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On the neurobiology of apathy and depression in cerebral small vessel disease 

Jonathan Tay 

Abstract 

Cerebral small vessel disease (SVD) is a cerebrovascular pathology that affects the small 

vessels of the brain, resulting in heterogeneous brain tissue changes. These can lead to 

neuropsychiatric symptoms such as apathy, a loss of motivation, and depression, which is 

characterised by low mood and a loss of pleasure. Apathy and depression are both prevalent 

symptoms in SVD, but an understanding of the relationship between underlying disease 

processes and the expression of these neuropsychiatric symptoms remains poor. 

This thesis uses magnetic resonance imaging techniques to examine the 

neurobiological basis of apathy and depression in SVD. We show that apathy is related to 

focal grey matter damage and distributed white matter microstructural change. These 

microstructural changes underlie large-scale white matter network disruption, which is 

related to apathy, but not depression. We then show that depression, as a construct, can be 

dissociated into distinct symptoms which are associated with overlapping and distinct areas 

of cortical atrophy over time. This suggests that depression as a general syndrome may be 

characterised by atrophy in core structures, while different symptoms are associated with 

atrophy in more specialised areas. Consistent with these patterns of overarching tissue 

damage, we find that apathy, but not depression, predicts conversion to dementia in patients 

with SVD. 

Our findings suggest that different types of SVD-related pathology lead to apathy and 

depression. Diffuse white matter damage may lead to widespread network disruption, 

resulting in apathy and cognitive impairment. In contrast, depressive symptoms are 

associated with focal patterns of grey matter atrophy over time. This highlights the 

importance of differentiating neuropsychiatric symptoms, and paves the way for targeted 

treatment approaches. 
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Chapter 1: Introduction 

1.1. Apathy 

"Desire, wish, will, are states of mind which everyone knows, and which no definition can 

make plainer." 

William James, The Principles of Psychology, Chapter 26 

 

Motivation is one of the key fixtures of mental life, and plays a role in every volitional action. 

All goals in life, whether big – such as attempting to write a PhD thesis – or small – such as 

preparing a meal – require some degree of physical or cognitive effort. The success or failure 

of these goal-directed behaviours depends on how hard we try, if we try at all. Motivation is 

therefore a crucial element to our normal lives. 

Apathy can be defined as a loss of motivation that manifests as a reduction in goal-

directed behaviour (GDB) (Marin, 1991; Levy and Dubois, 2006). This reduction is defined 

in relation to a patient's previous level of functioning, in order to account for the 

interindividual, environmental, and sociocultural factors that may influence normative 

functioning. Other terms used to describe apathy include abulia, akinetic mutism, and 

athymhormia (Levy and Dubois, 2006). 

Apathy is the most common behavioural symptom of Alzheimer's disease (Zhao et 

al., 2016) and Huntington's disease (Craufurd et al., 2001), and is a prominent symptom in 

stroke (van Dalen et al., 2013), vascular dementia (Staekenborg et al., 2010), traumatic brain 

injury (Starkstein and Pahissa, 2014), Parkinson's disease (den Brok et al., 2015), and 

multiple sclerosis (Figved et al., 2005). Apathy is also one of the diagnostic criteria for the 

behavioural variant of frontotemporal dementia (Piguet et al., 2011), and is the most 

prevalent negative symptom of schizophrenia (Fervaha et al., 2015). Some degree of apathy 

also exists in healthy individuals (Ang et al., 2017), and although no authoritative studies 

have been conducted, it is estimated that over 10 million people in the United States suffer 

from some degree of apathy (Chase, 2011). 

Apathy is both prevalent and problematic. Research across neurological disorders has 

shown that apathy is consistently associated with negative outcomes, such as reduced patient 

functioning, poorer response to treatment, and increased caregiver distress (van Reekum et 

al., 2005). Apathy may have far-reaching societal implications as well, as motivation affects 

education, employment, and civic engagement (Vansteenkiste et al., 2005). 
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1.2. Definitions of apathy: from ancient Greece to the present day 

Apathy is etymologically derived from the Greek apatheia (i.e., a-pathos), meaning a lack of 

passion. Motivational deficits may have been described in medical texts as early as 

Hippocrates' On the Sacred Disease, where apathy figures into the description of the four 

humours: "Those who are mad through phlegm are quiet, and neither shout nor make a 

disturbance." (Marin, 1991). The condition was also recognised by the 19th century 

neurologist Edouard Brissaud (1852-1909), a pupil of Jean-Martin Charcot (1825-93), who 

described "absolute apathy" as a state of "mixed indifference and lack of reaction to external 

as well as internal events" (Prange et al., 2018). 

Although apathy has been recognised as an important symptom for millenia, clinical 

recognition or scientific interest in the condition did not begin until the early 1990s, when 

Robert Marin defined apathy as a "lack of motivation" (Marin, 1991). This definition of 

apathy is the source from which all modern definitions are derived. Importantly, a loss of 

motivation should not be attributable to intellectual impairment, emotional distress, or a state 

of diminished consciousness (Marin, 1991). 

For Marin, this was a key point that distinguished apathy as a symptom from apathy as 

a syndrome. If diminished motivation was attributable to another cause, then apathy was 

merely symptomatic of a different syndrome. For instance, a patient with severe dementia, 

lacking the cognitive capacity to form plans such as going shopping, would not be considered 

to have syndromic apathy. Similarly, an individual with major depression, if too dysphoric to 

bring themselves to do anything, would have symptomatic apathy, but not syndromic apathy. 

Syndromic apathy is a broader construct than symptomatic apathy, and features 

complex behavioural, cognitive, and emotional concomitants. These distinctions are 

psychological in nature, but all share a common behavioural manifestation, which is a 

quantitative reduction of goal-directed, or purposeful, behaviour. It is important to note that 

this definition is relativistic in nature: a reduction in behaviour must be contextualised by a 

patient's previous level of functioning, as well as by their socio-cultural norms. The 

behavioural, cognitive, and emotional features of apathy described by Marin are important to 

current understanding of the syndrome. These can be conceptualised as "subtypes" of apathy. 

Behavioural apathy, synonymous with ‘athymhormia’ or ‘auto-activation deficit’, is 

the most severe form of apathy, manifesting as an inability to initiate self-generated actions 

without external prompting. ‘Self-generated’ or ‘self-initiated’ actions are a set of 

spontaneous behaviours that occur without an external stimulus, in contrast to externally-
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triggered, reflexive actions (Passingham et al., 2010). Accordingly, patients of this type lack 

initiative, remaining sedentary. This state can temporarily be reversed, albeit by external, 

rather than internal, prompting. 

Cognitive apathy, which has also been called cognitive inertia, manifests as a lack of 

interest in learning new things or engaging in new experiences, which can lead to reduced 

performance on tasks that assess planning, rule-finding, and set-shifting, which are crucial 

executive processes for the generation and elaboration of complex behaviours. These deficits 

may be related to the intrinsic costs of "cognitive control", a theoretical construct explains 

difficulties associated with engaging and sustaining cognitively demanding tasks (Miller and 

Cohen, 2001). Although speculative, it has been suggested that cognitive control is "costly" 

due to resource bottlenecks in mental representational capacity, a natural limitation of the 

executive neural network that supports information processing (Shenhav et al., 2017). If this 

proposition is true, then it is possible that cognitive apathy is a manifestation of reduced or 

slower information processing capacity following executive network damage (1.9.2). 

Overcoming processing bottlenecks may therefore require cognitive resources that have been 

limited due to network damage, leading to an increase in perceived effort costs associated 

with engaging in behaviours requiring cognitive control. This may manifest as cognitive 

apathy, leading to the host of deficits described earlier. 

Finally, emotional apathy manifests as a decreased ability to associate emotion with 

behaviour. It is also associated with an indifference to both positive and negative stimuli. 

This indifference, particularly with regard to positive stimuli, is similar to some symptoms, 

such as loss of pleasure, in major depressive disorder, which will be discussed later (1.5). 

We now return to the example of an unmotivated depressed individual. As previously 

mentioned, if a loss of GDB is attributable to dysphoria, then this individual's apathy can be 

considered a symptom of their depression. On the other hand, reductions in GDB that are 

characterised by the behavioural, cognitive, or emotional deficits that have been highlighted 

may point towards syndromic apathy. This type of apathy may not respond to treatments in 

the same manner as symptomatic apathy, which could be ameliorated by first treating the 

individual's dysphoria. 

1.3. Diagnostic criteria for apathy 

These three apathy subtypes have been incorporated into many diagnostic criteria for apathy. 

Diagnosis is conventionally performed using specific criteria that are assessed by clinical 

interview or behavioural observation (Marin, 1991). The most widely adopted standard, 
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developed through expert consensus, is characterised by four key criteria (Robert et al., 

2009). A recently published revision of these criteria is adapted here with permission (Robert 

et al., 2018): 
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CRITERION A: A quantitative reduction of goal-directed activity either in behavioral, cognitive, 

emotional or social dimensions in comparison to the patient’s previous level of functioning in these 

areas. These changes may be reported by the patient themselves or by observation of others. 

 

CRITERION B: The presence of at least 2 of the 3 following dimensions for a period of at least 

four weeks and present most of the time: 

 

B1. BEHAVIOUR & COGNITION 
Loss of, or diminished, goal-directed behaviour or cognitive activity as evidenced by at least one of 

the following: 

General level of activity: The patient has a reduced level of activity either at home or work, makes 

less effort to initiate or accomplish tasks spontaneously, or needs to be prompted to perform them. 

Persistence of activity: They are less persistent in maintaining an activity or conversation, finding 

solutions to problems or thinking of alternative ways to accomplish them if they become difficult. 

Making choices: They have less interest or take longer to make choices when different alternatives 

exist. 

Interest in external issue: They have less interest in or reacts less to news, either good or bad, or has 

less interest in doing new things. 

Personal wellbeing: They are less interested in their own health and wellbeing or personal image. 

 

B2. EMOTION 
Loss of, or diminished, emotion as evidenced by at least one of the following: 

Spontaneous emotions: The patient shows less spontaneous (self-generated) emotions regarding their 

own affairs, or appears less interested in events that should matter to them or to people that they know 

well. 

Emotional reactions to environment: They express less emotional reaction in response to positive or 

negative events in their environment that affect them or people they know well. 

Impact on others: They are less concerned about the impact of their actions or feelings on the people 

around them. 

Empathy: They show less empathy to the emotions or feelings of others. 

Verbal or physical expressions: They show less verbal or physical reactions that reveal their 

emotional states. 

 

B3. SOCIAL INTERACTION 
Loss of, or diminished engagement in social interaction as evidenced by at least one of the following: 

Spontaneous social initiative: The patient takes less initiative in spontaneously proposing social or 

leisure activities to family or others. 

Environmentally stimulated social interaction: They participate less, or are less comfortable or more 

indifferent to social or leisure activities suggested by people around them. 

Relationship with family members: They show less interest in family members. 

Verbal interaction: They are less likely to initiate a conversation, or withdraws soon from it 

Homebound: They prefer to stay at home more frequently or longer than usual and shows less interest 

in getting out to meet people. 

 

CRITERION C: These symptoms (A - B) cause clinically significant impairment in personal, 

social, occupational, or other important areas of functioning. 

 

CRITERION D: The symptoms (A - B) are not exclusively explained or due to physical 

disabilities, to motor disabilities, to a diminished level of consciousness, to the direct physiological 

effects of a substance, or to major changes in the patient’s environment. 
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For a diagnosis of apathy, a patient should meet all four criteria. It should be noted 

that this differs slightly from the originally proposed criteria, as this revised version combines 

cognitive and behavioural symptoms whilst adding social symptoms (Robert et al., 2009, 

2018). Although the validity of these criteria has not been formally tested, the original 

version has been validated in patients with a range of neurological disorders, including those 

with cerebrovascular damage, with good inter-rater reliability (Mulin et al., 2011). 

Another method for assessing and diagnosing apathy is using clinical questionnaires 

that quantitatively grade the presence and severity of apathetic symptoms. Many of these 

measures use a semi-structured interview format, although some, such as the Apathy 

Evaluation Scale (AES), have additional self-report and informant-report measures (Marin et 

al., 1991). These can be less thorough than structured clinical examinations, but have rapid 

administration times and require less expertise, which is useful in research studies and 

clinical screening (Cummings et al., 2015). 

Following clinical assessment, a patient can be formally diagnosed with apathy using 

the International Classification of Diseases 10 - Clinical Modification (ICD-10-CM) criteria, 

which lists “demoralization and apathy” under code R45.3. Unfortunately, no corresponding 

diagnosis exists for apathy in the Diagnostic and Statistical Manual of Mental Disorders, fifth 

edition (DSM-5), which integrates apathy into descriptions of other disorders, such as mood 

and neurocognitive disorders, rather than having the syndrome as its own diagnostic entity 

(American Psychiatric Association, 2013). Although DSM-5 recognizes apathy as playing a 

significant role in a variety of disorders, a unique diagnostic code may aid in the diagnosis 

and subsequent treatment of this syndrome. 

1.4. Depression 

"Frequently I fall into a mood of complete listlessness and indifference; nothing gives me 

great pleasure." 

Wolfgang Amadeus Mozart 

 

Depression is the leading cause of disability worldwide (World Health Organization, 2017) 

with a lifetime prevalence of 10% to 15% (Lépine and Briley, 2011). It is unsurprising, given 

these figures, that depression has emerged as one of the most important diseases to recognise 

and manage in general clinical practice (Paykel and Priest, 1992). Unfortunately, this has led 

to apathy being overlooked, both clinically and empirically, due to having similar behavioural 
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manifestations - and sometimes diagnostic criteria - with depression, which are now 

discussed. 

Although depression is a heterogeneous disease with numerous symptoms and 

subtypes, we primarily focus on the "classical" picture of depression, which would be 

consistent with major depressive disorder. Major depressive disorder, as defined in DSM-5, is 

a syndrome characterised by the presence of at least five out of the following nine symptoms 

in the past two weeks: 

1. Depressed mood 

2. Loss of interest or pleasure (anhedonia) 

3. Change in weight or appetite 

4. Insomnia or hypersomnia 

5. Psychomotor agitation or retardation 

6. Loss of energy (anergia) or fatigue 

7. Feelings of worthlessness or guilt 

8. Impaired concentration or indecisiveness 

9. Thoughts of death, suicidal ideation, or suicide attempt, 

with depressed mood and anhedonia being cardinal symptoms (American Psychiatric 

Association, 2013). The term "depression", used henceforth, will generally refer to this 

general syndrome. 

1.5. Differentiating between apathy and depression 

From the diagnostic criteria presented alone, it should be apparent that apathy and depression 

are distinct clinical syndromes. Defining apathy as a construct that was to some extent 

orthogonal to depression was one of the primary goals of Marin's (1991) formal definition of 

the term. Indeed, modern definitions of apathy do not generally include or emphasise the 

negative emotionality or somatic disturbances that may be symptomatic of major depression 

(e.g., Robert et al., 2018). 

One important point of potential overlap between apathy and depression may be in the 

symptom of anhedonia. Anhedonia, as defined in DSM-5, can include deficits in the capacity 

to feel pleasure and take interest in things, manifesting as a hyposensitivity towards 

rewarding or positive stimuli (American Psychiatric Association, 2013). Anhedonia can relate 

to the liking of a stimulus, which is the visceral experience of pleasure associated with 

consuming a stimulus, or the wanting of a stimulus, which is the pleasure associated with the 
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anticipation of a future stimulus (Treadway and Zald, 2011). These are very closely related 

topics, as the liking of a stimulus will influence future wanting of it, but not completely 

synonymous. This anticipatory component of anhedonia may involve several motivational 

components that overlap with apathy, and in this regard anhedonic symptoms of depression 

may appear behaviourally similar to apathy. These behavioural similarities may have similar 

underlying neurobiological processes, such as those that guide value-based decision-making 

(Husain and Roiser, 2018). 

Anhedonia is, by definition, symptomatic of depression, and it is easy to see how this 

can precede, or be synonymous with, symptomatic apathy in these cases (Section 1.2). 

Motivational deficits in depressed individuals with anhedonia may well be driven by a 

reduction or loss of pleasure or interest in stimuli. If this is the case, then anhedonia and 

apathy may be different manifestations of the same underlying neurobiological changes that 

affect emotional processing, cognition, and behaviour in major depression. Despite this, there 

are some subtle points that may distinguish symptomatic apathy and anhedonia in this case. 

Individuals with depression and anhedonia may show a hypersensitivity towards punishing 

stimuli (Chiu and Deldin, 2007), whilst those with apathy would show a reduction in 

motivation towards both rewarding and punishing stimuli. 

Other symptoms of depression such as low energy or anergia may appear 

behaviourally similar to apathy despite being fundamentally different. For instance, low 

energy may result in an individual not being able to physically complete GDBs. This is not 

apathy, however, as there is no actual reduction in motivation. 

1.6. Apathy and depression in cerebrovascular disease 

Having now discussed the differences between apathy and depression generally, we now 

explore this topic in more detail in cerebrovascular disease, which will be the primary focus 

of this thesis. Cerebrovascular disease, used herein, primarily refers to large vessel stroke and 

cerebral small vessel disease (SVD). 

Strokes can be classified as ischaemic or haemorrhagic. Ischaemic strokes are caused 

by an obstruction of blood flow, whilst haemorrhagic strokes are caused by bleeding. Large 

vessel strokes, by definition, affect the major arteries of the brain, such as the anterior, 

middle, and posterior cerebral arteries. 

Conversely, SVD affects the small vessels of the brain, leading to heterogeneous 

parenchymal changes. Some of the radiologically visible markers of SVD include lacunar 

infarcts, which are punctate infarcts typically affecting subcortical grey matter and white 
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matter structures, and white matter hyperintensities (WMH), which appear as diffuse areas of 

high intensity signal in the white matter on T2-weighted MRI. Pathological processes related 

to SVD are a major cause of disability and age-related cognitive decline (Pantoni, 2010). 

Apathy and depression have been identified as consequences of stroke and SVD. Both 

syndromes present in approximately one out of three patients following ischaemic or 

haemorrhagic stroke, and preliminary evidence suggests they are highly prevalent in SVD. 

Despite this prevalence, however, apathy and depression are only modestly correlated (~10-

20%) (Brodaty et al., 2005; Caeiro et al., 2006; Santa et al., 2008; Mayo et al., 2009), 

although others report no overlap (Marin et al., 1991). Furthermore, reported estimates of 

point prevalence suggest that comorbid apathy and depression occur in only a minority of 

patients. For instance, a study in patients with acute stroke found that 22% of patients were 

apathetic, but not depressed, whilst 7% of patients were depressed, but not apathetic (Withall 

et al., 2011). Only 4% of patients were both apathetic and depressed, with the remaining 

sample not fitting criteria for apathy or depression (Withall et al., 2011). It should be noted 

that many of these studies assess and diagnose apathy and depression using clinical scales 

rather than through a structured physician interview. One criterion often used in the 

development of apathy scales is a lack of correlation with depression scales (e.g., Marin et 

al., 1991; Ang et al., 2017), which may explain the low levels of overlap. 

Apathy and depression also have distinct effects on outcome measures such as 

functional independence and quality of life in patients with stroke (Hama et al., 2007a; 

Matsuzaki et al., 2015) and SVD (Hollocks et al., 2015). Furthermore, apathy appears to be 

more strongly related to neurocognitive abilities in both stroke patients (Fishman et al., 

2018a, b) and SVD (Lohner et al., 2017), and consistent with this, symptoms of apathy, but 

not depression, predict conversion to dementia (van Dalen et al., 2018a). This may be driven 

by differential associations between apathy, depression, and white matter damage, which 

have been explored in SVD (Hollocks et al., 2015; Le Heron et al., 2018b). 

These results suggest that apathy and depression are distinct entities in 

cerebrovascular disease. If they were equivocal constructs, then one would expect to see 

higher rates of correlation and comorbidity than what is actually seen. Moreover, one would 

expect more substantial overlap in terms of effects on functional outcome and relationships 

with cognition. 

Before proceeding further, we briefly discuss the topic of fatigue. Post-stroke fatigue 

may be a potential comorbidity with post-stroke apathy and depression. Fatigue, which can 

be defined as a feeling of weariness or lack of energy, is a frequent complaint after stroke, 



 

21 

 

with a recent systematic review suggesting it occurs in 50% of cases (Cumming et al., 2016). 

This presents a potentially complicated topic, as the symptoms of fatigue may appear 

behaviourally similar to the symptoms of apathy. Despite this, preliminary research suggests 

that apathy and fatigue are not correlated, do not interact over time (Douven et al., 2017b). 

Although this research requires replication, it does suggest that motivational deficits are 

independent of subjective feelings of low energy. 

1.7. Consequences of apathy on functional outcomes 

Apathy has been associated with a variety of physical deficits in stroke, and patients with 

apathy have a greater number of somatic comorbidities (Sagen et al., 2010). These include 

basic motor skills, such as disturbances in sitting balance (Hama et al., 2007b) and gait 

(Moretti et al., 2015), but also extend to basic activities of daily living (ADLs), such as eating 

and dressing (Brodaty et al., 2005; Santa et al., 2008; Mayo et al., 2009; Caeiro et al., 2013; 

Tang et al., 2014; van Almenkerk et al., 2015; Mihalov et al., 2016). Longitudinal studies on 

functional outcomes also suggest that apathy impairs recovery of physical functions after 

stroke (Hama et al., 2007a; Santa et al., 2008; Mikami et al., 2013b; Harris et al., 2014; 

Matsuzaki et al., 2015). 

The reasons why apathy is associated with such deficits is still unknown. It is possible 

that reductions in basic ADLs could be a manifestation of the behavioural apathy subtype, 

which is characterised by a reduction in self-initiated actions. These motivational deficits 

may also impair physical rehabilitation by reducing willingness to engage in physiotherapy 

programs, for instance. Furthermore, apathy could precede sedentary behaviour, which may 

explain why apathy has been associated with an increased risk of future cardiovascular events 

(Eurelings et al., 2018). This would not explain deficits in neurological functions such as 

sitting balance or gait however, which may be more reflective of damage to white matter 

tracts underlying apathy and motor control (Hollocks et al., 2015; Moretti et al., 2015; Le 

Heron et al., 2018b). 

Apathy is also associated with impaired cognitive functioning. Apathetic patients 

scored ~2–3 points lower on the Mini-Mental State Examination (MMSE), a measure of 

general cognitive impairment (van Dalen et al., 2013). Analyses of specific cognitive 

domains have reported that apathy in stroke is associated with impaired verbal learning and 

short- and long-term verbal recall (Fishman et al., 2018b), verbal fluency (Okada et al., 1997; 

Yamagata et al., 2004), semantic fluency (Fishman et al., 2018a), abstract reasoning (Caeiro 

et al., 2013), and attention and concentration (Brodaty et al., 2005). 
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The cognitive disturbances that accompany apathy also have functional consequences. 

Patients with apathy show impairment on instrumental ADLs (Zawacki et al., 2002; Brodaty 

et al., 2005, 2013; Reyes et al., 2009; Castellanos-Pinedo et al., 2011), which are tasks that 

require planning, such as shopping and housekeeping. Furthermore, apathy is associated with 

worse scores on dementia scales (Onoda et al., 2011), and a higher risk of incident dementia 

(van Dalen et al., 2018a, b). It is possible that apathy may be symptomatic of prodromal 

vascular dementia (van Dalen et al., 2018a), indicating disrupted white matter connectivity 

which has also been shown to underlie vascular dementia caused by small vessel disease 

(Lawrence et al., 2018b). Apathy may therefore be used as a behavioural marker for patients 

at-risk for cognitive impairment and dementia. 

Although apathy can co-occur with some level of depression, it may also cause later 

depression. Longitudinal studies report that apathy is associated with increased depression at 

follow-up (Withall et al., 2011), and apathetic stroke patients have an almost twofold risk of 

concurrent depression (van Dalen et al., 2013). Furthermore, apathy, independently of 

depression, is a predictor of suicidal ideation three months after stroke (Tang et al., 2015). 

These results suggest that apathy may not only occur in tandem with depression, but also 

contribute to it. Indeed, some authors have pointed out that there are similarities between the 

constructs of apathy and anhedonia, a common feature of major depression which can be 

associated with reduced motivation to seek pleasure (Husain and Roiser, 2018). 

The relationship between apathy and other psychiatric disturbances has been far less 

studied. Limited evidence suggests that apathy is associated with anxiety in the post-acute 

(Mihalov et al., 2016), but not acute (Starkstein et al., 1993), phase of stroke. This anxiety 

may stem from apathetic patients becoming more aware of general deficits they suffer from 

after stroke or the anxiety provoking consequences of inactivity. Recent longitudinal work on 

personality traits and post-stroke symptoms suggest that higher extraversion predicted lower 

apathy scores, in contrast to higher neuroticism, which was predictive of more severe 

depression (Douven et al., 2018b). There is no evidence as of yet to support a relationship 

between apathy and psychotic symptoms (Reyes et al., 2009). Apathetic patients with 

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy (CADASIL), a monogenic form of SVD, have a greater frequency of 

psychiatric symptoms such as irritability/lability, agitation/aggression, disinhibition and 

euphoria, as well as somatic symptoms such as disturbed sleep and appetite (Reyes et al., 

2009). Whether these symptoms show a similar etiology to apathy is still unknown. 
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1.8. Treatments for apathy 

Despite its importance, there is a lack of high-quality treatment studies for apathy in 

cerebrovascular disease, precluding the recommendation of pharmacological agents for 

treating it in clinical practice. We were able to identify three double-blind placebo-controlled 

trials. Two trials have evaluated the efficacy of nefiracetam, which enhances monoaminergic, 

cholinergic and GABAergic signalling, in the treatment of post-stroke apathy. The first, 

conducted to treat post-stroke depression, examined apathy diagnosed using the Starkstein 

Apathy Scale (SAS) (Table 1) in a subset of 70 patients, and found that 900 mg/day of 

nefiracetam reduced apathy after one month of treatment (Robinson et al., 2009). The second 

study treated apathy, also measured with the SAS, as a primary outcome measure under the 

same dose of nefiracetam, and found a small, but non-significant effect after three months of 

treatment (Starkstein et al., 2016). This null result should be interpreted with caution, 

however, given the small sample size and limited power to detect a clinically-relevant effect. 

Future studies are needed to assess the efficacy of nefiracetam in treating post-stroke apathy. 

The other trial for treating apathy was conducted using escitalopram, a selective 

serotonin reuptake inhibitor. In this study, 98 stroke patients who were apathy-free were 

administered 5 or 10 mg/day escitalopram or placebo. After one year, the escitalopram group 

had lower risk of developing apathy compared to the placebo group (Mikami et al., 2013a). 

Although this suggests that escitalopram may prevent the onset of apathetic symptoms after 

stroke, there is no data on whether escitalopram improves symptoms in patients already 

diagnosed with apathy. 

An open-label trial examined the acetylcholinesterase inhibitors galantamine and 

donepezil in treating apathy in cognitively impaired stroke patients (Whyte et al., 2008). 

Thirteen stroke patients were administered 12 mg/day galantamine, and 13 patients were 

administered 10 mg/day donepezil. Although the whole group showed a trend to improving 

apathy over three months, this was not significant, but again, the study may have been 

underpowered. The rest of the pharmacological trials to treat post-stroke apathy are in case 

reports and case series, which report effects for bromocriptine (Catsman-Berrevoets and 

Harskamp, 1988; Barrett, 1991; Parks et al., 1992; Marin et al., 1995; Powell et al., 1996), 

methylphenidate (Marin et al., 1995; Watanabe et al., 1995; Spiegel and Chatterjee, 2014), 

ropinirole (Kohno et al., 2010; Adam et al., 2013), levodopa (Adam et al., 2013), zolpidem 

(Mathieu et al., 2011; Autret et al., 2013), selegiline (Marin et al., 1995), and olanzapine 

(Spiegel and Chatterjee, 2014). There is a great need for well-conducted randomised 
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controlled trials to determine whether any of these treatments are successful in treating 

apathy in post-stroke patients or individuals with SVD. 

There have been only a few attempts to evaluate behavioural interventions for stroke-

related apathy. Problem-solving therapy, during which a patient selects a problem and then 

goes through a process to arrive at a course of action, reduces the risk of developing apathy 

over one year compared to placebo, but not as much as escitalopram (Mikami et al., 2013a). 

Strategy training, during which patients learn to address activity goals by using self-derived 

strategies, improved apathy compared to a control condition at three months, and it remained 

improved, but not significantly so, at six months (Skidmore et al., 2015). A group-based 

intervention that included exercise and other project-based activities showed improvement of 

apathy over the course of one year, but these changes were deemed not clinically meaningful 

(Mayo et al., 2015). 

1.9. The standard model of the neurobiological basis of apathy 

It is clear that apathy is a prevalent and debilitating syndrome in cerebrovascular disease. It 

affects important patient functional outcomes such as quality of life, activities of daily living, 

and recovery of function after stroke. This makes accurate diagnosis and treatment of apathy 

essential. It is likely that understanding the underlying neurobiology of apathy in 

cerebrovascular disease may make these problems more tractable. 

The most influential neurobiological framework for investigating apathy has been 

proposed by Levy and Dubois (2006), who theorised that that the symptoms of apathy can be 

conceptualized as 'emotional-affective', 'cognitive', and/or 'auto-activation' deficits. The 

proposed mechanisms underlying apathy related to impaired emotional-affective processing 

are an inability to: associate emotion or affect with behaviour, to accurately decode the 

affective context that guides behavior, and to evaluate the consequences of actions in terms of 

positive or negative outcomes. Apathy associated with impaired cognitive processing is 

characterised by an impairment in the elaboration of plans of actions, such as rule-finding, 

set-shifting, maintenance of goals and subgoals, and strategies to retrieve information. 

Finally, apathy associated with impaired auto-activation processing is attributed to difficulties 

in self-activating thoughts or behaviours. 

It has been proposed that these symptoms arise spontaneously as a consequence of 

focal damage or disruption to territories within the basal ganglia and prefrontal cortex (PFC), 

which may constitute a core subcortical-cortical circuit underlying GDB. Importantly, this 

theoretical delineation of apathy subtypes is mechanistic in nature, as opposed to the clinical 
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subtypes highlighted earlier (Section 1.3) (Robert et al., 2018). This framework has guided 

much apathy research over the past decade, and has been incorporated into proposed 

diagnostic criteria and several clinical scales (Radakovic et al., 2015; Robert et al., 2018). 

Unfortunately, empirical evidence that supports the three separate dissociable 

constructs proposed by Levy and Dubois (2006) remains scarce. This is especially true 

regarding apathy in cerebrovascular disease. If apathy is the product of lesions to specific 

regions of the basal ganglia or PFC, then one would expect a clear relationship between 

stroke location and the presentation of apathy symptoms. This, however, has proven not to be 

the case, as lesions are distributed heterogeneously in patients with apathy (Tang et al., 2013; 

Yang et al., 2015b; Sagnier et al., 2019). Furthermore, meta-analytic evidence suggests that 

there is no clear relationship between lesion location and the development of post-stroke 

apathy (van Dalen et al., 2013; Douven et al., 2017a). 

Other findings also appear anomalous, or difficult to explain, when viewed through 

this framework. For instance, some patients who are apathy-free during the acute phase of 

stroke develop it one year later, whilst other patients with apathy in the acute phase recover 

after one year (Withall et al., 2011; Caeiro et al., 2013). If apathy develops spontaneously 

after a focal basal ganglia or PFC lesion, then why would apathy present up to a year later? 

Conversely, what mechanisms lead to some patients with apathy recovering normal function? 

These questions make it clear that a classical lesion-deficit model of apathy is unable to 

explain the full clinical phenotype of the syndrome in cerebrovascular disease. 

1.10. A network model linking cerebrovascular pathology and apathy 

We propose that apathy might potentially be better understood as a syndrome caused by 

damage to large-scale brain networks supporting GDB. This connectionist model is based on 

the tenets of graph theory and network analysis (Bullmore and Sporns, 2009), which have 

recently been able to explain and synthesize an impressive array of neuroscientific data (e.g., 

Schindlbeck and Eidelberg, 2018). This section will begin with a brief overview of network 

neuroscience (Section 1.10.1), followed by a proposal of the network mechanisms underlying 

apathy (Section 1.10.2). Evidence to support the hypothesis that apathy is a syndrome of 

network disruption is then reviewed in stroke (Section 1.10.3) and SVD (Section 1.10.4). 

1.10.1. Fundamentals of network neuroscience 

The study of brain networks has been made increasingly more tractable with the application 

of graph theory. A graph has two fundamental elements: nodes and their connecting edges. In 
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the context of macroscopic whole-brain networks, nodes are typically defined using a 

parcellation that divides the brain using predefined criteria, such as on the basis of sulci and 

gyri (e.g., Desikan et al., 2006) or cyto- and myelo-architecture (e.g., Eickhoff et al., 2005), 

whilst edges are defined based on the context of the study. For example, studies on structural 

connectivity can define an edge as the probability that two regions are connected by a white 

matter tract. Studies of functional connectivity can define an edge as the correlation between 

the time series of two regions as an edge (Bullmore and Sporns, 2009). 

This graph-based representation of the brain can then be quantitatively analyzed to 

make inferences based on network topology. Two fundamental network measures are degree 

and efficiency (Figure 1). The degree of a node is simply the number of connections it has to 

other nodes (Figure 1a). High-degree nodes are known as network hubs, which are core 

elements of large-scale brain networks (van den Heuvel and Sporns, 2013). Due to a large 

number of connections with other nodes, hubs participate in a diverse set of cognitive 

functions (Bassett et al., 2009), albeit at an increased metabolic cost (Collin et al., 2013). 

Hubs can be contrasted with low-degree peripheral nodes, which tend to show more local and 

specialized patterns of connectivity. A more comprehensive discussion of hubs can be found 

elsewhere (van den Heuvel and Sporns, 2013). 
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Figure 1. Network measures and pathology. A) The degree of a node is a measure of how 

many connections it has; B) The shortest path between two nodes is a measure of efficiency; 

C) Diaschisis is a functional deficit in a region that is remote from a damaged node; D) 

Transneuronal degeneration involves the physical breakdown of nodes, which propagates 

from connections to already damaged nodes. 
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Another important network measure is efficiency, which measures the ease of 

information transfer in a network (Latora and Marchiori, 2001). The shortest path length 

between two nodes minimizes the number of edges traversed between the two (Figure 1b). 

The average inverse shortest path length between all nodes in a network is its global 

efficiency, and is a measure of overall integration in a network. The local efficiency of a node 

is the global efficiency of a subgraph composed of all first-degree neighbors of that node. The 

average local efficiency across all nodes is a measure of segregation and specialization. More 

rigorous mathematical definitions of these concepts can be found elsewhere (Watts and 

Strogatz, 1998; Latora and Marchiori, 2001). Global and local efficiency are susceptible to 

neuropathology (Rubinov and Sporns, 2010). 

The effects of brain pathology can be described using network models (Fornito et al., 

2015). Direct damage to network hubs, such as through focal ischaemia or haemorrhage, 

could lead to apathy. However, cerebrovascular disease may also lead to remote changes that 

result in apathy. These remote changes can be modeled as network pathologies, of which two 

are discussed: diaschisis and transneuronal degeneration. Diaschisis refers to a functional 

deficit in a region that is connected to a focally damaged area (Figure 1c), which is mediated 

by a reduction or interruption in the connectivity between the two regions (Carrera and 

Tononi, 2014). This can be operationalized as reduced glucose metabolism or regional 

cerebral blood flow (rCBF) in the area of diaschisis, under the assumption that neurovascular 

coupling (functional hyperemia) is preserved in this region (Baron et al., 1984). Although 

these functional deficits were once thought to be temporary and reversible, this notion has 

been challenged by recent evidence suggesting that morphological changes may occur in 

remote regions directly connected to an infarct (Duering et al., 2015). These changes are also 

seen in young stroke patients (Schaapsmeerders et al., 2016), suggesting that they are related 

to stroke and not a different neurodegenerative pathology. Secondary morphological damage 

is consistent with transneuronal degeneration (Figure 1d), a process by which damage to 

distant nodes propagates through structural or functional connections (Fornito et al., 2015). 

1.10.2. Candidate network mechanisms underlying apathy 

These network measures allow us to reconceptualize the neurobiological basis of apathy. We 

propose that the hub nodes of GDB-related networks correspond to the structures found to be 

associated with apathy across neurological diseases. These include the anterior cingulate 

cortex (ACC), medial orbitofrontal cortex (OFC), ventral striatum, medial thalamus, and 

ventral tegmental area (Kos et al., 2016; Le Heron et al., 2018a). These structures play 
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important roles in the cognitive processes that guide effort-based decision-making in healthy 

individuals (Le Heron et al., 2018a), so it is reasonable to suppose that they form a 

foundation for motivation-related brain networks in humans. Damage to these putative 

network hubs - such as through focal ischaemic or haemorrhagic stroke - can lead to 

immediate failure of GDB-related cognitive functions, which would then manifest as apathy. 

This view effectively subsumes the classical lesion-based view of apathy (Levy and Dubois, 

2006). 

In contrast to hub node damage, peripheral node damage may result in diaschisis or 

transneuronal degeneration. Based on the connectivity profile of the damaged node, these 

pathologies can lead to apathy by spreading to a remote hub node, or through progressive 

damage over time to GDB-related subnetworks. The former case can be illustrated by a 

hypothetical patient with a focal supplementary motor area (SMA) infarct. SMA shares direct 

white matter connections with the ACC, a hub node, in the form of branching U-fibers from 

the corticospinal tract (Nachev et al., 2008; Vergani et al., 2014). These structural 

connections form the basis of functional interactions between these areas. One relevant GDB-

related function is the formation of intentions to move, which is characterized by ramping 

activity of neural populations in SMA, followed by corresponding increases in neural activity 

in ACC (Fried et al., 2011). This may reflect the formation of motor execution plans or an 

attempt for ACC to integrate the information to the rest of the network. In either case, SMA 

damage may lead to reduced functioning in connected ACC neurons, which have been 

deprived of a direct input (diaschisis). Over time, poor axonal nutrient transport and 

mitochondrial dysfunction lead to the anterograde degeneration of axons (Coleman, 2005) in 

cingulate motor fibers and then within the ACC itself (transneuronal degeneration). In both 

cases, according to the model we propose here, apathy is the result. 

To illustrate how progressive damage to subnetworks might lead to apathy, the 

parietal-premotor network may be used as an example. This network consists primarily of the 

premotor and posterior parietal cortices, which form a relatively closed loop underlying 

movement intention and inhibition independently of motor execution (Desmurget and Sirigu, 

2009). Partial damage or disconnection of the structures within this loop, whilst not directly 

leading to apathy, may impair the synchronous timing of neural signals necessary for 

movement. This decreased network efficiency makes complex movements more difficult to 

execute, leading to perceived task-related effort costs appearing greater (Zénon et al., 2015), 

as the network needs to work harder (i.e., expend more energy) to achieve normal levels of 

functioning (Ginsberg et al., 1989). The result is postulated to lead to an overall decrease of 
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GDB which might not be severe enough to meet criteria for an apathetic state. Over time, 

diaschisis and transneuronal degeneration occur within this network, leading to greater 

efficiency deficits that manifest as increasing apathy. The function of these structures and 

circuits has been simplified here for the purposes of illustrating how damage to non-hub 

nodes may lead to apathy.  

The subsequent subsections will review evidence that suggests that apathy can be 

modeled as a network pathology in stroke and SVD. Prior to this, however, we clarify the 

neuroanatomical terminology used in these sections, as well as the studies included in the 

scope of the discussion. Although GDB may have a firm basis in specific brain regions and 

connections, very few studies have examined apathy using this level of granularity. This may 

be a consequence of small sample sizes in most studies, which limits the number of patients 

with isolated infarcts in each area. Our description of research on a per-study basis will 

therefore reflect the terminology used by the authors as closely as possible, since 

extrapolation to more specific structures is not possible. Additionally, any research that 

assesses the relationship between apathy and stroke using very broad neuroanatomical 

divisions (e.g., left/right hemisphere, anterior/posterior, etc.) will not be discussed, as these 

are too nonspecific to aid a mechanistic understanding of apathy. 

1.10.3. Apathy in stroke 

Apathy, in the acute and early subacute phase of stroke, may be the product of functional 

changes to nodes that are either part of or distant from the initial infarct. This is supported by 

a study of apathy and N-acetylaspartate (NAA) in first-time ischaemic stroke patients 

(Glodzik-Sobanska et al., 2005). NAA is a nervous system-specific metabolite that may 

reflect myelin lipid turnover and mitochondrial energy production in humans, and can be 

interpreted as a marker for overall neuronal health (Moffett et al., 2007). Remarkably, the 

authors found that patients with apathy had reductions in prefrontal NAA levels despite all 

participants having lesions outside the frontal lobes, which was apparent an average of nine 

days post-stroke (Glodzik-Sobanska et al., 2005). In a similar vein, an 

electroencephalography study of patients with subcortical stroke showed that apathy was 

associated with decreased P3 amplitude and reduced P3 latency over frontal sites (Yamagata 

et al., 2004). The P3 is an event-related potential evoked by novel stimuli (Friedman et al., 

2001), and the P3 changes documented by the authors may be consistent with decreased 

network efficiency in distant regions. 



 

31 

 

Studies of apathy and rCBF show converging results. rCBF is a measure of the brain's 

haemodynamic response, which is spatially and temporally coupled to changes in local field 

potentials elicited by synaptic activity (Shibasaki, 2008). As a result of this neurovascular 

coupling, a change in rCBF can be interpreted as a change in regional neural activity (Raichle 

and Mintun, 2006). Apathy has been associated with reduced prefrontal rCBF in patients with 

subcortical stroke, as well as cerebellar and thalamic infarcts (Okada et al., 1997; de Oliveira 

Lanna et al., 2012; Demirtas-Tatlidede et al., 2013), suggesting functional changes in neural 

populations distant to the acute infarct. Moreover, apathetic patients showed lower rCBF in 

the basal ganglia compared to non-apathetic patients one month after stroke (Onoda et al., 

2011). These functional changes may persist for several years, as demonstrated by a case 

study of a patient with severe apathy who showed aberrant functional connectivity, assessed 

using resting-state functional MRI, in ACC despite a lack of lesions in that area (Siegel et al., 

2014). Functional connectivity deficits and apathy levels remained stable after three years 

(Siegel et al., 2014). These findings further support the notion that apathy may occur as a 

syndrome of functional diaschisis in patients with stroke. That said, more longitudinal 

research is required to examine whether functional changes really lead to apathy. 

Structural changes may later follow these functional changes. One study, which 

assessed ischaemic stroke patients during the subacute phase of stroke (10-28 days) and six 

months after the event, found that increasing apathy was associated with delayed atrophy in 

the posterior cingulate cortex (Matsuoka et al., 2015). This atrophy may be the product of 

anterograde transneuronal degeneration (Fornito et al., 2015), which can occur between 18-

54 months post-stroke (Duering et al., 2015). This secondary neurodegeneration is studied 

primarily using diffusion tensor imaging (DTI), an MRI technique used to measure molecular 

diffusion in biological tissue. Due to the hindered nature of water diffusion in tissues with 

complex architecture, such as those with coherent myelin fiber orientations, DTI measures 

such as fractional anisotropy (FA) can be used to infer the microstructural properties of 

underlying white matter (Basser and Pierpaoli, 1996). DTI data can also be used for 

tractography, which attempts to reconstruct three-dimensional white matter pathways through 

a continuous diffusion vector field (e.g., Mori et al., 1999). 

Evidence to support transneuronal degeneration as a network mechanism underlying 

apathy comes from two case studies of post-stroke patients with apathy with left or right 

caudate lesions (Jang and Kwon, 2018; Jang et al., 2019). In both cases, diffusion 

tractography was used to reconstruct white matter pathways originating from the infarct. Both 

patients showed reduced caudate-prefrontal connectivity, suggesting that secondary 
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neurodegeneration resulting in cortical disconnection was a factor underlying apathy. This is 

further evidenced by associations between apathy and lesions to the internal capsule 

(Tatemichi et al., 1992; Starkstein et al., 1993), as well as reduced FA in the genu of the 

corpus callosum, anterior corona radiata, and white matter of the inferior frontal gyrus (Yang 

et al., 2015b). 

These white matter changes are likely to have direct consequences on whole-brain 

network connectivity. One study that explored tractography-derived white matter networks in 

ischaemic stroke patients showed that apathy was associated with decreased degree in 24 

nodes across the cerebral cortex (Yang et al., 2015a). This included changes to the bilateral 

inferior frontal gyrus pars orbitalis, bilateral posterior cingulum, left SMA, and right 

putamen and thalamus. Other nodes correlated with apathy were found in the occipital, 

temporal, and parietal lobes, as well as the insula. These changes in nodal degree were 

paralleled by decreased global and local efficiency in the nodes of the apathy-related 

subnetwork. Notably, DTI data was acquired within seven days of stroke onset, whilst 

assessments of apathy were conducted one month post-stroke. We can therefore conclude that 

early changes in the connectivity between these regions may predict the onset of apathy one 

month later. Whether these network changes result in apathy contemporaneously remains 

unexplored. 

This is not to suggest that apathy, during the acute and post-acute phases of stroke, is 

only a product of diaschisis and transneuronal degeneration. Focal lesions to GDB-related 

hub nodes may lead to immediate network failure and apathy. For instance, apathy is a 

prominent feature of many patients with isolated ACC (Kumral et al., 2019), thalamic 

(Ghika-Schmid and Bogousslavsky, 2000), and striatal infarcts (Bhatia and Marsden, 1994). 

Similarly, reward sensitivity deficits, which are associated with apathy in chronic stroke 

patients, can be mapped to lesions in structures that include the ventral basal ganglia, 

thalamus, and PFC (Adam et al., 2013; Rochat et al., 2013). These demonstrate that hub node 

lesions can affect networks at large, without spreading to connected nodes. 

These results suggest that post-stroke apathy can result from two different types of 

damage. One is driven by an acute lesion to a hub node, which causes immediate network 

failure and apathy. The other is driven by an acute lesion to a peripheral node, which, if 

connected to a hub node, can lead to a decrease in functioning of that hub node. Over time, 

these functional changes may lead to structural changes, such as cortical atrophy due to a loss 

of synaptic input. Our model therefore suggests that connectomal diaschisis, later followed by 

transneuronal degeneration, may be a mechanism underlying post-stroke apathy in cases 
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where the initial infarct occurs in a non-hub node. These connectivity changes could result in 

decreased global and local efficiency due to disconnection or disruption of the white matter 

networks underlying GDB. 

This view of the pathogenesis of post-stroke apathy allows us to explain two major 

inconsistencies in the current literature. One is the lack of association between apathy and 

lesion location. As previously discussed, lesion location alone cannot adequately capture 

distant structural or functional changes that may lead to apathy. This may be why pairwise 

comparisons of lesion location in stroke patients with apathy against those without apathy 

yield negative results, whilst studies examining all patients with apathy find common 

structural and functional changes (e.g., Okada et al., 1997; Yang et al., 2015b). 

The second inconsistency concerns the trajectory of post-stroke apathy. Some patients 

without apathy in the acute phase develop it up to one year later, whilst some patients with 

apathy in the acute phase are apathy-free later (Withall et al., 2011; Caeiro et al., 2013). 

Some of this may well be attributable to measurement error, as a diagnosis of apathy is 

usually made using cut scores on clinical scales. However, a potential neurobiological 

explanation for this crossover effect may be individual changes in functional network 

dynamics. In the former scenario, later-onset apathy may be the result of time-dependent 

post-stroke transneuronal degeneration, as previously described. Indeed, overall levels of 

apathy tend to increase in stroke patients over five years, although this may be due to 

subsequent cerebrovascular incidents (Brodaty et al., 2013). 

In the latter case, remitting apathy may be the result of functional network 

reorganization, a notable phenomenon studied most extensively in the context of motor 

recovery after stroke (Grefkes and Fink, 2014). This entails an initial disruption of functional 

network connectivity following stroke, which is then followed by a gradual restoration of 

interhemispheric functional connectivity over several months in individuals who recover 

function (van Meer et al., 2010). Evidence to support this functional network recovery in 

stroke patients with apathy comes from case studies using brain stimulation. Repetitive 

transcranial magnetic stimulation (rTMS) coils induce magnetic fields that lead to the 

depolarization of superficial cortical axons, inducing activity in potentially disrupted 

networks (Lefaucheur et al., 2014). This form of stimulation, applied in certain cortical areas, 

may lead to a recovery of function over many sessions. 

Such a recovery has been demonstrated in a sample of 13 chronic stroke patients who 

received high-frequency rTMS over the ACC and medial PFC, two putative hub nodes 

(Sasaki et al., 2017). After five days of treatment, individuals in the rTMS group showed an 
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improvement in apathy symptoms. In contrast, apathy scores in individuals assigned to the 

sham condition remained static. A case study suggests that these rTMS-based decreases in 

post-stroke apathy are associated with improved interhemispheric activity (Mitaki et al., 

2016), suggesting a direct parallel with the mechanisms underlying motor recovery after 

stroke. This functional network recovery may be the result of vicariation, when neighboring 

tissues take on functions related to damaged tissue (Dancause, 2006). It has been suggested 

that structures that show similar connectivity profiles to the damaged tissues may be more 

likely to adopt these functions (Silasi and Murphy, 2014). Thus, an accurate understanding of 

the structural network basis of GDB may open up new targets for rTMS-based recovery in 

patients with post-stroke apathy. 

1.10.4. Apathy in cerebral small vessel disease 

Cerebral SVD is a term used to describe the pathologies that affect the small vessels of the 

brain, which include the small arteries, arterioles, and venules (Pantoni, 2010). SVD is the 

leading vascular cause of dementia (Pantoni, 2010). Most SVD is sporadic and related to age 

and vascular risk factors such as hypertension, but a minority of cases are caused by 

monogenic disorders, such as CADASIL (Pantoni, 2010). SVD-related pathology leads to 

heterogeneous changes in brain parenchyma, and can manifest radiologically as lacunes, 

WMH, or microbleeds, among others (Wardlaw et al., 2013). These may occur in tandem 

with microstructural changes in major white matter tracts, leading to cognitive deficits that 

some have suggested to be the result of a disconnection syndrome (O’Sullivan et al., 2005; 

Lawrence et al., 2013). 

Mounting evidence suggests that white matter changes may underlie apathy in SVD. 

Apathy has been associated with reduced FA in major white matter tracts such as the anterior 

cingulum and corpus callosum in patients with sporadic SVD (Hollocks et al., 2015) (Figure 

2a). FA reductions in these same tracts were found to be associated with apathy in CADASIL 

(Le Heron et al., 2018b) (Figure 2b), an early-onset model of SVD free of age-related 

neurodegeneration (Chabriat et al., 2009). In accordance with these changes, apathy has been 

found to be associated with disruption to large-scale white matter networks in SVD (Figure 

2c). 
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Figure 2. White matter network damage associated with apathy in cerebral small vessel 

disease (SVD). A) Reduced white matter fractional anisotropy (FA) associated with apathy in 

sporadic SVD; B) Reduced FA associated with apathy in CADASIL, a genetic form of SVD; 

C) Reductions in white matter network connectivity associated with apathy in sporadic SVD. 

Apathy is associated with a distributed pattern of white matter damage across the cortex, 

implicating several subnetworks in the pathogenesis of apathy. White matter damage related 

to apathy is consistent in sporadic and genetic SVD, suggesting a common basis. Adapted 

from Hollocks et al. (2015), Le Heron, Manohar, et al. (2018), and Tay et al. (2019) with 

permission. AC = anterior cingulum; PC = posterior cingulum; CC = corpus callosum; CCb = 

body of the corpus callosum; ATR = anterior thalamic radiation; IFOF = inferior fronto-

occipital fasciculus; UF = uncinate fasciculus; SCP = superior cerebellar peduncle; OF-ACC 

WM = orbitofrontal-anterior cingulate cortex white matter. 
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Lacunar infarcts, whilst an important marker of SVD, have indirectly been covered in 

Section 2.3, as these tend to be sources of subcortical infarcts (Wardlaw et al., 2013). 

Although lacunes have different etiologies than large artery infarcts, which arise from the 

occlusion of larger cerebral arteries and often involve the cortex, both types of stroke tend to 

result in similar pathophysiological cascades, and thus similar patterns of network damage 

(Duering et al., 2015). The relationship between apathy and other radiological markers of 

SVD such as microbleeds, cortical microinfarcts, and enlarged perivascular spaces has yet to 

be explored. 

WMH appear as areas of high signal intensity on T2-weighted MRI, and may reflect 

areas of ischaemic demyelination and axonal loss resulting from chronic hypoperfusion 

(Fazekas et al., 1993; Fernando et al., 2006). These lead to changes in the underlying white 

matter architecture of the affected tissue and surrounding areas, corresponding to decreased 

FA and NAA in proximal normal-appearing white matter (Firbank et al., 2003; van Leijsen et 

al., 2018). Tract-specific WMH progression is also related to incident cortical atrophy in the 

regions connected by that tract (Lambert et al., 2016). This suggests that WMH-related 

network damage can be characterized by transneuronal degeneration, which originates in 

hypoperfused white matter and progresses down tracts. This then leads to atrophy in 

connected regions due to the progressive disruption of synaptic inputs. 

WMH have been correlated with higher apathy levels in population-based cohort 

studies (Yao et al., 2009; Grool et al., 2014; Li et al., 2016), and Alzheimer's disease patients 

with WMH have higher levels of apathy compared to patients without WMH (Starkstein et 

al., 1997). These are paralleled by lower rCBF in basal ganglia, thalamus, and frontal lobes 

(Starkstein et al., 1997), suggesting that WMH lead to functional disruption of GDB-related 

hub nodes, which may impact network efficiency. Although these results are cross-sectional, 

they suggest that WMH are related to apathy through the disruption of network efficiency. 

This, coupled with progressive neurodegeneration and consequent cortical thinning, may be a 

factor underlying apathy in SVD. The consequences of this chronic ischaemia, together with 

the earlier mentioned effect of acute infarcts, suggests a potential cascade linking ischaemia 

to apathy (Figure 3). 
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Figure 3. Hypothesized mechanisms linking ischemic pathology to apathy. Chronic and 

acute ischemia may lead to different types of tissue damage. Specific types of lesions that 

lead to damage in strategic grey matter structures or white matter tracts, such as those related 

to hub nodes, may immediately lead to apathy. Over time, secondary neurodegeneration 

propagates from lesioned tissue to connected areas, leading to network disconnection and 

apathy. 
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1.11. Neurobiological overlap between apathy and depression 

Due to the possible neurobiological overlap between apathy and anhedonia (Husain and 

Roiser, 2018), it is possible that some candidate neurobiological mechanisms underlying 

apathy may also be related to this particular symptom of depression. Given that previous 

work has been unable to find associations between depression and white matter damage after 

controlling for apathy (Hollocks et al., 2015), it is possible that neurobiological overlap may 

be restricted to grey matter changes. Indeed, functional evidence from individuals with major 

depression and anhedonia suggests that anhedonia is associated with changes in ventromedial 

prefrontal cortex, amygdala, and ventral striatum (Keedwell et al., 2005). If these regional 

changes are coupled with focal grey matter damage in patients with cerebrovascular disease, 

then it is possible that the hub nodes that underlie apathy, particularly in the ventromedial 

prefrontal cortex and ventral striatum (1.10.2), may also partially underlie anhedonic 

symptoms of depression. 

1.12. Hypotheses to be tested 

The following chapters in this thesis will explicitly test the core predictions of the network 

model we have proposed. The majority of these will be tested in a single population of SVD 

participants, which is described in detail (Chapter 2). First, we examine the grey matter and 

white matter correlates of apathy and depression using voxel-based methodologies, as these 

may underlie network changes (Chapter 3). Based on previous work, we expect that apathy is 

associated with focal grey matter damage, particularly in the ACC and ventral striatum (Le 

Heron et al., 2018a), as well as diffuse white matter damage (Hollocks et al., 2015). In 

contrast, we expect that depression will not be associated with white matter damage 

(Hollocks et al., 2015), but may be associated with grey matter changes in the prefrontal 

cortex and ventral striatum (Keedwell et al., 2005). 

We then investigate the relationship between apathy and white matter network 

damage (Chapter 4). Given the association between apathy and diffuse white matter damage 

(Hollocks et al., 2015), we expect apathy to be associated with large-scale damage to white 

matter networks. We predict that fronto-striatal subnetworks may be damaged, as these 

connect hub nodes that may be important for motivation (1.10.2), as well as extensive 

damage to peripheral connections and subnetworks. 

To further probe focal changes that may be associated with the neurobiology of 

depression, we then investigate longitudinal patterns of grey matter atrophy associated with 
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anhedonic, mood, and somatic symptoms of depression (Chapter 5). As mentioned earlier, we 

expect anhedonia to be associated with atrophy in areas similar to those associated with 

apathy in voxel-based analyses (Section 1.10; Chapter 3). In contrast, we predict that mood 

and somatic symptoms may be related to other morphometric changes associated with 

depression, such as hippocampal and amygdalar atrophy (Ashtari et al., 1999). 

Finally, we investigate associations between apathy, depression, and conversion to 

dementia, an important outcome variable in SVD. Given the degree to which apathy seems to 

be associated with white matter damage, as well as previous research, we predicted that 

apathy, but not depression, would be associated increased dementia risk in participants with 

SVD (Lohner et al., 2017; van Dalen et al., 2018b). 
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Chapter 2: The Radboud University Nijmegen Diffusion tensor and 

Magnetic resonance Cohort (RUN DMC) 

2.1. Introduction 

The primary cohort used to investigate the questions raised previously (Chapter 1) was the 

Radboud University Nijmegen Diffusion tensor and Magnetic resonance Cohort (RUN 

DMC). The RUN DMC study is a prospective cohort study designed to investigate the causes 

and consequences of cerebral small vessel disease (SVD) using magnetic resonance imaging 

(MRI). As the RUN DMC cohort is investigated in all subsequent experimental chapters, 

basic sample characteristics are summarised here. 

2.2. Methods 

2.2.1. Study population 

In 2006, consecutive individuals referred to the Department of Neurology at Radboud 

University between October 2002 and November 2006 were selected for possible 

participation. Inclusion criteria were: (1) age between 50 and 85 years old; and (2) evidence 

of cerebral SVD on neuroimaging, defined as white matter hyperintensities (WMH) or 

lacunar infarcts of vascular origin (Wardlaw et al., 2013). Individuals who were eligible 

because of a clinical lacunar stroke syndrome (Bamford et al., 1991) were included > 6 

months after the event to minimise the effect of the acute infarct on outcomes. 

Exclusion criteria included: (1) presence of dementia, assessed using DSM-IV-TR 

criteria (American Psychiatric Association, 2000); (2) presence of Parkinson's Disease or 

parkinsonism; (3) intracranial haemorrhage; (4) life expectancy < 6 months; (5) intracranial 

space-occupying lesion; (6) disease interfering with cognitive testing or follow-up, including 

psychiatric diseases such as bipolar disorder and schizophrenia; (7) current or recent use of 

acetylcholinesterase inhibitors, neuroleptic agents, levodopa or dopamine agonists or 

antagonists; (8) WMH of non-vascular origin, such as multiple sclerosis; (9) prominent visual 

or hearing impairment; (10) language barrier; or (11) MRI contraindications or known 

claustrophobia. 

The study was approved by the Medical Review Ethics Committee region Arnhem-

Nijmegen (van Norden et al., 2011). All participants provided written informed consent 

according to the Declaration of Helsinki. One thousand and four individuals were invited by 
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letter. Of these, 727 were deemed eligible after contact by phone, and 525 agreed to 

participate. Twenty-two of these individuals were found to meet exclusion criteria upon 

visiting the research center. This left 503 participants for the baseline assessment. 

Of the 503 participants recruited to the baseline in 2006, 398 were able to attend 

follow-up in 2011. Reasons for missing the assessment included death (n = 49), illness (n = 

19), relocation (n = 5), lack of time (n = 30), or lost to follow-up (n = 2). Subsets of these 398 

individuals at 2011 will be investigated in subsequent chapters as assessments of apathy 

began at this timepoint. 

2.2.2. Measures 

Basic demographic (age, sex, education) and information on vascular risk factors, including 

hypertension, hypercholesterolemia, diabetes, and body mass index (BMI), were collected. 

Apathy was assessed using the clinician-rated Apathy Evaluation Scale (AES), a 

validated measure of apathy in stroke (Marin et al., 1991). The AES has 18 items which are 

graded on a Likert scale of 1-4. Items 6, 10, and 11 are negatively-worded, and must be 

reverse-coded prior to scoring the scale. Total scores range from 18-72, with higher scores 

indicating greater apathy. The AES was administered at the 2011 assessment, precluding an 

analysis of apathy at baseline in 2006. 

Depression was assessed using the Center for Epidemiologic Studies Depression 

Scale (CESD), a well-validated tool for screening depressive symptoms that has previously 

been used in SVD (Radloff, 1977; Prins et al., 2005). The CESD is a 20-item self-report 

measure, with responses ranging from 0-3. Items 4, 8, 12, and 16 are reverse-coded. Total 

scores can range from 0-60, with higher scores indicating more depression. 

Cognitive impairment was assessed using the Mini Mental State Examination 

(MMSE) (Folstein et al., 1975). The MMSE is a 30-item test that assesses orientation to time 

and place, verbal learning, attention and mental arithmetic, verbal recall, language, and visual 

perception. These scores are then added to provide an aggregate measure of general cognitive 

function, which is sensitive to cognitive impairment (Tombaugh and McIntyre, 1992). 

2.2.3. MRI acquisition protocols 

MR images were acquired on a Siemens Magnetom Avanto Tim 1.5 Tesla MRI scanner 

(Erlangen, Germany). The protocol included a T1-weighted (T1w) three-dimensional 

magnetization-prepared rapid gradient echo (MPRAGE) image (repetition time (TR) = 2250 

ms, echo time (TE) = 2.95 ms, inversion time (TI) = 850 ms, flip angle = 15°, voxel size = 
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1.0 mm x 1.0 mm x 1.0 mm), an axial fluid-attenuated inversion recovery (FLAIR) sequence 

(TR = 14240 ms, TE = 89 ms, TI = 2200 ms, voxel size = 1.2 mm x 1.0 mm x 2.5 mm, 

interslice gap = 0.5 mm), and a diffusion-weighted imaging (DWI) sequence (TR = 10200 

ms, TE = 95 ms, voxel size = 2.5 mm x 2.5 mm x 2.5 mm; 7 scans with b = 0 s/mm², 61 scans 

with b = 900 s/mm²). 

2.2.4. White matter hyperintensity ratings 

WMH were defined as areas of hyperintense signal on FLAIR images without corresponding 

cerebrospinal fluid-like hypointense areas on the T1w image. Gliosis surrounding lacunar and 

territorial infarcts were not considered to be WMH (Hervé et al., 2005). WMH were 

segmented on the FLAIR images using a semiautomatic method (Ghafoorian et al., 2016), 

and were visually inspected for errors. 

2.2.5. Lacunar infarct rating 

Lacunes were defined as hypointense areas > 2 mm and < 15 mm on FLAIR and T1w 

images, ruling out perivascular spaces (< 2 mm, except around the anterior commissure, 

where perivascular spaces can be large) and infraputaminal pseudolacunes (Hervé et al., 

2005). Lacunes were counted by two trained raters blind to the clinical data, and inter-rater 

reliability assessed using κ (Cohen, 1960). Reliability was excellent, κ = 0.95 (van Uden et 

al., 2015). 

2.2.6. Brain volumetry 

Brain volumes were calculated using tools in FSL 6.0.1 (Smith et al., 2004). T1w images 

were processed using SIENAX (Smith et al., 2002). SIENAX first extracts brain and skull 

images from the T1w image using BET (Smith, 2002). Brain extracted images are then 

registered to the MNI152 standard brain using an affine transformation calculated using 

FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). The calculated transformation is 

also applied to the skull image to determine a scaling factor to correct for differences in head 

size relative to the MNI152 brain. Scaling factors > 1 indicate a skull smaller than the 

MNI152 template, factors < 1 indicate a larger skull. Finally, FIRST is used to calculate total 

brain volume (BV) (Zhang et al., 2001). Raw BV and WMH volumes were normalised for 

differences in skull size by multiplying them by the previously calculated scaling factor, 

creating nBV and nWMH, respectively. 
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2.2.4. Statistical analysis 

Continuous variables were summarised using means and standard deviations (SD), whilst 

binary and ordinal variables were summarised using counts and percentages. Pearson 

product-moment correlation coefficients were calculated between pairs of continuous 

variables to determine the degree of association between both variables. Given the 

exploratory nature of these analyses, only raw (uncorrected) P values are presented. 

All tests were two-tailed, with α = 0.05. All statistical analyses were conducted using 

R 3.6.2 (R Core Team, 2019). 

2.3. Results 

Descriptive statistics for the 398 participants in 2011 are shown in Table 1. The mean age of 

participants in 2011 was nearly 70, whilst 57% of the sample was male. Average MMSE 

scores revealed that the population suffered from minimal levels of cognitive impairment. 

The majority of the population was hypertensive, had under 1 lacune, and had modest levels 

of WMH. Apathy and depression scores were mildly elevated (Figure 1). 

 

 

 

Figure 1. Apathy and depression in RUN DMC. a, Distribution of apathy scores. b, 

Distribution of depression scores. c, Scatterplot of apathy and depression scores. 
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Table 1. Descriptive statistics for RUN DMC at 2011 (n = 398). 

 
Mean (SD) or N (%) 

Age, years 69.9 (8.5) 

Sex, male 227 (57.0) 

Education, years 11.0 (3.4)1 

MMSE, score 27.8 (2.8) 

AES, score 27.7 (8.2)2 

CESD, score 10.5 (8.8)3 

nBV, mm3 1442855.3 (87549.0)4 

nWMH, mm3 12055.5 (17357.2)4 

Lacunes, count 0.7 (1.5)4 

Microbleeds, count 0.8 (3.7)4 

Hypertension, presence 322 (80.9)5 

Diabetes, presence 59 (14.8)6 

Hypercholesterolemia, presence 201 (50.5)6 

BMI, mm/kg2 27.6 (5.4)7 

Smoking, presence  

Never 117 (29.4) 

Ex 231 (58.0) 

Current 50 (12.6) 

Note. MMSE = Mini-Mental State Examination, AES = Apathy Evaluation Scale, CESD = 

Center for Epidemiologic Studies Depression Scale, nBV = Brain volume, normalised, 

nWMH = White matter hyperintensity volume, normalised, BMI = body mass index. 

Superscripts denote n missing cases: 1 = 1, 2 = 34, 3 = 19, 4 = 39, 5 = 2, 6 = 18, 7 = 14. 

 

 

Pearson correlations are shown in Table 2. Apathy and depression were highly 

correlated. Apathy also showed strong correlations with MMSE score, age, brain volumes, 

and radiological markers of SVD. Depression, by contrast, showed a more mixed pattern of 

correlations, with statistically significant relationships showing weaker coefficients compared 

to apathy overall. For instance, AES-MMSE r = -0.42, P < 0.001, whilst CESD-MMSE r = -

0.14, P = 0.005. 
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Table 2. Pearson product-moment correlation matrix for continuous variables of interest. 

 
AES CESD MMSE Age nBV nWMH Lacunes 

AES        

CESD 0.50 

(<0.001) 

      

MMSE -0.42 

(<0.001) 

-0.14 

(0.005) 

     

Age 0.28 

(<0.001) 

0.09 

(0.084) 

-0.36 

(<0.001) 

    

nBV -0.31 

(<0.001) 

-0.13 

(0.015) 

0.27 

(<0.001) 

-0.57 

(<0.001) 

   

nWMH 0.29 

(<0.001) 

0.16 

(0.002) 

-0.28 

(<0.001) 

0.41 

(<0.001) 

-0.28 

(<0.001) 

  

Lacunes 0.23 

(<0.001) 

0.09 

(0.081) 

-0.18 

(<0.001) 

0.15 

(0.005) 

-0.23 

(<0.001) 

0.53 

(<0.001) 

 

Note. Degrees of freedom for each cell are calculated on a pairwise basis due to missing data. 

P values are uncorrected for multiple comparisons. 

 

2.4. Discussion 

Basic characteristics of the RUN DMC study, a large prospective cohort of SVD patients, 

were described. The population consisted of older individuals with a minor degree of 

cognitive impairment. On average, these individuals suffered from a higher burden of 

vascular risk factors compared to the general population, with correspondingly higher rates of 

SVD-related brain pathology such as WMH and atrophy (Shen et al., 2020). Importantly, 

elevated levels of apathy and depression were found in the population, although mean scores 

were not at clinically significant cutoffs (Radloff, 1977; Andersson et al., 1999). 

Correlation analyses revealed that apathy and depression were highly related. Despite 

this, apathy and depression showed different patterns of correlations with other variables. 

Apathy was highly correlated with age, MMSE score, and SVD-related neuroimaging 

variables. In contrast, depression was unrelated to age and lacunar infarct count, and only 

modestly associated with MMSE score and nBV. That apathy and depression were highly 

related, but showed dissociable patterns of correlations with other variables, reinforces the 

notion that the two constructs are related but genuinely distinct entities. 
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Chapter 3: Grey and white matter correlates of apathy 

3.1. Introduction 

Apathy in cerebral small vessel disease (SVD) may be a syndrome of network disconnection. 

Prior to investigating networks directly, however, it would be beneficial to localise the 

underlying grey matter and white matter changes that may be associated with apathy and 

depression, as these may have consequences on whole-brain network structure and function. 

To investigate these changes, we used voxel-based statistical techniques to analyse 

structural MRI images. This included voxel-based morphometry (VBM), which is 

traditionally used to analyse grey matter changes on T1w images, and a voxel-based 

implementation of tract-based spatial statistics (TBSS), which analyses white matter 

microstructural change on diffusion-weighted imaging (DWI) sequences. 

Based on research across neurological disorders, we expected to find apathy 

associated with grey matter damage primarily in the anterior cingulate cortex (ACC) and 

nucleus accumbens (Le Heron et al., 2018a). We also hypothesised that apathy would be 

associated with diffuse white matter damage given previous findings in another cohort of 

symptomatic SVD patients (Hollocks et al., 2015). We also expect that depression will not be 

associated with white matter damage (Hollocks et al., 2015), but may be associated with grey 

matter changes in the prefrontal cortex and ventral striatum (Keedwell et al., 2005). 

3.2. Methods 

3.2.1. Study population, measures, and MRI acquisition parameters 

The sample investigated was a subset of participants with neuroimaging data from the 

Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort 

(RUN DMC) study described previously (Chapter 2). The apathy and depression measures 

used included the Apathy Evaluation Scale (AES) and Center for Epidemiologic Studies 

Depression Scale (CESD) whilst cognition was assessed using the Mini Mental State 

Examination (MMSE) (2.2.2). The MRI sequences used included T1-weighted (T1w) and 

diffusion-weighted imaging (DWI) scans (2.2.3). 

Although the AES was administered at both 2011 and 2015, different raters 

administered the scale at each timepoint. As a consequence, participant differences in apathy 

may have been attributable to either time or to a change in raters, making an analysis of 



 

47 

 

population-level changes in apathy difficult to interpret. Exploratory analyses revealed that 

the 2015 scores were indeed left-shifted compared to the 2011 scores, with 2015 scores 

showing an overall floor effect. Although this could be interpreted as apathy scores 

decreasing over time in SVD patients, an equally valid interpretation could be that the 2015 

rater simply saw patients as less apathetic than the rater at 2011. In order to avoid this 

potential rater bias, we forego an analysis of longitudinal apathy scores, opting instead to 

focus only on the cross-sectional 2011 apathy and depression scores (as the 2011 visit has the 

larger sample size). 

Of the 398 participants included at the 2011 timepoint, 87 were excluded due to 

missing MRI or clinical data (Table 1 in 2.3), leaving a total of 311 participants with 

complete data for the analysis. 

3.2.2. Imaging analysis pipeline overview 

The present work has two primary neuroimaging analyses: one, a VBM analysis to 

investigate grey matter changes, and two, a TBSS-style analysis to investigate white matter 

microstructural changes. VBM is performed on T1w images, while TBSS is performed on 

DWI images. Both of these require pre-processing of their respective images. Important 

common steps for both are registrations to standard space and deriving masks of the 

appropriate tissue type, which are crucial to localising effects across participants and 

restricting analyses to anatomically appropriate regions. 

To this end, the FreeSurfer suite was first used to process T1w images, as this 

includes skull stripping, which is important for alignment, and the delineation of brain tissue 

into different classes. At this point, the T1w images are suitable for the VBM pipeline. The 

DWI images require additional pre-processing and tensor fitting prior to registration and 

TBSS. These are described in more detail below. 

3.2.3.1. FreeSurfer analysis 

For VBM, estimates of each participant's grey matter are needed. These were obtained using 

the automated FreeSurfer pipeline. Prior to analysis with FreeSurfer, all T1w volumes 

underwent bias field correction using the N4 algorithm (Tustison et al., 2010), as 

implemented in the ANTs software suite (http://stnava.github.io/ANTs/). In brief, MRI 

images are corrupted by a low frequency intensity nonuniformity, which results in similar 

tissue types having different voxel intensities across the brain (Tustison et al., 2010). Bias 

field correction involves the iterative estimation and correction of the bias field by modeling 

http://stnava.github.io/ANTs/
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several b-splines (Riesenfeld, 1973). The N4 correction has been shown to outperform the 

traditional N3 correction (Sled et al., 1998; Tustison et al., 2010), which is the default bias 

field correction method employed in FreeSurfer. 

The N4 corrected T1w images were then processed by FreeSurfer 6.0 

(http://surfer.nmr.mgh.harvard.edu/), a fully automated processing pipeline for anatomical 

images. It includes brain tissue extraction (Ségonne et al., 2004), nonlinear registration to 

MNI 305 space (Evans et al., 1993), volumetric segmentation of the subcortical white matter 

and deep grey matter structures (Fischl et al., 2002, 2004a), further intensity normalization 

using the N3 algorithm (Sled et al., 1998), tessellation of the grey and white matter 

boundaries, automatic topological defect correction (Fischl et al., 2001; Ségonne et al., 

2007), and surface deformation along intensity gradients to determine the white-grey and 

grey-cerebrospinal fluid (CSF) boundaries, under the assumption that areas with the sharpest 

change in intensities define transitions between tissue classes (Dale and Sereno, 1993; Dale et 

al., 1999; Fischl and Dale, 2000). The white and grey matter surfaces are then inflated (Fischl 

and Dale, 2000), then registered to a spherical atlas based on cortical folding patterns (Fischl 

et al., 1999). Using this spherical atlas, the cerebral cortex is then parcellated into sulcal- and 

gyral-based regions of interest (Fischl et al., 2004b; Desikan et al., 2006). Cortical thickness 

is then calculated as the closest distance from the grey-white boundary to the grey-CSF 

boundary at each vertex on the tessellated surfaces (Fischl and Dale, 2000). FreeSurfer is a 

widely-used software suite that has been extensively validated in comparisons against manual 

measurements (Kuperberg et al., 2003; Salat et al., 2004) and histological analysis (Rosas et 

al., 2002). 

FreeSurfer was used to process all T1w images at 2011. This yielded a hard 

segmentation of grey matter tissue for all participants. 

3.2.3.2. Diffusion-weighted image preprocessing 

For TBSS, diffusion tensor-derived images are needed. This section describes the pre-

processing of the raw DWI images for this. Due to the fast acquisition times of EPI 

sequences, DW images suffer from low signal-to-noise and are highly susceptible to bulk 

motion, necessitating a degree of post-processing. The first step in the DWI preprocessing 

pipeline was denoising the raw diffusion data using a local principal component analysis 

(PCA) filter (Manjón et al., 2013). In brief, this approach takes a 3D patch of voxels in the 

DW image, then uses PCA to decompose the signal into local principal components. Smaller 

http://surfer.nmr.mgh.harvard.edu/
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components, which are thought to reflect noise, are shrunk. The signal is then reconstructed, 

yielding an image with reduced noise. 

Next, eddy currents were corrected using the eddy tool in FSL 

(fsl.fmrib.ox.ac.uk/fsl/). Eddy currents are generated when rapidly changing magnetic fields 

induce opposing currents in nearby gradient coils, leading to spatial stretching and shearing 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide). These are corrected by registering 

each volume in the DW time-series to a reference image, which was the first b = 0 mm/s2 

volume (henceforth, the b0 volume). 

Finally, bulk motion artifacts were corrected prior to tensor fitting. Common motion 

artifacts include head rotation and cardiac pulsation, which can lead to signal dropout and 

bias the final analysis (Norris, 2001). The PATCH algorithm was used to estimate and correct 

the effects of head movement and cardiac motion (Zwiers, 2010) 

(github.com/marcelzwiers/didi). 

Geometric distortions were unwarped by normalising the DWI images to the T1w 

images in the phase-encoding direction (Kybic et al., 2000; Andersson et al., 2001) using the 

Unwarp toolbox in SPM12 (fil.ion.ucl.ac.uk/spm/toolbox/unwarp/). Finally, non-brain tissue 

was removed by generating a binary brain mask using BET (Smith, 2002) in FSL. BET was 

iterated several times using the -R flag, yielding a robust estimate of brain tissue. 

3.2.3.3. Diffusion tensor imaging 

The diffusion tensor is a robust and widely-used method for modeling DWI data (Assaf and 

Pasternak, 2008). A diffusion tensor, D, is a 3 x 3 symmetric matrix that describes diffusion 

along the x, y, and z axes: 

𝐷 = [𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧 𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧  𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧 ]. 

D has six independent components that can be estimated from the DWI data using 

linear regression techniques (Basser et al., 1994a). Since D is a symmetric and positive-

definite matrix, it can be expressed as 

𝐷 = 𝑉𝛬𝑉𝑇, 

where V is a matrix with columns defining the orthogonal eigenvectors v1, v2, and v3 

of D, and Λ is a diagonal matrix of associated eigenvalues λ1 ≥ λ2 ≥ λ3. This means that D can 

be represented geometrically as an ellipsoid, with axes defined by the eigenvectors and the 

magnitude along each axis determined by the eigenvalues. The shape of the tensor can 

therefore be used to infer the underlying tissue architecture of each voxel. For instance, CSF 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide
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has an isotropic (spherical) diffusion profile, with λ1 = λ2 = λ3, while WM has an anisotropic 

(elongated) diffusion profile, with λ1 > λ2 = λ3 (Basser et al., 1994b). At the current imaging 

resolution (2.5 mm isotropic), GM voxels express intermediate diffusion characteristics. 

D was fit using ordinary least squares using FDT in FSL 6.0.1. This yielded an image 

with tensors fit at each voxel in the DWI data. Additionally, several rotationally invariant 

scalar diffusion metrics were calculated using the obtained eigenvalues (Basser and Pierpaoli, 

1996). Mean diffusivity (MD) is simply the average rate of molecular diffusion: 

𝑀𝐷 =
𝜆1+𝜆2+𝜆3

3
=

𝐷𝑥𝑥+𝐷𝑦𝑦+𝐷𝑧𝑧

3
, 

while fractional anisotropy (FA) is the directional coherence of diffusion: 

𝐹𝐴 = √
3

2
√

(𝜆1−𝑀𝐷)2+(𝜆2−𝑀𝐷)2+(𝜆3−𝑀𝐷)2

𝜆1
2+𝜆2

2+𝜆3
2 . 

These scalar diffusion indices have been used to make voxel-wise inferences of 

underlying WM microstructural integrity (Basser and Pierpaoli, 1996). Damage to WM 

microstructure is reflected by increased MD and decreased FA. 

3.2.3.4. Image registration 

Image registration is the process by which two images are aligned using geometric 

transformations. Each transformation is associated with a degree of freedom permitting some 

change in the original image. Typically, the minimum number of degrees of freedom for a 

three-dimensional image would be 3, corresponding to translation across the x, y, and z axes. 

Another 3 degrees of freedom could be added to adjust the roll, pitch, and yaw of the image. 

These translations and rotations are known as rigid body transformations, as the position of 

the object changes, but not the size or shape. Transformations with 6 < degrees of freedom < 

12 are known as affine transformations, as these will change size and shape. These degrees of 

freedom permit extra changes such as scale, stretch, and skew along the xy, xz, and yz axes. 

Both rigid body and affine transformations are known as linear transformations, as all 

points in an image can be linearly mapped from one area to another using a single function. 

This is not the case with nonlinear transformations, which can use thousands of degrees of 

freedom to deform the original image. This allows for more precise image alignment, such as 

changing the shape of one brain to match another. This type of transformation is nonlinear 

because each point in an image may be mapped to another using an arbitrary function. These 

point-wise functions yield an inhomogeneous warp field, with each point in that field 

corresponding to a unique input deformation function. 
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In MR image analysis, image points typically correspond to individual voxels in an 

image. The calculation of a linear transformation yields a matrix, while a nonlinear 

transformation yields an image of a warp field. Both types of transformations can be applied 

to an original image to align it with a target image. The type of interpolation determines how 

this occurs. Nearest neighbour interpolation, which is the most frequently used type of 

interpolation in this work, preserves the original image intensity values throughout the 

transformation. All linear registrations described were calculated with FLIRT in FSL 6.0.1 

(Jenkinson and Smith, 2001), whilst non-linear registrations were calculated using symmetric 

diffeomorphic transformations in the ANTs suite (Avants et al., 2008). 

3.2.3.5. Voxel-based morphometry 

Our VBM protocol was adapted from a previously-published optimised protocol. First, a 

binary segmentation of the grey matter in each participant's brain was extracted from their 

respective FreeSurfer-processed T1w image and re-registered to native space. These grey 

matter segmentations were then registered to MNI space using a 12 degree affine 

transformation followed by a nonlinear symmetric diffeomorphic transformation. This 

brought each individual's grey matter segmentation into a common space with a generally 

consistent morphology. All images were then averaged to create a population-specific 

template image. 

This template image was then used as a new target for registration. Individual grey 

matter segmentations in native space were then nonlinearly registered to this template image. 

Since this template image was built from the sample itself, interpolation errors should be 

reduced when compared to using a different template as a registration target (i.e., the MNI 

152 image). These registered images were then corrected for local expansion or contraction 

by modulating them using the Jacobian determinant of the warp field generated from the 

nonlinear transformation, then smoothed using an isotropic Gaussian kernel with a σ = 4 mm. 

3.2.3.6. Tract-based spatial statistics 

Our TBSS protocol was adapted from a modified voxel-based protocol that empirically 

outperforms standard TBSS (Schwarz et al., 2014). Brain-extracted FA images for each 

participant were first registered to the FMRIB 58 image in MNI space using a linear and 

nonlinear transformation. These registered FA images were then averaged to produce a 

population-specific template image. The template image was then used as a new target for 

registration, with each participant's FA image in native space being registered to this image. 
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3.2.4. General linear models and permutation testing 

Voxel-wise statistical inference in VBM and TBSS was carried out using a general linear 

model (Friston et al., 1994). The general linear model is a generalisation of ordinary least 

squares regression, which takes the form of 

𝑌 = 𝑋𝛽 + 𝜖, 

where Y is a matrix of response variables with elements yij, with each column j 

corresponding to an edge and each row i to a participant. The matrix X is known as the design 

matrix, with elements, xik, corresponding to the value of the covariate, k, for each participant, 

i. β is a parameter matrix of coefficients, with β = [β1 β2 … βj]
T, such that βj corresponds to a 

column vector of parameters for edge j. ϵ is a matrix of normally distributed error terms. 

Importantly, this equation does not include a constant or intercept term. This may be 

explicitly added by adding a column of 1's to X. Alternatively, the need for an intercept term 

can be removed by mean correcting each column of X, thereby making the intercept equal to 

0. We used the former method in our study. 

Effects of interest are then assessed using a linear contrast vector, c, which specifies 

the weight given to β. For instance, a two-sample t-test, where β1 was the mean for group 1 

and β2 was the mean for group 2, could be tested using c = [1 -1]. On the other hand, in a 

linear regression, where β1 corresponded to the effect of interest, β2 corresponded to a 

covariate of no interest, and β3 to an intercept term, testing for a positive regression slope 

would yield, c = [1 0 0], and for a negative slope, c = [-1 0 0]. 

Voxel-wise inference is carried out using permutation testing, which can compute P 

values corrected for familywise error rates. The basic assumption of a permutation test is that 

data points and their associated labels can be randomly rearranged under the null hypothesis 

without significantly changing the test statistic (Winkler et al., 2014). In the case of a 

regression analysis, such as ours, the design matrix is partitioned into the effect of interest 

and nuisance regressors. The data are fit to these nuisance regressors, yielding nuisance-only 

residuals. These residuals are permuted, or shuffled, before adding the nuisance signal back 

in, creating an approximation of the data under the null hypothesis. This is then fit to the data 

to compute the test statistic. The process is then repeated thousands of times to generate a 

distribution of test statistics under the null hypothesis. If the test statistic associated with the 

effect of interest is significantly different from this empirical null distribution, then the null 

hypothesis can be rejected (Winkler et al., 2014). Correction for multiple comparisons is 

done by recording the maximum value of the test statistic, as well as its empirical null 



 

53 

 

distribution, across all tested points in the brain. P-values corrected for familywise error can 

then be obtained as the proportion of the permuted test statistics that are greater than real test 

statistics for each test, yielding a single corrected P-value threshold. Importantly, permutation 

testing for the general linear model is nonparametric and performs well with heteroscedastic 

data (Winkler et al., 2014), allowing us to analyse raw apathy and depression scores. 

3.2.5. Statistical analyses 

First, we assessed grey matter changes associated with apathy and depression using general 

linear models on the smoothed T1w images processed using the VBM pipeline (2.2.3.5). All 

design matrices included apathy and depression, as well as age, estimated total intracranial 

volume (TIV) from FreeSurfer (2.2.3.1), and an intercept. Age was included to control for 

age-related effects on grey matter such as incident neurodegeneration, whilst TIV was 

included to control for gross differences in head size (Buckner et al., 2004). 

For each model, either apathy or depression was treated as the primary effect of 

interest, with the other being treated as a covariate of no interest. This allowed us to examine 

grey matter correlates of apathy and depression whilst controlling for the other, alongside age 

and TIV. Due to the potential relevance of cognition on apathy and depression (1.2), 

additional models were run with MMSE score as an extra covariate alongside age and TIV. 

Next, we examined white matter changes associated with apathy and depression using 

the TBSS-ready DWI images (2.2.3.6). Design matrices included apathy and depression, 

along with age and an intercept. TIV was omitted as a covariate in these analyses as it is not 

typically included in analyses of DWI data. As before, analyses examined correlates of 

apathy or depression whilst controlling for the other, and separate models including MMSE 

score were included to assess the effects of cognition. 

Tests using the general linear model are one-sided (Friston et al., 1994). Hence, 

separate contrast vectors were used to test both positive and negative correlations for apathy 

and depression, and statistical significance defined as α = 0.025. Each analysis was conducted 

using 2000 permutations, and contiguous clusters of significant activation were formed using 

threshold-free cluster enhancement (TFCE). TFCE considers all cluster-forming thresholds, 

resulting in an image that summarises the evidence for a cluster at each voxel (Smith and 

Nichols, 2009). Our modified protocol allowed us to use 3D TFCE for TBSS data (Schwarz 

et al., 2014), in contrast to the 2D-optimised TFCE for standard TBSS. All analyses were 

conducted using 'randomise' within FSL 6.0.1. 
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3.3. Results 

3.3.1. Sample characteristics 

Descriptive statistics for the sample are shown in Table 1. 

 

Table 1. Descriptive statistics for the study population (n = 310). 

Variable RUN DMC 

AES 27.3 (7.8) 

CESD 10.3 (8.8) 

MMSE 28.1 (2.2) 

Age, years 68.9 (8.3) 

Sex, female (%) 194 (58.6) 

Education, years 11.2 (3.4) 

WMH volume, mL 8.4 (12.2) 

LI count 0.6 (1.5) 

 

3.3.2. VBM analysis 

VBM analysis revealed that apathy was negatively associated with 13 contiguous clusters of 

grey matter change after controlling for depression, age, and TIV (Table 2; Figure 1a). After 

adding in MMSE as a covariate, many of these clusters reduced in size, with some smaller 

ones disappearing completely (Table 3; Figure 1b). Grey matter changes occurred primarily 

in subcortical regions as well as the ventromedial prefrontal cortex. This included the 

bilateral subgenual cingulate and orbitofrontal cortices, as well as the right dorsal putamen 

and nucleus accumbens. Some laterality in results was also observed. Right hemisphere 

associations, aside from the aforementioned putamen and nucleus accumbens, also included 

the hippocampus and right lingual, parahippocampal, and middle temporal gyri. Left 

hemisphere associations included the insula, operculum, and angular gyrus. 
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Figure 1. Grey matter correlates of apathy and depression. a, Clusters negatively correlated 

with apathy after controlling for depression, age, and total intracranial volume (TIV). b, 

Clusters negatively correlated with apathy after controlling for depression, age, cognition, 

and TIV. c, Clusters positively correlated with depression after controlling for apathy, age, 

and TIV. d, Clusters positively correlated with depression after controlling for apathy, age, 

cognition, and TIV. 
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Table 2. VBM clusters negatively correlated with apathy after controlling for depression, 

age, and TIV in MNI coordinates (mm). 

Cluster Voxels t Pcorrected Xmax Ymax Zmax XCOG YCOG ZCOG 

1 36488 5.24 <0.001 32 -25 -16 10.4 7.28 -10.5 

2 8541 4.52 0.002 -43 -59 55 -46.5 -63.9 33.9 

3 5241 4.43 0.002 -29 -23 -10 -26.1 -33.8 -9.78 

4 4811 4.12 0.003 -34 1 9 -39.7 9.1 6.04 

5 4299 4.03 0.006 61 -28 -7 58.9 -27.7 -9.64 

6 2333 3.37 0.016 53 40 -9 42.4 37.8 -6.24 

7 1262 3.08 0.019 -27 8 7 -24.3 8.47 1.41 

8 1036 3.84 0.013 51 -55 53 47.7 -58.2 48.6 

9 914 3.27 0.019 -19 -96 -3 -20.0 -99.0 -8.09 

10 412 4.09 0.016 -50 -22 -3 -50.8 -22.8 -4.49 

11 159 2.84 0.024 -13 -80 -14 -12.9 -78.7 -14.0 

12 149 2.71 0.024 -12 -89 -13 -11.4 -91.5 -12.7 

13 144 2.8 0.024 67 -48 -6 65.0 -46.8 -6.27 

Note. VBM = voxel-based morphometry, COG = centre of gravity, TIV = total intracranial 

volume, MNI = Montreal Neurological Institute. 
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Table 3. VBM clusters negatively correlated with apathy after controlling for depression, 

MMSE, age, and TIV in MNI coordinates (mm). 

Cluster Voxels t Pcorrected Xmax Ymax Zmax XCOG YCOG ZCOG 

1 3935 4.27 0.003 10 26 -24 7.9 33.6 -19.0 

2 3481 4.2 0.004 -45 -51 50 -47.8 -57.2 39.9 

3 3186 4.32 0.004 32 -26 -15 30.1 -26.0 -12.6 

4 2606 4.41 0.005 61 -27 -7 62.2 -26.4 -12.2 

5 798 4.21 0.009 -9 31 -15 -8.96 36.3 -11.8 

6 651 3.15 0.021 21 9 -9 17.5 10.1 -8.26 

7 610 3.67 0.019 -34 0 7 -36.0 2.48 10.1 

8 474 3.84 0.017 -53 1 2 -53.3 3.35 2.6 

9 410 4.05 0.018 -65 -9 21 -61.2 -7.79 20.4 

10 400 3.91 0.018 -11 27 -17 -11.7 25.2 -19.5 

 

Note. VBM = voxel-based morphometry, COG = centre of gravity, MMSE = Mini-Mental 

State Examination, TIV = total intracranial volume, MNI = Montreal Neurological Institute. 

 

 

In contrast, depression scores, after controlling for apathy, age, and TIV, were positively 

correlated with a single cluster of grey matter in the right caudate, dorsal putamen, and 

nucleus accumbens, (voxels = 2032, t = 4.16, Pcorrected = 0.008, Xmax = 19, Ymax = 18, Zmax = -

9; Figure 1c). This did not appreciably change after adding MMSE as a covariate, (voxels = 

2025, t = 4.15, Pcorrected = 0.009, Xmax = 19, Ymax = 18, Zmax = -9; Figure 1d). 

3.3.3. TBSS analysis 

TBSS analysis revealed that apathy, after controlling for depression and age was negatively 

associated with diffuse white matter damage throughout the cortex (Figure 2a). This was 

largely localised to a single cluster comprising 61740 voxels (Table 4). Adding MMSE score 

reduced the overall size of many clusters, and split the single large cluster into several smaller 

ones (Figure 2b, Table 5). The largest cluster identified showed peak t-values in the right 

splenium of the corpus callosum (forceps major), with a centre of gravity in the right anterior 

limb of the internal capsule. Other affected areas included the superior longitudinal fasciculi, 

inferior fronto-occipital fasciculi, forceps minor, external capsule, and corona radiata. In 

contrast, depression was neither positively or negatively associated with any white matter 

change regardless of the covariates included (Figure 2c,d). 
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Figure 2. White matter correlates of apathy and depression. a, Clusters negatively correlated 

with apathy after controlling for depression and age. b, Clusters negatively correlated with 

apathy after controlling for depression, age, and cognition. c, Depression is not associated 

with any clusters after controlling for apathy and age. d, Depression is not associated with 

any clusters after controlling for apathy, age, and cognition. 
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Table 4. TBSS clusters negatively correlated with apathy after controlling for depression and 

age in MNI coordinates (mm). 

Cluster Voxels t Pcorrected Xmax Ymax Zmax XCOG YCOG ZCOG 

1 61740 5.29 0.001 34 10 18 4.55 -5.17 18.4 

2 223 4.26 0.018 -32 -75 32 -33.5 -72.9 23.9 

3 108 4.31 0.018 -37 -51 16 -36.8 -50.7 17.3 

Note. TBSS = tract-based spatial statistics, COG = centre of gravity, MNI = Montreal 

Neurological Institute. 

 

 

Table 5. TBSS clusters negatively correlated with apathy after controlling for depression, 

MMSE, and age in MNI coordinates (mm). 

Cluster Voxels t Pcorrected Xmax Ymax Zmax XCOG YCOG ZCOG 

1 20208 4.8 0.008 19 -44 14 13.9 -1.76 16.1 

2 1078 4.11 0.016 -13 23 39 -14.3 26.5 28.7 

3 558 4.59 0.015 -34 -35 0 -31.8 -39.3 1.63 

4 344 4.08 0.017 28 -13 48 27.5 -18.0 47.4 

5 229 3.94 0.02 -34 -41 33 -35.7 -47.2 32.1 

6 169 5.08 0.015 -47 -5 17 -48.0 -4.66 15.1 

7 167 4.8 0.016 -38 4 20 -38.9 0.861 20.5 

8 104 3.87 0.02 -35 13 16 -37.4 13.3 15.3 

Note. TBSS = tract-based spatial statistics, COG = centre of gravity, MMSE = Mini-Mental 

State Examination, MNI = Montreal Neurological Institute. 

 

3.4. Discussion 

We set out to examine the grey and white matter correlates of apathy in a large cohort of 

SVD patients. Using voxel-based methodology, we found that apathy was associated with 

focal grey matter damage, particularly in subcortical and frontal structures, as well as diffuse 

microstructural changes across the white matter of the cerebral cortex. 

These patterns of brain tissue damage are remarkably consistent with neuroanatomical 

damage caused by SVD. Radiological markers of SVD such as lacunar infarcts are primarily 
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localised to subcortical structures such as the thalamus and basal ganglia (Wardlaw et al., 

2013), both of which were associated with apathy in this study. Furthermore, WMH, another 

radiological marker of SVD, may be a marker of microstructural tissue damage (Wardlaw et 

al., 2019), which again was related to apathy in this study. This suggests that radiological 

markers of SVD may be an indicator of apathy. 

Grey matter changes associated with apathy were found in the orbitofrontal cortex, 

subgenual ACC, thalamus, and ventral striatum, among others. These areas are notable 

because they converge with previous research examining the neural correlates of apathy 

across neurological diseases (Kos et al., 2016), and may play important roles in decision-

making and behavioural activation in healthy individuals (Le Heron et al., 2018a). Our 

findings therefore support the notion that the fundamental neural substrates underlying apathy 

are similar across disorders, and that SVD-related grey matter changes that affect these 

regions are an important factor underlying apathy in these patients. 

A large body of translational and transdiagnostic research suggests that these 

structures play important roles in nearly all aspects of behaviour. The ACC, in particular, has 

been conceptualised as a key hub underlying 'cognitive control', which is largely synonymous 

with 'executive function' (MacDonald et al., 2000). These terms are quite broad, but generally 

refer to the cognitive processes that guide behaviour, which can include attentional control, 

response inhibition, and mental flexibility, among others (Miller, 2000). Unfortunately, this 

broad definition renders the specific role of the ACC in supporting goal-directed behaviour 

relatively opaque. Are these cognitive processes dissociable, and if so, which are related to 

motivation? 

The specific role of the ACC in apathy remains a matter of debate, but one salient 

function of the ACC may be its role in reward-based decision-making (Silvetti et al., 2014). 

ACC receives strong monosynaptic inputs from dopaminergic neurons in the ventral 

tegmental area, which may play a critical role in reward incentivisation and willingness to 

engage in effortful behaviours for reward (Chong et al., 2015; Manohar et al., 2015). Damage 

to ACC may result in reward insensitivity deficits, which may underlie apathy (Rochat et al., 

2013; Muhammed et al., 2016). 

The ventral striatum may share a similar role to ACC in generating motivated 

behaviour. This is because the ventral striatum includes the nucleus accumbens, a key 

component of corticostriatal reward circuitry (Haber, 2016). Dopaminergic neurons within 

the midbrain and nucleus accumbens play an essential role in encoding information about 

rewarding stimuli and behaviours, which may provide a putative substrate for reinforcement 
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learning (Glimcher, 2011). Damage to the ventral striatum may therefore impair an 

individual's ability to accurately assess the rewarding value of a stimuli, leading to certain 

goal-directed behaviours not appearing as worthwhile. This may impair motivation and 

consequently manifest as apathy. 

The OFC, which was also found to be associated with apathy in our study, is also a 

key element of the brain's reward circuitry (Haber, 2016). Neurons in this area encode the 

subjective economic value of stimuli (Padoa-Schioppa and Assad, 2006), and by virtue of its 

inputs, may link sensory stimuli, such as food, to hedonic (pleasurable) experience 

(Kringelbach, 2005). Unsurprisingly, structural or functional changes to the OFC or ventral 

striatum have been documented as precursors to anhedonia (Der-Avakian and Markou, 2012). 

This loss of pleasure may also be symptomatic of apathy (Husain and Roiser, 2018), although 

this topic requires further investigation. 

We also found that apathy was associated with thalamic damage, which is consistent 

with findings that apathy is a consequence of focal thalamic infarcts (Carrera and 

Bogousslavsky, 2006). The thalamus is similar to the ACC in that it is an important brain hub 

with connections to nearly all other parts of the cortex. The thalamus sends topographically 

organised projections to the striatum and the prefrontal cortex, and may be important for 

behaviours that integrate cognitive and emotional functions, such as goal-directed behaviours 

(Haber and Calzavara, 2009). If this is the case, then thalamic damage may not impair any 

one function related to motivation per se, but rather to the integration of those functions. This 

integrative failure may lead to an inability to form or execute goal-directed behaviours, 

manifesting as apathy. 

Intriguingly, we also found that apathy was associated with focal hippocampal 

damage, suggesting that there is some relationship between apathy and long-term memory. 

This association is more plausible given that we controlled for age, which is associated with 

pathology such as hippocampal atrophy and memory decline (van Leijsen et al., 2019). This 

is supported by our TBSS findings, which showed that apathy was associated with damage to 

the fornix, the major output tract of the hippocampus, a finding that converges with a 

previous study of apathy in an independent cohort of SVD patients (Hollocks et al., 2015). A 

recently proposed theoretical framework suggests that apathy may in part be related to a 

failure to properly learn action-outcome contingencies from behaviour (Le Heron et al., 

2018a). In other words, individuals with apathy may not engage in rewarding behaviours 

simply because they do not learn which are worth performing. This may be related to reward-

based learning as mentioned earlier. Unfortunately, direct evidence that supports this 
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assertion remains scarce, and our results should therefore be viewed as primarily 

correlational. 

In contrast to the focal patterns of grey matter matter damage, apathy was found to be 

associated with widespread and diffuse white matter microstructural changes across the 

cortex. We found that nearly all white matter tracts were affected, including major 

commissural and association tracts. This is consistent with other studies of apathy in SVD 

(Hollocks et al., 2015; Le Heron et al., 2018b), as well as apathy in other neurological 

diseases such as Alzheimer's disease (Hahn et al., 2013). This suggests that apathy in SVD 

may be a syndrome of white matter disconnection in addition to strategic grey matter 

damage, which is tested subsequently. 
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Chapter 4: Apathy is associated with disruption to large-scale white matter 

networks 

4.1. Introduction 

In the previous chapter, we found that apathy was associated with widespread white matter 

microstructural change, suggesting that apathy in SVD may be a syndrome of white matter 

network disconnection. This included damage to major commissural and association fibres, 

which form the basis of integrated neural circuits that underlie higher cortical functions 

(Schmahmann et al., 2008). Similar white matter changes have been seen in other 

neurological conditions such as Alzheimer’s disease (Kim et al., 2011; Hahn et al., 2013) and 

Parkinson’s disease (Zhang et al., 2018). Subtle differences in white matter microstructure 

may even be associated with symptoms of apathy in neurologically healthy individuals 

(Bonnelle et al., 2015). These converging lines of evidence suggest that motivated behaviour 

is supported by the integrity of white matter pathways, and that apathy is a disconnection 

syndrome caused by damage to these pathways. 

One potential limitation of previous research on the white matter correlates of apathy 

is that inferences have been made primarily on the basis of voxel-based morphometric 

techniques, such as tract-based spatial statistics (Smith et al., 2006). This approach was also 

used to analyse apathy in the previous chapter. These methods are effective for probing the 

spatial distribution and extent of white matter damage, but cannot describe how connectivity 

and organisation of the underlying tracts are altered as a result. Elucidating the relationship 

between apathy and white matter topology is as important as understanding its 

microstructural correlates, as neural dynamics are governed by white matter architecture 

(Honey et al., 2009). The topological properties of white matter networks can be 

quantitatively analysed using graph theoretical methods. This is done by describing the brain 

as a set of nodes (grey matter regions) that are connected by edges (white matter tracts), 

which can be mapped in vivo using diffusion tensor imaging and tractography (Hagmann et 

al., 2008). 

This graph-based representation of the brain has led to key insights into the 

functioning of the central nervous system (Bullmore and Sporns, 2009), and preliminary 

work suggests that structural network measures offer promising clinical biomarkers for 

cognitive decline and dementia (Lawrence et al., 2014, 2018b). It is possible that graph 
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theoretical measures can also be applied to investigate the relationship between network 

disruption and apathy. 

Here, we attempt to evaluate the hypothesis that apathy in SVD is a symptom of white 

matter network disruption. We also attempted to determine the specificity of these network 

changes by examining their associations with depression. To do so, we examined three inter-

related questions. First, we investigated whether the relationship between key radiological 

markers of SVD and apathy is mediated by global network disruption, as has been suggested 

by our results in the previous chapter. Next, we attempt to determine the nature of apathy-

associated network impairment by comparing various network metrics between groups of 

patients with apathy only, depression only, comorbid apathy and depression, and no apathy or 

depression. Finally, we attempt to determine where apathy-associated network disruption 

occurs by examining edge-wise relationships. Based on results presented in the previous 

chapter (3.3.3), we hypothesised that radiological markers of SVD would lead to apathy 

through network disruption, that patients with apathy would show reduced network metrics 

compared to depressed patients and controls, and that apathy would be associated with 

reduced connectivity in medial frontal and fronto-striatal structures. 

4.2. Methods 

4.2.1. Study population and measures 

The study population was the Radboud University Nijmegen Diffusion tensor and Magnetic 

resonance imaging Cohort (RUN DMC) study which was described previously (Chapter 2). 

The apathy and depression measures used included the Apathy Evaluation Scale (AES) and 

Center for Epidemiologic Studies Depression Scale (CESD) whilst cognition was assessed 

using the Mini Mental State Examination (MMSE) (2.2.2). The MRI sequences used included 

T1-weighted (T1w) and diffusion-weighted imaging (DWI) scans (2.2.3). The data used is 

from the 2011 visit only (Section 3.2.1). 

Of the 398 participants who attended follow-up in 2011, an additional 67 were 

excluded due to missing MRI data (n = 66) or failure of the tractography pipeline (n = 1), 

leaving 331 participants for the analysis. 

4.2.2. Missing data 

Some participants had missing scale data (AES, CESD, MMSE). Missing data is known to 

reduce statistical power, and so must be managed in some fashion. The most attractive of 
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these is the replacement of missing values (imputation), which allows one to leverage 

partially complete cases. Inference on imputed data is valid only if the missing data 

mechanism is ignorable, or in other words, if the data is missing completely at random 

(MCAR) (Rubin, 1976). In this case, there is no relationship between the observed or missing 

values, implying that the missing values are not conditional on another variable. This was 

tested using Little's MCAR test (Little, 1988a), which provides a test statistic indicating the 

deviation of the observed values to the maximum likelihood estimated population parameters. 

MCAR is established if the test does not yield a significant P value, as the null hypothesis is 

that the data is not missing in a systematic way. Little's test was not significant (χ2= 15.018, P 

= 0.377), suggesting that the missing values in our data were MCAR. 

Multiple imputation was carried out using the fully conditional specification (van 

Buuren et al., 2006). In brief, a multivariate imputation model is specified on an individual 

variable basis. Imputations for each incomplete variable are drawn from a continuous 

probability distribution for that variable, which is conditional on the other variables in the 

data (van Buuren et al., 2006). Practically, this can be broken down into six steps (Azur et al., 

2011): 

1. All missing values are imputed using the mean as a placeholder value. 

2. The placeholding values for one variable are set back to missing. 

3. The observed values for the variable are regressed on all the other variables in the 

dataset. 

4. The missing values are imputed with the predictions from the regression model. 

5. Steps 2-4 are repeated for each variable with missing values. 

6. Steps 2-4 are repeated for multiple cycles, with imputations being updated for each 

cycle. 

The final imputations at the end of each sample are retained, yielding an imputed dataset. 

Imputed values were generated using predictive mean matching, which draws 

imputed values from the observed values (Rubin, 1986; Little, 1988b), thus yielding 

"plausible" results. For example, AES totals are integer values. Predictive mean matching 

would impute missing AES values using observed integer scores, rather than using floating 

point numbers (which may be expected with imputation methods like linear regression). 

Multiple imputation was implemented using the 'mice' package in R (van Buuren and 

Groothuis-Oudshoorn, 2010). Using the mice() function with a random number generator 

offset value of 1105, 100 imputations were carried out, generating 100 imputed datasets. 
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Then, for each missing cell in the final dataset, data was imputed using the most-frequently 

occurring value in the corresponding cell across the 100 complete datasets, yielding a final 

"likeliest" number. 

4.2.3. MRI acquisition and analysis 

4.2.3.1. MRI acquisition protocols 

Images were acquired on a Siemens Magnetom Avanto Tim 1.5 Tesla MRI scanner 

(Erlangen, Germany). The protocol included a T1-weighted (T1w) three-dimensional 

magnetization-prepared rapid gradient echo (MPRAGE) image (repetition time (TR) = 2250 

ms, echo time (TE) = 2.95 ms, inversion time (TI) = 850 ms, flip angle = 15°, voxel size = 

1.0 mm x 1.0 mm x 1.0 mm), an axial fluid-attenuated inversion recovery (FLAIR) sequence 

(TR = 14240 ms, TE = 89 ms, TI = 2200 ms, voxel size = 1.2 mm x 1.0 mm x 2.5 mm, 

interslice gap = 0.5 mm), and a diffusion-weighted imaging (DWI) sequence (TR = 10200 

ms, TE = 95 ms, voxel size = 2.5 mm x 2.5 mm x 2.5 mm; 7 scans with b = 0 s/mm², 61 scans 

with b = 900 s/mm²). 

4.2.3.2. White matter hyperintensity ratings 

WMH were defined as areas of hyperintense signal on FLAIR images without corresponding 

cerebrospinal fluid-like hypointense areas on the T1w image. Gliosis surrounding lacunar and 

territorial infarcts were not considered to be WMH (Hervé et al., 2005). WMH were 

segmented on the FLAIR images using a semiautomatic method (Ghafoorian et al., 2016), 

and were visually inspected for errors. 

4.2.3.3. Lacunar infarct rating 

LI were defined as hypointense areas > 2 mm and < 15 mm on FLAIR and T1w images, 

ruling out perivascular spaces (< 2 mm, except around the anterior commissure, where 

perivascular spaces can be large) and infraputaminal pseudolacunes (Hervé et al., 2005). LI 

were counted by two trained raters blind to the clinical data, and inter-rater reliability 

assessed using κ (Cohen, 1960). Reliability was excellent, κ = 0.95 (van Uden et al., 2015). 

4.2.3.4. Brain volumetry 

T1w images were processed using the ‘segment’ routine in SPM12 (fil.ion.ucl.ac.uk/spm/). 

Unified segmentation, as implemented in SPM12, alternates between three steps: image 
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registration, bias correction, and tissue classification. Tissue classification involves the 

assignment of each voxel in an image to a defined tissue class. For brain image analysis, 

these are usually grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The 

probability of a voxel being drawn from a tissue class can be determined by its intensity and 

spatial distribution, which is conditional on a previously-defined population template 

(Ashburner and Friston, 2005). Finally, bias correction involves the correction of the bias 

field signal, which is caused by magnetic field inhomogeneities. This leads to a smooth, low 

frequency signal that corrupts MR images, resulting in the same tissue class having different 

intensities across the same image (Juntu et al., 2005). Since these problems are interrelated, 

serial application of these steps can lead to the propagation of errors in downstream image 

processing steps. Unified segmentation attempts to solve these problems simultaneously 

using a single generative model, which estimates parameters by alternating between said 

steps (Ashburner and Friston, 2005). 

Segmentation yields subject-specific tissue probability maps (TPMs), in which each 

voxel has been assigned a probability of belonging to a certain tissue class (Evans et al., 

1994). Only the first 3 TPMs were used, which correspond to GM, WM, and CSF, 

respectively. Volumes (in mm3) for each tissue class were calculated as the sum of all voxels 

that have a probability > 0.5 on the corresponding TPM. Total brain volume (TBV) is the 

sum of the GM and WM volumes, while total intracranial volume (TIV) is the sum of the 

TBV and CSF volumes. 

T1w and FLAIR images were co-registered using mutual information co-registration 

in SPM12. The resulting transformation was used to resample the WMH mask from the 

FLAIR image to the T1w image using cubic b-spline interpolation. WMH volume was then 

calculated as the number of the voxels under the intersection of the WMH mask and the 

thresholded WM TPM on the T1w image. This is then divided by the TIV to yield a 

proportional estimate of WMH volume (in mL), which is adjusted for individual differences 

in intracranial volume. 

All segmentations and registrations were visually inspected for errors. 

4.2.3.5. Diffusion tensor tractography 

Prior to tractography, DWI images were preprocessed and the diffusion tensor fit as 

previously described (Section 2.2.3). Directional information within the diffusion tensor was 

also used to assess WM connectivity using tractography. Tractography methods attempt to 

reconstruct continuous WM fibre tracts (henceforth "streamlines"), under the assumption that 
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WM fibres are coaligned with the direction of diffusion in a WM voxel (Mori et al., 1999). 

First, a continuous tensor field is created using the principal eigenvector of each voxel, 

defined as the eigenvector corresponding to the largest absolute eigenvalue (Basser et al., 

2000). Streamlines were initiated on an evenly-spaced 0.5 mm grid, then propagated in 

orthograde and retrograde directions by trilinear interpolation of the tensor field with a vector 

step length of 0.5 mm (Clark et al., 2003). This sub-millimeter tracking (super-resolution) 

can reveal fibre tracts beyond the acquired imaging resolution (Calamante et al., 2010). 

Streamlines were terminated in areas where FA  ≤ 0.2, or the angle between consecutive 

vectors, 𝜃 > 45∘ (Lawrence et al., 2018b). 

4.2.4. Graph theory and network analysis 

In recent years, graph theory has emerged as the de facto standard for studying complex brain 

networks (Bullmore and Sporns, 2009). From a mathematical perspective, a graph, G, is a set 

of nodes, N, with a corresponding set of edges, K. An edge represents some relationship 

between any pair of nodes. G can therefore be represented using an N x N connectivity (or 

adjacency) matrix, where each entry aij is an element of K. Previous work using DWI to 

quantify brain networks has defined with N being defined as GM regions-of-interest (ROIs), 

and K being the number of reconstructed WM streamlines that connect them (Hagmann et al., 

2007). The resulting G can be interpreted as a whole-brain WM network, describing 

connectivity between all the structures in the brain. We adopt this convention here. 

4.2.4.1. Network construction 

Network nodes were defined using the Automated Anatomical Labeling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002), which has been used in other network-based studies in SVD 

(e.g., Lawrence et al., 2014, 2018b). The AAL is a volumetric segmentation of 116 GM ROIs 

(58 per hemisphere) on the Colin brain in MNI space (Holmes et al., 1998). Importantly, 26 

of these regions were cerebellar regions, which were excluded from our analysis due to 

tractography being unreliable in these regions (i.e., due to complex geometry of the cerebellar 

decussation), leaving 90 nodes for our analysis. 

The registration of the AAL atlas to each participant’s DWI image was carried out 

using default parameters in ANTs (stnava.github.io/ANTs/). First, a linear affine 

transformation was used to register each participant’s b0 image to their T1w image. Next, a 

symmetric diffeomorphic nonlinear transformation (Avants et al., 2008) was used to register 

the T1w images to the Colin brain in MNI space. Finally, the linear and nonlinear 
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transformations were inverted, concatenated, then applied to the AAL image using nearest 

neighbour interpolation, bring the atlas image into each participant's DWI space. All 

registrations were visually inspected for errors. 

Network edges were defined on the basis of connected node pairs. Two nodes, i and j, 

were connected by an edge, kij, if the endpoints of a tractography-reconstructed streamline lay 

between both regions. Edges were weighted, 𝑘𝑖𝑗
𝑤, by the length of the streamlines in mm, l, 

such that 

𝑘𝑖𝑗
𝑤 =

1

2
∑

𝑀

𝑚=0

1

𝑙
 

where M is the set of streamlines connecting nodes i and j. Importantly, this formula 

scales kij to correct for the number of seeds per millimeter, as longer streamlines are seeded 

multiple times due to the tractography algorithm (Hagmann et al., 2007; Lawrence et al., 

2014). Edges were then thresholded at 𝑤𝑖𝑗 ≥ 1 to eliminate noise-related false-positives. 

The result was a zero-diagonal symmetric connectivity matrix for each participant. 

The columns and rows of the matrix correspond to the 90 AAL ROIs, while each element of 

the matrix represents the corrected number of streamlines connecting each pair of ROIs. 

Graph theoretical quantities were then calculated. 

4.2.4.2. Network measures 

The density of a network is the ratio of observed edges to the total number of edges: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
2𝐾

𝑁(𝑁−1)
. 

We also calculated measures of efficiency, which are based on the notion of shortest 

path lengths. The shortest path length is the path that minimises the nodes traversed to 

connect nodes i and j. The path length is thus a topological measure of distance between two 

nodes. These require a mapping of weight to distance, 𝑑𝑖𝑗
𝑤, which used the formula 

𝑑𝑖𝑗
𝑤 =

1

𝑤𝑖𝑗
, 

such that higher connection weights correspond to shorter distances (Rubinov and 

Sporns, 2010). 

Global efficiency is the average inverse shortest path length across the entire network, 

and reflects the overall ease of information transfer across the brain. Local efficiency, for 

each node, is the global efficiency, calculated using only first-degree neighbours of that node. 
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These are then averaged across all nodes to yield the average local efficiency, which is a 

measure of the average fault tolerance of a node in the brain. 

Both global and local efficiency were calculated using edge weights. This is done by 

summing the distances associated with each edge along the shortest path length. The equation 

for weighted global efficiency is: 

𝐸𝑔𝑙𝑜𝑏𝑎𝑙
𝑤 =

1

𝑛
∑

𝑖∈𝑁

∑𝑗∈𝑁,𝑗≠𝑖 (𝑑𝑖𝑗
𝑤)

−1

𝑛 − 1
 

The equation for weighted local efficiency in similar, but takes into account the 

weights of the connections between nodes i and j, wij, nodes i and h, wih, and the distance 

between nodes j and h, 𝑑𝑖ℎ
𝑤 , which, in effect, quantifies the efficiency of the triangle that 

nodes i, j, and h form. This equation is: 

𝐸𝑙𝑜𝑐𝑎𝑙
𝑤 =

1

𝑛
∑

𝑖∈𝑁

∑𝑗,ℎ∈𝑁,𝑗≠𝑖 (𝑤𝑖𝑗𝑤𝑖ℎ[𝑑𝑗ℎ
𝑤 (𝑁𝑖)]

−1
)

1/3

𝑘𝑖(𝑘𝑖 − 1)
 

4.2.5. Statistical analysis 

Statistical analysis was carried out in R 3.4.3 (R Core Team, 2019), with supplemental 

functions from the psych (Revelle, 2018) and car (Fox and Weisberg, 2011) packages. Unless 

otherwise specified, all tests were two-tailed, statistical significance thresholded at α = 0.05, 

and P values corrected for multiple comparisons using the Bonferroni-Holm method (Holm, 

1979). 

Descriptive statistics were used to summarise demographic and clinical information 

for all participants included in the study. Pearson product-moment correlation coefficients 

were calculated between all continuous variables. 

4.2.5.1. Mediation analysis 

First, we attempted to show that the relationship between SVD-related pathology and apathy 

was mediated by network measures. A mediation effect is when the effects of an independent 

variable, X, on a dependent variable, Y, is accounted for by a third, or mediating, variable, M. 

Classically, mediation models are framed using path analysis diagrams, with three paths of 

interest: A, the direct effect of X on M; B, the direct effect of the mediator on Y; and C, the 

direct effect of X on Y. The effects A, B, and C are tested using linear regressions. 
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The requirements for testing a mediation have been previously detailed, but are 

reproduced here. First, X must predict Y, which can be expressed as: 

𝑌 = 𝛽10 + 𝛽11𝑋 + 𝜖1, (1) 

where β10 is the intercept, ϵ1 is the error term, and β11 is the regression coefficient 

associated with X, which must be significant. Second, X must also predict M, such that: 

𝑀 = 𝛽20 + 𝛽21𝑋 + 𝜖2, (2) 

where β21 must also be significant. Third, and finally, X and M must be regressed on 

Y, such that: 

𝑌 = 𝛽30 + 𝛽31𝑋 + 𝛽32𝑀 + 𝜖3, (3) 

where β32 must be significant. For a true mediation effect, 𝛽32 < 𝛽11. Since the 

difference between equations (1) and (3) is only the inclusion of M, the reduction in 

regression coefficients can only be explained by the mediating effect of M. A partial 

mediation effect is when β32 shrinks, but remains significant. A full mediation is when β32 

shrinks and becomes non-significant. 

Three mediation models were tested in the present study. The first and second models 

tested the mediating effect of global efficiency on the relationship between apathy and SVD 

markers (LI and WMH, respectively). The third model was a reverse mediation model, where 

WMH and LI mediated the relationship between global efficiency and apathy. A simple 

model for multiple mediators can be created by modifying equation 3, such that: 

𝑌 = 𝛽30 + 𝛽31𝑋 + 𝛽32𝑀1 + 𝛽33𝑀2 + 𝜖3, (4) 

where M1 and M2 are the two mediators. 

4.2.5.2. Linear regression analysis 

To determine whether network integrity was related to apathy after controlling for other 

variables, we conducted a multiple linear regression analysis. In this model, apathy was the 

dependent variable, which was predicted by variables that were associated with it in our 

bivariate correlation analysis. Variables that remained predictors after this procedure were 

then carried forward as covariates for our whole-brain and regional network analyses. 

4.2.5.3. Whole brain network analysis 

In order to determine how white matter networks were disrupted in patients with apathy, a 

series of one-way analysis of covariance (ANCOVA) tests were used to compare the apathy 

only, depression only, comorbid, and control SVD groups (see section 2.2) on whole brain 

network measures of strength, density, global efficiency, and local efficiency (see section 
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2.4.2). Control variables were identified through our earlier multiple regression analysis (see 

section 2.5.2). Because of unbalanced group sizes, ANCOVAs were computed with type II 

sums of squares (Langsrud, 2003). After a significant result, between-group post hoc 

comparisons were conducted with the Tukey honest significant difference test. 

4.2.5.4. Regional network analysis 

Apathy may be characterised by a distinct structural subnetwork (i.e., a group of specific 

nodes and edges). In order to determine whether or not this was the case, we conducted a 

series of regional network analyses. In contrast to our whole-brain analysis, which 

investigated how network measures were disrupted, our regional analysis investigated where 

disruption had occurred, necessitating hypothesis testing at each edge within the connectivity 

matrices. Because edges are the component tested, inferences are fundamentally pairwise, as 

a single edge connects a pair of nodes. 

Regional analyses were conducted using the Network Based Statistic (NBS) toolbox 

in MATLAB (Zalesky et al. (2010); nitrc.org/projects/nbs). The NBS implements statistical 

tests using the framework of the general linear model (Friston et al., 1994), which has been 

previously detailed (Chapter 2). 

The NBS starts by independently testing the hypothesis of interest at each edge with 

an appropriate statistical test. This endows each connection with a value of the test statistic 

quantifying the evidence in favour of the null hypothesis. Next, a test statistic threshold is 

chosen. Connections exceeding this threshold are then added to a set of supra-threshold 

connections. This set of connections represent the potential edges at which the null 

hypothesis can be rejected. Finally, topological clusters among these supra-threshold 

connections are identified. The basic unit of a cluster is a connected graph component (i.e., 

two nodes and their connecting edge). Connected graph components are a set of supra-

threshold connections for which a path can be found between any two nodes. 

Connected components are treated as evidence of a non-chance structure for which 

the null hypothesis can be rejected. In other words, a putative experimental effect is assumed 

to be represented by a component, rather than by a single connection or several connections 

that are spatially isolated from one another (Zalesky et al., 2010). The experimental effect 

associated with this component can then be tested against the null hypothesis. 

Hypothesis testing in the NBS is done by computing P values corrected for 

familywise error rates using permutation testing (Winkler et al., 2014). The size of the largest 

connected component is recorded for each permutation, resulting in an empirical null 
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distribution for the largest component size. Component sizes can be identified in two ways: 

using the spatial extent of a component, which is simply the total number of significant 

connections it comprises, or the intensity of a component, which is the sum of all test statistic 

values across all connections of that component (Zalesky et al., 2010). These are analogous 

to cluster area and mass in voxel-based statistical thresholding (Bullmore et al., 1999). The 

resulting one-sided corrected P values are the proportion of permutations for which the 

largest component was of the same size or greater. 

We conducted 3 regional analyses using the NBS. For the first analysis, we compared 

network matrices between the apathy group and the rest of the sample. Significant edges, in 

this context, reflect connections that differ between the apathy group and the rest of the 

sample. In other words, this analysis examined the unique network topology, or subnetwork, 

that characterised patients with apathy only. 

Our second and third regional analysis leveraged our continuous scale data and large 

sample size by conducting multiple regression analyses in the whole sample using the full 

AES and CESD scales. For the second analysis, a general linear model was fitted at each 

edge with AES and CESD scores used as independent variables. Separate contrast vectors 

were specified to assess the significance of the apathy and depression regression coefficients, 

in both the positive and negative direction. The apathy contrast tested for a relationship 

between apathy and an edge while controlling for depression as a covariate and vice versa. 

Significant edges, in this context, reflect subnetworks that are associated with apathy after 

controlling for depression and vice versa. Our third analysis was similar to the second, but 

also included the other covariates identified in our earlier multiple regression analysis (see 

section 4.2.5.2). 

Edges were deemed significant at t ≥ 3.1, which corresponds to an approximate P = 

0.001, and component sizes were determined from cluster extent, which is analogous to 

cluster size or area in voxel-based analyses (Bullmore et al., 1999; Zalesky et al., 2010). For 

each test, corrected P values were generated using 10000 permutation tests. As tests in the 

NBS are one-sided, significance levels were adjusted to P < 0.025 to test both tails of the 

distribution. 

4.3. Results 

Descriptive statistics for the 331 participants included in the study are presented in Table 1. 
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Table 1. Descriptive statistics for the study population. 

Variable RUN DMC 

AES 27.3 (7.8) 

CESD 10.3 (8.8) 

MMSE 28.1 (2.2) 

Age, years 68.9 (8.3) 

Sex, female (%) 194 (58.6) 

Education, years 11.2 (3.4) 

WMH volume, mL 8.4 (12.2) 

LI count 0.6 (1.5) 

Antidepressant usage (%) 37 (11) 

Note. Descriptive statistics are presented as means (standard deviation) unless otherwise 

noted. AES = Apathy Evaluation Scale – Clinician version; CESD = Center for 

Epidemiologic Studies Depression Scale; MMSE = Mini-Mental State Examination; WMH = 

white matter hyperintensities; LI = lacunar infarcts. 

 

 

Interestingly, 11% of our sample was using antidepressants, indicating a prevalence of 

depression consistent with traditional samples. Importantly, this sample had a more moderate 

disease burden compared to other samples, with the average number of LI being < 1 and 

WMH burden of 8.4 mL. 

Pearson product-moment correlations, with P values adjusted using Holm's method, 

are shown in Table 2. Due to the high magnitude of correlations between network measures 

(all r’s > 0.85), only global efficiency was used in this analysis, in order to limit multiple 

comparisons. 
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Table 2. Pearson product-moment correlations between variables of interest. 

 
CESD MMSE Age Education 

WMH 

(mL) LI count 

Global 

efficiency 

AES 
0.50 

(<0.001) 

-0.42 

(<0.001) 

0.25 

(<0.001) 

-0.31 

(<0.001) 

0.23 

(<0.001) 

0.19 

(0.006) 

-0.30 

(<0.001) 

CESD 
 -0.17 

(0.033) 

0.07 

(0.713) 

-0.23 

(0.001) 

0.14 

(0.114) 

0.08 

(0.713) 

-0.10 

(0.647) 

MMSE 
  -0.34 

(<0.001) 

0.36 

(<0.001) 

-0.17 

(0.027) 

-0.10 

(0.647) 

0.30 

(<0.001) 

Age 

(years) 

   -0.10 

(0.647) 

0.40 

(<0.001) 

0.14 

(0.150) 

-0.58 

(<0.001) 

Education 

(years) 

    -0.07 

(0.713) 

-0.03 

(0.713) 

0.11 

(0.426) 

WMH 
     0.52 

(<0.001) 

-0.54 

(<0.001) 

LI count 
      -0.33 

(<0.001) 

 

 

 

 

As hypothesised, apathy was correlated with depression, cognition, and 

neurobiological measures such as SVD pathology and global network efficiency (Figure 1a). 

Network efficiency was also inversely correlated with SVD markers, implying that higher 

SVD burden led to lower network efficiency. Intriguingly, depression was not associated with 

either SVD pathology or network efficiency (Figure 1b). This suggests that depression, even 

at the univariate level, is distinct from apathy from a neurobiological standpoint, despite 

being highly correlated (at r = 0.50, so shared variance is 25%). 
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Figure 1. The relationships between apathy, depression, and global efficiency. a, Apathy is 

negatively associated with global efficiency. b, Depression is not associated with global 

efficiency. 

 

 

The multiple regression analysis using all demographic and clinical variables 

correlated with apathy (Table 2) revealed that global efficiency remained a predictor of 

apathy (β = -0.31, P = 0.028), as did depression (β = 0.16, P < 0.01), cognition (β = -0.259, P 

< 0.001), and education (β = -0.106, P = 0.024). Age, WMH, and LI were no longer 

correlated (P’s > 0.05), and were thus removed from the whole brain network analysis and 

regional network analysis. 

4.3.1. Network measures mediate the relationship between apathy and SVD 

pathology 

Results of the mediation analyses are shown in Figure 2. Path analysis models showed that 

the significant relationship between apathy and WMH volume (β = 0.233, P < 0.001), was 

fully mediated after controlling for global efficiency (β’ = 0.082, P = 0.205) (Figure 2A). 

Similarly, LI number was related to apathy (β = 0.176, P = 0.003), but not after controlling 

for global efficiency (β’ = 0.077, P = 0.172) (Figure 2B). In contrast, the relationship between 

global efficiency and apathy, (β = -0.304, P < 0.001), remained after controlling for both 

WMH volume and LI simultaneously (β’ = -0.244, P = 0.001) (Figure 2C). 
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Figure 2. Results of the mediation analyses. (A) Mediating effect of global efficiency on the 

relationship on WMH volume and apathy. (B) Mediating effect of global efficiency on the 

relationship between LI number and apathy. (C) Mediating effect of WMH volume and LI 

number on the relationship between global efficiency and apathy. WMH = white matter 

hyperintensities, LI = lacunar infarcts. All numbers represent standardized beta coefficients. β 

= coefficient before mediation, β’ = coefficient after mediation. Significant paths at P < 0.01 

following Bonferroni-Holm adjustment are highlighted in bold. 
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4.3.2. Patients with apathy differ on measures of whole brain network integrity 

Using established cut scores on the AES and CESD, participants were assigned to apathy (n = 

26), depression (n = 48), comorbid apathy and depression (n = 32), and control SVD (n = 

225) groups (Table 3). Between-group differences were found for antidepressant usage (χ2 = 

27.187, P < 0.001), but not sex (χ2 = 4.123, P = 0.249). Antidepressant use differed between 

the depression and control groups (odds ratio (OR) = 0.238, P = 0.006) and comorbid and 

control groups (OR = 0.119, P < 0.001). The apathy group was older than both the depression 

and control groups (P’s < 0.001). The apathy and comorbid groups had lower MMSE scores 

compared to the depression and control groups (P’s < 0.01). The apathy and comorbid groups 

were less educated than the control group (P’s < 0.05). 
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Table 3. Descriptive statistics for demographic and clinical variables of interest between 

groups. 

Variable 

Apathy 

group 

(n = 26) 

Depression 

group 

(n = 48) 

Comorbid 

group 

(n = 32) 

Control SVD 

group 

(n = 225) 

Test 

statistic 
P 

AES 
39.5 

(6.4) 

27.6 

(4.0) 

41.2 

(7.9) 

23.8 

(3.9) 

F = 

197.222 
< 0.001 

CESD 
10.2 

(4.3) 

22.6 

(5.2) 

24.0 

(6.0) 

5.7 

(4.5) 

F = 

262.968 
< 0.001 

MMSE 
25.6 

(3.8) 

28.2 

(1.5) 

26.8 

(2.7) 

28.6 

(1.6) 

F = 

23.130 
< 0.001 

Age, years 
75.2 

(7.6) 

67.2 

(8.6) 

70.7 

(7.9) 

68.3 

(8.1) 

F = 

6.933 
< 0.001 

Sex, female 

(%) 

20 

(77) 

26 

(54) 

18 

(56) 

130 

(58) 

χ2 = 

4.123 
0.249 

Education, years 
9.2 

(3.3) 

10.5 

(3.2) 

9.9 

(3.3) 

11.8 

(3.4) 

F = 

7.586 
< 0.001 

WMH volume, 

mL 

18.4 

(21.1) 

10.3 

(13.4) 

10.3 

(15.5) 

6.6 

(9.1) 

F = 

8.791 
< 0.001 

LI count 
1.3 

(2.2) 

0.8 

(1.9) 

0.7 

(1.6) 

0.5 

(1.2) 

F = 

2.732 
0.088 

Antidepressant 

usage (%) 

4 

(15) 

9 

(19) 

11 

(32) 

13 

(6) 

χ2 = 

27.187 
< 0.001 

 

Note. Descriptive statistics are presented as means (standard deviation) unless otherwise 

noted. AES = Apathy Evaluation Scale – Clinician version; CESD = Center for 

Epidemiologic Studies Depression Scale, MMSE = Mini-Mental State Examination, WMH = 

white matter hyperintensities, LI = lacunar infarcts. 

 

 

ANCOVAs comparing whole-brain network measures revealed differences in density, 

global, and local efficiency whilst controlling for cognition and education (Table 4). Post-hoc 

tests revealed that the apathy group scored lower on all network measures compared to the 

control group, depression group, and comorbid group (Table 5). The depression, comorbid, 

and control groups did not differ on any network measure. 
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Table 4. One-way ANCOVAs comparing groups on whole-brain network measures. 

Network 

parameter 

Apathy group 

(n = 26) 

Depression 

group (n = 48) 

Comorbid 

group (n = 32) 

Control SVD 

group (n = 

225) F P 

Density 0.10 (0.02) 0.11 (0.02) 0.11 (0.02) 0.12 (0.02) 4.788 0.003 

Global 

efficiency 

7.49 (2.15) 9.95 (2.72) 9.47 (2.73) 10.25 (2.37) 4.780 0.003 

Local 

efficiency 

6.51 (1.61) 7.80 (1.79) 7.46 (1.58) 7.93 (1.41) 3.120 0.026 

 

 

Table 5. P values of pairwise post hoc comparisons on whole-brain network measures. 

 Pairwise comparison 

Network 

measure 

Apathy - 

depression 

Apathy - 

comorbid 

Apathy - 

control 

Depression - 

comorbid 

Depression - 

control 

Comorbid - 

control 

Density < 0.001 0.010 < 0.001 0.840 0.976 0.530 

Global 

efficiency 
< 0.001 0.013 < 0.001 0.822 0.873 0.333 

Local 

efficiency 
0.003 0.079 < 0.001 0.757 0.950 0.356 

 

Note. Significant results at P < 0.05 are highlighted in bold.  

 

4.3.3. Apathy is associated with large-scale white matter network disruption 

To investigate whether there were regional differences in white matter networks associated 

with apathy, we first performed an edgewise comparison between the apathy group and the 

rest of the sample. This revealed a single topological cluster, with edges connecting the 

bilateral supplementary motor area (SMA), t = 3.932, left SMA to left middle cingulate gyrus 

(MCG), t = 3.277, and left MCG to left anterior cingulate gyrus (ACG), t = 3.161 (Figure 

3A). 
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Figure 3. Topological clusters related to apathy. A) Cluster that differed between the apathy 

group and all other participants. B) Clusters associated with continuous apathy scores in all 

participants, whilst controlling for continuous depression scores. Nodes are coloured 

according to the unique clusters they form. See Table 6 for a full list of significant edges, 

grouped by topological cluster. C) Clusters associated with continuous apathy scores in all 

participants, while controlling for depression, cognition, and education. Networks were 

projected on the MNI152 standard space template, and visualized from the axial plane in 

neurological convention. 

 

 

Following our comparison of the apathy only group to the rest of the sample, which 

yielded a significant result, we conducted an additional pairwise comparison between the 

apathy only and comorbid groups. This would allow us to determine whether the apathy only 

group had specific subnetworks that were impaired relative to the comorbid group. Both 

groups were compared using the same criteria as in the methods (t > 3.1, extent-based 

thresholding, 10000 permutations, α = 0.025). No between-group regional differences were 

found. 

We then examined edgewise correlations with continuous apathy scores while 

controlling for continuous depression scores, and vice-versa. Apathy was associated with five 

distinct topological clusters (Table 6 and Figure 3B). The first and largest cluster (red in 

Figure 3B) included the same structures and connections identified in the first regional 

analysis, as well as connections within the superior frontal and parietal lobes. The second 

cluster was a left-lateralized thalamo-cortico-striatal loop, which included the inferior frontal 
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gyrus pars orbitalis (IFGorb), insula, and putamen (gold in Figure 3B). The third cluster 

(yellow-green in Figure 3B) was located in the left temporal lobe. The fourth cluster included 

right insula and right inferior frontal gyrus (green in Figure 3B). The fifth cluster was a right-

lateralised occipitotemporal circuit (cyan in Figure 3B). In contrast, the model examining 

depression while controlling for apathy yielded no edges. 

The final analysis examined edgewise correlations with continuous apathy scores 

while controlling for depression, cognition, and education. This revealed a single cluster in 

the bilateral SMA, t = 3.396, right SMA and left SFG, t = 3.135, and left SFG to right 

precentral gyrus (PreCG), t = 3.179 (Figure 3C). 

4.4. Discussion 

Our study used graph theory to examine the relationship between white matter networks and 

apathy in patients with SVD. We found that network measures mediated the relationship 

between SVD markers and apathy, that patients with apathy, but not depression, had reduced 

whole brain measures of network density and efficiency, and that this disruption could be 

localised to specific structural subnetworks, which included parietal-premotor, frontostriatal, 

and occipitotemporal connections. Many of these connections became non-significant after 

controlling for general cognitive function, suggesting that apathy may share a common basis 

with cognitive dysfunction (Le Heron et al., 2018a). 

Using bivariate correlations, we replicated previous findings which show that WMH 

and LI are associated with apathy (Lavretsky et al., 2008; Grool et al., 2014). We were able 

to demonstrate that these relationships were fully mediated when controlling for whole brain 

measures of network efficiency. Conversely, WMH and LI only partially mediated the 

relationship between apathy and network measures, suggesting that WMH and LI lead to 

apathy through their effects on network disruption. This result suggests that the parenchymal 

changes associated radiological markers of SVD – which include demyelination, gliosis, and 

axonal loss (Gouw et al., 2011) -– may lead to apathy through the disconnection of white 

matter networks. This contextualises previous research showing associations between apathy 

and radiological markers of SVD, providing a plausible underlying mechanism for the 

pathogenesis of apathy in this condition. 

Our whole brain analysis revealed that patients with apathy had disrupted measures of 

network integrity when compared to all other SVD groups. In particular, whole brain 

networks of the apathy group had reduced network strength and density, and were less 

integrated on both a global and local scale. The strength and density of a network are simply 
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an approximation of the number of reconstructed streamlines present in the brain, and 

validate other work that has shown that apathy is associated with white matter microstructural 

damage. Global and local efficiency, on the other hand, express patterns of connectivity. A 

reduction in global efficiency reflects a loss of long-range connections that facilitate 

communication between segregated brain structures, while a reduction in local efficiency 

reflects a loss of short-range connections between neighbouring structures (Bullmore and 

Sporns, 2012). Measures of efficiency are closely related to, but are distinct from, measures 

of volume; axonal density within a white matter tract does not necessarily imply density 

between tracts. A concomitant decrease in measures of efficiency with measures of density 

suggests that apathy is a disconnection syndrome caused not only by a reduction in the 

number of streamlines, but also by a reduction in connectivity between tracts. 

We also found that the depression group was not different with respect to the control 

group in terms of whole brain connectivity. This replicates the work of Hollocks et al. (2015), 

which was performed in a different cohort of patients with more severe SVD, characterised 

by symptomatic LI and confluent WMH. This does not imply that depression is not a 

symptom of SVD; indeed, depression was nearly twice as prevalent as apathy in our sample. 

It also does not imply that depression is not associated with any underlying neurobiological 

change. Our results suggest that the relationship between white matter microstructure and 

depressive symptomatology previously described in SVD (Brookes et al., 2014) may be 

attributable to apathy, in part because measures used to assess depressive symptomatology in 

that study included apathy-related items (Hollocks et al., 2015). However, this does not 

preclude depression from being associated with other measures of structural or functional 

integrity. For instance, previous literature has identified a robust relationship between 

unipolar depression and hippocampal volumes (Videbech and Ravnkilde, 2004), and studies 

show that depression is associated with the disruption of functional networks (Drysdale et al., 

2017). It is possible that depression is more strongly correlated with volumetric grey matter 

reduction or aberrant functional connectivity, rather than impaired white matter tract 

connectivity or structural network topology. 

We also found that the comorbid apathy and depression group did not differ from the 

control SVD group. This was a surprising result, as one might expect the comorbid group to 

show similar, if not worse impairment, to the apathy group. Furthermore, the comorbid group 

had higher mean scores on the AES and CESD compared to the apathy and depression only 

groups. It is possible that this counterintuitive effect may be because the etiology of apathy 

differs between the apathy only and comorbid groups. For instance, apathy in our apathy only 
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group may have been the product of vascular pathology disrupting the structural networks 

underlying goal-directed behaviour. Apathy in our comorbid group, however, could be a 

product of depressive symptoms, which may not result in structural network change. Thus, 

despite a similar behavioural presentation, the neurobiological differences between these 

patients with apathy may reflect different etiologies, which may have important implications 

for differential diagnosis and treatment. That said, the regional between-group comparison 

between the apathy and comorbid group yielded no significant result, possibly due to the low 

sample sizes within each group. This result will need to be replicated in future studies, in 

order to ensure that our results did not stem from some spurious source such as sampling 

error. Until then, this result must be interpreted with caution. 

We attempted to delineate distinct structural subnetworks associated with apathy by 

examining network matrices at the level of individual edges. Strikingly, significance was 

found in the bilateral SMA across all our analyses. First, we compared the apathy group to 

the rest of the sample, and found a single network consisting of the SMA and left ACG and 

MCG. After conducting our regression analysis, which controlled for depression, this cluster 

not only remained, but extended anteriorly to include the bilateral medial SFG, and 

posteriorly to include the bilateral paracentral lobule and bilateral precuneus. After 

conducting another regression while controlling for depression, cognition, and education, this 

cluster was reduced to a cluster spanning the bilateral SMA, left SFG, and right PreCG. 

These results suggest a crucial role for the SMA in motivated behaviour. The parietal-

premotor network we found in our regression analysis controlling for depression converges 

with the findings of Bonnelle et al. (2015), who investigated the functional correlates of 

apathy in healthy individuals. In their study, the authors found that individuals with higher 

levels of apathy had reduced functional activity in the SMA, ACG, and MCG as effort levels 

on a task increased. Furthermore, BOLD signal fluctuation in the SMA during effortful trials 

correlated with activity in ACG, MCG, primary motor cortex, and the superior parietal and 

frontal lobes, implying functional connectivity between these structures. This is supported by 

findings that apathy, but not depression, predicts the amplitude of SMA-localised resting-

state fluctuations in patients with idiopathic Parkinson’s disease (Skidmore et al., 2013). 

The premotor cluster we found was partially connected to a topological cluster that 

included superior and medial elements of the parietal lobes, including the somatosensory 

cortex. Importantly, these were not connected with any nodes in primary motor areas. These 

findings suggest that the parietal-premotor network, which has been hypothesised to underlie 

movement intention and awareness independently of motor execution (Desmurget and Sirigu, 
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2009), may play an important role in apathy. Human electrophysiological research has shown 

that neurons in medial premotor regions, particularly SMA, can accurately predict an 

impending decision to move up to hundreds of milliseconds before that decision reaches 

conscious awareness (Fried et al., 2011). On the basis of these results, Fried et al. (2011) 

propose that volitional behaviour only occurs once neural activity in medial frontal regions 

reaches a certain threshold. It has been suggested that these regions transmit effort-related 

information directly to parietal regions, especially the somatosensory cortex (Zénon et al., 

2015). The findings presented in the current study suggest that the functional interactions 

between premotor and parietal regions are supported by a structural network consisting of 

white matter fibres. Pathology that damages these fibres, such as SVD, may result in the 

impaired activation or transmission of internally generated neural signals from premotor 

regions, which precede conscious decision-making (Fried et al., 2011). This may cause a 

failure of neural ensembles to reach threshold, leading to a loss of volitional behaviour that 

manifests clinically as behavioural apathy. 

We also identified clusters in both hemispheres that included the IFGorb, IFGtri, and 

INS. In the left hemisphere, this cluster also included the thalamus and parts of the basal 

ganglia, including the pallidum and putamen. Importantly, the putamen, as delineated by the 

AAL, includes portions of the nucleus accumbens (Tzourio-Mazoyer et al., 2002). These 

structures, as well as their white matter connectivity, have been implicated in various 

processes that support effort-based decision-making, such as reward valuation and salience 

processing (Haber, 2016). Reward insensitivity has been suggested to be a factor underlying 

apathy in Parkinson’s disease (Muhammed et al., 2016), and it is possible that this 

generalises to SVD. If this is the case, then connections in the frontostriatal network we 

identified likely reflect denervation of dopaminergic projections connecting the ventral 

striatum to the frontal lobes. Dopamine enhances willingness to exert effort for rewards 

(Chong et al., 2015), and indeed, apathy has been related to nucleus accumbens atrophy in 

Parkinson's disease patients (Carriere et al., 2014). Our results suggest that apathy may, in 

part, be driven by disruption to the functional circuits underlying normal reward processing, 

leading to the inaccurate perception or valuation of stimuli which are important for approach-

avoidance decision-making. 

We also found bilateral topological clusters centred in the temporal lobes, with the left 

cluster extending to the occipital lobe. This likely reflects microstructural damage to the 

inferior fronto-occipital fasciculus, which has been shown in our TBSS analysis and in 

previous work of Hollocks et al. (2015). The functional significance of this finding is difficult 
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to interpret, in part because the anatomy and function of this tract remain poorly understood 

(Sarubbo et al., 2013). However, the finding that these structures were associated with apathy 

in a different patient group, using different measures of apathy, makes them difficult to 

dismiss as false positives. Future studies are needed to investigate the relationship between 

the inferior fronto-occipital fasciculus and apathy. 

Many of these subnetworks associated with apathy became non-significant after 

controlling for MMSE scores, supporting the notion that there is substantial overlap between 

the networks that underlie apathy and cognitive function. Unfortunately, due to the general 

nature of the MMSE, we could not explain specific associations between subnetworks, apathy 

symptoms, and cognitive domains such as executive function or processing speed. More 

specific analyses may be able to clarify network-specific disruption underlying cognitive 

symptoms, which may then lead to certain behavioural subtypes of apathy. 

There were some limitations of our study. One was in our measurement of depression, 

which was assessed using a self-report scale rather than a structured clinical interview. 

Although the CESD has been shown to have good reliability and validity when compared to 

other scales in geriatric stroke patients (Shinar et al., 1986; Agrell and Dehlin, 1989), 

psychometric research suggests that structured clinical interviews remain the "gold standard" 

for identifying depression (Stuart et al., 2014), especially given an underreporting bias on 

some self-rated depression scales (Hunt et al., 2003). Future work could more accurately 

diagnose patients into depressive subtypes, such as those outlined in DSM-5 (American 

Psychiatric Association, 2013), in order to examine if these results change. This was not 

feasible due to our large sample and extensive protocol, although future studies would be able 

to address this. 

Another limitation is our method of reconstructing white matter pathways using 

tractography. Although the connections we identified correspond to real white matter 

pathways, diffusion tensor tractography has inherently limited accuracy in mapping structural 

connectomes, and complimentary histological and neurophysiological methods have been 

proposed to improve accuracy (Thomas et al., 2014). In a similar vein, the AAL atlas, which 

we used for whole brain parcellation, is relatively coarse, with many nodes encompassing 

functionally heterogenous structures. Although other atlases with more fine-grained cortical 

parcellations exist (Glasser et al., 2016), we were limited by the spatial resolution of our 

diffusion-weighted sequences (2.5 mm isotropic), which was partially chosen to improve the 

relatively low signal-to-noise ratio of images acquired at the 1.5 Tesla field strength of our 

MRI. This low field strength is another potential limitation on data quality, as higher field 
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strengths reduce uncertainty in the fitted values of the diffusion tensor (Polders et al., 2011). 

Future studies that employ multimodal, high-resolution methods for fibre tracking may result 

in a more nuanced picture of the relationship between white matter topology and apathy. 

A final limitation was the cross-sectional nature of our study. Due to changes in raters 

between the 2011 and 2015 visits, we were not able to analyse longitudinal AES scores. This 

means that conclusions about causality must be drawn with caution. To determine if damage 

to these networks leads to apathy, converging evidence from experimental neuroscience and 

longitudinal neuroimaging studies will be needed. Our current study was associational in 

nature, and as a result, we cannot firmly rule out alternative hypotheses, such as if apathy 

leads to changes in brain networks. Also, as we only examined apathy in the context of white 

matter connectivity, we can only draw conclusions about it in that regard. Further studies will 

be needed to examine other variables that may influence apathy, such as psychosocial factors 

(Marin, 1991). 

In our study, we have shown that network disruption underlies the relationship 

between radiological markers of SVD and apathy. In addition, SVD patients with apathy have 

white matter networks that are sparser and less efficient when compared to other SVD 

patients. This includes SVD patients with depression, who were not impaired on whole brain 

measures of network integrity relative to control SVD patients with no apathy or depression. 

We also localise apathy to parietal-premotor, frontostriatal, and occipitotemporal networks. 

The anatomy of these networks is consistent with functional studies that show parietal-

premotor regions to be associated with volitional behaviour, and frontostriatal regions to be 

associated with reward processing. Future studies could investigate the topology of these 

specific networks a priori, leading to focused experiments with greater statistical power. The 

connectivity of these white matter networks also offers a potential biomarker for detecting 

motivational deficits in neurological disorders. 
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Chapter 5: Depressive symptoms are associated with distinct patterns of 

cortical atrophy 

5.1. Introduction 

Having investigated the neurobiological basis of apathy in SVD in previous chapters 

(Chapters 2 - 4), we now turn our attention to depression. Depression is the leading cause of 

disability worldwide (World Health Organization, 2017) and a major determinant of quality 

of life in SVD (Hollocks et al., 2015). We have shown that apathy, but not depression, 

appears to be more closely related white matter network changes in SVD (Chapter 3), 

supporting the notion that apathy, in cerebrovascular disease, is a syndrome of network 

disconnection. This, however, leaves a lingering question: what is the underlying 

neurobiology of depression? 

One reproducible finding on the neurobiology of early-onset major depression is an 

association with focal hippocampal atrophy (Videbech and Ravnkilde, 2004). If depression is 

not associated with white matter network damage, then perhaps it is instead associated with 

focal patterns of grey matter atrophy, which also occurs as the result of SVD pathology 

(Lambert et al., 2016). Furthermore, specific symptoms of depression, such as low mood, 

anhedonia, or somatic symptoms (American Psychiatric Association, 2013) may have 

different neural correlates, and pooling them together may attenuate results. 

In the present study, we aim to investigate whether specific symptoms of depression 

are associated with longitudinal volumetric grey matter atrophy in SVD. First, we attempt to 

determine whether specific symptoms of depression are longitudinally dissociable in SVD. 

Next, we chart the trajectory of these symptoms in tandem with atrophy in specific grey 

matter regions. 

5.2. Methods 

5.2.1. Study population and measures 

The sample investigated participants with neuroimaging data from the Radboud University 

Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort (RUN DMC) study 

described previously (Chapter 2). The depression measure used was the Center for 

Epidemiologic Studies Depression Scale (CESD) whilst cognition assessed using the Mini 

Mental State Examination (MMSE) (Section 2.2.2). 
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Two hundred and seventy-six participants underwent MRI at all three timepoints 

(2006, 2011, and 2015), while 93 had MRI at two timepoints only (i.e., 2006 and either 2011 

or 2015). This left a total of 369 participants with MRI assessments at more than one 

timepoint, with a total of 1014 MRI assessments overall. These 369 participants constituted 

the sample for the current analysis. 

5.2.2. MRI acquisition protocol 

MR images were acquired on a 1.5 Tesla MRI scanner (2006: Siemens, Magnetom Sonata; 

2011 and 2015: Siemens, Magnetom Avanto). The protocol included a T1-weighted (T1w) 

three-dimensional magnetization prepared rapid gradient echo (MPRAGE) sequence (voxel 

size = 1.0 mm x 1.0 mm x 1.0 mm). 

5.2.3. Freesurfer analysis 

Freesurfer was used to longitudinally process T1w images. The cross-sectional steps of this 

pipeline have been described previously (Chapter 2). After processing all T1w images for 

each participant at all time points, the longitudinal stream in Freesurfer was used to obtain 

reliable volume and thickness estimates. This involved the creation of an unbiased 

participant-specific template image using a robust, inverse consistent registration of cross-

sectional T1w images (Reuter et al., 2010). Several steps in Freesurfer are then re-initialized 

using common information from the participant-specific template, thereby leveraging 

longitudinal information to improve the accuracy and reliability of cortical thickness 

estimates, resulting in increasing statistical power (Reuter et al., 2012). 

Freesurfer is a widely-used software suite that has been extensively validated in 

comparisons against manual measurements (Kuperberg et al., 2003; Salat et al., 2004) and 

histological analysis (Rosas et al., 2002). Furthermore, Freesurfer shows good test-retest 

reliability across scanner manufacturers and field strengths (Han et al., 2006; Reuter et al., 

2012), making it a good choice for the analysis of longitudinal T1w images in RUN DMC, 

due to the scanner upgrade between 2006 and 2011. 

5.2.4. Correction for scanner changes 

Despite using the same acquisition and processing pipeline for all T1w images, differences 

may still exist due to the scanner upgrade between 2006 and 2011. We therefore attempted to 

quantify and correct the degree of change between these timepoints, as failing to do so may 

lead to an over- or underestimation of volumes in 2006. For instance, underestimating 
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volume in 2006 may make the change from 2011 to 2015 appear steeper than it is, leading 

one to incorrectly conclude a non-linear (e.g., quadratic) change over time when only a linear 

one exists. 

To do so, we compared cross-sectional estimates of total intracranial volume (TIV) 

derived from FreeSurfer. TIV generally increases linearly from birth until approximately the 

second decade of life, after which it remains fairly constant (Davis and Wright, 1977). Since 

an inclusion criterion in the RUN DMC study was an age of at least 50 years, TIV should 

remain fixed in this population throughout the duration of the study. Differences in TIV 

between time points should therefore only be attributable to measurement error, such as in the 

MRI scan or in the pipeline. 

In a subset of 276 participants with MRI scanning at all 3 timepoints, we compared 

ratios of TIV estimates by dividing the 2006 scan by the 2011 scan, and the 2015 scan by the 

2011 scan. This yielded a percentage difference for the 2006 and 2015 scans, with reference 

to the 2011 scan. These were then averaged across participants to estimate the total 

magnitude of change. We found that the difference between the 2006 and 2011 scans was 

+3%, while the difference between the 2011 and 2015 scans was -0.3%. 

As the absolute value of these changes differed by an order of magnitude, we 

attempted to correct this by multiplying all estimates of volume in 2006 by 1.03, thereby 

proportionally increasing regional volumes. Multiplying all 2006 volumes by a constant 

factor, rather than a participant-specific value, allowed us to compensate for the systematic 

bias created by the scanner upgrade while preserving inter-participant and inter-regional 

variability. 

5.2.5. Statistical analysis 

Statistical analyses were conducted in R 3.6.1 (R Core Team, 2019). Confirmatory factor 

analyses utilized the lavaan 0.6-4 (Rosseel, 2012) and semTools 0.5-1 (Jorgensen et al., 

2018) packages, while linear mixed-effect modeling utilized the lme4 1.1-21 (Bates et al., 

2015) and lmerTest 3.1-0 (Kuznetsova et al., 2017) packages. All tests were two-tailed, with 

α = 0.05. 

5.2.5.1. Confirmatory factor analysis 

First, we sought to confirm the multifactorial structure of the CESD in RUN DMC. This was 

done using confirmatory factor analysis (CFA) in lavaan. CFA is an application of structural 

equation modeling (SEM). SEM is a theory-driven statistical technique that allows a 
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researcher to specify regression- and correlation-based relationships between observed and 

latent (unobserved) variables. Hence, a researcher can a priori specify a causal structure 

describing inter-variable relationships. This yields an implied covariance matrix, which can 

be compared to the real, observed covariance matrix, in order to provide a measure of model 

fit. It is important to note that causal relationships in SEM merely represent a hypothesized 

relationship which, if significant, can only be evidence of causality if supported by the 

experimental design. 

CFA is a special case of SEM, whereby one or more latent factors are driving 

responses on a scale. The items that correspond to each factor must be specified by the user, 

and thus, are usually used to confirm theoretical structures. 

In the present study, we attempt to confirm a recently-proposed factor structure of the 

CESD, as well as establish its longitudinal invariance, if any. This new factor structure is 

derived from the original, which proposed that the CESD loaded onto four factors: depressed 

affect, absence of positive affect or anhedonia, somatic activity or inactivity, and 

interpersonal difficulties (Radloff, 1991). This new solution drops the interpersonal factor, as 

only two items loaded on it, thus restricting its reliability, and eliminated a sex-related 

question from the depressed affect scale (17. "I had crying spells"), to avoid over-inflating 

estimates of depression in women (Carleton et al., 2013). The remaining factors are easily 

interpretable, as they converge with DSM-5 criteria for major depressive disorder (American 

Psychiatric Association, 2013). The items on this scale can be seen in Table 1. 
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Table 1. Subscales on the CESD. 

Item Subscale 

1. I was bothered by things that usually don’t bother me. Somatic 

2. I did not feel like eating; my appetite was poor. Somatic 

3. I felt that I could not shake off the blues. Mood 

4. I felt I was just as good as other people. Anhedonia 

5. I had trouble keeping my mind on what I was doing. Somatic 

6. I felt depressed. Mood 

7. I felt that everything I did was an effort. Somatic 

8. I felt hopeful about the future. Anhedonia 

9. I thought my life had been a failure. - 

10. I felt fearful. - 

11. My sleep was restless. Somatic 

12. I was happy. Anhedonia 

13. I talked less than usual. - 

14. I felt lonely. Mood 

15. People were unfriendly. - 

16. I enjoyed life. Anhedonia 

17. I had crying spells. - 

18. I felt sad. Mood 

19. I felt that people dislike me. - 

20. I could not get “going". Somatic 

 

 

 

First, we attempted to establish whether or not this 3-factor model of the CESD was 

superior to the originally proposed 4-factor model. We did this by fitting both models 

longitudinally, and compared their fit indices. For the purposes of model selection, we 

compared the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), 

which are relative fit indices. Both the AIC and BIC estimate the amount of information 

explained by the model while penalizing model complexity, and for both, lower values 

indicate a better fitting model (Burnham and Anderson, 2004). A difference of 15 is sufficient 

to claim that one model outperforms another (Burnham and Anderson, 2004). 

We then assessed the reliability of the 3-factor model using ω (Bollen, 1980), an 

estimate of internal factor consistency that relaxes assumptions about uncorrelated errors, 

normality, and unidimensionality, which are necessary in the more restrictive Cronbach's α 

(Viladrich et al., 2017). ω was calculated for each subscale at each timepoint. 
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Next, we sought to answer whether the 3-factor solution of the CESD was 

longitudinally invariant. Factorial invariance has four distinct levels (Widaman and Reise, 

1997): 

1. Configural invariance (invariant factor structure); 

2. Weak factorial invariance (invariant factor structure and loadings); 

3. Strong factorial invariance (invariant factor structure, loadings, and intercepts) and; 

4. Strict factorial invariance (invariant factor structure, loadings, intercepts, means, and 

unique factor invariances). 

Configural and weak invariance are insufficient to reliably identify the same construct 

longitudinally, and either strong or strict invariance must hold across all times of 

measurement (Widaman et al., 2010). 

Factorial invariance was tested by fitting a series of increasingly restricted models. 

For the configural model, all parameters are estimated freely. For the weak factorial 

invariance model, item loadings are fixed, followed by intercepts for the strong factorial 

model. 

Factorial invariance was established by comparing the fit indices of these nested 

models. For this comparison, we examined the confirmatory fit index (CFI) and root mean 

square error of the approximation (RMSEA), measures of the overall goodness- and badness-

of-fit, respectively. Due to these models being increasingly restrictive, it is common for the 

fit of these indices to progressively worsen, as data is rarely drawn from an ideal sample. 

Here, it is important to examine the change in fit indices. A lack of invariance was defined as 

a decrease of CFI ≥ 0.010 or an increase in RMSEA ≥ 0.015 (Moreira et al., 2018). 

For all models, parameters were estimated using maximum likelihood estimation with 

robust standard errors calculated using the Huber-White method (Freedman, 2006). Test 

statistics were scaled to adjust for non-normal distributions using Yuan-Bentler's F-statistic 

(Bentler and Yuan, 1999). Missing values were incorporated into the analysis model using 

full information maximum likelihood, which is appropriate for longitudinal missing data 

(Wothke, 2000). 

5.2.5.2. Missing data analysis 

Some data was missing on the depression subscales, as well as for antidepressant usage, 

which were key variables for linear mixed-effect modeling (section 2.6.2). In order to avoid 

losing power, missing data was imputed using the mice package version 3.6.0 in R (van 
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Buuren and Groothuis-Oudshoorn, 2010). mice generates multiple imputations using the 

method of chained equations (van Buuren et al., 2006), which is described in more detail in 

Chapter 2, section 2.2.1. 

Imputed values were generated using predictive mean matching, which draws 

imputed values from the observed values (Rubin, 1986; Little, 1988b). As a general rule of 

thumb, the number of imputations generated should be proportional to the amount of missing 

data, so 20 imputations should be generated for 10% to 30% missing data (Graham et al., 

2007). Missing data points comprised 0.37% of all the data used in the present study, so 10 

imputations were generated with a maximum of 10 iterations. 

Linear mixed-effect models, which are subsequently described, were fit using all 

imputed datasets. Parameter estimates were then averaged across all models, and the total 

variance over repeated analyses pooled using Rubin's rules (Rubin, 1987), with degrees of 

freedom calculated using the Barnard-Rubin adjustment for sample size (Barnard and Rubin, 

1999). Henceforth, all reported linear mixed-effect estimates refer to the estimates which 

were pooled across all imputed datasets. 

5.2.5.3. Linear mixed-effect modeling 

We used a series of linear mixed-effect models to assess longitudinal relationships between 

regional grey matter atrophy and depressive symptoms. A key characteristic of mixed-effect 

models are the ability to model both fixed (population-level) and random (participant-level) 

effects (Laird and Ware, 1982). The general form of a linear mixed-effect model is 

𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝜖, 

where y, the dependent variable, is an N x 1 column vector, X is an N x p matrix of p 

predictor variables, β is a p x 1 vector of fixed effect regression coefficients, Z is the N x q 

matrix for the q random effects, u is a q x 1 vector of random effects, and ϵ is a vector of 

residuals not explained by Xβ + Zu. 

Random effects can be used to model hierarchical structures in the data, including 

situations where observations are not independent. In our case, observations were not 

independent, and hence were grouped hierarchically by participant across time. This flexible 

approach to modeling allows for imbalanced group sizes and missing data. 

In effect, a linear mixed-effect model can estimate the longitudinal relationship 

between y and p, while accounting for inter-individual variability in y. 

Our analysis attempted to examine how change in the grey matter volume of a region 

covaried with changes in specific depressive symptoms whilst controlling for age, sex, and 
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antidepressant use. Brain regions of interest were defined using the Desikan-Killiany 

parcellation of the FreeSurfer-processed T1w images (Desikan et al., 2006). This took the 

form of linear mixed-effects models with the general formula: 

𝑌𝑖𝑗
𝑘 = 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗

𝑙 + 𝐴𝑛𝑡𝑖𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑎𝑛𝑡𝑖𝑗 + 𝐴𝑔𝑒𝑖𝑗 + 𝑆𝑒𝑥𝑖 + 𝑍𝑢 + 𝜖, 

where the response Y at area k for individual i at time j is estimated by the time-

varying depressive symptom l, with l being either the longitudinal somatic, mood, or 

anhedonia subscale score. Covariates of no interest included antidepressant usage, age, sex, 

and with a random effect, Zu, of intercept-by-participant. Importantly, the scaling of volumes 

by timepoint and TIV simplifies this model considerably, as these terms do not need to be 

added as covariates for the analysis. Unfortunately, the addition of a random slope-by-time 

could not be added, as preliminary analyses revealed that the addition of this term led to 

models failing to converge or singular fit. Both of these issues are symptomatic a random-

effects structure that is too complicated to estimate, and as a result, this term was not included 

in any model. 

All linear mixed-effect estimates were chosen to minimize the restricted maximum 

likelihood criterion, and parameters were optimized using the Nelder-Mead simplex method 

(Nelder and Mead, 1965). The false discovery rate across brain regions was corrected per 

depressive symptom using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 

1995). 

5.3. Results 

5.3.1. Mood, anhedonia, and somatic symptoms of depression are longitudinally 

dissociable and reliable 

Comparison of AIC and BIC values for the 3- and 4-factor models of the CESD are shown in 

Table 2. The 3-factor model had both a lower AIC (28058 vs. 31879) and BIC (28065 vs. 

32935). The difference in AIC and BIC was > 15 (3821 and 4870, respectively), which 

strongly suggests that the 3-factor model should be preferred. 
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Table 1. Fit indices for 3- and 4-factor models of the CESD. 

 
3-factor model 4-factor model Δ 

df 741 1107 366 

AIC 28058 31879 3821 

BIC 28065 32935 4870 

Note. Smaller AIC and BIC values indicate better fit. 

 

 

Estimates of ω for the somatic, mood, and anhedonia subscales can be seen in Table 

3. All subscales showed acceptable fit, ω > 75, with stable reliability over time, with the 

absolute difference of ω between two adjacent timepoints < 0.07. 

 

Table 2. ω for CESD subscales. 

 
Somatic Mood Anhedonia 

2006 0.76 0.85 0.84 

2011 0.81 0.81 0.79 

2015 0.78 0.80 0.86 

 

 

Finally, factorial invariance testing revealed that the 3-factor model met conditions for 

strict factorial invariance. Not only were changes within acceptable limits, all ΔCFI < 0.10 

and all ΔRMSEA < 0.015, but the strict factorial invariance model with unique factor 

variance showed acceptable fit indices overall, CFI = 0.928, RMSEA = 0.036. These can be 

seen in Table 4. This factorial invariance testing, together with the stable values of ω, imply 

that the CESD subscales genuinely measure the same constructs across all timepoints within 

this population. 
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Table 3. Longitudinal factorial invariance models. 

 
df Δdf CFI ΔCFI RMSEA ΔRMSEA 

Configural 741 0 0.937 0.000 0.036 0.000 

Loadings 763 22 0.936 -0.001 0.035 -0.001 

Intercepts 785 22 0.934 -0.002 0.035 0.000 

Means 791 6 0.932 -0.002 0.036 0.001 

Residuals 819 28 0.928 -0.004 0.036 0.000 

Note. CFI = confirmatory fit index; RMSEA = root mean square error of the approximation. 

 

5.3.2. Depressive symptoms are modestly correlated with apathy 

In a subset of 334 participants at 2011, we found that apathy was correlated with anhedonic (r 

= .42), mood (r = 0.38), and somatic (r = 0.46) symptoms of depression (P's < 0.001) (Figure 

1). 

 

 

 

Figure 1. Association between apathy and depressive symptoms. Apathy is associated with 

all depressive factors, including a, anhedonia, b, mood, and c, somatic factors. 
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5.3.3. Depressive symptoms are associated with distinct patterns of brain atrophy 

Linear mixed effect models revealed that, after controlling for age, sex, and antidepressant 

usage, each specific symptom of depression was associated with longitudinal atrophy in 

distinct areas. These are shown in Tables 4-6. 

 

Table 4. Areas associated with anhedonic depressive symptoms. 

Area β (s.e.) Puncorrected 

L ENT -3.06e-06 (1.42e-06) 0.031 

L lOFG -7.19e-06 (2.26e-06) 0.002 

L PHG -1.98e-06 (8.92e-07) 0.027 

L rACG -2.71e-06 (9.38e-07) 0.004 

L rMFG -1.17e-05 (5.59e-06) 0.037 

L SMAR -8.61e-06 (3.76e-06) 0.022 

R IPL -1.13e-05 (4.55e-06) 0.013 

R ITG -7.88e-06 (3.33e-06) 0.018 

R mOFG -4.31e-06 (1.83e-06) 0.019 

R MTG -8.97e-06 (3.91e-06) 0.022 

R pORB -3.78e-06 (1.2e-06) 0.002 

R rMFG -1.22e-05 (6.19e-06) 0.050 

R STG -8.38e-06 (3.66e-06) 0.023 

R FP -1.74e-06 (7.86e-07) 0.027 

R PUT -6.47e-06 (2.16e-06) 0.003 

R PALL -2.45e-06 (8.74e-07) 0.005 
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Table 5. Areas associated with mood depressive symptoms. 

Area β (s.e.) Puncorrected 

L ENT -4.47e-06 (2.04e-06) 0.029 

L ITG -1.12e-05 (5.2e-06) 0.031 

L lOFG -7.44e-06 (3.31e-06) 0.025 

L PHG -3.45e-06 (1.25e-06) 0.006 

L TP -4.48e-06 (2.17e-06) 0.039 

R ENT -4.42e-06 (2.01e-06) 0.028 

R ITG -1.27e-05 (4.8e-06) 0.008 

R lOFG -6.46e-06 (3.28e-06) 0.050 

R PHG -3.12e-06 (1.05e-06) 0.003 

R TP -5.18e-06 (2.3e-06) 0.025 

R HIPP -4.63e-06 (2.21e-06) 0.036 

 

 

Table 6. Areas associated with somatic depressive symptoms. 

Area β (s.e.) Puncorrected 

L TP -2.95e-06 (1.41e-06) 0.037 

R IPL -8.72e-06 (4.28e-06) 0.042 

R ITG -6.66e-06 (3.13e-06) 0.034 

R pCC -2.68e-06 (1.16e-06) 0.020 

R preCG -1.25e-05 (5.35e-06) 0.019 

R TP -3.84e-06 (1.51e-06) 0.011 

R THAL -5.82e-06 (2.6e-06) 0.025 

R ACCU -7.52e-07 (3.12e-07) 0.016 

 

 

The somatic factor was primarily right-lateralised, and included atrophy in inferior 

parietal lobule (IPL), inferior temporal gyrus (ITG), posterior cingulate cortex (pCC), 

precentral gyrus (preCG), temporal pole (TP), thalamus (THAL), and accumbens area 

(ACCU). Atrophy of the left TP was also found. 

The mood factor was associated with bilateral atrophy in temporal areas, including 

bilateral entorhinal cortex (ENT), bilateral ITG, bilateral parahippocampal gyrus (PHG), 

bilateral TP, and right hippocampus (HIPP). Additionally, bilateral atrophy in the lateral 

orbitofrontal gyrus (lOFG) was also found. 
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Finally, anhedonia was associated with bilateral effects across the cortex and basal 

ganglia. Affected regions included left ENT, left lOFG, left PHG, left rostral anterior 

cingulate gyrus (rACG), left rostral middle frontal gyrus (rMFG) left supermarginal gyrus 

(SMAR) right IPL, right ITG, right medial orbitofrontal gyrus (mOFG), right MTG, right 

inferior frontal gyrus pars orbitalis (pORB), right superior temporal gyrus (STG), right FP, 

right putamen (PUT), and right pallidum (PALL). 

The full list of uncorrected associations with depressive symptoms and atrophy can be 

seen in Table 4. Multiple comparisons were adjusted for the false discovery rate on a per-

contrast basis across all models using the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995; Abdi and Williams, 2010). Following this correction, no significant areas 

were found, indicating that the strength of the overall signal was weak. 

5.4. Discussion 

We have shown that the somatic, mood, and anhedonic symptoms of depression can be 

dissociated and are longitudinally reliable in patients with SVD. Furthermore, each of these 

symptoms are associated with overlapping and distinct patterns of grey matter atrophy over 

the course of 9 years. 

CFA analyses suggest that the somatic, mood, and anhedonic symptoms of depression 

can be derived from the CESD in patients with SVD (Carleton et al., 2013). Furthermore, 

longitudinal CFA results showed that these constructs were stable and internally consistent 

over nearly a decade, suggesting that the assessment of these depressive symptoms using the 

CESD is reliable in this population. 

Analysis of longitudinal relationships between these symptoms and grey matter 

volumes derived from a robust longitudinal participant-specific template (Reuter et al., 2012) 

showed that each symptom was associated with distinct patterns of atrophy. Intriguingly, all 

symptoms were associated with atrophy in the temporal lobes, a finding that converges with a 

recent report showing that temporal lobe atrophy and WMH predicted incidence of major 

depression over 10 years in individuals over 70 (Gudmundsson et al., 2015). 

Notably, this finding differs from studies on the neuroanatomical correlates of 

depression in adolescence and early adulthood, which generally find an association with 

hippocampal atrophy (Videbech and Ravnkilde, 2004). We did find an association with mood 

symptoms and atrophy of the right hippocampus, supporting this general finding, but we also 

found all symptoms to be associated with distributed atrophy across the medial temporal and 

lateral temporal lobes. This included the entorhinal cortex, as well as the superior, middle, 
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and inferior temporal gyri. This suggests that the grey matter basis of so-called "vascular 

depression" is a distinct entity from depression observed in early adulthood. This suggests a 

possible association between depressive symptoms and dementia, particularly Alzheimer's 

dementia, which is characterised by progressive medial temporal lobe atrophy (Pettigrew et 

al., 2017). Supporting this is the finding that WMH and temporal lobe atrophy predicted the 

incidence of both depression and dementia (Pettigrew et al., 2017), suggesting a common 

neuroanatomical basis for both syndromes. The associations between depressive symptoms 

and dementia in SVD are explored later (Chapter 6). 

Before discussing the distinct associations found with specific depressive symptoms, 

it is important to think about the content validity of the items of the CESD that contributed to 

each. The mood subscale is readily interpretable as many items have face validity, such as the 

items that ask about sadness and loneliness. 

The anhedonia subscale, however, was defined as a lack of positive emotion (Carleton 

et al., 2013), in which participants did not endorse the positive items of the CESD (e.g., "I 

felt happy"). This item may not reflect anhedonia per se, which is generally defined as a loss 

of pleasure (American Psychiatric Association, 2013). Anhedonia is generally defined as 

consummatory or anticipatory, reflecting a loss of pleasure while experiencing something 

versus a failure to experience excitement or anticipation for future events. Some of the items 

on the subscale, such as those about enjoying life and feeling hopeful about the future, can be 

interpreted as reflecting anhedonia. The other items, however, such as feeling happy or 

feeling as good as other people, could be debated as reflecting mood (i.e., not endorsing these 

positive items could be interpreted as feeling unhappy or having feelings of worthlessness, 

which may reflect mood more than anhedonia). Thus, the interpretation of the anhedonia 

construct in this study should strictly be in terms of a lack of positive emotion, rather than a 

loss of consummatory or anticipatory pleasure, which is a more standard definition of 

anhedonia in the literature. 

Finally, the somatic subscale reflects many different factors. It includes restless sleep, 

poor appetite, and difficulties concentrating, which are clearly defined as possible symptoms 

of major depression (American Psychiatric Association, 2013). Other items, however, are 

more difficult to classify, such as the item about being bothered about things, which may 

reflect irritability. Furthermore, the items about everything being an effort and being unable 

to get going could be thought to reflect anergia, fatigue, or even apathy. The relatively non-

specific wording of these questions make it difficult to discern what construct these are truly 

assessing. 
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Despite these caveats about the definitions of each CESD subscale, however, it should 

be noted that our CFA revealed adequate support for these constructs, indicating that the 

items are genuinely grouping together empirically. This is supported by our finding that the 

factor structure of the CESD is stable longitudinally, with invariant loadings, intercepts, 

means, and residuals. If these items genuinely assessed different latent constructs, one could 

expect more variability within factors across time, causing a greater reduction in fit, 

particularly with regards to factor loadings. This did not occur, however, and so we can 

conclude that this 3-factor structure of the CESD has some degree of empirical validity. 

A key finding was that somatic symptoms were associated with atrophy in primarily 

right-lateralised structures. The issue of laterality related to somatic symptoms has rarely 

been explored. One early report, which looked at somatic symptoms across depressive 

disorders, anxiety disorders, and somatization disorders found that somatic symptoms, such 

as pain, were primarily found in the left half of the body, implying right hemisphere 

lateralisation (Min and Lee, 1997). In accordance with this, we found somatic symptoms to 

be associated with right-lateralised atrophy in sensorimotor areas, such as IPL, pCC, preCG, 

and the thalamus. 

Why somatic symptoms should be associated with lateralised patterns of atrophy, in 

contrast to the mood and anhedonic symptoms, which showed bilateral effects, is not clear. 

Research on lateralisation in depression suggests that hyperactivity in the right hemisphere 

leads to increased processing of negative emotions and pessimistic thoughts, which lead to 

stress and pain associated with the illness (Hecht, 2010). Pain sensitivity and negative affect 

may have a mutual basis in the right hemisphere (Pauli et al., 1999), and if this applies to 

somatic symptoms in general, may explain why depression can be accompanied by aberrant 

sleep and appetite. Our findings give insight into the grey matter regions that may mediate 

these somatic symptoms, although future research will need to clarify whether these effects 

are domain-specific (i.e., one area to one symptom) or if atrophy in all of them is the general 

factor underlying all somatic symptoms. 

Our findings regarding the mood factor clearly point towards an association between 

the temporal lobes and negative affect. Much of the work on this topic focuses on the role of 

the hippocampus in the pathophysiology of depression, with theoretical work suggesting 

many possible mechanistic links. One classic explanation that links depressive symptoms and 

the hippocampus is dysregulation of the hypothalamic-pituitary-adrenal axis, which leads to 

an elevation of cortisol levels (Byers and Yaffe, 2011). Chronically high levels of cortisol 

have neurotoxic effects on the hippocampus, leading to atrophy (Byers and Yaffe, 2011). 
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The neurotoxic effects of cortisol may explain hippocampal atrophy in depression, but 

less attention has been focused on general temporal lobe atrophy related to depression. 

Preliminary evidence using positron emission tomography (PET) to image tau in vivo has 

found modest associations between depressive symptoms and tau deposition in the inferior 

temporal lobes and entorhinal cortex (Gatchel et al., 2017). This suggests a 

neurodegenerative mechanism underlying depression-related atrophy in the lateral and medial 

temporal lobes, which may be distinct, or have mutual influences with, depression-related 

hippocampal atrophy. 

Related to these findings is that major depression is the most common psychiatric 

comorbidity with temporal lobe epilepsy (Edeh and Toone, 1987). The relationships between 

temporal lobe epilepsy and major depression appear to be bidirectional, and both are risk 

factors for one another (Forsgren and Nyström, 1990; Hesdorffer et al., 2000), suggesting a 

shared etiology (Kessler and Price, 1993). Recent research on the shared mechanisms 

underlying temporal lobe atrophy and depression generally find common deficits in 

monoaminergic neurotransmission, particularly with ascending serotonergic and 

noradrenergic systems that terminate in the prefrontal cortex (Kumar et al., 2016). If this is 

the case, then it is unsurprising that we have found bilateral patterns of atrophy in lOFG to be 

associated with mood symptoms in conjunction with temporal atrophy. That said, there are 

only modest associations between temporal lobe epilepsy and hippocampal atrophy (Caciagli 

et al., 2017), and as far as we are aware, no investigations into general temporal lobe atrophy. 

Thus, our results support the notion of hippocampal and prefrontal atrophy being associated 

with negative affect. 

Finally, our results with anhedonia suggested widespread atrophy throughout the 

cerebral cortex. This included many of the temporal areas previously mentioned, but also the 

left rACG, bilateral rMFG, left lOFG, right mOFG, and right pORB. These regions cover 

large parts of the prefrontal cortex, which in context with the atrophy found in right putamen 

and pallidum, suggests that mutual atrophy of basal ganglia-prefrontal regions underlies 

anhedonia. The neuroanatomical regions associated with anhedonia are remarkably similar to 

the white matter network regions associated with apathy (Chapter 3), possibly due to their 

high correlation. If atrophy in these basal ganglia and prefrontal structures are correlated, it 

might suggest the disruption of mutually trophic influences (Seeley et al., 2009), which may 

be mediated by white matter network connectivity. If this is the case, it would be evidence to 

support the hypothesis of a shared neurobiology between apathy and anhedonia (Husain and 
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Roiser, 2018). Our work is primarily exploratory but this avenue may be explored in the 

future through the analysis of anatomical covariance networks (Evans, 2013). 

At any rate, these findings support the notion that the emotional subtype of apathy and 

anhedonia share common neuroanatomical substrates, which is unsurprising given the partial 

overlap due to the common definitions of the two constructs (Chapter 1). Both may be the 

product of disrupted effort-based decision-making for rewarding outcomes (Husain and 

Roiser, 2018). 

It is important to note that, after correcting multiple comparisons for the false 

discovery rate, no depressive symptom was associated with atrophy in any area. This implies 

an overall weak effect, which, although generally consistent with the literature on depression 

and atrophy (Schmaal et al., 2016), implies some limitations with the cohort in question. A 

notable issue was the relatively small number of longitudinal observations, with about 25% of 

the initial cohort dropping out after baseline. This led to too few observations to adequately 

estimate a complex random effects structure, such as one that includes a random effect for 

slope-by-time. Furthermore, it may have reduced our power to detect significant associations 

between longitudinal atrophy and change in depressive symptoms. For these reasons, our 

results will need to be replicated with a larger sample, as this would not only increase power 

to detect true positives but also allow for the modeling of more complex random effects 

structures. 

These weak effects may also be affected by scanner changes from 2006 to 2011. 

Although we attempted to compensate for this, the validity of our method has yet to be 

externally verified. 

Another limitation, as previously alluded to, was the overall validity of the items used 

to assess the somatic, mood, and anhedonic symptoms of depression. Although our CFA 

yielded adequate support for these constructs, it should be noted that specific scales to assess 

these symptoms have been developed, which may yield more criterion validity than the 

CESD subscales we use here. 

Finally, we were not able to assess change in apathy, given that our measure of apathy 

(Section 2.2.2) was not administered at baseline, and was administered by different raters in 

2011 and 2015. As a consequence of this, we were not able to assess depression-related 

covariance alongside apathy, which may have substantiated our discussion about atrophy 

associated with somatic and anhedonic symptoms. That said, given the overlap between the 

content of these subscales of the CESD and apathy, our results might be viewed as a 
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preliminary look into what grey matter atrophy associated with apathy in SVD might look 

like. 

We have shown that somatic, mood, and anhedonic symptoms of depression as 

measured by the CESD are reliable and longitudinally stable in SVD. Further, we show that 

these symptom dimensions are associated with atrophy in overlapping and distinct areas of 

the cerebral cortex. This suggests the importance of distinguishing these symptoms when 

examining a construct such as "depression", as neurobiological associations may be driven by 

specific symptom clusters. 
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Chapter 6: Apathy, but not depression, predicts all-cause dementia in 

cerebral small vessel disease 

6.1. Introduction 

Having investigated the neurobiology of apathy (Chapters 2 - 4) and depression (Chapter 5), 

we now turn our attention to their relationships with dementia. SVD is the leading vascular 

cause of dementia, accounting for 32% of the relationship between age and dementia risk 

(Power et al., 2018) while playing a major role in exacerbating cognitive decline in 

Alzheimer's disease (Pantoni, 2010; Wardlaw et al., 2013). 

The most common pattern of pathology in vascular dementia is subcortical vascular 

encephalopathy, which is a severe form of SVD characterised by confluent WMH (Jellinger 

and Attems, 2010). This may lead to dementia through a disconnection syndrome, whereby 

WMH lead to the progressive damage of cortical and subcortical white matter tracts 

(Lawrence et al., 2013). Additionally, single strategic lacunar infarcts may also lead to 

dementia when the focally damaged territory, or cortical regions connected to the infarct via 

white matter tracts (Duering et al., 2015), play a role in cognitive function (Benjamin et al., 

2014). The cognitive domains affected by SVD-related pathology are primarily processing 

speed and executive function, with relatively preserved long-term memory (Prins et al., 2005; 

Lawrence et al., 2013). It should be noted, however, that pure vascular dementia is rare, with 

many post-mortem cases showing evidence of mixed pathologies in 90% to 95% of all cases 

(Jellinger and Attems, 2010; Thal et al., 2012). 

This pattern of SVD-related parenchymal damage may also underlie apathy (Chapter 

5). If this is the case, then apathy may be symptomatic of a prodromal form of dementia in 

SVD patients. Many of the white matter network connections related to apathy in SVD 

overlap with those related to cognitive function (Chapter 3; (Lawrence et al., 2014). In 

accordance with this, apathy has been found to be associated with deficits in processing speed 

and executive function in SVD patients (Lohner et al., 2017). In contrast, depression, after 

controlling for apathy, has not been found to be related to cognitive deficits (Lohner et al., 

2017). This may be due to depressive symptoms in SVD being related to grey matter atrophy 

over time (Chapter 6), as opposed to focal grey matter or white matter damage. 

We test the hypothesis that apathy, but not depression, predicts all-cause dementia 

using two independent cohorts of SVD patients: the St. George's Cognition and 

Neuroimaging Study (SCANS) and Radboud University Nijmegen Diffusion tensor and 
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Magnetic resonance Cohort (RUN DMC). We had two primary predictions: that baseline 

apathy, but not depression, would predict dementia after controlling for SVD-related 

cognitive impairment; and that longitudinal changes in apathy, but not depression, would also 

predict dementia. 

6.2. Methods 

6.2.1. Participants 

6.2.1.1. SCANS 

Details of the full sample have been published elsewhere (Lawrence et al., 2013, 2018b), but 

are reproduced in full here for clarity. Participants were recruited between 2007 to 2010 from 

stroke services at 3 UK hospitals (St. George's, King's College, and St. Thomas') covering a 

geographically contiguous region of South London. Participants included had to have 

symptomatic SVD, defined as a clinical lacunar stroke syndrome (Bamford et al., 1991) with 

magnetic resonance imaging (MRI) evidence of an anatomically appropriate lacunar infarct, 

which was either a high-signal lesion on diffusion-weighted imaging or a cavitated lacune on 

T1-weighted imaging of maximum diameter ≤ 1.5 cm. In order to recruit a cohort with 

moderate to severe SVD, participants also had to have confluent white matter hyperintensities 

(WMH) of modified Fazekas grade ≥ 2, corresponding to early confluence (Fazekas et al., 

1987). 

Exclusion criteria included the following: any stroke mechanism other than SVD, 

including cortical infarcts, cardioembolic sources (Adams Jr et al., 1993), intracranial or 

extracranial arterial vessel stenosis > 50%, or subcortical infarct diameter > 1.5 cm, as these 

striatocapsular-type infarcts are often embolic in nature; other major central nervous system 

disorders; major psychiatric diseases excepting depression; any cause for WMH other than 

SVD, such as multiple sclerosis; not fluent in English; MRI contraindications including 

claustrophobia; or unable to give written informed consent. 

SCANS received ethical approval from the London–Wandsworth regional ethics 

committee, and the study is registered with the UK Clinical Research Network 

(ukctg.nihr.ac.uk; study ID: 4577). All participants provided written informed consent. All 

assessments were conducted a minimum of 3 months post-stroke in order to minimise the 

acute effects of stroke on outcomes. 
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One hundred and eighty patients were screened for eligibility, of whom 137 

volunteered to participate. One hundred and twenty-one of the 137 patients completed the 

baseline assessment. Of the 16 individuals who could not complete the assessment, 6 

withdrew due to the length of the neuropsychological examination, 2 were unable to complete 

the MRI scan, 6 became unwell between consent and the baseline visit, and 2 were found to 

meet exclusion criteria after being consented, 1 due to narcolepsy and 1 due to schizophrenia. 

Following the baseline assessment, participants were approached for follow-up 

assessments annually for up to five years. Participants who subsequently experienced a new 

clinical stroke were allowed to remain in the study, provided the new stroke was lacunar. Of 

the 121 participants recruited at baseline, 18 completed only one assessment because of death 

(n = 7), study withdrawal (n = 6), relocation (n = 1), lost to follow-up (n = 2), or withdrawal 

from full neuropsychological testing (n = 2). This left 103 participants with more than one 

assessment for the longitudinal analysis. 

6.2.1.2. RUN DMC 

Details on the inclusion and exclusion criteria for RUN DMC have been documented 

previously (Chapter 2). 

Five hundred and three participants were recruited to the baseline assessment in 2006. 

Of the 503 recruited, 398 were able to attend follow-up in 2011. As our apathy measure was 

not administered at baseline, we analyze only the 2011 data. Reasons for missing the 

assessment included death (n = 49), illness (n = 19), relocation (n = 5), lack of time (n = 30), 

or lost to follow-up (n = 2). An additional 45 were excluded due to reaching an endpoint 

before the 2011 assessment (n = 15), or missing data (n = 30), leaving 353 participants with 

complete data for the analysis. 

6.2.2. Clinical assessment 

6.2.2.1. SCANS 

Demographic variables such as age, sex, and education were recorded. Hypertension was 

defined as either systolic blood pressure (BP) > 140 mmHg, diastolic BP > 90 mmHg, or use 

of antihypertensive medication. Hypercholesterolaemia was defined as either a random total 

cholesterol of > 5.2 mmol/L or use of statin medications. Smoking was defined as an ordinal 

variable with three categories: never smoked, former smoker, and current smoker. Diabetes 

mellitus was diagnosed as being on oral antidiabetic drugs or insulin treatment. 
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Anthropomorphic measurements were taken after the removal of shoes and bulky items of 

clothing, and body mass index (BMI) was defined as weight (in kg) divided by height (in m2). 

6.2.2.2. RUN DMC 

Demographic variables such as age, sex, and education were recorded. Hypertension was 

defined as either systolic blood pressure > 140 mmHg, diastolic BP > 90 mmHg, or use of 

antihypertensive medication. Hypercholesterolaemia was defined as the use of lipid-lowering 

drugs. Smoking was defined as an ordinal variable with three categories: never smoked, 

former smoker, and current smoker. Diabetes mellitus was diagnosed as being on oral 

antidiabetic drugs or insulin treatment. Anthropomorphic measurements were taken after the 

removal of shoes and bulky items of clothing, and BMI was defined as weight (in kg) divided 

by height (in m2). 

6.2.3. Apathy and depression 

6.2.3.1. SCANS 

Apathy and depression were assessed using the Geriatic Depression Scale (GDS) (Yesavage 

et al., 1982). The GDS is a 30-item self-report scale of depressive symptoms. However, 

recent research suggests that the GDS reflects more than just a single factor, and includes 6 

items that assess apathy, rather than depression. These apathy and depression subscales of the 

GDS can be dissociated in SVD (Hollocks et al., 2015), and reflect genuine differences in 

neurobiology and quality of life. 

One question assessing memory (14. Do you feel you have more problems with 

memory than most?) was excluded in the calculation of the depression scores, as previous 

work has shown that this item is biased in assessments of dementia (van Dalen et al., 2018b), 

leaving 23 depression-related items. The items used to make each scale are listed in Table 1. 
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Table 1. Apathy and depression items on the Geriatric Depression Scale. 

Apathy (Cronbach α = 0.62) 

2. Have you dropped many of your activities and interests? 

12. Do you prefer to stay at home, rather than going out and doing new things? 

19. Do you find life very exciting? 

20. Is it hard for you to get started on new projects? 

21. Do you feel full of energy? 

28. Do you prefer to avoid social gatherings? 

Depression (Cronbach α = 0.90) 

1. Are you basically satisfied with your life? 

3. Do you feel that your life is empty? 

4. Do you often get bored? 

5. Are you hopeful about the future? 

6. Are you bothered by thoughts you can’t get out of your head? 

7. Are you in good spirits most of the time? 

8. Are you afraid that something bad is going to happen to you? 

9. Do you feel happy most of the time? 

10. Do you often feel helpless? 

11. Do you often get restless and fidgety? 

13. Do you frequently worry about the future? 

15. Do you think it is wonderful to be alive now? 

16. Do you often feel downhearted and blue? 

17. Do you feel pretty worthless the way you are now? 

18. Do you worry a lot about the past? 

22. Do you feel that your situation is hopeless? 

23. Do you think that most people are better off than you are? 

24. Do you frequently get upset over little things? 

25. Do you frequently feel like crying? 

 

 

 

In order to analyze how change in apathy and depression may relate to dementia risk, 

intercept and slope terms for both variables were derived from individuals who attended more 

than one assessment (Section 2.2.1). This was done using linear mixed-effect models, which 

were implemented using the lme4 package version 1.1-21 in R (Bates et al., 2015). A more 

detailed discussion of the implementation and interpretation of linear mixed-effect models 

can be found in Section 5.2.5.3. 
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Separate linear mixed-effect models were used to predict apathy and depression, with 

a fixed effect of time and a random uncorrelated intercept and slope of time-by-participant 

being used to predict longitudinal apathy and depression scores. All estimates were chosen to 

optimise the restricted maximum likelihood criterion. The estimated model coefficients were 

used to predict participant-specific intercepts and slopes for apathy and depression, 

corresponding to the initial measurement and the linear change of the measurement over time, 

respectively. 

6.2.3.2. RUN DMC 

Apathy was assessed using the 18-item clinician-rated Apathy Evaluation Scale (AES) 

(Marin et al., 1991). The AES was only administered at 2011 and 2015, precluding an 

analysis of baseline AES scores. However, data on progression to dementia is not available 

past 2015, preventing a meaningful analysis of apathy change past 2011. Additionally, AES 

raters changed between 2011 and 2015, further restricting an analysis of longitudinal change 

in apathy scores (see Chapter 2). Hence, our analysis of RUN DMC is restricted to a cross-

sectional analysis of the 2011 apathy scores only. 

Depression was assessed using the Centre for Epidemiological Studies Depression 

Scale (CESD), a 20-item self-report measure of depression (Radloff, 1977). Two items 

related to motivation were removed (7. I felt that everything I did was an effort; 20. I could 

not get "going"), leaving 18 depression-related items for the analysis. 

6.2.4. Cognitive assessment 

Both studies administered neuropsychological tasks sensitive to processing speed (PS). 

Deficits in PS are an early and prominent manifestation of vascular cognitive impairment, 

and are robustly associated with pathological white matter changes in SVD (Duering et al., 

2014). Raw scores on individual tasks were converted into age-, sex-, and education-adjusted 

z-scores, then averaged to produce a composite measure of PS. The administration of these 

tasks has been described for both for SCANS (Lawrence et al., 2013) and RUN DMC (van 

Norden et al., 2011), but the tasks and scoring used for the PS index are listed in Table 2. 
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Table 2. Neuropsychological tests used for processing speed index. 

Neuropsychological task Task scoring Dataset 

BMIPB Speed of Information Processing Total correct, adjusted for motor score SCANS 

Digit Symbol Substitution Total correct SCANS 

Grooved Pegboard Task Time to complete (best hand) SCANS 

Paper-Pencil Memory Scanning Task Time to complete 1-character subtask RUN DMC 

Letter Digit Substitution Test Total correct RUN DMC 

Note. BMIPB = Brain Injury and Rehabilitation Trust Memory and Information Processing 

Battery. 

 

6.2.4.1. SCANS 

PS tasks included the Brain Injury and Rehabilitation Trust (BIRT) Memory and Information 

Processing Battery (BMIPB) (Coughlan et al., 2007), the Digit Symbol Substitution Test 

(DSST) (Wechsler, 1997), and the Grooved Pegboard Test (Dawson et al., 2010). The 

BMIPB is a collection of seven psychological tests that assess various aspects of cognitive 

function (Coughlan et al., 2007), although for the purposes of assessing processing speed, 

only the Speed of Information Processing subtask was used. In this task, participants are 

presented with several rows of numbers, and are asked to cross out the second highest 

number in each row. After 4 minutes, the total number of correctly completed rows is used as 

a participant's total score. Next, participants are tested on their motor speed. They are given a 

page of figures, and are asked to cross out as many as possible within 25 seconds. A 

composite score is then created by adjusting the raw total for the motor score, thus assessing 

processing speed while controlling for differences in motor function. 

In the DSST, participants are given two sheets: one is a test sheet with numbers and 

empty boxes below the numbers, while the other is a key sheet with numbers and 

corresponding symbols (Wechsler, 1997). The participant is then asked to fill out as many 

empty boxes on the test sheet with symbols that match the corresponding number from the 

key sheet. After 2 minutes, the total number of boxes filled out correctly is used as the 

participant's total score. 

In the Grooved Pegboard Task, participants are given a board with pegs and grooves, 

and are asked to put pegs into all the grooves using a single hand (Dawson et al., 2010). The 

grooves are randomly rotated across the board, requiring participants to rotate the pegs in 

their hand in order to properly fit them into the grooves. The task is first done with the 
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dominant hand, then again with the non-dominant hand, with the time taken to complete the 

task recorded for each individual hand. Although the task is typically scored by averaging the 

time taken to complete the task for both hands, we instead used the best score regardless of 

hand. This was done in order to eliminate potentially confounding unilateral motor deficits, 

which may be caused by strategic lacunar infarction (Steinke and Ley, 2002). 

6.2.4.2. RUN DMC 

PS tasks included the Paper and Pencil Memory Scanning Test (PPMST) (Brand and Jolles, 

1987) and Letter Digit Substitution Test (LDST). In the PPMST, participants are given a 

paper showing one to four random digits (Brand and Jolles, 1987). After a 5 second delay, 

they are shown a matrix of 120 numbers, and are asked to cross out digits that were part of 

the original set. In the first round of the trial, participants are only asked to cross out a single 

digit. As such, the total time taken in seconds on the first round of the test is a measure of 

processing speed, as demands on memory are minimal. 

The LDST is a modified version of the DSST (Wechsler, 1997), where symbols on 

the key sheet are replaced with 'over-learned' signs (Jolles et al., 1995). This means that 

participants only need to learn the letter-digit association, rather than learning the association 

between a digit and an abstract symbol, which relies more heavily on working memory and 

complex visual perception. Similarly to the DSST, participants are scored based on the total 

number of boxes correctly filled. 

It is important to note that several neuropsychological tests are developed and normed 

in a population of native English speakers, while participants in RUN DMC were primarily 

native Dutch speakers. In order to avoid possible language-based confounds, the PPMST and 

LDST were scored using norms derived from a large Dutch-speaking population (Van der 

Elst et al., 2006; Van Der Elst et al., 2007). 

6.2.5. All-cause dementia diagnosis 

6.2.5.1. SCANS 

Dementia was defined using the DSM-5 definition of major neurocognitive disorder 

(American Psychiatric Association, 2013). Participants were diagnosed with dementia if they 

met one of the following criteria: 

1. dementia was diagnosed in a memory clinic or equivalent clinical service; 
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2. upon blind review of all available medical records and cognitive assessments, consensus 

between a neurologist and clinical neuropsychologist that the clinical picture met DSM-

5 criteria for major neurocognitive disorder; 

3. an MMSE score < 24, which is indicative of major cognitive impairment (Tombaugh 

and McIntyre, 1992), as well as an Instrumental Activities of Daily Living (IADL) scale 

(Lawton and Brody, 1969) score ≤ 7, indicating a significant reduction in capabilities of 

daily living (Barberger-Gateau et al., 1992). 

The date of dementia was defined as the date of the diagnosis. If the exact date was not 

known, and the diagnosis was based on review of medical records or cognitive performance, 

the midpoint date between the visit at which the diagnosis was established and the previous 

visit was used as the date of dementia. 

6.2.5.2. RUN DMC 

Dementia was defined using DSM-IV-TR criteria (American Psychiatric Association, 2000), 

which is broadly synonymous with the DSM-5 definition of major neurocognitive disorder 

(Sachdev et al., 2014), and was considered present if: 

1. dementia was diagnosed in a memory clinic or equivalent clinical service; 

2. upon blind review of all available medical records and cognitive assessments, panel 

consensus between a neurologist, clinical neuropsychologist, and geriatrician that the 

clinical picture met DSM-5 criteria for major neurocognitive disorder; 

3. an MMSE score < 24 with concurrent IADL score ≤ 7. 

The date of dementia was defined as the date the clinical symptoms became compatible with 

the diagnosis. If the exact date was unknown, such as in the case of review of medical records 

or cognitive assessments, the midpoint between the baseline date and the date of the 

diagnosis was used, or failing this, the date the patient was admitted to a nursing home 

because of dementia. 

6.2.6. Statistical analysis 

All statistical analyses were conducted using functions in R 3.6.1 (R Core Team, 2019) and 

the 'survival' package 2.44-1.1 (Therneau and Grambsch, 2000; Therneau, 2015). All tests 

were two-tailed with α = 0.05. Analyses were conducted identically for SCANS and RUN 

DMC unless otherwise specified. 

Relevant baseline demographic and clinical data were compared in three contexts: 
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1. between SCANS and RUN DMC, to assess differences between datasets; 

2. between individuals who developed dementia or not within both datasets; and 

3. between individuals who attended more than one assessment or not in SCANS, to see if 

any variables biased longitudinal assessments. 

Continuous variables were compared using Welch's t-tests if normally distributed and Mann-

Whitney U tests if not. Categorical or binary variables were compared using Pearson's χ2 with 

Yates' correction for continuity. 

For the multivariate dementia analyses, we had two primary questions: 

1. would apathy and depression, at baseline, predict dementia?; and 

2. would longitudinal change in apathy and depression be associated with dementia? 

We used Cox proportional hazards regression models to answer both questions. The 

exponentiated regression coefficients for each covariate in a Cox model are hazard ratios 

(HRs), which represent the change in the dementia hazard function per unit change in the 

covariate following adjustment for other variables in the model (Singer and Willett, 2003). 

HRs <1 are protective factors, while HRs > 1 are risk factors. 

To answer the first question, baseline apathy and depression scores were used to 

predict dementia while controlling for age, education, and PS. Event times, in years, were 

calculated from the first visit that apathy was assessed (SCANS: baseline; RUN DMC: 2011) 

until the onset of dementia, death, or the date of the most recent assessment. Individuals who 

did not develop dementia were right-censored. 

To better visualize the role of apathy and depression in this model, covariate-adjusted 

Kaplan-Meier product-limit survival curves were produced after stratifying Model 1 survival 

estimates based on median apathy and depression scores (Therneau et al., 2015). 

To answer the second question, SCANS was restructured into a person-period dataset, 

with each case corresponding to a (start, stop] interval of time between assessments (Singer 

and Willett, 2003). Apathy and depression scores, as well as if the participant had developed 

dementia at that point, were allowed to vary between intervals. To adjust for non-independent 

observations, a participant-specific cluster variance was added as a term in the model. 

C-statistics were used to assess the goodness-of-fit or classification accuracy of each 

model, and range from 0.5 (chance classification) to 1.0 (perfect classification) (Harrell et al., 

1996). In all models, Efron's method was used to approximate partial likelihoods for tied 

cases, variance inflation factors for covariates < 10, indicating minimal multicollinearity 

(Yoo et al., 2014), and proportionality of hazards verified by non-significant variable- and 
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model-level scaled Schoenfeld residual tests (Therneau and Grambsch, 2000). Due to skewed 

distributions, depression scores were transformed using the natural logarithm in both datasets, 

as were apathy scores in RUN DMC. Cases with partially missing data in SCANS were 

excluded on a list-wise basis (Model 1: n = 3; Model 2: n = 2). 

6.3. Results 

Demographic characteristics of SCANS and RUN DMC are summarized and compared in 

Table 3. Participants in SCANS had a higher burden of vascular disease compared to those in 

RUN DMC, evidenced by a greater proportion of hypertension and hyperlipidemia. 

Consistent with this, participants in SCANS showed lower IADL scores, indicating more 

impairment in activities of daily living. 

 

Table 3. Characteristics of participants included in SCANS and RUN DMC. 

 
SCANS (n = 121) RUN DMC (n = 352) P 

Age 70.0 (9.7) 69.1 (8.2) 0.123 

Sex, Female (%) 43 (35.5) 142 (40.3) 0.41 

Education, 

Low/Medium/High 

56 (46.7)/43 (35.8)/21 

(17.5) 

34 (9.7)/198 (56.2)/120 

(34.1) 

<0.001 

Hypertension (%) 112 (92.6) 283 (80.4) 0.003 

Diabetes (%) 22 (18.2) 52 (14.8) 0.575 

Hypercholesterolemia (%) 104 (86.0) 175 (49.7) <0.001 

Smoking, Never/Ex/Current 48 (39.7)/49 (40.5)/24 

(19.8) 

103 (29.3)/205 (58.2)/44 

(12.5) 

0.003 

BMI 27.0 (4.9) 27.8 (4.5) 0.023 

MMSE 27.5 (2.7) 28.0 (2.2) 0.099 

IADL 7.4 (1.2) 7.7 (1.0) <0.001 

 

6.3.1. Baseline characteristics of participants who developed dementia 

Follow-up data on progression to dementia was available for all participants. In SCANS, 24 

of 121 participants (19.8%) developed dementia, while in RUN DMC, 38 of 352 participants 

(10.8%) developed dementia. Comparisons between individuals who developed dementia and 

those dementia-free, at baseline, are shown in Table 4. In both datasets, participants with 
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dementia were characterized by higher apathy scale scores, but did not differ in depression 

scores. 

 

Table 4. Baseline characteristics of participants who developed all-cause dementia. 

 SCANS RUN DMC 

 Dementia 

(n = 24) 

No 

dementia 

(n = 97) 

P Dementia 

(n = 38) 

No 

dementia (n 

= 314) 

P 

Age 72.1 (10.5) 69.5 (9.5) 0.189 78.5 (4.5) 68.0 (7.8) <0.001 

Sex, Female (%) 5 (20.8) 38 (39.2) 0.149 26 (68.4) 130 (41.4) 0.322 

Education, 

Low/Medium/High 

12 

(52.2)/11 

(47.8)/0 

(0.0) 

44 

(45.4)/32 

(33.0)/21 

(21.6) 

0.043 9 (23.7)/23 

(60.5)/6 

(15.8) 

25 (8.0)/175 

(55.7)/114 

(36.3) 

0.002 

Hypertension (%) 23 (95.8) 89 (91.8) 0.804 30 (78.9) 253 (80.6) 0.982 

Diabetes (%) 7 (29.2) 15 (15.5) 0.207 8 (22.2) 44 (14.6) 0.342 

Hypercholesterolemia 

(%) 

23 (95.8) 81 (83.5) 0.219 27 (75.0) 148 (49.2) 0.006 

Smoking, 

Never/Ex/Current 

9 (37.5)/9 

(37.5)/6 

(25.0) 

39 

(40.2)/40 

(41.2)/18 

(18.6) 

0.777 8 (21.1)/23 

(60.5)/7 

(18.4) 

95 

(30.3)/182 

(58.0)/37 

(11.8) 

0.331 

BMI 25.6 (5.7) 27.3 (4.6) 0.032 26.6 (5.9) 28.0 (4.3) 0.218 

Apathy 3.6 (1.7) 2.8 (1.7) 0.046 35.6 (11.6) 26.6 (7.0) <0.001 

Depression 6.4 (6.0) 5.5 (5.1) 0.527 10.3 (7.4) 8.6 (7.6) 0.142 

MMSE 24.9 (3.8) 28.2 (1.8) <0.001 24.3 (3.5) 28.5 (1.4) <0.001 

PS index -2.0 (0.4) -0.8 (0.8) <0.001 -1.9 (0.5) -1.2 (0.7) <0.001 

IADL 6.4 (2.0) 7.7 (0.7) <0.001 6.2 (2.1) 7.9 (0.5) <0.001 

 

6.3.2. Longitudinal cohort characteristics 

In SCANS, 104 participants attended at least one follow-up assessment over the 5-year 

course of the study. Comparisons of baseline characteristics between the 104 individuals and 

the 17 individuals who only attended one assessment are shown in Table 5. 20 of the 

individuals in the longitudinal cohort developed dementia (19.2%). Individuals who only 

attended the baseline assessment were older and more cognitively impaired, but did not differ 

with regards to apathy and depression scores or dementia prevalence. 
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Table 5. Characteristics of participants with longitudinal data in SCANS. 

 
Only attended baseline (n 

= 17) 

Longitudinal cohort (n = 

104) P 

Age 74.9 (8.0) 69.2 (9.8) 0.015 

Sex, Female (%) 7 (41.2) 36 (34.6) 0.802 

Education, 

Low/Medium/High 

12 (70.6)/4 (23.5)/1 (5.9) 44 (42.7)/39 (37.9)/20 

(19.4) 

0.091 

Hypertension (%) 16 (94.1) 96 (92.3) 1.000 

Diabetes (%) 5 (29.4) 17 (16.3) 0.339 

Hypercholesterolemia (%) 15 (88.2) 89 (85.6) 1.000 

Smoking, Never/Ex/Current 9 (52.9)/6 (35.3)/2 (11.8) 39 (37.5)/43 (41.3)/22 

(21.2) 

0.436 

BMI 27.7 (3.3) 26.9 (5.1) 0.327 

Dementia 4 (23.5) 20 (19.2) 0.933 

Apathy 3.0 (1.6) 2.9 (1.8) 0.982 

Depression 4.9 (5.0) 5.8 (5.4) 0.500 

MMSE 25.6 (3.1) 27.8 (2.5) <0.001 

PS index -1.3 (1.0) -0.9 (0.9) 0.074 

IADL 6.9 (1.7) 7.5 (1.1) 0.075 

 

 

6.3.3. Multivariate Cox regression analyses 

The results of all multivariate Cox regressions are shown in Table 6. Model 1, which 

evaluated baseline apathy and depression scores in predicting dementia in both datasets, 

showed that higher apathy scores were associated with an increased dementia risk in SCANS, 

as were log-transformed apathy scores in RUN DMC, even after controlling for age, 

education, and PS. In contrast, log-transformed depression scores in both datasets were not 

associated with dementia. 
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Table 6. Multivariate Cox regression models predicting all-cause dementia. 

 SCANS RUN DMC 

 HR 95% CI P HR 95% CI P 

Model 1 C = 0.904 

(0.022) 

  C = 0.914 

(0.019) 

  

Apathy 1.49 1.05-2.11 0.024 5.64 1.38-23.03 0.016 

Depression 1.18 0.59-2.37 0.638 0.92 0.65-1.32 0.664 

Age 1.07 1.00-1.14 0.047 1.17 1.11-1.23 <0.001 

Education 0.92 0.42-2.03 0.844 0.68 0.39-1.18 0.166 

PS 0.03 0.01-0.12 <0.001 0.27 0.13-0.54 <0.001 

Model 2 C = 0.937 

(0.027) 

     

Apathy 1.53 1.08-2.17 0.017    

Depression 0.65 0.10-4.38 0.654    

Age 1.21 1.02-1.45 0.033    

Education 4.00 1.50-10.70 0.006    

PS 0.00 0.00-0.03 <0.001    

Note. Model 1 tests apathy and depression at baseline, whilst Model 2 tests longitudinal 

change in apathy and depression scores. 

 

 

To evaluate whether the addition of apathy increased the utility of these models for 

predicting dementia, apathy was removed from the model, which was then re-run using only 

depression, age, education, and PS as covariates. Since this alternative model was nested 

within Model 1, both models could be compared using likelihood ratio tests. These revealed 

that the inclusion of apathy led to improved model fit in both SCANS (χ2=5.30, P=0.021) and 

RUN DMC (χ2=5.67, P=0.017). 

Results in Model 1 were consistent for Model 2, which analyzed longitudinal apathy 

and depression in SCANS. Increasing apathy over time was associated with a greater 

dementia risk, but not depression. C-statistics for all tested models were excellent (C > 0.90). 

In order to better illustrate the impact of apathy and depression on dementia risk, 

Model 1 was re-run using median apathy and depression scores. Covariate-adjusted Kaplan-
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Meier survival curves visually demonstrated that higher apathy scores were consistently 

associated with a greater dementia risk over time in both SCANS and RUN DMC (Figure 

1A), while depression scales showed more mixed results (Figure 1B). 

6.4. Discussion 

In two independent cohorts of SVD patients, we showed that higher baseline apathy scores, 

as well as increasing apathy over time, were associated with an increased dementia risk. In 

contrast, baseline depression scores, as well as change in depression, did not predict 

dementia, highlighting the importance of distinguishing between these symptoms. The 

relationship between apathy and dementia remained even after controlling for age, education, 

and cognition, which are well-established risk factors for dementia (Barnes et al., 2009). 

Furthermore, the addition of apathy to a model with terms for age, education, and cognition 

led to a better model fit. This suggests that apathy may have some utility in building 

predictive models for dementia, and can still be useful clinically even after a detailed 

cognitive assessment. These results support the hypothesis that apathy, but not depression, 

may be a prodromal symptom of dementia in patients with SVD. 

A major strength of the study was that our findings were replicated in two 

independent cohorts, which were recruited at different centers, had differing levels of SVD 

pathology, and were assessed using different measures of apathy and depression. SCANS, by 

virtue of its inclusion criteria, had a higher burden of SVD pathology when compared to 

RUN DMC. This was reflected in a higher proportion of vascular risk factors such as 

hypertension and hyperlipidemia, as well as more severe impairment in activities of daily 

living. This may explain why the prevalence of dementia was nearly double in SCANS 

compared to RUN DMC (19.8% vs 10.8%) despite similar dementia criteria and follow-up 

durations. The fact that our findings converged in these two different populations, with RUN 

DMC representing a more general population with mild SVD and SCANS representing 

symptomatic patients with more advanced SVD, suggests that these results may be 

generalizable to individuals with a broad range of pathology. 

Our results, at first glance, appear to diverge with recent findings from the Prevention 

of Dementia by Intensive Vascular Care (PreDIVA) trial, which showed that apathy and 

depression, assessed by an abbreviated form of the GDS, predicted incident dementia in a 

large sample of community-dwelling individuals (van Dalen et al., 2018b). The investigators, 

however, found that the associations between depression and dementia were largely driven by 

the GDS item that assessed memory complaints. After removal of that item from the 
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calculation of depression scores, which we have done a priori, this association was no longer 

significant. Furthermore, the authors also found that an interaction between apathy and a 

history of stroke predicted incident dementia. This interaction may partially have been driven 

by SVD patients with lacunar stroke, which was explored in our study. Our results therefore 

converge with those in the PreDIVA trial, and may also partially contextualize their findings 

regarding individuals with cerebrovascular disease. 

These findings may also clarify why there are inconsistent reports of associations 

between late-life depression or depressive symptoms and dementia risk (Byers and Yaffe, 

2011). Clinical scales that assess depressive symptoms may also assess apathy, as evidenced 

by motivation-related questions on the GDS and CESD, the depression scales used in our 

study. These apathy items may be a factor underlying the relationship between depressive 

symptoms and dementia in the elderly. This is an important consideration for future studies 

that utilize clinical scales for measuring depression. We found that the removal of apathy-

related items from longer depression scales (> 20 items) is unlikely to have a serious effect 

on internal consistency (Hollocks et al., 2015), suggesting that removing these items is a 

valid approach for assessing a more 'pure' depression construct. It is important to note that 

this only applies to depressive symptoms, rather than depressive syndromes, which may 

include apathy items by definition (American Psychiatric Association, 2013). 

The number of people living with dementia worldwide has been projected to triple by 

2050 (Prince et al., 2013), making the issue of early diagnosis and intervention increasingly 

important. Recent evidence suggests that late-life cognitive functioning can be maintained or 

improved by targeting modifiable factors such as cardiovascular risk, physical activity, and 

diet (Ngandu et al., 2015). Our results support the notion that measuring apathy may be 

clinically useful as a non-invasive, inexpensive, and easily implementable method for 

identifying patients at-risk for developing dementia (van Dalen et al., 2018b). Additionally, 

our longitudinal findings suggest that continued monitoring of apathy may be a way to assess 

changes in dementia risk. Individuals identified as having high apathy, or increasing apathy 

over time, could be sent for a more detailed neurocognitive or neuropathological 

examination, or be selected for behavioral or pharmacological interventions. 

Our work also suggests that another area for future research lies in identifying the 

mechanisms linking apathy to dementia onset. Recent neuroimaging work in sporadic and 

genetic SVD suggests that similar white matter networks underlie motivation and normal 

cognitive function (Le Heron et al., 2018b; Tay et al., 2019). It is possible that 

cerebrovascular pathology that damages these networks leads to a prodromal form of 
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dementia which presents with apathy and cognitive deficits. Over time, SVD-related 

pathology increases (van Leijsen et al., 2019), which is paralleled by increasing cognitive and 

motivational impairment (Brodaty et al., 2013), eventually becoming severe enough to meet 

criteria for a dementia state. This implies that apathy is not a risk factor for dementia per se, 

but rather, an early symptom of white matter network damage. 

Treating apathy is an important issue in itself, as apathy is detrimental to quality of 

life (Hollocks et al., 2015). Preliminary evidence suggests that post-stroke patients treated 

with escitalopram, a selective serotonin reuptake inhibitor, were three times less likely to 

develop apathy a year after the stroke when compared to those on placebo (Mikami et al., 

2013a), although longer follow-up with a larger sample is necessary. Treating apathy in 

individuals who have already developed it is another major concern, with recent 

pharmacological and behavioral interventions showing mixed or negative results (Skidmore 

et al., 2015; Starkstein et al., 2016). There is an urgent need for high-quality randomized 

controlled trials to address this. 

It is possible that dropout rates in SCANS may have affected longitudinal estimates of 

apathy. By definition, apathy is a reduction in motivation, and highly apathetic individuals 

may have been more likely to not attend sessions after the initial baseline visit. As a 

consequence of this, the 103 individuals included in the longitudinal analysis may have been 

a self-selecting population of individuals with lower apathy scores overall. This may have led 

to HRs that were systematic underestimates of the true association between apathy and 

dementia risk. 

Finally, it should be noted that all dementia cases were defined on the basis of clinical 

results, rather than on the basis of any neuropathological examination. This is a limitation in 

the sense that we cannot claim to have found an association between apathy and 

pathologically confirmed dementia. We have, however, found an association between apathy 

and a clinical presentation consistent with dementia. This suggests that our results may be 

clinically applicable, and as stated before, that apathy may be used as a rapid screening tool 

to select individuals who will later undergo a more detailed examination for a pathologically 

confirmed diagnosis of dementia. This can then be combined with an accurate diagnosis of 

dementia subtype (e.g., pure vascular dementia, Alzheimer's dementia, etc.) to gauge the true 

association between apathy and dementia. 

Our work has shown that apathy, but not depression, predicted all-cause dementia in 

SVD, supporting the hypothesis that apathy is a prodromal symptom of dementia. This shows 

that distinguishing between these symptoms has important implications for clinical practice 
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and research. It also suggests that apathy may be useful in predictive models of dementia, and 

that the assessment of apathy over time may be informative for dementia diagnosis. Finally, it 

paves the way for future studies attempting to understand the mechanisms underlying apathy, 

vascular cognitive impairment, and dementia. 
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Chapter 7: General conclusion 

7.1. Main findings 

This thesis has attempted to explore the underlying neurobiology of apathy and depression in 

patients with cerebral small vessel disease (SVD). First, we reviewed the constructs of apathy 

and depression, highlighting their similarities and differences, as well as the impact of apathy 

on functional outcomes (Chapter 1). We also present a network neuroscience framework for 

investigating apathy in cerebrovascular disease (Chapter 1). The primary cohort used in the 

thesis, the Radboud University Nijmegen Diffusion tensor and Magnetic resonance Cohort 

(RUN DMC), was then briefly introduced (Chapter 2). We then explored the structural basis 

of potential network changes by examining grey and white matter correlates of apathy and 

depression (Chapter 3). We found that apathy was associated with focal grey matter damage 

and distributed white matter damage, whilst depression was associated with focal grey matter 

change in the basal ganglia and not associated with white matter change. We then showed 

that apathy, but not depression, was associated with large-scale white matter network 

damage, and that SVD pathology led to apathy through network damage (Chapter 4). 

Following our finding that depression was associated with grey matter changes, we then 

explored longitudinal correlations between regional grey matter volumes and the anhedonic, 

somatic, and mood symptoms of depression (Chapter 5). We found that these symptoms of 

depression had partially overlapping but distinct correlates, possibly explaining the 

differential expression of these symptoms. was associated with increased dementia risk in 

SVD patients, possibly owing to these different neurobiological etiologies (Chapter 6). 

One consistent finding throughout this work was the contrast between focal grey 

matter changes and distributed white matter changes. Apathy and depression may be 

associated with the former, but apathy alone appears to be associated with the latter. This is 

likely a reflection of the pathological processes underlying SVD, which can result in both 

focal infarcts or diffuse white matter changes (Wardlaw et al., 2019). With regards to focal 

grey matter damage, apathy appeared to be associated with primarily subcortical and 

prefrontal changes (Chapter 3), consistent with known lacunar infarct distributions and 

associated cortical thinning (Wardlaw et al., 2013; Duering et al., 2015). In contrast, 

depression was associated with atrophy in temporal structures (Chapter 5), which are 

generally spared from the effects of SVD (Lambert et al., 2016). This may well suggest a 

different etiology for depression in SVD that can be partially attributable to other pathologies 
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such as Alzheimer's disease, which is known to be co-morbid with cerebrovascular pathology 

(Power et al., 2018). 

In contrast to this, apathy alone was found to be associated with widespread white 

matter damage, suggesting that goal-directed behaviour is supported by large-scale integrated 

networks (Chapters 3 and 4). It is therefore unlikely that any one area underlies motivation, 

although some structures may serve as important hubs for communication (Chapter 3). This 

shares a common basis with executive deficits often seen in severe SVD (Lawrence et al., 

2014), and accordingly, we found that apathy was associated with an increased dementia risk 

(Chapter 6). 

7.2. Neurocognitive mechanisms underlying apathy 

One consistent finding across studies was a relationship between apathy and cognitive 

function. Voxel-based grey matter and white matter changes depended in part on general 

cognitive function (Chapter 3), as did white matter subnetworks (Chapter 4). Accordingly, 

apathy was associated with conversion to dementia (Chapter 6). 

If damage to distinct networks leads to the behavioral symptoms of apathy, then they 

may do so through defined neurocognitive mechanisms. For the purposes of this review, we 

will consider apathy to be a deficit in the cognitive processes underlying effort-based 

decision making due to the conceptual simplicity and operationalisability of this approach (Le 

Heron et al., 2018a, 2019). This view suggests that behavior can be thought of in three 

distinct phases: 

1. Deciding whether to pursue a behavior; 

2. Performing and persisting with the behavior; and 

3. Evaluating and learning the costs and benefits of a behavior. 

7.2.1. Reward-based decision-making 

Prior to any behavior occurring, an individual must decide whether or not that behavior is 

worth engaging in. This engages networks that underlie cost-benefit valuation, as rewards and 

effort costs must be appraised. Apathy may therefore be the result of reductions in reward 

sensitivity, which is typically operationalized as an tendency to respond in proportion to the 

value of a rewarding stimulus during a behavioral task. 

Recent evidence suggests that reduced incentivization to rewards may underlie apathy 

in cerebrovascular disease. Decreased reward-related task speeding is associated with apathy 
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in chronic stroke patients (Rochat et al., 2013). Similarly, CADASIL patients with apathy 

rejected more opportunities to exert effort during a task, and were slower in making effort-

related decisions, when compared to patients without apathy (Le Heron et al., 2018b). This 

was paralleled by reduced FA in the anterior cingulum, white matter of the OFC, and the 

anterior internal capsule. Rejection of opportunities to exert effort suggests that apathy in 

these patients reflects a devaluation of rewards, while the increased decision-making time and 

concurrent white matter damage may reflect disrupted network efficiency. This is directly 

supported by a study of white matter subnetworks in sporadic SVD patients, which showed 

that the global efficiency of a reward-related subnetwork was more correlated with apathy 

than motor or visual subnetworks (Lisiecka-Ford et al., 2018). The reward-related 

subnetwork included nodes such as ACC, OFC, and putamen (including ventral striatum), 

among others (Lisiecka-Ford et al., 2018). Changes in the connectivity between these 

frontostriatal structures was also associated with apathy in our study, which used an 

independent cohort of sporadic SVD patients (Chapter 3). 

This collective evidence suggests a direct pathway between cerebrovascular 

pathology, network change, cognitive deficits, and apathy. First, neuropathological changes 

lead to frontostriatal network damage, either through cortical or subcortical infarcts that lead 

to secondary neurodegenerative cascades down white matter tracts (Duering et al., 2015; 

Schaapsmeerders et al., 2016), or through frontal WMH, which represent areas of ischemic 

demyelination and axonal loss (Gouw et al., 2011). Both infarcts and WMH may also lead to 

incident cortical atrophy in connected regions (Duering et al., 2015; Lambert et al., 2016). 

The progressive destruction or disruption of these frontal white matter tracts may lead to a 

decrease in the efficiency of information transfer along these tracts, making the integration of 

reward-related signals between structures such as ACC, ventral striatum, and PFC (Haber and 

Knutson, 2010) more difficult. In turn, these can lead to a decrease in the perceived 

rewarding value of a stimulus, manifesting as a reduction in GDB and apathy. 

These changes may be modulated by dopaminergic neurons, which originate in the 

ventral tegmental area and substantia nigra and project to the ventral striatum, ACC, 

ventromedial PFC, and OFC (Chong and Husain, 2016). Dopamine may promote approach 

behaviors by attributing incentive salience to rewarding stimuli (Chong and Husain, 2016). 

Accordingly, case studies show that the administration of dopamine agonists alleviates apathy 

in stroke patients. These include bromocriptine (Catsman-Berrevoets and Harskamp, 1988; 

Barrett, 1991; Parks et al., 1992; Marin et al., 1995; Powell et al., 1996), and ropinirole 

(Kohno et al., 2010; Adam et al., 2013). 



 

127 

 

Changes in dopaminergic neurotransmission may explain associations between apathy 

and inflammation (Eurelings et al., 2015; Chen et al., 2018). Systemic inflammation can be 

estimated by circulating plasma C-reactive protein (CRP) levels, which are elevated 

following an inflammatory response (Pepys and Baltz, 1983). Elevated acute phase CRP 

levels are associated with increasing post-stroke apathy over six months (Chen et al., 2018). 

Similarly, apathy was correlated with higher CRP levels over several years in community-

dwelling individuals (Eurelings et al., 2015). This relationship may be driven by 

inflammation-associated decreases in dopamine synthesis and availability, reducing neural 

responses toward rewarding stimuli (Felger and Treadway, 2017). It should be noted, 

however, that inflammation itself is related to incident vascular disease (Gounis et al., 2015), 

meaning that the relationship between inflammatory markers and apathy may additionally be 

mediated by other factors such as WMH (Yao et al., 2019). Clearly dissociating the direct 

and indirect effects of inflammation on apathy is an important topic for future research. 

7.2.2. Attentional control during behavior 

After a behavior is initiated, it must be sustained until completion to achieve the desired 

outcome. This involves not only monitoring current outcomes of a task, but also comparing 

the potential value of completing the current task to others which are potentially more 

rewarding. If this is the case, then it is possible that patients with apathy may also show 

deficits in cognitive flexibility. 

There is some indirect evidence to support this hypothesis. Apathy is associated with 

worse performance on composite cognitive indices that include the Trail Making Test Part B 

(TMT-B) (Reitan, 1958) in stroke and SVD (Lohner et al., 2017; Douven et al., 2018a). 

TMT-B performance requires individuals to draw a line between alternating numbers and 

letters in consecutive order, and completion requires the maintenance of a long sequence of 

behaviors as well as the ability to switch between two contexts (numbers and letters) (Kortte 

et al., 2002). The reduction in TMT-B performance may reflect patient difficulties in 

completing a long sequence of behaviors and in switching between contexts, leading to 

difficulties in sustaining motivation through a task and switching to other, more rewarding 

tasks. These associations, however, are indirect, as TMT-B performance in both studies was 

included in a larger composite index that included other measures of executive functioning 

(Lohner et al., 2017; Douven et al., 2018a). Although these composite cognitive indices are 

robust and easy to interpret, variance in the measures used to construct them may obfuscate 

true associations. For instance, another study that measured executive function using the 



 

128 

 

TMT-B found no correlation between executive function and apathy scores (Brodaty et al., 

2005). This may be due to that executive function index including a color-form sorting task, 

which may assess different cognitive abilities than TMT-B (Tamkin and Kunce, 1982). The 

inclusion of both, therefore, may have dampened associations with apathy. More direct 

testing of these constructs, as well as careful consideration towards tests used to create 

composite cognitive indices, is required before any definitive conclusions can be drawn. 

The deficits discussed above may be due to impairment of the fronto-parietal and 

cingulo-opercular networks, two intrinsic connectivity networks derived from resting-state 

functional MRI data (Seeley et al., 2007). The fronto-parietal network includes the 

dorsolateral PFC, inferior parietal lobule, intraparietal sulcus, precuneus, and middle 

cingulate, while the cingulo-opercular network includes anterior PFC, anterior insula, dorsal 

ACC, and thalamus (Seeley et al., 2007). Both networks have been implicated in attentional 

control processes, with fronto-parietal network initiating and adjusting behavior on a task-to-

task basis, while the cingulo-opercular network provides stable maintenance of task goals 

over the entire behavioral period (Dosenbach et al., 2008). 

In Chapter 4, we showed that apathy in SVD patients was associated with altered 

connectivity in white matter networks that have a similar topological organization to these 

intrinsic connectivity networks. Furthermore, after controlling for general cognitive 

functioning, which included measures of attention, we found that apathy was no longer 

associated with these particular white matter networks. Although no direct analysis of 

resting-state functional connectivity was conducted, structural connectivity has been shown 

to constrain functional connectivity in the human brain (Honey et al., 2009). Therefore, 

structural damage to the nodes or edges supporting the fronto-parietal and cingulo-opercular 

networks may result in attentional deficits. These make the maintenance of task-related GDB 

more difficult, manifesting as apathy. It should be noted that all current evidence that 

supports this notion is indirect, highlighting the need for more focused, theory-driven 

network analyses of apathy. 

7.2.3. Learning and remembering rewarding behaviors 

After a behavior has been completed, outcomes reveal whether the behavior was a success or 

failure. The magnitude of the success or failure, in relation to the effort exerted to complete 

the task, informs individuals of how worthwhile the task was. Deficits in learning this action-

outcome contingency may impair individuals from learning rewarding behaviors, which may 

manifest as apathy (Husain and Roiser, 2018). 
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Evidence, in general, supports an association between apathy and impaired measures 

of verbal recall and recognition in stroke and SVD (Brodaty et al., 2005; Lohner et al., 2017; 

Fishman et al., 2018b), although some studies do not find this association (Douven et al., 

2018a). In accordance with this, apathy has been found to be associated with reduced FA in 

the fornix, the major output tract of the hippocampus, in sporadic SVD (Hollocks et al., 

2015), as well as with reduced nodal degree in left hippocampus in ischemic stroke patients 

(Yang et al., 2015a). These reductions in white matter connectivity may be related to grey 

matter changes in the hippocampus, which were associated with apathy in our research 

(Chapter 3). 

Apathy has also been documented as a comorbidity with amnesia following thalamic 

stroke (Guberman and Stuss, 1983; Catsman-Berrevoets and Harskamp, 1988; Carrera and 

Bogousslavsky, 2006). This may be due to the reciprocal connections between the thalamus 

and the hippocampus via the mammillo-thalamic tract, which includes the fornix (Carlesimo 

et al., 2011). Interpreting this is not straightforward, however, as disrupted white matter 

connectivity between the thalamus and PFC may also underlie apathy (Chapter 4). Future 

research could clarify whether thalamic-hippocampal connectivity plays a role in learning 

and memory deficits associated with apathy by examining tract-specific white matter 

microstructure in patients with vascular thalamic amnesia and apathy. 

The evidence to support a link between cerebrovascular disease, network damage, 

learning and memory deficits, and apathy therefore remains inconclusive. These associations 

may be further complicated by depression and Alzheimer's disease pathology in elderly 

patients, both of which are associated with medial temporal lobe changes that may interact 

with cerebrovascular pathology to produce age-related changes in learning and memory 

(Geerlings et al., 2008; van Leijsen et al., 2019). More focused behavioral experiments, 

together with more rigorous sample population phenotyping, may be able to better clarify 

these relationships. 

Links between these components of GDB, underlying cognitive functions, and 

potential subnetworks that may support these are shown in Figure 1. It is important to note 

that the way we have presented these is, overall, a simplified view of how neurobiological 

networks might be related to apathetic behaviors. It is unlikely that one single subnetwork or 

connection underlies a specific behavior or cognition, as this is quite contrary to the notion of 

networks in general. For instance, attention must be sustained throughout all phases of 

behavior, as a lack of attention may impair decision-making and learning. Instead, we have 

highlighted specific cognitive functions that may be particularly important to a certain phase 
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of behavior, and have related that to properties of established functional networks that may be 

disrupted in cerebrovascular disease. Interactions between these networks, which could be 

mediated by GDB-related hub nodes, may well play a role in determining multiple 

components of behavior. 

 

 

Figure 1. Potential relationships between subnetworks, cognition, and components of goal-

directed behavior. Behavior may be thought of in three temporal phases: before, during, and 

after. Prior to behavior occurring, individuals must evaluate whether a behavior is worth 

engaging in. After a decision has been made, the behavior must be initiated and sustained. 

Once the behavior has been completed, the outcome of the behavior influences future 

decision-making. These may be supported by specific subnetworks implicated in incentive 

salience, executive control, and learning and memory. Some nodes may be part of multiple 

subnetworks, such as the anterior cingulate cortex (ACC) and ventral striatum (VS), as these 

may be hub nodes for goal-directed behavior. For simplicity, only one subnetwork has been 

listed per phase of behavior, though it should be noted that multiple subnetworks with more 

nodes than the ones listed may be involved. 
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7.3. Overlap between apathy and depression 

Another consistent finding throughout the work was the high correlation between apathy and 

depression (Chapter 2). Despite these high correlations, both were not synonymous, and 

showed diverging correlations with other clinical variables (Chapter 2), neurobiology 

(Chapter 3 and 4), and all-cause dementia (Chapter 6). This supports the notion that the two 

may appear behaviourally similar, and can present co-morbidly, but are different entities with 

distinct neurobiological underpinnings (Chapter 1). 

From the results presented in this thesis, apathy appears to be more strongly related to 

white matter microstructure and network function in SVD (Chapters 3 and 4). Although both 

are associated with grey matter change, particularly in the striatum, apathy appears to be 

associated with more distributed grey matter changes across the cortex (Chapter 3). Results 

from Chapter 5 suggest that depression may be associated with weak effects across the cortex 

that disappear after applying a correction for multiple comparisons. 

What symptoms underlie the relationship between apathy and depression? Although 

anhedonia may appear the most similar to apathy from a theoretical standpoint (Chapter 1), 

this only received partial empirical support, as apathy was also moderately correlated with 

somatic and mood symptoms in 2011 (Chapter 5). This suggests that apathy, as measured 

using the AES, may actually be correlated with a more diverse range of depressive 

symptomatology than initially thought. It may be possible that this is partly driven by similar 

patterns of grey matter change (Chapters 3 and 5), or by further behavioural similarities, such 

as somatic symptoms possibly appearing similarly to apathy. Further investigation of these 

constructs, especially those that use different scales to measure apathy and depressive 

symptoms, is warranted. 

7.4. Limitations 

One important limitation in our data was our lack of reliable longitudinal apathy 

measurements in the RUN DMC study. As previously mentioned, the clinician-rated Apathy 

Evaluation Scale (AES), the measure of apathy in that population, was not administered at 

baseline, and was administered by a different rater between two follow-ups (2011 and 2015). 

This precluded a longitudinal analysis of change in RUN DMC, which limited our ability to 

assess whether apathy was associated with progressive neurobiological change, such as 

transneuronal degeneration or cortical atrophy. It is therefore left to future studies to establish 
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longitudinal network changes associated with apathy in SVD and cerebrovascular disease 

more generally. 

Another limitation was that we could not directly test functional network change 

associated with apathy or depression. Although functional networks assessed using 

techniques such as perfusion MRI or functional MRI are important for understanding 

cognitive function (Seeley et al., 2007), these measures are inherently confounded in patients 

with cerebrovascular disease. For instance, changes to perfusion in certain areas could reflect 

cerebrovascular reactivity in addition to changes in neural activity (Lythgoe et al., 1999). 

This may have consequences for the reproducibility of functional networks, which has been 

shown in SVD (Lawrence et al., 2018a). Therefore, conclusions about functional changes 

associated with apathy and depression must be made cautiously until the effects of 

cerebrovascular pathology on measures of brain function are better understood. 

7.5. Future directions 

The network-based view of apathy that we have proposed, along with the potential cognitive 

mechanisms that may link network damage to apathy, provide a fruitful basis for future 

hypotheses. Validation of the specific hub nodes and subnetworks underlying apathy in 

stroke and SVD (Yang et al., 2015a; Tay et al., 2019) may lead to a better understanding of 

the structural and functional connections and subnetworks that are impaired in individuals 

with specific cerebrovascular pathologies. These pathologies may include the under-explored 

areas of post-stroke neuroinflammation or the ischemic penumbra, which may play roles in 

exacerbating or alleviating apathy. Moreover, a clearer understanding of specific subnetwork 

connectivity related to GDB could lead to a priori investigations using networks of interest 

(e.g., Lisiecka-Ford et al., 2018). These subnetworks could also be examined in the context of 

other comorbidities, such as depression and fatigue (Douven et al., 2017b), in order to 

identify common underlying mechanisms. 

Studies on the trajectories of post-stroke apathy could investigate whether functional 

diaschisis underlies apathy in the acute phase. Longitudinal research could examine whether 

patients who recovery from apathy show corresponding improvements in intrahemispheric 

connectivity or vicariation, and if individuals who develop apathy show transneuronal 

degeneration in connected cortical regions. These network pathologies should help explain 

why apathy develops after lesions in certain areas. 

Further inquiry into the validity of the presented neurocognitive framework for apathy 

is needed, as well as the subnetworks that support these cognitive functions. This could 
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involve behavioral paradigms or cognitive tests that assess specific constructs that may be 

related to apathy, with additional consideration to any comorbidities that a patient might 

show. Doing so may identify which components of GDB are disrupted in patients with 

cerebrovascular disease. Additionally, work on how some cognitive mechanisms may be 

related to multiple phases of GDB is needed, as this evidence is largely absent. 

All of these lines of research could lead to targeted interventions for treating apathy. 

For instance, an apathetic patient with damage in a defined apathy-related subnetwork might 

be treated with rTMS, which requires a priori knowledge of which nodes may be disrupted. 

Such rTMS approaches have some preliminary support (Mitaki et al., 2016; Sasaki et al., 

2017). Alternatively, subnetwork-specific neurotransmitter deficits could be addressed with 

pharmacological agents, such as dopamine agonists, which lead to a reinstatement of the 

related component of GDB (Adam et al., 2013). Treating apathy may not only lead to 

improvements in patient functional outcomes, but also lower the risk of future vascular 

disease. 

This network-based hypothesis of apathy may also be applied to other conditions. For 

instance, different neurodegenerative diseases target distinct large-scale networks (Seeley et 

al., 2009), making it reasonable to assume that disease-specific patterns of network damage 

could lead to different symptoms of apathy. This could lead to a better understanding of the 

nature of motivational impairments in specific diseases, which could assist in clinical 

phenotyping. Findings could then be integrated across diseases to identify core networks 

underlying goal-directed behavior. 

Other areas of progress that may be made in the understanding of apathy in 

cerebrovascular disease include more focused testing of specific cognitive and behavioral 

deficits seen. This can take the form of quantitative behavioral tasks that assess 

reinforcement-related speeding or effort-based decision making (Rochat et al., 2013; Le 

Heron et al., 2018b), which may then be assessed in the context of structural network 

changes. This may lead to a better understanding of the cognitive deficits that specifically 

underlie apathy given a certain pathology, such as white matter hyperintensities (WMH) or 

focal infarction in a certain network. 

Understanding the neurobiology of depression could be greatly improved by adopting 

a dimensional approach and examining specific symptoms (Cuthbert and Insel, 2013). This 

approach, as we have shown, reveals similar and distinct neuroanatomical correlates (Chapter 

5). This methodological approach could help clarify what types of neurobiological changes 

are characteristic of depression in general, as well as changes that may underlie some 
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symptoms, but not others. Specific attention to anhedonia in particular may also prove useful 

in understanding apathy. As others have suggested, similar behavioural presentations may 

reflect a common underlying neurobiology (Husain and Roiser, 2018). 

This could then pave the way for targeted treatment approaches. For example, these 

approaches could include repetitive transcranial magnetic stimulation (rTMS), a non-invasive 

therapy that involves magnetic stimulation over specific sites. rTMS applied over medial 

prefrontal cortex has already shown some efficacy in improving symptoms of apathy in 

stroke patients (Mitaki et al., 2016; Sasaki et al., 2017). These could be applied to other sites 

depending on symptomatic presentations, leading to patient-centric care. A similar principle 

could be applied to the use of pharmacological agents that target specific neurotransmitter 

systems. 

Apathy in itself may be a useful prognostic marker for individuals with vascular 

cognitive impairment. Given that the inclusion of apathy leads to a quantitative improvement 

in predictive models of dementia over and above the effects of age, cognition, and education 

(Chapter 6), we can surmise that it may be a useful marker to identify individuals at-risk for 

developing more severe cognitive deficits. This may then be used to select patients for more 

detailed neuropathological testing, or be used to identify candidates for clinical trials. 

Finally, understanding the neurobiological basis of apathy could lead to insights into 

the nature of goal-directed behaviour. This has important societal implications, as motivation 

influences important facets of life such as job-seeking and life satisfaction (Vansteenkiste et 

al., 2005). On a deeper level, goal-directed behaviour is a reflection on volitional behavior, 

which contrasts with autonomic or reflexive behaviors (Passingham et al., 2010). 

Understanding the neural basis of volitional behavior could well have important implications 

for decision-making, free will, and consciousness, which are key elements of the human 

experience. 
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Abbreviations 

AAL = Automated Anatomical Labeling 

ACC = anterior cingulate cortex 

ACG = anterior cingulate gyrus 

ADL = activities of daily living 

AES = Apathy Evaluation Scale 

AIC = Akaike Information Criterion 

ANCOVA = analysis of covariance 

ANTs = Advanced Normalization Tools 

BET = Brain Extraction Toolkit 

BIC = Bayesian Information Criterion 

BMI = body mass index 

BMIPB = Brain Injury and Rehabilitation Trust Memory and Information 

BOLD = blood oxygen level dependent 

BP = blood pressure 

BV = brain volume 

CADASIL = Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 

Leukoencephalopathy 

CESD = Center for Epidemiologic Studies Depression Scale 

CFA = confirmatory factor analysis 

CRP = C-reactive protein 

CSF = cerebrospinal fluid 

DSM = Diagnostic and Statistical Manual of Mental Disorders 

DSM-IV-TR = Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text 

Revision 

DSM-5 = Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 

DSST = Digit Symbol Substitution Task 

DTI = diffusion tensor imaging 

DWI = diffusion-weighted imaging 

EPI = echo planar imaging 

FA = fractional anisotropy 

FLAIR = fluid-attenuated inversion recovery 

FLIRT = FMRIB's Linear Image Registration Tool 
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GABA = gamma aminobutyric acid 

GDB = goal-directed behaviour 

GDS = Geriatric Depression Scale 

GM = grey matter 

HR = hazard ratio 

IADL = instrumental activities of daily living 

ICD-10-CM = International Classification of Diseases, Tenth Revision, Clinical Modification 

IFG = inferior frontal gyrus 

LDST = Letter Digit Symbol Task 

LI = lacunar infarct 

MCAR = missing completely at random 

MCG = middle cingulate gyrus 

MD = mean diffusivity 

MMSE = Mini-Mental State Examination 

MNI = Montreal Neurological Institute 

MPRAGE = magnetization-prepared rapid gradient echo 

MRI = magnetic resonance imaging 

NAA = N-acetylaspartate 

NBS = network-based statistic 

OFC = orbitofrontal cortex 

OR = odds ratio 

PCA = principal component analysis 

PFC = prefrontal cortex 

PreCG = precentral gyrus 

PreDIVA = Prevention of Dementia by Intensive Vascular Care 

PPMST = Paper and Pencil Memory Scanning Task 

PS = processing speed 

rCBF = regional cerebral blood flow 

RMSEA = root mean square error of approximation 

ROI = region of interest 

rTMS = repetitive transcranial magnetic stimulation 

RUN DMC = Radboud University Nijmegen Diffusion tensor and Magnetic resonance 

Cohort 

SAS = Starkstein Apathy Scale 
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SCANS = St. George's Cognition And Neuroimaging in Stroke 

SD = standard deviation 

SEM = structural equation modeling 

SFG = superior frontal gyrus 

SMA = supplementary motor area 

SPM = Statistical Parametric Mapping 

SVD = small vessel disease 

T1w = T1-weighted 

TBSS = tract-based spatial statistics 

TE = echo time 

TI = inversion time 

TIV = total intracranial volume 

TMT-B = Trail Making Test, Part B 

TR = repetition time 

TPM = tissue probability map 

VBM = voxel-based morphometry 

WM = white matter 

WMH = white matter hyperintensities 
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