝𝑖 is the frequency of variant i at the previous generation, 𝑝𝑖
′ is the frequency of 

variant i at the current (new) generation, 𝑤𝑖 is the fitness of variant i and the ancestral 

variant is indexed 0. 

4. Distribute the number of migrants such that the ratio of the different variants is the 

same as that in the source node at the current (new) generation. 

The selection coefficient 𝑤𝑖 was the same for all variants (ancestral and derived) in areas 

where malaria is not present and 0.868 for the ancestral allele and 1.0 for all derived alleles in 

malarious areas
3
. However, our model was not sensitive to its exact value (see Appendix 

E.2.1 for sensitivity analysis).  

I modelled the variants only after the “turn-on” of malaria-related selection pressure when I 

studied the dynamics of multiple sickle-cell haplotypes and thalassemia variants, which 

means that their origin represented the centre of their area of presence at that time. Therefore, 

variants were modelled in the same way regardless of whether they were the result of 

diversification after a common origin (sickle-cell trait) or independent mutations (β
0 
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thalassemia). For sickle-cell disease, this corresponds to a soft sweep, where the alleles on 

different haplotype backgrounds are part of standing variation. For all of our analysis on 

multiple variants, a selection turn-on time of 200 generations (5000 years) ago was imposed, 

roughly coinciding with the beginning of the migrations of Bantu-speaking populations
3
 (for 

a sensitivity analysis, see Appendix E.2.3). 

6.4.2 Data  

6.4.2.1 Malaria distribution 

To represent the range of malaria, we used a pre-control map of malaria endemicity that was 

previously used to confirm the malaria hypothesis for the sickle-cell trait
13

. This map is based 

on a review from the 1960s by a team of Russian researchers who synthesised historical 

records, documents and maps of several malariometric indices used to record malaria 

endemicity
14

. Combined with expert opinion and data on temperature and rainfall, a unique 

global map of the pre-control distribution of malaria could then be reconstructed at the peak 

of its hypothesized distribution
15

. This map was digitalised using Figure 1C in Piel et al.
13

 by 

Michela Leonardi, which was then converted to a Boolean presence-absence mask for the 

cells of our model, based on the hypoendemic regions of the map. 

6.4.2.2 Variant distributions 

To examine the distribution of variants, I used country-level data assembled from multiple 

sources by Hockham et al
10

. For countries with multiple data sources available, I used the 

mean of the proportions from all sources. The data for sickle-cell disease in Saudi Arabia 

showed a conflicting picture, one study showing an overwhelming majority of the Benin 

haplotype, and the other the same for the Arab-Indian haplotype. The cause of this 

inconsistency in Saudi Arabia is probably due to its large spatial extent that allows different 

modal (most common) sickle-cell haplotypes in different areas
16,17

: Benin in the west and 

Arab-Indian in the east. However, there was no available data on the exact boundary between 
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these regions or on the spatial origin of the ancestors of the individuals from these studies and 

we also had data available from another country on the Arabian Peninsula (Kuwait), so we 

did not use Saudi Arabia for our error estimates. Furthermore, we pooled all Italian studies 

(two from Sardinia and one from Sicily), since our coarse spatial resolution is not capable of 

representing such small scales accurately. 

Due to computational limitations, I only considered the ancestral variant and those that 

reached a frequency of at least 25% in at least one country in the assembled country-level 

frequency data in Hockham et al.
10

. This resulted in four haplotypes for sickle-cell disease 

(Bantu, Benin, Arab-Indian and Senegal) and three mutations for β
0
 thalassemia (Cd39, IVS-

I-1 and FSC-6). I then scaled the proportions of these variants to amount to unity. 

The original data for all variants is shown in Table 6.2 and Figure 6.1 (sickle-cell disease) 

and Table 6.4, Table 6.5 and Figure 6.2 (β
0
 thalassemia), while the resulting proportions of 

modelled variants are in Table 6.3 (sickle-cell disease) and Table 6.6 (β
0
 thalassemia). 
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Table 6.2 Distribution of sickle-cell haplotypes in different geographical regions. Adapted from Table 1 in 

Hockham et al
10

. 

  

Country Arab-
Indian 

Benin Cameroon Bantu Senegal Other Reference 

Angola - 12.00% - 88.00% - - Flint et al., 1998
18

 

Benin - 100.00% - - - - Gabriel and Przybylski, 
2010

19
 

Burkina Faso - 100.00% - - - - Gabriel and Przybylski, 
2010

19
 

Cameroon - 83.70% 16.30% - - - Flint et al., 1998
18

 

Central African 
Republic 

- 6.90% 3.40% 82.80% 3.40% 3.50% Flint et al., 1998
18

 

Kenya - 1.30% - 98.20% 0.00% 0.50% Flint et al., 1998
18

 

Nigeria - 92.90% 3.40% 0.70% 0.90% 2.10% Flint et al., 1998
18

 

Senegal - 14.00% - 1.80% 80.70% 3.50% Flint et al., 1998
18

 

Tanzania, United 
Republic of 

- - - 100.00% - - Flint et al., 1998
18

 

Togo - 100.00% - - - - Gabriel and Przybylski, 
2010

19
 

Algeria - 100.00% - - - - Flint et al., 1998
18

 

Egypt - 100.00% - - - - Gabriel and Przybylski, 
2010

19
 

Morocco - 100.00% - - - - Flint et al., 1998
18

 

Saudi Arabia 1.50% 98.50% - - - - el-Hazmi et al., 1999
17

 

Saudi Arabia 94.00% 0.00% - 4.00% - 2.00% Kulozik et al., 1986
16

 

Kuwait 77.80% 16.70% - - - 5.50% Adekile et al., 1994
20

 

Syrian Arab Republic - 100.00% - - - 0.00% Flint et al., 1998
18

 

Tunisia - 94.80% - - - 5.20% Flint et al., 1998
18

 

Turkey 0.40% 96.30% - - - 3.30% Flint et al., 1998
18

 

Turkey - 100.00% - - - - Gabriel and Przybylski, 
2010

19
 

India 100.00% - - - - - Gabriel and Przybylski, 
2010

19
 

India 90.70% - - - - 9.30% Labie et al., 1989
21

 

India 98.45% - 1.55% - - - Oner et al., 1992
22

 

India 91.67% - 2.78% 1.39% - 4.17% Niranjan et al., 1999
23
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Table 6.3 Proportion of variants used for fitting sickle-cell disease from Hockham et al. 
10

. The proportion of 

modelled variants is the ratio of derived mutants in the original data source that came from a modelled variant, 

while the rest of the percentages refer to the ratio of samples in a variant relative to the number in modelled 

variants. 

Country Proportion in  

modelled variants 

Saudi Benin Bantu Senegal 

Angola 100.0% 0.0% 12.0% 88.0% 0.0% 

Benin 100.0% 0.0% 100.0% 0.0% 0.0% 

Burkina Faso 100.0% 0.0% 100.0% 0.0% 0.0% 

Cameroon 83.7% 0.0% 100.0% 0.0% 0.0% 

Central African Republic 93.1% 0.0% 7.4% 88.9% 3.7% 

Kenya 99.5% 0.0% 1.3% 98.7% 0.0% 

Nigeria 94.5% 0.0% 98.3% 0.7% 1.0% 

Senegal 96.5% 0.0% 14.5% 1.9% 83.6% 

Tanzania 100.0% 0.0% 0.0% 100.0% 0.0% 

Togo 100.0% 0.0% 100.0% 0.0% 0.0% 

Algeria 100.0% 0.0% 100.0% 0.0% 0.0% 

Egypt 100.0% 0.0% 100.0% 0.0% 0.0% 

Morocco 100.0% 0.0% 100.0% 0.0% 0.0% 

Kuwait 94.5% 82.3% 17.7% 0.0% 0.0% 

Bahrain 97.5% 92.3% 2.6% 5.1% 0.0% 

Syria 100.0% 0.0% 100.0% 0.0% 0.0% 

Tunisia 94.8% 0.0% 100.0% 0.0% 0.0% 

Turkey 98.4% 0.2% 99.8% 0.0% 0.0% 

India 95.6% 99.6% 0.0% 0.4% 0.0% 
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Figure 6.1 Most common sickle-cell variant out of modelled variants in countries with data available, as 

collected by Hockham et al
10

.  For numerical data, see Table 6.3.
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Table 6.4 Distribution of β
0
 thalassemia variants in North Africa and the Middle East. Adapted from Table 2 in 

Hockham et al. Haplotype definitions are given in Antonarakis et al
24

. 

 Cd37 
(G->A) 

Cd39 
(C->T) 

IVS-I-1 
(G->A) 

IVS-I-2 
(T->C) 

IVS2-1 
(G->A) 

FSC-8 
(-AA) 

FSC-6 
(-A) 

IVS-I-2 
(T->G) 

Other Reference 

Algeria - 44.59% 18.91% 5.40% - - 27.70% - 3.37% Bennani et 
al., 1994

25
 

Algeria - 50.00% 11.90% 19.05% - - 16.67% - 2.38% Bouhass et 
al., 1994

26
 

Morocco 4.67% 39.26% 7.48% 7.48% 3.74% 20.56% 8.41% 4.67% 3.74% Agouti et al., 
2008

27
 

Morocco 3.51% 24.56% 21.05% 5.26% 1.75% 24.56% 15.79% 0.78% 3.51% Lemsaddek 
et al., 2003

28
 

Morocco 1.55% 37.98% 12.40% 3.10% - 13.95% 19.38% 3.45% 10.85% Lemsaddek 
et al., 2004

29
 

Tunisia - 62.07% - - - 3.45% 3.45% 3.45% 27.59% Fattoum et 
al., 1991

30
 

 

Table 6.5 Distribution of β
0
 thalassemia in Europe. Adapted from Table 2 in Hockham et al. Haplotype 

definitions are given in Antonarakis et al
24

. 

 Cd39 (C->T) IVS-I-1 (G->A) IVS-I-2 (T->C) IVS2-1 (G->A) Cd6 (-A) Other Reference 

Albania 65.00% 15.00% - 5.00% - 15.00% Boletini et al., 1994
31

 

Greece 50.86% 39.66% - 6.03% - 3.45% Boletini et al., 1994
31

 

Macedonia 21.43% 59.52% - 7.14% - 11.90% Boletini et al., 1994
31

 

Sardinia 97.80% 0.04% - 0.04% 2.13% - Cao et al., 1991
32

 

Sicily 79.35% 20.65% - - - - Schiliro et al., 1997
33

 

Sicily 71.92% 18.72% 3.45% 3.94% 1.23% 0.74% Schiliro et al., 1995
34
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Table 6.6 Proportion of variants used for fitting thalassemia from Hockham et al.
10

. The proportion of modelled 

variants is the ratio of derived mutants in the original data source that came from a modelled variant, while the 

rest of the percentages refer to the ratio of samples in a variant relative to the number in modelled variants 

Country Proportion in  
modelled variants 

Cd39_C_T IVS-I-1_G_A FSC-6_-A 

Algeria 62.7% 75.5% 24.5% 35.3% 

Morocco 67.3% 50.8% 20.1% 21.7% 

Tunisia 65.5% 94.7% 0.0% 5.3% 

Albania 80.0% 81.3% 18.8% 0.0% 

Greece 90.5% 56.2% 43.8% 0.0% 

Macedonia 81.0% 26.5% 73.5% 0.0% 

Italy 97.3% 85.2% 13.7% 0.0% 

 

Figure 6.2 Thalassemia variants present out of those modelled in countries with data available, as collected by 

Hockham et al
10

.  For numerical data, see Table 6.6. 

 



Chapter 6  Explaining spatial patterns of adaptation against malaria  

 

202 

 

6.4.3 Inferring haplotype origins 

6.4.3.1 Sampling origins 

To find the most likely geographic origin of variants, I ran the model with five layers for 

sickle-cell disease (ancestral allele and Bantu, Benin, Senegal and India-Arab haplotypes) 

and with four layers for thalassemia (ancestral allele and Cd39, IVS-I-1 and FSC-6 variants). 

I sampled 2500 sets of random origins for sickle-cell disease and 3500 for thalassemia, 

chosen uniformly at random out of those possible for each variant (the choice of possible 

origins is detailed below). After running the simulation, I recorded the count of each variant 

at the final time-step for all countries present in our data and calculated error terms as 

detailed in Section 6.4.3.3. 

6.4.3.2 Possible origins 

For sickle-cell disease, I chose the possible origins per variant according to the following 

procedure: 

1. Determine the cells belonging to countries where the variant is the most common one. 

2. Add a 10-cell buffer around this region 

3. Assign cells between -25 and 110 in longitude and -40 and 55 in latitude that are not 

yet in the set of possible origins to the haplotype with the closest already assigned cell 

The only country with available data where the Senegal haplotype was most common was 

Senegal, but initial runs pointed to areas north of Senegal to also be plausible origins. We 

therefore included Western Sahara as an additional core country for the Senegal haplotype. 

Since the dominance of haplotypes for thalassemia was not well-defined, we adapted a 

different procedure, considering all cells lying between -25 and 60 in longitude and 15 and 60 

in latitude and choosing the three origins for the derived haplotypes independently and 

uniformly at random out of these. This sampling region contained most of Europe, North 
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Africa and the Middle East and therefore also all countries with data that we considered. We 

focused only on Europe and North Africa, because of the large spatial gap to the other 

available regions (India and the Maldives). When calculating the error function, all possible 

permutations of the assignment of modelled variants to the three observed variants were 

considered. 

6.4.3.3 Error function 

For sickle-cell disease, a mean squared error-based error function was used. I first calculated 

the mean of squared errors between the proportion of different haplotypes from the 

simulation and the data over all countries per haplotype and then calculated the mean of the 

haplotype-specific errors, which served as my error term for that particular simulation. 

For thalassemia, this error function generally lead to a very good fit to the two common 

variants, Cd39 and IVS-I-1, at the cost of the complete absence of the rare FSC-6 (Appendix 

E.1), probably because its absence was not penalised enough due to its low frequencies in the 

observed data. However, the characteristic of the distribution that we aimed to capture was 

the presence of multiple variants. I therefore decided to use a different error function, 

commonly used for multi-class classification: the count of the number of variants with 

mismatching presence-absence values between the data and simulation. 

6.4.4 Single-origin hypothesis of sickle-cell disease 

I only modelled the ancestral variant and a single derived allele in the study of the single-

origin hypothesis of sickle-cell disease. I considered three appearance times: the estimated 

age by Shriner & Rotimi
7
 (259 generations), as well as the bottom and the top of its 95% 

confidence interval (123 and 395 generations). They deem starting points in East to Central 

Africa possible, and mention the Green Sahara as their primary hypothesis and the equatorial 

rainforest as an alternative. Therefore, I also examined two starting points: one in the eastern 

part of this region, in the Green Sahara (longitude 2°, latitude 20°) and one in Central Africa 
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in the equatorial rainforest (longitude 22°, latitude 12°), as close to the centre of the present-

day range as possible.  

For the main results, I present two settings: the primary hypothesis with our best-fitting 

demographic parameter set and a second setting that maximises the range reached by sickle-

cell disease in the simulation. The latter corresponds to the earliest possible appearance time, 

the origin in Central Africa and the demographic parameter set with the quickest spread out 

of those we examined (Table 6.1), namely parameter set 2 (see sensitivity analysis in 

Appendix E.2.2). 

6.5 Results 

6.5.1 Inferring haplotype origins 

6.5.1.1 Sickle cell 

In the data, the Bantu haplotype is wide-spread all over sub-Saharan Africa and the Benin 

haplotype in North Africa and the Middle East. The Arab-Indian and Senegal haplotypes 

have narrower distributions: in our dataset, the former is modal only on the Arabian 

Peninsula and in India, and the latter in Senegal (Table 6.4, Table 6.5 and Figure 6.2 ). The 

inferred distribution of most likely origins for sickle-cell disease looked realistic for each 

haplotype (Figure 6.3 to Figure 6.6). The Benin haplotype had its origin near Benin, the 

Arab-Indian haplotype in India and the Senegal haplotype somewhat north of Senegal, close 

to the coast. The Bantu haplotype had a wide range of plausible origins: most cells in Sub-

Saharan Africa were good candidates, as long as they were not too close to the Benin 

haplotype.  
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Figure 6.3 Most likely origins for the Bantu haplotype. The figure shows the mean sum of squared errors for the 

haplotype from simulations where it originated from that cell, averaged over 2.5° bins in both latitude and 

longitude. 

 

Figure 6.4 Most likely origins for the Benin haplotype. The figure shows the mean sum of squared errors for the 

haplotype from simulations where it originated from that cell, averaged over 2.5° bins in both latitude and 

longitude. 
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Figure 6.5 Most likely origins for the Arab-Indian haplotype. The figure shows the mean sum of squared errors 

for the haplotype from simulations where it originated from that cell, averaged over 2.5° bins in both latitude 

and longitude. 

 

Figure 6.6 Most likely origins for the Senegal haplotype. The figure shows the mean sum of squared errors for 

the haplotype from simulations where it originated from that cell, averaged over 2.5° bins in both latitude and 

longitude. 
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6.5.1.2 Thalassemia 

Thalassemia variants have highly overlapping distributions: Cd39 is present in all sampled 

countries, IVS-I-1 mainly appears in Europe but is also in North Africa at smaller proportions 

and FSC-6 is only reported in North Africa and at low proportions (Table 6.4, Table 6.5 and 

Table 6.6). Correspondingly, the inferred origins in our model were also less well-defined. 

Cd39 could have originated either in eastern Europe or western North Africa ( 

Figure 6.7), FSC-6 in western North Africa (Figure 6.8) and IVS-I-1 in eastern Europe 

(Figure 6.9). These patterns are reasonable given the data, since IVS-I-1 is indeed mainly 

present in Europe and FSC-6 only identified in North Africa. The bimodal nature of the 

possible origins for Cd39 can also be explained. In our model, overlapping distributions are 

produced when variants start close enough to each other so that they invade each other’s 

ranges. Therefore, a higher amount of overlap and thus a classification closer to that observed 

was obtained when Cd39 could infiltrate the range of at least one other variant. 
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Figure 6.7 Most likely origins for the Cd39 variant. The figure shows the mean classification error (sum of 

misclassified variants per country) for simulations where the variant originated from that cell, averaged over 

2.5° bins in both latitude and longitude.

 

Figure 6.8 Most likely origins for the FSC-6 variant. The figure shows the mean classification error (sum of 

misclassified variants per country) for simulations where the variant originated from that cell, averaged over 

2.5° bins in both latitude and longitude. 
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Figure 6.9 Most likely origins for the IVS-I-1 variant. The figure shows the mean classification error (sum of 

misclassified variants per country) for simulations where the variant originated from that cell, averaged over 

2.5° bins in both latitude and longitude. 

6.5.2 Qualitative spatial patterns 

Once plausible origins for the different sickle-cell and thalassemia variants were established, 

I proceeded by examining the distributions of variants. The disjoint pattern of sickle-cell 

variants was closely matched using the best-fitting origins (Figure 6.10). However, for 

thalassemia, we could not produce a high amount of overlap between variants and instead 

obtained sickle cell-like, mostly disjoint distributions (Figure 6.11). The best simulations for 

thalassemia included some amount of overlap between two variants, but there was no single 

variant prevalent in all sampled regions, unlike what is observed for Cd39. There were also 

no countries with more than two variants present, even though that was observed in two out 

of the three sampled countries in North Africa (Algeria and Tunisia). To sum up, our model 

could produce spatial patterns similar to what was observed for sickle-cell disease, but those 

for thalassemia could not be matched. 
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Figure 6.10 Distribution of sickle-cell haplotypes from our model. A. Spatial distribution of modal variants from 

the best-fitting set of origins. Areas with no single variant with a frequency above 80% are marked as 

“Overlapping” and black symbols show the origin of each haplotype. B. Distribution of variants in monitored 

countries from the five best-fitting sets of origins. In countries not reached by any variant, no data is shown. C. 

Distribution of modelled variants from simulated countries (bar chart representation of Table 6.3). 
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Figure 6.11 Distribution of thalassemia variants from our model. A. Spatial distribution of modal variants from 

the best-fitting set of origins. Areas with no single variant with a frequency above 80% are marked as 

“Overlapping” and black symbols show the origin of each haplotype. B. Distribution of variants in monitored 

countries from the five best-fitting origins. In countries not reached by any variant, no data is shown. C. 

Distribution of modelled variants from simulated countries (bar chart representation of Table 6.6). 
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6.5.3 Single-origin hypothesis of sickle-cell anaemia 

After studying the spatial distribution of separate variants, I focused on the single-origin 

hypothesis by Shriner and Rotimi
7
. We first considered parameters resembling their primary 

scenario: an origin 259 generations ago in the western part of what is now the Sahara. In this 

case, the sickle-cell trait would not have expanded to its current range by today in our model 

(Figure 6.12). More strikingly, it would not even have reached all malarious areas in Africa 

with only such short-scale, gradual migrations. I also examined the parameters that are still 

considered plausible when following Shriner and Rotimi
7
 and that result in the widest spread 

in the present-day range of sickle-cell disease. However, even in this case, we do not obtain 

the full present-day range: the allele spreads outside of Africa, but still does not reach India 

(Figure 6.13). Taken together, these results show that our model largely agrees with the 

single-origin hypothesis in that it could produce nearly the full present-day range of the 

disorder with extreme, but still plausible parameters. However, additional mechanisms are 

necessary for the observed presence of sickle-cell disease in India. 

Figure 6.12 Spread of a single sickle-cell haplotype starting 259 generations ago in West Africa, using 

demographic parameter set 1 (Table 6.1). Black diamond marks the origin of the sickle-cell allele. 
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Figure 6.13 Spread of a single sickle-cell haplotype starting 395 generations ago in Central Africa, using 

demographic parameter set 2 (Table 6.1). Black diamond marks the origin of the sickle-cell allele. 

6.6 Discussion 

6.6.1 Results 

Our mechanistic, spatially explicit model with only short-distance migrations could 

reproduce the spatial distribution of variants for sickle-cell disease, but not for β
0 

thalassemia: 

overlapping, β
0 

thalassemia-like patterns were not possible given the processes and 

parameters considered. Furthermore, the model was also not completely in agreement with 

the single-origin hypothesis for sickle-cell disease. In both cases, the short-distance 

migrations explored were insufficient to produce enough mixing: the single, original sickle-

cell allele was not carried far enough and the different thalassemia variants could not invade 

each other’s ranges.  

It should be noted that the migration rates in the three demographic parameter sets explored 

(~0.005 per generation and individual) are relatively low compared to the high end of the 
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95% credible interval of possible migration rates (~0.167 per generation and individual) from 

Raghavan et al.
12

 It would be interesting to explore such higher migration rates, as they might 

be sufficient to produce the overlapping patterns of β
0 

thalassemia and be compatible with the 

expansion of a single haplotype of sickle cell anaemia. Furthermore, it is possible that 

migration rates might have increased in recent time, as reported for Europe
35

, but the model 

currently does not allow for such time-dependent changes in migration rate. 

Long distance movements are another possible mechanism that could produce a higher 

amount of mixing. There is ample evidence for long-distance, large-scale migrations in the 

time range considered here, from about 10,000 years ago until today.  For example, the 

Neolithic transition
36

 and the Bronze Age migrations
37

 both left their signatures in European 

genetic diversity, evidence of an expansion wave into India has also been described on the 

basis of genetic data
38

 and high levels of mixed genetic ancestry amongst Africans also point 

to a high level of admixture in that continent
39

. Furthermore, these dynamics have previously 

been suggested to facilitate the spread of sickle-cell haplotypes: the migrations of Bantu-

speaking people have been postulated as a cause for the wide distribution within Africa
7
 and 

long-distance overseas connections for the presence of the same haplotype in India and the 

Near East
40

. 

6.6.2 Limitations 

There are multiple limitations to this approach. First, the simultaneous appearance of malaria-

related selection pressure and the identity of haplotypes regarding selection strength and the 

level of deleteriousness is an oversimplification. Estimates for the ages of the different 

haplotypes differ
3,41

 and there are also signs for a diversity in clinical effects between 

different sickle-cell haplotypes
42

, but the model outcomes were reasonably robust to the 

corresponding parameters. I also did not account for variability in selection pressure and only 

used a binary representation of the presence of malaria. However, our results were also not 
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sensitive to changes in selection coefficient and I therefore do not expect a non-binary profile 

of the strength of selection to make a substantial difference.  

This model also represented a simplified view of the origin of variants by starting in just a 

single deme. If the alleles were already part of standing variation at the start of selection, as it 

likely was the case for at least the sickle-cell trait, they could have been present over a wider 

range. This would accelerate the spread of both the overall trait and the different variants and 

our range estimates can thus only be considered as lower boundaries. Furthermore, standing 

variation could also influence our incapability of producing the highly overlapping patterns 

characteristic of thalassemia: if the variants were already present in a wide range, they could 

have spread further and had more time to invade each other’s ranges. In particular, if alleles 

with a wider geographic distribution (e.g. Cd39) were already present when the other variants 

(e.g. IVS-I-1, FSC-6 and the less common, not modelled variants) appeared, the observed 

overlapping distribution would have been more likely. Since β
0 

thalassemia can be caused by 

any mutation that completely eliminates protein production from the β -globin gene and as 

many such mutations have already been reported, it is likely that new mutations continuously 

occur. In the future, our model could easily be adapted to account for such a scenario. 

An additional limitation of our model is the lack of epistatic interactions. These can lead to a 

diminishing advantage offered by one variant where another is already present
13

, or even to 

negative epistasis. For example, both the sickle-cell trait and α thalassemia offer some level 

of protection, but individuals heterozygous for both are just as vulnerable to malaria as the 

controls
43

. The boundaries between the current distributions of different disorders, such as the 

relatively low incidence of sickle-cell disease in the Mediterranean
44

, has been attributed to 

epistatic interaction between different genetic disorders
13

. Since these effects were not 

represented in our model, it is no surprise that the overall extent of the simulated range of all 

variants is only bounded by malaria endemicity. For example, if the system is simulated long 

enough, the sickle-cell trait would become common also outside of Africa. 
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Lastly, but perhaps most importantly, our model did not include migration waves or long-

distance connections, despite their likely effect in the spread of protective variants. In the 

current framework, such events would have to have been pre-defined using other, non-genetic 

lines of evidence. However, this made it possible to test the importance of such events and 

showed that they indeed could be necessary to explain the present-day extent of sickle-cell 

anaemia and possibly also the overlapping distribution of β
0
 thalassemia. 

6.6.3 Perspectives 

A considerable advantage of this layer-based modelling framework is that it is very easy to 

generalise to other cases of selection and beyond. Different protective variants and their 

interactions, or other types of selection (e.g. haploid and diploid selection; additive, dominant 

and recessive traits; epistatic interactions) can all be modelled by simply changing the 

corresponding term in the population growth step. The spatial aspect also provides a 

convenient way to represent space- and time-dependent selection pressures, or even a link to 

climatic variables. Last, the layer-based framework can even be used for arbitrary types of 

interacting individuals, such as hunter-gatherers and farmers over the Neolithic transition or 

anatomically modern humans and Neanderthals in Europe. 

6.6.4 Summary 

This chapter presented a spatially explicit model for selection and its application to sickle-cell 

disease and β
0
 thalassemia, two well-studied traits with a protective effect against malaria. It 

showed the importance of modelling spatial effects and the limitations of such a framework 

when applied to recent events when long-distance migrations were probably already common 

for humans. The exact cause of our model’s inability to capture the quick spread of malaria-

resistant traits and the contrast between the spatial distributions of variants of these traits 

remains to be determined, but this application highlighted the power of a spatially explicit 

model and paved the way for its future applications. 
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Chapter 7 Epilogue 

7.1 Introduction 

In this thesis, I explored human evolutionary history and its interplay with natural selection 

on the basis of ancient DNA and spatially explicit modelling. Chapters 2, 3 and 4 studied 

important episodes in the history of anatomically modern humans through the analysis of 

novel ancient genetic data. Chapter 2 focussed on early anatomically modern humans in 

Europe and highlights their diversification shortly after their exit out of Africa, but also that 

many of the resulting populations did not manage to contribute significantly to modern 

genetic diversity. Chapter 3 introduced a separate, divergent lineage of hunter-gatherers in the 

Caucasus, and Chapter 4 pointed to a high level of continuity in northern East Asia 

throughout the Neolithic transition. Chapters 5 and 6 used a climate-driven, spatially explicit 

modelling framework: the former explored the effect of space on selection statistics in a 

neutral model, and the latter focussed on selection for variants providing resistance against 

malaria. 

In this last chapter, I first discuss the use of ancient DNA in uncovering demographic 

processes. I compare two main data acquisition strategies: broad sampling of many genomes 

and deep sampling, focussing on a few, high-quality genomes. I also touch on the teething 

problems and future directions in the field, as well as on the issue of compatibility of datasets 

from different sources. I then continue with the discussion of continuity and extinction in 

human evolution, particularly the signals of these processes in ancient and modern genetic 

data and the different definitions of continuity. I then finish this epilogue with a few remarks 

on complex spatial models, including advantages, disadvantages, and technical challenges. 
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7.2 aDNA and its use in uncovering demographic processes 

7.2.1 Introduction 

Genetic data from ancient samples is a relatively new source in the study of human evolution. 

Not only does it give access to individual ancient samples, giving a chance to examine extinct 

species (e.g. the quagga
1
), subspecies (e.g. Neanderthals

2
) or populations (e.g. the ancestors 

of early European farmers
3
), but it also broadens our sampling domain in time and space. The 

additional time dimension enables a direct estimation of the mutation rate
4
 and the direct 

study of temporal processes, such as changes in allele frequencies (e.g. alleles influencing 

skin pigmentation
5
) or the appearance of alleles (e.g. lactase persistence in the Bronze Age 

instead of the Neolithic
3,6,7

). However, the imputation of unobserved alleles can be 

problematic, especially if the locus in focus has risen rapidly in allele frequency, as is the 

case for many variants under selection. Furthermore, we can pinpoint the location of events in 

evolutionary history by observing changes through samples from a known location and time. 

Common examples are the study of the origin and extent of expansion waves (e.g. Bronze 

Age migrations in Europe
6
 or the spread of eskimo cultures in North America

8
) or admixture 

events (e.g. sources of European genetic diversity
9
 or back-migration to North Africa

10
). 

However, aDNA is still a developing field and has a number of limitations. Protocols in data 

generation and analysis are still under development, and although the amount of available 

data has drastically increased, jointly using these datasets is very problematic. Furthermore, 

projects are sometimes driven by the availability of data instead of a scientific question or 

hypothesis, and the quality of analysis sometimes suffers from the time-pressure for high-

profile publications that are based on the novelty of the data. 

7.2.2 Broad and deep sampling 

There are two main strategies in the use of ancient genetic data. First, one can focus on a few 

high-quality samples and sequence those to high coverage, which I will refer to as deep 
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sampling. Alternatively, a large number of individuals can be studied in parallel, but are then 

usually sequenced to only low coverage and/or at selected genetic loci. I will refer to this 

latter strategy as broad sampling. The high-quality samples presented in Chapters 2 and 3 are 

cases of deep sampling, while Chapter 4 belongs to neither of these strategies: it is based on 

only a few low-coverage samples as sample availability was limited and the samples were not 

well preserved. 

The ancient DNA community seems to move more towards broad sampling, but certain 

characteristics of samples and processes can only be studied through deep sampling. A broad 

sample is more suited to study large-scale changes in evolution that affect multiple 

populations, such as the space- and time-dependent, complex details of the Bronze Age 

migrations in Eurasia
6
 or the definition of and the interplay between different genetic groups 

in Ice Age Europe
11

. However high-quality samples are necessary to study haplotype patterns 

or diploid genotypes
12–14

. Detailed demographic inference through the assignment of sections 

of the genomes to different ancestries is only possible in the knowledge of diploid 

haplotypes; for example, the distribution of the length of such ancestries can give information 

about changes in past population size or the timing of admixture events. Haplotypes can also 

be analysed to extract genetic data from the source populations of admixture, such as  

Neanderthal and Denisovan ancestry in Melanesians
15

 or Native American segments in the 

1000 Genomes populations
16

 (Chapter 5). Furthermore, high-confidence diploid genotype 

calls are necessary to reliably study particular locations in the genome
17

, such as those 

associated with phenotypic changes – although broad sampling is still needed for population-

level information
18

. Last, a practical consideration regarding these two sampling strategies is 

that a large number of samples is not always within reach. Therefore, we are often restricted 

to extract as much information as possible from those few sample(s) that are available and 

sufficiently preserved. 
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7.2.3 Increase in data volume and issues of compatibility 

Although the ancient DNA field is still new, a large amount of data has already been 

generated. Technological advances enable us to sequence samples in a worse preservation 

state and using a smaller quantity of the ancient material than ever before. In addition, the 

increasing credibility of the field after the initial lack of confidence facilitates the acquisition 

of samples: archaeologists and anthropologists are naturally more willing to give up a piece 

of their sample when they can expect to receive reliable information in exchange. 

Furthermore, ethical issues are now more carefully considered. For example, clear guidelines 

along with personal connections help build long-term relations with indigenous people and 

gain their support to conduct analysis on the remains of their ancestors
19

.  

The increase in data quantity also highlights problems around the compatibility of different 

datasets, where samples that went through different processing pipelines share similarities 

independent from their actual genetic relationship. Researchers are still exploring best 

practices and protocols for sequencing and bioinformatics pipelines and each lab has its own 

standards. Such differences are difficult to take into account after the processing has been 

done, although some considerations are generally taken, such as the reproduction of results 

on a reduced set of markers which are highly invariant to the differences (e.g. transversions 

only for differences in how damaged bases are handled). However, such checks do not 

guarantee an unbiased analysis and also usually lead to a reduction in data quantity. Ideally, 

all samples should be processed in exactly the same way from the very beginning, but given 

that that is rarely feasible, the sequenced data should at least be reprocessed using a 

standardised bioinformatics pipeline if different datasets are merged. 

7.2.4 Data-driven projects 

Even with the increase in availability, many ancient DNA studies are still purely data-driven 

and the directed collection of samples to study a hypothesis is rare. In addition, the main 

determinant of the success of a publication can often be the novelty of the data and not the 
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quality of the research. The resulting rush for the first publication in an area or time period 

creates a time pressure that can increase the chances of errors. However, there are promising 

signs to address this concern: the push for open data enables such errors to be discovered by 

the scientific community
10

, leading to high-quality, reproducible ancient DNA studies. 

Furthermore, as the field matures and low-hanging fruits disappear, high-quality analysis 

with a well-defined goal will become more important and simply possessing novel data is no 

longer sufficient for a high-profile paper. 

7.3 Continuity and extinctions in human evolution 

7.3.1 Introduction 

The notions of continuity and extinction are strongly linked in human evolution. Current 

knowledge points to a series of expansion events, followed by continuous diversification
20

. In 

contrast, we often see lineages in genetic data, but what processes generated these deep splits 

is still unclear. A further complication is coming from the unclear and arbitrary definitions of 

continuity, especially considering human populations which are characterised by a high level 

of contact and a lack of reproductive isolation. 

7.3.2 Extinctions and lineages 

The division between lineages in ancient genetic diversity is often unclear and/or does not 

correspond to modern genetic diversity. Chapter 2 showcases such a situation in Europe, but 

there are also cases in other regions, like the affinities of the Siberian Mal’ta boy to both 

Native Americans and North Europeans
21

 or the lack of continuity on the Eurasian steppes
18

. 

The notion of lineages can also become obscured as more data is analysed, especially for 

ancient data. For example, the initial view of Neanderthals mixing into anatomically modern 

humans (AMHs)
22

 became increasingly complex. Additional Neanderthal samples indicated 

structure within their population and identified the Neanderthal group closest to that which 
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contributed to modern humans
23

; the discovery of Denisovans added a sister group of 

Neanderthals to the picture
24

, and further modelling even showed signals of gene flow into 

Neanderthals from a different archaic hominin and from an early AMH group
25

. This is just 

one simple example, but it illustrates the general trend of tree-like models becoming 

increasingly complex as new data is incorporated, implying that many apparent ancient 

“lineages” could just be artifacts due to limited sampling. 

However, for modern populations in large reference datasets, a lack of spatial sampling is less 

of a problem. Therefore, the presence of well-supported lineages in modern genetic data, such 

as deeply divergent populations in Africa (e.g. the San or the Mbuti) or the clearly separated 

European and East Asian continental groups, need a different explanation. The extinction of 

the original intermediate populations, such as what was found in Upper Palaeolithic Europe 

(as discussed in Chapter 2 using novel and published
4,11,26

 data), seems like a good candidate.  

7.3.3 Definition of continuity 

The other point that needs discussing with regards to the notion of lineages is population 

continuity. In its purest definition, continuity means that a population evolves in complete 

isolation, without any genetic exchange with other populations. In this case, samples from 

different times that originate from the same, continuous population only differ due to genetic 

drift
27

. However, for a species where migration and admixture are as common as in humans, 

such perfect continuity is highly improbable. For uniparental markers, haplogroup 

membership has been used to infer continuity and admixture
28,29

, but such analysis, based on 

a single locus, is sensitive to stochastic effects. For nuclear genetic data, formal tests can be 

used to detect admixture (as in multiple papers investigating, for example, the origins of 

Europeans
3,6,9,18

 or South Asians
3,30,31

, but also Chapters 3
12

 and 4
32

), but since a complete 

lack of such signal cannot be expected, the threshold level for “continuity” must be chosen 

carefully. The level of continuity can also be compared to that between other pairs of 

populations on the basis of inferred admixture proportions, such as in the analysis performed 
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in Chapter 4. However, just like for any hypothesis test, the lack of a clear signal of 

admixture does not necessarily imply continuity, as it might simply be due to the lack of 

power
33

. 

7.4 Importance of space in modelling 

7.4.1 Advantages 

Spatial models have multiple advantages and disadvantages, as mentioned in Chapter 1. They 

are capable of representing gradual changes and complex population structure without the 

constraints of lineages for tree-like models. Continuous processes are natural in such models: 

admixture and expansion are the consequence of mechanistic processes and do not need to be 

pre-defined. Spatial models are also capable of providing a different view on continuity: we 

can consider a population continuous if it is in contact with its geographic neighbours at a 

level typical for the model and is not affected by any major expansion wave or extinction 

event
27

. Thus, there is no need for a lineage-based continuity definition or arbitrary levels of 

acceptable admixture. Spatial models are also a natural choice in the study of selection, as 

selection pressures are inherently linked to the environment (e.g. presence of pathogens
34

) 

and space-dependent demographic processes interact with natural selection (Chapters 5 and 

6). 

7.4.2 Disadvantages 

Spatial models also have some obvious disadvantages, as already mentioned in Chapters 1, 5 

and 6. They have high computational costs, are challenging to develop from a coding 

perspective, and are intensive in terms of data - although the latter is mitigated in a 

mechanistic model where only a few free parameters are sufficient to explore the model. A 

further limitation is that it is difficult to represent sudden and/or large-scale changes 

(migrations, expansions or extinctions) in such models, although such events are common in 
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human evolutionary history (e.g. the Neolithic transition
3
 or the Bantu expansion

35
) and are 

often triggered by cultural or technological changes and not just by external environmental 

variables
36

. Since their origin is highly stochastic, difficult to predict and often not well-

understood, this limitation is particularly hard to address without using other lines of 

evidence (e.g. from archaeology or linguistics). Our spatial framework certainly represents a 

more spatio-temporally continuous view of human population history than the reality, and we 

can only incorporate large-scale events through pre-defined effects (e.g. selection-related 

processes in Chapter 6) or by changing the interaction with environmental variables (as is 

currently explored in our group). 

7.5 Concluding remarks 

This thesis explored fundamental aspects of human evolutionary history - patterns of 

continuity and admixture and phases of stagnation and sudden changes - through the use of 

modelling and data analysis. The abundance of modern and ancient genetic data in today’s 

“genomics era” enable the usage of not only simple, tree-like models, but also of complex, 

spatially explicit frameworks. The contrasting results from different areas and time periods 

highlighted key processes from the origins of our species’ remarkable diversity, and have 

opened further questions to serve as the topic of future research. 
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Appendix A Appendix for Chapter 2 

A.1 NGS sequencing statistics 

Supplementary Table A.1 NGS data ouput from the test and HiSeq sequencing runs of Oase’s libraries. 

“Rmdup” stands for results after the removal of clonal sequences and “rmdup30” after the removal of clonal 

sequencing and filtering for a mapping quality of at least 30. For more details, see section 2.6.2 

Test sequencing run: NextSeq500 75PE 

Library Index Pairs 

processed 

Pairs 

merged 

Mapped Mapped 

rmdup 

Mapped 

rmdup30 

% 

endogenous 

% 

duplicate 

Bl004 4 833555 90192 26909 19998 14450 2.39 99.74 

Bl288 288 1427469 902205 39728 8319 5945 0.58 99.71 

eBb440 440 2382154 1608042 65978 11716 7856 0.49 82.24 

eB200 200 3363366 2071394 82522 26945 18967 0.80 67.34 

Oa1 220 23178331 17636104 8578143 8350749 6323583 36.02 2.65 

Oa1b 610 40844664 28871250 15960082 15392302 11747066 37.68 3.55 

Oa2 625 30550222 25577980 8511774 8315297 5644337 27.22 2.30 

Oa3 687 51178692 36425021 17406697 16871246 12850859 32.96 3.07 

Oa4 702 42278773 23253547 10360615 5558135 3488379 13.14 46.35 

Oa5a 256 18453200 13055325 6153955 5999221 4519979 32.51 2.51 

Oa5b 179 39033310 24724703 10894541 10446189 7788599 26.76 4.11 

Oa6 475 6051604 4574323 2178206 2130496 1610837 35.20 2.19 

1
st
 sequencing run: HiSeq2500 50PE 

Oa1 220 218694705 166017467 81852475 76877139 61173573 35.15 6.07 
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Oa1b 610 219167211 155020497 86015028 78051448 61891296 35.61 9.25 

Oa2 625 232139408 188593251 62873165 59956670 42397661 25.82 4.63 

Oa3 687 207228837 148098807 71308759 67093026 53343783 32.37 5.91 

Oa5a 256 246437576 174618955 83193552 77483404 61356779 31.44 6.86 

Oa5b 179 236407674 151145092 67184491 58126474 44864529 24.58 13.48 

Oa6 475 225576048 166619533 79427338 72109421 57074209 31.96 9.21 

2
nd

 sequencing run: HiSeq2500 50SE 

Oa1b 610 524609573 - 111235622 98002020 79427596 18.68 11.89 

Oa3 687 443122797 - 112693437 103055243 84286502 23.25 8.55 

Oa6 475 528482155 - 240654915 190258590 150359621 36.00 20.94 

3
rd

 sequencing run: HiSeq2500 50SE 

Oa1a 220 526882575  225577941 201793258 166711206 31.64 10.54 

Oa5a 256 484243893  188043200 165783996 136752731 28.24 11.83 

Oa5b 179 486687877  146261487 102429996 81378707 16.72 29.96 

4
rd

 sequencing run: HiSeq2500 50PE 

Oa1 610 591410490 341733401 203388411 183506479 151144450 44.22 9.77 

Oa3 687 633224854 396530235 170367066 153152386 126245658 31.83 10.1 

Oa5a 256 623366099 349413704 173617097 154964944 127357534 36.44 10.74 
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Supplementary Table A.2 NGS data mapping to the mitochondrial reference (rCRS). “Rmdup” stands for results 

after the removal of clonal sequences and “rmdup30” after the removal of clonal sequencing and filtering for a 

mapping quality of at least 30. For more details, see section 2.6.2 

Library Index Pairs 

processed 

Pairs 

merged 

Mapped Mapped 

rmdup 

Mapped 

rmdup30 

mtDNA 

coverage 

Oa1 220 218694705 166017467 67665 24856 24529 69.9x 

Oa1b 610 219167211 155020497 85185 26178 25968 76.3x 

Oa2 625 232139408 188593251 54760 24757 20528 61.4x 

Oa3 687 207228837 148098807 60494 23985 23672 65.9x 

Oa5a 256 246437576 174618955 80862 26018 25725 73.2x 

Oa5b 179 236407674 151145092 70813 23900 23707 62.2x 

Oa6 475 225576048 166619533 71971 25149 24856 70.5x 

merged    168985 168985 168985 479.61x 
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A.2 Mitochondrial genome 

Supplementary Table A.3 Polymorphic positions in the consensus mitochondrial genome of Oase 2 with regards 

the rCRS. Haplogroup assignment was performed using Haplogrep. 

Defining haplogroup positions Others (not expected) Haplogroup Quality 

Polymorphism Coverage Polymorphism Coverage N 97.39% 

73G 328 4113G 513 

263G 450 8155A 437 

750G 396 9456G 471 

1438G 472 16519C 357 

2706G 324 

4769G 509 

7028T 485 

8860G 400 

11719A 486 

12705T 591 

14766T 527 

15326G 370 

16223T 456 
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A.3 Outgroup f3 statistics for Oase 1 using modern populations 

 

Supplementary Figure A.1 Outgroup f3 statistics of the form f3(Oase 1, X; Yoruba), 150 modern populations 

with the highest score displayed. 
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A.4 Outgroup f3 statistics for Oase 2 on SNPs called in Oase 1 

 

Supplementary Figure A.2 Outgroup f3 statistics of the form f3 (Oase 2, X; Yoruba), using only SNPs called in 

Oase 1. 20 populations with the highest score displayed. Ancient populations displayed in red and moderns in 

black. 
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Supplementary Figure A.3 Outgroup f3 statistics of the form f3 (Oase 2, X; Yoruba), using only SNPs called in 

Oase 1. 150 modern populations with the highest score displayed. 
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A.5 African origins 

 

Supplementary Figure A.4 Outgroup f3 statistics of the form f3(Oase 2, X; Yoruba), where X is a modern (black) 

or ancient (red) African population. 
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Supplementary Figure A.5 Outgroup f3 statistics of the form f3(Kostenki, X; Yoruba), where X is a modern 

(black) or ancient (red) African population. 



Appendix A  Appendix for Chapter 2  

 

243 

 

 

Supplementary Figure A.6 Outgroup f3 statistics of the form f3(GoyetQ116-1, X; Yoruba), where X is a modern 

(black) or ancient (red) African population. 
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Supplementary Figure A.7 Outgroup f3 statistics of the form f3(Oase 1, X; Yoruba), where X a modern (black) or 

ancient (red) African population. 
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Supplementary Figure A.8 Outgroup f3 statistics of the form f3(Sunghir, X; Yoruba), where X is a modern 

(black) or ancient (red) African population 
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Supplementary Figure A.9 Outgroup f3 statistics of the form f3(Tianyuan, X; Yoruba), where X is a modern 

(black) or ancient (red) African population. 



Appendix A  Appendix for Chapter 2  

 

247 

 

 

Supplementary Figure A.10 Outgroup f3 statistics of the form f3(Ust’Ishim, X; Yoruba), where X is a modern 

(black) or ancient (red) African population. 
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A.6 Comparison of Upper Palaeolithic genomes using D statistics 

Supplementary Table A.4 D statistics of the form D(X, Y; Z, Yoruba), where X, Y and Z traverse all possible 

permutations of the following samples: Oase 1, Oase 2, Kostenki, Sunghir and Ust’Ishim, using all SNPs. 

 X Y Z D Z SNP1 SNP2 nSNP  

Kostenki Kostenki Ust’Ishim Oase 2 0.0234 3.543 30547 29151 582106 Oase 2 

Ust’Ishim Oase 2 Kostenki -0.0134 -1.849 29738 30547 582106 

Oase 2 Kostenki Ust’Ishim -0.01 -1.397 29151 29738 582106 

Kostenki Ust’Ishim Oase 1 0.0189 2.168 6122 5895 119179 Oase 1 

Ust’Ishim Oase 1 Kostenki -0.031 -3.542 5755 6122 119179 

Oase 1 Kostenki Ust’Ishim 0.0121 1.305 5895 5755 119179 

Sunghir Sunghir Ust’Ishim Oase 2 0.0234 3.41 30712 29309 584445 Oase 2 

Ust’Ishim Oase 2 Sunghir -0.0175 -2.439 29655 30712 584445 

Oase 2 Sunghir Ust’Ishim -0.0059 -0.813 29309 29655 584445 

Sunghir Ust’Ishim Oase 1 0.0286 3.658 6166 5823 119337 Oase 1 

Ust’Ishim Oase 1 Sunghir -0.0356 -4.17 5742 6166 119337 

Oase 1 Sunghir Ust’Ishim 0.007 0.849 5823 5742 119337 

 

  



Appendix A  Appendix for Chapter 2  

 

249 

 

Supplementary Table A.5 D statistics of the form D(X, Y; Z, Yoruba), where X, Y and Z traverse all possible 

permutations of the following samples: Oase 1, Oase 2, Kostenki, Sunghir and Ust’Ishim; using only SNPs 

called in Oase 1. 

 X Y Z D Z SNP1 SNP2 nSNP  

Kostenki Kostenki14 Ust_Ishim Oase 2 0.0216 2.647 6071 5814 131947 Oase 2 

Ust_Ishim Oase 2 Kostenki14 -0.015 -1.758 5891 6071 131947 

Oase 2 Kostenki14 Ust_Ishim -0.0065 -0.778 5814 5891 131947 

Kostenki14 Ust_Ishim Oase 1 0.0194 2.193 6104 5872 118938 Oase 1 

Ust_Ishim Oase 1 Kostenki14 -0.0309 -3.494 5738 6104 118938 

Oase 1 Kostenki14 Ust_Ishim 0.0115 1.241 5872 5738 118938 

Sunghir Sunghir Ust_Ishim Oase 2 0.0223 2.831 6143 5875 132452 Oase 2 

Ust_Ishim Oase 2 Sunghir -0.0195 -2.368 5908 6143 132452 

Oase 2 Sunghir Ust_Ishim -0.0028 -0.33 5875 5908 132452 

Sunghir Ust_Ishim Oase 1 0.0289 3.655 6148 5803 119096 Oase 1 

Ust_Ishim Oase 1 Sunghir -0.0356 -4.2 5725 6148 119096 

Oase 1 Sunghir Ust_Ishim 0.0067 0.806 5803 5725 119096 
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A.7 Convergence of G-PhoCS Monte Carlo chains 

 

Supplementary Figure A.11 Traces of split times between the pair of Upper Palaeolithic genomes that merge 

first, from simulations with all three Upper Palaeolithic genomes (Oase 2, Ust’Ishim and Sunghir). A. and B. 

show the two independent Monte Carlo chains. Black line marks the age of Ust’Ishim, the oldest sample in the 

simulation. The first 100,000 steps were discarded as burn-in. 

 

Supplementary Figure A.12 Traces of split times between the outgroup Upper Palaeolithic genome and the pair 

of Upper Palaeolithic genomes that merged first, from simulations with all three Upper Palaeolithic genomes 

(Oase 2, Ust’Ishim and Sunghir). A. and B. show the two independent Monte Carlo chains. Black line marks the 

age of Ust’Ishim, the oldest sample in the simulation. The first 100,000 steps were discarded as burn-in. 
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Supplementary Figure A.13 Traces of split times between the San and the common ancestor of all Upper 

Palaeolithic samples, from simulations with all three Upper Palaeolithic genomes (Oase 2, Ust’Ishim and 

Sunghir). A. and B. show the two independent Monte Carlo chains. Black line marks the age of Ust’Ishim, the 

oldest sample in the simulation. The first 100,000 steps were discarded as burn-in. 

 

Supplementary Figure A.14 Traces of split times between the Altai Neanderthal and the common ancestor of all 

Upper Palaeolithic samples and the San, from simulations with all three Upper Palaeolithic genomes (Oase 2, 

Ust’Ishim and Sunghir). A. and B. show the two independent Monte Carlo chains. Black line marks the age of 

Ust’Ishim, the oldest sample in the simulation. The first 100,000 steps were discarded as burn-in. 
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Supplementary Figure A.15 Traces of the proportion of Neanderthal ancestry for all three Upper Palaeolithic 

genomes (Oase 2, Ust’Ishim and Sunghir), from simulations where Oase 2 was the outgroup. A. and B. show 

the two independent Monte Carlo chains. 

 

Supplementary Figure A.16 Traces of the proportion of Neanderthal ancestry for all three Upper Palaeolithic 

genomes (Oase 2, Ust’Ishim and Sunghir), from simulations where Sunghir was the outgroup. A. and B. show 

the two independent Monte Carlo chains. 
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Supplementary Figure A.17 Traces of the proportion of Neanderthal ancestry for all three Upper Palaeolithic 

genomes (Oase 2, Ust’Ishim and Sunghir), from simulations where Ust’Ishim was the outgroup. A. and B. show 

the two independent Monte Carlo chains. 
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A.8 Detailed G-PhoCS results 

Supplementary Table A.6 Results of coalescent modelling on a tree consisting of Oase 2, Ust'Ishim, San and the 

Altai Neanderthal. N denotes estimated population sizes, t split times and m proportions of Neanderthal 

ancestry. 

 Mean Median Standard deviation 0.025 quantile 0.975 quantile 

NNeanderthal 3,902 3,900 74 3,758 4,050 

NSan 17,729 17,473 1,724 14,995 21,635 

NOase 3,740 3,511 1,174 2,186 6,433 

NUst’Ishim 9,644 9,026 5,756 2,171 23,578 

NOase-Ust’Ishim 2,622 2,538 593 1,706 3,841 

NOase-Ust’Ishim-San 35,321 35,446 1,235 32,740 37,503 

NOase-Ust’Ishim-San-Neanderthal 20,883 20,883 228 20,439 21,328 

tOase-Ust’Ishim 53,051 52,340 4,572 47,407 62,646 

tOase-Ust’Ishim-San 98,963 96,400 8,076 88,760 117,619 

tOase-Ust’Ishim-San-Neanderthal 597,646 597,300 9,898 578,931 617,706 

mNeanderthal->Oase 3.70% 3.70% 0.24% 3.25% 4.18% 

mNeanderthal-> Ust’Ishim 1.73% 1.73% 0.21% 1.33% 2.15% 
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Supplementary Table A.7 Results of coalescent modelling on a tree consisting of Oase 2, Sunghir, San and the 

Altai Neanderthal. N denotes estimated population sizes, t split times and m proportions of Neanderthal 

ancestry. 

 Mean Median Standard deviation 0.025 quantile 0.975 quantile 

NNeanderthal 3,882 3,881 76 3,736 4,032 

NSan 23,357 23,314 2,380 18,856 28,159 

NOase 4,317 4,179 1,781 1,408 8,157 

NSunghir 1,587 1,565 498 731 2,634 

NOase-Sunghir 4,203 4,265 811 2,500 5,753 

NOase-Sunghir-San 31,522 31,462 1,477 28,715 34,482 

NOase-Sunghir-San-Neanderthal 20,833 20,833 239 20,362 21,302 

tOase-Sunghir 53,106 52,860 6,030 42,661 65,770 

tOase-Sunghir-San 127,848 128,063 11,341 105,134 150,073 

tOase-Sunghir-San-Neanderthal 592,248 592,240 10,196 572,254 612,760 

mNeanderthal->Oase 3.23% 3.23% 0.25% 2.75% 3.72% 

mNeanderthal->Sunghir 2.13% 2.13% 0.23% 1.68% 2.60% 

 

  



Appendix A  Appendix for Chapter 2  

 

256 

 

Supplementary Table A.8 Results of coalescent modelling on a tree consisting of Sunghir, Ust’Ishim, San and 

the Altai Neanderthal. N denotes estimated population sizes, t split times and m proportions of Neanderthal 

ancestry. 

 Mean Median Standard deviation 0.025 quantile 0.975 quantile 

NNeanderthal 3,837 3,837 74 3,692 3,982 

NSan 25,356 25,329 2,228 20,785 29,753 

NSunghir 1,527 1,440 372 1,061 2,486 

NUst’Ishim 15,676 13,665 8,766 4,153 37,374 

NSunghir-Ust’Ishim 4,920 4,968 655 3,286 6,030 

NSunghir-Ust’Ishim-San 29,689 29,632 1,324 27,230 32,679 

NSunghir-Ust’Ishim-San-Neanderthal 21,091 21,089 233 20,630 21,548 

tSunghir-Ust’Ishim 51,399 50,427 4,237 46,233 62,445 

tSunghir-Ust’Ishim-San 141,476 141,563 10,222 116,054 160,026 

tSunghir-Ust’Ishim-San-Neanderthal 584,077 584,003 9,765 564,947 603,323 

mNeanderthal->Sunghir 1.93% 1.93% 0.22% 1.50% 2.37% 

mNeanderthal-> Ust’Ishim 1.59% 1.59% 0.20% 1.19% 1.99% 
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Supplementary Table A.9 Results of coalescent modelling on a tree with all three high quality Upper 

Palaeolithic genomes, with Sunghir as the outgroup out of the three. N denotes estimated population sizes, t split 

times and m proportions of Neanderthal ancestry. 

 Mean Median Standard deviation 0.025 quantile 0.975 quantile 

NNeanderthal 3,931 3,932 75 3,785 4,078 

NSan 19,070 18,932 2,037 15,338 23,270 

NOase 2,807 2,656 654 1,943 4,437 

NUst’Ishim 7,912 6,468 5,398 2,049 21,260 

NSunghir 1,354 1,310 225 1,057 1,918 

NOase-Ust’Ishim 9,075 7,263 7,506 757 29,766 

NOase-Ust’Ishim-Sunghir 3,292 3,268 597 2,235 4,364 

NOase-Ust’Ishim-Sunghir-San 34,837 34,943 1,486 31,988 37,618 

NOase-Ust’Ishim-Sunghir-San-Neanderthal 20,701 20,695 231 20,249 21,159 

tOase-Ust’Ishim 49,011 48,560 2,443 46,280 54,907 

tOase-Ust’Ishim-Sunghir 49,643 49,140 2,529 46,670 56,047 

tOase-Ust’Ishim-Sunghir-San 107,468 106,407 10,014 88,097 126,625 

tOase-Ust’Ishim-Sunghir-San-Neanderthal 601,101 601,180 9,654 582,397 619,912 

mNeanderthal->Oase 3.66% 3.66% 0.22% 3.25% 4.09% 

mNeanderthal-> Ust’Ishim 1.75% 1.74% 0.17% 1.42% 2.08% 

mNeanderthal->Sunghir 1.93% 1.93% 0.19% 1.58% 2.31% 
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Supplementary Table A.10 Results of coalescent modelling on a tree with all three high quality Upper 

Palaeolithic genomes, with Ust’Ishim as the outgroup out of the three. N denotes estimated population sizes, t 

split times and m proportions of Neanderthal ancestry. 

 Mean Median Standard deviation 0.025 quantile 0.975 quantile 

NNeanderthal 3,929 3,928 76 3,780 4,079 

NSan 19,103 18,987 1,507 16,494 22,447 

NOase 2,394 2,337 485 1,547 3,581 

NUst’Ishim 8,391 6,608 5,778 2,108 23,418 

NSunghir 1,158 1,146 154 870 1,557 

NOase- Sunghir 12,243 10,366 9,613 382 36,830 

NOase- Sunghir –Ust’Ishim 3,375 3,320 379 2,813 4,262 

NOase- Sunghir –Ust’Ishim-San 34,857 34,928 1,067 32,507 36,765 

NOase- Sunghir –Ust’Ishim-San-Neanderthal 20,701 20,704 224 20,265 21,146 

tOase- Sunghir 47,306 47,113 1,718 44,113 51,583 

tOase-Sunghir –Ust’Ishim 48,526 48,167 1,847 46,207 53,670 

tOase- Sunghir –Ust’Ishim-San 107,739 106,103 6,288 98,893 123,096 

tOase- Sunghir –Ust’Ishim-San-Neanderthal 600,627 600,653 9,799 580,864 620,076 

mNeanderthal->Oase 3.65% 3.65% 0.22% 3.24% 4.08% 

mNeanderthal-> Ust’Ishim 1.71% 1.71% 0.17% 1.37% 2.06% 

mNeanderthal->Sunghir 1.93% 1.93% 0.19% 1.56% 2.32% 
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Supplementary Table A.11 Results of coalescent modelling on a tree with all three high quality Upper 

Palaeolithic genomes, with Oase 2 as the outgroup out of the three. N denotes estimated population sizes, t split 

times and m proportions of Neanderthal ancestry. 

 Mean Median Standard deviation 0.025 quantile 0.975 quantile 

NNeanderthal 3,925 3,925 74 3,780 4,072 

NSan 19,390 19,425 2,356 15,101 23,872 

NOase 2,944 2,618 1,036 1,716 5,261 

NUst’Ishim 6,621 5,150 5,478 717 20,249 

NSunghir 1,170 1,092 198 942 1,638 

NSunghir-Ust’Ishim 8,486 6,933 6,993 438 26,946 

NSunghir-Ust’Ishim-Oase 3,417 3,456 875 1,791 4,817 

NSunghir-Ust’Ishim-Oase-San 34,641 34,640 1,739 31,398 38,027 

NSunghir-Ust’Ishim-Oase-San-Neanderthal 20,707 20,707 235 20,239 21,158 

tSunghir-Ust’Ishim 47,319 46,120 2,208 45,260 52,553 

tSunghir-Ust’Ishim-Oase 49,739 48,487 4,015 45,660 58,516 

tSunghir-Ust’Ishim-Oase-San 109,563 109,013 12,290 87,337 131,259 

tSunghir-Ust’Ishim-Oase-San-Neanderthal 600,336 600,047 9,837 581,384 619,811 

mNeanderthal->Oase 3.60% 3.60% 0.22% 3.18% 4.03% 

mNeanderthal-> Ust’Ishim 1.73% 1.73% 0.18% 1.39% 2.08% 

mNeanderthal->Sunghir 1.94% 1.94% 0.19% 1.57% 2.33% 
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Appendix B Appendix for Chapter 3 

B.1  Archaeological context 

B.1.1 Kotias Klde 

Kotias Klde (Supplementary Figure B.6) is a rockshelter located at 707 m above sea level 

(a.s.l.) on a limestone plateau above the Kvirila River in western Georgia. Excavations took 

place from 2003-2006 and in 2010. The exposed stratigraphy showed four layers without 

attaining bedrock. Below we provide a description of the stratigraphy from top to bottom. 

Layer A1 was 30 cm deep and contained the remains of a shallow pit-house, 2.5/3.0 m in 

diameter, which was dug into the underlying layers (A2 and B). Though there were a few 

pottery shards of Bronze Age and later periods, most of the material at the base of the layer 

belonged to the local Late Neolithic period, generally referred to as ‘Eneolithic’. These finds 

included a clay figurine
84

with nearby charcoal dated to 5,820 ± 40 uncal. BP (OS-90616). 

Layer A2 contained a distinct lithic industry with transverse, trapezoid arrowheads. Special 

forms of denticulates known as "Lekalo" or "Kmlo" tools
85–87

, often retouched on the ventral 

face, were represented in this assemblage. Flake scrapers, including the thumb-nail type, were 

also found. Blade cores and some production waste (debitage) reflect on-site blade reduction 

for secondary shaping of tools. A similar industry was reported in Neolithic sites of the 

region such as the Darkveti rockshelter, ca. 5 km away in the Kvirila river gorge
88

, and 
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Paluri, which is situated further away on the Enguri river
86

. Charcoal from this layer was 

dated to 7,430 ± 40 uncal. BP (OS-63263). 

Layer A2 contained the grave of a complete skeleton from a young adult male (ca. 30-35 

years old) whom we have called “Kotias”. The grave was dug from this layer into layer B. 

The skeleton was laid in supine position and stones were placed over certain parts of the 

skeleton which crushed the skull and covered the knees and lower limb bones. The skull was 

angled with the right side facing upwards. Both the right and left hands, which lay along the 

side of the skeleton, covered the groin area. A 15 cm long bone splinter was found in the 

chest cavity of the specimen below the cervical vertebrae and above the clavicle on the right 

side. It cannot be affirmed, however, that this splinter was the cause of death. It appears that 

there were some pathological lesions on the right first rib.  Other traumatic and degenerative 

pathological conditions were evident on the left calcaneus and talus. Attrition of the teeth was 

intense, especially when taking the relatively young age of the specimen into consideration. 

Two superimposed shallow hearths were exposed some 20 cm above the skeleton’s legs 

probably either indicating the sealing of the grave or a later occupation. A sample from one 

of the hearths was dated to 8,370 ± 55 uncal. BP (RTT 5220). A tibia from the skeleton was 

directly dated to 8,665 ± 65 uncal. BP (RTT 5246) and a mandibular fragment to 8,745 ± 40 

uncal. BP (OxA-28256). A combined calibrated plot provided an interval of 9,529-9,895 cal. 

BP (95.4%, 2 s.d.). 

Layer B, interspersed with limestone fragments, was 50-60cm thick and subdivided into three 

sub-layers (B1-B3) all of which contained evidence of Mesolithic industry and animal bones. 

A total of nine radiocarbon dates from animal bones and charcoal of this layer yielded a 

calibrated interval range of 10,300-13,000 cal. BP. Artefacts were made of flint, radiolarite, 

rare crystal rock, and obsidian (the latter was obtained from exposures some 80 km away). 

The main tool groups were backed and retouched bladelets. Numerous scalene triangles 

shaped by bi-polar retouch from blades and bladelets define the Mesolithic industry
89

. In 
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addition, a few bone tools were recovered, including a handle made of a red deer antler 

hollowed for hafting a tool, as well as several point tips. 

Layer C, consisting of yellow, compact clay/loamy sediment, was exposed to a very limited 

extent. The lithic industry was of Upper Palaeolithic age characterized by blade production 

and the presence of end-scrapers and burins. A total of 9 radiocarbon dates from animal 

bones and charcoal of this layer yielded a calibrated interval range of 22,200-23,600 cal. BP. 

The time gap between these two occupations (Layers B and C) indicates that the cave was not 

inhabited during the Last Glacial Maximum (LGM) and for quite some time after the LGM 

until the Younger Dryas and the first millennium of the Holocene. 

B.1.2 Satsurblia 

Satsurblia cave in western Georgia (Supplementary Figure B.6) was discovered in 1975 by A. 

N. Kalandadze
90

 who excavated it sporadically during 1976, 1985–88 and 1990-1993
91

. A 

second series of excavations was conducted during 2008–2010, directed by Tengiz 

Meshveliani. 

Further excavations in Satsurblia (2012-2013), directed by Tengiz Meshveliani and Ron 

Pinhasi, were conducted in two areas. Area A was situated in the north-western part of the 

cave, near the entrance (squares R−T 20−24) and Area B was to the rear of the cave (squares 

T−Z 4−7), adjacent to a trench excavated by K. Kalandadze in the 1980s. Both areas revealed 

stratigraphic sequences comprising Pleistocene (Upper Palaeolithic) and Holocene 

(Eneolithic and later) deposits. Excavations in 2012 and 2013 focused on Areas A and B with 

both yielding in situ Upper Palaeolithic layers that were extremely rich in finds (a circular 

fireplace, large quantities of charcoal and brunt bones, lithics, bone tools, shell ornaments, 

yellow ochre) and which continued to unknown depth. The Upper Palaeolithic sequence of 

Area A was divided into two main units: A/I and A/II. A/II contained a sequence of living 

surfaces which were dated (surface II and III) to 17,000-18,000 cal. BP and as such are the 

first well-dated evidence for human occupation in the southern Caucasus at the end of the 
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LGM.  This fills a gap in the Upper Palaeolithic sequence, namely that between Unit C and 

Unit B in Dzudzuana Cave (western Georgia), dated to 27,000-24,000 cal. BP and 16,000 cal. 

BP - 13,200 cal. BP respectively. 

Preliminary analyses of lithics from Satsurblia cave reveal a cultural variant which resembles 

Eastern Epi-Gravettian industries, dominated by bladelets and including varieties of 

microgravette points and bigger gravette points. A rectangular tool type was novel to 

excavations from the region and differed from the geometric trapezoid-rectangle tools of the 

proceeding Mesolithic cultures in size, shape and retouch
92

 Direct AMS dating of human 

remains from Area B yielded the first securely dated Upper Palaeolithic human remains from 

the Caucasus. “Satsurblia” was sampled from a right temporal bone which was recovered in 

2013 from square Y5 and dated to 11,415 ± 50 uncal. BP (OxA-34632).  A combined 

calibrated plot provided an interval of 13,132-13,380 cal. BP (95.4%, 2 s.d.). 

B.1.3 Grotte du Bichon 

The small cave “Grotte du Bichon” is situated in the Swiss Jura Mountains, a few kilometres 

north of the city of La Chaux-de-Fonds (canton Neuchâtel), at an altitude of 845 m a.s.l. 

(Supplementary Figure B.6). During its first excavation, undertaken by speleologists in 1956, 

bones of a young man were discovered intermingled with the remains of a female brown bear 

(Ursus arctos) and nine flint projectile points, apparently stemming from the hunter’s 

weapons. 

Both skeletons as well as the flints were located about 15 m from the entrance, at a recess of 

the cave, and were associated with charcoal concentrations but with no other archaeological 

material. Although a hunting accident was already envisioned at that time, without further 

indications the remains of the bear were considered not to be related to the human skeleton 

and therefore stored at the natural history museum of La Chaux-de-Fonds, while the human 

bones and the flints were kept in the archaeology museum of Neuchâtel (Laténium). 
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Only in 1991, during re-examination of the animal bone material, archaeozoologist Philippe 

Morel discovered an impact trace and two flint chips (probably a broken tip of an arrowhead) 

in a cervical vertebra of the bear, thus establishing a clear connection between the animal and 

the man
93

. This discovery prompted new excavations that were carried out between 1991 and 

1995. During these new investigations, using modern excavation techniques (including water 

sieving), all of the missing long bones from the two skeletons were recovered, together with 

some more flint artefacts. The small lithic assemblage now contained 10 backed points, 16 

backed bladelets and one retouched blade fragment, characteristic of final (Azilian) 

Palaeolithic industries.  It seems that the cave was never used as a camp site as unretouched 

debitage products were not recovered. Four radiocarbon measurements performed on the 

bones from the bear and the man (two on each) and eight dates obtained from charcoal, from 

willow (Salix sp.) and from pine (Pinus sylvestis) ranged from 10,950 to 11,760 uncal. BP
94

. 

A new direct date on the human skeleton 11,855 ± 50 uncal. BP (OxA-27763) or 13,560- 

13,770 cal. BP (95.4% CI, previously unpublished) is in agreement with the dates of the 

charcoal and pine.  

The human skeleton was determined to be of a young male, 20-23 years of age, of the Cro-

magnon type. According to the cranio-facial architecture, it was characterized by classical 

cranio-facial disharmony, i.e. a relatively long skull associated with a low face and sub-

rectangular eye-sockets, which are quite typical of the time period. The young man weighed a 

little over 60 kg and stood 1.64 m tall. Although of a relatively slender build, muscle 

attachments showed him to have been a strong runner and well adapted to mountainous 

terrain
95

. His upper limbs show a high degree of asymmetry, indicative of preferential use of 

the right arm
96

. Isotopic studies of carbon and nitrogen fractionations indicated a largely meat 

based terrestrial diet
97

. 
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B.2  Supplementary figures 

 

 

Supplementary Figure B.1 Outgroup f3-statistics for Kotias, Satsurblia and Bichon which show the extent of 

shared drift with other ancient samples (OA) since they diverged from an African (Yoruba) outgroup. Satsurblia 

and Kotias share the most drift with each other while Bichon is closest to other western hunter-gatherers. Bars 

dissecting the points show standard error. HG, hunter-gatherer; EN, Early Neolithic; MN, Middle Neolithic; CA, 

Copper Age; BA, Bronze Age; IA, Iron Age. 
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Supplementary Figure B.2 Inferred topology for ancient and modern populations.  This was built on the model 

proposed by Lazaridis et al
2
. A. Caucasus hunter-gatherers descend from a basal Eurasian branch. This is 

supported by both D and f3 statistics (Supplementary Table B.5,6,8). B. Early Europeans farmers have admixed 

with WHG. This is supported by D-statistics (Supplementary Table B.9) and ADMIXTURE analysis (Figure 

3.1B). Ancient samples are shown in yellow, inferred populations in blue and modern populations in purple. 

Dotted lines show descent with admixture while solid lines depict descent without admixture. 
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Supplementary Figure B.3 Outgroup f3-statistics indicating the amount of shared drift between ancient samples 

and modern populations since they diverged from an African outgroup. Warmer colours indicate more shared 

drift than cooler colours.  A. f3(Satsurblia, modern population; Yoruba) which shows, similar to Kotias, that 

Satsurblia shares the most affinity to modern populations from the Caucasus. B. f3 (Bichon, modern population; 

Yoruba) which shows that Bichon shares the most drift with modern populations from Northern Europe. 

 

Supplementary Figure B.4 The impact of CHG on the European gene pool subsequent to the Neolithic 

expansion. A. D-statistics of the form D(Yoruba, Kotias; EF, modern western European) which suggest that 

there has been CHG admixture in northern/eastern Europe since the Neolithic period. Here EF are represented 

by Hungarian Neolithic samples
4
. B. D-statistics of the form D(Yoruba, Kotias; EF, OA) where OA represents 

other ancient Eurasian samples. EF are represented by Hungarian Neolithic samples
4
. Significantly positive 

statistics were found when OA were Late Neolithic individuals or individuals from the Yamnaya culture. These 

cultures may have acted as a conduit for CHG gene flow into western Europe. HG, hunter-gatherer; EN, Early 

Neolithic; MN, Middle Neolithic; CA, Copper Age; BA, Bronze Age; IA, Iron Age. 
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Supplementary Figure B.5 ADMIXTURE results for 2-20 clusters (K). Ancient samples are positioned on the 

left followed by modern individuals who are hierarchically clustered by population and region. Bichon 

resembles other western hunter-gatherers while the Caucasus hunter-gatherers Kotias and Satsurblia look unlike 

any other modern or ancient group.   
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Supplementary Figure B.6 Sampling locations of Bichon (Bichon cave, Switzerland), Satsurblia (Satsurblia 

cave, Georgia) and Kotias (Kotias Klde cave, Georgia) accompanied by radiocarbon date curves. 

 

Supplementary Figure B.7 Sequence length distribution for (A) Kotias, (B) Satsurblia and (C) Bichon. All 

samples have sequences in the range expected for ancient DNA. 
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Supplementary Figure B.8 Damage patterns for Georgian and Swiss ancient samples. Plots show mismatch 

frequency relative to the reference genome as a function of read position. A. shows the frequency of C to T 

misincorporations at the 5’ ends of reads while B. shows the frequency of G to A transitions at the 3’ ends of 

reads.   

 

Supplementary Figure B.9 ADMIXTURE analysis cross validation (CV) error as a function of the number of 

clusters (K).  The lowest mean value was attained at K=17. 
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Supplementary Figure B.10 Accuracy of imputation for the Caucasus hunter-gatherer, Kotias. Genotypes are 

broken down into three categories - homozygous reference, heterozygous and homozygous alternate, all with 

respect to the reference genome. A. Genotypes imputed from a ~1x subsample of Kotias were compared to high 

coverage genotypes from the same sample and called “correct” if they matched. Heterozygous calls show the 

least accuracy. B. The proportion of genotypes retained for a range of genotype probabilities. Increasing the 

genotype probability threshold resulted in a reduction in the amount of genotypes meeting the threshold. These 

results are comparable to those found in 
2
.  

https://paperpile.com/c/LVkStT/mwEaf
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B.3  Supplementary tables 

Supplementary Table B.1 Ancient data used in analyses. 

Group Reference ID Reference Context/Culture Region 

Hunter-gatherers 
Ust_Ishim Ust’-Ishim 15

 Upper Palaeolithic Siberia 
Kostenki Kostenki 13

 Upper Palaeolithic Russia 
MA1 Mal'ta 7

 Upper Palaeolithic Siberia 
Satsurblia Satsurblia This study Upper Palaeolithic Georgia 

Bichon_HG Bichon This study Upper Palaeolithic Switzerland 
Kotias Kotias This study Mesolithic Georgia 

Loschbour_HG Loschbour 2
 Mesolithic Luxembourg 

LaBrana_HG La Braña 3
 Mesolithic Spain 

Karelia_HG Karelia_HG 6
 Mesolithic Russia 

Samara_HG Samara_HG 6
 Neolithic hunter-gatherer Russia 

Scandinavia_HG Motala12, I0011, I0012, I0013, I0014, I0015, 

I0016, Ajvide58 
2,5,6

 Mesolithic and Neolithic hunter-gatherer/ 

Pitted Ware Culture 
Sweden 

Hungary_HG KO1 4
 Neolithic Hungary 

Early - Middle Neolithic 

Hungary_EN NE1, NE5, NE6, NE7 4
 Neolithic Hungary 

Stuttgart Stuttgart 2
 Neolithic Germany 

LBK_EN I0025, I0026, I0046, I0054, I0100 6
 Linearbandkeramik Germany 

Spain_EN I0410, I0412, I0413 6
 Epicardial Spain 

Esperstedt_MN I0172 6
 Esperstedt Germany 

Spain_MN I0406, I0407, I0408 6
 La Mina Spain 

Sweden_MN Gökhem2 5
 Funnelbeaker (TRB) Sweden 

Late Neolithic – Bronze Age 

Otzi_CA Otzi 14
 Alpine Italy 

Hungary_CA CO1 4
 Baden Hungary 

Remedello_CA RISE489 8
 Remedello Italy 

BenzigerodeHeimburg
_LN 

I0058,I0059 6
 Bell Beaker Germany 

Afanasievo_BA RISE509, RISE511 8
 Afanasievo Russia 

Yamnaya_BA I0231, I0429, I0438, I0443, RISE547, 
RISE548, RISE550, RISE552 

6,8
 Yamnaya Russia 

Corded_Ware_BA I0103, I0104, RISE00, RISE94 6,8
 Corded Ware and Battle Axe Germany/ Sweden/Estonia 

Bell_Beaker_BA I0108, I0111, I0112, RISE569 6,8
 Bell Beaker Germany/Czech Republic 

Alberstedt_LN I0118 6
 Late Neolithic Germany 

Okunevo_BA RISE516 8
 Okunevo Russia 

Unetice_BA I0047, I0116, I0117, I0164, RISE150, 
RISE577 

6,8
 Unetice Germany/Poland/Czech 

Republic 
Sintashta_BA RISE392, RISE394, RISE395 8

 Sintashta Russia 
Scandinavia_BA RISE97, RISE98 8

 Nordic Late Neolithic Sweden 
Andronovo_BA RISE500, RISE503, RISE505 8

 Andronovo Russia 
Karasuk_BA RISE493, RISE495, RISE496, RISE497, 

RISE499, RISE502 
8
 Karasuk Russia 
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Mezhovskaya_BA RISE523 8
 Mezhovskaya Russia 

Armenia_BA RISE423 8
 Middle Bronze Age Armenia 

Halberstadt_BA I0099 6
 Late Bronze Age Germany 

Hungary_BA BR1, BR2, RISE479 4,8
 Bronze Age Hungary 

Iron Age 
Hungary_IA IR1 4

 Pre-Scythian Mezőcsát Hungary 
Scandinavia_IA RISE174 8

 Iron Age Sweden 
Altai_IA RISE600, RISE601, RISE602 8

 Iron Age Russia 
Russia_IA RISE504 8

 Iron Age Russia 

 

 

Supplementary Table B.2 Number of SNPs from the Human Origins panel covered for those ancient samples 

that were recalled. 

OA SNPs 

Kotias 510,034 

Bichon 390,923 

Ust’Ishim 591,238 

Loschbour 571,054 

Stuttgart 564,978 

NE1 571,383 

BR2 577,811 

Ajv58 518,352 

BR1 292,301 

CO1 357,082 

Gok2 400,285 

KO1 401,740 

La Braña 555,761 

MA1 419,966 

NE5 337,709 

NE6 385,959 

NE7 373,846 

Otzi 541,031 

Satsurblia 416,997 
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Supplementary Table B.3 D-statistics of the form D(Yoruba, OA; Satsurblia, Kotias) which show that Satsurblia 

and Kotias tend to form a clade to the exclusion of other ancient samples (OA) (|Z|<3). Significant statistics are 

highlighted in bold. 

OA D(Yoruba,OA;Satsurblia,Kotias) Z-score P-value 

Ust_Ishim -0.0062 -1.042 0.149 
Kostenki -0.0018 -0.268 0.394 
Bichon -0.0010 -0.150 0.440 

Hungary_HG 0.0016 0.233 0.408 
Okunevo_BA 0.0021 0.264 0.396 
Hungary_CA 0.0022 0.327 0.372 

Mezhovskaya_BA 0.0028 0.456 0.324 
Hungary_EN 0.0028 0.605 0.273 

Halberstadt_BA 0.0032 0.450 0.326 
Loschbour_HG 0.0036 0.578 0.282 
Andronovo_BA 0.0040 0.845 0.199 

LBK_EN 0.0042 0.889 0.187 
Armenia_BA 0.0052 0.663 0.254 
Hungary_BA 0.0052 1.160 0.123 

MA1_HG 0.0061 0.832 0.203 
Otzi_CA 0.0061 0.941 0.173 

Remedello_CA 0.0066 0.880 0.189 
Yamnaya_BA 0.0066 1.468 0.071 
Karasuk_BA 0.0076 1.865 0.031 
Samara_HG 0.0076 0.923 0.178 
Russian_IA 0.0079 1.184 0.118 
Spain_EN 0.0079 1.515 0.065 

BenzigerodeHeimburg_LN 0.0082 1.395 0.082 
Karelia_HG 0.0088 1.216 0.112 
Hungary_IA 0.0089 1.278 0.101 

Afanasievo_BA 0.0104 1.882 0.030 
Stuttgart 0.0104 1.745 0.041 

Scandinavia_BA 0.0105 1.917 0.028 
Esperstedt_MN 0.0107 1.485 0.069 

Spain_MN 0.0114 2.171 0.015 
Bell_Beaker_BA 0.0116 2.434 0.007 
Scandinavia_IA 0.0117 1.798 0.036 

Sweden_MN 0.0117 1.783 0.037 
Unetice_BA 0.0122 2.630 0.004 

LaBrana_HG 0.0125 2.080 0.019 
Alberstedt_LN 0.0133 1.877 0.030 
Sweden_HG 0.0135 2.724 0.003 

Corded_Ware_BA 0.0136 2.893 0.002 
Altai_IA 0.0140 2.775 0.003 

Sintashta_BA 0.0184 3.627 1.43E-04 
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Supplementary Table B.4 D-statistics of the form D(Yoruba, OA; Bichon, WHG) which show that Bichon and 

western hunter-gatherers tend to form a clade to the exclusion of other ancient samples (OA) as the majority of 

statistics do not deviate significantly from zero (|Z|<3). Significant statistics are highlighted in bold. 

OA 
D(Yoruba,OA; 

Bichon,Loschbour) 
Z-score P-value 

D(Yoruba,OA; 
Bichon,La Braña) 

Z-score P-value 

Afanasievo_BA 0.0073 1.059 0.145 0.0009 0.115 0.454 
Alberstedt_LN 0.0142 2.607 0.005 0.0039 0.698 0.243 

Altai_IA 0.0106 2.172 0.015 -0.0071 -1.467 0.071 
Andronovo_BA 0.0086 1.219 0.111 0.0030 0.394 0.347 
Armenia_BA 0.0133 2.710 0.003 -0.0025 -0.496 0.310 

Bell_Beaker_BA 0.0073 1.777 0.038 -0.0003 -0.069 0.472 
BenzigerodeHeimburg_LN 0.0071 1.094 0.137 -0.0007 -0.103 0.459 

Corded_Ware_BA 0.0137 1.806 0.036 0.0197 2.384 0.009 
Esperstedt_MN 0.0121 1.669 0.048 -0.0036 -0.469 0.320 
Halberstadt_BA 0.0081 1.418 0.078 -0.0012 -0.208 0.418 

Hungary_BA 0.0082 1.516 0.065 -0.0055 -1.005 0.157 
Hungary_CA 0.0135 2.701 0.003 -0.0014 -0.259 0.398 
Hungary_EN 0.0136 2.251 0.012 0.0035 0.544 0.293 
Hungary_HG 0.0126 1.831 0.034 0.0018 0.240 0.405 
Hungary_IA 0.0048 1.041 0.149 -0.0033 -0.667 0.252 
Karasuk_BA 0.0067 0.923 0.178 -0.0096 -1.187 0.118 
Karelia_HG 0.0132 1.819 0.035 -0.0081 -1.050 0.147 

Kostenki 0.0105 2.301 0.011 0.0052 1.071 0.142 
Kotias 0.0101 1.187 0.118 -0.0346 -4.079 0.000 

LBK_EN 0.0033 0.481 0.315 -0.0095 -1.289 0.099 
MA1_HG 0.0054 1.140 0.127 -0.0001 -0.019 0.492 

Mezhovskaya_BA 0.0098 1.537 0.062 0.0015 0.215 0.415 
Okunevo_BA 0.0139 2.132 0.017 -0.0061 -0.896 0.185 

Otzi_CA 0.0163 2.244 0.012 0.0104 1.335 0.091 
Remdello_CA 0.0075 1.200 0.115 0.0044 0.690 0.245 

Russia_IA 0.0045 0.660 0.255 -0.0040 -0.579 0.281 
Samara_HG 0.0101 2.055 0.020 0.0046 0.937 0.174 
Satsurblia 0.0053 0.714 0.238 0.0015 0.207 0.418 

Scandinavia_BA 0.0036 0.544 0.293 -0.0003 -0.049 0.480 
Scandinavia_IA 0.0031 0.376 0.353 -0.0039 -0.467 0.320 
Sintashta_BA 0.0036 0.531 0.298 -0.0069 -0.993 0.160 

Spain_EN 0.0063 1.203 0.114 0.0024 0.423 0.336 
Spain_MN 0.0104 1.926 0.027 0.0028 0.500 0.309 
Stuttgart 0.0131 2.212 0.014 -0.0041 -0.693 0.244 

Sweden_HG 0.0236 4.463 4.04E-06 -0.0185 -3.439 2.92E-04 
Sweden_MN 0.0111 1.669 0.048 -0.0025 -0.350 0.363 
Unetice_BA 0.0154 3.371 3.74E-04 -0.0008 -0.159 0.437 
Ust_Ishim 0.0065 1.523 0.064 -0.0021 -0.451 0.326 

Yamnaya_BA 0.0055 0.891 0.186 0.0013 0.205 0.419 
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Supplementary Table B.5 f3-statistics which elucidate the topology between CHG, WHG and EF. 

Tree Pop1 Pop2 Outgroup f3 Standard error Z-score 

 
Kotias NE1 Bichon 0.105 0.007 14.493 

 
Kotias Stuttgart Bichon 0.111 0.007 15.616 

 
Kotias NE1 Loschbour 0.151 0.008 18.273 

 
Kotias Stuttgart Loschbour 0.161 0.008 19.018 

      

 

 
Bichon NE1 Kotias 0.055 0.006 9.480 

 
Loschbour NE1 Kotias 0.061 0.006 10.206 

 
Bichon Stuttgart Kotias 0.049 0.006 8.543 

 
Loschbour Stuttgart Kotias 0.052 0.006 9.285 

      

 

 
Kotias Bichon NE1 0.010 0.004 2.384 

 
Kotias Loschbour NE1 0.006 0.004 1.489 

 
Kotias Bichon Stuttgart 0.018 0.004 4.019 

 
Kotias Loschbour Stuttgart 0.015 0.004 3.313 

 

 

  

f3(CHG, EF; WHG) 

f3(WHG, EF; CHG) 

f3(WHG, CHG; EF) 

CHG EF WHG 

WHG EF CHG 

WHG CHG EF 
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Supplementary Table B.6 Parameters estimates from G-PhoCS. Mean and 95% HDP intervals for all estimated 

variables (split times, population sizes, migration rates and migration proportions) models with four possible 

trees, with EF represented by either Stuttgart or NE1, and with or without an outgroup (San). 

Parameter Stuttgart, San Stuttgart, no 
outgroup 

NE1, San NE1, no 
outgroup 

θSan 69,578 

(28,507–149,950) 
 65,565 

(28,937–140,883) 
 

θLoschbour 8,514 

(1,242–27,458) 

8,714 

(1,230–27,819) 

8201 

(1058–27105) 

8,294 

(1,179–27,274) 

θτBichon 7,641 

(939–26,320) 

7,676 

(799–26,376) 

7,896 

(817–26,525) 

7,648 

(742–26,287) 

θτKotias 7,267 

(1,096–24,384) 

7,208 

(1,182–25,058) 

5,098 

(1,206–17,066) 

4,672 

(899–18,650) 

θEF 8,996 

(1,810–27,407) 

7,715 

(1,207–25,545) 

9,273 

(2,199–27,020) 

8,037 

(1,706–25,676) 

θLoschbour+Bichon 4,240 

(1,201–10,339) 

1,824 

(390–4,593) 

4,686 

(1,562–10,541) 

2,296 

(611–5,428) 

θKotias+EF 5,313 

(913–16,765) 

2613 

(607–11,510) 

8,570 

(1,227–25,662) 

7,176 

(966–23,764) 

θLoschbour+Bichon+Kotias+EF 8312 

(4,622–11,876) 

13,086 

(11,690–14,642) 

9,214 

(5,642–12,959) 

13,021 

(11,614–14,524) 

θLoschbour+Bichon+Kotias+EF+San 15,567 

(13,408–17,961) 
 15,103 

(13,007–17,381) 
 

τLoschbour+Bichon 17,616 

(13,993–28,855) 

18,115 

(13,955–29,124) 

17,235 

(13,917–27,110) 

16,729 

(13,893–24,470) 

τKotias+EF 23,962 

(11,439–43,045) 

20,360 

(12,607–32,806) 

31,800 

(17,814–53,626) 

22,990 

(11,510–39,768) 

τLoschbour+Bichon+Kotias+EF 46,441 

(27,010–75,773) 

33,806 

(21,634–52,601) 

52171 

(30,555–84,651) 

37,341 

(21,923–61,832) 

τLoschbour+Bichon+Kotias+EF+San 233,172 

(157,714–309,530) 
 259,090 

(189,055–335,442) 
 

mLoschbour->EF 230,977 

(20,299–778,204) 

282,893 

(20,052–877,763) 

200,098 

(19,826–700,477) 

210,978 

(16,845–
728,345) 

propmLoschbour->EF 0.09 

(0.01–0.34) 

0.12 

(0.01–0.39) 

0.08 

(0.01–0.31) 

0.07 

(0.01–0.28) 
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Supplementary Table B.7 D-statistics of the form D(Yoruba, CHG; WHG, OA) which show that western 

hunter-gatherers and eastern hunter-gatherers as well as the latter and the ancient north Eurasian MA1 form a 

clade to the exclusion of CHG (|Z|<3). WHG, western hunter-gatherer; OA, other ancient sample. 

WHG OA D(Yoruba, 
Kotias; 

WHG, OA) 

Z-score P-value SNPs D(Yoruba, 
Satsurblia; 

WHG, OA) 

Z-score P-value SNPs 

Bichon MA1 -0.0067 -1.002 0.158 250,841 -0.0114 -1.498 0.067 200,555 

KO1 MA1 -0.0203 -2.831 0.002 250,957 -0.0218 -2.595 0.005 203,919 

La Braña MA1 -0.0092 -1.364 0.086 345,849 -0.0078 -1.085 0.139 279,481 

Loschbour MA1 -0.0102 -1.606 0.054 352,019 -0.0135 -1.888 0.030 286,844 

Bichon Samara_HG 0.0080 1.195 0.116 125,261 0.0129 1.554 0.060 100,667 

KO1 Samara_HG 0.0039 0.517 0.303 124,626 0.0011 0.111 0.456 101,788 

La Braña Samara_HG 0.0131 1.913 0.028 171,183 0.0100 1.222 0.111 139,082 

Loschbour Samara_HG 0.0130 1.864 0.031 174,650 0.0119 1.515 0.065 142,960 

Bichon Karelia_HG 0.0136 2.188 0.014 199,889 0.0035 0.446 0.328 161,076 

KO1 Karelia_HG -0.0019 -0.270 0.394 202,463 -0.0079 -0.941 0.173 165,909 

La Braña Karelia_HG 0.0087 1.379 0.084 278,296 0.0035 0.479 0.316 227,050 

Loschbour Karelia_HG 0.0089 1.447 0.074 285,238 0.0008 0.106 0.458 234,780 

 

Supplementary Table B.8 CHG and ANE ancestry in distinct is modern Northern Europeans. Significant 

statistics are highlighted in bold. 

Modern Northern European D(Yoruba, MA1; Kotias, modern Northern European) Z-score P-value 

Belarusian 0.0286 5.693 6.24E-09 

English 0.0253 4.965 3.44E-07 

Estonian 0.0351 6.941 1.95E-12 

Finnish 0.0331 6.392 8.19E-11 

Icelandic 0.0278 5.516 1.73E-08 

Lithuanian 0.034 6.534 3.20E-11 

Mordovian 0.0314 6.297 1.52E-10 

Norwegian 0.0271 5.423 2.93E-08 

Orcadian 0.0267 5.365 4.05E-08 

Russian 0.0307 6.221 2.47E-10 

Scottish 0.0285 5.532 1.58E-08 
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Supplementary Table B.9 D-statistics of the form D(Yoruba, X; CHG, EF) which show that CHG and EF do not 

form a clade to the exclusion of WHG (Z >3) but do form a clade to the exclusion of MA1 and eastern non-

Africans (|Z| < 3). Significant statistics are highlighted in bold. 

X CHG EF D(Yoruba,X;CHG,EF) Z-score P-value 

Bichon Kotias Stuttgart 0.0244 3.902 4.77E-05 

Bichon Kotias NE1 0.0336 5.450 2.52E-08 

Bichon Satsurblia Stuttgart 0.0229 3.622 1.46E-04 

Bichon Satsurblia NE1 0.0351 5.433 2.77E-08 

La Braña Kotias Stuttgart 0.0216 3.711 1.03E-04 

La Braña Kotias NE1 0.0362 6.203 2.77E-10 

La Braña Satsurblia Stuttgart 0.0277 4.262 1.01E-05 

La Braña Satsurblia NE1 0.0447 7.050 8.95E-13 

Loschbour Kotias Stuttgart 0.0341 5.737 4.82E-09 

Loschbour Kotias NE1 0.0477 7.815 2.75E-15 

Loschbour Satsurblia Stuttgart 0.0369 5.834 2.71E-09 

Loschbour Satsurblia NE1 0.0520 8.185 1.36E-16 

MA1 Kotias Stuttgart -0.0153 -2.380 0.009 

MA1 Kotias NE1 -0.0083 -1.362 0.087 

MA1 Satsurblia Stuttgart -0.0096 -1.423 0.077 

MA1 Satsurblia NE1 -0.0006 -0.084 0.467 

Onge Kotias NE1 -0.0024 -0.558 0.288 

Onge Kotias Stuttgart -0.0030 -0.678 0.249 

Onge Satsurblia NE1 0.0009 0.202 0.420 

Onge Satsurblia Stuttgart -0.0004 -0.085 0.466 

Papuan Kotias NE1 -0.0009 -0.199 0.421 

Papuan Kotias Stuttgart 0.0021 0.454 0.325 

Papuan Satsurblia NE1 0.0001 0.029 0.488 

Papuan Satsurblia Stuttgart 0.0019 0.393 0.347 
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Supplementary Table B.10 Lowest statistics for the test f3(Target; Source1, Source2). Ancient Samples are 

highlighted in bold. Populations for which source populations could not be determined ( Z > -3) are italicized. 

Target Region of target Source1 Source2 Lowest f3 Standard error Z-score 
Altaian Central Asia/Siberia Scandinavia_HG (I0013) Ulchi -0.020 0.001 -23.378 
Kalmyk Central Asia/Siberia LBK_EN (I0054) Ulchi -0.017 0.001 -22.109 
Kyrgyz Central Asia/Siberia Spain_EN (I0410) Ulchi -0.025 0.001 -30.837 
Mansi Central Asia/Siberia Scandinavia_HG (I0015) Nganasan -0.021 0.001 -17.357 
Selkup Central Asia/Siberia Scandinavia_HG (I0015) Nganasan -0.023 0.001 -20.470 

Tajik Pomiri Central Asia/Siberia LBK_EN (I0026) Karitiana -0.012 0.001 -8.257 
Tubalar Central Asia/Siberia Scandinavia_HG (Motala12) Korean -0.012 0.001 -12.045 

Turkmen Central Asia/Siberia LBK_EN (I0046) Nganasan -0.025 0.001 -20.594 
Tuvinian Central Asia/Siberia LBK_EN (I0046) Nganasan -0.012 0.001 -12.131 
Uzbek Central Asia/Siberia LBK_EN (I0046) Hezhen -0.027 0.001 -27.451 

Dai East Asia Hungary_EN (NE6) Ami 0.000 0.001 -0.074 
Lahu East Asia LBK_EN (I0046) Dai 0.014 0.001 13.381 
Naxi East Asia Spain_EN (I0410) She 0.001 0.001 1.429 
Thai East Asia LBK_EN (I0026) Ami -0.005 0.001 -4.801 
Tu East Asia Scandinavia_HG (Motala12) Korean -0.009 0.001 -10.881 

Uygur East Asia LBK_EN (I0046) She -0.028 0.001 -30.514 
Xibo East Asia LBK_EN (I0025) Korean -0.007 0.001 -6.628 

Bulgarian Eastern Europe Hungary_EN (NE6) Samara_HG -0.015 0.002 -6.927 
Czech Eastern Europe Hungary_EN (NE6) Samara_HG -0.016 0.002 -6.924 

Hungarian Eastern Europe Hungary_EN (NE6) Samara_HG -0.015 0.002 -6.804 
Ukrainian Eastern Europe Hungary_EN (NE6) Samara_HG -0.015 0.002 -6.339 

Adygei North Caucasus LBK_EN (I0026) Karitiana -0.008 0.002 -5.094 
Balkar North Caucasus LBK_EN (I0046) Nganasan -0.012 0.001 -9.455 

Chechen North Caucasus LBK_EN (I0100) Karitiana -0.007 0.001 -4.741 
Kumyk North Caucasus LBK_EN (I0100) Karitiana -0.013 0.001 -8.589 
Lezgin North Caucasus LBK_EN (I0046) MA1 -0.010 0.002 -4.737 
Nogai North Caucasus LBK_EN (I0046) Nganasan -0.024 0.001 -21.062 

North Ossetian North Caucasus LBK_EN (I0046) Nganasan -0.011 0.001 -8.067 
Belarusian Northern Europe Hungary_EN (NE6) Samara_HG -0.014 0.002 -6.121 
Chuvash Northern Europe LBK_EN (I0046) Nganasan -0.021 0.001 -17.147 
English Northern Europe Hungary_EN (NE6) Samara_HG -0.015 0.002 -6.330 

Estonian Northern Europe Kotias Loschbour -0.012 0.002 -7.432 
Finnish Northern Europe Hungary_EN (NE6) Samara_HG -0.012 0.002 -4.709 

Icelandic Northern Europe Hungary_EN (NE6) Samara_HG -0.013 0.002 -5.491 
Lithuanian Northern Europe Hungary_EN (NE6) Samara_HG -0.012 0.002 -5.106 
Mordovian Northern Europe LBK_EN (I0100) MA1 -0.013 0.002 -5.958 
Norwegian Northern Europe Hungary_EN (NE6) Samara_HG -0.013 0.002 -5.562 
Orcadian Northern Europe Hungary_EN (NE6) Samara_HG -0.013 0.002 -5.527 
Russian Northern Europe Hungary_EN (NE6) Samara_HG -0.013 0.002 -6.125 
Scottish Northern Europe Loschbour Iraqi Jew -0.011 0.001 -8.567 
Balochi South Asia Kotias Kharia -0.006 0.001 -7.351 
Bengali South Asia Kotias Kharia -0.011 0.001 -13.990 
Brahui South Asia Kotias Kharia -0.004 0.001 -5.154 

Burusho South Asia Satsurblia Korean -0.012 0.001 -11.349 
GujaratiA South Asia Kotias Kharia -0.011 0.001 -12.005 
GujaratiB South Asia Kotias Kharia -0.012 0.001 -12.427 
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GujaratiC South Asia Kotias Kharia -0.010 0.001 -10.205 
GujaratiD South Asia Kotias Kharia -0.007 0.001 -7.217 
Hazara South Asia Spain_EN (I0410) Korean -0.025 0.001 -27.520 
Iranian South Asia LBK_EN (I0026) Guarani -0.011 0.001 -7.943 
Kalash South Asia Kotias Cabecar 0.016 0.001 11.166 
Kharia South Asia Lahu Mala 0.001 0.000 2.675 

Kusunda South Asia LBK_EN (I0054) Naxi 0.010 0.001 9.149 
Lodhi South Asia Kotias Kharia -0.008 0.001 -10.559 

Makrani South Asia LBK_EN (I0046) Vishwabrahmin -0.004 0.001 -5.672 
Mala South Asia Kotias Kharia -0.007 0.001 -10.147 
Onge South Asia Cambodian Papuan 0.130 0.002 61.297 

Pathan South Asia Kotias Kharia -0.011 0.001 -13.879 
Punjabi South Asia Kotias Kharia -0.010 0.001 -12.115 
Sindhi South Asia Kotias Kharia -0.012 0.001 -15.623 
Tiwari South Asia Kotias Kharia -0.012 0.001 -17.322 

Vishwabrahmin South Asia Kotias Kharia -0.008 0.001 -12.198 
Abkhasian South Caucasus Kotias LBK_EN (I0046) -0.010 0.002 -5.847 
Armenian South Caucasus Satsurblia LBK_EN (I0046) -0.010 0.002 -5.040 
Georgian South Caucasus Satsurblia LBK_EN (I0046) -0.011 0.002 -5.469 
Albanian Southern Europe LBK_EN (I0046) MA1 -0.013 0.002 -5.833 
Basque Southern Europe LBK_EN (I0026) Bichon -0.009 0.002 -4.861 
Croatian Southern Europe Hungary _EN (NE6) Samara_HG -0.015 0.002 -6.644 
Greek Southern Europe LBK_EN (I0100) MA1 -0.013 0.002 -6.343 

Italian (Bergamo) Southern Europe Hungary _EN (NE6) Samara_HG -0.013 0.002 -5.762 
Maltese Southern Europe LBK_EN (I0100) MA1 -0.010 0.002 -4.834 

Sardinian Southern Europe LBK_EN (I0026) Bichon -0.007 0.002 -3.666 
Sicilian Southern Europe Hungary _EN (NE6) Samara_HG -0.012 0.002 -5.216 
Spanish Southern Europe Hungary _EN (NE6) Samara_HG -0.014 0.002 -6.580 

Spanish (North) Southern Europe Hungary _EN (NE6) Scandinavia_HG (I0012) -0.013 0.002 -5.526 
Tuscan Southern Europe LBK_EN (I0100) MA1 -0.011 0.002 -5.366 

BedouinA West Asia LBK_EN (I0046) Mende -0.019 0.001 -18.211 
BedouinB West Asia LBK_EN (I0046) Mende 0.005 0.001 4.030 

Cypriot West Asia Satsurblia LBK_EN (I0046) -0.008 0.002 -3.774 
Druze West Asia LBK_EN (I0046) Dinka -0.005 0.001 -4.151 

Jordanian West Asia LBK_EN (I0046) Dinka -0.016 0.001 -13.288 
Lebanese West Asia Spain_EN (I0410) Luo -0.013 0.001 -12.029 
Palestinian West Asia LBK_EN (I0046) Dinka -0.014 0.001 -13.743 

Saudi West Asia LBK_EN (I0046) Dinka -0.007 0.001 -5.134 
Syrian West Asia LBK_EN (I0046) Mende -0.013 0.001 -10.934 
Turkish West Asia LBK_EN (I0046) Nganasan -0.015 0.001 -13.709 
Yemen West Asia Spain_EN (I0410) Mende -0.025 0.001 -21.821 
French Western Europe Hungary _EN (NE6) Samara_HG -0.015 0.002 -6.810 

French (South) Western Europe Hungary _EN (NE6) Scandinavia_HG (I0012) -0.012 0.002 -5.624 
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Supplementary Table B.11 Highest D-statistics for D(Yoruba, X; Onge, Indian population) where we let X be 

every possible non-African population and ancient sample in the Human Origins dataset. 

Indian population X D(Yoruba, X; Onge, Indian population) Z-score P-value 

GujaratiC Kotias 0.0540 15.925 2.13E-57 

GujaratiD Kotias 0.0503 15.311 3.23E-53 

Lodhi Kotias 0.0448 14.829 4.76E-50 

Mala Kotias 0.0368 12.339 2.79E-35 

Vishwabrahmin Kotias 0.0393 13.025 4.41E-39 

GujaratiA Afanasievo_BA 0.0623 20.594 1.55E-94 

GujaratiB Afanasievo_BA 0.0576 20.032 1.45E-89 

Tiwari Afanasievo_BA 0.0602 23.159 5.90E-119 

Kharia Mala 0.0240 13.062 2.71E-39 

 

Supplementary Table B.12 Summary of the results for all samples sequenced during the screening phase of the 

project. Samples were sequenced using 50 base pair (bp) single-end sequencing on a MiSeq platform. Adapter 

trimmed reads were aligned to the GRCh37 build of the human genome with the mitochondrial sequence 

replaced by the revised Cambridge reference sequence and clonal reads were removed using SAMtools (see 

methods). Samples highlighted in bold were selected for further sequencing. 

Sample ID Lab ID Skeletal 
element 

Mass of 
powder (g) 

Total reads Aligned non-
clonal reads 

Human DNA 
(%) 

Bichon Bichon Petrous 0.250 3,501,019 2,504,728 71.54 

Kotias KK1.C1 Molar Crown 0.335 584,353 385,012 65.89 

Kotias KK1.R1 Molar Root 0.335 255,035 196,060 76.88 

Satsurblia SATP.1 Petrous 0.373 3,333,552 307,444 9.22 

Satsurblia SATP.3 Petrous 0.372 2,228,960 306,748 13.76 

 

  



Appendix B  Appendix for Chapter 3  

 

283 

 

Supplementary Table B.13 Summary of the results for samples sequenced during the deep sequencing phase of 

the project. All sequencing was performed on a HiSeq 2000 platform using 100 bp single-end sequencing. 

Adapter trimmed reads were aligned to the GRCh37 build of the human genome with the mitochondrial 

sequence replaced by the revised Cambridge reference sequence and clonal reads were removed using 

SAMtools. Coverage was calculated using GATK (see methods). 

 

Sample ID 

Lab ID Sequencing 
facility 

Number 

of lanes 

Total reads Aligned 

non-clonal 

reads 

Human 
DNA (%) 

Coverage 

(x) 

Bichon Bichon BGI
* 7 1,139,300,766 352,921,957 30.98 9.50 

Kotias KK1.R1 BC^ 6 1,327,399,258 849,496,700 64.00 15.38 

Satsurblia SATP.3 BC^ 3 419,683,577 66,338,333 15.81 1.44 

 
* 
Beijing Genomics Institute, China; ^ Beckmann Coulter Inc., USA 

 

 

Supplementary Table B.14 Mitochondrial contamination estimates. %C, percentage contamination excluding 

sites with potentially damaged bases; %C + MD, percentage contamination including sites with potentially 

damaged bases. Estimates are derived from the proportion of secondary bases at haplogroup-defining positions 

in the mitochondrial genome. 

Sample %C %C+MD 

Kotias 0.07 0.32 

Satsurblia 0.11 0.57 

Bichon 0.16 0.62 
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Supplementary Table B.15 Establishing the background error rate for X chromosome contamination estimates. 

“Test 1” and “test 2” were performed as in
52

. The number of primary alleles (p) and secondary alleles (s) in 

ancient male samples at X chromosome sites found to be polymorphic in European populations and adjacent 

sites 4 bases upstream and downstream are reported. 

Test Sample Allele -4 -3 -2 -1 0 1 2 3 4 

1 

Kotias p 1,856,365 1,854,061 1,849,192 1,842,313 1,773,694 1,841,046 1,847,342 1,853,194 1,855,144 

Kotias s 4,582 4,483 4,593 5,453 10,001 5,570 4,574 4,497 4,525 

Satsurblia p 36,003 36,133 36,182 35,863 34,645 35,978 36,204 36,022 36,293 

Satsurblia s 90 57 84 97 155 86 61 72 68 

Bichon p 980,753 980,819 979,916 978,924 948,648 978,001 979,943 980,432 980,784 

Bichon s 2,458 2,411 2,429 2,743 4,164 2,692 2,391 2,457 2,504 

2 

Kotias p 223,214 223,081 222,624 222,014 214,334 221,873 222,412 222,897 223,050 

Kotias s 618 519 567 651 1215 657 559 531 559 

Satsurblia p 11,201 11,238 11,264 11,171 10,793 11,201 11,269 11,202 11,291 

Satsurblia s 30 22 23 33 44 25 14 28 17 

Bichon p 143,919 143,956 143,754 143,676 139,533 143,524 143,777 143,841 143,950 

Bichon s 319 343 370 422 616 387 360 365 355 

 

Supplementary Table B.16 Contingency table for X chromosome contamination estimates. “Test 1” and “test 2” 

were performed as in
52

. The table reports the number of primary alleles (p) and secondary alleles (s) in ancient 

male samples at X chromosome sites found to be polymorphic in European populations and the average of 

adjacent sites 4 bases upstream and downstream as well as the observed probability of error (e). 

Sample  
Test 1 

Polymorphic sites 

Test 1 

Average of adjacent sites 

Test 2 

Polymorphic sites 

Test 2 

Average of adjacent sites 

Kotias 

p 1,773,694 1,849,832.125 214,334 222,645.625 

s 10,001 4,784.625 1,215 582.625 

e 0.006 0.003 0.006 0.003 

Satsurblia 

p 34,645 36,084.75 10,793 11,229.625 

s 155 76.875 44 24 

e 0.004 0.002 0.004 0.002 

Bichon 

p 948,648 979,946.500 139,533 143,799.625 

s 4,164 2,510.625 616 365.125 

e 0.004 0.003 0.004 0.003 
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Supplementary Table B.17 X chromosome contamination estimates. Estimates are based on “test 1” and “test 

2”11. Associated p-values for contingency tables used in this analysis were calculated using Fisher’s exact test. 

Sample Test Contamination (%) P-value 

Kotias 
1 0.99 < 2.2 x 10

-16 

2 0.99 < 2.2 x 10
-16 

Satsurblia 
1 0.56 5.22 x 10

 -8 

2 0.58 0.0011 

Bichon 
1 0.54 < 2.2 x 10

-16 

2 0.45 < 2.2 x 10
-16 

 

 

Supplementary Table B.18 Molecular sex assignment of ancient samples. Ry, the ratio of the fraction of Y 

chromosome reads to the fraction of reads aligning to both sex chromosomes. 

Sample Ry Standard error 95% Confidence interval Assignment 

Kotias 0.0840 0.0001 0.0839-0.0842 Male 

Satsurblia 0.0878 0.0002 0.0873-0.0882 Male 

Bichon 0.0928 0.0001 0.0926-0.0930 Male 

 

.  
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Supplementary Table B.19 Mitochondrial haplogroups and haplotypes for Kotias, Satsurblia and Bichon. 

Mutations reported here are with respect to the Reconstructed Sapiens Reference Sequence
98

. Mutations found 

in our samples which are present in the reported haplogroup are shown here unless marked in bold or 

underlined. Bold mutations are those expected for the prescribed haplogroup but not found in the sample. 

Underlined mutations are those present in our samples but not associated with the determined haplogroup. 

Sample Coverage Haplogroup Haplotype 

Kotias 425x H13c 

73A, 146T, 152T, 195T, 247G, 769G, 825T, 1018G, 2706A, 2758G, 2885T, 

3594C, 4104A, 4312C, 4769A, 7028C, 7146A, 7256C, 7521G, 8206A, 8468C, 

8655C, 8701A, 9540T, 10289G, 10398A, 10664C, 10688G, 10810T, 10873T, 

10915T, 11719G, 11914G, 12705C, 13105A, 13276A, 13506C, 13650C, 

14766C, 14872T, 16129G, 16187C, 16189T, 16223C, 16230A, 16278C, 

16311T, 16519T 

Satsurblia 144x K3 

146T, 150T, 152T, 235G, 247G, 560T, 769G, 825T, 1018G, 1097T, 1811G, 

2758G, 2885T, 3480G, 3594C, 4104A, 4312C, 4769A, 6027T, 7146A, 7256C, 

7498A, 7521G, 7657C, 8188G, 8468C, 8655C, 8701A, 9055A, 9540T, 9698C, 

9852T, 10398A, 10550G, 10664C, 10688G, 10810T, 10873T, 10915T, 

11299C, 11467G, 11914G, 12308G, 12372A, 12705C, 13105A, 13276A, 

13506C, 13650C, 14167T, 14198A, 14212C, 14798C, 15924G, 16093C, 

16129G, 16148T, 16153A, 16187C, 16189T, 16223C, 16224C, 16230A, 

16278C 

Bichon 314x U5b1h 

146T, 150T, 152T, 195T, 247G, 384G, 769G, 825T, 1018G, 2758G, 2885T, 

3197C, 3594C, 4104A, 4312C, 5656G, 7028C, 7146A, 7256C, 7521G, 7768G, 

8468C, 8655C, 8701A, 9477A, 9540T, 10398A, 10664C, 10688G, 10810T, 

10873T, 10915T, 11467G, 11914G, 12308G, 12372A, 12705C, 13105A, 

13276A, 13506C, 13617C, 13650C, 14182C, 16129G, 16187C, 16223C, 

16230A, 16270T, 16278C, 16311T, 16519T 
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Supplementary Table B.20 Y-chromosomal haplogroups for ancient male samples. Haplogroups were 

determined by Yfitter55. The “maximum likelihood haplogroup” is described by55, as being the best guess 

haplogroup while the “confidence haplogroup” is described as the conservative guess haplogroup. 

Sample Major haplogroup Maximum likelihood haplogroup Confidence haplogroup 

Kotias  J J J 

Satsurblia J J2a J2 

Bichon I I2a* I2 

 

 

Supplementary Table B.21 Genotypes for SNP panel used in 8-plex prediction system. Observed genotypes are 

shown for Bichon and Kotias while imputed genotypes with probability greater than 0.85 are reported for 

Satsurblia unless otherwise marked. Coverage refers to coverage of observed high quality alleles with a depth ≥ 

4x. Genotypes are reported with respect to the GRCh37 build of the human genome. Skin colour determination 

was inconclusive for all samples. 

Gene Marker Genotype 
Bichon 

Coverage 
Bichon 

Genotype 
Kotias  

Coverage 
Kotias  

Genotype 
Satsurblia 

Coverage 
Satsurblia 

SLC45A2 rs16891982 CC 4C CC 21C CC* - 

IRF4 rs12203592 CC 13C CC 19C CC* 7C 

SLC24A4 rs12896399 GT 5G,5T GT 4G,9T GG - 

OCA2 rs1545397 AA 8A AA 5A AA - 

HERC2 rs12913832 AG 6A,3G AA 15A AG^ 2A,2G 

SLC24A5 rs1426654 GG 25G AA 13A AA* 4A 

MC1R rs885479 GG 16G GG 10G - - 

ASIP rs6119471 CC 10C CC 24C CC - 

 

* genotype supported by observed and imputed data 

^ genotype supported by observed data 

 

 

  



Appendix B  Appendix for Chapter 3  

 

288 

 

Supplementary Table B.22 Genotypes for positions that define common haplotypes in the region surrounding 

the SLC24A5 gene. Observed genotypes are shown for Kotias and Bichon while imputed genotypes with 

probability greater than 0.85 are reported for Satsurblia. Coverage refers to coverage of observed high quality 

alleles with a depth ≥ 4x. Genotypes are reported with respect to the GRCh37 build of the human genome. 

Markers of the C11 haplogroup are shown in bold. This haplogroup is found in 97% of individuals with the 

derived rs1426654 variant76. Kotias  and Satsurblia exhibit the the C11 haplogroup while Bichon does not. 

Marker Ancestral 
allele 

Selecte
d allele 

Genotype 
Bichon 

Coverage 
Bichon 

Genotype 
Kotias  

Coverage 
Kotias  

Genotype 
Satsurblia 

Coverage 
Satsurblia 

rs1834640 G A AA 8A AA 15A AA - 

rs2675345 G A GG 5G AA 12A AA - 

rs2469592 G A GG 11G AA 25A AA - 

rs2470101 C T CT 10C,1T TT 16T TT - 

rs938505 T C TT 9T CT 6C,1T CC - 

rs2433354 T C TT 9T CC 9C,1T CC - 

rs2459391 G A GG 18G AA 26A AA - 

rs2433356 A G AA 4A GG 22G,1A GG - 

rs2675347 G A GG 7G AA 19A AA - 

rs2675348 G A GG 9G AA 19A AA - 

rs1426654 G A GG 25G AA 13A AA* 4A 

rs2470102 G A GG 9G AA 12A AA - 

rs16960631 A G AA 12A AA 17A AA - 

rs2675349 G A - - AA 6A AA - 

rs3817315 T C TT 18T CC 12C CC - 

rs7163587 T C TT 11T CC 19C CC - 

  

* genotype supported by observed and imputed data 
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Supplementary Table B.23 Genotypes for the SNP panel used in the Hirisplex prediction system. Observed 

genotypes are shown for Kotias and Bichon while imputed genotypes with a probability of greater than 0.85 are 

reported for Satsurblia unless otherwise marked. Coverage refers to coverage of observed high quality alleles 

with a depth ≥ 4x. Genotypes are reported with respect to the GRCh37 build of the human genome. 

Gene SNP Genotype 
Bichon 

Coverage 
Bichon 

Genotype 
Kotias  

Coverage 
Kotias  

Genotype 
Satsurblia 

Coverage 
Satsurblia 

MC1R N29insA CC 8C - - - - 

MC1R rs11547464 GG 16G GG 28G GG - 

MC1R rs885479 GG 16G GG 10G - - 

MC1R rs1805008 CC 15C CC 14C CC - 

MC1R rs1805005 GG 10G GG 9C GG - 

MC1R rs1805006 CC 10C CC 13C CC - 

MC1R rs1805007 CC 17C CC 22C CC - 

MCIR rs1805009 GG 12G GG 19G GG - 

MC1R Y1520CH CC 15C CC 19C - - 

MC1R rs2228479 GG 12G GG 15G,2A GG - 

MC1R rs1110400 TT 14T TT 16T TT - 

SLC45A2 rs28777 CC 8C CC 25C CC - 

SLC45A2 rs16891982 CC 4C CC 21C CC - 

KITLG rs12821256 TT 8T TT 11T - - 

EXOC2 rs4959270 CC 5C CC 8C AA - 

IRF4 rs12203592 CC 13C CC 19C CC* 7C 

TYR rs1042602 CC 11C CC 19C CC - 

OCA2 rs1800407 CC 11C CC 8C CC - 

SLC24A4 rs2402130 AA 18A AA 24A AA - 

HERC2 rs12913832 AG 6A,3G AA 15A AG^ 2A,2G 

PIGU/ASIP rs2378249 AA 10A AA 21A GA - 

SLC24A4 rs12896399 GT 5G,5T GT 4G,9T GG - 

TYR rs1393350 GG 14G GG 14G GG - 

TYRP1 rs683 CA 3C,2A AA 4A AA - 

 

* genotype supported by observed and imputed data 

^ genotype supported by observed data 
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Supplementary Table B.24 Hirisplex phenotypic predictions with accompanying associated probabilities for 

Bichon, Kotias and  Satsurblia. 

   Bichon Kotias  Satsurblia 

Eye colour 

 

Associated probability Blue 0.007 < 0.001 0.014 

 

 

 

Intermediate 0.027 0.003 0.033 

 

 

 

Brown 0.967 0.997 0.952 

Prediction  Brown Brown Brown 

Hair colour/shade 

 

Associated probability Blonde hair 0.022 0.005 0.032 

 

 

 

Brown hair 0.275 0.164 0.259 

 

 

 

Red hair < 0.001 < 0.001 < 0.001 

 

 

 

Black hair 0.704 0.831 0.709 

 

 

 

Light hair 0.030 0.006 0.060 

 

 

 

Dark hair 0.970 0.994 0.940 

Prediction  Black/Dark Black/Dark Black/Dark 
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Appendix C Appendix for Chapter 4 

C.1 Osteology 

The fragmented remains of seven individuals were unearthed from the floor of the dwelling, 

none of which were recovered in their primary burial anatomical position.  

● Skull A (DevilsGate4) – juvenile, 6-7 years (genetically determined to be female) 

● Skull Д – (DevilsGate3) – female, 50-60 years old  

● Skull Б (DevilsGate2) – male, 20-25 years old 

● Skull Е (DevilsGate1) – female, 40-50 years old 

● Skull Ж  (DevilsGate5) – complete skull of a young person, 18-20 years old (believed 

to be a male based on morphology but genetically determined to be female) 

● Skull В – sub-adult, 12-13 years old  (no aDNA analysis) 

● Skull Г – male, ~50 years old (no aDNA analysis) 

 

Complete and fragmented skulls were recovered from four of these individuals, three adults 

and one subadult (12-13 years of age) 
59

. Of the three adult skulls, two were believed to be 

from males (although one of these was genetically determined to be a female, see Supp. S.7.) 

and one of a female  

The skulls all have a short, high and wide cranial vault, a wide, high and flat face, with a 

slight protrusion of the nasal bones and with narrow orbits.  The mandible is very wide and is 

characteristic of hunter-gatherers
59

. The craniometric features are in general agreement with 

the genetics in terms of suggesting some level of regional continuity between the Devil’s 

Gate individuals and later populations in the Russian Far East. 
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C.2 Archaeology 

Devil’s Gate (Chertovy Vorota) is a karst cave situated in the mountainous part of Primorye 

Province, 12 km from the town Dalnegorsk (Primorsky Krai, Russian Far East), 660 meters 

above sea level and ~35m above the Krivaya River. The cave was first excavated in 1973 by 

a Soviet team under the directorship of Tatarnikov V.A
60

. This is the only known Neolithic 

cave site in Primorye
61

 . 

The large cave has a rectangular entrance and consists of a 45m long and 10m wide gallery of 

which the total area excavated was ~200 m
2
. Most of the cave’s area was occupied as a 

dwelling space
61

. The site contains a single occupational layer which belongs to the 

‘Rudninskaya’ Neolithic culture. In the central part of the hall, excavations revealed the 

remains of a rectangular pit dwelling around 45 m
2
 in area which was walled by wooden 

poles
61

.  

Cultural material recovered included stone, bone and antler tools, pottery, bone and shell 

ornaments, as well as good preservation of other organics including wood and textile 

artefacts
13

. The lithic assemblage includes retouched scrapers, arrows, knives, drills, and 

other tools. The bone tools include needles of various sizes, harpoons, and bases of insert 

tools. The composition of the tool assemblages is typical and indicative of a subsistence 

which is based on hunting and fishing
61

.  

Excavations also yielded 14 clay vessels made of local materials and a large number of 

shards. The pottery is flat-bottomed and conical-shaped with comb pattern decoration
13

; the 

method of construction was coiling. The vessels were decorated by stamping and appliqué.    

Prior to radiometric dating, the cultural layer at the cave was indirectly assigned to the 5
th

 

millennium BC based on the artefacts, which are similar to those recovered from a settlement 

situated near the Rudnaya River in the Dalnegorsk district
62

. 
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The excavations yielded fragments of textiles, fishing nets, cords and mats made of plant 

fabrics and wooden artefacts made of birch bark. A large number of bones of animals, acorns, 

fruits and birch bark were found in the center
62

. The assemblage also includes numerous 

ornaments including bone pendants from boar canines and beads made of shell, bone and 

stone. 

Animal bones belong mostly to brown and black bears, wild boar, red deer, and badger. The 

fauna also comprises of the remains of birds (grouse, ptarmigan, dove and duck) and 

freshwater and anadromous fish (salmon)
60

. The assemblage does not include any domestic 

plant or faunal remains which suggests that the inhabitants of the site belonged to a hunter-

gatherer-fisher population who manufactured utilitarian low-quality domestic pottery. 

C.3 Phenotypic prediction 

To explore pigmentation, we first looked at the genes SLC45A2 and SLC24A5, contributing 

to light skin pigmentation in modern-day Europeans
37,63–67

. Selected genotypes in these two 

genes (rs16891982 and rs1426654 for SLC45A2 and SLC24A5, respectively) are known to 

have been under strong positive selection in Europeans and are almost fixed in modern 

populations in the region. Our results imply that DevilsGate1 was unlikely to have been 

homozygous for either of the selected alleles, as is typical for non-Europeans. The 

rs12913832 variant of the HERC2 gene was also investigated, where a mutation is found in 

nearly all people with blue eyes. Our sample was likely homozygous for the ancestral allele, 

implying brown eyes. 

A variant  of the LCT gene (rs4988235), where the derived genotype is associated with 

lactose tolerance in adult Europeans
41

, was examined. We found that DevilsGate1 was 

unlikely to possess the derived genotype similar to modern-day East Asian populations. 
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A number of mutations associated with phenotypes in East Asians were also looked at, first 

two locations within the OCA2 gene (rs1800414 and rs74653330) that give signals of positive 

selection
68–70

 and are wide-spread and associated with decreased melanin levels in East 

Asians
71–73

. The results for the variant rs1800414 were inconclusive, but DevilsGate1 likely 

did not carry the derived variant at rs74653330. We also looked at two loci with a high 

frequency differentiation between East Asians and non-East Asians and showing signals of 

positive selection (rs12821256, rs1407995, rs885479 on the KITLG, DCT and SLC24A2 

genes, respectively)
37

 or otherwise associated with pigmentation (rs1042602, rs1834640, 

rs26722 on the TYR, RPL7AP62/SLC24A5 and SLC24A2 genes, respectively)
74

.  

DevilsGate1 was most likely homozygous for the East Asian variant at both rs12821256 and 

rs1407995 and did not possess the alleles rare in East Asia at rs885479, rs1042602, 

rs1834640 and rs26722. 

Our next target was the EDAR gene. This region also shows signals of positive selection in 

East Asian populations, with the selected allele linked to certain phenotypic changes (e.g. in 

tooth morphology
40

, hair thickness
38,39

 and sweat gland density
75

), also confirmed using a 

mouse model. The haplotype with the selected allele is very common in East Asian, 

Northeast Asian and Native American populations and is estimated to have emerged in 

central China around 30,000 years ago
75

. Our sample likely carried at least one copy of the 

derived allele, giving increased odds of straight, thick hair as well as shovel-shaped incisors. 

The mutation rs671 on ALDH2 was also studied. The derived variant, of intermediate 

frequencies (roughly up to 50%) in various East Asian populations
76,77

, is associated with 

alcohol flush and increased risk of hangovers, alcoholism and Esophageal Cancer
42,78

. Our 

sample probably did not carry the derived allele. 

Then, three East Asian phenotypic traits were investigated. DevilsGate1 most likely had at 

least one copy of the risk allele for common salt-sensitive hypertension
79

 at rs4961 on the 

ADD1 gene, common in Asia. She was most likely not homozygous for the risk allele at 
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rs1799971 on the OPRM1 gene, associated with increased craving and stronger effects for 

alcohol
80

 and for opioids
81

 in Asian populations, although the results from association studies 

on this marker are mixed. The derived variant at rs17822931 on the ABCC11 gene is 

associated with weaker than usual body odour
82

 and dry ear wax type
83

 (for the latter, when 

homozygous) in East Asians and is indicative of east Asian ancestry. DevilsGate1’s genotype 

could not be determined but she most likely possessed at least one copy of the derived allele.  

Finally, eight loci associated with an increased risk for Type 2 diabetes in East Asian 

populations was studied (rs1535500, rs6017317, rs6467136, rs9470794, rs3786897, 

rs6815464, rs7041847, rs831571)
84

. She was likely heterozygous at two loci associated with 

increased susceptibility to Type 2 diabetes in East Asians (rs1535500 and rs9470794) and 

had at least one copy of the disease-associated variant at a third location (rs6815464). Our 

results at rs3786897 were completely uninformative and at other locations, she most likely 

had at least one copy of the normal variant.  

Detailed results of the phenotypic inference are shown in Supplementary Table C.32.. 
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C.4 Supplementary figures 

 

Supplementary Figure C.1 Calibrated range of the two human specimens from Devil’s Gate (OxCal v. 4.2.4) 

 

Supplementary Figure C.2 Damage patterns for Devil’s Gate samples. Plots show mismatch frequency relative 

to the reference genome as a function of read position. A) shows the frequency of C to T misincorporations at 

the 5’ ends of reads while B) shows the frequency of G to A transitions at the 3’ ends of reads. 

 

Supplementary Figure C.3 Sequence length distribution for samples from Devil’s Gate. All samples have 

sequences in the range expected for ancient DNA. 



Appendix C  Appendix for Chapter 4  

 

298 

 

 

Supplementary Figure C.4 Outgroup f3 statistics on PMDtools-filtered data. Outgroup f3 measuring shared drift 

between samples from Devil’s Gate (black triangle shows sampling location) and modern populations with 

respect to an African outgroup (Khomani), using only reads with a PMD score of at least 3(9). (A) Map of the 

whole world. (B) 15 populations with the highest shared drift with Devil’s Gate, color coded by regions as on 

Figure PCA. Error bars represent one standard error. 
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Supplementary Figure C.5 Principal component analysis on all SNPs using the worldwide panel. Black 

(MapDamage treated), gray (not MapDamage treated) and white (PMD-filtered, not MapDamage treated) 

symbols mark DevilsGate1 and DevilsGate2, projected upon the principal components as defined by the modern 

panel. Proportion of variance explained is displayed in parentheses on the axis. A) Component 1 and 2. B) 

Component 1 and 3. C) Component 2 and 3. 
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Supplementary Figure C.6 Principal component analysis on transversion SNPs using the worldwide panel. 

Black (MapDamage treated) and gray (not MapDamage treated) symbols mark DevilsGate1 and DevilsGate2, 

projected upon the principal components as defined by the modern panel. Proportion of variance explained is 

displayed in parentheses on the axis. A) Component 1 and 2. B) Component 1 and 3. C) Component 2 and 3. 
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Supplementary Figure C.7 Principal component analysis on all SNPs using the regional panel. Black 

(MapDamage treated), gray (not MapDamage treated) and white (PMD-filtered, not MapDamage treated) 

symbols mark DevilsGate1 and DevilsGate2, projected upon the principal components as defined by the modern 

panel. Proportion of variance explained is displayed in parentheses on the axis. A) Component 1 and 2. B) 

Component 1 and 3. C) Component 2 and 3. 
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Supplementary Figure C.8 Principal component analysis on transversion SNPs using the regional panel. Black 

(MapDamage treated) and gray (not MapDamage treated) symbols mark DevilsGate1 and DevilsGate2, 

projected upon the principal components as defined by the modern panel. Proportion of variance explained is 

displayed in parentheses on the axis. A) Component 1 and 2. B) Component 1 and 3. C) Component 2 and 3. 
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Supplementary Figure C.9 ADMIXTURE analysis cross validation (CV) error as a function of the number of 

clusters (K) for the regional panel, using all SNPs (top row) or transversions only (bottom row) and with (left 

column) or without (right column) MapDamage treatment. The lowest mean value was attained at K=5. 

 

Supplementary Figure C.10 ADMIXTURE analysis cross validation (CV) error as a function of the number of 

clusters (K) for the world panel, using all SNPs (top row) or transversions only (bottom row) and with (left 

column) or without (right column) MapDamage treatment. The lowest mean value was attained at K=18.
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Supplementary Figure C.11 Results from ADMIXTURE analysis using the regional panel, all SNP-s and setting 

the number of clusters to K=2 to K=10. Minimal cross-validation error was attained at K=5.
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Supplementary Figure C.12 Results from ADMIXTURE analysis using the regional panel, transversion SNP-s 

and setting the number of clusters to K=2 to K=10. Minimal cross-validation error was attained at K=5. 
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Supplementary Figure C.13 Results from ADMIXTURE analysis using the total panel, all SNP-s and setting the 

number of clusters to K=2 to K=20. Minimal cross-validation error was attained at K=5. 
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Supplementary Figure C.14 Results from ADMIXTURE analysis using the total panel, transversion SNP-s and 

setting the number of clusters to K=2 to K=20. Minimal cross-validation error was attained at K=5. 
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Supplementary Figure C.15 Outgroup f3 scores of the form f3(X, MA1; Khomani), with modern populations 

and selected ancient samples (Ust’Ishim, Kotias, Loschbour and Stuttgart), using all SNPs, with f3 > 0.15 

displayed. The black triangle marks the location of MA1. 

 

Supplementary Figure C.16 D scores of the form D(X, Khomani; MA1, DevilsGate1), with all modern 

populations in our panel and selected ancient samples, using all SNPs. (Ust’Ishim, Kotias, Loschbour and 

Stuttgart) displayed. The black triangles mark the location of MA1 and Devil’s Gate. 
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Supplementary Figure C.17 D scores of the form D(X, Khomani; MA1, DevilsGate1), with all modern 

populations in our panel and selected ancient samples, using all SNPs. (Ust’Ishim, Kotias, Loschbour and 

Stuttgart) displayed.  The black triangles mark the location of MA1 and Devil’s Gate. 

 

Supplementary Figure C.18 Outgroup f3 scores of the form f3(X, Ust’Ishim; Khomani), with modern 

populations and selected ancient samples (MA1, Kotias, Loschbour and Stuttgart), using all SNPs, with f3 > 

0.15 displayed. The black triangle marks the location of Ust’Ishim. 
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Supplementary Figure C.19 D scores of the form D(X, Khomani; Ust’Ishim, DevilsGate1), with all modern 

populations in our panel and selected ancient samples, using all SNPs. (MA1, Kotias, Loschbour and Stuttgart) 

displayed. The black triangles mark the location of MA1 and Devil’s Gate. 

 

Supplementary Figure C.20 D scores of the form D(X, Khomani; Ust’Ishim, DevilsGate2), with all modern 

populations in our panel and selected ancient samples, using all SNPs. (MA1, Kotias, Loschbour and Stuttgart) 

displayed. The black triangles mark the location of MA1 and Devil’s Gate. 
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C.5 Supplementary tables 

Supplementary Table C.1 Details of sample preparation and sequencing. Extraction codes: 1*, DNA extracted 

from first lysis buffer' 2* DNA extracted from second lysis buffer; bp, base pairs. High quality non-clonal reads 

refers to reads with mapping quality >=30 and of length >=30. Coverage: average genomic depth of coverage. 

Sample Library ID Extraction Skeletal 

element 

Sequencing 

Instrument 

Sequencing 

facility 

Sequencing 

length and type  

Reads Aligned 

reads  

% High quality 

non-clonal 

reads 

Coverage 

(x) 

DevilsGate4 MOS2A.E1 1*  molar Illumina MiSeq TrinSeq, Dublin 150bp paired 

end 

7,096,341 25,455 0.36 10792 0.0002 

 MOS2C.E1 1*  cranial 

fragment  

Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

433,003 1,510 0.35   

DevilsGate3 MOS3.2A.E1 1*  molar 

(root) 

Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

535,857 14,895 2.78 31184 0.0006 

 MOS3.3A.E1 1*  molar 

(crown) 

Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

560,654 26,440 4.72   

DevilsGate2 MOS4A.E1 1*  molar Illumina HiSeq Beijing Genomics 

Institute, China 

50bp single end  6,775,617 132,363 1.95 1,469,128 0.0333 

 MOS4A.E1 1*  molar Illumina HiSeq Beijing Genomics 

Institute, China 

50bp single end  108,566,893 2,003,142 1.85   

 MOS4A.E1 1*  molar Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

618,270 11,689 1.89   

 MOS4A.E2 2* molar Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

338,589 7,172 2.12   

 MOS4.C3.E1 1*  cranial 

fragment 

Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

532,719 2,822 0.53   

DevilsGate1 MOS5A.E1 1*  molar Illumina HiSeq Beijing Genomics 

Institute, China 

50bp single end  3,775,905 127,260 3.37 2,625,622 0.0759 

 MOS5A.E1 1*  molar Illumina HiSeq Beijing Genomics 

Institute, China 

50bp single end  34,240,237 1,129,604 3.30   

 MOS5A.E1 1*  molar Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

584,305 20,133 3.45   

 MOS5A.E2 2* molar Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

444,709 18,755 4.22   

 MOS5B.R1.E2 2* molar 

(root) 

Illumina MiSeq TrinSeq, Dublin 70bp single end 2,632,825 216,661 8.23   

 MOS5B.R1.E2 2* molar 

(root) 

Illumina HiSeq Theragen BiO 

Institute 

100 bp paired 

end  

60,490,976 2,043,091 3.38   

DevilsGate5 MOS6.C1.E1 1*  cranial 

fragment  

Illumina MiSeq TrinSeq, Dublin 150bp paired 

end  

518,401 5,457 1.05 3,187 0.0001 
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Supplementary Table C.2 Regional groups for the Human Origins panel. 

Population Region Population Region Population Region 

Abkhasian SouthCaucasus Gambian Africa Koryak Chukotka-Kamchatka 

AA America Punjabi SouthAsia Itelmen Chukotka-Kamchatka 

Turkish WestAsia Esan Africa Cochin_Jew Indian 

Chukchi Chukotka-Kamchatka Bengali SouthAsia Kumyk NorthCaucasus 

Eskimo Chukotka-Kamchatka Mende Africa Kusunda SouthAsia 

Nganasan Siberia Brahui SouthAsia Lebanese WestAsia 

Oromo Africa Balochi SouthAsia Lezgin NorthCaucasus 

Albanian SouthernEurope Hazara SouthAsia Libyan_Jew Africa 

Tlingit Chukotka-Kamchatka Makrani SouthAsia Lithuanian NorthernEurope 

Aleut Chukotka-Kamchatka Sindhi SouthAsia Lodhi Indian 

Algerian Africa Pathan SouthAsia Mala Indian 

Altaian CentralAsia Kalash SouthAsia Maltese SouthernEurope 

Armenian SouthCaucasus Burusho SouthAsia Mansi Siberia 

Ashkenazi_Jew EasternEurope Mbuti Africa Georgian SouthCaucasus 

Aymara America Biaka Africa Mixtec America 

Masai Africa French WesternEurope Mixe America 

Somali Africa Papuan Oceania Mordovian NorthernEurope 

Luo Africa Druze WestAsia Moroccan_Jew Africa 

Kikuyu Africa BedouinB WestAsia Korean KoreaJapan 

Balkar NorthCaucasus BedouinA WestAsia Atayal SouthEastAsia 

Hadza Africa Bougainville Oceania Ami SouthEastAsia 

Basque SouthernEurope Sardinian SouthernEurope Czech EasternEurope 

Belarusian NorthernEurope Palestinian WestAsia Icelandic NorthernEurope 

Kyrgyz CentralAsia Piapoco America Luhya Africa 

Bolivian America Cambodian SouthEastAsia GujaratiD Indian 

Quechua America Japanese KoreaJapan GujaratiB Indian 

Taa_East Africa Han EastAsia GujaratiA Indian 

Hoan Africa Orcadian NorthernEurope GujaratiC Indian 

Taa_West Africa Surui America Chipewyan America 

Taa_North Africa Mayan America Wambo Africa 

Gui Africa Russian NorthernEurope Xuun Africa 

Naro Africa Mandenka Africa Haiom Africa 

Gana Africa Yoruba Africa Damara Africa 

Kgalagadi Africa Yakut Siberia Himba Africa 

Ju_hoan_South Africa BantuSA Africa Nama Africa 

Ju_hoan_North Africa Karitiana America Even Siberia 

Khwe Africa Pima America Nogai NorthCaucasus 

Shua Africa Tujia EastAsia Norwegian NorthernEurope 
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Tshwa Africa Bergamo SouthernEurope North_Ossetian NorthCaucasus 

Tswana Africa Tuscan SouthernEurope Ojibwa America 

Bulgarian EasternEurope Yi EastAsia Onge Indian 

Cabecar America Miao EastAsia Khomani Africa 

Chechen NorthCaucasus Oroqen AmurBasin Saharawi Africa 

Thai SouthEastAsia Daur AmurBasin Sandawe Africa 

Chilote America Mongola EastAsia Saudi WestAsia 

Chuvash NorthernEurope Hezhen AmurBasin Selkup Siberia 

Yukagir Chukotka-Kamchatka Xibo AmurBasin Turkish_Jew WestAsia 

Cree America Mozabite Africa French_South WesternEurope 

Croatian SouthernEurope Han_NChina EastAsia Sicilian SouthernEurope 

Cypriot WestAsia Uygur CentralAsia Syrian WestAsia 

Dinka Africa Dai SouthEastAsia Tajik_Pomiri CentralAsia 

Egyptian Africa Lahu SouthEastAsia Guarani America 

Estonian NorthernEurope She EastAsia Tiwari Indian 

Ethiopian_Jew Africa Naxi EastAsia Tubalar CentralAsia 

Georgian_Jew SouthCaucasus Tu EastAsia Tunisian Africa 

Algonquin America Adygei NorthCaucasus Tunisian_Jew Africa 

Greek SouthernEurope BantuKenya Africa Tuvinian CentralAsia 

Kaqchikel America Hungarian EasternEurope Ukrainian EasternEurope 

Scottish NorthernEurope Iranian SouthAsia Ulchi AmurBasin 

English NorthernEurope Iranian_Jew SouthAsia Uzbek CentralAsia 

Finnish NorthernEurope Iraqi_Jew WestAsia Turkmen CentralAsia 

Spanish SouthernEurope Jordanian WestAsia Vishwabrahmin Indian 

Spanish_North SouthernEurope Kalmyk CentralAsia Yemen WestAsia 

Kinh SouthEastAsia Kharia Indian Yemenite_Jew WestAsia 

    Zapotec America 
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Supplementary Table C.3 Samples from the Personal Genome Project Korea (http://opengenome.net/) 

Sample ID Population Region 

KPGP-00001 Korean KoreaJapan 

KPGP-00002 Korean KoreaJapan 

KPGP-00006 Korean KoreaJapan 

KPGP-00032 Korean KoreaJapan 

KPGP-00033 Korean KoreaJapan 

KPGP-00039 Korean KoreaJapan 

KPGP-00056 Korean KoreaJapan 

KPGP-00086 Korean KoreaJapan 

KPGP-00088 Korean KoreaJapan 

KPGP-00090 Korean KoreaJapan 

KPGP-00117 Korean KoreaJapan 

KPGP-00120 Korean KoreaJapan 

KPGP-00121 Korean KoreaJapan 

KPGP-00122 Korean KoreaJapan 

KPGP-00124 Korean KoreaJapan 

KPGP-00125 Korean KoreaJapan 

KPGP-00127 Korean KoreaJapan 

KPGP-00128 Korean KoreaJapan 

KPGP-00129 Korean KoreaJapan 

KPGP-00131 Korean KoreaJapan 

KPGP-00132 Korean KoreaJapan 

KPGP-00134 Korean KoreaJapan 

KPGP-00136 Korean KoreaJapan 

KPGP-00137 Korean KoreaJapan 

KPGP-00138 Korean KoreaJapan 

KPGP-00139 Korean KoreaJapan 

KPGP-00141 Korean KoreaJapan 

KPGP-00142 Korean KoreaJapan 

KPGP-00144 Korean KoreaJapan 

KPGP-00145 Korean KoreaJapan 

KPGP-00205 Korean KoreaJapan 

KPGP-00220 Korean KoreaJapan 

KPGP-00224 Korean KoreaJapan 

KPGP-00227 Korean KoreaJapan 

KPGP-00228 Korean KoreaJapan 

KPGP-00229 Korean KoreaJapan 

KPGP-00230 Korean KoreaJapan 

KPGP-00232 Korean KoreaJapan 

KPGP-00233 Korean KoreaJapan 

KPGP-00235 Korean KoreaJapan 

KPGP-00254 Korean KoreaJapan 

KPGP-00255 Korean KoreaJapan 

KPGP-00256 Korean KoreaJapan 

KPGP-00265 Korean KoreaJapan 

KPGP-00266 Korean KoreaJapan 
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Supplementary Table C.4 Ancient samples used in the study. 

Sample ID Population Country Broad group Publication 

DevilsGate1 DevilsGate Russia DG This study 

DevilsGate2 DevilsGate Russia DG This study 

KK1 KK1 Georgia CHG Jones et al. 2015 

SATP_md SATP Georgia CHG Jones et al. 2015 

Bichon Bichon Luxembourg WHG Jones et al. 2015 

BR1_md BR1 Hungary WBR Lazaridis et al. 2014 

BR2 BR2 Hungary WBR Lazaridis et al. 2014 

CO1_md CO1 Hungary CO Lazaridis et al. 2014 

HDma1_md HDma1 Hungary WBR Lazaridis et al. 2014 

IR1_md IR1 Hungary WIR Lazaridis et al. 2014 

KO1_md KO1 Hungary WHG Lazaridis et al. 2014 

Kostenki Kostenki Russia PHG Lazaridis et al. 2014 

LaBrana_md LaBrana Spain WHG Lazaridis et al. 2014 

LBK_hg19_1000g Stuttgart Germany EEF Lazaridis et al. 2014 

Loschbour_hg19_1000g Loschbour Germany WHG Lazaridis et al. 2014 

MA1_nf MA1 Russia PHG Lazaridis et al. 2014 

Gok2_md Gok Sweden EEF Lazaridis et al. 2014 

Ajv58_md Ajv Sweden SHG Lazaridis et al. 2014 

Motala12_ancient Motala12 Sweden SHG Lazaridis et al. 2014 

NE1 NE Hungary EEF Lazaridis et al. 2014 

NE5_md NE Hungary EEF Lazaridis et al. 2014 

NE6_md NE Hungary EEF Lazaridis et al. 2014 

NE7_md NE Hungary EEF Lazaridis et al. 2014 

otzi_nf otzi Italy CO Lazaridis et al. 2014 

Ust_Ishim Ust_Ishim Russia PHG Lazaridis et al. 2014 

RISE00 baCw Estonia WBR Allentoft et al. 2015 

RISE150 baUne Poland WBR Allentoft et al. 2015 

RISE174 irSca Sweden WIR Allentoft et al. 2015 

RISE392 baSin Russia EBR Allentoft et al. 2015 

RISE394 baSin Russia EBR Allentoft et al. 2015 

RISE395 baSin Russia EBR Allentoft et al. 2015 

RISE423 baArm Armenia WBR Allentoft et al. 2015 

RISE479 baHu Hungary WBR Allentoft et al. 2015 
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RISE489 baRem Italy WBR Allentoft et al. 2015 

RISE493 baKarasuk Russia EBR Allentoft et al. 2015 

RISE495 baKarasuk Russia EBR Allentoft et al. 2015 

RISE496 baKarasuk Russia EBR Allentoft et al. 2015 

RISE497 baKarasuk Russia EBR Allentoft et al. 2015 

RISE499 baKarasuk Russia EBR Allentoft et al. 2015 

RISE500 baAndrov Russia EBR Allentoft et al. 2015 

RISE502 baKarasuk Russia EBR Allentoft et al. 2015 

RISE503 baAndrov Russia EBR Allentoft et al. 2015 

RISE504 irRus Russia EIR Allentoft et al. 2015 

RISE505 baAndrov Russia EBR Allentoft et al. 2015 

RISE509 baAfan Russia EBR Allentoft et al. 2015 

RISE511 baAfan Russia EBR Allentoft et al. 2015 

RISE516 baOku Russia EBR Allentoft et al. 2015 

RISE523 baMezh Russia EBR Allentoft et al. 2015 

RISE547 baYam Russia EBR Allentoft et al. 2015 

RISE548 baYam Russia EBR Allentoft et al. 2015 

RISE550 baYam Russia EBR Allentoft et al. 2015 

RISE552 baYam Russia EBR Allentoft et al. 2015 

RISE569 baBb Czech Republic WBR Allentoft et al. 2015 

RISE577 baUne Czech Republic WBR Allentoft et al. 2015 

RISE600 irAltai Russia EIR Allentoft et al. 2015 

RISE601 irAltai Russia EIR Allentoft et al. 2015 

RISE602 irAltai Russia EIR Allentoft et al. 2015 

RISE94 baSca Sweden WBR Allentoft et al. 2015 

RISE97 baSca Sweden WBR Allentoft et al. 2015 

RISE98 baSca Sweden WBR Allentoft et al. 2015 

I0011 Motala_HG Sweden SHG Haak et al. 2015 

I0012 Motala_HG Sweden SHG Haak et al. 2015 

I0013 Motala_HG Sweden SHG Haak et al. 2015 

I0014 Motala_HG Sweden SHG Haak et al. 2015 

I0015 Motala_HG Sweden SHG Haak et al. 2015 

I0016 Motala_HG Sweden SHG Haak et al. 2015 

I0022 LBK_EN Germany EEF Haak et al. 2015 

I0025 LBK_EN Germany EEF Haak et al. 2015 

I0026 LBK_EN Germany EEF Haak et al. 2015 

I0046 LBK_EN Germany EEF Haak et al. 2015 

I0047 Unetice_EBA Germany WBR Haak et al. 2015 

I0048 LBK_EN Germany EEF Haak et al. 2015 

I0054 LBK_EN Germany EEF Haak et al. 2015 

I0056 LBK_EN Germany EEF Haak et al. 2015 

I0057 LBK_EN Germany EEF Haak et al. 2015 

I0058 BenzigerodeHeimburg_LN Germany WBR Haak et al. 2015 
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I0059 BenzigerodeHeimburg_LN Germany WBR Haak et al. 2015 

I0061 Karelia_HG Russia EHG Haak et al. 2015 

I0099 Halberstadt_LBA Germany WBR Haak et al. 2015 

I0100 LBK_EN Germany EEF Haak et al. 2015 

I0103 Corded_Ware_LN Germany WBR Haak et al. 2015 

I0104 Corded_Ware_LN Germany WBR Haak et al. 2015 

I0108 Bell_Beaker_LN Germany WBR Haak et al. 2015 

I0111 Bell_Beaker_LN Germany WBR Haak et al. 2015 

I0112 Bell_Beaker_LN Germany WBR Haak et al. 2015 

I0116 Unetice_EBA Germany WBR Haak et al. 2015 

I0117 Unetice_EBA Germany WBR Haak et al. 2015 

I0118 Alberstedt_LN Germany WBR Haak et al. 2015 

I0124 Samara_HG Russia EHG Haak et al. 2015 

I0164 Unetice_EBA Germany WBR Haak et al. 2015 

I0172 Esperstedt_MN Germany MN Haak et al. 2015 

I0174 Starcevo_EN Hungary EBR Haak et al. 2015 

I0176 LBKT_EN Hungary WBR Haak et al. 2015 

I0231 Yamnaya Russia EBR Haak et al. 2015 

I0406 Spain_MN Spain MN Haak et al. 2015 

I0407 Spain_MN Spain MN Haak et al. 2015 

I0408 Spain_MN Spain MN Haak et al. 2015 

I0409 Spain_EN Spain EEF Haak et al. 2015 

I0410 Spain_EN Spain EEF Haak et al. 2015 

I0412 Spain_EN Spain EEF Haak et al. 2015 

I0413 Spain_EN Spain EEF Haak et al. 2015 

I0429 Yamnaya Russia EBR Haak et al. 2015 

I0438 Yamnaya Russia EBR Haak et al. 2015 

I0443 Yamnaya Russia EBR Haak et al. 2015 

I0659 LBK_EN Germany EEF Haak et al. 2015 

I0795 LBK_EN Germany EEF Haak et al. 2015 

I0821 LBK_EN Germany EEF Haak et al. 2015 
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Supplementary Table C.5 Abbreviations of ancient groups used in the study 

Abbreviation Full name 

CHG Caucasus Hunter-Gatherer 

CO Copper Age 

DG Devil's Gate 

EBR Bronze Age (East) 

EEF Early European Farmer 

EHG Eastern Hunter-Gatehrer 

EIR Iron Age (East) 

MN Middle Neolithic 

PHG Paleolithic Hunter-Gatherer 

SHG Scandinavian Hunter-Gatherer 

WBR Bronze Age (West) 

WHG Western Hunter-Gatherer 

WIR Iron Age (West) 

EN Early Neolithic 

MN Middle Neolithic 

LN Late Neolithic 

BA / ba Bronze Age 

IR / ir Iron Age 

NE Neolithic 

LBK Linearbandkeramik 

baCw Corded Ware (Bronze Age) 

baUne Unetice (Bronze Age) 

irSca Iron Age 

baSin Sintashta (Bronze Age) 

baArm Armenia (Bronze Age) 

baHu Hungary (Bronze Age) 

baRem Remedello (Bronze Age) 

baKarasuk Karasuk (Bronze Age) 

baAndrov Andronovo (Bronze Age) 

irRus Russia (Iron Age) 

baAfan Afanasievo (Bronze Age) 

baOku Okunevo (Bronze Age) 

baMezh Mezhovskaya (Bronze Age) 

baYam Yamnaya (Bronze Age) 

baBb Bell Beaker (Bronze Age) 

baUne Unetice (Bronze Age) 

irAltai Altai (Iron Age) 

baSca Battle Axe (Bronze Age) 
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Supplementary Table C.6 Result of the t-tests to compare the proportion of Devil’s Gate-related ancestry in the 

Ulchi to the proportions of the European Hunter-Gatherer-related component in modern European populations. 

Proportions were estimated as those reported by ADMIXTURE runs on all SNPs from the regional panel at k=8 

for the Ulchi and the global panel at k=18 for modern European populations. 

Population t df p-value 

Lithuanian 3.10 27.23 2.22E-03 

Estonian 3.73 27.23 4.49E-04 

Finnish 5.69 27.78 2.16E-06 

Belarusian 6.41 29.84 2.30E-07 

Icelandic 6.61 27.05 2.13E-07 

Norwegian 7.04 25.89 9.09E-08 

Scottish 7.33 24.54 6.32E-08 

Orcadian 7.82 25.50 1.54E-08 

Russian 8.04 25.00 1.07E-08 

Basque 8.39 24.99 4.84E-09 

Ukrainian 8.16 30.03 2.07E-09 

English 8.78 27.69 8.67E-10 

Mordovian 9.07 26.63 6.21E-10 

Czech 9.19 26.51 4.94E-10 

Spanish_North 9.43 26.75 2.71E-10 

French_South 10.09 25.59 1.03E-10 

French 10.93 27.14 9.51E-12 

Hungarian 11.11 27.66 5.20E-12 

Croatian 12.17 29.96 1.99E-13 

Spanish 14.04 25.67 7.43E-14 

Chuvash 14.87 27.93 4.28E-15 

Bergamo 17.13 26.43 3.93E-16 

Sardinian 18.50 25.07 1.98E-16 

Bulgarian 16.47 30.71 4.30E-17 

Tuscan 20.54 25.69 9.15E-18 

Albanian 20.26 26.86 4.23E-18 

Sicilian 23.87 28.01 1.84E-20 

Ashkenazi_Jew 25.70 27.08 7.41E-21 

Greek 17.48 42.92 1.94E-21 

Maltese 23.52 30.72 1.66E-21 
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Supplementary Table C.7 Results of  t-tests to compare the proportion of Devil’s Gate-related ancestry in the 

Ulchi to the proportions of the Early European Farmer-related component in modern European populations. 

Proportions were estimated as those reported by ADMIXTURE runs on all SNPs from the regional panel at k=8 

for the Ulchi and the global panel at k=18 for modern European populations. 

Population t df p-value 

Sardinian 0.47 25.16 0.32 

Sicilian 8.76 24.57 2.49E-09 

Maltese 8.29 29.30 1.79E-09 

Ashkenazi_Jew 9.18 26.53 5.07E-10 

Tuscan 10.18 27.07 4.68E-11 

Bergamo 11.24 25.77 9.81E-12 

Albanian 10.70 28.22 9.60E-12 

Greek 10.97 29.28 3.46E-12 

Spanish 12.16 24.71 3.20E-12 

Basque 12.26 24.86 2.44E-12 

French_South 12.24 26.65 9.55E-13 

Spanish_North 12.46 26.26 7.78E-13 

Bulgarian 15.18 27.67 3.02E-15 

Croatian 18.20 25.98 1.31E-16 

French 16.43 30.71 4.60E-17 

Hungarian 20.15 25.25 2.23E-17 

English 20.51 25.55 1.09E-17 

Orcadian 22.06 25.16 2.78E-18 

Scottish 21.76 26.53 9.55E-19 

Czech 21.23 27.43 7.37E-19 

Norwegian 22.93 25.60 6.86E-19 

Icelandic 23.01 26.05 3.89E-19 

Belarusian 24.98 26.71 2.34E-20 

Mordovian 28.00 24.66 1.65E-20 

Ukrainian 22.60 30.61 5.94E-21 

Russian 28.15 25.76 3.57E-21 

Estonian 27.67 26.50 2.19E-21 

Finnish 24.83 29.43 1.36E-21 

Lithuanian 26.52 28.89 3.94E-22 

Chuvash 30.50 26.10 3.04E-22 
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Supplementary Table C.8 Result of the t-tests to compare the proportion of Devil’s Gate-related ancestry in the 

Ulchi to the proportions of the Bronze Age Steppe-related component in modern European populations. 

Proportions were estimated as those reported by ADMIXTURE runs on all SNPs from the regional panel at k=8 

for the Ulchi and the global panel at k=18 for modern European populations. 

Population t df p-value 

Scottish 23.15 23.08 8.92E-18 

Ashkenazi_Jew 22.34 27.59 1.65E-19 

Russian 25.40 25.02 1.10E-19 

Bulgarian 23.54 26.73 1.06E-19 

Mordovian 23.92 26.36 1.06E-19 

Sicilian 24.60 26.09 7.05E-20 

Chuvash 24.31 26.63 5.18E-20 

Czech 25.60 25.80 3.63E-20 

Ukrainian 24.14 27.17 3.40E-20 

Hungarian 25.63 25.87 3.23E-20 

Orcadian 26.85 24.98 3.02E-20 

Albanian 23.04 28.56 2.71E-20 

Estonian 25.97 25.95 2.12E-20 

Norwegian 26.71 25.42 2.01E-20 

Belarusian 24.71 27.39 1.46E-20 

Lithuanian 25.61 26.58 1.44E-20 

Croatian 25.15 27.16 1.19E-20 

Maltese 22.09 30.95 8.29E-21 

English 26.72 26.16 8.12E-21 

Finnish 26.47 26.74 5.18E-21 

Tuscan 24.51 28.68 4.39E-21 

Bergamo 27.72 26.10 3.41E-21 

Icelandic 26.04 27.68 2.62E-21 

Spanish 31.43 25.01 6.37E-22 

French 27.48 27.97 4.39E-22 

Greek 19.81 38.63 3.91E-22 

French_South 33.93 25.61 4.07E-23 

Basque 36.02 25.09 1.98E-23 

Sardinian 37.91 24.56 1.30E-23 

Spanish_North 32.79 27.71 5.22E-24 
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Supplementary Table C.9 Result of the t-tests to compare the proportion of Devil’s Gate-related ancestry in the 

Ulchi to the proportions of the European Hunter-Gatherer-related component in modern European populations. 

Proportions were estimated as those reported by ADMIXTURE runs on transversion SNPs from the regional 

panel at k=8 for the Ulchi and the global panel at k=18 for modern European populations. 

Population t df p-value 

Lithuanian 2.31 29.31 1.41E-02 

Estonian 3.55 28.19 6.87E-04 

Finnish 4.93 29.72 1.46E-05 

Scottish 6.11 18.20 4.29E-06 

Icelandic 5.61 28.84 2.38E-06 

Belarusian 5.87 29.97 1.01E-06 

Norwegian 6.19 27.57 5.90E-07 

Russian 7.35 25.17 5.03E-08 

Orcadian 7.20 26.92 4.88E-08 

Ukrainian 7.62 29.91 8.55E-09 

Basque 8.10 25.58 7.88E-09 

Czech 8.50 25.73 3.02E-09 

Mordovian 8.16 28.99 2.65E-09 

English 8.29 29.77 1.59E-09 

Spanish_North 8.92 26.55 9.11E-10 

French_South 9.19 28.34 2.69E-10 

French 10.33 26.95 3.60E-11 

Hungarian 10.28 27.57 3.07E-11 

Croatian 11.83 27.20 1.54E-12 

Spanish 13.23 25.87 2.55E-13 

Chuvash 13.74 28.53 2.09E-14 

Bergamo 16.07 28.46 4.14E-16 

Sardinian 17.71 25.66 3.35E-16 

Bulgarian 15.79 31.03 1.12E-16 

Tuscan 19.18 26.57 2.17E-17 

Albanian 18.23 28.96 1.04E-17 

Sicilian 22.16 30.29 1.41E-20 

Ashkenazi_Jew 23.84 28.45 1.21E-20 

Greek 16.76 42.78 1.04E-20 

Maltese 22.67 30.64 5.21E-21 
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Supplementary Table C.10 Result of the t-tests to compare the proportion of Devil’s Gate-related ancestry in the 

Ulchi to the proportions of the Early European Farmer-related component in modern European populations. 

Proportions were estimated as those reported by ADMIXTURE runs on transversion SNPs from the regional 

panel at k=8 for the Ulchi and the global panel at k=18 for modern European populations. 

Population t df p-value 

Sardinian -0.62 25.76 0.72805655 

Maltese 7.45 28.83 1.70E-08 

Sicilian 8.09 25.51 8.29E-09 

Ashkenazi_Jew 8.10 27.88 4.18E-09 

Tuscan 8.75 30.72 3.84E-10 

Albanian 9.64 27.18 1.45E-10 

Bergamo 9.94 27.50 6.64E-11 

Greek 9.77 29.94 3.97E-11 

Basque 10.76 24.93 3.72E-11 

Spanish 11.00 24.88 2.41E-11 

Spanish_North 10.65 27.87 1.24E-11 

French_South 10.60 29.57 6.90E-12 

Bulgarian 13.84 28.44 1.82E-14 

Croatian 17.17 24.70 1.52E-15 

French 15.06 31.35 3.31E-16 

Hungarian 18.59 26.23 6.30E-17 

English 18.49 26.71 4.77E-17 

Scottish 19.11 26.12 3.54E-17 

Orcadian 20.35 25.45 1.45E-17 

Norwegian 21.09 25.73 4.63E-18 

Czech 19.84 27.44 4.17E-18 

Icelandic 21.83 25.49 2.56E-18 

Belarusian 23.22 27.37 7.57E-20 

Mordovian 26.44 24.70 6.21E-20 

Ukrainian 20.62 31.45 3.93E-20 

Russian 26.63 25.39 2.24E-20 

Finnish 23.05 29.54 9.79E-21 

Estonian 25.12 29.58 8.24E-22 

Chuvash 29.23 26.20 7.92E-22 

Lithuanian 24.21 31.17 4.45E-22 
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Supplementary Table C.11 Results of the t-tests to compare the proportion of Devil’s Gate-related ancestry in 

the Ulchi to the proportions of the Bronze Age Steppe-related component in modern European populations. 

Proportions were estimated as those reported by ADMIXTURE runs on transversion SNPs from the regional 

panel at k=8 for the Ulchi and the global panel at k=18 for modern European populations. 

Population t df p-value 

Scottish 22.61 23.35 1.11E-17 

Ashkenazi_Jew 20.11 29.94 3.06E-19 

Chuvash 23.96 25.52 2.55E-19 

Russian 24.67 25.02 2.22E-19 

Sicilian 23.42 26.47 1.58E-19 

Bulgarian 22.13 28.35 9.80E-20 

Ukrainian 23.39 27.09 8.45E-20 

Albanian 21.84 28.93 7.98E-20 

Mordovian 22.76 27.90 7.37E-20 

Estonian 24.54 26.72 3.69E-20 

Hungarian 24.70 26.60 3.60E-20 

Croatian 24.27 27.32 2.53E-20 

Belarusian 23.63 28.04 2.33E-20 

Maltese 21.46 30.83 2.14E-20 

Czech 24.36 27.93 1.17E-20 

Tuscan 22.13 30.98 7.64E-21 

Norwegian 25.87 27.01 6.79E-21 

Lithuanian 24.52 28.29 6.62E-21 

Orcadian 25.23 27.70 5.93E-21 

English 25.26 27.71 5.71E-21 

Bergamo 26.24 27.43 2.85E-21 

Icelandic 24.89 28.87 2.35E-21 

Finnish 24.51 29.86 1.24E-21 

Spanish 30.49 25.13 1.13E-21 

Greek 19.79 37.44 1.00E-21 

French 26.27 28.56 7.50E-22 

Basque 34.42 25.75 2.31E-23 

French_South 32.01 27.24 1.86E-23 

Spanish_North 32.34 27.05 1.84E-23 

Sardinian 36.24 25.50 9.26E-24 
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Supplementary Table C.12 Outgroup f3 statistics for Devil’s Gate. f3 statistics of the form f3(DevilsGate, X; 

Khomani) for all populations X in our panel compared to DevilsGate1, using all SNPs. Top 50 populations with 

at least 1000 overlapping SNPs. 

Population Region f3 SE Z SNPs 

Ulchi AmurBasin 0.22782 0.00371 61.352 27588 

Oroqen AmurBasin 0.22282 0.00374 59.564 27566 

Hezhen AmurBasin 0.22265 0.00374 59.507 27558 

Korean KoreaJapan 0.22231 0.00361 61.613 27595 

Japanese KoreaJapan 0.22185 0.00359 61.879 27587 

Daur AmurBasin 0.22065 0.00366 60.345 27566 

Xibo AmurBasin 0.22058 0.00368 59.915 27558 

Nganasan Siberia 0.22042 0.00380 57.983 27533 

Han_NChina EastAsia 0.21828 0.00364 60.011 27568 

Eskimo Chukotka-Kamchatka 0.21823 0.00388 56.196 27558 

Koryak Chukotka-Kamchatka 0.21769 0.00389 55.959 27537 

Chukchi Chukotka-Kamchatka 0.21704 0.00384 56.586 27572 

Itelmen Chukotka-Kamchatka 0.21698 0.00397 54.605 27521 

Miao EastAsia 0.21694 0.00367 59.106 27573 

Mongola EastAsia 0.21648 0.00365 59.348 27554 

She EastAsia 0.21648 0.00365 59.308 27564 

Tujia EastAsia 0.21642 0.00368 58.744 27565 

Yakut Siberia 0.21615 0.00360 60.074 27581 

Yi EastAsia 0.21603 0.00368 58.784 27565 

Han EastAsia 0.21571 0.00362 59.637 27592 

Naxi EastAsia 0.21379 0.00367 58.255 27562 

Ami SouthEastAsia 0.21378 0.00377 56.758 27554 

Lahu SouthEastAsia 0.21317 0.00374 57.078 27547 

Dai SouthEastAsia 0.21274 0.00370 57.456 27561 

Atayal SouthEastAsia 0.21243 0.00386 55.044 27534 

Tu EastAsia 0.21242 0.00356 59.709 27580 

Yukagir Chukotka-Kamchatka 0.21172 0.00356 59.478 27574 

Tuvinian CentralAsia 0.21127 0.00360 58.642 27571 

Kinh SouthEastAsia 0.21105 0.00371 56.926 27555 

Kalmyk CentralAsia 0.21084 0.00356 59.265 27576 

Mixe America 0.20943 0.00415 50.499 27498 

Karitiana America 0.20837 0.00413 50.444 27474 

Cabecar America 0.20821 0.00444 46.926 27434 
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Surui America 0.20817 0.00439 47.376 27445 

Piapoco America 0.20720 0.00430 48.201 27461 

Kaqchikel America 0.20669 0.00405 51.069 27472 

Pima America 0.20640 0.00400 51.546 27494 

Guarani America 0.20542 0.00400 51.345 27480 

Zapotec America 0.20521 0.00391 52.556 27510 

Mixtec America 0.20483 0.00400 51.210 27510 

Aymara America 0.20459 0.00398 51.410 27473 

Cambodian SouthEastAsia 0.20457 0.00363 56.370 27555 

Altaian CentralAsia 0.20412 0.00355 57.472 27553 

Even Siberia 0.20387 0.00355 57.401 27571 

Thai SouthEastAsia 0.20324 0.00357 56.940 27560 

Kyrgyz CentralAsia 0.20292 0.00355 57.177 27571 

Bolivian America 0.20282 0.00398 51.024 27500 

Mayan America 0.20213 0.00385 52.492 27536 

Quechua America 0.20067 0.00398 50.410 27504 

Chipewyan America 0.20057 0.00383 52.353 27554 

 

Supplementary Table C.13 Outgroup f3 statistics for Devil’s Gate. f3 statistics of the form f3(DevilsGate, X; 

Khomani) for all populations X in our panel compared to DevilsGate1, using transversions only. Top 50 

populations with at least 1000 overlapping SNPs. 

Population Region f3 SE Z SNPs 

Ulchi AmurBasin 0.23347 0.00780 29.921 5355 

Oroqen AmurBasin 0.22914 0.00783 29.255 5352 

Daur AmurBasin 0.22881 0.00781 29.317 5354 

Japanese KoreaJapan 0.22774 0.00760 29.968 5356 

Korean KoreaJapan 0.22699 0.00760 29.885 5356 

Hezhen AmurBasin 0.22674 0.00792 28.641 5350 

Xibo AmurBasin 0.22592 0.00772 29.275 5348 

Han_NChina EastAsia 0.22367 0.00745 30.026 5353 

Miao EastAsia 0.22279 0.00772 28.873 5355 

Nganasan Siberia 0.22234 0.00792 28.090 5347 

Yi EastAsia 0.22222 0.00777 28.591 5352 

Han EastAsia 0.22186 0.00750 29.587 5356 

Tujia EastAsia 0.22096 0.00790 27.985 5352 
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Lahu SouthEastAsia 0.22091 0.00794 27.817 5349 

Mongola EastAsia 0.22066 0.00794 27.782 5351 

Yakut Siberia 0.21992 0.00750 29.306 5355 

Naxi EastAsia 0.21966 0.00779 28.204 5351 

Dai SouthEastAsia 0.21876 0.00766 28.555 5349 

She EastAsia 0.21874 0.00772 28.324 5351 

Ami SouthEastAsia 0.21843 0.00786 27.790 5353 

Eskimo Chukotka-Kamchatka 0.21802 0.00790 27.598 5349 

Chukchi Chukotka-Kamchatka 0.21793 0.00800 27.243 5353 

Tuvinian CentralAsia 0.21713 0.00766 28.357 5354 

Tu EastAsia 0.21705 0.00758 28.624 5355 

Atayal SouthEastAsia 0.21703 0.00788 27.539 5344 

Koryak Chukotka-Kamchatka 0.21677 0.00800 27.113 5349 

Kalmyk CentralAsia 0.21529 0.00743 28.992 5353 

Guarani America 0.21527 0.00815 26.411 5343 

Yukagir Chukotka-Kamchatka 0.21513 0.00748 28.761 5355 

Itelmen Chukotka-Kamchatka 0.21325 0.00830 25.693 5345 

Cabecar America 0.21318 0.00881 24.185 5326 

Kinh SouthEastAsia 0.21305 0.00793 26.878 5350 

Surui America 0.21245 0.00855 24.847 5325 

Kaqchikel America 0.21225 0.00822 25.815 5339 

Mixe America 0.21216 0.00816 26.002 5342 

Piapoco America 0.21213 0.00849 24.981 5337 

Altaian CentralAsia 0.21110 0.00764 27.625 5350 

Karitiana America 0.21098 0.00831 25.398 5337 

Cambodian SouthEastAsia 0.21080 0.00768 27.468 5350 

Kyrgyz CentralAsia 0.21062 0.00745 28.255 5353 

Zapotec America 0.21027 0.00795 26.446 5344 

Pima America 0.20808 0.00803 25.926 5344 

Chipewyan America 0.20677 0.00770 26.845 5349 

Mayan America 0.20666 0.00762 27.107 5349 

Thai SouthEastAsia 0.20664 0.00734 28.174 5350 

Even Siberia 0.20651 0.00734 28.122 5354 

Aymara America 0.20601 0.00782 26.334 5337 

irRus_atoft Ancient 0.20595 0.01411 14.597 2598 

Bolivian America 0.20476 0.00777 26.366 5345 

Mixtec America 0.20465 0.00779 26.268 5344 
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Supplementary Table C.14 Outgroup f3 statistics for Devil’s Gate. f3 statistics of the form f3(DevilsGate, X; 

Khomani) for all populations X in our panel compared to DevilsGate2, using all SNPs. Top 50 populations with 

at least 1000 overlapping SNPs. 

Population Region f3 SE Z SNPs 

Ulchi AmurBasin 0.23607 0.00544 43.389 11004 

Nganasan Siberia 0.23088 0.00573 40.331 10992 

Hezhen AmurBasin 0.23040 0.00539 42.721 10995 

Korean KoreaJapan 0.22999 0.00526 43.716 11006 

Japanese KoreaJapan 0.22962 0.00532 43.160 11004 

Oroqen AmurBasin 0.22896 0.00552 41.503 10995 

Xibo AmurBasin 0.22803 0.00542 42.095 10997 

Koryak Chukotka-Kamchatka 0.22664 0.00564 40.200 10986 

Daur AmurBasin 0.22629 0.00533 42.496 10999 

Mongola EastAsia 0.22540 0.00530 42.560 10993 

Han_NChina EastAsia 0.22527 0.00542 41.598 10998 

Itelmen Chukotka-Kamchatka 0.22466 0.00572 39.247 10979 

Han EastAsia 0.22403 0.00533 42.008 11005 

Yakut Siberia 0.22394 0.00532 42.081 11001 

She EastAsia 0.22388 0.00546 41.043 10997 

Chukchi Chukotka-Kamchatka 0.22261 0.00555 40.103 11003 

Tujia EastAsia 0.22241 0.00544 40.881 10994 

Naxi EastAsia 0.22207 0.00528 42.033 10999 

Tu EastAsia 0.22164 0.00536 41.365 11000 

Miao EastAsia 0.22153 0.00533 41.585 10997 

Yi EastAsia 0.22148 0.00544 40.746 10999 

Eskimo Chukotka-Kamchatka 0.22095 0.00571 38.702 10998 

Tuvinian CentralAsia 0.21957 0.00538 40.812 10999 

Cabecar America 0.21867 0.00680 32.179 10949 

Yukagir Chukotka-Kamchatka 0.21812 0.00525 41.521 11002 

Atayal SouthEastAsia 0.21789 0.00558 39.034 10978 

Kalmyk CentralAsia 0.21743 0.00531 40.959 11003 

Aymara America 0.21741 0.00626 34.741 10960 

Dai SouthEastAsia 0.21736 0.00525 41.413 10994 

Ami SouthEastAsia 0.21727 0.00540 40.226 10982 

Kaqchikel America 0.21678 0.00619 34.996 10963 

Lahu SouthEastAsia 0.21613 0.00541 39.927 10990 

Surui America 0.21595 0.00651 33.160 10946 
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Kinh SouthEastAsia 0.21588 0.00534 40.414 10988 

Mixe America 0.21577 0.00608 35.515 10976 

Pima America 0.21503 0.00617 34.854 10976 

Altaian CentralAsia 0.21488 0.00521 41.237 10989 

Karitiana America 0.21446 0.00628 34.139 10962 

Zapotec America 0.21434 0.00589 36.412 10978 

Piapoco America 0.21349 0.00634 33.654 10957 

Mixtec America 0.21293 0.00609 34.951 10979 

Bolivian America 0.21290 0.00602 35.347 10966 

Guarani America 0.21285 0.00614 34.688 10958 

Quechua America 0.21094 0.00605 34.875 10966 

Mayan America 0.21037 0.00578 36.401 10989 

Even Siberia 0.21013 0.00527 39.907 10996 

Kyrgyz CentralAsia 0.20993 0.00508 41.325 10998 

Thai SouthEastAsia 0.20913 0.00528 39.592 10992 

Selkup Siberia 0.20830 0.00512 40.666 10998 

Cambodian SouthEastAsia 0.20822 0.00529 39.362 10989 

 

Supplementary Table C.15 Outgroup f3 statistics for Devil’s Gate. f3 statistics of the form f3(DevilsGate, X; 

Khomani) for all populations X in our panel compared to DevilsGate2, using transversions only. Top 50 

populations with at least 1000 overlapping SNPs. 

Population Region f3 SE Z SNPs 

Ulchi AmurBasin 0.24518 0.01164 21.070 2217 

Oroqen AmurBasin 0.24251 0.01131 21.447 2215 

Hezhen AmurBasin 0.24163 0.01171 20.633 2217 

Korean KoreaJapan 0.24137 0.01124 21.484 2218 

Xibo AmurBasin 0.24064 0.01173 20.522 2215 

Han_NChina EastAsia 0.24002 0.01192 20.138 2216 

Tujia EastAsia 0.23879 0.01160 20.578 2215 

Eskimo Chukotka-Kamchatka 0.23836 0.01240 19.216 2216 

Japanese KoreaJapan 0.23811 0.01141 20.868 2217 

Cabecar America 0.23782 0.01415 16.805 2205 

Itelmen Chukotka-Kamchatka 0.23771 0.01225 19.400 2212 

Nganasan Siberia 0.23767 0.01214 19.576 2216 

Yakut Siberia 0.23753 0.01136 20.908 2216 
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Naxi EastAsia 0.23722 0.01167 20.335 2216 

Chukchi Chukotka-Kamchatka 0.23711 0.01195 19.849 2218 

Koryak Chukotka-Kamchatka 0.23654 0.01218 19.415 2215 

Han EastAsia 0.23615 0.01131 20.878 2218 

Miao EastAsia 0.23458 0.01144 20.507 2217 

Daur AmurBasin 0.23442 0.01154 20.318 2217 

Lahu SouthEastAsia 0.23296 0.01196 19.475 2213 

Mixe America 0.23293 0.01250 18.632 2212 

Surui America 0.23242 0.01421 16.357 2206 

Kaqchikel America 0.23207 0.01311 17.705 2207 

Ami SouthEastAsia 0.23188 0.01192 19.455 2211 

Atayal SouthEastAsia 0.23166 0.01244 18.625 2210 

Tu EastAsia 0.23114 0.01118 20.680 2217 

Yi EastAsia 0.23107 0.01140 20.277 2218 

Karitiana America 0.23102 0.01322 17.479 2210 

Aymara America 0.23076 0.01291 17.881 2208 

Piapoco America 0.23072 0.01342 17.191 2207 

Tuvinian CentralAsia 0.23056 0.01133 20.357 2216 

Mongola EastAsia 0.22985 0.01145 20.073 2215 

Altaian CentralAsia 0.22889 0.01133 20.200 2214 

She EastAsia 0.22883 0.01165 19.643 2217 

Dai SouthEastAsia 0.22878 0.01152 19.866 2213 

Yukagir Chukotka-Kamchatka 0.22835 0.01103 20.701 2216 

Pima America 0.22794 0.01266 18.009 2209 

Quechua America 0.22685 0.01242 18.268 2211 

Kalmyk CentralAsia 0.22680 0.01133 20.023 2216 

Kinh SouthEastAsia 0.22504 0.01141 19.729 2213 

Guarani America 0.22467 0.01262 17.799 2204 

Bolivian America 0.22436 0.01204 18.630 2208 

Zapotec America 0.22407 0.01211 18.508 2212 

Chipewyan America 0.22249 0.01159 19.202 2214 

Mayan America 0.22150 0.01203 18.411 2216 

Kusunda SouthAsia 0.22142 0.01145 19.336 2217 

Even Siberia 0.22126 0.01102 20.073 2217 

Cambodian SouthEastAsia 0.22106 0.01115 19.826 2214 

Thai SouthEastAsia 0.22053 0.01114 19.801 2216 

Mixtec America 0.22035 0.01207 18.252 2213 
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Supplementary Table C.16 D scores for the Ulchi. D statistics of the form D(Ulchi, DevilsGate1; X, Khomani) 

for all populations X in our panel, using all SNPs, sorted by |Z| and top 30 populations displayed. 

Population D Z SNPs1 SNPs2 SNPs 

Nganasan -0.0466 -6.658 1485 1630 34815 

Yukagir -0.0413 -6.448 1478 1605 34815 

Koryak -0.0475 -6.412 1481 1628 34815 

Selkup -0.0410 -6.172 1462 1587 34815 

Itelmen -0.0463 -6.089 1477 1620 34815 

Even -0.0365 -5.699 1471 1583 34815 

Tuvinian -0.0372 -5.680 1486 1601 34815 

Chukchi -0.0407 -5.655 1485 1611 34815 

Oroqen -0.0380 -5.604 1500 1619 34815 

Altaian -0.0357 -5.488 1477 1586 34815 

Han -0.0353 -5.457 1496 1605 34815 

Hezhen -0.0370 -5.403 1501 1616 34815 

Yakut -0.0343 -5.331 1492 1598 34815 

Naxi -0.0355 -5.261 1491 1601 34815 

Kinh -0.0360 -5.203 1489 1600 34815 

Tubalar -0.0323 -5.179 1462 1560 34815 

Kharia -0.0322 -5.068 1451 1547 34815 

MA1 -0.0668 -5.020 978 1118 24644 

Kalmyk -0.0337 -5.012 1488 1592 34815 

Tu -0.0335 -5.004 1494 1597 34815 

Sindhi -0.0291 -4.963 1424 1509 34815 

Thai -0.0327 -4.955 1481 1581 34815 

Tujia -0.0328 -4.857 1498 1600 34815 

Xibo -0.0337 -4.773 1504 1608 34815 

Daur -0.0330 -4.745 1502 1605 34815 

Mongola -0.0331 -4.733 1498 1601 34815 

Dai -0.0323 -4.718 1493 1593 34815 

GujaratiA -0.0310 -4.668 1420 1511 34815 

Lodhi -0.0287 -4.666 1433 1518 34815 

Mansi -0.0313 -4.658 1464 1559 34815 
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Supplementary Table C.17 D scores for the Ulchi. D statistics of the form D(Ulchi, DevilsGate1; X, Khomani) 

for all populations X in our panel, using transversion SNPs, sorted by |Z|, populations where |Z|>2 displayed. 

Population D Z SNPs1 SNPs2 SNPs 

Koryak -0.0469 -3.299 290 318 6702 

MA1 -0.0928 -3.155 183 221 4655 

Itelmen -0.0472 -3.150 288 316 6702 

Mbuti -0.0333 -2.897 224 239 6702 

Chukchi -0.0395 -2.665 291 315 6702 

Yukagir -0.0344 -2.466 293 313 6702 

Kharia -0.0316 -2.328 284 303 6702 

Kinh -0.0346 -2.319 293 314 6702 

Nganasan -0.0351 -2.282 294 315 6702 

Eskimo -0.0337 -2.252 293 314 6702 

Kikuyu -0.0244 -2.070 247 259 6702 

Ju_hoan_South -0.0206 -2.050 215 224 6702 

Selkup -0.0291 -2.034 291 308 6702 

 

Supplementary Table C.18 D scores for the Ulchi. D statistics of the form D(Ulchi, DevilsGate2; X, Khomani) 

for all populations X in our panel, using all SNPs, sorted by |Z|, populations where |Z|>2 displayed. 

Population D Z SNPs1 SNPs2 SNPs 

Koryak -0.0469 -3.299 290 318 6702 

MA1 -0.0928 -3.155 183 221 4655 

Itelmen -0.0472 -3.150 288 316 6702 

Mbuti -0.0333 -2.897 224 239 6702 

Chukchi -0.0395 -2.665 291 315 6702 

Yukagir -0.0344 -2.466 293 313 6702 

Kharia -0.0316 -2.328 284 303 6702 

Kinh -0.0346 -2.319 293 314 6702 

Nganasan -0.0351 -2.282 294 315 6702 

Eskimo -0.0337 -2.252 293 314 6702 

Kikuyu -0.0244 -2.070 247 259 6702 

Ju_hoan_South -0.0206 -2.050 215 224 6702 

Selkup -0.0291 -2.034 291 308 6702 
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Supplementary Table C.19 . D scores for the Ulchi. D statistics of the form D(Ulchi, DevilsGate2; X, Khomani) 

for all populations X in our panel, using transversion SNPs, sorted by |Z|, top 30 populations displayed. 

Population D Z SNPs1 SNPs2 SNPs 

HDma1 -0.4466 -2.347 2 6 69 

Chechen 0.0401 2.017 121 112 2750 

Moroccan_Jew 0.0435 2.017 120 110 2750 

Balkar 0.0427 2.031 122 112 2750 

Himba 0.0415 2.032 102 94 2750 

Egyptian 0.0368 2.045 118 109 2750 

Iraqi_Jew 0.0437 2.050 120 110 2750 

Ukrainian 0.0442 2.057 122 111 2750 

North_Ossetian 0.0401 2.061 121 111 2750 

Tunisian_Jew 0.0435 2.061 119 109 2750 

baArm 0.1539 2.070 25 18 622 

Druze 0.0402 2.070 119 110 2750 

Iranian_Jew 0.0424 2.075 120 110 2750 

Mala 0.0388 2.075 122 113 2750 

Tubalar 0.0398 2.100 126 117 2750 

Russian 0.0420 2.102 122 112 2750 

Sardinian 0.0422 2.102 121 111 2750 

AA 0.0356 2.103 105 98 2750 

Libyan_Jew 0.0436 2.118 118 108 2750 

Tuscan 0.0442 2.123 121 111 2750 

Jordanian 0.0420 2.133 120 110 2750 

Bulgarian 0.0440 2.134 120 110 2750 

English 0.0443 2.143 122 112 2750 

Iranian 0.0430 2.147 120 110 2750 

Yakut 0.0409 2.155 128 118 2750 

Georgian 0.0437 2.174 120 110 2750 

Maltese 0.0450 2.187 121 110 2750 

Starcevo 0.2091 2.206 21 14 424 

baAndrov 0.0838 2.224 73 62 1686 

baAfan 0.0955 2.245 72 59 1636 
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Supplementary Table C.20 Admixture f3(Source1, Source2; Target)  for the Ulchi with Z < -1, using all SNPs. 

All pairs without a sample from DevilsGate gave Z > -1, regardless of whether all SNPs were used or only those 

called in DevilsGate1 or DevilsGate2. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate1MapDamage MA1 Ulchi -0.00647 0.00502 -1.287 15582 

DevilsGate1 MA1 Ulchi -0.00596 0.00506 -1.179 15582 

 

Supplementary Table C.21 Admixture f3(Source1, Source2; Target)  for the Ulchi with Z < -1, using only 

transversion SNPs. All pairs without a sample from Devil’s Gate gave Z > -1, regardless of whether all SNPs 

were used or only those called in DevilsGate1 or DevilsGate2. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate2 Motala12 Ulchi -0.02081 0.01448 -1.438 1606 

DevilsGate1MapDamage Karelia_HG Ulchi -0.01955 0.01201 -1.628 2337 

DevilsGate1 Karelia_HG Ulchi -0.01923 0.01191 -1.614 2337 

DevilsGate1MapDamage MA1 Ulchi -0.01698 0.01075 -1.58 3004 

DevilsGate1 MA1 Ulchi -0.01462 0.01076 -1.359 3004 

DevilsGate1MapDamage Itelmen Ulchi -0.00533 0.00406 -1.313 4365 

DevilsGate1MapDamage Koryak Ulchi -0.00451 0.00355 -1.273 4368 

DevilsGate1 Itelmen Ulchi -0.00517 0.00407 -1.27 4365 
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Supplementary Table C.22 Admixture f3(Source1, Source2; Target)  for the Sardinians, using all SNPs and 

showing the 10 most significantly negative pairs. 

Source1 Source2 Target f3 SE Z SNPs 

Spain_EN baArm Sardinian -0.028907 0.008386 -3.447 1984 

Loschbour baRem Sardinian -0.026789 0.00903 -2.967 2648 

LaBrana baRem Sardinian -0.03462 0.011897 -2.91 2512 

Loschbour Iraqi_Jew Sardinian -0.004893 0.001722 -2.842 9435 

Spain_EN Chuvash Sardinian -0.004701 0.001816 -2.588 5574 

Xibo Spain_EN Sardinian -0.006728 0.002612 -2.576 5571 

Stuttgart LaBrana Sardinian -0.012009 0.004766 -2.519 8627 

Yemenite_Jew Loschbour Sardinian -0.004339 0.001785 -2.43 9435 

LBK_EN irAltai Sardinian -0.007362 0.003034 -2.426 5214 

Stuttgart Karelia_HG Sardinian -0.014699 0.006069 -2.422 5212 
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Supplementary Table C.23 Admixture f3(Source1, Source2; Target)  for the Lithuanians using all SNPs and 

showing the 10 most significantly negative pairs. 

Source1 Source2 Target f3 SE Z SNPs 

Loschbour Iraqi_Jew Lithuanian -0.014007 0.002063 -6.788 8617 

Loschbour Lezgin Lithuanian -0.012662 0.001965 -6.445 8629 

Palestinian Loschbour Lithuanian -0.010899 0.00172 -6.338 8660 

Loschbour Druze Lithuanian -0.010408 0.001667 -6.243 8653 

Turkish Loschbour Lithuanian -0.009566 0.001532 -6.243 8660 

Loschbour Armenian Lithuanian -0.011644 0.001879 -6.196 8634 

Loschbour Georgian_Jew Lithuanian -0.012235 0.00201 -6.088 8626 

Loschbour Georgian Lithuanian -0.011701 0.001983 -5.9 8632 

Loschbour Chechen Lithuanian -0.011107 0.00189 -5.875 8630 

Loschbour Adygei Lithuanian -0.010003 0.001713 -5.839 8637 
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Supplementary Table C.24 Admixture f3 for the Koreans. f3 statistics of the form f3(X, Y; Korean) for all 

populations X in our panel, using all SNPs. 30 populations with the lowest statistics are displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate2 Ami Korean -0.00766 0.00204 -3.752 9259 

DevilsGate2 Lahu Korean -0.00752 0.00213 -3.530 9260 

DevilsGate2 Kinh Korean -0.00666 0.00180 -3.703 9260 

DevilsGate2 Dai Korean -0.00647 0.00168 -3.846 9259 

DevilsGate2 Miao Korean -0.00608 0.00157 -3.865 9258 

DevilsGate2 Atayal Korean -0.00586 0.00254 -2.309 9260 

DevilsGate2 Tujia Korean -0.00523 0.00152 -3.442 9259 

DevilsGate2 She Korean -0.00499 0.00178 -2.800 9259 

DevilsGate1 Kinh Korean -0.00490 0.00124 -3.937 23147 

DevilsGate1 Han Korean -0.00471 0.00077 -6.127 23152 

DevilsGate2 Cambodian Korean -0.00463 0.00188 -2.461 9259 

DevilsGate2 Han Korean -0.00430 0.00107 -4.033 9261 

DevilsGate2 Thai Korean -0.00410 0.00189 -2.176 9260 

DevilsGate2 Yi Korean -0.00404 0.00165 -2.445 9260 

DevilsGate1 Dai Korean -0.00324 0.00126 -2.580 23151 

DevilsGate1 Tujia Korean -0.00308 0.00113 -2.729 23149 

DevilsGate1 She Korean -0.00288 0.00118 -2.437 23148 

Nganasan Dai Korean -0.00197 0.00037 -5.388 404831 

Ulchi Kinh Korean -0.00193 0.00025 -7.878 405402 
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Ulchi Han Korean -0.00191 0.00015 -12.951 406842 

Ulchi Dai Korean -0.00189 0.00022 -8.429 405330 

Ulchi Atayal Korean -0.00184 0.00033 -5.647 404628 

Ulchi She Korean -0.00183 0.00021 -8.874 404851 

Nganasan She Korean -0.00182 0.00035 -5.205 404475 

Nganasan Ami Korean -0.00181 0.00043 -4.163 404413 

Ulchi Ami Korean -0.00178 0.00031 -5.789 404789 

Nganasan Han Korean -0.00172 0.00022 -7.895 405829 

Nganasan Kinh Korean -0.00155 0.00037 -4.245 404849 

Koryak Ami Korean -0.00150 0.00046 -3.252 404317 

Nganasan Atayal Korean -0.00149 0.00052 -2.866 404368 

Nganasan Tujia Korean -0.00148 0.00031 -4.743 404802 

 

Supplementary Table C.25 Admixture f3 for the Koreans. f3 statistics of the form f3(X, Y; Korean) for all 

populations X in our panel, using transversions only. 30 populations with the lowest statistics are displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate1 Kinh Korean -0.01010 0.00262 -3.856 4538 

DevilsGate2 She Korean -0.00854 0.00376 -2.271 1869 

DevilsGate2 Dai Korean -0.00772 0.00376 -2.050 1869 

DevilsGate1 She Korean -0.00502 0.00237 -2.118 4538 

DevilsGate2 Han Korean -0.00473 0.00222 -2.129 1869 

DevilsGate1 Han Korean -0.00346 0.00149 -2.322 4538 

Nganasan Dai Korean -0.00193 0.00042 -4.631 75295 

Ulchi Ami Korean -0.00179 0.00035 -5.140 75290 
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Eskimo Ami Korean -0.00175 0.00048 -3.677 75250 

Nganasan She Korean -0.00174 0.00041 -4.277 75239 

Ulchi Dai Korean -0.00172 0.00026 -6.573 75361 

Ulchi Atayal Korean -0.00172 0.00038 -4.504 75256 

Ulchi Han Korean -0.00171 0.00017 -10.034 75662 

Ulchi Kinh Korean -0.00171 0.00029 -5.884 75391 

Nganasan Han Korean -0.00169 0.00025 -6.739 75494 

Ulchi She Korean -0.00162 0.00026 -6.189 75312 

Nganasan Ami Korean -0.00162 0.00051 -3.184 75231 

Koryak Ami Korean -0.00157 0.00054 -2.889 75202 

Nganasan Tujia Korean -0.00156 0.00038 -4.141 75300 

Itelmen Han Korean -0.00150 0.00028 -5.319 75370 

Koryak Han Korean -0.00139 0.00025 -5.548 75437 

Chukchi Han Korean -0.00137 0.00024 -5.656 75624 

Yakut Ami Korean -0.00131 0.00036 -3.672 75356 

Ulchi Miao Korean -0.00128 0.00024 -5.335 75355 

Ulchi Tujia Korean -0.00126 0.00024 -5.373 75380 

Nganasan Atayal Korean -0.00125 0.00060 -2.082 75216 

Itelmen Ami Korean -0.00124 0.00059 -2.110 75183 

Itelmen She Korean -0.00123 0.00047 -2.636 75192 

Nganasan Kinh Korean -0.00119 0.00043 -2.752 75319 

Chukchi Ami Korean -0.00117 0.00047 -2.487 75268 

Yukagir Han Korean -0.00116 0.00020 -5.763 76050 
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Supplementary Table C.26 Admixture f3 for the Koreans. f3 statistics of the form f3(X, Y; Korean) for all 

populations X in our panel, using SNPs called in DevilsGate1. 30 populations with the lowest statistics are 

displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate1 Kinh Korean -0.00490 0.00124 -3.942 23147 

DevilsGate1 Han Korean -0.00471 0.00077 -6.131 23152 

DevilsGate1 Dai Korean -0.00324 0.00125 -2.586 23151 

DevilsGate1 Tujia Korean -0.00308 0.00112 -2.748 23149 

DevilsGate1 She Korean -0.00288 0.00121 -2.376 23148 

Nganasan Atayal Korean -0.00221 0.00084 -2.632 23199 

Ulchi Han Korean -0.00208 0.00024 -8.575 23352 

Ulchi Kinh Korean -0.00203 0.00039 -5.232 23263 

Ulchi Dai Korean -0.00194 0.00037 -5.228 23255 

Ulchi She Korean -0.00190 0.00034 -5.628 23224 

Ulchi Atayal Korean -0.00182 0.00054 -3.374 23206 

Ulchi Miao Korean -0.00176 0.00035 -4.968 23238 

Koryak Han Korean -0.00171 0.00035 -4.951 23275 

Nganasan Han Korean -0.00170 0.00037 -4.642 23305 

Nganasan She Korean -0.00167 0.00054 -3.099 23207 

Chukchi Han Korean -0.00162 0.00034 -4.764 23344 

Ulchi Ami Korean -0.00162 0.00048 -3.377 23228 

Nganasan Tujia Korean -0.00161 0.00050 -3.203 23237 

Ulchi Tujia Korean -0.00150 0.00033 -4.609 23253 

Itelmen She Korean -0.00149 0.00060 -2.488 23193 

Nganasan Dai Korean -0.00142 0.00059 -2.401 23232 

Nganasan Miao Korean -0.00141 0.00054 -2.642 23224 
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Itelmen Han Korean -0.00138 0.00039 -3.501 23258 

Itelmen Miao Korean -0.00134 0.00061 -2.197 23197 

Itelmen Tujia Korean -0.00132 0.00055 -2.386 23206 

Yukagir Han Korean -0.00124 0.00028 -4.383 23468 

Eskimo Han Korean -0.00123 0.00035 -3.498 23309 

Yakut Han Korean -0.00117 0.00028 -4.224 23428 

Yakut She Korean -0.00116 0.00039 -2.945 23238 

Yukagir She Korean -0.00110 0.00042 -2.611 23248 

Chukchi Tujia Korean -0.00098 0.00048 -2.025 23241 

 

Supplementary Table C.27 Admixture f3 for the Koreans. f3 statistics of the form f3(X, Y; Korean) for all 

populations X in our panel, using SNPs called in DevilsGate2. 30 populations with the lowest statistics are 

displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate2 Ami Korean -0.00766 0.00204 -3.757 9259 

DevilsGate2 Lahu Korean -0.00752 0.00205 -3.673 9260 

DevilsGate2 Kinh Korean -0.00666 0.00180 -3.694 9260 

DevilsGate2 Dai Korean -0.00647 0.00171 -3.778 9259 

DevilsGate2 Miao Korean -0.00608 0.00164 -3.696 9258 

DevilsGate2 Atayal Korean -0.00586 0.00245 -2.388 9260 

DevilsGate2 Tujia Korean -0.00523 0.00152 -3.445 9259 

DevilsGate2 She Korean -0.00499 0.00167 -2.988 9259 

DevilsGate2 Cambodian Korean -0.00463 0.00189 -2.445 9259 

DevilsGate2 Han Korean -0.00430 0.00107 -4.030 9261 

DevilsGate2 Thai Korean -0.00410 0.00183 -2.236 9260 

DevilsGate2 Yi Korean -0.00404 0.00159 -2.536 9260 
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Japanese irRus Korean -0.00361 0.00158 -2.280 4274 

Koryak Ami Korean -0.00278 0.00106 -2.631 9284 

Itelmen Tujia Korean -0.00272 0.00079 -3.441 9280 

Ulchi Ami Korean -0.00269 0.00063 -4.302 9296 

Ulchi Dai Korean -0.00264 0.00054 -4.865 9299 

Chukchi Tujia Korean -0.00250 0.00065 -3.836 9303 

Ulchi Han Korean -0.00247 0.00032 -7.773 9350 

Ulchi Tujia Korean -0.00247 0.00043 -5.709 9308 

Koryak Tujia Korean -0.00243 0.00072 -3.381 9287 

Itelmen Han Korean -0.00243 0.00055 -4.419 9307 

Koryak Kinh Korean -0.00240 0.00090 -2.651 9294 

Itelmen Ami Korean -0.00225 0.00111 -2.017 9279 

Koryak Han Korean -0.00223 0.00052 -4.270 9315 

Eskimo Tujia Korean -0.00221 0.00070 -3.162 9300 

Nganasan Tujia Korean -0.00218 0.00071 -3.070 9295 

Itelmen Dai Korean -0.00216 0.00096 -2.258 9286 

Ulchi Kinh Korean -0.00212 0.00056 -3.810 9311 

Itelmen Kinh Korean -0.00210 0.00098 -2.144 9289 

Ulchi Atayal Korean -0.00208 0.00075 -2.794 9294 
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Supplementary Table C.28 Admixture f3 for the Japanese. f3 statistics of the form f3(X, Y; Japanese) for all 

populations X in our panel, using all SNPs. Significant (|Z|>2) statistics are displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate2 Ami Japanese -0.00548 0.00218 -2.511 9014 

DevilsGate2 Lahu Japanese -0.00526 0.00227 -2.316 9012 

DevilsGate2 Dai Japanese -0.00432 0.00183 -2.362 9013 

DevilsGate1 Han Japanese -0.00219 0.00092 -2.374 22677 
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Supplementary Table C.29 Admixture f3 for the Japanese. f3 statistics of the form f3(X, Y; Japanese) for all 

populations X in our panel, using transversions only. Significant (|Z|>2) statistics are displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate1 Kinh Japanese -0.00901 0.00273 -3.307 4412 

 

Supplementary Table C.30 Admixture f3 for the Japanese. f3 statistics of the form f3(X, Y; Japanese) for all 

populations X in our panel, using SNPs called in DevilsGate1. Significant (|Z|>2) statistics are displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate1 Han Japanese -0.00219 0.00093 -2.364 22677 

 

Supplementary Table C.31 Admixture f3 for the Japanese. f3 statistics of the form f3(X, Y; Japanese) for all 

populations X in our panel, using SNPs called in DevilsGate2. Significant (|Z|>2) statistics are displayed. 

Source1 Source2 Target f3 SE Z SNPs 

DevilsGate2 Ami Japanese -0.00548 0.00217 -2.526 9014 

DevilsGate2 Lahu Japanese -0.00526 0.00221 -2.382 9012 

DevilsGate2 Dai Japanese -0.00432 0.00188 -2.303 9013 
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Supplementary Table C.32 Phenotypes of interest. Results of imputed SNPs with known biological function. 

Genotype probabilities are color coded: blue for <0.1, red for >0.9 and black for the rest. 
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Appendix D Appendix for Chapter 5 

D.1 Relationship between potential ABC summary statistics 

 

Supplementary Figure D.1 Pairwise plots of mean Tajima’s D over continental groups. Each dot represents one 

of the 64,772 simulations where all sampled cells were populated by present time. Abbreviations are as follows: 

AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – America, including populations as 

detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes data (Table 5.2). 
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Supplementary Figure D.2 Mean Tajima’s D as a function of mean within-population TMRCA over continental 

groups. Each dot represents one of the 64,772 simulations where all sampled cells were populated by present 

time. Abbreviations are as follows: AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – 

America, including populations as detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes 

data (Table 5.2). 



Appendix D  Appendix for Chapter 5  

 

348 

 

 

Supplementary Figure D.3 Mean TMRCA between Africa (AF) and the other continental groups. Each dot 

represents one of the 64,772 simulations where all sampled cells were populated by present time. Abbreviations 

are as follows: AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – America, including 

populations as detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes data (Table 5.2). 
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Supplementary Figure D.4 Mean TMRCA between America (AM) and the other continental groups. Each dot 

represents one of the 64,772 simulations where all sampled cells were populated by present time. Abbreviations 

are as follows: AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – America, including 

populations as detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes data (Table 5.2). 
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Supplementary Figure D.5 Mean TMRCA between East Asia (EA) and the other continental groups. Each dot 

represents one of the 64,772 simulations where all sampled cells were populated by present time. Abbreviations 

are as follows: AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – America, including 

populations as detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes data (Table 5.2). 
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Supplementary Figure D.6 Mean TMRCA between Europe (EU) and the other continental groups. Each dot 

represents one of the 64,772 simulations where all sampled cells were populated by present time. Abbreviations 

are as follows: AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – America, including 

populations as detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes data (Table 5.2). 
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Supplementary Figure D.7 Mean TMRCA between South Asia (SA) and the other continental groups. Each dot 

represents one of the 64,772 simulations where all sampled cells were populated by present time. Abbreviations 

are as follows: AF – Africa, EU – Europe, SA – South Asia, EA – East Asia and AM – America, including 

populations as detailed in Table 5.1. Black dots represent estimates from the 1000 Genomes data (Table 5.2) 
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Appendix E Appendix for Chapter 6 

E.1 Fit using SSE for thalassemia 

We initially investigated fitting the distribution of thalassemia variants using the same, 

frequency-based error function as for sickle-cell disease (6.4.3.1). The resulting origins for 

Cd39 (Supplementary Figure E.2) were similar to, but noisier than those inferred using the 

classification error presented in the main text. Furthermore, since the Cd39 frequencies were 

higher in North Africa than in Southern Europe (Table 6.6), the former was a more likely 

origin than the latter. For FSC-6, on the other hand, the obtained distribution was 

fundamentally different, the complement of that inferred for Cd39 (Supplementary Figure 

E.3). It was absent in Europe and western North Africa, near the sampled regions, as opposed 

to the North African origin inferred using classification error. After observing the 

frequencies, we found that this behaviour was driven by the low frequencies of the variant in 

the data, which lead to the complete absence of FSC-6 in sampled countries appear as an 

outcome favoured over frequencies that were too high (Supplementary Figure E.1). For IVS-

I-1, we also obtained fundamentally different distributions using the two error functions. 

Classification error implied an origin in Eastern Europe, whereas the frequency-based error 

function was undetermined, apart from showing that the origin should not be in North Africa 

(Supplementary Figure E.4). Again this is due to the low frequencies of the variant which 

resulted in a marginal change between its presence or absence in Europe; only the very low 

frequencies in North Africa were picked up. 
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Supplementary Figure E.1 Distribution of thalassemia variants in monitored countries from the five sets of 

origins with the lowest frequency-based error. In countries not reached by any variant, no data is shown. 
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Supplementary Figure E.2 Most likely origins for the Cd39 variant using the frequency-based error function. 

The figure shows the mean classification error (sum of misclassified variantsper country) for simulations where 

the variant originated from that cell, averaged over 2.5° bins in both latitude and longitude. 

 

Supplementary Figure E.3 Most likely origins for the FSC-6 variant. The figure shows the mean classification 

error (sum of misclassified variants per country) for simulations where the variant originated from that cell, 

averaged over 2.5° bins in both latitude and longitude. 
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Supplementary Figure E.4 Most likely origins for the IVS-I-1 variant. The figure shows the mean classification 

error (sum of misclassified variants per country) for simulations where the variant originated from that cell, 

averaged over 2.5° bins in both latitude and longitude. 

E.2 Sensitivity analysis 

To investigate how sensitive our results are, I reran the best-fitting set of spatial origins for 

sickle-cell disease (Figure 6.10) using a range of parameters. I recorded the number of 

individuals per layer in each country in our dataset and calculated the proportion of 

individuals carrying the derived allele, as well as the prevalence of the most common variant 

among all derived variants. Since the distribution of variants we obtained for thalassemia was 

qualitatively similar to that for sickle-cell disease, I expect the results from the sensitivity 

analysis to transfer. Regarding the single-origin hypothesis of sickle-cell disease, multiple 

starting times and demographic parameters were explored and the selection coefficient 

proved to not influence the spread of haplotypes (E.2.1). Therefore, those results should also 

not be affected by changes in the estimates of these parameters. 
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E.2.1 Selection coefficient 

I first focused on the selection coefficient s and explored values between 0.05 and 0.25, since 

the relative fitnesses of 𝑤0 = 0.868 for the ancestral and 𝑤1 = 1.0 for all derived variants, 

which we used for our main results correspond to a selection coefficient 𝑠 =
1

𝑤1
− 1 ≈ 0.152. 

We found that although the prevalence of the selected trait depends on the selection 

coefficient, as expected, the relative proportion of the major variant is largely independent. 

Furthermore, the presence of the selected trait was also hardly dependent on the selection 

coefficient, implying that the speed of the spatial spread was also not sensitive to it. 

 

Supplementary Figure E.5 Prevalence of the sickle-cell trait in countries in our dataset, for five different 

selection coefficients (0.05, 0.1, 0.15, 0.2 and 0.25). 
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Supplementary Figure E.6 Prevalence of the major sickle-cell variant in countries in our dataset, for five 

different selection coefficients (0.05, 0.1, 0.15, 0.2 and 0.25). 

 

E.2.2 Demographic parameters 

I then examined whether alternative, plausible demographic parameters result in similar 

behaviours. I explored the three best-fitting parameter sets from Raghavan et al
12

 (Table 6.1) 

and found that for countries with an established presence of malaria, neither the prevalence of 

the derived allele nor that of the major variant varied considerably. For countries at the edge 

of the ranges of variants, particularly in North African, the demographic parameters 

sometimes made a difference as they influenced how far a variant could spread: out of those 

explored, parameter set 2 resulted in the quickest spread. 
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Supplementary Figure E.7 Prevalence of the sickle-cell trait in countries in our dataset, for the three best-fitting 

parameter sets from Raghavan et al
12

 (Table 6.1). 

 

Supplementary Figure E.8 Prevalence of the major sickle-cell variant in countries in our dataset, for the three 

best-fitting parameter sets from Raghavan et al
12

 (Table 6.1). 
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E.2.3 Starting time of selection 

I finally looked at the starting time of selection, considering 100 to 500 generations ago 

(2,500 years ago to 12,500 years ago), in steps of 100 generations (2,500 years). The 

prevalence of sickle-cell disease in some countries was sensitive to this quantity. This is not 

surprising, given that the time it takes for the variant to spread on such large spatial scales, 

encompassing a whole continent, is on the same order of magnitude as our parameter sweep. 

However, the proportion of the major variant within derived variants was robust to this 

parameter, although with sensitivity through the presence of the protective variant. 

 

Supplementary Figure E.9 Prevalence of the sickle-cell trait in countries in our dataset, for five starting times of 

selection (100 to 500 generations ago, in 100 generation steps). 
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Supplementary Figure E.10 Prevalence of the major sickle-cell variant in countries in our dataset, for five 

starting times of selection (100 to 500 generations ago, in 100 generation steps). 

 


