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Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale 

quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in 

understanding dynamics in liquid suspensions, soft materials, cells and tissues. In DDM, image sequences are analyzed via a 

combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means 

of light scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a) simplicity of 

setup; (b) possibility of removing static contributions along the optical path; (c) power of simultaneous different microscopy 

contrast mechanisms; (d) flexibility of choosing an analysis region, analogous to a scattering volume. For many questions, 

DDM has also advantages compared to segmentation/tracking approaches and to correlation techniques like Particle Image 

Velocimetry. The very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous 

colloids, has lately been used to probe a variety of other complex fluids and biological systems with many different imaging 

methods, including dark-field, differential interference contrast, wide-field, light-sheet, and confocal microscopy. The 

number of adopting groups is rapidly increasing and so are the applications.  Here, we briefly recall the working principles of 

DDM, we highlight its advantages and limitations, we outline recent experimental breakthroughs, and we provide a 

perspective on future challenges and directions. DDM can become a standard primary tool in every laboratory equipped with 

a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a system. 

 

I. INTRODUCTION 

For about 50 years, since the development of affordable laboratory laser sources, it has been possible to perform dynamic 

light scattering (DLS) experiments. This technique enabled a huge swathe of discoveries: from the universal behavior of 

mixtures close to criticality, to the general properties of motion of macromolecules such as polymers and colloidal particles 1–

3. DLS uses optics (selecting one scattering angle, collecting light in the far field) to probe a particular scattering wave-vector 

in the system: the temporal autocorrelation of the intensity of the scattered light characterizes the timescale(s) over which the 

sample restructures itself on the length scale (wave-length) that corresponds to the chosen wave-vector. By acquiring data on 

a range of scattering angles (typically in a series of measurements, at the expense of longer experimental durations), one can 

recover in principle a very complete picture of relaxation processes across the different length scales. 

Only more recently, in the last 20 years or so, computers and digitization of images made it feasible to capture time-lapse 

sequences and, from these, to extract quantitative parameters of the dynamics. In the context that we focus on here, i.e. soft 

matter and biological systems, these movies are typically recorded through an optical microscope setup. Two broad 
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approaches have been either (i) segmenting the images to extract features, and then building trajectories of these features over 

time, or (ii) performing correlations across the timecourse, to extract velocity maps. The first approach is typical both in 

biology experiments 4–6 and in “microrheology”7 (tracer particles can be used as local probes of the mechanics in a material).  

The second approach is typical in fluid dynamics8 and in experiments probing displacement fields9,10. The progress both in 

computational power, and even more strikingly in digital image sensors, has led microscopy approaches to become the 

conventional experimental tool. Furthermore, many samples of interest are available only in very small volumes, or as thin 

quasi two-dimensional materials (e.g. cell cultures), and these are not compatible with traditional dynamic light scattering 

approaches. However, this move to “real space” analysis poses serious challenges:  segmentation is very often difficult and 

computationally expensive, it requires case-by-case fine tuning, it is sometimes just impossible to automate, as in dense 

systems; the correlation-based approaches wash out many types of motion (e.g. random fluctuations and displacements) and 

can therefore intrinsically be deployed only in very selected situations.  

In 2008, a revolutionary method was proposed by Cerbino and Trappe11: Differential Dynamic Microscopy (DDM).   The 

power of this method as a modern alternative to DLS was immediately explained, but the impact and the range of discovery 

made possible by this approach became clear in this last decade, and are still being explored by an increasing number of 

adopters. Implementing DDM does not require advanced high-end optics; consumer-led demand for its two underlying 

technologies (computing & digital cameras) is rapidly propelling it forwards in terms of speed and power; with small 

variations DDM has been shown to extract a whole set of parameters typical of the traditional approaches outlined above, and 

more. 

This Perspective aims to capture the research made possible by DDM in its first decade, including mostly very recent 

developments, and to suggest untapped potential areas where it could be fruitful. We particularly highlight the questions and 

challenges posed by systems with “multiscale dynamics”, of which there are many important examples both in complex 

fluids (e.g. gel networks) and biology (e.g. cell tissues). To make a very concrete example from living systems, one wants to 

isolate intracellular motions from the motions of cells themselves, and even if focusing on cell motion it is often the case that 

the character of motion changes across a time or length scale, as persistence is lost (e.g. in run and tumble bacterial motility 

dynamics). These are typical scenarios where the DDM approach is ideal.  

 

II. BASIC PRINCIPLES OF DDM 

We do not replicate here the detailed treatment of image formation through the optical system; this is necessary for a full 

understanding of the DDM signal output. Readers interested in details and early applications of the technique can refer to 

Refs. 12 and 13, where DDM was discussed in the framework of Near Field Scattering and Digital Fourier Microscopy, 

respectively. We take here a slightly more empirical approach, which most adopters are likely to find sufficient for a “first 

pass” to quantify dynamics in their system;  readers can trust this is rigorous by referring to several cases where there has 

been in-depth analysis. The key of the DDM analysis is the differential signal ݀ሺݎԦ, ,଴ݐ ߬ሻ	obtained by subtracting two images 

acquired at different time, the first one at time ݐ଴ and the second one at time ݐ଴ ൅ ߬ 

݀ሺݎԦ, ,଴ݐ ߬ሻ ൌ ,Ԧݎሺܫ ଴ݐ ൅ ߬ሻ െ ,Ԧݎሺܫ  ሺ1ሻ																													଴ሻݐ
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where, besides its time dependence, ܫ encodes the image intensity as a function of the position ݎԦ ൌ ሺݔ,  ሻ in the microscopeݕ

image and the optical axis is along z. By calculating the spatial 2D Fourier transform ݀ሺݍԦ, ,଴ݐ ߬ሻ	of the differential signal and 

squaring it we obtain the so-called image structure function 

,Ԧݍሺܦ ߬ሻ ൌ 〈|݀ሺݍԦ, ,଴ݐ ߬ሻ|ଶ〉	௧బ																															ሺ2ሻ	

where ݍԦ ൌ ሺݍ௫, -଴ is made for stationary or quasiݐ ௬ሻ is the wave-vector in the Fourier space and where the average overݍ

stationary dynamics to increase the statistical accuracy of the image structure function (we discuss in Section IIIG an 

interesting application of DDM, in which such average is not performed). A wave-vector q corresponds in real-space to a 

sinusoidal modulation with wavelength ߨ2=߉/q. In this article, we will refer to ߉ as the “length scale” probed by a particular 

q-mode. 

It can be shown11,13–17 that the image structure function takes the general form 

,Ԧݍሺܦ ߬ሻ ൌ Ԧሻሾ1ݍሺܣ െ ݂ሺݍԦ, ߬ሻሿ ൅  ሺ3ሻ																			Ԧሻݍሺܤ

where the function ݂ሺݍԦ, ߬ሻ is known as the normalized “Intermediate Scattering Function”, as commonly measured in DLS 

experiments1. This function ݂ሺݍԦ, ߬ሻ	encodes the cumulative probability that the displacement of a material element over time 

τ will lie within a distance equal to the length scale L encoded by q. Thus ݂ሺݍԦ, ߬ሻ	characterises how quickly structure is “lost” 

over a length scale ~1/q; it will decay to zero for samples that lose memory of their structure, over sufficiently long times, for 

instance because of diffusion or flow. In general, the greater q, the faster the decay of ݂ሺݍԦ, ߬ሻ, and the less time to reach 

saturation level in ܦሺݍԦ, ߬ሻ.  ܣሺݍԦሻ and ܤሺݍԦሻ are functions related to the static scattering properties of the sample, to the details 

of the imaging process optics and to the noise in the acquisition. In many cases, they are assumed to be merely fitting 

parameters even though with proper treatment important information can be extracted from their study. For instance, in Refs. 
18–20 quantitative static scattering information was successfully extracted from the DDM analysis.  

The dynamics of many systems are completely captured by ݂ሺݍԦ, ߬ሻ	and the basic principle, and power, of DDM is how an 

image stack can be processed and related to ݂ሺݍԦ, ߬ሻ	 as in eq. 3. For completeness, we should mention that systems where 

݂ሺݍԦ, ߬ሻ		fails to be a useful characterization do exist, for example non-stationary evolving systems must be handled differently 

and we touch on some of these later. In a vast number of cases, where the system has dynamics around thermodynamic 

equilibrium, or where there is a well-defined stationary state, then ݂ሺݍԦ, ߬ሻ is very meaningful. In practice, how to proceed 

from eq. 3 depends on how much is already known about the character of dynamics in the given experiment, and on the 

source of contrast in the images. In the following, unless specified we will consider systems for which the image structure 

function ܦሺݍԦ, ߬ሻ	is azimuthally isotropic in the ݍԦ plane. We can thus make use of the azimuthal average ܦሺݍ, ߬ሻ of the image 

structure function, and note that eq. 3 remains valid provided that we replace everywhere ݍԦ with its magnitude ݍ=ඥݍ௫ଶ ൅  . ௬ଶݍ

From this process, we typically have D calculated for N/2 Fourier modes, from an image of N xN pixels.  

The simplest scenario, and one where DDM is being widely adopted, also in teaching laboratories21, is in experiments where 

either tracer particles are added into a material for characterizing its dynamics, or where through fluorescent tagging it is 

possible to achieve an image in which the signal is related to a known structural element (e.g. an organelle in a cell, or the 

whole cell in the context of cell motility). This is then analogous to microrheology by particle tracking7,22, but DDM has 

several advantages (and many of the same limitations). In this scenario, the intermediate scattering function is determined by 

the motion of the tracers (or fluorescent species) and the image “restructures” over a given length scale in a time related to 
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how long it takes these tracers to move that typical distance.  The average motion of tracers can be represented by their mean 

square displacement ൏ ଶሺ߬ሻݎ ൐ൌ൏ ଶሺ߬ሻݔ ൅ ଶሺ߬ሻݕ ൅ ଶሺ߬ሻݖ ൐ൌ൏ ଶሺ߬ሻୄݔ ൅ ଶሺ߬ሻݖ ൐ and, for small wave-vectors and in 

conditions for which the distribution of displacements is Gaussian, we have: 

,ݍሺܦ ߬ሻ ൌ ሻݍሺܣ ቈ1 െ ݁ି
௤మ
ସ ழ௫఼

మሺఛሻவ቉ ൅  ሺ4ሻ														.	ሻݍሺܤ

The mean square displacement follows well known physics in the case of diffusion, ൏ ଶሺ߬ሻୄݔ ൐ൌ  is the ்ܦ where) ்߬ܦ4

translational diffusion coefficient), which leads to 

,ݍሺܦ ߬ሻ ൌ ሻൣ1ݍሺܣ െ ݁ି஽೅௤
మఛ൧ ൅  ሺ5ሻ													.		ሻݍሺܤ

In the simplest Newtonian fluid case (Figure 1), ݂ሺݍ, ߬ሻ is just the exponential function in eq. 5.  In general, the time 

dependence of ܦሺݍ, ߬ሻ for objects in non-Newtonian (i.e. viscoelastic) or hindered motion backgrounds is more complex but 

can be fitted with an appropriate function of  τ  (the same for all q although with possibly q-dependent coefficients) from 

which the fluid parameters can be measured. If the sample is Newtonian, one measures the diffusion coefficient (and thus 

particle size, or fluid viscosity, if the other is known); if the dynamics is sub-diffusive or super-diffusive with a power law 

dependency one recovers the power law exponent23. 

In more complex scenarios, one perhaps has much less knowledge of the dynamics in the system, and/or less control over the 

source of the optical contrast in the images.  DDM is extremely powerful in this scenario too: an empirical approach to the 

data is possible, for example fitting ݂ሺݍ, ߬ሻ	as an exponential, the underlying assumption being that one searches for a typical 

timescale associated with restructuring over a certain length scale, but without the prior knowledge of the underlying process. 

This approach can provide the general character of the dynamics in the system. As an example: imagine a suspension of 

particles, which might be passive (undergoing Brownian motion), or active (moving with ballistic motion). In Brownian 

motion  〈ୄݔଶሺ߬ሻ〉 ∼  whereas for ballistic motion, such as bacteria swimming in run phase with velocity v, we have ,்߬ܦ

〈ଶሺ߬ሻୄݔ〉 ∼ ሺ߬ݒሻଶ.    For each q, the fitting of ܦሺݍ, ߬ሻ	will provide a different characteristic timescale ߬௖ሺݍሻ. Dimensional 

analysis of these two relations of mean square displacement (given that 〈ୄݔଶሺ߬ሻ〉 ∼   ଶ) leads to an expectation thatݍ/1

߬௖ሺݍሻ~1/ݍଶ for Brownian motion, and  ߬௖ሺݍሻ~1/ݍ
 for ballistic motion. This is indeed observed in DDM signals, analyzed in 

this empirical fashion, showing that the type of motion in the system can be extracted in the absence of a detailed model. 

Note, in this particular example of bacterial motility, a detailed model for f(q, τ) was known from DLS1 and has been applied 

in DDM experiments24; with such a detailed model one has the correct form of f(q, τ), in this case as a function of the velocity 

v, which can therefore be measured exactly. 

In common with particle tracking and DLS approaches, one must obviously be aware of confinement effects, for example the 

increased drag from walls. The finite focal depth also sets a maximum timescale over which sample dynamics can be 

observed (similarly to the fact that particle tracks would have a typical maximum length, also from finite depth of focus). 

This has been explored systematically in confocal microscopy18 and in light-sheet25 DDM experiments. 
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Similar to DLS, DDM is based on a model for the intermediate scattering functions. When such model is obvious, as for 

monodisperse or slightly polydisperse colloidal suspensions, quantitative extraction of model parameters is immediate and 

does not require any user input. On the contrary, when more than one model is to be evaluated for appropriateness and/or 

validity, the analysis might require some additional user intervention. In particular, we stress that whilst fitting and validation 

represent crucial steps in DDM analysis, for these aspects one can benefit directly from decades of previous experience of 

DLS users. 

  

  

 
FIG. 1. DDM analysis of colloidal particles shows they undergo Brownian motion and measures the diffusion coefficient. Movies 
of 4670 frames are taken with a Grasshopper CMOS camera, at 181 fps, with a 10x objective NA=0.3 where 1 camera pixel corresponds 
to 0.584um). The particles are carboxylated polystyrene particles, radius a=250nm, Bangs Laboratories Inc., Bangs Lot# 4127, Lot# 
L071015F, solid 0.1% (1 in 100 from 10% bottle), in water.  (a) The Intermediate Scattering Function D(q,) is shown for all modes, and 
for lag times up to a quarter of the total movie time. This information is “cut” by Lag time (b) and by scattering vector (c).  In (c), the 

D(q,) data is fitted (solid lines) with exponential curves as in eq. 5, yielding a relaxation time ߬௖ሺݍሻ ൌ  ଶ.  The timescales areݍܦ/1
shown in (d) in log-log scales, highlighting the inverse square dependence on the wave-vector, characteristic of Brownian motion.   The 
dashed line in (d) is the theoretical prediction ߬௖ሺݍሻ ൌ ்ܦ ଶ,  with Stokes-Einstein diffusion coefficientݍ்ܦ/1 ൌ ݇஻ܶ/ሺ6ܽߟߨሻ, T = 
25oC, = 0.89 Pa.s  (giving 0.98 =்ܦ m2/s; Fitting that same dataset gives ்ܦ,௘௫௣ = 0.988 േ 0.002 m2/s). 
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III. RECENT ADVANCES 

In this section, we will discuss a few selected applications of DDM in which it was either used to perform otherwise 

difficult - if not impossible - experiments, or combined with other ideas to prove new experimental approaches with a notable 

future potential. In selecting the material for presentation, we have restricted ourselves to very recent literature (last three 

years), where the standard DDM approach outlined above is sometimes extended in various ways. Various earlier research 

using DDM, which follows the standard approach summarized above,  is overviewed in Refs 12 and 13. 

A. Viscosity of deeply supercooled water and its coupling to molecular diffusion 

A typical application of DDM is to determine the diffusion constant of colloidal particles dispersed in a liquid medium 
11,16,17,26,27. If the viscosity of the host liquid is known, DDM behaves as a powerful particle sizing tool, in that it enables one 

determining accurately the size of the colloidal particles. On the other hand, if the particle size is known, DDM can be used to 

perform precise viscometry experiments. The latter has been shown elegantly in an application by Caupin and coworkers, 

who used DDM to probe the viscosity of super-cooled liquid water close to the limit of homogeneous crystallization28. Since 

water is a poor glass-former, measuring its viscosity in the super-cooled state is a challenging feat that requires avoiding 

crystallization. DDM was used to probe the diffusivity of tracer polystyrene spheres with radius ܽ ൌ 175 േ 3	nm. Curves of 

the correlation time ߬ as a function of the wave-vector q were found to be well fitted by ߬ሺݍሻ ൌ ሺݍ்ܦଶሻିଵ for all 

temperatures. The Authors were thus able to estimate the super-cooled water viscosity in the deeply quenched regime (down 

to -34 °C). 

The data obtained by Caupin and coworkers show clearly that the only model that describes the water viscosity for all the 

available temperature values is the power-law viscosity model (it appears to be superior to other possible models such as the 

Arrhenius, the parabolic or the Vogel–Fulcher–Tammann models), see Fig. 2. In addition, measuring the water viscosity in 

such wide temperature range proved to be crucial to test validity of the Stokes–Einstein and Stokes–Einstein–Debye 

relations. In analogy with molecular glass-formers, the Stokes-Einstein relation, linking viscosity to translational diffusion, is 

violated whereas the link between viscosity and rotational motion, expressed by the Stokes-Einstein-Debye relation, seems to 

remain robust. This new insight into the behavior of supercooled water was made possible by DDM, which provided 

unprecedented access to viscosity at very low temperatures, where previous attempts failed. In fact, the main advantages of 

DDM over particle tracking in these experiments are that: a) by using small tracer particles, DDM can make the overall 

length of an experiment shorter than the time over which water solidifies; b) by using several particles (many more than 

could possibly be tracked; we estimate from information in that article that a few thousand particles are in the field of view) it 

provides a statistically significant, user-independent determination of the dynamics. We will further comment in Section V 

about possible future developments in this area. 
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FIG. 2. Viscosity of supercooled water. Purple circles from Ref.28, blue squares from Ref.29, green diamonds from Ref.30, and red triangles 
are from Ref.31. (Left) Arrhenius plot, showing an apparent activation energy increasing from 1,560 to 6,410 K upon cooling (solid lines). 
(Left Center) Parabolic law, with best fit (χ2 =14.2) parameters T0 =305.15 K, η0 =2.323 10−6 Pa s, J=1,112 K, Ea =1,769 K. (Center Right) 
Vogel–Fulcher–Tammann (VFT) representation, with best fit (χ2 =10.5) parameters T0 =168.9 K, η0 =4.44210−5 Pa sand B= 2.288. (Right) 
Power law representation, with best fit (χ2 =0.91) parameters Ts = 225.66 ± 0.18 K, η0 = (1.3788 ± 0.0026)10−4 Pa s, and γ = 1.6438 ± 
0.0052. (Top) The normalized residuals ൫ߟ௘௫௣ െ  ,௙௜௧ are the experimental and fitted viscosity, respectivelyߟ ௘௫௣ andߟ ௘௫௣, whereߪ/௙௜௧൯ߟ
and ߪ௘௫௣ is the experimental uncertainty (1 standard deviation). Note that the vertical scale of Top Right is different. [Reproduced with 
permission from A. Dehaoui, B. Issenmann, and F. Caupin, Proc. Natl. Acad. Sci. 112, 12020 (2015), Copyright 2015 National Academy 
of Sciences] 

 

B. Diffusive dynamics of nanoparticles in ultra-confined media 

Two features of DDM for which DLS is easily outperformed in applications are the insensitivity to static features within the 

sample and the immediate access to a large number of two-dimensional wave-vectors ݍԦ ൌ ሺݍ௫,  ௬ሻ. In Ref. 32, both of theseݍ

features were exploited to investigate the dynamics of nanoparticles diffusing in dense arrays of nanoposts arranged on a 

square lattice. Owing to the use of image subtractions, DDM analysis made the nanoposts invisible and brought to light the 

dynamics of the confined nanoparticles, which was inspected for possible anisotropy. Remarkably, even for the most severe 

confinement conditions, isotropic dynamics was always observed, with intermediate scattering functions well-described by 

stretched exponential relaxation. The diffusion coefficient extracted from DDM was found to decrease with increasing 

confinement (Fig. 3). 
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FIG. 3. Confinement affects colloidal dynamics. Relative diffusivity DT/D0 as a function of (a) void fraction θ and confinement 
parameters (b) ߞൌdNP/S and (c) λ=dNP/P for aqueous dispersions of nanoparticles of diameter, where S is the minimum spacing between 
posts and P is the diagonal spacing between posts. Data obtained with DDM are plotted for particles with diameter dNP=400 nm (black 
circles), 300 nm (red triangles) and 200 nm (blue diamonds). The solid and dashed black lines in (c) indicate the centerline approximation 
and the cross sectional averaging expressions for diffusion in slit pores (see Eqs. 3 and 4 in Ref. 32). Adapted from Ref. 32 with permission 
from The Royal Society of Chemistry. 
 
 

Such a decrease was tested against available models for hindered diffusion, which incorporate steric hindrance and 

hydrodynamic interactions. The experimental data were found to be in agreement with two models, specifically the so-called 

centerline approximation and cross-sectional averaging (further details about the models can be found in Ref. 32), which make 

predictions for the dependence of the diffusivity on the ratio λ=dNP/P between the diameter dNP of the nanoparticles and the 

diagonal spacing P between posts. Such agreement suggests that both steric restrictions and hydrodynamic drag may be the 

cause of the decreased diffusivity of nanoparticles in post arrays. 

C. Anomalous dynamics of intruders in a crowded environment of mobile obstacles 

Studying the dynamics of small particles of diameter s coexisting with larger particles of diameter l is not an easy task. 

Video particle tracking33 is difficult in a crowded environment, especially if we are interested in tracking the small particles. 

Dynamic light scattering (DLS)1  does not allow to distinguish the two species in an easy way. A possibility would be to tag 

the particles with different fluorophores, and using Fluorescence Correlation Spectroscopy (FCS)34 to selectively probe the 

dynamics of each species separately. However, FCS probes the dynamics only on a length scale of the order of the 

measurement volume (typically ranging from some m to a few tens of m), which is set by the convolution of the 

illumination and the detection regions. FCS can’t thus probe in a simple way the rich, multi-scale dynamics expected in 

mixtures of colloids of different size. For these reasons, Sentjabrskaja et al.35  used confocal DDM (ConDDM)18 on binary 

mixtures of particles that were tagged with different fluorophores. The selectivity of the fluorescent labelling together with 

the depth selection capabilities of the confocal detection scheme enabled probing the multi-scale dynamics of these dense 

colloidal suspensions by focusing on the contributions of each species as a function of the volume fraction and of the size 

ratio ߜ ൌ  .௟ߪ/௦ߪ

http://dx.doi.org/10.1063/1.5001027
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FIG. 4. Dynamics of small spheres (intruders) moving in a matrix of larger spheres. Intermediate scattering functions f(q,t) extracted 

by ConDDM for the small spheres as a function of the delay time t. The size ratio  is below (a and c) and around (b and d) the onset of 

anomalous dynamics. Data are shown for different magnitudes of the scattering wave vector q and total volume fraction  (as indicated). 

Arrows indicate increasing  and increasing q accordingly. For  =0.18 and all and q, an initial decay is observed that can be associated 

with the Brownian motion of small particles within the voids of the large particles matrix. This decay becomes increasingly slower for 

increasing  (Fig. 4a) and decreasing q, which corresponds to an increasing length scale (Fig. 4c). A -dependent intermediate plateau and 

a final decay to zero at longer times can be also appreciated (Fig. 4a). The intermediate plateau, which mirrors the temporary trapping of 

particles at the length scale 1/q, has a height that increases progressively with increasing , suggesting a percolation-like scenario with 

voids becoming smaller and particle localization stronger. The observed final decay to zero is a consequence of the long-time diffusive 

escape of the particles. The picture changes dramatically for larger size ratios (b and d). When the total volume fraction  is larger than 

0.60, a logarithmic decay of f(q,t) over three decades in time is observed, in particular for ql=3.5, which corresponds to a probed length 

scale of about 2l (Fig. 4b).  [Material reproduced under a Creative Commons Attribution 4.0 International License from T. Sentjabrskaja, 

E. Zaccarelli, C. De Michele, F. Sciortino, P. Tartaglia, T. Voigtmann, S.U. Egelhaaf, and M. Laurati, Nat. Commun. 7, 11133 (2016)] 

Their results, complemented with numerical simulations, show that a critical size asymmetry exists at which the onset of 

anomalous collective transport of the small particles is observed, as mirrored by a logarithmic decay of the intermediate 

scattering function at length scales of the order of the size of the large particles (Fig. 4). Interestingly, the matrix mobility is 

crucial for the observed anomalous behavior. The larger and slower particles, when present at sufficiently large 

concentration, act as a slowly rearranging, glassy matrix. The continuous evolution of the channels in the mobile matrix alter 

in a profound way the dynamics of the small particles due to the thermal motion of large particles, a situation that can be 

found for a wide range of phenomena ranging from glassy systems to cell biology35. 

D. Active diffusion and advection in the Drosophila ooplasm result from the interplay of the actin and 

microtubule cytoskeletons 
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FIG. 5. In the Drosophila oocyte, the motion of cytoplasmic F-actin directly correlates with the motion of endogenous vesicles. 

(a) Image of a cell, expressing the F-actin fluorescent binding protein UTRN.GFP (left panel). DIC image of the same oocyte (right panel). 

n = nucleus (b) Distribution of F-actin (stained with TRITC-phalloidin) in a fixed egg chamber. (b’) High magnification of cytoplasmic 

actin filaments (white box in b). (c) UTRN.GFP expressing living egg chamber. UTRN.GFP labels the same structures as phalloidin in 

fixed samples (compare to b). (c’) High magnification of cytoplasmic actin filaments in a UTRN.GFP expressing living oocyte (white box 

in C). (d) Intermediate scattering functions f(q,t) obtained from Con-DMM analysis for different wave vectors q in the range 2 μm-1 < q < 

8 μm-1. Continuous lines are best fit to the prediction of a simple advection-diffusion model (e) Decorrelation rates 1(q) (solid triangles) 

and 2(q) (open triangles) obtained from the fit of f(q,t) in (d) with a function describing a double decay with rates 1(q) and 2(q). 

Dashed line constitutes the best fit of 1(q) to a linear function 1(q) = vactq, whereas the continuous line is obtained from the fit of 2(q) to 

a quadratic function 2(q)=Dactq
2. (f) Mean speeds of F-actin (vact), plotted against vesicle mean speeds (vves) for different cells. The 

continuous line represents vact = vves. (g) Diffusion coefficients of F-actin (Dact) plotted against diffusion coefficients of vesicles (Dves) for 

different cells. The continuous line corresponds to Dact = 2 Dves. h) Dact (green triangles) and Dves (black boxes) as a function of the 

respective mean speeds vact and vves. Horizontal solid lines represent Dact,nf and Dves,nf, obtained from colchicine treated cells, showing no 

persistent motion (green <-> F-actin, black <–> vesicles). Dashed areas correspond to mean value ± sd. These values agree remarkably well 

with the extrapolated behavior for v→0 of the experimental data obtained from control cells (dashed lines). The horizontal dotted line 

corresponds to the estimated value of the thermal diffusion coefficient DTH of the vesicles, characterizing their spontaneous fluctuation in 

the absence of any active process. Scale bars represent 10 μm. [Material reproduced under a CC-BY-NC-ND 4.0 International license from 

M. Drechsler, F. Giavazzi, R. Cerbino, and I.M. Palacios, bioRxiv 98590 (2017)] 

The previous example made clear how using different fluorophores for selected objects enables a selective probing of the 

dynamics in crowded environments. More in general, the use of different contrast mechanisms can be beneficial in probing 

the multi-scale dynamics in a complex environment, such as for instance the cell interior36. A significant step in this direction 

was taken by Drechsler, Giavazzi et al.37, who combined ConDDM and Differential Interference Contrast DDM (DIC-DDM) 

to probe selectively inside a Drosophila oocyte the dynamics of cytoskeletal filamentous actin (F-actin) and endogenous 

vesicles, respectively. During oogenesis, the oocyte is characterized by a combination of different transport mechanisms, 

including directed transport by cytoplasmic flows38 and active diffusion39.  
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While Particle Image Velocimetry (PIV) can be used to assess the directed transport of both vesicles and actin by the flow, 

quantifying diffusion is more difficult, especially for small (below the diffraction limits) actin filaments in a crowded 

environment. By contrast, DDM experiments were able to show that two cytoskeletal structures, microtubules and actin are 

responsible of the cytoplasmic flow and of active diffusion, respectively. In particular, ConDDM analysis of the cytoskeletal 

F-actin revealed that the motility of cytoplasmic actin filaments directly correlates with vesicle motion both in the presence 

and in the absence of cytoplasmic flow (Fig 5). While this result is somehow obvious for the directed transport, in that both 

vesicles and actin are transported by the cytoplasmic streaming (Fig 5, panel f), way less obvious is the fact that the diffusion 

coefficient of actin is always twice the diffusion coefficient of the vesicles (Fig 5, panel g). This last result is compatible with 

the hypothesis that cytoplasmic f-actin is the source of active diffusion of the vesicles in the Drosophila oocyte. However, it 

is also found that active diffusion is reduced in oocytes lacking microtubules, which suggests that, behind their well-

recognized role in intracellular transport and cytoplasmic streaming, microtubules substantially contribute to active diffusion.  

E. Multi-scale DDM to characterize synchronization of motile cilia 

Another example of biomedical application of DDM is the recent study of collective dynamics in motile cilia. These cilia 

have a periodic (frequencies between a few Hz and 50 Hz) and well-defined beating pattern, and a key open question in many 

systems is how multiple cilia coordinate their beating for an efficient macroscopic fluid transport, particularly across many 

cells. Feriani et al. 40 have investigated airway tissues, where in healthy physiological conditions the neighboring cilia act as 

phase-locked oscillators, forming a so-called “metachronal wave” that allows a continuous clearance of mucus from the 

lungs. The dynamics of cilia, the metachronal wave, and the resulting directed flow that allows mucus clearance can all be 

observed and measured in animal sections. However, those experiments do not allow for the type of control (cell-cell 

position, distance, orientation) that would enable tuning of interactions and thus to highlight the dominant mechanisms 

underpinning synchronization. These complications were tackled by Feriani et al. 40 with the use of “air-liquid interface” 

cultures where the cells grow on a solid permeable membrane support, and are exposed to air on their apical side. A typical 

image taken across such a culture is shown in Fig.6a. Due to the supporting membrane, the cell bodies, and the 

heterogeneities in the mucus layer, it is obvious that segmenting cilia in images like this would be incredibly challenging.  

For the questions of temporal and spatial coherence scales of cilia dynamics, the segmentation of cilia is not required. DDM 

is hence an ideal technique here: it intrinsically removes static signal in the image, and it returns space-resolved dynamics.  

A DDM analysis of the full-field returns ܦሺݍ, ߬ሻ	signals that have a clear frequency and a damping, Fig. 6b. In airway cells, 

this cilia beating frequency (CBF) is approximately 15 Hz, and is a property that could be easily probed by many different 

analysis approaches. The damping in the ܦሺݍ, ߬ሻ	 data can be caused by two effects: the loss of temporal coherence in each 

cilium (i.e. each cilium is not a perfect oscillator, and we can imagine a stochastic drift in its phase); or, the averaging over 

regions that are poorly phase locked and have slightly different CBF.  We can think of these respectively as the 

synchronization scales in time and space.  An extension of the standard DDM approach, which was named “multiscale 

DDM” was proposed to pick up separately the temporal and spatial scales of synchronization. Multiscale DDM consists of 

performing DDM over a whole series of different windows (tilings of the image). The authors typically choose tiles of log-

spaced size, ranging from the close to full frame down to a small tile, the choice of which limits the minimum wave-vector 

that can be compared across tiles (in Fig.6c, from 480x480 down to 8x8 pixels).  Then, separate ܦሺݍ, ߬ሻ௧௜௟௘	 signals are 
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obtained, and can be compared.   In the particular case of cilia, see Fig.5c, the spatial scale of phase locking reflects itself in a 

strong dependence of the decay times as a function of the tile size. What the analysis is picking up is the fact that locally 

(within 20 microns, i.e. inside the smallest tiles) cilia are strongly coupled and thus completely phase-locked, whereas at 

larger distances this locking is progressively lost, so large tiles are averaging over multiple poorly phase-locked dynamics. 

The resulting decay time has a sigmoidal transition as a function of tile size, highlighting a spatial scale, which in the 

conditions of Fig. 6c corresponds to a few cell diameters. This is consistent with what is known from coupling mediated by 

fluid flow41. Generally, in a system that has a spatial scale for collective or coherent motion, one expects that scale to emerge 

as a feature when comparing the dynamics across tile sizes.  We note that again, like the basic DDM approach, multiscale 

DDM remains a user-free automated analysis (once a general choice is made for a family of dynamics to be searched/fitted 

for). We expect multiscale DDM to be useful in other dynamically heterogeneous systems, well beyond motile cilia. 

 

F. Simultaneous characterization of rotational and translational diffusion of optically anisotropic particles 

Like DLS, which studies the fluctuations in the scattered light intensity, DDM analyses the fluctuating intensity of 

microscopy images. Generally, these fluctuations arise from refractive index fluctuations within the sample. In typical 

applications, these fluctuations are caused by the variation of the scatterers positions because of translational Brownian 

motion or other motility processes accounting for the movement of the particles centers of masses. However, rotational 

motion of optically or shape anisotropic particles also produces fluctuations in the image intensity. These fluctuations contain 

  
   

  
 
FIG. 6. Multiscale DDM can highlight the scale of dynamical spatial coherence. This approach was developed to study phase locking 
in carpets of motile cilia but has broader applicability. Images in these experiments (a) would be very difficult to segment. Instead, the 
DDM algorithm efficiently extracts D(q,) (b), shown here as a heatmap for the first hundred or so modes in the image, from each of 
which the frequency and damping of the motile cilia can be fitted.  In Multiscale-DDM, the DDM analysis is performed systematically 
on square boxes of different sizes, from the whole image down to a few pixels (the small window limits the range of wave-vectors that 
can be followed across the multiscale).  Panel (c) shows the decay time in the oscillations typically seem in (b) for full-field DDM, but 
now fixing a wave-vector and plotting as a function of the DDM window size. The inflection point of this data (corresponding to a few 
10 m in this sample) identifies a spatial scale in the system where dynamics is coherent. 40
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quantitative information about the particles rotational motion and DDM has been recently proven to be able to extract such 

information and to probe simultaneously the translational and rotational diffusivity of optically anisotropic spherical 

particles42. The experimental setup is similar to the one used for the characterization of the viscoelastic constants in nematic 

liquid crystals19 and coincides with a normal DDM setup (i.e. a microscope) equipped with two polarizing elements (i.e. a 

polarizing microscope). This variant of DDM has been thus named polarized DDM (p-DDM) and can be thought of as the 

extension to microscopy experiments of the well-known depolarized DLS (DDLS) technique, widely used for the assessment 

of the roto-translational diffusivity of anisotropic particles43. In general, the intermediate scattering function of a suspension 

of anisotropic particles exhibits a double-exponential relaxation: the two characteristic times of this relaxation are ߬ଵሺݍሻ ൌ

ሺݍ்ܦଶ ൅ ሻݍோሻିଵ and ߬ଶሺܦ6 ൌ ሺݍ்ܦଶሻିଵ, where ்ܦ and ܦோ are the translational and rotational diffusivity of the particles, 

respectively. For large wave-vectors q (the regime typically probed by DDLS) these two modes are difficult to separate and 

polarizers are used to suppress the transmitted beam and to isolate the depolarized component of the scattered light i.e. the 

one decaying with characteristic time ߬ଵሺݍሻ. By contrast, in p-DDM experiments the transmitted beam is used as a local 

oscillator and, in these conditions, both decay modes are probed and well separated (Fig. 7). p-DDM for the simultaneous 

determination of translational and rotational diffusion coefficients of optically anisotropic colloidal particles was 

demonstrated in Ref. 42, where particles with radius 185 nm were studied successfully at various volume fractions suggesting 

that p-DDM can be a valid complement to DDLS and particle tracking in determining the roto-translational motility of 

particles. It is worth noting that the determination of the rotational diffusion coefficient with particle tracking cannot be 

performed in an automated fashion and, in general, constitutes quite a challenging feat. By contrast, p-DDM does not require 

any arbitrary input from users and is thus less subjected to bias. Compared with DDLS, p-DDM may more easily probe 

rotational motion of seed particles in laminar or turbulent flows and provide in turn space-resolved maps of the local fluid 

vorticity. 

FIG. 7. Relaxation time as a function of the scattering wave-vector q obtained by using p-DDM (blue squares and orange circles) 

and bright-field DDM (yellow triangles) with a colloidal suspension (volume fraction 10-5) of optically anisotropic spherical 
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particles of radius 185 nm. Continuous and dashed lines are the best fitting curves to the theoretical expressions ߬ଵሺݍሻ ൌ ሺݍ்ܦଶ ൅

ሻݍோሻିଵ and ߬ଶሺܦ6 ൌ ሺݍ்ܦଶሻିଵ, respectively, where ܦ) ்ܦோሻ is the translational (rotational) diffusivity of the particles. The best estimates 

for the diffusivities obtained with p-DDM are ்ܦ ൌ 1.14 േ 0.02 μm2 s-1 and  ܦோ ൌ 25.1 േ 1.0 s-1, whereas the bright-field DDM provides  

்ܦ ൌ 1.18 േ 0.02 μm2 s-1 (dotted line) 42. 

G. Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal 

gels 

A relevant step forward in showing how DDM can be adapted to the “complex scenarios” envisioned near the end of Section 

II is represented by the work of Gao et al. 23. This work was the first to perform DDM measurements on colloidal gels, 

obtained by temperature quenching thermosensitive oil-in-water nanoemulsions prepared at volume fractions larger than the 

critical one. In this case, DDM was particularly useful to probe the multi-scale nature of dynamics during phase-separation, 

in particular the kinetic arrest of the bicontinuous structure formed by spinodal decomposition after the quench. Even though 

most of the DDM analysis performed was “standard”, this work exemplifies many of the advantages of DDM compared to 

DLS and video particle tracking (VPT): the samples are turbid, prohibiting both DLS and confocal microscopy; no probe 

particles were present, preventing traditional VPT analysis; the experiments offer both a real-space and Fourier space 

representation that provide a clearer picture of the physics associated with heterogeneous dynamics. Complex dynamics was 

observed that was found to be described by a combination of a short-time exponential decay and long-time super-diffusive 

ballistic dynamics. A very interesting result presented by Gao et al. is a time-resolved44 version of DDM, in which the 

instantaneous value |݀ሺݍԦ, ,଴ݐ ߬ሻ|ଶ of the intermediate scattering function before performing the ensemble average in Eq. 2, is 

used to probe the intermittent dynamics during gelation (Fig 8). 
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FIG. 8. Intermittent dynamics of a gelling nanoemulsion probed by time-resolved DDM. (a) |݀ሺݍԦ, ,଴ݐ ߬ሻ|ଶ is plotted at ߬= 0.09 (red), 

0.18 (green), 0.36 (blue) and 0.72 s (magenta) as a function of aging time t0. (b) Normalized distribution of |݀|ଶ  for gelling nanoemulsions 

(closed symbols) and a dilute nanoparticle suspension (open symbols) the latter exhibiting Gaussian behaviour (Solid line), whereas the 

former being non-Gaussian. The inset represents the skewness of the distributions in (b). Adapted from Ref.  23 with permission from The 

Royal Society of Chemistry. 

To this aim, the fluctuations of  |݀ሺݍԦ, ,଴ݐ ߬ሻ|ଶ at ݍ ൌ  ଴ሻ is studied at several different lag times ߬ (Fig. 8a), where qmaxݐ௠௔௫ሺݍ

is the wave-vector for which A(q) exhibits a maximum, which corresponds to the characteristic wavelength of the phase 

separating domains. Occasional excursions to high values are observed in Fig. 8a, which are linked to intermittent 

rearrangements in the gel. Further insight into the intermittent dynamics was then obtained by examining the distributions of 

|݀|ଶ  about its mean value 〈|݀|ଶ〉, which is reported in Fig. 8b together with results obtained with a dilute nanoparticle 

suspension (polystyrene beads, a=(95 ± 6) nm, 2.6 wt% in water). It can be appreciated that while the colloidal suspension 

exhibits a Gaussian distribution mirroring ergodicity, the distributions observed for the phase separating nanoemulsion 

deviates strongly from a Gaussian, as expected for intermittent dynamics that temporarily decrease correlations at short times. 

IV. ESTABLISHED POINTS OF STRENGHTS AND LIMITING FACTORS 

After almost ten years from its introduction, DDM has revealed many points of strength compared to other techniques, as 

well as some limiting factors. At a more general level, DDM represents a readily implemented technique that is extremely 

versatile and adaptable to almost any imaging system: bright-field11,16,21,45 , wide-field and confocal18,35 fluorescence26,37, 

dark-field17, phase-contrast24, DIC37, light-sheet25, reflection37 and polarized19,42  microscopy have been already used 

successfully on a variety of samples that include colloidal particles11,16,21,26,27,32,46 and aggregates47, liquid crystals19, 

proteins45, bacteria18,24,48, algae24, vesicles37, actin37, cilia40. It offers an immediate approach to the characterization of the type 

of motion from a study of the characteristic time ߬ሺݍሻ vs q, which in the most frequent cases can be used for particle sizing or 

for the determination of the swimming velocity for bacteria, algae and micro-organisms. 

In the context of microscopic dynamics probed by optical tools, compared to DLS, DDM offers a high-throughput, multi-q 

characterization of the dynamics of moving entities in a wave-vector range that extends typically down to 0.1 m-1. It can be 

set up (in bright-field) to sample a larger sample volume (plus, often, at higher concentrations because the depth of focus is 

exploited rather than the transmitted light path length) leading to much better statistics on sample dynamics for a given 

experimental sampling time. This value of the wave-vector, corresponds in aqueous samples to a scattering angle of 0.43 

degrees with a He-Ne laser source (wavelength 633 nm). This angle is one order of magnitude below the smallest scattering 

angle accessible with commercial scattering instruments (typically of the order of 10-15 degrees), which hardly can access 

smaller angles due to the presence of stray light scattered for instance from imperfections (e.g. dust, scratches, dirt,…) along 

the optical trains or in the sample cell. DDM is rather insensitive to this stray light that represents a static contribution in the 

microscope images, and is thus subtracted off with the differential analysis. In fact, this partial insensitivity means that both 

the optical quality of the surfaces of which the sample cell is made, and to some extent their cleaning, do not need to be at the 

same level as in DLS experiments. It remains however true that the sample cell should preferably contain only the sample of 

interest, since moving contaminants will likely produce a non-negligible signal in DDM experiments, like DLS. In spatially 

inhomogeneous samples, DDM can probe different fields of view (the equivalent of scattering volumes in DLS experiments), 
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which gives another important advantage over DLS, where selecting different scattering volumes is challenging and time 

consuming, when it is even possible. As far as limitations are concerned, DDM camera detectors do not yet compare with the 

performances of photomultiplier tubes and avalanche photodiodes used in DLS, neither in terms of speed nor of sensitivity to 

small signals. In this respect, it must be stressed that, at least in its homodyne configuration, DLS measures the intensity of 

the scattered light on an ideally dark background, whereas DDM analyzes the small fluctuations caused by the scattered light 

on top of the bright transmitted beam, a configuration which is more similar to the heterodyne DLS configuration. A positive 

consequence of this detection scheme is that in DDM, as well as in heterodyne DLS, the fluctuating signal of which the 

temporal correlation properties are calculated is proportional to the scattering field rather than to the scattering intensity. In 

principle, this offers an advantage for particle sizing applications where the size-dependence of the scattering intensity is 

challenging (as the particle radius to the sixth power in the Rayleigh regime), and is mitigated by working with the electric 

field. 

Compared to video particle tracking (VPT), there are three main advantages of DDM when it comes to image analysis. The 

first two relate to sample conditions, and open up new types of experiment: (i) that there is no need for segmentation of the 

images, which makes it possible to study samples where the particles are very small and (ii) no need for tracking features 

across frames, which means much denser systems can be measured. The other key advantage (iii) is that DDM requires no 

user-defined parameters once a family of fitting functions is assigned (a modest restriction on the dynamics that is searched 

for) and may be thus entirely automatic and unbiased. In particular, related to (iii), we stress the fact that VPT requires user 

choices at almost every step of the image analysis: for an object to be tagged as a particle or feature of interest, the user must 

choose for example its minimum and maximum lateral size, its minimum brightness, the maximum displacement allowed 

between two successive frames, and the particle trajectory length value below which a trajectory is discarded from the final 

analysis (these are only some of the choices that the user needs to operate). This might partially explain why VPT is mostly 

used in academic research laboratories, and has not been adopted in industrial environments where automation and 

standardization are strong requirements. In this respect, DDM might represent an interesting option, with the caveat that for 

“unsupervised” analysis one needs to be sure that the sample dynamics are purely from the phenomenon of interest (e.g. no 

“dirt”) because there is not a chance later to clean up the results. Also, VPT used properly is a very powerful technique that 

enables a complete sorting (e.g. in size or velocity) of the moving entities within a sample (e.g. a cell), whereas DDM is in 

this respect more similar to DLS in its need to invert the intermediate scattering function to obtain a probability function 

distribution (e.g. of size or velocity). For moderately polydisperse samples, a cumulant analysis such as the one used in DLS 

has been proven to be applicable42,45, and there are no barriers to employing more complex inversion procedures, as we will 

discuss further below. It is also worth mentioning that VPT may pose also some constraints on the imaging methods and/or 

on the samples. For instance, a typical ideal configuration for VPT experiments makes use of epifluorescence (or confocal) 

microscopy in order to increase signal-to-noise ratio and make the suspending fluid invisible to better track the colloidal 

particles. By contrast, since DDM effectively probes signals that are way smaller than the noise, the user has more freedom in 

the choice of the experimental parameters. 

PIV is, in our opinion, the technique that shares with DDM the largest number of similarities. It is typically performed with 

images acquired at fixed frame rate with the same type of pixelated detectors. It also calculates some sort of cross-correlation 

between successive images to evaluate the displacement and the velocity either on the whole image or, more frequently, on 
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some regions of interest in which the original image is divided. For both DDM and PIV, there is a trade-off of spatial 

resolution vs. the range of scales that one measures. The typical output of PIV analysis is thus a velocity (or displacement) 

map with the resolution of a few pixels. PIV is a well-established method that has been fine-tuned during the years and 

nowadays can even operate in real-time. By contrast, DDM is still in its young age and real-time analysis has not yet been 

achieved, even though GPU accelerated versions of the differential dynamic algorithm have been successfully 

implemented18,49, as well as efficient schemes for data sampling that can probe fast dynamics at a low average data 

acquisition rate50. A big limitation of PIV compared to DDM is that, being inherently conceived for assessing velocity, it is 

not the right tool for mapping disordered forms of motility such as for instance Brownian motion, even though in principle 

this is possible. 

V. PERSPECTIVE AND FUTURE CHALLENGES 

We can expect in just a few years to be able to run DDM in real time on video feeds of over 100 fps (this could be on CPU or 

GPU, requiring ideally 32GB of RAM); this would be the ultimate application of DDM avoiding even the need for storage of 

large quantities of data, reducing the image flow to its intrinsic dynamical information content, providing real-time physical 

measurement, and allowing experimental design based on advanced imaging-driven triggers.     

Given the very challenging diversity in biological systems like real tissue surfaces or cell monolayers, observed in optical 

microscopy, the automation, robustness and standardization of DDM are extremely appealing. DDM represents a very 

powerful and informative video analysis approach, which in our hands has become the first routine analysis carried out 

systematically on most experiments involving dynamics of living matter.  Clearly, DDM cannot be thought of as the only 

image analysis tool:  information that is typically related to heterogeneity, or correlated to other detailed spatial features then 

does require cell segmentation, or some other form of image feature analysis. In the context of monitoring motility of 

microorganisms, the groundwork for using DDM is in the literature, and we can imagine the technique can be deployed in 

health-related applications (sperm motility testing for fertility, bacteria motility for screening in various infections), in on-line 

monitoring of bioreactors or waste management systems.  

In non-biological soft materials, such as complex fluids, DDM has again clear areas of application that exploit automation 

and standardization. Particle sizing, in the range from few tens of nanometers to a micrometer, can very effectively be carried 

out with DDM, with the many advantages described in this review over DLS. In the presence of polydispersity ultimately the 

same challenges well known in DLS will show up, and users will have to face inversion of data for example through 

CONTIN algorithm51: we have described many DDM advantages, from the decreased intensity-size dependence, to the cost 

of apparatus and typically stronger statistics from larger sample volumes probed.  The application of DDM as a 

microrheology tool, using tracer particles but avoiding the limitations associated to tracking them, is one of the avenues being 

pursued by ourselves and others. The information extracted of DDM cuts across from what can be achieved in particle 

tracking or DLS, with much simpler apparatus and analysis pipelines. 

Finally and particularly with multiscale DDM analysis, a very complete picture of dynamics decomposed by length scale can 

be obtained: this will be very powerful in the context of glassy materials and heterogeneous dynamics52, for which 

distinguishing features such as collective rearrangements, giant fluctuations, intermittency, dynamical heterogeneity are 
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observed, also for biological systems. In this context, and in particular for biological systems that are typically studied with 

microscopes53–55, it is desirable to obtain simple and quantitative indicators of the proximity to this transition. It is now 

accepted that high-order spatio-temporal dynamic correlation functions are needed, such as the four-point dynamic 

correlation function Gସሺr; tሻ or the dynamic susceptibility ߯ସሺݐሻ, which is the space integral of  Gସ 56. In this respect, 

comparing real-space and Fourier-space techniques teaches an interesting lesson: while visualizing intermittent, collective 

motility events is easier in real-space, the calculation of the dynamic susceptibility is more immediate in the reciprocal space, 

where however no visual information is available. DDM may offer the needed intermediate perspective, and an important 

step in this direction has been recently made by Pastore et al. with the introduction of Difference Variance Analysis (DVA)57. 

As in DDM, the key idea is that taking differences between images separated by a variable delay ߬ is a direct way of isolating 

only the contribution of moving entities in the sample. A first quantification of the sample dynamics can be thus obtained by 

simply calculating the variance of these difference images as a function of ߬11, which is equivalent to averaging the DDM 

dynamics of all the probed wave-vectors with a weight function that is given by the amplitude A(q) in eq. 3.  In the presence 

of dynamic heterogeneity and for a fixed ߬, this variance exhibits an intrinsic, ensemble variability that depends on ߬ and 

exhibits a maximum for ߬ of the order of the characteristic time ߬௖ of the cooperative relaxation of density. Pastore et al. 

showed that the difference images are the ideal tool to single out this variability and, more generally, the existence of 

dynamical heterogeneity). In addition, they suggest a recipe for calculating in a straightforward way the dynamic 

susceptibility ߯ସሺΔݐሻ from these difference images. It is worth noting that the applicability of this simple approach might be 

limited to systems for which the amplitude A(q) exhibits a maximum around a wave-vector ݍ corresponding to a length scale 

in real space of the order of the typical inter-particle distance. Nevertheless, it is likely that a full extension to a wave-

resolved analysis will be more generally applicable to arbitrary systems. 

We have focused this Perspective review on DDM in the context of microscopic dynamics, considering biological and soft 

materials where the typical length scales are of the order of micrometers, and typical timescales from milliseconds to hours. 

This is where the technique has been applied so far. However, nothing in the DDM approach ties it down to the realm of 

microscopy; rather, DDM works in the more general world of video imaging. Future applications of DDM will surely extend 

well beyond the biological/colloidal systems. The robustness and automation will be very appealing to analysis of digital 

video feeds in crowd monitoring, analysis of ocean waves, ice flows, or terrestrial strain patterns from satellite feeds where 

the length scales and timescales could be completely different from the physical systems described here. 
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interpretations: the existence of “a λ transition associated with
the cooperative formation of an open hydrogen-bond net-
work” or a “limit of mechanical stability for the supercooled
liquid phase.” The power law gives an excellent fit over the whole
134-K interval. It would extrapolate to a singular temperature
Ts = 225.66± 0.18 K. This is above Tg but slightly below the ho-
mogeneous crystallization temperature Th, so that a true di-
vergence cannot be directly observed by experiment. The quality of
the power law fit was noted earlier but using data down to 249 K
only (52). A power law also gives the best fit to Dt up to 500 K and
to τr up to 450 K but with lower values of Ts (see Figs. S3 and S4,
Table S5, and Supporting Information for details about the error
bars on the fit parameters). This is at odds with mode-coupling
prediction of a common Ts values for all dynamic properties or
with the assumption of a common singularity temperature.
We now turn to the discussion of the coupling between viscosity

and molecular translation and rotation. In Fig. 3, we test the SE and
SED relations by plotting as a function of T the quantities Dtη=T
and η=ðτrTÞ, which should be constant if SE and SED relations
hold. This is the case at high temperature, but the relations start
being violated below around 350 K. The violation of SE is stronger,
reaching 70% at 239 K, with an increasing trend as the temperature
decreases. The maximum violation of SED is only around 18% at
239 K. This behavior is reminiscent of what is observed for ortho-
terphenyl (23, 24, 26), although the viscosity range investigated for
water is more modest. We also emphasize once more that SE vi-
olation in water occurs far above Tg. Our findings contrast with
molecular dynamic simulations (MDS) of the ST2 model for water
(37, 38), which find that SED is violated even more strongly than
SE in the same temperature range. The reason for the discrepancy
may lie in the different quantities used to check SED. Indeed,
NMR experiments access τr only, whereas MDS can access both τr
and the rotational diffusion coefficient Dr of the water molecules
and find that the usual assumption Dr ∝ 1=τr is not valid (37, 38).
UsingDr, ST2MDS find that SED holds at high temperature and is
violated upon cooling. If 1=τr is used instead, SED is never valid.
However, we note that MDS also use a proxy for the viscosity: they
replace it by the alpha-relaxation time τα, assuming η∝ τα. In a
careful study of model atomic and molecular systems (53), it was
found that τα=η is temperature-dependent, which causes biases in
the evaluation of SE and SED using τα. Therefore, it appears highly
desirable to determine both η and τr in MDS of a water model, to
compare with the available experimental data.

Several models have attempted to improve on SE. A simple
hydrodynamic model (54) treating water molecules as spheres with
radius a moving into a surrounding continuous medium introduces
a slip boundary condition, which modifies the proportionality co-
efficients between Dt, Dr, and T=η. This model describes well the
data above 360 K, with a molecular diameter 2a= 0.25  nm and a
slip length of 0.23a. However, the low-temperature data analyzed
with this model yield an unphysical 60% decrease of a. Another
explanation of the departure from SE and SED is given by
mode coupling theory (16), which predicts a universal behavior:
η∝ 1=Dt ∝ τr. Although this should only occur close to the mode
coupling temperature Tc (typically 1.3Tg), experiments on Zr64Ni36
(35) have found a constant Dtη up to 2Tc, 500 K above the liquidus
temperature (1283 K). Dtη is also found to be nearly constant for
water between 259 and 300 K. However, when our data are in-
cluded, Dtη increases sharply between 259 and 249 K, whereas η=τr
levels off (Fig. S5). The observed behavior of Dtη thus disagrees
with the mode coupling predictions.
Other modifications of SE and SED are the fractional SE (FSE)

and fractional SED (FSED) relations, with Dt and τr proportional
to ðη=TÞζ. Such relations or close variants were originally in-
troduced for tracer diffusion in various stable liquids (55, 56) and
for diffusion in supercooled ortho-terphenyl (23, 24). In the latter
case, the FSE exponent exhibits a crossover from ζ=−1 at high
temperature to ζ=−0.79 at low temperature. A similar crossover of
the FSE exponent was observed for Tris-naphthylbenzene from
ζ=−1 to ζ=−0.77 (27). The FSE relation has since been tested for
a variety of liquids and found to give a good description far from the
glass transition (57). A putative universal crossover from FSE with
ζ=−1 to ζ ’ −0.85 upon cooling was suggested by the analysis of
data for nine liquids (58). Simulations of models of supercooled
fragile liquids (East models) find ζ ’ −0.7 to −0.8 (59, 60).
Fig. 4 investigates the validity of FSE and FSED relations for

water. In the case of translation, a transition between two FSE
relations with exponents 0.94 and 0.67 has been proposed earlier
(57, 61) but was based on the flawed data from ref. 44. Using our
new data, we see that a single exponent ζ is still not sufficient. The
limited experimental range does not allow deducing reliable ex-
ponents at high and low temperatures. However, the data are
consistent with the ST2 MDS (37, 38), which find a crossover be-
tween ζ=−1 at high temperature and ζ=−0.8 at low temperature.
MDS of another water model (mW) find a crossover from ζ=−1
to ζ=−0.75 (62). The overall picture is that a similar crossover in
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Fig. 2. Parameterizations of viscosity. The four panels
include four datasets: this work (purple circles) and refs.
43 (blue squares), 70, (green diamonds), and 71 (red
triangles). (Left) Arrhenius plot, showing an apparent
activation energy increasing from 1,560 to 6,410 K
upon cooling (solid lines). (Left Center) Parabolic
law, with best fit (χ2 = 14.2) parameters T0 = 305.15  K,
η0 = 2.323  10−6   Pa  s, J= 1,112  K, Ea = 1,769  K. (Center
Right) VFT representation, with best fit (χ2 = 10.5)
parameters T0 = 168.9  K, η0 = 4.44210−5   Pa  s and B=
2.288. (Right) Power law representation, with best
fit (χ2 = 0.91) parameters Ts = 225.66± 0.18  K, η0 =
ð1.3788± 0.0026Þ10−4   Pa  s, and γ = 1.6438± 0.0052.
(Top) The normalized residuals ðηexp − ηfitÞ=σexp, where
ηexp and ηfit are the experimental and fitted viscos-
ity, respectively, and σexp is the experimental un-
certainty (1 SD). Note that the vertical scale of Top
Right is different.
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