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Abstract

Modelling the Exposure of Satellites in Medium Earth Orbit
to Proton Belt Radiation

Alexander Richard Lozinski

Geomagnetically trapped protons forming Earth’s proton radiation belt pose a
hazard to orbiting spacecraft. In particular, solar cells are prone to degradation
caused by non-ionising collisions with protons in the energy range of several
megaelectron volts, which can ultimately shorten the lifespan of a mission. Dynamic
enhancements in trapped proton flux following solar energetic particle events have
been observed to last several months, and there is a strong need for physics-
based modelling in order to predict the impact these changes may have on orbiting
spacecraft. This thesis addresses the need for physics-based modelling by presenting
an investigation into inner proton belt variability with a 3D numerical model created
from scratch, and by quantifying the impact that variability has on the solar cell
degradation of orbiting satellites.

After a review of background concepts in Chapter 1, Chapter 2 presents a
case study on satellites undergoing electric orbit raising to geostationary orbit.
The increase in solar cell degradation that can occur during a period of proton
belt enhancement is calculated for three example orbits. It is found that a large
enhancement can cause an additional degradation in solar cell output power by up
to ~5% over the course of orbit raising, and further changes of a few percent are
shown to occur based on the choice of trajectory, or for a 50um change in solar cell
coverglass shielding thickness.

In Chapter 3 a physics-based numerical model is constructed, solving for proton



phase space density in terms of the first, second and third adiabatic invariants pu, K
and L. This chapter demonstrates how key processes can be quantified, including
transport via radial diffusion, the cosmic ray albedo neutron decay source and
coulomb collisional loss. In Chapter 4, a 2D version of the model is applied to
derive proton radial diffusion coefficients for a period of solar maximum. This is
achieved by varying parameters controlling the rate of radial diffusion in order
to optimise the fit between model and data from the CRRES satellite, under the
assumption of steady state. Results are compared with diffusion coefficients derived
in other literature, and the validity of the steady state assumption underlying this
technique is discussed.

In Chapter 5, the 3D numerical model is applied to investigate time variability at
energies of 1-10 megaelectron volts, a crucial energy range for solar cell degradation.
Three sets of diffusion coefficients from previous literature are applied to model the
time evolution of proton phase space density over the four year period 2014-2018.
The sensitivity of modelling results to the choice of diffusion coefficients is discussed,
including the effect on the anisotropy of proton pitch angle distributions. In the
final research chapter of this thesis, Chapter 6, these modelling results are then
applied to calculate solar cell degradation over the modelling period for an example
satellite in 1200km inclined circular orbit. This demonstrates the final step in an

end-to-end physics-based calculation of solar cell degradation.
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Chapter 1

Introduction

1.1 Earth’s Proton Radiation Belt

The motion of charged particles in space is constrained in the vicinity of Earth by
interactions with the geomagnetic field. The field somewhat resembles a dipole, with
an equatorial intensity inversely proportional to distance cubed. The constraints on
motion are a result of the Lorentz force, which causes some protons and electrons to
undergo three periodic types of motion: gyration centred about geomagnetic field
lines; bounce motion up and down field lines; and a longitudinal drift around Earth,
with each type of motion occurring on a respectively longer timescale. Example
proton and electron trajectories are illustrated in Figure 1.1. The three types of
motion lead protons with energies ranging from several hundred kiloelectron volts
(keV) up to hundreds of megaelectron volts (MeV) to occupy a toroidal region
surrounding Earth called the proton radiation belt, which is the subject of this
thesis. Protons are said to be “trapped” in this region, which is characterised by
sustained orbits along closed drift shells.

The theory of charged particle motion in a dipole field was developed by
Carl Stormer in 1903. Considering the analogy of Earth’s geomagnetic field, he
demonstrated the existence of a region within the field where particles could be
trapped, but showed that access was blocked for a particle approaching from infinity.
Decades later, Siegfried Fred Singer hypothesised the existence of charged particles

of solar origin trapped within this region in an effort to explain observations of an
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Figure 1.1: Trajectories of trapped protons and electrons under the influence of
the geomagnetic field. Taken from Figure 2.7 of Walt (1994)

azimuthal ring current around Earth, thought to be responsible for the main phase
of geomagnetic storms. Soon after, the Explorer-1 satellite (launched 31 January
1958) verified the existence of trapped particles using an onboard Geiger counter
by recording an increase in counting rate high enough to saturate the instrument.
James Van Allen provided the correct interpretation of these results, inferring the
existence of Earth’s proton and electron radiation belts (Van Allen et al., 1958;
Van Allen, 1959).

Advancements in theory and observation have since lead to a more detailed
picture. The proton belt has an energy-dependent radial profile that extends up to
to r ~ 3.5Rp (distance in Earth radii from the centre of Earth) at tens of MeV
(Kovtyukh, 2020). At r < 1.5Rpg, the belt tends to be shielded from time-variation
of the geomagnetic field and so exhibits variability over long timescales of years
to decades (Selesnick et al., 2016), but requires centuries to form (Selesnick et al.,
2007). At r ~ 2Rp, variation in MeV intensity nominally occurs on timescales
of a year or so (Albert and Ginet, 1998), and at r 2 2Rp the proton belt may
exhibit rapid variability due to geomagnetic disturbances. Observations since the
early space age have also recorded transient enhancements in intensity at r > 2Rp,
associated with the spontaneous injection of high energy (tens of MeV) protons

originating from the Sun. Such enhancements have been observed to occur more
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frequently during periods of maximum sunspot number, and may last several
months (Sawyer and Vette, 1976; Lorentzen et al., 2002).

The proton radiation belt poses a hazard to orbiting spacecraft due to the
abundance of high energy particles. In particular, solar cells are prone to degradation
caused by non-ionising collisions with protons in the energy range of several
MeV, which can ultimately shorten the lifespan of a mission. In light of the
observed enhancements, predicting variability is therefore of practical importance
for spacecraft mission planning and operations. Earth’s electron belts also contribute
towards this degradation, but for orbits that pass through the proton belt the
proton contribution is much greater (Lejosne, 2019a). Currently, radiation belt
models based on previously-collected data are used by mission designers to prescribe
suitable spacecraft shielding. In the case of the NASA AE-8 (electron belt) and
AP-8 (proton belt) models (Vette, 1991), modelled intensity is based on mission-
averaged conditions with variation attributed to solar cycle; results do not take into
account dynamic changes. The more recent NASA AE-9 and AP-9 models have
been developed by incorporating more recent observational data, and allow the user
to address the problem of variability by selecting a confidence level that the flux
will not exceed a given value (Ginet et al., 2014). For different confidence levels,
spatial variations in intensity can be estimated based on templates of previously-
observed or modelled states of the radiation belts (Ginet et al., 2014). However,
it has also been shown that statistical models such as AP8 and AP9 are liable to
under-predict exposure. In the case of the Tacsat-4 satellite, launched in September
2011, solar cell degradation due to energetic protons was 5 - 15% greater than
model predictions after two years in orbit (Jenkins et al., 2014).

The hazard to spacecraft, potential shortcomings of statistical models, and need
to better understand variability have created a strong impetus for physics-based
modelling of the proton belt, which is the subject of this thesis. This work begins
with an overview of charged particle motion within the radiation belts, followed by
a summary of some key physical processes, then an overview of how to calculate
the solar cell degradation of orbiting satellites due to trapped protons. Following
chapters describe the construction of a physics-based proton belt model, which
is then put to use to investigate variability and make calculations of solar cell

degradation for an example satellite in low Earth orbit.
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1.1.1 Motion of a Geomagnetically Trapped Particle

In the presence of an electric field E and magnetic field B, a particle with charge ¢
and velocity v is subject to the Lorentz force given by
dp

F:E:qEJrqva (1.1)

where p is the particle momentum given by p = mv. The quantity m is relativistic
mass given by m = ymg, where v = 1/1/1 — v?/c? is the Lorentz factor. Equation
1.1 is the fundamental equation of motion for radiation belt particles, which are
subject to forces arising from both static and time-varying magnetic and electric
fields. However, the influence of the static geomagnetic field predominates, and
leads to “trapping” of radiation belt particles around Earth in the sense that their
resultant motion is periodic and unobstructed over timescales much longer than
one orbit.

Figure 1.1 shows each of the three types of periodic motion exhibited by
electrons and protons in the radiation belts, which are referred to as gyration,
bounce and drift. Throughout this chapter, each type of particle motion is derived
by considering Equation 1.1 in several simplified cases with idealised static electric

and magnetic fields.

1.1.1.1 Gyromotion

In a static magnetic field with direction vector B, it is convenient to separate
the Lorentz force on a particle into components parallel and perpendicular to the
magnetic field. When E = 0, the force on the particle parallel to the magnetic field

can be extracted from Equation 1.1 like so:

£ _ Py A (1.2)

since b is not time varying. Equation 1.2 has the solution py = mv| = constant,

meaning that particle velocity does not change in the direction of the magnetic
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w

Figure 1.2: Helical trajectory of a negatively charged particle in a region of uniform
B aligned with the vertical axis. Pitch angle « of the particle is highlighted in
yellow, with tan(a) = |v |/ ’VH ‘ This figure has been adapted and modified from

Figure 3.2 of Cravens (1997).

field. Likewise, the perpendicular force is given by

o i o ey 09
Since the Lorentz force is perpendicular to B and v when E = 0, no work is done
on the particle and velocity remains constant in magnitude. Furthermore, when B
is uniform, the Lorentz force is constant in magnitude and motion of the particle
is circular when projected in 2D across a plane perpendicular to B. Because v
remains constant, the overall motion is helical if v is initially non-zero. An example
trajectory is illustrated in Figure 1.2 for a negatively charged particle, showing
helical motion in the presently discussed field configuration.
Figure 1.2 highlights (in yellow) the angle o between vy and v, which remains
constant along the trajectory in this case. This angle is called the pitch angle, and

its size controls the shape of the helix; motion is entirely circular when o = 90°.
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Pitch angle is a key parameter characterising the trajectory of charged particles
even in more complex field configurations, and is defined like so:
vi| e

tan(a) = —— = (1.4)
il

Figure 1.2 also labels the radius of the circular motion r,. This radius, known as
the gyroradius, is another key parameter to characterise the motion of individual
particles. It can be derived by balancing the magnitude of the centrifugal force by

the Lorentz force: )

L qu. B (1.5)
Tg
muv

where |B| = B. The angular frequency of gyration €24, also called the gyrofrequency
or Larmor frequency, can then be found by rewriting Equation 1.3 as
d
&ZQVLXBZPLXQl (17)
dt
where Q7 = Q;b with units rad s~ and magnitude ; = Bq/m. The corresponding

gyroperiod, or time taken to complete one rotation of 27 radians, is given by

27 m
T = — =21——
Ty lq| B

For radiation belt particles, 7, is small compared to the scale length of inho-

(1.8)

mogeneities in the geomagnetic field, such that the magnetic field experienced by
a radiation belt particle over a gyration is approximately uniform. Other types
of periodic motion arise due to the deviation from helical motion caused by VB
over many gyrations, and therefore occur over far greater distances than r, and
over longer periods than the gyroperiod. In this sense, gyromotion is the most

fundamental type of periodic motion exhibited by radiation belt particles.
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1.1.1.2 Bounce Motion

The motion of a charged particle is now considered in the case of a non-uniform
static magnetic field where E = 0. In any non-uniform field, the Lorentz force leads
to more complicated trajectories, as the particle is impelled by any gradients VB
such that motion is not strictly helical or circular. Therefore, concepts invoked
in Section 1.1.1.1, such as a gyroperiod, are approximations, but still useful for
characterising the gyrational component of motion. To derive expressions for the
forces that cause other types of periodic motion, it is convenient to invoke the
additional approximation of a “guiding centre”. The particle position can then be
written as r = R + rg, where R is the location of the guiding centre and rq is the
instantaneous gyroradius.

The second type of periodic motion arises due to convergence of magnetic field
lines, resulting in VB along a field line. An example field line configuration is
shown in Figure 1.3 using cylindrical coordinates, where B is axisymmetric around
a central axis Z (Chen, 1984). In Figure 1.3, convergence results in a radial magnetic
field component B,, with By = 0 due to axisymmetry. Using V - B = 0 (Gauss’

law for magnetism), one can therefore write

v B L2 100 OB,
ror r 00 0z 19
10 0B o
—rarr " Dz

Solving for B, using the assumption that 88% is constant and known at r = 0
(Chen, 1984), Equation 1.9 leads to:

rB, = — T?"aBzdr ~ —17*2 95
o 0z 2 0z 0
(1.10)
B —lr 0B,
) 0z 0

Evaluating the component of the Lorentz force from Equation 1.1 in the Z direction

(anywhere in this system) gives
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Figure 1.3: Orientation of field lines in a magnetic field that causes mirroring.
Gyration of a positively charged particle is shown on the left side. Orientations of
the cylindrical coordinate system axis vectors 6 and 2 are shown on the right side.
This figure has been adapted and modified from Figure 2.7 of Chen (1984).

d
p Q(UTBH UHBT) - _qUGBr
dt 2 (1.11)
1 0B,
= —qugr
2q 702

Figure 1.3 shows an example charged particle with a guiding centre R that lies
on the Z axis. For positive charges, gyration occurs such that vy = —v, in the
cylindrical coordinate system (the 8 direction is anticlockwise around Z). Therefore,
Equation 1.11 can be re-written in terms of the quantities r, and v, , to consider the
average force on the guiding centre over one gyration (also making use of Equation
1.8):

dp 1 0B,

at. 2 4] Uﬂ“gg (1.12)
_ 1mv.?0B. '
" 2 B 0z

Equation 1.12 is for a force which opposes the motion of a particle into a region
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where field lines converge. This force acts on radiation belt particles which travel
along converging geomagnetic field lines into Earth’s polar regions. Eventually
the particle may be decelerated in the parallel direction to the point at which
v = 0, which leads in the next instant to a reversal of the guiding centre direction
along the field line, and the particle is said to have “mirrored”. On approach
to the mirror point, the local pitch angle of the particle increases to 90° as the
ratio vy /v increases so as to conserve kinetic energy, then after mirroring pitch
angle decreases. This phenomenon leads to periodic reversal of the guiding centre
direction as particles bounce from pole to pole, and pitch angle varies from a
minimum on the magnetic equator up to a maximum of 90°.

The local pitch angle of a radiation belt particle at the magnetic equator
(equatorial pitch angle, aeq) is a significant quantity since it controls the latitude
at which mirroring takes place. For example, a particle with aeq = 90° will be
contained at the magnetic equator by the mirror force. On the other hand, a
particle with aeq ~ 0° will travel with a total velocity closely aligned with the
magnetic field, and the mirror point may be below the height of the atmosphere
such that the particle is lost via atmospheric collision before it can bounce back.
In this case, the particle is said to be in the loss cone, which is defined by a critical
equatorial pitch angle aj.. A particle with this pitch angle will mirror just above
the top of the atmosphere such that it remains trapped in the radiation belts,

whilst particles with aeq < ajc will be lost to the atmosphere.

1.1.1.3 Drift Motion

The third type of periodic motion exhibited by radiation belt particles involves
drift of the guiding centre across the magnetic field due to a force F | applied to
the particle in the plane of gyromotion. To facilitate a general description, the
Lorentz force perpendicular to the magnetic field can be written

dp.

o Pt X +F, (1.13)

By denoting particle position r = R + ry and velocity v =V + v, velocity of the
guiding centre V can be solved for. Two assumptions are made before proceeding

which can later be verified: firstly, that V is perpendicular to the magnetic field;
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and secondly, that V is constant in time. Substituting the overall velocity v into

Equation 1.13 gives

dpo _ |4V dva
dt dt dt

]:mwwg X +F, (1.14)

Equation 1.14 can be simplified using dV /dt = 0, leaving:

d
m[n] =m[V+v, | xQ +F,
dt (1.15)

:m[Vxﬂl]ij[vaﬂl]—i—Fl

From Equation 1.7, dv, /dt = v x £5. Cancelling terms in Equation 1.15 leads to

Velocity V can then be isolated by taking the cross product of both sides with €2

like so:

O:m[VXQI]Xﬂl—I—FLXQl
:—m[Qlﬂl]V—i—[VQl]Ql—l—FL XQl (117)
=-mBV+F, x

Drift velocity of the guiding centre due to a general force F | is finally given by

:FLXQIZFLXB (118)

\%
ms)3 qB?

Equation 1.18 shows that a constant force applied to the particle over a gyration
results in a guiding centre drift perpendicular to the force, with a direction that
depends on charge. For radiation belt particles, a force F | strong enough to result
in drift arises from VB as the magnetic field strength increases closer to Earth,
as well as from the centrifugal force exerted by the guiding centre as it travels up
and down curved field lines. The resulting components of velocity Vg and V¢ are

called gradient and curvature drifts respectively, and cause the drift of radiation
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belt protons from East to West, whilst electrons drift from West to East. This
gives rise to a westward azimuthal current around Earth at ~3 to 5Rp called the
ring current (Walt, 1994). Electrostatic fields also cause drift motion in the case
that F, = E | ¢, but the ¢ term cancels, leading to drift in the same direction.
Drift due to electrostatic fields drives convection of magnetospheric plasma at
energies < 1keV because the gradient and curvature drift becomes negligible at
this energy (Schulz and Lanzerotti, 1974). On the contrary, the electrostatic field
exerts little influence on particles with energies 2 200keV, leading to a drift path
that follows a contour of approximately constant magnetic field intensity on the
magnetic equator. By this criteria, particles are broadly characterised as belonging

to either the ring current or radiation belts depending on their energy being below
or above ~ 200keV.

Gradient Drift

Force on the guiding centre due to a gradient in the magnetic field is derived with
respect to a Cartesian frame using the example field configuration shown in Figure
1.4 from Walt (1994), where B = B,(y)2 and E = 0. The magnetic field at the
particle position r = R + rg can be approximated by considering a Taylor series
expansion about the point R. When R coincides with the origin, the Lorentz force

on the particle in the z-y plane can be written

dB,
F.(y) = quyB.(y) = quy [Bzo +y q + ]
Yo

(1.19)

dB,
Fy(y) = —quaBo(y) = —qu, [Bzo YT ]
Yo

When dB, /dy is small, F, ~ 0 in Equation 1.13 and the position of the particle
(x,y) at the moment R coincides with the origin can be described by purely helical

motion. The solution to the Lorentz force in this case (from Cravens (1997)) is:
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Figure 1.4: Trajectory of a negatively charged particle due to the Lorentz force in
a field where B = B, (y)2 such that VB points in the positive § direction. This
figure has been taken from Figure 2.4 of Walt (1994).
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x = rgsin(t + 0)

= +r cos(t+ 0
Y g cos(fhit +9) (1.20)
vy = vy cos(Qt 4 9)

vy = Fu sin(it +0)

where 0 is initial phase of the gyration orbit and the plus/minus symbol indicates

dependence on particle charge. Substituting this into Equation 1.19 gives

dB,
F, = Fquy sin(t + 0)(B.o £ ry cos(1t + 6) 5 +...)
B (1.21)
F, = —qu cos(Q4t + 0)(B,o £ 1y cos(ht + 0) dyz +...)
0

The average of forces F, and Fj over one gyroperiod are therefore given by

(Fu) ~ Fqu. [Bg (sin(Q4t)) + 1, (sin(211) cos(t) dfﬂ

(1.22)

<Fy> ~ —qUu [BO <COS(Qlt)> + T <COSQ(Q1t)> de‘|

dy

where dependence on 9§ has been eliminated due to averaging. Furthermore, the
following equalities can be made use of to simply Equation 1.22: (sin(€2;t)) = 0;
(sin(Qyt) cos(t)) = 0; (cos(t)) = 0; and (cos?(Qt)) = 1/2. This yields

<Fx> =0
quirydB, (1.23)
2 dy

<Fy>%_

indicating a force on the particle in the direction of —VB. Over half a gyration
the particle is therefore accelerated, before being decelerated over the returning
half. When the particle is accelerated, the gyroradius increases as per Equation 1.6.

The resulting motion is illustrated in Figure 1.4 for the trajectory of a negatively
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charged particle. Substituting (£),) into Equation 1.18 to find the drift velocity of

the guiding centre gives

e ex
2 qB?
mu, 2 dB, .

= B
2qB3 . dy Y

2
muv
= B x VB
2qB3 %

(1.24)

Curvature Drift

Particles with o < 90° have a component of velocity along the magnetic field
line, leading to traversal of the guiding centre approximately along a field line.
Geomagnetic field lines curve towards the polar regions of Earth, and therefore
exert a centrifugal force on the guiding centre of such particles. This force can be
written in terms of the local field line radius of curvature, R,, as

_mo?

Fo=—"f (1.25)

(&
where 1l represents the unit vector in the direction of the field line radius of
curvature. Substituting this into Equation 1.18 to find the drift velocity of the

guiding centre gives

_ mvHQ
qR.B?
The fi x B term in Equation 1.26 and B x VB term in Equation 1.24 point

Ve = AxB (1.26)

in opposite directions since i points outwards, thus gradient and curvature drift
cause drift in the same direction due to the minus sign in Equation 1.26. However,
the relative importance of each term varies with pitch angle, with curvature drift
being more important than gradient drift for particles with high v, and vice versa

for particles with high v, .
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1.1.2 Adiabatic Invariants of Motion

Radiation belt particles are distinguished from surrounding populations by their
three types of periodic motion. When this type of motion is sustained for many
drift periods, a radiation belt particle is said to be trapped. The adiabatic theory
of charged particle motion ascribes a quantity to each of the three periodic motions
of a given particle. These three quantities characterise each orbit independently of
one another and in doing so provide a convenient way to organise the population
of trapped particles forming Earth’s radiation belts, and a way to distinguish from
particles outside the population such as cosmic rays or ring current particles. Each
quantity is proportional to a canonical action integral J; from Hamiltonian-Jacobi

theory:

J; = f[p+qA] .l (1.27)

The subscript i represents the period motion: 7 =1, 2 and 3 for gyration, bounce
and drift respectively, and 1 is along the corresponding orbit. The integrand of
Equation 1.27 is the canonical momentum, with A the vector potential of the
magnetic field. It can be shown that J; is a conserved quantity when forces altering
the particle trajectory act over a timescale much longer than that of the period of
associated motion (see for example Walt, 1994), thus any proportional quantity is

also conserved and may be considered an “adiabatic invariant”.

1.1.2.1 The First Invariant

Using Equation 1.27 with ¢ =1 for the quantity conserved over a gyration orbit

leads to:
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lefp-lerq](A-dl
1 1

:pJ_ZT('T'g—Fq%VXA'dS
1

= pL2mr, + q}{B .dS (1.28)
=p127ry — qm“gQB
o PLZW

Bq

where the element dl is along the path taken by the particle over a gyration.
Conservation of .J; therefore implies that p,?/B is conserved. However, p % =
p? sin?(«), and momentum p is conserved, meaning that sin?(«)/B is also conserved.
As a = 90° at the magnetic mirror points where B = B,,, this implies that B,, is
invariant along a particle drift.

The quantity sin?(a)/B can be evaluated at different points along a magnetic
field line traversed by the guiding centre to relate magnetic field strength and local
pitch angle. For example, equating p,?/B at the mirror point, where B = B,,, and

a point somewhere else along the field line, gives

sin®(90°)  sin®(«)
By, B (1.29)
.. B = B, sin*(a)

Alternatively, when the magnetic field can be calculated using a model, conservation
of p1?/B is useful for mapping the local pitch angle of an observed particle to its
equatorial pitch angle.

The first invariant is usually taken as the quantity proportional to J; given by

pJ_Q . T(T + 2E0)
2myB  2EyB,,

where T is kinetic energy and Ej is rest energy, so that total energy E;,; = T + Ej.

= (1.30)

The second equality in Equation 1.30 comes from the relationship between total

energy and momentum FE,> = p?c? + myc?, and using B = B,, sin’(«). Hereon,
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the symbol F is also used for kinetic energy.

1.1.2.2 The Second Invariant

Using Equation 1.27 with ¢ =2 for the quantity conserved over a bounce orbit leads

to:

ngfp-lerq;{A-dl
2 2
— f ol +qfVxA-ds
2 2
:fpcos(a)dl%—qu-dS
2 2

= p}é cos(a)dl

(1.31)

where ¢, B - dS goes to zero because the bounce path traces a small area and is
assumed to be parallel to the magnetic field, thus enclosing no magnetic flux. The
element dl is along the bounce path taken by the guiding centre along a field line.
The second invariant is J = Js, and a proportional quantity [ is also used that is

independent of particle momentum like so:

I=1J/2p
Ziéwﬂwﬂ (1.32)

= /m cos (a) dl

where m and m’ are the conjugate mirror points in opposite hemispheres where

B = B,,. The time period for one bounce can be written as

w_ gl _my
Q Loy p J2cos(a)

Equations 1.31, 1.32 and 1.33 contain an integral that cannot be solved

(1.33)

analytically. However, the cosine term can be replaced using the relationship
B = B,, sin?(a) which leads to:
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1/2
b (5)1 (1.34)

cos () = [1 ~ B
By choosing a point in space to be the mirror point at which a = 90°, one
can evaluate I for any radiation belt particle by numerically solving particle or
guiding centre motion until the conjugate mirror point. Invariance of I implies
that the path taken by the guiding centre over one bounce does not depend on
particle energy. The invariance of I also implies that even when the magnetic field
is not axisymmetric, the particle must return to the same bounce path at a given
longitude after one drift orbit. Therefore, when the assumptions of adiabatic theory
hold, the whole drift path is independent of energy, and may be fully defined by a
value of B,, and I. These quantities may be derived using only a point in space,
the local pitch angle of the particle, and the magnetic field itself.
As an alternative to numerical integration, Equations 1.31, 1.32 and 1.33 have
been approximated in previous literature as simple functions of y = sin(aeq). To
derive these expressions, it is first necessary to assume a dipolar magnetic field

centred and axisymmetric about Earth’s rotational axis, defined as

a (2 cos(8)i + sin(0)8) (1.35)

B=-—3%

where a is the radius of Earth and By is the field strength measured at colatitude
0 = w/2 and radial distance r = a (Walt, 1994, p. 30). By this definition, the field
points downwards towards magnetic South (geographic North) at 6 = 7/2. The
differential equation for a field line is dr/df = rB, /By = 2r cos(6)/ sin(#), which
can take the substitution » = La to describe a field line that crosses the magnetic
equator at L Earth radii (Schulz and Lanzerotti, 1974, Section 1.4). The quantity
L is known as the Mcllwain L parameter (Mcllwain, 1961), and is useful because
it can describe the set of field lines along which a radiation belt particle executes a
drift orbit when the magnetic field is dipolar. Integrating with respect to 6 leads
to the field line equation

r = Lasin®(f) (1.36)

and substituting this into Equation 1.35 thus leads to the following expression for
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dipole magnetic field strength:

_ By 2 1/2
B = s (0) (14 3cos*(0)) (1.37)

The element of length along the field line dI = [(dr)? 4 (rd§)?]'/? can also be

re-written using Equation 1.36 to give
dl = La(1 + 3 cos®(0))%sin(h)dd (1.38)

Next, Equation 1.29 is used to derive B, = B./sin*(ay,) = B./y?, where B,
is magnetic field strength at the Equator. However, Equation 1.37 shows that
B. = By/L?, and therefore B,, = ByL3y2 for a dipole. Finally, substituting this
expression, along with Equations 1.34, 1.37 and 1.38 above into Equation 1.33 leads

to the following expression for the bounce time:

27 B dmLa
QQ 1%

T(y) (1.39)

where

™/2 cos?(6)]Y/2sin
T(y) = /Hm/ [ 1+3 (0)] (6)do (1.40)

1 — y2sin %(0)[1 + 3 cos2(0)]1/2]1/2

Davidson (1976) shows that T'(y) can be approximated within 0.57% error as
T(y) ~ 1.380173 — 0.639693y>/* (1.41)

Similarly, using B,, = ByL3y~? and substituting Equations 1.34, 1.37 and 1.38

into Equation 1.31 leads to the following expression for J:

J =2pLaY (y) (1.42)

where

/2 1/2

Y(y) =2 / [+ 3cos2(6) — y2(1 + 3cos?(0)**sin~0(9)] ' sin(0)dd  (1.43)

Om
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From the definitions of T'(y) and Y (y) in Equations 1.40 and 1.43, it follows that

d <Y> __2T(y) (1.44)

dy \ y y?

and therefore the approximation in Equation 1.41 can also be used to solve for an

approximate Y (y), leading to the following:

Y (y) ~ 2.760346 + 2.357194y — 5.117540y%/4 (1.45)

which approximates Y (y) within 0.51 % error (Davidson, 1976).

Accurate approximations of the bounce period and second invariant in a dipole
magnetic field can therefore be calculated quickly using Equations 1.39 and 1.42
above.

Lastly, the second invariant can also be taken as K, given by

K = /Bl (1.46)

This quantity is useful for modelling purposes, due to the property that as K
increases at a constant rate (or by a fixed interval), the increase in a., becomes
less and less until the loss cone is reached.

1.1.2.3 The Third Invariant

Using Equation 1.27 with ¢ =3 for the quantity conserved over a drift orbit leads
to:

ngjfp.lerq]{A-dl
3 3
:qy{VxA-dS
3

:q%B-dS
3

(1.47)

where p - dl goes to zero because the velocity of the particle is small in the
direction of drift, and ® is the magnetic flux enclosed by the drift path. The
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element dl is along the path taken by the guiding centre during one drift around
Earth. The magnetic flux ® can be calculated by considering the net flux outside
the drift path, which is equal to the net flux enclosed by the drift path. For a
dipole field specified by Equation 1.35, considering the drift path of a particle at

radial distance ry in the magnetic equatorial plane thus leads to:

o B 3
P = / Og 27mr dr
oo (1.48)

= ZWBOG—

To
Compression of the geomagnetic field increases the net magnetic flux enclosed
within a given radius and therefore, to keep ® constant, conservation of the third
invariant requires that a drift path will shrink towards Earth. On the other hand,
expansion of the geomagnetic field requires a drift path to expand away from Earth.
Therefore, slow compressions/expansions of the field, such as that caused by secular

variation in Earth’s dynamo, cause the inward/outward motion of drift orbits.

Equation 1.48 can be rearranged for L = r¢/a, the Mcllwain L parameter,
which identifies the drift shell on which the particle at rq lies. ® is the same for
any particle on the drift shell L because the path element dl in Equation 1.47
lies within the magnetic shell surface (and therefore the surface S outlined by [ is
bounded by the same field lines regardless of latitude). Therefore the L parameter
is an adiabatic invariant for a particle in a static dipole field, assignable to any

particle on the drift shell and given by:

21a’ By
I —
|

(1.49)

In the geomagnetic field, the Mcllwain L parameter in Equation 1.49 is replaced
by Roederer’s L* parameter. The L* parameter is an adiabatic invariant in the
geomagnetic field, with a value equal to L of an adiabatically equivalent particle in
a centred dipole field. In this way, it provides a more intuitive version of the third
invariant by relating to a drift shell around a centred dipole, but in the geomagnetic
field it is a property of a particle, not a point in space. Computation of L* requires

a method such as that suggested by Roederer and Lejosne (2018): i) solving a
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complete drift orbit numerically; ii) identifying field lines coinciding with the drift
shell and following them onto a reference surface; and iii) calculating ® through
the surface.

A formula for the drift frequency is given by Equation 1.35 of Schulz and
Lanzerotti (1974):

Q 3L (42— 1) (c>2 <m00> [6T(y) - Y(y)] (150)

27 27y a qBy 127 (y)

The quantities T'(y) and Y (y) are given by the simple approximations of Equations
1.41 and 1.45 respectively (see Section 1.1.2.2).

1.2 The Magnetospheric Environment

1.2.1 Charged Particle Populations

The region around Earth in which magnetic topology is controlled by the geo-
magnetic field is called the magnetosphere. In general, charged particles within
the magnetosphere are classified into different populations based on the processes
that govern their motion, since they are generally the focus of different fields of
study. For example, radiation belt particles have energies high enough to exhibit
individualistic motion rather than the bulk convection of a plasma, but energy low
enough so as to obey the laws of adiabatic charged particle motion. Figure 1.5 from
Schulz and Lanzerotti (1974) shows how charged particles in the magnetosphere
can be roughly classified according to energy and L shell, since the type of physical
process which is locally dominant depends strongly on these factors. This chapter
is about magnetospheric processes that influence the radiation belts, and it will

involve brief discussions on some of these neighbouring populations.

1.2.2 Interaction with the Solar Wind

A plasma in which collisions are negligible and conductivity is high behaves accord-

ing to the laws of ideal magnetohydrodynamics. Ohm’s law associates plasma flow
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Figure 1.5: Spatial and spectral classifications of charged particles, from Figure 13
of Schulz and Lanzerotti (1974)
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u with an electric field E according to:
E+uxB=0 (1.51)

As a result, movement of a plasma results in an electric current that in turn
produces a net magnetic field such that magnetic field lines appear to move with
the plasma. This gives rise to the “frozen in field” condition, whereby motion of a
magnetic field line drags along the threaded plasma particles and vice-versa.

The frozen in field condition applies as heated plasma is ejected from the solar
corona due to the pressure difference in interstellar space, thus it carries with it
solar magnetic field lines. The tubes of magnetic flux frozen to the plasma spread
radially outwards at ~ 400km /s whilst the Sun rotates, forming a Parker spiral.
The plasma constitutes the solar wind, and the field lines form the interplanetary
magnetic field (IMF). By the time the solar wind reaches Earth it has a density of
~ 10cm ™ and field strength of the IMF is ~ 10nT (Kivelson and Russell, 1995).

The solar wind is deflected by the geomagnetic field at the boundary of the
magnetosphere. The geomagnetic field is compressed inside this boundary, leading
to a higher field strength of ~ 75nT (Lopez and Gonzalez, 2017), and its orientation
also differs generally to the solar wind, facing northward at the geomagnetic equator.
The two colliding and differently oriented magnetic fields give rise to a current layer
as a result of Ampere’s law from the non-zero curl V x B. This current layer is called
the magnetopause and separates solar wind from the magnetosphere, illustrated
in Figure 1.6, left panel. The magnetopause location is controlled by a balance
between ram pressure of the solar wind and internal magnetic pressure from the
geomagnetic field. The pressure balance is dynamic, but places the magnetopause
surface ~ 10Rg sunward of Earth.

In the direction downstream to the solar wind, the geomagnetic field becomes
highly distorted and forms the magnetotail. Field lines in the northern lobe point
generally Earthward, whilst field lines in the Southern lobe point tailward. Again,
the difference in orientation gives rise to a current layer, illustrated in Figure
1.6, right panel. This current layer is called the neutral sheet, and forms another
boundary surface of the magnetosphere.

Plasma also occupies geomagnetic field lines inside the magnetosphere, as shown

40



Magnetosheath

Figure 1.6: Overview of the magnetosphere boundary and the orientation of
magnetic fields and currents near the neutral sheet, adapted and modified from
Figure 9.1 of Kivelson and Russell (1995)

in Figure 1.5, but in comparison to the solar wind it is more rarefied. The difference
in magnetic field orientation across the magnetopause means that incoming solar
wind plasma and internal magnetospheric plasma generally do not mix due to
the frozen in field condition. The magnetopause boundary therefore traces a
demarcation between the two plasma populations. However, in regions where two
sets of field lines oppose one another directly, magnetic reconnection can occur,
resulting in the two sets of field lines becoming connected and the mixing of adjacent
plasma populations. This process can connect field lines at various points across
the boundary of the magnetosphere, including: Sunward of Earth (the dayside)
through the nose of the magnetopause, between the IMF and geomagnetic field;
and tailward of Earth, between oppositely oriented field lines of the magnetotail.
Subsequently, magnetic field lines that connect the geomagnetic field to the IMF
are said to be “open”; whilst geomagnetic field lines that close in the opposite
hemisphere are “closed”.

Following dayside reconnection, open field lines tend to be swept tailward over
Earth’s poles as they are dragged by solar wind passing over the flanks of the
magnetosphere. This is demonstrated by the progression in panels A, B and C
of Figure 1.7 from Eastwood et al. (2015), where blue indicates closed IMF field
lines, red indicates closed geomagnetic field lines, and purple indicates open field
lines following reconnection. The dragging of field lines this way tends to drive

convection of plasma throughout the magnetosphere in a process known as the
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(C)

Figure 1.7: Time progression from panels A to E illustrating the convection of
magnetic field lines as part of the Dungey cycle, taken from Figure 8 of Eastwood
et al. (2015)

Dungey cycle (Dungey, 1961). Panels D and E of Figure 1.7 demonstrate the next
part of the Dungey cycle, whereby open field lines convect into the magnetotail
and move towards the neutral sheet, also indicated by the orange arrows in Figure
1.6 showing the motion of field lines. A buildup of field lines and plasma either side
of the neutral sheet results in further reconnection, forming closed field lines on the
nightside of Earth. Due to the frozen in field condition, convection of plasma over
the course of the Dungey cycle obeys Equation 1.51 and is therefore accompanied

by an electric field, known as the convection electric field.

1.2.3 The Arrival of Geomagnetic Storms

The rate of dayside reconnection is controlled by the orientation of the IMF. Periods
of southward IMF result in the strongest coupling between the IMF and geomagnetic
field, whereby large amounts of energy are transferred via Dungey cycle convection.
This can lead to an imbalance when reconnection in the tail occurs at a slower rate,
resulting in the buildup of open field lines and magnetic flux on the nightside of
Earth. Over a prolonged period (hours), this constitutes the growth phase of a
geomagnetic substorm, whereby the neutral sheet current becomes stronger and
the magnetotail becomes stretched due to increased plasma pressure. Following
the growth phase, substorm onset occurs; a burst of reconnection between field

lines in the northern and southern lobes results in plasma being expelled towards
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Earth. This strengthens the ring current as approaching plasma begins to undergo
gradient and curvature drift due to the stronger magnetic field. Substorms may
last several hours, and end with a recovery phase in which the ring current returns
to pre-substorm levels.

During large solar flares, high density magnetic structures can be launched
towards Earth, constituting a coronal mass ejections (CMEs). Such events are
associated with interplanetary shocks travelling ahead of the ejecta due to the
difference in density compared with the solar wind. Corotating interaction regions
(CIRs) are another source of shock waves, formed when faster moving regions of
the solar wind catch up to slower moving regions. When magnetic disturbances
such as these arrive at Earth, a geomagnetic storm can occur.

The initial phase of a geomagnetic storm is marked by compression of the
magnetosphere during the arrival of the disturbance. The main phase of a storm is
then triggered by enhanced magnetospheric convection that gives rise to frequent
substorms, leading to a strengthening of the ring current typically lasting for a few
days. The stronger ring current leads to a depression in field strength at Earth’s
surface on the order of tens to hundreds of nanotesla. Finally, the recovery phase
begins as the period of enhanced convection comes to an end, usually because of
a change in orientation of the IMF to face Northward which is less conducive to
dayside reconnection.

Interplanetary shocks travelling away from the Sun, such as those associated
with CMEs and CIRs, also provide an acceleration mechanism for some particles
to reach very high energies (keV to GeV), resulting in travel at much higher speeds
than the surrounding solar wind (Reames, 2013). This is due to processes such as
shock drift and Fermi acceleration that accelerate particles as they reflect or gyrate
back and forth across the shock, exiting upstream or downstream. Figure 1.9 shows
observations of energetic protons of solar origin by the IMP-8 satellite, which was
situated on IMF field lines at > 20Rp distance from Earth (McGuire and von
Rosenvinge, 1984). These particles are classified as solar energetic particles (SEPs),
and can travel quickly towards Earth along IMF field lines as a focused beam due
to the weakening solar magnetic field reducing pitch angle to ~0 (Ryan et al.,
2000). The arrival of SEPs at Earth (an “SEP event”) may precede the arrival of a

shock, but also last several days. To give an idea of timescales, Figure 1.8 shows
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SNAPSHOTS FOLLOWING A LARGE SOLAR FLARE
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Figure 1.8: Snapshots following a large solar flare, demonstrating the arrival of
high energy solar energetic particles before and after the shock front associated
with a CME, adapted and modified from MacNamara (1994)
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Figure 1.9: Time history of proton flux in three energy bands during two solar
energetic particle events on 21-22 August, 1975, taken from Figure 1 of McGuire
and von Rosenvinge (1984)

an overview of SEPs arriving at Earth followed by a shock front associated with a

dense region of ejected plasma.

1.2.4 Time Variability of the Geomagnetic Field

Intermittent arrivals of geomagnetic storms compress the magnetosphere, inducing
time variability in the geomagnetic field associated with stronger driving of mag-
netospheric current systems. The extent of the proton radiation belt in terms of
energy and L depends on constraints imposed by the geomagnetic field; i.e., where
it supports adiabatic motion. Time variability can therefore lead to nonadiabatic
changes, and dynamic processes driven by magnetic activity can add to, or erode,
the belt over short timescales (days or less) at the outer boundary.

The internally generated component of the geomagnetic field is approximately
static over timescales of a few years. Therefore, the proton belt is magnetically

shielded close to Earth by the internal field, and on this basis the proton belt can
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be split into an outer zone (L 2 1.7), and stable inner zone (L < 1.7) wherein
variability occurs over decades (Selesnick et al., 2016). Over long timescales
(decades), secular variation of the geomagnetic field occurs due to changes in
Earth’s dynamo, but the effect on the radiation belts is purely adiabatic.

The internal field is modelled as the gradient of a scalar potential V| given by
an expansion in spherical harmonics. First order expansion describes a dipole, and
higher order terms account for magnetic anomalies in Earth’s crust and complexities
of Earth’s dynamo. When the coordinate system in which V is expressed has its
origin at the centre of Earth and is aligned with the polar axis, the first term of the
expansion gives the centred dipole model. However, the coordinate system can be
transformed such that second order (and higher) terms of V' are minimised. First
order expansion in this case produces the eccentric dipole model, with a centre
not necessarily coincident with that of Earth’s, and an axis tilted with respect to
the polar axis that is prone to slowly change orientation over the course of secular
variations.

Due to secular variation, coefficients used to expand V' are updated based on
satellite and ground measurements. The International Geomagnetic Reference
Field (IGRF) is a time series of coefficients ¢/ and A" that can be used to model
the geomagnetic field for a given epoch. Field strength according to a dipole model
of the geomagnetic field at radial distance 1Rg on the magnetic equator, By, is

related to the coefficients involved in a first order expansion like so:

By = (g7)* + (91)" + (hy)? (1.52)
This value relates to the magnetic moment M of the dipole according to

M = 4130@3 (1.53)
Ho
where fi9 is vacuum permeability, with a value in ST units of 1.25663706e—6H /m
(where 1H=1kg m? s A~2). Figure 1.10 plots the evolution in M and By according
to the IGRF coefficients, demonstrating secular variation of the centred dipole
model over the last 100 years. The extent of variation in Figure 1.10 means that
values of By quoted in previous literature pertain to specific epochs.

Even when the internal field is modelled accurately using a higher order expan-
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Figure 1.10: The left ordinate shows variation over 120 years in By, the field
strength according to a dipole model of the geomagnetic field at radial distance
1Rg on the magnetic equator. The right ordinate shows the corresponding variation

in the magnetic moment M.
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sion of V| calculating the magnetic field in the outer zone proton belt is subject
to uncertainty because there is an additional “external” component induced by
magnetospheric current systems. Time variability necessitates the parameterisation
of external magnetic field models by a geomagnetic activity index. In general
however, the effect of the external field can be divided around the ring current
region; the ring current causes a diamagnetic effect that suppresses the field within,
whilst outside the ring current, the external field tends to increase magnetic field

strength as the magnetosphere is in a compressed state.

1.3 Variability of Trapped Proton Flux

1.3.1 Flux and Phase Space Density

Spacecraft sensors typically measure particle flux in order to quantify the intensity
of Earth’s radiation belts at a particular location. Differential, directional flux j,
for a given location r, direction 0 and energy F/, measures the number of particles
passing through a unit area perpendicular to 0 at r, per unit time, per unit solid
angle d€) in the direction 9, within the energy range E to £+ dFE. The units are

normally cm™2 s7! sr™! MeV ™1, and the number of particles is therefore given by

AN(r, E,0) = j(E,0) dA dE dQ (1.54)

Direction is usually relative to the local magnetic field and specified in terms
of pitch angle a. Therefore by measuring j(E,«) for 0 < o < 180°, the full
angular distribution of flux can be summarised as a “pitch angle distribution”. The
pitch angle distribution of protons measured by the Relativistic Electron Proton
Telescope on the Van Allen Probes satellites is shown in Figure 1.11, taken from
Selesnick et al. (2014).

Pitch angle distributions summarise the intensity of particles along a portion
of a drift shell, and can be used to investigate dynamical processes which may
imprint certain signatures upon the distribution. In particular, measurements of
pitch angle distributions from the magnetic equator are essential for showing the

full population of trapped radiation at a given L. This is because, in contrast to
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Figure 1.11: Proton equatorial pitch angle distributions measured by the Relativistic
Electron Proton Telescope on the Van Allen Probes satellites at various L, showing
J(E, ) at E =26, 46 and 66MeV (red, green and blue) over the period 15 January

to 14 February 2014. Taken from Figure 4 of Selesnick et al. (2014)
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equatorial measurements, measurements taken at latitudes away from the magnetic
equator will not include the portion of particles on the drift shell that have mirrored
between the point of observation and magnetic equator.

In order to interpret spacecraft measurements of flux, one must relate them to
the coordinates of the population being measured. A coordinate system in terms
of three adiabatic invariants provides a natural way to organise the radiation belts,
because a set of three fixed invariants describes an individual drift path. However,
there is spatial variation in flux over a drift path even in steady state that must be
taken into account.

Liouville’s theorem states that for a system in steady state, the phase space
density of particles following a particular dynamical path is constant along the

path. Phase space density is defined in relation to flux by
](E> Cqu)
2

where x, p describe the spatial coordinates and their conjugate momenta. As a

F(x,p) = (1.55)

result of Liouville’s theorem, time variations in phase space density at a fixed set
of coordinates are not due to adiabatic motion, but rather highlight nonadiabatic

changes in the population. A useful property of phase space density is

F(x,p) < F(u, J, ®) (1.56)

where F'(u, J, @) is a distribution function in adiabatic invariant space defined with
respect to the canonical action integrals as coordinates. A distribution function f
defined in another adiabatic invariant space, for example f(u,J, L), can be related
to F'(u, J, @) since each coordinate can be related to the canonical action integrals.

Therefore, a relation between f and flux exists via this property and Equation 1.55.

1.3.2 Transport in L

Time variation in the external component of the geomagnetic field gives rise to
electromagnetic field perturbations within the radiation belts. As a result, trapped
particles may undergo changes to the third adiabatic invariant and scatter across

the field to neighbouring drift shells. This requires the perturbation to occur
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over a small fraction of the drift period, and be asymmetric along the drift orbit
(dependent on local time, Parker, 1960).

This mechanism has a key influence on the spatial distribution of particles.
Simultaneous conservation of the first invariant also leads to changes in energy and
pitch angle. It is therefore important to understand these processes in order to
model the radiation belts, as well as to interpret spacecraft observations which may

show signatures of this mechanism caused by past variability.

1.3.2.1 Changes in Energy and Pitch Angle

It can be shown using Faraday’s law that changes in the local magnetic field
strength induce a change in the momentum of radiation belt particles perpendicular
to the magnetic field. When 0B /0t is approximately uniform over a gyration (thus

also conserving p):

aB-dS:—j{VxE-dS
ot

(1.57)
B
aatwg?:—jf]a-dl

As the magnetic field is approximately perpendicular to dS, Equation 1.57
shows that dB/0t results in work done by an induced electromotive force on the

particle. The work done in one gyration is given by

B
Wy = —Q%E'dl = qaatm“g2

For the case of magnetic mirroring, it was shown in Section 1.1.1.2 that a

(1.58)

locally converging magnetic field geometry imparts a Lorentz force that deflects
the particle away from the convergence. Equations 1.57 and 1.58 imply that the
increase in perpendicular velocity of the particle (until the mirror point) is the
transfer of work done by the particle against the Lorentz force in the direction
parallel to the magnetic field, as it approaches a region of higher magnetic field
strength until its parallel momentum is depleted. For the case of radiation belt
particles near the magnetic equator, the field strength varies roughly as B oc 1/73.
Therefore, an inward /outward motion, or increase/decrease in geomagnetic field

strength, leads to perpendicular energisation/de-energisation of the particle due to
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0B/ot.

When a particle is inwardly transported due to violation of the third invariant,
the increase in perpendicular momentum is maintained. A signature of this process
may therefore be an energised population of particles with increased pitch angles,

leading to a strong peak in the pitch angle distribution near 90°.

1.3.2.2 Radial Diffusion

Repeated, small perturbations cause the smoothing of gradients in proton phase
space density as a function of L by scattering particles back and forth. Calculating
the exact motion of particles requires that perturbations in the field are known, but
this is usually not practical for simulations relying on spacecraft data. Therefore,
the time evolution of phase space density is modelled as subject to radial diffusion,
with a diffusion coeflicient Dy .

Accurately quantifying the effect of radial diffusion is a key challenge for proton
belt modelling that will be explored later in this thesis: Chapter 3 begins with
a review of the Fokker Planck equation used to describe changes in phase space
density; Chapter 4 presents an attempt to constrain the value of Dy for trapped
protons by matching modelling results to observations during an era of high solar
activity and proton belt enhancements; uncertainty in proton Dy is further
explored in Chapter 5, by experimenting with several different values to model the
distribution of ~MeV energy protons.

The magnetically shielded inner zone proton belt L < 1.7 generally exhibits long
timescales for radial diffusion (~years to decades), with shorter timescales in the
outer zone. Figure 1.12 shows Van Allen probes measurements of the differential
flux of equatorially mirroring protons versus L at two epochs separated by 20
months, from 24 to 76MeV. The peak near L ~ 2 appears to have diffused radially
inward by ~ 0.25Rg over this period. At L > 2, enhancements in proton belt flux
have been observed to form over ~day timescales, with a suggested mechanism
being radial diffusion at an increased rate, caused by a drift-resonant interaction
with magnetosonic ULF waves (Lorentzen et al., 2002; Selesnick et al., 2010).
Boscher et al. (1998) also suggest the idea of enhanced radial diffusion, occurring

during active periods, in order explain how newly injected, low energy protons of
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Figure 1.12: Inward radial diffusion of a flux peak of equatorially mirroring protons
over a time period of ~20 months, plotted for various energies. This Figure has
been taken from Figure 1 of Selesnick et al. (2016)

solar origin near geostationary orbit are transported inward to the proton belt.
Therefore, it is implied that the rate of proton radial diffusion may fluctuate and

undergo temporary increases at L > 2, but this has yet to be fully explored.

1.3.2.3 Rapid Transport via Electric Impulses

Rapid, interplanetary shock-driven onset of a geomagnetic storm can include
sudden compression and relaxation of the dayside magnetosphere, called a storm
sudden commencement (SSC). An SSC was observed by the Combined Release and
Radiation Effects Satellite (CRRES) on 24th March 1991, temporarily compressing
the magnetosphere to within geostationary orbit distance, and resulting in a proton
belt enhancement that has been widely studied as an example of an extreme space
weather event. The SSC was coincident with the arrival of SEPs, and led to their
rapid inward transport to form an enhancement in proton belt flux at L ~ 2.5
lasting for hundreds of days (Hudson et al., 1995).

The March 1991 event provides an example of the coherent acceleration of

particles due to a drift-resonant interaction with a large electromagnetic field
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perturbation. Rapid compression and relaxation of the magnetosphere during the
event was measured by CRRES as a bipolar pulse in the electric field with a peak
to peak magnitude of 80mV/m and a period of ~150s, and in the magnetic field as
a monopolar pulse with a magnitude of 140nT (Li et al., 1993; Wygant et al., 1994).
The electric field pulse was mostly in the azimuthal direction, therefore particles
in the longitudinal vicinity of the pulse, and with a drift velocity similar to the
azimuthal velocity of the pulse, experienced a steady electric field acceleration
over a portion of their drift orbit. Equation 1.18 shows that a force due to an
electric field, given by F = Egq, results in a guiding centre drift in the E x B
direction. Therefore, particles subject to the electric field underwent radially
inward or outward acceleration depending on which phase of the bipolar pulse they
experienced. Simulations have shown that this led to inward transport of protons
by ~1-2Rp (Hudson et al., 1997).

1.3.3 Sources

1.3.3.1 Trapping of Solar Energetic Particles

The entry and trapping of SEPs provides an external source of 2MeV trapped
protons at L > 2, with the solar origin confirmed by measurements of heavy ions
(Mazur et al., 2006). Observations from the CRRES satellite shed light on this
mechanism, and showed that enhancements in proton belt flux can form on rapid
(~minute) timescales coinciding with the injection of SEPs after a storm sudden
commencement (SSC). For example, the 24th March 1991 event resulted in a second
>20MeV proton belt forming at L ~ 2.5, lasting for hundreds of days (Mullen
et al., 1991; Blake et al., 1992). Figure 1.13 shows two snapshots in time of the
proton population observed during this event: after the arrival and injection of SEP
particles (left panel); and just after the arrival of the shock (right panel). Figure
1.13 shows that inward penetration of SEPs was initially limited to L ~ 4 (left
panel), but following the SSC, inward transport and energisation led to a dramatic
enhancement down to L ~ 2.5 (right panel).

Attenuation of incoming SEP particle trajectories due to the geomagnetic field
prevents their access to certain altitude-latitude combinations as a function of

particle rigidity (momentum divided by charge), an effect known as geomagnetic
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Figure 1.13: Differential flux of equatorially mirroring protons observed by CRRES
at L > 2 just before (left) and just after (right) the arrival of an SSC in the March
1991 storm. Taken from Figure 1 of Hudson et al. (1996)

cutoff. Stormer theory describes geomagnetic cutoff surfaces as contours for a
particular value of magnetic rigidity to represent the access limits for particles of
that rigidity. The allowed regions for particle orbits, confined by these surfaces, is
illustrated in Figure 1.14 from Kress et al. (2005) for different values of dimensionless
parameter g (see Equation 2 of Kress et al., 2005), a function of particle rigidity
and dipole moment. In Figure 1.14, an innermost cutoff surface controls the deepest
extent of particle access, but an outer cutoff surface may block particles approaching
from outside the region, or allow them depending on the value of vg.

When Stormer theory is applied to the geomagnetic field, entry to the inner
magnetosphere depends on an outer cutoff surface as illustrated in Figure 1.14. By
default, entry of incoming SEPs may be blocked, but the dependence of + implies
that when the geomagnetic field is compressed, such as during the arrival of an
SSC, the outer cutoff surface can reconfigure to allow entry to the inner region.
This effect is known as geomagnetic cutoff suppression, and can allow entry of
SEPs through the front-side magnetopause to the radiation belt region.

Kress et al. (2004) and Kress et al. (2005) investigated the trajectories of SEPs

at tens of MeV by solving the equation of motion for many individual particles,
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Figure 1.14: Three different configurations of outer cutoff surface demonstrated
for a dipole model of the geomagnetic field as calculated using Stérmer theory,
adapted and simplified from Figure 2 of Kress et al. (2005)
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and showed that trapping of incoming SEPs is moderated by reconfiguration of the
geomagnetic field during the arrival of a geomagnetic storm. Simulation results
presented in Figure 1.15 show entry and trapping of 25MeV protons (SEPs) through
the front side magnetopause. The arrival of a shock (the region of increased density)
leads to geomagnetic cutoff suppression, allowing the particles to penetrate to L ~ 4
via low-latitude entry (third panel). As the field decompresses (fourth panel), the
subsequent restoration of geomagnetic cutoff (within timescales comparable to one
drift orbit) then prevents particles from leaving by trapping the particles between
an inner and outer cutoff surface. After gaining access to the inner magnetosphere
this way, coherent acceleration of SEPs by an electric field pulse associated with
the SSC, via the mechanism described in Section 1.3.2.3, can then lead to further
inward transport and the formation of trapped enhancements within the proton
belt’s outer region (L > 2).

The direct injection of SEPs through the front-side magnetopause applied to
210MeV particles only. However, <1MeV SEPs provide a low energy source of
protons, penetrating the magnetosphere via open field lines in the magnetotail
(Blake et al., 2019). Injection of such low energy protons into the outermost trapped
population near geostationary orbit has been shown to occur during impulsive
reconfiguration of the geomagnetic field (i.e. Baker and Belian, 1985; Wang et al.,
2008). Some mechanism of enhanced radial diffusion is then inferred to allow

inward transport to the proton belt region (Boscher et al., 1998).

1.3.3.2 Cosmic Ray Albedo Neutron Decay

In addition to protons gaining access through the frontside magnetopause and
geomagnetic tail, the radiation belts have an internal source of protons produced
by the beta decay of neutrons escaping from the atmosphere. This is called the
cosmic ray albedo neutron decay source (CRAND), and it is responsible for the
distribution of trapped protons at L < 1.25 and E 2 50MeV (Jentsch, 1981).
This process begins with the arrival of galactic cosmic rays at Earth. Figure
1.16 shows modelled energy spectra of arriving H and He cosmic ray particles, and
the dependence on solar cycle. The inverse relationship between flux and solar

activity is due to the increased attenuation of galactic cosmic rays during solar
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Figure 1.15: The time evolution of a 25MeV proton population, calculated by
following particle trajectories in a field calculated using a time dependent MHD
code during the simulated arrival of a geomagnetic storm. Taken from Figure 3 of
Kress et al. (2005)
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Figure 1.16: Modelled energy spectra of galactic cosmic ray particles arriving at
Earth (H, solid; He, dashed) as a function of sunspot number W as a proxy for
solar activity, taken from Figure 7 of Selesnick et al. (2007)

maximum, when the heliospheric magnetic field is stronger. Collisions of incoming
cosmic rays with atmospheric constituents produce neutrons in all directions leading
to an upward flux, seen in high altitude balloon measurements at the top of the
atmosphere (Singer, 1958; Vernov et al., 1959).

Neutrons have no charge so their trajectory is not altered by the geomagnetic
field. However, after an average time of 887s after production, albedo neutrons
(newly produced neutrons with an upward trajectory) undergo beta decay, producing
a proton, electron and an antineutrino (Singer, 1958). This average lifetime for
albedo neutrons is easily long enough to escape the radiation belt region. However, a
small fraction of albedo neutrons decay much sooner than this. Therefore, amongst
the fraction of neutrons undergoing early decay, there is a chance that new protons
may be produced in the radiation belt region.

Protons produced as a result of albedo neutron beta decay move in approximately
the same direction and with the same kinetic energy as the neutron. If production
happens to coincide with a region, energy range and pitch angle conducive to
adiabatic trapping, the proton becomes part of the proton radiation belt. This is
demonstrated in Figure 1.17, which shows the proton produced by beta decay at

two different locations, one of which becomes trapped, whilst the other is lost to
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Figure 1.17: Schematic showing two possible outcomes following the beta decay
of a neutron within the radiation belt region. Taken from Figure 1 of Singer and
Lemaire (2009)

the atmosphere.

1.3.4 Losses

1.3.4.1 Coulomb Collisions

Radiation belt protons undergo coulomb collisions with free and bound electrons
present in the atmosphere, ionosphere and plasmasphere. Due to the much higher
energy of the proton, this type of collision does not significantly alter pitch angle.
However, protons are decelerated and eventually lost from the radiation belts.
Stopping power, or energy loss per unit distance, due to coulomb collisions increases
as a particle slows down, resulting in a Bragg curve. As a result, the rate of change
in the first invariant p is higher for lower energy protons.

An increase in the rate of coulomb collisional loss occurs during solar maximum.
This is due to thermal expansion of the atmosphere, caused by heating from
increased extreme ultraviolet radiation (Fuller-Rowell et al., 2004). At fixed
altitude in the radiation belts, this leads to higher density and therefore more

coulomb collisions occur. The opposite effect applies during solar minimum, leading
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to a solar cycle driving with a timescale much shorter than changes due to radial
diffusion. Variations in proton intensity at low altitude (L <1.3) are mostly driven
by variations in the rate of coulomb collisional loss due to this effect (Li et al.,

2020), and the solar cycle driving is stronger for lower energy protons.

1.3.4.2 Processes Controlling the Outer Boundary

During a geomagnetic storm, build-up of the ring current can cause outward motion
of drift orbits associated with conservation of the third invariant, in addition to
field line curvature scattering due to breakdown of adiabatic motion along stretched
field lines (Anderson et al., 1997). Engel et al. (2015) and Engel et al. (2016)
showed that modelling these two effects can account for losses reaching L~2.5.
The outer boundary of trapped flux, controlled by these losses, can therefore move
to lower L shell over several hours corresponding to build-up of the ring current.
Observations show the time taken for the outer boundary to recover is hundreds
of days due to outward radial diffusion (Selesnick et al., 2010). Some trapped
enhancements, particularly at high L, may therefore be short-lived because of

subsequent variability.

1.4 The Exposure of Satellites

1.4.1 Overview

Irradiation of spacecraft by trapped protons causes damage to solar cells. More
specifically, incoming protons penetrate the upward mounted surface of the cell
and displace atoms in the crystal lattice structure. This causes defects throughout
the device that decrease the lifetime of minority charge carriers. This type of
damage is referred to as non-ionising dose, and is caused in particular by protons
around ~10MeV in energy, depending on the coverglass shielding thickness, which
attenuates the proton before it impacts the solar cell (Messenger et al., 1997).
The end result is a reduction in maximum power availability from the cell (as
well as other photovoltaic output parameters), referred to as degradation, which

can adversely affect operations because solar cells are usually required to output
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close to maximum power. For spacecraft frequently traversing the proton belt,
non-ionising dose from trapped protons is a primary cause of solar cell degradation
and therefore a key factor influencing mission lifetime. The degradation effect on
solar cells of the Akebono, Tacsat-4, Arase and Van Allen Probes satellites are
documented in the following example literature: Miyake et al. (2014); Jenkins et al.
(2014); Toda et al. (2018); and Maurer et al. (2018).

The following sections present background concepts to understand how the
calculation of non-ionising dose and solar cell degradation is performed. Later in
this thesis, the NRL method explained in Section 1.4.2.3 will be used.

1.4.2 The Calculation of Non-ionising Dose

1.4.2.1 Overview of the JPL and NRL Methods

The calculation of solar cell degradation due to non-ionising events is set out by
Messenger et al. (2001) in terms of two methods. The first has been developed
by the US Jet Propulsion Laboratory (JPL method) and second, newer method,
by the US Naval Research Laboratory (NRL method). Practically there are two
important differences to consider when choosing a method. These are: a.) data

availability; and b.) the way resulting damage is quantified. In more detail:

(a) The JPL method relies on data collected by bombarding a solar cell with
mono-energetic beams, using eight proton energies and three electron energies
(at a minimum) and measuring the degradation under each separately. The
JPL method therefore depends on extensive testing. On the other hand,
the NRL method requires degradation data for just one proton energy and

one electron energy (see Section 1.4.2.3 for why only one electron energy is
needed) (Baur et al., 2017).

(b) The JPL method calculates the 1MeV electron equivalent fluence to quantify
damage, whereas the NRL method is in terms of displacement damage dose,
with units MeV /g. These are explained further in Sections 1.4.2.2 and 1.4.2.3.

After using either method to calculate damage to a solar cell, this can be

converted to degradation (the equivalent drop in output power or voltage, etc.). An
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input required by both methods is the total fluence (time integrated flux) spectrum
of particles incident on the solar cell. In the context of mission planning this is the

output given by a radiation belt model.

1.4.2.2 JPL method

Calculating Damage via 1MeV Electron Equivalent Fluence

An explanation of the JPL method invokes the concept of relative damage. This is
damage caused by a particle at one particular energy relative to that caused by a
particle of the same species at a reference energy. Using this concept, fluence at
any energy can be converted to an equivalent fluence at the reference energy that
would result in the same amount of degradation.

Relative damage as a function of energy is quantified by a “relative damage
coefficient” (RDC). Deriving a RDC at energy FE for particle species x begins
with measuring “critical fluence” at this energy ®, «(F). This is the fluence of
perpendicularly incident monoenergetic particles that, incident on a solar cell,
causes a particular photovoltaic parameter (output power, voltage or current) to
degrade to 75% of its original value. This critical fluence can be measured for any
energy of proton or electron, represented by ®, «(E) and @, «(E) respectively. For
protons, the RDC D, (F), is then given by the ratio of the critical fluence at a

10MeV reference energy to this critical fluence:

®,, o (10MeV protons)
%e (E)

D, (E) = (1.59)
The electron RDC, D.(FE), is given by the equivalent ratio, but using a critical

fluence at a reference energy of 1MeV instead:

O, o (IMeV electrons)

De <E) B cI)eC(E>

(1.60)

Degradation curves, showing the gradual loss of maximum output power under
bombardment at different energies, are shown in Figure 1.18. As an example, it can
be seen in Figure 1.18 that the 2.4MeV electron degradation curve falls off more

rapidly than the 1MeV electron (reference energy) curve, as the rate of degradation
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Figure 1.18: The remaining normalised maximum power of an example GaAs solar
cell under bombardment at different energies, with measurements taken at various
fluence levels for each energy of proton and electron, from Messenger et al. (2001)

is higher. Therefore critical fluence is lower, and the electron RDC at 2.4MeV is

greater than unity.

A complete set of RDC data must be determined for this method. This process

can be summarised like so:

(a) The RDC is calculated for each test energy, with an example shown in Figure

1.18. The RDC at other energies can then be interpolated/extrapolated to

determine RDCs across the whole spectrum.

(b) In a realistic setting, fluence is omnidirectional. The RDCs are therefore

converted for omnidirectional fluence. At the same energy, the fluence of omni-

directional particles required to cause the same degradation as perpendicular
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particles is higher. The perpendicular critical fluence at the reference energy
is still the numerator in Equations 1.59 and 1.60, therefore the omnidirectional
RDCs are smaller. The critical fluence for omnidirectional particles can be
derived from the critical fluence for perpendicular particles by considering

the geometry and does not require re-testing (see Messenger et al., 2001).

(¢) In a realistic setting, incident particle energy is also reduced by solar cell
coverglass shielding. Further calculations account for the effect of shielding
at several thicknesses on the energy of incident particles, to produce a set of

omnidirectional RDCs for each shielding thickness.

A set of RDC curves describe the relative damage as a function of energy for each
photovoltaic parameter (output power, voltage, etc.), for the solar cell material
and structure used in testing paired with the particular coverglass material used to
calculate the effect of shielding. As the effect of shielding is calculated for various
thicknesses, one can interpolate to find the RDCs for any thickness. Such a dataset
is represented in Figure 1.19 for protons.

Using the appropriate set of RDC data, an incident fluence spectrum can be
converted to a single value, called the 1MeV electron equivalent fluence. This is the
fluence of 1MeV electrons that would cause the same degradation as the original
fluence spectrum (thus “equivalent”), given by:

do. (E.)

d®, (F.
CI>1MeV e. equivalent — dTDe (Ee) dEe + Dpe M

S5 Dy () A, (161

where D,, D, represent the proton, electron RDC as a function of energy I,
d®(E,)/dE, is differential fluence at energy E, and D,, represents the proton to
electron damage ratio. D, is the ratio of the critical fluence of perpendicular 1MeV

electrons to critical fluence of perpendicular 10MeV protons, given by

D — O, ¢ (1MeV electrons)
" @, o (10MeV protons)

(1.62)
Proton RDCs relate to 10MeV protons as the reference particle, therefore the

integral on the right in Equation 1.61 represents the 10MeV proton equivalent

fluence. D, is therefore used to convert 10MeV proton equivalent fluence to 1MeV
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Figure 1.19: Example RDC curves for a GaAs-based solar cell showing the cal-
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(2001)
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Radiation Performance at 1 MeV Electron Irradiation, EOL/BOL Ratios

Fluence (e/cm?) Voc Isc Vmp Imp Pmp®™
3.00E+13 0.96 0.99 0.98 0.99 0.99
1.00E+ 14 0.95 0.98 0.97 0.99 0.96
5.00E+14 0.91 0.97 0.93 0.96 0.90
1.00 E+ 15 0.89 0.94 091 0.94 0.85
3.00E+15 0.86 0.89 0.87 0.86 0.75
1.00E +16 0.82 0.82 0.83 0.74 0.62

(1) Per AIAA-S-111 Standards

Figure 1.20: Response of a SolAero ZTJ solar cell to an equivalent fluence of 1MeV
electrons, in terms of degradation of various photovoltaic parameters (SolAero
Technologies Corp, 2018)

electron equivalent fluence.

Calculating Degradation

Finally, the 1MeV electron equivalent fluence can be converted to remaining maxi-
mum output of any photovoltaic parameter by using the corresponding characteristic
degradation curve (degradation versus 1MeV electron fluence). For power output,
this is the 1MeV electron curve in Figure 1.18. The characteristic curve can be fit

using an equation of the form

ZZO =1-Clog (1 + }{;) (1.63)
where Z/Z is the remaining output ratio of any photovoltaic parameter (such as
the normalised maximum power P/FPy) and F' is the 1MeV electron fluence. C' and
Fx are fitting parameters that parameterise the curve, and therefore describe the
degradation properties of the solar cell. Alternatively, the remaining output at
various 1MeV electron fluence levels can be given to recreate the curve. This is the
norm in solar cell spec sheets, an example of which is shown for SolAero ZTJ cells
in Figure 1.20 (SolAero Technologies Corp, 2018).
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1.4.2.3 NRL Method

Calculating Damage via Displacement Damage Dose

In the NRL method, a key concept is non-ionising energy loss (NIEL). In non-
ionising events NIEL is the rate at which energy is transferred from incident particle
to target atoms due to various types of interactions (Rutherford scattering as well
as nuclear elastic and inelastic), with units MeV cm?/g. NIEL is a function of
energy, and can be thought of as the (non-ionising) damage-causing energy applied
per mass of target material in a collision.

A convenient feature of NIEL is that it is proportional to the RDC for a given
species (see Section 1.4.2.2 to understand the concept of relative damage). Therefore,
by multiplying a monoenergetic fluence at a given energy by the corresponding
NIEL value for that energy, the product is a normalised measure of damage (with
respect to the species of particle) with units MeV /g. This product is called the

displacement damage dose, given by
Dy =¥, (E) S, (E) (1.64)

for a particle of species x, where S,(F) is NIEL at energy E. The reason for the
linear dependence of NIEL on RDCs is that damage occurs via a similar mechanism
over the whole energy range of interest. This is indicated in Figure 1.18 because
the degradation curves have approximately the same shape. In other words, for
any chosen energy, the effect of many non-ionising collisions in the target lattice
can be reproduced using any other energy, the only difference being the amount of
fluence required which is accounted for by the NIEL rate for that species. However,
perhaps the most important difference between NIEL and a RDC is that NIEL can
be calculated theoretically, as opposed to being empirically deduced from test data.

Displacement damage dose is somewhat analogous to the 1MeV electron equiva-
lent fluence used in the JPL method, as it can be calculated for fluence at each
energy across an incident spectrum and summed, taking into account the relative
damage of each energy. Equation 1.65 gives total D, imparted by a fluence of

protons and electrons by integrating across all energies:
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de, (E,) 1 dd,. (E.)
dEp Sp ( P) d p + Rep dEe

D total = Se (Ee) dE, (1.65)
Quantities d®,(E,)/dE, and d®.(E.)/dE. are the omnidirectional proton and
electron fluences after the effects of coverglass shielding, S,(F) and S.(E) are
proton and electron NIEL at energy F, and R, is the electron to proton damage
equivalency factor. Displacement damage dose is normalised with respect to a
particular species, but by default it is implied with respect to protons. Therefore,
the left and right integrals in Equation 1.65 (without the factor R.,) actually
give proton displacement damage dose and electron displacement damage dose
separately. This subtlety leads to the proton damage equivalency factor R.,, which
converts electron displacement damage dose to equivalent proton displacement
damage dose, analogous to the proton to electron damage ratio in Equation 1.61.
A practical way to calculate R, is given in Section 1.4.2.3 in terms of solar cell

degradation parameters.

Calculating Degradation

This occurrence of similar damage type at every energy is a key conclusion because
it allows the solar cell degradation as a function of displacement dose to be
calculated using just one test energy using the theoretically derived NIEL rate.
For example, by multiplying any of the proton fluence curves in Figure 1.18 by
the NIEL value corresponding to their energy, one obtains the same characteristic
degradation curve in terms of maximum output versus displacement damage
dose. This occurs separately for protons and electrons resulting in two separate
characteristic degradation curves for proton and electron-induced dose.

As in Section 1.4.2.2, characteristic curves for displacement damage dose can

be fitted in terms of two parameters, C' and Dx using

A Dy
— =1-"Cl1 1+ — 1.
o C’og( +DX) (1.66)

where Dy is equivalent to Fx in Equation 1.62, but with the new units of MeV g~!.
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Figure 1.21: Characteristic degradation curve in terms of non-ionising displacement
damage dose for a GaAs single junction solar, obtained using NIEL values with a
21eV displacement energy threshold, from Baur et al. (2014)
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By deriving one proton degradation curve (as described above) and one electron
degradation curve, then fitting Equation 1.66 to each, one can derive C' and Dy in
both cases. The value of C' is identical in either the proton or electron case, but Dx
is not. This leads to the quantities D.x and D,x, which are fitting parameters for
the solar cell characteristic degradation curves for electrons and protons respectively
for use in Equation 1.66.

The electron to proton damage equivalency factor, used to convert displacement
damage caused by electrons to an equivalent displacement damage in terms of

protons as in Equation 1.65, can be derived using these two fitting parameters:
Rep = DeX/DpX (167)

When the electron fluence curves in Figure 1.18 are multiplied by the NIEL

value corresponding to their energy, then by R.,, they align with the proton curves.

This process is shown by the collapse of proton and electron fluence curves in
Figure 1.21 to the same characteristic curve from Baur et al. (2014).

It is also useful to know that, for a solar cell of interest, 1MeV electron equivalent
fluence data such as that shown in Figure 1.20 can be converted to electron
displacement damage dose by multiplying with the 1MeV electron NIEL value,
then the fitting parameters C' and D.x can be found by fitting Equation 1.66.

Classic NIEL and Changes to the Method

In Messenger et al. (2001), Equation 1.65 is instead written:

4o, (E,) 1 rdo ()
Dot = / e\ (B AE e (E.
dtotal = + dE, Sy (Ep) 7’+Rep dE, Se (Ee) Se (1MeV electron)

(1.68)

Compared to this, Equation 1.65 above is simplified because it does not contain
any non-linear dependence on electron NIEL values. This is because S,(£) and
Se(E) represent NIEL calculated under the assumption of a minimum displacement
energy Fy = 21eV in the target material, versus the NIEL for F; = 10eV shown in
Messenger et al. Minimum displacement energy is the minimum incident particle

energy required to cause a permanent displacement of an atom in a particular
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material. The increase in E, for the calculation of NIEL accounts for annealing
effects, and has been shown for GaAs-based cells to result in NIEL coefficients that
produce the same degradation curve across all electron energies, hence the linear
dependence (Baur et al., 2014; Pellegrino et al., 2020). Therefore, for the solar
cell technologies under investigation in this work, the NIEL curves for F; = 21eV
allow a value of n =1 to be used, and Equation 1.65 is the correct calculation of

displacement damage dose.

Shielding calculation in the NRL method

Although RDCs take longer to derive experimentally, they take into account the
effect of shielding through the extra calculation explained in Section 1.4.2.2. To
calculate the effect of shielding in the NRL method, a transport code must be used
to acquire the slowed down spectrum of fluence after attenuation by shielding. It
is this slowed down spectrum which is used as input to calculate Dj.

The transport code MULASSIS (Lei et al., 2002) is an example code that was
used to simulate the effect of coverglass shielding. Although this greatly enhances
execution time it is much more flexible because any thickness of shielding can be
considered and one is not constrained by the availability of experimental data,
unlike the JPL method.

1.4.3 The TacSat-4 Solar Cell Experiment

The Tacsat-4 Solar Cell Experiment was launched on 27th September 2011 into
highly elliptical orbit (700 x 12050km at 63.4° inclination). It provided measure-
ments of solar cell degradation which could be compared with the predictions of
various models.

Jenkins et al. (2014) compared normalised remaining output power P/P, after
two years in orbit to model predictions, and results are shown in Figure 1.22. Figure
1.22 shows the actual degradation data from Tacsat-4’s BTJM solar cells (black),
alongside the degradation calculated using the measured fluence spectrum (purple).
The agreement of these two values implies that the calculation of remaining power
is subject only to a small error when the spectrum of incident flux is correctly

predicted. Calculations of P/Py based on the predictions of various radiation belt
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Figure 1.22: Remaining power fraction of the Tacsat-4 BTJM solar cells (black)
compared with the values calculated using the observed fluence spectrum of the
onboard CEASE spectrometer (purple), and the predictions of various radiation
belt models before launch, from Jenkins et al. (2014)

models are shown alongside (green, red and blue). Measured P/P, is >10% lower
than predicted with AP-8, and ~20% lower than predicted with AP-9 Mean. These
results imply that each model under-predicted proton belt flux significantly, and
demonstrate in general that statistical radiation belt models have the potential to
under-predict degradation when protons are the dominant contributor. Tacsat-4
data has since been used to update AP-9 in version 1.20 (Johnston et al., 2015).
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Chapter 2

Solar Cell Degradation during
Electric Orbit Raising to GEO

This chapter is based on a research article:

Solar Cell Degradation due to Proton Belt Enhancements During
Electric Orbit Raising to GEO

Space Weather, July 2019, Volume 17, Issue 7
https://doi.org/10.1029/20195W002213

Alexander R. Lozinski®®, Richard B. Horne?, Sarah A. Glauert®, Giulio Del
Zanna®, Daniel Heynderickx®, Hugh D. R. Evans?

%British Antarctic Survey, Cambridge, UK

®Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, UK

¢DH Consultancy BVBA, Leuven, Belgium

YEuropean Space Agency/European Space Research and Technology Centre, Noordwijk,
Netherlands

Satellites intended for geostationary earth orbit (GEO) can now be fitted
with all-electric propulsion, which enables lower-cost access to space by replacing
chemical propellant and reducing wet mass. This type of mission involves “electric
orbit raising” (EOR), whereby the satellite’s electric thrusters are used to raise the
satellite from its initial geostationary transfer orbit (GTO) to GEO. However, the

electric thrusters exert a smaller impulse per manoeuvre and the raising process
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therefore takes ~200 days, in comparison to just a few days for chemical propulsion
(Horne and Pitchford, 2015). During this time, an EOR orbit involves multiple
passes through the radiation belts, and has been shown to significantly increase non-
ionising radiation dose from trapped protons (Messenger et al., 2014). Electric orbit
raising to GEO therefore provides a useful case study to understand the radiation
risks that proton belt enhancements pose to orbiting spacecraft. Furthermore,
EOR was first performed using fully electric commercial GEO satellites in 2015 (see
review by Lev et al., 2019), and it is important to understand the potential penalty
of this fairly new technique in terms of radiation exposure. In this chapter, the risk
to EOR missions posed by dynamic enhancements in proton flux is investigated by
calculating solar cell degradation over the course of an EOR mission during both
active and quiet times, using an environment model based on observations by the
CRRES satellite. The contribution of electron flux to solar cell degradation is also

taken into account in order to compare.

2.1 Modelling an Enhanced Environment

As shown in Figure 1.13, measurements from the Combined Release and Radiation
Effects Satellite (CRRES) captured a large enhancement coinciding with the arrival
of a SSC on 24th March 1991. The 24th March 1991 storm is one of the largest
SEP trapping events for which equatorial observations of protons are available, and
the enhancement in proton belt flux following the storm was sustained for at least
six months. CRRES’s onboard Proton Telescope (PROTEL) and High-Energy
Electron Fluxmeter (HEEF) measured 1 - 100MeV protons and 1 - 10MeV electrons
throughout its elliptical orbit (350 x 33000km) at 18° inclination. PROTEL data
have previously been used to construct the time-averaged CRRESPRO proton
belt model (Gussenhoven et al., 1993; Meffert and Gussenhoven, 1994), which
includes Quiet and Active versions corresponding to conditions averaged over ~ 200
days before and after the March 1991 storm. The difference between Quiet and
Active versions therefore gives an example of the variation in trapped proton flux
associated with a large enhancement.

In order to assess the impacts of an enhanced proton belt on solar array

degradation, these two models have been used to compare degradation in a quiet
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Figure 2.1: Proton integral flux on the geographic equator according to CRRESPRO
Quiet (left panel) and Active (right panel). Integral flux is shown for: >5MeV
(blue), >10MeV (yellow) and >20MeV (red). Vertical dashed lines represent the
peaks of >20MeV flux, showing two peaks in active conditions but only one peak
in quiet conditions.

environment (specified by CRRESPRO Quiet) with degradation in an active
environment (specified by CRRESPRO Active). Both environments are shown in
Figure 2.1 in terms of integral flux. Above 20MeV (red curve in Figure 2.1), the
active state exhibits a second peak at 2.2 R, due to newly trapped SEPs. At lower
energies above 5MeV (blue curve), high integral flux (= 10°cm~2s™!) persists until
L ~ 2.5 in both quiet and active states.

Trapped electrons also contribute towards solar cell damage (Hands et al.,
2018). However, the electron model (CRRESELE; see Brautigam and Bell, 1995)
corresponding to CRRESPRO does not include electrons at L < 2.5 due to potential
contamination of the data. This excludes a potentially important region for EOR,
therefore CRRESELE was not used to measure the electron contribution. In the
interest of understanding the final electron contribution to non-ionising dose, proton
and electron damage are later compared when proton and electron environments
are specified at an equivalent level of activity, using the AP-8/AE-8 MAX and
AP-9/AE-9 statistical model pairs. This gives a sense of the extra contribution to

non-ionising dose missing from the calculations that include only CRRESPRO.
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Satellite  Launch date Launch site Designation EOR  dura-

(D/M/Y) tion (days)
SES-15  18/05/2017  Guiana  Space EOR-1 185
Centre (5.2°N)
ABS-2A 14/06/2016  Kennedy Space EOR-2 200

Centre (28.6°N)
SES-14  25/01/2018  Guiana  Space EOR-3 188
Centre (5.2°N)

Table 2.1: Summary of Electric Orbit Raising Trajectories used

2.2 Satellite Trajectories

The calculation of optimal trajectories for EOR /low-thrust transfers has been a
topic of active research since the mid-1970s (Messenger et al., 2014). A particularly
significant challenge for the optimisation process is taking into account diminishing
thrust due to power loss (addressed recently by Kluever and Messenger, 2019). To
illustrate the range of approaches used so far, three trajectories are considered based
on previous EOR missions to geostationary orbit. The missions represented are:
SES-15, launched on 18th May 2017 from Guiana Space Centre (5.2°N); ABS-2A,
launched on 14th June 2016 from Kennedy Space Centre (28.6°N); and SES-14,
launched on 25th January 2018 from Guiana Space Centre. These scenarios are
hereby referred to as EOR-1, EOR-2, and EOR-3 respectively and summarised
in Table 2.1. A measure of the EOR duration (in terms of trajectory) has been
specified for each mission in Table 2.1 (column 5), corresponding to the day on
which each satellite’s longitude stopped increasing, and the satellite became parked
at GEO altitude.

Each trajectory has been extrapolated from two line element (TLE) orbit data.
The PyEphem library (Rhodes, 2011) was used to convert TLE data to position at
a given time, using the most recently available TLE. The spacecraft position was
extracted at regular intervals for 200 days, starting from the time of the first TLE
available after launch. This encompassed the EOR period for all three trajectories.
The time step used to sample position throughout the 200 days was chosen based
on the satellite’s instantaneous speed at each previous position, such that the

spacecraft traversed ~ 600km or less between samples. As the spacecraft’s velocity
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was higher at perigee than at apogee, this method was used to ensure a consistent
spatial resolution.

The trajectories produced as a result of the above process are shown in Figure
2.2 on the X-Y geographic equatorial plane. The locations of the two peaks in
>20MeV proton integral flux from the active environment model (shown in Figure
2.1) are indicated by two solid black concentric circles to show the location of
the proton belt. A key characteristic of each orbit shown by Figure 2.2 is the
initial apogee of the satellite as it enters a geostationary transfer orbit (GTO) after
launch. The EOR-2 scenario (second panel) has an apogee that extends well past
geostationary orbit altitude, whereas the apogee of EOR-1 (first panel) remains
well within. From higher apogee, it is theoretically possible to raise perigee by a
higher amount for a manoeuvre exerting the same impulse, potentially enabling a

faster rate of raising.

2.3 Calculating Non-ionising Dose and Degrada-
tion

To calculate proton non-ionising dose, the total fluence was first calculated along
each trajectory using the CRRESPRO Quiet or Active model via the European
Space Agency’s Spenvis interface (Heynderickx et al., 2005). Non-ionising dose
was then calculated in terms of the displacement damage dose, Dy, using the
MC-SCREAM tool (Messenger et al., 2010). This parameter is derived according
to the method developed by the US Naval Research Laboratory (Messenger et al.,
2001). The effect of shielding was taken into account by the integrated MULASSIS
transport code (Lei et al., 2002).

To calculate total dose as a function of time in Spenvis, the total fluence
spectrum was re-calculated for every day of EOR by repeatedly uploading larger
and larger fractions of the 200 day trajectory. The calculation of D, was repeated
for each daily total fluence spectrum using MC-SCREAM. This method resulted
in lower error compared to summing Dy values obtained for incremental fluence
spectrums.

For each trajectory and both environments, the calculation of dose through
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time was repeated for three thicknesses of solar cell coverglass: 100pm, 150um,
and 200pum. This range includes levels of shielding previously used on satellites
in highly exposed orbits such as Tacsat-4 (150um), as well as for solar panels
qualified for GEO (typically 150um or less: Messenger et al., 2006; Spectrolab,
2010). Material density was kept constant with a typical value of 2.6gcm ™3 (Qioptiq
Space Technology, 2015). Calculations assumed that the back side of the solar cell
was perfectly shielded. This may imply a small underestimate in dose depending
on panel structure, estimated to be less than 5% at 200 days for any EOR scenario.

Each value of D; was converted to the ratio of remaining solar cell output power
relative to beginning of life: P/P0. This photovoltaic parameter indicates the level
of corresponding solar cell degradation and is a key indicator of remaining lifetime.

P/PO0 is given by the characteristic equation:

P Dy
~ —1-Clog|1+ 2.1
2 g( Dpx> (2.1)

where C' and D,x are experimentally-determined fitting parameters for power
degradation. This equation is a specific case of Equation 1.66 applied to remaining
power. Conversion from Dy, to P/PO0, for all calculations herein, was based on the
characteristics of an Azur Space 3G30 triple junction solar cell, representative of
current-generation technology. The C' and D,x parameters for this solar cell are
built into Spenvis (0.306 and 3.63 x 10° respectively for proton-equivalent D).
To investigate the balance between solar cell damage caused by protons and
electrons at the end of EOR, the displacement damage dose from each species was
calculated at day 200 for EOR-1, 2 and 3. A similar process was followed for each
trajectory and coverglass thickness, but instead using the AP-8/AE-8 MAX and
AP-9/AE-9 models to specify the same level of activity in proton and electron
environments. AP-9/AE-9 models were run in percentile mode using the 95%
setting. The effects of local time variation have not been included, having been

found to cause a negligible difference for the orbits used.
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2.4 Results

Figure 2.3 shows the displacement damage dose (Dg, top panels) and degradation
in remaining power output (P/P0, bottom panels) as a function of time for all three
EOR trajectories, for both quiet (left panels) and active (right panels) environments
using 150um coverglass thickness. Only the first 100 days are shown, after which
there was no significant increase in degradation until the end of EOR. This is
primarily because the perigee of all three satellites had increased to a region of
lower proton flux beyond 3R,. Figure 2.1 shows that an altitude of 3R, corresponds
to a drop by over 2 orders of magnitude in >5MeV integral flux compared to any

value between 1.5 - 2R,, for both quiet and active environments.

a) Non-ionising dose, quiet environment b) Non-ionising dose, active environment

EOR-1 EOR1 Eor3

EOR-3
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Figure 2.3: Displacement damage dose, Dy, (top panels) and remaining power,
P/P0, (bottom panels) for three EOR trajectories for quiet (left panels) and active
(right panels) conditions. Coverglass thickness is kept constant at 150um.
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For the quiet environment, Figure 2.3a shows that for EOR-2 (red curve) only
minimal dose was accrued before day 30, after which dose rose steadily until around
day 80. Figure 2.3c shows this resulted in a ~ 1% drop in P/PO0 after 100 days. In
contrast, for EOR-1 (blue curve), the dose accumulated for the most part between
days 1-60, leading to a final power loss of ~ 3%.

For the active environment, Figure 2.3b shows the dose-time curves have a very
similar shape to those for the quiet environment (panel a); dose increased primarily
between days 30-80 for EOR-2 and days 1-60 for EOR-1/EOR-3. However, Figure
2.3d shows that the largest power drop in the active environment, occurring for
EOR-1 (blue curve), was about 8%. This is somewhat larger than the 3% drop in
power for quiet conditions (Figure 2.3c, blue curve). Both EOR-2 (red curve) and
EOR-3 (amber curve) also show a larger drop in power during active conditions
(3% and 4% respectively, up from ~ 1%).

To demonstrate the importance of solar cell coverglass shielding, the analysis of
solar cell degradation in the active environment was repeated for three different
thicknesses. Figure 2.4 shows P/P0 for all three EOR trajectories in an active
environment, for coverglass thicknesses of 100, 150, and 200um. The results show
that for EOR-1, as the coverglass thickness is increased from 100pm to 150um to
200pm, the amount of degradation is reduced, and the remaining power increases
from 85% to 92% to 95%. A similar trend is shown for EOR-2 (94% to 97% to
98%) and EOR-3 (92% to 96% to 98%), although the effect is more pronounced for
the EOR-1 trajectory with a higher exposure to non-ionising dose.

Figure 2.4 shows that when only 100um thick coverglass is used, up to 15%
degradation in power output can occur due to non-ionising dose from energetic
protons during the first 100 days of electric orbit raising. However, the above results
do not include the added contribution towards non-ionising dose from energetic
electrons, or other effects such as coverglass darkening, and therefore are a lower
limit on the power reduction.

To understand the extra impact from trapped electrons, the non-ionising dose
caused by the presence of both species was calculated for the EOR-1, EOR-2, and
EOR-3 scenarios using environments specified by the AE-8/AP-8 MAX models,
and again using the AE-9/AP-9 models at 95% percentile setting. Table 2.2 shows

the non-ionising dose caused by protons and electrons separately after 200 days
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Orbit  Shielding Proton Dy (MeV/g) Electron D, (MeV /g) Electron

P/Py (excl.—

(pm) D, frac. inc. electrons)
100 1.05 £+ 0.04 x 10 1.63 +0.08 x 10® 1.5% 81.9 — 81.8%
EOR-1 150 4.594+0.21 x 109 1.36 £0.04 x 108 2.9% 89.1 — 88.9%
200 2.7940.18 x 10°  1.28 +0.04 x 10® 4.4% 92.4 — 92.2%
100 4.554+0.34 x 10°  7.93 £0.18 x 107 1.7% 89.2 — 89.1%
EOR-2 150 1.67£0.12 x 109  7.2440.35 x 107 4.2% 95.0 — 94.8%
200 8.3240.49 x 10*  6.0540.15 x 107 6.8% 97.3 — 97.1%
100 4.98 +0.26 x 10°  8.66 + 0.26 x 107 1.7% 88.5 — 88.4%
EOR-3 150 1.914+0.19 x 10°  7.914+0.25 x 107 4.0% 94.4 — 94.2%
200 9.68 +0.47 x 108 7.67+0.36 x 10" 7.3% 96.9 — 96.6%

Errors shown relate to the calculations performed using the MC-SCREAM tool
Table 2.2: EOR Non-ionising Dose After 200 Days with AE-8/AP-8 MAX

according to the AE-8/AP-8 MAX model. Table 2.3 shows the AE-9/AP-9 95%
equivalent. The Dy caused by electrons is shown in terms of proton-equivalent dose
so that it can be directly compared. In the fifth column of Table 2.2 and 2.3, the
proportion of non-ionising dose attributed to electrons is shown as a percentage.
The sixth column of Table 2.2 and 2.3 shows P/P0 before and after taking the
electron contribution into account.

Table 2.2 shows that according to AE-8/AP-8 MAX, electrons make up 1.5% to
7.3% of the total non-ionising dose depending on coverglass and trajectory. Table
2.3 shows that according to AE-9/AP-9 95%, the contribution is slightly higher,
from 2.3% to 13.1%. Although electrons may therefore cause up to ~10% of the
total displacement damage dose during EOR, the sixth column in Tables 2.2 and
2.3 show that the additional contribution causes a very small decrease in remaining
power (less than 1%). This is because P/PO0 falls off logarithmically with dose
according to Equation 1. Therefore, when the dose from protons is already high,
extra exposure to electrons over the EOR duration causes a minor change.

Table 2.2 and Table 2.3 also show that the relative contributions from protons
and electrons to total dose during EOR depends on coverglass thickness, with
the electron contribution (fifth column) becoming more significant as coverglass

thickness increases. This is because non-ionising dose from protons decreases by
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Orbit  Shielding Proton Dy (MeV/g) Electron D, (MeV /g) Electron

P/Py (excl.—

(pm) D, frac. inc. electrons)
100 1.32 +£0.04 x 101 4.30 +0.34 x 10® 3.2% 79.6 — 79.3%
EOR-1 150 5.384+0.30 x 10  3.3240.14 x 10® 5.8% 87.9 — 87.4%
200 2.5440.12 x 10  3.0240.12 x 10® 10.6% 93.0 — 92.3%
100 5.65 4+ 0.27 x 10  2.08 +0.10 x 10® 3.6% 87.5 — 87.2%
EOR-2 150 1.69 £0.08 x 10°  2.06 +0.14 x 108 10.9% 94.9 — 94.4%
200 1.10 £0.11 x 10°  1.66 = 0.09 x 108 13.1% 96.5 — 96.0%
100 1.05+£0.07 x 101 242 4+0.12 x 108 2.3% 81.9 — 81.7%
EOR-3 150 3.07+£0.14 x 10°  2.3140.19 x 108 7.0% 91.9 — 91.4%
200 1.26 +0.10 x 10°  1.81 4 0.06 x 10® 12.6% 96.0 — 95.6%

Errors shown relate to the calculations performed using the MC-SCREAM tool
Table 2.3: EOR Non-ionising Dose After 200 Days with AE-9/AP-9 95%

75% or more in each scenario when coverglass is increased from 100um to 200um
(third column of Table 2.2 and Table 2.3). In contrast, the decrease in non-ionising
dose from electrons is about 30% at most (fourth column of Table 2.2 and Table
2.3). A reason for this result is that increasing coverglass, in general, absorbs more
of the low energy portion of the incident spectrum. For electrons, unlike protons,
it is the high energy particles that do more damage per collision, and these fluxes

are less affected (Messenger et al., 2001).

2.5 Discussion

2.5.1 The Influence of Orbit

The dose-time curves in Figure 2.3a and b show that after just 20 days, the solar
arrays on EOR-1 had accrued a similar level of non-ionising dose to those on EOR-2
and EOR-3 after 100 days. It is important to understand why this occurred in
order to be able to avoid such damage when possible. To investigate, the total time
spent in each 130km wide bin from R = 1 to 3R, has been plotted, where R is the
distance from the centre of Earth to satellite. This bin sizing was found to be the

most effective at highlighting certain features of each orbit discussed later. The
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time spent inside a bin after one pass is given by

Rieave dt
Aty = [ dR 2.2
’ Renter dR ( )

where Repier, Ricave are the distances at which the trajectory enters, leaves bin b
respectively. Each contribution given by Equation 2.2 has been summed over every
pass through the bin to find the total time spent by the satellite within 65km of
the bin centre. Figure 2.5 shows the total time spent in each bin after the first 10,
20, 40, and 60 days (panels a to d) of electric orbit raising for each scenario (left
ordinate). The >5MeV integral flux given by the CRRESPRO quiet model is also
shown for the same range of R (right ordinate).

Several peaks are apparent for each trajectory in Figure 2.5. These peaks occur
due to the shape of the orbit: at perigee, dR/dt is small despite the satellite having
higher overall speed, and fewer radial bins are crossed. Therefore, more time is
accumulated in R bins near to orbit perigee. Conversely, away from perigee, the
satellite passes quickly across different radii whilst changing altitude, spending less
time in each bin. The peaks in Figure 2.5 therefore indicate the location of orbit
perigee.

As orbit raising progresses for each satellite, the altitude of perigee is slowly
increased by manoeuvres. This is shown by the continuous addition of peaks in
Figure 2.5 as the mission progresses from 10 to 60 days (panels a through d). The
perigee at later times in each panel, indicated by the rightmost peak, is indicated
by an arrow for each satellite.

Panel a shows that after only 10 days, the perigee of EOR-1 (blue curve) is raised
up to R ~ 1.3R,, marked by the blue arrow. As this is a region of high >5MeV
flux (dotted black line), EOR-1 begins accruing a large dose almost immediately.
In contrast, the perigee of both EOR-2 (red curve) and EOR-3 (amber curve)
remained low within this time period, indicated by the red and amber arrows.

Figure 2.5, panel b shows that even after 20 days in orbit, the perigee of
EOR-2 (red arrow) did not increase. This post-launch period of a few weeks was
instead used to reduce inclination, bringing the spacecraft into the equatorial plane.
Therefore, EOR-2 stayed in its initial high-apogee GTO orbit, accruing very little
dose because its perigee was beneath the region of high flux. Following this, EOR-2
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began raising through the proton belt at a similar rate to EOR-3, indicated by the
progression of the red arrow from day 20 to day 60 (panel b to d). This is faster
than the rate at which EOR-1 perigee was raised, with EOR-3 perigee overtaking
EOR-1 perigee by day 60 (panel d). Figure 2.5 thus shows that after 60 days,
EOR-1 (blue curve) has spent more time within the region of high (= 10*cm=2s7!)
>5MeV flux, leading to a higher fluence and associated drop in P/P0. This is
because it was placed into the high flux region early, then raised slowly. In contrast,
EOR-2 (red curve) and EOR-3 (amber curve) were able to traverse the region of
high >5MeV trapped flux quickly. This demonstrates the utility of using an initial
GTO with a high apogee that, in general, would allow faster raising of perigee.
The small amount of dose EOR-2 accumulates within the first 20 days also shows
the advantage of having a perigee beneath the proton belt when in GTO. This
highlights the importance of modelling the location of innermost trapped flux
accurately, shown by the steep gradient in the dotted line on the left of Figure 2.5,

in order to understand exposure at low perigee.

2.5.2 Dependence of Dose on Shielding and Energy

For protons impacting solar cells without shielding, the highest damage per collision
is caused by sub-MeV particles. This energy dependence is described both by
experimentally-determined relative damage coefficients and by calculated non-
ionising energy loss coefficients (Messenger et al., 2001). Figure 2.4 shows that
when coverglass thickness is increased, power loss is reduced. This demonstrates a
change to the spectrum of particles after they have traversed the coverglass, caused
by their initial energy being reduced. The three EOR scenarios together with
the proton environment observed by CRRES provide an opportunity to test the
dependence of non-ionising dose on the energy of incident flux before it impacts
shielding.

To investigate, calculated the average differential flux spectrum for EOR-2 has
been calculated after the first 100 days of EOR in the active environment. The
spectrum was then modified by setting the flux to zero above a ’cut-off energy’,
and using MC-SCREAM to compute total dosage. Figure 2.6 shows that when the

spectrum was set to zero above 3MeV for 100um coverglass, the dose was zero (red
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curve). However, when the cutoff was increased to 7TMeV, the dose was the same
as for the unmodified spectrum. Thus for 100um, the important energy range is 3
to TMeV. As the coverglass thickness was increased, the important energy range
was shifted up to between 3 to 10MeV for 150um, and 5 to 10MeV for 200um.
Therefore, for the range of shielding considered, only protons between 3 and 10MeV
make a significant contribution towards non-ionising dose. The dose imparted to
shielded devices by different energies in an incident proton spectrum is addressed
by Messenger et al. (1997), using a simulated solar proton event, and by Summers
et al. (1997), for simulated inclined circular orbits. Results from these analyses
show similar features, whereby a large fraction of total non-ionising dose can be

attributed to a small energy range around 1 to 10MeV.

1 EOR-2 dose after 100 days vs. spectrum cutoff

100um
150pm/

200um

o
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o
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Ratio of dose from partial spectrum
to dose from complete spectrum

0 . .
3 5 7 10

Upper cutoff energy applied to spectrum (MeV)

Figure 2.6: Ratio of total dosage calculated using a 100 day average differential flux
spectrum for EOR-2, cut off after a certain energy, to the same calculation using
the complete spectrum. The coloured borders indicate error in the MULASSIS
transport code calculation but do not take into account other limitations such as
radiation belt model error or interpolation in energy.

A comparison between dose-time curves in the quiet and active environments
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(Figure 2.3a and b) shows a similar time period over which dose increases. Given
that only 3 - 10MeV flux contributes significantly, the reason for this similarity
is explained by comparing quiet and active conditions at this energy. Figure
2.1 shows that high values of >5MeV integral flux (= 10°cm2s™!) persist until
R ~ 2.5R. in both quiet and active times. Therefore, fluxes near 3 - 10MeV do
not show a significant change in radial extent between active and quiet conditions,
and degradation continues for roughly the same amount of time until the satellite
reaches higher altitude. The addition of a >20MeV flux peak within the slot region
does not cause prolonged degradation in active times because the contribution from
high energy towards non-ionising dose is low.

Figure 2.4 shows how power loss through time can be reduced with the applica-
tion of thicker coverglass. An interesting result of increasing coverglass thickness
is the shortening of the time window over which power loss occurs. For example,
EOR-2 (middle panel) stops accumulating dose after ~ 70 days for 200um com-
pared with ~ 90 days for 100um, with a subtle but similar effect seen for EOR-1
and EOR-3. As the coverglass thickness is increased, the damaging part of the
spectrum is shifted to higher energies within the 3 to 10MeV range (Figure 2.6),
but as Figure 2.1 shows, higher energy fluxes tend to fall off more rapidly with
radial distance. This reduces the time window during which the solar panel is
subject to significant non-ionising dose.

The significance of 3 to 10MeV environmental fluxes also highlights the impor-
tance of understanding the physical processes behind enhancements in this energy
range. The radial transport of trapped particles to low L (in both a diffusive and
shock-induced manner) is associated with significant energisation. Therefore, SEPs
contributing to the formation of <10MeV enhancements may enter the magneto-
sphere at considerably lower energy. Particle tracing simulations by Richard et al.
(2002) show that entry of SEPs to the magnetosphere near 1MeV can be via the
cusp or flank regions and is strongly influenced by IMF orientation, whereas direct
entry and trapping through the front-side magnetopause generally applies to SEPs
at =210MeV. The various types of entry may therefore complicate modelling of
source populations.

Although thicker coverglass is useful to reduce non-ionising dose, this is one area

where various engineering and cost requirements may take priority. For example,
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there may also be a knock-on effect due to the increase in mass of thicker coverglass,
such as the need to upgrade solar array drive mechanisms and structure. In this
vein, it is useful to consider that increasing coverglass thickness tends to follow
a law of diminishing returns, in terms of reducing total solar panel degradation

during EOR, as demonstrated in Figure 2.4 for all three missions.

2.6 Conclusions

In this chapter, an analysis of non-ionising dose from trapped protons accrued over
200 days during the course of electric orbit raising has been presented. Results show
the variability caused by realistic changes to environment, trajectory and coverglass
thickness. Several key conclusions can be drawn from this work, numbered below.
1) For a typical coverglass thickness of 150um, launching in an active environment
can increase solar cell degradation due to trapped protons by 2 to 5% before start
of service compared to a quiet environment depending on trajectory. These values
are in terms of remaining power, normalised to beginning of life.

2) The crucial energy range for enhancements in proton flux is 3 - 10MeV for solar
cells with a level of shielding between 100-200um.

3.) For a coverglass thickness of 150um, solar cell degradation in an active environ-
ment can vary by ~5% for different EOR scenarios. In the EOR-1 scenario, solar
cell degradation in an active environment can vary by ~10% based on the choice of
coverglass thickness between 100-200um. For EOR-2, this variation is around 5%.
4.) In the worst case tested (active environment, 100um coverglass, EOR-1),
degradation of up to 15% is possible within the EOR. period, before taking into
account other effects such as electron dose.

5.) In addition to the degradation caused by trapped proton flux, evaluations of
non-ionising dose at the end of the EOR period indicate an extra contribution from
trapped electrons. This contribution is on the order of ~ 10% or less in terms of
the displacement damage dose. However, due to the dose already being high and
because power decreases logarithmically with dose, adding this contribution has
only a minor effect (less than 1%) on the remaining power predicted at the end of
the raising period. This also casts estimates of further solar cell degradation due to

trapped electrons at GEO in a new light, since operators will need to recalibrate
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P/P0 estimates based on dose accrued during EOR.

6.) A higher initial orbit apogee generally implies that perigee can be raised faster
during EOR, allowing the satellite to skip through the belt in fewer passes, whilst
also implying a higher velocity at perigee. These two factors mean less time is
spent within the proton belt during raising from a high apogee GTO. It is therefore
recommended that EOR missions begin this way, such as in the case of EOR-2
(and EOR-3 to a lesser extent).

Several effects not taken into account in this analysis may reduce the trans-
mission efficiency of solar cell coverglass, causing a further drop in performance.
This can occur due to coverglass darkening from radiation damage, as well as the
deposition of ions ejected from electric thrusters (Horne and Pitchford, 2015). Arc-
induced contamination may also contribute towards solar cell power degradation
throughout LEO, MEO and GEO environments depending on the grounding of
conducting surfaces (Ferguson et al., 2016).

The importance of considering dynamic enhancements in trapped proton flux
suggests a role for physics-based modelling to help assess radiation damage, and
address the increasing utilisation of low and medium earth orbits. However, more
real-time information is required on the transient nature of the proton belt’s outer
region to understand these processes. In particular, the demonstrated importance
of enhancements near 3 - 10MeV near the equator at low L, which may not show
signatures at high latitude due to transport energisation, highlights the need for

improved observational capability.
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Chapter 3

Constructing a Physics-based

Numerical Model

3.1 Describing the Time Evolution of Proton Dis-

tributions

To build on the work from Chapter 2, a physics-based model of the proton belt was
constructed in order to make theoretical calculations of solar cell degradation and
to investigate dynamic variability. For the practical purpose of modelling Earth’s
proton belt, the phase-averaged distribution of radiation belt protons is considered.
The stochastic nature of forces acting on radiation belt particles leads to a time

evolution of the distribution that can be described as if subject to:

« diffusion, arising from acceleration by many minute electromagnetic fluctua-

tions;

e friction, arising from systematic deceleration over many small deflections via

coulomb collisions; and

e sources or sinks, arising from changes of identity to a particle such as ion
pickup in the case of CRAND, or sudden loss of energy in the case of charge

exchange.

Early work on the proton belt evaluated the stationary distribution arising from a
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balance between the CRAND source and coulomb collisions (for example, Lenchek
and Singer, 1962; Dragt et al., 1966), until it was realised that transport by radial
diffusion and a source of solar protons were also essential considerations in order
to reproduce observations. Eventually, Fokker Planck formulations were invoked
to account for each of the three types of processes listed above. This chapter
includes a brief review of how the Fokker Planck equation was developed and used
to describe nonadiabatic transport of radiation belt protons.

In the 1943 work “Stochastic Problems in Physics and Astronomy”, Chan-
drasekhar considers the Brownian motion of a free particle, with acceleration in

the absence of an external field described by the Langevin equation:

Au = —BuAt + B(At) (3.1)

where u represents velocity, —fu represents a dynamical friction and B(At) repre-
sents a net acceleration arising from fast acting and small amplitude fluctuations
during an interval At. Considering the distribution of particles in velocity space
W (u,t), the Fokker Planck equation is derived in its most general form (see Equa-
tion 224, p.33, Chandrasekhar, 1943). As the stochastic differential equation for a
radiation belt particle is analogous to Equation 3.1, Davis and Chang (1962) used
a one dimensional expansion of the Fokker Planck equation to study the radial
transport of particles along the geomagnetic equator due to repeated geomagnetic
disturbances in a dipole field. Their equation is
op* 0 2

* 1 *
o = or [Dy ¢ + 29,2 [Dy 7] (3.2)

where ¢*(r;n)dr is the number of particles on the geomagnetic equator within
dr of radial distance r after n geomagnetic disturbances, and the two coefficients
D; = (Ar) and Dy = ((Ar?)) represent the mean radial displacement and mean
square radial displacement caused by the average effect of a storm. This transport
equation does not include the effect of collisions, and as such there is no frictional
term.

Féalthammar (1965) derived a general formula for the mean square radial

displacement term D for an electric potential field disturbance. An equivalent
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formula for evaluating the mean radial displacement term D; directly was not
available, but Davis and Chang (1962) and Nakada and Mead (1965) did derive
relations between D; and D, for electromagnetic perturbations in special cases.
However, Dungey (1965) separately derived a transport equation with only one
coefficient to encompass the statistical properties of a geomagnetic disturbance.
The transport equation of Dungey (1965) was not derived from a Fokker-Planck
equation, and suggested D; and Dy must be related more generally in order for
the Fokker Planck approach to agree. The explicit relation between Dy and Dy
was then derived by Féalthammar (1966) from the one dimensional Fokker-Planck
equation, reproducing the transport equation derived by Dungey (1965), as well as
the results of Davis and Chang (1962) and Nakada and Mead (1965). The relation,
from Equation 5 of Falthammar (1966), is given by

TZ 0 Dg
=55 (%) (3:3)

and can be substituted into Equation 3.2 to write

on 200 |2 or (3-4)

dp* 10 |Dy 0 .
_ [ 2 (7’2 0 )]
Farley and Walt (1971) developed the transport equation further by adding
additional source and loss terms, and writing it in terms of the distribution function
f(p, J, L; ), where fdudJdL gives the number of particles in the interval dud.JdL.

The transport equation thus becomes (Equation 1 of Farley and Walt, 1971):

OL | L2 0L

0f _ 0 [Du 0
ot OL

(L2f)] + sources — losses (3.5)

By switching variable from r to L, Farley and Walt’s equation describes the
transport of particles across drift shells, applying also to particles mirroring away
from the equator with non-zero .JJ. The distribution function f is valid to describe
particles at relativistic energies. Equation 3.5 follows the convention of rewriting
in terms of a diffusion coefficient Dy = Dy/2. The Dy coefficient is the same as
in Equation 3.4, but because the independent variable has changed from n to t,
it is thought of as representing the effect of disturbances over a time interval At,

which is the time for n to increment.
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In more recent works, the transport equation also appears with the following

form:

o2 [P

5 — L a0 | 12 o (f)] + sources — losses (3.6)

The difference between Equation 3.5 and Equation 3.6 (taken from Equation 1 of
Claflin and White, 1974) arises because f o< L?f, and one can change the form
of Equation 3.5 to that of Equation 3.6 simply by multiplying both sides by L?
then substituting for f. Both distribution functions are proportional to the number
of particles per unit volume of a space defined in adiabatic invariant coordinates.
However, the advantage of using f with Equation 3.6 is that the unit volume is
effectively transformed to be in terms of the canonical action variables p, J and
®. This is because dL/d® o< L? via Equation 1.49, and so one can consider the

number of particles N in unit volumes described by f and f as:

N « f dudJdL
= dL/d®f dpdJdd
o L2f dudJd®
x f dudJdd

(3.7)

Therefore, as discussed in Section 1.3.1, f is proportional to phase space density
F(x,p). The direction of currents due to radial diffusion are directed away from
peaks in phase space density and towards troughs, and this means that a plot of f
versus L is simpler to interpret in terms of the expected time evolution.

A general diffusion equation was formulated by Haerendel (1970) which allows
for diffusion in more than one invariant. For a distribution function expressed in

terms of an arbitrary space F'(X;, Xy, X3), the diffusive transport equation is:

Dy
J 0X;

ot JoX,

OF 10 < .aF> .

where the Jacobian matrix J relates each coordinate to the three canonical action

variables, given by



a(p, J,P)
a (X17 X27 X3)

This equation is useful context to understand the transport term in Equation

J= (3.9)

3.6, which is an expansion of Equation 3.8 for diffusion in the L coordinate, with
J o< L™2. For modelling the proton belt (within the energy range of interest)
only pure third invariant diffusion is required, and the diffusion tensor D% can
therefore be transformed such that it has only one non-zero element, which is on
the diagonal. This is not necessarily the case for the electron belt, where other
diffusion mechanisms operate.

Farley and Walt (1971) further developed Equation 3.5 to account for atmo-
spheric collisional losses. Coulomb collisions occur over timescales short enough to
violate the first invariant, and the resultant energy degradation slightly decreases a
particle’s p and J value. Changes to the distribution function at a fixed coordinate
manifests as convection, and this effect is included via the loss term appearing in

Equations 3.5 and 3.6 above by

0 |du o |dJ
—losses = _87# [(ﬂfricf‘| B w [(ﬁfricf‘| (310)

The quantities du/dtgi. and dJ/dtgi. represent the changes in v and J at a particular
set of coordinates due to the cumulative effect of many small deflections by free
and bound electrons in the atmosphere, ionosphere and plasmasphere. However, it

can be shown that

dJ J d

At mie 2,U/d/1jfric (3:.11)
and this is demonstrated in Appendix A. The full definition of du/dtgi. is given at
the end of this section.

Using the form of Fokker Planck equation given by Equation 3.6 with the
addition of frictional loss provides the starting point for a comprehensive description.
Diffusional and frictional changes to the distribution are accounted for, and the
extra sources and sinks (as mentioned in the third bullet point near the beginning

of this section) can be included via additional terms to represent changes due to
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the CRAND process as well as nuclear scattering. Putting this together, the full

equation including these additional terms is:

ot ou|dt 97 la = | 7% —A 12
8t + 8# dt fric + aJ dt fric L2 aL] +Sn f (3 )

oL
where f dudJdL gives a quantity proportional to the number of particles in a unit
volume of phase space, S, is the rate of change in f due to CRAND (discussed in
Section 3.3), and A is a loss term for nuclear scattering with dimensions of inverse
time. The full definition of A is given at the end of this section. Making use of
Equation 3.11, this can be simplified to eliminate d.J/dtge, giving the 3D “master

equation”:

TR A

e 2L 9 S, —Af (313
o "o |t | T 0T |20 At e I aL]+ foB13)

T oL

The equation for dyu/dtg;. is

1
dp dT\ (17 4+ 2E,T)* . ,
- =(—)— e 3.14
dt fric < dx > B.mgyc sin” (areq) ( )
where <i—£> is the drift averaged stopping power. The concept of a drift averaged

quantity will be explained in Section 3.2. This quantity has contributions due to

ions and electrons which are added together. The equation, in SI units, is given by:

<(£> _ 4x ( e? >2(<ne> (82 = In (Apmev/h)| +

: "}jUQ Ameo (3.15)
Z:l (n;) Z; [52 —1In ((’y2 — 1) 2mec2/[i>} )

where (n.) and (n;) refer to the drift averaged densities of electrons and other
constituents 7 of the atmosphere, ionosphere and plasmasphere that a radiation

belt protons interacts with along an orbit. In Equations 3.14 and 3.15, symbol T’
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has been used for kinetic energy, but the use of E is now resumed.

The equation for A is

A=v Z o; (n;) (3.16)

where (n;) is the drift averaged density of constituent i, and o;(v) is the scattering
cross section for a collision between a proton at velocity v and a nuclei of constituent
. For modelling purposes, Equation 3.16 is evaluated over ¢ = H, He, N, O and Ar.

As a final aside, one can see from Equation 3.13 that the rate of loss at any
coordinate depends on number density via du/dtgi.. However by expanding the
loss terms of Equation 3.13, one can see that numerous other factors also affect

loss rates, such as the local spectrum 0f/0u:
0 |[du 0 |dJ
—1 -_ — |2 _ 2|22
ORSeS = a,u [ dt fricf‘| oJ [ dt fricf‘|

J du ]

[ dt fric &] [2# dt fric

dp  Of1 | 1du J 0 |du
l ldt fI‘lC‘| f + dt frm(?[lf| lz# dt fricf ta, 2,u 8J ldt fI‘le

dp af 1 dup Jodp 8f 0 |du

ou dt fric
(3.17)

Even for the 2D case (with J = 0), Equation 3.17 shows that the loss rate has a

complicated dependence on number density and f.

dt fric O[L 2[1, dt fric 2,& dt fric &]

Equations 3.13 to 3.15 are fully relativistic and form the basis of the physics-
based model developed by the end of this section. Throughout this work, the
effort to advance proton belt modelling focused generally on: firstly improving the
empirical evaluation of S,, and dju/dtg;. relative to previous work, and secondly;
driving the model with new observational data to investigate uncertainty in the

diffusion coeflicients.
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3.2 How to Compute Drift Averages for a 3D

Numerical Model

3.2.1 Definition of a Drift Average

Fundamentally, the need for drift averaging arises because a distribution function
describes the phase-averaged intensity of particles, but may depend on a physical
quantity A that varies strongly with phase. To allow the distribution function to
be calculated, dependence on A is replaced by (A), a phase-averaged quantity that

approximately accounts for the influence of A on the distribution. (A) is given by

"2 A ds
(4) = f};2 e (3.18)

where ds is the path element along a particular trapped proton trajectory S
bounded by points s; and sy, which must be solved numerically by integrating the
equation of motion of a proton in space. To capture the average variation in A,
the integral in Equation 3.18 should be over an integer number of complete drift
orbits, and hence (A) is known as a drift average.

Quantities such as (n;) in Equation 3.15 are “drift averaged”, and so are dy/dé ;.
and A in a sense because they depend on (n;). The evaluation of terms in the
master equation using drift averages is an essential capability in order to build a

competitive numerical model.

3.2.2 High-Level Process Design

The Problem

The master equation of a numerical radiation belt model must be solved on a grid
that represents a discretised coordinate space defined with respect to adiabatic
invariants (“the solution grid”). Solving a master equation involves evaluating
coefficients of its finite difference approximation on the solution grid. As can be seen
from the example master equation of Equation 3.13, drift averaged quantities such

as (n;) will appear within terms of the finite difference approximation, and must
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therefore be known at coordinates lying on the solution grid. An association between
drift averaged quantities like (n;) and a set of adiabatic invariant coordinates can
easily be made, since a drift averaged quantity is a function of the integration
path S, which corresponds to the path of a radiation belt particle, which can be
parameterised by a set of adiabatic invariants. The problem is how to obtain drift

averaged quantities during a simulation, since Equation 3.18 is tricky to evaluate.

The Solution

One solution is to solve the proton equation of motion for S, then solve Equation
3.18 for (n;), etc., at each point on the solution grid during the simulation. However,
this would take a lot of time and memory, and involve a totally separate set of
equations. A more efficient solution is to pre-determine each drift averaged quantity
over a range of coordinates beforehand, then load in and use this calculation during
every simulation.

To implement this solution, each drift averaged quantity (A) must first be cal-
culated as a function of the adiabatic invariants. The results at specific coordinates
can be arranged on a grid with axes defined with respect to the adiabatic invariants
(“the drift average grid”). This grid is stored on disk, then loaded into memory
before a numerical simulation. At each point on the solution grid, (A) can be
interpolated from the loaded drift average grid.

A schematic illustration of a drift average grid is shown in Figure 3.1, shaded in
yellow, for the 2D case in terms of ; and L. An example numerical model solution
grid is also shown, shaded in green. A conceptual difference between the two grids
is that the drift average grid is of fixed size, since it is a pre-computation stored on
disk, whilst the solution grid can change size and shape since it is configured by the
user at the start of a simulation. A drift average (A) must always be interpolable
on the solution grid (green), and so it must be pre-determined at surrounding grid
points. Therefore, the drift average grid must be large enough to encompass any

potential region of interest for numerical modelling.
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Grid of coordinates for drift averaging

A

A

Overlay of a
numerical model
solution grid

logo(1)

For every coordinate:
Compute s
Compute A(s)
Compute <A>

T Store <A>

v

\ 4

Figure 3.1: Overlap of the region of interest for numerical modelling (green) and
the region where drift averaged quantities must be calculated (yellow). This way, a
drift averaged quantity can be interpolated from previous calculations anywhere in
the green model region.

Implementation

An extensive set of code was developed from scratch to pre-determine drift paths
and drift averaged quantities. The final version of this code implements the
above solution by producing a 3D grid of drift averaged quantities in terms of the

coordinates p, aq and L with the following dimensions:

« Dimension #1 (45 intervals):
0.1 < <40, Az =13/150, where z = log,,(z / IMeV G™1)

o Dimension #2 (79 intervals):
11 < g <90°, Aareq = 1°

« Dimension #3 (45 intervals):
1.1< L <20, AL =0.02

For 2D modelling of equatorially mirroring protons, only quantities at o, = 90° are
required, but since the drift average grid is constant between simulations it must

encompass all regions of interest. The choice of a., as a coordinate instead of J is
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explained in Section 3.2.3. This grid can store 169280 quantities, but many of the
coordinates correspond to the loss cone so some calculations can be skipped (less
than half, though). Outside the grid coordinate range, (A) can be extrapolated if
necessary (for example, down to the low energy boundary), at the potential cost of
accuracy.

The first overall step towards producing this solution was to calculate proton
trajectories (abbreviated as PTs in Figures 3.2 to 3.4) at each set of invariant
coordinates outside the loss cone on the drift average grid. A high level overview of
the process used to compute each trajectory is shown in Figure 3.2, involving two
scripts. The process is represented by a flowchart, with a “caller script” handling
processes highlighted in blue, and an “equation of motion (EOM) solver” handling
processes highlighted in red. A configuration file (top centre of Figure 3.2) was used
to specify the grid dimensions shown in the list above, along with other information.
The solution output (near centre of Figure 3.2) is the file containing the collection
of solved trajectories, written using the HDF5 (Hierarchical Data Format) binary
file format.

The internal structure of a .HDF5 file is similar to the hierarchical tree structure
of a computer file system, consisting of: groups (analogous to directories); datasets
(analogous to files); and descriptive metadata attached to both groups and datasets.
Each trajectory is stored as two datasets within a group: the datasets contain
position and time along a trajectory, and the group name is a unique ID for the
trajectory. The .HDF5 file format has two key features that made it a good choice
for storing the large number of proton trajectories required: firstly, the data slicing
feature allows a single dataset, or even subsets of that dataset, to be extracted
without loading the entire file, reducing loading times; and secondly, the Python
interface compresses/decompresses datasets upon closing/opening the file object,
saving disk space. An example of the internal structure of the .HDF5 solution file
is illustrated in Figure 3.3, for a small collection of 5 proton trajectories.

The process shown in Figure 3.2 can take a week or longer to complete, so an
essential feature of the caller script was being able to resume calculations after an
interruption, by loading the partially complete solution file and continuing from the
ID of the most recently solved trajectory. This minimised the impact of potential

crashes due to network outages, etc.
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e run name
« drift average grid spec.
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EOM solver

Figure 3.2: Overview of the process for calculating a grid of drift averaged quantities
(part 1 of 2):
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HDF5 solution file example

Figure 3.3:
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The finished .HDF5 solution file contains solved proton trajectories across the
portion of 169280 drift average grid coordinates outside the loss cone. It is required
as input for the second overall step, which is to evaluate Equation 3.18 for each
drift average quantity. A high level overview of this process is shown in Figure
3.4, for the pretend physical quantity A, also involving two scripts. The script to
evaluate (A), handling processes highlighted in teal, is different for every physical
quantity A. For example, if evaluating (n;), the script needs to find ion density n;
along each drift path, and depends on input from atmospheric, ionospheric and
plasmaspheric density models. Therefore, it works very differently to the equivalent
script required to evaluate drift averaged CRAND, for example. On the other hand,
the second script to format results in a grid, highlighted in yellow, is the same for
any drift averaged quantity, since the table of values written by the previous script
is in a standardised format. The script to evaluate (A) shown in Figure 3.4 also
includes the ability to resume from a previously interrupted calculation, but the
flow chart has been simplified since this methodology is shown already in Figure
3.2. The drift average grid produced can be loaded directly into the proton belt
numerical model, and uses the proprietary “mrda” file extension, an abbreviation
of “model-ready drift average”.

There are two steps shown in Figures 3.2 and 3.4 that merit elaboration:

o “Initialise particle and solve particle trajectory” as part of the EOM solver

script (Figure 3.2); and
» “Evaluate [Equation 3.18]” as part of the script to evaluate (A) (Figure 3.4).

The former of these is explained next, in Section 3.2.3. The latter depends on
modelling the physics of quantity A, and is explained in Section 3.3 for the case of
CRAND, and Section 3.4 for the case of atmospheric, ionospheric and plasmaspheric

densities.

3.2.3 Modelling a Relativistic Radiation Belt Proton

A core function of the drift average code is to solve proton trajectories for the
path S in Equation 3.18. This task is handled by the EOM solver script shown in

Figure 3.2, which models the motion of one proton situated in the vicinity of the
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geomagnetic field via the method described in this section. The model can also
be repurposed to simulate electrons or other ions simply by re-specifying the mass

and charge of an instantiated particle object.

Coordinate System

Three-dimensional space is described in this model with Cartesian geometry, and
coordinates are specified with respect to the Geomagnetic Coordinate (MAG) frame,
which is defined with a z axis parallel to the geomagnetic dipole axis, and a centre
co-located with that of the GEO frame.

Modelling the Geomagnetic Field

The geomagnetic field is represented by a dipole. The dipole field is given in
spherical coordinates by Equation 1.35. The value of By is derived for a given
epoch using Equation 1.52, making use of first order coefficients from the IGRF-
13 magnetic field model, which are accessed using the pyIGRF Python package
(available at https://pypi.org/project/pyIlGRF/). Epoch is specified by the
configuration file shown in Figure 3.2. Figure 1.10 shows the importance of epoch-
dependence, since proton drift trajectories change due to secular variation of the

geomagnetic field.

Solving The Proton Equation of Motion

To calculate the motion of a particle is to calculate position through time. The
change in position Ax over a time interval At can be guessed if one knows the
momentum of the particle at the start of the time interval. However, the Lorentz
force is always applying a change in momentum. Therefore, to calculate the motion
of a particle, the time evolution of both position and momentum must be solved
from an initial condition.

Together, position and momentum form a state vector Y = (x, p) = (2, v, 2, ps, Py, P2)-

The evolution of the state vector Y is given by an ordinary differential equation
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(ODE) of the form

Y 0,0, 2 92y dp:
At VT A de T dt

)= f(Y) (3.19)

The first step was to derive f(Y) for a radiation belt proton. To begin with,
the Lorentz force on a charged particle is given by Equation 1.1 as a vector. By

expanding the cross product, the following set of three scalar equations is produced:

dp,

el ¢(Ey +vyB, —v.B,)

d

% =q(E, +v.B;, —v,B,) (3.20)
dp.

G q(E, +v,By, —v,By)

An expression for v is required to evaluate this set of equations. One can be derived

considering the total energy of a particle, given by

Eiop = Eg + T = \/m3ct + p*c? = ymyc? (3.21)

Rearranging for v gives the expression

S 522

Since p = ymgVv, then v can be expressed by substituting in Equation 3.22 to give

v = n’;o (1 + (mic)2> o (3.23)

Just as the Lorentz force is split up in Equation 3.20, Equation 3.23 is separated
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into three scalar equations for velocity:

o\ —1/2
o = Lo (1 N <p> )
myo mocC
—-1/2
vy =201+ <p>2 (3.24)
v mo mopcC

9\ —1/2
mo mopcC

f(Y) can now be written out in full by substituting in the scalars in Equations
3.20 and 3.24 into Equation 3.19. A numerical ODE solver from the SciPy Python
package was used to integrate f(Y) at each timestep over a the drift trajectory
(Virtanen et al., 2020). The solver chosen was “DOP853”, which is an explicit
Runge-Kutta method of order 8.

Initialising a Trapped Proton

The initial state vector Yo(xg, po) at time ¢y (the epoch) is determined from the
set of coordinates (i, cveq, L) provided by the caller script. Since a set of invariant
coordinates do not specify phase, the initial state vector Yo does not have a unique
solution; a proton can be initialised at any phase of gyration, and at a non-specific
magnetic latitude, longitude combination that places it anywhere on the drift shell.
The following algorithm was implemented to initialise protons on the magnetic

equator. The steps to determine Yy from coordinates (i, aeq, L) are:
(a) calculate equatorial magnetic field strength B, at radius La
(b) calculate py; = v/2uBe.myg
(c) calculate po = por/ tan(ceg)

(d) choose the starting momentum arbitrarily to be either

Po = (07 _pOJ_>p0||)7 or
Po = (0, poL, —poy)

(e) calculate v and v from pg using Equations 3.22 and 3.24
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(f) approximate the gyroradius via r, = mgyv?/F, where F' is the magnitude of
the Lorentz force for a guiding centre xgc = (La,0,0), given by Equation
3.20

(g) choose the starting position to be either
xo = (La +14,0,0) if the first starting momentum above was used, or

xo = (La —r,,0,0) if the second starting momentum was used

Figure 3.5 shows a proton trajectory initialised at xo with p© =316MeV /G,
aeq=40° and L = 1.4, solved using the particle tracing code and then truncated to
one bounce period. Specifying the second invariant of a particle in terms of a.,
allows the initial state vector to be determined via the above method. This was the
main motivation for choosing invariant coordinates (u, aeq, L) to define the drift
average grid dimensions. In contrast, for a given value of J, a proton’s initial state
vector can be approximated (using Equation 1.45, etc.) but not exactly determined
and vice versa. However, an alternative method to initialise proton drift orbits
is performed by Selesnick et al. (2007), whereby particles are initialised at their
approximated mirror points for a given value of J.

One minor insufficiency of parameterising a drift averaged quantity by three
adiabatic invariant coordinates is a small dependence on the initial phase along
a gyration or bounce that traces out S, or in other words a dependence on Y.
This dependence can become important when S corresponds to a particle that is
not well described by adiabatic motion or “quasi-trapped”; for example, a particle
with high energy close to the trapping limit that may escape from the radiation
belts after a few drift orbits. It can also be important when the drift average is
taken over a short path S. A technique used by Selesnick et al. (2007) to check
that a particle is properly trapped is to calculate S several times by initialising a
particle with the same properties but at different phases, and allowing S to extend
over multiple drift orbits to check the invariants are conserved. This technique
could also be applied to investigate any dependence of (A) on initial phase, and
eliminate it by re-evaluating (A) over multiple paths corresponding to the same set
of invariants then averaging the result.

The above algorithm implements a basic version of this capability by offering

the two different combinations of starting position and momentum. There is a 180°
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Proton bounce orbit at y=316MeV/G, a4 = 40°, L=1.4
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Figure 3.5: Example bounce trajectory produced using the drift averaging code.
The particle trajectory shown is at 80MeV, 40° equatorial pitch angle and L = 1.4.
The trajectory is truncated to exactly one bounce, from Xy as shown until the
magnetic equator is reached again.
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difference in gyrophase between the two options, and the initial vertical component
of velocity is oppositely directed. Each drift average can thus be calculated twice
using both options for Y to investigate the dependence on phase, and average if

deemed necessary.

Controlling the Timestep

The timestep At was chosen to be a constant fraction of the local gyroperiod Ty,
related by

T, 1
At= 2 x = 3.25
o =B (3.25)

A value of Na; = 125 timesteps per gyroperiod was found to provide a good balance
between accuracy and execution time. Since Tj, depends on local magnetic field
strength, the timestep is dynamically adjusted by the solver over the course of a
particle trajectory, becoming smaller where the magnetic field becomes stronger.
Certain quantities such as v are physically conserved along S and therefore
should also be numerically conserved. Determining these quantities periodically
along S from the simulation allowed the value of Na; to be tested. Since many
timesteps are calculated, it is not necessary to store all of them on disk in the

HDF5 output file, and the fraction saved is configurable.

3.2.4 A Trick to Reduce Computation Time in a Dipole
Field

The drift average grid, as described in Section 3.2.2; holds 169280 coordinates (y,
Qeq, L). Many of these coordinates correspond to trajectories inside the loss cone
where particle tracing is skipped, but the majority are coordinates that lead to
trapping. The aim was to compute a proton trajectory S over one or more drift
periods at each coordinate, so that each drift averaged quantity required could be
evaluated across the entire grid.

Computing the drift orbits of this many particles is computationally expensive,
and indeed an issue encountered during the project was that computations were
predicted to require an unreasonably long time. Therefore, a shortcut was devised

to drastically cut the required computation time. The principal behind the shortcut
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is that particle trajectories are solved in a dipole field, and therefore a given
trajectory should be longitudinally symmetric around the centre of the MAG frame,
except for variations in gyrophase. Therefore, the orbit over a single bounce period
can be computed, then “copied and pasted” around Earth, i.e. rotated to different
magnetic longitudes, in order to achieve a similar-looking trajectory.

This shortcut was implemented, and the aim was therefore to compute proton
trajectories S over a single bounce period at each of the 169280 coordinates. When
it came to drift averaging a quantity A as per Equation 3.18, the longitudinal
dependence of A was taken into account by evaluating (A) along the single bounce
trajectory S, then rotating S in longitude via a simple matrix rotation of the stored
particle trajectory, and repeating the calculation of (A). Each value of (A) was
then averaged.

To implement this, an algorithm was written to solve the proton equation of
motion for a length of time equal to 1.1x the bounce period given by Equations 1.39
and 1.40. Since these equations are approximations, the factor of 1.1 ensured that
each proton completed at least one bounce without needing to evaluate conditional
statements during timestepping. The trajectory was then followed backwards from
its finish point and truncated just before its last crossing of the magnetic equator
(located at z = 0). The trajectory was then solved forward in time for a fraction of
the usual timestep depending on v,, such that the final position was located almost
exactly at z = 0. The result of this algorithm is demonstrated in Figure 3.5, where
the proton trajectory is truncated at the magnetic equator.

One caveat of this method was that it perhaps exacerbated any dependence (A)
had on the initial phase of the “drift” orbit. As discussed in Section 3.2.3 however,
the solver allowed each particle trajectory to be initialised using an alternative
state vector Yy at a different gyrophase. This allowed drift averaged quantities
susceptible to phase dependence to be re-calculated along each trajectory and
averaged with the result derived from the alternative Yqo. This was found to make
a difference for drift averaged CRAND at high energy, and CRAND drift averages

were therefore calculated twice then averaged using this method.
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3.3 Modelling CRAND

3.3.1 Main Equation

Cosmic ray albedo neutron decay is the primary source of protons at =50MeV at
low L (Selesnick et al., 2007), occurring when interactions between the atmosphere
and incoming galactic cosmic rays produce upward-moving neutrons, which undergo
beta decay to produce protons that become trapped. Following the definition of
phase space density f = m3j/p?, the rate of change in model phase space density
due to CRAND is given by

0 g mg [0
Sn= <mgp§> = p—; (af) (3.26)

where 0j,/0t is the rate of change in proton flux at a set of adiabatic coordinates
caused by the pickup of newly produced protons. The analytical relation between

Jj,/0t and neutron albedo flux j, is given by

ajp _ fs jn ° dS

- 2

where the integral takes place along a proton drift orbit .S, ds is an element of length
along the trajectory, 7, - ds is the flux of albedo neutrons leaving the atmosphere
in a direction coinciding with the section of drift orbit, and ~7, is the relativistic
neutron lifetime (Dragt et al., 1966). Selesnick et al. (2007) gives a value 7,, = 887s.
Equation 3.27 assumes that the proton produced moves in the same direction of
the decaying neutron and absorbs all its kinetic energy (Selesnick et al., 2007).
To evaluate the integral in Equation 3.27, albedo neutron flux j, must be
determined at each position along S in the instantaneous direction of the particle.
However, this flux is produced by interactions within the atmosphere, so 7, along
S is the result of neutrons travelling into space then happening to align directly

with the particle’s instantaneous velocity.
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3.3.2 Injection Coefficient Method

To deal with the difficult computation of Equation 3.27, Dragt et al. (1966)

introduced an injection coefficient given by

03/ 0ty

= 3.28
sz/’YTn ( )

where J5, is globally averaged neutron escape flux. This quantity is defined by
o = (20A)7) / jucosz dA dQ (3.29)

where the integral is taken over the surface area of Earth A, and over the upper
half of the unit solid sphere, with zenith angle z from the local vertical. To
understand Equations 3.28 and 3.29, it may help to relate the terms to physical
data. Figure 3.6 shows measurements of albedo neutron flux j,,(F, z) from a balloon
experiment at ~ 36.5km altitude and 40° latitude, as presented by White et al.
(1972). The x-axis of Figure 3.6 is zenith angle z, with measurements plotted
at z < 90° showing upwards flux (moving past the balloon towards space), and
measurements at z > 90° showing downwards flux (towards Earth). Therefore, the
integrand j, cos z of Equation 3.29 is simply the vertical component of each flux
measurement. The integral of Equation 3.29 is performed over half a solid sphere,
meaning d2 = 27 sin(z) dz, with corresponding limits of integration 0 < z < 90°.
Therefore, the integration is just over the upward flux measurements shown in
the left half of Figure 3.6. After averaging across the surface area of Earth, Jo, is
then the total vertically upward flux of neutrons that would be measured at any
point on the surface of an isotropic source equivalent to Earth’s atmosphere. The
quantity y is then the ratio of the rate of change in proton flux from j,, to the rate
of change in proton flux from Jo,.

The quantity x allows the approximation of 097,/0t based on some simplifying
assumptions. This “injection coefficient method” was used by Claflin and White
(1974) to evaluate CRAND for equatorially mirroring protons, and their source
function was then re-used by Albert et al. (1998) and Albert and Ginet (1998).

For the special case of equatorially mirroring protons, the injection coefficient was
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Figure 3.6: Balloon measurement of neutron flux made at 120,000ft and 40° latitude

as a function of zenith angle (zero zenith is vertically upwards), from Figure 2 of
White et al. (1972)
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written as

(3.30)

2 /”/2 Jn(®, E, A =0) cos ¢ do
0

X(L, E) = m (1 — [—2gin? ¢)1/2

from Equation 8 of Claflin and White (1974, with an extra factor of 27 in the
authors’ source term S versus Equation 3.26 above).

During initial development of the proton belt numerical model, it was decided to
validate against the 2D numerical model of Albert et al. (1998). The same master
equation of Albert et al. (1998) was therefore implemented independently, described
in Seciton 3.5.1. The model aimed to solve for non-relativistic proton phase space
density as function of p and L. Since Albert et al. (1998) use the same CRAND
source as (Claflin and White, 1974), Equation 3.30 was therefore also implemented
and evaluated by digitising the neutron flux measurements presented in Figure 3.6
from White et al. (1972). Once the calculation of the injection coefficient had been
validated (against Figure 2 of Claflin and White (1974)), the neutron data used to
evaluate it was updated to that shown in Figures 9 and 12 of Preszler et al. (1976),
which includes more corrections. As a result of this process, it was discovered that
the evaluation of CRAND in the numerical model of Albert et al. (1998) contained
an error causing S, to be overestimated by a factor of m. Consultation with the
original author of the paper confirmed this.

As development of the numerical model continued, it was decided to use a more
accurate approach to evaluate CRAND so as not to rely on balloon datasets or
rely on the approximate injection coefficient calculation. Selesnick et al. (2007)
demonstrate a more thorough approach, but it was only until after the drift average
code was developed and tested that the new approach, explain below, could be

attempted.

3.3.3 Drift Averaging Method

Equation 3.27 can be computed more rigorously using a drift average method. It has
the form as Equation 3.18, and the drift averaged quantity (j,) = g Jn - ds/ §5ds
represents average atmospheric neutron albedo flux in the direction of a proton
along its drift. The integral can be evaluated along the path S of a proton trajectory
to find (j,) for a set of adiabatic invariant coordinates corresponding to S.

An application of this method was first published for the Selesnick et al. (2007)

120



numerical proton belt model. For this previous work, the interactions of incoming
galactic cosmic rays throughout the atmosphere were modelled to find directional
neutron albedo flux at the top of the atmosphere j, = jn(E,,2, Rey, F10.7), where
E,, is kinetic energy, z is zenith angle, and R, is vertical geomagnetic cutoff rigidity.
This dataset can be used to evaluate the neutron flux along a proton trajectory at
position o, by following the negative tangent vector to S at o in the —ds direction,
back to a point on top of Earth’s atmosphere that it intersects. This geometry is
shown in Figure 3.7, with the point o in blue. For a known atmospheric intersection
point (shown as a yellow dot in Figure 3.7), the independent variables z and R,
can be evaluated, giving j, via the dataset. For positions along S where there is
no such intersection, 7, = 0.

The dataset produced by Selesnick et al. (2007) giving j, = jn(En,2, Rey, F10.7)
was kindly provided at request by Richard Selesnick to use in this work, and allowed
the computation of Equation 3.27. Aside from this neutron albedo dataset, the
drift averaging method to evaluate CRAND shown here was developed indepen-
dently. It involved numerically evaluating (j,) across the set of proton drift orbit
trajectories calculated in Section 3.2, resulting in (j,) at each set of adiabatic
invariant coordinates on the drift average grid. For each drift orbit trajectory, (j,)
was re-computed for five values of F10.7 (60, 100, 140, 180 and 220 sfu), allowing
the solar cycle dependence of S,, to be taken into account. The method is broken

down into its requisite steps below, which describe each stage of implementation.

Transformations Between GEO and MAG Frames

Since particle trajectories solved by the drift averaging process (Section 3.2) are
written with respect to the MAG frame, but Earth’s atmosphere is most easily
modelled with respect to the GEO frame, it is necessary to convert vectors between
MAG and GEO frames when calculating interactions between the two based on

geometry. A 3-vector in the GEO frame Vggo can be converted to the MAG frame
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Figure 3.7: Illustration of an intersection between the negative tangent to the

particle trajectory (green dashed line) and the top of Earth’s atmosphere (blue
surface). The particle trajectory, shown in red, is the same as shown in Figure 3.5.
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intersection is denoted \;. The yellow dot represents the point of intersection.
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via the transformation matrix R, which was defined like so:

0.29448006 0.95434236 0.05012142
R Vgeo = |—0.9408124 0.29871502 —0.1601292| Vgro = Vmac (3.31)
—0.1677901 0. 0.98582274

Similarly, a 3-vector in the MAG frame Vyag can be converted to the GEO frame

via the transformation matrix R’, which was defined according to:

0.29448006 —0.9408124 —0.1677901
R’ Vvac = [0.95434236  0.29871502 0. Viuac = Veeo  (3.32)
0.05012142 —0.1601292 0.98582274

The matrices R and R’ shown above correspond to the epoch of new year 2015; the
MAG and GEO frames are both Earth-fixed, so the general transformations R and
R’ are epoch-dependent insofar as to be influenced by secular changes in Earth’s
field. Both were calculated using tools available via the Python SpacePy package
(Morley et al., 2011). R was initially calculated for the year 1965 to validate
against calculations given by Russell (1971), but R and R’ are re-calculated by the
CRAND evaluation code for whichever epoch the particle trajectory corresponds
to (specified within the .HDF5 solution file). Consistency of epoch is important,
since both particle trajectories as well as transformation matrices used to evaluate

CRAND are functions of secular variation.

Modelling Earth’s Atmosphere

The top of the atmosphere was approximated by modifying the WGS84 ellipsoid
(Decker, 1986) model of Earth’s surface, with an added 100km of radius. The
WGS84 model is defined with respect to the GEO frame. In this frame the Earth
is described as an oblate spheroid, since it is symmetrical in the x and y directions,
with a semimajor axis length of a = 6378137m and semiminor axis length of
b = 6356752.3142m. This geometry is shown in Figure 3.8.

With the extra 100km to account for height of the atmosphere, the top of

the atmosphere was thus modelled using an oblate spheroid with semimajor axis
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Figure 3.8: The WGS84 model of Earth with the semimajor axis @ and semiminor
axis b labelled (not to scale), taken directly from Wikipedia (2021).

a’ = 6478137m and semiminor axis b’ = 6456752.3142m, with a centre at the origin
of the GEO frame. The equation for a point on this surface, derived from the

standard equation for an ellipsoid, is
S I | (3.33)

where x, y and z are components of a coordinate xggo in the GEO frame.
This model of Earth’s atmosphere can be written as a vector equation by

defining a matrix £ given by:

- 0 0
E=|0 5 0 (3.34)
0 0 &

b2

so that Equation 3.33 is given by xgro? € Xgro = 1. The transformation matrix
R in Equation 3.31 can then be used to transform the model to be used with
coordinates x defined in the MAG frame:
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(x—c)' RT€R (x—¢c)=1 (3.35)

where ¢ denotes the centre of the ellipsoid in the MAG frame. Since it is centred
on the origin in the GEO frame, and the origins of the MAG and GEO frames
coincide, then ¢ = (0,0,0), but it is included in Equation 3.35 to indicate that an

additional translation step may be necessary for other frame transformations.

Alignment of j, with the Proton Trajectory

Using the ellipsoidal model of Earth’s atmosphere in the MAG frame from Equation
3.35, one can find whether or not the negative tangent to the proton trajectory
intersects with the top of the atmosphere by solving the problem of a line intersecting
with an ellipsoid. In this problem, the point of intersection is denoted by the same
symbol x as in Equation 3.35 since it exists on the ellipsoid surface. In the case

that an intersection does exist, it is also given by the following equation for a line:
x =0+ N (3.36)

where o is the coordinate along the proton trajectory under consideration, and lisa
unit vector pointing in the direction of the negative tangent to the proton trajectory
at o. The tangent to the proton trajectory is illustrated by the black arrow for an
example point in Figure 3.7, and [ would therefore point in the opposite direction
along the green dashed line as indicated.
The unit vector { can be found numerically at the ¢th position along a solved
proton trajectory by
[=—|loi— o (3.37)

The intersection point x thus depends on the remaining unknown A. It can be

solved for by substituting Equation 3.36 into Equation 3.35, yielding:

(c+M—c)' RTER (6 + N —c)=1 (3.38)
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Setting ¢ = 0 and F = RTER, Equation 3.38 can be simplified to
(c+ M) Fo+M)—1=0 (3.39)
Expanding this leads to the follow quadratic equation:
N FIA N FotroTFi)+(aTFo—1)=0 (3.40)

Equation 3.40 may have two real and unique solutions A\; and Ay, where A\; < \s.

In this case:

e )y is equal to the distance from o along [ toa point on the top surface of

the atmosphere, as labelled in Figure 3.7;

e )y is equal to the distance starting from o, through the point o + )xllA, and
continuing through the ellipsoid volume to a point on the opposite side of

the atmosphere facing away.

The value Ay is taken as the solution, since in most cases a neutron cannot make
its way from the point o + Aol to o without colliding with Earth (although it may
be possible if this only included traversal through a thin section of the atmosphere
above Earth). In the case that only one unique solution exists, then A; is the
distance to a point on the top of the atmosphere that is barely skimmed by a vector
following the negative tangent to the particle trajectory. In the case that no real
solution exists, the vector following the negative tangent does not intersect with
the atmosphere.

Knowing the point x = o + Ali, the next step is to find the albedo flux of
neutrons j, in the integrand of Equation 3.27, which emanates from x. It can be
determined using the dataset describing directional neutron albedo flux at the top of
the atmosphere j,, = j,(FEp,z, Rew, F10.7). To do this requires 4D interpolation from
the dataset in terms of the independent variables. Energy E, was approximated as
equal to the kinetic energy of the proton, so this quantity is known, and F10.7 is
also known since it was prescribed for the calculation in order to calculate CRAND
for a specific level of solar activity. Therefore, the zenith angle of intersection z

and vertical geomagnetic cutoff rigidity R., must next be found at x.
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Vertical Geomagnetic Cutoff Rigidity

Equation 4 of Smart and Shea (2005) gives geomagnetic cutoff rigidity R. as a
function of zenith angle and latitude using mixed CGS units. This equation was
adapted to find vertical geomagnetic cutoff rigidity R., (zenith equal to zero) in SI

units, giving

_ pgcost (A) 3x10°
" 4d?(100a)? 1 x 10°

(3.41)

Ccv

where R, has units GV, pg is Earth’s dipole moment (Am?), d is distance
from the dipole centre in Earth radii, A is magnetic latitude, a is Earth’s radius
(m), and the various other factors arise from the non-SI to SI conversion (see Smart
and Shea, 2005).

Zenith Angle of Intersection

The normal to the surface defining the top of the atmosphere is a vector pointing
up into space aligned with local zenith z = 0°. To find this vector, one can consider

the equation

1’2 y2 22

which is true at any point on the surface, where, as for Equation 3.33, z, y and
z are components of a coordinate xggo in the GEO frame. Use of the gradient
operator V on € then gives the normal vector to the surface, which can then be

transformed to the MAG frame like so:

Nyac = R figeo

= R(Ve) (3.43)
_n(Z2 %y
a/Q a/2 b/2
The local zenith angle of the vector intersecting the atmosphere in the direction

of the negative tangent from S is thus given by

2 = arccos(l - Ayag) (3.44)
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3.3.4 Demonstrating the Effect of CRAND

Calculations of S,, via the above method extended from 2.31MeV (the minimum
energy for which neutron albedo data was available from the j,(E,,z, Re,, F10.7)
dataset) up to 500MeV. In the numerical model, the CRAND source was extrap-
olated below 1MeV by linearly extrapolating the gradients in S,, with respect to
energy at each model L and K, then smoothing the extrapolated data to produce
approximate values covering the range of low energy coordinates.

It is generally regarded that the CRAND source is not important at such
low energy (i.e., Jentsch, 1981). To demonstrate its effect, Figure 3.9 shows a
steady state solution of proton phase space density for equatorially mirroring
protons, calculated using the diffusion coefficients of Jentsch (1981) for magnetic
fluctuations, and boundary data from the MagEIS instrument aboard Van Allen
Probes (discussed in Section 5). The solution has been computed with (red) and
without (blue) the CRAND source for four different values of the first invariant
1 as indicated. The corresponding energy of an equatorially mirroring proton is
labelled in grey along the top of each plot as a function of L.

Figure 3.9 shows that CRAND is important for forming the distribution even at
a few MeV at L < 1.3. However this is mainly because phase space density is flowed
to these coordinates from higher energy where S,, provides a source comparable
to radial diffusion. The difference made by CRAND is particularly pronounced
at higher energy or u, and CRAND is especially important at 500MeV /G for
the region L < 1.6 (bottom right). More tests showed that extrapolating below
2.31MeV had a negligible effect on the ~1MeV distribution since S, is very small

at this energy, but this was done anyway to avoid discontinuities in the model.

3.4 Drift Averaging Density and Temperature

3.4.1 Model Dependence on Density and Temperature

By considering the loss terms in the 3D model master equation (Equation 3.13), one
can see that the loss rate depends on the number density of various constituents via

the du/dtgic and A terms. Equation 3.15 also shows that stopping power depends
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Figure 3.9: Steady state phase space density of equatorially mirroring protons
as a function of L, shown in red, for four values of ;1 (one per panel), calculated
using the magnetic diffusion coefficients of Jentsch (1981). The solution has been
re-computed after disabling the CRAND source, shown in blue, to indicate where
the CRAND source is responsible for the distribution of particles.
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on Debye length \p, which is a function of ion and electron temperature given by

Ap = J ob/e? (3.45)

ne/Te 4 345 7%145 ) T;

where € is the permittivity of free space, k is Boltzmann’s constant, 7, and T; are
electron and ion temperature, and n;; is the density of constituent n; with ionic
charge number j. Therefore, a numerical proton belt model should incorporate
calculations of density and temperature within the atmosphere, ionosphere and
plasmasphere. Since Equation 3.15 only depends on In(Ap), an approximate
calculation of temperature was considered acceptable and greater importance was
placed on accurately determining density.

Terms depending on density and temperature must be evaluated by: a.) using
previously published density and temperature models to produce datasets; then b.)
reading the datasets into the model during execution and interpolating at particle
coordinates. However, both density and temperature are subject to significant time
variability, which should be included to some extent in dynamic simulations to
produce realistic results. Furthermore it is difficult to test accuracy considering that
the output of density and temperature models can include significant uncertainty,
and there are usually no spacecraft measurements of density available in the inner
proton belt to validate them for the era one wishes to model. A key challenge was
therefore finding a way to accurately prescribe time varying density and temperature

within the model.

3.4.2 Variability of Density

To understand variations in density, it is useful to consider the number density n;
of a constituent ¢ at a test point x located somewhere in the atmosphere. At a
given time, there are spatial variations in n; over latitude, longitude and altitude if
x moves over the surface of Earth. To exclude this component of variation, x must
be fixed to the GEO or MAG frame (rotating with Earth). The time evolution
of density n; at the fixed test point includes independent variations over different

timescales. These include:

o diurnal variation, as the point rotates through different MLT;
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« seasonal variation, as Earth’s rotational axis tilts back and forth between

summer and winter solstices;
e solar cycle variation; and

 occasional dynamic changes driven by magnetic activity (see for example,
Oyama et al., 2005).

Two examples have been selected from literature to illustrate observational evidence
of some of these variations. As the first example, Figure 3.10 from Kakinami
et al. (2011) shows ionospheric electron density at 600km altitude calculated across
longitude-latitude bins from observations of the Hinotori satellite. The top panel
of Figure 3.10 shows data collected between 0900-1100 hours local time, whilst
the bottom panel shows data from 1300-1500. Both panels show electron density
decreasing towards higher latitudes, but the density is ~ 2x higher at the equator
at 1300-1500 hours compared to 0900-1100 hours, demonstrating large diurnal
variability. The authors were careful to exclude other components of variability
from the data in Figure 3.10, for example, by using data only from magnetically
quiet conditions (Kp<4).

As a second example, Figure 3.11 from Clilverd et al. (2007) shows observed
seasonal variations in plasmaspheric equatorial electron density (left ordinate) at
L = 2.5 between June (dashed line) and December (solid line). Figure 3.11 shows
that this seasonal variation depends strongly on (geographic) longitude. As in
the case of Figure 3.10, the authors were careful to exclude other components of
variability besides the longitudinal and seasonal variations they were trying to
highlight. In this case, for each data point shown, diurnal changes in density were
averaged over by incorporating observations uniformly distributed in magnetic
local time, so that the longitudinal variation shown is distinct from this diurnal
effect. The density of He+ is also plotted (right ordinate) in each season (December:
crosses and squares; June: diamonds and triangles). It shows an anti-correlation
with electron density, and the basic reason is that charge exchange processes
moderate the production and loss of ions and electrons in the ionosphere and
plasmasphere, tending to conserve overall charge.

A detailed discussion of the physics driving each type of variation listed above is

outside the scope of this work. The key takeaway message is that isolating specific
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Figure 3.10: Ionospheric electron density at 600km based on observations from
the Hinotori satellite. The top panel shows data from observations collected at
0900-1100 hours local time, and the bottom panel shows 1300-1500 hours. The
top and bottom panels have been adapted from Figure 1 and 2 respectively of
Kakinami et al. (2011)
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Figure 3.11: Plotted on the left ordinate: equatorial electron density variation with
longitude at L = 2.5, for December (solid) and June (dashed). Plotted on the right
ordinate: He+ density variation with longitude at the same L, also in December
(crosses and squares) and June (diamonds and triangles) but in a different year,
taken directly from Clilverd et al. (2007)
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variations in atmospheric, ionospheric and plasmaspheric density from a model
or data requires careful consideration; one must sometimes “zoom in” or out to
study different time or spatial scales to provide context for an observed variation.
The same applies to temperature, which can show the same types of independent

variabilities.

3.4.3 Initial Attempts to Model Electron Density using the
GCPM

Modelling results are sensitive to changes in density because loss timescales increase
(decrease) as density decreases (increases). In early versions of the numerical model
(until ~summer 2020), the Global Core Plasma Model of (GCPM Gallagher et al.,
2000, updated to version 2.4 on June 2009) was used to determine ionospheric
and plasmaspheric density. The GCPM provides electron density and temperature
from 90km altitude up to the plasmaspheric trough region by integrating several
region-specific models: it includes a modified version of the plasmaspheric density
model by Carpenter and Anderson (1992), and bridges it to the International
Reference Ionosphere model (Bilitza and Reinisch, 2008) using an exponential
function. The GCPM provides density as a function of time, MLT, and Kp-index.
The time input is a proxy for including seasonal variation and solar cycle variation,
though the GCPM does not model other time-dependent changes.

The numerical model was still 2D at the time of using the GCPM, giving phase
space density of equatorially mirroring particles as a function of (u, L). Therefore,
density from the GCPM could be read into the model very simply without using
drift averages. Electron density given by the GCPM for a specific set of inputs
was averaged in longitude and determined at regular intervals along the magnetic
equator to produce a profile of density versus L. The profile of electron density
versus L was read directly into the numerical model and used to calculate loss.
However, the contribution to loss from all other constituents of the atmosphere,
ionosphere and plasmasphere was ignored.

Figure 3.12 shows three different profiles of electron density versus L (red, yellow
and blue lines) derived using the GCPM in the left hand column. In the right
hand column, calculations of steady state phase space density at = 100MeV /G
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10 10_3 E 3
N = —
— 24/02/1991: winter, solar max — 4] S 2 % L
s 5 m 10 o D [5)
|E 10 1§ & 2 e &
3 e 1071 L
0 10" =
c o “— 10°4 L
10° Example seasonal variation o7 24/02/1991; winter, solar max
6 -3
10 1 9
24/06/1985: summer, solar min 10
—_ — -4 ] L
T 10° F o u
§ e 1071 L
= 4
© 10 4 F g
c ]
— “= 10 24/06/1985; summer, solar min f
s Example solar cycle variation ~
10 T T T T T 10 T T T T T
6 -3
10 1 9
24/06/1985: summer, solar min 10 N . 2
— 24/02/1991: winter, solar max — 4] = Z = i
@ 105 | o 10 ) ) 5
£ e =] h h
[ c 10 1 3
S
© 10" F= o]
Maxi | iati = 10 24/06/1985; summer, solar min £
103 aximal variation 10_7 24/02/1991: winter, solar max
1.1 1.2 1.3 14 1.5 1.6 1.7 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Dipole L (equatorial) Dipole L (equatorial)

Figure 3.12: Plasmaspheric electron density according to the GCPM model of
Gallagher et al. (2000) (left panels) demonstrating seasonal (top) and solar cycle
(middle) components of variation along with both components together (bottom),
plotted next to corresponding steady state solutions in phase space density (right
panels) incorporating those values of density but leaving all other model inputs
constant. Phase space density shown is for equatorially mirroring (a., = 90°)
particles. Grey vertical lines indicate selected energies corresponding to different L.

using the early 2D numerical model are shown. The colour of each model solution
corresponds to the electron density profile used to perform the calculation, with all
other model parameters unchanged between solutions. The model outer boundary
was set at L = 1.7 using proton flux measurements from the PROTEL instrument
on the CRRES satellite. Each panel on the left compares two electron density
profiles to show seasonal, solar cycle, and maximum possible variation according to
the GCPM results.

Figure 3.12 demonstrates that, according to the GCPM, significant changes in

density can occur due to seasonal and solar cycle variation. This, in turn, causes
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large changes in steady state phase space density. It was found that the region
where a steady state solution exhibits the most variation due to a change in density
depends upon the diffusion coefficients used (with higher diffusion rates pushing
the region of maximum variability inwards). However, at this stage there were
significant issues with model accuracy: even by varying the diffusion coefficients
freely using an optimisation algorithm, no model solution could be generated that
agreed well with PROTEL data describing flux in the region ~ 1.2 < L < 1.7,
when using the “period correct” density profile according to the GCPM.

It was impossible to know for sure why the model was unable to match the
data. One reason could be that the PROTEL data was not in steady state, and
another reason could be because ionospheric/plasmaspheric constituents aside from
electrons were not taken into account by the model. However, with hindsight
a likely contributor was significant overestimation of electron density given by
the GCPM. Figure 3.13 compares equatorial electron density predicted by the
GCPM with a least squares fit to measurements taken by the Radio Plasma Imager
instrument aboard the IMAGE spacecraft, presented in Ozhogin et al. (2012).
The GCPM profile shown in Figure 3.13 is the time average over the same period
as the measurements, with the red shaded area indicating standard deviation.
The modelled profile shows an overestimation of 2-3x compared with data at
L ~ 1.5. Ozhogin et al. (2012) suggest that at high L, the GCPM may be based
on measurements of low electron density from outside the plasmapause that were
included erroneously, leading to an overly steep gradient as density increases towards
low L. Attempts were made to make empirical corrections to the density profiles
derived using the GCPM, and whilst this somewhat improved agreement between
model and data, it was decided that such modifications could not be justified on a

scientific basis.

3.4.4 Composing a Global Model of Drift Averages

Following the difficulties caused by uncertainty in ionospheric/plasmaspheric elec-
tron density, the numerical model was improved to evaluate loss terms dgu/dtge
and A as accurately as possible. For 3D modelling, this requires determining the

drift averaged number density of electrons (n.) and other neutrals/ions (n;), as well
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Figure 3.13: Comparison between equatorial electron density as modelled by the
GCPM versus a fit to measurements from the RPI instrument on IMAGE. Shaded

red indicates the standard deviation of GCPM results around the time averaged
profile.
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as drift averaged electron and ion temperatures (T.) and (7T;) at adiabatic invariant
coordinates. Furthermore, to produce realistic modelling results, it was decided
that the solar cycle and seasonal dependence of these terms should be included in
the proton belt model. Since models of the proton belt from previous literature
have parameterised density only by solar cycle (i.e., Selesnick and Albert, 2019),
the inclusion of seasonal variations would be somewhat novel.

However, to begin calculating (n.), (n;), (T.) and (T;) for a given solar cycle and
seasonal phase, one must first have the capability to find density and temperature
along a drift path in the region of interest (i.e. as a function of position in the
MAG frame). No existing model was able to provide density and temperature
over the entire proton belt region in order to permit this computation. Therefore,
it was decided to compose a new “global” model that could compute average
density and temperature along a drift orbit. This would be achieved by integrating
together previously published models describing different parts of the atmosphere,
ionosphere and plasmasphere.

The newly composed global model was integrated with drift averaging code, so
as to output (n.), (n;), (I.) and (T;) when a proton trajectory is supplied as input.
The procedure to calculate a 3D grid of values for some drift averaged quantity (A)
covering adiabatic invariant coordinate space is explained conceptually in Section
3.2.2. Within this process, the global drift averaged density and temperature model

constitutes the “script to evaluate (A)” shown in Figure 3.4.

3.4.4.1 Using Data from Existing Models

To construct a global map of density and temperature for drift averaging, model

data was utilised to obtain the following 16 quantities:

o neutral density of He, O, N2, O2, Ar, H, N and anomalous O, given by the
Mass Spectrometer and Incoherent Scatter Radar model (NRLMSISE-00)
(Picone et al., 2002);

e ion density of O+, H+, He+, O24 and NO+, given by the International
Reference Ionosphere model (IRI) up to 2000km (Bilitza et al., 2017);

e electron density, given by IRI up to 2000km, and above 2000km by the
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Ozhogin et al. (2012) plasmasphere model;

e electron and ion temperatures, given by IRI up to 2000km.

The NRLMSISE-00 and IRI models are written in Fortran, but the Python
module PyGlow wraps them (and several other climatological models) so that they
can be called from Python. The PyGlow method for calling these models requires
universal time as an input. Time is a proxy for including seasonal, solar cycle and
magnetic variability, and is converted internally to an index corresponding with
each type of variation modelled, such as F10.7 for short term solar cycle variation.
This method for calling the models was convenient because changes in density and
temperature could easily be plotted through time, the NRLMSISE-00 and IRI
models could be called using the same object input, and because the drift averaging
code and CRAND evaluation code was written in Python, so Python code could
be more easily integrated into the workflow. Therefore, the PyGlow library was
used to access the NRLMSISE-00 and IRI models. The inputs controlling each of

the three models were as follows.

« NRLMSISE-00 density depends on universal time, geographic latitude, longi-
tude and altitude.

o IRI density and temperature depends on universal time, geographic latitude,

longitude and altitude.

o The Ozhogin et al. (2012) plasmasphere model depends on magnetic latitude
Aand L.

The latter model is based on the fit to Radio Plasma Imager data shown in
Figure 3.13, with an added field line dependence. The model gives electron density

as a function of magnetic latitude and L, according to

1.01
n(L,\) =ne,(L) cos ™ (W y >\>

2 Anvy (3.46)

Neg (L) — 104.4693—0.4903L

where Ay is invariant latitude. Equation 3.46 is as presented in Ozhogin et al.
(2012, Equation 2). It is simple to implement, and valid at >2000km up to the
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plasmapause. In regions where 1.01\ > Any (high A and low altitude), the model
returns unphysical density values as the cosine dependence breaks down.

It was decided to use a day of the year variable (DOY) to parameterise seasonal
variation, and 81-day averaged solar radio flux (F10.7a) to parameterise long term
solar cycle variation. Since the new density-temperature model would ultimately
be needed for drift averaging, the aim was therefore to unify the models such
that density and temperature could be found as a function of constituent, spatial
position in the MAG frame, DOY and F10.7a anywhere in the proton belt, i.e.
n; = N(x,i,F10.7a, DOY) and T; = T'(x,i,F10.7a,DOY). However, there were

challenges to address in order to unify the models this way. These included:

e The density and temperature data given by IRI was only available up to
2000km. An altitude profile has been plotted in Figure 3.14, showing the
density of a few selected constituents returned by IRI, with the 2000km limit

visible.

o As per Equation 3.46, the plasmaspheric electron density model does not
contain seasonal or solar cycle dependence (since the spacecraft dataset on
which it is based only includes five years of data). Figure 3.15 shows electron
density plotted 20 times by IRI along the same magnetic equatorial altitude
profile but using different solar cycle/ seasonal conditions. Also plotted on
Figure 3.15 is the electron density given by the Ozhogin et al. (2012) model.
These models were to somehow be combined in such a way as to preserve the
solar cycle and seasonal dependence of IRI, but use the high altitude density

from the Ozhogin model.

o When drift averaging to find density/temperature over a proton trajectory,
values cannot be returned directly from IRI because the computation takes too
long given the many points per trajectory. Therefore, for certain constituents
where modelling involved IRI data, pre-calculated altitude profiles of density
and temperature were to be derived at different latitudes across the modelling

region and interpolated from, reducing execution time.
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IRI environment at 2000/03/12

IRI ne density profile

— ne
-——- O+
R T H+
\\\ ——— HE+
10’1
g i
() [
° i
> L
= I¢
< F
I J
2 longitude: -177.6
1071 latitude: 3.1
10° 107 10* 10° 10°

ne [cm-3]

Figure 3.14: An example, near equatorial, altitude profile of electron, O+, H+ and
He+ density produced using the IRI model for a given epoch (on 12/03/2000). The
abrupt zeroing of densities at 2000km is due to the altitude range of the model

being exceeded.
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IRI ne density profile

—— ne, F10.7a: 186.7, DOY: 72
—— ne, F10.7a: 189.0, DOY: 166
—— ne, F10.7a: 171.8, DOY: 330
—— ne, F10.7a: 226.6, DOY: 73
—— ne, F10.7a: 210.3, DOY: 166
—— ne, F10.7a: 130.9, DOY: 165
—— ne, F10.7a: 136.7, DOY: 331
ne, F10.7a: 130.9, DOY: 68
ne, F10.7a: 97.7, DOY: 171
ne, F10.7a: 106.9, DOY: 273
ne, F10.7a: 93.8, DOY: 332
ne, F10.7a: 103.5, DOY: 67

. ne, F10.7a: 68.7, DOY: 67
ne, F10.7a: 131.0, DOY: 272
ne, F10.7a: 178.4, DOY: 267

ne, F10.7a: 210.9, DOY: 266
—— ne, F10.7a: 218.6, DOY: 333
—— ne, F10.7a: 67.8, DOY: 272
—— ne, F10.7a: 68.6, DOY: 173
—— ne, F10.7a: 67.3, DOY: 326
— ne 012

10

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Equatorial L

Figure 3.15: 20 plots of IRI electron density along the same altitude profile located
at the magnetic equator using different combinations of seasonal/ solar cycle inputs
as shown, along with the single plot of electron density given by the Ozhogin et al.
(2012) model.
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3.4.4.2 Isolating Solar Cycle and Seasonal Dependence

It is possible to make drift averaged density and temperature a function of solar
cycle and season by re-calculating it several times using specific values of F10.7a
and DOY as inputs to the NRLMSISE-00 and IRI models. One can then interpolate
between the results for any combination of F10.7a, DOY. A minor complication
is that, since the input (via PyGlow) to the NRLMSISE-00 and IRI models is
universal time, the F10.7a and DOY variables cannot be directly controlled, but
instead correspond to the time entered via a built-in time history of indices. To
overcome this complication and call the models for specific combinations of F10.7a
and DOY, one can go backwards in time from a starting epoch in small steps,
check the F10.7a and DOY corresponding to each new epoch using the time history
of indices, and repeat until the desired combination of F10.7a, DOY is found at
some actual point in history (allowing for some error since a very specific F10.7a
may never have been recorded exactly). However, as discussed in Section 3.4.2,
density and temperature can be affected by numerous other types of independent
variability at any one time. Many of these are modelled and dependent on the
epoch, so one must be careful to avoid capturing an unintended effect from the
model this way.

To parameterise solar cycle and seasonal dependence in the drift average density
model, five different values of F10.7a were considered (60, 100, 140, 180, 220 solar
flux units, sfu) along with four days of the year (DOY; day 70, 170, 270, 330).
These sets of values constitute a parametric matrix with 20 elements: one for each
possible combination of F10.7a and DOY. Using the trick above, a corresponding
universal time for each element was found by searching through a time history of
indices (backwards from the present) until a date was found where F10.7a matched
within a margin of +10 sfu, and the DOY matched within a margin of +4 days.
Using these 20 universal times, the NRLMSISE-00 and IRI models could be called
for a specific combination of F10.7a and DOY from the parametric matrix.

Whilst investigating the time evolution of densities and temperatures in each
model, it was found that density returned by the NRLMSISE-00 and IRI models
at an atmospheric test point occasionally showed large time-dependent changes.

Figure 3.16 shows numerous examples of this occurring over a year, for a test
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point with a fixed latitude, longitude and altitude of 30°, -80° and 1000km. In
the top panel, various magnetic (left ordinate) and solar indices (right ordinate)
are plotted. In the middle panel, the total mass density of every atmospheric
constituent according to NRLMSISE-00 is shown. In the bottom panel, the electron
mass density is shown according to IRI. The variation in Figure 3.16, appearing
as ~days long blips in atmospheric mass density and electron density, appears to
correlate with temporary jumps in daily AP index (top panel, grey), indicating
magnetic activity. Note that the variation is only identifiable because a 24 hour
time step was used to derive the time series in each panel, and this had the effect
of excluding day-night variation in density, which is of a comparable magnitude. If
the time of each data point were shifted by a few hours, the blips would still be
visible since a range of local times are affected, but each plot of density would have
a different trend/ shape.

It was important to ensure these rapid changes in density did not coincide
with any of the universal times used as proxies for each set of F10.7a and DOY
coordinates in the parametric matrix. This is because, to effectively parameterise
each drift average by solar cycle and season, changes caused by magnetic activity
must be excluded to isolate solar cycle and seasonal variability. Figure 3.16 shows
enhancements in total mass density (middle panel) but decreases in electron density
(bottom panel) during the disturbance. To investigate further, Figure 3.17 shows the
IRI electron density profile over six days during one of the magnetic disturbances.
The decrease in electron density appears to begin from ~150km, near the base of
the ionosphere F region, and could be a response to a composition change in the
ionosphere driven by magnetic activity.

Effects on density due to this type of magnetic variability were excluded from
calculations of drift averages at each F10.7a, DOY combination by manually
checking that each of the 20 universal times corresponded to magnetically quiet
conditions and by checking for any blips in density similar to those shown in Figure
3.16. Finally, to test whether this method of capturing solar cycle and seasonal
variability was effective, density at a fixed test point was then probed at each of
the 20 times for different solar cycle and seasonal conditions, for two MLTs on
opposite sides of Earth. The results of this test are shown in Figure 3.18.

Figure 3.18 shows that there is a clear solar cycle and seasonal dependence in
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Figure 3.16: Overview of time variations in density over a one year period, as
modelled at a test point with a fixed longitude, latitude and altitude in Earth’s
atmosphere. The top panel plots magnetic (left ordinate) and solar indices (right
ordinate) against time. The middle panel shows total mass density of every
atmospheric constituent according to NRLMSISE-00. The bottom panel shows
electron density according to IRI. The fast ~day long variations in both density
profiles are caused by magnetic activity, correlating with magnetic AP index.
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Figure 3.17: Electron density modelled by IRI along an altitude profile at a fixed
latitude and longitude, over the duration of a dynamic change correlating with a
jump in magnetic AP index (shown in Figure 3.16).
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Atmospheric density at test point:
MLT= 12, altitude= 1000km
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Figure 3.18: Density at an atmospheric test point fixed in the MAG frame with
1000km altitude and 0° magnetic latitude is considered. In the top two panels,
the test point is at MLT= 12. The top panel shows total mass density of neutral
atmospheric constituents at the test point, calculated using the NRLMSISE-00
model. The panel beneath shows electron density at the test point, calculated
using IRI. There are 20 values of density given in each plot, each corresponding to
one of the 20 elements of the parametric matrix specifying values F10.7a (colour
coded) and DOY (along x axis). In the bottom two panels, 12 hours have passed
and the test point is at MLT= 0. The third and fourth panels down show the same
information as top two panels but for MLT= 0.
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density at the test point, regardless of MLT. For example, for each fixed F10.7a
(colour), density has the same up-down variation throughout the year at the test

point. Likewise, for a fixed DOY, density always increases as F10.7a increases.

3.4.4.3 Interpolating and Extrapolating Density and Temperature

After establishing a method for isolating solar cycle and seasonal dependence
from the NRLMSISE-00 and IRI models, the global drift average model could be
developed. The method for calculating drift averaged density and temperature,
described below, was repeated for each of the 20 environments defined using the
parametric matrix, with each repetition giving a result for a particular phase over
solar cycle and season.

The top left panel of Figure 3.19 illustrates the first step in the method: altitude
profiles were constructed at regular intervals in magnetic latitude, each ranging
from 90km up to the L = 3.25 field line. The aim was to pre-calculate density and
temperature along these altitude profiles, so that density and temperature could be
interpolated anywhere within the L = 3.25 field line. The higher limit of L = 3.25
encompasses most of the proton belt, and was dictated by reliability of electron
density measurements from the Ozhogin et al. (2012) model, discussed later in
this section. The altitude profiles shown in Figure 3.19 were fixed at the following
magnetic latitudes: 0, +10.0, +20.0, £30.0, £35.0, £40.0, +42.5, +45.0, £47.5,
450.0, and £ ~50.5184°. The higher and lower magnetic latitude limits are where
the L = 3.25 field line intersects 2000km altitude in a dipole field.

Along each altitude profile, neutral densities of He, O, N2, O2, Ar, H, N
and anomalous O were determined by NRLMSISE-00 below 2000km. Above this
height, they were extrapolated as straight lines of logl0 (n;) with altitude, up
to the L = 3.25 field line. Ion densities of O+, H+, He+, O2+ and NO+, as
well as electron and ion temperature, are given by IRI below 2000km and were
extrapolated to higher altitudes along each profile via the same method. Ion and
electron temperatures exhibit a similarly complex dependence on local time, etc.,
as density, but generally do not exceed 10000K in the region of interest (see for
example the plots in Kutiev et al., 2002), and therefore a hard limit was set so that
T, and T; did not exceed 10000K.
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Figure 3.19: An overview of the construction of the drift averaged density and
temperature model (for the case of electron density). The top left panel shows
density profiles calculated at regular intervals in magnetic latitude, derived by
interpolating and smoothing between the values given by IRI at < 2000km and
the Ozhogin et al. (2012) model at L = 3.25, as shown in the top right panel
for three selected altitude profiles. The bottom right panel shows the result of
interpolating between these altitude profiles of electron density across an MLT
slice, and the bottom left panel shows the variation in electron density along three
example proton bounce orbits at this MLT as a function of magnetic latitude (each
bounce orbit is also drawn on the bottom right panel).
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Figure 3.20: Comparison of equatorial density models, adapted from Figure 8
of Ozhogin et al. (2012) to highlight the relatively good agreement at L ~ 3.25.

Dashed lines represent statistical uncertainties of the Ozhogin et al. model (shown
in black).

In the case of electron density, extrapolation was avoided to minimise uncertainty,
since uncertainty in electron density had been the cause of problems in the earlier
model version as discussed in Section 3.4.3. Historical measurements indicate
relatively consistent electron density at L = 3.25 below the plasmapause. This is
demonstrated by good agreement between empirical models, shown in Figure 3.20,
adapted from Ozhogin et al. (2012). This is also demonstrated by Park et al. (1978),
who plot profiles of n. derived using whistler wave observational data for the month
of June 1959, 1965 and 1973, shown in Figure 3.21. The authors interpret this data
to assert that density of the plasmasphere is not sensitive to solar cycle variations
beyond L ~ 3. The suggestion that plasmaspheric electron density is relatively
stable at L = 3.25 formed an important assumption upon which to construct the
density model: electron density was given by IRI below 2000km, but above 2000km
was interpolated between IRI and the O12 model value at L = 3.25.

However, interpolating electron density between the IRI and Ozhogin et al.
(2012) models is not necessarily simple. The disagreement between the models is
shown in Figure 3.15, and a straight line interpolation between IRI at 2000km and
the Ozhogin et al. (2012) model at L = 3.25 may result in a positive gradient with
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Figure 3.21: Equatorial electron density derived from whistler wave observations
for June 1959, 1965 and 1973, adapted from Figure 10 of Park et al. (1978)

L (unphysical). The second step in the modelling process was dealing with this by
smoothing each electron density profile across the transition between models, whilst
ensuring a physical profile. This was achieved by defining a transition region near
2000km and using Bézier curves to connect the logarithm of electron density profile
from IRI to the static value of Ozhogin et al. (2012). The top right panel in Figure
3.19 demonstrates this, showing electron density along three altitude profiles at
different magnetic latitudes. The dashed blue line in each of these profiles represents
the final electron density profile as a result of smoothing the values between IRI
(shown in red) and the static Ozhogin et al. (2012) model at L=3.25 (black +
symbol). The field line dependence of the Ozhogin et al. (2012) model (Equation
3.46) was made use of to derive the electron density along L = 3.25. All values
of electron density shown in Figure 3.19 correspond to the environmental indices
displayed to the right of the top right panel in Figure 3.19 (via IRI dependence).
Pre-calculating altitude profiles of density in this way for each constituent
allowed faster execution time when drift averaging, and overcame the challenge of
IRI being slow to call at every point over a bounce path. To demonstrate the effect
of smoothing electron density as described, and to demonstrate how density can be

interpolated between the altitude profiles, electron density has been interpolated
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across magnetic latitude to construct a density slice in the meridian plane for a
specific magnetic local time (MLT'), shown in the bottom right panel of Figure 3.19.
It is important to highlight that electron density shown in the bottom right panel
is calculated for a specific time of day, MLT, F10.7a and DOY.

The next stage was to drift average density and temperature along a provided
particle trajectory. The bottom left panel of Figure 3.19 gives an insight into this
process, showing the variation of electron density versus magnetic latitude along
three proton bounce orbits, derived using density across the MLT slice shown in the
bottom right panel. The energy, equatorial pitch angle and L of the proton bounce
is labelled next to each profile, and each orbit is also drawn onto the MLT slice in
the bottom right panel. Density returned directly from the IRI model along each
bounce path is shown in red up to 2000km, the maximum height of IRI. Likewise,
density returned directly from the Ozhogin et al. (2012) model is shown in black
above 2000km, which is the minimum height of this model. The second and third
bounce orbits shown in the panel cross 2000km, and for these two orbits Figure 3.19
shows the mismatch in electron density at 2000km (red versus black) according to
IRI and the Ozhogin et al. (2012) model. The discrepancy depends on MLT, time,
etc., and would introduce steep gradients into the drift averaging results if not
smoothed. The blue line in each profile represents the smoothed electron density
derived as described above by combining IRI values up to 2000km and Ozhogin
et al. (2012) model values at L = 3.25. Each bounce orbit mirrors at low altitude
close to the loss cone, and therefore density is high at the mirror points as each
proton penetrates the atmosphere.

Since density and temperature depend on MLT, and the proton trajectories
supplied to the global drift average model are bounce trajectories due to the shortcut
explained in Section 3.2.4, the densities and temperatures stored in each altitude
profile via the above method were re-calculated and averaged across the following
eight MLTs: 0, 3, 6, 9, 12, 15, 18 and 21 hours. This is equivalent to rotating a
bounce orbit around the centre of the MAG frame in 45° intervals and averaging
drift averaged density and temperature across it until the initial phase is reached
to recreate the effect of a whole drift orbit. To eliminate day-night variation in
density (Figure 3.10), this entire process was then repeated six times throughout
the day at the following selected times: 00:00, 04:00, 08:00, 12:00, 16:00 and 20:00.
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In summary, altitude profiles were:
o determined at 21 magnetic latitudes,
o for eight different MLT
« for six times throughout the day.

This produced altitude profiles that were MLT and diurnally-averaged as a result
of 48 re-calculations.

Drift averages were then performed for a given particle trajectory for 20 different
universal times corresponding to specific F10.7a, DOY combinations. This process
required recalculating each of the 21 MLT and diurnally-averaged altitude profiles
20 times. Furthermore, there were 14 constituent densities and two temperatures
modelled, which each required separate storage during this process, but drift
averages for each of these 16 quantities were calculated and output simultaneously
for a given F10.7a, DOY.

The final result of this method was a set of (n.), (n;), (T.) and (T;) for each
environment specified in the parametric matrix. This produced 320 .mrda drift
average files in total (16 constituents x 20 combinations of F10.7a, DOY), each
containing the result of drift averages along the same 169280 adiabatic invariant
trapped particle coordinates. As payoff for this long-winded method, drift averaged
density and temperature was thus made available to the proton belt numerical
model as a function of particle coordinate p, ., and L, as well as F'10.7a and
DOY, for each of the 14 constituents and two temperatures, based on data from
up to date models and some simple assumptions.

One useful feature of the drift averaged density and temperature model is that it
can easily be expanded to cover higher L in the future, since the electron density at
the outer limit L = 3.25 is given by the simple function defining the Ozhogin et al.
(2012) model (Equation 3.46). This expansion may be necessary in the future to
study magnetic time variability in density outside the plasmasphere, and a simple
approach would be applying an empirical correction to density extrapolated past
L = 3.25 from within the numerical model to recreate the effect of time variability
at higher L.
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3.5 Numerical Scheme

The proton belt numerical model was written in modern Fortran. In this section, a
fully implicit numerical scheme is presented to solve the 3D master equation given
by Equation 3.13. However, early development of the model focused on solving
a more basic 2D master equation, and the 2D case will therefore be the starting

point for discussion.

3.5.1 First Attempts

The Fokker Planck equation appears in Albert et al. (1998) with the following form
based on the work of Cornwall (1972):

0f _ ;20 (Duof} GIL)Of
=L l = 8L] 7 g~ M S (3.47)

where phase space density f(u, L) describes the distribution of equatorially mir-
roring particles, given by f = mJj/p? with units km~%s3 where j is unidirectional
differential proton flux, p is non-relativistic momentum and my is proton rest mass.
G(L) in Equation 3.47 is the coulomb energy degradation factor given by Cornwall

(1972) as
4,1/2

etmy,
meB3/2 Te
where (for the required units of MeV3/2G~3/2s71) ¢ is the electron charge (in CGS

units), n. is electron number density (cm™?), m, and m, are the electron and proton

G(L) = 50v/2m (3.48)

mass (g), and B is the magnetic field strength (G). Comparing with Equation 3.13,
the G(L)/p'/? term is equivalent to du/dtgsc.

The proton belt numerical model was initially based on this master equation, in
order to use the work of Albert et al. (1998) as a starting point and for validation.
Unfortunately, the equation is non-relativistic. It is also missing a term where

~1/2 "and therefore coulomb collisional loss is not fully modelled.

0/0u operates on p
This is explicitly justified by Cornwall (1972) on the grounds that “charge-exchange
losses dominate”, because that work focused on modelling energy ranges of “< 1

MeV /nucleon at L = 3”. The authors also claim that this extra term cancels
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non-relativistically but do not show this. Coulomb collisional loss is also not taken
into account fully for the separate reason that the loss term G only includes a
contribution from plasmaspheric electron density. Furthermore, Equation 3.47 is
missing a term proportional to du/dtg.f, shown by Equation 3.49 in the next
section.

With hindsight, it can be suggested that Equation 3.47 is inappropriate for
building a numerical model to be used at relativistic energies, due to non-relativistic
assumptions and incomplete modelling of coulomb collisional loss. The work
presented in Chapter 4 was initially carried out using this version of the model,

until comments from first round reviewers prompted an overhaul.

3.5.2 2D Case

The 2D version of Equation 3.13 can be derived by setting J = 0 to consider
equatorial particles only, leading to the following simplification, where f(u, L)

describes 2D relativistic proton phase space density:

of 9 [dp L dp f_LQa[DLLaf

> |37 o f= 2L ~A 4
ot + 3u [dt fric ] Q/L dt tric oL L2 aL] T Sn f (3 9)

Equation 3.49 was solved on a 2D grid with linearly spaced increments in log;, (1)
and L. Fach grid point is represented here by an ¢ and £ index increasing in each
dimension respectively. The first step towards solving Equation 3.49 was deriving
its finite difference approximation (FDA) so that it could be expressed in terms of
discrete grid space.

Equation 3.49 contains a convection term (second from left). The quantity
dp/dtge is always negative, so this term represents a flow of f from top to bottom
across the grid in the ¢ dimension. Therefore, new values for each point must come
from above (upwind) rather than below (downwind), otherwise information will be
moving in the wrong direction and the numerical method will be unstable. This
upwind scheme requires for the finite difference approximation that % — ﬂ%}:ﬂ,

where Ap = pii1 — .
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The finite difference approximation for Equation 3.49 is therefore
Lo et gfmt = 1+ ALS, (3.50)

where the upper index n represents the current timestep, and n + 1 is the next

timestep. The coefficients a, b, e and g are given by:

L? At
G= — ——5—>5 i
L 2 AL M
L? At
- - ——="D
CT T LB AR (3.51)
_ Atdp
C Apdt s
At dp  Atdp
b=1-a—e——— AtA
CTCTAndt Topar T

Equation 3.50 can be re-written as the system of linear equations M,,f = r,
where Ms, is a square matrix containing coefficients a, b, e and g, f is a vector
containing all {4, f*, fifl and f/', and r is a vector containing the known
quantities on the right hand side. This system is arranged as shown in the Figure
3.22 schematic, where non-zero diagonals of M,,, have been indicated. The position
of elements a is sometimes referred to as the “lower diagonal”, and the position of
e as the “upper diagonal”, with the lower, centre and upper diagonals forming the

tridiagonal group a, b and e.
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Figure 3.22: A system of linear equations expressing the 2D model equation.



To expand on the schematic in Figure 3.22, Equation 3.52 gives Ma,, in terms of the coefficients a, b, e and g. It has been

written for a grid of general size, with m grid points in the L direction so that the index variable k£ goes from 1 to m:

MA MB
- | | -
by el 0 0 0 0 g1 0 0 0 0 0
a2 b2 62 ............ O 0 0 O 92 0 ............ O 0 0
0 az b 0 0 0 0 g 0 0 0
0 0 0 bz €m—a 0 0 0 0 Gn-2 0 0
0 0 0 e Am—1 b1 €mo1|| 0 0 0 e 0 gm0
Mo, = 0 0 0 Am b 0 0 0 0 Im
0 0 0 0 0 1 0 0 0
0 0 0 e 0 0 0 0 1 0 e 0 0 0
o 0 0 0 0 0 o 0 1 0 0 0
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MD ME
(3.52)
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The next value at each grid point depends on the current value, the two current
values at surrounding k indices, and the current value at ¢ + 1. Therefore, for
a given i on the model grid, it is possible to solve My, f = r for f**! at all k

simultaneously if:

o f"lis already known at the smallest and largest k, and

 cach [, is already known at every k.

The first condition is fulfilled at any ¢ by the following boundary conditions:

f (1, Linin) = 0 (3.53)

f (/~L7 Lmax) = fboundary data (M) K) (354)

Physically, these equations dictate that flux is zero at L.,;,, and flux is given by an
outer boundary function at L,,... These are both true when L,,;, is close enough to
Earth and when spacecraft data is available to drive the outer boundary at L,.y.
The second condition above is fulfilled at the second to last row in ¢ by the following

boundary condition:
f (,Umaxa L) =0 (355)

Physically, this equation represents the high energy trapping limit; since particles
with first invariant p.., for any L, are very high energy, they do not undergo
adiabatic motion and cannot be trapped. By beginning on the row i = n, — 1,
where n,, is the size of the grid in the 7 dimension, then moving down in the ¢ index
from top to bottom across the solution grid, the grid can be solved for f7+!.

To solve the matrix equation Ms,,f = r at a given row i, the technique of LU
decomposition was used. To demonstrate this method with a simple example, a
matrix A can be permuted by left-multiplying with a permutation matrix P so
that

PA=LU (3.56)

where L is a lower triangular matrix and U is an upper triangular matrix. A 3x3

matrix A may be broken down like so in the case that no reordering is necessary
(P=1):
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11 a2 i3 lin O 0 Uy U2 U3
A= 21 Q22 QA23| = log lee O 0wy wugs

31 az2 A33 l31 l32 33 0 0 us3

When P reorders the rows of A, this technique is said to include “partial
pivoting”.  When P reorders columns too, it is referred to more generally as
“pivoting”. Application of this technique is limited here to cases where pivoting is
not required, as in the example above.

Using this technique, a system of linear equations given by Af = r can be solved
for f. The method of solution is illustrated by writing out the system of equations

in terms of L and U like so:

Af =r
A=LU
(3.57)
S LUf=r

S.Ly=r where Uf =y

The solution can then be found in two steps: solve Ly = r for y using forward
substitution; then solve Uf =y for f using back substitution.

LU decomposition of M,,, can therefore be used to solve the system Ms,, f =r
by considering the decomposition Lo, Us,, = M,,,. However, the shape of M,,,
allows a further simplification to be made: non-zero elements of L, are limited to
the diagonal and lower diagonal. The general forms of Ls,, and U,,, are thus given

by Equations 3.58 and 3.59 respectively.
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Multiplying Lo, and Us,, leads to the following equation for Mas,,:
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By equating components of My, as defined in Equations 3.52 and 3.60, beginning
with the final row and working upwards, it is possible to solve for one unknown
at a time and determine every coefficient [ and v in terms of a, b, e and g, and
thereby fully determine L and U. With a small extension to this method, it is

possible to go even further and solve the three dimensional problem.

3.5.3 3D Case

For the 3D case, the master equation of Equation 3.13 was used, repeated below:

of 0 |Jdu o 0 | DL 0f
8t+a [dtfncf]JraJ[zudtfmf] LaL[Lz aL]jLS Af  (3.61)

Equation 3.61 was solved on a 3D grid with linearly spaced increments in
log,o (1), K and L. Each grid point is represented here by an i, j and k index
increasing in each dimension respectively. Instead of transforming the master
equation to be in terms of K, it is more convenient to keep the canonical action
angle variable J for the second invariant and simply convert K to J internally

whenever needed. The conversion between K and J is like so:

K = /Byl = LaY (y)\/B.,

J =2pLaY (y) (3.62)
2p

VB

The conversion between K and J for any point on the model grid was made

J =

quickly by using a pre-calculated mapping between a.,, K and B, at each model L.
Kinetic energy at every model coordinate is also stored, which is used to calculate
p quickly.

There are two convectional terms in 3.61, and an upwind scheme requires for
the finite difference approximation that 8f — f““l fi
that gf; — f”Al = fj, where AJ = Jj14 JJ. The ﬁnlte difference approximation for

Equation 3.61 is therefore

, where Ay = ;1 — p;, and

P b e fi + g R+ RE = f1 o+ AL, (3.63)

163



with coefficients given by:

L? At
L, 1* AL?
L* At
Ly1® AL?
,_ At (3.60)

Ap dt i
At Jyjpdp
T AJ 21 E]‘H
Atdu At J du
b=1-a—€6e— —— — ———
Apdt  AJ2udt

a= — DLLk_%

o Nl

€= — DLL]H.%

+ AtA

As in the 2D case, Equation 3.63 can be re-written as a system of linear equations

Ms,,f = r. This system is arranged as shown in the Figure 3.23 schematic with

non-zero diagonals of Ms, indicated.
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Figure 3.23: A system of linear equations expressing the 3D model equation
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To expand on the schematic in Figure 3.23, Equation 3.65 gives Ms,;, in terms of the coefficients a, b, €, g and h. It

has been written for a grid of general size, with m elements in the L direction:

h1 0 0 0 0 0
0 h/2 0 .............. O 0 0
M4 Mp 0 0 hg ) 0 O 0  Mc
0 0 0 hm—o 0 0
0 0 0O - 0 hm—l 0
0 0 0 him
1 0 0 0
O 1 0 .............. 0 O 0
Mp Mg 0 0 1 0 0 0 Mr
Ms,, = : E
0 0 0 1 0 0
O 0 0 .............. 0 1 0
0 0 0 0 0 1
0 ....... 0 0 """" 0 1 0 O O 0
. O 1 0 .............. 0 0 0
0 0 1 0 0 0 M
0 1 0
O 0 0 .............. 0 1 0
0 e 0 0 - 0 0 0 0 0 0 1
L ‘ ‘ J
MG MH
(3.65)
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In the 3D case, the next value at each grid point depends on the current value,
the two current values at surrounding k indices, the current value at ¢ + 1 and
the current value at j + 1. Therefore, for a given i and j, it is possible to solve

Ms,f =r for f**! at all k simultaneously if
o f"!is already known at the smallest and largest k,
o [, is already known at every k, and
o fr1,. is already known at every k.

The first two conditions require boundary conditions similar to the 2D case:

f (ﬂ> Ka Lmin) =0 (366)
f (N? K, Lmax) = fboundary data (,LL, K) (367)
f (,umaxa K, L) =0 (368)

In addition to these, the following boundary condition is needed:
flu, K > Kpax(L), L) =0 (3.69)

where Kp.x(L) is the largest K outside the loss cone at L. Physically, this equation
describes phase space density inside the loss cone as zero.
The LU decomposition technique from Section 3.5.2 for the 2D case is extended

to solve the system Ms,,f = r, by considering the decomposition Ls,,Us,,, = Ma,,.
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Multiplying Ls,, and Us,, leads to the general form of Ms,,:

M3m = L3mU3m =

(3.70)
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Analogous to the 2D case, components of Mj, can be equated between Equations
3.65 and 3.70, beginning with the final row and working upwards, to solve every

coefficient [ and u in terms of a, b, e, g and h, and thereby fully determine L and
U.

3.5.4 Solving Algorithm

The code snippet in Appendix B was written to perform LU decomposition of a
matrix M,,, for the n dimensional problem. This applies for systems like those
dealt with in this chapter that have:

e a tridiagonal inside the first square m x m portion of M,,,;

« and a single diagonal in the remaining n — 1 dimensions, arranged in groups
of m rows and columns after the tridiagonal as shown in Figures 3.22 and
3.23.

A Fortran version of this code was used to solve Equations 3.50 and 3.63. It is
shown in Appendix B written in Python for readability, and since Python is easier
to validate by using matrix operations from the NumPy package. The m and
dimensions variables set in the code (lines 21 and 22) can be changed to solve on

grids of different sizes or dimensions, and the code includes validation near the end.

3.5.5 Diagonal Dominance

An extra complication arises in the 3D case: although the numerical scheme is fully
implicit, the solution is no longer unconditionally stable. For stability, the diagonal
elements of Mj3,, must be greater than or equal to the sum of the off-diagonal
elements in the same row, which is known as diagonal dominance. The 3D case

therefore has the following stability criterion:

lal + le] + [g| + || > 0] (3.71)

This condition can met by choosing a timestep small enough, but when the condition
in Equation 3.71 is not met this is known as a “diagonal dominance violation”. An

equivalent condition applies to the 2D case too, but it can easily be shown that
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la| + |e] + |g| > |b] is always true (for any At) when a, b, e and g are components
of Ms,, given by the set of equations in Equation 3.51.

In the 3D case, diagonal dominance violations can be triggered by steep gradients
in dyu/dtg;e at neighbouring grid points, combined with high timesteps. Re-arranging
for the maximum timestep that will not cause a diagonal dominance violation

yields:

(3.72)

-1
lal + lel +lg[ + |p] _ (lo] = 1)
At At

Aty = (
where the At term on the right hand side cancels out from the definitions of a, b,
e, g and h in Equation 3.64 to make the right hand side independent of At.

To prevent model crashes due to instabilities, a system was built into the model
to detect diagonal dominance violations, calculate At,.., then automatically lower
the timestep to 0.95At,.x and continue with the solution. For dynamic simulations
not in steady state, the solar cycle and seasonal parameterisation of drift averaged
quantities such as du/dtgi. leads to a dependence on time-varying indices such as
F10.7a, which can vary up or down in subsequent timesteps. This may happen
to change the outcome of the diagonal dominance condition in Equation 3.71 and
increase the minimum timestep required. The factor of 0.95 was found to help
prevent diagonal dominance violations from recurring on following timesteps due to
this type of variation, optimising execution time. Furthermore, the model system
performs checks by periodically re-evaluating At,,., even when there is no violation.
If the timestep is below At,.., it will be increased up to 0.95At,,., or the limit

specified in the configuration file (whichever is lower).

3.6 Mapping Between K and Equatorial Pitch
Angle

Figure 3.24 illustrates the mapping between K and a4 for several fixed values of L.
A dashed horizontal line is used to indicate K., for each L, which represents the
boundary K outside the loss cone. Figure 3.24 shows that with regular spacing in
K, the solution becomes more detailed near the loss cone, because there are more

grid points per small change in o, due to the shape of the curve. Having a high
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grid resolution in this region is important due to sharp gradients in loss timescales,
and in order to track the outer boundary of the loss cone closely. Therefore, this
represents a convenient feature of the choice of adiabatic invariant coordinates (,
K, L).

However, for model grids that include a wide range in L, there is a large
difference between K., at opposite sides of the grid in L. For example, K., at
L =1.7is ~1.15G'Y2 Rp, whereas Kax at L =1.1 is just less than 0.1GY2 Ry. This
leads to a rather inconvenient feature of choosing adiabatic invariant coordinates
(u, K, L), because if the model grid has regular intervals in K, shown by the grey
lines in Figure 3.24, then relatively few grid lines will be inside the loss cone at low
L. One can increase the number of intervals in K to deal with this problem, but
inefficient utilisation of the model grid in this case becomes a memory issue.

To solve this problem, a non-regular grid spacing in the K direction was used,
with extra grid lines inserted at low K (near o, = 90°). This measure results in
smoother pitch angle distributions produced by the model near 90°, as well as a
higher resolution solution at low L when the outer boundary is set far away in L.
This solution was implemented such that extra grid lines can be inserted based on

configuration file options.

3.7 Overcoming Model Instabilities when Com-

puting 3D Steady State

Sometimes it is useful to calculate a steady state proton belt distribution. To
perform this simulation, the solution grid can be initialised as zero, except at
the outer boundary which must be prescribed to allow protons to diffuse inward.
However, the simulation time required to form the steady state proton belt from
nothing (not the real time required for the simulation to finish) may be over one
hundred years, depending on the rate of radial diffusion.

On a 3D model grid, adiabatic coordinates show positive gradients in du/dtg;c
versus K which get rapidly steeper approaching K. at the loss cone boundary.
This is driven by sharply increasing drift averaged densities as the associated

mirror point gets closer to the atmosphere. Although the numerical scheme is fully
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Mapping Between K and a,, at Selected L

L=2
L=1.9
L=1.7
L=1.5
L=1.3
L=1.1

K [GO.S RE]

Figure 3.24: Plot of the mapping between ., and K at various L, where a., has
been extended from 90° down to the dipole loss cone for a 300km atmospheric
scale height. The maximum K at each L, corresponding to the loss cone, has been
indicated with a dashed horizontal line for each L.
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implicit, these gradients can cause model instability at high timesteps, in the form
of diagonal dominance violations. This problem is exacerbated by using higher
resolution grids, but can be mitigated by reducing the timestep. Therefore, when
3D simulations require lots of detail, a small timestep is required and the time
required to calculate steady state can easily exceed one week.

However, one other strategy to decrease the runtime is to compute a solution
using a high “loss cone altitude” - the minimum altitude that a particle may mirror
at, below which it is considered lost to the atmosphere. This is a critical altitude
controlling the boundary condition f(u, K > Kyax(L), L) = 0; when a higher loss
cone altitude is set in the configuration file, K., is reduced at all L, restricting the
physical domain of the model to particles mirroring at higher altitude (lower K).
As discussed, regions of the model grid with the highest gradients in dju/dtge versus
K tend to be near the loss cone. When K., is made smaller, these regions fall
beyond the f = 0 boundary condition, outside the range of coordinates needing to
be solved. The model is therefore more stable since the gradients in loss timescales
across neighbouring grid points are smaller. As a result, the model timestep can
be increased - sometimes more than doubled for a ~ 50km change in loss cone
altitude.

When the loss cone altitude is increased as described above the solution at
low pitch angles, close to the f = 0 boundary condition, may be underestimated.
However, once steady state is approached using the high loss cone altitude, the
solution can be used to initialise a new simulation with a lower altitude loss cone.
A smaller timestep will be required of course, but the solution takes less time to
reach steady state since radial diffusion will have finished supplying regions of
the proton belt during the first simulation. This process can be repeated for ever
decreasing loss cone altitudes to approach a detailed 3D steady state much more

quickly.

173



3.8 Reading Drift Averaged Quantities into the
Model

Each drift averaged quantity is stored on disk in a 3D grid in terms of the coordinates
(1, g, L) as a result of the drift averaging process. This grid is contained within
a “model-ready drift average” file, as discussed in Section 3.2.2, with multiple
.mrda files for each drift average quantity describing it over different coordinates of
a parameter space. For example, since CRAND was calculated for five different
F10.7 values, there are five CRAND .mrda files. For each of 14 densities and two
temperatures, there are 20 files, which leads to 325 files in total.

The choice of coordinates (p, aeq, L) for the drift average grid was convenient
because an initial state vector Yq could be calculated exactly for a trapped proton,
which allowed the trajectory S to be solved and the drift average to be evaluated.
However, when drift averages must be read into the model, a conversion from o,
to K must be made. Secondly, each quantity must be readily available at each
coordinate on the model grid to avoid interpolation whilst timestepping. However,
the drift average grid does not necessarily align with the model grid in the x4 and
L dimensions, so the process involves interpolation in all three dimensions.

For large 3D simulations, the process of reading in every drift averaged quantity
across parameter space, then interpolating each quantity onto a grid in memory that
aligns with the numerical solution grid, can require several hours and significant
amounts of memory. To overcome this problem, the methodology shown in Figure
3.25 was developed, involving the creation of “solution-ready environment averages”.

To summarise Figure 3.25, after reading reading in each of the drift averaged
quantities once, they are used to calculate du/dtgie, A and S, from Equation 3.13
everywhere across the model grid for each environmental parameterisation. In doing
so, the 17 drift averaged quantities (CRAND, 14 densities and two temperatures) are
combined to just three quantities (du/dtgic, A and S,). This requires less memory
to store. Each quantity is then output to a separate “srea” file, incorporating all
environmental parameterisations. When a new simulation is started, the same
pre-calculated dpu/dtgic, A and S,, quantities can be loaded directly from the .srea
files into the model from 3D grids aligning with the model grid, providing the new
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simulation has the same dimensions as the previous solution used to create each
.srea file. Therefore, no interpolation is required, and drift averaged quantities
from .mrea files do not have to be loaded. Using this technique, the load time is

reduced from several hours to several minutes.
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ment average files on model startup. This process allows subsequent model runs
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model grid from the .srea files produced.



Chapter 4

2D Model Application:
Optimisation of Proton Radial

Diffusion Coefficients

This chapter is based on a research article:

Optimisation of Radial Diffusion Coefficients for the Proton
Radiation Belt During the CRRES Era

JGR Space Physics, March 2021, Volume 126, Issue 3
https://doi.org/10.1029/2020JA028486

Alexander R. Lozinski®®, Richard B. Horne?, Sarah A. Glauert?, Giulio Del
Zanna®, Jay M. Albert¢

2British Antarctic Survey, Cambridge, UK

®Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, UK

¢Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, Albu-
querque, NM, USA

4.1 Introduction

Theoretical work has resulted in formal expressions for proton radial diffusion

coefficients incorporating parameters that depend on the power spectrum of elec-
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tromagnetic fluctuations (Falthammar, 1965; Falthammar, 1968). Steady state
models have varied these parameters to fit spacecraft observations, allowing deter-
mination of diffusive timescales with p and L dependence (Farley and Walt, 1971;
Fischer et al., 1977; Claflin and White, 1974; Jentsch, 1981). However, Albert et al.
(1998) demonstrated that such optimisations may give different results based on
the empirical approximations used to model source and loss. To show this, the
authors computed theoretical equatorial phase space density using a radial diffusion
model and compared the results to measurements of 1-100MeV protons throughout
the inner zone provided by the Combined Release and Radiation Effects Satellite
(CRRES). When the authors switched between different CRAND and density
models, the radial diffusion coefficients found to provide the best fit with data were
prone to significant variation, underscoring the dependence of this technique on
modelling other source and loss processes accurately. Since the work of Albert et
al., a more thorough approach to evaluating CRAND (Selesnick et al., 2007), as
well as the development of new plasmaspheric density models (i.e. Gallagher et al.,
2000; Denton et al., 2006; Ozhogin et al., 2012; Chu et al., 2017), allows better
approximations. In addition, there is a strong need for physics-based modelling
of the inner proton belt given its increasing utilisation by commercial spacecraft
(Lozinski et al., 2019; Horne and Pitchford, 2015).

The work in this chapter follows a similar method to Albert et al. (1998) and
presents modelling of the flux of equatorially mirroring protons within the CRRES
era, revisiting measurements taken by CRRES’s proton telescope (PROTEL). A
2D version of the radial diffusion model was used. Compared with Albert et al.
(1998), it includes more modern evaluations of key source/loss processes, as well
as improved theoretical modelling of coulomb collisional loss. A steady state
optimisation method is used to derive new estimates of proton radial diffusion
coefficients for the inner zone. Modelling results are presented and discussed, along
with the optimised diffusion coefficients which are compared to other works. This
leads to a number of findings and recommendations for future attempts at steady

state modelling.
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4.2 PROTEL Data

4.2.1 Data Overview

The Proton Telescope (PROTEL) instrument on-board the CRRES satellite made
measurements of differential flux on 24 energy channels in the 1 to 100 MeV range
with full pitch angle resolution (Violet et al., 1993). Measurements were made from
elliptical orbit (350km perigee, 36000km apogee) at 18° inclination. Data for the
present study is extracted from the ‘pad’ files made available by the NASA Space
Physics Data Facility (https://spdf.gsfc.nasa.gov/pub/data/crres/), which
contain flux averaged over one minute intervals as a function of equatorial pitch
angle, from 15th August 1990 until 11th October 1991. These measurements were
mapped from local to equatorial pitch angle using the IGRF85 internal and Olson
and Pfitzer (1974) external magnetic field models. After excluding orbits which
exhibit bad data (Brautigam, 2001), this dataset spans 979 orbits.

CRRES observed dynamic changes in trapped flux due to numerous magnetic
disturbances, the most significant being the 24th March 1991 storm occurring
roughly half way through the mission. In this event, a large interplanetary shock
compressed the magnetosphere causing a storm sudden commencement (SSC). This
was accompanied by the arrival of an SEP event, in which solar protons were able
to penetrate the magnetosphere and become trapped in the outer zone down to
L ~ 2. This trapping was enabled by the combination of two main factors: firstly,
the fast suppression, and subsequent restoration, of geomagnetic cutoff limits over
the course of the SSC. These limits define access regions for incoming particles due
to attenuation by the geomagnetic field, and their temporary suppression allowed
particles of the same magnetic rigidity closer towards Earth. Secondly, in tandem,
the shock’s compression of the magnetosphere induced an azimuthal electric field
pulse which led to inward acceleration and transport of trapped particles drifting
in time with the pulse (Li et al., 1993; Hudson et al., 1997). This led to a large
enhancement in trapped flux over the timescale of a drift orbit which persisted until
at least the end of the CRRES mission. Both rapid and diffusive inward transport
(to lower L) lead to betatron acceleration of trapped particles due to violation

of the third adiabatic invariant and simultaneous conservations of the first and
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second, as discussed in Section 1.3.2. One signature of the CRRES enhancement is
therefore highly anisotropic pitch angle distributions over an affected L range. The
event followed a period of magnetically quiet conditions, and therefore separates
the CRRES data into a quiet and active era. Other magnetic disturbances during
the CRRES mission are summarised in Table 1 of Hudson et al. (1997).

PROTEL flux measurements averaged over two ~200 day periods encompassing
the quiet and active era have been used to build the CRRESPRO Quiet and Active
static radiation belt models (Meffert and Gussenhoven, 1994). The method used to
prepare flux maps for the CRRESPRO models is described by Gussenhoven et al.
(1993), and data for the current study has been processed using a similar method
but for different time average periods. These steps are described in Section 4.2.2.

An overview of PROTEL data is presented in Figure 4.1 as a time series of
weekly averaged differential flux at 90° equatorial pitch angle (left panels), along
with a measure of anisotropy (n) of each pitch angle distribution (right panels),
at L bins from 1.3 to 2.3 (AL = 0.05). Both quantities have been calculated by
fitting each weekly averaged pitch angle distribution using a sin” fitting function,
described in more detail in Section 4.2.2. The narrowness of each pitch angle
distribution centre peak is therefore controlled by n, with a higher n indicating a
more anisotropic (narrower) distribution. The time axis spans the whole period for
which data is available. The quiet and active periods used for the CRRESPRO
quiet and active models are indicated in Figure 4.1 by two vertical dashed white
lines, which show the end of the quiet period average and beginning of the active
period average. Magnetic disturbances are also indicated in Figure 4.1 by dotted
black vertical lines, marking the arrival of storm sudden commencements as listed
in Table 1 of Hudson et al. (1997).

Figure 4.1 demonstrates the large increase in intensity throughout the outer
zone (left panels) following the March 1991 storm (and subsequent enhancements),
and the effect on particle pitch angle distributions (right), which become more
anisotropic during the active period. Some uncertainty, particularly in the n fitting
parameter at L < 1.45, arises because one week is not a sufficiently long average
period, leading to some fits based on only a few measurements. These poor fits
have been excluded from Figure 4.1, and longer flux average periods are used in

later analysis. From the 9.7MeV channel and below in Figure 4.1, increases in
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Figure 4.1: Fitted PROTEL data at selected energy channels, showing 90° flux (left)
and anisotropy of the pitch angle distribution (right) through time. To produce
these values, data was averaged over one week intervals then fit using Equation 4.1
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anisotropy at L ~ 1.7 are shown during the active period. New particles were
injected into the region 2 < L < 3 (Blake et al., 1992), but this change at lower
L could be the result of inward transport and betatron acceleration leading to a
higher proportion of 90° particles, illustrating the extent of the region affected by

enhancements.

4.2.2 Data Processing

The one minute averaged pitch angle data files introduced in Section 4.2.1 make
available average differential flux measurements binned by equatorial pitch angle
and L. Each average flux measurement in each pitch angle/L bin corresponds to
a number of observations made within a one minute interval, and this number is
included in the data along with average ephemeris for each interval. The following
processing steps are already implemented on the available .pad files: noise spike
removal (see Brautigam, 2001); mapping of the data into equatorial pitch angle bins
(5° bins from 0 to 90° for 18 bins in total); binning of the data in L (AL = 0.05);
and a loss cone correction to remove background flux. There is some uncertainty
about the effectiveness of the loss cone correction in particular, with implications
for data accuracy that are discussed in the next section.

Follow a convention of previous works dealing with this dataset, the 8.4MeV
channel is ignored due to its overlap, and the 15.2MeV channel is ignored due to
sensitivity issues. The first two channels at 1.5 and 2.1MeV were also ignored
because these were below the energy range of the model version used for this
work; the model energy range began at 2.31MeV since the method to extrapolate
the CRAND source below this energy described in Section 3.3 had not yet been

implemented.

Loss Cone Correction

During computer simulations it was found that >60MeV protons could pass through
PROTEL shielding and be erroneously counted, leading to a background contami-
nation (Hein, 1993). To correct for this, Gussenhoven et al. (1993) describe a loss
cone correction whereby the flux at the pitch angle bin just inside the loss cone

is treated as the background noise level. Flux at the pitch angle bin of the loss
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cone and below is set to zero, whilst the background is subtracted from all higher
pitch angle bins. Gussenhoven et al. validated the results of this correction using a
Monte Carlo ray tracing code to derive the PROTEL response function. However,
the correction has been shown to be inadequate for the 6.8 and 8.5MeV channels
(too large) and for energies >40MeV (too small). Furthermore, the correction is
similar in magnitude to the measurements themselves at L < 1.4.

To deal with these caveats, in addition to the measures listed in Section 4.2.2, the
6.8MeV channel was ignored, since it appears to cause a particularly strong deviation
in the spectrum at low L. Data driving the model at >40MeV may represent a
slight (~20%) overestimate owing to limitations of the loss cone correction, but
as the majority of energy channels influencing the optimisation method are below
40MeV, this limitation was not expected to have a significant effect on results. All
data below L = 1.35 was ignored, and uncertainty was quantified by calculating the
standard deviations of PROTEL measurements (in terms of phase space density)
and including them in plots of results. The potential uncertainties in the data
at L = 1.35 were also expected to have a minimal influence on results, as the

comparison is mostly with measurements at higher L.

Filtering and Fitting

The next step required to process PROTEL .pad files is the filtering out of anomalous
records of flux caused by SEP events, to ensure measurements are indicative of
trapped flux only. To address this, the method of Gussenhoven et al. (1993) was
followed: for any time average period, one minute average flux values are firstly
averaged, weighted by the number of observations; the mean flux and standard
deviation in each pitch angle and L bin is then calculated; and finally, for each
bin, flux measurements outside two standard deviations are excluded, and the
mean /standard deviation is then recomputed.

In addition to occasional periods of data unavailability, there is a shortage
of measurements at 85 and 90° equatorial pitch angle during two ~month long
phases of the mission, beginning around February 1991 and September 1991, and
in general there are fewer measurements of equatorial flux at L < 1.5 compared to

higher L. The process of averaging equatorial flux over time periods, or ranges in L,
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coinciding with this shortage of measurements, gives averages associated with few
observations. The final processing step is taken to mitigate this issue, and involves

fitting all time averaged equatorial pitch angle distributions using the function

j = Asin” (a) (4.1)

where j is differential, unidirectional flux, « is equatorial pitch angle, and A, n
are fitting parameters. Combined with the loss cone correction which has already
been applied, this fit has been shown to work well over this range in L (Valot and
Engelmann, 1973).

Figure 4.2 shows the application of this fit to equatorial pitch angle distributions
at L = 1.7. Time averaged flux distributions are shown at 2.9, 5.7, 10.7 and 30.9MeV
(rows 1 to 4), for three average periods during the CRRES mission (columns 1 to 3),
taken before the March 1991 storm (Quiet), and at two intervals after (Active 1 and
Active 2). The average periods are used in later analysis and explained in Section
4.4. Average flux values in each pitch angle bin (black crosses) are plotted along
with the corresponding standard deviation (vertical blue lines). The best fit (red
curve) and fitting parameters are also shown for each distribution. Figure 4.2 shows
the advantage of using this fit to get a stable measurement of 90° flux, especially
for the Active 2 period where standard deviation is higher. The fit is weighted by
flux at lower pitch angle, for which many more observations exist given that dwell
time off-equator is comparatively high. One disadvantage of this fit is that for
highly anisotropic distributions (n > 10), the fit can sometimes seem to over-predict
90° flux. Figures 4.1 and 4.2 show that during the geomagnetically active period
following the March 1991 storm, time averaged pitch angle distributions generally
become more anisotropic, with the n fitting parameter increasing through time.
Peak flux indicated by the A fitting parameter also undergoes changes at a given L
depending on energy channel, with some channels undergoing a flux increase at
L=1.7 (i.e. 2.9 and 5.7MeV in rows 1 and 2 of Figure 4.2), and some showing a
decrease in flux (i.e. 30.9MeV in row 4 of Figure 4.2).

4.3 Numerical Modelling
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4.1 is shown in red.
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4.3.1 Model Overview

Results presented in this chapter are in terms of relativistic 2D phase space density
of equatorially mirroring protons f(u, L). This quantity is given by f = m3j/p?
which allows direct comparison with the results of Albert et al. (1998) later on in
this study, who work in terms of a non-relativistic phase space density with the
same dimensions and units of km=%s®. Calculation of f is performed using the
2D version of the proton belt model, described in Section 3.5.2. The source and
loss mechanisms considered were the CRAND source (S,,), and loss from coulomb
collisions as well as inelastic nuclear collisions (Af), and therefore the full model
equation is given by Equation 3.49.

Drift averaged calculations performed to calculate .5, and the densities of various
constituents are as described in Sections 3.3 and 3.4 respectively. However, since
only equatorial particles were considered, it was only necessary to load a small
section of each 3D grid holding a pre-calculated drift average. The obvious mapping
from K = 0 to g = 90° also made the method for loading drift averages, described
in Section 3.8, much simpler.

Three boundary conditions were applied to the model: f(Lin) = 0, f(tmaz) =
0, and f(Lpaz, it) = fo(p), where Ly = 1.1, Ly = 1.65, and f; is the outer
boundary spectrum derived from PROTEL data at L,,,,. Inside the energy range of
the included PROTEL channels, f, was linearly interpolated. Outside this range, f,
was extrapolated by fitting a 2nd order polynomial function P to the outer boundary
spectrum such that log j = P(F), where E is energy. The gradient dP/dFE at the
lowest (highest) energy channel was then used to linearly extrapolate log j to lower
(higher) energies, giving a continuous spectrum. The magnetic field was given
by a magnetic dipole model with dipole moment 7.83Am?, representative of the
era. Whereas Albert et al. (1998) set their model’s data-driven outer boundary at
L = 1.7, the choice of L,,,, = 1.65 was made based on an analysis of the variation
in fluxes (see Section 4.4.2), which motivated this work to be more selective about

the region steady state modelling can be applied to.
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4.3.2 Diffusion Coefficients

In this study, radial diffusion coefficients for equatorial protons were parameterised

according to the following equation from Claflin and White (1974):
Dy = A L5202~ 1 A L5T2F =P (4.2)

where A,, and A, are constants proportional to the power spectrum of certain
features in the magnetic and electric field perturbations. This formulation allows
for the L and p dependence giving the best fit to data to be determined via

optimisation of the free parameters «, 3, A,, and A,.

4.3.3 The Influence of Plasmaspheric Density

The drift averaged density computation, described in Section 3.4, incorporates
solar cycle and seasonal variations in plasmaspheric electron (and other) densities.
Figure 4.3 demonstrates the impact this variation has on steady state phase space
density, calculated using the PROTEL data. In the top left panel, the density
profiles on four days of the year are shown for a fixed F'10.7a value over the model
L range. In the bottom left panel, density at five values of F10.7a are shown for a
fixed day of the year. These plots show the seasonal and solar cycle dependence of
electron density respectively. Right-hand panels show the corresponding steady
state solutions, calculated with the model using a fixed CRAND source and using
the total Dy values for protons of Selesnick and Albert (2019) as an example.
Each profile of electron density in Figure 4.3 (left panels) is fixed at L = 3.25
to the Ozhogin et al. (2012) model value, but variation across the L range plotted
arises from the ionospheric density given by IRI. The dominant component of
variation is from solar cycle effects and reflects the IRI dependence on F10.7a as a
model input. To produce the steady state phase space density profiles in Figure 4.3
(right panels), the outer boundary is held constant using PROTEL data averaged
over the pre-storm quiet era. In reality the outer boundary flux may vary, but
the solutions show some differences and highlight the importance of accurately
modelling density both for static and dynamic modelling, given the rather short

timescale for seasonal changes. The figure suggests the difference in phase space
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Figure 4.3: Plasmaspheric drift averaged electron density (left panels) demon-
strating seasonal (top) and solar cycle (bottom) components of variation, plotted
next to corresponding steady state solutions in phase space density (right panels)
incorporating those values of density but leaving all other model inputs constant.
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density as a result of density variation is relatively uniform in L but becomes
particularly pronounced near L,,;,. In fact the corresponding change in phase
space density at any L also depends on the diffusion coefficients used, as higher

Dy, tends to limit the region at which coulomb collisions dominate to lower L.

4.4 Method

4.4.1 Selecting Average Periods

Using the model described in Section 4.3.1, Equation 3.49 was solved for steady state
f, assuming /0t = 0. The aim for this work was to find diffusion coefficients that
minimised the difference between f and some time-averaged data via optimisation of
the four parameters «, 5, A,, and A, in Equation 4.2. Performing this optimisation
involved minimising the mean square deviation in f between the model and

PROTEL data over all utilised energy channels from L,,;, t0 L,,qz, given by

T(Ay, a0, A, B) = JbZ(log =108 faun)? (4.3)

L,E

There are several assumptions associated with deriving period-correct diffusion
coefficients this way, including that i) all sources and losses are accounted for via
accurate modelling; ii) the time averaged data to which the model is compared
represents true steady state; and iii) the constraints on Dy imposed via its defining
parameters in Equation 4.2 allow for the correct solution.

One must pay particular attention to the first assumption when calculating
steady state for a finite average period. A steady state calculation must approximate
source and loss processes controlling flux with static inputs over that period, when
in fact these processes may be time-varying. For example, seasonal changes in
density occur, which means that averaging density over a longer time period
may be averaging over variation, and therefore a fixed average is not necessarily
representative of the period. For best practise, one should ensure that any time
averaged inputs used to calculate empirical source or loss terms are representative
across the whole average period. The ~200 day long CRRESPRO quiet period

may seem like an appropriate time average period over which to optimise model
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fit, based on the minimal intensity variation shown in Figure 4.1 before the 24th
March storm suggesting steady state. However, it may be that the proton belt
is in a dynamic equilibrium, whereby changes in source and loss rates do occur,
but rebalance to maintain the same level of flux. A dynamic equilibrium could
also involve time-dependent radial diffusion, brought about by frequent changes
in geomagnetic activity, but the steady state optimisation can only derive time-
independent period-average diffusion coefficients.

The selection of an average period in which data represents steady state was
therefore influenced by wanting to eliminate variability in this manner. The main
concern was plasmaspheric density, given that seasonal changes can affect the
steady state solution as shown in Figure 4.3. The variability in the CRAND
source is driven by solar cycle and CRAND is therefore relatively constant over
the CRRES mission, and inelastic nuclear scattering (driven by neutral density) is
known to have only a minor influence on the distribution at the energy range of
interest (Albert et al., 1998). To gain insight into proton belt variability over the
entire CRRES mission, Figure 4.4 plots electron density through time (first and
second panel), along with the change in weekly average flux (plotted as logarithm
of the ratio j to j;) throughout the mission according to several PROTEL energy
channels at selected L (third and fourth panels). Figure 4.4 also marks the epoch
of all flux measurements near the model outer boundary L over the course of the
CRRES mission (bottom panel) to give an idea of data availability. As a first
step, these plots were used to select suitable steady state optimisation periods.
The time variation in electron density shown in Figure 4.4 can be seen for other
constituents, but electron density has been highlighted as it is the main driver of
coulomb collisional loss near the model outer boundary.

Figure 4.4 (top panel) shows a gradual increase in electron density through
time until around March 1991 where it peaks before a gradual decrease. The main
changes in flux (third and fourth panels) coincide with geomagnetic disturbances
during the active period. The third panel, showing flux at L = 1.7, shows two main
enhancements: once following the 24th March storm, and once again coinciding
with various SEP /SSC events that occurred near the beginning of June 1991. These
enhancements are interesting because they occur below the region of newly injected
SEPs and are limited to <10MeV particles. In fact, the flux in the 13.2MeV channel
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and higher appears to decrease following these events.

The ~five month quiet period following the start of mission was chosen as
one average period, limiting it up to 28 January 1991 to keep electron density
variation within 25%. During the active period following the March 1991 storm, it
is likely that the proton belt is not in steady state, making data here less suitable
to drive the model or optimise against. However, if the deviation from steady state
throughout the inner zone during the active period is limited enough (in terms of
the range of affected L and energy channels), the minimisation of T may still be
dominated by comparison with steady state fj.., and similar Dy may be derived.
By filtering out specific energy channels affected by active period enhancements, it
is therefore possible to select additional data average periods following the March
1991 storm and repeat the steady state optimisation method to get similar results
as for the quiet time average.

Three average periods were selected in total, indicated by the red, blue and
amber colours in the bottom panel of Figure 4.4. The first of these average periods,
expected to produce the best fit using a steady state model, is the Quiet period
(red) from 15/08/1990 to 28/01/1991. The second average period, Active 1 (blue),
spans from 31/03/1991 to 04/06/1991, and the third period, Active 2 (amber),
spans from 13/07/1991 to 15/10/1991. Time averaged density over each of these
periods was used to compute the corresponding loss timescale for a given p and L,
and time averaged 90° flux was used to fix the model outer boundary. To filter out
data that is likely to be out of steady state, the Active 1 and Active 2 optimisation
of D, was limited to only include data at yu >105MeV /G, because this corresponds
to ~6.8MeV at L,,.,=1.65, which is the highest energy channel indicating a major
disturbance during the active period (red line in Figure 4.4, fourth panel). At the
next energy channel and above, flux is relatively unaffected at L,,., and below.

T was minimised for each period to derive three sets of diffusion coefficient pa-
rameters «, 3, A,, and A.. The minimisation was performed using the Nelder—Mead
method implemented in the SciPy library (Virtanen et al., 2020), with the same
initial guess parameters as used by Albert et al. (1998), taken from Schulz (1991):
Ao = Te—=9, Ayg = le—4, By = 2, ap = 2. Convergence of the method on consistent
results was verified by modifying the initial guess and repeating a set of runs for
the Quiet period.
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4.4.2 Selection of Outer Boundary L

Another interesting feature of Figure 4.4 is the observed decrease in flux across
all energy channels at L = 1.65 during the quiet period (fourth panel). Given
the region and lack of enhancements during this time, these fluxes are expected
to remain near steady state. This change coincides with the gradual increase in
electron density given by the drift average density model (second panel), which is
the primary driver of loss at this L. Taken together, this appears to show the type
of response demonstrated in Figure 4.3, whereby steady state flux can change due
to seasonal changes in density. A decrease in flux would be expected to accompany
an increase in density (increasing loss), and the observed fluxes therefore appear
to corroborate the results of the F10.7a and day of year-dependent drift averaged
density calculation.

The gradual decrease in flux is also visible at L = 1.7 (panel three), except in the
lowest two energy channels shown (3.6 and 4.3MeV), where no systematic decrease
is observed. The flux of these two energy channels is much less steady and seems
to suggest that proton belt flux is subject to dynamic changes near L = 1.7 even
during a quiet period. This highlights the approximation of considering an “inner”
and “outer” zone, given the region of flux affected by dynamic changes is energy
dependent. The systematic decrease in flux observed at L = 1.65 motivated the
choice of L., = 1.65 as the model outer boundary. Although the changes in 3.6 and
4.3MeV flux at L = 1.7 appear to be small, changes in outer boundary flux can have
a large impact on steady state calculations considering this flux is radially diffused
inward to form the profile of the inner belt. Therefore, choosing L,,,, = 1.65

strengthened the steady state assumption compared to using L,,q.. = 1.7 or higher.

4.5 Results and Discussion

4.5.1 Optimisation Results

The final converged values of o, 3, A,, and A, for the Quiet, Active 1 and Active 2
periods are shown in Table 1, along with the corresponding value of T indicating

how closely the steady state solution was able to fit the data. T is higher for
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the Quiet optimisation, but this is partly due to the exclusion of y <105MeV /G
data during the Active 1 and Active 2 optimisations, meaning the summation in
Equation 4.3 was performed over N = 105 values of fga, during the Quiet period,
compared with only N = 60 during the Active 1 and Active 2 periods. The decrease
in T from Quiet to Active optimisations is despite a similar fit being achieved, and
can be explained by the grouping of excluded data: in the Active 1 and 2 case,
energy channels across the low energy range of the model are ignored, and the
optimisation is therefore able to better fit channels at higher energy, lowering the
average mean squared difference. In previous investigations before the exclusion
of p <105MeV/G data, the Active 1 and Active 2 optimisations were found to
produce higher T for the same N = 105, indicating a closer fit for the Quiet period.
This variation in Y implies potential caveats when comparing the performance of
runs based on the value of a minimised parameter calculated with a different set of
Jaata-

The optimisation path from initial guess to converged values is shown for
the Quiet period in Figure 4.5. The process was found to complete fastest when
optimising in terms of log10 (A,,) and log10 (A.), and Figure 4.5 shows a logarithmic
axis for A,, and A, to reflect this. During convergence, T reduces quickly at first,
and after ~80 iterations the minimisation continues but makes negligible changes
to the resultant Dy;. A similar phenomenon was observed for both the Active 1
and Active 2 optimisation runs.

Using the optimised parameters, Equation 4.2 gives Dy as a combination of
an electromagnetic and electrostatic component. According to the optimised values
the electrostatic component does not contribute significantly in any case, being a
few order of magnitudes lower than the electromagnetic component, and a similar
result is shown by the optimised parameters of Albert et al. (1998). However, the
optimisation process relies on Equation 4.2 only as a means to derive the p and L
dependence of total Dy to best fit the data. As such there may be a limit on the
physical interpretability of this result, because errors in the data, or evaluation of
source/loss terms, may slightly alter the Dy that gives best fit, and may therefore
also alter the balance between electromagnetic and electrostatic diffusion indicated
by the optimised parameters which appears to be quite sensitive.

Figure 4.6 shows the solution in steady state phase space density (blue) for each
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Period A, A, 15} o T

Quiet 1.536e—6 3.554e—4 2.657 2.740 0.00553
Active 1  1.381e—6 1.472¢—4 2.332 2.641 0.00374
Active 2 8.775e—7 4.582e—5 2.147 2.546 0.00353

Table 4.1: Optimised diffusion coefficient parameters for the Quiet, Active 1 and
Active 2 time periods along with the corresponding minimised Y

Optimisation for DLL during CRRES quiet era

3- 0
e anl B

Parameter value

-7 Am

10 1 T T T T T T T
0 25 50 75 100 125 150 175 200

Iterations

Figure 4.5: Optimisation path of A,,, A., 8, a for steady state optimisation over
the Quiet period, showing convergence from the initial guess values to final values
as the model vs. data fit improved, minimising T (black line)
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period as radial profiles, plotted alongside PROTEL data (crosses). Data included
in (excluded from) each optimisation is marked in blue (red). Excluded data fulfils
one of the following criteria: i) located at L < 1.35; ii) has p <105MeV /G during
the Active 1 or 2 period; or iii) has E>45MeV (this criterion is explained below).
The Quiet, Active 1 and Active 2 results occupy columns 1, 2 and 3 respectively,
with different values of pu shown in each row. Figure 4.6 generally shows a good
match between the model result and included PROTEL data for each average
period, meaning that a set of diffusion coefficients could be found in each case
to explain the data assuming steady state. The Quiet optimisation (left column)
appears to produce the best fit in general, though the difference between average
periods is small. In order to give an idea of data stability, the standard deviation
is plotted (black bars) for each data point. This represents the standard deviation
in 90° flux from each equatorially mapped pitch angle distribution at fixed energy
channels, converted to phase space density, and then interpolated at fixed p. It is
therefore an approximate measure, and in fact the data is somewhat more stable
than it indicates because the sin” fitting used by the model to read pitch angle
distributions is not heavily influenced by a high level of variation in the 90° values
alone. Nevertheless, the standard deviations shown indicate that data from the
Active periods contain higher levels of variation, particularly at low p. This is to
be expected because the data corresponds to an average following an enhancement,
and data availability is also more scattered (bottom panel of Figure 4.4). In general,
the highest standard deviations for data in each period corresponds to L < 1.4,
where the data is known to be less reliable due to the loss cone correction (see
Section 4.2.2). Comparison between the Quiet and Active 2 period data also shows
the enhanced boundary f caused by the series of SEP/SSC events in 1991 at
p=50MeV /G. The Active 2 profile at 1 =50MeV /G appears out of steady state
because of the enhanced boundary, and excluding 1 <105MeV /G data has stopped
the optimisation process from trying to fit this feature.

Data at py=500MeV /G (row 6 of Figure 4.6) forms a plateau in the region
1.3 < L < 1.5, and all three solutions show a deviation from data at u=500MeV /G
near this feature. Further investigation indicates this deviation is better described
in terms of energy, happening at ~45MeV and above, and can thus also be seen
at u=400MeV /G at low L (row 5 of Figure 4.6). The same observation was noted
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deviation in phase space density is approximated based on the available observations
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by Albert et al. (1998), and the difficulty that both steady state models have in
reproducing this feature could be due to flux at EZ245MeV being out of steady state.
Therefore, the four energy channels in this range have been excluded from the
optimisation process to weight the optimisation using steady state data as much
as possible. The feature could be the result of an injection prior to the modelled
period which has diffused inwards, or alternatively could be the result of incorrect
data/processing. As Albert et al. (1998) note, the profile at this x appears to be
stable and quite unaffected by the storm on 24th March, 1991.

4.5.2 Comparison to Previous Work

Figure 4.7 shows a direct comparison between the new steady state profiles derived
for the Quiet period versus the solution calculated by Albert et al. (1998). As
Albert et al. calculated six solutions using different combinations of CRAND and
density models, the solution appearing to give the best fit of these six has been
chosen for comparison in Figure 4.7. This solution relies on the CRAND source of
Claflin and White (1974) and the Parameterised Ionospheric Model for electron
density (Daniell et al., 1995). The data processing steps taken and average window
used were not the same as used by Albert et al. to prepare the data, and therefore
some disagreement is expected between the data itself. Figure 4.7 therefore shows
both the data and modelling results from both works. There is a particularly
noticeable discrepancy between the data at high p, which may arise from the
different definitions of phase space density. Figure 4.7 indicates that a closer fit
to the data is achieved by the current model (blue) compared to the Albert et al.
model (red), especially at u <200MeV /G, although region to which the current
model was applied is slightly more limited, having an outer boundary at L = 1.65
compared to L = 1.7. At u=500MeV /G, a slightly closer fit is achieved in general
using the current model, but neither model is able to recreate the plateau noted
previously.

The diffusion coefficients derived during the steady state optimisations carried
out over all three time average periods can be compared to diffusion coefficients
derived by other works. Figure 4.8 shows the diffusion coefficients given by the
optimised values in Table 1 at u=100MeV /G and p=500MeV /G (red, blue and
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Comparison of Quiet period solution vs.
best fitting solution from Albert et al. (1998)
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Figure 4.7: Steady state profiles with optimised diffusion coefficients derived using
the current model (blue lines), and the model run by Albert et al. (1998, | red lines)
which uses the CRAND source of Claflin and White (1974) and electron density
from the Parameterised Ionospheric Model of Daniell et al. (1995). Data is plotted
as blue and red crosses, corresponding to each model. Data used by the current
model represents a time average over the Quiet period of this work (see Figure
4.4), whereas data used by Albert et al. (1998) represents the time average from

the CRRESPRO Quiet model.
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amber lines). These Dy are compared to the overall Dy derived by Ozeke et al.
(2014) for electrons at L > 2.5 using measurements of ULF wave power, which
depend on activity level parameterised by Kp index. As Lejosne et al. (2013a)
show that the energy dependence of radial diffusion is weak, there should be a
close correspondence between proton and electron diffusion coefficients. Another
difference is that the coefficients given by Ozeke et al. (2014) are derived using
the method described by Fei et al. (2006), whereby diffusion rates are split into
a magnetic and overall electric component, and this is shown to result in an
underestimation by a factor of ~2 (Lejosne, 2019a). In Figure 4.8, these coefficients
are labelled as O14 and are shown for three different values of Kp index (light blue,
plotted only at L > 2.5). In addition, the result of Albert et al. (1998) from Figure
4.7 is plotted, labelled as A98 (dashed red line).

Figure 4.8 shows that the newly derived Dy, is higher than results by Albert
et al. (1998) by a factor of ~2 to ~5 depending on p. Figure 4.8 plots results
up to L = 3, despite the fact coefficients were only optimised over the inner zone.
Analytical expressions for Dy given by Ozeke et al. (2014) were derived using
data at L > 2.5. Therefore, it is interesting to note the region of overlap at
1.65 < L < 2.5, into which both sets of diffusion coefficients can be extrapolated.
Two key features of the diffusion coefficients given by Ozeke et al. (2014) are energy
independence, compared with the fairly weak energy dependence derived in this
work, in addition to the dependence on Kp. For the innermost proton belt region,
this dependence on Kp may be different because the inner zone is for the most
part shielded from the geomagnetic activity at larger L that can lead to faster
diffusion rates. However, the optimisation method is only able to quantify the
effects of radial diffusion over a long time scale, as required to form the steady
state distribution of protons over the data average period. If the timescale of radial
diffusion varies significantly with activity level, as implied by the results of Ozeke
et al. (2014) in Figure 4.8, the newly derived radial diffusion coefficients should
be considered averages near solar maximum of a time-varying process. This could
be another reason that a perfect fit was not achieved against the data, as parts of
the distribution may have deviated from steady state during each average period
due to enhanced radial diffusion over short timescales, given the higher levels of

geomagnetic activity around solar maximum. Therefore, an interesting question is
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respectively). Top and bottom panels correspond to g = 100 and 500MeV /G
respectively.
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how activity dependence should be taken into consideration when extrapolating
diffusion coefficients to higher or lower L than the region they were derived in, and
how they can be applied to examine shorter timescales. A comparison of results
to diffusion coefficients derived at low L during solar minimum may be a useful

starting point to better understand how long term averages can vary.

4.6 Conclusions

Steady state phase space density was solved for using a model that includes a
physics-based evaluation of CRAND, and a drift averaged density model to drive
coulomb collisions capturing solar cycle and seasonal variation, with the outer
boundary set by PROTEL data. The fit between the model and PROTEL data
in the region 1.1 < L < 1.65 was optimised following a similar method to Albert
et al. (1998) to recalculate time averaged radial diffusion coefficients that govern
the transport of relativistic protons in the proton belt during solar maximum.

Measures were taken to improve the modelling process conceptually, by selecting
time averages that exhibited minimal variability, and by carefully excluding data to
strengthen the assumption of steady state. It was found that a suitable time average
for steady state optimisation should be less than six months to avoid potential
seasonal variations in plasmaspheric density. Diffusion rates required to explain
steady state were sensitive to the density, but density is not well constrained in
general by measurements between the topside ionosphere out to L ~ 1.7 which
leads to some uncertainty.

The similarity between diffusion coefficients derived in this study for three time
periods indicates that although the 24th March storm caused a large enhancement,
steady state optimisation could still be performed during the Active 1 and 2 periods
with reasonable results. As only a short interval of a few months or less is required
to average data, steady state optimisation could be performed at regular intervals
throughout a long dataset to derive updated diffusion coefficients. In general, radial
diffusion coefficients derived here are comparable to but higher than the previous
work of Albert et al. (1998) by a factor of 2 to 3 at u =100MeV /G and a factor of
3 to 5 at 500MeV /G, and provide a better fit to PROTEL data.

Due to the long time averages, the optimisation method for deriving diffusion
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coefficients is not able to uncover activity-dependent variability as is suggested by
diffusion rates derived from in situ and ground based measurements for electrons
at L > 2.5, which vary by an order of magnitude or more for a small change of
~2 in geomagnetic activity index Kp. Further investigation is required to fully
understand the activity dependence of proton radial diffusion coefficients in this

region of interest.

203



204



Chapter 5

3D Model Application: Modelling
Inner Proton Belt Variability at
Energies 1 to 10MeV

This chapter is based on a research article:
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5.1 Introduction

[rradiation by trapped proton flux in the 1-10MeV range is a primary cause of
solar cell degradation for spacecraft traversing the proton belt, and a key factor
influencing mission lifetime (Miyake et al., 2014; Jenkins et al., 2014). Predicting
variability at this energy is therefore of practical importance for evaluating the
operational risk to satellites. One key challenge is modelling the effect of radial
diffusion at this energy. Chapter 4 made use of theoretical work by Falthammar
(1965) to express the radial diffusion coefficient Dy, as the contribution of magnetic
and electrostatic terms. The magnetic term is often assumed to have a L'
dependence and decreases by up to ~90% with decreasing equatorial pitch angle
(Walt, 1971), whilst the electrostatic term varies with L5 and is nearly independent
of pitch angle (Lejosne and Kollmann, 2020). Analytical expressions for Dy by
Lejosne (2019b) include an inverse energy dependence, which has been previously
demonstrated for electrons by modelling asymmetric field perturbations to derive
Dy analytically (Lejosne et al., 2013b). For protons, an energy-dependence was
also inferred by the optimisation process in Chapter 4 by matching the results
against spacecraft measurements of flux. In general however, the dependencies of
proton Dy are not well constrained, especially at <10MeV where data is mostly
unavailable.

The strong L dependence of Dy means variations in MeV proton phase space
density at low altitude (L <1.3) are mostly driven by coulomb collisional loss,
whereby free and bound electrons in the atmosphere, ionosphere and plasmasphere
decelerate protons and reduce the first invariant p (see Section I1.2, Schulz and
Lanzerotti, 1974). During solar maximum the atmosphere undergoes thermal
expansion from increased extreme ultraviolet radiation (Fuller-Rowell et al., 2004).
At fixed altitude in the radiation belts, this leads to higher density and therefore
higher loss. Li et al. (2020) show this effect, plotting cyclical variations in proton
flux near ~40MeV lagging behind changes in sunspot number, with a delay of
hundreds of days just below L = 1.2 for equatorial particles. The relatively short
timescales for variation indicate how trapped flux levels quickly rebalance changes in
loss rather than conserve a previous state, in contrast to higher altitudes (L ~ 1.6)

where radial diffusion controls variability over decades. However, at L = 2, months
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long enhancements in proton belt flux have been recorded forming over ~day
timescales or less (Hudson et al., 1995; Lorentzen et al., 2002) due to trapping
of incoming solar energetic particles (SEPs, see Kress et al., 2004, 2005). The
radiation environment of satellites orbiting at L < 2 may therefore be subject to
long term increases, driven by solar cycle or magnetic activity, where little data is
available for monitoring.

In this Chapter, the 3D model developed in Chapter 3 is applied to investigate
variability in ~MeV proton phase space density at 1.15 < L < 2 as a function
of the three adiabatic invariants p, K and L. To drive the model, a dynamic
outer boundary at L = 2 is constructed using proton flux data down to 0.7MeV
from the RBSPICE and MagEIS instruments on the Van Allen Probes mission
(Mitchell et al., 2013; Blake et al., 2013). This data, described in Section 5.2, allows
modelling variability over the period from January 2014 to March 2018. Section
5.4 presents results of dynamic models run initialised from steady state for three
sets of Dy values taken from literature which exhibit various energy dependence,
in order to highlight the sensitivity of results. Several features of the results are
then discussed in Section 5.5. In particular, by showing the sensitivity of flux levels
to Dy, at low energies relevant for satellite solar cell degradation, a key practical

impact of uncertainty in Dy is demonstrated.

5.2 Proton Data

The Van Allen Probes pair of satellites (formerly known as the Radiation Belt
Storm Probes, RBSP) were launched into elliptical orbit (~600km pergiee to
~5.8 Rp apogee) at 10° inclination on 30 August 2012 (Kessel et al., 2013). This
work makes use of proton flux measurements collected by three instruments on
board: the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE,
Mitchell et al., 2013); the Magnetic Electron Ion Spectrometer (MagEIS, Blake
et al., 2013); and the Relativistic Electron-Proton Telescope (REPT, Baker et al.,
2012). At L < 2, certain measurements were contaminated by the unintended
counting of electrons and higher energy protons. Therefore, processed data from
all three instruments were combined to derive a spectrum at L = 2, the innermost

region where this interference could be avoided. This section describes processing of
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RBSPICE and MagEIS measurements from Van Allen Probe B (RBSP-B) to derive
~0.7 to 10MeV proton flux from January 2014 to March 2018. Proton flux data at
>19MeV shown by Selesnick and Albert (2019), based on REPT measurements

and covering the same period, was then used to extend the spectrum.

5.2.1 RBSPICE Measurements up to 1MeV

5.2.1.1 Processing

The RBSPICE instrument measures ions from ~20keV to several MeV. The type
of data collected by the instrument sensor, and subsequently the data product
generated, depends on the selected “hardware mode” at any given time. The
availability of RBSPICE data products is therefore determined in part by which
hardware modes were enabled at the time of data collection. The data availability
from several products was investigated, and it was found that extracting proton
flux measurements at L = 2 over the model period was only feasible via the
Ion Species High Energy Resolution Low Time Resolution (ISRHELT') product
measuring ion spectra (Manweiler and Mull, 2017). However, despite its better
availability, ISRHELT measurements are susceptible to electron contamination in
certain regions due in part to the reduced accuracy of the hardware mode and, in
addition, there is no discernment between ion species. This section describes the
processing steps performed on ISRHELT data, and these two potential caveats are
addressed in more detail throughout Section 5.2.1.2.

ISRHELT data is contained within the level 3 Common Data Format (CDF)
files obtainable online at http://rbspiceb.ftecs.com/Level_3/ISRHELT/. This
data (from Van Allen Probe B) was used to derive a time series of equatorial pitch
angle distributions for each energy channel over the modelling period, as described
below.

The CDF files provide proton differential unidirectional flux as a 3D array
of values, with dimensions epoch, energy channel and telescope. There were six
telescopes recording simultaneously, and each measurement of flux was taken in
the instantaneous look direction of the corresponding telescope, rotating with the
spacecraft. To allow for angular resolution of measurements, the CDF files also

provide a 2D array of the telescope look directions in terms of local pitch angle,
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with dimensions epoch and telescope number. In order to capture variability at
sufficient time resolution, the modelling period was first split into intervals six
days long. Within each interval, data was then preprocessed according to the
following steps: i) the Python interface to IRBEM provided by the spacepy package
(Morley et al., 2011) was used to calculate B/B, (the ratio of local magnetic field
strength to magnetic field strength at the equator along the local field line) at
each measurement epoch, using the IGRF internal and Olson-Pfitzer quiet external
magnetic field (Alken et al., 2021; Olson and Pfitzer, 1982); ii) the 2D array of
telescope look directions was converted from local pitch angle o to equatorial pitch
angle a., using the well-known relation
sin?(a)  sin?(aeg)

B =g (5.1)

derived from conservation of the first invariant; iii) values of equatorial pitch angle
were placed in one of 15 equally spaced bins spanning 0° to 180° and of width
Aa,, = 12°, with the first bin centre at a., = 6°; iv) each flux measurement was
associated with an equatorial pitch angle bin via the recording telescope’s look
direction, and a cadence was applied to average the flux measurements in each
bin across one minute intervals, resulting in a 4D array of flux with dimensions of
time (at the centres of each one minute interval), energy channel, telescope and
equatorial pitch angle bin; v) for a given L, data outside L %+ 0.02 were filtered out
using the spacecraft L location at each epoch provided within the CDF files.
This method was used to examine the equatorial pitch angle distribution of a
given energy, formed by one minute-averaged flux measurements collected across
the six day period for which data was extracted. Measurements from the first
telescope were ignored because they were found to cover only a narrow range in
equatorial pitch angle. This was due to the telescope being centred close to the
spacecraft spin axis and showing little spin modulation. Measurements from the five
remaining telescopes were combined, and the equatorial pitch angle distributions

at each energy were fitted using the function

J = Asin" (o) + ¢ (5.2)

209



where j is unidirectional flux at equatorial pitch angle a.,, and A, n and c are the
fitting parameters. By repeating the above process at each six day interval over
the modelling period, the time series of fitted data for each instrument channel was
derived.

Figure 5.1, left side of panel a, shows an example fitted pitch angle distribution
at L = 2 from early June 2014 in the 0.69MeV channel of ISRHELT, with the
different colours corresponding to one minute-averaged flux measurements taken
by different telescopes. The standard deviations of the one minute-averaged fluxes
in each pitch angle bin are shown by the black bars in Figure 5.1 and indicate data
variability as well as reliability. Non-zero flux at loss cone pitch angles was assumed
to be a consequence of insufficient angular resolution of the measurements rather
than penetrating background, because the telescope look directions given in the
CDF files represent the centre of a few degrees range in local pitch angle, and were
then binned after being converted to equatorial pitch angle as part of preprocessing,
leading to some loss of precision. Some channels exhibit high standard deviations
depending on the date and region. To give an overall sense of data availability and
quality, Figure 5.1, right side of panel a, shows the ratio of the standard deviation
to the absolute flux value in the 90° bin, taken from fits to the data at L = 2 over
each time interval. Periods where data is unavailable are left unshaded (white).
This plot corresponds to the 0.69MeV channel but shows results representative for
all channels of ISRHELT used in the study. Data is generally useable at L = 2

where the standard deviation of flux is <50% of the bin average.

5.2.1.2 Data Issues and Validation

The ISRHELT data product was collected using the “energy” mode of the RBSPICE
instrument. In this mode, incident particle energy is measured by ion solid state
detectors. However, there is no magnet in the RBSPICE detector to sweep out
electrons, and so ISRHELT measurements may record the arrival of both species
leading to contamination of ion flux. Another useful product from RBSPICE is the
Time of Flight by Energy Ion Species Rates (TOFxEIon), which also provides flux
of ions. However, in the hardware mode used for TOFxEIon, “time of flight” data

is collected whereby a microchannel plate detects secondary electrons produced
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Figure 5.1: Summary of the data availability and quality of fit for preprocessed
pitch angle distributions given by the RBSPICE ISRHELT data (panel a) and
MagEIS pix2 data (panel b). Equatorial pitch angle distributions fitted using
Equation 5.2 are shown on the left, along with the standard deviation of flux in
each pitch angle bin. On the right, the ratio between the standard deviation in
90° flux measurements versus the mean flux value is shown for fitted pitch angle
distributions at six day intervals at L = 2. White unshaded regions indicate a lack
of data.
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by the passage of an ion through two thin foils prior to the solid state detector,
allowing detector counts to be validated as ions (Mitchell et al., 2013).

There are only a few short periods of time over which the TOFxEIon product
is available down to L = 2, nevertheless they allowed a comparison to be made
against ISRHELT. The susceptibility of ISRHELT data to electron contamination
was therefore tested by preprocessing the TOFxEIon measurements using a similar
method, and comparing the datasets at L > 2 over several months from April to
mid-August 2017. When comparing 90° differential flux at L = 2 over this period,
a very good agreement was found between the fitted flux distributions in the 0.84
and 0.93MeV channels between instruments, and a reasonable (within factor of
2) agreement for the 0.63 and 0.76MeV channels. Electron contamination issues
in TOFxEIon data were not expected due to the time of flight data providing
better accuracy, suggesting that ISRHELT was also not subject to major electron
contamination in the region of interest. It was assumed that protons dominate
the ion population in the region of interest, and therefore that ISRHELT and
TOFxEIon ion measurements represent protons.

To continue checking for electron contamination, the fitted pitch angle distribu-
tions derived for ISRHELT (Section 5.2.1.1) were compared at different altitudes.
When examining the radial profile of 90° flux versus L in energy channels up to
1MeV, two peaks were observed in some low energy channels. A peak at high
altitude (L > 3) was expected, given the nominal distribution of flux according
to previous measurements (i.e., Figure 5 of Stassinopoulos and Raymond, 1988).
However, channels at 0.52MeV and below exhibited a secondary flux peak at L < 2
which interfered with measurements at L = 2. These features were attributed to
interference at <0.5MeV, possibly from electrons. Finally, the energy spectrum
at L = 2 derived from the fitted pitch angle distributions was found to show
increasing flux with increasing energy, starting from the 1.85 and 2.03MeV channels.
This leads to a factor of ~2 disagreement compared with the 2.05MeV channel on
MagEIS pix2 (see Section 5.2.2.1), and suggests that ISRHELT data at >2MeV
may also be unreliable. Therefore, use of RBSPICE ISRHELT data was limited
to the six energy channels covering 0.69 - 1.13MeV at L = 2, where no signs of

contamination were found.
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5.2.2 MagEIS Measurements up to 10MeV

5.2.2.1 Processing

There are four MagEIS instruments on each Van Allen Probe. The “low” and
“medium” energy units are electron spectrometers and do not measure ions. The
“high” unit electron spectrometer also houses an ion range telescope with three
silicon detectors. On Van Allen Probe B, ~2 to 20MeV protons are measured
by the 2500-micron detector in this arrangement (Blake et al., 2013). This data
is accessible via the “FPDU_ pix2” variable in the Level 3 RBSP-B CDF files
available online at the RBSP-ECT Science & Data Portal (https://rbsp-ect.
newmexicoconsortium.org/data_pub/rbspb/). The excellent data continuity of
“pix2” data over the modelling period allowed RBSPICE data to be supplemented
with these higher energy measurements. However, as pix2 data was collected by a
separate instrument, different processing steps were required as described below.
Different contamination issues also arose, addressed in Section 5.2.2.2, but were
comparatively minor.

The CDF files provide a 3D array of differential unidirectional flux with dimen-
sions epoch, local pitch angle and energy channel. Local pitch angle is in terms of 15
equally spaced bins spanning 0° to 180° and of width Aa,, = 12°, with the first bin
centre at ae, = 6°. A time series of equatorial pitch angle distributions was derived
for each energy channel by splitting the modelling period into six day long intervals
(the same as used to process RBSPICE ISRHELT data). Preprocessing the data was
somewhat simpler because measurements of the full local pitch angle distribution
were available at each epoch. Within each interval, the method used to preprocess
data was as follows: i) B/B, was calculated at each epoch using Equation 5.1,
again using the IGRF internal and Olson-Pfitzer quiet external magnetic field via
spacepy; ii) local pitch angles at the centre of each of the 15 bins were mapped to
equatorial pitch angle at each epoch, and the mapped values stored directly (not
re-binned) so that flux values in the 3D array were associated with equatorial pitch
angle; iii) for a given L, data outside L £ 0.02 were filtered out using the spacecraft
L from the CDF files. This method resulted in every observation of flux within
the six day interval being associated with equatorial pitch angle. Equation 5.2 was

then used to fit an average distribution over all observations, and the process was
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repeated for each six day interval over the modelling period.

Figure 5.1, left side of panel b, shows an example fitted pitch angle distribution
at L = 2 from early June 2014 in the 4.92MeV channel. The standard deviations
of flux are calculated across the distribution by binning observations in equatorial
pitch angle, using the same 15 bins used to specify local pitch angle in the CDF
file. The standard deviations are shown by the black bars in Figure 5.1. Compared
with the standard deviations shown for ISRHELT data in panel a, the standard
deviations in pix2 flux is low. This indicates that higher energies exhibit less
variability over the same six day window. Figure 5.1, right side of panel b, also
shows the ratio of the standard deviation to the absolute flux value in the 90° bin,
taken from fits to the data at L = 2 over each time interval. The data shown for

MagEIS pix2 at 4.92MeV in Figure 5.1 is representative for all channels.

5.2.2.2 Data Issues and Validation

Using the 4.92MeV and 22.5MeV pix2 data to calculate omnidirectional flux results
in a strong correlation in values between the two channels at L < 1.9, indicating that
data is highly contaminated in this region (H. D. R. Evans, personal communication,
2019), presumably from energetic (100s MeV) inner belt proton contamination.
In addition, there are periodic spikes in intensity in channels below ~4 MeV at
L > 3, indicative of contamination by Bremsstrahlung in the presence of multi-MeV
electrons. However, at L = 2 4+ 0.02, pitch angle distributions do not show obvious
signs of contamination and have low intensity in the loss cone. At L = 2 below
~bMeV, there is a reasonably close agreement (in general by a factor of ~2 or
less) between this data and fluxes modelled using AP9 V1.50 mean (Ginet et al.,
2013). At > 10MeV, this data has worse agreement and, on the highest energy
channel (22.5MeV), directional flux at 90° pitch angle is much lower than recorded
by the low energy channels on the Relativistic Electron-Proton Telescope (REPT)
instrument. Use of MagEIS pix2 data was therefore limited to the seven energy
channels covering 2.05 - 9.38MeV at L = 2.
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5.2.3 Energy Spectrum

After restricting the data as described above, flux was available at six energy
channels from the RBSPICE ISRHELT product and seven channels from the
MagEIS pix2 detector. Fitted equatorial pitch angle distributions were used to
derive a time-varying energy spectrum at L = 2 across the ~four year modelling
period, which could then be used as the outer model boundary in a numerical
simulation. The spectrum is shown in Figure 5.2 for two values of equatorial pitch
angle (45° and 90°), with the energy of each data channel indicated by vertical
coloured bars for each instrument. In addition to ISRHELT (red lines in Figure 5.2)
and MagEIS pix2 (blue lines in Figure 5.2), proton data from the REPT instrument
has been included to help constrain the spectrum at higher energies (amber lines in
Figure 5.2). The inclusion of this data was approximate; time-varying equatorial
pitch angle distributions were derived by digitising the data shown in Figure 7
of Selesnick and Albert (2019). This figure shows unidirectional proton flux at
E >19MeV for five epochs covering the modelling period derived from REPT
measurements. Data is shown for equatorial pitch angles of 90° and 60°, and
these two data points were used at L = 2 to derive the pitch angle distribution
by assuming a distribution of the form j = Asin™ (a.,) and solving for the two
unknowns A and n. Extending the spectrum to higher energies was important
because coulomb collisional loss leads to a convection of phase space density to
lower values of p, meaning that uncertainty at high energies affects lower energies
too. However, after comparing different spectrum fits at high energy to understand
this sensitivity, it was found that changes in the high energy (230MeV) spectrum
did not introduce significant changes at the <10MeV energy range that is the focus
of this study.

The colour bar in Figure 5.2 shows how flux varies through time at the outer
boundary of the modelling region. An interesting feature of the 90° spectrum
is that over the intermediate energies (from ~2 until 20MeV), flux starts high
in 2014 (blue) and decreases towards the end of the modelling period in 2018
(red), but outside this energy range there is an increase in flux. In contrast, the
data at 45° shows an increase in flux through time at all energies. These two

trends indicate that, at intermediate energies where flux decreases at 90°, there is a
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steady reduction in anisotropy over the four year period leading to wider equatorial
pitch angle distributions. Throughout the four year modelling period, there are
times where boundary data is unavailable at certain energy channels, and this is
indicated by the white unshaded regions in Figure 5.1. This was dealt with by
simply interpolating from pitch angle distributions surrounding the data outage

period, allowing a continuous spectrum.

5.3 Numerical Modelling

5.3.1 Model Overview

The 3D numerical model described in Section 3.5.3 solves Equation 3.13 for relativis-
tic phase space density as a function of the three adiabatic invariants p, K and L.
In this work, the geomagnetic field is modelled as a dipole with By = 2.9867 x 10~°T
(calculated for the year 2015 using coefficients of the IGRF magnetic field model,
Alken et al., 2021). The quantity f(u, K, L) is modelled, given by f = m3j/p?
where mg is the proton rest mass. This quantity is proportional to phase space
density by a constant.

Four boundary conditions were applied to the model: 1) f(u, K, L) = 0
where Ly, = 1.15, 1i) f(tmaz, K, L) = 0 where i = 5000MeV /G (~170MeV
at L = 2), iil) f(u, K > Kpax, L) = 0 where K., (L) is K corresponding to just
inside the loss cone at L, and iv) f(u, K, Lz, t) = fo(p, K,t) where L., = 2.0
and fy(u, K, t) is the time-varying outer boundary spectrum specified from the Van
Allen Probe measurements and extrapolated across the range in .

A close fit to the spectrum data was achieved by making f, a combination of
two polynomial fitting functions P, and P,, which are re-derived for every value of
K on the boundary to fit the curve of log j(E, a,,) versus energy. This curve is
calculated by taking the logarithm of the data shown in Figure 5.2. P is a first
order polynomial (straight line fit) derived to fit data points log j(E < 7TMeV), and
P, is a second order polynomial derived to fit data points log j(E > 5MeV). The
gradient dP,/dFE at the highest energy channel is used to linearly extrapolate log j

to higher energies outside the data range, thereby transitioning P, into a straight
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Figure 5.2: The proton energy spectrum at L = 2 derived from fitting a time series
of pitch angle distributions to each energy channel. Energy channels are shown
by vertical lines and correspond to three separate instruments: RBSPICE (0.69 -
1.13MeV, red); MagEIS (2.05 - 9.38MeV, blue) and REPT (19 - 60MeV, amber).
The REPT data was derived approximately by fitting pitch angle distributions to
the data in Figure 7 of Selesnick and Albert (2019).
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line fit. f, (in terms of flux) is then given according to:

ef': E < 5MeV
fo=1 Aef* + Be™?;5 < E < TMeV (5.3)
ef2: B > TMeV

where A and B vary linearly with energy from A =1, B =0 at 5MeV to A = 0,
B =1 at TMeV so that f; is linearly interpolated in this range from the two fitting

functions.

5.3.2 Variation in Loss Rates

To understand loss timescales over the modelling period, the global drift averaged
density model described in Section 3.4 was used to calculate the characteristic
timescales of coulomb collisional loss and inelastic nuclear scattering at two different
epochs over the modelling period. The results are plotted in Figure 5.3 for proton
energies 1, 10 and 35MeV (first, second and third rows respectively). The timescale
for coulomb collisional loss was approximated as 7.. = (du/dts..)/p, and the
timescale for inelastic nuclear scattering was given by A. The left hand column
of Figure 5.3 shows loss timescales for particles with ., = 90° calculated for 18
June 2017. This corresponds to an epoch where F10.7a=75.7sfu and DOY =170,
and so each value of du/dts.;. and A has been interpolated at these conditions
from pre-calculated values at each of the 20 F10.7a, DOY drift average coordinates.
The timescale 7.. has been split into three components, representing the individual
contributions from coulomb collisions with atmospheric neutral constituents (blue),
ionospheric constituents excluding electrons (amber), and electrons throughout the
ionosphere and plasmasphere (red).

For comparison, the central column of Figure 5.3 shows loss timescales for
equatorially mirroring particles calculated for 27 November 2014, when F10.7a
peaked during the simulation near solar maximum with a value of 162.4sfu. The
right hand column of Figure 5.3 also shows loss timescales on 27 November 2014,
but for particles with a., = 50°, mirroring at latitudes away from the equator. The

grey shaded region in the right hand column indicates coordinates in the loss cone.
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Figure 5.3: Timescales for coulomb collisional loss 7.. and inelastic nuclear scattering
A are shown as a function of energy (rows) and for two different epochs (left column
versus centre and right column). Left and centre columns plot loss timescales
for equatorially mirroring protons, whilst the right column shows loss timescales
for particles with equatorial pitch angle o, = 50°. The timescale for coulomb
collisional loss has been separated into three components (blue, amber and red),
corresponding to the contribution from each group of constituents indicated by the
legend (top of figure).
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Figure 5.3 shows that coulomb collisions are the dominant loss process for all
energies under investigation, and that loss due to inelastic nuclear collisions (light
blue curve) has a relatively small impact. In particular, coulomb collisions with free
electrons in the plasmasphere (red curve) are dominant at L ~ 2, whilst coulomb
collisions with neutral constituents (blue curve) become dominant at some lower L
that depends on solar cycle and season. Comparing the left and central columns for
a given energy also shows that during the transition from solar maximum (central
column) towards solar minimum (left column), the loss timescale for coulomb
collisions with the neutral atmosphere falls to around half its prior value at L < 1.2,
but is relatively unaffected at L = 1.4. This is due to cooling and shrinking of the
atmosphere.

Figure 5.3 illustrates two more important features of coulomb collisional loss
timescales. The first is seen by comparing 7.. in the central column and right
hand column: protons mirroring at higher latitudes experience a higher rate of loss
compared with equatorially mirroring protons of the same energy and L. This is a
density-driven effect, because particles mirroring at higher latitude pass through
denser regions of the atmosphere at lower altitude. The second feature is seen
by comparing 7.. in the top, middle and bottom rows of a given column: lower
energy protons are subject to higher loss. This is not a density driven phenomenon,
it occurs due to the energy dependence of (du/dt). Li et al. (2020) show the
variation in 36MeV integral flux driven by solar cycle density variation, and note
how this effect becomes very weak at L > 1.2. However a comparison between
the top and bottom rows in Figure 5.3 shows that 1MeV particles are subject
to significantly higher loss rates than at 35MeV. This implies that lower energy
particles are also more sensitive to solar cycle variations in density, and therefore
solar cycle variations in density may drive variability at L > 1.2 in flux at some

energies below 36MeV.

5.3.3 Diffusion Coefficients

In this study, Dy, in Equation 3.13 is given according to empirically-derived
expressions used in previous literature. There are considerable differences between

both the magnitude of Dy and its dependencies between works, reflecting different
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applications. Three sets of Dy were chosen to demonstrate this range. Each is
presented in this section, then used to produce simulation results for comparison.

The first equation for Dy is from Equation 5 of Selesnick and Albert (2019).
In the original work it is applied to model high energies (> 19MeV) after 1 January
2015. It is modified slightly here, with the y = 1 — K/(0.58G"?Rg) term in the

original work being replaced by sin(a.,):
Drp(eg, L) = 1.4 x 107 L% sin %, )s ™ (5.4)

The second Dy, represents the magnetic diffusion coefficient required to produce
a good comparison with experimental data at £ >10MeV by Jentsch (1981). It
was also used by Selesnick et al. (2007):

1 MeV
Dyi(E, (g, L) = 3.75 x 107 12L° (;) sin®7 (creq)s ™! (5.5)

The third Dy is the same as Equation 12 of Selesnick et al. (2016) except for
the dipole dependence term, which is set equal to 1 here because Earth’s dipole

was considered fixed over the modelling period. This Dy was originally used to
produce a fit with REPT data at > 24MeV.

3/2
1 MeV MeV) s (5.6)

Dyp(E,L)=6x10""L? ( 5

The three sets of Dy, are each used to calculate f(u, K, L) whilst keeping all
other model parameters constant. The three corresponding model runs are hereon
referred to as “SA19”, “J81” and “S16” respectively, based on abbreviations of
the works from which each Dy; was taken. In these original works, each Dy
value was found to produce agreement between measured and computed values.
However, compared to the original works, these values are being applied to model
lower energy protons. This has a varying effect on the value of each Dy, as the
Dy, of Selesnick and Albert (2019) does not include energy dependence, whereas
the other Dy do, with the energy dependence of Dy from Selesnick et al. (2016)

being strongest.
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5.4 Modelling Variability

5.4.1 Method

The 3D numerical model was used to solve for f(u, K, L) over the period from
1 January 2014 to 1 March 2018, using the outer boundary spectrum shown in
Figure 5.2. Simulations of the model period were performed for the three sets of
Dy, in Equations 5.4, 5.5 and 5.6, with results denoted “SA19”, “J81” and “S16’
respectively. Prior to this, the initial condition for each model run was formed
by computing the steady state solution at the model start time (1 January 2014).
Each steady state solution was also calculated using the Dy, values corresponding
to the dynamic simulation.

In addition to Dy, the initial state of the proton belt was an uncertain aspect
of the simulation. The proton belt is unlikely to be in steady state at any time due
to the long timescales required by radial diffusion to rebalance changes in boundary
flux that have been observed to occur at L > 2 on much shorter timescales (see
for example, Figure 1, Selesnick et al., 2016). In Chapter 2, solutions of equatorial
steady state phase space density during the CRRES satellite era were found to
deviation from steady state strongly at u = 400MeV/G. More rigorous methods of
initialising the proton belt, such as in Selesnick et al. (2007), require integrating
changes in phase space density over a time history of SEP injections, geomagnetic
secular variations, and other causes of long term variation. Regardless, such
methods still depend on knowledge of the diffusion coefficients, which are poorly
constrained at the energies investigated here. Therefore, being somewhat limited
by the current capabilities of the numerical model, the method of initialising the
proton belt in steady state in a sense goes further to demonstrate the consequences
of uncertainty in Dy, which may lead to uncertain initialisations either way.

Although the model is numerically implicit, numerical instabilities can be caused
by large gradients in dy/dt .. across the model grid. As discussed in Section 3.7,
one way to avoid these instabilities is to increase the effective loss cone altitude.
This works because large gradients tend to occur near the loss cone where gradients
in atmospheric density are the highest. Therefore, a steady state solution was

initially computed using a high altitude loss cone with a large timestep. A new
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simulation was then initialised using the previous solution but decreasing the loss
cone altitude, requiring a reduced timestep for stability but less time to reach
steady state. This process was repeated, with the final resolution corresponding to
a dipole loss cone altitude of 585km, where the boundary condition specifies that
f = 0 at the equivalent value of K. This is somewhat higher than the ~300km
loss cone altitude predicted in Table 1 of Fischer et al. (1977), but was found to
provide a good balance between the required run time and solution detail. Results
of the three runs SA19, J81 and S16 are presented in the next section using this

loss cone altitude.

5.4.2 Results

Figure 5.4 shows the radial profile of phase space density f over the modelling
period at fixed values of p = 20MeV/G and p = 50MeV /G (left and right columns
respectively), repeated for each of the three model runs (rows one to three show
SA19, J81 and S16 respectively). The solution is shown for two values of the second
invariant K, with K = 0 representing equatorial particles. Energy E(u, K, L)
corresponding to the values of © on the horitzontal axis for K = 0 is labelled at
the top of each plot in grey.

The value of Dy increases in the model runs from SA19 to J81 to S16. Figure
5.4 shows that as a result, the phase space density f increases by up to three orders
of magnitude at L ~ 1.4 for u = 20MeV/G. At L ~ 1.2 for p = 20MeV/G, f is
very similar between the SA19 and J81 runs, and around one and a half orders of
magnitude higher for S16. At p = 50MeV /G, the increase in f at L ~ 1.4 from
SA19 to J81 to S16 is still significant (around two orders of magnitude) but not as
large as at = 20MeV /G. This indicates an increasing divergence in simulation
results at lower energy, as each set of Dy is extrapolated further away from the
energy range it was originally derived to model. These large variations between
model runs are primarily caused by differences in the steady state initial condition
of each simulation. However, the differences in D between runs also affects the
region of time variability, with phase space density at L ~ 1.5 staying relatively
constant over the four years during the SA19 run, but increasing by a factor of ~2

at 20MeV /G in the S16 run.
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Figure 5.4: Solutions for relativistic phase space density f = mJj/p® at 30 day
intervals over the modelling period, with colours corresponding to the dates shown

on the right hand side.

The column on the left shows f at a fixed value of

p = 20MeV/G, with u = 50MeV/G solutions shown on the right. Each row
corresponds to a different model run, characterised by the different sets of Dy
used (labelled within each panel).
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Figures 5.5 and 5.6 show the evolution of pitch angle distributions during the
J81 and S16 model runs respectively at selected L (increasing in columns left to
right), and at selected fixed energies (increasing in rows top to bottom). Figures
5.5 and 5.6 are plotted in terms of unidirectional flux at each energy rather than
phase space density. The evolution of pitch angle distributions during the SA19
model run is not shown because the results are somewhat similar to the J81 results,
with the main difference demonstrated by Figure 5.4: at L ~ 1.5, flux is over an
order of magnitude lower than the J81 result, and shows less time variation.

Figures 5.5 and 5.6 highlight time variability during both the J81 and S16 model
runs as opposed to changes between model runs caused by different initial conditions.
One striking feature of both figures is the time evolution of distributions at L = 1.2.
For example, at 2.5MeV and L = 1.2 (top left panels), 90° flux approximately
doubles over the modelling period during the J81 model run (Figure 5.5), and
increases by nearly tenfold during the S16 model run (Figure 5.6).

Loss cone flux is fixed at zero, so the increases in 90° flux at L = 1.2 shown in
Figures 5.5 and 5.6 give the impression of sharpening distributions through time.
However, flux also increases at lower pitch angles such that the ratio of 90° flux to
~T70° flux does not change much, and so anisotropy (as defined by the n parameter
for a fit like j o sin” a,) is relatively stable at a fixed L and energy during both
model runs. To demonstrate this, Figure 5.7 plots the anisotropy n versus L at the
start and end time of each model run (solid blue and red curves respectively). The
anisotropy is shown for energies 1, 10 and 45MeV (left, centre and right columns
respectively).

Figure 5.7 shows that the largest change in anisotropy over time was during
the S16 model run at L = 1.2 and ~1MeV (solid curves in the bottom left panel):
n decreases from ~ 55 to ~ 40. However, comparison of n between the SA19, J81
and S16 runs suggests that changes in anisotropy with L and energy are sensitive
to the choice of diffusion coefficients. A key difference between each model run
is the pitch angle and energy-dependence of Dy;. For example, in the J81 run
Dpi(E, g, L) decreases toward lower pitch angle, but in the S16 run Dy (E, L)
is independent of pitch angle.

In order to better understand the dependence of anisotropy on Dy, four extra

model runs were performed. Two of these were variations of the SA19 and J81
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Figure 5.5: Solutions for equatorial pitch angle distributions of flux at fixed energies
(rows) and L (columns) at 30 day intervals over the modelling period, with colours
corresponding to the dates shown on the right hand side. These solutions were
calculated for the J81 set of Dy .
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Figure 5.6: Solutions for equatorial pitch angle distributions of flux at fixed energies
(rows) and L (columns) at 30 day intervals over the modelling period, with colours
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n from jecsin(ayq) fit to solution at 01/2014 and 02/2018

D, used: ] 1 MeV , , 10 MeV| || , 45 MeV
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Figure 5.7: Pitch angle distribution anisotropy, quantified by the parameter n from
the fit j oc sin™(aw,), plotted against L for each of the SA19, J81 and S16 solutions
(top, middle and bottom rows respectively, solid lines). Anisotropy n is plotted for
1, 10 and 45MeV (left, middle and right columns respectively). Variations of the
SA19 and J81 solutions have also been computed by modifying the corresponding
Dy to eliminate dependence on pitch angle (n shown by dashed lines). Additional
variations of the J81 and S16 solutions have been computed by modifying the
corresponding original Dy, to eliminate dependence on energy (n shown by dotted
lines).
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model runs, in which pitch angle dependence of the original diffusion coefficients
was eliminated. This was done by setting a., = 90° in Equations 5.4 and 5.5
for variations in each D respectively. The other two runs were variations of
the J81 and S16 model runs, in which energy dependence of the original diffusion
coefficients was eliminated. This was done by fixing £ = 10MeV in Equations 5.5
and 5.6, to derive each new Dy respectively. The anisotropy n of each of these
four extra model runs is plotted in Figure 5.7 alongside the original results. The
extra runs are labelled SA19gg. and J81gge (using Dy independent of pitch angle

as described), and J811gpev and S161gmev (using Dy, independent of energy).

5.5 Discussion

Phase space density and flux levels plotted in Figures 5.4 to 5.6 are primarily
controlled by a balance between inward transport via radial diffusion, and coulomb
collisional losses to the atmosphere/ionosphere/plasmasphere. It was found that
variations in the CRAND source exert negligible influence over the distribution at
~MeV energy. The increase in Dy, from model runs SA19 to J81 to S16 hence
increases the flux at lower L. Over the course of each model run, time variability
arises because the balance between coulomb collisional loss and inward radial
diffusion shifts. This is mostly caused by a decrease in atmospheric density, driven
by a transition from solar maximum towards solar minimum, leading to increased
timescales of coulomb collisional loss shown by Figure 5.3. Radial diffusion therefore
increases phase space density by supplying protons from higher L. Changes in
outer boundary flux also drive time variability, but this effect is small in the SA19
and J81 model runs except near L = 2.

In the S16 run, diffusion exerts more influence over time variability because the
low altitude belt can be supplied with protons from higher altitude more quickly,
and because changes in outer boundary flux are able to diffuse more quickly inward.
This leads to the highest amount of time variability out of all the model runs, shown
in Figure 5.6. In contrast, variability is minimised in the SA19 run, where Dy, is
lowest. The SA19 value of Dy has no energy dependence but was applied at much
lower energies than it was derived for, perhaps leading to an underestimation.

Another factor controlling the balance between coulomb collisional loss and
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radial diffusion is the energy range. Figure 5.4 shows the extent of variability is
less at 50MeV /G (right panels) compared to 20MeV /G (left panels), and Figures
5.5 and 5.6 show the same trend, with higher variability at lower energy. This
is because changes in coulomb collisional loss are more effective at lower energy
where this process exerts greater influence, shown in Figure 5.3 by the difference
in loss timescales between a 1 and 35MeV proton. Because of this effect, solar
cycle variability is able to drive significant changes in flux at L = 1.3, shown in
Figures 5.5 and 5.6 for the J81 and S16 model runs. For example, the increase in
7.5MeV flux at L = 1.3 over four years is around 30% and 75% respectively for
each model run. This result can be compared with work by Li et al. (2020) that
indicates there is no obvious solar cycle variation at L > 1.2 in >36MeV integral
flux measurements made near the magnetic equator by the POES-18 satellite
(Figure 6 of Li et al., 2020). As 7.5MeV is within the key energy range responsible
for solar cell degradation, this implies that solar cycle effects can also drive changes
in the rate of non-ionising dose over a typical mission lifetime for a range of Dy .
Figures 5.5 and 5.6 show that pitch angle distributions at L = 1.2 appear flat
near the beginning of the modelling period, and become more peaked through
time due to large increases in 90° flux. The J81 and S16 model runs both show a
strong sharpening of pitch angle distributions at L < 1.3, but the increase in flux is
significantly higher in the S16 case (Figure 5.6) due to the higher Dy;. Despite this,
Figure 5.7 shows that anisotropy of each distribution is relatively stable throughout
the duration of each model run when quantified using the fitting factor n for a fit
where j o sin”(a.,). At L = 2, Figure 5.7 shows that the outer boundary evolves
to become less anisotropic over the modelling period (blue to red) at ~ 10MeV
(centre column), but this only seems to drive time variations in n at L = 1.7.
Figure 5.7 shows significant variations in the anisotropy of pitch angle distribu-
tions across L. For example, one feature of the J81 model run is a clear increase in
the anisotropy of distributions from L = 1.3 to 1.5 at 1-10MeV (centre panel of
Figure 5.7, also shown in columns two and three of Figure 5.5). Stable n during the
modelling period leads to this feature persisting over four years of time variation.
However, this is somewhat at odds with a general trend suggested by previous
work. For example, Figure 7a and 7b of Fischer et al. (1977) show only a decrease
in n towards higher L at L < 1.35 using data at tens of MeV from the Dial satellite
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(collected March to May 1970, which is similar to the modelling period considered
in this work in terms of solar cycle). A decrease in n towards higher L is also
shown in Figure 8 of Gussenhoven et al. (1993) at 36.3MeV using data from the
CRRES satellite. Figure 5.7 (right column) shows that the numerical model results
somewhat agree with the observed trend for n to decrease with L at much higher
energy (45MeV).

One reason why these results show a trend that disagrees with previous obser-
vations at 1 to 10MeV may be the steady state initialisation of the proton belt.
Steady state was calculated near solar maximum with high coulomb collisional loss
which led to distributions being flattened at 90°, perhaps reducing anisotropy over
many years. In reality, this particular balance between diffusion and loss may be
too short lived to cause such changes. However, there is little data to compare
with in the energy range of interest, and it can therefore be suggested that trends
highlighted in previous literature may not be as general as expected, and may not
apply at lower energy.

The extra runs presented in Figure 5.7 somewhat indicate the effect of pitch
angle and energy dependence on anisotropy. Removing the pitch angle dependence
effectively increased Dy for particles at low equatorial pitch angles, and the
effect is shown by comparing n between the SA19 and SA19gg. results, as well as
comparing the J81 and J81gp results. Anisotropy decreased at L ~ 1.5 when the
pitch angle dependence of Dy was removed, especially at lower energies, but did
not change at L ~ 1.2. In contrast, the chosen method of removing the energy
dependence effectively led to a decrease in Dy at E< 10MeV, but an increase in
Dy at E> 10MeV, compared with the original values. Comparing n between the
J81 and J81gpev results, and S16 and S161gyey results, shows that removing the
energy dependence did not have a consistent effect. However, the increase in Dy,
at > 10MeV generally resulted in unrealistically high values of phase space density
at low L. Therefore, diffusion coefficients without energy dependence seem to be

less applicable in simulations at 1-10MeV.
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5.6 Conclusions

This chapter has presented physics-based calculations of proton belt phase space
density and flux at 1.15 < L < 2.0 using the 3D numerical model. Results show
variability over the ~4 year period from 2014 to 2018, with an outer boundary driven
by data derived from the RBSPICE, MagEIS and REPT instruments. Particular
attention was paid to variations in the proton belt at low energies relevant to
spacecraft solar cell degradation.

The model was applied over a coordinate range where processes known to cause
variability are well constrained compared with the timescales for radial diffusion.
Therefore, simulations were run for three different sets of Dy, taken from previous
literature and exhibiting various dependencies. The initial state of the proton belt
was approximated as a steady state solution. An analysis of the simulation results
lead to a number of conclusions:

1) The proton belt is formed by inward radial diffusion from a source outside
L = 2 balanced by coulomb collisional losses to the atmosphere, ionosphere and
plasmasphere.

2) The steady state solution of phase space density can vary by three orders of
magnitude at p = 20MeV /G at L ~ 1.4. The variation is due to uncertainty in
extrapolating the radial diffusion coefficient to energies of 1-10MeV. Since this is a
very important energy range for assessing solar array degradation, more work is
required to reduce the uncertainty in Dy .

3) Due to the increased importance of collisional loss at low energies, solar cycle
variability is able to drive up to a ~75% increase in 7.5MeV flux at L = 1.3 over
four years for the Dy tested, a crucial energy for solar cell degradation.

4) At L < 1.5, certain model solutions indicate that the anisotropy of pitch
angle distributions may increase towards higher L. This is somewhat at odds
with previous work showing a tendency for anisotropy to decrease towards higher
L. However, results show this trend is sensitive to Dy, and in particular the
dependence on pitch angle.

Spacecraft measurements of flux are useful to validate theoretical calculations,
but there are very few satellites equipped with detectors to measure the proton

radiation belt in the 1-10MeV energy range. However, for many spacecraft traversing
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the proton belt, changes in solar cell output power are dominated by the effect
of proton-induced non-ionising dose affecting a fairly narrow range of energies
around ~ 10MeV. Therefore, the solar cell power fluctuations experienced by low
and medium Earth orbit satellites could be compared with theoretical predictions
based on 1-10MeV modelling results, in order to validate the results and provide
some constraints on uncertain model parameters. For this reason, the sharing of

operational data would help improve physics-based proton belt models.
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Chapter 6

Solar Cell Degradation at 1200km

6.1 Introduction

Changes to levels of trapped proton belt flux, such as the time variability demon-
strated in Figures 5.4 to 5.6, will vary the rate of damage imparted to spacecraft
solar cells passing through the region. This chapter, the final piece of work in
this thesis, continues from Chapter 5 by using the physics-based model results
to calculate proton-induced non-ionising dose and solar cell degradation for an
example satellite in ~1200km circular orbit over the ~four year modelling period
from 01/2014 to 02/2018. The dependence of solar cell degradation on diffusion
coefficients used to model the environment is also explored.

The orbital and degradation characteristics of the OneWeb 0063 satellite (NO-
RAD catalogue number 45448) were used to calculate solar cell degradation over
the four year modelling period. OneWeb 0063 was launched on 21/03/2020, so
the calculation of solar cell degradation from 01/2014 to 02/2018 corresponds to a
hypothetical mission, as if the satellite had been launched on 01/01/2014 instead.

6.2 OneWeb Orbit Characteristics

The model results from Chapter 5 make available phase space density f (¢, u, K, L),
where t,, is model epoch varying across the range 01/01/2014 <'t,, < 01/02/2018.

This can be converted to directional flux via Equation 1.55, then interpolated in
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terms of energy and equatorial pitch angle. Therefore, the model results also make
available equatorial pitch angle distributions as the function j(t,, F, aeq, L).

Calculating non-ionising dose involves calculating flux at locations along a
satellite’s orbit. Modelled equatorial pitch angle distributions j(¢,,, E, c.q, L) can
be mapped to local pitch angle distributions at a location specified in terms of
magnetic coordinates L and B/ B, using Equation 5.1. Therefore, the first goal was
to parameterise the position s of OneWeb 0063 in terms of magnetic coordinates
by time ¢, such that s(t) = [L(t), B/B.(t)], where t varies from tq to to + 7', and T
is some orbit timescale. This would enable the local pitch angle distribution to be
derived along an orbit from modelling reults. Note that t is a different coordinate
to t,,. The former parameterises position of the satellite, whilst the latter is used
to specify the model epoch and therefore parameterises time variability of the
environment.

To begin, a two line element (TLE) was obtained using the Satellite Catalogue
provided by CelesTrak (https://celestrak.com/). Figure 6.1 presents a visu-
alisation of the orbit in 3D space over a 24 hour period relative to the location
of Earth, generated by Spenvis from the TLE. The small variation in altitude is
indicated by the colour scale.

Two key points summarising the orbit are:

o OneWeb 0063 is in circular orbit at an average altitude of 1234km, at 88°

inclination; and

e OneWeb 0063 returns to approximately the same location after a period of 24

hours, during which it completes 13 laps around Earth at varying longitudes.

The second point is important because the magnetic coordinates L, B/ B, differ
significantly along different passes around Earth due to precession of the orbital
plane in longitude, combined with asymmetries in the geomagnetic field such as
the South Atlantic Anomaly. To demonstrate this, Figure 6.2 plots the satellite’s
magnetic coordinates L(t) (blue) and B/B.(t) (orange) against magnetic latitude
A(t) over the 13 orbital passes shown in Figure 6.1. Figure 6.2 was generated by
propagating the TLE forward from an arbitrarily chosen t, to ty+ 24 hours, and the
Python interface to Irbem provided by the spacepy package (Morley et al., 2011)
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Figure 6.1: Visualisation of the OneWeb 0063 orbit over 24 hours based on TLE
data, and generated by the Spenvis online interface (Heynderickx et al., 2005).
Colour along the orbit track is used to indicate altitude. The axes of the GEO
frame are shown as black arrows, and the geographic equator is indicated by the

grey disc.
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L, B/Be vs. MLAT for OneWeb
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Figure 6.2: Magnetic coordinates L (light blue) and B/B, (orange) calculated for
the OneWeb-0063 satellite during 20 orbits around Earth as a function of magnetic
latitude, with the first orbit beginning at the displayed time ¢.

was then used to sample L, B/B, and A at regular intervals in time (At ~44.3s)
according to the IGRF internal magnetic field. At high latitudes where L is not
defined a fill value was collected.

Figure 6.2 shows that, although the altitude of the satellite is fixed at ~ 1.19Rg,
during 13 passes over Earth the OneWeb 0063 satellite crosses the magnetic equator
anywhere from L ~ 1.1 to L ~ 1.3 (blue curve). The orbital period for OneWeb
0063 is 1.83 hours according to the TLE information, corresponding to one of these
passes. However, a choice of 7' = 1.83 hours would not provide a sufficiently long
timescale over which to parameterise s(t) = [L(t), B/B.(t)], because the variation
in L(t), B/ B(t) over a time period ¢, to to+ 1.83 hours depends on longitude. Since
the satellite returns to approximately the same location every 24 hours, a choice
of T'= 24 hours is appropriate, as the variation in coordinates L, B/B, is cyclical
over this timescale. A mapping was therefore constructed between orbit time ¢ and
magnetic coordinates L, B/ B, over the range ty < t < tg+ 24 hours using the time
series of points calculated with spacepy, giving s(t) = [L(t), B/ B.(t)].
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Figure 6.2 also shows that the L coordinate of the satellite goes above the
model outer boundary at L = 2 when |\| 2 40°. The component of non-ionising
dose accrued at L > 2 cannot be calculated due to the limited model range, so
the current investigation is limited to non-ionising dose accrued during passage
at L < 2. The satellite spends ~43.1% of time at L < 2, and ~57.8% of time at
L < 3.25, meaning only ~14.7% of the orbit is spent at 2 < L < 3.25. Since the
proton belt does not extend much beyond L = 3.25, the percentage of time spent
at 2 < L < 3.25 gives some indication of the contribution from non-ionising dose
that is ignored, but whether or not this contribution is important depends on the

levels of flux reaching the satellite along field lines in this L range.

6.3 Mapping Model Flux to an Orbit

The second goal was to use the modelling results which provide equatorial pitch
angle distributions of flux j(t,,, E, aey, L), along with the parameterisation s(t) =
[L(t), B/B.(t)] derived in Section 6.2, to calculate average omnidirectional flux
along an orbit j(t,,, E).

The first step towards achieving this was to implement a method to deter-
mine the local pitch angle distribution of directional flux at the satellite location
J(tm, E,s(t),a). Since s was now available in terms of L and B/B, for a given t,
local pitch angle a could be converted to an equivalent equatorial pitch angle a,
using Equation 5.1, which just depends on B/B.. Therefore, the local pitch angle
distribution of flux at the satellite for a given epoch t,,, energy FE and time ¢ along
the orbit is extracted directly from the model results by re-writing

_ _ ., | sin®*(a)
J(tm, E,s(t), @) = j(tm, E, aeqg = sin W,L:L(t)) (6.1)

Substituting local pitch angle into Equation 6.1 at regular intervals across the
range 0 < a < 90° results in a local pitch angle distribution of directional flux

which can be integrated to calculate omnidirectional flux. Omnidirectional flux at
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the satellite position j(t,,, E, s(t)) is thus given by

3(tws Bos(0) = [ (. B.s(t), a)d0
—/ (tm, E, s(t), a)2m sin(a)da

with units cm™?s™'MeV !, where  is solid angle (Walt, 1994).

Figure 6.3 shows j(t,, F, s(t)) calculated at the position of OneWeb 0063 along
13 passes of the satellite around Earth, corresponding to a time period of 24 hours.
Results derived using a model epoch t,, =01/01/2014 are shown in the left hand
column, and results derived for ¢,, =01/01/2018 are shown in the right hand
column. Results are also shown for each of the SA19, J81 and S16 model runs
performed in Chapter 5 (first, second and third rows), which correspond to the
different diffusion coefficients discussed in Section 5.3.3. Since the longitude of
the satellite varies from pass to pass, each line has been colour coded to represent
geographic longitude of the satellite, indicating the longitudinal dependence of flux
arising due to asymmetries in the geomagnetic field. Since model results only cover
the region 1.15 < L < 2, flux outside this range is not shown.

For any of the model solutions considered (fixed rows), Figure 6.3 shows that
as the modelling period advances from 2014 (left) to 2018 (right), omnidirectional
flux reaching the satellite increases due to the time variability of flux at low L.
Figure 6.3 shows that exposure of the satellite is highest according to the S16
model solution (bottom row), which used diffusion coefficients with a higher value
to solve for the environment. Figure 6.3 also shows that flux is highest at ~ —50°
longitude (green) and at southern latitudes, which is when the satellite passes over
the South Atlantic Anomaly. This corresponds to a region where the satellite is
able to reach higher L because the geomagnetic field is weaker.

Whilst performing this calculation, it was found that calculating j(t,,, E, s(t))
at higher latitudes near the model outer boundary L = 2 is particularly prone to
error when the model outer boundary spectrum is derived from equatorial pitch
angle distributions with non-zero flux at the loss cone. This is illustrated in Figure
5.1 for both the MagEIS and RBSPICE instruments, which show non-zero trapped

flux in the loss cone due to freedom in the fitting parameter ¢ of Equation 5.2.
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Modelled omni. flux over 24 hrs at OneWeb 0063
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Figure 6.3: Omnidirection flux j(t,,, £ = 10MeV, s(\)) as a function of magnetic
latitude A\ over a time period of 24 hours, calculated for two different model epochs
tm (left and right columns) and three different sets of Dy (rows). Each pass of the
satellite is colour coded by geographic longitude, as indicated by the colour scale.
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The model always sets loss cone flux to zero, but the flanks of these distributions
just outside the loss cone are somewhat preserved, and flux near the loss cone
at L ~ 2 is therefore likely to be overestimated. As the spacecraft crosses the
L = 2 field line at high latitudes, the flux of particles reaching the satellite is
mapped from the flanks of these equatorial pitch angle distributions, leading to
a potential overestimation of flux reaching the satellite. This overestimation was
partly mitigated by fitting the MagEIS and RBSPICE data more carefully, but
it is one reason that flux curves upwards towards the lower and upper magnetic
latitude ranges in Figure 6.3. Dealing with this issue will be very important for
any future operational physics-based predictions of satellite exposure.

As the next step, omnidirectional flux was integrated over orbit time t from
t =ty to tg+ T, giving total omnidirectional fluence per time T'. Since the orbit
timescale of the satellite, T" = 24 hours, is small compared to the timescale of
variations in f(u, K, L) over the ~four year modelling period, t,, can be considered
a constant of integration. Omnidirectional fluence per time period T at a given

modelling epoch is therefore given by

to+T
Ot E) = /t (b, B, s(1))dt (6.3)
where j(t,,, E, s(t)) is provided by Equation 6.2 when the satellite is located inside
the model region. At times when the satellite is outside the modelling region,
J(tm, E, s(t)) was set to zero to ignore the contribution. Since t,, is constant in
Equation 6.3, the integrand varies only due to the motion of the satellite through
the environment.

Finally, Equation 6.3 was evaluated for different energies to give ®r(t,,, E)
from E =1 to 19MeV at 0.5MeV increments. This set of values constitutes the
spectrum of fluence incident on the satellite per time period T, across the range
of energies primarily responsible for non-ionising dose (Figure 6, Messenger et al.,
1997). The fluence spectrum was calcuated this way at regular intervals in time

from t,, =01/01/2014 until 01,/02/2018.
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6.4 Non-ionising Dose Results

Non-ionising dose D, can be calculated using the NRL method presented in Section
1.4.2.3. Equation 1.65 gives Dy as a function of the fluence spectrum d®,(E,)/dE,
incident on the cell, as well as proton NIEL coefficients S,(E) of the target material.
In this case, the electron contribution is ignored, and only frontside exposure to the
cell is considered. The latter assumption potentially excludes a small contribution
towards dose from particles passing through the array substrate material.

One last step is required before applying Equation 1.65 to calculate Dy: a
transport code is required to simulate the effect of coverglass shielding, which
attenuates the fluence spectrum incident along the satellite orbit to give the
spectrum directly incident on the solar cell. The attenuation of the spectrum
depends on the coverglass shielding thickness and the density of coverglass material,
both of which must be determined.

SolAero IMM-« solar cells are used on OneWeb satellites such as OneWeb 0063,
but specific information on the coverglass thickness in use was not publicly available.
However, the density of coverglass can be determined from the IMM-a datasheet
(SolAero Technologies Corp, 2021): it specifies a coverglass interconnected cell mass
of 83.3 and 96.0mg/cm? for versions of the cell with 4 and 6mil thick coverglass
respectively, or an increase of 6.35mg/cm? per mil, equal to 2.5g/cm?. The standard
availability of 4 and 6mil thick coverglass (1mil = 25.4pum) also suggests that either
of these values is a possibility for shielding thickness. 6mil was chosen as an
estimate, based on the highly exposed orbit type.

With this information, the MULASSIS transport code (Lei et al., 2002) was
used to convert each 24-hour fluence spectrum ®r(t,,, E) derived in Section 6.3 to
the slowed-down spectrum represented by d®,(E,)/dE, in Equation 1.65. Figure 1
of Haas et al. (2018) shows that SolAero IMM-« cells are comprised of junction
materials Ing 5Gag 5P, GaAs, Ing3Gagr and Ing ¢5Gag 35 from top to bottom respec-
tively. Therefore, the NIEL coefficients for GaAs (with E; = 21eV) were used
to give appropriate values for S,(£) in Equation 1.65. Equation 1.65 was then
evaluated using the slowed down fluence spectrum to give AD,, the non-ionising
dose accrued per time interval At =T. AD, was calculated at ~14 day intervals

throughout the modelling period, and the result of this calculation is shown in

243



100+
s b
2
% —— SA19
s 10+ J81 -
'; ] — S16
p —— AP9 V1.50 mean
go)
()]

1;W____/\_,___,.__f\——————

b AB A5 AD a6 a6 a1 Al D

QY AQY A0 A0 AQY AQY A0 A0 QY
Q’\«\’L g’\ v g’\«\q’ Q’\ \v Q’\«\’L g’\ v Q’\«\’L Q’\ \v 0,\‘\’),

tm

Figure 6.4: The rate at which non-ionising dose Dy is accrued by the spacecraft
versus time throughout the ~4 year model period, according to each model solution
corresponding to different values of Dyp. Results are compared with the constant
rate of dose calculated using the AP9 V1.50 mean model.

Figure 6.4 which plots the rate of non-ionising dose AD;/T against model epoch
ton.

The black line in Figure 6.4 shows the constant rate of dose accrued by the
satellite according to the AP9 V1.50 mean statistical proton belt model, which
does not take into account time variation. By contrast, the rate of non-ionising
dose calculated for each of the SA19, J81 and S16 model runs as described above
increases throughout the modelling period due to the modelled time variability.
Figure 6.4 shows that the J81 and SA19 model results gave very similar dose curves
(orange and blue respectively). The similarity between these curves is because
levels of flux at L < 1.4 are similar in both model runs over the range of energies

responsible for non-ionising dose, as shown in Figure 5.4 in terms of phase space
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density. This region is where the satellite accrues most of its non-ionising dose. On
the other hand, the S16 results (green) show a much higher rate of non-ionising
dose because phase space density is significantly higher in this region.

The results shown in Figure 6.4 can be used to calculate total non-ionising dose

at time ¢t > t; according to
1 ot
Dy= / ADy(t) dt + Dy (6.4)
T Jiwo

where Dy, is the initial dose at tg.

6.5 Deriving Degradation Characteristics from
Available Data

Cumulative non-ionising displacement damage dose Dy can be converted to a
fraction of remaining solar cell output power P/P,, representing degradation. For
this calculation, the two unknowns C' and D,x in Equation 2.1 must be determined.
For the solar cells studied in Chapter 2, these numbers were available via the online
Spenvis interface. However, for the SolAero IMM-a cells onboard OneWeb 0063,
they are not publicly available. Fortunately, online datasheets and scientific papers
contain enough data to derive approximations.

Figure 4 of Haas et al. (2018), copied to the top panel of Figure 6.5 below,
shows P/P, as a function of 1MeV electron fluence for a SolAero IMM-« cell in
testing. This data is shown under two conditions: with and without post-radiation
annealing; the former agrees well with the data points in the IMM-a datasheet
(SolAero Technologies Corp, 2021). Figure 5 of Haas et al. (2018), copied to the
bottom panel of Figure 6.5 below, also shows P/Fy as a function of 3MeV proton
fluence but only without post-radiation annealing. The data shown in these two
figures can be traced over, digitised, and then used to approximate D,x and C
in Equation 2.1 as follows. Normalised dose from a 1MeV electron fluence can
be written as Dy = ¢.(1MeV)S.(1MeV)/R.,. Substituting this into Equation 2.1,
one can perform an optimisation fit to the P/Fy vs. ¢.(1MeV) post-radiation

annealing electron curve in Figure 4 of Haas et al. (2018), solving for C' and
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D,xRep,/Se(1MeV). By then comparing the electron and proton curves without
post-radiation annealing, one can consider a 1MeV electron fluence ¢.(1MeV)g g
and 3MeV proton fluence ¢,(3MeV)g s that cause the same drop in P/P, to 0.8,

and therefore deliver the same dose. Equating the dose gives

Se(1MeV)

D; = ¢.(1MeV
d ¢( 6)0.8 Rep

= ¢,(3MeV).55,(3MeV) (6.5)

If one assumes that R, and NIEL are consistent between solar cells pre- and
post-radiation annealing (or specifically, that ¢.(1MeV)ys and ¢,(3MeV)gs still
deliver equal dose even if AP /Py is different), then rearranging Equation 6.5 gives
R.,/Se:(1MeV) in terms of S,(3MeV). Proton NIEL at 20.1MeV is consistent
across the range of materials in each junction of the solar cell (including InGaP,
GaAs, InGaAs; see for example Figure 3, Messenger et al., 2006), and therefore,
one can use S,(3MeV) = 1.8421e—2MeVem? /g, calculated for GaAs using the
online calculator at www.sr-niel.org. Solving for S.(1MeV)/R., and in turn
D,x, the estimates D,x ~ 4.99e9 and C ~ 0.303 were obtained, allowing P/Fy to

be calculated for a given non-ionising dose using Equation 2.1.

6.6 Degradation Results

Finally, the time evolution of P/P, was calculated over the modelling period using
the non-ionising dose results in Figure 6.4 and the degradation parameters derived
in Section 6.5. Results are shown in Figure 6.6 for each of the SA19, J81 and S16
environments, assuming an initial P/Fy of one at t,, =01/01/2014 in each case.

Figure 6.6 shows that P/P, falls by only ~5% during the SA19 and J81 model
runs (blue and orange), but falls by ~80% for the S16 model run. These drops
represent the solar cell degradation that the OneWeb 0063 satellite would have
undergone if it were in orbit during the modelled period, depending on Dy . For
comparison, the black line in Figure 6.6 gives the degradation predicted by the
AP9 V1.50 mean proton belt model, a drop of ~25% after four years.

The results in Figure 6.6 represent an end-to-end physics-based calculation of
solar cell degradation, incorporating the effects of proton belt time variability. The

large variation in P/P, predicted by these modelling results is partly a result of

246


www.sr-niel.org

90% @ Seld e-/om’
(91% with anneal)

o
0
o

IMMa with post-
radiation annealing

o
()
v

ot
[
o

85% @ lelS e-/emy’
(87% with anneal)

o
~
W

Pmp Remaining Factor
(=]
P

o
o
v

I:lz'l\T/lJM-d' ]

0.60
1.00E+13 1.00E+14 1.00E+15 1.00E+16

1 MeV Electron Fluence [e-/cm?]

Factor
=
3

ining

L ]

o
o0
o

I

I

|
Typical LEO :
missions |
I

I

I

I

I

Pmp Rema
o
(o]
o

o
~
w

Al
—|MM-a

- — = = - = = — = — = — = — = — = — - = — —

0.70 - ~ !
1.0E+09 1.0E+10 1.0E+11 1.0E+12

3MeV Proton Fluence [p+/cm2]

Figure 6.5: Figure 4 (top panel) and 27(bottom panel) of Haas et al. (2018),
comparing the remaining power P/P, between a SolAero IMM-« cell versus an
older SolAero ZTJ cell both subject to the same monoenergetic fluence of 1MeV
electrons (top) and 3MeV protons (bottom).



1.0

0.81
_ 0.6
Q.
a
0.4 gat0
J81
0.29 316
— AP9 V1.50 mean
>4 5 A5 A6 A6 A1 Al
D< %
M Y P Y S O oY oY Q>
\,\7’ S v \7’ \’7’ Q\,\’L Al \,\7’ S v 0\,\

tm

Figure 6.6: Remaining output power P/ Py calculated for a SolAero IMM-« cell with
6mil coverglass in orbit on board OneWeb-0063, modelled for three environments
corresponding to each choice of Dyj. Results are compared with P/P, calculated
using the AP9 V1.50 mean model.
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the uncertainty introduced by extrapolating radial diffusion coefficients to the low
energies responsible for non-ionising dose. As noted in Chapter 5, the steady state
solutions used to initialise each model run vary in phase space density by three
orders of magnitude at p = 20MeV /G at L ~ 1.4. If Dy were better constrained,
the physics-based modelling of P/P, may have produced results in better agreement
with AP9 V1.50, although there is uncertainty in these results too.

A conclusion reached at the end of Chapter 5 was that the sharing of operational
data would help improve physics-based proton belt models. Figure 6.6 emphasises
this: if boundary data were available to drive the model during the current era,
the power curves shown in Figure 6.6 could be recomputed over the actual mission
timeline and compared with P/P, data recorded by the satellite operator. An
optimisation technique such as that demonstrated in Chapter 4 could then be used
to infer characteristics about the energy dependence of Dy, by optimising Dy to
produce power curves that agree with the recorded P/P,. This technique would
enable Dy to be constrained at 1-10MeV without the need to validate against

data from a proton telescope instrument.
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Chapter 7
Summary and Conclusion

This thesis began with a review of Earth’s proton radiation belt and the methods for
calculating solar cell degradation. Previous observations of dynamic enhancements
in trapped proton flux following solar energetic particle events indicated a key risk
to orbiting satellites, suggesting a need for physics-based modelling to predict the
impact of such changes. Section 1.4.3 reviewed the unexpectedly high degradation
of the Tacsat-4 satellite, with a remaining P/P, which was >10% lower than
predictions made using the AP-8 statistical model, and ~20% lower than predicted
with AP-9 Mean after two years in orbit. These results demonstrated in general that
statistical radiation belt models have the potential to under-predict degradation.

In light of this, the main objective of this project was established: to address
the need for physics-based modelling of the proton belt, and to quantify the impact
of proton belt variability on solar cell degradation. Research began with the work
in Chapter 2, which quantified the impact of proton belt variability on satellites
undergoing electric orbit raising (EOR) to geostationary orbit. This chapter
presented an analysis of non-ionising dose from trapped protons accrued over 200
days during the course of EOR, using three example trajectories. Conclusions from
this work included that:

« for a typical coverglass thickness of 150um, launching into an enhanced proton
environment can increase solar cell degradation due to trapped protons by 2

to 5% before the start of service compared to a quiet environment;

o for the same typical coverglass thickness of 150um, solar cell degradation in
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an active environment can vary by ~5% between different EOR orbits; and

o in the worst case tested, degradation of up to 15% is possible within the EOR

period, before taking into account other effects such as electron dose.

These conclusions showed that dynamic enhancements have the potential to shorten
the lifespan of a mission, but also that EOR orbits can be optimised to reduce the
level of non-ionising dose accrued. The importance of considering enhancements
in trapped proton flux (“active environments”) supported the suggestion that
physics-based modelling should play a role in helping to assess radiation damage,
and address the increasing utilisation of low and medium Earth orbits.

Following this, work began on constructing a numerical model to address the
need for physics-based modelling. Through the methods explained in Chapter 3,
this involved designing and implementing a process to calculate drift averaged
quantities. Using this process, up to date measurements and empirical models were
used to derive a CRAND source with solar cycle dependence, and evaluations of
coulomb collisional loss and nuclear inelastic scattering that depend on solar cycle
and seasonal phase. A fully implicit numerical scheme was presented, along with
methods to optimise execution time.

In Chapter 4, a 2D version of the model was applied to derive proton radial
diffusion coefficients for a period of solar maximum. This was achieved by varying
parameters controlling the rate of radial diffusion in order to optimise the fit between
model and data from the PROTEL instrument aboard the CRRES satellite at
1.1 < L < 1.65, under the assumption of steady state. Results were compared with
diffusion coefficients derived in other literature, and the validity of the steady state
assumption underlying this technique was discussed. Some results from this work

included:

« a set of new radial diffusion coefficients derived for a period of solar maximum,
which are higher than the results of previous work by a factor of 2 to 3 at
i =100MeV /G and a factor of 3 to 5 at 500MeV /G, but provide a better fit
to CRRES PROTEL data;

« finding that a suitable time averaging period for steady state optimisation

should be less than six months to avoid potential seasonal variations in
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plasmaspheric density; and

o finding that steady state optimisation can be performed even when the
proton belt is not in steady state at certain energy ranges, by making careful
observations and filtering out measurements not in steady state from the

data used for optimising.

However, there were some limitations of this work. Firstly, the method was not
able to investigate the potential dependence of radial diffusion coefficients on
magnetic or solar activity. Secondly, the optimised fit between modelled steady
state phase space density and the PROTEL data was not as good as expected,
despite taking measures to improve the assumption of steady state by considering
only a limited selection of PROTEL data. This suggested that steady state is not
a good assumption for the proton belt even during prolonged quiet periods.
Improvements were made to the model following this work, and in Chapter 5
the full 3D model was applied to simulate time variability in the inner zone at
1.15 < L <2. The time evolution of phase space density was modelled at energies of
1-10MeV over the four year period 2014-2018, which as demonstrated by the work
of Chapter 2 covers the crucial energy range for solar cell degradation. Results were
repeated for three sets of diffusion coefficients from previous literature, and the
sensitivity of modelling results to the choice of diffusion coefficients was explored.

Some conclusions from this work were:

« the steady state solution of proton phase space density can vary by three
orders of magnitude at y = 20MeV /G at L ~ 1.4 due to uncertainty in radial

diffusion coefficients at this u;

 solar cycle variability was able to drive up to a ~75% increase in 7.5MeV
flux at L = 1.3 over the four year model period, associated with increasing

timescales for collisional loss; and

« the anisotropy of 1-10MeV pitch angle distributions may increase towards
higher L, at odds with previous work showing a tendency for anisotropy to
decrease towards higher L, and this trend is particularly sensitive to the

dependence of Dy on equatorial pitch angle.
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Accurately simulating the effect of radial diffusion remained a key challenge because
the timescales of proton radial diffusion are not well constrained. All three sets of
radial diffusion coefficients applied in Chapter 5 were derived to produce good fits
between models and data, but only at £ > 10MeV. Chapter 5 once again highlights
the need for improved observational capability that would allow tighter constraints
to be placed on diffusive timescales at ~MeV energies.

Finally, these modelling results were applied in Chapter 6 to calculate solar
cell degradation over the same four year period (2014-2018) for an example satel-
lite in 1200km inclined circular orbit. Approximate shielding and degradation
characteristics of the solar cells aboard OneWeb 0063 were derived from previous
literature by applying principles of the NRL method reviewed in Chapter 1. The
predicted rate of non-ionising dose differed significantly between model solutions,
as expected due to the large changes in phase space density noted previously (up
to three orders of magnitude). However, time variability in the rate of non-ionising
dose was successfully modelled, and the methodology used to calculate dose and
solar cell degradation for a given orbit and solar cell technology can be applied in
the future.

The objective of this project has then been partially met, but work is yet
required to model outer zone variability at L > 2, where timescales for variation
decrease until the outer edge of the proton belt at L ~ 3.5. In its current state, the
3D model does not take into account several outer zone processes. Two examples
are: the effect on loss timescales of magnetically-driven changes in plasmaspheric
density and movement of the plasmapause; and losses due to field line curvature
scattering combined with adiabatic expansion of drift orbits near the proton belt
outer edge (Section 1.3.4.2). However, there is an opportunity now to continue this
work: the model, now known as the British Antarctic Survey Proton Belt Model
BAS-PRO, is being further developed under a contract between an academic and
government organisation. This is with the aim to develop an operational space

weather forecasting system.
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Appendix A

Relating Changes in the First and
Second Invariant due to Coulomb

Collisions

The first invariant can be written in terms of the kinetic energy 7' and proton rest

energy Fj like so:

p :y2L3p2 _ y2L3p202
2mo B 2FE, B,
YPLPT(T + 2Ep)
N 2F,B.

(A1)

Differentiating Equation A.1 with respect to time leads to:

dp  y?L? d

dt ~ 2FE,B,. dt

2713
y2L3 [dT kA
— T +2E)) +T—
2F,B, dt< +2E0) + dt

2713
Y213 AT
=2 - " (9T +2F A2
2E0B. ar 2T +2E) (4.2)
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Y2 L3 dT
— “ (T+E
EOBedt( + Eo)

24 dT

= (T+E
T(T + 2Eo) ar T+ &)

[T(T + 2Ey)]
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The second invariant can be written in terms of the kinetic energy 7" and proton

rest energy Fjy like so:

J =2LapY (y)
T(T + 2E,) (A.3)
:2LaY(y)f
Differentiating Equation A.3 with respect to time leads to:
dJ 2LaY(y) d
LA 2LV W) o o gy
dt c dt (A4)
2LaY :
:ac(y) [Tl/Q(i(T +2E)? + (T + 2E0)1/2;T1/21

Expanding the two differential terms inside the square brackets of Equation A.4

leads to:

d 1 d
— (T + 2E,)"/? =5(T+ 2E0)‘1/2&(T + 2E))

dt
- 1 dr (A.5)
2T +2Ep)Y/2 dt
d 1 dT
Y2 _Zp-1/270 A6
dt 2 dt (A.6)

Substituting Equations A.5 and A.6 into Equation A.4, then simplifying, leads to:
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dJ 2LaY(y) T2 dT 1 dr
R [2(T+2E0)1/2dt+2T1/2dt
2LaY (y) dT T2 (T + 2E,)'/?
Tt lQ(T 2B T T ]
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e dt [[T(T + 2E0)]1/2]
B J dT T + E,
CT(T + 2Ey)]Y? dt l[T(T + 2Eo)]1/2]
J - dr
T(T + 2E,) dt

(T + 2E0)1/2]

(A.7)

[T+ Ey

From Equations A.7 and A.2, one can write:

dJ  Jdp

The quantities du/dt and dJ/dt are theoretical. In reality collisional loss is
a statistical phenomenon, and particles starting at the same energy may have
different ranges even in a (macroscopically) homogeneous medium. This variation
is known as range straggling. To describe real world behaviour for radiation belt

particles, Equation A.8 can be phase averaged over a drift orbit like so:

(54

Equation A.9 assumes that the length scale of a drift orbit is large enough to
average over the straggling effect, so that (du/dt) and (d.J/dt) can be determined
for a set of adiabatic coordinates. However, treating this quantity as constant
over a drift orbit is an additional assumption, and requires that friction occurs
slowly compared to the drift time. In Section 5.3.2, this is shown to be true since
the timescales for collisional loss are much higher than one drift orbit for trapped

radiation belt particles.
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Appendix B

Numerical Solver Code
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18

19

20

21

22

23

24

import numpy as np

from numpy import random

random.seed (1)

# Solution method:

# determine beforehand f on relevant neighbouring grid points/ boundaries

# determine beforehand M, R

# Mf = R

# LUf =R, y = Uf

# Ly =R

# Uf =y

# +then find f via back substitution

B oo o oo
# setup

B o oo o
m = 10 #size of the model grid in direction of k indicies

dimensions = 3

n = dimensions*m

w, h = n, n; #width and height of M

# several variables are pre-allocated below, just to make code more portable

7 #pre-allocate matrices L and U:

: mat_L = [[0 for x in range(w)] for y in range(h)]

mat_U = [[0 for x in range(w)] for y in range(h)]

#set diagonal elements of L = 1:
for d in range(0,n):
mat_L[d][d] = 1

#pre-allocate M:

# store A, B, E, and upper diagonals as random numbers:

dia_A = np.random.rand(m) #value between 0 and 1, first element unused
dia_B

# value between 2+(dimensions-1) and 2+(dimensions)

(2+(dimensions))*np.ones(m) + np.random.rand(m)

# larger numbers are to ensure diagonal dominance of M

dia_E = np.random.rand(m) #value between 0 and 1, last element unused
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60

61

62

63

64

7 mat_U[0] [0]

# store each upper diagonal in a list

5 udia_list = []

j for dim in range(dimensions-1)

#s, t, etc.

udia_list.append(np.random.rand(m)) #between O and 1

#pre-allocate yl1, f and R:

yl1 = [0]*m #solve for this first via.

# form the solution vector f

f1 = [0]*m #solve for this second via.

forward-substituion

back-substituion

f_known = np.random.rand((dimensions-1)#*m) #already solved for previously

# form the product vector R

RHS = np.random.rand(m) #between O and 1
R = np.array(list(RHS) + list(f_known))

B oo oo o - +
# solver algorithm
o mm o o +

#first row:

dia_B[0]
mat_U[0][1] dia_E[0]

for dim in range(dimensions-1)

mat_U[0][(1+dim)*m] = udia_list[dim][0]

y1[0] = RHS[0]

#rows until j = m-1:
for j in range(l,m):
mat_L[jI[j-1]

mat_U[j]1[j] = dia_B[j] - mat_L[jl[j-1]

mat_U[jl1[j+1] = dia_E[j]

dia_A[jl/mat_U[j-11[j-1]

* mat_U[j-111[;]

#elements between the upper diagonals and columns at multiplies of m in U:

for dim in range(dimensions-1):

for k in range(1l,j+1):

mat_U[j][(1+dim)*m+j-k] = - mat_L[j]l[j-1]

#upper diagonals in U:

mat_U[j][(1+dim)*m+j]

udia_list[dim][j]
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88

89

90 #forward substitute using L so far derived:

91 y1[j1 = RHS[j] - mat_L[jl[j-1] * y1[j-1]

92 #multiply element wise the first j-1 columns of the current row

93

94

©o

5 #subsequent rows which can be pre-empted:
96 for j in range(m,dimensions*m):

o7 mat_U[jI[j] = 1

98

99

100 #back substitute to solve Uf = y:

101 for i in range(m-1, -1, -1):

102 bb = 0

103

104 #part stored in f_known

105 for j in range (m, n):

106 bb += mat_U[i][jl*f_known[j-m]

107

108 #part stored in f1

109 for j in range (i+1l, m):

110 bb += mat_U[i][jI*£f1[j]

111

112 f1[i] = (y1[i] - bb)/mat_U[i][i]

113

114

115 H=-m - m - - - T T T T T T - -
116 # ::: validation

117 #-- - - - - - - - T oo oo -
118

119 #re—-calculate M from the L, U solution:
120 mat_L = np.array(mat_L)
121 mat_U = np.array(mat_U)

122 mat_M = np.matmul (mat_L, mat_U)

124 #compare the A, B and E diagonals with M re-calculated from the L, U solution:
125 print("Validating tridiagonals via M = LU:")

126 print ("")
127 dia_A_chk
128 dia_B_chk
120 dia_E_chk = np.array([mat_M[i][i+1] for i in range(m-1)1])

np.array ([mat_M[i+1][i] for i in range(m-1)1])

np.array ([mat_M[i]l[i] for i in range(m)])

130 print("dia_A original",dia_A)
131 print ("dia_A check",dia_A_chk)
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132

133

134

135

136

137

138

139

140

141

143

144

146

147

148

149

150

160

161

162

163

164

165

166

167

168

169

170

print (" Error (%):",
print ( n Il)

max (100*(dia_A[1:] - dia_A_chk)/dia_A[1:]))

print ("dia_B original",dia_B)
print("dia_B check",dia_B_chk)

print (" Error (%):",
print ( n n)

max (100x(dia_B - dia_B_chk)/dia_B))

print("dia_E original",dia_E)
print("dia_E check",dia_E_chk)
max (100x(dia_E[:-1] - dia_E_chk)/dia_E[:-1]))

print (" Error (%):",
print ( ] n)

2 print("")

#compare the upper diagonals with M re-calculated from the L,

print ("Validating upper diagonal(s) via M =

- print("")

for dim in range(dimensions-1):

S = udia_list[dim]

Lu:")

U solution:

S_chk = np.array([mat_M[i][i+(dim+1)#*m] for i in range(m)])

print ("upper diagonal #",dim,"original",S)

print ("upper diagonal #",dim,"check",S_chk)

print (" Error (%)
print(" n)
print(" n)

:", max (100*(S - S_chk)

print ("Validating calculation of y via Ly =

print ( n n)

print ("R original",R)

iy = np.array(yl + list(f_known))
7 R_chk = np.matmul (mat_L, y.T)

print ("R check",R_chk)

print (" Error (%):",
print ( n n)
print ( n n)

max (100%(R - R_chk)/R))

print ("Validating calculation of f via Mf =

print ( n n)

f = np.array(f1 + list(f_known))
R_chk = np.matmul (mat_M, £.T)

print ("R original",R)

print ("R check",R_chk)

print (" Error (%):",
print ( n n)

max (100%(R - R_chk)/R))
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