
Strong metadata privacy for mobile
devices and applications

Daniel Hugenroth

Darwin College

This dissertation is submitted on 29th September 2023 for the degree of
Doctor of Philosophy.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done
in collaboration except as declared in the Preface and specified in the text. It is not substantially
the same as any work that I have submitted, or am concurrently submitting, for a degree or diploma
or other qualification at the University of Cambridge or any other University or similar institution
except as declared in the Preface and specified in the text. I further state that no substantial part of
my dissertation has already been submitted, or is being concurrently submitted, for any such degree,
diploma or other qualification at the University of Cambridge or any other University or similar
institution except as declared in the Preface and specified in the text. This dissertation does not
exceed the prescribed limit of 60 000 words.

Daniel Hugenroth
29th September 2023

Abstract

Strong metadata privacy for mobile devices and applications
Daniel Hugenroth

Smartphones have become the primary computing devices for many. Living inconspicuously in our
pockets, they store our most intimate personal messages and pictures as well as sensitive corporate
information and government secrets. This has already motivated widespread adoption of end-to-end
encryption for mobile messaging applications, such as WhatsApp and Signal, which protect the
confidentiality of messages. However, metadata, such as who has been messaging whom and when,
can still be observed by platform operators, local internet providers, and other adversaries tapping
into network traffic. This dissertation presents protocols and applications for mobile devices that not
only protect the content of messages but also communication patterns.

Anonymity networks provide metadata privacy, but the most popular ones, like Tor, remain
vulnerable to traffic analysis, while strong alternatives, like Loopix, use cover traffic at the expense of
higher bandwidth and latency. In this context smartphones raise two important challenges: battery
constraints dictate conservative power usage and connectivity is often intermittent.

In order to better understand power consumption on modern smartphones we run experiments
on real hardware and find that cryptographic operations are cheap while radio transmission can be
costly. In particular, popular solutions such as VPN and Tor are practical with negligible impact on
the battery life. However, more secure designs using cover traffic are impractical and highlight the
need for protocol design that takes energy limitations into account.

The latency and bandwidth requirements of protocols with strong metadata privacy are particularly
challenging when sending messages to many recipients—especially on mobile devices where users are
often offline. We design Rollercoaster, a multicast scheme for mix networks which incorporates these
constraints and allows better utilisation of the underlying network for sporadic group communication.
This enables decentralised applications such as group messaging and collaborative text editing while
retaining efficient mix parameters.

Finally, we present CoverDrop, a practical system for initial contact between whistleblowers and
journalists. CoverDrop integrates into a standard news reader app such that all its users contribute
cover traffic to achieve unobservable communication for sources while having negligible impact on
battery life. In addition, we implement plausibly-deniable storage to keep previous usage of CoverDrop
secret even if the phone is captured by an adversary. To achieve this, our key stretching scheme, called
Sloth, uses the Secure Element found in many modern smartphones, preventing the adversary from
parallelising brute-force attacks and therefore allowing for shorter, more memorable passphrases.

Acknowledgements

First, I would like to thank my supervisor Alastair Beresford. I am indebted to him for providing
me with immensely helpful guidance throughout my entire PhD and giving me all the support and
freedom I could have ever asked for. I would not be where I am today without him and the journey
would have been certainly far less enjoyable. This extends to all kind and inspiring people that I
met along the way in both industry and academia. In particular to my lab mates and collaborators
Alberto, Ceren, Diana, Jenny, Jovan, Luis, Martin, Michael, Nicholas, Sam, and the CoverDrop team.

I thank my family—Ulla, Martin, Christopher, and Marie—for their unwavering trust in my
decisions and always encouraging me to pursue my goals. I cannot know what went through your
heads when you placed an old i486 DOS machine in my room, but here we are. However, doing a
PhD abroad was an unlikely path for me to take. For this, I am thankful to the Bundeswettbewerb
Informatik and the Studienstiftung des deutschen Volkes for broadening my horizon and helping me
discover my path.

Thank you to my friends from both past and present. A PhD is a marathon and not a sprint
which means that one should definitely stop along the way to go punting, rowing, travelling, and
simply enjoying each other’s company. You made the last four years special and memorable. Thank
you, Andi, Anna, Armin, Benedikt, Faustyna, Felix, Frede, Friedrich, Jacob, James, Jannik, Kat,
Maline, Martin, Saskia, Simone, Tiana, and everyone who belongs on this list.

And thank you, dear reader, for your interest in this dissertation.

Table of contents

List of figures 13

1 Introduction 15
1.1 Publications . 18
1.2 Contributions . 19

2 Background 21
2.1 Anonymity networks . 21

2.1.1 Terminology and properties . 22
2.1.2 Onion routing networks and Tor . 22
2.1.3 Mix networks and Sphinx . 24
2.1.4 Loopix . 24
2.1.5 Other anonymity networks . 27

2.2 Ethical considerations for anonymous communication 28
2.2.1 Design decisions . 29
2.2.2 Related work on the ethics of anonymous communication 30

2.3 Mobile devices . 30
2.3.1 Access to the Internet . 31
2.3.2 Smartphone platforms . 32
2.3.3 Energy consumption . 33

2.4 Summary . 34

3 Understanding the energy efficiency of anonymity networks on smartphones 35
3.1 Measuring mobile energy consumption . 36

3.1.1 Hardware-based and model-based approaches 36
3.1.2 Cryptographic operations . 37
3.1.3 Android background scheduling . 38
3.1.4 Anonymity networks . 38

3.2 Measurement methodology . 39
3.3 Micro studies of individual operations . 41

3.3.1 Cryptography algorithms . 41
3.3.2 Background scheduling . 42
3.3.3 Radio transmission . 44

10 Table of contents

3.4 Macro studies of protocols . 47
3.4.1 VPN . 48
3.4.2 Tor . 49
3.4.3 Mix network . 50
3.4.4 Daily driver . 51
3.4.5 Discussion on feasibility . 53

3.5 Limitations and threats to validity . 53
3.6 Summary . 54

4 Low-latency group communication in mix networks with unreliable connectivity 55
4.1 Group communication . 56

4.1.1 Collaborative editing and local-first software 56
4.1.2 Threat model . 57

4.2 Naïve approaches to multicast . 57
4.2.1 Naïve sequential unicast . 58
4.2.2 Naïve mix-multicast . 58

4.3 The Rollercoaster protocol . 59
4.3.1 Construction . 60
4.3.2 Fault tolerance . 60
4.3.3 Analysis . 64
4.3.4 p-restricted multicast with MultiSphinx . 65
4.3.5 Further optimisations . 68

4.4 Evaluation . 68
4.4.1 Methodology . 68
4.4.2 Always-online baseline . 69
4.4.3 Fault tolerance . 70
4.4.4 Multiple groups and message bursts . 70
4.4.5 p-restricted multicast . 72

4.5 Summary . 72

5 Key stretching and deniable encryption using the Secure Element on smartphones 75
5.1 Secure Elements on Android and iOS . 76

5.1.1 Background . 76
5.1.2 APIs and limitations . 77
5.1.3 Support for Secure Elements on iOS devices . 78
5.1.4 Support for Secure Elements on Android devices 78

5.2 The Sloth key stretching schemes . 81
5.2.1 System overview . 81
5.2.2 Threat model . 82
5.2.3 LongSloth key stretching for Android . 84
5.2.4 RainbowSloth key stretching for iOS . 84

5.3 The HiddenSloth deniable encryption scheme . 87
5.3.1 Single-snapshot variant . 87

Table of contents 11

5.3.2 Multi-snapshot variant . 89
5.3.3 Practical implementation considerations . 91

5.4 Security analysis . 92
5.4.1 Security of the key stretching schemes . 92
5.4.2 Security of the deniable encryption schemes . 94

5.5 Evaluation . 95
5.5.1 Performance of Secure Element operations . 96
5.5.2 Choosing Sloth parameters . 96
5.5.3 LongSloth and RainbowSloth . 99
5.5.4 HiddenSloth . 99

5.6 Summary . 100

6 Real-world implementation of the CoverDrop anonymous messaging system 101
6.1 The CoverDrop system . 102

6.1.1 Overview . 102
6.1.2 Threat model . 104
6.1.3 Requirements gathering . 105

6.2 Forward security in a high-latency anonymous messaging system 106
6.2.1 Security of messaging protocols . 106
6.2.2 Ratchet-based protocols and puncturable encryption 107
6.2.3 Key rotation and management . 108

6.3 User-friendly message scheduling on Android and iOS 109
6.4 An efficient private sending queue . 111

6.4.1 Overview and threat model . 111
6.4.2 Construction . 112
6.4.3 Security analysis . 113

6.5 Summary . 114

7 Conclusion and future work 115

Bibliography 119

Acronyms and abbreviations 131

A Rollercoaster 135
A.1 Algorithms . 135
A.2 Heatmaps . 138
A.3 Histograms . 139
A.4 Eventual delivery proof . 142
A.5 MultiSphinx construction . 144

A.5.1 Normal Sphinx (existing solution) . 145
A.5.2 MultiSphinx (our solution) . 146

A.6 MultiSphinx proofs . 148
A.6.1 Against a global passive adversary . 148

12 Table of contents

A.6.2 Against corrupt nodes . 150
A.6.3 Against a global active adversary . 152

A.7 Reproduced latency distributions . 153
A.8 Visualisation of offline models . 154

B Sloth 157
B.1 Security proofs for LongSloth . 157

B.1.1 LongSloth Indistinguishability . 157
B.1.2 LongSloth Hardness . 159

B.2 Security proofs for RainbowSloth . 159
B.2.1 RainbowSloth Indistinguishability . 159
B.2.2 RainbowSloth Hardness . 160

B.3 Security proofs for HiddenSloth . 161
B.3.1 MS-HiddenSloth Indistinguishability . 161
B.3.2 MS-HiddenSloth Hardness . 162

List of figures

2.1 Loopix architecture . 25
2.2 Plot of estimated reach of mobile and fixed-broadband Internet 32
2.3 Plot of estimated relative population covered by mobile network generations 32

3.1 Schematic and photograph of the power measurement hardware setup 40
3.2 Power trace of a 2048-bit RSA key pair generation . 41
3.3 Power trace of a Sphinx packet creation . 42
3.4 Plot of average power consumption for WakeLock and AlarmManager 43
3.5 Power traces of WakeLock and AlarmManager executions 45
3.6 Power trace of sending and receiving data on 4G . 46
3.7 Plot of power consumption for TCP and UDP with varying rate and payload size . . . 47
3.8 Plot of average power consumption of VPN and Tor 49
3.9 Plot of average power consumption for different Loopix configurations 51
3.10 Plot of battery levels for daily driver scenario . 52

4.1 Rollercoaster message distribution graphs . 61
4.2 Rollercoaster message header layout . 62
4.3 Loopix outbound queues for p-restricted multicast . 65
4.4 MultiSphinx message processing at multiplication node 67
4.5 Plot of message latency in always-online scenarios . 71
4.6 Plot of message latency in scenarios with offline users 71
4.7 Plot of message latency in scenarios with multiple group memberships 71
4.8 Plot of message latency in scenarios with message bursts 73
4.9 Plot of message latency for sending rates and p-restricted multicast configurations . . 73

5.1 Distribution of Android versions . 78
5.2 Plot of prevalence of TEE/SE support on Android . 79
5.3 Abstract Sloth scheme . 82
5.4 Illustration of the Sloth threat model . 82
5.5 RainbowSloth scheme . 85
5.6 Plot of durations for ECDH operations on iOS . 96
5.7 Plot of durations for HMAC operations on Android . 97
5.8 Plot of durations for LongSloth and RainbowSloth key derivation operations 99

14 List of figures

5.9 Plot of durations for HiddenSloth ratchet operations 100

6.1 CoverDrop architecture . 102
6.2 Screenshots of the CoverDrop prototype app. 103
6.3 CoverDrop key hierarchy . 108
6.4 PrivateSendingQueue and operations . 112

A.1 Plot of message latency for sending rates and p-restricted multicast configurations
(extended) . 138

A.2 Plot of message latency distributions for all-online scenarios 140
A.3 Plot of message latency distributions for scenarios with offline users 141
A.4 MultiSphinx routing . 144
A.5 Plot of Loopix latency distributions from the original paper 153
A.6 Plot of Loopix latency distributions from our simulator 153
A.7 Plot of sample offline model traces (65.05% online) . 154
A.8 Plot of sample offline model traces (80.01% online) . 154
A.9 Plot of sample offline model traces (88.45% online) . 155

B.1 LongSloth security reduction . 158
B.2 RainbowSloth security reduction . 160
B.3 HiddenSloth security reduction . 164

Chapter 1

Introduction

Over the last 10 years end-to-end encrypted (E2EE) communication has achieved widespread adoption
around the globe. Thanks to Signal, WhatsApp, and other apps, billions of users communicate
knowing that the content of their messages can only be read by them and the intended recipients. This
confidentiality is critical as messaging apps gained widespread adoption from individuals exchanging
private messages to large corporations sharing sensitive business information. Of course, this also
includes the highest roles in government as exemplified by Germany’s ex-chancellor Angela Merkel
who was dubbed “Handykanzlerin” [21] (mobile phone chancellor) due to her pervasive use of text
messaging. In previously deployed solutions the encryption, and thus confidentiality, terminated at
the servers of the platform provider requiring that the user trusts them to not read or modify their
messages. This is why end-to-end encryption is considered such an important improvement.

However, even E2EE systems leak metadata which comprise information such as who communicates
with whom and when. A local system administrator or an Internet service provider (ISP) can easily
record the senders and recipients of all connections via their network. Similarly, the operators of
messaging services can record the senders and recipients of all messages, as this information is included
in the headers to correctly forward messages to the recipient devices. And while these operators do
not necessarily have a motive to spy their users, they might be (legally) compelled to record such data
or their systems might be compromised by attackers. This communication metadata alone, without
knowing the content of messages, is already powerful. It could be used to compile a list of people a
journalist contacted to then unmask whistleblowers; or to identify a group of activists who worked
together by mapping their social network starting from a publicly known leader.

Anonymity networks are privacy enhancing technologies (PETs) which allow users to hide such
information and thus guarantee metadata privacy. From its inception in the 1980s through Chaum’s
seminal works on untraceable communication [32, 34], the research field produced numerous designs
that achieve meaningful trade-offs between security and performance. This field is also a very practical
one. For instance, Tor [50] is an anonymity network that is used world-wide and deployed across many
continents. As such, anonymity networks today protect whistleblowers who reach out to journalists to
report wrongdoing; they allow activists and non-governmental organisations (NGOs) to communicate
and coordinate in precarious conditions; and they allow individuals to evade local censorship measures.
However, this technology can also be abused by criminals to evade detection by law enforcement

16 Introduction

and avoiding consequences for their actions. Examples of this are online marketplaces for illicit
goods where both parties remain anonymous towards each others. We explore the dual-use nature of
anonymity networks and discuss some ethical aspects in Section 2.2.

Tor works by routing all traffic between the user and their communication partner, for instance a
web server, via a route of three user-chosen intermediate nodes that are called onion routers. This
route is typically established at the beginning of a session, eliminating the need to include detailed
routing information in later packets. Onion routers are operated by volunteers and organisations
in many different countries so that the traffic typically crosses multiple jurisdictions and therefore
making comprehensive surveillance difficult. The individual packets are encrypted in multiple layers
such that each node along the route can only decrypt the outer-most layer which then reveals the
address of the next hop and the next encrypted payload. Since each onion router only knows their
direct predecessor and successor along the route, no node learns the identity of both the initial sender
and final recipient.

However, Tor and similar systems are susceptible to traffic analysis attacks by adversaries that
can observe parts of its network [45, 95, 145]. In particular, Tor is vulnerable to confirmation attacks
where an adversary might start with the suspicion that two particular users are communicating with
each other. If the adversary observes that outgoing packets at A correlate with incoming packets at
B, they can accept this as confirmation that A is talking to B. The adversary can try to repeat these
observations over multiple rounds to build further confidence. The practical relevance of network-level
attacks on a global level gained more public attention with the Snowden revelations in 2013 which
provide evidence for existing large-scale metadata surveillance [88]. Section 2.1.2 discusses Tor and
traffic analysis attacks in more detail.

Other designs can offer stronger protection. A successful archetype that is central to this dissertation
are mix networks with cover traffic, such as Loopix [110]. In mix networks each message is independently
routed and delayed which makes traffic analysis more difficult. In addition, all clients send outgoing
messages following an independent schedule to hide communication patterns. When the client does
not have any real messages to be sent, so called cover messages are sent instead. While providing very
strong metadata privacy, such systems require trade-offs between efficiency, latency, and performance.
The Loopix system allows for low-latency communication and its provider nodes can cache messages
when clients are offline. Because of their practicality and strong metadata privacy, I made mix-based
architectures, and in particular Loopix, the central anonymity technology in my research. The practical
relevance of Loopix is further demonstrated by Nym [49] which is an active real-world implementation
that is deployed across hundreds of active mix nodes in many countries. Section 2.1.3 discusses
mix-based networks, Loopix, and Nym in more detail.

However, smartphones have become the primary computing devices for most users and this chal-
lenges existing anonymity network architectures which were designed with standard desktop computers
in mind. In particular, mobile devices have limited battery capacity. The energy measurements in
Chapter 3 show that cover traffic, which is critical for strong-metadata privacy, becomes infeasible
for parameters that are commonly chosen today. Hence, understanding the power consumption of
smartphones and applications is critical when evaluating modern anonymity network designs. In
addition, as mobile devices travel with the user, they switch between mobile and WiFi networks and
also go offline completely in areas without network coverage. This unreliable connectivity requires

17

that the anonymity network can cache or retransmit messages when the mobile client is offline. These
observations were defining constraints for the development of the Rollercoaster protocol that I
present in Chapter 4.

In recent years, smartphones have provided new opportunities to develop more secure and usable
privacy enhancing technologies (PETs). The sandboxing of apps increases the confidence of developers
that local data is stored confidentially and it reduces the risk of side-channel attacks from other apps.
Most smartphones also include biometric authentication using fingerprint readers and face recognition
technology which allows for integration of more frequent user authorisation without creating security
fatigue from entering passwords. Finally, modern smartphones can guard secret keys in a dedicated
Secure Element (SE) which can resist even physical attacks. The Sloth protocol (Chapter 5)
leverages the SE to provide plausibly-deniable storage that provides definite time guarantees against
brute-force password guessing. An implementation with similarly strong security guarantees for the
average desktop computer would not be easily possible. Such building blocks are important for PET
applications. In the CoverDrop system (Chapter 6) they enable whistleblowers to convincingly deny
their activities in case their smartphone is captured.

In fact, the anonymity network providing an infrastructure layer and the applications running
on top of it are typically intertwined. This becomes apparent in the projects that I include in this
dissertation. The motivation for Rollercoaster (Chapter 4) arose from building decentralised
collaboration software on top of Loopix. For this, updates must be shared with others through
multicast operations. However, the intentionally limited sending rate of mix networks renders naïve
approaches infeasible, and hence Rollercoaster is a specialised multicast protocol that is tailored to
these unique constraints. As another example, the CoverDrop project (Chapter 6) tightly integrates
the anonymity infrastructure and the applications with each other. In particular, involving many
users, of which most will only ever send cover traffic, dictates that parameters must be carefully
chosen to keep power consumption low and excess traffic small.

In this dissertation I argue that there are critical challenges (and opportunities) for the deployment
of strong metadata privacy on mobile devices. I approach this claim through examination of the
status-quo and building new solutions that I then evaluate in the context of smartphones—with
a particular focus on technical limitations imposed by hardware, operating systems, and existing
protocols. This work is constructive and yields building blocks that can be used for future research
and real-world applications.

18 Introduction

1.1 Publications

Some chapters in this thesis are based on work that I have written with others. While some papers
are already published, others are currently under review.

• Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford. Sloth: Key
Stretching and Deniable Encryption using Secure Elements on Smartphones. Under
review, 2023.

The Sloth paper forms the basis of Chapter 5. I led the design of the protocol, implemented
the prototype, conducted all experiments, performed the data analysis, and was the primary
author of the text. My co-author Alberto was the main author of the formal proofs which are
included in the appendices. Alberto, Sam, and Alastair contributed towards the development of
the ideas and their presentation.

• Daniel Hugenroth and Alastair R. Beresford. Powering Privacy: On the Energy Demand
and Feasibility of Anonymity Networks on Smartphones. In Proceedings of the 32nd
USENIX Security Symposium (USENIX Security ’23), pp. 5431–5448, 2023.

The Powering Privacy paper forms the basis of Chapter 3. I conducted all experiments,
performed the data analysis, and was the primary author of the text. Alastair contributed
towards the development of the ideas and their presentation.

• Daniel Hugenroth, Ceren Kocaoğullar, and Alastair R. Beresford. Choosing Your Friends:
Shaping Ethical Use of Anonymity Networks. In Proceedings of Security Protocols
XXVIII: 28th International Workshop, 2023.

The Choosing Your Friends paper forms the basis of Section 2.2. This paper has been shaped
by all three co-authors as well as the discussion during the workshop.

• Mansoor Ahmed-Rengers, Diana A. Vasile, Daniel Hugenroth, Alastair R. Beresford, and Ross
Anderson. CoverDrop: Blowing the Whistle Through A News App. In Proceedings on
Privacy Enhancing Technologies (PoPETs), pp. 47–67, 2022.

I joined the CoverDrop paper after my co-authors had conducted workshops and finished its
distinguishing requirements analysis. My contributions span the protocol design, most of its
implementation, and all mobile aspects of this work. After its publication, I have been working
with a news organisation on implementing CoverDrop for real-world use. This work discovered
novel challenges that were not previously considered. I discuss these alongside potential solutions
in Chapter 6.

• Daniel Hugenroth, Martin Kleppmann, and Alastair R. Beresford. Rollercoaster: An Efficient
Group-Multicast Scheme for Mix Networks. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security ’21), pp. 3433–3450, 2021.

The Rollercoaster paper forms the basis of Chapter 4. I led the design of the protocol,
implemented the prototype, conducted all experiments, performed the data analysis, did the
security analysis, and was the primary author of the text. Martin and Alastair contributed
towards the development of the ideas and their presentation.

1.2 Contributions 19

1.2 Contributions

In this dissertation I make the following contributions:

• In Section 2.2 I discuss ethical considerations of anonymity networks and their applications. A
topic that still attracts little attention. I argue that specialised anonymity network designs can
reduce the potential for harm and demonstrate this practically with the CoverDrop system.

• In Chapter 3 I discuss the energy consumption of anonymity networks on smartphones by
measuring individual operations and whole protocols. For this I designed a hardware setup
that also enables other researchers to conduct precise energy measurements easily and with
minimal costs. Previous results for cryptographic operations on smartphones are outdated and I
show that these no longer present a bottleneck. Also, I collect energy estimates for Tor, VPN,
and Loopix in a comparable manner for the first time to show the importance of researching
smartphone-friendly anonymity network designs.

• In Chapter 4 I present an efficient multicast scheme for mix networks, named Rollercoaster,
that makes low-latency group communication possible—even in networks that rely on traffic
shaping. For this, I built a simulator for the Loopix network to show that Rollercoaster
reduces latencies for groups up to 100 members to make them practical for collaborative work.
I also present a fault-tolerant variant that can handle offline users.

• In Chapter 5 I present schemes, called Sloth, that use the Secure Element for key stretching and
plausibly-deniable storage on mobile phones. The Sloth schemes can be used by app developers
on both Android and iOS without modifications to either hardware or software. I developed
these based on my CoverDrop contributions. I also conducted a study that examines the
prevalence of Secure Elements on modern smartphones as well as their API and performance.

• In Chapter 6 I discuss an anonymity network design, named CoverDrop, that allows whistle-
blowers to contact journalists securely. The CoverDrop project is joint work by many people
over multiple years. I present challenges that arose from implementing CoverDrop within a
news organisation and I extend the system design to support forward security, a more practical
message scheduling strategy, and a plausibly-deniable private sending queue.

Chapter 2

Background

The following chapters in this thesis build upon the anonymity networks and technologies introduced
in Section 2.1. In particular, the practical Loopix design (Section 2.1.4) will be central to the design of
Rollercoaster in Chapter 4. In Section 2.2 we discuss some of the ethical implications that emerge
from design choices of anonymity networks. Section 2.3 explores the global success of mobile devices
and the status-quo of Android and iOS as the dominant smartphone platforms drawing attention to
their unique challenges and opportunities.

2.1 Anonymity networks

Anonymity networks allow their users to exchange messages without revealing metadata such as
who is talking to whom and when. Otherwise such information allow adversaries to learn about
communication partners and groups as well as communication patterns. This metadata by itself is
quite powerful as it could allow, e.g. targeting of activist groups by following communication traces
originating at their leaders; or identifying the group of potential whistleblowers that had been in
contact with a journalist just before a story was published.

In the threat model for anonymity networks we typically assume strong adversaries with resources
similar to a nation state actor. Such an adversary has the ability to observe (encrypted) traffic on the
network links between nodes. They are called a local passive adversary or global passive adversary
(GPA) depending on whether they can only observe a subset of network links, e.g. only the direct
connections to and from a user, or can see all network links. In addition, adversaries might compromise
and control a fraction of the nodes that make up the network. Such compromised nodes can behave
in a Byzantine-faulty manner, i.e. deviate from the protocol in any way that the adversary deems fit.
This is different to honest-but-curious nodes where the adversary can only read their internal state,
but the nodes continue to follow the protocol with no observable changes.

In order to communicate with each other securely over an anonymity network, both parties need to
share their network addresses such that their messages can be routed to the intended destination and
exchange their public keys to verify the authorship of messages from the other party. Most anonymity
network designs assumes that this bootstrapping step happens out-of-band—either in-person or using
an already trusted channel. Performing this exchange of information and discovering users based on

22 Background

human-friendly identifiers inside an anonymity network remains an interesting problem without a
satisfactory solution.

There are many different anonymity network designs and implementations that serve specific
use-cases. As such they achieve different trade-offs between metrics such as latency which measures
how quickly a message from A reaches B; bandwidth specifying how much data A can send per
time unit; overhead in terms of computational costs and network usage; and anonymity guarantees
describing how much information the adversary learns. The Anonymity Trilemma [46] shows that in
fact no solution is able to tick all these boxes. In addition, individual anonymity network designs
provide other benefits ranging from support for offline clients to censorship circumvention techniques.

2.1.1 Terminology and properties

The term anonymity is often used as a broad description for properties of communication system.
However, using it without further specificity is not helpful as anonymity is an intrinsically relative
property. It is only meaningful to describe the relationship between a party which tries to stay
anonymous and a party that tries to identify them. Usually, we call the former the user and the latter
the adversary.

In addition, we want to further qualify what exact information we try to hide from the adversary.
For this we follow the terminology by Pfitzmann [108]. We use anonymity set to describe a group
of subjects which all appear reasonably likely to the adversary as the target they try to identify.
Unlinkability describes the inability of the adversary to generally associate subjects, actions, and
objects with each other. For instance, what message was sent by whom. Finally, unobservable
communication describes the strong property where the adversary is unable to determine whether
a given subject is currently communicating any meaningfully information at all. This is typically
achieved using cover messages which generate made-up traffic that is independent of user actions.
The details of cover messages are discussed in Section 2.1.3. Steganography is a related property
where the existence of any message, real and cover, is hidden. However, assuming that the use of
anonymity technology is generally allowed, steganography provides little additional security benefit
for the use-cases in this dissertation.

We use the term strong metadata privacy for anonymity systems where all metadata is hidden
from the adversary. As such this term depends on both the system guarantees and the threat model.
Typically, strong metadata privacy implies that anonymity networks use cover traffic to achieve
unobservable communication against a global passive adversary.

2.1.2 Onion routing networks and Tor

Onion routing describes all protocols where messages are encrypted in multiple layers that are “peeled
off” as the message travels along a number of intermediate nodes. Each hop decrypts the outer-most
layer of the messages it receives and then learns about the address of the next hop and the encrypted
messages to send there. As such, each intermediate node only learns its direct predecessor, from which
they received the message, and successor, to which they send the encrypted inner message.

If the number of hops is just one, then this design assembles a VPN service where users tunnel
their traffic through one of the provider’s servers. In this case a local adversary that observes an

2.1 Anonymity networks 23

user’s Internet connection can no longer read the intended recipient, e.g. a web server IP address,
from the packet header. However, an honest-but-curious VPN server can easily record all metadata of
its users, as they can see all routing information. Similarly, a GPA which observes the VPN server’s
traffic can correlate the incoming and outgoing packets and use that information to deduce which
user communicates with which server. When increasing the route length to two, three, or more
intermediate nodes, no single node can learn the entire path. In particular, such a setup hides the full
route information as long as at least one intermediate node is not compromised by the adversary. We
look at a popular implementation of such a design next.

Tor [50] is a circuit-based onion routing network and the most practical and widely deployed
anonymity network today. Its intermediate nodes, called onion routers, are located in almost all
countries around the world and Tor is being used by millions of users every day [131]. Routes in
Tor consist of the guard node, a middle node, and an exit node and as such it remains safe even if
two of the user-chosen intermediate nodes are compromised by the same adversary. In addition, to
access to the Internet via the exit nodes, Tor also offers onion services. These onion services are only
discoverable via their .onion addresses which allows other users to initiate a rendezvous process that
establishes a connection between them and the onion service. Both parties remain anonymous towards
each other and their traffic stays entirely within the Tor network. As these services are typically not
accessible from outside Tor, they are sometimes referred to as the “Dark Web”.

Tor is often used for web browsing and interactive communication. Therefore, its design treats
performance, in particular low latency and high throughout, as important goals. For instance, messages
are never deliberately delayed at onion routers to minimise latency, but this also makes it easier for
adversaries to match incoming and outgoing packets. Moreover, once a circuit is established, all traffic
to and from that user travels via the same route. This reduces the required routing information in the
packet headers once the circuit is established, but at the same time it helps the adversary to identify
messages that belong together. Maybe counter-intuitively, from an individual user’s perspective,
having a fixed circuit can be preferable over having many short-lived ones. This is because sending
data over many independent ones increases the chance to create at some point a circuit that consists
entirely of compromised nodes.

The fixed circuits, the low-latency message processing, and the lack of cover traffic make Tor
vulnerable to traffic analysis attacks where an adversary tries to correlate users, messages, and streams.
Murdoch et al. show that these attacks are even possible for adversaries that only have a partial
view of the network [95]. Another form of attack from a (local) adversary are fingerprinting attacks
based on the pattern of the encrypted traffic that a user receives. Wang et al. show the practicality of
such attacks by identifying the websites that users are visiting with accuracy beyond 90% in realistic
settings [145]. Similarly, peer-to-peer communication, e.g. between a user and an onion service, opens
up correlation attacks as another traffic analysis attack vector. If an adversary suspects that A
is sending messages to B, they can listen on the local network links of both users to see whether
outgoing packets at A are followed by incoming packets at B shortly afterwards. By repeating these
observations over multiple rounds, the adversary can build up confidence in their hypothesis.

24 Background

2.1.3 Mix networks and Sphinx

Mix networks were one of the very first designs of anonymity networks proposed by Chaum [34]. On
top of onion routing, they introduce two measures that help them resist attacks by a GPA. First,
each message is routed independently which makes it more difficult to learn which messages belong to
the same communication session between two users. Second, messages are delayed and mixed at the
intermediate nodes so that it is hard to know which incoming message belongs to which outgoing
message. For this, the mix nodes can employ different strategies. Threshold mixes wait until they
have collected a set number of packets and then release them in a randomised order. Alternatively,
timed mixes wait for a set duration before they shuffle and release all collected packets. While simple,
both strategies can suffer from high-latency and varying anonymity guarantees based on the traffic
load. Section 2.1.4 introduces a more favourable continuous-time mixing strategy where messages are
delayed independently by sender-chosen durations.

As each message in a mix network is routed independently they require a packet format that
efficiently store the entire routing information. In addition, both the header and payload of the
packet need to be modified by each hop so that they appear completely unrelated. Otherwise, an
adversary gains a benefit in linking incoming and outgoing packets at mix nodes which would defeat
the randomised mixing with other packets. The Sphinx [44] packet format, which is also used by
Loopix (see below), fulfils these requirements. In addition, Sphinx can carry auxiliary information,
such as the delay durations for each hop, and it hides the number of remaining hops that the message
still has to travel. The latter allows mixing of all packets, regardless of how far they still have to
travel, to form a common anonymity set within mix nodes.

Over the years there have been multiple mix-based designs and implementations including Mix-
master [96] and Mixminion [43]. However, none of them achieved widespread and sustained adoption
comparable to Tor. Loopix, which is introduced in the next section, stands out as a modern and
practical design which is implemented and used in practise.

2.1.4 Loopix

Many parts of this thesis build upon Loopix [110] which we consider the most practical mix network
design today. Most notably, it introduces provider nodes that mediate access to the network. In this
role they can charge users for access and share the revenue with the operators of the mix nodes. In
addition, providers also enable support for clients that are not continuously online by operating an
inbox that caches incoming messages while the client is offline. Loopix uses a stratified topology
where mix nodes are arranged in l = 3 layers such that messages from a mix node in layer i are
always forwarded to a mix node in layer i+ 1. The provider nodes are connected as inputs to the first
layer and outputs of the last one. Figure 2.1 illustrates this topology. All messages are source routed,
meaning that the sending client decides their full path information.

Each Loopix client sends three separate streams of outgoing messages which all use the same
encrypted packet format ensuring that an observer cannot distinguish between them. Drop messages
are regular cover traffic addressed to a randomly chosen provider node which will ignore them. Loop
messages are cover traffic messages that are addressed to the sender itself. Hence, once such a loop
message has been sent, the sender will expect to receive them back within a certain time frame.

2.1 Anonymity networks 25

User BUser A

User C User D

P1

P2

Layer 2 Layer 3Layer 1

Figure 2.1: Overview of a Loopix network with four users (A–D), two provider nodes (P1, P2), and
mix networks arranged in three layers. In this stratified topology each mix node in layer i is connected
to all mix nodes in the subsequent layer i + 1. The dashed red line indicates possible loop traffic
generated by a mix node. The solid blue line indicates payload traffic from user B to user D. Own
graphic from the Rollercoaster paper [68].

Received loop messages—or the lack thereof—can be used to evaluate the health of the system and to
identify misbehaving mix nodes. In Loopix, mix nodes also generate such loop traffic to continuously
monitor the network. Finally, the client maintains a first-in first-out (FIFO) buffer for payload
messages. If the payload buffer is empty when the next payload message should be sent, a new drop
message is created as cover traffic and sent instead.

Parameters and stochastic modelling. We now discuss how the individual sending events and
delays in the Loopix system are modelled. This is important background for both Chapter 3 and
Chapter 4 and helps to build an understanding of the expected latency in the system.

The timings for the drop, loop, and payload streams are modelled as Poisson processes Pois(·) with
rate parameters λd, λl, and λp respectively. This means that the delay between subsequent messages
of a stream with rate λ... is sampled from the exponential distribution Exp(λ...). For example, given
the Poisson process Pois(λx) with λx = 2 s−1, one expects on average 2 messages per second and that
the mean delay between two subsequent messages is 1

λx
= 500 ms. As the drop, loop, and payload

streams are independent, the observable overall message stream of the client also forms a Poisson
process Pois(λ) with λ = λd + λl + λp.

For each outgoing message, clients sample the delays di from an exponential distribution Exp(µ)
for the chosen mix node in each layer i and for the hop (i = 0) from the sender’s provider node
to the first mix node. This Poisson mixing strategy allows for elegant stochastic modelling of the
mix node behaviour and state. For instance, the total network latency of a message is the sum of
all its inter-hop delays sampled from independent exponential distributions with parameter µ. This
distribution is also known as the Gamma distribution Γ(l + 1, 1

µ) which has the mean l+1
µ and where

the shape parameter l + 1 denotes the number of independent delays the message is experiencing.
When considering the total application-level end-to-end delay, one must also include how long an

outgoing message msg has to wait in the payload FIFO buffer. Here each message has to wait for
all previous n messages in front of it and their independent sending delays sampled from Exp(1

λp
).

Hence, this again yields a Gamma distribution Γ(n+ 1, 1
λp

) where the shape parameter n+ 1 accounts
for all n previous messages plus the own delay of the message msg. Finally, messages are not directly

26 Background

sent to clients, but to the inbox at their providers from which they are downloaded by the client.
These downloads happen at regular intervals of δpull which implies that the mean waiting time for
the next pull once a message arrives at a provider is δpull

2 . Combining the payload buffer waiting
time, the delays during transit, and the time until the next pull yields the distribution of the total
end-to-end message latency dmsg. With the aforementioned intermediate results, the expected mean
message latency between two users therefore is

mean(dmsg) = n+ 1
λp

+ l + 1
µ

+ δpull

2 . (2.1)

Loopix is compatible with a variety of parameters ranging from sending a few messages per minute
to high rates where there are many messages per second. One limiting concern is the outgoing
bandwidth which is λ · |msg| bytes

s where |msg| is the fixed message size in bytes. Choosing very high
rates requires significant traffic which can be costly. Another constraint is the relationship between λ
and µ. If both overall the sending rate λ and the average delay 1

µ are low, fewer messages are delayed
in a mix node at the same time. Since there are fewer packets to choose from, this helps the adversary
to guess which incoming packets relate to which outgoing packets.

With suitable parameter choices Loopix provides strong metadata privacy against adversaries that
can observe all network traffic and compromise a fraction of mix nodes. In particular, it provides
unobservable communication as the outgoing traffic does not allow to distinguish whether a client
is sending real payload messages at any given time. As all traffic is generated by the client, this
also holds when the sender’s provider node is compromised. However, Loopix provides no receiver
unobservability in case their provider is compromised. This is because providers can observe the total
number of received messages for all their users. If one user receives more messages than the others,
this indicates that they are likely receiving payload messages.

Nym. The Nym network [49] is an implementation based on Loopix that is deployed with hundreds
of mix nodes across many countries [100]. Its default parameters are chosen for low-latency peer-to-peer
communication with an average packet delay of 1

µ = 50 ms per hop, a payload rate of λp = 20 ms−1,
and loop traffic rate of λl = 200 ms−1. Hence, the expected mean application-level latency is well
below one second. However, Nym deviates from the vanilla Loopix protocol in two important aspects.
First, clients do not send dedicated drop traffic (λd). Instead, they only send loop traffic (λl) and real
or cover messages based on the payload stream rate (λp). Second, providers forward received messages
without delay to the client as push-messages over a websocket connection. This improves the ability
of an adversary to break receiver unobservability similar to the compromised receiver provider node
mentioned above.

In Nym, users pay provider nodes with so called Nym tokens (NYM) for access to the network.
These tokens are then pooled and can be earned by the operators of mix nodes. Users and operators
can also delegate NYM to mix nodes as an endorsement of their reputation. Currently, the Nym
client is only available as an open-source Rust implementation for desktop computers. However, there
is no inherent technical limitation that prevents running such a client on a mobile device. I supervised
a student project that ported the Nym client to Android and demonstrated its core functionalities to
send and receive messages on the main network [84].

2.1 Anonymity networks 27

2.1.5 Other anonymity networks

In addition to the aforementioned anonymity networks, there are numerous other interesting designs
and implementations. However, in general they have not been able to demonstrate adoption and
practicality to the same extent as Tor and Loopix. In addition to the ones introduced here, the curious
reader will find many more designs, historical development, and discussion in the systematisation of
knowledge (SoK) paper by Sasy and Goldberg [117].

Dining Cryptographers (DC-Nets). A few years after introducing onion routing networks,
Chaum published the problem of the Dining Cryptographers to motivate the construction of DC-nets
as an alternative approach to anonymous communication [32]. In the original setting, a group of
cryptographers sit around a round table and try to collectively determine a single bit answer, namely
whether or not one of them has paid the dinner bill. However, being very privacy conscious individuals,
they do not want to reveal which of them paid, i.e. ensuring anonymity of the sender. In Chaum’s
construction each of them first chooses their true answer, i.e. 0 if they have not paid and 1 if they have
paid. If their true answer is 0, they sample a random coin flip and privately share this as the result
with the persons directly left and right of them. If their true answer is 1, they do the same, but invert
one of the bits that they share. Following this procedures everyone will receive the results of their left
and right neighbours. Next, each cryptographer combines the received results in an exclusive-or (xor)
operation and shares the resulting bit with the group. Finally, the group collectively xors all bits to
determine the final answer. This works because the two inputs from the non-paying cryptographers
will cancel out. If there was a cryptographer that has paid, they would have contributed just a single
1 which will then form the final answer.

While the original idea is intriguingly simple, it is not practical for real-world deployment.
In the classical design all participants share their results with all other participants resulting in
quadratic communication effort. Also, the protocol relies on synchronisation of all participants and
the unavailability of a single person brings the entire system to a standstill. Similar to radio networks,
participants must also agree on who is sending at what time so that communication does not interfere.
Finally, a single participant can intentionally report incorrect results for their calculation which will
alter the final outcome and cause system-wide disruption.

These challenges have been addressed in more involved, practical designs. Dissent [41] introduces
a shuffle mechanism that assigns slots to individual users so that communication does not interfere.
For improving scalability, D3 [149] and a later Dissent version [147] use servers that collect and
distribute messages lowering the traffic to linear growth. They can also handle missing responses
from clients. However, disruptions remain a problem and can only be dealt with through a blaming
protocol that helps to find the disrupting participants retrospectively, but cannot prevent them from
causing disruptions in the first place.

Private information retrieval (PIR). The research area of PIRs concerns techniques that allow
clients to query data from a central database such that neither an observer nor the database learn
which information they queried. A naïve implementation would have all clients download the entire
database and then query it locally. However, this quickly results in excessive traffic. Instead, modern
schemes [47, 61, 91] use homomorphic encryption techniques and optimised server code in order to

28 Background

try to achieve low-latency responses with low communication overhead. These schemes typically find
a meaningful trade-off between communication overhead, computation costs (client and server side),
and security assumptions.

Pung [6] is a private communication network based on PIR where sender and receiver exchange
messages by placing them under agreed-upon addresses on a central PIR server using a common shared
secret. The SealPIR [5] approach improves the communication overhead and amortised computational
costs allowing to improve on the network costs and throughput of Pung. Naturally, central addresses
for message exchange lend themselves to sharing a message with many participants. The Talek [36]
system uses this insight to implement multicast for groups.

Compared to mix networks, PIR-based anonymity networks are centralised and rely on the
availability of a few powerful servers. However, they generally do not require any trust in the central
nodes and allow for fully untrusted infrastructure. As all message writes and queries require significant
processing costs from the central server, they have higher latency that increases with the total number
of participants.

Mix networks. Besides Loopix, the mix network approach inspired many practical systems.
However, they have not been deployed as systems that found real-world adoption similar to Nym.

Vuvuzela [139] first routes user messages through a mix network and then deposits them in a
dead-drop that has been agreed upon by the communication partners during a dedicated dialling
protocol. It is complemented by Alpenhorn [86] which is built upon the Vuvuzela infrastructure to
allow looking up of participants using human-friendly identifiers. The Stadium [135] further develops
the idea of Vuvuzela by introducing verifiable parallel shuffling that improves support for larger
numbers of users while working with lower-spec servers. Groove [18] is a recent design that introduces
“oblivious delegation”. This allows them to tackle many practical challenges concerning modern usage
patterns, such as supporting multiple devices per user and dealing with offline users. They also
estimate the energy consumption of their protocol which we discuss in Section 3.1.4.

Notably, all mentioned systems are designed such that the noise, which is added to hide commu-
nication patterns, allows quantification of the achieved anonymity in terms of differential privacy
guarantees. However, this comes at the cost of high message latency exceeding 10 seconds. Compared
to Loopix or Nym, which support latencies of less than a second, this restricts their utility for
interactive usage such as web browsing.

Other. The Invisible Internet Project (I2P) [151] is a peer-to-peer anonymity network where
intermediate nodes are run by volunteers in a decentralised fashion with a central directory server.
Instead users choose their peers from a locally maintained database that they update as they discover
and measure potential peers. The I2P primarily considers only internal communication, similar to
Tor’s onion services, and does not provide access to the open Internet out of the box.

2.2 Ethical considerations for anonymous communication

This section is based on the paper “Choosing Your Friends: Shaping Ethical Use of Anonymity
Networks” [69] that I have co-authored with Ceren Kocaoğullar and Alastair R. Beresford. For this

2.2 Ethical considerations for anonymous communication 29

section I adapted the text from that paper to fit with the dissertation. While I proposed the initial
direction and content, the final work is the result of equal contributions from all authors.

Anonymity networks, like end-to-end encryption, are a dual-use technology. As such they are, on
the one hand, important enablers for positive use-cases ranging from protection of whistleblowers
to counterbalancing mass surveillance that motivate research in this area. However, on the other
hand, they can also be used by malicious actors for harmful activities. For instance, they might allow
criminals to avoid detection or prosecution by law enforcement, make it easy to share misinformation
and abusive messages, and provide infrastructure for running illegal online market places. The Silk
Road was an infamous example of such an online market place that facilitated trade with illegal
goods [37]. The Tor Project has an entry in their FAQ that addresses this conflict by arguing that
criminals can already carry out their malicious acts by e.g. stealing smartphones or engaging in
computer hacking [133]. In our opinion, this argument too generally assumes a motivated, professional,
and well-resourced actor. Instead, we should also consider more opportunistic criminals which might
actually experience an impact from not having an easy means of online anonymity which then could
increase hesitation.

We believe that it is important to reflect on the potential use-cases when designing an anonymity
network. In particular, the architectural and engineering design choices, of which we present some
below, influence which use-cases an anonymity network is well suited for and which use-cases it does
not support or is less feasible for. While none of these design choices can fully control how a network
is eventually used, they can promote positive use-cases and disincentive unwanted behaviours.

2.2.1 Design decisions

One observation is that we can deliberately remove anonymity guarantees for certain relations between
participants. For instance, in the CoverDrop system (Chapter 6) users can anonymously reach-out
to journalists who will not learn which user sent a given message. However, the other way around,
users always know from which journalist they received a reply. This enforced communication topology
has another advantage. It prevents anonymous communication between users and hence effectively
prevents activities such as running illicit online market places and sharing of media.

We can also consider technical limitations, such as latency and bandwidth, that influence the
usage of an anonymity network. These limitations could be an otherwise undesirable performance
characteristic of the system or chosen deliberately by the system designer. A high latency network
will not be favourable for voice-over-IP communication and video meetings, while very low bandwidth
makes the network less usable for sharing of media files. Similarly, the anonymity network can either
enable access to other resources, such as Tor allows accessing regular websites, or provide internal
endpoints such as the Tor onion services. The former provides more immediate value for users and
enables, e.g. law enforcement, to take action against servers that host illicit content; where as the
latter, i.e. Tor onion services, generally come with stronger anonymity guarantees and cannot be easily
located.

Finally, content and contact discovery have a great impact on the supported use-cases and potential
for abuse. This stems from the observation that feed-based communication networks such as the
social media platforms TikTok and Facebook have been suspected to help amplify misinformation
and controversial messages [62, 104, 127]. On the other hand, system that require one-to-one contact

30 Background

establishment through out-of-band contact exchange, such as Signal, are less prone to these use cases.
The need for interactions to setup these channels limits how easily an actor can increase their reach
in these systems. A third category are networks that have a shared index that allows discovery of
content based on keywords or similar filters. We think that these lend themselves to be used for
sharing illicit media content or facilitating online market places.

2.2.2 Related work on the ethics of anonymous communication

The privacy guarantees of anonymity networks make it, as it is intended, hard to study how they are
being used by real users. However, operators of Tor entry nodes can distinguish whether a user is
accessing Tor onion services or regular Internet pages. The relative prevalence of these connections
types is used by Jardin et al. as a proxy metric in their study [73]. They further assume that regular
websites are less likely to host illicit material since hosting it on a regular server allows law enforcement
to discover its physical location and the responsible administrators. Analogously, the less discoverable
onion services are assumed to more likely host bad content. Based on their data they make the
observation that users in “non-free countries” are more likely to access regular websites; hence, using
Tor to circumvent potential censorship and hiding their legitimate usage from adversaries. Whereas
users in “free countries” are more likely to access onion services indicating that Tor is more often used
for accessing (illicit) services that would have been banned if hosted on regular servers.

Discussions of pseudonym versus real-name policies on social media platform are an insightful
resource since in these discussions the use of pseudonyms is often effectively equated with anonymity.
In his essay Bodle summarises ethical considerations related to pseudonyms on social media platforms
and argues that they are “indispensable as an enabler of other inalienable rights” [25, p.22] and can
encourage “honest self-disclosure” [25, p.26]. He concludes that a simple utilitarian perspective is
insufficient as not all consequences are foreseeable; and instead the issue should be addressed with an
ethical pluralist approach.

Finally, there are considerations regarding trust alignment for peer-to-peer (P2P) networks.
Danezis and Anderson [42] look at file-sharing networks that operate in a P2P architecture and
distinguish between a “random model” where content is indiscriminately stored on random nodes
and a “discretionary model” where content is only stored and shared by those who also consume it.
Similar analysis would be interesting for anonymity networks as well where we could substitute the
goal metric of availability of content with effective anonymity.

2.3 Mobile devices

Mobile devices have become the primary computing devices for many around the globe. For this we
first explore how people access the Internet and discover the important role mobile devices play for
connecting the world. We then briefly introduce the two dominant smartphone platforms, Android
and iOS, and their respective ecosystems. This provides the opportunity to contrast smartphones with
desktop computers and see what impact these differences can have on deploying secure applications
and protocols. Finally, we highlight the limited energy supply as one of the defining characteristic of
mobile devices which we then discuss in the following chapter.

2.3 Mobile devices 31

2.3.1 Access to the Internet

Mobile devices have become the dominant computing devices through which people around the world
access the Internet. This becomes apparent when exploring the statistics [130] published by the
International Telecommunication Union (ITU), which is the United Nations (UN) specialised agency
for information and communication technologies (ICTs). We present an analysis of this data for
Internet access reach and mobile connectivity in the following paragraphs. As more than 2 billion
people remain without access to the Internet [129], it is particular interesting to look at countries who
are currently connecting many of their inhabitants for the first time. For this we discuss numbers for
both global averages (World) and for the Least Developed Countries (LDCs). The list of LDCs1 is
published and reviewed by the Committee for Development Policy (CDP) which is part of the United
Nations Economic and Social Council (DESA) [137]. LDCs are defined as “low-income countries
suffering from structural impediments to sustainable development.” [136, p.3]

First, we are interested in estimating the population reached by both fixed-broadband and mobile
Internet access. The ITU statistics [130] provide subscription numbers per 100 inhabitants aggregated
(amongst other categories) for LDCs and all countries. We assume that mobile subscriptions are
typically accessed by one individual while fixed-broadband access is shared with members of the same
household. The UN’s Population Division publishes a dataset of household compositions [138] that we
use to calculate the average household size world-wide (4.18 members) and in LDCs (5.51 members).
We multiply the fixed-broadband subscription numbers by the respective household size to estimate
the reach. Figure 2.2 plots the estimated reach for data available from 2005. On a global scale,
fixed-broadband subscriptions were the primary way to access the Internet until around 2016 when
the reach of mobile access overtook it. For LDCs, fixed-broadband subscriptions were never widely
adopted, but mobile subscriptions have grown to over 40% reach within the last 10 years. This
strongly suggests that for many people in these countries, mobile devices provide the first and only
opportunity to access the Internet.

Second, we are interested in estimating the quality of mobile Internet access. The ITU statistics [130]
provide numbers that describe the relative percentage of the population reached by different mobile
phone network standards. The dataset distinguishes between basic “mobile-cellular” connectivity,
“at least 3G”, and “at least 4G”. We use this as a proxy metric for available bandwidth and latency
and assume that 4G generally allows using most applications and services available on the Internet.
Figure 2.3 plots mobile connectivity data for the last 7 years. In the global aggregate almost everyone
appears to be covered by some mobile network and more then 80% have access to modern 4G networks.
For LDCs, the coverage by some mobile network is still high, but half of the people in these countries
do not have access to 4G networks. This means that modern Internet applications such as online video
conferences are not available or only available with degraded user experience. These numbers are
biased towards urban areas where it is easy to connect many people with relatively little infrastructure.

1At the time of writing, the list of LDCs includes 46 countries: Afghanistan, Angola, Bangladesh, Benin, Bhutan,
Burkina Faso, Burundi, Cambodia, Central African Republic, Chad, Comoros, Congo, Djibouti, Eritrea, Ethiopia,
Gambia, Guinea, Guinea-Bissau, Haiti, Kiribati, Lao People’s Democratic Republic, Lesotho, Liberia, Madagascar,
Malawi, Mali, Mauritania, Mozambique, Myanmar, Nepal, Niger, Rwanda, Sao Tome and Principe, Senegal, Sierra
Leone, Solomon Islands, Somalia, South Sudan, Sudan, Timor-Leste, Togo, Tuvalu, Uganda, United Republic of
Tanzania, Yemen, and Zambia

32 Background

2006 2008 2010 2012 2014 2016 2018 2020 2022
0

20

40

60

80

100

Pe
rc

en
t o

f p
op

ul
at

io
n

World
Subscription reach

Mobile
Fixed-broadband

2006 2008 2010 2012 2014 2016 2018 2020 2022

LDC

Figure 2.2: Estimated relative population reached by mobile and fixed-broadband Internet subscrip-
tions. The left plot shows world-wide averages while the right plot only includes countries from the
UN’s Least Developed Countries (LDC) list. The numbers for fixed-broadband reach assume that one
connection is shared among all members of the household.

2015 2016 2017 2018 2019 2020 2021 2022
0

20

40

60

80

100

Pe
rc

en
t o

f p
op

ul
at

io
n

World

Connectivity
Any mobile
3G
4G

2015 2016 2017 2018 2019 2020 2021 2022

LDC

Figure 2.3: Estimated relative population that lives in an area covered by mobile networks of different
generations. The left plot shows world-wide averages while the right plot only includes countries from
the UN’s Least Developed Countries (LDC) list.

As Doreen Bogdan-Martin, Director of the ITU Telecommunication Development Bureau, points out:
“Those who are still not using the Internet will be the most difficult to bring online.” [129]

2.3.2 Smartphone platforms

The smartphone market is dominated by two mobile operating systems. Apple’s iOS platform accounts
for 27.9% of all mobile web traffic in the first quarter (Q1) of 2023, while Google’s Android accounts
for 71.4% [125]. This leaves less than 1% for all other platforms rendering them negligible. However,
these numbers vary between different regions. In North America the market share of iOS is 54.4%
(Android 45.2%), whereas in Africa iOS only accounts for 13.6% (Android 83.9%) [125]. As such
we can assume that populations who connect to Internet for the first time most likely do so on an
Android device.

Apple keeps their proprietary iOS platform exclusive to its own end-user devices that include
iPhones and iPads. As such Apple maintains complete control over both hardware and software
allowing them to be tightly integrated. Google pursues a different strategy with Android and operates
it as an open platform with its source code freely available. This allows other companies, such as
LG and Samsung, to use Android as the operating system for their smartphones and to customise
the entire system further based on their needs. As such the Android ecosystem is characterised by a

2.3 Mobile devices 33

high-level of fragmentation of both device hardware, ranging from entry-level to high-level smartphones
and platform software. For the lowest entry-level devices, Google provides a dedicated GO version
that runs with less memory and storage [59].

On both Android and iOS users can install additional apps through software marketplaces. However,
before users can download a developer’s new app through the App Store (iOS, Apple) or Play Store
(Android, Google), these new apps have to be approved by the marketplace operators. This centralised
software repository promises app developers an easy distribution channel and users protection from
malicious software. In exchange, the marketplace operators take up to 30% of the resulting revenue
as their fees. The powerful position of these companies that control access to a large digital market
through these marketplaces has raised concerns and led to the opening of investigations by both the
UK’s Competition and Markets Authority and the European Commission [39, 51].

Compared to other common end-user operating systems on desktop computers and notebooks, such
as Windows, macOS, and GNU/Linux, mobile operating systems offer practical security advantages.
Both Android and iOS implement strong isolation of individual apps where access to stored data,
camera, Internet, and other resources is mediated through the system’s permission manager. These
permissions are either given statically during installation or must be requested from the user through
a system-controlled dialog. This can protect users from malicious software and limit tracking and
privacy invasion from otherwise trusted applications.

Many modern smartphones also come with integrated biometric authentication, such as fingerprint
readers or face recognition, and allow full encryption of the device to preserve confidentiality of
information if the device is lost or stolen. Often smartphones also come with dedicated hardware chips,
so-called Secure Elements (SE), that can store non-extractable key material, perform cryptographic
operations within its dedicated hardware, and maintain strong security guarantees even from physical
attacks. The operating systems can use SEs to effectively limit attempts to unlock the device, securely
store biometrical data, and attest that the device is running supported software. For app developers
access to these SEs is only possible through a limited API. With Sloth (Chapter 5) we show how
developers can still use it for building a strong key stretching scheme in user-level apps.

2.3.3 Energy consumption

Most user will expect their smartphone to operate for a full day. As such, the smartphone must
carefully manage the limited energy stored in its battery. We assume that most users will charge their
smartphone overnight and then use it for 12 or more hours before being able to conveniently charge it
again. As battery capacity differs between different models, we assume a standard battery capacity of
8 000 mWh for our calculations. This is a typical battery size found in a range of mid-to-high-end
smartphones [134].

Energy is typically given in millijoule (1 mJ = 1 mW · s) to describe the total cost of an operation
from start to finish. When talking about continuous usage (e.g. when running a security communication
protocol throughout the day) we are instead interested in power consumption, which is typically given
in milliwatt (1 mW = 1 V · mA). However, these units can be hard to interpret and it is difficult
to see what they effectively mean for the user experience. Therefore, we translate these numbers
into percentage points (pp) of the total standard battery capacity. For example: if the battery is

34 Background

drained by 4800 mWh then this corresponds to 60 pp. If this happens over a 12 hour period, then the
respective power consumption would be 5 pp/h (400 mW).

The hardware of modern smartphones supports low-power idle states where power consumption is
minimal, allowing the smartphone to achieve long standby times. As such the platforms are interested
in reaching these idle states quickly (racing-to-idle) and maximising time before the next wake-up
event. These wake-up events include incoming network traffic, user interactions, or background work
by apps. Both platforms restrict when and how apps can perform work in the background while the
app is not being actively used. By imposing a central API they can schedule background tasks of
many apps in parallel so that the time in wake state is minimal and completely block apps that the
user has not used recently. We discuss details of such mechanisms on Android in Section 3.1.3. To
nevertheless allow timely notifications, e.g. for incoming email, both platforms offer a push-notification
service that multiplexes data for all installed app. The app’s backend will send a notification object
to the respective server for Android or iOS and this will perform the delivery to the end-user device.

2.4 Summary

In this chapter we gave an overview on anonymity network designs, focusing on those which have
been deployed in practice. We saw that Tor, the most widely used anonymity network today, works
well against local adversaries, but is vulnerable to traffic analysis. Mix-network based designs using
cover traffic, such as Loopix and Nym, are more resistant against such attacks and provide strong
metadata privacy even against global adversaries. While there are alternative designs, these have not
found widespread adoption.

While anonymity networks can be a force for good and a powerful tool to resist mass surveillance,
they are inherently a dual-use technology that can also provide benefits to criminals. We briefly
reflected on ethical considerations in this context and saw that design decisions can make anonymity
networks more suitable for positive use-cases and less suitable for malicious usage.

We then looked at how people access the Internet and see that mobile connections dominate.
This is particularly true for those who connect to the Internet for the first time in some of the least
developed parts of the world. The smartphone market is dominated by the two mobile platforms, iOS
and Android, which bring new security features such as strong app isolation, biometric authentication,
and dedicated secure chips.

Finally we set the scene to talk about the energy consumption of mobile applications and introduce
our metric of battery percentage points (pp). This leads us to the next chapter where we explore the
energy consumption on Android smartphones in more detail. In particular, we perform measurements
of both cryptographic operations and radio transmissions. We also examine how popular anonymous
communication technologies fare in this context.

Chapter 3

Understanding the energy efficiency
of anonymity networks on
smartphones

While there are many interesting designs for anonymity networks (Section 2.1.5), there has been
little consideration for the special circumstances when running them on mobile devices. Therefore,
they overlook the critical challenges of intermittent connectivity and limited energy supply on mobile
devices. While the former has been addressed in part by existing protocols, e.g. Loopix [110] and
Groove [18], the latter has received little attention. We believe an anonymity network is not practical
if it drains the battery too quickly. Therefore, an evaluation of energy consumption is crucial if we
are to bring the benefits of anonymity networks to everyone.

Among the existing energy measurement studies, we did not find any that discuss and compare
anonymity networks in detail. Those who cover individual operations of interest, such as cryptography
and radio communication, were done on smartphones that are many generations old. We found that
they do not translate to modern smartphones with better hardware and specialised instruction sets.

The current lack of evaluations can be explained by the complexity of mobile energy consumption
and the measurement thereof. First, individual components such as the radio modules contain many
internal states. Each data transfer (no matter how small) will incur costly state promotion from idle
to connected where it will stay for a while in anticipation of subsequent transfers. Therefore, the
bottom-line energy costs of a data transfer is also influenced by operations before and after. This
makes attribution to individual apps and protocol steps difficult. Second, because these effects are
global to the device, the operating system coordinates background work to maximise idle time and
tries executing background tasks in batches to make the best use of the radio states. This means that
we cannot examine just an app, but need to include the interplay with the surrounding infrastructure.
Third, hardware-based power measurements often require extra equipment and expertise which make
evaluations appear expensive. We believe that the system proposed in this chapter can make such
measurements more accessible.

36 Understanding the energy efficiency of anonymity networks on smartphones

This chapter is based on the paper “Powering Privacy: On the Energy Demand and Feasibility of
Anonymity Networks on Smartphones” [67]. For this chapter I adapted the text, figures, and plots
from this paper to fit with the dissertation. I conducted all experiments, performed the data analysis,
and was the primary author of the text. Alastair contributed towards the development of the ideas
and their presentation.

3.1 Measuring mobile energy consumption

Smartphones are ubiquitous and we expect them to do more and more. Therefore, good battery life is
key to their utility. We first introduce the general approaches to measuring the energy consumption
of smartphones and then provide the background relevant for the energy measurement of radio
transmissions, cryptographic operations, background scheduling, and anonymity networks.

3.1.1 Hardware-based and model-based approaches

One can divide the research field of mobile devices and energy consumption based on measurement
approach and scope. The former comprises of hardware-based measurements and model-based
approaches that are discussed below. Each of these approaches can be used to examine either
individual operations (micro study) or more complex scenarios (macro study).

For hardware-based measurements researchers place a power monitor between the power source and
the mobile device. They then execute an operation under test while recording the power consumption.
Integrating over time (i.e. calculating the area under the curve) yields the total energy. Hardware-based
measurements provide ground-truth results and reflect actual real-world power consumption. Also,
hardware-based measurements do not influence the measurements as no additional debugger or tracing
software runs on the device. On the downside, they do not attribute the energy consumption to
individual components—say measuring only the CPU while ignoring radio communications.

Hardware-based setups are often used to capture individual operations. The work by Carrol
et al. [30] and Adrito et al. [15] cover many basic operations from display illumination to phone
calls. Other work examines specific areas such as WiFi [114], 4G radio communication [65], and
machine learning [90]. The GreenMiner [63] project executes pre-recorded app interaction sequences
for regression tracking. However, the mentioned existing work concerning the energy consumption of
algorithms and radio communications lags multiple generations behind smartphones that are in use
today. The recent BatteryLab project [140] focuses on providing remote hardware-based measurements
at multiple locations. However, through the more general setup they are less suitable for our research
as they provide limited control over the device under test and do not provide the high-resolution
synchronisation required for analysing short operations. In terms of equipment, previous work uses
either general-purpose power measurement appliances (e.g. Monsoon1) or build custom tools using
power sensor chips like we do.

On the other hand, there are model-based measurements where researchers first create models
based on execution traces and then use these to predict the energy costs when running other apps in
a second step. These models are simple and effective when the power consumption is dominated by

1https://www.msoon.com/high-voltage-power-monitor

3.1 Measuring mobile energy consumption 37

computation as CPU energy consumption is well-documented and their state (e.g. adaptive frequency)
can be recorded cheaply. However, radio communications are harder to model as the radio module
operates in different states (e.g. connected, idle) with transition latencies depending also on the
activity of other apps. In general, models are bound to a specific training device and therefore the
model prediction becomes out-dated together with that device. Their utility is further limited as they
often need modifications to the apps or operating system (rooting), or use APIs that are no longer
present in newer devices. The removal of APIs is often performed by the operating system vendor
to reduce side-channel attacks and improve user privacy. For example, access to /proc/stat was
removed [53] in 2017 citing an attack that exploited interrupt information to recover user input [123].

We found that model-based approaches are typically used to capture complex scenarios that
last multiple seconds. PowerTutor [152] models the overall energy consumption of components such
as CPU, radio, and display individually. This allows it to achieve high accuracy even for complex
scenarios that include GPS and radio usage. However, the calibration devices are now more than
10 years old and many of the required APIs are no longer available. As radio communication is the
main driver for many applications, the EnergyBox [143] project from 2014 focuses solely on predicting
WiFi and radio energy consumption based on network packet captures. This was successfully used
to examine mobile messaging applications [142] and specific mobile Tor usage [81]. Similar to other
model-based approaches, EnergyBox suffers from calibration to older devices and protocol versions.

3.1.2 Cryptographic operations

Our literature review found no recent micro studies examining cryptographic operations on smartphones.
However, such data is important for the design of new protocols as anonymity network implementations
make heavy use of encryption, signatures, and key exchanges. The work by Potlapally et al. [112] and
Rifà-Pous et al. [115] are some of the first to investigate both individual cryptographic operations and
protocol executions on mobile devices (PDAs between 2006 and 2011). Montenegro et al. [92] compare
the relative energy consumption of different cryptographic libraries on Android. However, since they
use the PowerTutor model, their absolute energy predictions refer to Android devices that are more
than 10 years old. The most-recent measurement of cryptographic operations that we found is a study
of Elliptic Curve Cryptography (ECC) on an ARM-based Internet-of-Things (IoT) platform [94].

Radio operations

Radio communication is an intrinsically hard area for energy studies due to large numbers of internal
states, delayed state transitions, and inter-application effects. When a mobile device starts to
communicate via a mobile internet connection (e.g. 4G), the radio module will first promote the
system from an idle state (with low standby power consumption) to a connected state (that requires
more power to maintain). The transition itself costs energy and time, which is why the device will
remain in the connected state for a while in anticipation of a response or more data to send. This is
referred to as tail latency and its duration depends on the protocol and the mobile provider’s network
configuration. A delay of multiple seconds is typical. As a result, sending two small packets 30 seconds
apart requires more energy than sending one very large packet without interruption.

38 Understanding the energy efficiency of anonymity networks on smartphones

Name Ref. Year A
no

ny
m

ity

B
an

dw
id

th

La
te

nc
y

C
P

U

M
ob

ile
D

ev
ic

es

Dissent [148] 2012 G# #1

Vuvuzela [139] 2015 #
Hornet [35] 2015 G# G# #
Riposte [40] 2015 G# G# #
cMix [33] 2017 # #
Loopix [110] 2017 G#2

Groove [18] 2022 G#

Table 3.1: Summary of evaluation metrics used in recent anonymity network papers (= thoroughly
covered, G# = covered, # = not covered); 1mentioned as important future work; 2offline support.

The work by Huang et al. [65] examines 4G and its power consumption in great detail. Pathak et
al. [103] are able to attribute energy costs to individual components, e.g. assigning the resulting radio
energy to the background service that caused the transition to the connected state in the first place.

3.1.3 Android background scheduling

The operating system plays a key role in managing battery life, as the expectations of end-users and
the number of applications grow. One of the most crucial aspects is the coordination of background
services and tasks. Android 6 introduced Doze and App-Standby for this purpose [54]. Doze pauses
background execution when the device is idle except for scheduled maintenance windows. By limiting
the execution of background tasks to these windows, Android minimises the number of the state
transitions of the radio module. App-Standby further reduces access to background execution for
apps by learning which apps are used regularly by the user and placing restrictions on all inactive
applications. When applications are found to be rarely used, the system might defer their background
tasks by up to 24 hours or restrict background network access [55].

3.1.4 Anonymity networks

We reviewed the evaluation methods used in widely-cited and claimed to be practical anonymity
network designs. The results are summarised in Table 3.1. We limited the list to recent publications
which we would expect to cover mobile devices. Most work focuses on the bandwidth and achievable
performance in terms of throughput and latency. The required computational cost (i.e. CPU) is often
only considered to the extend necessary to rule it out as a potential bottleneck. PIR-based anonymity
networks (Section 2.1.5) are the exception in this regard as they typically require costly computation
from both the clients and servers. Most publications also quantify the achieved anonymity in terms of
either anonymity set size or entropy.

Overall, there is little consideration for the practicalities of running these networks on mobile
devices. Notable exceptions are Groove [18] which measures its power consumption, Loopix [110]
which provides support for offline clients, Dissent [148] which flags this as important future work,

3.2 Measurement methodology 39

and Hydra [118] which highlights the difficulties of precisely scheduling background execution on
Android (Section 3.1). Groove is the only one to provide measurements of its energy consumption
on a smartphone. Unfortunately, their methodology limits the comparability and reproducibility of
their results. Their setup measures the charging rate of the device instead of the power drawn by its
components. In addition, apps and OS might undertake more work when they detect the device is
charging. Their measured idle power consumption of 310 mW makes the discrepancy clear as it is
much higher than a typical smartphone idle consumption of <100 mW. Also, their sampling frequency
(once per second) is too low to capture peaks from cryptographic operations and radio transmissions.

3.2 Measurement methodology

We use a hardware-based approach for our measurements for three main reasons. First, we did not
find any model for recent smartphones that covers both CPU and radio communication. Second, in
our case studies we are interested in real-world battery life which must include the interference with
the operating system scheduler, all utilised components, and side-effects. Third, we are interested in
overall execution profiles that include the lowest standby states. Running software-based debuggers or
tracers in the background would prevent the smartphone from entering these.

In our setup we install a Texas Instruments INA219 [126] power sensor between the smartphone
and its battery. This sensor records 2 000 power measurements per second with 1% accuracy using
a shunt resistor. An Arduino polls these samples via an I2C bus and forwards them via USB to a
computer that records timestamps and power values into a power measurement CSV file.

For the macro studies that run longer than a few seconds this setup is already practical as the
operator can start and stop the measurement manually. However, for micro studies where individual
operations only run for a few milliseconds we automate this process by creating the custom app
EnergyRunner that executes the individual operations and records timestamps in an execution log on
the device. We synchronise the time on the smartphone and the power measurement logs using a
USB-to-Serial dongle (FTDI FT231X) that is connected to the smartphone’s USB port. Its ground is
connected to the common ground of the Arduino and one serial control line (e.g. RTS) is connected
to a digital input port of the Arduino. The Arduino reports changes to the digital input via the same
USB connection that is used for the power measurement samples. The synchronisation sequence is
executed before the experiment so that we can later correct for differences in clock offset. I found that
differences in clock speed are negligible (less than 0.001 ms per hour). The USB dongle is disconnected
before the measurement of the actual operations start to ensure that its own power consumption does
not influence our measurements.

Our choice of smartphones and hardware allows the tests to be done without permanent hardware
modification and requires minimal technical skills. This is especially true since the battery can be
removed without tools and placed into a custom 3D-printed battery holder. The full hardware setup
is illustrated in Figure 3.1.

We now describe the protocol for running an experiment with our setup. First, the instrumentation
app EnergyRunner loads a scenario file which describes the order and parameters of the operations to
execute. It automatically adds the synchronisation sequence at the beginning of the execution schedule.
We first start the recording software on the PC and then start the execution on the smartphone. After

40 Understanding the energy efficiency of anonymity networks on smartphones

Battery

INA219

Digital In

I²C

USB-to-TTL

A
rd

ui
no

Figure 3.1: Schematic and photograph of our power measurement hardware setup.

the synchronisation phases has finished, we remove the USB dongle. During execution, EnergyRunner
records the timestamps of operation start and end. Pauses between individual operations are described
in the scenario file as well. After the entire execution schedule finished, the execution log with
the timestamps is saved and uploaded. Finally, processing scripts will read both the execution log
from the Android device and the power measurement CSV file. The processing code identifies the
synchronisation patterns to adjust for clock differences and then extracts the power measurements for
each individual operation based on the timestamps in the execution log.

We prepare the device under test by uninstalling and deactivating all apps that can cause
background activity, such as Google Play Services. With the start of the execution of the scenario
files the display and all radio connections are turned off unless needed by the operations under test.

Using this setup we can test individual operations semi-automatically, efficiently, and accurately.
As we hope that such energy measurements become more common in papers that introduce (mobile)
protocols, we put a lot of effort into making sure that this setup can be easily replicated by other
researchers. All of our software for executing operations, logging the data, and analysing the results
is available as open-source at https://doi.org/10.5281/zenodo.10679431 under an MIT license.
This also includes an interactive logging tool that shows incoming data in a live plot. Likewise, all our
hardware specifications, 3D-printing files, and assembly instructions are part of the repository. The
used hardware components are widely available, cheap, and easy to assemble. This work was submitted
to the USENIX Security artefact evaluation process and was awarded the “Artifact Available” and
“Artifact Functional” badges.

All studies are performed using the setup described in this section and use a Motorola Moto E6
Plus (released September 2019) smartphone running Android 9. It comes with an MT6762 Helio P22
chipset, a 2.0 GHz Cortex-A53 CPU, and 2 GiB RAM. We updated the smartphone to the most
recent OS update and uninstalled and disabled all other applications.

https://doi.org/10.5281/zenodo.10679431

3.3 Micro studies of individual operations 41

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

st
ar

t

en
d

Figure 3.2: Power trace of generating a 2048-bit RSA key pair. The power rises between 0.0 s and
0.4 s as the system increases the core frequencies. The light blue line shows the raw measurements
while the dark line is a rolling average.

3.3 Micro studies of individual operations

We start our evaluation by studying individual cryptographic operations (Section 3.3.1), background
scheduling (Section 3.3.2), and radio transmission (Section 3.3.3). These are the important building
blocks for anonymity network protocols and help interpreting the results of the macro studies.

3.3.1 Cryptography algorithms

This micro study evaluates to total energy (mJ) impact of individual cryptographic operations. We
consider an operation negligibly cheap if their energy impact is below 4 mJ which is equivalent to more
than ten million executions with a single battery charge. The results are summarised in Table 3.2.

Asymmetric cryptography is frequently used in anonymity network protocols for signatures and
encryption of the payload. At the same time it has a reputation for being computationally intensive.
Many anonymity networks use a message-based architecture (as opposed to a channel based one)
where typically no key agreement between communication partners occurs. This means that every
message that is sent or received involves asymmetric operations. Also, in multi-hop based architectures
encrypting messages for each hop along the path further increases the number of asymmetric operations.

RSA is an established asymmetric cryptographic scheme that is still in common use. Its key
generation algorithm involves finding prime numbers which can lead to long runtimes (Figure 3.2) and
high variance due to non-determinism. Key generation for 4096-bit RSA can require up to 2 800 mJ
which translates to just 14 500 executions with one battery charge. However, once a key is available,
sign and verify operations are cheap. As RSA implementations use a high exponent for the private
key and a small one for the public key, verify operations are much faster. If the exponent sizes are
swapped (e.g. DSA), signing becomes cheaper.

In the last 20 years RSA has been slowly phased out in favour of Elliptic Curve (EC) cryptography.
Its smaller key sizes generally allow fast execution, compact representation, and it does not require
expensive prime-number search for key generation. We find that all operations are (negligibly) cheap
and more efficient than those of equivalent RSA key sizes (256-bit EC is considered equivalent to
3072-bit RSA). We tested the four different curves commonly available on all Android versions through

42 Understanding the energy efficiency of anonymity networks on smartphones

0.00 0.05 0.10
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

st
ar

t

en
d

Figure 3.3: Power trace of a single Sphinx packet creation execution including JNI overhead. The
light blue line shows the raw measurements while the dark line is a rolling average.

the built-in Android OpenSSL provider [66]. The prime256v1/secp256r1 cipher is notably faster
than the others.

It is possible to build a packet format for mix networks using these EC operations. However,
actual implementations use specialised cryptographic constructions such as Sphinx [44] which allow for
more compact packets and additional security properties. We evaluate a modern Rust implementation
of Sphinx [101] (git commit: c494250) that is used in the commercial mix network Nym [49]. For
our experiments we add a JNI binding to the library to allow calling it in our Android app. Since
the JNI boundary adds a non-negligible overhead for such small operations, we add an iteration
parameter so we can execute multiple rounds without leaving the native code. Each round calls
SphinxPacket::new() which internally uses Curve25519 primitives. The results suggest that this
Sphinx implementation is efficient (Figure 3.3) and comparable to a few EC operations. The JNI
overhead is up to 15% based on the difference between the configurations with 1× and 100× iterations.

The results show a significant reduction in energy costs compared to two other studies that use
a hardware-based approach. Rifà-Pous et al. measured RSA and EC operations on PDA devices
in 2010 [115], and Mössinger et al. measured EC operations a ARM-based development board in
2016 [115]. Compared to our results, the energy costs of the RSA operations on the PDAs are higher
by factor ×3 (Verify RSA-1024) to ×20 (Sign RSA-2048). Operations like the generation of 2048-bit
RSA keys were too resource consuming for the PDA and sometimes did not finish. The costs for
EC-224 operations on the PDAs are higher by factor ×30. The ARM-based board using the optimised
MicroECC library requires around ×20 times more energy than our test device.

We found that all standard hash operations are negligibly cheap. This is due to the low compu-
tational complexity and the wide availability of specialised CPU instructions such as SHA256H2 and
AESE on Arm64 [16, p.1556]. For completeness we also measured the energy required to hash a 16 KiB
byte array with SHA-256/512 resulting in energy costs of 0.26 mJ and 0.27 mJ respectively.

3.3.2 Background scheduling

This micro study quantifies mechanisms for executing code while the phone is not actively used. These
allow applications to perform message synchronisation and background computations. Anonymity
networks use them for sending cover traffic during idle mode. This is critical for hiding whether a user is

3.3 Micro studies of individual operations 43

Operation Energy [pp] Energy [mJ] StdDev
Gen RSA-1024 0.000 404 116.47 76.36
Gen RSA-2048 0.002 764 796.05 597.84
Gen RSA-4096 0.010 064 2898.43 2042.77
Sign RSA-1024 0.000 007 1.88 0.35
Sign RSA-2048 0.000 022 6.22 1.22
Sign RSA-4096 0.000 093 26.73 4.68

Verify RSA-1024 0.000 001 0.34 0.10
Verify RSA-2048 0.000 002 0.50 0.08
Verify RSA-4096 0.000 003 0.75 0.10

Gen EC-224 0.000 004 1.11 0.06
Gen EC-256 0.000 002 0.51 0.05
Gen EC-384 0.000 009 2.65 0.07
Gen EC-521 0.000 018 5.25 0.27
Sign EC-224 0.000 005 1.43 0.15
Sign EC-256 0.000 003 0.83 0.18
Sign EC-384 0.000 011 3.24 0.16
Sign EC-521 0.000 022 6.27 0.10

Verify EC-224 0.000 005 1.52 0.05
Verify EC-256 0.000 005 1.54 0.08
Verify EC-384 0.000 012 3.43 0.07
Verify EC-521 0.000 023 6.74 0.15

Sphinx (1x) 0.000 034 9.66 0.31
Sphinx (10x) 0.000 300 86.34 8.07

Sphinx (100x) 0.002 925 842.44 11.40

Table 3.2: Average energy consumption of different asymmetric cryptography operations. This table
includes more results compared to the one in the paper.

10 20 30 40 50 60
Interval Δt [s]

10

15

20

25

30

35

40

45

Po
we

r [
m

W
]

WakeLock
AlarmManager

Figure 3.4: Average power consumption when using the ForegroundService with WakeLock and
AlarmManager strategies.

44 Understanding the energy efficiency of anonymity networks on smartphones

currently communicating or not. We focus on the two main strategies for Android: ForegroundService
with WakeLock and AlarmManager. Devices running iOS have similar, albeit more restrictive,
mechanisms [11].

For our purposes we discuss these mechanisms as they were intended by the operating system
design. Many smartphone vendors make modifications and add restrictions to achieve higher battery
life which can interfere with the proper operation of apps [97]. We verified that the device we use in
our studies follows the specified behaviours.

The ForegroundService with WakeLock strategy holds a lock that prevents the phone from entering
full idle mode. As this affects background power consumption, the operating system requires the
app to show a notification to the user by running as a ForegroundService. This approach provides
the greatest flexibility and accuracy, as pauses can be implemented as simple Thread#sleep calls.
Typically, this mode of operation is used by music apps and GPS navigation. However, even without
active computation, the WakeLock causes higher energy consumption than regular idle mode.

The AlarmManager strategy allows the phone to go into full idle mode and registers the intended
execution with an alarm service. The alarm service then wakes up the device and starts the respective
application with a prepared Intent. While this allows the phone to enter full idle mode between
executions, every wake-up comes with overhead as the system restores state and (re-)delivers the
invocation arguments to our application. The AlarmManager’s intended use are events that happen
only a few times per hour. We found that the lowest reliable inter-execution pause is 10 seconds and
that the execution times are imprecise. We compensate for the latter by measuring the time between
the scheduled and the actual execution, and then applying this delta when scheduling the next alarm.
However, this compensation is imperfect as the effective delays vary.

We use ∆t to denote the duration between the start times of two consecutive operations. From
the documentation we expect that using WakeLocks is more efficient for smaller ∆t. While keeping
the CPU awake generally raises power consumption, WakeLocks do not cause extra overhead for every
execution. On the other hand, the AlarmManager should perform better for larger ∆t as it allows the
phone to reduce power consumption during longer pauses.

In our experiment we trigger regular execution for various intervals ∆t with both the WakeLock
and the AlarmManager approach. Each experiment runs for 5 minutes and is repeated 5 times. The
results are shown in Figure 3.4. As expected, the WakeLock approach incurs constant cost (≈ 27 mW)
regardless of the chosen interval. The AlarmManager approach is more efficient for ∆t > 20 s.
Generally, it does not differ more than ≈ 10 mW from the WakeLock approach in either direction.
Figure 3.5 shows annotated power traces for both approaches. These highlight for the WakeLock
approach the additional power consumption that happens before and after execution of the payload
code.

3.3.3 Radio transmission

This micro study evaluates radio operations such as sending and receiving data via WiFi and mobile
network to measure the impact of connection type, payload size, and schedule. The results from
this study guide the parameterisation and evaluation of a mix network client with cover traffic in
Section 3.4.3.

3.3 Micro studies of individual operations 45

−1.0 −0.5 0.0 0.5 1.0 1.5
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

st
ar

t

en
d

−1.0 −0.5 0.0 0.5 1.0 1.5
Time [s]

0

200

400

600

800

Po
we

r [
m

W
]

sc
he

d.

st
ar

t
en

d

Figure 3.5: Execution of a test operation (100 ms sleep) using WakeLock (above) and AlarmManager
(below). The WakeLock keeps the entire system awake which shows in a slightly higher idle power
consumption and more frequent wake-ups for small operations in other apps and services. The
AlarmManager allows to enter an uninterrupted low-power idle mode, but involves additional overhead
before and after the payload code. One can also see the difference between the scheduled execution
time marker sched. and the actual execution begin start. The light blue line shows the raw
measurements while the dark line is a rolling average.

46 Understanding the energy efficiency of anonymity networks on smartphones

0 1 2 3 4 5
Time [s]

0
500

1000
1500
2000
2500
3000

Po
we

r [
m

W
]

op
en

se
nd

re
ad

clo
se

Figure 3.6: Power trace of sending and receiving 1 MiB over TCP on a 4G mobile network. When
comparing with other the power traces in this chapter note the larger range on the Y-Axis. The
power consumption before the send marker includes the transfer from idle to connected mode. The
power consumption after the close marker is an effect of the tail latency where the connection is
kept alive in anticipation of further incoming or outgoing packets. The light blue line shows the raw
measurements while the dark line is a rolling average.

As mentioned in Section 3.1.2, radio communication, and in particular mobile networks, are
complex due to their internal state machine and tail latencies. This means that their behaviour applies
globally to the smartphone and not for each app independently. Hence, one cannot consider transfers
individually, but need to include the effects of previous and concurrent transfers. Figure 3.6 shows an
annotated measurement of a TCP data transfer via 4G. While WiFi has negligible tail latencies, we
found that it is more susceptible to noise from other devices, as the smartphone is woken up regularly
to process incoming broadcast packets.

In this study the smartphone connects to a 4G mobile network using a prepaid SIM card from the
UK provider GiffGaff which uses the O2 network. Results for 3G are not included since 4G is widely
supported and more popular. Before each experiment we verified that the mobile phone has good
reception. For the WiFi measurements, we setup an access point that is secured using WPA2-PSK
which is a typical setup for many consumer routers.

We execute data transfers as individual operations using the EnergyRunner app. The app uses
the WakeLock method to control the scheduling of background operations. We chose the WakeLock
over AlarmManager, as its average power consumption is constant regardless of the chosen interval
length. This allows us to subtract the higher idle power consumption from the measured data in order
to separated out the costs for radio communication. The network operations connect to a custom
server that we run on a virtual machine which is located in a nearby city (ping < 100 ms). In our
protocol the message consists of a 16 byte secret token (to avoid abuse by third-parties), a 4 byte
client length field, and a 4 byte server length field. The server continues reading until it consumed all
data specified by the client length field and then responds with data as specified by the server length
field. Both are always set to the same size.

The test configurations are run for three protocols: TCP, TCP (keep-alive), and UDP. In TCP
mode a new connection is established for each individual transfer. In TCP (keep-alive) mode the
app maintains a global socket connection that is used for subsequent transfers. In UDP mode

3.4 Macro studies of protocols 47

1K 10K 100K 1M
Payload [KiB]

0

10

20

30

40

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

0 10 20 30 40 50 60
Interval Δt [s]

0

10

20

30

40

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

1K 10K 100K 1M
Payload [KiB]

0
50

100
150
200
250
300
350

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

0 10 20 30 40 50 60
Interval Δt [s]

0
50

100
150
200
250
300
350

Po
we

r [
m

W
]

TCP
TCP (keep-alive)

UDP

Figure 3.7: Right: average power consumption when sending and receiving 100 KiB with increasing
interval times over WiFi (top) and 4G (bottom). Left: average power consumption when sending and
receiving increasing payload sizes at a fixed interval of ∆t = 30 seconds.

individual packets with a payload size of 1024 bytes are sent. The latter can reduce the total number
of round-trips by avoiding the handshakes for each separate transfer.

We evaluate both different intervals and different payload lengths. For the former we increase
the interval from 5 seconds to 60 seconds with a fixed payload size of 100 KiB. The different payload
lengths range from 1 KiB to 1 MiB with a fixed interval of 30 seconds. Each configuration is tested via
4G and WiFi for 5 minutes each. We repeat all experiments 5 times and randomise their order to
account for noise.

Our results for 4G and WiFi are summarised in Figure 3.7. Generally, for 4G with increasing
interval times, the average power consumption drops. Notably, there is an exception for ∆t ≈ 10 s.
With this configuration the device reconnects right after the tail latency has expired, hence maximising
power consumption. We found that payload sizes up to 100 KiB have little impact on the average
power consumption. We found that WiFi has much lower power consumption compared to 4G.
Without the connection establishment and tail latency, the effect of increasing intervals shows more
directly. Similarly, the payload size has a more direct impact.

3.4 Macro studies of protocols

The first two macro studies investigate the impact of VPNs and a mobile Tor client where we are
interested in the effect on battery life for different configuration and scenarios. The third macro study
measures a mix network with cover traffic. For this we implement a mobile client for a Loopix-like
protocol and evaluate different sets of parameters.

In these macro studies we primarily look at average energy consumption across idle scenarios,
where the protocol implementation runs in the background without any user interaction, and active

48 Understanding the energy efficiency of anonymity networks on smartphones

scenarios, where we simulate user interaction. The simulated user interactions follow simple schedules,
such as opening a website every minute, to enable easy comparison and reproducibility. In this context,
the results that we present in Figure 3.8 are overall average power consumption values (measured in
mW) assuming that these scenarios run in isolation for a long time. As such, the idle scenarios give a
lower bound on the energy consumption for the given implementation and connectivity which we use
for our feasibility discussion in Section 3.4.5. This also means that the presented numbers do not
allow estimating the costs of individual operations, e.g. loading a website. For more realistic estimates
of average power consumption throughout a typical day, one can compute a weighted average of the
measured power consumption accounting for the distribution of active usage times and availability of
4G and WiFi.

3.4.1 VPN

This macro study examines the question of how much VPN clients impact battery life. For this we
examine two popular, commercial services ExpressVPN (version 10.89) and Proton VPN (version
4.6.12) which are marketed for personal use on mobile devices. We randomly blind them as VPNA

and VPNB. We created paid-for subscription accounts with both providers and then installed their
most-recent apps on our test device. Where possible we use the default configuration and connect
to an endpoint in New York. For Proton VPN we changed the protocol from Wireguard UDP to
Wireguard TCP, as the former was less reliable in our setup.

Our measurement setup captures the total device power consumption while the VPN service is
running. This ensures that we include all direct and indirect effects that affect battery life. We run an
idle scenario where no user action is simulated and a web browsing scenario where an instrumented
web browser loads the start page of the New York Times every 60 seconds using the AlarmManager

scheduling strategy. The news site was chosen as it has a typical size (≈ 3 MiB) and requires multiple
connections to different domains. The AlarmManager strategy was chosen to allow return to idle.
Our implementation holds a temporary WakeLock while loading the page until the Chromium-based
WebView signals completion. The study covers all combinations of activities (idle and web browsing),
radio (4G and WiFi), and network configuration (direct, VPNA, and VPNB). Each run lasts 10
minutes and similarly to the previous studies we deactivate all other apps and keep the screen off.

The results are summarised in Figure 3.8. First we look at the baseline measurements without
any VPN service (direct). The idle scenario shows that smartphones can achieve very low power
operations when there is no background activity. Notably, the active loading of the website has a
strong effect for 4G, but not on WiFi. This is likely due to the aforementioned connection state
changes and tail latency. Both VPN providers have similar overhead. Where they differ we pick the
lower power consumption, as we are interested in a competitive baseline to compare Tor and Loopix
against. During the idle scenario, a VPN adds around 40 mW or 0.5 percentage points per hour (pp/h)
on 4G. This is less pronounced on WiFi due to negligible tail latencies: 8 mW (0.1 pp/h). For web
browsing, the overhead increases to 80 mW (1.0 pp/h) on 4G and 20 mW (0.2 pp/h) on WiFi.

We expected a smaller overhead from the VPN apps—especially when the device is idle. Inspection
of the acquired power traces shows that while the clients are running, the device does not reach
low-power mode, but instead regularly wakes up to send and receive data. This is surprising, as the
tested Tor client (Section 3.4.2) is able to run with slightly less power overhead. We cross-checked

3.4 Macro studies of protocols 49

4G

WiFi

Idle

0 50 100 150 200 250 300 350 400 450
Power [mW]

4G

WiFi

Web (.com)

Direct VPNA VPNB

4G

WiFi

Idle

4G

WiFi

Web (.com)

0 50 100 150 200 250 300 350 400 450
Power [mW]

4G

WiFi

Web (.onion)

Direct
Tor w/o Padding

Tor w/ Red. Padding
Tor w/ Full Padding

Figure 3.8: Relative power usage of the tested VPN clients (left) and Tor modes (right) compared
to direct network connections. The measurements for direct were only done once for each scenario
excluding the .onion case where it does not apply.

the results with an OpenVPN client and a self-hosted server which led to similar measurements. We
suggest future work to explore the VPN client implementation and configuration space in full detail.

3.4.2 Tor

This section examines the question of how much Tor impacts battery life of mobile devices. For
this we examine Orbot [128], which uses the official Tor client under the hood. We downloaded
version 16.6.0-RC-4 from the official repository and added an option to force off connection padding
(see below). The app is compiled in release mode and then installed on the test device. For our
evaluation we run Orbot in VPN mode which emulates a VPN client on the device and ensures that
all communication is routed through Tor. This is different to the behaviour of the Tor Browser which
only protects the communication of the bundled browser. We use the same measurement setup as for
the VPN services in Section 3.4.1.

Tor supports rudimentary cover traffic through connection and circuit padding [107]. Connection
padding affects the connection to the first hop (the Guard node). When active each payload packet
causes both ends (i.e. the client and the Guard node) to sample a timeout between 1.5 and 9.5 seconds.
If no other payload packet is sent before the timeout expires at either end, a single padding cell
packet is sent and the timeouts are reset. To reduce the overall overhead, the client may negotiate a
reduced mode where the Guard node does not send padding cells and the client samples a timeout
between 9.0 and 14.0 seconds. A client may also completely disable connection padding. We test
all three variations (full, reduced, disabled) of connection padding as they have a large impact on
radio communication. Circuit padding is independent of connection padding and aims to obfuscate
the setup phase of onion circuits. The client will send obfuscated packet sequences so that different

50 Understanding the energy efficiency of anonymity networks on smartphones

circuit types result in similar looking packet exchanges. We verified that circuit padding has negligible
impact regardless of the chosen connection padding. Hence, we do not include it as a parameter for
our experiments.

As in Section 3.4.1, this study covers run all combinations of activities (idle and web browsing),
radio (4G and WiFi), and network configuration (direct and the various Tor connection padding
modes). We exclude the initial connection phase to the Tor network as this a one-time cost. The Tor
Consensus document (≈ 600 KiB compressed) needs to be updated every three hours. We argue that
it is negligibly small compared to other web traffic.

The results are summarised in Figure 3.8. For discussion of the direct connection without any
services running, see Section 3.4.1. Using Tor without any padding has little effect on the idle scenarios.
From our measurements we calculate an average power consumption of 59 mW or 0.7 percentage points
(pp) per hour (WiFi: 0.3 pp/h). For 4G the power consumption increases by <30 mW compared to
not using Tor whereas the impact is negligible on WiFi. However, for the web browsing scenario,
enabling Tor increases the average costs by around 150 mW (WiFi: 60 mW). This is mostly due the
lower bandwidth and high latency which both increase the time website’s loading time and hence the
time the radio module is active.

Enabling full connection padding in Tor has a significant effect on battery life. On 4G the average
idle power consumption increases to 2.9 pp/h (WiFi: 1.1 pp/h). The relative factor for 4G (7×) is
higher than that of WiFi (3.5×). The difference can be explained by the costs on 4G for the connection
state changes. With reduced padding the average power costs are lower than the average increase of
the interval would suggest. We found that this is because the longer gaps allow the entire system to
enter a low-power state from which it often does not wake up again itself. Examination of the source
code showed that Orbot itself does not use WakeLocks or AlarmManager—so it does not directly
prevent the system from entering idle mode. Note that our web browsing scenario wakes up the entire
system including Tor which then stays active for a while. This explains why the impact of Tor is
larger in the Web scenarios.

Tor can also be used to access onion services by using their .onion address. Through a directory
look-up and an anonymous rendezvous point, the client establishes an anonymous connection with
the service without learning its server IP or location. The New York Times offers such an onion
service2. Overall we observe a slightly increased power consumption compared to opening the regular
homepage via Tor, which can be explained by the multi-round connection setup and the longer path
to connect to an onion service.

3.4.3 Mix network

Finally, we evaluate mix networks operations based on the Loopix [110] design. We chose it because of
its integrated support for devices that are temporarily offline and note that it is successfully deployed
in the commercial mix network Nym [49]. In Loopix the provider node manages access to the network
and maintains an inbox of messages for the client. This allows the client to retrieve messages later
when it was offline. Hence, all connections of the client go through one provider node which simplifies
our setup as we can ignore the rest of the network. We recall from Section 2.1.4 that Loopix clients

2https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciiyd.onion/

https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciiyd.onion/

3.4 Macro studies of protocols 51

20
ms

20
0m

s 2s 20
s

20
0s

200 KiB

20 KiB

2 KiB

7.3 2.2 1.0

9.9 2.9 1.8 0.8

13.3 5.4 2.5 1.5 1.0

4G

20
ms

20
0m

s 2s 20
s

20
0s

200 KiB

20 KiB

2 KiB

5.5 1.3 0.5 0.4

5.6 2.5 0.7 0.7 0.5

4.0 2.0 0.8 0.5 0.4

WiFi

Figure 3.9: Measured energy consumption of a Loopix-style anonymity network for given mean
message intervals (1/λ) and packet size (p). The colour scale ranges from 0 pp/h to 5 pp/h. Blank
squares indicate excluded configurations.

use traffic shaping to hide whether actual communication is happening or not. This means that in in
this evaluation we can ignore the presence of actual payload messages, as they neither influence the
number of cryptographic operations nor have an influence on the sent traffic schedule and bandwidth.
Hence, all cryptographic operations and radio transmission solely depend on the message rate λ and
message size p.

Our evaluation uses the WakeLock approach for background scheduling. For each round we execute
Sphinx once for the outgoing packet and transmit a message of size p (the encrypted packet) via UDP
to a provider node. The provider replies with p bytes (the inbox content). Afterwards we draw a pause
from the exponential distribution with parameter λ and wait for the remaining time until the start of
the next operation. Each scenario is executed for 20 minutes on both 4G and WiFi. For our parameter
choice of λ and p we first identify practical limits. On our test device a Sphinx operation and sending
a UDP packet takes around 20 ms. Using a speed test we measured that our 4G connection provides
up to 2 Mbits/s upload (WiFi: 50 Mbit/s) and exclude configurations exceeding these limits. We pick
2 KiB as our smallest packet size. This is also the size used by Nym. For λ = 20 ms the theoretical
throughput is 100 KiB/s (40 % of the available bandwidth). In the Sphinx implementation each packet
has a constant overhead of 365 bytes resulting in an application level goodput of 82 KiB/s. Larger
packet sizes improve the goodput to throughput ratio.

The results are shown in Figure 3.9. By using the same factors for both parameter scales, data
points on diagonals (up and to the right) share the same bandwidth. For 1

λ = 20 ms on 4G both CPU
and network are consistently active and deplete the entire battery in 7.5 hours. The results also show
that for the same bandwidth, larger intervals lead to significant energy savings. For example, with
10 KiB/s of bandwidth, the energy used decreases from 5.4 pp/h (p = 2 KiB, 1

λ =200 ms) to 2.2 pp/h
(p = 200 KiB, 1

λ = 20 s) in the 4G case and from 2.0 pp/h to 0.5 pp/h for the same parameters in the
WiFi case. However, this comes at the cost of increased latency.

3.4.4 Daily driver

The results from the macro studies suggest that some configurations can be run continuously during
normal daily usage. To validate these conclusions, a “Daily Driver” scenario is used that mimicks
typical smartphone usage while running anonymity networks. Assuming an informed user, who
prefers the most energy-efficient configuration, we choose VPNA and Tor without padding. For the
mix network we pick two parameters from the Loopix paper as Loopixfast (1

λ = 2 s) and Loopixslow

52 Understanding the energy efficiency of anonymity networks on smartphones

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
50

55

60

65

70

75

80

85

90

95

100

Ba
tte

ry
 le

ve
l (

%
)

Loopix…

slow

fast

Nym

Base
Tor
VPNA

Figure 3.10: Measured energy consumption as estimated battery levels during our 14 hour daily driver
scenario. A white background indicates connection via WiFi (grey: 4G).

(1
λ = 20 s). As the paper does not mention concrete packet sizes, we choose p = 20 KiB which can

handle long text messages. We also include the default Nym configuration (1
λ = 20 ms, p = 2 KiB) as

LoopixNym. All are compared to a Base configuration without any anonymity network client.

The experiments are performed continuously for 14 hours simulating a typical day from 7 am to
9 pm. The smartphone has been reset to factory state, fully charged, and the following applications
are installed: Google Mail, Signal, YouTube. The device is connected to WiFi most of the day, except
for 7–8 am, 12–1 pm, and 5–8 pm when it then connects via 4G. We automatically send an email to
the Gmail app every hour and a text message using Signal every 15 minutes. Both wake up the device
to show a notification. In addition, we play a 10-minute YouTube video every two hours starting at
7am to simulate longer Internet sessions with multiple HTTPS requests. The display brightness is set
to 75%.

The results are shown in Figure 3.10. Unsurprisingly, most energy is consumed when the screen is
active (around 1 000 mW). Push-notifications appear as small drops every 15 minutes. Overall, the
findings agree with our previous experiments. In this specific scenario the overall energy overhead for
Tor and VPNA are 0.2 pp/h and 0.3 pp/h respectively. Hence, both appear practical. The change in
the gradients for Loopix make the power consumption differences between WiFi and 4G clear (e.g.
Loopixfast around 12 noon). The high-latency Loopixslow configuration has an average overhead of
0.6 pp/h (Loopixfast : 1.3 pp/h) which is almost practical when there is WiFi for most of the day. The
LoopixNym parameters drain the battery completely after 12 hours.

3.5 Limitations and threats to validity 53

3.4.5 Discussion on feasibility

We discuss the feasibility of VPNs, Tor, and mix networks with cover traffic based on our assumptions
from Section 3.1: smartphones are used without charging for a 12-hour period and using less than
an extra 5 percentage points of battery during this time is acceptable. The results can be easily
adjusted if required. We benchmark the anonymity networks against an idle phone with active network
connection which consumes around 0.4 percentage points per hour.

We evaluate whether it is feasible to run Tor without padding in the background by considering
the idle scenario on 4G. This gives us a lower bound of the actual costs. Note that active usage
and background communication will experience additional overhead due to higher latency and lower
bandwidth. For a 12-hour usage period running Tor without connection padding on 4G requires an
extra 3.6 pp (WiFi: <0.1 pp). Similar for the other numbers. This is less overhead than from the
tested VPN clients (Section 3.4.1). We conclude that Tor without connection padding is feasible on
modern smartphones and can be run continuously without large drawbacks. However, full connection
padding has a large impact. This configuration increases energy costs by 30.0 pp on 4G and 9.6 pp on
WiFi which is no longer practical.

We evaluate the Loopix-style mix network using the same methodology. In contrast to Tor, active
usage does not increase the overall energy overhead of the mix network client as the scheduling and
size of packets does not change. We consider a packet size of 20 KiB for both a medium-latency
(1

λ = 2 s) and a high-latency (1
λ = 20 s) configuration. A 2 second latency would be acceptable for

text-based chats and our evaluation shows that it requires an additional 30.0 pp on 4G for a 12-hour
period. The high-latency configuration fares better with 16.8 pp for 12 hours. While the numbers are
acceptable on WiFi (both 4.8 pp), using local networks can not fully compensate for the high energy
costs of 4G networks, as we expect smartphone users to use their devices in many different locations.
Only very high-latency parameters, e.g. 1

λ = 200 s, would have a small enough overhead (4G: 6 pp,
WiFi: 2.4 pp) to be considered almost practical.

3.5 Limitations and threats to validity

The presented evaluation uses only one smartphone which limits how well the results generalise. We
chose the Motorola phone as our test device because of the easy battery access so that others can
easily replicate our setup and results. As it runs a mostly unmodified version of Android it reflects
the intended behaviour of the operating system. We verified this by running the Don’t Kill My
App [97] benchmark which schedules and later verifies various background operations. Our test device
received a perfect score. Other vendors add custom battery saving techniques which can introduce
bugs or restrict background services [97]. This applies also to iOS devices which are more restrictive
on background activities. Therefore, our results may not directly generalise to other devices in terms
of functionality and power consumption. Running background cover traffic over long periods of time
might even be prevented by the operating system on some platforms without explicit intervention
by users. Similarly, differences in modem hardware and configuration affect the obtained power
measurements. However, we believe that results for devices with similar functionality are comparable,
with newer devices generally being more energy efficient.

54 Understanding the energy efficiency of anonymity networks on smartphones

We chose GiffGaff as the mobile network provider as they offer pre-paid SIM cards. While it
appears representative to us based on our observations, the results do not necessarily translate to
other providers. For instance, the duration of tail-latency demotion is a parameter that is set by the
network provider and can change over time. The GiffGaff configuration has a fairly short tail-latency
which appears favourable for regular small messages. Therefore, the results for mix networks can be
seen as a lower-bound estimate and we might expect it to be higher for other providers.

For our macro studies we use a public website hosted by a third-party. Updates to the website will
inadvertently change the obtained absolute measurements. Likewise, mobile network conditions are
not perfectly reproducible. For example, upgrades by the provider and testing in different locations will
lead to slightly different numbers. As a mitigation, we always (re-)ran all VPN and Tor experiments
together at the same location to ensure comparability of the results.

3.6 Summary

In this chapter we first developed an easy-to-build hardware setup that installs a power sensor between
a smartphone and its battery and logs the data to a PC. We can use this directly to measure the
average power consumption of long-running services. In addition, we can record timestamps before and
after the execution of short operations on the device to later synchronise the data and calculate the
energy consumption of individual operations precisely. Compared to previous work, which uses models
or modifies apps or the operating system, our setup gathers ground-truth data without modifications
to software or hardware. This makes sure that all side-effects, such as two apps accessing the radio at
the same time, are always correctly reflected in the data.

Using our setup we showed that performing cryptographic operations on smartphones, especially
when using modern algorithms, is cheap. However, radio transmissions can be expensive. Interestingly,
it is primarily the timing of the send and receive operations—not the total amount of data being
transferred—that dominates battery usage. With this background it is encouraging to see that the
most popular anonymity technologies (VPN and Tor) can be run continuously during the entire day
in the background with minimal impact. However, designs with stronger anonymity guarantees such
as mix network designs like Loopix do not work well on smartphones for low-latency configurations.

When using these existing mix network designs it is therefore important to keep the sending rate
low and opt for larger message sizes where we need higher bandwidth. However, this of course limits
how many messages one can send in bursts, e.g. to inform many different recipients in a group chat.
These messages would be stuck for a while in the outgoing payload queue as each one would have to
wait for its own independent sending event. We address this particular scenario in the next chapter
where we present a protocol for efficient group-multicast in mix networks.

Chapter 4

Low-latency group communication
in mix networks with unreliable
connectivity

Mix networks typically only consider one-to-one (unicast) communication where each message is sent
to exactly one recipient. As such, they have no built-in mechanism for multicast where a sender can
efficiently share a message with all members of a group. In particular, naïvely implementing multicast
through sending many individual messages to the group members results in significant overhead
in terms of latency and throughput, typically exceeding the latency required to provide good user
experience. This effect is aggravated on mix networks due to the (cover traffic) sending schedule that
limits how quickly messages are picked-up from the payload queue.

The need for sending messages to many users arises not only in group chats, but also when
collaboratively editing documents in a decentralised setting where no central server can distribute
messages. In this chapter we explore the limitations of naïve multicast implementations and find that
they are not suitable beyond very small groups. Therefore, we present Rollercoaster, an efficient
group multicast scheme takes the particular latency and throughput constraints of mix networks into
account.

In Rollercoaster, all group members help distributing a messages so that load is more evenly
distributed. This results in a drastic reduction of latency and overall improves the ratio of payload to
cover traffic, hence improving efficiency of the network. Most importantly, Rollercoaster acts as
a layer on top of Loopix without requiring any modifications. To account for mobile devices, and
in particular intermittent connectivity, we also present a fault-tolerant version of Rollercoaster
that allows the group to work around unreliable participants. As an optional improvement we present
a modification of the Sphinx protocol where individual messages can be addressed to two or more
recipients. This modification is called MultiSphinx and can further improve efficiency and latency.
While MultiSphinx requires modifications to the underlying network, it is designed to share the
same anonymity set with regular messages.

56 Low-latency group communication in mix networks with unreliable connectivity

This chapter is based on our paper “Rollercoaster: An Efficient Group-Multicast Scheme for Mix
Networks” [68]. For this chapter I adapted the text, figures, and plots from the Rollercoaster
paper to fit with the dissertation. I led the design of the protocol, implemented the prototype,
conducted all experiments, performed the data analysis, did the security analysis, and was the primary
author of the text. Martin and Alastair contributed towards the development of the ideas and their
presentation.

4.1 Group communication

A multicast protocol delivers a single message to multiple recipients. Broadly speaking, there are
two common approaches for implementing multicast: by sending each message individually to each
recipient over unicast, or by relying on the underlying network to make copies of a message that are
delivered to multiple recipients. IP multicast [48] is an example of the latter approach, which avoids
having to send the same message multiple times over the same link. There are many existing multicast
protocols [64, 111, 150]. However, to our knowledge, none of these existing protocols accounts for
the special challenges of mix networks where clients’ sending of messages is artificially rate-limited
as outgoing packages must not leak communication patterns. Our implementation required careful
adaption and tuning to the particularities of Loopix.

For this chapter we are interested in group multicast, a type of multicast protocol in which there is
a pre-defined, non-hierarchical group of users U . We call the initial sender source s and all others the
intended recipients Urecv = U \ s. At any time any member of the group might send a message to all
other group members. We also assume that the group membership is fixed and known to all members;
we leave the problems of group formation and adding or removing group members for future work
that we discuss in the conclusion chapter.

4.1.1 Collaborative editing and local-first software

Group messaging and collaboration can share the same underlying infrastructure [79]. For this
we consider forms of collaboration in which a file or conversation thread is shared by a group of
collaborators, and any update to it needs to be shared with all group members. In collaborative
editing applications individual update messages are usually small and frequent [1]. Hence, such apps
require an efficient, reliable, and timely method of sending messages to all members of a group.

In this context user studies highlighted the negative implications of high network delays in
collaborative editing. One previous study [71] asked a group of participants to transcribe audio lectures
using collaborative text editing software. The researchers investigated the effect of communication
latency by repeating the experiment multiple times and varying artificial delay on all communication
between participants. A delay of 10 seconds or more had a significant impact in their study, with an
increase of error rates and content redundancy by more than 50%. We therefore set our target for
group multicast latency at 10 seconds for group sizes of up to 100 people. The group size is motivated
by the active editor limit of Google Docs (100 users) and Microsoft Sharepoint (99 users). We further
require the latency to grow sub-linearly with the size of the group, allowing effective collaboration in
large groups. In many multi-user applications, a large fraction of the data is generated by a small

4.2 Naïve approaches to multicast 57

fraction of the users—a trend that is known as participation inequality [98]. Rollercoaster fares
well in a system with such a distribution of activity.

Group multicast protocols should also come with offline support, which is required since mobile
devices do not always have connectivity. As in the Loopix design, provider nodes in Rollercoaster
continue to store messages on behalf of the user until the user is next online and able to download
them. For this we introduce a Rollercoaster variant that is fault-tolerant (Section 4.3.2) but
achieves the same performance of Rollercoaster if all users are online.

As we discuss in Chapter 3, on mobile devices the frequency of sending network packets has
a large impact on energy efficiency, as every packet can trigger state promotions that come with
additional energy costs. Therefore, sending few but large messages with long pauses between packets
is advantageous for battery life on mobile devices, even if the total volume of data transmitted is
the same. On the other hand, smaller and more frequent messages lead to lower latency. Hence, we
optimise Rollercoaster to work well when running over a mix network with infrequent messages.

4.1.2 Threat model

As in Loopix, we assume a global active adversary who can observe all traffic, manipulate traffic to
remove messages and insert new ones, as well as corrupt a subset of mix nodes and providers. Sending
a message to a Rollercoaster user requires that the sender knows both the addresses and public
keys for their provider, the recipient, the recipient’s provider, and the mix nodes.

Rollercoaster provides message confidentiality and integrity as well as the same strong metadata
privacy guarantees as Loopix, including sender–recipient unlinkability (preventing an adversary from
deducing which users are communicating with each other) and sender–recipient online unobservability
(preventing an adversary from deducing which users are currently participating in any communication).
In addition we provide membership unobservability which prevents anyone outside the group from
determining group membership or group size. We assume a group is composed of trusted members
and therefore we do not provide unlinkability or unobservability guarantees against an attacker who
compromises or colludes with group members. The goal of the attacker is to break the confidentiality,
integrity, or metadata privacy guarantees. Our scheme supports efficient communication for group
sizes of two or more and therefore we handle pairwise and group communication in the same way. An
attacker cannot distinguish between two-party communication and communication in a larger group.

4.2 Naïve approaches to multicast

In this section we discuss the reasons for why message delays occur in Loopix and capture them in
analytical formulas. We then explore two simple approaches to implementing multicast on Loopix,
and explain why they are not suitable, before introducing Rollercoaster in Section 4.3.

We recall from Section 2.1.4 of the background chapter the latency of a single message in the
Loopix network. In particular, let l = 3 be the number of layers, n be the number of previous messages
in the send queue, λp be the send queue rate, µ be the per-hop delay, and δpull the frequency for
checking the inbox. Then the expected average delay for sending a single message measured from

58 Low-latency group communication in mix networks with unreliable connectivity

when it is scheduled at the sender to when it is received at the recipient is:

mean(dmsg) = n+ 1
λp

+ l + 1
λµ

+ ∆pull

2 (4.1)

When a source s wants to send a payload to a group by multicast, we define the multicast latency
D to be the time from the initial message sending until all of the recipients Urecv have received the
message:

D = max
u∈Urecv

(Trecv,u)− Tsend,s (4.2)

4.2.1 Naïve sequential unicast

In the simplest implementation of multicast, the source user s sends an individual unicast message to
each of the recipients u ∈ Urecv in turn. While the messages can travel through the mix network in
parallel, their emission rate is bounded by the payload rate λp of the sender.

For a recipient group of size |Urecv| = m− 1, the last message in the send queue will be behind
n = m− 2 other messages. Further, the last message will incur the same network delay and pull delay
as all other unicast messages. The average delay for the last message therefore describes the multicast
latency for when performing sequential unicast:

Dunicast = m− 1
λp

+ l + 1
λµ

+ ∆pull

2 = O(m) (4.3)

The mean delay Dunicast therefore grows linearly with m. As we show in Section 4.4, sequential
unicast is too slow for large groups with realistic choices of parameters (λp is typically set to less than
one message per second).

Another problem with the sequential unicast approach is that the effective rate at which a user can
send messages to the group is λp

m−1 , as all copies of the first message need to be sent before the second
multicast message can begin transmission. One might argue that this problem can be addressed by
increasing the payload bandwidth by increasing the value for λp. However, this would require similar
adjustments to the rates for drop and loop messages to preserve the network’s anonymity properties.
As these parameters are fixed across all users, this would lead to a proportional increase in overall
bandwidth used by the network. Moreover, the factor by which we increase λp would be determined
by the largest group size we want to support. As a result, users participating in smaller groups would
face an unreasonable overhead. This inefficiency particularly applies to users who mostly receive and
only rarely send messages.

4.2.2 Naïve mix-multicast

An alternative approach shifts the multicast distribution of a message to mix nodes. In this scheme,
the source chooses one mix node as the multiplication node. This node receives a single message from
the source and creates |Urecv| = m− 1 mix messages sent on to the other group members. A provider
node would not be suitable as a multiplication node as it would learn about the group memberships
of its users and their group sizes. When the multiplication node receives such a multicast message, it
inserts m − 1 messages into its input buffer, one for each of the recipients, and processes them as

4.3 The Rollercoaster protocol 59

usual. This provides optimal group message latency of D = dmsg as there is no rate limit on messages
sent by a mix node, and hence no queueing delay. However, this design has significant flaws.

First, a corrupt multiplication mix node can learn the exact group size |U | = m, in contravention
of our threat model (Section 4.1.2). This is undesirable as it may allow an attacker to make plausible
claims regarding the presence or absence of communication within certain groups. Even without
corrupting a node, an adversary can observe the imbalance between incoming and outgoing messages
of a multiplication node.

The weakened anonymity properties could perhaps be mitigated with additional cover traffic that
incorporates the same behaviour as the payload traffic. In particular, the cover traffic must model all
possible group sizes. Allowing a group size of 200 requires cover traffic to multicast by factor 200 as
well. However, this would significantly increase the network bandwidth requirements in the following
mix layers, increasing the cost of operating the network.

Permitting message multiplication also opens up the risk of denial of service attacks: a malicious
user could use the multicast feature to send large volumes of messages to an individual provider, mix
node, or user, while requiring comparatively little bandwidth themselves.

Finally, supporting group multicast in a mix node requires the input message to contain m −
1 payloads and headers, one for each outgoing message. As all outgoing messages must travel
independently of each others they must be encrypted with different keys for their respective next
hops. Otherwise, all outgoing messages share the same encrypted payload. This makes it trivial for
an observer to identify the recipients of this group message. The only solution is to either increase
the size of all messages in the system or enforce a very low limit on maximum group size.

In summary, naïvely performing message multiplication on mix nodes is not a viable option.
However, a viable variant of this approach is possible by fixing the multiplication factor of messages
to be a small constant (e.g. p = 2). We discuss this design in Section 4.3.4 where we present
MultiSphinx.

4.3 The Rollercoaster protocol

We propose Rollercoaster as an efficient scheme for group multicast in Loopix. Rollercoaster
distributes the multicast traffic over multiple nodes, arranged in a distribution graph. This not only
spreads the message transmission load more uniformly across the network, but it also improves the
balance of payload and cover traffic. Rollercoaster is implemented as a layer on top of Loopix,
and it does not require any modifications to the underlying Loopix protocol. However, we discuss an
optional protocol modification in Section 4.3.4 that can provide additional performance.

As we saw with naïve sequential unicast, messages slowly trickle from the source into the network
as the source’s message sending is limited by the payload rate λp. However, users who have already
received the message can help distribute it: after the source has sent the message to the first recipient,
both of them can send it to the third and fourth recipient concurrently. Subsequently, these four
nodes then can send the message to the next four recipients, and so on, forming a distribution tree
with the initial source at the root.

The distribution tree for a set of users U is structured in levels such that each parent node has k
children at each level, until all recipients are included in the tree. An example with eight recipients is

60 Low-latency group communication in mix networks with unreliable connectivity

shown in Figure 4.1A. With each level the total number of users who have the message increases by a
factor of k + 1, which implies that the total number of levels is logarithmic in the group size |U |.

In this section we first detail the construction of Rollercoaster in Section 4.3.1. As a second
step, Section 4.3.2 adds fault tolerance to ensure that the scheme also works when nodes are offline.
Asymptotic delay and traffic properties are analysed in Section 4.3.3. Section 4.3.4 develops the
MultiSphinx message format, which allows restricted multicast through designated mix nodes.
Further optimisations to the scheme are briefly discussed in Section 4.3.5.

4.3.1 Construction

The Rollercoaster scheme is built upon the concept of a schedule. This schedule is derived
deterministically from the source s, the total set of recipients Urecv, and the maximum branching
factor k following Algorithm 1. First, a list U of all group members is constructed with the initial
source at the 0-th index. The group size |U | and branching factor k lead to a total of ⌈logk+1 |U |⌉
levels. In the t-th level the first (k + 1)t members have already received the message. All of them
send the message to the next w recipients, increasing the next group of senders to (k + 1)t+1. In the
0-th level only U [0] (the initial sender) sends k messages to U [1] . . . U [k].

In order to associate an incoming message with the correct source node and group of all recipients,
all Rollercoaster payloads contain a 28 byte header as illustrated in Figure 4.2, in addition to the
Sphinx packet header used by Loopix. Each group is identified by a 32-bit groupid shared by all group
members. The 32-bit nonce identifies previously received messages, which becomes relevant with
fault-tolerance (Section 4.3.2). The fields source, sender, and role refer to individual group members
and have a 10-bit size, allowing groups with up to 1024 members. The source field indicates the
original sender and is necessary to construct the distribution graph at the recipient. The fields sender
and role are used by the fault tolerant variant in Section 4.3.2 for acknowledgement messages and
to route around nodes that are offline. Field lengths can easily be increased or decreased as they
do not have to be globally the same across all Loopix clients. Finally, the header contains a 128-bit
signature1 that is generated by the original source and covers the payload as well as all static header
fields. It assures recipients that the message indeed originated from a legitimate group member and
that they are not tricked by an adversary to start distributing a fake message to group members. The
sender and role fields are not covered by the signature, allowing nodes that are not the original source
to modify these fields without invalidating the signature.

4.3.2 Fault tolerance

The basic Rollercoaster scheme of Section 4.3 fails when users are offline and cannot perform
their role of forwarding messages. In this case, one or more recipients in later levels would not receive
the message until their parent node returns online. The risk of this approach becomes apparent when
looking at the graph in Figure 4.1B, where a single unavailable node causes message loss for its entire
subtree. In principle, the responsibility for forwarding messages could be delegated to the provider

1The original paper [68] implied a 32-bit signature field which is clearly not sufficient. The text and the related
Figure 4.2 in this chapter are updated to use a 128-bit signature field. This change does not impact our evaluation.

4.3 The Rollercoaster protocol 61

a

b

f g h i d e

c

A

a

b

f g h i d e

c

B

d acting as "c"

h i

Figure 4.1: Message distribution graph for a group of size m = 9 and branching factor k = 2. Graph
A: Expected delivery from source s = a. Graph B: The node c is offline and breaks delivery to h and
i. Using the fault-tolerant variant (Section 4.3.2) the node d is assigned the role of c and delivers the
payload to h and i.

Algorithm 1 The basic Rollercoaster schedule algorithm for a given initial source s, list of
recipients Urecv, and branching factor k. The schedule contains a list for every level with a tuple
(sender , recipient) for each message to be sent.

1: procedure GenSchedule(s, Urecv, k)
2: U ← [s] + Urecv
3: L← ⌈logk+1 |U |⌉ ▷ number of levels
4: schedule← []
5: for t = 0 until L− 1 do
6: p← (k + 1)t ▷ first new recipient
7: w ← min(k · p, |U | − p)
8: R← []
9: for i = 0 until w − 1 do

10: idxsender ← ⌊ i
k ⌋

11: idxrecipient ← p+ i
12: R[i]← (U [idxsender], U [idxrecipient])
13: schedule[t]← R

14: return schedule

62 Low-latency group communication in mix networks with unreliable connectivity

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

groupid

nonce

source sender role

signature over {groupid, nonce, source, payload}

. . . payload . . .

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4.2: Payload header for the Rollercoaster scheme containing both the fields for the minimal
scheme and the fields necessary for the fault-tolerance variant and further optimisations.

nodes, which are assumed to always be online. However, we consider this approach not to be desirable
as the adversary could learn about the group membership by compromising a provider.

Rollercoaster with fault-tolerance achieves reliable delivery through acknowledgement (ACK)
replies to the source and reassignment of roles. When the source sends a message it sets timeouts by
which time it expects an acknowledgement from the recipient and each of its children. The individual
timeouts account for the number of hops and the expected delays at each hop due to mix node delays
and messages waiting in send queues. ACKs are sent through the mix network like any other unicast
message. When receiving an ACK from a node, the source marks the sending node as delivered.
Choosing the source as the main coordinator is reasonable as it has the strongest incentive for ensuring
delivery of all messages. Loopix allows a high rate of messages received by users, so it is not a problem
if one user receives a large number of ACKs.

The source responds to a timeout by sending the message to a different node. For this, each
node maintains a list of most-recently-seen nodes based on received messages and chooses one from it
heuristically. The source itself is part of that list as the ultimate replacement node. A replacement
node is only necessary when the failing node would have forwarded the message to others, i.e. when it
is not a leaf node of the distribution tree (Algorithm 9 in Appendix A.1). Independently of this and
in case that the message did not reach the intended recipient due to message loss, a retry message is
sent (with exponential back-off) to the failed node again with its own timeout.

We start the timeouts associated with a message when the underlying Loopix implementation
sends the message to the provider, so that the timeouts do not need to include the sender’s queueing
delay. Since the sender knows the global rate parameters λp and λµ, it takes these into account when

4.3 The Rollercoaster protocol 63

determining timeouts. The timeout may further be adjusted based on the network configuration and
application requirements.

The fault-tolerance mechanism makes use of the message fields source, sender, and role shown in
Figure 4.2. The source field remains unchanged as the message is forwarded because it is required for
constructing the schedule at each node. It also indicates the node to which the ACK should be sent.
The sender field is updated when forwarding a message or sending an ACK and used by the recipient
to update their list of most-recently-seen nodes. The role field indicates the role that the receiving
node should perform, usually their natural identity. However, when a node is offline, another node
might be assigned its role, i.e. its position in the distribution tree. In this case, the role field indicates
the node as which the recipient should act. Retry messages to failed nodes have an empty role field,
because the role has already been reassigned.

On receiving any payload message msg, the recipient node hands over the payload to the application
and reconstructs the schedule using msg.source, msg.groupid, and msg.nonce. For every child node of
msg.role in the schedule, the node enqueues a message for the respective recipient, making sure to
update msg.role. The ACK reply is enqueued after the payload messages so that no ACK is sent if a
node goes offline before forwarding a message to all of its children in the distribution tree.

ACK messages contain the groupid, nonce, source, and role fields of the original message and an
updated sender field, which allow the recipient of the ACK (i.e. the source) to identify and cancel the
corresponding timeout. The sender adds a signature covering all header fields to ensure that the ACK
message cannot be forged. When an ACK is not received on time, the message is sent to a different
node as described above.

If the connection between a user and their provider is interrupted, we rely on the fact that Loopix
allows users to retrieve received messages from their inbox later. The user’s software notices a loss of
connection and pauses timeouts until it is able to check the inbox at the provider again.

After a long offline period, a node’s inbox may contain a large backlog of messages that were
received by the provider while the user was offline. When a node comes back online, it treats this
backlog differently from messages received while online: for any messages received while offline, a node
only delivers the payloads to the application, but it does not send ACK messages or forward messages
to other nodes. Here the node avoids doing unnecessary work for messages where the timeout is likely
to have already expired. Algorithm 10 in Appendix A.1 describes the behaviour of the fault-tolerant
variant in detail.

Eventual Delivery and Byzantine Fault Tolerance

The fault-tolerant variant of Rollercoaster assumes that the source node acts honestly and does
not disconnect permanently (but can do so intermittently). This is reasonable as the sending user has
high incentive to see through the delivery of their message. We provide a summary of a proof under
this assumption below and refer for its full version to Appendix A.4.

The key insight is that everyone who does not ACK the payload will eventually receive it directly
from the source, and will read it from their inbox when they return online. This works even in the
presence of malicious nodes that acknowledge a message without forwarding it, since the source has
individual timeouts for each group member. Therefore, the source will detect when a node’s children
do not send ACKs.

64 Low-latency group communication in mix networks with unreliable connectivity

However, the protocol can be extended to handle the case where the source node might be
disconnected permanently and at least one recipient of the original message remains available. To
nevertheless guarantee eventual delivery, every group member can periodically pick another group
member at random and send it a hash of the message history it has seen so far (ordered in a
deterministic way so that two users with the same set of messages obtain the same hash). If the
recipient does not recognise the hash, the users run a reconciliation protocol [78] to exchange any
messages that are known to only one of the users. Such a protocol provably guarantees that every
user eventually receives every message, even if some of the users are Byzantine-faulty, provided that
every user eventually exchanges hashes with every other user [78].

4.3.3 Analysis

We first analyse the expected multicast latency of Rollercoaster without fault tolerance by
considering the levels of the distribution tree, as illustrated in Figure 4.1. The expected multicast
latency Drollercoaster is determined by the longest message forwarding paths C1, C2, Each such
path is defined as C = e0 . . . e|C|−1 where ei is a edge from a node on level i to a node on level i+ 1.
We call these edges one-level edges. The number of levels of the schedule generated by Algorithm 1
is L = ⌈logk+1 |U |⌉ as discussed in Section 4.3. Hence, no path is longer than L. An example of a
longest path is C = (a, b)(b, g) in Figure 4.1. The mean message delay when traversing each edge of
the graph is d̄msg = d̄Q + d̄t, where d̄Q is the mean queueing delay and d̄t = d̄p + (l + 1) · d̄µ + d̄pull is
the message’s mean travel time through the network. Since each node sends no more than a total
of k messages to the directly subsequent level, the expected queueing delay for the last message is
d̄Q = k−1

λp
.

However, there are also edges from a node on level i to a node on level i+ j where j > 1. One
example is (a, d) in Figure 4.1. Messages from level i to level i + 1 are sent before any messages
that skip levels, and therefore any level-skipping messages may experience higher queueing delay
before they are sent. Concretely, the edges from level i to level i+ j will incur an additional expected
queueing delay of at most (j− 1) · d̄Q compared to one-level edges. At the same time, these edges save
j − 1 hops, which would have incurred both a queueing delay d̄Q and a travel time d̄t each. Hence,
the time saved by the reduced hop count outweighs the extra queueing delay.

Thus, the expected time for a message to be received by all nodes is determined by the longest
path consisting of only one-level edges, with a queueing delay of d̄Q = k−1

λp
at each hop:

Drollercoaster = L · (d̄Q + d̄t) = ⌈logk+1 m⌉ · d̄msg (4.4)

Hence, the group multicast latency is logarithmically dependent on the group size m and contains
a multiplicative factor that equals the time to send a single message after being queued behind at
most k messages.

When a node is offline, it will only be able to receive messages when it comes online and queries
its inbox. In case the offline node is a forwarding node, the source will detect the lack of an ACK
after the timeout expired. In this case the latency penalty for the children of the failed node is the
timeout of the parent node, which is typically proportional to the expected delivery time.

4.3 The Rollercoaster protocol 65

λl

λd

λp

loop

drop

payload
λ

λ′
l

λ′
d

λ′
p

loop

drop

payload

p = 2

λ′

A Standard Loopix B p-restricted Multicast

Figure 4.3: Standard Loopix (A) sends out a message if any of its Poisson processes triggers, so the
rate of messages sent is λ = λp +λd +λl. In p-restricted multicast (B) these Poisson processes are still
independent, but the node has an extra layer that awaits p messages, which are then wrapped into a
MultiSphinx message. The sender can increase λ′

p to pλp (same for λ′
d, λ

′
l) while keeping λ′ = λ.

4.3.4 p-restricted multicast with MultiSphinx

As specified so far, Rollercoaster uses the unmodified Loopix protocol. However, even though
Rollercoaster spreads the work of sending a multicast message more evenly across the network
than sequential unicast, payload messages and ACKs are still demanding for nodes’ send queues.
In this section, we consider a modification to the Loopix protocol that further improves multicast
performance: namely, we allow some mix nodes to multiply one input message into multiple output
messages, which may be sent to different recipients. The naïve mix-multicast we considered in
Section 4.2.2 allows arbitrary multiplication factors. Here we show how to make mix-node-supported
multicast safe by restricting the multiplication factor to a fixed constant p. We call this approach
p-restricted multicast where clients can send p messages inside one MultiSphinx package; with p = 1
this scheme is identical to the regular Rollercoaster.

In p-restricted multicast, only mix nodes in one designated layer may multiply messages. In our
design, we perform multiplication in the middle layer (layer 2 of 3) and we refer to these mix nodes
as multiplication nodes. To ensure unlinkability of mix nodes’ inputs and outputs, every message
processed by a multiplication node must result in p output messages, regardless of the message type
or destination. Mix nodes in other layers retain the standard one-in-one-out behaviour of Loopix.
Since layer 3 of the mix network needs to process p times as many messages as the earlier layers, layer
3 should contain p times as many mix nodes as layers 2.

We use the parameter p for p-restricted multicast and k for the schedule algorithm. These can be
chosen independently of each other. However, for simplicity and practical interdependence we often
set both to the same value k = p.

Effectively, p-restricted multicast allows p messages to different recipients to be packaged as a single
message up to p times the size. Sending fewer but larger messages allows for lower power consumption
on mobile devices, as discussed in our application requirements in Section 4.1 and Chapter 3. We
show in our evaluation in Section 4.4.5 that p-restricted multicast allows choosing much larger λ
values while maintaining low latency allowing mobile devices to stay longer in energy-efficient states.
Further, since collaborative editing update messages (e.g. indicating a single word has been inserted)
can be small, bundling them together can reduce the overall overhead.

66 Low-latency group communication in mix networks with unreliable connectivity

The MultiSphinx message format

Loopix encodes all messages using the Sphinx message format [44], which consists of a header M
containing all metadata and an encrypted payload δ. Using the header, each mix node ni derives a
secret shared key si. Due to the layered encryption of the header and payload, an adversary cannot
correlate incoming and outgoing packets when observing mix nodes. Our construction is based on
the improved Sphinx packet format [20] which uses authenticated encryption (AE) instead of the
wide-block cipher LIONESS [4] of the original design. In particular, we use a stream cipher C in an
encrypt-then-MAC regime and require that without the knowledge of the key, the generated ciphertext
is indistinguishable from random noise (which is believed to be the case for modern ciphers such as
AES-CTR). Every hop verifies integrity of the entire message to prevent active tagging attacks. The
improved Sphinx packet format satisfies the ideal functionality of Sphinx [83]. The per-hop integrity
checks of the entire message come at the cost of lacking support for anonymous reply messages, but
these are not used by Loopix.

Sphinx assumes that each input message to a mix node results in exactly one output message. In
order to support p-restricted multicast we introduce the MultiSphinx message format, which can
wrap p messages. A MultiSphinx message is unwrapped at a designated mix node, and split into
p independent messages. For anyone other than the designated multiplication node, MultiSphinx
messages are indistinguishable from regular Sphinx packets. We now describe the MultiSphinx
design for p = 2 by describing the creation and processing of these messages. The detailed construction
and processing is formalised in Appendix A.5.

For p = 2, the sender waits until its message queues (payload, drop, loop) have released two
messages. The sender then combines their payloads δA, δB and recipients UA, UB into a single message
that is inserted into the mix network, as shown in Figure 4.3. As we want to fit both payloads and two
headers into our message to the multiplication node, |δA| and |δB | must be smaller than the global
Sphinx payload size.

The combined message is sent via a mix node n0 in the first layer to the designated multiplication
node n1, where its inner messages are extracted and added to its input buffer. The inner message
containing δA will be processed by n1 and routed via n2,A to the recipient nA (and similarly for B).
The multiplication node derives the secret key s1 from the incoming message’s header and additional
secret keys s1,A, s1,B from the headers of the inner messages. We omit provider nodes.

The sender first computes all secret keys. Using these secret keys it encrypts the payloads δA, δB

between the recipients and the multiplication node. However, the resulting encrypted payloads are
smaller than the regular Sphinx payload lengths.

To ensure all messages have the same size, we use a pseudo-random function (PRF, e.g. HMAC) ρ
to add padding to the encrypted payloads δ1,A and δ1,B. ρ is keyed with the shared secret s1 and
the payload index (A or B) so that the padding is unique. The resulting payloads have the format
δ′

1,A = δ1,A ∥ ρ(s1 ∥ A) (and similarly for B). Now the sender computes the headers and MACs along
the path from the multiplication node to the recipients by simulating the decryption of the payload at
each step. This results in two Sphinx headers M1,A and M1,B . Finally, we create the message for the
path from the sender to the multiplication node using the regular Sphinx construction. We set the
payload of that message to the concatenation δcombined = M1,A ∥ δ1,A ∥M1,B ∥ δ1,B. Appendix A.5
contains pseudocode for this construction.

4.3 The Rollercoaster protocol 67

M1 δ1

|M | MaxMsgLen

s1 AEdec

⊥(abort)

M1,A δ1,A M1,B δ1,Bδcombined =

M1,A δ1,A ρA = ρ(hρ(A, s1))

M1,B δ1,B ρB = ρ(hρ(B, s1))

M1,A δ1,A ρA = ρ(hρ(A, s1))

Figure 4.4: Processing of a MultiSphinx message at the multiplication node n1 resulting in two
outgoing messages that are sent then re-queued for processing.

The processing of incoming messages at the multiplication node differs from other nodes and is
illustrated in Figure 4.4. First, the payload is decrypted and split into the message headers and
payloads. Then, the payloads are deterministically padded using the PRF ρ as described above. To
ensure that the messages are hard to correlate, they are added to the node’s input buffer, decrypted
again (now deriving secrets s1,{A,B}), and delayed independently as defined by their individual delay
parameter.

Anonymity of MultiSphinx

All MultiSphinx messages (before and after the multiplication node) have the same header length
and payload length as regular Sphinx messages. Sphinx headers do not leak the number of remaining
hops and the ciphertext is indistinguishable from random noise. Therefore, MultiSphinx messages
are indistinguishable from regular Loopix messages (Lemma 31, Appendix A.6). At the same time,
the multiplication node maintains the unlinkability between the incoming messages and outgoing
messages as these are delayed independently. An adversary might also corrupt mix nodes. Even
in this case they do not gain advantage over regular Sphinx message with regards to sender and
recipient anonymity and unlinkability (Theorem 35, Appendix A.6). These results also hold for active
adversaries with the capabilities from the original Loopix paper(Theorem 41, Appendix A.6).

If an adversary controls a p-restricted multiplication node and c3 of the n3 mix nodes of the third
layer, they can trace some messages from their multiplication to their delivery at providers. On the
basis that the p recipients of a MultiSphinx message are likely to be members of the same group,
the adversary then has a chance to guess that any two of the users from these providers share a group
membership. In Theorem 39 (Appendix A.6) we show that the probability of correctly guessing two
group members given a group message is less than (1− (n3−c3

n3
)p−1) · |P|2

|U|2 if all |U| users are evenly
distributed among |P| providers. This attack is prevented if the multiplication node or all but one
of the chosen nodes in the third layer are trustworthy—in contrast, standard Loopix requires only
that any mix node on the message path is trustworthy. MultiSphinx does not leak any information
regarding group sizes (Theorem 37). Appendix A.6 contains theorems and proofs for our claims. In

68 Low-latency group communication in mix networks with unreliable connectivity

addition to these properties, it is possible to achieve sender anonymity by first forwarding the message
to a trusted group member. The sender can prove its membership through a shared group secret.

4.3.5 Further optimisations

The schedule computed by GenSchedule in Algorithm 1 delivers the first messages to the nodes
at the beginning of the provided recipient list Urecv. These nodes will always act as the forwarding
nodes for a given sender s. To better balance these among all group members, one can shuffle the list
based on a nonce value that is part of the message. This variant is described in Algorithm 2. As the
GenScheduleRand algorithm is still deterministic and the nonce is part of the Rollercoaster
header, each node reconstructs the same schedule.

Algorithm 2 Creating a pseudo-randomised schedule for a given nonce
1: procedure GenScheduleRand(s, Urecv, k, nonce)
2: R← NewPrng(nonce)
3: U ′

recv ← R.shuffle(Urecv)
4: return GenSchedule(s, U ′

recv, k)

Further optimisation is possible if different sub-groups display different levels of activity and
connectivity. For example, if there is a small, active sub-group communicating while the rest of the
group remains passive, it is more important for messages to travel faster between active nodes to
support swift, effective collaboration. Active nodes can often be assumed to be more likely to be
online. Agreeing on the full order is no longer possible through a single nonce value. However, the
source can compute schedules for a set of randomly chosen nonces, evaluate the generated schedules
against its information about the group members, and choose the nonce that results in the schedule
with the most desirable properties.

4.4 Evaluation

For the empirical evaluation we developed a mix network simulation tool that provides fully reproducible
results. First, we discuss the behaviour and results of the Rollercoaster scheme in an ideal scenario
where all participants are online throughout. Second, we discuss the impact of offline nodes and how
this is addressed by the fault-tolerant variant of Rollercoaster. Finally, we discuss the impact of
multi-group membership, sending multiple messages at once, and p-restricted multicast.

4.4.1 Methodology

Since the real-world performance of Loopix has been practically demonstrated [110] we run a simulation
instead of an experiment on a real network. This provides clear practical advantages: First, it allows
us to eliminate external influences such as network congestion due to unrelated traffic or CPU
usage by other processes. Second, the simulated time can run faster than real-time, allowing us to
gather significantly more results using less computational resources. Third, it makes monitoring and
categorising traffic easier as packets and node state can be inspected. Finally, by initialising the
PRNG with a fixed seed, the results in this section are fully reproducible.

4.4 Evaluation 69

The simulator runs the entire mix network on a single machine, with nodes communicating through
shared memory simulating a network. It instantiates objects for each participating user, provider,
and mix node. All objects implement a tick() method in which they process incoming messages and
mimic the designed node behaviour such as delaying and forwarding packets. As we are primarily
interested in the traffic behaviour, no actual encryption is performed. The original Loopix paper
showed that the queueing time and per-hop delays dominate the message delay, and that CPU time
for cryptographic operations is insignificant in comparison. Similarly, the network delay is negligible.

For the final evaluation we ran 276 independent simulations, covering more than 992 160 hours of
simulated node time in less than 209 hours of CPU core time. This is a relative speed up by factor
4 500× compared to a real network experiment of the same scope. The scenarios were first specified
using Python notebooks and saved as pickle object files. The simulations were then executed using
the Peta 4 high-performance computing cluster provided by the Cambridge Service for Data Driven
Discovery (CSD3). In every simulation step the application (see below) measures the message latency
dmsg of each delivered message between the original source and each recipient. The resulting data was
persisted and extracted for analysis. We verified that our simulator behaves faithfully to the Loopix
implementation by reproducing a latency distribution graph from the original paper [110, Figure 11], as
shown in Appendix A.7. Our simulator is implemented in less than 2 000 lines of Python code including
tests and is available as an open-source project: https://doi.org/10.5281/zenodo.10606414. The
simulator and analysis scripts passed the USENIX Security artefact evaluation process.

The network simulator assigns 16 users to each provider. We set the Loopix rates λp = λd =
λl = 2/s for the client nodes and the delay rate λµ = 3/s. Hence, the overall sending rate of the
clients is λ = 6/s. This meets the requirement λ/λµ ≥ 2 that is suggested by the Loopix paper [110,
p. 1209, λµ = µ]. The mix network consists of 3 layers containing 3 mix nodes each (mix loop injection
rate λM = 2/s). All simulations are run with a granularity of 10 ms per tick. The simulated time
span for all configurations is 24 h.

The application behaviour is modelled by a Poisson process. On average every 30 s one of the online
nodes sends a single message to all other group members. We account for participation inequality [98]
by dividing the group using an 80/20 rule: 20% of users in the group send 80% of all messages, and
vice versa.

4.4.2 Always-online baseline

For a group of size 128, the average latency is reduced from 34.9 s in sequential unicast to 7.0 s (8.3 s
for group size 256) in Rollercoaster with k = p = 2 . This fulfils our application requirements that
were derived from the user study concerning delay in collaborative applications [71]. The results are
compatible with our analytical results as discussed in Section 4.3.3. For Rollercoaster not only is
the average latency low, but most of the latency distribution falls within fairly tight bounds – that is,
very large latencies are rare. Figure 4.5 shows the latency achieved by the Rollercoaster scheme
with and without p-restricted multicast for different percentiles and compares them to unicast. For a
group with 128 members the 99th percentile p99 for Rollercoaster is 12.3 s (p90: 9.9 s) whereas in
unicast it is 75.6 s (p90: 60.8 s). The wide “body” of the distribution for sequential unicast is a result
of the fixed send rate of the sender. Hence, the latency is dominated by the time spent in the source’s
payload send queue. We provide detailed histograms in Appendix A.3.

https://doi.org/10.5281/zenodo.10606414

70 Low-latency group communication in mix networks with unreliable connectivity

4.4.3 Fault tolerance

The evaluation of the fault tolerance properties requires a realistic model of connectivity of mobile
devices. For this we processed data from the Device Analyzer project [144] that contains usage data
of volunteers who installed the Android app. The online/offline state of a device is derived from its
trace information regarding network state, signal strength, and airplane mode. We limit the dataset
(n = 27 790) to traces that contain connectivity information (n = 25 618), cover at least 48 hours
(n = 20 117), and have no interval larger than 12 hours without any data (n = 2 772).

Inspecting the traces we identify three archetypes of online behaviour. The first group is online
most of the time and is only interrupted by shorter offline segments of less than 60 minutes. Members
of the second group have at least one large online segment of > 8 hours and are on average online 50%
or more of the time. Finally, the third group is online less than 50% of the time with many frequent
changes between online and offline states. As the dataset is more than five years old we decided to use
the characteristics of these groups to build a model. Using a model allows us to extrapolate offline
behaviour into scenarios with increased connectivity. In the model following the parameters of the
original dataset, the fraction of all users’ time spent online is 65%. In a second and third model with
increased connectivity, we increase this percentage to 80% and 88%, respectively, while preserving the
behaviour of the archetype groups. The generated models are visualised in Appendix A.8.

For our discussion of offline behaviour we refine our previous definition of message latency dmsg:
we ignore all latencies where the intended recipient was offline when the message was placed into their
inbox by the provider node. This metric captures the subset of latencies where the intended recipient
was online when the message was placed into their inbox by the provider node. We exclude all results
where the metric evaluates to ⊥.

donline =
{

Trecv,B − Tsend,A if B is online at Trecv,B

⊥ otherwise
(4.5)

This change has the practical benefit of excluding outliers. More importantly, fast delivery to
an offline user has no real-world benefit. Instead, a good multicast algorithm should optimise the
delivery to all nodes that are active and can actually process an incoming message. The source might
go offline at any time regardless of outstanding messages.

Without fault tolerance, the presence of offline nodes greatly increases the 99th percentile (p99) for
Rollercoaster (RC) to more than 10 000 s for a group of 128 members. The fault-tolerant variant
(RC-FT) reduces the 99th percentile to less than 21.9 s (p90: 18.0 s). In unicast p99 latency is 103.3 s
(p90: 61.9 s). Figure 4.6 shows that the fault-tolerant variant generally outperforms unicast at various
percentiles. We provide detailed histograms in Appendix A.3.

4.4.4 Multiple groups and message bursts

Users might be part of multiple groups, which increases their burden of distributing messages. In this
evaluation we assign 128 users to a growing number of groups. Figure 4.7 shows that the number of
group memberships has little impact on performance of Rollercoaster both for online and offline
scenarios.

4.4 Evaluation 71

 m= 32 m= 45 m= 64 m= 91 m= 128 m= 181 m= 256
Group size

0
10
20
30
40
50
60
70
80
90

100
110

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

p 9
9

=
15

1.
5s

Unicast RC (k= p= 1) RC (k= p= 2)

Figure 4.5: This box plot shows the distributions of message latency dmsg for increasing group sizes for
the strategies naïve sequential unicast and Rollercoaster (RC). The Rollercoaster strategies
show different k and p parameters. The boxes span from the first quartile to the third quartile (middle
line is the median) and the whiskers indicate the 1st and 99th percentile.

65% onl. 80% onl. 88% onl.
Group size m= 128

1

10

100

1000

10000

M
es

sa
ge

 la
te

nc
y
d m

sg
 [s

]

65% onl. 80% onl. 88% onl.
Group size m= 256

1

10

100

1000

10000

Unicast RC (k= p= 2) RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 4.6: The distribution of message latency dmsg for different offline scenarios. From left to right
the strategies are Unicast, Rollercoaster without fault-tolerance (RC), and Rollercoaster with
fault-tolerance (RC-FT). Boxes and whiskers as in Figure 4.5.

1 2 4 8 16
Total number of groups (100% online)

1

10

100

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

1 2 4 8 16
Total number of groups (80% online)

1

10

100

Unicast RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 4.7: Message latency dmsg for an increasing number of groups for 128 users (every user is
member of every group). Boxes and whiskers as in Figure 4.5.

72 Low-latency group communication in mix networks with unreliable connectivity

Similarly, users might be sharing large payloads (e.g. images) or sending multiple updates at once.
Both translate into many messages being scheduled for distribution at the same time, which risks
overwhelming the payload queue. Figure 4.8 shows that Rollercoaster can handle many more
messages sent in bursts than unicast. We observed that with unicast and some Rollercoaster
configurations some nodes had indefinitely growing send buffers as the simulation progressed. The
effect of this can be seen by the higher message latencies for b = 32. This threshold is higher for
p-restricted multicast.

4.4.5 p-restricted multicast

In this evaluation we show that p-restricted multicast allows us to drastically lower the sending rates
λ{p,d,l} of the clients while achieving similar performance. A low sending rate is desirable as it allows
the radio network module to return to standby and thereby saving significant battery energy on mobile
devices. Figure 4.9 shows that just increasing k (left) has negligible or even negative impact, while
increasing k and p together (right) allows for lower sending rate λ while maintaining good enough
performance. We decrease λµ accordingly to maintain the λ/λµ ≥ 2 balance (Section 4.4.1) which
increases the per-hop delays.

4.5 Summary

In this chapter we presented Rollercoaster, a protocol to efficiently send messages within groups
on top of mix networks such as Loopix. It works by involving all group members in the distribution
process and thus improves the overall balance between real messages and cover messages. This
reduces sending rates which in turn provides energy benefits on mobile devices as we saw in the
previous chapter. Importantly, Rollercoaster (excluding the optional MultiSphinx extension)
works without any modification of the underlying anonymity network allowing applications that use it
to share the anonymity set of the entire network.

Building on the basic idea of Rollercoaster, we added fault-tolerance to gracefully handle
clients that are temporarily offline, as this is common with smartphones. We also added an optional
MultiSphinx extension that allows even faster message distribution by duplicating messages as they
travel through the network. In our evaluation we showed that Rollercoaster outperforms unicast
for both average latency and outliers—especially so as the group sizes grow. Our fault-tolerance
mechanism ensures that Rollercoaster maintains its advantages even if some group members are
offline. Finally, we show that it also works well when traffic appears in bursts or when users are
member of multiple groups.

Rollercoaster can be an important building block for applications such as group messaging
and collaborative document editing over an anonymity network. However, just a multicast primitive
by itself is not sufficient to build secure and decentralised applications. In our conclusion chapter we
discuss how Rollercoaster can be integrated with other research and highlight important open
questions for future work.

4.5 Summary 73

 1 2 4 8 16 32
Message burst b (100% online)

1

10

100

1000

10000

M
es

sa
ge

 la
te

nc
y

d m
sg

 [s
]

 1 2 4 8 16 32
Message burst b (80% online)

1

10

100

1000

10000

Unicast RC-FT (k= p= 1) RC-FT (k= p= 2)

Figure 4.8: Message latency dmsg for applications that send b messages at once. The group size is
m = 128. Boxes and whiskers as in Figure 4.5.

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16
0

50

100

150

200

m
ean d

m
sg

Figure 4.9: Heatmaps showing the mean message latency for reduced sending rates (y-axis) and
different Rollercoaster parameters (x-axis). In the left graph only the logical branch factor k
is increased. In the right graph the multicast factor p is increased at the same time. Group size is
m = 128 and 80% online. We present more configurations in Appendix A.2.

Chapter 5

Key stretching and deniable
encryption using the Secure
Element on smartphones

In the previous chapters we discussed protocols for securing communication between devices and
making sure that they do not leak sensible metadata. However, this leaves open the question of how we
can secure data at rest on the devices so that the stored content remains confidential in case a device is
lost or stolen. This local data might be the synchronised document versions of a collaborative editing
app or the message history of a chat app. At first glance this problem appears already solved, as most
smartphones offer encryption of the entire phone storage using either biometrics or passphrases which
allow the legitimate user to unlock the device and the stored data. However, “just encrypting” the
data might not be sufficient for situations where users might be compelled to unlock their device.
These could happen to a person who is suspected of contacting a journalist or an NGO employee
at a border crossing. In such situations, the user should be able to plausibly argue that there is no
interesting information stored on the device at all. This property is called plausible deniability. We
use plausibly-deniable storage for the CoverDrop app (Chapter 6) where users need the ability to
deny that they previously used the whistleblowing feature that is integrated into a news app.

Implementations for plausibly-deniable storage typically rely on memorable passphrases, as the
alternatives are unsuitable: biometrics can be collected from users involuntarily and long, complex
passphrases are not user-friendly. Therefore, we need to use key stretching [77] techniques to derive a
strong, high-entropy cryptographic key from a relatively low-entropy passphrase. Modern password
hashing functions such as PBKDF2 [93], scrypt [105], and Argon2 [24] are typical choices today that
use computation and memory-hard functions to make it costly to try all possible passphrases. However,
an attacker can still increase their brute-force throughput by using more computers. Memory-hard
functions, as used by Argon2, can mitigate some of these risks, such as application-specific integrated
circuits (ASICs), but still leave short passphrases vulnerable to attacks.

In this chapter we design and evaluate a practical key stretching scheme for mobile devices that
uses the Secure Element (SE) of a smartphone to effectively rate-limit the guess rate of an attacker.

76 Key stretching and deniable encryption using the Secure Element on smartphones

We present the two variants LongSloth and RainbowSloth, for Android and iOS respectively, that
can be integrated by developers today on these platforms without any modifications to the hardware
or operating system. In particular, an attacker does not gain any meaningful advantage by using
more computers, as the verification of passphrases is dependent on a cryptographic operation with a
non-extractable key inside the SE. Based on these we construct HiddenSloth, a plausibly-deniable
encryption scheme for mobile applications on both platforms. On Android we extend it with a ratchet
operation so that it remains plausibly-deniable even when an adversary captures multiple snapshots
of the encrypted storage.

Plausibly-deniable storage for desktop computers was first implemented in 2000 with StegFS [89]
and is supported by the popular VeraCrypt [113] (virtual) disk encryption software. Proposed solutions
for mobile devices, such as MobiFlage [124], MobiCeal [31] and the work by Liao et al. [87], require
changes to the operating systems which makes them unlikely candidates for widespread adoption. Also,
these solutions do not provide strict time guarantees like Sloth. For online services, the problem of
parallel offline brute-force attacks is typically addressed through rate-limiting logic in the backend
code. This includes standard login forms over HTTPS as well as password-authenticated key exchange
(PAKE) protocols such as OPAQUE [74]. However, communication with external services leaves
network traces which can threaten plausible deniability, as the adversary can use them as proof of
active usage.

This chapter is based on our paper “Sloth: Key Stretching and Deniable Encryption using Secure
Elements on Smartphones” [70] which is currently under review. For this chapter I adapted the text,
figures, and plots from the Sloth paper to fit with the dissertation. I led the design of the protocol,
implemented the prototype, conducted all experiments, performed the data analysis, and was the
primary author of the text. My co-author Alberto was the main author of the formal proofs which
are included in the appendices. Alberto, Sam, and Alastair contributed towards the development of
the ideas and their presentation.

5.1 Secure Elements on Android and iOS

Before we introduce the Sloth schemes in Sections 5.2f, we discuss typical hardware support for
secure cryptographic operations on smartphones and highlight the limitations of the APIs on both
Android and iOS. We then survey the prevalence of SEs on modern smartphones which shows that
they are widely available with growing support in newer models.

5.1.1 Background

Hardware support for executing code in a secure context is available in many modern smartphones and
Trusted Execution Environments (TEEs) were the first architecture that achieved wide integration.
TEE implementations, such as ARM TrustZone [109], run on the main chip, but in a privileged context
so that even a compromised kernel cannot manipulate them. However, TEEs generally come with
limited protection against side-channel and physical attacks. Secure Elements (SE) are standalone
components with their own dedicated CPU, memory, and storage. This provides stronger isolation
and protection against physical attacks.

5.1 Secure Elements on Android and iOS 77

Android allows developers to create and use keys via its API, which abstracts a Keymaster interface
to manage keys. From API level 23 (Android 6.0 M, released 2015) application developers can verify
that keys are stored inside secure hardware. For phones released around 2015, this would typically
mean that they are managed by a Keymaster implementation inside a TEE. However, from API level
28 (Android 9 P, released 2018), Android supports the StrongBox Keymaster implementation which
must be implemented using an SE [56, 58]. Google supports StrongBox in its flagship models since
the Pixel 3 release in 2018. Other devices might have included SEs before this, but app developers
would not have been able to use them.

Apple refers to SEs in their devices as a Secure Enclave and they are supported in iOS devices
since the iPhone 5S (released 2013) [8]. From the beginning, they have been used to protect biometric
data and secure device encryption. However, they only were exposed to app developers with iOS 13
(released 2019) [12].

While TEEs and SEs allow for a much smaller implementation and attack surface, they are not
impenetrable. Researchers successfully extracted private keys from TrustZone implementations from
Qualcomm [116] and Samsung [120]. Intel’s SGX extension is similar in broad terms to TrustZone
where there are many documented attacks [99].

5.1.2 APIs and limitations

Code that runs on the SE is (by design) executed without any control by the operating system.
Therefore, platforms do not allow developers to run custom code. Instead, they offer access to specific
cryptographic operations through APIs. These APIs serialise the user request and send it to the SE
where it is parsed and executed. The result is returned similarly.

We discuss the API on iOS first as it consists of very few operations. This provides a minimal
attack surface, but as we will see later, it also stands in the way of efficient software implementation.
At the time of writing, iOS only supports storing private P-256 Elliptic Curve (EC) keys [13]. Once
created inside the SE, the API provides methods to sign data, output the corresponding public key,
and perform key agreement via Elliptic Curve Diffie-Hellman (ECDH). The API also provides methods
for encrypting and decrypting data. However, the documentation is not clear on whether this happens
entirely within the SE, or whether the ECDH result is shared with an AES engine outside the chip.

The Android API offers more operations and key types to developers. It uses the Keymaster API
which abstracts the actual key handling from the user. Device vendors implement the Keymaster HAL
which serialises the API calls and communicates with the backend. This backend could be a service
running in a TEE or SE. We are interested in the StrongBox Keymaster implementation which requires
using a SE [58]. It guarantees the availability of the following algorithms: RSA-2048, AES-128/256,
ECDSA P-256, ECDH P-256, HMAC-SHA256, and 3DES. The availability of symmetric cryptography
allows us to come up with a simpler design for Android devices. However, it also increases the
complexity of the implementation that device manufacturers have to provide. Android recently added
a new API setMaxUsageCount for OS version 12+ (Android S, API 31) that deletes the key after a
given number of operations. While it would be convenient, it is implemented at the OS level1, as

1https://cs.android.com/android/platform/superproject/+/master:system/keymint/common/src/tag.rs;l=3
14-333;drc=ed657df7c7b329fb3d26eb0ce88af92594245ae8

https://cs.android.com/android/platform/superproject/+/master:system/keymint/common/src/tag.rs;l=314-333;drc=ed657df7c7b329fb3d26eb0ce88af92594245ae8
https://cs.android.com/android/platform/superproject/+/master:system/keymint/common/src/tag.rs;l=314-333;drc=ed657df7c7b329fb3d26eb0ce88af92594245ae8

78 Key stretching and deniable encryption using the Secure Element on smartphones

Figure 5.1: Distribution of Android versions as shown in the Android Studio IDE for January 6th,
2023 (left) and August 4th, 2022 (right).

StrongBox does not have sufficient persistent per key storage and thus cannot manage respective
counters internally.

5.1.3 Support for Secure Elements on iOS devices

The availability of SE functionality for end-user apps is determined by hardware support, i.e. whether
the device has an SE, as well as platform support for the respective API. As discussed, Apple first
added secure enclaves to their iPhone 5S in 2013 and an API was added in iOS 13 which was released
in 2019. Since the iPhone 5S only supported iOS up to version 12, all devices with iOS 13 (platform
support) also contain a Secure Enclave (hardware support). This is supported by the fact that there
is no API to check for the presence of a Secure Enclave. The App Store statistics for May 2022
show that 82% of all iPhones use iOS 15 and 14% use iOS 14 [9]. No data is given for iOS 13 or
before. Therefore, at least 96% of all iPhones devices expose SE functionality to developers and are
compatible with our Sloth scheme.

5.1.4 Support for Secure Elements on Android devices

The situation for the Android ecosystem is more complex as devices are manufactured by different
vendors with different hardware as well as changes to the operating system. This can lead to situations
where Android devices have an SE, but do not offer API access, or where a device’s API is compatible,
but has no SE. We use the overall distribution of active Android versions as an upper boundary for
platform support. We then execute test code on dozens of real devices to determine hardware support.

For the platform support we use the API Version Distribution that is shown in the “New Project”
wizard in the Android Studio IDE. Figure 5.1 shows the API distribution that is shown when creating
new project in the Android Studio IDE when it was last updated on January 6th, 2023 and for the
previous update in August 4th, 2022. In particular, Figure 5.1 shows that 97.2% of devices run API
level 23 (Android M) or higher and hence provide the API to check whether a key is backed by a
TEE or SE. Furthermore, 81.2% of devices run API level 28 (Android P) or higher and hence provide
the StrongBox API that can enforce storage in an SE.

5.1 Secure Elements on Android and iOS 79

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Release Year

6
7
8
9

10
11
12
13

An
dr

oi
d

OS
 V

er
sio

n

Figure 5.2: Swarm plot of all surveyed Android devices. We use green for StrongBox support, orange
for TEE support, and blue for no support for hardware-backed keys at all.

For hardware support, we use the AWS Device Farm [3] which allows remote access to real
devices in a data centre. We compile a test application and upload it for execution on all selected
device types. Our test code performs multiple checks. First, we create different key types and
then check via KeyInfo#isInsideSecureHardware if it is stored in secure hardware. A positive
answer indicates that the device has a TEE or SE. Then, we read the PackageManager feature flag
for StrongBox support: FEATURE_STRONGBOX_KEYSTORE. Finally, we create different key types with
the setIsStrongBoxBacked property that enforces storing them in an SE and checking for failures.
Figure 5.2 and Table 5.1 summarise our results.

These results show that the vast majority of devices released after 2020 provide access to an SE.
And all of those have at least TEE support. The earliest device with SE support is the Google Pixel
3 which was released 2018. The release year and Android OS version strongly correlate meaning
that newer devices indeed run more recent OS versions. In our sample, all devices with OS version
12+ (Android S, API 31) offer an SE. However, based on the available API distribution (Figure 5.1),
only 14% of active handhelds run this OS version. For an estimate of the overall availability, we take
the relative presence of SEs for each OS version and weight it based on the API distribution. This
yields an estimate of 45% devices supporting SE globally for data from January 2023 (up from 39%
in August 2022). However, this value will differ between countries and we believe it will continue to
improve as more device features, such as contactless payments, rely on SEs.

Note that the percentages are cumulative and in order to get the actual percentage for a specific
version number, e.g. API 9 in January 2023, we calculate 81.2%− 68.0% = 13.2%. For calculating the
estimated share of supported devices we first compute the prevalence of SE support per API level
using Table 5.1. This yields the following data: API 9 (50.0%) API 10 (25.0%) API 11 (57.1%) API
12 (80.0%).

We then calculate for January 2023 as follows: 13.2%× 50.0% + 19.5%× 25.0% + 24.4%× 57.1% +
24.1%× 80.0% ≈ 44.7%. And for August 2022 likewise: 14.5%× 50.0% + 22.3%× 25.0% + 27.0%×
57.1% + 13.5%× 80.0% ≈ 39.1%.

80 Key stretching and deniable encryption using the Secure Element on smartphones

Device Model OS Version Release Year TEE SE

ASUS Nexus 7 - 2nd Gen (WiFi) 6 2013
Google Pixel 7 2016 ✓

Google Pixel 2 8 2017 ✓

Google Pixel 3 9 2018 ✓ ✓

Google Pixel 4 (Unlocked) 10 2019 ✓ ✓

Google Pixel 4a 11 2020 ✓ ✓

Google Pixel 5 (Unlocked) 12 2020 ✓ ✓

Google Pixel 6 (Unlocked) 12 2021 ✓ ✓

Google Pixel 7 13 2022 ✓ ✓

LG Stylo 5 9 2019 ✓

OnePlus 8T 11 2020 ✓

Samsung Galaxy A7 8 2016 ✓

Samsung Galaxy A10s 10 2019 ✓

Samsung Galaxy A13 5G 11 2021 ✓

Samsung Galaxy A40 9 2019 ✓

Samsung Galaxy A51 10 2019 ✓

Samsung Galaxy A71 11 2020 ✓

Samsung Galaxy J7 (2018) 8 2018 ✓

Samsung Galaxy Note 10 9 2019 ✓ ✓

Samsung Galaxy Note 20 11 2020 ✓ ✓

Samsung Galaxy S8 (T-Mobile) 8 2017
Samsung Galaxy S9 (Unlocked) 9 2018 ✓

Samsung Galaxy S10 9 2019 ✓ ✓

Samsung Galaxy S21 Ultra 11 2021 ✓ ✓

Samsung Galaxy S22 5G 12 2022 ✓ ✓

Samsung Galaxy S23 13 2023 ✓ ✓

Samsung Galaxy Tab A 10.1 10 2016 ✓

Samsung Galaxy Tab S4 8 2018 ✓

Samsung Galaxy Tab S6 (WiFi) 9 2019 ✓ ✓

Samsung Galaxy Tab S7 11 2020 ✓ ✓

Samsung Galaxy Tab S8 12 2022 ✓ ✓

Sony Xperia XZ3 9 2018 ✓

Xiaomi 12 Pro 12 2022 ✓

Table 5.1: All 33 surveyed devices from the AWS device farm. The Device Model is the name provided
by the AWS API. The OS Version refers to the tested OS version and the device might be available
with different versions.

5.2 The Sloth key stretching schemes 81

Algorithms and schemes

KDF Key derivation function
H Hash function
Ξ Key stretching scheme
∆ Deniable encryption scheme

Parameters

λ Security parameter for computational security
l Length of the ωpre pre-secret in LongSloth
n Count of ωpre pre-secrets in RainbowSloth

Variables

pw The user password
m The min-entropy of the password distribution
π ∈ Π Storage state (space)
ψ ∈ Ψ State (space) inside the SE
h Key handle for the SE
ω An intermediate secret
k The final derived secret key

Table 5.2: We use these symbols for algorithms, parameters, and variables in our descriptions
throughout this chapter.

5.2 The Sloth key stretching schemes

We introduce our Sloth schemes by first giving a high-level overview of the system (Section 5.2.1)
and our threat model (Section 5.2.2). Then we present the key stretching schemes LongSloth
(Section 5.2.3) for Android and RainbowSloth (Section 5.2.4) for iOS.

Notations. Throughout the chapter, let λ be a freely chosen but fixed security parameter. We write
x.y ← z to denote the assignment of value z to the field y of a named-tuple x. Table 5.2 summarises
the symbols that we use in this chapter.

5.2.1 System overview

Figure 5.3 provides a high-level overview common to all our Sloth schemes. Sloth distinguishes
between two execution spaces: the general device space and the SE. We assume operations performed
on the main device may be controlled by the adversary, e.g. using a local kernel exploit, while we
assume the SE is a separate piece of hardware and remains secure (Section 5.2.2). The user inputs a
password, pw, in the user space. The sloth schemes start by pre-processing pw using the state π ∈ Π
where π is accessible in user space; the output of this pre-processing step, ωpre, is given as input to the
SE. The SE maintains its own secure state, ψ ∈ Ψ, with cryptographic keys inaccessible to the device.
Each key maintained in ψ is associated with a unique (and public) key handle h. The SE accesses ψ
and executes a cryptographic operation SE-OP; its output ωpost is returned to the user space for

82 Key stretching and deniable encryption using the Secure Element on smartphones

pre-
processing SE-OP post-

processing

SE

Figure 5.3: Overview of the abstract design of our Sloth schemes. The user password, pw, is
first pre-processed on the device with access to device state π, producing ωpre; the SE executes
a cryptographic function over ωpre using its internal (hidden) state ψ; the SE’s output, ωpost, is
then returned to the device; the device can then post-process ωpost, for example by applying a key
derivation function, resulting in k as the final output.

User

SE

D
ev

ic
e

ca
pt

ur
e

User

SE

Figure 5.4: The left side illustrates the adversary reach before device capture where the user can
safely operate the smartphone. The right side illustrates the state after capture where only the Secure
Element resists the adversary who gained full-access to the rest of the phone.

further post-processing to derive the final key k. The key k can then be used for authentication, full
disk encryption, or deniable encryption protocols.

5.2.2 Threat model

We assume an adversary can physically capture the device. For instance, they find a lost device on
the street or stop the user at a border crossing. Before the capture, we assume that the device can be
securely and confidentially operated by the user. After the capture, only the SE resists full-access by
the adversary. We illustrate this in Figure 5.4.

The adversary aims to determine whether the device contains any information that are encrypted
under a user-chosen passphrase and if so recover the password, and therefore the information. We
assume passwords are a sequence of characters, including passphrases. Further, we assume that if the
adversary can determine that encrypted information is present on the device, they pressure the user
with this evidence and obtain the correct password. In other words, a successful scheme must provide
plausible deniability and prevent an adversary from distinguishing between encrypted information
and random data.

5.2 The Sloth key stretching schemes 83

However, at the same time, plausibly-deniable encryption schemes, like ours, come with the
drawback that the user cannot prove that a ciphertext does not store meaningful data [75]. An
adversary—accepting to harm plausibly innocent users—might continue pressuring suspects to reveal
passphrases even if it is likely that there is no encrypted data stored at all.

The input, i.e. the user password or passphrase, to our Sloth schemes is typically not uniformly
distributed. However, we assume that this input has “enough randomness” to make it hard for an
attacker to guess and thus can be modelled as a min-entropy probability distribution:

Definition 1 (Min-Entropy Distribution [82]). A probability distribution X has min-entropy (at least)
m if for all a in the support of X and for random variable X drawn according to X , Prob(X = a) ≤
2−m.

The adversary can also use the SE as a black box and can perform any operations via the available
API (through oracle queries which we denote OSE). However, the adversary cannot extract information
about the key material from the SE and they cannot clone the SE. Similar guarantees are given by
Apple for their Secure Enclave [8] and Google for StrongBox implementations [58]. These claims
are taken seriously by vendors: Apple and Google award up to $250 000 [10] and $1 000 000 [57],
respectively, for the discovery of relevant vulnerabilities.

We introduce an abstract definition of an SE. The SE operates on a state ψ that can only be
(meaningfully) accessed by it. In practice, many SEs have limited internal storage and store an
authenticated ciphertext of their state on storage managed by the OS. This encryption is performed
using a secret internal key. As the encrypted key blobs are stored outside the SE, this can allow an
attacker to perform roll-back attacks which we discuss as a practical limitation in Section 5.3.3.

Definition 2 introduces a generic SE as there exist SEs with different capabilities. Later sections
introduce more specialised definitions for SEs with various capabilities.

Definition 2 (Secure Element). A Secure Element SE operates on a hidden state ψ ∈ Ψ using the
algorithm SE.Init and possible extension algorithms. It also has a timing function TAlg that maps
each algorithm Alg and its arguments to a wall time cost. SE.Init : ∅ → Ψ initialises an empty
state Ψ with TSE.Init() = 1. Only the SE that initialised the state can operate on it with any of the
extension algorithms.

We generally assume the adversary only captures the device once, i.e. it is a single snapshot
adversary. We believe that this limitation has little impact on the practicality of our scheme. If the
user suspects that their phone has been tampered with, they can extract their data and perform a full
device reset. Nevertheless, we propose an extra SE-backed layer of protection against multi-snapshot
adversaries in Section 5.3.2.

We assume the adversary has a limited wall time budget B that is spent when performing oracle
operations. The costs for each operation op is defined by Top and deduced from B before it is
executed. We require that the adversary ends the experiment with a non-negative time budget B ≥ 0.
For this we build on the classic notion of probabilistic-polynomial time (PPT) algorithms [76, p. 46f].
We define for any PPT algorithm (including adversary and challenger):

Definition 3 (Wall Time Algorithm). A wall time (WT) algorithm is a PPT algorithm A with an
initial wall time budget of BA ∈ N. During its execution it can perform the operations opi(p1, p2, . . .)
given

∑
i Topi

(p1, p2, . . .) ≤ BA.

84 Key stretching and deniable encryption using the Secure Element on smartphones

In comparison to standard security definitions, the strength is no longer supported by just
asymptotic computational effort in poly(λ), but also by a concrete wall time budget B. This is a
strong property, as it is independent of advances in processing power or utilising more machines.

5.2.3 LongSloth key stretching for Android

LongSloth exclusively relies on symmetrical operations both outside and inside the Secure Element
SE. This enables extremely efficient implementations on Android, but cannot be implemented on
iOS (Section 5.2.4 for a variant compatible with iOS). Particularly, LongSloth operates on an SE
equipped with HMAC support:

Definition 4 (SE with HMAC Support). A Secure Element with HMAC support SE-with-Hmac is
an SE that has two extension algorithms:

SE.HmacKeyGen : Ψ ×H → Ψ generates a new secret key k and updates ψ ∈ Ψ under handle
h ∈ H: ψ.h← k requiring time TSE.HmacKeyGen(ψ, h) = Θ(1).

SE.Hmac : Ψ×H ×M → {0, 1}λ takes a message msg ∈M = {0, 1}∗ and a key handle h ∈ H and
outputs the corresponding HMAC(ψ.h,msg) requiring time TSE.Hmac(ψ, h,msg) = cHmac ·|msg| =
Θ(|msg|), where cHmac is a device specific constant.

Algorithm 3 describes the main operations of LongSloth. The procedure LongSloth.Derive
(line 9) outputs a potentially existing key. During the pre-processing step (Figure 5.3), LongSloth
expands a user password to a bit string ωpre. This is achieved using the PwHash operation that
reads a salt value from the local storage and then hashes the user password to a variable length
output. The output length l = |ωpre| is a configurable parameter to limit the guess rate based on
the SE throughput rate. Next, ωpre is computed by the SE-OP securely inside the SE with a key
selected by the key handle h. This operation is an HMAC producing ωpost that is then hashed into
the final key output k = Hkdf(ωpost) using the hash-based key derivation function HKDF [82].

The generation of a new key k is done similarly. The procedure LongSloth.KeyGen (line 1) first
initialises a new state π with the key handle h and a fresh random salt value. The SE then generates a
new HMAC key under h. It returns the updated state and the key k by calling LongSloth.Derive.

Security intuition. LongSloth is designed to withstand an adversary with a wall time budget
B < 2m × l × cHmac, where m is the min-entropy of the password distribution. That is, the adversary
would need to call 2m times the operation SE.Hmac(x) with |x| = l (Definition 3) to try all possible
user passwords. Intuitively, the security of LongSloth relies on the observation that such an
adversary is unable to distinguish a key k generated by LongSloth from a random bit string.
Section 5.4 provides a formal security analysis based on the observation that HMAC is a PRF [22].

5.2.4 RainbowSloth key stretching for iOS

RainbowSloth relies on an SE equipped with support for Elliptic Curve Diffie-Hellman (ECDH)
key exchanges (Definition 5). RainbowSloth is more complex than LongSloth but is compatible
with both Android and iOS.

5.2 The Sloth key stretching schemes 85

Algorithm 3 The LongSloth protocol with the security parameters l, λ freely chosen, but fixed.
1: procedure LongSloth.KeyGen(ψ, pw, h)
2: π ← {}
3: π.h← h
4: π.salt

$← {0, 1}λ

5: ψ ← SE.HmacKeyGen(ψ, h)
6: k ← LongSloth.Derive(π, ψ, pw)
7: return (π, ψ, k)
8:
9: procedure LongSloth.Derive(π, ψ, pw)

10: ωpre ← PwHash(π.salt, pw, l)
11: ωpost ← SE.Hmac(ψ, π.h, ωpre)
12: k ← Hkdf(ωpost)
13: return k

pre-
processing SE-OP

SE

SE-OP

...

KDF

Figure 5.5: RainbowSloth scheme with a sequence of ωpre,i inputs. The dashed area indicates the
SE. Since there is no parallelism, all SE-OP are executed sequentially.

Definition 5 (SE with ECDH Support). A Secure Element with Elliptic Curve Diffie-Hellman support
SE-with-Ecdh is a SE that has two extension algorithms:

SE.EcdhPrivKeyGen : Ψ×H → Ψ generates a private EC key k and updates ψ ∈ Ψ under handle
h ∈ H: ψ.h← k requiring time TSE.EcdhPrivKeyGen(ψ, h) = Θ(1).

SE.Ecdh : Ψ×H×pub→ {0, 1}λ takes a EC public key pub and a key handle h ∈ H and outputs the
key exchange result Ecdh(ψ.h, pub) requiring time TSE.Ecdh(ψ, h, pub) = cEcdh = Θ(1), where
cEcdh is a device specific constant.

In contrast to LongSloth, RainbowSloth computes a sequence of fixed-sized public keys as
its pre-secrets ωpre,i (Figure 5.5). The processing speed of each ECDH operation is constant since the
public key size is defined by the underlying elliptic curve. Instead of increasing the input length of
each operation, RainbowSloth increases the required number of SE-OP executions to achieve a
given throughput limit.

Algorithm 4 describes the main operations of RainbowSloth. The procedure Rainbow-
Sloth.Derive decrypts a potentially existing key. It first expands the user password into multiple

86 Key stretching and deniable encryption using the Secure Element on smartphones

bit strings ωpre,i with i ∈ [1, n] calling PwHash. Those bit strings are then formatted into P-256
public keys (line 13). The SE uses the key handle h to select a private P-256 key and computes an
ECDH operation with each ωpre,i (line 14). Since the SE has no parallelism, these operations take
place one after another. The resulting values ωpost,i, i ∈ [1, n] are then jointly hashed into a final key
k such that each contributes to all bits of k.

The generation of a new key k is done similarly. The procedure RainbowSloth.KeyGen
(line 1) first initialises a new state π with the key handle h and a fresh random salt value. The
SE then creates a new P-256 key under h. It returns all updated states and the key k by calling
RainbowSloth.Derive as described above.

Algorithm 4 The RainbowSloth protocol with the security parameters n, λ freely chosen, but
fixed.

1: procedure RainbowSloth.KeyGen(ψ, pw, h)
2: π ← {}
3: π.h← h
4: π.salt

$← {0, 1}λ

5: ψ ← SE.EcdhPrivKeyGen(ψ, h)
6: k ← RainbowSlowth.Derive(π, ψ, pw)
7: return (π, ψ, k)
8:
9: procedure RainbowSloth.Derive(π, ψ, pw)

10: l← n× (256
8)

11: ωpre,1 ∥ · · · ∥ ωpre,n ← PwHash(π.salt, pw, l)
12: for i = 1 . . . n do
13: x← ReHashToP256(ωpre,i)
14: ωpost,i ← SE.Ecdh(ψ, π.h, x)
15: k ← Hkdf(ωpost,1 ∥ · · · ∥ ωpost,n)
16: return k

Security intuition. RainbowSloth is designed to withstand an adversary with wall time budget
B < 2m × n× cEcdh (Definition 3), where m is the min-entropy of the password distribution. That is,
the adversary would need to call 2m × n times SE.Ecdh to try all possible user passwords. Similarly
to LongSloth, the security of RainbowSloth relies on the observation that the adversary is unable
to distinguish a key k generated by RainbowSloth from a random bit string. Section 5.4 provides a
formal security analysis assuming the SE runs the ECDH operations in a group where the generalised
decisional Diffie-Hellman problem is hard [17].

Hashing into the P-256 Public Key Space. RainbowSloth requires an operation HashToP256
that maps any bit string seed ∈ {0, 1}∗ to a valid P-256 public key. Each P-256 public key can be
represented by 256 bits for its X-coordinate and a bit that determines the Y-coordinate [28]. However,
not all possible 257-bit strings refer to valid public keys, as the key space only has size 2256. We
designed the ReHashToP256 algorithm and use it in our practical evaluation (Section 5.5).

The ReHashToP256 algorithm (Algorithm 5) considers the SEC-1 octal representation of P-256
curve points with point compression [28]. The representation for P-256 keys starts with a byte that is
either 0x02 or 0x03 for the Y-coordinate information bit followed by 32 bytes for the X-coordinate.
The algorithm repeatedly hashes the seed string and a counter to a candidate octet array. The first

5.3 The HiddenSloth deniable encryption scheme 87

octet is then set as 0x02 or 0x03 based on the parity of the original value of the first octet. We try to
convert each candidate array to a P-256 public key using the Sec1OctetImportP256 algorithm [28,
§2.3.4]. If it returns invalid (⊥) or the point at infinity (O), the counter is incremented and the
algorithm is repeated. Otherwise, a valid P-256 public key is returned (line 6). A similar approach is
sketched in the Elligator paper [23, §1.4].

The runtime of this algorithm depends on finding a valid public key representation in one of
its iterations. Since the output of the KDF can be considered pseudo-random, each iteration is
independent and roughly half of the candidate octet arrays are invalid. We thus expect that the
algorithm terminates with less than 10 iterations in 1− 0.510 ≥ 99.9% of all cases. Hashing with a
counter instead of re-hashing the seed avoids falling into small loops that consist only of “bad seeds”.
The probability of the algorithm not terminating in polynomial-time is negligible.

Algorithm 5 The ReHashToP256 algorithm that maps any bit string seed ∈ {0, 1}∗ to a valid
P-256 public key.

1: counter ← 0
2: while true do
3: arr ← KDF(seed ∥ counter)[0 : 32]
4: arr[0] = 0x02 | (arr[0] & 0x01)
5: x = Sec1OctetImportP256(arr)
6: if x ̸= ⊥ and x ̸= O then return x
7: counter ← counter + 1

Alternatively, one might build an equivalent construction using the Elligator Squared (E2) [132]
technique. E2 maps an elliptic curve point to a bit string that is indistinguishable from random.
Such a bit string can then be mapped back to an elliptic curve point. While it can be computed
efficiently [14], E2 bit strings require more space. A more practical concern is that we are not aware
of any freely available implementation. However, if deterministic runtime is required, E2 can be used
as a drop-in replacement for ReHashToP256.

5.3 The HiddenSloth deniable encryption scheme

Our generic methods to store and derive a key k can be used to build a deniable encryption (DE)
scheme. We require a DE scheme to have three methods: (i) an Init method that initialises a new
storage of a given maximum size, (ii) an Encrypt method that stores data encrypted with a given
password, and (iii) a Decrypt method that retrieves and decrypts data from storage if there is any
saved with the given password (and otherwise fails).

We present two variants of our deniable encryption scheme, 1S-HiddenSloth (Section 5.3.1) and
MS-HiddenSloth (Section 5.3.2). 1S-HiddenSloth withstands an adversary capable of capturing
a single snapshot of the user’s device and MS-HiddenSloth withstands an adversary capable of
capturing multiple snapshots at different points in time.

5.3.1 Single-snapshot variant

For most real-world scenarios, the single-snapshot adversary is the most realistic threat model. An
adversary gaining access to a phone through finding or stealing it has no prior snapshot or knowledge

88 Key stretching and deniable encryption using the Secure Element on smartphones

of the phone state, and hence cannot perform multi-snapshot attacks. Similarly, an adversary who
confiscates a device can rarely do so covertly. When a user suspects an adversary captured a snapshot
of their phone storage state, they can reset the phone and thus revert to a single-snapshot scenario.
Nevertheless, there may be situations where an adversary can obtain multiple copies of the phone
state over time; this is addressed in Section 5.3.2.

Algorithm 6 The deniable encryption against single-snapshot DESS protocol (1S-HiddenSloth)
for maximum data size s ≤ 231 and security parameter λ freely chosen, but fixed. The underlying
Sloth protocol can be instantiated with either variant.

1: procedure DESS.Init(ψ, h, s)
2: pw

$← {0, 1}λ

3: ψ, π, k ← Sloth.KeyGen(ψ, pw, h)
4: π ← DESS.Encrypt(π, ψ, pw, [])
5: return (π, ψ)
6:
7: procedure DESS.Encrypt(π, ψ, pw, data)
8: k ← Sloth.derive(π, ψ, pw)
9: x← UInt32(|data|) ∥ data ∥ 0 (|π.data|−|data|−4)

10: π.iv
$← {0, 1}λ

11: π.blob, π.tag ← AE.Enc(k, iv, x)
12: return π
13:
14: procedure DESS.Decrypt(π, ψ, pw)
15: k ← Sloth.derive(π, ψ, pw)
16: x← AE.Dec(k, π.iv, π.blob, π.tag)
17: if x = ⊥ then return ⊥
18: s′ ← UInt32(x[: 4])
19: return x[4 : 4 + s′]

Algorithm 6 presents 1S-HiddenSloth, a single-snapshot resistant deniable encryption scheme.
When calling the Init procedure, the algorithm allocates a storage file blob and fills it with random
bytes to the given size (plus an allowance for overhead). This is implemented by encrypting a zeroed
payload using a randomly chosen password (line 4). Upon encrypting new user data by calling the
Encrypt procedure, the user provides a passphrase pw used to derive a cryptographic key k (using
either LongSloth or RainbowSloth, see Sections 5.2.3–5.2.4). The payload is then prefixed with
a 4-bytes integer representing its length and padded to the maximum size s. The resulting byte string
is encrypted using the key k, for instance using AES-GCM. For the Decrypt operation, the key
k is derived analogously and the algorithms attempt to decrypt the file. If this operation fails, an
adversary will not be able to tell whether the passphrase was wrong or there was no previous call to
Encrypt at all.

Besides our simple construction, Sloth can be used with existing designs that provide more
features such as considerations of the flash storage layer and supporting both cover and multiple
hidden volumes.

5.3 The HiddenSloth deniable encryption scheme 89

5.3.2 Multi-snapshot variant

In some scenarios the adversary might be able to access the storage state on multiple occasions. This
may happen, e.g. if an app’s data is backed up to the cloud to protect against device loss. Intuitively,
1S-HiddenSloth does not withstand such an adversary because changes in the ciphertext leak that
the storage was overwritten between the device capture events.

MS-HiddenSloth overcomes this limitation and allows the adversary to capture the storage
state π multiple times. However, our model restricts the adversary to only access the SE once they
finally gain physical access to the device (recall Figure 5.4). That is, the adversary can perform SE
calls only during the last device capture event. We believe this restriction is practical as smartphones
are usually with the user and hence not likely available for covert access by the adversary. Also, if
the adversary had such local privileged access multiple times they could simply install malware that
records the keyboard and screen.

MS-HiddenSloth requires a SE that supports (unauthenticated) symmetric encryption:

Definition 6 (SE with Symmetric Encryption). A Secure Element with symmetric encryption support
SE-with-SymmEnc is an SE that has three extension algorithms:

SE.SymmKeyGen : Ψ × H → Ψ generates a new secret key k and updates ψ ∈ Ψ under handle
h ∈ H: ψ.h← k requiring time TSE.SymmKeyGen(ψ, h) = Θ(1).

SE.SymmEnc : Ψ × H × IV ×M → C takes an initialisation vector iv ∈ IV and a key handle
h ∈ H and outputs the ciphertext SymmEnc.Encrypt(ψ.h, iv,m) = c ∈ C for the message
msg ∈M requiring time TSE.SymmEnc(ψ, h,msg) = Θ(|msg|).

SE.SymmDec : Ψ × H × IV × C → M takes an initialisation vector iv ∈ IV and a key handle
h ∈ H and outputs the message SymmEnc.Decrypt(ψ.h, iv, c) = msg ∈M for the ciphertext
c ∈ C requiring time TSE.SymmEnc(ψ, h, c) = Θ(|c|).

To protect against a multi-snapshot adversary MS-HiddenSloth wraps the storage in another
layer of encryption guarded by an additional symmetric key kSE held in the SE’s secure state under
handle h′. The outer layer is periodically re-encrypted using a new temporary key tk, which in turn is
re-encrypted with a fresh kSE . The re-encryption process (DEMS.Ratchet) should happen at least
as often as the adversary has the opportunity to access the stored data. For instance, for a backed-up
app, this would happen after every upload operation. In other cases, every app restart could be used
as a trigger event. An important design feature of MS-HiddenSloth is that it does not require the
user’s password to execute the re-encryption process; that is, the procedure DEMS.Ratchet can be
executed entirely in the background without user interaction.

MS-HiddenSloth algorithm. Algorithm 7 presents all the operations of MS-HiddenSloth. The
initial state is initialised similarly to 1S-HiddenSloth but with the creation of an additional SE
secret key (kSE) associated with the handle h′ (line 4). To encrypt new data, MS-HiddenSloth
first encrypts them as in 1S-HiddenSloth; it then generates an ephemeral key tk that is used to
re-encrypt the data (line 11). This ephemeral key is finally encrypted using the SE’s secret key
generated at line 4 and stored in the user space π. To decrypt existing data, MS-HiddenSloth
first decrypts the ephemeral key tk (line 19); it then uses that key to decrypt the outer encryption
layer (line 20) and finally decrypt the data (line 21).

90 Key stretching and deniable encryption using the Secure Element on smartphones

Algorithm 7 The deniable encryption against multi-snapshot DEMS protocol (HiddenSloth) for
maximum data size s ≤ 231 and security parameter λ freely chosen, but fixed. The underlying Sloth
protocol can be instantiated with either variant.

1: procedure DEMS.Init(ψ, h, s)
2: π, ψ, k ← DESS.Init(ψ, h ∥ 0, s)
3: π.h′ ← h ∥ 1
4: ψ ← SE.SymmKeyGen(ψ, π.h′)
5: pw

$← {0, 1}λ

6: π ← DEMS.Encrypt(π, ψ, pw, [])
7: return (π, ψ)
8:
9: procedure DEMS.Encrypt(π, ψ, pw, data)

10: π ← DESS.Encrypt(π, ψ, pw, data)
11: π.tk ← AE.KeyGen(); π.tiv $← {0, 1}λ

12: π.blob, π.ttag ← AE.Enc(π.tk, π.tiv, π.blob)
13: for K ∈ {iv, tag, tk, tiv, ttag} do
14: π.K ← SE.SymmEnc(ψ, π.h′, π.K)
15: return π
16:
17: procedure DEMS.Decrypt(π, ψ, pw)
18: for K ∈ {iv, tag, tk, tiv, ttag} do
19: π.K ← SE.SymmDec(ψ, π.h′, π.K)
20: π.blob← AE.Dec(π.tk, π.tiv, π.blob, π.ttag)
21: return DESS.Decrypt(π, ψ, pw)
22:
23: procedure DEMS.Ratchet(π, ψ)
24: for K ∈ {iv, tag, tk, tiv, ttag} do
25: π.K ← SE.SymmDec(ψ, π.h′, π.K)
26: π.blob← AE.Dec(π.tk, π.tiv, π.blob, π.ttag)
27: π.tk ← AE.KeyGen(); π.tiv $← {0, 1}λ

28: π.blob, π.ttag ← AE.Enc(π.tk, π.tiv, π.blob)
29: ψ ← SE.SymmKeyGen(ψ, π.h′)
30: for K ∈ {iv, tag, tk, tiv, ttag} do
31: π.K ← SE.SymmEnc(ψ, π.h′, π.K)
32: return (π, ψ)

5.3 The HiddenSloth deniable encryption scheme 91

The re-encryption process (ratchet) works similarly to decryption followed by an encryption
operation. It firsts retrieves the temporary key tk and uses it to decrypt the outer encryption layer.
It then generates a new temporary key that is used to re-encrypt the data and thus create a new
outer encryption layer; the new temporary key is then encrypted by the SE and persisted in the
user space. For performance reasons, MS-HiddenSloth does not perform the re-encryption process
over the actual data π.blob inside the SE; it instead re-encrypts the data with a temporary key π.tk.
This temporary key π.tk and its related fields π.tiv, π.ttag are freshly generated at every encryption
(line 11) and ratchet step (line 27); they are only stored encrypted with the SE’s secret key generated
at line 4. The indirection via π.tk allows to leverage the faster AES engine on the main CPU without
sacrificing security.

Security intuition. This extra encryption layer is sufficient to withstand a multi-snapshot adversary,
as the adversary will always encounter a random-looking ciphertext. When the adversary finally gains
access to the SE, they can only reverse it for the last ciphertext, but not for any beforehand. A similar
technique of adding a reversible encryption layer is not possible in existing schemes without an SE as
the encryption key would be part of the captured storage state. An alternative would be decrypting
and re-encrypting the user data at every event. This would however be impractical as it necessitates
the user to input their passphrase for each of these events.

5.3.3 Practical implementation considerations

Sloth is generally more practical than other schemes that rely on compute and memory-hard functions.
This is because their parameters have to be chosen from the perspective of an attacker with access to
a large parallel cluster of machines that are more powerful than a smartphone.

For the regular Sloth key stretching schemes and 1S-HiddenSloth, the implementation must
not use a file system or underlying storage technology that allows an attacker to discover whether and
when a file was overridden. However, since the ratchet steps for MS-HiddenSloth are assumed to
be predictable from the adversary’s perspective, its security guarantees hold for any form of storage.

The actual implementation into a production app also needs to consider the allocated space for the
deniable encryption since it should always be the same size regardless of the actual usage. Developers
have to weigh the costs of having a large encrypted file for non-users against the storage requirements
of its active users. Since MS-HiddenSloth regularly re-encrypts all its data, the performance and
energy impact need to be considered as well. Finally, developers must take care that the deniable
parts of the application do not leave any other traces in the form of crash reports and logging output.

In addition to application-specific storage, the details of how the SE is implemented and stores
its state are important as well. In particular, the limited on-chip storage means that SEs typically
persist their state as encrypted key blobs and metadata using the main device storage. While the
used techniques generally provide strong confidentiality and integrity, they often only provide coarse
roll-back protection. For instance, on Android, only OS updates cause the StrongBox roll-back
protection counter to increment. As such, Android devices are vulnerable to roll-back attacks where
the adversary can replace the encrypted key blobs2 with older versions. The iOS documentation is
inconclusive regarding roll-back protection for stored secrets on iPhones and iPads.

2Typically stored in /data/misc/keystore/persistent.sqlite

92 Key stretching and deniable encryption using the Secure Element on smartphones

For our HiddenSloth scheme which relies on ratcheting keys, the missing roll-back protection
can allow an adversary to detect changes if they both capture the encrypted key blobs and Sloth
ciphertexts before and after a suspected usage event and later gain oracle access to the SE. However,
we note that the encrypted key blobs are typically not accessible by application processes and they are
never backed up by the system. Therefore, the ratcheting mechanism still provides value for scenarios
where an adversary gains access to online backups that inadvertently include Sloth ciphertexts.

5.4 Security analysis

We formally capture the security of our Sloth schemes using experiments between a challenger C
and a wall-time bounded (WT) adversary A (Definition 3).

5.4.1 Security of the key stretching schemes

We prove the security of LongSloth and RainbowSloth. For this we formally define an SE-backed
key stretching scheme and and experiments for key stretching indistinguishability and hardness. The
success of a WT adversary is controlled by the time required by the SE to execute operations TSE-OP

(and the Sloth parameters).

Definition 7. A key stretching scheme Ξ for fixed security parameter λ consists of two algorithms:

KeyGen : Ψ × P × H → Π × Ψ × {0, 1}λ takes an SE state, a password, and a key handle and
returns a new storage state, an updated SE state, and the derived key.

Derive : Π × Ψ × P → {0, 1}λ takes a storage state, SE state, and a password to derive a key
k ∈ {0, 1}λ.

We require for correctness that after the initialisation operation (π, ψ, k)← KeyGen(ψ′, pw, h) and
all subsequent Derive(π, ψ, pw) executions return the same k.

The adversary must not learn any information about either the password or the generated key.
We propose an experiment where the adversary is required to distinguish between a truly random
bit string and a key generated from a password. If an WT adversary fails to do so better than with
negligible probability, even when given access to the stored information and oracle access to the SE,
we say that the key stretching scheme is indistinguishable.

Definition 8 (Key Stretching Indistinguishability Experiment). Let P be a probability distribution
with min-entropy m. Let A be a WT adversary with wall time budget B and C a WT challenger. Let
Ξ be a key stretching scheme. Then the key stretching indistinguishability experiment KeyIndAΞ(λ,P)
is defined as follows:

1. The adversary A provides the challenger C with a password pw $← P.
2. C randomly samples b $← {0, 1}. Let ψ be freshly initialised and h an arbitrary, but fixed key

handle.
3. C computes π, ψ, k0 ← Ξ.KeyGen(ψ, pw, h) under λ and samples k1 ← {0, 1}λ.
4. The adversary A receives (π, ψ, kb).
5. A receives oracle access OSE (WT conditions).

5.4 Security analysis 93

6. A outputs a bit b′ and wins iff b = b′.
7. The experiment returns 1 iff A wins, otherwise 0.

Definition 9 (Key Stretching Indistinguishability). A key stretching scheme Ξ is m-entropy indistin-
guishable if for all WT adversaries A, there is a negligible function negl:

Pr[KeyIndA,Ξ(λ,P) = 1] ≤ 1
2 + negl(λ),

where P is a probability distribution with min-entropy m.

The LongSloth and RainbowSloth schemes respectively described in Section 5.2.3 and Sec-
tion 5.2.4 fulfil these definitions as per the following theorems.

Theorem 10 (LongSloth Indistinguishability). Let P be a random distribution with min-entropy
m. The key stretching scheme LongSloth is m-entropy indistinguishable.

Proof. We present a full proof in Appendix B.1.1.

Theorem 11 (RainbowSloth Indistinguishability). Let P be a random distribution with min-entropy
m. The key stretching scheme RainbowSloth is m-entropy indistinguishable.

Proof. We present a full proof in Appendix B.2.1.

In addition to the theoretical result above, we are interested in the practical success rate of a
brute-force attacker, i.e. given k find pw with wall time budget B.

Definition 12 (Key Stretching Hardness Experiment). Let P be a probability distribution with
min-entropy m. Let A be a WT adversary with wall time budget B and C a WT challenger. Let Ξ be
a key stretching scheme. Then the key stretching hardness experiment KeyHardAΞ(λ,P) is defined
below:

1. C samples a password pw
$← P. Let ψ be freshly initialised and h an arbitrary (but fixed) key

handle.
2. C computes k = Ξ.KeyGen(ψ, pw, h).
3. A receives (π, ψ, k).
4. A receives oracle access OSE (WT conditions).
5. A outputs a pw′ and wins iff

k = Ξ.Derive(ψ, pw′, h).
6. The experiment returns 1 iff A wins, otherwise 0.

Definition 13 (Key Stretching Hardness). A key stretching scheme Ξ is σ-hard if for all WT
adversaries A with wall-time budget B,

Pr[KeyHardA,Ξ(λ,P) = 1] ≤ B

σ · 2m
,

where P is a probability distribution with min-entropy m.

Theorem 14 (LongSloth Hardness). Let P be a random distribution with min-entropy m. Then
the key stretching scheme LongSloth with parameter l is (l · cHmac)-hard.

94 Key stretching and deniable encryption using the Secure Element on smartphones

Proof. We present a full proof in Appendix B.1.2.

Theorem 15 (RainbowSloth Hardness). Let P be a random distribution with min-entropy m.
Then the key stretching scheme RainbowSloth with parameter n is (n · cEcdh)-hard.

Proof. We present a full proof in Appendix B.2.2.

5.4.2 Security of the deniable encryption schemes

Similarly to key stretching, we discuss the security of deniable encryption by giving formal definition,
describing security experiments, and then showing that an adversary has at most a negligible advantage.
We only discuss the multi-snapshot case and prove the security of MS-HiddenSloth. A similar (and
simpler) reasoning applies to 1S-HiddenSloth.

Definition 16 (SE with MS Deniable Encryption Support). A SE-backed deniable encryption scheme
∆ for fixed security parameter λ and maximum data size s ∈ N consists of three algorithms:

Init : Ψ ×H × N → Π ×Ψ takes a SE state, a key handle, and storage size s and returns a new
storage state and SE state.

Encrypt : Π×Ψ× P × {0, 1}s → Π updates a storage state for given SE state and a password so
that it now stores the given data.

Decrypt : Π×Ψ×P → {0, 1}s ∪ {⊥} tries to decrypt from the storage state given the password. If
successful, the previously stored data is returned, otherwise ⊥.

Ratchet : Π×Ψ→ Π×Ψ updates the storage and SE state by decrypting and re-encrypting the
stored data.

Definition 17 (MS Deniable Encryption Indistinguishability Experiment). Let λ be a fixed security
parameter and s the maximum data size. Let P be a probability distribution with min-entropy m.
Let A be a WT adversary with wall time budget B and C a WT challenger. Let ∆ be a multi-
snapshot deniable encryption scheme. Then the multi-snapshot deniable encryption indistinguishability
experiment DE-MS-IndA,∆(λ,P) is defined as follows:

1. The challenger C randomly samples b $← {0, 1} and pw
$← P. Let ψ0, ψ1 be freshly initialised

and h an arbitrary, but fixed key handle.
2. C computes π0, ψ0 ← ∆. Init(ψ0, h, s) and

π1, ψ1 ← ∆. Init(ψ1, h, s) under λ.
3. A sends any b̃ ∈ {0, 1} and msg ∈ {0, 1}s to C.
4. C executes πb̃ ← ∆MS .Encrypt(πb̃, ψb̃, pw,msg), then C sends πb̃ to A.
5. A can repeat execution from step 3 several times (under WT conditions).
6. C randomly samples b $← {0, 1}, computes πb, ψb ← ∆.Ratchet(πb, ψb), and provides A with

(πb, ψb).
7. A receives oracle access OSE under the WT conditions.
8. A outputs a bit b′ and wins iff b = b′.
9. The experiment returns 1 iff A wins, otherwise 0.

5.5 Evaluation 95

Definition 18 (MS Deniable Encryption Indistinguishability). A multi-snapshot deniable encryption
scheme ∆ is B-time m-entropy secure if for all WT adversaries A with time budget B, there is a
function negl such that

Pr[DE-MS-IndA,∆(λ,P) = 1] ≤ 1
2 + negl(λ),

where P is a probability distribution with min-entropy m.

Theorem 19. (MS-HiddenSloth Indistinguishability) The multi-snapshot deniable encryption
scheme MS-HiddenSloth is B-time m-entropy secure.

Proof. We present a full proof in Appendix B.3.1.

Similarly to the key stretching scheme, we analyse the practical success rate of a brute-force
attacker.

Definition 20 (Deniable Encryption Hardness Experiment). Let P be a probability distribution with
min-entropy m. Let A be a WT adversary with wall time budget B and C a WT challenger. Let ∆
be a key stretching scheme. Then the deniable encryption hardness experiment DeHardA∆(λ,P) is
defined as follows:

1. A provides C with data with |data| > 0.
2. C samples a password pw

$← P. Let ψ be freshly initialised and h an arbitrary (but fixed) key
handle. Let π, ψ = ∆. Init(ψ, h, |data|).

3. C computes π = ∆.Encrypt(π, ψ, pw, data).
4. A receives (π, ψ).
5. A receives oracle access OSE (WT conditions).
6. A outputs a pw′ and wins iff

data = ∆.Decrypt(π, ψ, pw′).
7. The experiment returns 1 iff A wins, otherwise 0.

Definition 21 (Deniable Encryption Hardness). A deniable encryption scheme ∆ is σ-hard if for all
WT adversaries A with wall-time budget B,

Pr[DeHardA,∆(λ,P) = 1] ≤ B

σ · 2m
,

where P is a probability distribution with min-entropy m.

Theorem 22 (MS-HiddenSloth Hardness). Let P be a random distribution with min-entropy m.
Then the deniable encryption scheme MS-HiddenSloth instantiated with a σ-hard key stretching
scheme is σ-hard.

Proof. We present a full proof in Appendix B.3.2.

5.5 Evaluation

We first measure the performance of SEs in Android and iOS devices (Section 5.5.1). These numbers
will then guide the choice of practical parameters for our schemes (Section 5.5.2). With these

96 Key stretching and deniable encryption using the Secure Element on smartphones

6 7 8 9 10 11 12 13 14 15 16 17 18
Operation duration [ms]

iPhone XR (14.0)

iPhone 11 (16.3)

iPhone 12 (15.6.1)

iPhone 13 (16.0.2)

iPhone 14 (16.1)

Co
nf

ig
ur

at
io

n

A12
A13

A14
A15

Figure 5.6: The duration of the ECDH operation on iOS for different phones (iOS version in brackets).
The colours indicate the chip generation used in the respective phone.

parameters, we test full implementations of LongSloth and RainbowSloth on Android and iOS
devices (Section 5.5.3). We also analyse the Ratchet operation of HiddenSloth (Section 5.5.4).

5.5.1 Performance of Secure Element operations

For iOS devices we measure the duration of the Secure Enclave’s ECDH operations on the recent
iPhones from XR to 14. These cover the Apple chips A12, A13, A14, and A15. We wrote a benchmark
app that first creates a secret P-256 key within the SE. It then creates a new random public key and
performs ECDH with the private key within the SE. We repeat the ECDH step 1 000 times with the
new public keys and measure the elapsed time. The results (Figure 5.6) show that similar chips have
similar run times, e.g. A15 for iPhone 13 and iPhone 14. All measurements are between 6 ms and 16 ms
with little variance per model. Surprisingly, the A13 chip has lower throughput than its predecessor.
However, A13 is also the first one with a mathematically verified public key implementation [8] which
might point to a difference in the underlying algorithm.

For Android devices, we measure the duration of HMAC executions for inputs of varying lengths
on multiple devices. We wrote a benchmark tool that first creates a secret key within the SE. It then
generates random byte arrays as inputs, passes these as input to the SE, and receives the computed
HMAC value as a result. We repeat this step 10 times for each device and input length to measure
the elapsed time. The results are shown in Figure 5.7. Intuitively, the measured time increases with
input length in an almost linear manner. There are minor inflection points that differ between the
devices. In our experiments, the Samsung phones also have a 10× higher bandwidth compared to
the Google devices. For our parameter choice, this will result in a larger l value for those devices.
Notably, for the same device and input length, the variance is very small. Once the parameters are
established for each device, their impact is predictable and dependable.

5.5.2 Choosing Sloth parameters

For our evaluation, we target a security level of Ttotal = 100 years (Table 5.3). We treat the acceptable
password complexity, such as the alphabet size and the number of characters, as input parameters.
Other than classic alphanumerical passwords3, we also consider passphrases that are based on the EFF
word list [26] that contains 7776 words and PINs consisting of only digits. Let |A| be the alphabet

3Alphanumerical passwords can contain the case-sensitive letters a-zA-Z and the digits 0-9. Hence, |A| = 76.

5.5 Evaluation 97

1 KiB 10 KiB 100 KiB
Payload [bytes]

102

103

104

Du
ra

tio
n

[m
s]

Google Pixel 3 Google Pixel 7 Samsung Galaxy S21 Samsung Galaxy S22 5G

Figure 5.7: The duration of a HMAC operation on Android within the StrongBox supported chip for
different payload sizes and phones. Both axes are log-scale.

Entropy 50 years 100 years

WordList (3 words) = c1 38.8 3.4 ms 6.7 ms
WordList (4 words) 51.7 0.1 ms 0.1 ms

AlphaNumerical (5 characters) 29.8 1.7 s 3.4 s
AlphaNumerical (6 characters) = c2 35.7 27.8 ms 55.5 ms
AlphaNumerical (7 characters) 41.7 0.4 ms 0.9 ms

PIN (9 digits) 29.9 1.6 s 3.2 s

Table 5.3: Overview of password configurations, their entropy in bits, and the required tindividual for
achieving given security margins.

98 Key stretching and deniable encryption using the Secure Element on smartphones

3 words 6 characters
tc1 = 67 ms tc2 = 555 ms

LongSloth (parameter: l)

Google Pixel 3 1 500 11 600
Google Pixel 7 4 500 24 200
Samsung Galaxy S21 10 700 178 000
Samsung Galaxy S22 2 200 145 100

RainbowSloth (parameter: n)

iPhone 11 6 43
iPhone 12 10 76
iPhone 13 12 95

Table 5.4: Smallest possible parameter choices for given password configuration and its tindividual

augmented by a safety factor of 10×.

size and |pw| the password length, then the entropy for a configuration is e = log2(|A||pw|). We want
that an attacker’s worst-case to match the targeted security level, i.e. if they brute-force the entire
space, then they require at least Ttotal. Let Ttotal be the targeted security level, then for a password
configuration with entropy e each password verification should take at least tindividual = Ttotal × 2−e.
We provide sample numbers for different configurations in Table 5.3.

The password configurations that we show in this table are shorter than those used in web
applications nowadays. This is because for Sloth the parameter choice does not need to conservatively
assume an attacker with highly parallel computing resources. Short passwords, and in particular
passphrases generated from word lists, are more memorable and can be generated by the application
for the user — and thus avoid the problem of users picking weak passwords or reusing the same one
for different services.

In our main evaluation (Section 5.5.3) we will examine two configurations: 3-word passphrases
from the EFF word list (c1) and 6-character alphanumerical passwords (c2). In both cases, we multiply
the minimal tindividual (Table 5.3) by a safety factor of ×10 for conservative parameter choice.
Therefore: tc1 = 67 ms and tc2 = 555 ms. This safety factor can account for the attacker over-clocking
the SE and overhead by the operating system when communicating with the chip that an attacker
might be able to “optimise away”.

With the required minimum times tc1 and tc2 for the individual operations, we determine l for
LongSloth on Android and n for RainbowSloth on iOS. On Android, we use the measurements
from Figure 5.7 to fit a second-degree polynomial where we set the y-values to the smallest measurement
for a given size minus 2 standard deviations. We then pick the l value at the intersection with the
desired duration and round to the next multiple of 100. On iOS we pick the 10th percentile value tp10

of our measurements as a conservative worst-case (i.e. fastest) duration and then compute nc = ⌈ tc

tp10
⌉

for c ∈ {c1, c2}. The resulting values are summarised in Table 5.4. If an app cannot find existing
parameters for a new device type, it can perform a similar method on its first start to self-calibrate.

5.5 Evaluation 99

50 75 100 125 150 175 200

Google Pixel 3
Google Pixel 7
S. Galaxy S21
S. Galaxy S22

500 550 600 650 700 750 800 850

50 75 100 125 150 175 200
Duration [ms]

iPhone 11

iPhone 12

iPhone 13

500 550 600 650 700 750 800 850
Duration [ms]

Figure 5.8: The duration of the LongSloth.Derive operation on Android (top)
RainbowSloth.Derive operation on iOS (bottom). For both we evaluated the configurations
c1 (left) and c2 (right) from Table 5.4 for different phones. The red lines indicate the threshold times
tc1 and tc2.

5.5.3 LongSloth and RainbowSloth

We implemented LongSloth on Android and RainbowSloth on iOS. All code including documen-
tation and analysis scripts will be made available under an open-source license. Where possible we
use the existing cryptography APIs of the platform, with AES-GCM for symmetric authenticated
encryption, and HKDF-SHA256 as the KDF. For PwHash we use the third-party LibSodium
library which is available on both platforms and implements the memory-hard password hashing
algorithm Argon2 [24]. For the evaluation, we choose the recommended OWASP parameters for
Argon2id with 19 MiB of memory and an iteration count of 2 [102]. Since one could opt for another
PwHash implementation, we exclude its runtime (50 ms) from our results for LongSloth and
RainbowSloth.

For our evaluation, we are interested in the duration of the Sloth.derive operations, as these
determine the time costs for an attacker. We use the parameters as chosen in Section 5.5.2 including the
safety factor and execute each operation 10 times. The results are shown in Figure 5.8 for LongSloth
on Android RainbowSloth on iOS. In all cases, the measured total durations comfortably exceed
the threshold times tc1 and tc2. This confirms that with our parameter choice, the algorithm meets
its minimum timing promise and hence key stretching security. The variance for the individual
configurations is small which can allow for reducing the safety factor.

5.5.4 HiddenSloth

For the deniable encryption scheme HiddenSloth we evaluate its Ratchet methods for varying
maximum data sizes s. This parameter s spans from a small storage size that might wrap text-only
configurations (1 MiB) to larger ones that can store long chat histories including media (100 MiB).
In these experiments, we use the faster tc1 for the underlying Sloth schemes. As HiddenSloth
requires an SE-with-SymmEnc, we evaluate it only on Android devices. Our results are shown in
Figure 5.9. The measured durations are similar for all test devices and range from less than 1 s for
1 MiB to about 10 s for storage with 100 MiB capacity. We note that the Ratchet step does not

100 Key stretching and deniable encryption using the Secure Element on smartphones

1 MiB 10 MiB 100 MiB
Max data size (s) [bytes]

103

104

Du
ra

tio
n

[m
s]

Google Pixel 3 Google Pixel 7 Samsung Galaxy S21 Samsung Galaxy S22

Figure 5.9: Duration of the HiddenSloth.Ratchet step for different phones (various max size s).
Both axes are log-scale.

require any user interaction and thus can be executed in the background. As such, the multi-second
duration has no user-visible impact and we suggest scheduling it when the device is idle and charging.

5.6 Summary

In this chapter we presented the LongSloth and RainbowSloth key stretching schemes that use
the SE to provide strict time guarantees. This means that adversaries cannot speed up brute-force
attacks by using more computers. Notably, Sloth can be used today on modern smartphones as a
drop-in replacement for other password-based key derivation functions without requiring modifications
to software or hardware. Based on the Sloth key stretching schemes we constructed the plausibly-
deniable encrypted storage protocol HiddenSloth. On Android we can extend HiddenSloth so that
it additionally supports resistance against multi-snapshot adversaries through a ratchet mechanism
based on a SE-backed key.

In our survey of SE availability we showed that support is widespread and becoming standard on
both modern Android and iOS devices. Our implementations of LongSloth, RainbowSloth, and
HiddenSloth demonstrate that they are practical on these devices without any additional changes.
In our evaluation we show that both key stretching schemes—and hence also HiddenSloth—work
well with short, memorable passphrases that consist of only few words. This is important as it allows
the application to provide randomly-generated passphrases to avoid weak user-chosen passphrases.
Finally, we formalised the security of SE-based operations and used this to prove the security of our
Sloth schemes.

In the next chapter we present CoverDrop, a system where whistleblowers can establish contact
with journalists in a secure and anonymous way. CoverDrop is integrated as an additional feature
in the regular news reader app, allowing all users to form a common anonymity set. Importantly, a
source must be able to later deny that they used CoverDrop to send messages—even if an adversary
captures their smartphone. Therefore, the active conversations and key material are stored using a
plausibly-deniable storage protocol like HiddenSloth.

Chapter 6

Real-world implementation of the
CoverDrop anonymous messaging
system

In this chapter we discuss CoverDrop as a case study of a practical mobile application with strong
metadata privacy. CoverDrop allows sources to reach out to journalists securely and anonymously
through a dedicated feature embedded in a regular news reader app. CoverDrop focuses on the
initial contact, where both parties build trust and establish rapport. The scope and direction of this
project are the result of an extensive requirements gathering process (Section 6.1.3) with investigative
journalists and security engineers.

Whistleblowers are always at risk of being investigated by the organisation that they expose.
Therefore, CoverDrop must not only provide strong confidentiality and metadata privacy of the
network traffic; in addition it must also provide plausible deniability if a suspected whistleblower
is forced to hand-over their phone or coerced into entering their passphrase. This motivates the
integration of a plausibly-deniable storage, e.g. HiddenSloth (Section 5.3), into the news app.

The original paper “CoverDrop: Blowing the Whistle Through A News App” [2] introduced our
solution for the first time. Mansoor, Diana, Alastair, and Ross came up with the initial research
direction and conducted the workshops that shaped the main set of requirements. Afterwards, all
co-authors have been working on the system design together. I was the main contributor regarding
the mobile aspects and the plausibly-deniable storage using the SE which would later turn into
Sloth (Chapter 5) as a project on its own. For the practical evaluation, I implemented an end-to-
end prototype that included a newsreader app and the backend services. Mansoor implemented a
proof-of-concept of a CoverNode that uses Intel SGX for its most-sensitive operations.

After we presented our work at the Privacy Enhancing Technologies Symposium, we have es-
tablished a collaboration with a large British news organisation with the goal of implementing and
deploying CoverDrop in the news organisation’s main news reader app which supports millions of
daily users. The work on the production-grade implementation itself revealed short-comings that
are typically out-of-scope in academic papers. This led us to update the architecture and protocol,

102 Real-world implementation of the CoverDrop anonymous messaging system

 APICoverNode

(on-premises) (cloud)

Users

Journalists
with dead-drop
storage

Figure 6.1: Overview of the CoverDrop system for messages from the users to journalists. The
users’ news reader apps send cover and real messages to the CoverNode which then mixes them
and publishes signed dead-drops to the API. The journalist apps download the dead-drops and find
messages addressed to them (if any). Own graphic that is also included in the white paper.

both of which are described in a not yet published white paper that we are writing together with
the team at the news organisation. In this chapter, we discuss three important technical improve-
ments that were made to the original design. These include added support for forward security
(Section 6.2), more practicable scheduling of cover traffic (Section 6.3), and the efficient and secure
PrivateSendingQueue (Section 6.4).

This chapter is based on the original paper “CoverDrop: Blowing the Whistle Through A News
App” [2] and a white paper that has not been published yet. Both papers have been authored by
many people and as such ideas in this chapter originate from collaboration. However, I can claim the
following contributions: I reviewed and analysed available approaches for forward security; I proposed
and implemented the new scheduling strategy; and I led the design, implementation, and analysis of
the PrivateSendingQueue. All text in this chapter has been written independently which allows
me to cover these topics in greater detail. The figures in this chapter contain specific declarations.

6.1 The CoverDrop system

We first give a high-level overview of the CoverDrop architecture and its components (Section 6.1.1)
and introduce the underlying threat model (Section 6.1.2). Then, we summarise the requirements
gathering process (Section 6.1.3).

6.1.1 Overview

In the CoverDrop architecture (Figure 6.1) all app users send cover traffic to a CoverNode operated
by the news organisation such that sources which send actual messages can not be distinguished by a
network adversary. They are effectively hidden within the very large user base. The CoverNode
works as a mix node that filters out cover messages and releases real messages (padded with additional
cover messages) in signed, fixed-sized outputs that we call dead-drops. These dead-drops are published
by a web service and are publicly accessible. Journalists will download dead-drops and locally search
for messages that are encrypted under their public key. Replies from the journalists travel through the
system in reverse direction following the same principles and are published in user-facing dead-drops.

6.1 The CoverDrop system 103

Figure 6.2: These screenshots show how a source would use the CoverDrop module within a news
reader app. (i) They first navigate to the CoverDrop module following links in other content or the
main menu. (ii) Since the storage uses plausibly-deniable encryption, the login screen always shows
both an option to continue a session with an known passphrase and an option to create a new session
under a new passphrase. (iii) After unlocking the encrypted storage, CoverDrop tries to decrypt
messages within the cached dead-drops to find new messages addressed to the user. (iv) In the inbox
the user selects one of their active chats. (v) The chat view shows the conversation history and allows
to send new messages. Own graphic that is also included in the original CoverDrop paper. The
fourth screenshot was adapted by hiding an UI element from the old sending strategy.

CoverDrop app module (all users). On every start of the news reader app the integrated
CoverDrop module will download the public key hierarchy and all newly published user-facing
dead-drops. It then verifies the signature chains of the hierarchy (Section 6.3), as well as the signatures
of the downloaded dead-drops and stores them on disk. When the app is started for the very first
time, a plausibly-deniable encrypted storage, e.g. HiddenSloth (Section 5.3), is initialised with a
random passphrase. In addition, all users execute the background sending strategy (Section 6.3) every
time the app is closed.

CoverDrop app module (for sources). When a user creates a new CoverDrop session, the
CoverDrop module generates a randomly-chosen passphrase that the user has to memorise. As we
discussed in the Sloth chapter, this is to prevent weak user-chosen passphrases. As the rate limiting
by the SE provides strict time guarantees against an adversary, we can keep the passphrases short and
memorable. Then, the plausibly-deniable encrypted storage is re-initialised with this new passphrase.
During initialisation, the system stores a fresh user messaging key pair (Section 6.3) and a secret
sPSQ for the PrivateSendingQueue (Section 6.4) in the encrypted storage. Figure 6.2 shows how a
source would use CoverDrop within the news reader app.

Every subsequent time the user unlocks their session using the passphrase, the CoverDrop
module first tries to decrypt all messages from the cached dead-drops using the stored user messaging
key pair and adds them to the internal state. When the user sends a new message or replies to a
conversation, the outgoing message payload consists of its public key (so that the journalist can use it
to encrypt their replies) and the message text that is first compressed and then padded to a fixed

104 Real-world implementation of the CoverDrop anonymous messaging system

length. This payload is then encrypted1 in two layers: first under the journalist’s public key and then
under the public key of the CoverNode. The final cipher text is then added to the sending queue as
discussed in Section 6.4.

CoverNode. The CoverNode runs on a dedicated on-premises machine and reads the incoming
encrypted user messages from a message stream. Internally, the CoverNode works as a threshold
mixer that consumes the incoming messages, decrypts their outer-most layer, filters out cover messages
(signalled by a flag in the encrypted payload), and adds them to the output buffer. Whenever the
CoverNode has read tin messages, the output buffer is filled up with cover messages to a total
size of tout messages, signed by the identity key of the CoverNode, and published as a dead-drop
via the web services. If there are more than tout real messages, the excessive ones are held back for
future rounds. As an additional defence in depth, the key management and mixing operations can be
performed inside an SGX enclave to further harden the system against physical attacks.

Web services. In addition to the on-premises CoverNode, we run web services on third-party
infrastructure. Importantly, we do not impose any confidentiality requirements for those services
as all data processed by these services is end-to-end encrypted. However, like any other networking
infrastructure, these services can affect availability. The central API service provides endpoints for
downloading the public key hierarchy and published dead-drops. These are cached by the regular
CDN of the news organisation which provides low-latency access for clients and makes it hard to
filter CoverDrop traffic without also disrupting general news delivery. The CDN also operates an
endpoint that takes the messages sent by the users and journalists and adds them to the dedicated
messages stream from which they are later read by the CoverNode.

6.1.2 Threat model

For CoverDrop, we assume a strong adversary that can observe and record all network communica-
tion. This also covers an adaptive local adversary that wiretaps individual suspects. Note that this
aligns with the typical adversary model for mix networks (Section 2.1). Recording all data is practical
in our case as the estimated total traffic of unique encrypted messages only results in a few terabytes
per day and is routed through a single message queue on third-party infrastructure.

We further assume that the adversary can demand access to the phone of a suspect at any time.
This might happen at a border crossing or through the security staff at a workplace. As such the
adversary can capture a single snapshot of the device and force the user to unlock the device which
gives the adversary full access to all data stored on disk. However, we assume that the adversary
cannot do so covertly and that the user will perform a full device reset after access by the adversary.
This effectively yields a single-snapshot adversary model as in our threat model for HiddenSloth
(Section 5.3). Similarly, we assume that the SE remains secure.

The adversary wins if they can gather evidence that a certain user is likely to have used the
CoverDrop app module for sending messages to journalists. Therefore, both network communication

1A suitable approach is to derive a shared secret s using ECDH (using an ephemeral X25519 key pair and the
recipient’s public key) and then using s to encrypt the payload with an authenticated encryption scheme like XSalsa20-
Poly1305. The outgoing bytes will comprise the public ephemeral key and the ciphertext including the MAC. The
described construction matches LibSodium’s SealedBox primitive.

6.1 The CoverDrop system 105

and data stored outside the SE must provide plausible deniability. To counter censorship of the
CoverDrop service, we require that restricting functionality of CoverDrop should be difficult
without also denying access to other functionality and content of the app.

6.1.3 Requirements gathering

The CoverDrop project is not the result of academic contemplation, but originates from careful
requirements gathering with investigative journalists and information security staff. This portion of
the project includes a survey of existing contact options and two workshops. This part of the project
was led by Diana. I briefly summarise the results in this section to motivate the trade-offs chosen for
the implemented CoverDrop system. More details on the survey and the workshops can be found
in the original CoverDrop paper [2] and Diana’s PhD dissertation [141].

The survey reviewed the homepages of 24 news organisation of various countries based on their
estimated popularity. We found that only half of the included news organisations offer encrypted
communication channels such as E2EE messaging apps or dedicated solutions like SecureDrop [52].
SecureDrop is an anonymous communication and document sharing platform that is operated by the
news organisation and allows access via a Tor hidden service. However, these solutions are not always
easy to find and often require users to navigate through many links.

Based on these findings, 20 attendees were invited to a first workshop where the authors presented
the survey results and shared ideas for a system that would later become CoverDrop. As it was
important to both allow the attendees to provide additional information and ensure that all topics
are covered, the discussion was guided in a semi-structured setting. This workshop yielded important
insights:

• Cultivation of sources can be a long process during which the risk might change. For instance, the
source might first reach out with only general remarks and then later share sensitive information.
Hence communication should start in the most secure manner, as downgrading to other channels
is possible, but retroactively removing previous metadata footprints is not.

• Current systems were described as high-latency and slow. This is for instance the case with
SecureDrop which requires an operator to transport messages with an USB stick to an air-gapped
computer. Such long delays can make it difficult for journalists to build trust and rapport with
a potential source.

• Many systems are difficult to understand and thus make it hard to use them correctly. The
attendees mentioned that it is important to find a good trade-off between security and usability.
For instance, the solution should be available and self-contained so that potential sources do not
accidentally draw attention to themselves through Internet searches using potentially revealing
keywords.

After the first workshop a news organisation invited the team for a follow-up meeting that included
a presentation of CoverDrop and open discussion. This meeting eventually focused on technical
requirements such as utilising the CDN network and the ability of the in-house developer team
to maintain and update the CoverDrop modules that are included in the apps. Also the risk of
supply-chain attacks through external libraries and the inclusion of advertisement frameworks was

106 Real-world implementation of the CoverDrop anonymous messaging system

mentioned. As such, this meeting motivated many of the technical decisions of the CoverDrop
architecture that are presented in this chapter.

6.2 Forward security in a high-latency anonymous messaging
system

Modern end-to-end encrypted messaging protocols typically offer forward security and post-compromise
security for conversations between two parties. Forward security limits the ability of an adversary
which has compromised the internal state of the user’s device to learn information about previously
exchanged messages and post-compromise security makes it harder for the adversary to maintain
the compromised state [38]. The CoverDrop setting imposes the additional challenge that such
protocols must work well in a non-interactive and high-latency environment, as messages are delayed
by the CoverNode and users might only unlock their local CoverDrop storage occasionally.

6.2.1 Security of messaging protocols

For the discussion in this section we consider an adversary that at some point in time compromises
the internal state, including all key material, of a user. This could be the result of a vulnerability
in the implementation or because the adversary gains physical access to the device that stores the
information. However, there are also more subtle attack vectors, e.g. insufficiently secure backups,
that can provide another opportunity through which an adversary might capture such a snapshot.

In a protocol with forward security a compromise of the internal state of one of the clients should
not allow the adversary to decrypt messages that were exchanged sufficiently long ago. Otherwise,
an adversary that routinely records all encrypted messaging traffic could “retrospectively wire-tap”
conversations once they capture the phone of one of the parties. Following the terminology used by
Boyd and Gellert [27], the delay after which messages can no longer be decrypted by the new key
material, can be windowed, i.e. after a certain amount of time has passed, or triggered, i.e. after a
certain sequence of events. Forward security is important for CoverDrop, as the total size of all
exchanged cryptographic messages per day is only a few terabytes which would allow an adversary to
record and indefinitely store all traffic at reasonable cost. Since device capture is part of our threat
model, we believe that attempts to retrospectively access messages that formed the initial contact
between source and journalist are plausible.

A protocol with post-compromise security makes it difficult for an adversary to maintain a state
of compromise that allows them to decrypt all subsequent messages indefinitely. Ideally, we want
the adversary to lose all access once they miss a single message during which the confidentiality of
the communication session “self heals”. This property is particularly interesting for long-running
conversations and situations where the initial key exchange was performed in a less secure environment.
Post-compromise security is of lower priority for CoverDrop, as it is primarily concerned with the
initial contact between source and journalist. Therefore, it is likely that many conversations switch to
alternatively channels relatively quickly.

6.2 Forward security in a high-latency anonymous messaging system 107

6.2.2 Ratchet-based protocols and puncturable encryption

The Double Ratchet protocol [106] was the first widely deployed implementation that provides both
forward security and post-compromise security2. This protocol was first deployed in Signal—therefore
sometimes dubbed “the Signal protocol”—and since then it has been integrated in other popular
end-to-end encrypted messaging apps. In addition to confidentiality of the messages, the Double
Ratchet protocol comes with features that are important for real-world implementations such as
allowing out-of-order messages and encryption of header information.

In this protocol each user maintains two Double Ratchets per communication partner: one for
sending messages and one for receiving messages. These are mirrored between the communication
partners so that A’s sending ratchet matches B’s receiving ratchet and the other way around. For
every incoming or outgoing message the respective ratchet performs a symmetric ratcheting step
using a KDF operation. This makes it hard to recover the previous state of the ratchet and thus key
material that was used to encrypt old messages. In addition, both parties perform DH ratcheting
steps by continuously generating new DH key pairs and exchanging the public parts with the other
party. This introduces new DH shared secrets into the ratchets which will end compromise by an
adversary unless the adversary actively intercepts these messages.

The Double Ratchet algorithm therefore requires interactive exchange of messages to protect the
session. As such it is less suited for asynchronous communication systems, such as CoverDrop,
where messages might take multiple hours before they reach the recipient. In addition, in our context
the internal state is kept encrypted which further delays progress of the protocol until the user unlocks
their CoverDrop session again. In particular, this rules out interactive DH key exchange for the
initial session key, as doing so could delay receiving the first message payload by multiple days.

An alternative avenue for achieving forward security for a protocol with long-term public keys is
puncturable encryption (PE) [60]. In a PE scheme the receiving party prepares a key pair that consists
of a public key pk that is published and a secret key sk that is kept private. At any point the receiving
party can update (or puncture) their secret key sk such that it can no longer decrypt a certain set of
ciphertexts. In this context, ciphertexts are typically associated with tags based on content or epochs
and then sk is punctured for these tags. Importantly, this can be done locally, non-interactively,
and without having to publish new key material afterwards. Green and Miers present a practical
forward-secure protocol based on PE [60]. They highlight that for existing PE schemes either the
initially generated secret key sk is very large (proportional in the number of all possible tags); or the
secret key sk grows with each performed puncture operations. While the latter is generally preferable,
it grows rather quickly by multiple group elements for each puncture [60, Table I]. This not only
increases the required storage, but also the decryption time which is linear in the key size |sk|. Hence,
Green and Miers combine PE with a Hierarchical Identity Based Encryption (HIBE) scheme based
on the work by Canetti et al. [29]. Using HIBE they can derive fresh PE keys without any existing
punctures for new epochs; at the same time the updated HIBE secret key can no longer derive keys
for the same epoch again. By choosing sufficiently short interval durations, they avoid that the PE
keys grow very large since they expect only a limited number of puncture operations per epoch.

Even relatively low numbers of around 100 punctures can lead to decryption times of around
2 seconds per message on mobile [60, §IX]. This is not practical for the current CoverDrop protocol

2In their paper this property is called “break-in recover”.

108 Real-world implementation of the CoverDrop anonymous messaging system

Figure 6.3: The news organisation key hierarchy based on the current organisation key Korg. The
blue elements are stored on compartmentalised services by the news organisation (and Korg is stored
offline as indicated by the dashed lines). The green elements are keys that are stored by the individual
CoverNodes and journalists on their devices. The arrows point from the signing key to the signed
key. Own graphic that is also included in the white paper.

where journalists try decrypting many messages from the dead-drops to find the ones addressed to
them. Further, this opens the potential by adversaries to perform a denial of service (DoS) attack
where they send n messages to a journalist leading to O(n2) decryption effort3. Finally, we are not
aware of a production-ready implementation that is available on all platforms that we need to support.

6.2.3 Key rotation and management

For CoverDrop we adopted a multi-level key rotation scheme that is based on the key hierarchy
shown in Figure 6.3. We use it to allow the keys in the lower levels in the hierarchy to rotate quickly.
Keys are signed by their parent keys, e.g. Kjournalist,msg is signed by Kjournalist,id, before they are
published to the API. The signature for each published key spans both the public key itself and its
expiry date ensuring that the their validity can be verified by the client as well. The API serves a
complete snapshot of all valid keys, excluding expired ones, to the clients.

The key hierarchy is created with the organisation key Korg as its root of trust. This key is
stored offline and only directly signs the provision keys Kcovernode and Kjournalist in rare, manual
key ceremonies. As an additional security measure, the offline key can be split using Shamir’s Secret
Sharing [121] and distributed amongst staff members. Key ceremonies are used in practice to protect
sensitive key material, e.g. the Domain Name System Security Extensions (DNSSEC) Root Key
Signing Key [72]. The organisation key Korg is directly embedded in the app so that for the clients
its security aligns with the security of the app distribution. As such, introducing a new organisation
key requires updating and publishing a new version of the app. The news organisation can optionally
print the public organisation key in their newspaper to allow manual out-of-band verification by the
user.

3The quadratic decryption effort stems from the observation that for the (i+1)-th message there have been already i
punctures resulting in key size (and decryption effort for this message) proportional to i. Therefore,

∑n

i=1 i−1 = O(n2).

6.3 User-friendly message scheduling on Android and iOS 109

The provision keys Kcovernode and Kjournalist are typically valid for multiple months and are used
to sign the identity keys for the CoverNodes and journalists, respectively. Both keys are accessed
through dedicated identity services that allow authorised staff members to create new initial identity
keys for CoverNodes and journalists. Once these initial identity keys are in use by journalists
(or the CoverNodes), they can self-issue themselves new identity keys. For this the journalist
creates a new identity key pair kp′ = (pk′, sk′) and signs a challenge timestamp ∥ pk′ with their
current identity key sk. The signed challenge is then sent to the identity service which verifies it
and subsequently publishes the included new identity public key pk′ together with a signature under
the provisioning key Kjournalist to the API. This protocol works analogously for the CoverNode
keys under Kcovernode. Having dedicated provisioning keys Kcovernode and Kjournalist allows the
sensitive Korg to remain offline and the identity services can be strongly compartmentalised and
access restricted to CoverNodes and journalists on the organisation’s internal network.

Identity keys expire after around a month which makes them useful for long-lived signatures,
e.g. the CoverNode signing the dead-drops it publishes. However, they are too coarse for effective
forward security. Therefore, journalists generate fresh messaging keys every day and publish them
with a signature from their identity key to the API. Each messaging key has a validity period of 14
days, such that journalists can be offline for a few days and still decrypt messages that were sent to
them during this time when they come back.

As a result, the lifetime of the messaging keys overlaps and clients should always use the one
with the longest remaining lifetime. Similarly, there may exist multiple valid identity, provision,
and organisation keys for the same subjects at the same time. This is because journalists and
CoverNodes should publish new keys before the existing ones expire to ensure that there is always at
least one valid key available to the clients. However, this also means that the clients of the journalists
and users need to carefully traverse all resulting trees and signature chains to collect the total set of
valid messaging keys when trying to decrypt messages from the published dead-drops.

Our approach fits the “windowed” type for forward security in the classification by Boyd [27]. It is
driven by the need for a non-interactive protocol due to the high-latency and unavailability of key
material on the clients when in an locked state. The window of opportunity for an adversary is two
weeks which seems acceptable and can be easily changed by updating the life-time for messaging keys.

A service similar to Certificate Transparency [85] can be deployed to monitor for unexpected keys
that might indicate that an adversary tries to perform a key equivocation attack or tries to register a
fake journalist. In addition, such a monitoring service can warn the engineering team if expected key
rotations are not happening and part of the tree is at risk of expiring.

6.3 User-friendly message scheduling on Android and iOS

When a user writes and sends a new message in the CoverDrop module, it is first encrypted
and then added to a queue for sending it to the CoverNode at a later time. Sending messages
independently from when they are created is important to ensure that we do not leak when a potential
whistleblower uses CoverDrop. In particular, the timing of cover messages and real messages should
be indistinguishable for an outside observer.

110 Real-world implementation of the CoverDrop anonymous messaging system

On mobile devices the operating system mediates access to resources more comprehensively than
on desktop computers. This is necessary as otherwise a single app could perform excessive background
operations and quickly deplete the phone’s battery. Hence, scheduling of background tasks happens
exclusively through the APIs provided by the platform. This allows the OS to limit execution times
for each app and schedule, e.g. multiple background tasks to run in parallel which allows them to
share an already established radio connection.

As we mentioned in Section 3.1.3, Android’s background scheduling is based around the concepts
of Doze and App-Standby [54]. Doze reduces the number of times the phone wakes up for regular
background tasks across all apps, while App-Standby identifies infrequently used apps and drastically
limits their allowance for background tasks up to and including never running them at all. iOS has
similar restrictions imposed by its Background Task API [7].

The original CoverDrop paper proposes a simple schedule where the background sending task is
executed every hour throughout the day. Each execution removes the front-most message from the
queue and sends it to the message queue endpoint that runs under the news organisations domain.
This ensures that the sending operation is fully decoupled from the active usage of CoverDrop and
thus provides strong plausible deniability of the sent traffic.

However, in practical experiments we found that both platforms make it difficult to reliably and
predictably schedule periodic background events. Our observations are compatible with the findings
of the Don’t Kill My App project [97] which found that the majority of Android smartphones add
their own heuristics on top of the background logic that is already part of the base AOSP image. As a
result, many third-party applications, such as alarm clocks, do not work correctly on many phones or
require manual intervention by the user to disable the default energy and performance “optimisations”.
For our use-case this means messages might not be sent at all. This effect can be biased towards
users who open the app very infrequently and are not interested in performing manual steps to make
background tasks run more reliably.

Based on the practical restrictions, we adopted a combined sending strategy that provides reliable
message delivery and reasonable independence between CoverDrop sessions and the background
send events. The integration of our strategy executes when the user closes or otherwise leaves the app.
This integration code schedules one execution of the background task after a randomly chosen delay d
and sets a flag to mark execution of the background task as pending. When the background task
runs, it first sends the configured number of messages from the queue and then clears the flag.

If later the app is started and the flag is still set, this indicates the background task was not
(yet) executed. As a fall-back, the sending task is executed while the app loads. This fall-back
mechanism ensures that messages are eventually delivered even when background jobs are completely
unreliable. Observing that messages are sent on app start does not give any meaningful information
about CoverDrop usage to an observer, as the timing and conditions for execution are independent
of whether real message were scheduled. In addition, we use a local rate limit, e.g. not more than 6
messages every 3 hours, to limit the traffic consumed by CoverDrop even if a user opens and closes
the app frequently. If a send event would exceed this limit, it is ignored and the message remains in
the queue ready to be sent at the next available opportunity.

We sample the delay d from a random distribution Exp(Λ). Reasonable choices for Λ are in the
order of 1 hour−1, i.e. the expected mean delay is 1 hour. This random delay is important to obfuscate

6.4 An efficient private sending queue 111

network traffic gaps between reading the last news article tread and sending the queued messages
tsend which are both events observable by the adversary. If we would not choose a random delay, i.e.
d is constant, then for regular users the duration tsend − tread would be shorter than for a user who
spends some time in CoverDrop before closing the app.

Scheduling the sending event after app exits minimises the duration that real messages spend in
the queue, as they are typically sent soon after they were enqueued. As further optimisation, the app
might check in the background task if the phone is, e.g. connected via WiFi, and send more messages
in this case.

6.4 An efficient private sending queue

In the original CoverDrop paper, encrypted real messages, which are scheduled to be sent, are
queued as ciphertexts on disk. They remain on disk until the background process picks them up and
sends them to the CoverNode. During this time the user is at risk in the case where their phone is
captured by an adversary, because the existence of these ciphertexts is proof that they indeed used
CoverDrop recently to send real messages. While the time window for such attacks might be short, it
is nevertheless a real risk as we can expect that, e.g. their employer can access phones of their employees
during the day with short notice. We therefore design an improved PrivateSendingQueue feature
that can hide the number of real message that are currently waiting to be sent.

6.4.1 Overview and threat model

For the sending queue we assume an adversary that can capture the phone right after a source used
CoverDrop—or interrupts them while using it, forcing them to quickly close the app. The adversary
wants to determine whether a person used CoverDrop to reach out to journalists, i.e. whether there
is at least one encrypted real message waiting to be sent. As such they can capture an initial snapshot
S0 of the phone right after the user left the app. With full control of the device they can also trigger
the background job multiple times, giving them the opportunity to capture snapshots S1, S2, . . . right
after the first, second, etc. execution of the background job.

In the protocol from the original paper, the adversary wins by simply checking for a non-empty
queue in any of the S0, S1, . . . snapshots. An improved version could, for instance, always fill up
the queue with a random number of additional cover messages—both when adding real messages
in the app and when dequeueing message in the background task. However, this method leads to
longer delays when sending real messages as they might get queued behind cover messages. Also,
this approach still leaks information. When enqueueing real messages from within the CoverDrop
session, the queue most likely will not be empty. Therefore, after adding the real messages (even when
not adding any additional cover messages) the queue in S0 (and subsequent S1, . . .) will likely be on
average slightly longer than on a phone where CoverDrop was not used. While this no longer gives
the adversary a definite proof, the adversary might consider a person with a larger queue more likely
to be a source than other users.

112 Real-world implementation of the CoverDrop anonymous messaging system

Dequeue

2x Enqueue

Figure 6.4: Illustration of a PrivateSendingQueue of size |q| = 6 and execution of three operations.
Green indicates real messages and blue (dashed) indicates cover messages. The first instance q
comprises three real messages and three cover messages, i.e. f = q.FillLevel = 3. After dequeueing
the front-most item, e.g. by the background task, the resulting queue q′ has its elements shifted and a
new cover item (mG, hG) is added. Enqueueing two items, e.g. from within a CoverDrop session,
results in queue q′′ where the two front-most cover items are replaced by the new messages mH and
mI . Own graphic not included in either paper.

6.4.2 Construction

We propose the PrivateSendingQueue (PSQ) as a solution that hides the number of enqueued real
messages from the adversary and ensures that real messages are always sent before cover messages.
The PSQ is persisted as a queue of tuples q = [(m1, h1), (m2, h2), . . . , (m|q|, h|q|)] consisting of the
encrypted message ciphertexts mi and their hints hi ∈ {0, 1}b where b is a freely chosen but fixed
security parameter. Some operations require a secret key s that should be stored inside the encrypted
storage so that it is not available to the adversary. The PSQ also requires a supplied function
NewCoverMessage that generates an encrypted cover message that is indistinguishable from an
encrypted real message. Creating such a message outside an unlocked CoverDrop session is possible
as all required key material is available from the cached key hierarchy. Figure 6.4 illustrates a sample
PSQ as it undergoes dequeue and enqueue operations.

Our PSQ always maintains three invariants: The size invariant requires that its length is constant
|q| = lq. The order invariant requires that for all real messages mi there is no cover message mj with
j < i, i.e. real messages are always at the front of the queue. The hint invariant requires that for all
real messages mi, the hint hi is equal to the b-bit-long output of a secure keyed hash function, e.g.
HMAC with SHA-256, under the secret key s; otherwise, the hint must be a bit string of length b

chosen at random.
The PSQ.Init method creates a new list by assigning each message a new cover message mi

$←
NewCoverMessage() and each hint a randomly chosen bit sequence hi

$← {0, 1}b for all i ∈ [1, |q|].
The initial queue satisfies all invariants.

The PSQ.Dequeue operation removes the front most tuple (m1, h1) which causes all following
items to advance (mi, ti) ← (mi+1, ti+1). It then adds a new tuple consisting of a cover message
m|q|

$← NewCoverMessage() and a randomly chosen hint h|q|
$← {0, 1}b. We assume inductively

that the PSQ fulfilled both invariants before the PSQ.Dequeue operation. As one element is removed
and one is added, the PSQ still maintains the size invariant. And because the new element is a cover
message with a randomly chosen hint and added as the last item, the hint and order invariants are
maintained as well.

6.4 An efficient private sending queue 113

The PSQ.FillLevel operation returns the number r of real messages given the secret key sPSQ.
For this the operation iterates through the tuples (mi, hi) of the list starting from the beginning of
the queue, i.e. i = 1, 2, . . . , |q|. While hi = HMAC(s,mi), it increments i by one and continues the
loop if i ≤ |q|; otherwise the loop terminates. The operation then returns r = i− 1. All invariants of
the list are maintained, as no changes are being made.

The PSQ.Enqueue operations adds a real message m to the queue given the secret key sPSQ. It
first determines the fill level f = q.FillLevel(s). If f = |q|, the queue is full with real messages
and the operation aborts with an error; leaving all invariants intact. Otherwise, it computes h ←
HMAC(sPSQ,m) and sets the front-most cover message tuple to the new one for the real message:
(mf , hf)← (m,h). Because we replace a cover message with a real message and its correct hint, the
size and hint invariants are maintained. Inserting the message right at the fill level position, i.e. after
the right-most real message, ensures that there are no cover messages before it, thus satisfying the
order invariant.

The hints of the PSQ also allow to indicate to the user which messages have already been sent. For
this the persisted chat history also stores for each message the respective hint h that was computed
when inserting it into the PSQ. When a user later re-opens the chat view, all messages whose hints
are still in the PSQ can be marked as pending while the others are marked as sent.

There is the possibility that a randomly chosen hint h for a cover message m actually matches
the HMAC(sPSQ,m) value that would be calculated for a real message. For practical concerns,
any security parameter b > 80 renders the chance of this happening negligible. In case it happens
nevertheless, this collision does not affect security, but only affects efficiency as the PSQ.FillLevel
operation would return a too high value which then can cause a real message to be enqueued after a
cover message. Such a queue would violate the order invariant until the bogus (m,h) is removed by
subsequent PSQ.Dequeue operations.

6.4.3 Security analysis

We use common assumptions about indistinguishability and CPA security as well as the maintained
PSQ invariants. We want to show that an adversary cannot determine the number of real messages in
the queue better than random guessing.

We assume that without access to the secret key sPSQ the output of HMAC is indistinguishable
from random bitstrings of the same size. This is generally believed to be true for commonly used
instantiation with, e.g. using SHA-256, as Bellare [22] showed that a HMAC is a PRF given the
underlying compression function is a PRF. Therefore, access to the hints h... without sPSQ does not
give the adversary any advantage.

The encrypted messages comprise an ephemeral public key ephpub that is used for a ECDH
key agreement deriving the shared secret s; the ciphertext encrypted under s using a CPA-secure
authenticated encryption scheme; and the randomly chosen nonce. Both real and cover messages are
generated using the same procedures and therefore both will contain a randomly generated ephpub

and a randomly generated nonce. Under the generalised decisional Diffie-Hellman assumption the
adversary cannot derive the s without access to either the sender’s ephpriv or the recipients private key.
By definition CPA-secure encryption schemes do not leak information about the encrypted content.
Therefore, access to the messages m... does not give the adversary any advantage.

114 Real-world implementation of the CoverDrop anonymous messaging system

We convinced ourselves when describing the operations in Section 6.4.2 that all three PSQ invariants
are maintained at all times. The PSQ size invariant ensures that the queue, once initialised at the
first app start, always has the same number of elements, thus there are no changes in size that could
leak information. Therefore, we conclude given these arguments that the PrivateSendingQueue
maintains confidentiality of the number of included real messages against the described single-snapshot
adversary.

6.5 Summary

In this chapter we discussed CoverDrop as a practical system for whistleblowing that is integrated
into a news app with strong plausible deniability against both network and local adversaries. Starting
from an existing prototype, we presented three improvements to the security and efficiency of the
mobile app. First, we showed that for high-latency messaging between devices, which are online only
occasionally, key rotation is a practical approach for achieving forward security. In particular, solutions
that rely on interactive key exchange are less suitable for highly asynchronous communication. We
then revisited how cover traffic is scheduled for the news reader app and adapt it to the restrictions
imposed by mobile platforms. As the third improvement, we designed the PrivateSendingQueue
that hides how many real messages are currently waiting to be sent while also ensuring that real
messages are always sent before cover messages.

Chapter 7

Conclusion and future work

In this dissertation we explored the technical frontier of metadata private systems on mobile devices.
We first measured the impact of anonymity networks on the battery life and concluded that low-latency
protocols with cover traffic appear infeasible. In this chapter we reflect on this result by looking at
the protocol layer integration and suggest venues for improvement. In Chapter 4 we introduced the
Rollercoaster protocol which mitigates some of the technical limitations of Loopix to provide more
efficient multicast support. We will discuss here how Rollercoaster can be combined with other
building blocks to create decentralised applications with strong metadata privacy. Both Sloth and
CoverDrop worked around restrictive APIs on smartphones through novel designs for strong key
stretching and background cover traffic. However, we believe that even better solutions are possible
with the right APIs. Based on these observations we argue that tighter integration between layers of
the communication stack and more flexible use of the Secure Element can unlock more usable and
more efficient systems.

On the energy consumption of anonymous communication protocols on mobile devices.
We hope that our easy-to-use and replicable measurement setup enables more researchers to investigate
the energy consumption of anonymity network implementations on smartphones which arguably are
the most important personal computing platform today. While some existing implementations, such
as Tor, are feasible today, we learned that running low-latency anonymity networks with strong
metadata privacy at reasonable costs remains an unsolved problem. One might be tempted to extend
the Anonymity Trilemma [46] with energy consumption: “Strong anonymity, low latency, efficient
bandwidth usage, and energy efficiency—choose two.” Overall, it becomes clear that choosing sensible
and well-argued parameters to achieve application-specific trade-offs remains an important aspect of
all work in this area.

Our measurements point to a large potential for improvement by better integrating the application
logic with the underlying radio communication and hardware. However, approaching this solely from
the application perspective is difficult as the internal state machine of the radio modem cannot be
easily inspected and operates as a black box. Instead, there is need for an API provided by the
platform. Such an API could expose some view of the inner state and configuration of the radio
modem to allow the application to make better decisions. For example, it could indicate the available

116 Conclusion and future work

theoretical throughput and tail-latency parameters. Alternatively, the API could allow applications
to mark their communication requirements, e.g. low-latency, regular, or high-throughput, and then
adopt the radio configuration accordingly. For instance, for a low-latency small-payload transmission,
the data might be able to be transported via the signalling channel rather than via a data connection
that needs to be established first.

The lack of such an API, as well as the restrictive nature of the background tasks, hint at
the difficult position these platforms find themselves in; and where they have to mediate between
users, developers, and limitations of the available hardware. For instance, app developers want to
to build innovative applications with as few restrictions as possible, but at the same times users
demand predictable battery life and that the operating system protects them from misbehaving
apps. The historical development of Android illustrates how the platform first added features to
help identify power hungry apps and then subsequently imposed more explicit restrictions. This
indicates that relying on self-regulating behaviour from many thousands of app developers did not
work and centralised enforcement by the platform might be necessary after all. Therefore, providing
app developers with more control over the radio hardware appears unlikely in this context.

Alternatively, we can optimise efficiency by more tightly integrating the end-user application
and the underlying anonymity network protocol—both of which run above the platform layer and
therefore are under our control. For example, an anonymous messaging app might want to send an
urgent message right away outside the (e.g. Poisson-based) sending schedule. This would effectively
trade “some anonymity” to allow single low-latency transmissions while still choosing conservative
parameters that benefit overall battery life. However, to our knowledge, we lack a good understanding
of how these out-of-order messages affect anonymity in different adversary settings. It is also unclear
how such an approach is best implemented to ensure long-term invariants, e.g. compensating for a
shortened delay by having a longer delay in the future such that the average sending rate remains
the same. Another approach is, of course, to adapt the application and protocol layers to work more
efficiently within the present limitations as we showed with Rollercoaster.

One example of a very tight integration between use-case and anonymity network is CoverDrop.
For the CoverDrop app the energy efficiency is particularly important since all app users help
contribute to the anonymity set voluntarily without immediate benefit. The results from our mea-
surements showed that we can effectively ignore the cryptographic costs and should instead focus
our time on choosing efficient communication patterns. As such, the results of Chapter 3 can inform
better allocation of engineering resources.

On anonymous, decentralised group-based applications on smartphones. The field of
decentralised group communication with strong metadata privacy remains an interesting research area.
In particular, Rollercoaster by itself does not immediately yield useful and secure applications,
but it rather is a building block that can incorporated into higher-level protocols and applications.

For example, for practical group communication all members will also need to agree on keys
and update these regularly. Key updates are important to provide forward security [27] and post-
compromise security [38] in order to reduce the risk when device state gets compromised. Existing
standards like MLS [19] require a central server that establish a total order of messages. However, such
a central server is able to observe group communication metadata, which violates the metadata privacy

117

that we try to achieve. Weidner et al.1 proposed the Decentralized Continuous Group Key Agreement
(DCGKA) protocol [146] that works without a central server and gracefully handles asynchronous
communication. DCGKA requires for efficient operation that the underlying transport layer provides a
broadcast primitive—which Rollercoaster can provide. In fact, this was one of the considerations
while designing Rollercoaster. Together a stack consisting of Loopix, Rollercoaster, and
DCGKA can provide anonymous E2EE group communication.

However, this instantiation leaves out the important aspects of real-world group membership
management. In particular, as new group members are added and existing ones are removed, we might
want to ensure that these operations can only be performed by a trusted subset of group members.
For this research question, I supervised the thesis “Private Group Management (PGM) for Mix
Networks” [119] that proposes an extension on top of Rollercoaster which allows dedicated group
administrators to change group membership while simultaneously updating the Rollercoaster
distribution graph.

We believe that these building blocks—Rollercoaster, DCGKA, and PGM—allow us to
build practical applications on mix-based anonymity networks with very strong privacy guarantees.
One interesting direction is local-first software [80] where application state changes, e.g. edits to a
text document, are applied and stored locally on each participants device and then synchronised
between collaborators. This synchronisation can be performed using Conflict-free Replicated Data
Types (CRDTs) [122] that allow to merge concurrent changes without the need for a central server.
Therefore, CRDT-based applications are compatible with running on top of our metadata-private
stack using Loopix, Rollercoaster, DCGKA, and PGM. For instance, we can build a metadata-
private collaborative text editor for journalists who work together on a sensitive news story. Because
CRDTs handle concurrent changes well, they improve the application’s tolerance for high-latency
communication which in turn allows us to choose power efficient parameters for the underlying
anonymity network.

On securely storing data for anonymous decentralised applications on on smartphones.
In decentralised settings, e.g. the suggested CRDT-based applications above, we need to securely
store application and protocol state locally. Even if we use encrypted backups, at least some key
material and identifier information remains on the device; and because mobile devices are always at
risk of being stolen or otherwise accessed by others, keeping the local data secure is essential.

For applications where strong metadata privacy is important, we typically assume a strong
dedicated adversary which can lead to situations where a user might be forced to unlock their device.
In these situations, brute-force resistant deniable encryption, such as HiddenSloth, is an important
feature that allows users to deflect suspicions and remain safe. While our strict time guarantees in
the Sloth schemes allow for short passphrases, they do not match the comfort of, e.g. biometric
authentication. If we would be able to run more complex programs instead of simple operations on
the SE, we believe that the trade-off between usability and plausibly-deniable encryption can be
drastically improved.

1I am one of the co-authors.

118 Conclusion and future work

On improving the utility of SEs of smartphones. Third-party access to the SE is restricted for
good reasons. It minimises the overall attack surface and reduces the risk of side-channel attacks from
code running inside the SE. After all, it is the limited complexity and strong isolation that ensure
that SEs remain secure in adversarial settings. However, with Sloth we also saw that very narrow
APIs can hinder development of new solutions that provide additional security properties.

Under these considerations it seem unlikely and risky to simply run user-supplied binaries directly
on the SE. At the same time, adding many specialised functions for each newly identified use case
quickly leads to a vast API surface which is hard to audit and which will never be truly cover all
possible application needs. Instead, it might be interesting to allow developers to submit simple
programs or descriptions thereof to the SE. These could be modelled as computation graphs consisting
of cryptographic primitives and simple control flow instructions, e.g. if-statements. These provide an
expressive yet limited interface for application developers, allowing them to implement algorithms
such as attempt counters or custom remote attestation. Using graphs also allow for performing simple
static analysis. By requiring acyclic graphs we can guarantee termination, i.e. rule out loops. And by
measuring the length of all paths from the entry node on the instruction level, we can verify that an
algorithm has constant runtime and is less vulnerable to side-channel timing attacks.

On the CoverDrop project. The CoverDrop project is an encouraging example of research
that emerged from a user-centered design process instead of being a “solution looking for a problem”.
This requirements gathering process informed the project direction and contributed to the fact that it
is now being implemented. The implementation process in turn yielded many interesting research
questions that can only arise when considering the technical limitations of a real-world deployment.

The three examples discussed in Chapter 6 are representative of most challenges that we encountered
and which stem from the limitations of the underlying systems and scope of the undertaking. In
particular, we found that we are not limited by the features and guarantees offered by widely-used
cryptographic algorithms, but rather the main challenge is the management of key material in a
multi-stakeholder environment. In that context the often repeated saying that cryptography just
replaces a data privacy problem with a key management problem rings true. We think that fail-over
behaviour, on-premises deployment, and key ceremonies find too little attention in current research.

Concluding thoughts. This dissertation discussed aspects of metadata private communication on
mobile devices. It is encouraging that popular anonymity networks, such as Tor, appear feasible and
ready for wider adoption. However, strong metadata privacy for low-latency applications remains out-
of-reach. Achieving truly private and feasible solutions will involve a focus on handling asynchronous
communication and tight collaboration across the stack from radio chip to user interface.

Many challenges that we addressed in this thesis were discovered when we hit technical limitations
that prevented naïve approaches from succeeding. These include the limited energy supply of
smartphones, the rate-limit of Loopix’ outbound queue, the narrow APIs of SEs, and the restrictions
for background tasks on mobile operating systems. Hitting and exploring these limitations proved to
be a powerful tool for discovering impactful research areas and informs constraints for more theoretical
work upstream. At the same time, some of these limitations are human made and as such they are
malleable through communication and collaboration.

Bibliography

[1] Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and Pascal Urso.
Evaluating CRDTs for real-time document editing. In Proceedings of the 11th ACM Symposium
on Document Engineering, pages 103–112. ACM, September 2011.

[2] Mansoor Ahmed-Rengers, Diana A Vasile, Daniel Hugenroth, Alastair R Beresford, and Ross
Anderson. Coverdrop: Blowing the whistle through a news app. In Proceedings on Privacy
Enhancing Technologies (PoPETs), pages 47–67, 2022.

[3] Amazon. AWS Device Farm, 2023. Accessed September 2023. URL: https://aws.amazon.com

/device-farm.

[4] Ross Anderson and Eli Biham. Two practical and provably secure block ciphers: BEAR and
LION. In Proceedings of the International Workshop on Fast Software Encryption, pages 113–120.
Springer, 1996.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with compressed queries and
amortized query processing. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy (S&P ’18), pages 962–979, 2018.

[6] Sebastian Angel and Srinath Setty. Unobservable communication over fully untrusted infras-
tructure. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), pages 551–569, 2016.

[7] Apple Inc. Advances in app background execution, 2019. Accessed September 2023. URL:
https://developer.apple.com/videos/play/wwdc2019/707/.

[8] Apple Inc. Apple platform security - Secure Enclave, 2021. Accessed September 2023. URL:
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web.

[9] Apple Inc. App Store - iOS and iPadOS usage, 2022. Accessed September 2023. URL:
https://web.archive.org/web/20230130101543/https://developer.apple.com/suppor

t/app-store/.

[10] Apple Inc. Apple security bounty, 2022. Accessed September 2023. URL: https://security.a

pple.com/bounty/.

https://aws.amazon.com/device-farm
https://aws.amazon.com/device-farm
https://developer.apple.com/videos/play/wwdc2019/707/
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://web.archive.org/web/20230130101543/https://developer.apple.com/support/app-store/
https://web.archive.org/web/20230130101543/https://developer.apple.com/support/app-store/
https://security.apple.com/bounty/
https://security.apple.com/bounty/

120 Bibliography

[11] Apple Inc. Choosing background strategies for your app, 2022. Accessed September 2023. URL:
https://developer.apple.com/documentation/backgroundtasks/choosing_background_

strategies_for_your_app.

[12] Apple Inc. Apple developer documentation - SecureEnclave, 2023. Accessed September 2023.
URL: https://developer.apple.com/documentation/cryptokit/secureenclave.

[13] Apple Inc. Apple developer documentation - SecureEnclave.P256, 2023. Accessed September 2023.
URL: https://developer.apple.com/documentation/cryptokit/secureenclave/p256.

[14] Diego F Aranha, Pierre-Alain Fouque, Chen Qian, Mehdi Tibouchi, and Jean-Christophe
Zapalowicz. Binary elligator squared. In Proceedings of the International Conference on Selected
Areas in Cryptography, pages 20–37. Springer, 2014.

[15] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Giuseppe Migliore. Profiling power
consumption on mobile devices. ENERGY, pages 101–106, 2013.

[16] Arm Limited. Arm Instruction Set Reference Guide, 2018. Version 1.0 (100076_0100_00_en).
URL: https://documentation-service.arm.com/static/6245c734b059dc5ff9a8bdab.

[17] Feng Bao, Robert H Deng, and Huafei Zhu. Variations of Diffie-Hellman problem. In Proceedings
of the 5th International Conference on Information and Communications Security (ICICS ’03),
pages 301–312. Springer, 2003.

[18] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad, and Nickolai Zeldovich. Groove: Flexible
metadata-private messaging. In Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’22), pages 735–750, 2022.

[19] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and
Katriel Cohn-Gordon. The Messaging Layer Security (MLS) protocol. RFC 9420, July 2023.
URL: https://www.rfc-editor.org/info/rfc9420.

[20] Filipe Beato, Kimmo Halunen, and Bart Mennink. Improving the Sphinx mix network. In
Proceedings of the International Conference on Cryptology and Network Security (CANS ’16),
pages 681–691. Springer, 2016.

[21] Karoline Meta Beisel, Constanze von Bullion, Lara Fritzsche, and Nicola Meier. Handy-
Jahre einer Kanzlerin. Süddeutsche Zeitung Magazin, 2021. Accessed September 2023. URL:
https://www.reporterpreis.de/upload/fritzsche-kanzlerin-6151d653c26ce.pdf.

[22] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Crypto, volume 4117, pages 602–619. Springer, 2006.

[23] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-
curve points indistinguishable from uniform random strings. In Proceedings of the 20th ACM
Conference on Computer and Communications Security (ACM CCS ’13), pages 967–980, 2013.

https://developer.apple.com/documentation/backgroundtasks/choosing_background_strategies_for_your_app
https://developer.apple.com/documentation/backgroundtasks/choosing_background_strategies_for_your_app
https://developer.apple.com/documentation/cryptokit/secureenclave
https://developer.apple.com/documentation/cryptokit/secureenclave/p256
https://documentation-service.arm.com/static/6245c734b059dc5ff9a8bdab
https://www.rfc-editor.org/info/rfc9420
https://www.reporterpreis.de/upload/fritzsche-kanzlerin-6151d653c26ce.pdf

Bibliography 121

[24] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: new generation of memory-
hard functions for password hashing and other applications. In Proceedings of the 2016 IEEE
European Symposium on Security and Privacy (EuroS&P ’16), pages 292–302. IEEE, 2016.

[25] Robert Bodle. The ethics of online anonymity or Zuckerberg vs. Moot. ACM SIGCAS Computers
and Society, 43(1):22–35, 2013.

[26] Joseph Bonneau. Deep dive: EFF’s new wordlists for random passphrases. Electronic Frontier
Foundation (EFF), 2016. Accessed September 2023. URL: https://www.eff.org/deeplinks/

2016/07/new-wordlists-random-passphrases.

[27] Colin Boyd and Kai Gellert. A modern view on forward security. The Computer Journal,
64(4):639–652, 2021.

[28] Daniel R. L. Brown. SEC 1: Elliptic Curve Cryptography. Standard, Certicom Research, May
2009. Version 2.0. URL: https://www.secg.org/sec1-v2.pdf.

[29] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In Advances in Cryptology–EUROCRYPT, pages 255–271. Springer, 2003.

[30] Aaron Carroll, Gernot Heiser, et al. An analysis of power consumption in a smartphone. In
Proceedings of the USENIX Annual Technical Conference, volume 14, pages 21–21, 2010.

[31] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian, Zhan Wang,
and Albert Ching. Mobiceal: Towards secure and practical plausibly deniable encryption on
mobile devices. In Proceedings of the 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’18), pages 454–465. IEEE, 2018.

[32] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1(1):65–75, 1988.

[33] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri De Ruiter, and
Alan T Sherman. cmix: Mixing with minimal real-time asymmetric cryptographic operations.
In Proceedings of the International Conference on Applied Cryptography and Network Security,
pages 557–578. Springer, 2017.

[34] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[35] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and Adrain Perrig. HORNET:
High-speed onion routing at the network layer. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (ACM CCS ’15), pages 1441–1454,
2015.

[36] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal, Thomas
Anderson, Arvind Krishnamurthy, and Bryan Parno. Talek: Private group messaging with
hidden access patterns. In Proceedings of the Annual Computer Security Applications Conference,
pages 84–99, 2020.

https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://www.secg.org/sec1-v2.pdf

122 Bibliography

[37] Nicolas Christin. Traveling the Silk Road: A measurement analysis of a large anonymous online
marketplace. In Proceedings of the 22nd International Conference on World Wide Web, pages
213–224, 2013.

[38] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-compromise security. In
Proceedings of the 29th IEEE Computer Security Foundations Symposium (CSF ’16), pages
164–178, 2016.

[39] Competition and Markets Authority. Investigation into Apple AppStore, 2023. Accessed August
2023. URL: https://www.gov.uk/cma-cases/investigation-into-apple-appstore.

[40] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging
system handling millions of users. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (S&P ’15), pages 321–338, 2015.

[41] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group messaging. In
Proceedings of the 17th ACM Conference on Computer and Communications Security (ACM
CCS ’10), pages 340–350, 2010.

[42] George Danezis and Ross Anderson. The economics of resisting censorship. In Proceedings of
the 2005 IEEE Symposium on Security and Privacy (S&P ’05), pages 45–50. IEEE, 2005.

[43] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type III
anonymous remailer protocol. In Proceedings of the 2003 IEEE Symposium on Security and
Privacy (S&P ’03), pages 2–15, 2003.

[44] George Danezis and Ian Goldberg. Sphinx: A compact and provably secure mix format. In
Proceedings of the 2009 IEEE Symposium on Security and Privacy (S&P ’09), pages 269–282,
2009.

[45] George Danezis and Andrei Serjantov. Statistical disclosure or intersection attacks on anonymity
systems. In Proceedings of the International Workshop on Information Hiding, pages 293–308.
Springer, 2004.

[46] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. Anonymity trilemma:
strong anonymity, low bandwidth overhead, low latency-choose two. In Proceedings of the 2018
IEEE Symposium on Security and Privacy (S&P ’18), pages 108–126, 2018.

[47] Alex Davidson, Gonçalo Pestana, and Sofía Celi. Frodopir: Simple, scalable, single-server
private information retrieval. In Proceedings on Privacy Enhancing Technologies (PoPETs),
pages 365–383, 2023.

[48] Steve E. Deering. Host extensions for IP multicasting. RFC 1112, August 1989. URL:
https://www.rfc-editor.org/info/rfc1112.

[49] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The Nym Network. Self-published online,
2021. Accessed September 2023. URL: https://nymtech.net/nym-whitepaper.pdf.

https://www.gov.uk/cma-cases/investigation-into-apple-appstore
https://www.rfc-editor.org/info/rfc1112
https://nymtech.net/nym-whitepaper.pdf

Bibliography 123

[50] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC, 2004.

[51] European Commission DG Competition. Antitrust: Commission opens investigations into
Apple’s App Store rules, 2020. Accessed August 2023. URL: https://ec.europa.eu/commiss

ion/presscorner/detail/en/ip_20_1073.

[52] Freedom of the Press Foundation. Securedrop share and accept documents securely, 2023.
Accessed September 2023. URL: https://securedrop.org/.

[53] Google Inc. Android O prevents access to /proc/stat , 2017. Accessed September 2023. URL:
https://issuetracker.google.com/issues/37140047#comment2.

[54] Google Inc. Optimize for Doze and App Standby, 2021. Accessed September 2023. URL:
https://developer.android.com/training/monitoring-device-state/doze-standby.

[55] Google Inc. Power management restrictions, 2021. Accessed September 2023. URL: https:

//developer.android.com/topic/performance/power/power-details.

[56] Google Inc. Hardware security best practices, 2022. Accessed September 2023. URL: https:

//source.android.com/docs/security/best-practices/hardware.

[57] Google Inc. Android and Google devices security reward program rules, 2022. Accessed
September 2023. URL: https://bughunters.google.com/about/rules/6171833274204160

/android-and-google-devices-security-reward-program-rules.

[58] Google Inc. Android Keystore system - hardware security module, 2022. Accessed September
2023. URL: https://developer.android.com/training/articles/keystore#HardwareSec

urityModule.

[59] Google Inc. Android (Go edition) leveling up entry-level devices, 2023. Accessed August 2023.
URL: https://www.android.com/versions/go-edition/.

[60] Matthew D Green and Ian Miers. Forward secure asynchronous messaging from puncturable
encryption. In Proceedings of the 2015 IEEE Symposium on Security and Privacy (S&P ’15),
pages 305–320. IEEE, 2015.

[61] Alexandra Henzinger, Matthew M Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn, and Vinod
Vaikuntanathan. One server for the price of two: Simple and fast single-server private information
retrieval. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security ’23),
volume 23, pages 3889–3905, 2023.

[62] Alex Hern. Instagram led users to Covid misinformation amid pandemic – report. The Guardian,
2021. Accessed January 2023. URL: https://www.theguardian.com/technology/2021/mar/

09/instagram-led-users-to-covid-misinformation-amid-pandemic-report.

[63] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed Barlow, Joshua Charles Campbell, and
Stephen Romansky. Greenminer: A hardware based mining software repositories software energy
consumption framework. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 12–21, 2014.

https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1073
https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1073
https://securedrop.org/
https://issuetracker.google.com/issues/37140047#comment2
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/topic/performance/power/power-details
https://developer.android.com/topic/performance/power/power-details
https://source.android.com/docs/security/best-practices/hardware
https://source.android.com/docs/security/best-practices/hardware
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://www.android.com/versions/go-edition/
https://www.theguardian.com/technology/2021/mar/09/instagram-led-users-to-covid-misinformation-amid-pandemic-report
https://www.theguardian.com/technology/2021/mar/09/instagram-led-users-to-covid-misinformation-amid-pandemic-report

124 Bibliography

[64] Mojtaba Hosseini, Dewan Tanvir Ahmed, Shervin Shirmohammadi, and Nicolas D Georganas.
A survey of application-layer multicast protocols. IEEE Communications Surveys & Tutorials,
9(3):58–74, 2007.

[65] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. A close examination of performance and power characteristics of 4G LTE networks.
In Proceedings of the 10th International Conference on Mobile Systems, Applications, and
Services, pages 225–238, 2012.

[66] Daniel Hugenroth. Android Support for Elliptic Curves (EC) in KeyPairGenerator. Accessed
September 2023. URL: https://www.danielhugenroth.com/posts/2021_07_ec_curves_on

_android.

[67] Daniel Hugenroth and Alastair R Beresford. Powering privacy: On the energy demand and
feasibility of anonymity networks on smartphones. In Proceedings of the 32nd USENIX Security
Symposium (USENIX Security ’23), pages 5431–5448, 2023.

[68] Daniel Hugenroth, Martin Kleppmann, and Alastair R Beresford. Rollercoaster: An effi-
cient group-multicast scheme for mix networks. In Proceedings of the 30th USENIX Security
Symposium (USENIX Security ’21), pages 3433–3450, 2021.

[69] Daniel Hugenroth, Ceren Kocaoğullar, and Alastair R. Beresford. Choosing your friends:
Shaping ethical use of anonymity networks. In Proceedings of the Security Protocols XXVIII:
28th International Workshop. Springer, 2023. Accepted and to be published.

[70] Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford. Sloth: Key
stretching and deniable encryption using secure elements on smartphones. 2023. Under Review.

[71] Claudia-Lavinia Ignat, Gérald Oster, Olivia Fox, Valerie L Shalin, and François Charoy. How
do user groups cope with delay in real-time collaborative note taking. In Proceedings of the
14th European Conference on Computer Supported Cooperative Work, pages 223–242. Springer,
September 2015.

[72] Internet Assigned Numbers Authority (IANN). Key Signing Ceremonies, 2023. Accessed
September 2023. URL: https://www.iana.org/dnssec/ceremonies.

[73] Eric Jardine, Andrew M Lindner, and Gareth Owenson. The potential harms of the Tor
anonymity network cluster disproportionately in free countries. Proceedings of the National
Academy of Sciences, 117(50):31716–31721, 2020.

[74] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric PAKE proto-
col secure against pre-computation attacks. In Proceedings of the Advances in Cryptology
(EUROCRYPT), pages 456–486. Springer, 2018.

[75] Poul-Henning Kamp. GBDE—GEOM based disk encryption. In BSDCon 2003 (BSDCon 2003),
2003.

[76] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2020.

https://www.danielhugenroth.com/posts/2021_07_ec_curves_on_android
https://www.danielhugenroth.com/posts/2021_07_ec_curves_on_android
https://www.iana.org/dnssec/ceremonies

Bibliography 125

[77] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. Secure applications of low-entropy
keys. In Proceedings of the Information Security: First International Workshop, (ISW ’97),
pages 121–134. Springer, 1997.

[78] Martin Kleppmann and Heidi Howard. Byzantine eventual consistency and the fundamental
limits of peer-to-peer databases. arXiv preprint arXiv:2012.00472, 2020.

[79] Martin Kleppmann, Stephan A Kollmann, Diana A Vasile, and Alastair R Beresford. From
secure messaging to secure collaboration. In Proceedings of the Security Protocols XXVI: 26th
International Workshop, Cambridge, UK, pages 179–185. Springer, 2018.

[80] Martin Kleppmann, Adam Wiggins, Peter Van Hardenberg, and Mark McGranaghan. Local-first
software: you own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, pages 154–178, 2019.

[81] Stephan A Kollmann and Alastair R Beresford. The cost of push notifications for smartphones
using Tor hidden services. In Proceedings of the 2017 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW ’17), pages 76–85, 2017.

[82] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In CRYPTO,
volume 6223, pages 631–648. Springer, 2010.

[83] Christiane Kuhn, Martin Beck, and Thorsten Strufe. Breaking and (partially) fixing provably
secure onion routing. In Proceedings of the 2020 IEEE Symposium on Security and Privacy
(S&P ’20), pages 168–185, 2020.

[84] Jacky Wei En Kung. Porting a mix network client to mobile, 2023. Part II Project.

[85] Ben Laurie. Certificate transparency. Communications of the ACM, 57(10):40–46, 2014.

[86] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping secure communication without
leaking metadata. In Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’16), pages 571–586, 2016.

[87] Jinghui Liao, Bo Chen, and Weisong Shi. TrustZone enhanced plausibly deniable encryption
system for mobile devices. In Proceedings of the 2021 IEEE/ACM Symposium on Edge Computing
(SEC), pages 441–447. IEEE, 2021.

[88] Ewen MacAskill and Gabriel Dance. NSA files decoded: what the revelations mean for you.
The Guardian, 2013. Accessed September 2023. URL: https://www.theguardian.com/world/

interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded.

[89] Andrew D McDonald and Markus G Kuhn. StegFS: A steganographic file system for Linux. In
Proceedings of the Information Hiding: Third International Workshop (IH ’99), pages 463–477.
Springer, 2000.

https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded

126 Bibliography

[90] Andrea McIntosh, Safwat Hassan, and Abram Hindle. What can Android mobile app developers
do about the energy consumption of machine learning? Empirical Software Engineering,
24(2):562–601, 2019.

[91] Samir Jordan Menon and David J Wu. Spiral: Fast, high-rate single-server PIR via FHE
composition. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (S&P ’23),
pages 930–947, 2022.

[92] José A Montenegro, Mónica Pinto, and Lidia Fuentes. What do software developers need to
know to build secure energy-efficient Android applications? IEEE Access, 6:1428–1450, 2017.

[93] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. PKCS #5: Password-based cryptography
specification version 2.1. RFC 8018, January 2017. URL: https://www.rfc-editor.org/info

/rfc8018.

[94] Max Mössinger, Benedikt Petschkuhn, Johannes Bauer, Ralf C Staudemeyer, Marcin Wójcik,
and Henrich C Pöhls. Towards quantifying the cost of a secure IoT: Overhead and energy
consumption of ECC signatures on an ARM-based device. In Proceedings of the 17th IEEE
International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM
’16), pages 1–6, 2016.

[95] Steven J Murdoch and George Danezis. Low-cost traffic analysis of Tor. In Proceedings of the
2005 IEEE Symposium on Security and Privacy (S&P ’05), pages 183–195, 2005.

[96] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster protocol—version 2.
IETF Internet Draft, 2003. Accessed September 2023. URL: https://datatracker.ietf.org

/doc/draft-sassaman-mixmaster/.

[97] Petr Nalevka and Jiří Richter. Don’t kill my app!, 2022. Accessed September 2023. URL:
https://dontkillmyapp.com/.

[98] Jakob Nielsen. The 90-9-1 rule for participation inequality in social media and online communities,
2006. Accessed September 2023. URL: https://www.nngroup.com/articles/participation

-inequality/.

[99] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published attacks
on Intel SGX. arXiv preprint arXiv:2006.13598, 2020.

[100] NYM Technologies SA. Nym Mainnet Explorer, 2023. Accessed June 2023. URL: https:

//explorer.nymtech.net/.

[101] NymTech. A Sphinx packet implementation in Rust, 2021. Accessed September 2023. URL:
https://github.com/nymtech/sphinx.

[102] Open Worldwide Application Security Project (OWASP). Password storage cheat sheet, 2021.
Accessed September 2023. URL: https://cheatsheetseries.owasp.org/cheatsheets/Pas

sword_Storage_Cheat_Sheet.html.

https://www.rfc-editor.org/info/rfc8018
https://www.rfc-editor.org/info/rfc8018
https://datatracker.ietf.org/doc/draft-sassaman-mixmaster/
https://datatracker.ietf.org/doc/draft-sassaman-mixmaster/
https://dontkillmyapp.com/
https://www.nngroup.com/articles/participation-inequality/
https://www.nngroup.com/articles/participation-inequality/
https://explorer.nymtech.net/
https://explorer.nymtech.net/
https://github.com/nymtech/sphinx
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Bibliography 127

[103] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Where is the energy spent inside my app?
Fine grained energy accounting on smartphones with Eprof. In Proceedings of the 7th ACM
European Conference on Computer Systems, pages 29–42, 2012.

[104] Kari Paul. We risk another crisis: TikTok in danger of being major vector of election misinfor-
mation. The Guardian, 2022. Accessed January 2023. URL: https://www.theguardian.com/

technology/2022/oct/24/tiktok-election-misinformation-voting-politics.

[105] Colin Percival and Simon Josefsson. The scrypt password-based key derivation function. RFC
7914, August 2016. URL: https://www.rfc-editor.org/info/rfc7914.

[106] Trevor Perrin and Moxie Marlinspike. The Double Ratchet algorithm. 2016. Accessed September
2023. URL: https://signal.org/docs/specifications/doubleratchet/doubleratchet.p

df.

[107] Mike Perry and George Kadianakis. Tor padding specification, September 2021. Accessed
September 2023. URL: https://github.com/torproject/torspec/blob/main/padding-spe

c.txt.

[108] Andreas Pfitzmann and Marit Hansen. A terminology for talking about privacy by data
minimization: anonymity, unlinkability, undetectability, unobservability, pseudonymity, and
identity management. Self-published online, 2010. Accessed September 2023. URL: http:

//www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf.

[109] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A comprehensive survey. ACM
Computing Surveys (CSUR), 51(6):1–36, 2019.

[110] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George Danezis. The
Loopix anonymity system. In Proceedings of the 26th USENIX Security Symposium (USENIX
Security ’17), pages 1199–1216, 2017.

[111] Adrian Popescu, Doru Constantinescu, David Erman, and Dragos Ilie. A survey of reliable
multicast communication. In Proceedings of the IEEE Conference on Next Generation Internet
Networks, NGI, pages 111–118, 2007.

[112] Nachiketh R Potlapally, Srivaths Ravi, Anand Raghunathan, and Niraj K Jha. A study of the
energy consumption characteristics of cryptographic algorithms and security protocols. IEEE
Transactions on Mobile Computing, 5(2):128–143, 2005.

[113] VeraCrypt project. VeraCrypt - free open source disk encryption with strong security for the
paranoid, 2023. https://www.veracrypt.fr/en/Home.html.

[114] Andrew Rice and Simon Hay. Measuring mobile phone energy consumption for 802.11 wireless
networking. Pervasive and Mobile Computing, 6(6):593–606, 2010.

[115] Helena Rifà-Pous and Jordi Herrera-Joancomart. Computational and energy costs of crypto-
graphic algorithms on handheld devices. Future Internet, 3(1):31–48, 2011.

https://www.theguardian.com/technology/2022/oct/24/tiktok-election-misinformation-voting-politics
https://www.theguardian.com/technology/2022/oct/24/tiktok-election-misinformation-voting-politics
https://www.rfc-editor.org/info/rfc7914
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://github.com/torproject/torspec/blob/main/padding-spec.txt
https://github.com/torproject/torspec/blob/main/padding-spec.txt
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
https://www.veracrypt.fr/en/Home.html

128 Bibliography

[116] Keegan Ryan. Hardware-backed heist: Extracting ECDSA keys from Qualcomm’s TrustZone.
In Proceedings of the 26th ACM Conference on Computer and Communications Security (ACM
CCS ’19), pages 181–194, 2019.

[117] Sajin Sasy and Ian Goldberg. SoK: Metadata-protecting communication systems. Cryptology
ePrint Archive, 2023. Accessed September 2023. URL: https://eprint.iacr.org/2023/313

.pdf.

[118] David Schatz, Michael Rossberg, and Guenter Schaefer. Hydra: Practical metadata security for
contact discovery, messaging, and dialing. In Proceedings of the 7th International Conference on
Information Systems Security and Privacy (ICISSP ’21), pages 191–203, 2021.

[119] Christoph Schnabl. Private group management for mix networks, 2023. Bachelor Thesis.

[120] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust dies in darkness: Shedding light on
Samsung’s TrustZone Keymaster design. In Proceedings of the 31st USENIX Security Symposium
(USENIX Security ’22), pages 251–268, 2022.

[121] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[122] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Proceedings of the 13th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS ’11), pages 386–400. Springer, 2011.

[123] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t interrupt me while I type: Inferring
text entered through gesture typing on Android keyboards. In Proceedings on Privacy Enhancing
Technologies (PoPETs), 2016.

[124] Adam Skillen and Mohammad Mannan. Mobiflage: Deniable storage encryption for mobile
devices. IEEE Transactions on Dependable and Secure Computing, 11(3):224–237, 2013.

[125] statcounter GlobalStats. Mobile operating system market share, 2023. Accessed August 2023.
URL: https://gs.statcounter.com/os-market-share/mobile/.

[126] Texas Instruments. INA219 Zero-Drift, Bidirectional Current/Power Monitor with I2C Interface
(SBOS448G), 12 2015. Rev. G. URL: https://www.ti.com/lit/ds/symlink/ina219.pdf.

[127] The Economist. How social-media platforms dispense justice. The Economist, 2018. Accessed
January 2023. URL: https://web.archive.org/web/20190516115755/https://www.econom

ist.com/business/2018/09/06/how-social-media-platforms-dispense-justice.

[128] The Guardian Project. Orbot: Proxy with Tor, 2022. Accessed September 2023. URL:
https://guardianproject.info/apps/org.torproject.android/.

[129] The International Telecommunication Union. Internet surge slows, leaving 2.7 billion people
offline in 2022, 2022. Accessed August 2023. URL: https://www.itu.int/en/mediacentre/P

ages/PR-2022-09-16-Internet-surge-slows.aspx.

https://eprint.iacr.org/2023/313.pdf
https://eprint.iacr.org/2023/313.pdf
https://gs.statcounter.com/os-market-share/mobile/
https://www.ti.com/lit/ds/symlink/ina219.pdf
https://web.archive.org/web/20190516115755/ https://www.economist.com/business/2018/09/06/how-social-media-platforms-dispense-justice
https://web.archive.org/web/20190516115755/ https://www.economist.com/business/2018/09/06/how-social-media-platforms-dispense-justice
https://guardianproject.info/apps/org.torproject.android/
https://www.itu.int/en/mediacentre/Pages/PR-2022-09-16-Internet-surge-slows.aspx
https://www.itu.int/en/mediacentre/Pages/PR-2022-09-16-Internet-surge-slows.aspx

Bibliography 129

[130] The International Telecommunication Union. Regional and global key ICT indicator, 2023.
Accessed August 2023. URL: https://www.itu.int/en/ITU-D/Statistics/Documents/fact

s/ITU_regional_global_Key_ICT_indicator_aggregates_Nov_2022_revised_15Feb2023.

xlsx.

[131] The Tor Project. Tor user metrics, 2023. Accessed May 2023. URL: https://metrics.torpro

ject.org/userstats-relay-country.html.

[132] Mehdi Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as uniform
random strings. In Proceedings of the International Conference on Financial Cryptography and
Data Security, pages 139–156. Springer, 2014.

[133] Tor Project. Abuse FAQ - Doesn’t Tor enable criminals to do bad things?, 2023. Accessed
February 2023. URL: https://support.torproject.org/abuse/what-about-criminals/.

[134] Robert Triggs. Fact check: Is smartphone battery capacity growing or staying the same? ,
2018. Accessed September 2023. URL: https://www.androidauthority.com/smartphone-b

attery-capacity-887305.

[135] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Stadium: A
distributed metadata-private messaging system. In Proceedings of the Proceedings of the 26th
Symposium on Operating Systems Principles, pages 423–440, 2017.

[136] United Nations Committee for Development Policy. The Least Developed Countries category:
countries snapshots, 2021. Accessed August 2023. URL: https://www.un.org/development/d

esa/dpad/wp-content/uploads/sites/45/Snapshots2021.pdf.

[137] United Nations Committee for Development Policy. List of Least Developed Countries, 2023.
Accessed August 2023. URL: https://www.un.org/development/desa/dpad/wp-content/u

ploads/sites/45/publication/ldc_list.pdf.

[138] United Nations Population Division. Database on household size and composition, 2022. Accessed
August 2023. URL: https://www.un.org/development/desa/pd/sites/www.un.org.develo

pment.desa.pd/files/undesa_pd_2022_hh-size-composition.xlsx.

[139] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable
private messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 137–152, 2015.

[140] Matteo Varvello, Kleomenis Katevas, Mihai Plesa, Hamed Haddadi, and Benjamin Livshits.
BatteryLab: a distributed power monitoring platform for mobile devices. In Proceedings of the
ACM Workshop on Hot Topics in Networks (HotNets ’19), 2019.

[141] Diana-Alexandra Vasile. Securing encrypted communication. PhD thesis, University of Cam-
bridge, 2023.

[142] Ekhiotz Jon Vergara, Simon Andersson, and Simin Nadjm-Tehrani. When mice consume like
elephants: Instant messaging applications. In Proceedings of the 5th International Conference
on Future Energy Systems, pages 97–107, 2014.

https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ITU_regional_global_Key_ICT_indicator_aggregates_Nov_2022_revised_15Feb2023.xlsx
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ITU_regional_global_Key_ICT_indicator_aggregates_Nov_2022_revised_15Feb2023.xlsx
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ITU_regional_global_Key_ICT_indicator_aggregates_Nov_2022_revised_15Feb2023.xlsx
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://support.torproject.org/abuse/what-about-criminals/
https://www.androidauthority.com/smartphone-battery-capacity-887305
https://www.androidauthority.com/smartphone-battery-capacity-887305
https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/Snapshots2021.pdf
https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/Snapshots2021.pdf
https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/ldc_list.pdf
https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/ldc_list.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_hh-size-composition.xlsx
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2022_hh-size-composition.xlsx

130 Bibliography

[143] Ekhiotz Jon Vergara, Simin Nadjm-Tehrani, and Mihails Prihodko. EnergyBox: Disclosing the
wireless transmission energy cost for mobile devices. Sustainable Computing: Informatics and
Systems, 4(2):118–135, 2014.

[144] Daniel T Wagner, Andrew Rice, and Alastair R Beresford. Device analyzer: Understanding
smartphone usage. In Proceedings of the International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services, pages 195–208. Springer, 2013.

[145] Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor. In Proceedings of the
12th ACM Workshop on Privacy in the Electronic Society (WPES ’13’), pages 201–212, 2013.

[146] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R Beresford. Key agree-
ment for decentralized secure group messaging with strong security guarantees. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security (ACM CCS
’21), pages 2024–2045, 2021.

[147] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in
numbers: Making strong anonymity scale. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’12), pages 179–182, 2012.

[148] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in
numbers: Making strong anonymity scale. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’12), pages 179–182, 2012.

[149] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Scalable
anonymous group communication in the anytrust model. In Proceedings of the European
Workshop on System Security (EuroSec), volume 4, 2012.

[150] Chai Kiat Yeo, Bu-Sung Lee, and Meng H Er. A survey of application level multicast techniques.
Computer Communications, 27(15):1547–1568, 2004.

[151] Bassam Zantout, Ramzi Haraty, et al. I2P data communication system. In Proceedings of the
10th International Conference on Networks (ICN), pages 401–409. ICN, Springer Singapore,
2011.

[152] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P Dick, Zhuoqing Mor-
ley Mao, and Lei Yang. Accurate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proceedings of the 8th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, pages 105–114,
2010.

Acronyms and abbreviations

ACK Acknowledgement (message).
AE Authenticated encryption.
AES Advanced encryption standard.
AOSP Android open-source project.
API Application programming interface.
ASIC Application-specific integrated circuit.

CCA Chosen-ciphertext attack.
CDN Content delivery network.
CPA Chosen-plaintext attack.
CRDT Conflict-free replicated data type.
CSV Comma-separated values.

DCGKA Decentralized continuous group key agreement.
DDH Decisional Diffie–Hellman.
DEMS Deniable encryption multi-snapshot.
DESS Deniable encryption single-snapshot.
DH Diffie–Hellman.
DNSSEC Domain name system security extensions.
DoS Denial of service.

E2 Elligator Squared.
E2EE End-to-end encrypted (or encryption).
EC Elliptic curve.
ECC Elliptic curve cryptography.
ECDH Elliptic curve Diffie-Hellman.
EXP Exponential (distribution).

FIFO First-in first-out.
FT Fault-tolerance.

132 Acronyms and abbreviations

GiB Gibibyte (230 Bytes).
GNU GNU’s not Unix.
GPA Global passive adversary.
GPS Global positioning system.

HAL Hardware abstraction layer.
HIBE Hierarchical identity-based encryption.
HKDF HMAC-based key derivation function.
HMAC Hash-based message authentication code.
HTTPS Hypertext transfer protocol secure.

I2P Invisible Internet Project.
IDE Integrated development environment.
IND Indistinguishability.
IP Internet protocol.
ISP Internet service provider.
ITU International Telecommunication Union.

JNI Java native interface.

KDF Key derivation function.
KiB Kibibyte (210 Bytes).

LDCs Least developed countries.

MAC Message authentication code.
MiB Mebibyte (220 Bytes).

OS Operating system.
OWASP Open worldwide application security project.

P2P Peer-to-peer.
PAKE Password-authenticated key exchange.
PDA Personal digital assistant.
PE Puncturable encryption.
PET Privacy enhancing technology.
PGM Private group management.
PIR Private information retrieval.
POIS Poisson (distribution).
PP Percentage points.

Acronyms and abbreviations 133

PPT Probabilistic polynomial-time.
PRF Pseudo-random function.
PRNG Pseudo-random number generator.
PSQ PrivateSendingQueue.

RC Rollercoaster.

SE Secure element.
SGX Intel Software Guard Extensions.
SIM Subscriber identity module.
SSL Secure sockets layer.

TCP Transmission control protocol.
TEE Trusted execution environment.
TLS Transport layer security.

UDP User datagram protocol.
UN United Nations.

VPN Virtual private network.

WT Wall-time.
WTA Wall-time adversary (or algorithm).

Typography note: We typeset the introduced protocols and operations using SmallCaps in this
dissertation. We use italics for emphasising terms and expressions.

Appendix A

Rollercoaster

A.1 Algorithms

Algorithm 8 Methods explaining how the timeout information is stored and updated.
1: procedure OnInit
2: self.sessions = [·] ▷ missing keys default to {}
3:
4: procedure AddTimeout(msg, role, recipient, timeout)
5: CancelTimeout(msg, role, recipient)
6: id← (msg.groupid,msg.nonce)
7: entry ← (role, recipient, timeout)
8: self.sessions[id]← self.sessions[id] ∪ {entry}
9:

10: procedure CancelTimeout(msg, role, recipient)
11: id← (msg.groupid,msg.nonce)
12: session = self.sessions[id]
13: self.sessions[id]← {x ∈ self.sessions[id] | x.role ̸= role ∧ x.recipient ̸= recipient}

Algorithm 9 Determines whether node node is a forwarding node with regards to schedule S.
1: procedure IsForwardingNode(S, node)
2: source← S[0][0][0]
3: if node = source then
4: return false
5: for t = 1 until |S| do
6: R← S[t]
7: for (sender,_) in R do
8: if node ̸= source and node = sender then
9: return true

10: return false

136 Rollercoaster

Algorithm 10 The fault-tolerant Rollercoaster callback handler and send methods (signatures
are checked implicitly).

1: procedure SendToGroup(groupid, payload)
2: S ← GenSchedule(msg.source,msg.groupid)
3: for recipient ∈ {direct children of self in S} do
4: msg ← NewMessage()
5: msg.groupid← groupid
6: msg.nonce← FreshNonce()
7: msg.{source, sender, role} ← self
8: msg.payload← payload
9: ScheduleForSend(recipient,msg)

10:
11: procedure OnPayload(msg)
12: ApplicationHandle(msg.payload)
13: if msg was received while offline then return
14: if msg was not seen before then
15: S ← GenSchedule(msg.source,msg.groupid)
16: for x ∈ {direct children of msg.role in S} do
17: msg′ ← CopyMessage(msg)
18: msg′.sender ← self
19: msg′.role← x
20: ScheduleForSend(x,msg′)
21: ScheduleForSend(msg.source,GenAck(msg))
22:
23: procedure OnAck(msg)
24: assert (msg.source = self)
25: CancelTimeout(msg,msg.role,msg.sender)
26:
27: procedure OnMessageIsSent(msg) ▷ Called when a message leaves the payload queue
28: S ← GenSchedule(msg.source,msg.groupid)
29: for x ∈ {recursive children of msg.role in S} do
30: timeout← EstimateTimeout(S, x)
31: AddTimeout(msg, x, timeout)
32:
33: procedure OnTimeout(msg, recipientfailed)
34: S ← GenSchedule(msg.source,msg.groupid)
35: if not IsForwardingNode(S, msg.role) then
36: return
37: for x ∈ {recursive children of msg.role in S} do
38: CancelTimeout(msg,msg.role,msg.sender)
39: ▷ timeout will be recreated when re-try is sent
40: recipient′ ← NextRecipient(S, recipientfailed)
41: ScheduleForSend(recipient′,msg)
42: msg.role← ∅ ▷ Re-try to failed node w/o role
43: ScheduleWithExpBackoff(recipientfailed,msg)

A.1 Algorithms 137

Algorithm 11 Determines the next recipient after discovering a faulty node f given schedule S
1: procedure NextRecipient(S, f)
2: order ← [S[0][0][0]] ▷ start with the source
3: for t = 0 until |S| do
4: R← S[t]
5: for (_, recipient) in R do
6: if recipient /∈ order then
7: order.append(recipient)
8: pos← order.findIndex(f)
9: return order[(pos+ 1) mod |order|]

Intentionally left empty.

138 Rollercoaster

A.2 Heatmaps

In Figure A.1 we present additional online and offline scenarios for different sending rates and branching
factors without (left) and with (right) p-restricted multicast. See Section 4.4.5.

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 65% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 65% online, p= k

0

50

100

150

200

m
ean d

m
sg

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 80% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 80% online, p= k

0

50

100

150

200

m
ean d

m
sg

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 88% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 88% online, p= k

0

50

100

150

200

m
ean d

m
sg

k=
1, p

=1

k=
2, p

=1

k=
4, p

=1

k=
8, p

=1

k=
16

, p
=1

λ/1

λ/2

λ/4

λ/8

λ/16

 100% online, p= 1

k=
p=1

k=
p=2

k=
p=4

k=
p=8

k=
p=16

λ/1

λ/2

λ/4

λ/8

λ/16

 100% online, p= k

0

50

100

150

200

m
ean d

m
sg

Figure A.1: Heatmaps showing the mean message latency for reduced sending rates (y-axis) and
different Rollercoaster parameters (x-axis). In the left graph only the logical multiplier factor k
is increased. In the right graph the multicast factor p is increased at the same time. Group size 128.

A.3 Histograms 139

A.3 Histograms

Figures A.2 and A.3 (next page) provide additional illustrations and express the underlying behaviour
of the different strategies. They serve as additional evidence that our simulator functions as described.
The histograms also show the results that are provided in the box charts in Figures 4.5 and 4.6.

The distribution of the online naïve sequential unicast strategy in Figure A.2 has a very wide body
that is an effect of the queuing time in the payload buffer of the sender. Its height depends on the
payload rate λp. On the other hand, the Rollercoaster graphs show a much tighter distribution
with a much higher peak (124k compared to 11k for unicast).

For the offline scenarios in Figure A.3 the distribution for the naïve sequential unicast strategy is
almost the same as in Figure A.2. The non-fault tolerant Rollercoaster strategy fails dramatically
and is dominated by extreme outliers – with p99 growing to multiple hours! Adding the basic fault
tolerance improves the p90 percentile and the mean values approach a reasonable order of magnitude.
However, nodes coming back online continue to be overwhelmed since they first work through old
messages in their mailbox. The fix, as described in the main text, is to drop any forwarding messages
received while the node was offline. Doing so means that the fault-tolerant Rollercoaster strategy
provides excellent results with mean, p90, and p99 being less than a minute and better than unicast
can provide. The individual peaks visible are the result of timeouts and subsequent re-transmissions.

Intentionally left empty.

140 Rollercoaster

0 20 40 60 80 100
0k

11k

Fr
eq

ue
nc

y
 m

=
32

0 20 40 60 80 100
0k

24k

0 20 40 60 80 100
0k

36k

0 20 40 60 80 100
0k

12k

Fr
eq

ue
nc

y
 m

=
64

0 20 40 60 80 100
0k

44k

0 20 40 60 80 100
0k

64k

0 20 40 60 80 100
0k

12k

Fr
eq

ue
nc

y
 m

=
12

8

0 20 40 60 80 100
0k

84k

0 20 40 60 80 100
0k

125k

0 20 40 60 80 100
Message latency dmsg [s]

Unicast

0k

12k

Fr
eq

ue
nc

y
 m

=
25

6

p90 = 119.9s
p99 = 151.5s

0 20 40 60 80 100
Message latency dmsg [s]

RC (k= p= 1)

0k

160k

0 20 40 60 80 100
Message latency dmsg [s]

RC (k= p= 2)

0k

209k

Figure A.2: The distribution of message latency of naïve sequential unicast and Rollercoaster
(RC) as perceived by the participating group members in a simulation where all users are online all
the time. The solid line marks the mean latency whereas the dashed (and dotted) lines mark the p90
(and p99) latency. In this figure the y-axes are not linked in order to provide higher fidelity.

A.3 Histograms 141

0 50 100
0k

79k

Fr
eq

ue
nc

y
 6

5%
 o

nl
in

e

p99 = 103.3s

0 50 100
0k

79k
mean= 4432.9s
p90 = 15800.4s
p99 = 30888.4s

0 50 100
0k

79k
mean= 1139.2s

p90 = 2006.8s
p99 = 22328.0s

0 50 100
0k

79k

0 50 100
0k

79k

Fr
eq

ue
nc

y
 8

0%
 o

nl
in

e

p99 = 102.3s

0 50 100
0k

79k
mean= 4127.4s
p90 = 14772.6s
p99 = 31343.7s

0 50 100
0k

79k
mean= 1036.0s

p90 = 1272.9s
p99 = 20300.3s

0 50 100
0k

79k

0 50 100
Message latency dmsg [s]

Unicast

0k

79k

Fr
eq

ue
nc

y
 8

8%
 o

nl
in

e

0 50 100
Message latency dmsg [s]

RC (k= p= 2)

0k

79k
mean= 1550.1s

p90 = 6401.1s
p99 = 20464.8s

0 50 100
Message latency dmsg [s]

RC-FT (k= p= 2, w/o drop)

0k

79k

mean= 228.5s
p99 = 8546.3s

0 50 100
Message latency dmsg [s]

RC-FT (k= p= 2)

0k

79k

Figure A.3: The distribution of message latency dmsg for sequential unicast and different
Rollercoaster configurations. The group size is 128 and the rows show different offline scenarios.
The left graphs show (left-to-right): (i) Naïve unicast, (ii) Rollercoaster without fault-tolerance
for k = p = 2, (iii) Rollercoaster with fault-tolerance but not ignoring messages that arrived while
offline, (iv) our final Rollercoaster algorithm with fault-tolerance and all optimisations. The solid
line marks the mean latency whereas the dashed (and dotted) lines mark the p90 (and p99) latency.
The mean can be larger than the p90 if there are few but large outliers.

142 Rollercoaster

A.4 Eventual delivery proof

We make the following assumptions for the remainder of Appendix A.4: All network links are fair-loss
and deliver messages with probability > 0. Every layer of the mix network has at least one mix node
that correctly forwards messages. Any node can go offline at any time and all nodes except source
can be Byzantine-faulty. We use the following definitions for the remainder of this section: Let source
be a node, which does not go offline permanently. Let S be a schedule that includes source as its root
and all group members as its internal and leaf nodes.

Lemma 23. Every message which is sent along a randomly chosen path of mix nodes has probability
> 0 to be delivered.

Proof. Since there is a mix node that correctly forwards messages in every layer, there is a non-zero
probability of choosing mix nodes in all three layers which all correctly forward messages. Since every
network link has a non-zero probability of delivering a message, the entire route consisting of multiple
network links has a non-zero probability of delivering the message. Therefore, sending a message
along a randomly chosen path has probability > 0 of being delivered.

Lemma 24. Every direct payload sent by a node sender, which does not go offline permanently, to a
node recipient is eventually delivered.

Proof. We first consider the case (a) that the delivery of the payload to recipient is successful and
the delivery of the ACK to sender is successful. In this case sender can be certain that the payload
was delivered to recipient, because only recipient can compute the correct signature in the ACK.
Therefore, the cancellation of the timeout by sender is safe.

We now consider the case (b) that the delivery of the payload to recipient failed or the delivery of
the ACK to sender failed. Any of the two failures causes the timeout at the sender to expire. As
a result sender sends the same payload again using a new random path and setting a new timeout.
Since sending the payload to recipient and sending the ACK to sender have non-zero probability of
success (Lemma 23), there will eventually be an execution where both succeed.

We now consider the case (c) that recipient is offline. For sender this situation is indistinguishable
from case (b). Therefore, sender will retry until recipient returns online and sends an ACK.

We now consider the case (d) that sender is offline. If the payload has not been sent yet, it will be
sent when sender returns online. In case (a) sender will observe the ACK message when it returns
online. In cases (b) and (c) the sender will re-try once it returns online and the timeout expired.
Since sender will not go offline permanently, transition to cases (a)-(c) will happen eventually.

Lemma 25. Any payload sent by source is eventually delivered to all direct children of source in S.

Proof. For direct children of source in S, all payloads are sent as direct messages. From Lemma 24 it
follows that these are delivered eventually.

Lemma 26. Any payload sent by source is eventually delivered to all indirect children of source in S.

Proof. Let x be an arbitrary indirect child of source in S.

A.4 Eventual delivery proof 143

We first consider the case (a) that the payload was delivered through the forwarding node(s) to x
and the ACK message was delivered to source. It is safe for source to cancel the respective timeout,
as the payload was delivered to x.

We now consider the case (b) that x is a direct child of p which is a direct child of source. If source
receives p’s ack, but not x’s ack, then x becomes a direct child of source. This case is considered in
Lemma 25. Otherwise, p timed-out before x, because p’s timeout is strictly smaller than the one of x.
This means that source assigns the role of p to another node p′ and sets new timeouts for p′ and x. If
p′ fails, this is repeated for multiple rounds. The list of replacement nodes shrinks by ≥ 1 every round
as previously failed nodes will not be considered again. Therefore, eventually forwarding succeeds or
source (which is part of the replacement list) becomes p′ making x a direct recipient. This case is
considered in Lemma 25.

We now consider the case (c) that x is a child in a tree path [source, p1, p2, . . . , x]. Let pj with
j ≥ 1 be the parent closest to x whose timeout expires. This implies that all pi with i < j successfully
acknowledged to source since their timeouts are strictly smaller. The role of pj will be assigned to
another node p′

j and new timeouts are set. If p′
j fails, this is repeated for multiple rounds. Therefore,

eventually forwarding succeeds or source becomes p′
j which reduces the length of the path from source

to x by at least one. Therefore, eventually forwarding succeeds or the path length is reduced so far
that case (b) applies.

Theorem 27. Let source be a node that does not go offline permanently, and that is not Byzantine-
faulty. All payloads sent by source are eventually delivered to all group members.

Proof. For any schedule, every group member is either a direct child or an indirect child of source.
Therefore, the result follows directly from Lemma 25 and Lemma 26.

Theorem 28. Let source′ be a node that may be Byzantine-faulty. Let X be any subset of group
members that are not Byzantine-faulty and that do not go offline permanently. If one of the nodes in
X receives a payload from source′, all other nodes in X will eventually receive the payload.

Proof. Let x ∈ X be the node that received a payload message m from source′, and let x′ be any
other member of X. We then show that x′ eventually receives m.

As described in Section 4.3.2, every node periodically computes a hash of the payloads it received
and sends it to a randomly selected group member; thus, x eventually computes a hash over a message
history including m and sends it to x′, and by Lemma 23 this message is eventually received by x′

(possibly after several attempts). If x′ has already received m, we are done. If x′ has not yet received
m, and assuming the hash function is collision-resistant, then there is no message history known to x′

that results in the same hash value, and therefore the hash sent by x is unknown to x′.
x′ responds to the unknown hash by sending a request to x, asking it to send any messages that x′

is missing. A simple but inefficient algorithm would be for x to resend all payload messages it has ever
received to x′. A more efficient approach uses a reconciliation protocol to determine which messages
are known to x but unknown to x′, and to resend only those messages. Several such reconciliation
protocols are known [78]. Whatever protocol is used, it will eventually complete (by Lemma 23), and
therefore x′ will eventually receive m from x, as required.

144 Rollercoaster

Regular Sphinx

s n0 n1 n2 n ∗
(M0, δ0) (M1, δ1) (M2, δ2) (M3, δ3) δ

p-restricted MultiSphinx (p = 2)

s n0 n1
(M0, δ0) (M1, δ1)

n2,A nA ∗

(M 2,A
, δ 2,A

)
(M3,A, δ3,A) δA

n2,B nB ∗

(M
2,B , δ2,B)

(M3,B , δ3,B) δB(M1,A, δ1,A)

(M1,B , δ1,B)

Figure A.4: Schematic of messages (header, payload) for Sphinx and MultiSphinx.

A.5 MultiSphinx construction

In this Appendix we provide detailed algorithms for constructing and processing both the regular
Sphinx messages (A.5.1) and our MultiSphinx messages (A.5.2). The regular construction is based
on the original Sphinx paper [44] and the proposed improvement using authenticated encryption [20].
For both schemes we will use three hops n0, n1, n2 for the mix nodes and a final hop n for the recipient1

that extracts the payload from the inner-most encryption (Figure A.4).
A Sphinx header M consists of a group element α for deriving shared secrets, authenticated data

β, and an authentication tag γ. In the original Sphinx paper β is used to store the address of the
next hop. For the final hop the distinguished element ∗ is used to signal that the payload reached its
intended destination. Loopix adds per-hop delays to this routing information.

We assume that all nodes ni have access to the public keys of all other nodes without us passing
these explicitly. We assume the existence of a method ProcessHeader that takes a header of a
Sphinx packet and returns all metadata contained in β (next hop identifier, delay) and the header
for the next hop. We assume the existence of a method ComputeSecrets that takes a list of
hops n0, n1, . . . and outputs a list of shared secrets s0, s1, We assume the existence of a method
CreateHeader that takes a shared secret si, the next hop identifier ni+1, and (optionally) a header
Mi+1 to wrap. The details of these operations can be found in the Sphinx paper [44, §3.2 and §3.6].
In line with Loopix the sender chooses a random per-hop delay for each hop and includes it in the
authenticated metadata in the header. This happens transparently in the CreateHeader method.

We assume the existence of an authenticated encryption (AE) scheme as required by the improved
Sphinx format [20]. An AE scheme provides an encryption function AEenc that takes a secret key s, a
message msg, and optional metadata meta and outputs a ciphertext ctext and an authentication tag
auth. It also provides a decryption function AEdec that takes a secret key s, a ciphertext ctext, an
authentication tag auth, and metadata meta. It returns the decrypted message if the authentication
tag verifies the integrity of ciphertext and metadata or ⊥ otherwise.

We assume that the AE scheme is based on an encrypt-then-mac regime using a stream cipher
C (e.g. AES-CTR), a message authentication code MAC (e.g. HMAC), and a keyed key derivation

1We omit the provider nodes here to improve readability.

A.5 MultiSphinx construction 145

function KDF (e.g. HKDF). Stream ciphers have the property that changing a given bit of the
ciphertext/plaintext only changes the bit at the same position in the plaintext/ciphertext after
decryption/encryption. Arbitrary changes will lead to an invalid auth tag – but we might intentionally
ignore this during our constructions and recalculate the auth tags later. Since Sphinx uses fresh secret
keys for every message and hop, we can leave the nonce for the stream cipher constant. We show our
construction of AEenc and AEdec in Algorithm 12.

Algorithm 12 The authenticated encryption scheme AE based on stream cipher C, a MAC, and a
keyed KDF.

1: procedure AEenc(s,msg,meta)
2: scipher, smac ← KDF(s, cipher),KDF(s, mac)
3: ctext← C(scipher)⊕msg
4: auth←MAC(smac, ctext ∥ meta)
5: return (ctext, auth)
6:
7: procedure AEdec(s, ctext, auth,meta)
8: scipher, smac ← KDF(s, cipher),KDF(s, mac)
9: if MAC(smac, ctext ∥ meta) ̸= auth then

10: return ⊥
11: msg ← C(scipher)⊕ ctext
12: return msg

A.5.1 Normal Sphinx (existing solution)

The algorithms in this section summarise the existing literature [20, 44], but we adapted the notation
to be more concise. Algorithm 13 shows the creation of the a regular Sphinx message by the sender.
While the original Sphinx papers can create all headers before encrypting the payload, the improved
variant with AE requires us to do these operations simultaneously as the encryption affects the
authentication tag γ of this and the following message headers.

Algorithm 13 Creating a packet to be routed through hops n0, n1, n2 to node n.
1: procedure Create(δ, n0, n1, n2, n)
2: assert|δ| = MaxMsgLen
3: s0, s1, s2, s3 ← ComputeSecrets(n0, n1, n2, n)
4: M3 ← CreateHeader(s3, ∗)
5: δ3, M3.γ ← AEenc(s3, δ,M3.β)
6: M2 ← CreateHeader(s2, n,M3)
7: δ2, M2.γ ← AEenc(s2, δ3,M2.β)
8: M1 ← CreateHeader(s1, n2,M2)
9: δ1, M1.γ ← AEenc(s1, δ2,M1.β)

10: M0 ← CreateHeader(s0, n1,M1)
11: δ0, M0.γ ← AEenc(s0, δ1,M0.β)
12: return (M0, δ0)

Algorithm 14 shows how a mix node processes a message it received. First the message is unpacked
into the header and the payload. Then the tag is derived and compared against previously seen tags

to protect against replay attacks. Afterwards, the decryption verifies that the authentication tag

146 Rollercoaster

matches the message and header metadata. Finally the header is unwrapped and a send operation is
scheduled according to the next hop identifier and delay from the metadata.

Algorithm 14 Processing of an incoming packet at mix node n with secret key xn.
1: procedure Process(packet)
2: (M, δ)← packet
3: s← (M.α)xn

4: if hτ (s) ∈ tags then abort
5: tags← tags ∪ {hτ (s)}
6: δ′ ← AEdec(s, δ,M.γ,M.β)
7: if δ′ =⊥ then abort
8: (n′, delay),M ′ = ProcessHeader(M)
9: QueueForSend(n′, (M ′, δ′), delay)

A.5.2 MultiSphinx (our solution)

We now describe our MultiSphinx construction and highlight the changes relative to the normal
Sphinx construction in blue. To allow for a readable description we describe everything for p = 2
however the general case follows easily.

We use the pseudo-random function (PRF) ρ together with its key-generating function hρ from
the original Sphinx paper to create a deterministic pseudo-random padding. Since we need two derive
to independent keys from the same secret, we extend hρ with another parameter that can be an
arbitrary string. This extension can be implemented using any suitable HKDF function.

Algorithm 15 explains the creation of MultiSphinx messages by the sender. The part concerning
the “two legs” of the message graph is only shown once for A to allow for a more readable presentation.
Line 21 instructs which lines are meant to be repeated for the other p− 1 recipients. In line 4 the
secret s1 is computed which is required for the padding construction in line 11. Lines 6-9 encrypt
the actual payload from the recipient nA to the multiplication node n1,A (going backwards). The
encrypted payloads δ3,A, δ2,A, δ1,A are all smaller than the normal payload length of messages. This
would allow an attacker to distinguish such messages from other Loopix messages (e.g. when the
middle mix layer sends loop messages). Therefore, the ciphertext is padded in line 11 with our PRF ρ.
To correctly compute the MACs and headers in lines 15-20, we first simulate (going forwards) how
the payloads will be affected by the decryption (line 12f).

Algorithm 16 explains the processing step at a mix node. Regular mix nodes operate as before
(line 10). However, at multiplication nodes incoming message payloads are split into p headers and
p payloads (line 12). In lines 13-16 the pseudo-random paddings are added. This process is also
visualised in Figure 4.4. The newly created packets are processed recursively and then scheduled
for sending based on their individual delay (line 15f). This “self-delivery” corresponds to the loop
edge of n1 in Figure A.4. The extra hop allows for delaying both messages independently at the
multiplication node (two headers allow for two delays). It also simplifies our correctness arguments.

A.5 MultiSphinx construction 147

Algorithm 15 Creating a MultiSphinx packet to be routed through hops n0, n1, n2,A, n2,B to nodes
nA, nB .

1: procedure Create(δA, δB , n0, n1, n2,A, n2,B , nA, nB)
2: assert|δA| = |δB |= (MaxMsgLen−HdrLen)/2
3: s0, s1,← ComputeSecrets(n0, n1) ▷ Secrets for hops from sender to multiplier node n1
4:
5: ▷ Encrypt from recipient nA to multiplier node n1
6: s1,A, s2,A, sA ← ComputeSecrets(n1,A, n2,A, nA)
7: δ3,A ← C(KDF(sA, cipher))⊕ δA

8: δ2,A ← C(KDF(s2,A, cipher))⊕ δ3,A

9: δ1,A ← C(KDF(s1,A, cipher))⊕ δ2,A

10:
11: ▷ Add pseudo-random padding and compute padded payloads δ′

... along decryption path
12: δ′

1,A ← δ1,A ∥ ρ(hρ(A, s1))
13: δ′

2,A ← Cdec(KDF(s1,A, cipher))⊕ δ′
1,A

14: δ′
3,A ← Cdec(KDF(s2,A, cipher))⊕ δ′

2,A

15:
16: M3,A ← CreateHeader(sA, ∗) ▷ Compute headers and full MACs
17: M3,A.γ ←MAC(KDF(sA, mac), δ′

3,A ∥M3.A).β)
18: M2,A ← CreateHeader(sA, n3,A,M3,A)
19: M2,A.γ ←MAC(KDF(s2,A, mac), δ′

2,A ∥M2.A).β)
20: M1,A ← CreateHeader(sA, n2,A,M2,A)
21: M1,A.γ ←MAC(KDF(s1,A, mac), δ′

1,A ∥M1.A).β)
22: Repeat lines 6− 20 for B
23:
24: δcombined = M1,A ∥ δ1,A ∥M1,B ∥ δ1,B ▷ From sender to multiplication node
25: M1 ← CreateHeader(s1)
26: δ1, M1.γ ← AEenc(s1, δcombined,M1.metadata))
27: M0 ← CreateHeader(s0, n1,M1)
28: δ0, M0.γ ← AEenc(s0, δ,M0.metadata))
29: return (M0, δ0)

Algorithm 16 Processing of an incoming packet at mix node n at mix layer l with secret key xn.
1: procedure Process(packet)
2: (M, δ)← packet
3: s← (M.α)xn

4: if hτ (s) ∈ tags then abort
5: tags← tags ∪ {hτ (s)}
6: δ′ ← AEdec(s, δ,M.γ,M.β)
7: if δ′ =⊥ then abort
8: n′, delay,M ′ = ProcessHeader(M)
9: if l ̸= 1 then

10: QueueForSend(n′, (M ′, δ′), delay)
11: else
12: M1,A, δ1,A,M1,B , δ1,B ← δ′ ▷ δ′ = δcombined

13: ρA, ρB ← ρ(hρ(A, s)), ρ(hρ(B, s)) ▷ s = s1
14: ▷ Process separately to allow independent delays
15: process(M1,A ∥ δ1,A ∥ ρA)
16: process(M1,B ∥ δ1,B ∥ ρB)

148 Rollercoaster

A.6 MultiSphinx proofs

This appendix provides proofs for the MultiSphinx security and anonymity claims in Section 4.3.4.
We discuss the resistance against a global passive adversary (A.6.1) that might collude with corrupted
mix nodes (A.6.2). Finally, we show that our claims also extend to active attacks (A.6.3) as described
in the Loopix paper.

A.6.1 Against a global passive adversary

We will show that a global passive adversary (GPA) that can monitor the entire network traffic does
not gain any advantage when MultiSphinx messages (A.5.2) are used compared to regular Sphinx
messages (A.5.1).

Indistinguishability of MultiSphinx and Sphinx messages for GPA

We first show that a global passive adversary (GPA) cannot tell apart MultiSphinx messages and
regular Sphinx messages. By doing this we reduce our security claims to those of the original Loopix
paper. We treat all encryption and pseudo-random functions (PRFs) as random oracles as it is done
in the original Sphinx paper.

Lemma 29. MultiSphinx messages from the sender to the multiplication node are indistinguishable
from Sphinx messages for a GPA.

Proof. The headers of all MultiSphinx messages from the sender to the multiplication node are
constructed using the same methods as regular Sphinx messages. At the same time the Sphinx
header is “[. . .] hiding the number of hops a messages has travelled so far, as well as the actual
number of mixes on the path of a message” [44, p.2]. Therefore, the headers are indistinguishable
between the two message types. To an adversary who does not know the key the encrypted payload is
indistinguishable from random bits for both message types as per definition of the random oracle.
Therefore, the encrypted payloads are indistinguishable between the two message types.

Lemma 30. MultiSphinx messages from the multiplication node to other nodes are indistinguishable
from Sphinx messages for a GPA.

Proof. The proof for the header bytes follows analogously to the proof above. The payloads of
MultiSphinx messages leaving the multiplication node consist of the encrypted payload concatenated
with the pseudo-random padding (the output ρi of the PRF). As per the definition of the random
oracle, both bit strings are indistinguishable from random noise. Therefore, the entire payload is
indistinguishable. This is also true for all following hops, as all messages (before the recipient unpacks
the innermost message) are ciphertexts in the random oracle model.

Lemma 31. All MultiSphinx messages are indistinguishable from Sphinx messages for a GPA.

Proof. Since Loopix is using a stratified topology, all message paths will go through a mix node at
the multiplication layer. This means that each message (and edge) of the path is either before or after
a multiplication node. Lemma 29 and Lemma 30 cover both cases.

A.6 MultiSphinx proofs 149

Unlinkability of Messages at Multiplication Node

Theorem 1 of in the Loopix paper [110] analyses the probability that an adversary can link a single
message leaving a mix node to one of the previously arriving messages. Our argument follows the
same structure to show MultiSphinx maintains the unlinkability property described in the Loopix
paper. The MultiSphinx protocol does not affect mix nodes in the first and third layers since they
retain a one-to-one relation between incoming and outgoing messages. Therefore the analysis in the
Loopix paper holds unchanged. We diverge from the original notation by using κ instead of k to avoid
confusion with the k parameter used for our schedule generation.

Theorem 1 in the Loopix paper defines the observation scenario on,κ,l for a passive adversary: first,
the attacker observes a set of n messages arriving at a previously empty mix (multiplying into pn
messages internally); then a total of (pn− κ) messages are emitted by the mix before another set of l
messages arrive at the mix; finally, a single message m leaves the mix node and the adversary seeks to
correlate this message m with any of the n+ l messages observed arriving at the mix node.

Lemma 32. Let m1 be any of the initial n messages arriving at the p-restricted MultiSphinx
multiplication mix node in scenario on,κ,l. Let m2 be any of the l messages that arrive later. The
probability that the outgoing message m was an inner message of either m1 or m2 is:

Pr(m ∈ m1) = κ

n(κ+ pl) , (A.1)

Pr(m ∈ m2) = p

κ+ pl
. (A.2)

Proof. With the arrival of n messages and their multiplication the mix node holds pn messages. After
emitting (pn− κ) messages the mix holds κ messages. The arrival of the l messages leads to a total of
κ+ pl messages from which m is chosen.

The probability that m is an inner message of any of the initial n messages is κ
κ+pl . The

requirement that it was an inner message of one particular message m1 of that batch which leads to:
1
n ·

κ
κ+pl = κ

n(κ+pl) .
The probability that m is an inner messages of any of the later l messages is pl

κ+pl . The requirement
that it was an inner message of one particular message m2 of that batch which leads to: 1

l ·
pl

κ+pl = p
κ+pl .

These results are qualitatively the same as in the Loopix paper: “[. . .] continuous observation
of a Poisson mix leaks no additional information other than the number of messages present in the
mix” [110, p.1207]. As the original paper’s argument builds upon the probabilities in its Theorem 1.
It also holds for MultiSphinx.

Theorem 33. A global passive adversary (GPA) that monitors all network traffic does not gain any
advantage when MultiSphinx messages are used instead of Sphinx messages.

Proof. An observer cannot distinguish any MultiSphinx message from a regular Sphinx message
(Lemma 31). The difference in processing at the multiplication node also does not provide any
advantage (Lemma 32). Furthermore, the multiplication factor p is globally fixed and therefore cannot
leak any information about group sizes. All other mix nodes operate exactly as they do with normal

150 Rollercoaster

Sphinx messages. To an observer all clients create indistinguishable packets at a rate independent
of actual communication. Therefore, an observer does not gain any advantage over regular Sphinx
messages.

A.6.2 Against corrupt nodes

We now consider the ability of an adversary who controls a subset of mix nodes along the message
path. The adversary can inspect the internal state of the corrupted mix node including short-term and
long-term secrets. We exclude active attacks for now, as they are covered in A.6.3. This is sometimes
called an honest-but-curious mix node model.

Theorem 34. An adversary controlling an honest-but-curious mix node on the first or third layer
processing MultiSphinx messages does not gain any advantage compared to regular Sphinx messages
for any of the security notions discussed in the original Loopix paper: sender-recipient third-party
unobservability, sender online unobservability, sender anonymity, receiver unobservability, and receiver
anonymity.

Proof. From Theorem 33 it follows that the adversary does not gain an advantage from monitoring
the in-coming and out-going messages. Also, Algorithm 16 shows the operation of these nodes is
identical to regular Sphinx nodes.

Theorem 35. An adversary controlling an honest-but-curious multiplication mix node on the second
layer processing MultiSphinx messages does not gain any advantage compared to regular Sphinx
messages for any of the security notions discussed in the original Loopix paper: sender-recipient
third-party unobservability, sender online unobservability, sender anonymity, receiver unobservability,
and receiver anonymity.

Proof. A p-restricted MultiSphinx multiplication node on the second layer does not learn more
information about the sender or recipient than a regular Sphinx node on the second layer: it knows
its preceding node on the first layer and it knows for each message the succeeding node in the third
layer. The addition of deterministic pseudo-random padding ρ{A,B,... } does not reveal any information
about the sender or recipient as it is derived from a shared secret that is known in the regular Sphinx
operation as well.

Definition 36. In an anonymity system having group existence anonymity an adversary cannot
decide whether a group of a given size is communicating.

This property does not hold for naïve multicast: a multiplication node observing a message splitting
into x other messages can deduce an increased likelihood that a group of that size exists.

Theorem 37. An adversary controlling an honest-but-curious mix node processing p-restricted
MultiSphinx cannot decide group existence with probability better than random chance.

Proof. All MultiSphinx messages are constructed independently of the underlying Rollercoaster
algorithm (Figure 4.3) and always have the same number of p wrapped messages. None of the
observable properties change if there is an actively communicating group of certain size or not.

A.6 MultiSphinx proofs 151

Definition 38. In an anonymity system having group membership anonymity an adversary
cannot determine whether two users are members of the same group or not.

Theorem 39. Assume a system using 3 mix layers and p-restricted multicast at the middle layer.
Assume an adversary, who controls an honest-but-curious multiplication node, and also controls c
out of n mix nodes in the third layer. Let U be the set of all users evenly distributed among all
providers P. Then this adversary cannot decide group membership anonymity with probability better
than (1− (n−c

n)p−1) · |P|2

|U|2 for a given group message.

Proof. We assume (to the advantage of the adversary) that MultiSphinx messages contain either
payloads to members of the same group or cover traffic. In the real system MultiSphinx messages
might contain a mixture of both making the adversary’s job more difficult. We also ignore (to the
advantage of the adversary) any Loop messages injected by the mix nodes.

We first analyse the chance of the adversary controlling at least 2 of the independently chosen p

mix nodes from the third mix layer, as they need both to link the messages.

Pr(X ≥ 2) = 1− Pr(X = 0)− Pr(X = 1)

= 1−
(
n− c
n

)p

− p · c
n
·
(
n− c
n

)p−1

= 1−
(
n− c
n

+ p · c
n

)
·
(
n− c
n

)p−1

= 1− n+ (p− 1)c
n

·
(
n− c
n

)p−1

≤ 1−
(
n− c
n

)p−1

Because the adversary controls both a multiplication node and multiple layer-3 nodes, they can
trace messages that resulted from the same multiplication up to their delivery to the recipients’
providers P1 and P2. If the traced messages contained payload of the same group, the adversary now
knows that there exist users U1 and U2 that are likely to be members of the same group and their
respective providers are P1 and P2. However, without also controlling the providers, the adversary
does not know the identity of U1 and U2.

The likelihood of correctly guessing the actual recipient for a given provider is Prprovider→user = |P|
|U| .

Therefore, the likelihood that an attacker, who controls a multiplication node, correctly deduces
two recipients of a message that belong to the same group is:

Prwin = Pr(X ≥ 2) · (Prprovider→user)2

≤ (1−
(
n− c
n

)p−1
) · |P|

2

|U|2

The following example applies Theorem 39 to a specific scenario: We assume there are |U| = 1000
users evenly distributed among |P| = 10 providers using p-restricted MultiSphinx with p = 2. We

152 Rollercoaster

assume that the adversary controls c3/n3 = 20% of multiplication nodes in the third layer. We also
assume that the adversary controls c2/n2 = 20% of all multiplication nodes in the second layer, i.e.
Theorem 11 applies to only 20% of all messages. These numbers mean that for each group message
sent through the network the adversary has a chance of 4 · 10−6 to correctly name two users who are
members of that group. For an adversary controlling c2

n2
= c3

n3
= 50%, the probability increases to

2.5 · 10−5. We leave more precise statistical analysis (leading to a lower upper boundary) for future
work.

A.6.3 Against a global active adversary

We now consider a global active adversary (GAA) that can do everything the observer from the
previous sections can do. In addition the GAA can also inject/drop network messages and participate
as a limited number of users. These abilities match those provided in the Loopix paper.

Lemma 40. MultiSphinx messages are resistant to tagging attacks.

Proof. The improved Sphinx construction protects the integrity of the entire message [20]. This
includes the deterministic pseudo-random padding ρi in our construction. Therefore, modifications to
the messages are detected by the mix nodes and such messages will not be processed.

Theorem 41. A global active adversary (GAA) that monitors all network traffic and can modify
messages does not gain any advantage when MultiSphinx messages are used instead of Sphinx
messages.

Proof. Mix nodes of all levels use the same protections against active attacks as those in the Loopix
paper – namely: integrity check of messages against adversarial tagging, loop traffic against n-1
attacks, and message tags against replay attacks. Lemma 40 shows that all MultiSphinx messages
are resistant against tagging attacks as well. Therefore, MultiSphinx provides no advantage to an
GAA compared to normal Sphinx messages.

A.7 Reproduced latency distributions 153

A.7 Reproduced latency distributions

To check the general soundness of our simulation we reproduced the latency distribution provided
by the Loopix paper [110, Figure 11]. For their experimental setup with λµ = 2 the original authors
suggest fitting a Gamma distribution with mean 1.93 and standard deviation 0.87. This translates
into a shape-scale-parameterised Gamma distribution with parameters Γoriginal(k ≈ 4.95, θ ≈ 0.39).

When we compare our data (n ≥ 18000 measurements) against Γoriginal the fit is not perfect
(Figure A.5). The discrepancy can be explained by the fact that the original paper’s Γoriginal

was determined experimentally and is affected by imprecision caused by their measurement and
implementation. However, we can analytically determine the distribution of the sum of the four
independent exponential distributions exp(λµ): one for the ingress provider and three for the mix
nodes. This distribution is Γtheory(k = 4, 0.5) and the data from our simulation fits it very well
(Figure A.6).

0 1 2 3 4 5 6 7
Message latency [s]

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

Figure A.5: Distribution of latency measured by our simulator and the Gamma distribution Γorginial

(dotted red line) from the original Loopix paper.

0 1 2 3 4 5 6 7
Message latency [s]

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y

Figure A.6: Distribution of latency measured by our simulator and the Gamma distribution Γtheory

(dotted red line) determined analytically.

154 Rollercoaster

A.8 Visualisation of offline models

The following figures show samples of 20 nodes and their online/offline schedule. When a node is
online it is marked with a blue dot. The percentage provided next to the Y-axis shows the total
fraction of the 24h time span that a node is online.

Figure A.7: Sample of 20 nodes for the original model with an average online ratio of 65.05%.

Figure A.8: Sample of 20 nodes for the extrapolated model with an average online ratio of 80.01%.

A.8 Visualisation of offline models 155

Figure A.9: Sample of 20 nodes for the extrapolated model with an average online ratio of 88.45%.

Appendix B

Sloth

B.1 Security proofs for LongSloth

B.1.1 LongSloth Indistinguishability

Proof. The LongSloth protocol Ξ runs on a SE with HMAC support SE-with-Hmac (Definition 4);
let SE-OP be the HMAC protocol run by the SE. We prove Theorem 10 by reduction. Let’s assume
there exists an efficient adversary AΞ against Ξ; we build an adversary A against SE-OP. A interacts
with a SE-OP-challenger C and simulates a Ξ-challenger to AΞ.

Definition 42 recalls the IND-HMACA(λ) experiment played by A and C. Bellare proved that
HMAC is a PRF under the sole assumption that its underlying compression function is a PRF [22].
As in the original paper by Bellare, it is convenient to consider a PRF-adversary A that takes inputs
(Section 3.2 of [22]). Algorithm B.1 illustrates how to leverage AΞ to build an efficient adversary A
breaking the IND-HMAC security of SE-OP (Definition 43).

Definition 42 (IND-HMAC Experiment [22]). Let λ be a fixed security parameter. Let A be a
WT adversary with wall time budget B and C a WT challenger. The SE-OP indistinguishability
experiment IND-HMACA(λ) is defined as follows:

1. Let the state ψ be freshly initialised and h an arbitrary (but fixed) key handle. C randomly
samples a secret key k ← SE.HmacKeyGen(ψ, h) and sets ψ.h← k.

2. A receives oracle access SE.Hmac under the WT conditions (Definition 3).
3. A submits two chosen plaintexts (msg0,msg1) ∈M2 to C.
4. C randomly samples b $← {0, 1}, and provides A with c0 ← SE.Hmac(ψ, h,msg) if b = 0 or

c1
$← {0, 1}λ otherwise.

5. A outputs a bit b′ and wins iff b = b′.
6. The experiment returns 1 iff A wins, otherwise 0.

Definition 43 (IND-HMAC Security [22]). A SE-OP protocol is IND-HMAC secure if for all WT
adversaries A with time budget B, there is a function negl such that for all λ,

Pr[IND-HMACA(λ) = 1] ≤ 1
2 + negl(λ)

158 Sloth

1 : Challenger C Adversary A Adversary AΞ

2 :

3 : ψ ← {} h← {0, 1}∗; π ← {} pw
$← P

4 : pw

5 : π.h← h; π.salt $← {0, 1}λ

6 : msg ← PwHash(π.salt, pw, l)

7 : sgm; h

8 : b
$← {0, 1}

9 : ψ ← SE.SymmKeyGen(ψ, h)
10 : c0 ← SE.Hmac(ψ, h,msg)

11 : c1
$← {0, 1}λ

12 : cb

13 : qb ← Hkdf(cb)

14 : qb; π

15 : access OSE

16 : b

17 : output b

Figure B.1: LongSloth security reduction. A leverages the efficient adversary AΞ to play against C
and break the IND-HMAC security of SE-OP.

The challenger C starts by initialising its internal state ψ with a secret key and the adversary
AΞ selects a m-entropy secure password pw. AΞ sends pw to A who uses it to generate a message
for the challenger C; it sets msg ← PwHash(salt, pw, l) (where salt is a random salt). Challenger
C samples a random bit. If b = 0 it provides A with the HMAC of m, i.e. c0 ← Hmac(ψ, h,msg);
otherwise it samples a random bit string c1

$← {0, 1}λ of the same size as the HMAC output. In
order to guess whether cb is the output of a HMAC or a random bit string, the adversary A provides
AΞ with the stretched key qb ← Hkdf(cb). AΞ determines whether qb originated from its password
pw or a random source. To this purpose, AΞ can access the oracle OSE under the WT conditions
(Definition 3). It finally returns b = 0 if it believes qb originated from pw and b = 1 otherwise. Finally,
the adversary A deduces that C computed the HMAC of m if b = 0 and that it sampled a random bit
string if b = 1.

We observe that A wins the IND-HMACA(λ) experiment with the same probability as AΞ wins
KeyIndAΞ(λ,P). As a result, the existence of an efficient adversary AΞ winning KeyIndAΞ with
probability p > 1/2+negl implies the existence of an efficient adversary A winning IND-HMACA(λ)
with the same probability p. This directly violates the assumption that SE-OP runs a IND-HMAC
secure HMAC algorithm, hence a contradiction.

B.2 Security proofs for RainbowSloth 159

B.1.2 LongSloth Hardness

Proof. We constructively proof Theorem 14 by deriving the success rate of A for a given wall time
budget. For this we first note that k only allows A to verify its guesses, but provides no helpful
information otherwise. This is because the pre-image resistance of HKDF implies A does not learn
any information about ωpost (and thus any of the previous state) from k. Hence, k provides A with
no advantage when choosing pw′ candidates.

Second, we show that A has to consider each pw′ candidate independently. For this we observe that
the output ωpre = PwHash(π.salt, pw′) is indistinguishable from random as per our assumptions, i.e.
the input of SE.Hmac is independent for each pw. We note that the salt sampled as per Ξ.KeyGen
rules out any pre-computations by A.

Third, we show that A has to pay the full costs (l ∗ cHmac) for each of their guesses. This follows
from the existential unforgeability under adaptive chosen-messages [76, p.113] that we can assume for
SE.Hmac. In particular, A does not gain any information from submitting a prefix of ωpre. With the
pre-image resistance of HKDF, this implies that A must perform all steps of the Ξ.Derive(ψ, pw′, h)
using oracle OSE . Hence, one password guess reduces (l · cHmac) units from the adversary’s budget B.

Fourth, we derive the probability of success for a set password guesses. Let X be a random variable
drawn from the distribution P (having min-entropy m) by the challenger to determine the password pw.
Assume to the advantage of A that they can efficiently sample a set G of passwords from P with each
gi ∈ G independently drawn from P as random variable Y with gi ̸= gj∀i, j. Then the probability that
one of the guesses allows A to derive k is: Pr[A wins] =

∑
pw∈P

∑
g∈G Pr[X = pw] ·Pr[Y = pw′] =∑

pw∈P Pr[X = pw] ·
∑

g∈G Pr[Y = pw′] = |G| · Pr[Y = pw′] ≤ |G|
2m Based on our arguments above,

the maximum size of G that the adversary can verify given budget B is |G| = B
(l·cHmac) . Substituting

in the previous equation yields: Pr[KeyHardA,Ξ(λ,P) = 1] ≤ B
(l·cHmac) ·

1
2m .

B.2 Security proofs for RainbowSloth

B.2.1 RainbowSloth Indistinguishability

Proof. The RainbowSloth protocol Ξ runs on a SE with symmetric encryption support SE-with-Ecdh
(Definition 5); let SE-OP be the DDH secure Diffie-Hellman key exchange run by the SE. We prove
Theorem 11 by reduction. Let’s assume there exists an efficient adversary AΞ against Ξ; we build an
adversary A against SE-OP. A interacts with a SE-OP-challenger C and simulates a Ξ-challenger to
AΞ.

Definition 44 recalls the (generalised) decisional Diffie-Hellman (DDH) [17] experiment played by
A and C. Algorithm B.2 illustrates how to leverage AΞ to build an adversary A breaking the DDH
assumption (Definition 45).

Definition 44 (Generalised DDH [17]). Let λ be a fixed security parameter. Let n be an integer and
G a large cyclic group of prime order q. Let A be a WT adversary with wall time budget B and C a
WT challenger. The generalised DDH indistinguishability experiment DDHA(λ) is defined as follows:

1. A provides C with (g1, . . . , gn) ∈ Gn.

160 Sloth

1 : Challenger C Adversary A Adversary AΞ

2 :

3 : h← {0, 1}∗; π ← {} pw
$← P

4 : pw

5 : π.h← h; π.salt $← {0, 1}λ

6 : ωuser ← PwHash(π.salt, pw, l)
7 : ḡ ← HashToP256(KDF(ωuser))

8 : ḡ

9 : b
$← {0, 1}; r $← Zq

10 : ū0 ← (gr
1 , . . . , g

r
k) ∈ Gk

11 : ū1
$←∈ Gk

12 : ūb

13 : qb ← Hkdf(ūb)

14 : qb; π

15 : access OSE

16 : b

17 : output b

Figure B.2: RainbowSloth security reduction. A leverages the efficient adversary AΞ to play against
C and break the generalised DDH assumption.

2. C randomly samples b $← {0, 1}. If b = 0 it randomly samples r $← Zq and sets ū0 = (gr
1, . . . , g

r
n) ∈

Gn; otherwise it randomly samples ū1 = (u1, . . . , un) ∈ Gn. It then provides A with ūb.
3. A outputs a bit b′ and wins iff b = b′.
4. The experiment returns 1 iff A wins, otherwise 0.

Definition 45 (Generalised DDH [17]). The generalised decisional Diffie-Hellman assumption holds
in G if for any n, there is a function negl such that,

Pr[DDHA = 1] ≤ 1
2 + negl(λ)

Algorithm B.2 shows how to leverage the RainbowSloth adversary AΞ to build an efficient
adversary breaking the the generalised DDH assumption (Definition 45).

B.2.2 RainbowSloth Hardness

Proof. The proof for RainbowSloth is analogous to the one for LongSloth (Section B.1.2) with
the cost of the critical operation exchanged for n · cEcdh as per Definition 5.

B.3 Security proofs for HiddenSloth 161

B.3 Security proofs for HiddenSloth

Both 1S-HiddenSloth and MS-HiddenSloth run on top of a key stretching scheme such as
LongSloth (Section 5.2.3) and RainbowSloth (Section 5.2.4); as a result, they run on a SE with
either HMAC or ECDH support. As mentioned in Section 6 and Section 7, any HiddenSloth
protocol ∆ requires an authenticated IND-CPA secure stream cipher AE running in the user space
(i.e. outside of the SE).

B.3.1 MS-HiddenSloth Indistinguishability

Proof. We prove Theorem 19 by reduction. Let’s assume there exists an efficient adversary A∆

against ∆; we build an adversary A against AE. A interacts with a AE-challenger C and simulates a
∆-challenger to A∆. Definition 46 recalls the IND-CPA experiment played by A and C; Definition 47
recalls the definition of AE’s IND-CPA security.

Definition 46 (AE IND-CPA Experiment). Let λ be a fixed security parameter. Let A be a WT
adversary with wall time budget Bλ and C a WT challenger. The AE indistinguishability experiment
IND-CPAA(λ) is defined as follows:

1. C randomly samples a secret key k ← AE.KeyGen.
2. A receives oracle access AE.Enc under the WT conditions (Definition 3).
3. A submits two chosen plaintexts (msg0,msg1) ∈M2 to C.
4. C randomly samples b $← {0, 1} and iv $← IV , and provides A with cb, tb ← AE.Enc(k, iv,msgb).
5. A receives oracle access AE.Enc under the WT conditions.
6. A outputs a bit b′ and wins iff b = b′.
7. The experiment returns 1 iff A wins, otherwise 0.

Definition 47 (AE IND-CPA). A stream cipher AE is IND-CPA secure if for all WT adversaries A
with time budget B, there is a function negl such that for all λ,

Pr[IND-CPAA(λ) = 1] ≤ 1
2 + negl(λ)

It is convenient to grant A access to a SE oracle allowing to perfectly simulate SE symmetric
encryption operations SE.SymmEnc as performed by a SE with symmetric encryption support
SE-with-SymmEnc (Definition 6). This oracle is described in Algorithm 17 and is initialised calling
O.Init before starting the experiment.

Algorithm 17 Oracle simulating SE.SymmEnc operations as performed by a SE-with-SymmEnc.
1: procedure O.Init()
2: ψ ← {}
3: procedure O.Encrypt(h′,msg)
4: ψ ← SE.SymmKeyGen(ψ, h′)
5: iv

$← IV
6: returnSE.SymmEnc(ψ, h′, iv,msg)

Algorithm B.3 illustrates how to leverage the MS-HiddenSloth adversary A∆ to build an efficient
adversary A breaking the IND-CPA security of AE (Definition 47). Algorithm B.3 generates a random

162 Sloth

key k calling AE.KeyGen. The experiment should ideally generate k through a Sloth key stretching
algorithm but Theorems 10 and 11 state that A∆ cannot distinguish a key generate by a Sloth
algorithm from a purely random key.

During the preparation phase (lines 7 to 21 of Algorithm B.3), the adversary A∆ provides A with
a message m̃sg ←M and a bit b̃. A makes use of it oracle access to AE.Enc (step 2 of Definition 46)
by forwarding m̃sg to the challenger C. C encrypts m̃sg and replies with the corresponding iv iv,
ciphertext c̃, and tag t̃. A stores the queried message as sb̃ ← m̃sg; it will later use it to simulate the
state of the protocol ∆ to A∆. It then sample a fresh key tk to re-encrypt c̃, which simulates the outer
encryption layer of Algorithm 7. A makes use of its SE encryption oracle (defined in Algorithm 17) to
encrypt tk, t̃, and iv. A now holds all information to craft a state π as if generated by a ∆-challenger.
The preparation phase repeats a number of times chosen by A∆ (under WT conditions).
A eventually prepares two messages for the challenger C: msg0 ← s0 and msg1 ← s1. The values

s0 and s1 retain the latest messages queried by A∆ during the preparation phase for b̃ = 0 and b̃ = 1,
respectively. The challenger C encrypts either msg0 or msg1 based on a random bit b and provides A
with the corresponding ciphertext and tag cb, tb ← AE.Enc(k, iv,msgb) and iv iv. At this point, cb is
the encryption of the latest pair (m̃sg, b) queried by A∆ during the preparation phase (at Line 7). A
finally re-encrypt those information to simulate the outer encryption layer similarly to the preparation
phase.
A∆ accesses the oracle OSE and eventually determines whether π contains the encryption of the

latest pair (m̃sg0, 0) or (m̃sg1, 1) it submitted during the preparation phase. It eventually returns
b = 0 if it believes π contains the encryption of m̃sg0 and b = 1 otherwise. Finally, the adversary A
deduces that C encrypted msg0 if b = 0 and msg1 if b = 1.

We observe that A wins the IND-CPAA(λ) experiment with the same probability as A∆ wins
experiment DE-MS-IndA∆(λ,P). As a result, the existence of an efficient adversary A∆ winning
experiment DE-MS-IndA∆(λ,P) with probability p > 1/2 + negl implies the existence of an efficient
adversaryA winning IND-CPAA(λ) with the same probability p. This directly violates the assumption
that AE is IND-CPA secure, hence a contradiction.

B.3.2 MS-HiddenSloth Hardness

Proof. We prove Theorem 22 by showing that the probability that adversary A wins the deniable
encryption hardness experiment for protocol ∆ is no bigger than its probability of winning the hardness
experiment against its underlying key stretching scheme Ξ. That is, Pr[KeyHardA,∆(λ,P) = 1] ≤
Pr[KeyHardA,Ξ(λ,P) = 1].

First, A removes the outer encryption layer calling SE.SymmDec and AE.Dec (line 25 and
line 26 of Algorithm 7). As a result, π.blob contains the encryption of data, encrypted using a key
derived from pw. This operations requires a one-time cost of TSE.SymmEnc from the adversary’s budget
B and does not need to be repeated for each guess.

Second, we observe that π (and π.blob in particular) only allows A to verify their guesses, but
provides no helpful information otherwise. This observation follows from the IND-CPA resistance
of the underlying AE encryption scheme. Hence, knowing π provides A with no advantage when
choosing pw′ candidates.

B.3 Security proofs for HiddenSloth 163

Third, we show that A has to pay the full cost cΞ required to access the SE and run the underling key
stretching scheme Ξ used by ∆.Decrypt. Amust find a key k such that AE.Dec(k, π.iv, π.blob, π.tag)
returns data (line 16 of Algorithm 6). Assuming AE is a permutation-based cipher, there is a single
k satisfying this property. Let’s assume (to the advantage of the adversary) that A can brute-force
AE.Dec to recover k (since it does not require access to the SE and thus does not cost A’s budget). A
must now win the key stretching hardness experiment presented in Definition 12 against a Ξ-challenger.
Assuming Ξ is σΞ-hard, Definition 13 indicates A pays budget cΞ = σΞ for each of their guesses.

Finally, since the adversary pays a one-time cost TSE.SymmEnc and a cost of σΞ for each of their
guesses, the overall cost of guessing pw is σ > σΞ per guess. It follows that B

σ·2m < B
σΞ·2m , and thus

Pr[DeHardA,∆(λ,P) = 1] ≤ Pr[KeyHardA,Ξ(λ,P) = 1].

164 Sloth

1 : Challenger C Adversary A Adversary A∆
2 :
3 : k ← AE.KeyGen() s0 ← 0; s1 ← 0
4 : h′ ← {0, 1}∗||1
5 :
6 :
7 : m̃←M ; b̃← {0, 1}

8 : m̃; b̃

9 : sb̃ ← m̃

10 : m̃

11 : iv
$← IV

12 : c̃, t̃← AE.Enc(k, iv, m̃)

13 : c̃; t̃; iv

14 : tk ← AE.KeyGen()

15 : π ← {}; tiv $← IV

16 : π.blob, π.ttag ← AE.Enc(tk, tiv, c̃)
17 : π.tiv ← tiv; K ← [tk, tb, iv]
18 : π.K ← O.Encrypt(h′,K)

19 : π

20 :
21 : m0 ← s0; m1 ← s1

22 : m0;m1

23 : b
$← {0, 1}; iv $← IV

24 : cb, tb ← AE.Enc(k, iv,mb)

25 : cb; tb; iv

26 : tk ← AE.KeyGen()

27 : π ← {}; tiv $← IV

28 : π.blob, π.ttag ← AE.Enc(tk, tiv, cb)
29 : π.tiv ← tiv; K ← [tk, tb, iv]
30 : π.K ← O.Encrypt(h′,K)

31 : π

32 : access OSE

33 : b

34 : output b

Figure B.3: MS-HiddenSloth security reduction. A leverages the efficient adversary A∆ to play
against C and break the IND-CPA security of AE.

	Table of contents
	List of figures
	1 Introduction
	1.1 Publications
	1.2 Contributions

	2 Background
	2.1 Anonymity networks
	2.1.1 Terminology and properties
	2.1.2 Onion routing networks and Tor
	2.1.3 Mix networks and Sphinx
	2.1.4 Loopix
	2.1.5 Other anonymity networks

	2.2 Ethical considerations for anonymous communication
	2.2.1 Design decisions
	2.2.2 Related work on the ethics of anonymous communication

	2.3 Mobile devices
	2.3.1 Access to the Internet
	2.3.2 Smartphone platforms
	2.3.3 Energy consumption

	2.4 Summary

	3 Understanding the energy efficiency of anonymity networks on smartphones
	3.1 Measuring mobile energy consumption
	3.1.1 Hardware-based and model-based approaches
	3.1.2 Cryptographic operations
	3.1.3 Android background scheduling
	3.1.4 Anonymity networks

	3.2 Measurement methodology
	3.3 Micro studies of individual operations
	3.3.1 Cryptography algorithms
	3.3.2 Background scheduling
	3.3.3 Radio transmission

	3.4 Macro studies of protocols
	3.4.1 VPN
	3.4.2 Tor
	3.4.3 Mix network
	3.4.4 Daily driver
	3.4.5 Discussion on feasibility

	3.5 Limitations and threats to validity
	3.6 Summary

	4 Low-latency group communication in mix networks with unreliable connectivity
	4.1 Group communication
	4.1.1 Collaborative editing and local-first software
	4.1.2 Threat model

	4.2 Naïve approaches to multicast
	4.2.1 Naïve sequential unicast
	4.2.2 Naïve mix-multicast

	4.3 The Rollercoaster protocol
	4.3.1 Construction
	4.3.2 Fault tolerance
	4.3.3 Analysis
	4.3.4 p-restricted multicast with MultiSphinx
	4.3.5 Further optimisations

	4.4 Evaluation
	4.4.1 Methodology
	4.4.2 Always-online baseline
	4.4.3 Fault tolerance
	4.4.4 Multiple groups and message bursts
	4.4.5 p-restricted multicast

	4.5 Summary

	5 Key stretching and deniable encryption using the Secure Element on smartphones
	5.1 Secure Elements on Android and iOS
	5.1.1 Background
	5.1.2 APIs and limitations
	5.1.3 Support for Secure Elements on iOS devices
	5.1.4 Support for Secure Elements on Android devices

	5.2 The Sloth key stretching schemes
	5.2.1 System overview
	5.2.2 Threat model
	5.2.3 LongSloth key stretching for Android
	5.2.4 RainbowSloth key stretching for iOS

	5.3 The HiddenSloth deniable encryption scheme
	5.3.1 Single-snapshot variant
	5.3.2 Multi-snapshot variant
	5.3.3 Practical implementation considerations

	5.4 Security analysis
	5.4.1 Security of the key stretching schemes
	5.4.2 Security of the deniable encryption schemes

	5.5 Evaluation
	5.5.1 Performance of Secure Element operations
	5.5.2 Choosing Sloth parameters
	5.5.3 LongSloth and RainbowSloth
	5.5.4 HiddenSloth

	5.6 Summary

	6 Real-world implementation of the CoverDrop anonymous messaging system
	6.1 The CoverDrop system
	6.1.1 Overview
	6.1.2 Threat model
	6.1.3 Requirements gathering

	6.2 Forward security in a high-latency anonymous messaging system
	6.2.1 Security of messaging protocols
	6.2.2 Ratchet-based protocols and puncturable encryption
	6.2.3 Key rotation and management

	6.3 User-friendly message scheduling on Android and iOS
	6.4 An efficient private sending queue
	6.4.1 Overview and threat model
	6.4.2 Construction
	6.4.3 Security analysis

	6.5 Summary

	7 Conclusion and future work
	Bibliography
	Acronyms and abbreviations
	A Rollercoaster
	A.1 Algorithms
	A.2 Heatmaps
	A.3 Histograms
	A.4 Eventual delivery proof
	A.5 MultiSphinx construction
	A.5.1 Normal Sphinx (existing solution)
	A.5.2 MultiSphinx (our solution)

	A.6 MultiSphinx proofs
	A.6.1 Against a global passive adversary
	A.6.2 Against corrupt nodes
	A.6.3 Against a global active adversary

	A.7 Reproduced latency distributions
	A.8 Visualisation of offline models

	B Sloth
	B.1 Security proofs for LongSloth
	B.1.1 LongSloth Indistinguishability
	B.1.2 LongSloth Hardness

	B.2 Security proofs for RainbowSloth
	B.2.1 RainbowSloth Indistinguishability
	B.2.2 RainbowSloth Hardness

	B.3 Security proofs for HiddenSloth
	B.3.1 MS-HiddenSloth Indistinguishability
	B.3.2 MS-HiddenSloth Hardness

