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Sustainability, as applied in archaeological research 
and heritage management, provides a useful perspec-
tive for understanding the past as well as the modern 
conditions of archaeological sites themselves. As often 
happens in archaeological thought, the idea of sus-
tainability was borrowed from other areas of concern, 
particularly from the modern construct of develop-
ment and its bearing on the environment and resource 
exploitation. The term sustainability entered common 
usage as a result of the unstoppable surge in resource 
exploitation, economic development, demographic 
growth and the human impacts on the environment 
that has gripped the World since 1500. Irrespective of 
scale and technology, most human activity of an eco-
nomic nature has not spared resources from impacts, 
transformations or loss irrespective of historical and 
geographic contexts. Theories of sustainability may 
provide new narratives on the archaeology of Malta 
and Gozo, but they are equally important and of 
central relevance to contemporary issues of cultural 
heritage conservation and care. Though the archae-
ological resources of the Maltese islands can throw 
light on the past, one has to recognize that such 
resources are limited, finite and non-renewable. The 
sense of urgency with which these resources have to 
be identified, listed, studied, archived and valued is 
akin to that same urgency with which objects of value 
and all fragile forms of natural and cultural resources 
require constant stewardship and protection. The idea 
of sustainability therefore, follows a common thread 
across millennia.

It is all the more reason why cultural resource 
management requires particular attention through 
research, valorization and protection. The FRAGSUS 
Project (Fragility and sustainability in small island 
environments: adaptation, cultural change and col-
lapse in prehistory) was intended to further explore 
and enhance existing knowledge on the prehistory 
of Malta and Gozo. The objective of the project as 

designed by the participating institutional partners 
and scholars, was to explore untapped field resources 
and archived archaeological material from a number 
of sites and their landscape to answer questions that 
could be approached with new techniques and meth-
ods. The results of the FRAGSUS Project will serve to 
advance our knowledge of certain areas of Maltese 
prehistory and to better contextualize the archipela-
go’s importance as a model for understanding island 
archaeology in the central Mediterranean. The work 
that has been invested in FRAGSUS lays the founda-
tion for future research.

Malta and Gozo are among the Mediterranean 
islands whose prehistoric archaeology has been 
intensely studied over a number of decades. This 
factor is important, yet more needs to be done in the 
field of Maltese archaeology and its valorization. 
Research is not the preserve of academic specialists. 
It serves to enhance not only what we know about 
the Maltese islands, but more importantly, why the 
archipelago’s cultural landscape and its contents 
deserve care and protection especially at a time of 
extensive construction development. Strict rules and 
guidelines established by the Superintendence of 
Cultural Heritage have meant that during the last two 
decades more archaeological sites and deposits have 
been protected in situ or rescue-excavated through a 
statutory watching regime. This supervision has been 
applied successfully in a wide range of sites located in 
urban areas, rural locations and the landscape, as well 
as at the World Heritage Sites of Valletta, Ġgantija, 
Ħaġar Qim and Mnajdra and Tarxien. This activity 
has been instrumental in understanding ancient and 
historical land use, and the making of the Maltese 
historic centres and landscape.

Though the cumulative effect of archaeological 
research is being felt more strongly, new areas of 
interest still need to be addressed. Most pressing are 
those areas of landscape studies which often become 

Foreword

Anthony Pace
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FRAGSUS Project, will bear valuable results that will 
only advance Malta’s interests especially in today’s 
world of instant e-knowledge that was not available 
on such a global scale a mere two decades ago.

FRAGSUS also underlines the relevance of 
studying the achievements and predicaments of past 
societies to understand certain, though not all, aspects 
of present environmental challenges. The twentieth 
century saw unprecedented environmental changes 
as a result of modern political-economic constructs. 
Admittedly, twentieth century developments cannot 
be equated with those of antiquity in terms of demog-
raphy, technology, food production and consumption 
or the use of natural resources including the uptake 
of land. However, there are certain aspects, such as 
climate change, changing sea levels, significant envi-
ronmental degradation, soil erosion, the exploitation 
and abandonment of land resources, the building and 
maintenance of field terraces, the rate and scale of 
human demographic growth, movement of peoples, 
access to scarce resources, which to a certain extent 
reflect impacts that seem to recur in time, irrespec-
tively of scale and historic context. 

Anthony Pace
Superintendent of Cultural Heritage (2003–18).

peripheral to the attention that is garnered by prom-
inent megalithic monuments. FRAGSUS has once 
again confirmed that there is a great deal of value 
in studying field systems, terraces and geological 
settings which, after all, were the material media in 
which modern Malta and Gozo ultimately developed. 
There is, therefore, an interplay in the use of the term 
sustainability, an interplay between what we can learn 
from the way ancient communities tested and used the 
very same island landscape which we occupy today, 
and the manner in which this landscape is treated in 
contested economic realities. If we are to seek factors 
of sustainability in the past, we must first protect its 
relics and study them using the best available meth-
ods in our times. On the other hand, the study of the 
past using the materiality of ancient peoples requires 
strong research agendas and thoughtful stewardship. 
The FRAGSUS Project has shown us how even small 
fragile deposits, nursed through protective legislation 
and guardianship, can yield significant information 
which the methods of pioneering scholars of Maltese 
archaeology would not have enabled access to. As 
already outlined by the Superintendence of Cultural 
Heritage, a national research agenda for cultural herit-
age and the humanities is a desideratum. Such a frame-
work, reflected in the institutional partnership of the 
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9.1. Introduction

The study presented in this chapter aims to complement 
the earlier GIS study of nineteenth century ad land-use 
of the islands of Gozo and Malta by Alberti et al. (2018) 
by adding another dimension to the reconstruction of 
the human exploitation of the landscape, and thus pro-
vide a better understanding of the agricultural potential 
and productivity of the Maltese landscape. It locates 
potential pastoral foraging routes across the landscape 
with the aid of a Geographic Information System. 
While the method and procedures used to accomplish 
this goal are detailed in the following section, the 
availability of a model of agricultural productivity of 
the land on the one hand, and a repertoire of evidence 
directly and indirectly related to pastoral movements 
across the island (such as the location of the garrigue 
areas, public spaces and farmhouses with animal 
pens) provided sufficient grounds to undertake this 
research. This approach was meant both to enrich the 
interpretation of evidence dating to earlier/pre-modern 
periods and to suggest a range of archaeological and 
anthropological questions as well as new avenues of 
inquiry driven by the results of analyses of a better 
documented (however recent) period.

Modelling of the agricultural quality in Malta on 
the basis of the data provided by mid-1800s cadastral 
maps (cabrei) showed that the Maltese landscape is a 
complex patchwork as far as its suitability for human 
economic exploitation is concerned (Alberti et al. 
2018). The analysis made it evident that there is a wide 
variability in land quality, even over small distances, 
because of a complex interplay between different 
natural and cultural factors, resulting in a fragmented 
and variable landscape. The modelled agricultural 
suitability also showed that a considerably large part of 
Malta is unlikely to have been optimal for agriculture 
during the early modern period. This holds true for the 
thin-soiled and scrub-covered karstland (or garrigue 

areas; in Maltese: moxa and xagħri) which features as a 
relatively large part of the Maltese landscape, such as 
the flat-topped Upper Coralline Limestone plateaus in 
the west-central part of the island. It has been observed 
that farmhouses with animal pens, as well as public 
spaces or wasteland, are located at the very fringe 
of (and/or amongst) these uncultivated areas. It has 
also been stressed that this apparently unproductive 
landscape has been turned into an important part of 
the agrarian economy. Importantly, the uncultivated 
areas provided (and to an extent still provide) graz-
ing grounds for sheep and goats, quarried stone for 
construction, brushwood for fuel, as well as herbs, 
greens, wild game and flowering plants for bee pas-
ture (Blouet 1963; Forbes 1996; Lang 1961; Rolé 2007; 
Wettinger 1982). 

9.2. Methods

9.2.1. Data sources
The research presented here is based on three strands 
of evidence which are each linked to pastoral activities 
and foraging excursion networks. These are the location 
of farmhouses with animal folds, and the garrigue and 
wasteland areas of the islands. In combination with 
archival, ethnographic and oral evidence, these traits 
provided the building blocks of the GIS used in this 
analysis of pastoral foraging routes. 

The location of farmhouses in which the presence 
of animal-folds or ‘stables’ is documented has been 
derived from the sample of Cabreo maps used for the 
modelling of agricultural quality (Alberti et al. 2018). 
Within the sample, 29 stables were identified for inclu-
sion in this analysis. No sites in the central-eastern 
part of Malta were included because the modification 
of the landscape, caused by the dense urbanization 
of this sector of the island, has made it impossible to 
locate any set of ground control points to be used in 
the process of geo-referencing the cadastral maps. 

Chapter 9

Locating potential pastoral foraging routes in Malta 
through the use of a Geographic Information System
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the survey map drawn and compiled by Captain E.M. 
Woodward, Leicestershire Regiment 28 D.A.A.G. A 
total of 69 per cent (150) of the public spaces were 
found to lie at a distance between 0 and 10 m from 
the nearest road, regardless of the road type. The 
remaining cases are spread over different distance 
classes (defined at 10 m intervals), each comprising 
a decreasing amount of cases. Only one public space 
lies between 310 and 320 m from the nearest road. If 
we take the road type into account, about half of the 
public spaces have a minor road in their close prox-
imity (51 per cent, corresponding to 111 cases), while 
the remainder breaks down between secondary roads 
(24 per cent, 52), footpaths (13 per cent, 28), and main 
roads (12 per cent, 26). These figures do not take into 
account the actual distance to the nearest road type. The 
latter is admittedly difficult to summarize with a single 
representative value (e.g. mean or median) because of 
the very right-skewed distribution. However, if we 
consider the proportion of cases whose distance to the 
nearest road type is between 0 and 10 m, it turns out 
that public spaces tend to be comparatively closer to 
footpaths (75 per cent, 21 out of 28), minor roads (74 
per cent, 82 out of 111) and secondary roads (69 per 
cent, 36 out of 52) than to main roads (42 per cent, 11 
out of 26).

9.2.2. Foraging routes and least-cost paths calculation
The location of stables, garrigue areas and public 
spaces provides the foundation for attempting to 
locate potential foraging routes. To accomplish that, 
a GIS-based calculation of least-cost paths (LCPs) was 
used. This is a widely applied approach in the study 
of how human behaviour relates and engages with 
movement across the landscape (Conolly & Lake 2006; 
Herzog 2014; Van Leusen 2002; Wheatley & Gillings 
2002). LCP analysis is generally adopted in the study 
of land accessibility and land-use patterns (Wheatley 
& Gillings 2002), when the relation between humans 
and the landscape, such as for instance, for the acqui-
sition of raw materials (Tripcevich 2007) which must 
be grounded in an understanding of how human 
movement is differentially affected by the landscape 
(Conolly & Lake 2006,  214). Once the influence of 
external factors (either environmental or cultural, or 
both) on the movement of humans through the land-
scape is framed in terms of cost, then an analysis which 
can take into account the cost of movement, instead 
of simple straight-line distances between locations, 
may provide a more complex, more realistic and less 
misleading picture of human spatial behaviours and 
decisions (Gorenflo & Gale 1990, 243). 

GIS-aided estimation of least-cost paths has been 
used in a variety of contexts and for a wide array of 

The location and extent of the garrigue areas have 
been recorded as a GIS shapefile layer consisting of 
52 polygons. This data layer is part of a larger dataset 
about the Maltese natural and man-made landscape 
produced by the MALSIS (MALtese Soil Informa-
tion System) project (Vella 2001), which was made 
available to us by the former Ministry of Sustainable 
Development, the Environment and Climate Change. 
In this dataset, garrigue zones have a minimum and 
maximum area of 2.18 and 530.2 hectares, respectively, 
with a median value of 18.74. Their average elevation 
(m asl) goes from nearly 0 to 242.4 m, with a median 
value of 87.65 m. The average slope goes from 0 to 64.72 
degrees, with a median value of 13.17. They correspond 
to portions of the karstic Upper Coralline Limestone 
plateaus, which, as noted, are generally not suitable 
for agriculture due to a host of factors including the 
virtual absence of soil, the high exposure to the winds 
and the lack of water (Rolé 2007). Both literature and 
ethnographic sources indicate that these areas have 
been used for different activities, among which goats 
and sheep grazing (Lang 1961; Rolé 2007). 

The third element useful to the aim of this research 
is the location and extent of areas that were recorded 
and described in the British period as ‘public spaces’ or 
waste land. These data were derived from early 1900s 
survey sheets (Alberti et al. 2018), and was subsequently 
fed into the GIS through manual digitization. A total 
of 217 polygons were employed. Public spaces feature 
a minimum and maximum area of 0.02 and 17.83 hec-
tares respectively, with a median value of 0.32. Their 
average elevation goes from 0.33 to 248.22, with a 
median value of 98.77. Their average slope goes from 
0.72 to 31.22, with a median value of 5.71. 

These spaces proved to be variable in shape 
and location. They may open-up along the roads or 
tracks flanked by rubble walls, actually consisting of 
an enlargement in the area taken up by the road itself. 
These are zones that are often overgrown and ideal for 
roadside grazing. In some cases, the spaces are located 
at the junction between roads or tracks, probably 
providing flocks travelling in different directions with 
manoeuvring space in order not to get in the way of one 
another. Public spaces can be thought of as important 
nodes along the routes used for the movement of herds 
across the landscape. In the GIS dataset, more than half 
of the public spaces or 60 per cent (n=131) intersect a 
road, with the remainder placed at a certain distance 
from them. In comparatively fewer instances (86 cases), 
public spaces do not have an apparent connection with 
the road network; rather, they correspond to portions 
of the karstic Upper Coralline Limestone plateaux. 

The distances between the public or waste land 
spaces and the 1895 road network were analysed using 
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As noted above, Tobler’s function has been 
re-scaled to fit an animal’s walking speed during 
foraging excursions. The distribution of the latter, as 
empirical data show, turns out to be right-skewed 
and to vary along a continuum. It ranges from very 
low speed values (corresponding to grazing while 
walking) to comparatively higher values (up to about 
4.0 km/h) corresponding to directional travel toward 
feeding stations (Arnon et al. 2011). In an attempt to 
find a balance between different figures (Arnon et al. 
2011; Endre Nyerges 1980; Schlecht et al. 2009, 2006), 
it was decided (but see below) to consider 1.5 km/h as 
the average flock speed (Endre Nyerges 1980, 468). It 
roughly corresponds to the average speed recorded in 
other studies (Arnon et al. 2011; Schlecht et al. 2009). The 
above figure is considered the typical speed of flocks 
during excursions in which grazing takes place while 
walking (Fig. 9.1b), which in most situations can be 

purposes including, but not limited to (and see also: 
Herzog 2014; Verhagen et al. 2011), the study of pre-
historic travel corridors (Bell et al. 2002; Kantner 2004; 
Teeter 2012; Whitley & Hicks 2003), human movement 
and land accessibility (Contreras 2011; Murrieta-Flores 
2012; Richards-Rissetto & Landau 2014), prediction of 
archaeological sites location (Rogers et al. 2014), mari-
time pathways (Alberti 2017; Indruszewski & Barton 
2006; Newhard et al. 2014), Roman aqueducts (Orengo 
& Miró 2011) and roads (Verhagen & Jeneson 2012). 

In this study, the cost of movement is conceptu-
alized in terms of walking time. This was appropriate 
as both literature and ethnographic accounts frame 
foraging excursions in terms of time spent to move 
from the starting location to the target grazing areas 
(Arnon et al. 2011; Endre Nyerges 1980; Schlecht et al. 
2006, 2009). Since livestock trails have turned out to 
follow least-effort routes trying to minimize the imped-
ance provided by the terrain’s slope (Arnon et al. 2011; 
Ganskopp et al. 2000; Stavi et al. 2008), and since slope 
is a significant factor, albeit not the only influential 
one (see also symbolic costs, type of terrain, energy 
expenditure, weather condition, clothing, loads carried, 
gender, age, fitness, body characteristics, headwinds, 
field of view (Aldenderfer 1998, 11; Kondo & Seino 
2009; Pingel 2010; Wheatley & Gillings 2002, 141)), 
affecting the speed of movement in rugged terrains 
(Bell et al. 2002; Bicho et al. 2017; Kondo & Seino 2009; 
Murrieta-Flores 2014) (Fig. 9.1a), it was decided to 
implement a re-scaled version of the widely used 
(Herzog 2014, 2016) Tobler’s hiking function (Tobler 
1993), whose modification to fit animal walking speed 
is described shortly. This is a useful and more accessible 
tool for estimating the influence of terrain slope on the 
timing of movement (Aldenderfer 1998, 11; Kantner 
2004; Richards-Rissetto & Landau 2014).

Grounded in empirical data, the function predicts 
the walking speed as dependent on slope according to 
the following formula: v= 6*exp[-3.5*abs(s+0.05)], where 
v is the walking speed in km/h and s is the slope meas-
ured as rise over run. The maximum predicted walking 
speed of about 6 km/h is reached on a gentle (-2.86 
degrees) downhill slope (Conolly & Lake 2006, 218). 
Beyond that threshold, the walking speed exponentially 
decreases because during downhill walks the muscular 
energy of the legs is spent in braking. Remarkably, 
while the function has been devised on the basis of 
mid-1950s empirical data, recent GPS-aided studies 
have confirmed the function’s broad validity (Kondo 
& Seino 2009; Zolt & Dombay 2012). Tobler’s function 
cannot be directly used in its form (expressing km per 
hour), but has to be solved for time (Pingel 2010, 138); 
in other words, it is the reciprocal of the function (hours 
per km) that has to be implemented in GIS.

Figure 9.1. a) Sheep being led to their fold in Pwales 
down a track; notice the quite steep slope which is bound 
to negatively affect the walking time; b) Sheep grazing 
along a track on the Bajda Ridge in Xemxija, Malta. The 
pasture is located in fallow fields in Miżieb ir-Riħ. Notice 
that sheep are grazing while walking (estimated average 
speed derived from literature: about 1.5 km/h) (N. Vella,  
9 January 2005) (G. Alberti).

a

b
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airport is located. Apart from that, the DTM provides a 
more generalized picture of the terrain, in which some 
characteristic features of the landscape, such as terrace 
walls, have been smoothed out to a certain extent. 

The slope raster fed into the Path Distance tool 
as a cost surface was derived from the DTM referred 
to earlier. The slope raster has been preliminarily 
modified in order to gauge the influence of our model 
of agricultural suitability on the LCP calculation. 
Literature and ethnographic evidence indicate that 
during their grazing journeys shepherds tend to avoid 
cultivated fields (Bevan et al. 2013). On this informed 
assumption, it was decided to factor agricultural 
quality into the LCP analysis. This was achieved by 
applying weights (e.g. Rogers et al. 2014, 264; White 
2015, 410) to the slope, deriving them from the raster 
representing the fitted probability of optimal agricul-
tural quality (Alberti et al. 2018). A higher slope value 
has been assigned to those parts of the landscape for 
which the estimated probability for optimal agricul-
tural quality is larger than 0.60, rendering those areas 
costlier to traverse.

We decided to calculate two series of LCPs. The 
first uses garrigue areas as both the source and the 
destination of movement, in order to estimate the 
path network between them. The rationale behind 
this rests on the fact that, as noted, these areas are 
indicated by literature and ethnographic sources as 
being preferentially used for grazing. Since the cal-
culation of LCP needs both a source (i.e. the starting 
location) and destination locations (i.e. places where 
the movement actually ends), and since there is no 
substantive reason to prefer any given location over 
another as a destination within each garrigue area, it 
was decided to draw a set of random points within 
the garrigue polygons, with a minimum inter-point 
distance of 20 m. In total 139 points were eventually 
generated. Each point has been used as a destination 
in the LCP calculation from each garrigue area. 

A second series of LCPs was calculated using the 
stables as source locations and the mentioned random 
points as targets. The aim of this second series of LCPs 
was to estimate the least costly paths along which 
foraging journeys may have taken place. Since both 
ethnographic data and literature indicate that time is 
an important constraining factor for foraging journeys, 
and since (in spite of a considerable variability across 
species and season) 10 hours can be considered an 
average duration of grazing day (Schlecht et al. 2006), 
the present calculation of LCPs has been first limited 
to five hours, and increased to six and eventually to 
seven for the reasons described later while reporting 
the results. The rationale for using a time limit is to 
locate which target location can be reached along a least 

considered a typical form of grazing (Arnon et al. 2011). 
Tobler’s (1993) hiking function has been rescaled by a 
factor of 0.25 to represent the walking pace of a flock 
instead of humans. The mentioned factor corresponds 
to the ratio between the flock average speed (1.5) and 
the maximum human walking speed (about 6.0) on a 
favourable slope (-2.86 degrees). 

Paths following least costly routes have been 
calculated using ArcGIS 10.1’s Path Distance tool (ESRI 
2017d), which locates the minimum cumulative travel 
cost when moving on a raster from a source location to 
destination locations. Remarkably, it allows anisotropic 
cost estimation (Conolly & Lake 2006, 215–21; Wheatley 
& Gillings 2002, 138ff) that includes the calculations of 
slope-dependent costs such as those based on Tobler’s 
(1993) function. The reciprocal of the latter, expressed 
in metres (representing the time in hours to traverse 
1 m), has been fed into the tool as a customized ver-
tical factor table, following the procedure first used 
by Tripcevich (2007) in the context of archaeological 
research. The table stores the time (in hours) it takes to 
cross 1 m for each slope value, the latter ranging from 
-90 to +90 degrees. While a slope raster derived from a 
digital terrain model (DTM) and expressing the slope in 
absolute values (i.e. not distinguishing between down 
and up slopes) is fed into the tool as a cost surface. In 
this case, the tool internally calculates whether each 
slope value is either negative or positive when moving 
from one cell to another (ESRI 2017c), and associates 
each signed slope value with its corresponding time 
value (in the mentioned vertical factor table). Once 
the time it takes to traverse 1 m at each signed slope 
value is determined, it is finally multiplied by the 
actual surface distance (ESRI 2017c & d; Etherington 
2016; Rogers et al. 2014, 263). Eventually, the tool cal-
culates the accumulated time it takes when moving 
from the source raster cell to the next neighbouring 
cell, producing a cumulative cost-distance raster. The 
tool also returns a backlink raster, which indicates, for 
each cell, which neighbouring cell one has to move 
to in order to reach the source location along a least 
costly path (ESRI 2017d). 

Two rasters were fed into the Path Distance tool. 
The first was a LiDAR-derived DTM with a cell size of 
10 m. The resolution used has been deemed suitable 
for the research questions at hand given the spatial 
extent of the analysis. The relatively coarse cell size has 
been considered a good compromise in an attempt to 
find a balance between accuracy in the representation 
of the terrain’s elevation and the need to reduce the 
distortions caused by the human-made structures 
retained in the DTM (e.g. Verhagen & Jeneson 2012). 
This is particularly evident in the southern sector of 
the island, where the runway of Malta international 
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median average value is 5.19 degrees, with 90 per 
cent of the cases having an average slope equal to or 
smaller than 9.76 degrees, and just the top 10 per cent 
of the cases exhibit an average slope between 9.76 and 
15.78 degrees. 

As a result of the described weighting scheme, 
the LCPs also tend to avoid areas with a high prob-
ability for optimal agricultural quality. The median 
average probability of the terrain they traverse is 0.05, 
with a minimum and maximum equal to 0 and 0.51, 
respectively. In 90 per cent of the cases it is equal to or 
smaller than 0.23. The effect of the adopted weighting 
scheme can be visually appreciated from Figure 9.2b. 
It is apparent how LCPs tend to avoid the bottom of 
valleys since these feature the highest probability for 
optimal agricultural quality. This holds particularly 
true for the central sector of the island, and for two 
‘pockets’ in the north-central area, in the Mosta and 
Naxxar neighbourhood. 

As touched upon earlier, the estimated LCPs 
show some degree of overlap, which can be better 
appreciated (e.g. Bevan & Conolly 2013) in Figure 

costly path from each stable, while also leaving enough 
time for the return journey to the stables. Finally, it 
should also be noted that the calculation of these two 
LCP networks allows the relationship between public 
spaces and potential pastoral routes to be examined. 
This is useful to explore the hypothesis, informed by 
the existing literature and ethnographic evidence, that 
the public spaces may be nodes along foraging paths.

9.3. Results

9.3.1. Garrigue to garrigue least-cost paths
Figure 9.2a shows the network of LCPs connecting 
each garrigue area to each random point within them. 
Dashed lines have been used to represent the paths; 
when they show up as a continuous black line, it means 
that two or more paths are actually overlapping (see 
§9.3.2). Overall, the image represents the potential 
routes along which a foraging journey may take place. 
As expected, these paths (139 in total) minimize the 
traversed slope. The minimum and maximum aver-
age slope is 1.28 and 15.77 degrees, respectively. The 

Figure 9.2. Least-cost paths (LCPs), connecting garrigue areas, representing potential foraging routes across the 
Maltese landscape (the latter is given a colour that represents the probability of optimal agricultural quality, according 
to the Cabreo model): a) LCPs with the model used as a constraint (LCPs tend to avoid more fertile areas); b) no model 
constraint (see also Fig. 9.3) (G. Alberti).
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a minimum distance equal to 0. In other words, the 
LCPs either cross the public spaces or touch their 
boundary. Overall, 53 per cent (116) of the public 
spaces lie between 0 and 100 m away from the nearest 
LCP, while just 20 per cent (43) lie between 100 and 
300 m away. Cumulatively, 73 per cent (159) lie within 
a distance of 300 m. It is worth noting that only 27 
(12 per cent) public spaces feature a distance equal to 
or larger than 1 km to the nearest LCP. Remarkably, 
these more distant public spaces are mainly located at 
the fringe of the densest urbanized area of the island 
(see Fig. 9.4, where the Jenks’ method has been used). 
They could possibly have been related, spatially and 
functionally, to garrigue areas cancelled out by mod-
ern urbanization.

The tendency for public spaces to be close to 
the estimated LCPs can be statistically assessed by 
means of a randomized procedure (O’Sullivan & 
Unwin 2010; Wheatley & Gillings 2002) whereby 
the distance from each public space’s centroid to the 
nearest LCP is first computed and averaged. The sig-
nificance of the observed average minimum distance 
is assessed by comparing it against a distribution of 

9.3. It represents the density of LCPs (in metres per 
square metre) calculated as the sum of the length of 
each path’s segment falling within a given search 
radius centred on each raster cell, divided by the 
area enclosed by the search radius (ESRI 2017b). A 
search radius of 50 m has been used, and to break 
the density values down into five classes. Jenks’ 
classification algorithm (Jenks 1967; Smith 1986) has 
been employed for its ability to maximize groupings 
inherent in the data (ESRI 2017a). This is apparent in 
the extent to which among all the areas traversed by 
the estimated LCPs, some are actually characterized 
by a comparatively higher density of paths. This holds 
true for the northernmost sector of the island, the 
north-central part, and the westernmost part along 
the western coast of Malta.

The analysis indicates that public spaces tend 
to lie close to the estimated LCPs. The median planar 
distance of public spaces to the nearest LCP turns out 
to be 89 m, which becomes 39 m if we consider a 50 m 
buffer around each side of the LCP. Remarkably, the 
first quartile of the distribution is equal to 0, meaning 
that one quarter of the cases (out of a total of 217) has 

Figure 9.3. Density of LCPs connecting garrigue areas to random points within the garrigue areas themselves. Density 
(metres per square metre) calculated as the sum of the length of each path’s segment falling within a 50 m search radius 
centred on each raster cell, divided by the area enclosed by the search radius (G. Alberti).
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of five hours for the outbound journey, devised on 
the basis of literature. Additional calculations have 
been nonetheless performed increasing the limit to 
six and, eventually, seven hours. The reason for this 
was to maximize the number of target locations that 
could be reached. In fact, while just 35 per cent and 
40 per cent (out of 139 cases) could be reached with 
time intervals of five and six hours respectively, 50 
per cent (69) of the destinations can be reached once 
seven hours are considered. It must be noted that for 
ten stables (2, 6, 10, 13–15, 17, 22, 25, 27) the analysis 
resulted in no LCP being estimated. In one instance 
(2; see Fig. 9.6b), this was because the nearest target 
location is beyond the 7-hour limit. Nine stables (6, 
10, 13–15, 17, 22, 25, 27) cannot be connected to any 
destination because they are surrounded by land 
featuring a probability for optimal agriculture above 
0.6, resulting in an extremely limited area than can 
be traversed within seven hours.

Overall, the time spent in median to reach the 
destinations is 3.51 hours. One quarter of the des-
tinations can be reached within 2.47 (1st quartile) 
hours, and three quarters within 5.39 (3rd quartile). 

average minimum distances calculated across 199 
sets of random points drawn within a study window 
(Rosenberg & Anderson 2011). A p-value can be empir-
ically worked out; it reflects the proportion of cases in 
which simulated average distances proved equal or 
smaller than the observed average distance (Baddeley 
et al. 2016, 384–7). The study window is the extent of 
Malta excluding the urbanized areas and those zones 
that the LCPs are intentionally avoiding (modelled 
probability of optimal agricultural quality larger 
than 0.60; see §9.3.1). The analysis indicates that the 
observed average minimum distance is 380 m, while 
the average of the randomized minimum distances is 
510 m. The tendency for public spaces to lie close to 
the estimated LCPs is significant (p: <0.05). 

9.3.2. Stables to garrigues least-cost paths
Figures 9.5–9.7 show the LCPs connecting stables to 
the random points within the garrigue areas. Two 
symbologies refer to the two legs of the journey, one 
from the start location to the destination (outbound), 
the other in the opposite direction (inbound). As stated 
above, the LCP have been calculated with a time limit 

Figure 9.4. Location of ‘public spaces’, with size proportional to the distance to the nearest garrigue-to-garrigue LCP. 
The classification of the distance value is based on Jenks’ natural break method for its ability to maximize groupings 
inherent in the data. Extent of the modern urbanized area is also shown (G. Alberti).
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and seven hours. Cumulatively, 56 per cent of the 
location can be reached within a four-hour journey, 
81 per cent within six hours, with the remaining 19 
per cent reachable within seven hours. The outbound 
excursions reach a median planar distance of 996 m 

If we break down the data by a two-hour interval, 17 
per cent (12) of the locations can be reached with a 
journey between zero and two hours, 39 per cent (27) 
between two and four hours, 25 per cent (17) between 
four and six hours, and 19 per cent (13) between six 

Figure 9.5. LCPs connecting farmhouses hosting animal pens (hereafter ‘stables’) to randomly generated points within 
garrigue areas in northwestern (a) and northeastern (b) Malta. Dashed blue and red lines represent the outbound and 
inbound journey respectively (for legend and scale bar, see Fig. 9.7) (G. Alberti).

Figure 9.6. As for Figure 9.5, but representing west-central and east-central Malta (for legend and scale bar, see  
Fig. 9.7) (G. Alberti).
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the analysis indicates that a typical grazing journey 
would last 6.99 hours (median), with 50 per cent of 
the journeys competed between 4.94 (1st quartile) and 
10.77 (3rd quartile) hours. The lower 10 per cent (7 
cases) of the journeys can be performed within 3.18 
hours, and the top 10 per cent can be completed in a 
time-span between 13.03 and 13.90 hours.

As for the distance between stables-to-garrigues 
LCPs and centroids of public spaces, the observed 
average minimum distance is of 908.90 m is consid-
erably smaller the randomized average minimum 
distance of 1347 m (across 199 simulations; using the 
same analytical windows mentioned earlier), with 
an associated significant p-value (p: <0.05). About 
15 per cent of the public spaces (32) lie at a distance 
between 1000 and 2500 m, and a small group (about 
10 per cent, corresponding to 20 public spaces) lies 
between 3000 and 5000 m. If the location of all these 
cases is considered (Fig. 9.8), it can be noted that they 
tend to lie in the eastern part of the island, in the 
very sector which is opposite to the zone (namely, 
the northwestern and western) toward which the 
location data of the stables is ‘structurally’ skewed 
as mentioned earlier. If these cases are excluded, the 
remaining 165 instances indicate that public spaces 
are in median 188.27 m distant to the nearest LCP 
connecting each stable to the destination points within 
a 7-hour walk; 12 per cent (20) are at a distance of 
0 m, meaning that LCPs actually cross the spaces or 
touches the public spaces’ boundary. Some 25 per cent 
(41) are within 47 m distance, while 75 per cent (124) 

from the starting locations. In the middle 50 per cent 
of the cases, the distance is between 625.40  m (1st 
quartile) and 1708.83 m (3rd quartile). In only the top 
10 per cent of cases is the distance covered between 
2161.71 and 3761.52 m, with just two cases scoring a 
distance between 2500 and 3000 m, and just one case 
between 3500 and 4000 m.

As touched upon above while considering the 
overall LCPs, the weighting scheme used allows the 
addition of complexity to the estimated paths as well. 
Considering for instance stable number 11 in northern 
Malta (Fig. 9.5a), it is interesting to note that the LCP, 
while traversing quite a flat area featuring a relatively 
low probability for optimal agricultural quality, 
makes a westward detour to bypass a zone featuring 
a higher probability. The same holds true for the LCPs 
from stable number 18 (Fig. 9.6b), which follow an 
eastward-bent path that traverses a low-probability 
portion of the land. 

The analysis shows that the time spent to return 
to the stables is in median 3.47 hours, with the 1st 
and 3rd quartile equal to 2.46 and 5.38, respectively. 
There is no remarkable difference in the duration of 
the outbound and inbound journeys, as their median 
difference of 0.013 hours indicates. The maximum 
absolute difference is equal to 0.153 hours, corre-
sponding to the time differential between the LCPs 
connecting stable number 24 to a destination lying west 
of it and that can be reached in 5.68 hours (Fig. 9.6a). 
The journey in the opposite direction would last 5.84 
hours. Considering the two legs of the estimated LCPs, 

Figure 9.7. As for Figure 9.5, but representing southern and southwestern Malta (G. Alberti).
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of grazing routes to avoid good agricultural areas, 
this study has proposed a model of likely grazing 
itineraries that features a complex network of paths 
connecting those garrigue areas used by shepherds 
as grazing areas. Informed by the parameters selected 
on the basis of the literature, the network minimizes 
the traversed slope and tries to avoid the bottom of 
valleys, the latter corresponding to areas of good 
agricultural quality. This network can be thought of 
as representing plausible routes connecting areas of 
foraging exploitation. 

The analysis has also attempted to gauge how 
(if any) the so-called public spaces or wasteland areas 
relate to that network.1 Interestingly, those areas were 
found to be spatially related to the foraging route 
network. Even though from an analytical standpoint, 
a complicating factor is represented by the different 
preservation of public spaces between the eastern and 
western sectors of study area, the fact that the majority 
of the public spaces lie within a 300 m distance from 
the estimated foraging paths is taken here as evidence 
hinting to a functional connection between the two.

lie within 447.44  m. Overall, these figures indicate 
that the estimated LCPs and public spaces tend to 
be close in space. 

9.4. Discussion

The analysis reveals some interesting features of the 
Maltese rural landscape in relatively recent historical 
periods. These findings nicely dovetail with the pre-
vious study of the agricultural productivity in Malta 
in the mid-1800s (Alberti et al. 2018). While the latter 
has generally brought to the fore the interplay between 
good agricultural land and sectors of the landscape less 
suitable for agriculture but potentially exploitable for 
other economic activities, the research pursued in the 
present work allows the further characterization of the 
way in which the parts of the Maltese landscape less 
suited for agriculture have been exploited for com-
plementary, yet equally important, purposes such as 
herding and grazing. 

Employing as constraining factors the modelled 
agricultural quality and the documented tendency 

Figure 9.8. Location of ‘public spaces’, with size proportional to the distance to the nearest outbound journey (stables 
to garrigue areas). Distance values classified using the Jenks’ natural breaks method as in Figure 9.3. Inbound and 
outbound journeys, and the extent of modern urbanized area, are also shown (G. Alberti).
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point of view, the paths would have allowed flocks to 
move across the landscape without traversing culti-
vated fields, unless some sort of agreement had been 
previously established between shepherds and farmers 
to allow grazing on their fields following a harvest 
or in those, particularly in Gozo, where self-seeded 
sulla (Hedysarum coronarium) grows in abundance, 
as we know from the literature and local informants 
(Bowen-Jones et al. 1961, 199, 227).2 The public space 
would have also provided manoeuvring space for 
flocks moving towards different destinations. It turns 
out that a segment of the GIS-based estimated foraging 
route connecting the garrigue areas is just 147 m away 

It has been noted above that, in our GIS-based 
foraging routes estimation, some farmhouses could not 
be connected with any destination location within the 
garrigue areas since the farmhouses are surrounded 
by land featuring a very high agricultural quality. In 
this respect, it must be noted that the possibility to 
move flocks in areas of densely cultivated fields was 
assured by the existence of walled paths (droveways). 
Interesting examples still survive in a quite densely 
urbanized area between the modern towns of Mosta 
and Naxxar, in central-eastern Malta (Fig. 9.9). In the 
locality called Tal-Wei, for example, four walled paths 
converge in a public space (0.33 ha). From a functional 

Figure 9.9. a) Public space at 
Tal-Wei, between the modern 
town of Mosta and Naxxar; 
the extent of the public space 
and the layout of the walled 
paths leading to the space are 
highlighted; b) Tal-Wei public 
space as represented in 1940s 
survey sheets. The red line 
represents a segment of the GIS-
estimated foraging route passing 
about 100 m away from the 
public space (G. Alberti).
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using the Jenks’ (1967) natural breaks method cited 
earlier. In spite of positional uncertainties, it can be 
appreciated that the villages seem to lie not far from 
the network of LCPs. As a matter of fact, 58 per cent 
(40 out of 69) of the buffers are at a distance of zero 
metres from the LCPs, meaning that the latter are 
tangential to, or intersect, the buffer; 10 (c. 15 per cent) 
are at a distance between 41 and 295 m, with fewer 
and fewer instances falling within increasing distance 
classes. All in all, it seems that the location of the raħal 
toponyms tends to be close to the estimated pastoral 
foraging routes. Another characteristic that deserves 
further study is that several of these toponyms, such 
as Ħal Mann, Ħal Millieri, or Ħax-Xluq, coincide with 
nodes where several minor roads and tracks converge, 
linking them to the network of walled droveways.

Other evidence turns out to be interesting from 
a postdictive standpoint. East of Rabat, the estimated 
LCPs pass in the vicinity of the Tal-Merħliet road 
(minimum distance c. 120 m), whose name (meaning 
‘of the herds’) is actually related to sheep and flocks 
(Fig. 9.10). West of Rabat, an area called Tal-Merħla 
turns out to be surrounded by the estimated LCPs, 
with the nearest estimated foraging route being about 
100 m distant. Further west, another Tal-Merħla place-
name and a Tal-Merħla road are close to the estimated 
LPCs, with the former 250 m distant from the nearest 
foraging route, and the latter actually intersecting 
part of the LCP. West of Qrendi, the LCPs pass near 
a church dedicated to San Nikola Tal-Merħliet (min-
imum distance c. 515 m) that, in turn, falls within the 
territory of the lost village of Raħal Niklusi (Wettinger 
1975, 374). In the eastern sector of Malta, the estimated 
LCPs leading to the garrigue areas lying in the same 
zone cross an area named after St Rocco (distance 
to the nearest LCP: 51 m). The latter is traditionally 
considered to be protector of herds, especially against 
infectious diseases (Mandarini 1860, 338–9). Moving 
to the south, two place-names featuring a connection 
to the same saint lie at 243 m (Misraħ Santu Rokku) 
and 600 m (Ta’ Santu Rokku) away from the nearest 
LCP. Finally, immediately east of Salina Bay (north-
eastern Malta), the estimated LCPs cross an area 
named Il-Merħla.

Besides the general foraging route network con-
necting the grazing areas, the analysis sought to locate 
likely paths connecting individual farmhouses to 
garrigue areas within an animal walking-time limit 
of seven hours. The latter has been devised whilst 
taking into consideration both literature and ana-
lytical constrains. While the actual routes located by 
the analysis are interesting in their own right from a 
purely cartographic perspective, the estimated journey 
duration proves even more interesting once compared 

from the mentioned public space. Bearing in mind 
that in a highly dense urbanized zone, like the one 
under discussion, the estimation of the foraging route 
is likely to have been affected by the noise retained in 
the DTM purged from modern construction, the Tal-
Wei case represents an interesting instance in which, 
from a postdictive standpoint (Armstrong et al. 2016; 
Patacchini & Nicatore 2016), GIS-based estimates show 
a reasonable degree of plausibility in relation to actual 
evidence on the ground.

If the estimated LCPs can be taken as representing 
potential corridors for movement of flocks across the 
landscape, another strand of evidence turns out to 
dovetail with the GIS-based estimations. The evidence 
relates to the location and spatial distribution of villages 
bearing the Maltese prefix raħal (often contracted to 
ħal), a number of which have been associated with 
minor settlements, hamlets or more generally ‘vil-
lages’ that disappeared during the Medieval period 
(Wettinger 1975). The Arabic meaning of the word rahl, 
which survives in Spain and Sicily, is that of a stopping 
place after a day’s journey. It must be acknowledged 
that the etymology and the process of linguistic and 
semantic adaptation along the transmission from 
Arabic to local languages (such as Spanish, Sicilian 
and Maltese) is extremely intricate and not without 
uncertainties. It has been argued, however, that the 
prefix can be etymologically connected to traveller’s 
way-stations or huts used by itinerant shepherds 
in southern Spain (Glick 1995) and in Sicily (Dalli 
2016,  373) and by extension, to locales associated 
to livestock breeding or animal husbandry, such as 
farmsteads, animal folds or estates (Dalli 2016). The 
Maltese merħla (herd, normally of sheep and/or goats) 
and its plural mrieħel or merħliet share the common 
root r-ħ-l with raħal seemingly confirming the pastoral 
connotation (Fiorini 1993, 118).

Building on the available documentation of the 
distribution of those toponyms, this study has made 
a considerable effort to improve their positioning 
beyond the six-figure reference given by Wettinger 
(1975, 190, 205 & fig. 12) by looking at all minor locali-
ties associated with individual ħal toponyms (recorded 
in Wettinger 2000) and locating these on the series of 
six-inch to one mile maps of Malta produced in the 
early 1900s. Some uncertainties do remain as for the 
exact location and the original extent of these villages. 
In any case, the above procedure allowed the building 
of a database featuring 69 locations. These are shown 
in Figure 9.10, where they have been given a 500 m 
radius buffer representing the hypothetical, and admit-
tedly subjective, extent of each village. The colour of 
the buffers reflects the division of the distance to the 
nearest garrigue-to-garrigue LCPs into four classes 
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The plausibility of the GIS-based estimates is 
strengthened by ethnographic data derived from inter-
views with local shepherds conducted by one of us 
(NCV) between 2016 and 2018. These relate to practices 
that go back to the period between the 1950s and 1970s 
when the informants were young and used to tend 
flocks with their father or other relatives. One of the 
informants was the owner of a farmhouse located in 
western Malta, in the Għar il-Kbir area (Fig. 9.11). The 
shepherd reported that the main grazing area for his 
flock consisted of the garrigue zones lying immediately 
southwest and northwest of the farmhouse, along the 
escarpment of the Dingli Cliffs and at Il-Bosk, respec-
tively. He also provided information about the duration 

with empirical and ethnographical data. Considering 
that 50 per cent of the estimated foraging excursion 
(outbound plus inbound) in Malta fall between 4.94 
and 10.77 hours (see §9.3.2), it turns out that these fig-
ures are comparable with empirical GPS-derived data 
gathered in other cultural and geographical contexts. 
In the Negev (Israel), for instance, the average journey 
has a duration of 5.5 hours, with a minimum of 4.3 
recorded in May and a maximum of 7.7 recorded in 
March (Arnon et al. 2011, 137–8). In northern Oman, 
foraging excursions last about 9 hours on average 
(Schlecht et al. 2009, 358), while in western Niger it 
varies across seasons between 7.6 and 10.4 hours 
(Schlecht et al. 2006, 230). 

Figure 9.10. Approximate 
location of the (mostly 
disappeared) raħal toponyms. 
Circles represent 500 m buffer 
to account for locational 
uncertainty. Buffers are given 
colours reflecting the distance 
to the nearest GIS-estimated 
foraging route. Red triangles 
represent the location of herd-
related toponyms (G. Alberti).
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moving from the farmhouse outwards (Fig. 9.11). The 
grazing area immediately surrounding the farmhouse 
at Misraħ Għar il-Kbir lies well within the one-hour 
walking time buffer. The larger garrigue zones south-
west of the farmhouse, lying between the Maddalena 
Chapel and Ta’ Żuta, is reachable within four hours, 
while the foraging area lying to the northeast at 
Il-Bosk can be reached within a maximum walk of 
two hours. In these settings, it is possible to complete 
the whole journey (outbound and inbound) well 
within the limits of the time windows reported by 
the informant, especially during the most time-con-
strained summer excursions. 

of the foraging excursions, which used to be done 
between 6:00 and 8:30 am in summer (June–October), 
and between 9 am and 2 pm in winter (November–May). 
Even though these figures feature seasonal variability, 
they prove consistent with the estimates deriving from 
our analysis. The shorter summer duration fits in lower 
10 per cent of the estimated journeys, which, as seen, 
can be performed within 3.18 hours. The longer winter 
excursions fall between the 1st quartile (4.94) and the 
median (6.99) of the estimated durations. 

The duration of the excursions reported by the 
informants turns out to be also consistent with the 
accumulated (animal) walking time surface calculated 

Figure 9.11. Isochrones 
around farmhouse 4 
representing the space that 
can be covered at 1-hour 
intervals considering animal 
walking speed (grazing while 
walking; averaging 1.5 km/h 
on a favourable slope)  
(G. Alberti).
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garrigue areas as grazing land, and besides indicating 
that the choice of the grazing area is not always dictated 
by geographic proximity, these cases prove consistent 
with the GIS-based estimates. The grazing areas used 
by the herds kept in farmhouses 1 and 2 can be reached 
in a walking time between one and two hours from both 
locations, with just the northeasternmost fringe of the 
larger garrigue area lying outside the two-hour limit. 
The same holds true for farmhouse 3, whose grazing 
area lies in the middle of the two-hour walking time 
buffer. They prove therefore suitable, time-wise, for 
grazing excursions similar to those reported by the 
owner of the farmhouse in western Malta.

A similar picture emerges from the ethnographic 
data relative to three farmhouses located in southeast-
ern Malta, immediately east of Kalkara (Fig. 9.12). One 
person whose father was a shepherd who kept a flock 
of about 50 sheep/goats in farmhouse 1 at Il-Wileġ 
recalled how just like the shepherd from farmhouse 2 
(located at the intersection of country roads near Santa 
Domenica) he used to take the herd to two garrigue 
areas lying to the north between Rinella and San Rokku, 
overlooking Il-Kalanka tal-Patrijiet. The farmer from 
farmhouse 3 (located at Tal-Fata) used to take a herd of 
cows to two smaller rocky areas, immediately northeast 
of farmhouse 1. Besides further confirming the use of 

Figure 9.12. Isochrones 
around farmhouse 2 
representing the space that 
can be covered at 1-hour 
intervals considering animal 
walking speed (grazing while 
walking) (G. Alberti).
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and four hours of fast directional walk down walled 
droveways, while the smaller one further south at 
Il-Qala (near San Martin) can be reached within six 
hours, again along walled tracks. The owner of the 
sheep/goat fold (Maltese: ċikken) marked as farmhouse 
7 reported the use of a grazing area lying to the north 
at Il-Biskra (Fig. 9.13c).3 It can be reached within three 
and four hours along a track and a minor road, while 
the other one in use further north at Id-Dahar is reach-
able within six hours along minor roads. The shepherd 
from another sheep/goat fold (ċikken) marked as 
farmhouse 8 (Fig. 9.13c) reports the use of the grazing 
area at Il-Biskra common to the preceding farmhouse, 
which can be reached within a 4-hour walk. The same 
farmhouse uses another grazing area further north at 
L-Aħrax (Fig. 9.13c), whose southern half (namely, the 
one for which the evidence of its use as pasture is more 
certain) can be reached within five hours. 

It is worth noting that the reported duration of 
the foraging excursions in this area turns out to be 
generally longer compared with the evidence from 

Data derived from interviews of shepherds in 
northern Malta present a slightly different picture. One 
out of four informants (farmhouse 5) used to take flocks 
to a garrigue area that lies not too far (both time- and 
distance-wise) to the northwest (Fig. 9.13a). About half 
of the garrigue area can be reached within four hours, 
with only the northernmost sector requiring six hours 
to reach. Considering the animal average walking 
speed while grazing, the garrigue areas used by the 
other three informants lie at a larger time distance. 
Yet, if we keep in mind that both literature (Arnon et 
al. 2011; Schlecht et al. 2006, 2009) and ethnography 
indicate that shepherds may opt for faster directional 
long-distance travels (featuring an average speed 
of about 3.6 km/h) (Arnon et al. 2011, 140), the data 
regarding those three cases prove not too different 
from farmhouse 5 and, all in all, consistent with our 
GIS-based estimates. The large grazing area south 
of farmhouse 6 at Mellieħa (Fig. 9.13B), in the areas 
of Ix-Xagħra tal-Ħawlija and Ix-Xagħra tal-Għansar/
Xagħra tad-Dar il-Bajda, can be reached within three 

Figure 9.13. a) Isochrones around farmhouse 5 representing the space that can be covered at 1-hour intervals 
considering animal walking speed (grazing while walking); b) Isochrones around farmhouse 6; unlike Figs. 9.11,  
9.12, 9.13a, animal walking speed during directional travels is considered (averaging 3.6 km/h on a favourable slope);  
c) Isochrones (considering directional travel’s speed) around farmhouse 7 (G. Alberti).
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strategies, most notably between crop cultivation 
and pastoralism, was very carefully managed and 
regulated. The network of droveways that controlled 
and facilitated the movement of flocks across the 
landscape was integral to the sustainable co-exist-
ence of these activities, and an essential component 
of subsistence strategies in a fragile and frugal small 
island environment.

Notes

1	 A comprehensive diachronic study of Malta’s ‘public 
spaces’ or commons has still to be undertaken. In the 
Late Middle Ages, public spaces often consisted of pre-
cious grazing grounds for sheep and goats, unhindered 
access to which was considered a right to be upheld 
(Wettinger 1982). In the early modern period this practice 
continued, as it most certainly did in the British period, 
but the granting of parcels of rocky ground (xagħri) for 
cultivation by reclamation from the late sixteenth century 
onwards (Blouet 1967; Chircop 1993, 30–2) must have 
reduced the area for rough grazing considerably and 
probably made the need of walled paths/tracks or drove-
ways for safe passage of flocks from one grazing ground 
to another more acutely felt. The process of enclosure 
through the erection of rubble walls and fields connected 
by paths, tracks that can act as droveways recalls the 
situation in the limestone uplands of south-east Sicily, 
a process which got underway in the mid-nineteenth 
century (see Giorgianni 1990). The analogy warrants 
further study.

2	 Grazing on stubble following the harvest or in fallow 
fields was confirmed by the informant of farmhouse 1 
from Kalkara who recalled descending with his father 
into the terraced fields in the valley between Rinella 
battery and the area taken up by the industrial estate of 
Kalkara (now Smartcity). Informants from Qala (Gozo) 
confirmed the existence of the same practice. Unless 
the fields belonged to the shepherd, the rights to allow 
animals to graze was obtained from the owner, often 
against payment, a practice which has a deeper ancestry 
(see Catania 2015, 120–4).

3	 A ċikken consisted of an open-air enclosure built in rub-
ble where animals pertaining to small owners of sheep 
and goats were bred. The surface was rocky and slanting 
to ensure easy removal of animal liquid waste. Cane and 
reeds were used to roof certain areas of the enclosure 
to provide animals with shelter from the summer sun. 
No formal lodging quarters for the shepherd existed. 
The Mellieħa examples are here denoted farmhouses 5, 
7 and 8.

4	 The rectilinear pattern of roads and tracks is related to 
the project of agricultural improvement in this part of 
Malta undertaken in the British period and the local 
agricultural society in the second half of the nineteenth 
century (Società Economica Agraria) (see Hunt & Vella 
2004/5, 63 & note 18).

southern Malta, with a time inflation that is reasonably 
related to the larger distances to be covered between 
the farmhouses and the garrigue areas. The excursions 
span from about eight hours in winter (8 am to 4 pm) 
to about 13 hours overall during summer (4–9 am, 4–12 
pm). In spite of larger distances to be covered, the very 
possibility to opt for a faster directional route, using a 
road network that is related to post-ad 1850s agricul-
tural improvement in the area, enables the shepherds 
to meet the time limits imposed by the season during 
which the excursions take place.4 In these settings, the 
estimated walking time buffers prove compatible with 
the reported durations. Garrigue areas reachable within 
three, four, five, or even six (in the most extreme case) 
hours of directional travel turn out to be suitable for 
excursions whose duration may last from a minimum 
of five to a maximum of eight hours. The reported 
durations are also compatible with the duration of 
the foraging excursions estimated from our sample 
of farmhouse locations. Foraging excursions lasting 
five and eight hours fall within the middle 50 per cent 
of the distribution of the estimated journeys, which 
ranges between 4.94 and 10.77 hours.

9.5. Conclusions

The present study has drawn together and presented 
archival, archaeological, ethnographic and oral evi-
dence of traditional pastoral foraging routes and 
practices in a small Mediterranean island setting. 
Informed by ethnographic work elsewhere, and by 
earlier work on the highly variable affordances pre-
sented by the early modern landscape, least-cost path 
modelling and post-dictive evaluations have been 
developed to elucidate the spatial-temporal dynamics 
that dictated pastoral routes and practices in Malta. 
Using GIS-based weighted cost-surface analysis, the 
successive iterations of the argument have examined 
the relationship between farmsteads where herds 
were penned, the public open spaces where garrigue 
was available, and the network of droveways that 
connected them together, and which may trace their 
origins at least as far back as the late Medieval period. 
It has been demonstrated that their distribution and 
inter-relationships is consistent with strategies to 
optimize the exploitation, through pastoral foraging, 
of land that was less optimal for agriculture. The 
portrait that emerges is one of intensive exploitation 
of the landscape through a mixture of strategies, each 
adapted to the highly variable affordances presented 
by different environments. It has also been demon-
strated that the relationship between these different 
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