
Game comonads and beyond:
compositional constructions
for logic and algorithms

Adam Peter Connolly

University of Cambridge

Computer Laboratory

St. Catharine’s College

October 2022

This dissertation is submitted for

the degree of Doctor of Philosophy

For Ellie, a chuisle mo chróı.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome

of work done in collaboration except where specifically indicated in the text. I further

state that no substantial part of my thesis has already been submitted, or, is being concur-

rently submitted for any such degree, diploma or other qualification at the University of

Cambridge or any other University or similar institution except as declared in the Preface

and specified in the text.

It does not exceed the prescribed word limit for the relevant Degree Committee.

Game comonads and beyond:
compositional constructions for logic and algorithms

Adam Peter Connolly

Summary

Game comonads represent a rare application of category theoretic methods to the fields of

finite model theory and descriptive complexity. First introduced by Abramsky, Dawar and

Wang in 2017, these new constructions exposed connections between Spoiler-Duplicator

games used in logic, related algorithms for constraint satisfaction and structure isomor-

phism, and well-known parameters such as treewidth and treedepth. The compositional

framework for logical resources emerging from these comonads has proved an important

tool in generalising results from finite model theory and new game comonads have been

invented for a range of different logics and algorithms. However, this framework has pre-

viously been limited by its inability to express logics which are strictly stronger than those

captured by Abramsky, Dawar and Wang’s pebbling comonad, Pk.

In this thesis, we show for the first time how to overcome these limitations by extending

the reach of compositional techniques for logic and algorithms in a number of directions.

Firstly, we deepen our understanding of the comonad Pk, which previously captured the

strongest logic of any game comonad. Doing so, we reveal new connections between the

Kleisli category of Pk and k-variable logics extended with different forms of quantification,

including limited counting quantifiers and unary generalised quantifiers.

Secondly, we show how to construct a new family of game comonads Hn,k which cap-

ture logics extended by generalised quantifiers of all arities. This construction leads to

new variants of Hella’s k-pebble n-bijective game, new structural parameters generalising

treewidth, and new techniques for constructing game comonads.

Finally, we expand the realm of compositional methods in finite model theory beyond

comonads, introducing new constructions on relational structures based on other aspects

of category theory. In the first instance, we show that lifting well-known linear-algebraic

monads on Set to the category of relational structures gives a compositional seman-

tics to linear programming approximations of homomorphism and an elegant framework

for studying these techniques. Furthermore, we use presheaves to give a new semantics

for pebble games and algorithms for constraint satisfaction and structure isomorphism.

Building on analogous work in quantum contextuality, we use a common invariant based

on cohomology to invent efficient algorithms for approximating homomorphism and iso-

morphism and prove that these are far more powerful than those currently captured by

game comonads.

Acknowledgments

I thank my supervisor, Anuj Dawar, for the wonderful years I have spent as his student.

I am grateful for his patience, support and enthusiastic collaboration and this thesis owes

a huge debt to everything he has taught me.

Throughout my doctoral research, I have had the great privilege of working closely with

outstanding scientists and mathematicians. Foremost among them, Samson Abramsky,

has provided guidance and wisdom throughout and I have enjoyed our close collaboration

on the cohomological algorithms behind Chapter 8. The game comonads community has

been a constant source of discussion and inspiration, in particular, Tomáš Jakl, Nihil

Shah, Tom Paine, Yoàv Montacute, Dan Marsden, Amin Karamlou and Luca Reggio.

Standa Živný and Jakub Opršal generously hosted me in Oxford and Vienna, teaching

me all I know about PCSPs, and helping to shape Chapters 7 and 8. I have also benefitted

greatly from the advice of Martin Hyland, Andy Pitts and Glynn Wynskel, and I reserve

special thanks for Thomas Forster and Julian Holstein who encouraged me to start this

PhD in the first place.

I thank EPSRC, the University of Cambridge and St. Catharine’s College without whose

financial support this thesis could not have been produced. The Alan Turing Institute’s

PhD Enrichment Programme was also a fantastic asset to my research and fostered the

work in Chapter 8.

Doing a PhD during a global pandemic presented many challenges and I’m grateful to

my friends and family who tackled these with me. I thank especially Paul and Judith

Howcroft for taking me in during the early days of March 2020.

In a gloomy era of working from home, I had the immense good fortune to share mine

with the brightest of stars: Oliver Rhodes, Oiśın Faust, Ryan Young, Todd Gillespie and

Elizabeth Howcroft. Thank you for keeping the lights on as I finished writing up.

Finally, to my parents, Sandra and Michael, my sister, Meghan and my partner (and chief

proofreader), Ellie. Without you, I would never have come so far — thank you.

v

vi

Contents

1 Introduction 1

1.1 Contributions of this thesis . 3

1.2 Collaborations and previous work . 4

2 Preliminaries and definitions 6

2.1 Mathematical basics and notation . 6

2.2 Finite model theory . 9

2.3 Complexity theory and algorithms . 14

2.4 Cai-Fürer-Immerman constructions . 16

2.5 Category theory . 18

3 A review of game comonads 20

3.1 Motivation for the pebbling comonad . 21

3.1.1 Categories in Finite Model Theory 21

3.1.2 Duplicator Strategies in the Pebble Game 23

3.1.3 Outlines of a comonad . 25

3.2 Pk : the prototypical game comonad . 30

3.2.1 Definition of Pk . 31

3.2.2 Kleisli category of Pk . 33

3.2.3 Eilenberg-Moore category of Pk . 34

3.3 Other game comonads . 36

3.3.1 Ek : the Ehrenfeucht-Fräıssé comonad 37

3.3.2 PRk : the pebble-relation comonad 38

3.3.3 Pn,k : the k pebble n round comonad 40

3.4 Other topics in game comonads . 41

vii

4 Quantifiers in the Kleisli Category 44

4.1 Branch-injective and branch-surjective strategies 45

4.1.1 Branch maps and functional games 46

4.1.2 Functional games and counting quantifiers 48

4.2 Monomorphisms and epimorphisms in K(Pk) 55

4.2.1 Branch-injective 6= monomorphic in K(Pk) 56

4.2.2 P∗k and the Monomorphism Power Theorem 59

5 Kleisli maps and generalised quantifiers 67

5.1 Generalised quantifiers . 67

5.2 Kolaitis and Väänänen’s result in K(Pk) 70

5.3 Hella’s games for generalised quantifiers . 75

5.3.1 Relaxing Bijnk . 76

5.3.2 Generalising Hella’s Theorem . 78

5.3.3 Proof of Theorem 5.17 . 81

5.4 Discord between Hella and Kolaitis-Väänänen 85

5.4.1 Showing that Lk∞(Q1) 6≡ Lk∞(#) . 85

5.4.2 Showing that Lk∞(Q1) ≡ Lk+1
∞ (#) 86

6 Game comonads and generalised quantifiers 90

6.1 Constructing the Hella Comonad . 91

6.1.1 Translating Duplicator strategies 92

6.1.2 Structural quotients and morphism power 95

6.1.3 Definition of Hn,k . 97

6.2 Structure and power of Hn,k . 100

6.2.1 Kleisli maps of Hn,k . 100

6.2.2 Coalgebras of Hn,k . 104

7 Monads for approximating homomorphism 116

7.1 Linear programming relaxations for homomorphism and isomorphism . . . 117

7.2 Linear-algebraic monads . 119

7.2.1 The vector space monad: VS . 120

viii

7.2.2 The distribution monad: DS . 122

7.2.3 Distribution constructions in constraint satisfaction 124

7.3 Kleisli category of DS . 126

7.3.1 Proof of Theorem 7.16 . 128

7.3.2 Algorithms and Kleisli morphisms 130

7.3.3 Isomorphisms in K(DS) . 131

7.4 Algebras for DS . 134

7.4.1 Homomorphisms and polymorphisms 135

7.4.2 Algebras and operations . 137

8 Cohomology for homomorphism and isomorphism 139

8.1 Local methods for homomorphism and isomorphism 140

8.1.1 Local algorithms and forth systems 140

8.1.2 Limitations of local methods . 142

8.2 Presheaves for homomorphism and isomorphism 142

8.2.1 Defining presheaves of local solutions 143

8.2.2 Global sections and full solutions 144

8.2.3 Flasque subpresheaves and local consistency 145

8.3 Cohomology for approximating global structure 146

8.3.1 Presheaf cohomology and quantum contextuality 147

8.3.2 Z-local sections and Z-extendability 148

8.3.3 Cohomological algorithms for homomorphism and isomorphism . . 149

8.4 The expressive power of cohomology . 154

8.4.1 Cohomological k-consistency and ring CSPs 154

8.4.2 Working with logical interpretations 155

8.4.3 Cohomological k-Weisfeiler-Leman and CFI constructions 157

8.4.4 Proof of Theorem 8.15 . 158

9 Conclusion and future directions 162

9.1 Summary of main results and insights . 163

9.2 Open questions and future work . 164

Bibliography 168

Chapter 1

Introduction

Mathematical logic is sometimes regarded as arcane and obscure by mathematicians (not

to mention members of the general public) but it has long been recognised as an essential

tool in theoretical computer science. Reflecting on logic’s “unusual effectiveness” in the

field at the end of the last century, Phokion Kolaitis [56] claimed that

. . . logic has permeated through computer science during the past thirty years

much more than it has through mathematics during the past one hundred years.

As evidence, his co-authors in that paper lay out examples of foundational contributions

of logical methods to topics as disparate as database theory, computational complexity,

semantics of programming languages and automated verification. The “effectiveness” is

undeniable. However, the field of logic in computer science is a divided one, dominated

by two main traditions which have different tools and motivations and share little by way

of interaction. The first, the logic and algorithms tradition, uses logic as a description

language. It includes applying the mathematics of finite model theory to the relationship

between expressing properties of finite structures and computing them. The second,

the logic and semantics tradition, uses logic as a language for inference. It includes

applying category theory and categorical logic to understand compositional structures in

programming languages and computation.

The discovery of game comonads by Abramsky, Dawar and Wang [6] in 2017 began an

exciting new dialogue between these different logical traditions in theoretical computer

science. Their construction, the pebbling comonad, showed how pebble games used in the

logic and algorithms tradition to study the expressive power of k-variable logics, and the

local consistency and Weisfeiler-Leman algorithms, could be recreated using comonads

on the category of relational structures. Not only did this construction provide a com-

positional semantics for pebble games and their associated algorithms, it also unearthed

new connections between different variations of the games and the well-known structural

parameter treewidth. Further connections have since flourished under the Structure and

1

2

Power programme launched by Abramsky and Shah [11] in 2018. New game comonads

have been discovered which capture other model-comparison games and structural param-

eters, and have allowed a general theory to emerge. A full introduction to this new field of

research is provided in Chapter 3. While this theory has created new bridges between the

model-theoretic and categorical traditions, there are many unexplored directions where

the applicability of these methods is untested.

This thesis expands this new field by increasing the strength of the underlying logics

and algorithms which can be captured by compositional semantics. In [6], Abramsky,

Dawar and Wang show that the morphisms and isomorphisms of the Kleisli category of

the pebbling comonad capture important approximations to homomorphisms and isomor-

phisms of relational structures. These approximations have well-known characterisations

in terms of both logic and algorithms. In terms of logics, the Kleisli morphisms are re-

lated to existential-positive infinitary first-order logic with k variables, ∃+Lk∞ and the

Kleisli isomorphisms to infinitary first-order logic with k variables and counting quanti-

fiers, Ck∞. These logics are important in descriptive complexity theory for proving upper

bounds on the expressiveness of extensions of first-order logic with powers of recursion

and simple counting, namely, DATALOG [67] and inflationary fixpoint logic with counting,

FPC. In terms of algorithms, the Kleisli morphisms give a semantics to local consistency

algorithms in constraint satisfaction while Kleisli isomorphisms capture the Weisfeiler-

Leman algorithm for structure isomorphism. These connections are fascinating and we

spend some of this thesis developing them. However, the last 30 years has seen advances

in both descriptive complexity and algorithms for constraint satisfaction and structure

isomorphism which greatly expand on the power of the logics and algorithms captured by

the pebbling comonad. Providing a compositional semantics to these advances motivates

this thesis.

Descriptive complexity theory examines the relationship between the logical resources

needed to express properties of finite structures and the computational resources needed

to compute them. This field of research began, in essence, with Fagin’s Theorem [43]

which showed that the properties expressible in existential second-order logic (∃SO) are

exactly those decidable in non-deterministic polynomial time (NPTIME). This result raised

an interesting question: if ∃SO = NPTIME, is there a logic which captures polynomial time

in the same way? This question, which is still the central open problem in descriptive

complexity theory, began with Chandra and Harel [29] and was formulated precisely by

Gurevich [54]. The logic FPC, which is bounded by the infinitary counting logic of the

pebbling comonad, is an important part of this history. However, in 1992, Cai, Fürer and

Immerman [27] demonstrated a PTIME property on graphs which cannot be defined in

this logic. Since this result, some in the field have focused on the question of what power

should be added to FPC to get closer to capturing PTIME. This search led to the study

of fixpoint logics extended with generalised quantifiers, pioneered by Hella and Kolaitis

and Väänänen. A result of Dawar [32] showed that if there is a logic for PTIME, it can be

CHAPTER 1. INTRODUCTION 3

described as FPC extended by a vectorized family of generalised quantifiers. The question

of which family would suffice led to the study of generalised quantifiers inspired by linear-

algebra, as well as the invention of rank logic and linear-algebraic logic. These were top

candidates for capturing PTIME until 2021 when they were shown by Lichter [72, 36] to

be insufficient. This thesis investigates whether we can use game comonads or other

compositional methods to reason about these more powerful logics.

Progress in descriptive complexity theory also has close links to the study of algorithms

for constraint satisfaction and structure isomorphism. Developments in these fields serve

as further motivation to push compositional methods beyond the limits of the pebbling

comonad. For structure isomorphism, the relationship between FPC and the well-known

Weisfeiler-Leman isomorphism test is established by Cai, Fürer and Immerman [27], who

use the inexpressibility result mentioned above to show that Weisfeiler-Leman is not strong

enough to decide isomorphism of structures. Babai’s recent breakthrough [15] in finding

a quasipolynomial-time algorithm for graph isomorphism builds on a tradition of refining

such tests using algebraic methods. This tradition began with Weisfeiler and Leman’s

original paper [90] and incorporates methods from group theory developed in the 1980s in

the work of Luks, Babai and others [75, 16]. For constraint satisfaction problems, recent

progress has seen equally exciting breakthroughs. Bulatov, Jeavons and Krokhin [24] pi-

oneered the algebraic approach to these problems, establishing deep connections between

the computational complexity of CSPs over a certain template structure and the algebraic

properties of the template’s polymorphisms. This approach culminated with the resolu-

tion of the Feder-Vardi Dichotomy Conjecture [44] by Bulatov [25] and Zhuk [91], which

classified all “islands of tractability” for constraint satisfaction problems in the process.

The local consistency algorithms for CSP captured by the pebbling comonad represents

just one of these “islands”, in particular solving CSP on templates of bounded width. It

is thus interesting to investigate whether the compositional methods suggested by the

game comonads project can by applied beyond this and whether doing so reveals new

connections between algorithms for constraint satisfaction and isomorphism.

1.1 Contributions of this thesis

This thesis represents a novel critique of game comonads as a tool for logic and algo-

rithms. It explores for the first time the application of these methods to approximations

to homomorphism and isomorphism which go beyond the realm of the logic FPC and

the local algorithms of k-consistency and k-Weisfeiler-Leman. Chapter 2 sets out pre-

liminary definitions and notation. Chapter 3 provides a new motivation for the study

of this subject and a history of the field from the perspective of the descriptive power

of the logics. The first major technical contributions come in Chapters 4 and 5 which

deepen our understanding of the relationship between the pebbling comonad and logical

4 1.2. COLLABORATIONS AND PREVIOUS WORK

quantification. This is done firstly by identifying logical fragments corresponding to maps

which are intermediate between morphisms and isomorphisms of the Kleisli category of

the pebbling comonad and, secondly, by expanding a result of Kolaitis and Väänänen to

recast these logics in terms of unary generalised quantifiers. The second major contribu-

tion, presented in Chapter 6, is the construction of a new family of game comonads, Hn,k,

for logics expanded by generalised quantifiers of all arities, capturing a very powerful class

of logics with historical significance in descriptive complexity theory. In the process of

doing so, we invent new games for different generalised quantifier logics and discover a

new natural form of structural decomposition which is related to these games by the Hn,k

comonad.

This thesis does not, however, limit itself solely to comonadic constructions in the style

of Abramsky, Dawar and Wang. The contribution of Chapters 7 and 8 is to go beyond

comonads, breaking new and exciting ground by applying compositional methods to some

other natural approximations of homomorphism and isomorphism which arise from logic

and algorithms. In Chapter 7, we show that linear programming approximations to ho-

momorphism, which are captured by no known game comonads, are naturally described

by monads on the category of relational structures. We also develop some preliminary

lines of investigation towards a general theory here which may prove to be dual to that

of game comonads. In Chapter 8, we make an ambitious connection between the theory

of presheaves and approximations to homomorphism and isomorphism. In doing so we

draw interesting parallels with the use of these methods in quantum contextuality and,

borrowing techniques from that field, we develop new cohomological algorithms for the

homomorphism and isomorphism problems. These combine the power of local approxi-

mations captured by the comonads and linear-algebraic approximations captured by the

monads of Chapter 7. We show that these methods are powerful enough to distinguish

state-of-the-art counterexamples in descriptive complexity and we use this to lay the

foundations for interesting future work.

1.2 Collaborations and previous work

We conclude this introduction by acknowledging the parts of this thesis which have ap-

peared in previous publications or result from collaboration with others. Chapter 3 is an

attempt at an original motivation and (selective) history of the game comonads project.

As such, it is influenced by other reviews of the topic by Abramsky [2] and Dawar [33],

and conversations with other devotees of game comonads. The language of Structure and

Power used throughout the thesis is borrowed from Abramsky and Shah [11]. The re-

lationship between game comonads and generalised quantifiers emerged from joint work

with Anuj Dawar which was first presented at the 29th EACSL Annual Conference on

Computer Science Logic [80]. An extended version of this work [79] has been submitted to

CHAPTER 1. INTRODUCTION 5

the journal Logical Methods in Computer Science and contains the principal results and

constructions of Chapter 6, along with the definitions of the modified Hella games and the

Generalised Hella’s Theorem of Chapter 5. The approach to homomorphism and isomor-

phism of relational structures via presheaves and cohomology given in Chapter 8 was first

presented at the 47th International Symposium on Mathematical Foundations of Com-

puter Science [78]. This work benefitted hugely from the guidance and encouragement of

Anuj Dawar and Samson Abramsky. The relationship between flasque subpresheaves and

k-consistency in Section 8.2.3 is entirely due to Samson Abramsky, appearing in his tech-

nical report on an earlier version of this work [1]. It is reproduced here with permission.

Finally, it is noted that my previous publications use my surname in the leagan Gaelach;

they are signed Ó Conghaile instead of Connolly.

Chapter 2

Preliminaries and definitions

In this chapter, we fix notation that is used throughout the thesis, introduce some common

prerequisite definitions and collect other material that is not original to this thesis and

would otherwise break the flow of the main research chapters. As such, it is intended to

be referred back to as indicated in Chapters 3 to 8 rather than being read through as a

standalone chapter.

2.1 Mathematical basics and notation

This section introduces some standard mathematical notation and definitions from set

theory, combinatorics and algebra.

Sets and functions For every positive integer n ∈ Z, we write [n] for the set {1, . . . , n}.
Let A and B be sets. The set A× B is the set of all pairs (a, b) where a ∈ A and b ∈ B.

We write f : A→ B for a function from A to B. A function is injective if for any a, a′ ∈ A
f(a) = f(a′) =⇒ a = a′, surjective if for any b ∈ B there is some a ∈ A with f(a) = b,

and bijective if it is both injective and surjective. We sometimes represent a function f

as the subset of A×B consisting of all pairs (a, f(a)). A partial function, p : A ⇀ B is a

set of pairs p ⊂ A × B such that for each a ∈ A there is at most 1 pair (a, b) ∈ p. The

domain of p is the set dom(p) = {a | ∃b s.t. (a, b) ∈ p}.

Relations and quotients For any set A, a binary relation on A is subset R ⊂ A2. For

any such binary relation we abbreviate the statement (a, b) ∈ R using the infix notation

aRb. A binary relation R is said to be reflexive if, for all a ∈ A, aRa. R is said to be

symmetric if for all a, b ∈ A,

aRb =⇒ bRa.

6

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 7

R is said to be transitive if for any a, b, c ∈ A,

aRb and bRc =⇒ aRc.

For any binary relation R ∈ A2, we define the reflexive, symmetric or transitive closure

of R to be the smallest relation R ⊃ R that is (respectively) reflexive, symmetric or

transitive. That such a set exists and is unique is an easy exercise. We call a binary

relation R an equivalence relation if it is reflexive, symmetric and transitive. For any

equivalence relation ∼ on a set A and any element a ∈ A, we define the equivalence class

of a as the set [a] = {b | a ∼ b}. By the definition of an equivalence relation, these

classes have the property that a ∼ b ⇐⇒ [a] = [b] and if a 6∼ b then the sets [a] and [b]

are disjoint. Given an equivalence relation ∼ on A, we define the quotient of A by ∼ as

the set A/∼:= {[a] | a ∈ A}. The quotient map for ∼ is the function q∼ : A→ A/∼ is

the function defined by f(a) := [a] for each a ∈ A.

Orders and trees Let A be a set and ≤ be a binary relation on A. ≤ is a partial order

on A if it is reflexive and transitive. ≤ is said to be a linear order on A if additionally it

is total, meaning that for any a, b ∈ A either a ≤ b or b ≤ a. For any a, b ∈ A if a ≤ b and

a 6= b we write a < b. A tree T is a set with a partial order ≤ such that for all t ∈ T , the

set {x | x ≤ t} is linearly ordered by ≤ and such that there is an element r ∈ T called

the root such that r ≤ t for all t ∈ T . If t < t′ in T and there is no x with t < x < t′, we

call t′ a child of t and t the parent of t′.

Lists and tuples Let A be a set. We write (finite) lists of elements in A between square

brackets as [a1, . . . , an]. We write ε for the empty list. A∗ denotes the set of all lists of

elements of A, including ε, while A+ denotes the set of all non-empty lists in A∗. If s ∈ A∗

is a list then we write |s| for the length of s. For any whole number 1 ≤ m ≤ |s|, we write

s[m] for the mth element of the list s and s[: m] for the prefix

[s[1], . . . , s[m]]

of s. For two lists s, t ∈ A∗ of lengths m and l we write s; t for the concatenation of s and

t, i.e. the list

[s[1], . . . s[m], t[1], . . . , t[l]].

For any element a ∈ A and list s ∈ A∗, we write s; a as shorthand for the concatenation

s; [a].

Tuples are similar to lists but treated slightly differently in the text. For any set A and

non-negative integer n, the set An is the set of all tuples (a1, . . . , an) where ai ∈ A for each

1 ≤ i ≤ n. We write tuples using boldface, for example a = (a1, . . . , an) ∈ An. Similarly

to lists, for 1 ≤ i ≤ n we write a[i] for the ith element of the tuple a ∈ An. This is often

abbreviated by dropping the boldface and using a subscript, i.e. ai.

8 2.1. MATHEMATICAL BASICS AND NOTATION

Bipartite graphs While we largely study graphs as an example of a class of relational

structures, see Section 2.2, we recall here some notation and results about the classical

theory of bipartite graphs. A bipartite graph G consists of two disjoint sets of vertices A

and B and a subset E ⊂ A× B which we call the set of edges of G, saying that there is

an edge between vertices a ∈ A and b ∈ B if (a, b) ∈ E. We write for any a ∈ A we define

the neighbourhood of a as

N (a) := {b | (a, b) ∈ E}

and dually, for any b ∈ B, we write N (b) for the neighbourhood of b. For any subset S of

either A or B, we write N (S) for the union
⋃
x∈SN (x). We call a subset of edges M ⊂ E

a matching if every vertex of G appears in at most one pair (a, b) ∈M . A matching in G
is said to be total on A, if there each vertex a ∈ A appears in exactly one edge of M and

define total on B symmetrically. We say that a matching in G is perfect if it is total on

both A and B.

Hall’s marriage theorem, stated originally for finding unique representatives of sets in some

collection rather than matchings in graphs [55], gives important equivalent conditions for

the existence of different matchings in a bipartite graph. We state it here for bipartite

graphs.

Theorem 2.1 (Hall’s Marriage Theorem [55]). For any bipartite graph G on sets A and

B we have the following equivalences:

• G contains a matching which is total on A if, and only if, for every subset S ⊂ A,

|A| ≤ |N (A)|,

• G contains a matching which is total on B if, and only if, for every subset S ⊂ B,

|B| ≤ |N (B)|,

• G contains a total matching if, and only if, both of the previous two conditions hold.

Algebraic structures The algebraic structures used in this thesis are standard from

any introductory undergraduate course on algebra. An algebraic structure A is given as

a set A equipped with operations, i.e. functions of the type An → A for n ≥ 0, which

satisfy certain axioms. Nullary operations of the type A0 → A are called constants. In

this style we make the following definitions.

A monoid M is a set M with a constant 1 ∈M (called the identity) and a binary operation

· : M2 →M (called multiplication) such that · is associative, meaning that

∀a, b, c ∈M, a · (b · c) = (a · b) · c

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 9

and 1 is the identity of · meaning that

∀a ∈M, a · 1 = 1 · a = a.

A monoid M is commutative if

∀a, b ∈M, a · b = b · a.

A group G is a monoid such that every element g ∈ G has an inverse, meaning that

∀g ∈ G ∃h ∈ G, g · h = h · g = 1.

If a group is commutative we sometimes say that it is abelian. In this case we write the

constant as 0 and the multiplication as +.

A semiring S is a set S with constants 0S and 1S and binary operations +S and ·S such

that (S, 0S,+S) is a commutative monoid, (S, 1S, ·S) is a monoid and ·S distributes over

+S, meaning that

∀a, b, c ∈ S, a ·S (b+S c) = (a ·S b) +S (a ·S c).

A ring R is a semiring such that (S, 0S,+S) is an abelian group. A ring is commutative if

·S is commutative. A field F is a ring such that 0S 6= 1S, the set S \ {0S} is closed under

·S, meaning that

∀a, b ∈ S \ {0S}, a ·S b ∈ S \ {0S}

and (S \ {0S}, 1S, ·S) is a commutative group.

For a semiring S, a left S-semimodule M is an abelian group where additionally, for each

s ∈ S, there is a unary operation, called scalar multiplication by s which sends any a ∈M
to s ·m, such that the following hold for all s, r ∈ S and a, b ∈M

s · (a+ b) = (s · a) + (s · b)
(s+S r) · a = (s · a) + (r · a)

r · (s · a) = (r ·S s) · a
1S · a = a.

If S is a ring we say M is a left S-module. If S is a field we say M is a vector space over S.

Note that the use of the word left in these definitions refers to the third equation above

which state that composing multiplication of scalars corresponds to multiplication on the

left in S. When S is commutative we no longer need the distinction.

2.2 Finite model theory

Finite model theory is the extensively studied mathematical theory of how finite objects

relate to the logical sentences they satisfy. Descriptive complexity is one of the key twen-

tieth century applications of this theory in computer science. It relates the expressive

10 2.2. FINITE MODEL THEORY

power of the logical languages needed to describe a class of finite objects with the com-

putational power needed to recognise it. These fields provide both important influence

and motivation to this thesis. This section recalls only the most essential definitions for

the material to come but an interested reader is referred to the textbook treatments of

Libkin [71] and Immerman [59] for much more comprehensive discussions of finite model

theory and descriptive complexity respectively.

Finite relational structures A (finite) relational signature σ is a finite set of symbols

σ = {R1, . . . Rm} where each symbol R ∈ σ has an associated non-negative integer ar(R)

called the arity of R. A relational structure A over the signature σ is a tuple

〈A,RA1 , . . . , RAm〉

where A is the underlying set of A and for each R ∈ σ RA ⊂ Aar(R) is a set of tuples of

length ar(R), which we call the related tuples of R in A. Throughout this thesis, we use

the cursive letter (e.g. A) for the whole relational structure and the plain letter (e.g. A)

for the underlying set. A relational structure A is said to be finite if A is a finite set.

Homomorphisms and isomorphisms Let A and B be two relational structures over

a common signature σ. For any function f : A→ B between the underlying sets of these

and any symbol R ∈ σ with ar(R) = n, we say that f preserves the relation R if

∀a = (a1, . . . , an) ∈ An, a ∈ RA =⇒ (f(a1), . . . , f(an)) ∈ RB.

We say that f reflects the relation R if the condition above holds with the implication

reversed. We call f a homomorphism if it preserves every relation R ∈ σ. When such

an f exists we write A → B. If f is an injection, surjection or bijection we call it an

injective, surjective or bijective homomorphism respectively. A bijective homomorphism

which additionally reflects every relation R ∈ σ is called an isomorphism. If there is an

isomorphism between A and B we write A ∼= B. A partial function p ⊂ A × B which

preserves all relations R ∈ σ is called a partial homomorphism. A partial homomorphism

which is injective and also reflects all relations R ∈ σ is called a partial isomorphism.

Congruences and quotient structures Let A be a relational structure over some

signature σ and let ∼ be an equivalence relation on the underlying set A. For any pair of

tuples a = (a1, . . . an) and a′ = (a′1, . . . a
′
n) ∈ An such that for each 1 ≤ i ≤ n ai ∼ a′i, we

write a ∼ a′. We say that ∼ is a congruence on A if for every relation R ∈ σ of arity n

and any pair of tuples a, a′ ∈ An such that a ∼ a′, we have that

(a1, . . . , an) ∈ RA ⇐⇒ (a′1, . . . , a
′
n) ∈ RA.

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 11

For any relational structure A over the signature σ and congruence ∼ on A, we define the

quotient structure of A by ∼ as the structure A/∼ over the signature σ with underlying

set A/∼ and relations RA/∼ defined as the set

{([a1], . . . , [an]) | (a1, . . . an) ∈ RA},

for each R ∈ σ. It can be proven that for any such congruence this is the unique relational

structure on the set A/∼ such that the quotient map q∼ : A→ A/∼ both preserves and

reflects each relation R ∈ σ.

It is not hard to see that the set RA/∼ given above is only well-defined when ∼ is a

congruence. If ∼ is not a congruence, there will not in general be any relational structure

on A/∼ such that q∼ both preserves and reflects each R ∈ σ. In this case, in this thesis

we define the quotient structure A/∼ to be the “minimal” structure on A/∼ such that

q∼ both preserves each R ∈ σ. This is done by defining RA/∼ for each R ∈ σ with arity n

to be the set

{([a1], . . . [an]) | ∃a′ ∈ RA s.t. a′ ∼ (a1, . . . an)}.

Tree decompositions and treewidth The notions of treewidth and the related tree

decompositions of graphs and more generally relational structures have been rediscovered

several times in graph theory and finite model theory. Perhaps most notably they are

used as an important part of Robertson and Seymour’s famous programme on graph

minors [86]. For the definitions in this section we rely on Grohe’s book [50]. In particular,

we define a tree decomposition, following Definition 4.1.1 of [50] as follows.

Definition 2.2. A tree decomposition of a (finite) σ-structure A is a pair (T,B) with T

a tree and B : T → 2A such that:

1. For every a ∈ A the set {t | a ∈ B(t)} induces a subtree of T ; and

2. for all relational symbols R ∈ σ and related tuples a ∈ RA, there exists a node t ∈ T
such that a ⊂ B(t).

In any such tree decomposition, for every t ∈ T we call the set B(t) the bag at t. We

say that a tree decomposition has width n if the size of the largest bag is n, i.e. n =

maxt∈T |B(t)|−1. The treewidth of a structure A, is the smallest m for which there exists

a tree decomposition of A of width m. We write this tw(A) for this parameter. In a

similar manner, we can define the notion of a path decomposition as a tree decomposition

where the tree T is in fact a linearly ordered set P . The parameter pathwidth is then the

smallest m for which there exists a path decomposition of width m.

An alternative game-theoretic characterisation of treewidth is given by the (rather en-

tertaining) cops-and-robbers game on the structure A, which was first defined by Aigner

12 2.2. FINITE MODEL THEORY

and Fromme [12]. The game involves two players, the robber and the cops, taking turns

to move around the structure. The cops try to trap the robber while the robber seeks

to evade capture. The difficulty of the game (for the cops) is measured by the resources

(number of cops, improved movement capabilities etc.) required by the cops to succeed

in their aim. Intuitively, the more densely connected the structure A is the more difficult

the robber is to apprehend on A. For example, it is known that a structure has treewidth

less than k if, and only if k cops “with helicopters” can win the cops-and-robbers game on

A. A good survey of the many variantions of this game (for the case of graphs) is given

in the excellent textbook by Bonato and Nowakowski [21].

Logic In the most abstract sense, we take a logic L to be function which assigns to

each relational structure σ a collection L[σ] of formulas φ(x) with some list x of free

variables and a semantics relation |=L[σ] which defines for each σ-structure A and choice

of parameters a ∈ An whether A, a satisfies any given formula φ(x) with |x| ≤ n. If

some choice A, a satisfies a formula φ(x) in L[σ] we write A, a |=L[σ] φ(x), we drop the

subscript when the logic L is clear from context.

For logics L and L′, we say that formulas φ(x) ∈ L[σ] and φ′(x) ∈ L′[σ] are equivalent if

for every σ-structure A and tuple a we have

A, a |=L[σ] φ(x) ⇐⇒ A, a |=L′[σ] φ
′(x).

We say that L and L′ are equivalent of for every signature σ and every φ ∈ L there is

an equivalent formula φ ∈ L′[σ] and, similarly, for every ψ ∈ L′[σ] there is an equivalent

formula ψ ∈ L[σ]. If this is the case, we write L ≡ L′.

Fix a logic L and signature σ. For any two σ-structures A and B and tuples a ∈ Am and

b ∈ Bm, we write A, aVL B,b if for every formula φ(x) ∈ L[σ] we have

A, a |= φ(x) =⇒ B,b |= φ(x).

We say that A and B are equivalent over L (or L-equivalent) if we have both A VL B
and B VL A.

We assume a standard syntax and semantics for first-order logic (as in [71]), which we

denote FO. We write L∞ for the infinitary logic that is obtained from FO by allowing

conjunctions and disjunctions over arbitrary sets of formulas. We write ∃+L∞ and ∃+FO

for the restriction of L∞ and FO to existential positive formulas, i.e. those without nega-

tions or universal quantifiers. We use natural number superscripts to denote restrictions

of the logic to a fixed number of variables. So, in particular FOk,Lk∞ and ∃+Lk∞ denote

the k-variable fragments of FO, L∞ and ∃+L∞ respectively. Similarly, we use subscripts

on the names of the logic to denote the fragments limited to a fixed nesting depth of

quantifiers. Thus, FOr,L∞,r and ∃+L∞,r denote the fragments of FO, L∞ and ∃+L∞
with quantifier depth at most r. We write C to denote the extension of L∞ where we are

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 13

allowed quantifiers ∃≥i for each natural number i. The quantifier is to be read as “there

exists at least i elements. . . ”. We are mainly interested in the k-variable fragments of

this logic Ck. When we are interested in emphasising that C represents the addition of

counting quantifiers to L∞ we write it as L∞(#).

Spoiler-Duplicator games Let A and B be relational structures over a common sig-

nature. We saw earlier in this section that the homomorphism and isomorphism relations

A → B and A ∼= B are witnessed by functions which preserve or preserve and reflect the

relations of σ. In finite model theory, these relations are often too strong and we often

prefer to consider the relations VL and ≡L over some logic L. This raises the question

of how we witness these relations in a convenient way. Spoiler-Duplicator games are an

important way to do this which were introduced by Ehrenfeucht [42] (after earlier work

of Roland Fräıssé) to witness the relation ≡FO. The original game is defined as follows.

Definition 2.3. For relational structures A and B over the same signature, the back-

and-forth Ehrenfeucht-Fräıssé game between A and B, written EF(A,B) is played by two

players, Spoiler and Duplicator, as follows.

At the start of each round the position is given by a partial isomorphism p ⊂ A × B.

Spoiler begins by choosing one of the structures A or B and selecting an element from that

structure. Duplicator responds by choosing an element from the other structure. Writing

(a, b) for the pair of chosen elements, the new position is given by p′ = p ∪ {(a, b)}. If

p′ fails to be a partial isomorphism then the game ends and we say that Spoiler has won.

Otherwise the game continues to another round. We say that Duplicator wins if she can

prevent Spoiler from winning.

We write EFn(A,B) for the version of this game which terminates after n rounds.

We say that Duplicator has a winning strategy for the game EFn(A,B) if she can play in

such a way that she always wins, regardless of how Spoiler plays. Ehrenfeucht’s original

paper proves the following theorem which is a model for all other Spoiler-Duplicator

games.

Theorem 2.4 (Ehrenfeucht-Fräıssé Theorem). For any two relational structures A, B,

Duplicator has a winning strategy for the game EFn(A,B) with the starting position p =

{(a1, b1), . . . , (am, bm)} if and only if

A, a1, . . . am ≡FOn B, b1, . . . bm.

There are many variants of the game EF in use throughout finite model theory which

capture other other logical relations in the same manner as Theorem 2.4. We briefly define

the following three to give a flavour of the possible variations.

14 2.3. COMPLEXITY THEORY AND ALGORITHMS

The one-way Ehrenfeucht-Fräıssé game from A to B, written ∃EF(A,B) is played as

before by Spoiler and Duplicator on the structures A and B. In this game, the po-

sition at the start of each round is only required to be a partial homomorphism and

Spoiler can only play on the structure A. Spoiler wins if the position at the end of the

round fails to be a partial homomorphism. There is an analogous result to Theorem 2.4

which states that Duplicator has a winning strategy for this game with starting position

{(a1, b1), . . . , (am, bm)} if, and only if, A, a1, . . . am V∃+FOn B, b1, . . . bm.

The k-pebble bijection game between A and B, written Bijk(A,B), is played by Spoiler and

Duplicator on the structures A and B and was defined for example by Immerman [59] after

a game of Hella. In this game, the position p at the start of each round is required to be a

partial isomorphism of size at most k. At the start of each round, if the position has size

k, Spoiler must choose some pair to remove from p to give a new position p′. Duplicator

then provides a bijection f : A→ B and Spoiler chooses an element a ∈ A. The position

at the end of the round is then given by p′′ = p′ ∪{(a, f(a))} and Spoiler wins if this fails

to be a partial isomorphism. The analogous result to Theorem 2.4 says that Duplicator

has a winning strategy for this game with starting position {(a1, b1), . . . , (am, bm)} if, and

only if, A, a1, . . . am ≡Ck B, b1, . . . bm.

The k-pebble n-bijective game between A and B, written Bijnk(A,B), is played by Spoiler

and Duplicator on the structures A and B and was defined by Hella [58]. In this game,

the position p at the start of each round is required to be a partial isomorphism of size at

most k. At the start of each round, Duplicator provides a bijection f : A→ B and Spoiler

chooses subsets p′ ⊂ p and S ⊂ A such that |S| ≤ n and |S| + |p′| ≤ k. The position at

the end of the round is then given by p′′ = p′∪{(a, f(a))}a∈S and Spoiler wins if this fails

to be a partial isomorphism. The analogous result to Theorem 2.4 says that Duplicator

has a winning strategy for this game with starting position {(a1, b1), . . . , (am, bm)} if, and

only if, A, a1, . . . am and B, b1, . . . bm are equivalent over k-variable infinitary first order

logic extended by all generalised quantifiers of arity n which we define in Chapter 5.

2.3 Complexity theory and algorithms

Computational complexity theory studies the amount of resources (e.g. time, space, quan-

tum entanglement) required to perform computations. Algorithms are step-by-step meth-

ods of solving computational problems which use a certain amount of resources. For a

full background on complexity theory and its relationship to logic we refer the reader to

Immerman’s textbook treatment [59]

Complexity classes We reference several complexity classes throughout this thesis.

PTIME is the class of all sets S ⊂ {0, 1}∗ whose membership is decidable using a polynomial-

time deterministic Turning machine, i.e. a machine T for which there is some k for which

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 15

T terminates after O(nk) deterministic steps on inputs of size n. Quasi-polynomial time,

written QuasiP, is the class of sets decidable on deterministic Turing machines which ter-

minate after 2O((log(n))c) steps on inputs of length n for some fixed positive real number c.

NPTIME is the class of decidable using a polynomial-time non-deterministic Turning ma-

chine. A (polynomial-time) reduction from one set S ⊂ {0, 1}∗ to another set S ′ ⊂ {0, 1}∗

is a polynomial-time deterministic Turing machine for which, given any input x, the out-

put T (x) is in S if, and only if, x ∈ S ′. We say that a decision problem S is NP-hard if

for any problem S ′ in NPTIME there is a polynomial-time reduction to S. A problem S is

NP-complete if it is both in NPTIME and NP-hard.

Descriptive complexity theory Descriptive complexity theory attempts to relate the

classes of relational structures definable in certain logics to the computational complexity

of these classes. To assign a computational complexity (in the sense of the last paragraph)

to a class of relational structures, we need a way of encoding relational structures as strings

from the set {0, 1}∗. A standard encoding is given in Definition 2.1 of [59]. We say that a

logic L defines a class of relational structures K over the signature σ if there is a formula

φK ∈ L[σ] such that for every σ-structure A, A ∈ K ⇐⇒ A |= φK . We say that a logic,

L, captures a complexity class C if a class of relational structures K is defined by L if,

and only if, K is decidable in C. The foundational result in descriptive complexity theory

is due to Fagin [43] and states that existential second-order logic ∃SO captures NPTIME.

A logic for PTIME? This raises the question of whether there is a similar logic for PTIME.

While Gurevich famously conjectured [54] that no such logic exists, there have been several

candidate logics for PTIME throughout the history of descriptive complexity theory. Two

important examples referenced in this thesis are fixed-point logic with counting and rank

logic. Fixed-point logic with counting (written FPC) is first-order logic extended with

operators for inflationary fixed-points and counting, for example see [45]. Rank logic is

first-order logic extended with operators for inflationary fixed-points and computing ranks

of matrices over finite fields, see [82]. Each has since been proven not to capture PTIME,

for FPC see Cai, Fürer and Immerman [27], for rank logic see Lichter [72].

CSP and structure isomorphism Assuming a fixed relational signature σ, we write

CSP for the set of all pairs of σ-structures (A,B) such that there is a homomorphism

witnessing A → B. We use CSP (B) to denote the set of relational structures A such

that (A,B) ∈ CSP . We also use CSP and CSP (B) to denote the decision problem on

these sets. For general B, CSP (B) is well-known to be NP-complete. However for certain

structures B the problem is in PTIME. Indeed, the Bulatov-Zhuk Dichotomy Theorem

(formerly the Feder-Vardi Dichotomy Conjecture) states that for any B CSP (B) is either

NP-complete or it is PTIME. Working out efficient algorithms which decide CSP (B) for

16 2.4. CAI-FÜRER-IMMERMAN CONSTRUCTIONS

larger and larger classes of B was an active area of research which culminated in Bulatov

and Zhuk’s exhaustive classes of algorithms [25, 91].

Similarly, we write SI for the set of all pairs of σ-structures (A,B) such that there is an

isomorphism witnessing A ∼= B. The decision problem for this set is also thought not

to be in PTIME however there are no general hardness results known for this. The best

known algorithm (in the case where σ is the signature of graphs) is Babai’s[15] which is

in QuasiP.

2.4 Cai-Fürer-Immerman constructions

In Chapter 8, we make extensive use of the Cai-Fürer-Immerman (CFI) construction,

which originally was used to prove that FPC does not capture PTIME (see Theorem 2.6)

and has since appeared in many different guises in descriptive complexity theory. We

define a version of this here and state the main known results about it.

Following Lichter[72], we define the general CFI construction CFIq(G, g) for q a prime

power, G = (G,<) an ordered undirected graph and g a function from the edge set

of G to Zq. The idea is that the construction encodes a system of linear equations

over Zq into G while the function g “twists” these equations in a certain way. For CFI

structures, CFIq(G, g) the property
∑
g = 0 is sometimes called the CFI property. The

following well-known fact (see [82], for example) shows that this property is closed under

isomorphisms and is useful in our later arguments.

Fact 2.5. For any prime power, q, ordered graph G, and functions g, h from the edges of

G to Zq,
CFIq(G, g) ∼= CFIq(G, h) ⇐⇒

∑
g =

∑
h

CFIq(G, g) is built in three steps. First, we define a gadget which replaces each vertex of

G with elements that form a ring. Secondly, we define relations between gadgets which

impose consistency equations between gadgets. Finally, the function g is used to insert

the important twists into the consistency equations. We now describe this in detail below,

following a presentation by Lichter[72].

Vertex gadgets For any vertex x ∈ G, let N (x) be the neighbourhood of x in G (i.e.

those vertices which share edges with x) and let ZN (x)
q denote the ring of functions from

N (x) to the ring Zq. We will replace each vertex x of the base graph with a gadget whose

vertices are the following subset of ZN (x)
q ,

Ax = {a ∈ ZN (x)
q |

∑
y∈N (x)

a(y) = 0}

The relations on the gadget are for each y in N (x) a symmetric relation

Ix,y = {(a,b) | a(y) = b(y)}

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 17

and a directed cycle encoded by the relation

Cx,y = {(a,b) | a(y) = b(y) + 1}

Together these impose the ring structure of ZN (x)
q onto the vertices of the gadget.

Edge equations Next define a relation between gadgets for each edge {x, y} in G and

each constant c ∈ Zq of the form

E{x,y},c = {(a,b) | a ∈ Ax, b ∈ Ay, a(y) + b(x) = c}

Putting it together with a twist We finally define the structure CFIq(G, g) as 〈A,≺
, RI , RC , RE,0, RE,1, . . . , RE,q−1〉 where the universe is A = ∪xAx where ≺ is the linear

pre-order

≺=
⋃
x<y

Ax × Ay

and the edge relations RE,c are interpreted according to the twists in g as

RE,c =
⋃
e∈E

Ee,c+g(e)

where the sum in the subscript is over Zq For the relations RI and RC we deviate slightly

from Lichter’s construction and interpret these as ternary relations of the following form

RI =
⋃

{x,y}∈E

Ix,y × Ay

RC =
⋃

{x,y}∈E

Cx,y × Ay

We now recall the two major separation results based on this construction. The first is a

landmark result of descriptive complexity from the early 1990’s.

Theorem 2.6 (Cai, Fürer, Immerman [27]). There is a class of ordered (3-regular) graphs

G = {Gn}n∈N such that in the respective class of CFI structures

K = {CFI2(G, g) | G ∈ G, g : V (G)→ Z2}

the CFI property is decidable in polynomial-time but cannot be expressed in FPC.

The second is a recent breakthrough due to Moritz Lichter.

Theorem 2.7 (Lichter [72]). There is a class of ordered graphs G = {Gn}n∈N such that

in the respective class of CFI structures

K = {CFI2k(G, g) | G ∈ G}

the CFI property is decidable in polynomial-time (indeed, expressible in choiceless polyno-

mial time) but cannot be expressed in rank logic.

18 2.5. CATEGORY THEORY

2.5 Category theory

The comonadic construction of Abramsky, Dawar and Wang [6] which initiated research

on game comonads, emerged from applying the mathematics of category theory to Spoiler-

Duplicator games. This thesis continues in this tradition but remains firmly motivated

by concerns in finite model theory and descriptive complexity. We thus do not assume

any knowledge of category theory and introduce the preliminaries of the field here. For a

more comprehensive introduction to category theory we refer to Chapter 1 of Leinster’s

textbook [70].

Basics A category C consists of

• a class ob(C) called the objects of C,

• for each pair of objects A,B ∈ ob(C), a class C(A,B) of morphisms from A to B,

which we write as arrows A
f−→ B; and

• for any A,B,C ∈ ob(C) a function ◦ : C(B,C) × C(A,B) → C(A,C) called com-

position in C

such that for every A ∈ ob(C) there is an object 1A ∈ C(A,A) for which (C(A,A), ◦, 1A) is

a monoid and ◦ is associative in the sense that for any morphisms f, g, h of the appropriate

types f ◦ (g ◦ h) = (f ◦ g) ◦ h. We say that two objects in C are isomorphic if there are

two morphisms A
f−→ B

g−→ A such that g ◦ f = 1A and f ◦ g = 1B. We write Cop

for the dual of a category C which is a category with the same objects as C and with

morphisms Cop(A,B) := C(B,A) and composition defined using composition in C. The

most common categories we will refer to are the category of sets Set whose objects are

sets and morphisms are functions and the category R(σ) of relational structures over σ

with morphisms being homomorphisms.

For any two categories C and D a functor F : C→ D is a function F : ob(C)→ ob(D) and,

for all A,B ∈ ob(C) a function F : C(A,B) → D(F (A), F (B)) such that F (1A) = 1F (A)

and for any A
f−→ B

g−→ C, F (g ◦ f) = F (g) ◦ F (f). A functor F : C → C is called an

endofunctor on C. For any category the identity endofunctor idC : C → C acts as the

identity function on both objects and morphisms. For any two functors F,G : C→ D, a

natural transformation α : F =⇒ G is a choice of morphism αA ∈ D(F (A), G(A)) for

every A ∈ C such that, for any f ∈ C(A,B) we have that G(f) ◦ αA = αB ◦ F (f).

Monads and comonads We now define the notion of a comonad which is essential to

the compositional approach to Spoiler-Duplicator games pioneered by Abramsky, Dawar

and Wang [6].

CHAPTER 2. PRELIMINARIES AND DEFINITIONS 19

Definition 2.8. A comonad T on a category C can be defined in two different equivalent

ways as an Eilenberg-Moore triple or a Kleisli triple. We give both definitions here.

Eilenberg-Moore Triple A comonad T on C is a triple (T, ε, δ) where T is an endofunc-

tor of C, and ε and δ are natural transformations, called the counit and comultiplication

of T and having types T =⇒ idC and T =⇒ TT such that the following diagrams

commute.

TA
δA - TTA

TTA

δA

?

δTA
- TTTA

TδA

?

TA
δA - TTA

TTA

δA

?

εTA
- TA

TεA

?

==============

Kleisli Triple A comonad T on C is a triple (T, ε, (·)) where ε : T =⇒ idC is a natural

transformation and for every pair of objects A,B in C the Kleisli coextension (·) is a

function from C(TA,B) to C(TA,TB) such that

• εA = idPA for any A ∈ ob(C)

• εB ◦ f = f for any morphism f ∈ C(PA,B)

• g ◦ f = g ◦ f for any morphisms f ∈ C(PA,B) and g ∈ C(PA,B)

An monad is the dual construction of a comonad and is defined in Eilenberg Moore form

as follows.

Definition 2.9. A monad M on C is a triple (M, η, µ) where M is an endofunctor of

C, and η and µ are natural transformations, called the unit and multiplication of M and

having types idC =⇒ M and MM =⇒ M such that the analogous diagrams to those in

Definition 2.8 where all arrows are reversed commute.

We define the notions of the Kleisli category of a comonad and coalgebras for a comonad

in Chapter 3. The dual notions for monads which we call the Kleisli category of the

monad and algebras of the monad are defined by reversing the direction of the arrows in

the comonadic definitions.

Chapter 3

A review of game comonads

Spoiler-Duplicator games, as we have seen in the previous chapter, have proved an ex-

tremely useful tool to Finite Model Theory and Descriptive Complexity. Variations of

these games have been created to capture many fragments of logic and finding strategies

for the Duplicator in these games continues to be one of the main ways to prove expres-

siveness lower bounds for properties of finite relational structures. The use of these games

has been very successful in Descriptive Complexity but until recently there has been no

framework for studying these games collectively. Instead, games were introduced ad hoc

for different logic fragments and Duplicator strategies are usually constructed concretely

and studied separately for each game.

Game comonads provide exactly such a framework for Spoiler-Duplicator games. This

category-theoretic approach was first introduced in the case of pebble games by Abramsky,

Dawar and Wang [6] and the framework has been expanded to include Ehrenfeucht-Fräıssé

games as well as games for modal logic [11], guarded logic [8] and restricted conjunction

logic [77]. These are comonads on the category R(σ) where certain morphisms (called

I-morphisms) in their Kleisli categories capture strategies for Duplicator in the respective

one-way Spoiler-Duplicator games. While this gives a neat compositional semantics to

Duplicator strategies for a wide-range of one-way games, the true power of these comonads

comes from the connections they establish between different games. Indeed, for each

comonad there is a corresponding one-way, back-and-forth and bijective game for which

Duplicator strategies are reflected, each in a different way, in the Kleisli category of the

comonad. For many of the known game comonads these games each correspond to a well-

studied game from finite model theory. Furthermore, and perhaps more surprisingly, the

coalgebras of these comonads also correspond to well-studied structural decompositions

which, in different comonads, characterise parameters such as treedepth, treewidth, and

pathwidth. The comonads which we review in this chapter give a rich sense of what

it means to be a Spoiler-Duplicator game and connect many notions which appeared

before as ad hoc and unrelated in finite model theory. They have also been used to

find general category-theoretic proofs to theorems from finite model theory which have

20

CHAPTER 3. A REVIEW OF GAME COMONADS 21

previously relied directly on Spoiler-Duplicator games, including new generalisations of

Lovasz’s classic homomorphism counting result [74].

In this chapter, we review the current body of research into comonadic semantics for

Spoiler-Duplicator games used in finite model theory. The first section discusses the

motivation for this approach to Spoiler-Duplicator games, the second introduces the main

examples of game comonads discovered so far and the final section discusses the recent

work towards a general theory of these phenomena and their applications in finite model

theory.

3.1 Motivation for the pebbling comonad

In this section, we motivate the comonadic approach to Spoiler-Duplicator games by con-

sidering the compositional nature of Duplicator strategies in these games. In particular,

we consider strategies for the one-way pebble game of Kolaitis and Vardi and show how

Abramsky, Dawar and Wang’s pebbling comonad construction arises directly from a nat-

ural way of composing these. The approach taken in this section differs in style to the

that given in Abramsky, Dawar and Wang’s original paper but the construction, which is

discussed in more depth in the next section, is the same.

3.1.1 Categories in Finite Model Theory

In finite model theory, the category studied is usually taken to be R(σ) the category with

objects being the relational structures over some finite signature σ and maps between

structures being homomorphisms. While categories are rarely mentioned explicitly in most

work on finite model theory, this category theoretic structure has sometimes appeared

implicitly for example in Hell and Nešetřil’s work on cores of graphs [57]. One notable

exception to this is the treatment of adjoint functors on categories of graphs by Foniok and

Tardif [46] and the extension of this to gadget constructions by Krokhin, Opršal, Wrochna

and Zivný [69]. Note that the category R(σ) differs from the category of σ-structures

regularly considered in classical model theory where maps are elementary embeddings, see

for example the review of Baldwin [17]. Borrowing the notation of Libkin [71], we call

this category STRUCT[σ] to distinguish it from R(σ).

For applications in descriptive complexity theory, however, the category R(σ) has, in

general, too few morphisms to capture the relations of interest between structures. This

is because the relations A → B or A ∼= B are too strong to be useful in proving complexity

lower bounds. Indeed, for any structures A and B deciding if there is a homomorphism

A → B is the same as deciding the constraint satisfaction problem CSP(A,B) and over

finite structures A ∼= B is the same as equivalence of A and B over full first-order logic. As

a result, it is more common to study coarser relations such asVL or ≡L′ over some logics

22 3.1. MOTIVATION FOR THE PEBBLING COMONAD

L,L′ which are usually fragments of first-order logic, possibly extended by quantifiers

or arbitrary conjunctions and disjunctions. It is therefore an interesting question to ask

what is the right category to consider when we are interested in studying these coarser

relations. It is, in fact, this question for the relation V∃+Lk which originally motivated

the work by Abramsky, Dawar & Wang on the pebbling comonad.

One näıve approach to defining this category is to directly use the definition of V∃+Lk .

Recall that for two relational structures A and B we have that AV∃+Lk B if and only if for

all sentences φ ∈ ∃+Lk if A |= φ then B |= φ. Suppose we then defined a category, k-R(σ),

which had structures with signature σ as objects and for any two such structures A and B
there is a unique morphism in k-R(σ)(A,B) if and only if AV∃+Lk B. By the definition

above it is clear that identity and composition laws hold and that this is indeed a category.

However, it is not a particularly interesting category. With at most one morphism between

any two structures, k-R(σ)(A,B) is, in fact, a thin category. Thin categories, of which any

partially ordered set is an example, are particularly degenerate examples of categories.

One consequence of this which makes k-R(σ) particularly uninteresting for descriptive

complexity is that isomorphism between two structures A and B in a thin category is

equivalent to the existence of a map from A to B and a map from B to A. In the category,

R(σ) this condition is known as homomorphic equivalence and is notably distinct from

isomorphism. In the category k-R(σ), isomorphism would simply be equivalent to the

relation ≡∃+Lk . This would appear to be insufficient to capture the types of relations of

interest in descriptive complexity. Indeed, while V∃+Lk is important particularly in the

descriptive complexity of DATALOG [67], equivalence is usually considered over stronger

logics such as Lk or Ck. As a result, we expect that the “correct” categories for descriptive

complexity would also exhibit a different homomorphic equivalence and isomorphism. So

these categories must not be thin and we need the maps to be more extensive objects

which witness relations of the form AVL B and A ≡L′ B.

Exactly such an object is given by the Spoiler-Duplicator games reviewed in the previous

chapter. Recall, for example, the following theorem of Kolaitis and Vardi characterising

the relation V∃+Lk in terms of the one-way k-pebble game.

Theorem 3.1. For any positive integer k and two relational structures A and B over a

common (finite) signature σ, the following are equivalent

1. AV∃+Lk B; and

2. Duplicator has a winning strategy in the one-way k-pebble game from A to B.

This result suggests the set of winning strategies for Duplicator in this one-way k-pebble

game between A and B as a good candidate for the set of morphisms in a richer version

of the category k-R(σ). There are two obstacles to creating this category. Firstly, we

need an explicit description of what is meant by a “strategy” for Duplicator. Secondly, we

CHAPTER 3. A REVIEW OF GAME COMONADS 23

need to check that, for whatever notion of strategy we settle on, it satisfies the necessary

composition and identity laws to form a category. In the next two sections, we address

these two issues for a particular definition of strategy and, in doing so, reveal a comonadic

structure.

3.1.2 Duplicator Strategies in the Pebble Game

Recall the one-way k-pebble game of Kolaitis and Vardi on relational structures A and B
with underlying sets A and B which we reviewed in Chapter 2. Positions in this game are

sets of pairs (ai, bi) ∈ A× B which are indexed by a subset of the numbers i ∈ [k]. This

is often pictured as pairs of pebbles labelled from the set [k] with one pebble in each pair

placed on an element of A and the corresponding pebble on an element of B. A position

is winning for Spoiler if the set {(ai, bi) | i ∈ [k]} is not a partial homomorphism from A
to B. The game starts with the empty position where no pairs are defined. Then in each

round, starting with position γ, Spoiler chooses an index i ∈ [k] and an element a ∈ A.

Duplicator responds by choosing an element b ∈ B. Then, letting γi be the position γ

with the pair indexed by i removed (if it was defined in the first place), the new position

at the end of the round is given by γi∪{(a, b)} where (a, b) is indexed by i. This is usually

described by Spoiler picking up the pair of pebbles labelled by i (whether they are in play

or not) and placing one of them on a ∈ A and letting Duplicator place the other one

where she chooses in B. Spoiler wins the game if after any round of the game the position

is winning for Spoiler. Duplicator wins if she can play the game forever while preventing

Spoiler from winning.

As we have just seen that Duplicator wins this game if and only if A V∃+Lk B and so

the winning strategies for Duplicator are a good candidate for the map in our category

for V∃+Lk . In this section, we show how to form this category, first by defining a precise

notion of Duplicator strategy in this game and secondly by showing how these strategies

compose.

Part I : Defining Duplicator strategies There are several possible ways of defin-

ing a strategy for Duplicator in the game described above. Indeed, strategies can be

deterministic or not and the responses of Duplicator in each round may depend only on

the position in that round or on the whole sequence of Spoiler moves up to it. In this

presentation, we choose to develop deterministic strategies which take into account the

entire history of Spoiler’s moves. We call these deterministic sequential strategies or just

sequential strategies. As we see this formalisation of strategies emphasises the tree-like

structure of the logical formulas which underpin this game.

In the game above, each round consists of a Spoiler move followed by a Duplicator move.

A Spoiler move is a pair in the set A × [k] and a Duplicator move is simply an element

24 3.1. MOTIVATION FOR THE PEBBLING COMONAD

of B. The history of Spoiler moves in rounds up to and including the nth round is a

list [(a1, p1), . . . , (an, pn)] ∈ (A × [k])n. Thus the set of all Spoiler histories is the set

Spk(A) := (A × [k])+ of non-empty lists of Spoiler moves and for any s ∈ Spk(A) the

last element of the list ω(s) = (ωpos(s), ωpeb(s)) is the most recent move made by Spoiler

in s. We say that a pebble with index i ∈ [k] is live in s if there is some prefix s′ of s

such that ωpeb(s
′) = i and we write lp(s) for the set of live pebbles in s. For any pebble

index i ∈ lp(s) we say that the ith live prefix of s is the longest prefix si of s such that

ωpeb(s
i) = i. The live pebbles s tell us which pebbles are in play after s has been played

by Spoiler and the live prefixes s identify the last round in which each pebble in play

was moved. We can now define a deterministic sequential strategy for Duplicator in the

existential k-pebble game as any function f : Spk(A) → B. We should interpret such

a strategy as defining for any Spoiler history of s ∈ Spk(A) of length n, Duplicator’s

response in the nth round after Spoiler has played the moves specified by s.

To decide whether such a strategy is winning for Duplicator we need to know where the

pebbles are positioned after each possible sequence of moves. Suppose s ∈ Spk(A) is

a history of Spoiler moves on A and f : Spk(A) → B is a Duplicator strategy in the

existential k-pebble game between A and B. The position after s under f is defined as

the partial function

Pos(s, f) = {(ωpos(si), f(si)) | i ∈ lp(s)}.

This should be understood as the map which, for each pebble i which is in play after s is

played by Spoiler, maps the last position ωpos(s
i) ∈ A on which Spoiler placed the pebble

i to Duplicator’s response f(si) ∈ B in the round where Spoiler last moved pebble i. Now

we can say that f is a winning sequential strategy for Duplicator in the existential k-pebble

game if for all Spoiler histories s ∈ Spk(A), Pos(s, f) is a partial homomorphism.

Now that we have a concrete representation of winning Duplicator strategies of the k

pebble game from A to B, we now need to explain how to compose these with winning

strategies for the game from B to C to get a winning strategy for the game from A to C.
That is what we do in the next section.

Part II: Composing sequential strategies At first glance, given sequential Dupli-

cator winning strategies in the existential k-pebble games from A to B and from B to

C which we would like to compose, there appears to be a mismatch of types. Indeed a

sequential strategy from A to B is a map f1 : Spk(A)→ B and a sequential strategy from

B to C is a map f2 : Spk(B)→ C. As functions these strategies clearly do not compose.

So we need to come up with a new means of composing these objects. We see in this

section how to make this composition work.

Informally, it is not difficult to see what to do to create a Duplicator strategy in the

existential k-pebble game from A to C using the strategies f1 and f2. In order to respond

CHAPTER 3. A REVIEW OF GAME COMONADS 25

to any sequence of Spoiler moves on A, we first use f1 to respond to Spoiler’s moves on

B. From an outsider perspective, observing just the structure B, this appears as someone

choosing certain indexed pebbles and placing them on elements of B. The sequence of

moves which emerges in this way can be seen as a sequence of Spoiler moves on B. Now

we can use the strategy f2 to play on C in response to this virtual Spoiler. The result is

a strategy in the existential k-pebble game from A to C.

Formally, this composition was obtained by transforming the first strategy of the form

f1 : Spk(A) → B into a function of the form f1 : Spk(A) → Spk(B) which translates

sequences of Spoiler moves on A to sequences of Spoiler moves on B. The composed

strategy is then the composition f2 ◦ f1. This type of composition, which is natural for

strategies may seem strange for functions. However, as we see in the next section, this

structure is actually a known construction in category theory. Namely, this is the Kleisli

form of a comonad.

Seeing that the condition of being a winning strategy is preserved in this composition

is simply a consequence of the composition of partial homomorphisms being a homo-

morphism. Indeed, after any series of moves s ∈ Spk(A) the position Pos(s, f1) a par-

tial homomorphism, and the position Pos(f1(s), f2) is a partial homomorphism. Then

Pos(s, f2 ◦ f1) is a partial homomorphism as it is the composition of two partial homo-

morphisms. We now see how this structure is naturally interpreted as a comonad on

R(σ).

3.1.3 Outlines of a comonad

In the last section, we saw how to make the winning Duplicator strategies in the existential

k-pebble game into explicit maps between relational structures which compose and form

a category which has more structure than the thin category for V∃+Lk mentioned in the

section before. We now see how this category, which we built from natural considerations

about how the underlying game is played, can actually be seen as arising from the original

category R(σ) by means of a standard category-theoretic object known as a comonad.

Recall the Kleisli triple formulation of a comonad from Chapter 2. This describes a

comonad on a category C by three pieces of data (P, ε, ·) where P is a functor on the

base category C, ε : P =⇒ idC is a natural transformation and · is an operator which

transforms maps of the form PA → B into maps PA → PB. To form a comonad these

pieces of data need to satisfy certain comonad laws which we recall later. These laws are

exactly those required to form a category K(P) where the objects are exactly those from

C, the maps K(P)(A,B) are exactly those maps in C(PA,B), the identity on A is the map

εA and composition of maps f ∈ K(P)(A,B) and g ∈ K(P)(B,C) is g ◦ f . The category

is known as the Kleisli category of the comonad P. This structure should be immediately

reminiscent of the category we formed by composing strategies in the previous section. In

26 3.1. MOTIVATION FOR THE PEBBLING COMONAD

the rest of this section, we show how to make this connection fully formal in the case of

the existential k-pebble game. This is a reconstruction of the pebbling comonad Pk from

Abramsky, Dawar, and Wang [6] from a slightly different starting point. Their original

construction, which we see in the next section, uses a different but equivalent formulation

of a comonad.

We give this construction in two parts. First, we define the data of the comonad by

constructing a relational structure PkA on the set of Spoiler histories Spk(A) such that

the homomorphisms R(σ)(PkA,B) are precisely the winning strategies in the one-way

k-pebble game and then formally defining the identity strategies εA and the operator ·
which we sketched in the last section. After this, we prove that Pk is a comonad on R(σ)

by showing that this data satisfies the comonad laws for a Kleisli triple.

Part I: Defining the data The exposition of sequential strategies for Duplicator in

the one-way k-pebble game from the last section gives us a guide for how to construct the

relational structure PkA. Indeed, taking the elements of this structure to be Spk(A) =

(A× [k])+ as we had in the last section gives, for any A and B, the set of functions BPkA

is precisely the set of sequential Duplicator strategies from A to B. We now see that we

can lift the relations from A to PkA in such a way that the homomorphisms in this set are

exactly the winning sequential strategies for Duplicator in the existential k-pebble game.

We saw in the last section that the condition for Duplicator to win the existential k-pebble

game from A to B is that for each history of Spoiler moves s ∈ Spk(A), the position of the

pebbles after Duplicator has responded to the last play of s is a partial homomorphism.

We also saw that for any Duplicator strategy f this position, Pos(s, f) was determined

by the responses provided by f to the live prefixes of s, LP(s) = {si | i ∈ lp(s)}. Recall

that each live prefix si represents the last time in the sequence of moves s where Spoiler

has repositioned the pebble indexed by i and so the element ωpos(s
i) ∈ A is the position

of Spoiler’s pebble i after the sequence of moves s. This lets us define Pk as follows.

Definition 3.2. For any A ∈ R(σ), the structure PkA ∈ R(σ) has the underlying

set Spk(A) and for any relational symbol R in σ with arity n, (s1, . . . , sn) ∈ RPkA

if and only if there is some s ∈ Spk(A) such that each si is a live prefix of s and

(ωpos(s1), . . . , ωpos(sn)) ∈ RA. For any homomorphism f : A → B, the map Pkf : PkA →
PkB is defined on any s = [(a1, p1), . . . (am, pm)] as

Pkf(s) = [(f(a1), p1), . . . (f(am), pm)]

We now check that this is indeed a functor.

Lemma 3.3. Pk is a functor.

Proof. We need to check that for any homomorphism f : A → B, Pkf is a homomorphism

and that for any homomorphisms f : A → B and g : B → C, we have Pk(g ◦ f) = (Pkg) ◦
(Pkf).

CHAPTER 3. A REVIEW OF GAME COMONADS 27

To see that Pkf is a homomorphism, first note that Pkf preserves length and the prefix

relation on lists in PkA and that it doesn’t change the sequence of pebbles in the list, in the

sense that projecting s ∈ PkA and Pkf(s) ∈ PkB pointwise onto the second component,

we get the same list in [k]+. Together this means that if s′ is a live prefix of s then Pkf(s′)

is a prefix of Pkf(s).

Now, by definition of PkA, any tuple (s1, . . . , sn) is in RPkA for some relational symbol

R, if and only if there is some s ∈ PkA such that each of the si is a live prefix of s

and we have that (ωpos(s1), . . . , ωpos(sn)) ∈ RA. As Pkf preserves the relation of being

a live prefix, we have that each of the images Pkf(s1), . . . ,Pkf(sn) are live prefixes of

Pkf(s). Furthermore, as ωpos(Pkf(si)) = f(ωpos(si)) and f is a homomorphism we have

that (ωpos(Pkf(s1)), . . . , ωpos(Pkf(sn))) is in RB and so (Pkf(s1), . . . ,Pkf(sn)) ∈ RPkB, as

required.

To see that Pk behaves well with respect to composition, we note that Pkf applies f

pointwise on lists and so composition of Pkf and Pkg is just a pointwise composition of

f and g. In particular on any s ∈ PkA

Pkg(Pkf(s)) = Pkg([(f(a1), p1), . . . , (f(am), pm)])

= [(g(f(a1)), p1), . . . , (g(f(am)), pm)]

= [((g ◦ f)(a1), p1), . . . , ((g ◦ f)(am), pm)]

= Pk(g ◦ f)(s)

as required.

We would like to say that any homomorphism f : PkA → B is a winning strategy for

Duplicator. This is nearly true but with one small caveat. Suppose that there are two

distinct live prefixes si and sj of some s ∈ PkA but ωpos(s
i) = ωpos(s

j). This can be

thought of as s being a sequence of moves which results in two distinct pebbles being

placed by Spoiler on the same element of A. However, there is no relation in PkA which

forces the Duplicator responses f(si) and f(sj) to be equal. This means that even if

f : PkA → B is a homomorphism in general Pos(s, f) need not even be a partial function,

let alone a partial homomorphism. This inspires the next definition.

Definition 3.4. For any signature σ and any A ∈ R(σ), the I-structure A is the structure

A ∈ R(σ+) where σ+ = σ∪{I}, IA = {(a, a) | a ∈ A} and for all R ∈ σ the σ+-structure

agrees with the σ-structure A.

As defined, an I-structure is a relational structure with an extra relation I observing

the equality of elements in A. We now see that the winning sequential strategies for

Duplicator in the game over σ structures are precisely the homomorphisms f : PkA → B
for I-structures A and B.

28 3.1. MOTIVATION FOR THE PEBBLING COMONAD

Lemma 3.5. For any σ-structures A,B, f : Spk(A)→ B is a winning sequential strategy

for Duplicator in the existential k-pebble game from A to B if and only if f : PkA → B is

a homomorphism for the I-structures A and B.

Proof. f is a winning strategy for Duplicator in the existential k-pebble game if and only

if for every s ∈ Spk(A), Pos(s, f) is a partial homomorphism. So f is not winning for

Duplicator precisely when there is some s such that Pos(s, f) is either (a) not a partial

function or (b) is a partial function but not a partial homomorphism. The first case

is equivalent to there being an s and two distinct live prefixes si and sj of s such that

ωpos(s
i) = ωpos(s

j) but f(si) 6= f(sj). This is equivalent to the statement that (si, sj) ∈
PkA but (f(si), f(sj)) 6∈ IB. So, case (a) is equivalent to f : PkA → B not preserving

the I relation. Case (b) on the other hand is equivalent to the existence of some tuple

(s1, . . . , sm) which are all live prefixes of s such that (ωpos(s1), . . . , ωpos(sm)) ∈ RA but

(f(s1), . . . f(sm)) 6∈ RB. This is equivalent to there existing a tuple (s1, . . . , sm) ∈ RPkA

such that (f(s1), . . . f(sm)) 6∈ RB which is simply the statment that f does not preserve

the relation R. Putting these two cases together we have that f is not a winning strategy

for the existential k-pebble game if and only if there is some relational symbol S in σ+

such that f does not preserve S.

Having defined the relational structure of PkA and shown that homomorphisms can indeed

be used to classify winning strategies in the existential k-pebble game, it remains to define

ε and ·.

For any A in R(σ) εA : PkA → A should be the identity strategy for Duplicator on A. The

intuitively obvious definition for this is the strategy where Duplicator responds to Spoiler

pebbling an element of A by pebbling the exact same element. Formally defined, this is

the function which takes any sequence of Spoiler moves s ∈ Spk(A) to the most recently

pebbled element, ωpeb(s). It is clear from the definitions that this is a homomorphism and

ε is natural, i.e. for any homomorphism f : A → B, f ◦ εA = εB ◦ Pkf .

The definition of · was covered informally in the last section but we give the formal

definition here. The aim is to turn any homomorphism f : PkA → B into a homomorphism

f : PkA → PkB. Following the procedure in the last section, we define the operator as

follows.

Definition 3.6. For any homomorphism f : PkA → B we define the map f : PkA → PkB
by defining its action on an arbitrary sequence s = [(a1, p1), . . . , (an, pn)] ∈ PkA as

f(s) = [(f(s1), p1), . . . , (f(sn), pn)]

where, for each 1 ≤ i ≤ n, si is the prefix of the first i elements of s.

CHAPTER 3. A REVIEW OF GAME COMONADS 29

To see that the map f is indeed a homomorphism, we note that f acts pointwise on the

lists in PkA and doesn’t change any of the pebble indices. Thus, we can say that, for any

s ∈ PkA, the live prefixes of s are preserved by f in the following way

LP(f(s)) = {f(si) | si ∈ LP(s)}.

This means that for any related tuple (s1, . . . , sm) ∈ RPkA with sj ∈ LP(s) for all 1 ≤
j ≤ m and (ωpos(s1), . . . , ωpos(sm)) ∈ RA. Then we have that f(sj) ∈ LP(f(s)) for all

1 ≤ j ≤ m and

(ωpos(f(s1)), . . . , ωpos(f(sm))) = (f(ωpos(s1)), . . . , f(ωpos(sm)))

which is an element of RB because f is a homomorphism.

Having defined the data that make up a comonad in Kleisli form we now complete the

proof that this structure is indeed a comonad by verifying that it satisfies the comonad

laws from Chapter 2.

Part II: Checking the comonad laws Recall the comonad laws in for a comonad

P = (P, ε, ·) in Kleisli form from Definition 2.8:

1. εA = idPA for any structure A ∈ R(σ)

2. εB ◦ f = f for any winning strategy f : PA → B

3. g ◦ f = g ◦ f for any winning strategies f : PA → B and g : PB → C

Before we prove that the Kleisli triple (Pk, ε, ·), defined in the last section, satisfies these

conditions, let’s reflect briefly on what these conditions are saying for the composition of

sequential strategies for Duplicator in the existential k-pebble game. For two strategies

f, g in the existential k-pebble games from A to B and from B to C respectively we have

seen that their composition is given by the strategy g ◦ f in the game from A to C. The

comonad rules can now be interpreted as ensuring that this strange-looking composition

does actually form a category. In particular, the first two rules are saying that if we

compose the identity strategy on the left or right of any strategy f we get no more or

less than f . The final rule ensures that composition of strategies is associative. We now

prove that these hold in the case of the triple (Pk, ε, ·) defined above.

Lemma 3.7. The triple (Pk, ε, ·) satisfies the comonad laws.

Proof. 1. For any s ∈ PkA, εA(s) = ωpos(s). When we lift this using · we have that, for

any s = [(a1, p1), . . . , (am, pm)]

εA(s) = [(ωpos(s1), p1), . . . , (ωpos(sm), pm)]

30 3.2. PK : THE PROTOTYPICAL GAME COMONAD

where si = [(a1, p1), . . . , (ai, pi)]. From the definition, for any 1 ≤ i ≤ m, ωpos(si) = ai

and so εA(s) = s and εA = idA, as required.

2. For the same s with prefixes s1, s2, . . . , sm as above we have that εA(f(s)) = f(sm).

However, sm is the prefix of the first m elements of s which has only m elements, so

sm = s and εA(f(s)) = f(s), as required.

3. To prove this we note first that for any f : PkA → B, f preserves the length and prefix

relation of list in PkA. These facts are both clear from the definition which leaves the

sequence of pebble indices intact and applies f component-wise to prefixes. The important

consequence of this is that for any s = [(a1, p1), . . . , (am, pm)] with prefixes s1, s2, . . . , sm

the list f(s) has prefixes f(s1), f(s2), . . . , f(sm). Now when we consider the left hand side

of the identity we are trying to prove we have

g ◦ f(s) = [(g(f(s1)), p1), . . . , (g(f(sm)), pm)]

and, as the prefixes of f(s) are exactly f(s1), f(s2), . . . , f(sm), this is the same as g(f(s)),

as required.

Now we conclude this section by stating the important consequence of this result which

is effectively a restatement of Theorem 4 and Proposition 10 from [6].

Theorem 3.8. (Pk, ε, ·) is a comonad on R(σ+) where the subcategory on I-structures of

the Kleisli category of Pk is equivalent to a category where objects are σ-structures and

maps between A and B are winning sequential strategies for Duplicator in the existential

k-pebble game between A and B

Proof. This is a direct consequence of Lemmas 3.7 and 3.5.

In this section, we have arrived at the comonadic approach to Spoiler-Duplicator games as

a consequence of formalising a very natural notion of composition for Duplicator winning

strategies. We now see the rather unexpected power of this natural construction to connect

seemingly unrelated notions in finite model theory by reviewing the results of Abramsky,

Dawar and Wang’s seminal paper [6] and the work which has followed in this research

programme.

3.2 Pk : the prototypical game comonad

In this section, we study the properties of the comonad Pk derived in the previous sec-

tion. This section is largely a recollection of the main results of Abramsky, Dawar and

Wang. This example is the prototype for several other game comonads and we see in the

next section that the same properties of different game comonads also yield interesting

analogues from finite model theory.

CHAPTER 3. A REVIEW OF GAME COMONADS 31

3.2.1 Definition of Pk

In the original paper introducing the pebbling comonad [6], Abramsky, Dawar and Wang

give a different presentation to that given above. Instead of defining the comonad in

terms of the composition of Duplicator strategies in the k-pebble game they define the

comonad in terms of a counit and comultiplication which are dual to the more familiar

unit and multiplication used to define monads. This means giving a triple (Pk, ε, δ) where

Pk is an endofunctor on the category R(σ) and ε : Pk =⇒ 1 and δ : Pk =⇒ PkPk are

natural transformations satisfying the comonad laws from Definition 2.8. We call this an

Eilenberg-Moore triple and call this style of definition the Eilenberg-Moore (EM) form.

The data for Pk and ε are exactly the same as given in the last section which we restate

here along with the definition of δ.

Definition 3.9 (Definition of Pk in EM form). The k-pebbling comonad is defined by the

Eilenberg-Moore triple (Pk, ε, δ) consisting of

• an endofunctor Pk on R(σ) where

– PkA has the underlying set (A× [k])+ and a tuple (s1, . . . , sn) is in RPkA if and

only is (ωpos(s1), . . . ωpos(sn)) is in RA and for each i, j ∈ [n] either si is a live

prefix of sj or vice versa; and

– Pkf for a homomorphism f : A → B applies f point-wise to the first component

of each element of a list in PkA,

• a counit ε : Pk =⇒ 1 where εA : PkA → A sends s ∈ PkA to ωpos(s); and

• a comultiplication δ : Pk =⇒ PkPk where δA sends a list s = [(a1, p1), . . . , (am, pm)] ∈
PkA to the list [(s[: 1], p1), . . . , (s[: m], pm)] ∈ PkPkA.

With this presentation, it remains to check that this EM triple satisfies the comonad laws.

Abramsky, Dawar and Wang do exactly this in proving the following theorem.

Theorem 3.10 (Theorem 4 of [6]). For any positive integer k, (Pk, ε, δ) defines a comonad

on the category R(σ) for any finite relational signature σ.

In the definition of this comonad there are two free parameters which alter the comonad

in question. The first is the resource parameter k. In the definition above it is easy to see

that k influences the amount of local structure from A which is lifted to each list in PkA.

This gives the impression that as k increases the functor Pk preserves more (or rather

forgets less) of the information in the original structure. Abramsky, Dawar and Wang

make explicit this refinement as k increases by showing that (Pk)k∈ω is, in fact, a graded

comonad with inclusion maps giving the natural transformations ιl,k : Pl =⇒ Pk for

every l ≤ k. As we’ll see in the next sections, this resource parameter also determines the

32 3.2. PK : THE PROTOTYPICAL GAME COMONAD

fragments of logic and structural parameters obtained by other aspects of the comonad.

This grading of the comonad then represents, in a formal way, a grading of these related

objects.

The second parameter is the signature σ. In the original pebbling comonad paper this

is fixed and there is no attempt to formally relate instances of the comonad for different

signatures. When we come to talk about interpretations in Chapter 5 we see some possible

formal approaches to this parameter.

For our purposes, the following in an important proposition. It establishes that the

pebbling comonad defined by Abramsky, Dawar and Wang as given in Definition 3.9 is

equivalent to that given in the previous section in Definition 3.2.

Proposition 3.11. The EM triple (Pk, ε, δ) and the Kleisli triple (Pk, ε, ·) both define the

same comonad on R(σ).

Proof. We recall from Chapter 2 that any comonad can be represented equivalently as an

EM or Kleisli triple. As such, for any comonad given in EM form we can define its Kleisli

form as follows. If T = (T, εT, δT) is a comonad in EM form then the Kleisli coextension

in T for a Kleisli map f : TA → B is f
T

= Tf ◦ δTA. Applying this construction to the

EM triple Pk = (Pk, ε, δ) we get the coextension f
Pk

which acts as follows on the element

s = [(a1, p1), . . . , (am, pm)] ∈ PkA

f
Pk

(s) = Pkf(δA(s))

= [(f(s[: 1]), p1), . . . (f(s[: 1]), p1)]

which is exactly the definition of f given in the previous section. As Pk and ε are common

to both triples it is immediate that the definition of a comultiplication from (Pk, ε, ·) would

give exactly δ.

Both of the constructions we have seen for the comonad Pk are inspired by the question of

how to give a category-theoretic interpretation to the winning strategies for Duplicator in

the k-pebble game. Indeed, we have seen in detail in the last section how to do this for one

form of the construction. What then is the advantage of this structure being a comonad,

in particular, and not any other type of construction? One significant advantage is that

any comonad comes with some naturally related categories which in the case of a game

comonad provide fruitful ways to study the underlying games.

As noted in any standard treatment of comonads, for example [70], any comonad arises

from an adjunction between the underlying category of the comonad and some other

category. In fact there is a whole category, Adj(Pk) of such adjuctions. Two standard

constructions exist in category theory which give the initial and terminal adjunctions.

The associated categories are called the Kleisli and Eilenberg-Moore categories and we

see in the next two parts of this section that these are extremely interesting in the case

of Pk.

CHAPTER 3. A REVIEW OF GAME COMONADS 33

3.2.2 Kleisli category of Pk

The first of these categories which we look at is the category used in the initial adjunction

of Adj(Pk), which is usually known as the Kleisli category. We see in this section that

this category for Pk relates the comonad to the expressive power of various fragments of

logic where the resource parameter k controls the power of those fragments by limiting

the number of variables. As a result we sometimes refer to this category, following the

commentary of Abramsky and Shah [11] as the Power category of Pk.

This category is defined as follows.

Definition 3.12 (The Kleisli Category of Pk). For any integer k and finite signature σ,

the category K(Pk), for the pebbling comonad Pk on R(σ) has the same objects as R(σ)

and for any two structures A,B, the morphisms between them are the homomorphisms

PkA → B. Composition of morphisms f : PkA → B and g : PkB → C is given by g ◦ f
and the identity on A is εA.

This is exactly the same category that we derived in Section 3.1. We saw in that section

that the morphisms in this category were equivalent to Duplicator winning strategies in

the one-way pebble game for ∃+Lk. This fact about the Kleisli category of Pk was also

known in the original pebbling comonad paper. We call this result the Morphism Power

Theorem for Pk.

Theorem 3.13 (Morphism Power Theorem of Pk). For two relational structures A and

B the following are equivalent for any positive integer k:

1. There is a Kleisli morphism PkA → B for the I-structures A and B,

2. Duplicator has a winning strategy in ∃+Pebk(A,B), and

3. AV∃+Lk B.

As we showed earlier in this chapter, the comonad Pk arises naturally out of trying to

construct a category which handles the composition of Duplicator strategies in this game,

so this result is not entirely surprising. The next result however shows us the first tangible

benefit of this approach, namely that the isomorphisms in the Kleisli category give us a

novel characterisation for a totally different game. This game is the k-pebble bijection

game, Bijk, which captures equivalence in the k-variable infinitary counting logic Ck. We

call the following result, which was first proved by Abramsky, Dawar and Wang [6], the

Isomorphism Power Theorem for Pk.

Theorem 3.14 (Isomorphism Power Theorem of Pk). For two relational structures A
and B the following are equivalent for any positive integer k:

1. There is a Kleisli isomorphism A ∼=K(Pk) B for the I-structures A and B,

34 3.2. PK : THE PROTOTYPICAL GAME COMONAD

2. Duplicator has a winning strategy in Bijk(A,B), and

3. A ≡Ck B.

The restriction to I-structures in both of these results is a common theme throughout the

story of game comonads. As outlined earlier, this is done to ensure that the positions in

the pebble game define partial functions. If we dropped this restriction and considered

all homomorphisms in K(Pk)[σ], the analogous “Morphism Power Theorem” would char-

acterise the V relation for the logic ∃+Lk without equality and, similarly, isomorphisms

would capture ≡ for Ck without equality. To see this, consult, for example [67]. As

these logics without equality are less frequently studied objects in finite model theory we

tend to stick to the subcategory on I-structures of K(Pk)[σ+]. Abramsky and Shah [11]

demonstrated that this category is the Kleisli category of a relative comonad P+
k = Pk ◦J

where J : R(σ)→ R(σ+). We call this category the strict Power category of Pk and write

it K(P+
k).

The two results in this section relate the Kleisli category of Pk to the logics ∃+Lk and

Ck which previously have not been studied as closely related logics. We also see that the

resource parameter k in Pk controls the expressive power of these logics by controlling the

number of variables in each. We now see that at the other extreme of Adj(Pk) we get get

a very different category which has deep relations to structural decompositions.

3.2.3 Eilenberg-Moore category of Pk

The second important category related to Pk is the category used in the terminal ad-

junction in Adj(Pk). This is traditionally called the Eilenberg-Moore category of the

comonad, which we write EM(Pk). We see in this section that this category relates Pk
to treewidth, a well-studied structural parameter on on relational structures. Because of

this relation we sometimes refer to EM(Pk) as the Structure category of Pk. It is defined

as follows.

Definition 3.15 (Coalgebras and the Eilenberg-Moore category of Pk). For any integer

k and finite signature σ, for the pebbling comonad Pk on R(σ) a coalgebra of Pk is a

morphism α : A → PkA satisfying the following counit and comultiplication laws:

• (Counit) εA ◦ α = idA,

• (Comultiplication) δA ◦ α = (Pkα) ◦ α.

A coalgebra morphism from α : A → PkA to β : B → PkB is a homomorphism f : A → B
such that Pkf ◦ α = β ◦ f .

The category EM(Pk) has as objects the coalgebras of Pk and as morphisms the coalgebra

transformations between them. The identity on any α : A → PkA is the identity map idA

CHAPTER 3. A REVIEW OF GAME COMONADS 35

and the composition of coalgebra morphisms is simply composition in σ which commutes

with the coalgebra morphism condition.

In the last section, we showed how morphisms in the Power category related Pk to the

expressive power of different logics but that the objects in this category were not especially

interesting. In the case of the Structure category, we find the situation reversed and

it is the objects, i.e. the coalgebras, which capture the important links to structural

parameters. Indeed, the existence of a Pk-coalgebra α : A → PkA can be seen as proof

that the structure A is sufficiently simple to be embedded, in a recoverable way into the

unfolded structure Pk. Indeed, Abramsky, Dawar and Wang show that the existence of

such a coalgebra corresponds to the existence of a tree decomposition of width k− 1. We

state now the many equivalent conditions implied by this characterisation, as outlined in

Chapter 2.

Theorem 3.16 (Coalgebra Structure Theorem for Pk). For a relational structure A, the

following are equivalent for any positive integer k:

• There is a coalgebra α : A → PkA,

• There is a tree decomposition of A with bags of size at most k,

• k cops with helicopters can win the cops and robbers game on A, and

• The treewidth of A is less than k.

It is easy to see that as the resource parameter k increases the equivalent conditions in the

above result are easier to satisfy for any given A. Indeed, it is well known that any finite

structure A of size n has treewidth ≤ n. This result motivates the following definition

of a structural parameter for Pk which appears in Abramsky, Dawar and Wang’s original

paper.

Definition 3.17. For relational structure A the pebble number (or P-parameter) of A
is defined as

fP(A) := min{k | A has a Pk-coalgebra}.

An easy corollary of Theorem 3.16 is the following result relating this parameter to

treewidth.

Theorem 3.18 (Parameter Structure Theorem for Pk). For any relational structure A,

tw(A) = fP(A)− 1

It is important to highlight that the two structure theorems here relate the existence

of Pk-coalgebras to bounds on treewidth but that there is no one-to-one correspondence

36 3.3. OTHER GAME COMONADS

between, for example, Pk-coalgebras and tree decompositions of bag size k. Abramsky

and Shah give such an exact characterisation of individual coalgebras, as k-pebble forest

covers of the structure A. We revisit this notion when we introduce new comonads later

in this thesis.

We have seen in this section that the construction of Pk as a comonad has created a

number of interesting connections in both logic and finite model theory. The two “Power”

theorems relate Kleisli morphisms of Pk to different fragments of infinitary fixed-variable

logics and the two “Structure” theorems relate the coalgebras of Pk to tree decompositions

and to the important structural parameter treewidth. These connections are important

motivation for finding further game comonads which follow this pattern. In the next

section, we review some of the relevant comonads which have been found to follow the

mould set by Pk.

3.3 Other game comonads

Since the discovery of the Pk comonad, other similar “game comonads” have been devel-

oped, giving categorical semantics to different model comparison games in finite model

theory. Structure and Power theorems for these comonads, analogous to those for Pk have

established new links between different structural decompositions and logical fragments.

A recent summary is given by Abramsky in [2].

As this thesis focuses on game comonads for descriptive complexity theory and the hi-

erarchy of logics approaching PTIME, we look only at a number of relevant examples. In

particular, given the importance of the logics Ck and Lk from the Power category of Pk
in this hierarchy, we limit our attention in this section to the game comonads which are

directly comparable (via comonad morphisms) with Pk. There are three such comonads

which we review in this section, as highlighted in Figure 3.1. These are

• Ek, a comonad for the k round Ehrenfeucht-Fräıssé game,

• PRk, a comonad for Dalmau’s k pebble relation game, and

• Pn,k, a comonad for the n round, k pebble game.

Ek was first introduced by Abramsky and Shah in [11], PRk by Montacute and Shah in

[77], and Pn,k by Paine in [81]. In a sense, all of these comonads are different weakenings of

Pk as the games captured are all easier for Duplicator to win and so the logics described by

their Power categories are less expressive. Prior to this thesis, no comonads were known

to strictly extend the power of Pk. The first such comonad is the major contribution of

Chapter 6.

CHAPTER 3. A REVIEW OF GAME COMONADS 37

Pk

Ek PRk Pn,k

Figure 3.1: Three game comonads based on Pk. Arrows are comonad morphisms.

Other game comonads have been introduced for different logics which are not directly

comparable with infinitary k-variable logics. In particular, there are comonads for modal

logic by Abramsky and Shah [11], hybrid logic by Abramsky and Marsden [9], and guarded

fragments of first-order logic also by Abramsky and Marsden [8]. There have also been

recent efforts made by Jakl, Marsden and Shah to extend game comonads to two-sorted

structures and to second-order logics [62]. These comonads are outside the scope of this

thesis.

In the rest of this section we briefly review the game comonads Ek, PRk and Pn,k and

compare them with Pk.

3.3.1 Ek : the Ehrenfeucht-Fräıssé comonad

Introduced first by Abramsky and Shah [11], the En comonad gives a comonadic semantics

to a family of k-round Ehrenfeucht-Fräıssé games. The existential or one-way Ehrenfeucht-

Fräıssé game (∃EFk, see Chapter 2) between structures A and B relaxes the existential

k-pebble game by preventing the pebbles from being moved once they’ve been placed.

Instead, Spoiler and Duplicator take turns placing pebbles on their respective structures

and when all pebbles are placed the game ends. Duplicator wins if she makes it to the

end of the game without Spoiler winning. Here we define the comonad, state its relations

to logics of quantifier depth k and structures of treewidth bounded by k, and construct a

comonad morphism νE : Ek → Pk.

Definition of En The definition of this comonad is very similar to that of Pk, where

we send a structure A to an appropriate structure on the set of histories of Spoiler moves

in this game. As they are no longer relevant, we can forget the labels on the pebbles and

so lists of Spoiler moves on A are the simply non-empty lists A+
≤k. Our definition follows

that of Abramsky and Shah.

Definition 3.19 (Definition of Ek in Kleisli form). The k-round Ehrenfeucht-Fräıssé

comonad is defined by the Kleisli triple (Ek, εE, ·) consisting of

• an endofunctor Ek on R(σ) where

38 3.3. OTHER GAME COMONADS

– EkA has the underlying set A+
≤k and a tuple (s1, . . . , sn) is in REkA if and only

is (ω(s1), . . . ω(sn)) is in RA and for each i, j ∈ [k] either si is a prefix of sj or

vice versa; and

– Ekf for a homomorphism f : A → B applies f point-wise to each element of a

list in EkA,

• a counit εE : En =⇒ 1 where εEA : EnA → A sends s ∈ EnA to ω(s); and

• a Kleisli coextension · which sends each Kleisli morphism f : EnA → B to the

morphism f : EnA → EnB defined on s = [a1, . . . , am] ∈ EnA as

f(s) = [f(s[: 1], . . . , f(s[: m]))].

Informally, we should see the action of En on a structure A as unfolding A into a forest

of trees of depth n, whose nodes are labelled with elements of A. Each tree in this

unfolding is rooted at a singleton list [a1] ∈ EnA and each element, s = [a1, a2, . . . , am] ∈
EnA, describes a path in this tree from the root to an element with label εA(s) = am.

The relations in EnA are defined so that the relational stuructre on each branch, {s1 =

[a1], s2 = [a1, a2], . . . , sn = [a1, a2, . . . an]}, of each tree is the same as that on the induced

substructure of A on the elements {εA(s1), . . . , εA(sn)}.

Power for En Analogously to the Pk Power theorems, we can prove that Kleisli mor-

phisms and isomorphisms for Ek between I-structures correspond to Duplicator winning

strategies in a one-way and bijective game. The games here are the Ehrenfeucht-Fräıssé

games on k rounds ∃EFk and BijEFk. In turn, these games are known to capture,

respectively, logical entailment over ∃+Lk and logical equivalence over Ck.

Structure for Ek The Ek-coalgebras for a structure A are shown to be equivalent to

depth k forest covers of A and as a result the coalgebra number fE is equal to the treedepth

of the structure, as defined in Chapter 2.

Comparison with Pk As stated above, the games captured by Ek are simpler versions

of the pebble games captured by Pk. We can make this comparison formally between the

respective comonads with the following comonad morphism from Ek to Pk.

Definition 3.20. We define νE : Ek → Pk to be the natural transformation which sends

s = [a1, . . . al] ∈ EkA to νEA(s) := [(a1, 1), . . . , (al, l)].

3.3.2 PRk : the pebble-relation comonad

The pebble-relation comonad was introduced by Montacute and Shah [77] to give a

comonadic semantics to the parameter of pathwidth and the pebble-relation game of

CHAPTER 3. A REVIEW OF GAME COMONADS 39

Dalmau which was used to study restricted conjunction fragments of first-order logic [31].

The construction of this comonad from Pk is more technically sophisticated than that of

Ek. The construction relies on the fact that Dalmau’s game is equivalent to a so-called

“all-in-one” pebble game of Stewart where Spoiler decides to play for some finite number

of rounds and announces all of his moves ahead of time. Here we present a definition of

this comonad, following that of Montacute and Shah, and state their results in relating

this comonad to restricted conjunction logics and pathwidth.

Definition of PRk To represent histories of Spoiler moves up to a certain round of the

k-pebble all-in-one game we use pairs (s, i) in PkA× N such that i ≤ |s|, where s is the

series of moves that Spoiler declared at the start of the game and i is the number of the

current round. The following definition shows how to turn this into a comonad.

Definition 3.21 (Definition of PRk in Kleisli form). The k-pebble-relation comonad is

defined by the Kleisli triple (PRk, ε
PR, ·) consisting of

• an endofunctor PRk on R(σ) which sends A to a structure with the underlying set∏
s∈PkA[|s|] where the related tuples RPRkA are precisely the tuples ((s, i1), . . . (s, in))

such that (s[: i1], . . . s[: in]) ∈ RPkA,

• a counit εPR which sends (s, i) to ω(s[: i]), and

• a Kleisli coextension · which sends any f : PRkA → B to the map f : PRkA →
PRkB which sends (s, i) = ([(a1, p1), . . . , (am, pm)], i) to ([(f((s, 1)), p1), . . . (f((s,m)), pm)], i).

Structure and Power of PRk The Structure and Power theorems for this comonad,

as proved by Montacute and Shah, follow the same pattern as for Pk and Ek.

On the Power side, the Kleisli morphisms and isomorphism between I-structures capture

Duplicator winning strategies in the one-way and bijective k-pebble all-in-one games.

Montacute and Shah show that the one-way game captures the k-variable restricted con-

junction logic and they define a counting version of this logic #fLk which is captured by

the bijective all-in-one game.

On the Structure side, PRk-coalgebras over a structure A are equivalent to path decom-

positions of A of bag size k and the coalgebra number fPR characterises the pathwidth of

a structure.

Montacute and Shah also show that the natural transformation νPR : PRk → Pk, which

sends any pair (s, i) ∈ PRkA to s ∈ PkA, is a comonad morphism.

40 3.3. OTHER GAME COMONADS

Morphism Power Isomorphism Power

Comonad Game Logic Game Logic

Pk ∃Pebk ∃+Lk Bijk Ck

Ek ∃EFk ∃+Lk BijEFk Ck
PRk ∃PRk ∃+fLk BijPRk #fLk

Pn,k ∃Pebn,k ∃+Lkn Bijn,k Ckn

Table 3.1: Summary of Power Theorems

3.3.3 Pn,k : the k pebble n round comonad

The Pn,k comonad aims to capture a version of the normal k pebble game which ends after

a fixed number, n ≥ k, or rounds. This construction, due to Paine [81] is the simplest

of the variations on Pk and is actually constructed as a subcomonad of Pk. This is done

by defining Pn,kA for any A as the induced substructure of PkA on the set (A × [k])≤n

of Spoiler histories of length less than or equal to n. As any Kleisli coextension f of a

Kleisli map f : PkA → B preserves the length of Spoiler histories on A, we can easily see

that the triple (Pn,k, ε, ·) defines a comonad on R(σ). Furthermore, the inclusion maps

Pn,kA ↪→ PkA define a comonad morphism.

Paine establishes connections between Kleisli morphisms and Duplicator winning strate-

gies for the existential and bijective n-round k-pebble games. In turn, these are seen to

capture the k-variable quantifier depth n logics ∃+Lkn and Ckn. The Pn,k-coalgebras, on

the other hand, are shown to capture a notion of depth n k-pebble forest covers which

effectively restrict the depth of tree decompositions of bag size k. For any fixed n, the

coalgebra number fPn is at most the treewidth of the structure as the tree decomposition

of smallest width won’t in general also have the smallest depth.

As we saw in this section, there are various weakenings of the Pk which appear in the game

comonads literature. Each of them provides interesting connections to different games and

logics from finite model theory as well as strucutral decompositions and combinatorial

parameters. These connections can be stated in terms of Power Theorems in the mould

of Theorems 3.13 and 3.14 and Structure Theorems like Theorems 3.16 and 3.18. The

corresponding results from the comonads surveyed in this section are summarised in Tables

3.1 and 3.2.

In the next section, we look beyond the constructions of different game comonads to some

steps towards general theory and applications before concluding this review.

CHAPTER 3. A REVIEW OF GAME COMONADS 41

Comonad Coalgebra Parameter

Pk tree decomposition of bag size k treewidth

Ek forest cover of depth k treedepth

PRk path decomposition of bag size k pathwidth

Pn,k k-pebble forest cover of depth n depth n treewidth

Table 3.2: Summary of Structure Theorems

3.4 Other topics in game comonads

In this chapter we have seen how a comonad arises naturally from considering the compo-

sitional nature of certain model comparison games in finite model theory. We have seen

that this categorical construction can be adapted to a variety of different games and that

investigating the different components of these comonads provides fruitful connections

to different aspects of logical power and combinatorial structure which are well-studied

in logic and finite model theory. This, however, just touches on just the beginning of

an emerging area of research into comonadic methods in finite model theory. Before

concluding this chapter, we review the recent developments and current directions of re-

search in this area. These include further connections between games and comonads, using

comonads to prove new model theoretic results and generalise old ones, and developing

an abstract comonadic theory of resources for finite model theory.

Further connections While the above examples have shown how to capture several

different model comparison games and structural parameters using comonads, this by no

means gives a complete account of compositionality for games and parameters in finite

model theory.

On the one hand, there are many types of games and parameters on finite structures

which are not given a semantics by the above constructions which are being studied

using similar methods. Notable examples of this include the monadic semantics of non-

local games developed by Abramsky, Barbosa, de Silva and Zapata [3] and the use of

comonads in the theory of open parity games presented by Asada, Eberhart, Hasuo and

Watanabe [89].

On the other hand, there are even simple variations of the above games which appear

to be missing from the account above. One such omission is that of the back-and-forth

Ehrenfeucht-Fräıssé games which capture logical equivalence over fragments of first-order

logic (without counting). Abramsky and Shah [11] show that Duplicator strategies in

these games can be witnessed as “spans of open pathwise embeddings” in the Kleisli

category of game comonads above. This notion borrows from Joyal, Nielsen and Wynskel’s

characterisation of bisimulation in terms of open maps [64].

42 3.4. OTHER TOPICS IN GAME COMONADS

Proving and generalising results Another direction of research in this area is in find-

ing new category theoretic proofs for theorems in finite model theory which rely on model

comparison games. These new proofs can clarify the sometimes ad hoc constructions that

arise in game-based proofs and make it easier to generalise such results between different

logics and games.

Perhaps the most important example of such a result in the recent game comonads liter-

ature is the comonadic proof of a general Lovasz-type theorem which generalises Lovasz’s

classical characterisation of isomorphism between two relational structures in terms of the

the equality of homomorphism-count vectors [74]. Dawar, Jakl and Reggio [38] show the

following important result which holds for many game comonads.

Theorem 3.22 (The Dawar-Jakl-Reggio Lovasz-type Theorem). Given a game comonad

C which satisfies certain conditions, then the following are equivalent for any structures

A,B

• A ∼=K(C) B, and

• for all C which admit a C-coalgebra,

|hom(C,A)| = |hom(C,B)|.

By the Structure and Power theorems for the relevant comonads, this result can be used

to derive classifications of equivalences over different bounded logical fragments in terms

of homomorphism-count vectors from structures bounded in some parameter. This re-

sults in a single standardised proof for several well-known results in finite model theory

including those of Grohe [51] and Dvořàk [40]. In addition it has been used to derive novel

results such as, in the case of Montacute and Shah’s comonad PRk, a characterisation of

homomorphism-count vectors over structures of bounded pathwidth in terms of #fLk

equivalence.

Aside from this, progress has been made towards comonadic accounts of preservation

theorems [81] and Courcelle’s theorem [62].

Towards a theory of resources Finally, the discovery of these graded game comon-

ads which give a novel way of simultaneously controlling logical resources and structural

parameters through a single “resource parameter” has inspired work towards a general

comonadic theory of resources for finite structures.

An important step in this direction was the axiomatic theory given by Abramsky and

Reggio [10] which has presented game comonads as arising from resource-indexed adjunc-

tions with so-called arboreal categories. In addition to this, work has been done on finding

general constructions of game comonads with Abramsky, Jakl and Paine [7] using discrete

density comonads to construct comonads for any given structural parameter.

CHAPTER 3. A REVIEW OF GAME COMONADS 43

In the rest of this thesis, we see contributions to all three of these directions in game

comonads research. Chapters 4 to 6 focus on expanding the connections made so far by

this programme and by deriving new results from them. Chapters 7 and 8 highlight some

apparent limitations of the comonadic approach to certain logical resources and present

alternative category-theoretic constructions for efficient computation beyond Ck.

Chapter 4

Quantifiers in the Kleisli Category

In the last chapter, we saw in Theorems 3.13 and 3.14 that morphisms and isomorphisms

of the Kleisli category of Pk relate in a deep way to the logics ∃+Lk∞ and Lk∞(#), re-

spectively. These results are summarised in Figure 4.1 where the Hasse diagram on the

left represents types of maps in K(Pk) and that on the right gives the related logics or-

dered by inclusion. In this chapter, we deepen this relation significantly showing that

branch-injective, branch-surjective and branch-bijective Kleisli maps, which were intro-

duced by Abramsky, Dawar and Wang in the seminal paper on game comonads [6], relate

in a similar way to logics which are intermediate between ∃+Lk∞ and Lk∞(#). This more

complicated correspondence between Kleisli maps and logics is summarised in Figure 4.2.

From a category-theoretic perspective it is interesting to ask how these intermediate maps

relate to the monomorphisms and epimorphisms of the category K(Pk). In the second

part of this chapter, we compare these notions with branch-injective and branch-surjective

maps, showing that monomorphisms and epimorphisms are strictly more permissive no-

tions. We also provide some progress towards repairing this inequivalence in the case of

monomorphisms by tweaking the definition of Pk.

∼=K(Pk)

→K(Pk)

Lk∞(#)

∃+Lk∞

Figure 4.1: Morphisms and isomorphisms in Pk and their related logics.

44

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 45

→b
K(Pk)

→i
K(Pk)

→s
K(Pk)

→K(Pk)

∃+Lk∞(∃≥m,∀≤m)

∃+Lk∞(∃≥m) ∃+Lk∞(∀≤m)

∃+Lk∞

Figure 4.2: Branch-injective, surjective, and bijective maps in K(Pk) and their related

logics.

∼=P∗k

�P∗k

→P∗k

Lk∞(#)

∃+Lk∞(∃≥m)

∃+Lk∞

Figure 4.3: Morphisms, monomorphisms, and isomorphisms in K(P∗k) and their related

logics.

4.1 Branch-injective and branch-surjective strategies

The concepts of branch-injectivity and branch-surjectivity of Kleisli maps f : PkA → B
were first used by Abramsky, Dawar and Wang as a step towards proving the Isomorphism

Power Theorem for Pk. The key definitions are as follows.

Definition 4.1. For a Kleisli map f : PkA → B, a list s ∈ (A × [k])∗, and an index

i ∈ [k], the ith branch map of f at s is the function fs,i : A→ B defined as

fs,i(a) = f(s; (a, i)).

We say that f is branch-injective when all branch maps fs,i are injective and we write

A →i
k B when there exists such an f .

Similarly, f is branch-surjective when all fs,i are surjective and we write A →s
k B when

there exists such an f .

If f is both branch-injective and branch surjective we say it is branch-bijective and write

A →b
k B.

46 4.1. BRANCH-INJECTIVE AND BRANCH-SURJECTIVE STRATEGIES

While these definitions are useful in the development of the original Power Theorems in

[6], they have not yet been studied in their own right. In particular, an interesting question

is whether these maps have a correspondence with logic. As the maps →i
k,→s

k and →b
k

are all intermediate between →k and ∼=K(Pk), we expect that any such logic would be

intermediate between ∃+Lk∞ and L∞(#). To answer this question precisely, we introduce

the following counting quantifiers which are both expressible in Lk∞(#).

Definition 4.2. For any non-negative integer m, the quantifiers ∃≥m and ∀≤m each bind

a single variable in any formula. Their semantics on a structure A is defined as follows

A, a |= ∃≥mx. φ(x, x) ⇐⇒ |{a ∈ A | A, a, a |= φ(x, x)}| ≥ m

A, a |= ∀≤mx. φ(x, x) ⇐⇒ |{a ∈ A | A, a, a 6|= φ(x, x)}| ≤ m.

For this reason, we refer to ∃≥m as the “there exists at least m” quantifier and ∀≤m as

the “for all except m” quantifier.

In this section we settle the question of finding logics for branch-injective, branch-surjective

and branch-bijective maps by proving the following theorem and thus establishing the

structure on Kleisli maps laid out in Figure 4.2.

Theorem 4.3 (Branch Morphism Power Theorem). For two relational structures A and

B the following equivalences hold for any positive integer k:

1. A →i
k B for the I-structures A and B if, and only if, AV∃+Lk(∃≥m) B,

2. A →s
k B for the I-structures A and B if, and only if, AV∃+Lk(∀≤m) B, and

3. A →b
k B for the I-structures A and B if, and only if, AV∃+Lk(∃≥m,∀≤m) B

We prove this theorem in two parts. Firstly, we introduce a new system of k-pebble

games which generalise the existential k-pebble game of Kolaitis and Vardi [67] and show,

in Proposition 4.5 that Duplicator winning strategies for these games correspond exactly

to Kleisli maps with the desired branch map conditions. We then prove, in Proposition

4.6, that Duplicator winning strategies in these games correspond to the desired logical

relations between structures. This completes the proof of Theorem 4.3.

4.1.1 Branch maps and functional games

For the first part of the proof of Theorem 4.3 we need to introduce versions of the exis-

tential k-pebble game which capture the various restrictions we can place on the branch

maps in K(Pk). We do this in the following definition by altering the rules of the ordinary

existential k-pebble game so that Duplicator responds, in any round, not with a single

element but with a function describing their response to any of Spoiler’s potential moves.

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 47

→b
k

→i
k

→s
k

→k

+Bijk

+Injk +Surjk

+Funk

Figure 4.4: Summary of equivalence between Duplicator winning strategies in various

functional games and Kleisli maps satisfying certain branch conditions proved in Propo-

sition 4.5.

Definition 4.4 (Functional k-pebble games). For two relational structures A, B, the

functional k-pebble game, +Funk(A,B) is played by Spoiler and Duplicator. Prior to the

jth round the position consists of partial maps πaj−1 : [k] ⇀ A and πbj−1 : [k] ⇀ B. In

Round j

• Spoiler chooses a pebble ij ∈ I.

• Duplicator provides a function f j : A → B such that for each i ∈ [k] \ {ij},
fj(π

a
j−1(i)) = πbj−1(i).

• Spoiler chooses a pebble a′ij ∈ A.

• The updated position is given by πaj (ij) = a′ij and πbj(ij) = f j(a′ij); and πaj (i) and

πbj(i) are unchanged for all i 6= ij.

• Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r with (πaj (i1), . . . , πaj (ir)) ∈
RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

The games +Injk(A,B), +Surjk(A,B) and +Bijk(A,B) are defined in the same way

except that the maps f j are required to be injective, surjective and bijective, respectively.

The following Proposition demonstrates the usefulness of these games by showing that

Duplicator strategies for them are equivalent to the existence of Kleisli maps which sat-

isfy the various branch map conditions outlined in Definition 4.1. A summary of these

correspondences is provided in Figure 4.4. One simple consequence of this result is the

equivalence of ∃+Pebk and +Funk, which shows that the above definition is really just a

restating of Kolaitis and Vardi’s original game [67].

48 4.1. BRANCH-INJECTIVE AND BRANCH-SURJECTIVE STRATEGIES

Proposition 4.5. For two I-structures A and B, we have the following list of equiva-

lences:

1. Duplicator has a winning strategy for +Funk(A,B) iff A →k B,

2. Duplicator has a winning strategy for +Injk(A,B) iff A →i
k B,

3. Duplicator has a winning strategy for +Surjk(A,B) iff A →s
k B, and

4. Duplicator has a winning strategy for +Bijk(A,B) iff A →b
k B.

Proof. At the heart of this equivalence is a very straightforward equivalence between the

existence of Duplicator winning strategies of +Funk(A,B) and the existence of Kleisli

maps PkA → B between the respective I-structures. Indeed given a Kleisli map f : PkA →
B, the branch maps fs,i for each Spoiler history s ∈ (A × [k])∗ and each pebble index

i ∈ [k] describe a Duplicator strategy for +Funk(A,B) where fs,i is the function provided

by Duplicator if Spoiler picks up pebble i at the beginning of the round following the

sequence of moves s. A similar translation works in reverse where Duplicator’s responses

in each round of the game give the branch maps of a function PkA → B. It is not hard to

see that such a map is a homomorphism if, and only if, the respective strategy is winning

for +Funk(A,B).

For the equivalences 2 to 4 above, we use the same translation between games and strate-

gies as described above. The only difference is that the rules of the game in each case

guarantee that the branch maps are all injective, surjective and bijective respectively. The

same argument as above gives equivalence of homomorphisms and winning strategies.

This completes the first part of the proof of Theorem 4.3. In the next part, we establish

a connection between winning strategies for these new games and logics extended by

counting quantifiers.

4.1.2 Functional games and counting quantifiers

Part 2 of the proof of Theorem 4.3 requires us to relate Duplicator winning strategies for

the games introduced in Part 1 to the logical fragments named in the theorem. We do

this by proving the following proposition which is summarised in Figure 4.5.

Proposition 4.6. For two relational structures A and B, we have the following list of

equivalences:

1. Duplicator has a winning strategy for +Funk(A,B) iff AV∃+Lk B,

2. Duplicator has a winning strategy for +Injk(A,B) iff AV∃+Lk(∃≥m) B,

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 49

+Bijk

+Injk +Surjk

+Funk

∃+Lk(∀≤m,∃≥m)

∃+Lk(∃≥m) ∃+Lk(∀≤m)

∃+Lk

Figure 4.5: Summary of result in Proposition 4.6.

3. Duplicator has a winning strategy for +Surjk(A,B) iff AV∃+Lk(∀≤m) B, and

4. Duplicator has a winning strategy for +Bijk(A,B) iff AV∃+Lk(∀≤m,∃≥m) B.

In the rest of this section we prove this proposition with a series of lemmata. The first

two of these, Lemma 4.8 and Lemma 4.10, prove that Duplicator winning strategies

for the functional games and logical entailment over the desired fragments of logic are

equivalent, respectively, to the existence of appropriate forth systems and sets of logical

homomorphisms. The final lemma, Lemma 4.11, establishes the equivalence of these two

notions, thus completing the proof of Proposition 4.6.

Following the terminology of Kolaitis and Vardi [67], who use forth systems to repre-

sent Duplicator winning strategies in ∃Pebk, we make the following definition. These

systems consist of positions in the k pebble game which are given by partial homomor-

phisms f : A ⇀ B with |f | ≤ k. We write homk(A,B) for the set of all such partial

homomorphisms and hom(A,B) for the union
⋃
k≥0 homk(A,B).

Definition 4.7. A set S ⊂ homk(A,B) is a forth system if it satisfies the following

properties:

• Downwards closure: If f ∈ S then g ∈ S for any g ⊂ f

• Forth property For any f in S s.t. |f | < k, there exists a function φf : A → B,

such that for all a ∈ A, f ∪ {(a, φf (a))} ∈ S. For each such f we call this property

Forth(S, f).

If we can always choose the functions φf to be injections, surjections or bijections respec-

tively, we call S an injective, surjective or bijective forth system.

It is not hard to see that these forth systems are essentially another way of presenting

Duplicator winning strategies for the functional games of Definition 4.4. Indeed, we can

think of the elements of a forth system as positions in these games from which Duplicator

50 4.1. BRANCH-INJECTIVE AND BRANCH-SURJECTIVE STRATEGIES

can play forever. The closure and forth properties ensure that in each round of the game

Duplicator can force the game’s position to remain inside their chosen forth system. This

argument is formalised in the following result.

Lemma 4.8. For any A and B, the following equivalences hold:

1. There is Duplicator winning strategy for +Funk(A,B) if, and only if, there is a

non-empty forth system S ⊂ homk(A,B).

2. There is Duplicator winning strategy for +Injk(A,B) if, and only if, there is a

non-empty injective forth system S ⊂ homk(A,B).

3. There is Duplicator winning strategy for +Surjk(A,B) if, and only if, there is a

non-empty surjective forth system S ⊂ homk(A,B).

4. There is Duplicator winning strategy for +Bijk(A,B) if, and only if, there is a

non-empty bijective forth system S ⊂ homk(A,B).

Proof. Given a non-empty forth system S (of the appropriate kind), the translation into

a Duplicator strategy in the respective game is relatively straightforward. By downward-

closure, the empty partial function ∅ is in S. As this is the starting position at the

beginning of the respective functional game we can play this game as follows. Suppose

s ∈ S is the position at the start of some round of the game. When Spoiler picks up some

pebble i, this reduces the position to s′ ⊂ s and by downward-closure s′ ∈ S. The forth

property of S says that there is a function φs′ , such that if Duplicator responds with this

function then the positions at the end of the round are also in S. Any strategy which

always picks these functions φs′ is winning for the appropriate game.

To go the other direction, we let Spos be the set of reachable positions in the game when

played according to Duplicators winning strategy. As there is no position where Duplicator

loses we must have Spos ⊂ homk(A,B), so it remains to prove the downward-closed and

forth properties. For downward closure, note that ∅ ∈ Spos as it is the starting position.

Then for any s ∈ Spos and any non-empty s′ ⊂ s we can reach s′ from s as follows. Choose

(a, b) ∈ s′ and let i1, . . . il ∈ [k] be the pebble indices which appear in s but not in s′. Then,

starting from the position s, Spoiler should play the next l rounds by picking up pebble

ij and, regardless of Duplicator’s reply, placing it down on a. The resulting position is s.

The forth property is slightly more straightforward. If s ∈ Spos and |s| < k then if Spoiler

chooses a pebble which does not appear in s, Duplicator’s response must be a function φs

(which is injective, surjective or bijective as required) and the condition that Duplicator

does not lose by playing this function is exactly the respective forth condition.

Now we define the notion of a logical homomorphism which at first appears to generalise

logical entailment relations of the form A VLk B but will seen to be equivalent in the

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 51

proof of Proposition 4.6. To do this, we recall from Chapter 2 that for some logic L,

two structures A and B and tuples a = (a1, . . . , am) and b = (b1, . . . , bm), we write

A, a VL B,b if for every formula φ(x1, . . . xm) ∈ L if A, a |= φ(x1, . . . xm) then B,b |=
φ(x1, . . . xm). We use this to build the following definition.

Definition 4.9. For a k-variable logic Lk, and two structures A and B, a logical homo-

morphism for Lk between A and B is a partial homomorphism p ∈ homk(A,B) such that

for every tuple of elements a in dom(p) of size ≤ k we have

A, aVLk B, p(a).

We denote the set of all logical homomorphisms for Lk between A and B by SLk(A,B) ⊂
homk(A,B).

It is clear from this definition that the empty partial function ∅ is a logical homomor-

phism if and only if A VL B. This allows us to state the following result linking logical

homomorphisms and VL.

Lemma 4.10. For any logic Lk (in the statement of Theorem 4.3) and any structures A
and B we have that AVLk B if, and only if, there exists a logical homomorphism for Lk

between A and B.

Proof. As noted before this proof, the condition that AVLk B implies that ∅ is a logical

homomorphism.

To go the other direction, suppose we have some logical homomorphism p ∈ homk(A,B)

where the domain of p is a. Then, for any sentence φ ∈ Lk such that A |= φ, we have

trivially that A, a |= φ and so B, p(a) |= φ. As φ has no free variables this is the same as

saying that B |= φ. Thus we have AVLk B, as required.

We can now complete the proof of Proposition 4.6 by showing that, for the k-variable logics

we’re interested in, the existence of a logical homomorphism for that logic is equivalent

to the existence of a non-empty forth system for the corresponding game. We do this by

proving the following lemma.

Lemma 4.11. For any structures A and B and any positive integer k we have the fol-

lowing equivalences.

1. There is a non-empty forth system S ⊂ homk(A,B) if, and only if, S∃+Lk∞(A,B) is

non-empty.

2. There is a non-empty injective forth system S ⊂ homk(A,B) if, and only if,

S∃+Lk∞(∃≥m)(A,B) is non-empty.

52 4.1. BRANCH-INJECTIVE AND BRANCH-SURJECTIVE STRATEGIES

3. There is a non-empty surjective forth system S ⊂ homk(A,B) if, and only if,

S∃+Lk∞(∀≤m)(A,B) is non-empty.

4. There is a non-empty bijective forth system S ⊂ homk(A,B) if, and only if,

S∃+Lk∞(∃≥m,∀≤m)(A,B) is non-empty.

Proof. For the forward direction of each of these equivalences we aim to show that given

such a forth system, we have that S ⊂ SL(A,B) for the appropriate logic L. We do this

by showing that any p ∈ S is a logical homomorphism for L, i.e. that p preserves any

formula φ(s) ∈ L which holds in dom(p). We do this by structural induction on the

formula φ(s), noting that for any atomic formula φ(x) is preserved because each p ∈ S is

a partial homomorphism. Furthermore, if φ(x) =
∧
φi(xi) or φ(x) =

∨
φi(xi) then the

preservation of each φi ensures the preservation of φ.

So the only cases of the induction which remain are those containing quantification. This

is where the differentiation between the four different types of forth system becomes

apparent.

Case 1 Suppose S is a forth system and let φ(x) = ∃x.φ′(x,x). If we have that A, a |=
φ(x) for some a ⊂ dom(p) then there is some a ∈ A with A, a, a |= φ(x,x). The forth

property of S at p implies that there is some b ∈ B such that p ∪ {(a, b)} ∈ S. Induction

implies that this partial homomorphism preserves φ′ and so B, b, p(a) |= φ′(x,x), thus

B, p(a) |= ∃x.φ(x,x) and so p preserves φ. Now by induction p is a logical homomorphism

for ∃+Lk∞ as required.

Case 2 Suppose S is an injective forth system and let φ(x) = ∃≥mx.φ′(x,x). If we have

that A, a |= φ(x) for some a ⊂ dom(p) then there are m distinct elements a1, . . . , am ∈ A
such that A, ai, a |= φ′(x,x). Now the injective forth property of S implies that there

is an injection f : A → B such that for all a ∈ A p ∪ {(a, f(a))} ∈ S. By induction

all of these partial homomorphisms preserve φ′ and so in particular we have that for

each ai B, f(ai), p(a) |= φ′(x,x). The injectivity of f implies that f(a1), . . . f(am) are

all distinct and so B, p(a) |= ∃≥mx.φ′(x,x) and p preserves φ. By induction and noting

that the induction in Case 1 also applies here, we have that every p ∈ S is a logical

homomorphism for ∃+Lk∞(∃≥m), as required.

Case 3 Suppose S is a surjective forth system and let φ(x) = ∀≤nx.φ′(x,x). We show

that p preserves φ by proving the contrapositive. Suppose that B, p(a) 6|= φ(x). Then

there must be distinct elements b1, . . . bm+1 such that B, bi, p(a) 6|= φ′(x,x). Now consider

that the surjective forth condition of S at p ensures that there is a surjection f : A→ B

such that, for every a ∈ A, p ∪ {(a, f(a))} ∈ S. By induction each of these functions

preserve φ′. As f is a surjection, we must have distinct elements a1, . . . am+1 ∈ A such

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 53

that f(ai) = bi for each i ∈ [m + 1]. So by preservation of φ′ we have that, for each

i ∈ [m + 1], A, ai, a 6|= φ′(x,x) and so A, a 6|= ∀≤m.φ′(x,x). This shows that p preserves

φ and so by induction all partial homomorphisms in S are logical homomorphisms for

∃+Lk∞(∀≤m).

Case 4 When S is a bijective forth system we have that, in particular, it is also an

injective and surjective forth system. This means that the induction steps in the three

previous cases all apply here and so by induction any p ∈ S is a logical homomorphism

∃+Lk∞(∃≥m,∀≤m), as required.

This completes the forward direction of the proof.

We now prove the other direction by establishing that the set of logical homomorphisms

SL(A,B) one of the four logics above is also a forth system of the appropriate type, as

stated in the following claim.

Claim 4.12. For any two structures A and B, the sets of logical homomorphisms between

A and B for the logics ∃+Lk, ∃+Lk(∃≥k), ∃+Lk(∀≤k) and ∃+Lk(∀≤k,∃≥k) are respectively

a forth system, an injective forth system, a surjective forth system and a bijective forth

system.

Proof of claim. It is firstly clear from the definition that any set SL(A,B) of logical ho-

momorphisms is downward-closed. Indeed the relation A, a1, . . . , am VL B, b1, . . . , bm

implies A, ai1 , . . . , ail VL B, bi1 , . . . , bil for any subset of the chosen tuples. So it remains

to show in each of the cases that SL(A,B) satisfies the required forth property. To this

end, we consider the following structure.

For any pair of tuples a in A and b in B we define the bipartite graph GLa,b to have two

sets of vertices A and B and the edge relation

E(GLa,b) := {(a, b) | A, a, aVL B,b, b}.

To realise this in the logic L, we define the L-type of a ∈ A with respect to a as the set

ΦLa,a = {φ(x, x) ∈ L | A, a, a |= φ(x, x)}.

Then the, in general infinite, formula φLa,a(x, x) :=
∧
φ∈ΦLa,a

φ(x, x) can be used to pick out

the neighbourhood N (a) of a in GLa,b as

b ∈ N (a) ⇐⇒ B,b, b |= φLa,a(x, x).

We drop the superscript L when the logical fragment is clear from context.

Now if the partial function a 7→ b is a logical homomorphism for the logic L between

A and B, the various forth properties correspond to different types of matching in the

bipartite graph GLa,b. In particular,

54 4.1. BRANCH-INJECTIVE AND BRANCH-SURJECTIVE STRATEGIES

• the forth property says that the graph contains a function from A to B,

• the injective forth property says that the graph has a matching which is total on A

(which is also an injective function from A to B),

• the surjective forth property says that the graph contains a function from A to B

and has a matching which is total on B (which is not necessarily a function from A

to B), and

• the bijective forth property says that the graph has a perfect matching.

Now we show that for L = ∃+Lk, ∃+Lk(∃≥k), ∃+Lk(∀,∃≤k) or ∃+Lk(∀,∃≤k,∃≥k) these

matchings are guaranteed for tuples a,b of size less than k by the relation A, aVL B,b.

Case 1: L = ∃+Lk∞ In this case, we need to show that for each a there is an element b ∈
N (a) . However, as A, a, a |= φa,a(x, x) we have that A, a |= ∃x. φa,a(x, x). Now, as this

formula is defined in ∃+Lk the relation A, aVL B,b guarantees that B,b |= ∃x. φa,a(x, x)

and so any witness b for the outer existential of this formula is in N (a), as required.

Case 2: L = ∃+Lk∞(∃≥m) In this case, we need to show that GLa,b has a matching which

is total on A. By Hall’s Marriage Theorem, this is equivalent to the condition that for

any subset W ⊂ A the joint neighbourhood N (W) :=
⋃
a∈W N (a) satisfies the following

inequality

|W | ≤ |N (W)|.

This can be expressed in a formula of ∃+Lk(∃≥m) as follows. Let φW (x, x) :=
∨
a∈W φa,a(x, x).

As with φa,a, it is clear that for any b ∈ B, B,b, b |= φW (x, x) if and only if b ∈ N (W).

However, using the ∃≥m quantifier, we have that

A, a |= ∃≥|W |x. φW (x, x)

and so, as A, a V∃+Lk(∃≥m) B,b, we have that B,b |= ∃≥|W |x. φW (x, x). This gives that

|N (W)| ≥ |W | as required.

Case 3: L = ∃+Lk∞(∀≤m) For this direction we need a slight variation on the argument

in Case 2. The condition from Hall’s Marriage Theorem for G to have a matching which is

total on B is that, for any V ⊂ B, |N (V)| ≥ |V |. To do this we want to take disjunction

over types which are not in the neighbourhood N (V) given by

φN (V)c(x, x) =
∨

a/∈N (V)

φa,a(x, x).

We then consider the formula

∀≤|N (V)|x. φN (V)c(x, x).

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 55

This is clearly satisfied by A, a and the preservation of L formulas in this case ensures that

it is satisfied by B,b. However, for every b ∈ V , we must have that B,b, b 6|= φN (V)c(x, x)

because if this were the case there would be some a ∈ N (V)c such that B,b, b |= φa,a(x, x)

which would mean that a is in the neighbourhood of b and thus is inN (V), a contradiction.

This gives that |V | ≤ |N (V)|, as required.

Case 4: L = ∃+Lk(∃≥m,∀≤m) This case combines Cases 2 and 3. As all of the formulas

defined above are preserved by the relation A, a VL B,b in this case, we have that the

the bipartite graph contains a matching which is total on both A and B and so is a perfect

matching.

This lemma completes the proof of Proposition 4.6 which, together with Proposition 4.5,

completes the proof of Theorem 4.3. This establishes that the branch-injective, branch-

surjective and branch-bijective maps of the Kleisli category of Pk can also be used to

capture logical relations between structures. In the next section, we compare these maps

with the category theoretic notions of monomorphisms and epimorphisms in K(Pk).

4.2 Monomorphisms and epimorphisms in K(Pk)

In Section 4.1, we provided a new characterisation of morphisms in the category K(Pk)
based on the game-theoretic notions of branch-injectivity and branch-surjectivity. In this

section, we aim to study these morphisms based on their category-theoretic rather than

game-theoretic properties. In particular, we want to classify the monomorphisms and

epimorphisms of K(Pk).

Recall that for a general category the definitions of epimorphism and monomorphism are

as follows.

Definition 4.13. For a category C, a map m : A → B in C is a monomorphism if for

every object X in C and any two morphisms g, h : X → A m ◦ g = m ◦ h implies g = h.

If there exists such an m we write A� B.

Dually, a map e : A→ B in C is an epimorphism if for every object Y in C and any two

morphisms g, h : B → Y g ◦ e = h ◦ e implies g = h. If there exists such an e we write

A ⇀ B.

The monomorphisms and epimorphisms ofR(σ) for any finite signature σ are, respectively,

the injective and surjective homomorphisms. It can thus be reasonably hoped that the

monomorphisms and epimorphisms in the Kleisli category of Pk are branch-injective and

branch-surjective respectively. We see in this section that this hope is not quite realised

56 4.2. MONOMORPHISMS AND EPIMORPHISMS IN K(PK)

in K(Pk). Instead, we compare these notions directly by showing, in Proposition 4.14,

that branch-injective and branch-surjective maps are respectively monomorphisms and

epimorphisms. We also prove, however, in Proposition 4.15 that the converse of this

entailment is false.

In the second part of this section however we show that some hope can be recovered by

slightly tweaking Pk. To this end, we introduce a new comonad P∗k which satisfies exactly

the same morphism and isomorphism power theorems as Pk but additionally satisfies a new

monomorphism power theorem relating monomorphisms and branch-injective strategies.

This new comonad can be thought of as removing some redundant information in the

game described by the comonad Pk. A similar construction relating epimorphisms and

branch-surjective strategies has proven more elusive.

4.2.1 Branch-injective 6= monomorphic in K(Pk)

Here we compare the game-theoretic notions of branch-injectivity and branch-surjectivity

with the category-theoretic notions of monomorphic and epimorphic in the Kleisli category

of Pk. It is not hard to see that the branch-injective maps are indeed monomorphisms and

branch-surjective maps are indeed epimorphisms in the category K(Pk), as we establish

in the following proposition.

Proposition 4.14. Given two relational structures A and B and a Kleisli map f : PkA →
B, if f is branch-injective then f is a monomorphism in K(Pk) and if it is branch-surjective

then f is an epimorphism in K(Pk).

Proof. We prove the cases for branch-injective and branch-surjective separately.

Branch-injective =⇒ monomorphic Suppose f is branch-injective and let g, h : PkC →
A be two distinct Kleisli maps into A. This means that there is some s ∈ PkC which

is minimal in length such that g(s) 6= h(s). Write s = s′; (a, i) where s′ ∈ (A × [k])∗

is some (potentially) empty history of Spoiler moves. If s′ is empty then the injectiv-

ity of fε,i ensures that f ◦ g 6= f ◦ h, as (f ◦ g)([(a, i)])) = [(fε,i(g([(a, i)])), i)] while

(f ◦ h)([(a, i)])) = [(fε,i(h([(a, i)])), i)] and g([(a, i)]) 6= h([(a, i)]). If s′ is not empty then,

by minimality, g∗(s′) = h∗(s′) = t and we can repeat a similar argument using the injec-

tivity of ft,i.

Branch-surjective =⇒ epimorphic For this direction, it is sufficient to show that

the Kleisli coextension f ∗ : PkA → PkB is surjective. This is because if any Kleisli maps

g, h : PkB → C differ on some s ∈ PkB then the surjectivity of f ∗ guarantees that there is

a t ∈ PkA such that f ∗(t) = s and so g ◦ f and h ◦ f differ on this t.

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 57

We now establish the surjectivity of f ∗ from branch-surjectivity by induction on the length

of elements in PkB. Surjectivity for all i of fε,i guarantees that for any [(b, i)] ∈ PkB there

is an ai ∈ A such that f ∗([ai, i]) = [(b, i)]. Now assume that for every s ∈ PkB of length

< r there is a t ∈ PkA such that f ∗(t) = s. Take any s′ of length r and write this as

s′ = s; (b, i). As s has length < r by induction there is a t such that f ∗(t) = s. Now the

surjectivity of the branch map ft,i implies that there is an ai ∈ A such that ft,i(ai) = b

and so f ∗(t; (ai, i)) = s′, as required.

A tempting first guess for characterising the monomorphisms and epimorphisms of K(Pk)
would be to try and prove a converse of Proposition 4.14. However, we now see that this

is not the case by showing that there are monomorphisms and epimorphisms which are

not branch-injective or branch-surjective. The key point is that, as shown in Proposition

4.14, branch-injective and branch-surjective maps detect a difference between two different

strategies g and h in the round that this difference occurs. It is possible, however, to

devise Kleisli maps which can differentiate any g and h at some later round than the

one in which the difference occurs. These maps are examples of monomorphisms and

epimorphisms which are not branch-injective or surjective. We provide an example of

such a map in the following proposition.

Proposition 4.15. For any k and any relational structure σ, there are monomorphisms

and epimorphisms in the category K(Pk) which are neither branch-injective nor branch-

surjective, where Pk is considered as a comonad over R(σ).

Proof. For our main counterexample we consider only the 1-pebble game and the corre-

sponding comonad P1 and only structures over the empty relational signature. However,

the problematic behaviour observed in this case can be embedded into games with more

pebbles and more complex signatures.

The example Consider the two sets 1Bit := {0, 1} and 2Bit = {00, 01, 10, 11}. The

example in this section is a Kleisli morphism in K(P1) from 2Bit to 1Bit which is both an

epimorphism and a monomorphism but is neither branch-injective nor branch-surjective.

The idea of this strategy is the following. After r rounds of the 1-pebble game the history

s of Spoiler moves on 2Bit is simply a list of r elements from the set {00, 01, 10, 11}. This

can be seen as a binary string ws of length 2r. After each Spoiler move Duplicator is

required to provide an element of 1Bit. As the sets have no relations and the I-relation

does not apply as there are fewer than 2 pebbles, this choice is entirely unrestricted. This

means we can define a Duplicator strategy readout which for any r-round Spoiler history

s returns the rth bit of ws. This is clearly not a branch-injective or branch-surjective

strategy as the branch map readouts,1 : 2Bit → 1Bit is a constant function outputting

58 4.2. MONOMORPHISMS AND EPIMORPHISMS IN K(PK)

the rth bit of ws which is neither injective nor surjective. We now prove, however, that

readout is both a monomorphism and an epimorphism.

We prove this by showing separately that readout is a monomorphism and an epimor-

phism.

readout is a monomorphism For this part, we take any morphisms g, h : P1C → 2Bit

such that g 6= h and we need to show that compositions readout ◦ g and readout ◦ h are

not equal. The fact that g 6= h means that there is a history t ∈ P1C of length r such

that g(t) 6= h(t) and so the images of the Kleisli coextensions g∗ and h∗ also disagree on t.

Write s1 := g∗(t) and s2 := h∗(t) for these distinct histories in P12Bit of length r. Now

we know that, as g(t) 6= h(t), the strings ws1 and ws2 are strings of 2r bits which disagree

on bit 2r−1 or bit 2r. This means that we can distinguish readout◦g and readout◦h as

follows. Consider let t1 and t2 be any elements of P1C of lengths r− 1 and r respectively.

Then it is not hard to see that the output of readout ◦ g and readout ◦ h on t; t1 and

t; t2 are respectively the 2r − 1th and 2rth bits of s1 and s2. As s1 and s2 differ on these

bits we have that readout ◦ g and readout ◦ h are distinct.

readout is an epimorphism This direction is somewhat easier as, by the argument em-

ployed in the proof of Proposition 4.14, it is sufficient to show that the Kleisli coextension

readout∗ : P12Bit→ P11Bit is surjective.

To see that readout∗ is indeed surjective, note that for any sequence t ∈ P12Bit,

readout∗(t) is, by design, the Spoiler history marking the first r bit of the 2r bit string

wt. So to hit any s ∈ P11Bit we just write any bit string w which is twice the length of

ws, the first half of which is exactly ws. We can then choose a sequence of elements of

2Bit whose concatenation is w. This sequence of elements is exactly the history t such

that readout∗(t) = s and we are done.

Proposition 4.15 has established that in the category K(Pk) monomorphisms are not

necessarily branch-injective and epimorphisms are not necessarily branch-surjective. This

appears to leave open the interesting question of whether there exists a branch-injective

map between two structures exactly whenever there exists a monomorphism between

(and dually for branch-surjective maps and epimorphisms). For monomorphisms, the

example provided in Proposition 4.15 precludes this possibility as |2Bit| > |1Bit| so

there can be no branch-injective map. The question remains open for branch-surjective

maps and epimorphisms. In the next section, we exhibit a new comonadic construction

P∗k where branch-injective maps (i.e. Duplicator winning strategies in +Injh) are exactly

monomorphisms.

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 59

4.2.2 P∗k and the Monomorphism Power Theorem

In this section, we introduce P∗k, a modified version of the Pk comonad which captures a

variant of the k-pebble game where the reuse of single pebbles is more tightly controlled.

As we will show, this modification does not affect the logical relations captured by Kleisli

morphisms and isomorphisms between I-structures but it does result in a converse of

Proposition 4.14 in this new setting, in the form of the following theorem, which is the

main aim of this section.

Theorem 4.16 (Monomorphism Power Theorem for P∗k). For any two relational struc-

tures A and B, the following are equivalent for any positive integer k:

1. There is a Kleisli monomorphism m : P∗kA → B for the I-structures A and B,

2. Duplicator has a winning strategy in the game +Injk(A,B), and

3. AV∃+Lk(∃≥m) B.

To understand the modifications we want to make to Pk for this theorem to hold, we need

to understand the types of Spoiler moves in the k-pebble game we are trying to exclude.

These moves communicate no extra information between Spoiler and Duplicator but form

the basis for the pathological monomorphism we saw in the proof of Proposition 4.15. The

moves fall into two types which we call procrastination moves and prevarication moves.

In a procrastination move, Spoiler picks up a pebble labelled i which is placed at some

element a ∈ A and places it right back down on the same element. In a prevarication

move, Spoiler moves the same pebble two or more times in a row to potentially different

elements. We define these formally as follows.

Definition 4.17. For any k and any structure A we call a Spoiler history s ∈ PkA a

procrastination move if s is of the form s′; (a, i);m; (a, i) where s′ and m are (potentially

empty) sequences of Spoiler moves such that the pebble index i does not appear in m.

We call s a prevarication move if it is of the form s′;m; (a, i) where the sequence m is

non-empty and the only pebble index appearing in m is i.

In the Kleisli category of the new comonad P∗k we want Duplicator strategies to essentially

ignore these procrastination and prevarication moves. To do this we want to take a

quotient of the structure PkA by an equivalence relation which equates Spoiler histories

to all equivalent histories which have been extended by procrastination and prevarication.

To this end, we give the following definition.

Definition 4.18. For any structure A, we define the equivalence relation ≈∗ on PkA to

be the reflexive, transitive, symmetric closure of the relation which contains

60 4.2. MONOMORPHISMS AND EPIMORPHISMS IN K(PK)

• all pairs (s, t) where s is a procrastination move of the form s′; (a, i);m; (a, i) and

t = s′; (a, i) and

• all pairs (s, t) where s is a prevarication move of the form s′;m; (a, i) and t =

s′; (a, i).

Recalling the notion of quotienting a relational structure described in 2, this relation allows

us to define a structure P∗kA := PkA/≈∗ which has as elements the equivalence classes

of ≈∗ and has all the relations required to make the quotient map q : PkA → PkA/≈∗ a

homomorphism. For brevity, we write q(s) as [s] in this section.

To apply this quotient to the entire comonad (Pk, ε, δ) we need to do more than quotienting

the relational structure PkA. In particular, we also need to define maps of the following

forms:

• P∗kf : P∗kA → P∗kB, for every f : A → B,

• ε∗A : P∗kA → A, for every A, and

• δ∗A : P∗kA → P∗k(P∗kA), for every A.

We construct these maps in the following lemma.

Lemma 4.19. For any structure A and any homomorphism f : A → B the following are

well-defined homomorphisms of the types given above:

1. P∗kf([s]) := [Pkf(s)],

2. ε∗A([s]) := εA(s), and

3. δ∗A([s]) := [Pkq(δA(s))].

Proof. In all of these cases to check that a function F is well-defined we need to show

that for any s ≈∗t we have F ([s]) = F ([t]). As ≈∗ is defined in Definition 4.18 as the

transitive closure of so-called procrastination and prevarication pairs, it suffices to check

that if (s, t) is such a pair then F ([s]) = F ([t]). We now proceed to check each of the

functions defined above.

Of the three functions to check, 2 is by far the easiest. This is because if (s, t) is one of

the pairs defined in Definition 4.18 then clearly εA(s) = εA(t).

For 1, we note that, given some Spoiler history s, the function Pkf returns a history

with exactly the same sequence of pebble indices moved but with positions of the peb-

bles changed by applying the function f . Now suppose (s, t) is one of the pairs from

Definition 4.18, then s = s′; (a, i);m; (a, i) or s = s′;m; (a, i) where m contains either

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 61

no pebble indices i or consists entirely of pebble indices i and t = s′; (a, i). In ei-

ther case, the images of s under Pkf are Pkf(s) = Pkf(s′); (f(a), i);Pkf(m); (f(a), i)

or s = Pkf(s′);Pkf(m); (f(a), i) respectively where the pebble indices in Pkf(m) are un-

changed. So, (Pkf(s),Pkf(t)) is still a related pair. This means that Pkf(s) ≈∗ Pkf(t),

and so P∗kf(s) = P∗kf(t) as required.

To check that δ∗A is well-defined, we have to deal with two layers of quotienting. In-

deed, given (s, t) a procrastination or prevarication pair in PkA, we need to show that

Pkq(δA(s)) and Pkq(δA(t)) are related by ≈∗ as elements of Pk(P∗kA). To see this let

s = s′; (a, i);m; (a, i) or s = s′;m; (a, i) (where m contains no indices i or only indices

i respectively) and let t = s′; (a, i). Then the images of these histories under δA are

δA(s) = δA(s′); (t, i); m̃; (s, i) or δA(s) = δA(s′); m̃; (s, i) where m̃ contains no indices i or

only indices i respectively) and δA(t) = δA(s′); (t, i). These histories do not in general,

satisfy the conditions to be related by ≈∗ in PkPkA as s 6= t. However, applying Pkq to

each, replaces the occurences of s and t with q(s) and q(t) which are equal as s ≈∗ t.
Therefore, in PkPkA, (Pkq(δA(s)),Pkq(δA(t))) is a related pair, as required.

Having given well-defined liftings of the functor Pk and the counit and comultiplication,

ε and δ we now prove that these new maps define a new comonad.

Proposition 4.20. For any signature σ, the triple (P∗k, ε∗, δ∗) is a comonad on R(σ).

Proof. We prove this result in two parts. First we establish that P∗k is a functor and ε∗

and δ∗ are natural transformations and we then show that they satisfy the comonad laws

from Definition 2.8. Throughout, we use the fact that the definition of P∗k has been chosen

such that, for the quotient map q, we have (P∗kf) ◦ q = q ◦ (Pkf).

Part 1 To show that P∗k is a functor, we need to know that P∗k(idA) = idP∗kA and for any

f : A → B and g : B → C we have P∗k(g ◦ f) = P∗k(g) ◦ (P∗k(f)). Both follow immediately

from the definitions and the functoriality of Pk as P∗k(idA)([s]) = [Pk(idA)(s)] = [s] and

P∗k(g◦f)([s]) = [Pk(g◦f)(s)] = [Pk(g)◦Pk(f)(s)] = P∗k(g)([Pk(f)(s)]) = P∗k(g)(P∗k(f)([s])).

To show that ε and δ are natural transformations we need that for any f : A → B and

any s ∈ PkA we have

f(ε∗A([s])) = ε∗B(P∗kf([s]))

and

P∗kP∗kf(δ∗A([s])) = δ∗B(P∗kf([s])).

The derivations for these are fairly mechanical and rely on the fact that ε and δ are natural

transformations, Pk and P∗k are functors and the definitions of P∗kf , ε∗ and δ∗. We present

62 4.2. MONOMORPHISMS AND EPIMORPHISMS IN K(PK)

these derivations below for completeness. For the first this goes as follows

f(ε∗A([s])) = f(εA(s))

= εB(Pkf(s))

= ε∗B([Pkf(s)])

= ε∗B(P∗kf(s)).

And the second is derived in the following way, recalling that P∗kf ◦ q = q ◦ Pkf ,

P∗kP∗kf(δ∗A([s])) = P∗kP∗kf([Pkq(δA(s))])

= [Pk(P∗kf)(Pkq(δA(s)))]

= [Pk((P∗kf) ◦ q)(δA(s))]

= [Pk(q ◦ (Pkf))(δA(s))]

= [Pkq(PkPkf(δA(s)))]

= [Pkq(δB(Pkf(s)))]

= δ∗B(P∗kf([s])).

Part 2 We now show that P∗k satisfies the counit and comultiplication laws which are

respectively

P∗kε∗A ◦ δ∗A = ε∗P∗kA ◦ δ
∗
A = idP∗k

and

P∗kδ∗A ◦ δ∗A = δ∗P∗kA ◦ δ
∗
A.

As in the last part we now give the detailed derivation of these using simple rewriting rules

given by the above definitions, naturality of ε and δ and the counit and comultiplication

rules for Pk.

We first prove that for any s ∈ PkA, P∗kε∗A ◦ δ∗A([s]) = [s].

P∗kε∗A ◦ δ∗A([s]) = P∗kε∗A([Pkq(δA(s))])

= [Pkε∗A(Pkq(δA(s)))]

= [Pk(ε∗A ◦ q)(δA(s))]

= [Pk(εA)(δA(s))]

= [idA(s)] = [s].

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 63

For the other counit identity we show that ε∗P∗kA ◦ δ
∗
A([s]) = [s].

ε∗P∗kA(δ∗A([s])) = ε∗P∗kA([Pkq(δA(s))])

= εPkA ◦ (Pkq)(δA(s))

= q ◦ (εPkA)(δA(s))

= [εPkA(δA(s))]

= [s].

We now conclude by deriving the comultiplication law, i.e. that, for any s, P∗kδ∗A(δ∗A([s])) =

δ∗P∗kA(δ∗A([s])).

P∗kδ∗A(δ∗A([s])) = [Pkδ∗A(Pkq(δA(s)))]

= [Pk(δ∗A ◦ q)(δA(s))]

= [Pk(q ◦ (Pkq ◦ δA))(δA(s))]

= [Pk(q ◦ Pkq)(PkδA(δA(s)))]

= [Pk(q ◦ Pkq)(δPkA(δA(s)))]

= [(Pkq ◦ PkPkq ◦ (δPkA ◦ δA)(s)]

= [(Pkq ◦ (δP∗kA ◦ Pkq ◦ δA)(s)]

= δ∗P∗k(δ
∗
A([s])).

This completes the proof of the proposition.

We now prove an important result which establishes that the morphism and isomorphism

power theorems for this new comonad are the same as those proved in Chapter 3 for Pk

Proposition 4.21. For any two structures A,B, there is a P∗k Kleisli morphism (resp.

isomorphism) between the I-structures A,B if and only if there is a Pk Kleisli morphism

(resp. isomorphism) between the I-structures A,B

Proof. We first prove the correspondence for morphisms. One direction is easy. If there

is a Kleisli map f : P∗kA → B then the composite map f ◦ q : PkA → B is a Kleisli map

for Pk.

For the other direction, we recall that a Kleisli map f : PkA → B is a winning strategy for

the existential k-pebble game from A to B. This, in turn, is equivalent to the existence

of a forth system f ⊂ homk(A,B), as shown in Lemma 4.8. We can now use this to

construct a homomorphism f ′ : PkA → B such that for any s ≈∗ t, we have f ′(s) = f ′(t).

Such a map would be a well-defined homomorphism f ′ : P∗kA → B and so we would be

done. To construct f ′ we define the response to each Spoiler history in order of length,

using the set Sf . For each s, if s is either a prevarication or procrastination move, then

64 4.2. MONOMORPHISMS AND EPIMORPHISMS IN K(PK)

we give the same response assigned to the earlier move to which s is related. Otherwise,

we use the forth property of Sf and the current position of the game after s has been

played to determine the next moves.

For the case of isomorphisms we can make a similar case based on the bijective forth

systems which are equivalent to Duplicator winning strategies in the k-pebble bijection

game which are captured by Kleisli isomorphisms in Pk.

With this more mundane set-up out of the way, we come at last to the true object of

interest in this section: a characterisation of the Duplicator winning strategies for +Injk

as the monomorphisms of the category K(P∗k). One direction of this characterisation is

given in Proposition 4.14, which is easily lifted to the setting of P∗k. So it remains to show

that any monomorphism in K(P∗k) is branch-injective. We first outline informally the

strategy for proving this direction before concluding with a full proof of Theorem 4.16.

In Proposition 4.15, the example of a monomorphism in K(Pk) which was not branch-

injective had a slightly subtle way of distinguishing between different sequences of Spoiler

moves. In branch-injective maps, the corresponding Duplicator strategy must distinguish

between the sequences of Spoiler moves at the earliest round where a difference occurs.

However, the readout function did not do this, instead encoding the difference in its

response to late moves. The strategy for proving Theorem 4.16 is to show that in P∗kA
we can construct sequences of Spoiler moves which force Duplicator to distinguish any

differences in the round in which they occur. We now set up the definition required for

this.

Definition 4.22. For Spoiler histories s, s′ ∈ PkA in the existential k-pebble game we

say that s′ collapses to s if s @ s′ and there is some prefix s′′ @ s such that either

s′′ ≈∗ s′ or there exists a sequence s′′ = s0 @ s1 @ . . . @ sl = s′ where for each 0 ≤ i < l,

(si, si+1) ∈ IPkA. We call s′′ a witness of the collapse from s′ to s.

We say that a Duplicator strategy g : PkA → B, collapses after s if for every Spoiler

history s′ such that s @ s′ the history g∗(s′) collapses to g∗(s). We say that a collection

of Spoiler histories (st)t∈PkA witnesses the collapse of g after s if for each t ∈ PkA, st

witnesses the collapse of g∗(s; t) to g∗(s).

It is not hard to see that when we have some s, s′, s′′ ∈ PkA such that s′′ witnesses the

collapse of s′ to s then for any strategy f : P∗kA → B the Duplicator response f([s′]) is

equal to f([s′′]). Furthermore, if a strategy g : PkC → A collapses after s then the output

of f ◦ g on any s′ A s is determined by the series of responses f ∗(g∗(s)), with the witness

for each s′ indicating the relevant prefix.

We now see how to use this notion of collapse to prove that monomorphisms between

I-structures in the category K(P∗k) are also branch-injective. This allows us to complete

the proof of the Monomorphism Power Theorem.

CHAPTER 4. QUANTIFIERS IN THE KLEISLI CATEGORY 65

Proof of Theorem 4.16. Several parts of this equivalence have already been established

earlier in this chapter. Indeed, the equivalence of 2 and 3 is one part of Proposition 4.6

and the implication 2 =⇒ 1 follows from Propositions 4.5 and 4.14. Thus we focus in

this proof on the implication from 1 to 2.

By the equivalence of Duplicator winning strategies for +Injk(A,B) and branch-injective

maps in K(Pk) (Proposition 4.5) it suffices to show that any Kleisli monomorphism

m : P∗kA → B between I-structures is also branch-injective when considered as a map

in K(Pk). To do this we show that for any s ∈ PkA and i ∈ [k] the branch map ms,i is

injective. For this we show that for any a, a′ ∈ A if a 6= a′ then ms,i(a) 6= ms,i(a
′) and

we do this by choosing a structure C and an appropriate pair g, h : PkC → A of distinct

strategies such that the inequality m◦g 6= m◦h guaranteed by m being a monomorphisms

allows us to conclude that ms,i(a) 6= ms,i(a
′). We can do this as follows.

Firstly, choose C to be the structure A0 which has the exact same underlying set A as A
but for every relation R in the signature of A, let RA0 = ∅. This allows us to construct

Duplicator strategies from A0 to A which have no restrictions other than those imposed

by the I-relations and, in the case of the category K(P∗k), the ≈∗ relation. This choice

also has the convenient side effect that, as sets, we have PkA0 = PkA. Now we choose the

strategies g and h as follows:

• For any t ∈ PkA such that either t @ s or t is incomparable with s; (a, i), define

both g∗(t) = h∗(t) = t.

• For t = s; (a, i) define g(t) = a and h(t) = a′.

• For any t A s′; (a, i), with ω(t) = (x, j) there are three cases. If there is a t′ @ t such

that (t′, t) ∈ IPkA then let g(t) = g(t′) and h(t) = h(t′). Otherwise, if j appears as

the last pebble of some earlier prefix of t then choose the maximal such prefix t′ and

let g(t) = g(t′) and h(t) = h(t′). Otherwise, let t′ be the maximal prefix of t such

that ωpeb(t
′) = i (we know that one exists as t A s; (a, i)).

This definition ensures that for any t ∈ PkA0 the strategies g and h agree on every

Spoiler history up to s or incomparable with s; (a, i) and that they both collapse after

s; (a, i). Furthermore this collapse occurs in such a way that for any s′ A s; (a, i) there

is a common witness t @ s; (a, i) for the collapse of g and h. This means that for any

f , f ◦ g 6= f ◦ h if and only if f(g∗(s; (a, i))) 6= f(h∗(s; (a, i))) which, by definition of

g(s; (a, i)) and h(s; (a, i)) is equivalent to saying fs,i(a) 6= fs,i(a
′). Applying this to the

strategy m, where m◦g 6= m◦h is guaranteed by the property of being a monomorphism,

we have the desired conclusion.

This result concludes this chapter by providing both category-theoretic and logical charac-

terisations of branch-injective maps. While we know from Proposition 4.6 that the logical

66 4.2. MONOMORPHISMS AND EPIMORPHISMS IN K(PK)

characterisation extends to branch-surjective maps, a similar relationship to epimorphisms

is not yet known and is left to future work.

In the next chapter we focus on the logical characterisation of the maps in K(Pk) by

exploring the links between the quantifiers described in this chapter and the notion of

generalised quantifiers which appear throughout finite model theory.

Chapter 5

Kleisli maps and generalised

quantifiers

We have seen that the comonad Pk captures the most expressive logics of all the existing

game comonads. A central aim of this thesis is to expand the remit of these compositional

methods to even more expressive logics. Generalised quantifiers, which date back to

Lindström [73], provide a framework for constructing such logics. In this chapter, we see

how these relates to the logics captured by Pk.

To do this we generalise two important results in the finite model theory of generalised

quantifiers. The first is a result of Kolaitis and Väänänen [68] which showed that Lk∞(#)

has the same expressive power as Lk∞ expanded by all unary generalised quantifiers. We

extend this to show that all of the fragments of logic captured by maps in K(Pk) live

double lives as logics expanded by unary generalised quantifiers of different kinds. The

second result is Hella’s game-theoretic characterisation of logics with higher arity gener-

alised quantifiers [58]. We generalise this by providing a system of related games which

bound the expressive power of logics with different subsets of higher arity generalised

quantifiers. In proving these new results, we uncovered a subtle difference between the

ways in which generalised quantifier are used by Hella, and Kolaitis and Väänänen which

has been overlooked in the published literature. We conclude the chapter by correcting

this difference in the unary case.

5.1 Generalised quantifiers

The idea behind a generalised quantifier is to add expressive power to some logic L by

taking an isomorphism-closed class K of τ -structures and introducing a quantifier QK

which can identify structures which belong to K. For this, we need a way to construct

τ -structures using formulas from L over an arbitrary signature σ. This can be done in

67

68 5.1. GENERALISED QUANTIFIERS

many ways, but the one considered in the results which we generalise in this chapter is

the following notion of an interpretation.

Definition 5.1. For a logic L and any two (finite) relational signatures σ and τ =

{R1, . . . , Rm} an L-interpretation of τ in σ is a collection of L[σ] formulas

I(xR1 , . . . ,xRm , z) = (φR(xR, zR))R∈τ

where the tuple xR has ar(R) distinct elements and z is the tuple of parameters consisting

of all unique variables appearing in zR for some R ∈ τ . For each R, xR and zR are

disjoint from each other but note that the variables in xR may be reused in zR′ for some

other R′.

For any such interpretation, we have a mapping which sends any σ-structure A with an

assignment b the variables in z to a τ -structure I(A,b) with the same underlying set A

as A and with related tuples, for each R ∈ τ , given by

RI(A,b) = {a ∈ Aar(R) | A, a,b |= φR(xR, zR)}.

We now define the syntax and semantics of generalised quantifiers.

Definition 5.2. Let L be a logic and K a class of τ -structures with τ = {R1, ..., Rm}.
The extension L(QK) of L by the generalised quantifier for the class K is obtained by

extending the syntax of L by the following formula formation rule:

Let I(xR1 , . . . ,xRm , z) = (φR1 , ..., φRm) be formulas in L(QK) that form an in-

terpretation of τ in σ with parameters z. Then ψ(z) = QK(xR1 , . . . ,xRm).I(xR1 , . . . ,xRm , z)

is a formula in L(QK) over the signature σ. The semantics of the formula

is given by (A, a) |= QK(xR1 , . . . ,xRm).I(xR1 , . . . ,xRm , z), if, and only if,

B := I(A, a) is defined and B is in K.

In this way, adding the generalised quantifier QK to the logic L is the most direct way to

make the class K definable in L. Formally, if L is a regular logic in the sense of [41],

then its extension by QK is the minimal regular logic that can also define K.

While these generalised quantifiers have a quite different syntax and semantics to the

classical first-order quantifiers, ∃ and ∀, the following observation shows that ∃ and ∀ can

be derived as generalised quantifiers.

Observation 5.3. Let φ(x, z) be a formula in L. This determines an interpretation into

τ1 the signature with a single unary relation U . The classes K∃ = {A | UA 6= ∅}
and K∀ = {A | UA = A} are isomorphism-closed classes of τ1 structures. Now, the

generalised quantifiers QK∃ and QK∀ have the same formula formation rules as ∃ and ∀
and the formulas QK∃xφ(x, z) and QK∀xφ(x, z) have the same semantics as ∃xφ(x, z) and

∀xφ(x, z).

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 69

Throughout this chapter we consider three different ways of restricting the power of

generalised quantifier logics. These are number of variables, arity of the quantifiers,

and closure-properties of the underlying classes.

Throughout this chapter, we write Lk(QK) for the k variable fragment of a logic L(QK),

meaning specifically those formulas of L(QK) which use at most k variable symbols in

total. We note that this is subtly different from the logic that would be obtained by

extending the logic Lk using the formula formation rule in Definition 5.2. For example,

the rule above would allow the following formula in FO2 extended by QK , despite using

3 variables in total.

ψ(y1, y2) = QK(x, x).(E(x, y1), E(x, y2)).

In addition to restricting variable count, we can also restrict the kinds of generalised

quantifier we add to our logic. We define the arity of the quantifier QK to be the maximum

arity of any relation in τ . Note that this is the number of variables bound by the quantifier.

We write Lk∞(Qn) for the k-variable fragment of L∞ extended with all quantifiers of

arity n. This is only of interest when n ≤ k. As we see in Section 5.2, Kolaitis and

Väänänen [68] relate the logic Lk∞(Q1) to the k-variable counting logic Lk∞(#). However,

allowing quantifiers of higher arity gives logics of considerably more expressive power. In

particular, if σ is a signature with all relations of arity at most n, then any property of

σ-structures is expressible in Ln∞(Qn). Thus, all properties of graphs, for instance, are

expressible in L2
∞(Q2). It is notable, however, that for any fixed positive integer n there

are properties of finite structures (exhibited by Hella [58]) which are decidable in PTIME

but not expressible in Lω∞(Qn).

In the case of n = 1, we note an important difference in the way the logic Lk∞(Q1) is

defined in the two main sources for this chapter, namely Hella [58], and Kolaitis and

Väänänen [68]. Hella’s version is precisely the logic Lk∞(Q1) defined so far in this section.

Kolaitis and Väänänen, however, place an extra implicit assumption on the types of unary

interpretation I(x1, . . . , xm, z) allowed. In particular, they insist that none of the variables

xi appears in the tuple of parameters z. We call this fragment KV Lk∞(Q1). In Section

5.4, we explore the difference between this logic and the full (Hella) Lk∞(Q1).

Finally, we are interested in studying the expressive power of various subfamilies of Qn.

In particular, we say that a class K is homomorphism-closed (or injective, surjective or

bijective homomorphism-closed) when for any A ∈ K, if f : A → B is a homomorphism

(or injective, surjective or bijective homomorphism respectively) then B ∈ K. We write

Lk∞(Qh
n),Lk∞(Qi

n),Lk∞(Qs
n) and Lk∞(Qb

n) for the respective logics extended by these cor-

responding families of n-ary quantifiers.

We finish this section with a brief comment about some easy-to-overlook nullary (arity

0) generalised quantifiers and what they say about the size of structures. We assume

that these quantifiers are present in every Lk∞(Qn). For any relational signature σ let

R(σ)=M denote the collection of σ-structures whose universe has exactly M elements.

70 5.2. KOLAITIS AND VÄÄNÄNEN’S RESULT IN K(PK)

Let R(σ)≥M =
⋃
m≥M R(σ)=m and similarly R(σ)≤M =

⋃
m≤M R(σ)=m. It is obvious

that R(σ)=M is bijection-closed, R(σ)≥M is injection-closed and R(σ)≤M is surjection-

closed. When σ = ∅ is the empty signature this gives us classes of sets K=M , K≥M and

K≤M which are closed under bijections, injections and surjections respectively. As any

signature σ admits an empty interpretation into the empty signature which sends any

σ-structure to its underlying set, we can create sentences Bm, Im, and Sm by binding

the nullary quantifier QK , for K = K=M , K≥M and K≤M respectively, to this empty

interpretation. As noted in the following observation these sentences are important for

comparing the sizes of structures, in any signature.

Observation 5.4. For all n, k,m ∈ N there are sentences Bm, Im, and Sm in +Lk(Qb
n),+Lk(Qi

n),

and +Lk(Qs
n) respectively, such that

A |= Bm ⇐⇒ |A| = m

A |= Im ⇐⇒ |A| ≥ m

A |= Sm ⇐⇒ |A| ≤ m

As a direct result of this we have that

AV+Lk(Qb
n) B =⇒ |A| = |B|

AV+Lk(Qi
n) B =⇒ |A| ≤ |B|

AV+Lk(Qs
n) B =⇒ |A| ≥ |B|.

5.2 Kolaitis and Väänänen’s result in K(Pk)

Having defined the notion of adding generalised quantifiers to a logic, we would like to

be able to compare the expressive power of these newly extended logics with logics we

are familiar with. As observed in the last section, generalised quantifiers are in general a

very flexible way to add expressive power to a logic. It is therefore very interesting from

a descriptive complexity point of view to show that all generalised quantifiers of a certain

arity or kind can be emulated by some simpler set of quantifiers. In this section we prove

several new results of this type, relating logics with unary generalised quantifiers to the

logics which were shown in Chapter 4 to arise naturally in the Kleisli category of Pk

Kolaitis and Väänänen, proved one of the original results in this direction by showing that

the expressive power of infinitary k-variable logic extended with all unary quantifiers is

equivalent to that of the same logic extended by counting quantifiers. This is summarised

in the following theorem where we recall the notion of equivalence of logic from Chapter

2.

Theorem 5.5 (Kolaitis & Väänänen, 1995 [68]). For any positive integer k,

KV Lk∞(Q1) ≡ Lk∞(#)

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 71

∃+Lk(∃≥n, ∀≤m)

∃+Lk(∃≥n) ∃+Lk(∀≤m)

∃+Lk

∃+Lk(Qb
1)

∃+Lk(Qi
1) ∃+Lk(Qs

1)

∃+Lk(Qh
1)

Figure 5.1: Each Hasse diagram contains extensions of L∞ of increasing expressive power.

Theorem 5.7 establishes equivalence at each level of these diagrams.

This result is interesting from the perspective of game comonads because of the role

that Lk∞(#) plays in K(Pk). Indeed, recalling the Isomorphism Power Theorem for Pk
(Theorem 3.14), we have the following corollary of Theorem 5.5.

Corollary 5.6. For two relational structures A and B the following are equivalent for

any positive integer k:

• There is a Kleisli isomorphism A ∼=K(Pk) B for the I-structures A and B

• A ≡Lk∞(Q1) B.

We now show that this correspondence between generalised quantifiers and Kleisli maps

for Pk can be extended to cover all the types of map considered in Chapter 4. In particular,

we prove the following theorem whose set of logical equivalences is summed up in Figure

5.1.

Theorem 5.7. For every positive integer k, we have the following equivalences of logics:

• KV ∃+Lk∞(Qh
1) ≡ ∃+Lk∞,

• KV ∃+Lk∞(Qi
1) ≡ ∃+Lk∞(∃≥n),

• KV ∃+Lk∞(Qs
1) ≡ ∃+Lk∞(∀≤m), and

• KV ∃+Lk∞(Qb
1) ≡ ∃+Lk∞(∃≥n, ∀≤m).

Before proving this result we state the following important corollary which links these

unary generalised quantifiers to branch-injective, branch-surjective and branch-injective

maps in K(Pk). It follows from the classification of the logics on the right-hand side of

Figure 5.1 provided in Chapter 4.

Corollary 5.8. For two I-structures A and B, we have the following list of equivalences:

72 5.2. KOLAITIS AND VÄÄNÄNEN’S RESULT IN K(PK)

1. AVKV ∃+Lk∞(Qh
1) B iff A →k B,

2. AVKV ∃+Lk∞(Qi
1) B iff A →i

k B,

3. AVKV ∃+Lk∞(Qs
1) B iff A →s

k B, and

4. AVKV ∃+Lk∞(Qb
1) B iff A →b

k B.

We also make the following observation about simplifying formulas in the logical fragment

KV Lk∞(Q1) to a convenient form.

Observation 5.9. Recall that in the fragment KV Lk∞(Q1), any formula of the form

QK(x1, . . . , xm).(φ1(x1, zR1), . . . , φm(xm, zRm))

has the property that xi does not appear in zRj for any j. Thus we can replace this formula

with the equivalent formula

QK(x, . . . , x).(φ1(x, zR1), . . . , φm(x, zRm)).

We write this as QKx. I(x, z) where I(x, z) is the interpretation (φ(x, zR))R∈τm. Applying

this rewriting recursively, we can write any formula of KV Lk∞(Q1) using these more

simple unary quantifiers and we do this throughout this section.

We now provide the details of the proof of Theorem 5.7.

Proof of Theorem 5.7. To prove the right to left implication in each of the cases above it

suffices to show that the quantifiers ∃, ∃≥n, and ∀≤m can be written as unary generalised

quantifiers which are in Qh
1,Q

i
1 and Qs

1, respectively. We saw in Observation 5.3 how to

do this for ∃ by constructing a class K∃. It is not difficult to see that K∃ is closed under

homomorphisms. For ∃≥n, and ∀≤m, we proceed in a similar fashion by defining classes

K≥n and K≤m as

K≥n = {A ∈ R(τ1) | |RA| ≥ n}

and

K≤m = {A ∈ R(τ1) | |RA| ≥ |A| −m}.

It is easy to see that these classes are closed under injective and surjective homomorphisms

respectively and that for any formula φ(x,y), the formula ∃≥nx. φ(x,y) is equivalent to

QK≥nx. (φ(x,y)) and the formula ∀≤nx. φ(x,y) is equivalent to QK≥nx. (φ(x,y)).

For the other direction, we need to show that logics extended by the relevant set of

counting quantifiers are sufficient to define any unary generalised quantifier with the

corresponding closure properties. In particular, we need to show that for any formula

ξ(y) of the form QKx. I(x,y) we can define an equivalent formula ξ(y) which replaces

all unary generalised quantifiers with counting quantifiers of the correct type and uses

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 73

no more variables than ξ. Our strategy to do this is to construct for each A in R(τr)

formulas φhI,A(y), φiI,A(y), φsI,A(y), and φbI,A(y) which are satisfied on a structure B with

choice of parameters c if and only if there is a homomorphism f : A → I(B, c) which is

injective, surjective or bijective respectively in the case of the latter three formulas. Given

these formulas we construct ξ as the following large disjunction where x is h, i, s or b

depending on the closure properties of K

ξ(y) =
∨
A∈K

φxI,A(y). (*)

The equivalence of ξ and ξ is proven as follows. For one direction, if B, c |= ξ(y) then

I(B, c) ∈ K and so φhI,I(B,c)(y) appears in the disjunction in ξ and this is trivially modelled

by B, c. In the other direction if B, c |= ξ(y) then there exists some A ∈ K such that

B, c |= φxI,A(y) and so there is a homomorphism of the appropriate kind from A to I(B, c).

By the closure of K under the appropriate kind of homomorphisms, this gives us that

I(B, c) ∈ K and so B, c |= ξ(y).

We complete this proof by showing how to construct the formulas φhI,A(y), φiI,A(y), φsI,A(y),

and φbI,A(y). This relies on the following claim about unary structures which makes up

the main technical body of this proof

Claim 5.10. For any unary signature τr and any τr-structure A there are 1-variable

sentences φhA, φ
i
A, φ

s
A, and φbA in the respective logics such that for any of these

B |= φ ⇐⇒ ∃f : A → B of the appropriate kind.

Proof of claim. To construct these sentences we observe that when constructing homo-

morphisms between unary structures, the image at each point can be chosen indepen-

dently of the image at all other points. Let A and B be two τr-structures. For any

element a ∈ A let the unary type of a in A be defined as the set of all unary predicates

satisfied by a, which we call u-typeA(a). We say that b ∈ B is a candidate image of

a ∈ A if u-typeA(a) ⊂ u-typeB(b), i.e. that all unary predicates in τr which are satisfied

by a, are also satisfied by b. We write a 99K b for this relation and for any element a ∈ A
write N99K(a) for its neighbourhood under 99K and N c

99K(a) for B \N99K(a). Write NL99(b)
and N c

L99(b) for, respectively, the set {a | a 99K b} and its complement in A.

In this presentation, we have a relatively simple definition of a homomorphism between

two τr-structures. Indeed a homomorphism from A to B is simply a choice of b ∈ N99K(a)

for each a ∈ A. This means that we can define N99K(a) by the single-variable formula

ψa99K(x) =
∧
U∈u-typeA(a) U(x). And so the required sentence φhA is

φhA :=
∧
a∈A

∃x. ψa99K(x).

74 5.2. KOLAITIS AND VÄÄNÄNEN’S RESULT IN K(PK)

For injective or surjective homomorphisms we consider matchings in the bipartite graph

defined by 99K which are total on A and B respectively. These can be expressed in terms

of Hall’s conditions, as we saw in the proof of Proposition 4.6.

For matchings total on A, which correspond in this case with injective homomorphisms

from A, this condition is

∀S ⊂ A. |S| ≤ |N99K(S)|

which is easily converted into a corresponding formula in ∃+Lk∞(∃≥n) as

φiA =
∧
S⊂A

∃≥|S|x.
∨
a∈S

ψa99K(x).

For matchings which are total on B, the condition is

∀S ⊂ B. |S| ≤ |NL99(S)|. (SM1)

To turn this into a sentence identifying surjective homomorphisms from a structure A we

need to be careful of two things. Firstly, a matching which is total on B does not have

to be a function from A to B. We overcome this by noting that if 99K⊂ A× B contains

both a function and a matching which is total on B then it contains a surjective function.

This means we can define φsA as the conjunction of φhA and a formula φsmA defining when

99K⊂ A×B has a matching which is total on B.

The second issue is in defining φsmA . In particular, we need to construct a sentence that

is parametrised entirely in terms of A but the condition (SM1) quantifies over subsets of

B rather than subsets of A. To overcome this, we first show that (SM1) is equivalent to

the condition

∀S ′ ⊂ A. |N c
99K(S

′)| ≤ |A \ S ′|. (SM2)

Once we have this equivalence, we can write φsmA as

φsmA =
∧
S′⊂A

∀≤|S′|x.

[∨
a∈S′

ψa99K(x)

]

and so φsA = φhA ∧ φsmA is the required sentence in ∃+Lk∞(∀≤m).

Now we prove the equivalence of (SM1) and (SM2). Firstly, we show that (SM1) implies

(SM2). Given any S ′ ⊂ A, let S = N c
99K(S

′) ⊂ B. Now (SM1) implies that |S| ≤
|S ′′| where S ′′ = NL99(S) = NL99(N c

99K(S
′)). We know by the definition of 99K that

S ′ ∩ NL99(N c
99K(S

′)) = ∅ and so S ′′ ⊂ A \ S ′ and thus we have |S| ≤ |S ′′| ≤ |A \ S ′| as

required.

Now we show the other direction. Given S ⊂ B, let S ′ = N c
L99(S). (SM2) gives that

|B \ S ′′| ≤ |A \ S ′|

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 75

where S ′′ = N99K(S ′) ⊂ B. Now as S ′′ ∩ S = ∅ by definition and A \ S ′ = A \ N c
L99(S) =

NL99(S). So we have

|S| ≤ |B \ S ′′| ≤ |A \ S ′| = |NL99(S)|

as required.

Finally, to define φbA we simply note that as we care only about finite structures it suffices

to check if there are both injective and surjective homomorphisms and so φbA = φiA ∧ φsA.

To complete the proof of the theorem, it remains to define the formulas φhI,A(y), φiI,A(y),

φsI,A(y), and φbI,A(y). To do this we take the sentences φhA, φ
i
A, φ

s
A, and φbA defined in the

proof of the claim and replace each unary atom R(x) with the appropriate φR(x,yR) from

the interpretation I. By the proof of the claim above these new formulas are satisfied by

some structure B and choice of parameters b if, and only if, there is a homomorphism

f : A → I(B,b), of the appropriate kind. Finally, as the variable x does not appear in

the tuples yR (by the assumption that I(x,y)) is permitted in KV Lk∞(Q1)), this can be

done in k variables without any relabelling. This means that the formula ξ defined in (*)

contains the same number of variables as ξ and so we are done.

Theorem 5.7 and Corollary 5.8 establish a deep connection between unary generalised

quantifiers and the Kleisli category of Pk. It is natural now to ask if this correspondence

between comonadic semantics and generalised quantifiers lifts to higher arities. In the

next chapter, we see a complete answer to this question but first, in the next section we

introduce a new system of pebble games which bridges the gap between the logical and

comonadic worlds for higher arity generalised quantifiers.

5.3 Hella’s games for generalised quantifiers

Corollary 5.8 in the last section showed that the comonad Pk effectively captures, in a

fairly robust way, the unary level of the hierarchy of generalised quantifiers. This suggests

an intriguing question of whether there is a similar comonadic semantics for higher arities.

This is precisely the question which is answered in Chapter 6. An important prerequisite

for this work is to find appropriate games which generalise the system of pebble games

studied in Chapter 4 and capture the logical relations relevant to higher arity generalised

quantifiers.

One such family of games is that of Hella’s n-bijective k-pebble games, Bijnk . These are

model-comparison games which capture equivalence of relational structures over the logic

Lk∞(Qn), i.e. k-variable infinitary logic where the allowed quantifiers are all generalised

76 5.3. HELLA’S GAMES FOR GENERALISED QUANTIFIERS

quantifiers with arity ≤ n. This game generalises a variant of the bijection game Bijk

which captures equivalence over Lk∞(#) which we saw in the last section is equivalent to

Kolaitis and Väänänen’s unary fragment KV Lk(Q1).

In this section, we introduce a family of games which relax the rules of Bijnk and prove a

generalisation of Hella’s result by showing the correspondence of these games to different

fragments of Lk∞(Qn), with the new games and their corresponding logics being sum-

marised in Figure 5.2. Throughout this section, we will state our main results in terms

of a quantifier-free version of Lk∞ which restricts negation to the atomic formulas. This

allows for a clearer distinction between the different classes of generalised quantifiers to

be studied and is defined as follows.

Definition 5.11. For any signature σ, we denote by +Lk[σ], the class of positive infinitary

k-variable quantifier-free formulas over σ. That means the k variable fragment of the class

of formulas

+L[σ] ::= R(x1, . . . xm) |
∧
I

φ |
∨
J

ψ

for any R ∈ σ. We use Lk[σ] to denote a similar class of formulas but with negation

permitted on atoms.

Bijnk

Injnk +Bijnk Surjnk

+Injnk Funnk +Surjnk

+Funnk

Lk(Qb
n)

Lk(Qi
n) +Lk(Qb

n) Lk(Qs
n)

+Lk(Qi
n) Lk(Qh

n) +Lk(Qs
n)

+Lk(Qh
n)

Figure 5.2: Hasse diagrams of new games (ordered by difficulty for Duplicator) and cor-

responding logics (ordered by expressive power).

5.3.1 Relaxing Bijnk

Recall from Chapter 2 that each round of Bijnk(A,B) involves Duplicator selecting a

bijection f : A→ B and ends with a test of whether for the pebbled positions (ai, bi)i∈[k]

it is the case that for any {i1, . . . ir} ⊂ [k]

(ai1 , . . . air) ∈ RA ⇐⇒ (bi1 , . . . bir) ∈ RB

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 77

where Duplicator loses if the test is failed. For the rest of the round, Spoiler rearranges

up to n pebbles on A with the corresponding pebbles on B moved according to f .

A crucial difference between this game and the bijective k-pebble game Bijk is the order

in which Spoiler and Duplicator make their moves. This difference results in a subtle

difference in the logics captured by each game as is explored more comprehensively in

Section 5.4.

To create from Bijnk a “one-way” game from A to B we need to relax the condition that

the f provided by Duplicator needs to be a bijection and the ⇐⇒ in the final test. We

do the by taking inspiration from the relaxation of Bijk to +Funk described in Chapter 4.

As in the case of the bijection games, the main difference between the following definition

and that in Definition 4.4 is the difference in the order of Spoiler and Duplicator moves.

Definition 5.12. For two relational structures A, B, the positive k-pebble n-function

game, +Funnk(A,B) is played by Spoiler and Duplicator. Prior to the jth round the

position consists of partial maps πaj−1 : [k] ⇀ A and πbj−1 : [k] ⇀ B. In Round j

• Duplicator provides a function hj : A→ B such that for each i ∈ [k], hj(π
a
j−1(i)) =

πbj−1(i).

• Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m

elements x1, . . . xm ∈ A.

• The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and

πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i) for i 6∈ {p1, . . . , pm}.

• Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r such that

(πaj (i1), . . . , πaj (ir)) ∈ RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

We saw in Chapter 4 that the positive function game +Funk is equivalent to the existential

k-pebble game for which we motivated the pebbling comonad construction in Chapter 3.

This makes +Funnk a good candidate for the one-way game corresponding to Bijnk . The

similarity with the games in Chapter 4 also motivates the following definitions of positive

n-injective, n-surjective and n-bijective games.

Definition 5.13. For two relational structures A, B, the positive k-pebble n-injection

(resp. surjection, bijection) game, +Injnk(A,B) (resp. +Surjnk(A,B), +Bijnk(A,B)) is

played by Spoiler and Duplicator. Prior to the jth round the position consists of par-

tial maps πaj−1 : [k] ⇀ A and πbj−1 : [k] ⇀ B. In Round j

• Duplicator provides an injection (resp. a surjection, bijection) hj : A→ B such that

for each i ∈ [k], hj(π
a
j−1(i)) = πbj−1(i).

78 5.3. HELLA’S GAMES FOR GENERALISED QUANTIFIERS

• Spoiler picks up to n distinct pebbles, i.e. elements p1, . . . pm ∈ [k](m ≤ n) and m

elements x1, . . . xm ∈ A.

• The updated position is given by πaj (pl) = xl and πbj(pl) = hj(xl) for l ∈ [m]; and

πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i) for i 6∈ {p1, . . . , pm}.

• Spoiler has won the game if there is some R ∈ σ and (i1, . . . ir) ∈ [k]r such that

(πaj (i1), . . . , πaj (ir)) ∈ RA but (πbj(i1), . . . , πbj(ir)) 6∈ RB.

Duplicator wins by preventing Spoiler from winning.

Strengthening the test condition in each round so that Spoiler wins if there is some R ∈ σ
and (i1, . . . ir) ∈ [k]r such that (πaj (i1), . . . , πaj (ir)) ∈ RA if, and only if, (πbj(i1), . . . , πbj(ir)) 6∈
RB, we get the definitions for the games Funnk , Injnk , Surjnk and Bijnk where the latter is

precisely the n-bijective k-pebble game of Hella.

We now show that these games each correspond to a logic extended by n-ary quantifiers,

generalising a result of Hella and extending the connection between pebble games and

generalised quantifiers which we saw in the last section.

5.3.2 Generalising Hella’s Theorem

Having introduced games which relax Hella’s n-bijective k-pebble game, we now show that

these games capture the expressive power of interesting fragments of L∞ω(Qn), the logic

originally studied in Hella’s paper [58]. In this paper, Hella proved the following theorem

relating Duplicator winning strategies in Bijnk and logical equivalence of structures over

Lk∞(Qn).

Theorem 5.14 (Hella’s Theorem). For all n, k ∈ N the following are equivalent:

• Duplicator has a winning strategy for Bijnk(A,B)

• A ≡Lk∞(Qn) B

• A ≡FOk(Qn) B

The goal of this section is to prove a generalisation of this result which relates the games

and logics in Figure 5.2. While the generalised quantification here is in the style of Hella

rather than Kolaitis and Väänänen, this structure reinforces the notion that these games

are in a sense the “correct” generalisation of the games related to Pk, which were given

their own characterisation in terms of generalised quantifier logics in the last section.

In order to present the proof of this in a uniform fashion, we label the corners of these

cubes by three parameters xi, xs, xn ∈ {0, 1} as indicated in Figure 5.3. These parameters

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 79

signal the presence or absence of certain rules in the corresponding games. xi and xs

indicate if the function provided by Duplicator in each round is required to be injective or

surjective respectively. xn indicates if Spoiler wins when negated atoms are not preserved

by the partial map defined at the end of a round.

(1, 1, 1)

(1, 0, 1) (1, 1, 0) (0, 1, 1)

(1, 0, 0) (0, 0, 1) (0, 1, 0)

(0, 0, 0)

Figure 5.3: Cube of parameters

Now we define the aliases of each of the games which modify Funnk as follows, with the

games defined lining up with the games defined in Chapter 4.

Definition 5.15. For two σ-structures A and B, the game (xi, xs, xn)-Funnk(A,B) is

played by Spoiler and Duplicator in the same fashion as the game +Funnk(A,B) with the

following additional rules:

1. When Duplicator provides a function f : A → B at the beginning of a round, f is

required to be

• injective if xi = 1 and

• surjective if xs = 1.

2. If xn = 1, Spoiler wins at move j if the partial map taking πaj (i) to πbj(i) fails to

preserve negated atoms as well as atoms.

Similarly, we define parameterised aliases for the related logics. To lighten our notational

burden, we use Hn,k to denote the logic +Lk(Qh
n) throughout this section.

Definition 5.16. For any x = (xi, xs, xn), we define Hn,k
x to be the logic Hn,k extended by

1. all n-ary generalised quantifiers closed by all homomorphisms which are:

• injective, if xi = 1; and

• surjective, if xs = 1

80 5.3. HELLA’S GAMES FOR GENERALISED QUANTIFIERS

2. if xn = 1, negation on atoms.

For example, Hn,k
001 extends Hn,k with negation on atoms but contains no additional quan-

tifiers as all n-ary quantifiers closed under homomorphisms are already in Hn,k. On the

other hand, Hn,k
110 does not allow negation on atoms but allows all quantifiers that are

closed under bijective homomorphisms.

We can now state the main theorem of this section as follows.

Theorem 5.17 (Generalised Hella’s Theorem). For x ∈ {0, 1}3 and all n, k ∈ N the

following are equivalent:

• Duplicator has a winning strategy for x-Funnk(A,B)

• AVHn,kx
B

• AV∃+FOn,k
x
B

To truly claim that this theorem as stated is a generalisation of Theorem 5.14 we need to

show that the case of x = (1, 1, 1) above yields exactly Hella’s result. To do this we show

that the relations ≡Lk∞(Qn) and VLk(Qb
n) are the same. As Lk∞(Qn) contains arbitrary

negations it is easy to see that ≡Lk∞(Qn) is the same as the VLk∞(Qn) relation. So all

that remains to show is that Lk∞(Qn) is equivalent to Lk(Qb
n), as is done in the following

proposition.

Proposition 5.18. For all n, k ∈ N, Lk(Qb
n) ≡ Lk∞(Qn).

Proof. To prove this equivalence we need to overcome two differences between these logics.

Firstly, the class Qb
n of bijective-homomorphism-closed n-ary quantifiers is a proper sub-

class of Qn of all isomorphism-closed n-ary quantifiers. The following observation provides

a way of replacing general isomorphism-closed classes with bijective-homomorphism-closed

ones by modifying the signature.

Observation 5.19. For K an isomorphism-closed class of τ -structures, if τ ′ = τ ∪
{R | R ∈ τ} then

K′ = {A ∈ R(τ ′) | 〈A, (RA)R∈τ 〉 ∈ K and ∀R ∈ τ, RA = Aar(R) \RA}

is a bijective-homomorphism closed class of τ ′ structures.

An important consequence of this is that for any such K, the formula

φ(y) = QK(xR)R∈τ . (ψR(xR,yR))R∈τ

is equivalent to the formula

φ′(y) = QK′(xR)R∈τ ′ . (ψ′R(xR,yR))R∈τ ′ ,

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 81

where for any R ∈ τ ψ′R = ψR and ψ′
R

= ¬ψR.

The second difference between these two logics is the role of negation. As defined in this

section, Lk(Qb
n) only allows negation on atoms, whereas Lk∞(Qn) allows negation through-

out formulas. The following observation is important for dealing with this difference.

Observation 5.20. A class of τ -structures K is isomorphism-closed if, and only if, its

complement Kc is.

This implies that the formula φ(y) = ¬QK(xR)R∈τ . (ψR(xR,yR))R∈τ is equivalent to

φ′(y) = QKc(xR)R∈τ . (ψR(xR,yR))R∈τ .

Clearly Lk(Qb
n) is contained in Lk∞(Qn), so we focus on translating a formula φ(y) ∈

Lk∞(Qn) to an equivalent φ̃(y) in Lk(Qb
n). This can be done by induction on the quantifier

depth of φ. For quantifier depth 0, there are no quantifiers to be replaced and any negation

is either on atoms or can be assumed to be on atoms by appropriately distributing over

conjunction or disjunction.

Now we assume φ has quantifier depth q. Without loss of generality, we can assume that

φ is of the form QK(xR)R∈τ . (ψR(xR,yR))R∈τ for some isomorphism-closed class K of

τ -structures. Indeed, if φ contains a leading negation we can use Observation 5.20 to

remove the negation by replacing K with Kc. Note that the formulas ψR and ¬ψR have

quantifier depth strictly less than q and so by induction they have equivalents ψ̃R and
˜¬ψR in Lk(Qb

n). Now, using the consequence of Observation 5.19 mentioned above, we

can define φ̃ as QK′(xR)R∈τ ′ . (ψ̃′R(xR,yR))R∈τ ′

5.3.3 Proof of Theorem 5.17

Now to prove the desired correspondence between x-Funnk and Hn,k
x , we adapt a proof

from Hella [58] to work for this parameterised set of games.

For this we need the language of forth systems which Hella uses as an explicit representa-

tion of a Duplicator winning strategy1. We provide the appropriate generalised definition

here:

Definition 5.21. Let Partkxn(A,B) be the set of all partial functions A ⇀ B which

preserve atoms (i.e. are partial homomorphisms) and, if xn = 1 additionally preserve

negated atoms.

A set S ⊂ Partkxn(A,B) is a forth system for the game (xi, xs, xn)-Funnk(A,B) if it satisfies

the following properties:

• Downwards closure: If f ∈ S then g ∈ S for any g ⊂ f

1These are called “k-variable n-bijective back-and-forth sets” in Hella’s paper, where the “back”

condition is implicit in the use of bijections. We drop that in the present generalisation.

82 5.3. HELLA’S GAMES FOR GENERALISED QUANTIFIERS

• (xi, xs)-forth property For any f in S s.t. |f | ≤ k, there exists a function φf :

A → B, which is injective if xi = 1 and surjective if xs = 1 s.t. for every C ⊂
dom(f), D ⊂ A with |D| ≤ n and |C ∪D| ≤ k we have (f � C) ∪ (φf � D) ∈ S.

As this definition is essentially an unravelling of a Duplicator winning strategy for the

game (xi, xs, xn)-Funnk(A,B) we can prove the following useful lemma.

Lemma 5.22. There is a non-empty forth system S for the game (xi, xs, xn)-Funnk(A,B)

if, and only if, Duplicator has a winning strategy for the game (xi, xs, xn)-Funnk(A,B)

Proof. For the forward direction we note that if the pebbled position at the beginning

of some round of (xi, xs, xn)-Funnk(A,B) describes a partial homomorphism f ∈ S then

the forth condition on S guarantees that if Duplicator plays φf : A → B in this round

then, whatever move Spoiler chooses in response, the pebbled position at the end of the

round is some f ′ ∈ S. As S ⊂ Partkxn(A,B) we know that such a move does not result in

Duplicator losing the game. So if ∅ ∈ S, Duplicator can use S to play indefinitely without

losing.

For the other direction, we note that the set of possible positions when playing the game

(xi, xs, xn)-Funnk(A,B) according to some winning Duplicator strategy Φ forms a forth

system SΦ.

Following Hella, we define the canonical forth system for a game as follows:

Definition 5.23. The canonical forth system for (xi, xs, xn)-Funnk(A,B) is denoted In,kx (A,B)

and is given by the intersection
⋂
m I

n,k,m
x (A,B), whose conjuncts are defined inductively

as follows:

1. In,k,0x (A,B) := Partkxn(A,B).

2. In,k,m+1
x (A,B) is the set of ρ ∈ In,k,mx (A,B) such that ρ satisfies the (xi, xs)-forth

condition with respect to the set In,k,mx (A,B)

It is not difficult to see that for any forth system S for x-Funnk(A,B) we have S ⊂
In,kx (A,B). This means that there is a winning strategy for Duplicator in the game

x-Funnk(A,B) if, and only if, In,kx (A,B) is not empty.

To complete the vocabulary needed to emulate Hella’s proof in this setting we introduce

the following generalisations of Hella’s definitions.

Definition 5.24. For any ρ ∈ Partkxn(A,B) and φ(y) a formula in some logic, we say

that ρ preserves φ(y) if for any a ⊂ dom(ρ) of the same length as y we have that A, a |=
φ(y) =⇒ B, ρ(a) |= φ(y).

Denote by Jn,kx (A,B) the set of all ρ ∈ Partkxn(A,B) which preserve all Hn,k
x formulas.

Let ∃+FOn,k
x denote the fragment of Hn,k

x with only finitary conjunctions and disjunctions.

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 83

Denote by Kn,k
x (A,B) the set of all ρ ∈ Partkxn(A,B) which preserve all ∃+FOn,k

x formu-

las.

Now, we directly modify Hella’s argument to prove the following:

Lemma 5.25. For A,B finite relational structures and all choices of n, k and x,

In,kx (A,B) = Jn,kx (A,B) = Kn,k
x (A,B)

Proof. We prove the result by showing that

In,kx (A,B) ⊂ Jn,kx (A,B) ⊂ Kn,k
x (A,B) ⊂ In,kx (A,B)

The inclusion Jn,kx (A,B) ⊂ Kn,k
x (A,B) is obvious so we focus on proving

1. In,kx (A,B) ⊂ Jn,kx (A,B); and

2. Kn,k
x (A,B) ⊂ In,kx (A,B)

Proof of 1. Given ρ ∈ In,kx (A,B) we prove by structural induction on φ ∈ Hn,k
x that p

preserves φ. Clearly as ρ is a partial homomorphism, it preserves atoms and, if xn = 1,

negated atoms. The inductive cases for ∨ and ∧ are easy so we focus on the cases

(y ⊂ dom(ρ)) where

φ(y) = QK(z1, . . . zm).(ψ1(y1, z1), . . . ψm(ym, zm))

Now ρ ∈ In,kx (A,B) implies the existence of a map f : A → B such that for all C ⊂
dom(ρ), D ⊂ A with |D| ≤ n we have (ρ � C) ∪ (f � D) ∈ In,kx (A,B), so using the

induction hypothesis we have that for all i,

A, ai,bi |= ψi(yi, zi) =⇒ B, ρai, fbi |= ψi(yi, zi)

This means that f is a homomorphism

f : 〈A,ψ1(a1, ·), . . . ψm(am, ·)〉 → 〈B,ψ1(ρa1, ·), . . . ψm(ρam, ·)〉

Furthermore, in the cases where (xi, xs) = (1, 0), (0, 1) or (1, 1) this homomorphism is

injective, surjective and bijective respectively and the class K is closed under injective-

homomorphism, surjective-homomorphism or bijective-homomorphism so in all of these

cases

〈A,ψ1(a1, ·), . . . ψm(am, ·)〉 ∈ K =⇒ 〈B,ψ1(ρa1, ·), . . . ψm(ρam, ·)〉 ∈ K

and so A, a |= φ(y) =⇒ B, ρa |= φ(y) and we are done with the proof of 1.

84 5.3. HELLA’S GAMES FOR GENERALISED QUANTIFIERS

Proof of 2. Suppose that we have p ∈ Kn,k
x (A,B). We have that p ∈ In,k,0x (A,B) by defi-

nition, so we prove by induction that p ∈ In,k,mx (A,B), for all m and any p ∈ Kn,k
x (A,B).

Indeed, suppose this is true for m′ < m but that p 6∈ In,k,mx (A,B) for some p ∈ Kn,k
x (A,B).

Then it must be the case that for every f : A → B (injective if xi = 1, surjective if

xs = 1) there is some choice of tuples af from dom(p) and bf from A with |bf | ≤ n

and |af ∪ bf | ≤ k such that (p � af) ∪ (f � bf) 6∈ In,k,m−1
x (A,B). By induction, this

means that (p � af) ∪ (f � bf) 6∈ Kn,k
x (A,B) and so there is a formula ψf (y, z) such that

A, af ,bf |= ψf (y, z) but B, paf , fbf 6|= ψf (y, z).

Let Fx denote the set of functions f : A→ B which are injective if xi = 1 and surjective

if xs = 1. Recall from Observation 5.4, the existence of p implies that Fx is non-empty.

Now we define two structures Ap = 〈A, (ψf (af , ·))Fx〉 and Bp = 〈B, (ψf (paf , ·))Fx〉. We

have by construction that no f ∈ Fx is a homomorphism from Ap → Bp, meaning that

we can define a class K with Ap ∈ K and Bp /∈ K which is closed under:

• all homomorphisms, if (xi, xs) = (0, 0)

• all injective homomorphisms, if (xi, xs) = (1, 0)

• all surjective homomorphisms, if (xi, xs) = (0, 1)

• all bijective homomorphisms, if (xi, xs) = (1, 1)

So in all cases, the quantifier QK is allowed in Hn,k
x so

φ(y) = QK(zf)f∈Fx .(ψf (yf , zf))f∈Fx

is in ∃+FOn,k
x and is true on (Ap, a) but false on (Bp, pa). However, this contradicts that

p ∈ Kn,k
x (A,B) and so preserves the truth of all such formulas.

We conclude this section by showing how to put together the results of this section to get

the desired correspondence for the whole family of games and logics, stated in Theorem

5.17.

Proof of Theorem 5.17. First note that by the definition of the canonical forth system,

Duplicator wins x-Funnk(A,B) if, and only if, ∅ ∈ In,kx (A,B). Furthermore, Jn,kx (A,B) and

Kn,k
x (A,B) are defined as the sets of partial maps ρ which preserve any Hn,k

x or ∃+FOn,k
x

formulas respectively which hold on the domain of ρ. So ∅ ∈ Jn,kx (A,B) or Kn,k
x (A,B)

if, and only if, all sentences in these logics which are true A are also true in B, i.e.

AVHn,kx
B or AV∃+FOn,k

x
B. Applying the result of Lemma 5.25 proves the equivalence

of these three.

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 85

5.4 Discord between Hella and Kolaitis-Väänänen

So far in this chapter, we have proved new generalisations of classic results about gener-

alised quantifiers due to Kolaitis and Väänänen [68] and Hella [58]. In this section, we

pause to reflect on a difference between the approaches to generalised quantifiers taken

in these two seminal papers. As noted in Section 5.1, the definitions given by Hella and

Kolaitis and Väänänen of how generalised quantifiers bind to interpretations are slightly

different. In Hella’s paper, however, this difference is assumed not to have any impact on

the expressiveness of the logic. Indeed, Hella claims that in the case of n = 1, Theorem

5.14 can be combined with Kolaitis and Väänänen’s Theorem, given above as Theorem

5.5, to prove that Duplicator wins the 1-bijective k-pebble game between two structures

A and B if and only if A and B are equivalent over Lk∞(#). As we know that the k-

pebble bijection game, Bijk, given in Chapter 2 and defined, for example, in Chapter 13

of Immerman’s book [59], captures equivalence in k-variable counting logic we can restate

Hella’s claim as follows.

Claim 5.26 (Hella’s claim). For any k and any structures A and B, Duplicator has

a winning strategy for Bijk(A,B) if and only if Duplicator has a winning strategy for

Bij1
k(A,B).

In the following subsections, we disprove this claim but show that it can be amended by

changing the number of pebbles in one of the games.

5.4.1 Showing that Lk∞(Q1) 6≡ Lk∞(#)

To disprove the claim above, we exhibit a pair of structures A and B where Duplicator

has a winning strategy for the game Bijk(A,B) but not for Bij1
k(A,B). This can be

done with the following simple counterexample for k = 2. The same example is used

by Immerman and Lander [60] to exhibit two graphs which are non-isomorphic but have

identical Lk∞(#) theories.

Proposition 5.27.

L2(Q1) 6≡ L2(#)

Proof. Take the graphs G and H to be, respectively, a pair of triangles and a hexagon, as

illustrated in Figure 5.4. Immerman and Lander [60] show that these are indistinguishable

in L2(#). Now consider the following strategy for Spoiler in Hella’s 2-pebble 1-bijective

game.

First, place the two pebbles down on the endpoints of any edge (a1, a2) of G and assume

Duplicator has responded with some edge (b1, b2) of H. Now ask Duplicator for their

bijection f from G to H. Consider the third vertex a3 of the triangle in G containing

86 5.4. DISCORD BETWEEN HELLA AND KOLAITIS-VÄÄNÄNEN

•

• •

•

• •

•

••

•

••

Figure 5.4: Two graphs which are equivalent in L2(#) but not in L2(Q1)

the edge (a1, a2). a3 is in the intersection of the neighbourhoods of a1 and a2. Now

ask where does a3 get mapped under Duplicator’s bijection? As the intersection of the

neighbourhoods of b1 and b2 is necessarily empty, it must get mapped into at most one of

these neighbourhoods. Suppose, without loss of generality, that f(a3) is not in N(b2), then

Spoiler should pick up pebble 1 and place it on a3. Duplicator’s response cannot be in the

neighbourhood of b2 so the map (a2, a3) 7→ (b2, f(a3)) cannot be a partial isomorphism

and so Spoiler wins.

Recalling Theorem 5.5 that Lk∞(#) is equivalent to Kolaitis and Väänänen’s version of

Lk∞(Q1), we have established with this example that the definitions given by Hella and

Kolaitis and Väänänen of a k-variable logic extended by all unary generalised quantifiers

cannot be the same for all k. In the next section we show that they are related by an

“off-by-one” correction in the number of variables.

5.4.2 Showing that Lk∞(Q1) ≡ Lk+1
∞ (#)

In this section, we prove a proposition which relates Hella’s version of Lk∞(Q1) with that

of Kolaitis and Väänänen. We do this by showing that Duplicator has a winning strategy

for Hella’s 1-bijective k-pebble game if and only if they have a winning strategy for the

k + 1-pebble bijective game. As we saw in the main theorems of Hella and Kolaitis and

Väänänen which we generalised earlier in this chapter, such strategies correspond to the

equivalence of structures over Hella’s Lk∞(Q1) and Kolaitis and Väänänen’s Lk+1(Q1)

respectively. So, we can conclude that these two logics are related by an “off-by-one”

shift in variable count, proving the following proposition.

Proposition 5.28. For any two structures A and B over a signature σ of arity at most k,

Duplicator has a winning strategy for Bij1
k(A,B) if, and only if, Duplicator has a winning

strategy for Bijk+1(A,B).

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 87

This result, in turn, allows us to relate the expressive powers of three logics which have

featured prominently in this chapter, namely counting logic, and the two variants of

infinitary first-order logic extended by generalised quantifiers, due respectively to Kolaitis

and Väänänen, and Hella.

Corollary 5.29. For any two structures A and B over a signature σ of arity at most k,

A ≡Lk∞(Q1) B ⇐⇒ A ≡Lk+1
∞ (#) B ⇐⇒ A ≡KV Lk+1

∞ (Q1) B

We now build towards a proof of Proposition 5.28.

In order to do this easily we first introduce an alternative form of the k + 1 pebble game

which uses only k pebbles. We first state this game and then show that it is equivalent

to the original game.

The first step towards proving this result involves a restatement of the ordinary k + 1-

pebble bijection game, as an equivalent k pebble game with slightly different rules. This

restatement is originally due to Grohe and Otto [52] who use it in a similar way to compare

it to the Sherali-Adams hierarchy which exhibits a similar “off-by-one” relationship with

counting logic.

Definition 5.30. The k-pebble Duplicator-first bijection game between A and B is played

as follows. Prior to the jth round the position, πj−1, consists of partial maps πaj−1 : [k] ⇀

A and πbj−1 : [k] ⇀ B.

• Duplicator provides a bijection bj : A→ B such that for each i ∈ [k], bj(π
a
j−1(i)) =

πbj−1(i).

• Spoiler chooses an element a ∈ A and wins the game if

{(πaj−1(i), πbj−1(i))}i∈[k] ∪ {(a, bj(a))}

is not a partial isomorphism between A and B.

• If not, the game continues with Spoiler choosing an index l ∈ [k] and the new

position to πj consisting of πaj and πbj where πaj (i) = a and πbj(i) = bj(a) and for

i 6= l πaj (i) = πaj−1(i) and πbj(i) = πbj−1(i).

Duplicator wins by preventing Spoiler from winning.

The equivalence of the Duplicator-first k-pebble bijection game and the ordinary (Spoiler-

first) k + 1 pebble game is proved by Grohe and Otto [52] but the reasoning is relatively

simple. Indeed, the difference between the two games is exactly the difference between

whether Spoiler picks up a pair of pebbles at the beginning of Round j, as in the ordinary

88 5.4. DISCORD BETWEEN HELLA AND KOLAITIS-VÄÄNÄNEN

version, or the end of Round j−1, as in the Duplicator-first version. When the size of the

position is less than k this distinction doesn’t matter and so in particular the one-round

versions of these games are clearly equivalent and induction on the number of rounds

played completes the proof.

Now that we have an equivalent version of the k + 1-pebble, bijection game where Du-

plicator plays first we can more easily compare this to the 1-bijective game of Hella. In

Hella’s game however, there is a slight subtlety in the size of the partial functions checked

in the winning condition, which are only of size at most k. We overcome this difference by

slightly restricting the signature of the structures on which we play these games, giving

us the following result relating Hella’s game to the ordinary bijection game.

Proof of Proposition 5.28. In the proof we replace the game Bijk(A,B) with the equiva-

lent k-pebble Duplicator-first bijection game discussed in the previous paragraph.

It is not hard to see that in both games the choices made by Spoiler and Duplicator are

the same in each round, namely, a bijection bf from Duplicator, and an element a ∈ A
and a pebble index l ∈ [k] from Spoiler. Similarly, fixing a starting position in a round

and given the choices of Spoiler and Duplicator the end position of that round is equal in

either game. Now we say that a bijection bj is acceptable (in either game) for a position

πj if there is no Spoiler move which would result in Spoiler winning in that round of the

game should Duplicator play bj.

We now show that for a fixed position πj, the bijection bj is acceptable in the 1-bijective

game if, and only if, it is acceptable in the Duplicator-first k-pebble game. The backwards

direction is easier. Suppose bj is not acceptable in the 1-bijective game. This means that

there is an l ∈ [k] and an a ∈ A such that the set {(πaj (i), πbj(i)}i∈[k]\{l}∪{(a, bj(a))} is not

a partial isomorphism. However this is a subset of {(πaj (i), πbj(i)}i∈[k] ∪ {(a, bj(a))} which

is tested in the Duplicator-first game and so bj is not acceptable for this game either. In

the other direction we note that if Sj = {(πaj (i), πbj(i)}i∈[k] ∪ {(a, bj(a))} is not a partial

isomorphism then there must be some relational symbol R in the signature and some tuple

(a1, . . . , am) from {πaj (i)}i∈[k] ∪ {a} with image (b1, . . . , bm) under the partial bijection

defined Sj such that one of these tuples is in the R relation of its respective structure and

the other is not. However as we have insisted that the arity of the signature is at most k

this means that m ≤ k. As we know that {(πaj (i), πbj(i)}i∈[k] must be a partial isomorphism

as it is the position at the start of a round in the game, we can deduce that there must

be an l such that an 6= πaj (l) for any n ∈ [m] and so {(πaj (i), πbj(i)}i∈[k]\{l} ∪ {(a, bj(a))} is

not an isomorphism. This means that bj is also not acceptable in the 1-bijective game.

Now we know that the reachable positions in each game under any Duplicator strategy

are exactly the same in each of these games and so there is a Duplicator strategy for one

if, and only if, there is a Duplicator strategy for the other.

CHAPTER 5. KLEISLI MAPS AND GENERALISED QUANTIFIERS 89

In this chapter, we have demonstrated how the comonad Pk relates to generalised quan-

tifiers by showing that the system of logics which underlies the Kleisli category of Pk, as

explored in the last chapter, is equivalent to a system of logics extended by classes of in-

jective, surjective and bijective homomorphism-closed unary generalised quantifiers. We

showed that a well-known game of Hella for capturing logics extended by all higher arity

generalised quantifiers can be relaxed to capture logics extended by higher arity injective

and surjective homomorphism-closed generalised quantifiers. We also clarified a subtlety

in relating the Hella’s logic to counting logic in the unary case, showing that there is an

“off-by-one” relationship which was overlooked in the past.

This progress sets the scene for the next chapter which shows how to generalise the Pk
comonad construction to capture generalised quantifier logics of all arities, introducing

new techniques for constructing new comonads from old and identifying a natural new

structural parameter related to generalised quantifiers.

Chapter 6

Game comonads and generalised

quantifiers

In the last two chapters, we have deepened our understanding of the Pk comonad in two

ways. Firstly, with the Branch Morphism Power Theorem (Theorem 4.3) of Chapter 4, we

uncovered new relationships between maps in the Kleisli category, K(Pk), and fragments

of infinitary k-variable logic. Secondly, we related each of these fragments of logic to

k-variable logics extended with unary generalised quantifiers in Theorem 5.7. However,

even after these new results, it remains the case that the most expressive logic to be

captured by game comonads is Lω∞(#) which is characterised by Theorem 3.14 which in

turn is equivalent to Lω∞(Q1) by Kolaits and Väänänen [68].

In this chapter, we go further than this for the first time by constructing a comonad

Hn,k whose Kleisli isomorphisms correspond to Duplicator winning strategies in Hella’s n-

bijective k-pebble game which we recalled in the last chapter. These strategies characterise

equivalence in the logic Lk∞(Qn), which is strictly stronger than Lω∞(#) for any n > 1.

The relaxations of Hella’s game which we also introduced there will be important to the

construction. Indeed, we construct Hn,k in the first place to give a comonadic semantics

to Duplicator winning strategies for the +Funnk game. We call this comonad the Hella

comonad to honour Hella’s contribution to games for logics with generaslised quantifiers.

In the first section of this chapter, we define the comonad Hn,k. To do this, we introduce a

technique for constructing new game comonads from old, obtaining Hn,k as a quotient of

Pk. This quotient is informed by a game-theoretic connection between ∃Pebk and +Funnk
and is chosen so that we can lift the Morphism Power Theorem for Pk to one for Hn,k.

In the second part of this chapter, we show that the surprising confluence of structure

and power results observed in Chapter 3 for Pk, is replicated for the new Hn,k. On the

“Power” side, we prove versions of the Branch Morphism Power Theorem (Theorem 4.3)

and Isomorphism Power Theorem (Theorem 3.14) for Hn,k, showing how various maps

in K(Hn,k) capture Duplicator winning strategies for each of the relaxations of Hella’s

90

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 91

k-pebble n-bijective game, introduced in Chapter 5. Together with Theorem 5.17, this

establishes a deep connection between Hn,k and the full range of k-variable logics extended

with n-ary quantifiers studied in Chapter 5. On the “Structure” side, we look to generalise

the Coalgebra Structure Theorem (Theorem 3.16) which showed a direct correspondence

between coalgebras of Pk and tree decompositions of width k.

We conclude the chapter by reflecting on the wider applicability of the methods developed

in this chapter to build comonadic semantics for other pebble games which capture logics

more powerful than Pk.

6.1 Constructing the Hella Comonad

In this section we will define a comonad which gives a compositional semantics to Du-

plicator strategies for the k-pebble n-function game, +Funnk which we introduced in the

last chapter. As we saw in Theorem 5.17, this game serves to bound the expressive power

of +Lk(Qh
n) which is a natural generalisation of the logic ∃+Lk∞ whose expressiveness is

bounded by the existential k-pebble game. Thus the ultimate aim of this section will be

the following theorem.

Theorem 6.1. For all finite relational signatures σ and all positive integers n, k with

n ≤ k, there is a comonad (Hn,k, ε
n,k, δn,k) on the category R(σ) such that for all structures

A,B the following are equivalent.

• There is a homomorphism f : Hn,kA → B for the I-structures A and B.

• There is a Duplicator winning strategy for the game +Funnk(A,B).

• AVLk∞(Qh
n) B.

To prove this theorem we would like to show that the Duplicator strategies for the game

+Funnk can be represented as Kleisli maps in the same way that we did for Pk in Chapter 3.

However, there are fundamental differences between these games which make it difficult

to repeat the arguments used for Pk. In particular, in +Funnk Duplicator plays first,

providing a function A → B and the number of pebbles moved in each round is allowed

to vary.

To overcome these difficulties we introduce a new strategy for creating a game comonad.

This involves first showing, in Section 6.1.1 that Duplicator winning strategies for +Funnk
can be translated into a special kind of winning strategy for ∃Pebk. In Section 6.1.2,

we then show that these special strategies can be identified by taking a quotient of the

structure Pk. We then show in the final section of this chapter, how this new construction

can be extended to a comonad on the category R(σ).

92 6.1. CONSTRUCTING THE HELLA COMONAD

6.1.1 Translating Duplicator strategies

In this section, we study the Duplicator strategies for the game +Funnk and show how to

relate them to strategies for the game ∃Pebk. As +Funnk is a strictly more difficult game

for Duplicator to win in general we find that it is easy to translate a strategy for +Funnk
to a strategy for ∃Pebk. What is more surprising however is that we can identify a subset

of winning strategies, called n-consistent strategies for ∃Pebk for which this is reversible.

This leads to the following important lemma along the way to constructing the desired

comonad from Theorem 6.1.

Lemma 6.2. Duplicator has an n-consistent winning strategy in ∃Pebk(A,B) if, and

only if, it has a winning strategy in +Funnk(A,B).

In what follows, we build up towards the proof of this lemma by defining the strategy

translations in question and fixing notation that will be important for the rest of the

construction of Hn,k.

Recall from Chapter 3 how the pebbling comonad Pk is obtained by defining a structure

for each A whose universe consists of (non-empty) lists in (A × [k])∗ which we think of

as sequences of moves by Spoiler in a game ∃Pebk(A,B), with B unspecified. We call

a sequence in (A × [k])∗ a k-history (allowing the empty sequence). In contrast, a move

in the +Funnk(A,B) involves Spoiler moving up to n pebbles and therefore a history of

Spoiler moves is a sequence in ((A × [k])≤n)∗. We call such a sequence an n, k-history.

With this set-up, deterministic sequential Duplicator strategies are given by functions

(A× [k])+ → B

for ∃Pebk(A,B) and

((A× [k])≤n)∗ → (A→ B)

for +Funnk(A,B). The mismatch in the outputs of these games appears initially to be

an obstacle to translating between them. However, recalling the definition of Duplicator

strategies in terms of branch maps from Chapter 4, we can represent Duplicator strategies

for ∃Pebk(A,B) as maps of the following type

((A× [k])∗ × [k])→ (A→ B)

and we will do so throughout this chapter. Noting that (A× [k])+ = (A× [k])∗× (A× [k]),

we can see that this is just an application of Currying a function.

It is easy to see that a strategy for Duplicator in +Funnk(A,B) can always be translated

into one for ∃Pebk(A,B). Indeed, any k-history s = [(a1, p1), . . . (al, pl)] can simply be

viewed as a degenerate n, k-history s = [[(a1, p1)], . . . [(al, pl)]] where Spoiler has chosen

to move only one pebble in each round. Further, it is not hard to see that the resulting

positions at the end of each round will be the same as those obtained in the n-function

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 93

game and so if such a strategy is winning for Duplicator in +Funnk then it is winning

in ∃Pebk. We aim now to establish conditions for when a translation can be made in

the reverse direction, from ∃Pebk strategies to +Funnk strategies. For this, it is useful to

establish the following machinery.

There is a natural flattening operation that takes n, k-histories to k-histories. We denote

the operation by F , so that F ([s1, s2, . . . , sm]) = s1 · s2 · · · sm, is the concatenation of the

si where si ∈ (A × [k])≤n. Of course, the function F is not injective and has no inverse.

However, it is worth considering functions G from k-histories to n, k-histories that are

right-inverse to F in the sense that F (G(t)) = t. One obvious such function takes a

k-history s1, . . . , sm to the n, k-history [[s1], . . . , [sm]], i.e. the sequence of one-element

sequences. This is, in some sense, minimal in that it imposes the minimal amount of

structure on G(t). We are interested in a maximal such function. For this, recall that the

Spoiler moves in any n, k-history are sequences in (A× [k])≤n which have length at most n

and do not have a repeated index from [k]. We want a function which splits up a k-history

s into a sequence of maximal such blocks. This leads us to the following definition.

Definition 6.3. A list s ∈ (A × [k])∗ is called n-basic if it contains fewer than or equal

to n pairs and the pebble indices are all distinct.

The n-structure function Sn : (A× [k])∗ → ((A× [k])≤n)∗ is defined recursively as follows:

• Sn(s) = [s] if s is n-basic

• otherwise, Sn(s) = [a];Sn(t) where s = a · t such that a is the largest n-basic prefix

of s.

This function should be seen as taking a k-history s and placing square brackets into it

to group sequential single pebble moves into a legal Spoiler moves in the +Funnk game.

Thus it should be clear that applying the flattening operation simply removes these square

brackets and so F (Sn(s)) = s for any s. It is useful to characterise the range of the function

Sn, which we do through the following definition.

Definition 6.4. An n, k-history t is structured if whenever s and s′ are successive ele-

ments of t, then either s has length exactly n or s′ begins with a pair (a, p) such that p

occurs in s.

It is immediate from the definitions that Sn(s) is structured for all k-histories s and that

an n, k-history is structured if, and only if, Sn(F (s)) = s.

We are now ready to characterise those Duplicator winning strategies for ∃Pebk that can

be lifted to strategies in +Funnk . First, we define a function that lifts a position in ∃Pebk

that Duplicator must respond to, i.e. a pair (s, p) where s is a k-history and p a pebble

index, to a position in +Funnk , i.e. an n, k-history.

94 6.1. CONSTRUCTING THE HELLA COMONAD

Definition 6.5. Suppose s is a k-history and s′ is the last n-basic list in Sn(s), so Sn(s) =

t; s′. Let p ∈ [k] be a pebble index.

Define the n-structuring αn(s, p) of (s, p) by

αn(s, p) =

t; s′ if |s′| = n or p occurs in s′

t otherwise.

Now that we have a translation αn from positions in the ∃Pebk to positions in the +Funnk ,

it is clear that we can lift a strategy from the k-pebble to the n-function game along this

translation if Duplicator’s response at any position (s, i) relies only on the translated

position αn(s, i). This gives the following important definition.

Definition 6.6. Say that a Duplicator strategy Ψ : ((A × [k])∗ × [k]) → (A → B) in

∃Pebk is n-consistent if for all k-histories s and s′ and all pebble indices p and p′:

αn(s, p) = αn(s′, p′) ⇒ Ψ(s, p) = Ψ(s′, p′).

Intuitively, an n-consistent Duplicator strategy in the game ∃Pebk(A,B) is one where

Duplicator plays the same function in all moves that could be part of the same Spoiler

move in the game +Funnk(A,B). We are now ready to prove the main result of this

subsection.

Proof of Lemma 6.2. The reverse direction is easy. Suppose first that Ψ : ((A×[k])≤n)∗ →
(A → B) is a Duplicator winning strategy in +Funnk(A,B). Define the strategy Ψ′ in

∃Pebk(A,B) such that for a k-history s and a pebble index p ∈ [k], Ψ′(s, p) = Ψ(αn(s, p)).

This is easily seen to be n-consistent and winning.

For the other direction we deal with the case of n = 1 separately.

For n = 1, all 1, k-histories are structured. Indeed, for any k-history s and any pebble

index p, α1(s, p) = G(s). This means that, for any p and p′, α1(s, p) = α1(s, p′) and the

1-consistent winning strategies are precisely those such that for any k-history s, pebble

indices p and p′ and elements a, b if a = b then f([s; (a, p)]) = f([s; (b, p′)]). This is the

same as saying that the branch maps φfs,p and φfs,p′ are equal for every history s and every

pair of pebble indices p and p′. We denote the common branch map at s by φfs . This then

gives a strategy in the game +Fun1
k(A,B) where after every 1, k-history t, Duplicator

provides the function φfF (t).

When n ≥ 2, suppose Ψ is an n-consistent winning strategy for Duplicator in ∃Pebk(A,B).

We construct from this a winning strategy Ψ′ for Duplicator in +Funnk(A,B). If t is a

structured n, k-history and p is the last pebble index occurring in it, we can just take

Ψ′(t) = Ψ(F (t), p). To extend this to unstructured n, k-histories, we first define the

structured companion of an n, k-history.

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 95

Suppose t is an n, k-history that is not structured and let s, s′ ∈ (A× [k])≤n be a pair of

consecutive sequences witnessing this. We call such a pair a bad pair. Let (a, p) be the

last pair occurring in s and (a′, p′) the first pair occurring in s′. Let t′ be the prefix of t

ending with s and let κ be the last element of A such that (κ, p′) appears in F (t) if there

is any. We now obtain a new n, k-history from t by replacing the pair s, s′ by s, link, s′

where

link =

[(a, p), (κ, p′)] if defined

[(a, p), (a, p′)] otherwise.

It is clear that in this n, k-history, neither of the pairs s, link or link, s′ is bad, so it has

one fewer bad pairs than t. Also, this move is chosen so that responding to the moves

F (link) according to Ψ does not change the partial function defined by the pebbled po-

sition after responding to the moves F (s). Repeating the process, we obtain a structured

n, k-history which we call t̃, the structured companion of t.

We can now formally define the Duplicator strategy by saying for any n, k-history t,

Ψ′(t) = Ψ(F (t̃), p) where t̃ is the structured companion of t and p is the last pebble index

occurring in t. To see why Ψ′ is a winning strategy, we note that as responding with Ψ to

the link moves does not alter the partial function defined by the pebbled position, the

function defined after responding to t̃ according to Ψ is the same as that defined after

responding to t according to Ψ′. So if there is a winning n, k-history t for Spoiler against

Ψ′ then F (t̃) is a winning k-history for Spoiler against Ψ, a contradiction.

6.1.2 Structural quotients and morphism power

Central to Abramsky, Dawar and Wang’s construction [6] of the pebbling comonad Pk is

the Morphism Power Theorem (Theorem 3.13) which states that for any two structures

A and B there is a Duplicator winning strategy for ∃Pebk(A,B) if and only if there is a

homomorphism PkA → B between the I-structures A and B. Building on the equivalence

between n-consistent Duplicator winning strategy for ∃Pebk(A,B) and winning strategies

for +Funnk(A,B) proved in Lemma 6.2, the aim of this section is to show that we can

identify these special strategies using homomorphisms from a quotiented version of PkA.

The result is the following Lemma which is central to the construction of the comonad

Hn,k.

Lemma 6.7. For all n, k ∈ N with n ≤ k, there is an equivalence relation ≈n on all

structures PkA such that for any structures A and B, the following are equivalent:

• There is a homomorphism f : PkA/≈n→ B for the I-structures A and B.

• There is an n-consistent Duplicator winning strategy for ∃Pebk(A,B).

96 6.1. CONSTRUCTING THE HELLA COMONAD

In order to define this equivalence relation ≈n, we recall that an n-consistent strategy

for ∃Pebk(A,B) is a map f : PkA → B where the branch maps fs,i and ft,j are equal if

and only if αn(s, i) and αn(t, j). This inspired the following definition which identifies

k-histories which must have the same response under any n-consistent strategy.

Definition 6.8. For n ∈ N and A a relational structure. Define ≈n on the universe of

PkA as

s; (a, i) ≈n t; (b, j) ⇐⇒ a = b and αn((s, i)) = αn((t, j)).

Recalling the definition of a structured n, k-history from Section 6.1.1, for any structured

n, k-history t, we write [t|a] to denote the ≈n-equivalence class of an element s; (a, i) ∈
PkA with αn(s, i) = t.

As defined ≈n is clearly an equivalence relation as it is defined entirely in terms of the

equality relation and so reflexivity, symmetry and transitivity are inherited from =.

We now would like to define the quotient structure PkA/ ≈n which identifies elements

which are equivalent under ≈n. However, it can be seen that the relation ≈n is not

a congruence of the structure Pk, as defined in Chapter 2. So, there is not a canonical

definition of the relations on this quotient. Indeed, given an arbitrary equivalence relation

∼ over a relational structure M, there are two standard ways to define relations in

a quotient M/∼. We could say that a tuple (c1, . . . cr) of equivalence classes is in a

relation RM/∼ if, and only if, every choice of representatives is in RM or if some choice of

representatives is in RM. The latter definition has the advantage that the quotient map

fromM toM/∼ is a homomorphism and it is this definition that we assume for the rest

of the chapter.

This definition of the relational structure PkA/≈n has the very useful consequence that

the quotient map qn : PkA→ PkA/≈n which sends an element of PkA to its≈n-equivalence

class is a homomorphism between the relational structures PkA and PkA/≈n. With this

we can establish the following useful property.

Lemma 6.9.

f : PkA/≈n→ B is a homomorphism ⇐⇒ f ◦ qn : PkA → B is a homomorphism

Proof. As we observed above that qn is a homomorphism, the direction from left to right

simply follows from the composition of homomorphisms.

For the other direction, we prove the contrapositive. Note that for any related tuple

(c1, . . . , cm) ∈ RPkA/≈n there must be a tuple of elements (s1, . . . , sn) ∈ RPkA such that

qn(si) = ci for each i. So if f fails to preserve some such related tuple from PkA/≈n then

the corresponding tuple in PkA is not preserved by f ◦ qn.

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 97

We can now complete this section by providing a proof of the important Lemma 6.7.

Proof of Lemma 6.7. Taking the equivalence relation≈n to be that described in Definition

6.8 and the structure PkA/≈n and quotient map qn to be defined as above, we prove the

equivalence between homomorphism and strategies as follows.

Suppose we have an n-consistent winning strategy Ψ for Duplicator in ∃Pebk(A,B). The

n-consistency condition implies that the Duplicator response to a Spoiler play s; (a, i) ∈
(A×[k])∗ is determined by αn((s, i)) and a only. So the corresponding homomorphism fΨ :

PkA→ B (given by Theorem 3.13) respects≈n and fΨ◦qn is a well-defined homomorphism

f : PkA/≈n→ B .

For the other direction, given a homomorphism f : PkA/≈n→ B note that f ◦ qn defines

a Duplicator winning strategy for ∃Pebk(A,B) which is n-consistent, as required.

Recalling the equivalence between Duplicator strategies for +Funnk and n-consistent

strategies for ∃Pebk, the previous result motivates us to define the structure Hn,kA as

the quotient structure PkA/≈n. In the next section, we complete the proof of Theorem

6.1, by showing that Hn,k can be made into a comonad.

6.1.3 Definition of Hn,k

Lemmas 6.2 and 6.7 from the last two sections established that for any structure A we can

construct a structure Hn,kA which represents the moves of Spoiler in the game +Funnk in

the same way that PkA does for ∃Pebk. In this section, we prove Theorem 6.1 by showing

that this construction can be used to build a comonad on the category R(σ) with the

desired properties. To do this we need to do the following three things.

1. Define Hn,k as an endofunctor on R(σ).

2. Define natural transformations εn,k : Hn,k =⇒ 1 and δn,k : Hn,kHn,k =⇒ Hn,k.

3. Show that (Hn,k, ε
n,k, δn,k) satisfies the comonad laws.

Defining the Hn,k functor To show that Hn,k can be made into a functor we need

to define how it acts on homomorphisms f : A → B in a way that respects composi-

tion. Recalling the definition of ≈n from Section 6.1.2, the ≈n-equivalence class of any

element s; (a, i) ∈ PkA is represented by pair [αn(s, i)|a]. We can then define the func-

tion Pkf/≈n : PkA/≈n→ PkB/≈n which sends [αn(s, i)|a] to [αn(Pkf(s), i)|f(a)]. This

is well-defined because the shape of the sequence αn(s, i) relies on the sequence of peb-

ble indices in s rather than the pebbled elements. So αn(s, i) = αn(t, j) implies that

98 6.1. CONSTRUCTING THE HELLA COMONAD

αn(Pkf(s), i) = αn(Pkf(t), j) and Pkf/≈n is a homomorphism because Pkf is a homo-

morphism. We can now use the functoriality of Pk to deduce that

Pk(f ◦ g)/≈n= (Pkf/≈n) ◦ (Pkg/≈n).

So we can define the functor Hn,k as follows.

Definition 6.10. For n, k ∈ N, k ≥ n and σ a relational signature, we define the functor

Hn,k : R(σ)→ R(σ) by:

• On objects Hn,kA := PkA/≈n.

• On morphisms Hn,kf := Pkf/≈n.

Importantly for the results of the next section, we show in the following lemma that the

quotient map qn is a natural transformation between Pk and the new comonad Hn,k.

Lemma 6.11. qn : Pk ⇒ Hn,k is a natural transformation.

Proof. Let A and B be relational structures over the same signature and f : A → B
be a homomorphism. To show that qn is natural we need to establish the equality qn ◦
Pkf = Hn,kf ◦ qn. Fix an element s; (a, i) ∈ PkA. On the right hand side, we have

that qn(s; (a, i)) = [αn(s, i)|a] and so Hn,kf ◦ qn = [αn(Pkf(s), i)|f(a)]. On the left hand

side, Pkf(s; (a, i)) = Pkf(s); (f(a), i) and so qn ◦ Pkf(s; (a, i)) = [αn(Pkf(s), i)|f(a)] as

required.

Defining εn,k and δn,k Having defined the functor Hn,k as a quotient of the functor Pk
with respect to the equivalence relation ≈n, we now show how the counit ε and comulti-

plication δ for Pk can be lifted to Hn,k. We do this in a similar way to the definition of

the counit and comultiplication of P∗k in Section 4.2.2 by proving the following lemma.

Lemma 6.12. The counit ε and comultiplication δ for Pk lift to well-defined natural

transformations for Hn,k which are defined as follows.

1. εn,kA ([s]) := εA(s), and

2. δn,kA ([s]) := [Pkqn(δA(s))].

Proof. Suppose s; (a, i) ≈n t; (b, j) ∈ PkA. Then by the definition of ≈n, we have a = b

and so εA(s; (a, i)) = a = b = εA(t; (b, j)). Thus εn,kA is well-defined. Furthermore, as

εA = εn,kA ◦ qn, we have that εn,kA is a homomorphism by Observation 6.9 and by Lemma

6.11 it is natural.

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 99

The argument is slightly more complicated for δn,k. For the function above to be well-

defined we need that, for any s; (a, i) ≈n t; (a, j),

(Pkqn ◦ δA)(s; (a, i)) ≈n (Pkqn ◦ δA)(t; (a, j)),

as elements of Pk(Hn,kA). Firstly, by definition δA(s; (a, i)) = δA(s); (s; (a, i), i) and so

Pkqn ◦ δA(s; (a, i)) = Pkqn(δA(s)); (qn(s; (a, i)), i). We can write similar expressions for

t; (a, j).

As we have that αn(s, i) = αn(t, j), we can deduce that αn(Pkqn(δA(s)), i) = αn(Pkqn(δA(t)), j).

This is because Pkqn only changes the pebbled elements of a k-history on PkA leaving the

pebble indices unchanged and αn is based only on the pebble indices of a k-history. So, by

the definition of ≈n, Pkqn ◦ δA(s; (a, i)) ≈n Pkqn ◦ δA(t; (a, j)) if qn(s; (a, i)) = qn(t; (a, j)),

which is precisely the statement that s; (a, i) ≈n t; (a, j). Naturality for δn,k follows from

the naturality of qn and δ.

Proof of Theorem 6.1 We now put together the results of Section 6.1 to prove that

(Hn,k, ε
n,k, δn,k) is a comonad which captures the Duplicator winning strategies of +Funnk

as Kleisli morphisms. The following proof concludes this section.

Proof of Theorem 6.1. To prove that (Hn,k, ε
n,k, δn,k) is a comonad it remains to check

that this triple satisfies the counit identities

Hn,kε
n,k
A ◦ δ

n,k
A = 1Hn,kA = εn,kHn,kA ◦ δ

n,k
A

and comultiplication identity

δn,kHn,kA ◦ δ
n,k
A = Hn,kδ

n,k
A ◦ δ

n,k
A .

One way to do this would be to prove these equalities directly as in Lemma 4.20. Here

we provide an alternative by lifting these identities from the comonad Pk as follows.

We claim the stronger result that for any equation E built from composing ε, δ and Pk,
if E is true then the equation Ẽ, obtained by replacing ε by εn,k, δ with δn,k and Pk
with Hn,k is also true. We show this as follows. By the naturality of qn, we have that

qn◦Pkqn = Hn,kqn◦qn and so, for any m and any t ∈ (Pk)mA, there is a well-defined notion

of “the” equivalence class of t, qn(t) ∈ (Hn,k)
mA. We now see that εn,k and δn,k have been

defined such that εn,k ◦ qn = qn ◦ ε and δn,k ◦ qn = qn ◦ δ. This means that for any term

T : (Pk)mA → (Pk)rA formed out of Pk, ε and δ by composition we have that the term

T̃ : (Hn,k)
mA → (Hn,k)

rA formed by the replacements above satisfies qn(T (t)) = T̃ (qn(t)).

Thus we can lift any equation in (Pk, ε, δ) to one over (Hn,k, ε
n,k, δn,k). This works in

particular for the counit and comultiplication laws.

Finally we show that for any structures A and B there is a homomorphism f : Hn,kA → B
for the I-structures A and B if, and only if, there is a winning strategy for Duplicator

100 6.2. STRUCTURE AND POWER OF HN,K

in the game +Funnk(A,B). This is simply the combination of two lemmas proved earlier

in this section. In particular, Lemma 6.2, tells us that there is a winning strategy for

Duplicator in +Funnk(A,B) if and only if there is an n-consistent winning strategy for

Duplicator in ∃Pebk(A,B) and Lemma 6.7 tells us that this is equivalent to the existence

of the required homomorphism.

6.2 Structure and power of Hn,k

Having shown in the last section that we can create a game comonad, Hn,k for the k-

pebble n-function game, we now prove a number of results which connect this comonad

to other related games, logics and structural decompositions. These results show that

the surprising system of connections uncovered by the pebbling comonad and other game

comonads reviewed in Chapter 3 also exists in the more expressive setting of logics with

n-ary generalised quantifiers.

In Section 6.2.1, we show that the Kleisli category of this new comonad, can be used

to identify logical relations over other k-variable n-ary generalised quantifier logics. In

particular, we show that Kleisli isomorphisms correspond to winning strategies in Hella’s

original k-pebble n-bijective game and that fragments of L∞(Qn) restricted to injective,

surjective and bijective homomorphism-closed quantifiers can be identified by restricting

Kleisli morphisms in a similar manner to the techniques employed in Chapter 4. In this

way, we see that Hn,k captures the entire hierarchy of games and logics introduced in the

Generalised Hella’s Theorem of the last chapter.

In Section 6.2.2, we classify the coalgebras of the new comonad showing that they cor-

respond to a previously unstudied but interesting generalisation of tree decompositions.

We prove some preliminary results about this new decomposition and suggest some future

directions for investigation of this new concept.

6.2.1 Kleisli maps of Hn,k

As we have seen throughout this thesis, the maps in the Kleisli category of the pebbling

comonad Pk have deep connections to pebble games and k-variable logics. In particular,

Abramsky, Dawar and Wang proved the Morphism and Isomorphism Power Theorems

(Theorems 3.13 and 3.14) which show how the morphisms and isomorphisms in K(Pk)
relate to the games ∃Pebk and Bijk and the logics ∃+Lk∞ and Lk∞(#). In the Branch

Morphism Power Theorem (Theorem 4.3), we showed that placing conditions on the

branch maps of morphisms in K(Pk) exactly captured intermediate games and logics.

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 101

In this section, we show that Kleisli maps of the new comonad Hn,k have similar relations

to games and logics. We do this by proving the following three theorems which are

respectively Morphism, Isomorphism and Branch Morphism Power Theorems for Hn,k.

The first is simply a combination of Theorem 6.1 from the last section which connects

Kleisli morphisms to the positive n-function game and the first case of Theorem 5.17

from Chapter 5 which relates this game to k-variable infinitary logic extended by all

homomorphism-closed generalised quantifiers.

Theorem 6.13 (Morphism Power Theorem for Hn,k). For two relational structures A
and B the following are equivalent for any positive integers n, k with n ≤ k:

1. There is a Kleisli morphism Hn,kA → B for the I-structures A and B,

2. Duplicator has a winning strategy in +Funnk(A,B), and

3. AV+Lk∞(Qh
n) B.

In addition to this we prove the following two theorems. The Isomorphism Power Theorem

for Hn,k connects the comonad with Hella’s original k-pebble n-bijective game and the

logic Lk∞(Qn), as follows.

Theorem 6.14 (Isomorphism Power Theorem for Hn,k). For two relational structures A
and B the following are equivalent for any positive integers n, k with n ≤ k:

1. There is a Kleisli isomorphism A ∼=K(Hn,k) B for the I-structures A and B,

2. Duplicator has a winning strategy in Bijnk(A,B), and

3. A ≡Lk∞(Qn) B.

Along the way to proving Theorem 6.14 we introduce a notion of branch maps and define

branch-injectivity, branch-surjectivity and branch-bijectivity which we denote by →i
n,k,

→s
n,k and →b

n,k in the following theorem.

Theorem 6.15 (Branch Morphism Power Theorem for Hn,k). For two relational struc-

tures A and B the following equivalences hold for any positive integers n, k with n ≤ k:

1. A →i
n,k B for the I-structures A and B if, and only if, AV+Lk∞(Qi

n) B,

2. A →s
n,k B for the I-structures A and B if, and only if, AV+Lk∞(Qs

n) B, and

3. A →b
n,k B for the I-structures A and B if, and only if, AV+Lk∞(Qb

n) B

In Chapter 4, we followed Abramsky, Dawar and Wang in classifying the morphisms of

K(Hn,k) according to whether their branch maps are injective, surjective or bijective.

Here, we extend these notions to the comonad Hn,k. This gives us a way of classifying the

morphisms to match the classification of strategies given in Theorem 5.17.

102 6.2. STRUCTURE AND POWER OF HN,K

Definition 6.16. For f : Hn,kA → B a Kleisli morphism of Hn,k, the branch maps of

f are defined as the following collection of functions A → B, indexed by the structured

n, k-histories t ∈ ((A× [k])≤n)∗:

φft (x) = f([t|x]).

We say that such an f is

• branch-injective if for every t, φft is injective,

• branch-surjective if for every t, φft is surjective, and

• branch-bijective if for every t, φft is bijective.

If such a map exists we write, respectively, A →i
n,k B, A →s

n,k B, and A →b
n,k B.

We now prove Theorem 6.15 by showing these restrictions on the Kleisli morphisms

are enough to satisfy the extra restrictions on Duplicator in the positive n-injection,

n-surjection and n-bijection games from Chapter 5.

Proof of Theorem 6.15. In Theorem 6.1, we saw that the existence of Kleisli maps f : Hn,kA →
B between I-structures A and B is equivalent to the existence of Duplicator winning

strategies for the game +Funnk(A,B). This worked in two steps. First, Lemma 6.2 gave a

translation between deterministic strategies Ψ for +Funnk and n-consistent strategies Ψ′

for ∃Pebk. Secondly, Lemma 6.7 gave a translation between n-consistent strategies for

∃Pebk and Kleisli morphisms of Hn,k.

The proof of the first equivalence in the theorem at hand follows from the observation

that the two translations above preserve the injectivity, surjectivity or bijectivity of the

maps provided by Duplicator at each round of the respective games.

The second equivalence in this theorem, between the games and logics, follows from

Theorem 5.17 of the last chapter.

To complete the correspondence with the strategies and logics in Theorem 5.17, we define

the following Kleisli maps in Definition 6.17 and summarise the relationships between

maps, strategies and games in Figure 6.1.

Definition 6.17. We say a Kleisli map f : Hn,kA → B between I-structures A and B is

• strongly branch-injective if it is branch-injective and the related strategy for +Injnk(A,B)

is also winning for Injnk(A,B),

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 103

• strongly branch-surjective if it is branch-surjective and the related strategy for +Surjnk(A,B)

is also winning for Surjnk(A,B), and

• strongly branch-bijective if it is branch-bijective and the related strategy for +Bijnk(A,B)

is also winning for Bijnk(A,B).

If such a maps exists we write, respectively, A_i
n,k B, A_s

n,k B, and A_b
n,k B.

_b
n,k

_i
n,k →b

n,k
_s

n,k

→i
n,k

_n,k →s
n,k

→n,k

Bijnk

Injnk +Bijnk Surjnk

+Injnk Funnk +Surjnk

+Funnk

Lk∞(Qb
n)

Lk∞(Qi
n) +Lk∞(Qb

n) Lk∞(Qs
n)

+Lk∞(Qi
n) Lk∞(Qh

n) +Lk∞(Qs
n)

+Lk∞(Qh
n)

Figure 6.1: Hasse diagrams of the types of Kleisli maps in K(Hn,k) ordered by restrictions

on branch maps and their corresponding games (ordered by difficulty for Duplicator) and

logics (ordered by expressive power).

With the language of branch maps firmly lifted to the Kleisli category of Hn,k, we prove

the following generalisation of a lemma of Abramsky, Dawar and Wang [6] which is central

to the proof of Theorem 6.14.

Lemma 6.18. For A,B finite relational I-structures,

A�i
n,k B ⇐⇒ A�s

n,k B ⇐⇒ A_b
n,k B ⇐⇒ A ∼=K(Hn,k) B

104 6.2. STRUCTURE AND POWER OF HN,K

Proof. As A and B are finite, the existence of an injection A→ B implies that |A| ≤ |B|.
So, A�i

n,k B implies that |A| = |B| and thus any injective map between the two is also

surjective and vice versa. This means the first equivalence is trivial and further both of

these imply A�b
n,k B

For the second equivalence, we first introduce some notation. Let Pm
A be the finite sub-

structure of Hn,kA induced on the elements {[s|a] | s ∈ ((A × [k])≤n)≤m}. Note that

for any f : A →b
n,k B, the Kleisli completion f ∗ restricts to a bijective homomorphism

Pm
A → Pm

B for each m. So if f : Hn,kA → B and g : Hn,kB → A are branch-bijective,

we have for each m a pair of bijective homomorphisms Pm
A � Pm

B . As these are finite

structures we can deduce that these are indeed isomorphisms and so f is a strategy for

Bijnk(A,B).

For the final equivalence, if f witnesses A_b
n,k B then we have, by induction, that f ∗ is

an isomorphism from Pm
A to Pm

B for each m,. So f ∗ : Hn,kA → Hn,kB is an isomorphism

witnessing A ∼=K(Hn,k) B. For the converse we suppose that there is an isomorphism

h∗ : Hn,kA → Hn,kA. Then the Kleisli map h = εn,kB ◦ h∗ is a strongly branch-bijective

strategy.

The final equivalence in Lemma 6.18 gives us a relationship between strongly branch-

bijective maps and isomorphisms in the Kleisli category of Hn,k. We now finish off the

proof of Theorem 6.14 as follows.

Proof of Theorem 6.14. By Lemma 6.18, we have that A ∼=K(Hn,k) B if and only if there is

a strongly branch-bijective map f : A_b
n,k B. By the translation to Duplicator strategies

in Theorem 6.15 and the definition of _b
n,k in Definition 6.17, the existence of such an f

is equivalent to the existence of a winning strategy for Duplicator in the game Bijnk(A,B),

completing the first equivalence in the theorem.

To prove the correspondence with logic we invoke Hella’s theorem from [58] which is stated

above as Theorem 5.14.

6.2.2 Coalgebras of Hn,k

The Coalgebra Structure Theorem for Pk (Theorem 3.16) proved by Abramsky, Dawar and

Wang [6] showed that the coalgebras of the comonad Pk have a surprising correspondence

with objects of great interest to finite model theorists. That is, any coalgebra α : A → PkA
gives a tree decomposition of A of width at most k − 1 and any such tree decomposition

can be turned into a coalgebra.

In this section, we define a new form of structural decomposition called an extended tree

decomposition which is bounded by two parameters, width and arity, and we relate this to

our new comonad by proving the following version of the Coalgebra Structure Theorem

for Hn,k.

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 105

Theorem 6.19 (Coalgebra Structure Theorem for Hn,k). For A a finite relational struc-

ture the following are equivalent:

1. there is a Hn,k-coalgebra α : A → Hn,kA

2. there is a structured extended tree decomposition of A with width at most k and arity

at most n

The equivalent result for Pk works because PkA has a treelike structure where any pebble

history, or branch, s ∈ PkA only witnesses the relations from the ≤ k elements of A
which remain pebbled after Spoiler plays the sequence of moves s. So a homomorphism

A → PkA witnesses a sort of treelike k-locality of the relational structure A and the Pk-
coalgebra laws are precisely enough to ensure this can be presented as a tree decomposition

(of width < k).

In lifting this comonad to Hn,k, we have given away some of the restrictive k-local nature

of Pk which makes this argument work. The structure Hn,kA witnesses many more of

A’s relations than PkA. Take, for example, the substructure induced on the elements

{[ε|x] | x ∈ A}, where ε is the empty history. This witnesses all relations in A which

have arity ≤ n. So, in particular, if A contains no relations of arity greater than n, this

substructure is just a copy of A and the obvious embedding A → Hn,kA can be easily

seen to be a Hn,k-coalgebra. From this, we can see that if Hn,k-coalgebras capture some

notion of n-generalised tree decomposition, this should clearly be more permissive than the

notion of tree decomposition, allowing a controlled amount of non-locality (parameterised

by n) and collapsing completely for σ-structures with n ≥ arity(σ). In this section we

define the appropriate generalisation of tree decomposition and show its relation with

Hn,k-coalgebras.

Generalising tree decomposition

Recall the following definition of a tree decomposition of a σ-structure for example from

Definition 4.1.1 of [50].

Definition 6.20. A tree decomposition of a σ-structure A is a pair (T,B) with T a tree

and B : T → 2A such that:

1. For every a ∈ A the set {t | a ∈ B(t)} induces a subtree of T ; and

2. for all relational symbols R ∈ T and related tuples a ∈ RA, there exists a node t ∈ T
such that a ⊂ B(t).

To arrive at a generalisation of tree decomposition which allows for the non-locality dis-

cussed above, we first introduce the following extension of ordinary tree decompositions.

106 6.2. STRUCTURE AND POWER OF HN,K

Definition 6.21. An extended tree decomposition of a σ-structure A is a triple (T, β, γ)

with β, γ : T → 2A such that:

1. (T,B) is a tree-decomposition of A where B : T → 2A is defined by B(t) := β(t) ∪
γ(t); and

2. if a ∈ γ(t) and a ∈ B(t′) then t ≤ t′.

In an extended tree decomposition, the bags B of the underlying tree decomposition are

split into a fixed bag β and a floating bag γ. The second condition above ensures that γ(t)

contains only elements a ∈ A for which t is their first1 appearance in (T,B). Width and

arity are two important properties of extended tree decompositions which are defined as

follows.

Definition 6.22. Let D = (T, β, γ) be an extended tree decomposition.

The width, w(D), of D is maxt∈T |β(t)|.

The arity, ar(D), of D is the least n ≤ w(D) such that:

1. if t < t′ then |β(t′) ∩ γ(t)| ≤ n; and

2. for every tuple (a1, . . . , am) in every relation R of A, there is a t ∈ T such that

{a1, . . . , am} ⊆ B(t) and |{a1, . . . , am} ∩ γ(t)| ≤ n.

We note that the definition of width here differs from the width of the underlying tree

decomposition (T,B). However as we see in Lemma 6.27 having an ordinary tree decom-

position of width k is equivalent to having an extended tree decomposition of width k

and arity 1.

We are particularly interested in extended tree decompositions that are further well-

structured, in a sense that is related to the definition of structured n, k-histories in Sec-

tion 6.1.1.

Definition 6.23. An extended tree decomposition with width k and arity n is structured

if for every a ∈ A there exists t ∈ T s.t. a ∈ γ(t), for every node t, γ(t) 6= ∅, for any

child t′ of t β(t′) ∩ γ(t) 6= ∅ and for any t′′ a child of t′ we have that either:

• |β(t′) ∩ γ(t)| = n; or

• |β(t′)| < k; or

• γ(t) ∩ β(t′) \ β(t′′) 6= ∅
1minimum in the tree order

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 107

Drawing extended tree decompositions and examples

We draw extended tree decompositions as trees where the nodes have two labels, an upper

label indicating the fixed bag at that node and the lower label denoting the floating bag.

In this subsection, we give some simple examples of these decompositions.

Example 6.24. Any structure A which has no relations of arity greater than n admits a

trivial arity n, width 0 extended tree decomposition with a single node. This is drawn as:

∅
A

From this example we see that, in particular, any graph G has a trivial extended tree

decomposition of arity 2. The next two examples show that for graphs, extended tree

decompositions of arity 1 look similar to ordinary tree decompositions.

Example 6.25. Consider the following tree T as a graph.

t0

t1 t2 t3

t4 t5 t6

As with ordinary tree decompositions a tree can be given a decomposition of width 1 by

creating a bag for each edge. The corresponding extended tree decomposition of width 1

and arity 1 for T is the following:

t0

t2

t0

t1

t0

t3

t1

t4

t1

t5

t3

t6

Unlike with ordinary tree decompositions, the floating bags in extended tree decomposi-

tions can be used to give more succinct decompositions (without changing the width). For

example, the following is an extended decomposition of T again with width 1 and arity 1.

{t0}
{t1, t2, t3}

{t1}
{t4, t5}

{t3}
{t6}

108 6.2. STRUCTURE AND POWER OF HN,K

As we see in Lemma 6.27, the correspondence between ordinary tree decompositions and

extended tree decompositions of arity 1 extends beyond trees to all relational structures.

However, for signatures of arity higher than 2 increasing the arity of an extended tree

decomposition can result in non-trivial decompositions of lower width as is shown by the

following example.

Example 6.26. Consider a hypergraph T ′ constructed from T above by adding ternary

edges {t0, t1, t2}, {t0, t1, t3}, {t0, t2, t3} and {t1, t4, t5}. Such a structure contains a 4-clique

{t0, t1, t2, t3} in its Gaifman graph, as defined, for example, in Definition 4.1 of Libkin’s

book [71]. So, it cannot have an ordinary tree decomposition of width less than 3. However,

the following is an extended tree decomposition of width 1 and arity 2 for T ′:

{t0}
{t1, t2, t3, t6}

{t1}
{t4, t5}

Preliminary results on extended tree decompositions

Before proving Theorem 6.19 we present two results which establish some basic facts

about this new type of decomposition. The first establishes the equivalence of width k,

arity 1 extended tree decompositions with ordinary tree decompositions of width k. This

is interesting as we recall from Abramsky, Dawar and Wang [6] that tree decompositions

of width k correspond to coalgebras of Pk+1 whereas we will see in Theorem 6.19 that

coalgebras of H1,k give extended tree decompositions of arity 1 and width k. In this light,

this result can be seen as demonstrating the extra strength of H1,k over Pk, in a manner

that is consistent with the “off-by-one” difference in the logics studied in Section 5.4.2.

Lemma 6.27. A relational structure A has a tree decomposition of width k if, and only

if, it has an extended tree decomposition of width k and arity 1

Proof. (=⇒) Without loss of generality we can assume that (T, β) is a tree decomposition

such that for all t ∈ T |β(t)| = k+1 and if t′ is a child of t in T then |β(t)∩β(t′)| = k. We

now show how to transform such a tree decomposition into an extended decomposition

(T ′, β′, γ) of width k and arity 1.

Define the equivalence relation ≈ on T as

t′ ≈ t′′ ⇐⇒ t′ and t′′ have the same parent t in T and β(t) ∩ β(t′) = β(t) ∩ β(t′′)

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 109

Now we can define the extended decomposition as follows:

• T ′ = T/≈

• β′([t]) = β(t) ∩ β(t0) where t0 is the common parent of the elements of [t]

• γ([t]) =
⋃
t′∈[t] β(t′) \ β(t0)

For non-root nodes t in T both β′ and γ are well-defined by the definition of ≈. For the

singleton equivalence class [r] containing the root of T we choose any cr ∈ β(r) and define

β′([r]) = β(r) \ {cr} and γ([r]) = {cr}.

Letting B([t]) = β′([t]) ∪ γ([t]) we have that B([t]) ⊃ β(t) and so (T ′, B) is a tree

decomposition. Furthermore, γ([t]) ∩ β(t0) = ∅ by definition, so for any [t′] < [t] we have

B([t′])∩γ([t]) = ∅ by the condition that β−1(x) is a connected subtree of T for any x ∈ T .

So (T ′, β′, γ) is an extended tree decomposition.

It is easy to see that the maximum size of β′(t) is equal to k by design. So the width

of (T ′, β′, γ) is k. If a is a tuple in a relation of A we know that there is a node t ∈ T
such that a ⊂ β(t). By definition, β(t) ⊂ B′(t) with |β(t) ∩ γ([t])| ≤ 1. So the arity of

(T ′, β′, γ) is 1, as required.

(⇐=) To go backwards we take a width k, arity 1 extended tree decomposition (T, β, γ)

and we construct a tree decomposition (T̃ , β̃) by replacing each node t ∈ T with the

following spider Ht:

β(t)

γ(t)
7−→

β(t)

β(t) ∪ {γ1} β(t) ∪ {γrt}. . .

where the children of the leaf of Ht labelled by β(t) ∪ {γi} are the roots of the spiders

Ht′ such that t′ is a child of t in T and β(t′) ∩ γ(t) = {γi}. To see that this is a tree

decomposition note firstly that T̃ is clearly a tree under this construction. Next, it is

easy to see that for any a ∈ β(t) ∪ γ(t), a either appears in every bag of Ht or just in a

single leaf. This means that the bags containing a in T̃ still form a connected subtree.

Lastly, we need to show that each related tuple a in A is contained in some bag of T̃ .

This is guaranteed by the condition that (T, β, γ) has arity 1, which means any time

a ⊂ β(t) ∪ γ(t) there exists γi ∈ γ(t) such that a ⊂ β(t) ∪ γ(t) ∪ {γi}.

Having established the connection between extended tree decompositions and ordinary

tree decompositions we now relate extended tree decompositions to the Hn,k comonad

110 6.2. STRUCTURE AND POWER OF HN,K

introduced in Section 6.1 with the next easy but important result. It is noteworthy here

that the extended tree decompositions admitted by the structures Hn,kA are structured.

This is important later in this section.

Lemma 6.28. For any finite A, there is a structured extended tree decomposition of

Hn,kA of width k and arity n

Proof. Recall from Definition 6.8 that the underlying set of Hn,kA consists of represen-

tatives [s|a] of equivalence classes in PkA/≈n where s ∈ ((A × [k])≤n)∗ is a structured

n, k-history and a ∈ A. We construct an extended tree decomposition where each node

is an n, k-history s appearing in one of these representatives. The tree ordering is simply

given by the prefix relation. The fixed bag at s, β(s), contains up to k elements which

represent the at most k elements which are pebbled after s is played. To describe these

explicitly, let s ∈ PkA be the flattening of the list s and for each i ∈ [k] appearing as a

pebble index in s and let si be the maximal prefix of s which ends in (a, i) for some a ∈ A.

Then β(s) contains the ≈n-equivalence classes of each of the si. As there can be at most

k elements in this set, our extended tree decomposition has width k. The floating bag is

given, more simply as γ(s) = {[s|a] | a ∈ A}. From this description it is easy to see that

for any [s|a] ∈ Hn,kA, if [s|a] appears in β(s′) then s is a prefix of s′ and for any s′′ with

s @ s′′ @ s′ we have [s|a] ∈ β(s′′). This confirms that B−1([s|a]) is a connected subtree of

T and that γ−1([s|a]) is a singleton containing the root of that subtree.

To show that (T, β, γ) defines an extended tree decomposition of Hn,kA it now suffices to

show that any related tuple g = ([s1|a1], . . . [sl|al]) ∈ RHn,kA appears in some bag. Because

of the way relations are defined in Hn,k we can find (t1, . . . tl) ∈ RPkA s.t. q(ti) = [si|ai].
By the definition of relations in PkA we know that the ti are totally ordered by the prefix

relation. This means that the si are similarly totally ordered with largest element s. The

related tuple is contained in β(s) ∪ γ(s). Furthermore, g ∩ γ(s) contains the ti for which

q(ti) = [s|ai]. As these are linearly ordered by the prefix relation it would be impossible

for there to be more than n distinct such lists. This means that (T, β, γ) is indeed an

extended tree decomposition of width k and arity n.

To see that (T, β, γ) is structured we rely on the fact that the sequences s ∈ ((A× [k])≤n)∗

appearing in T are themselves structured in the sense of Definition 6.4. The proof is as

follows. Suppose there is a node s ∈ T with a child s;x ∈ T where x ∈ (A × [k])≤n and

suppose that |β(s;x) ∩ γ(s)| < n and |β(s;x)| = k. We now need to show that for any

node s;x; y ∈ T γ(s) ∩ β(s;x) \ β(s;x; y) 6= ∅. Unpacking the definitions we have that

γ(s)∩β(s;x) contains elements [s|a] where (a, i) appears in x for some i. As we also know

that |β(s;x)| = k, which means in particular that x does not contain two pairs (a, i) (a, j)

for i 6= j because if it did the contributions from pebbles i and j to β(s;x) would both

be [s|a]. These two facts together mean that the length of x must be strictly less than

n. Thus as s;x; y is a structured n, k-history we must have that the first element of y is

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 111

(by, iy) where the index iy appears in some pair (bx, iy) in x. It is not hard to see that

[s|bx] ∈ γ(s) ∩ β(s;x) \ β(s;x; y), completing our proof.

We now prove the main theorem of this section, that the Hn,k-coalgebras are in corre-

spondence with structured extended tree decompositions of width k and arity n.

Proof of Theorem 6.19. (1 =⇒ 2) Let α be a coalgebra and, as ε ◦ α = idA, let α(a) =

[sa|a]. Recall that by Lemma 6.28 there is a structured extended tree decomposition

(T, β, γ) of Hn,kA with arity n and width k where the nodes of T are labelled by structured

n, k-histories s ∈ ((A × [k])≤n)∗. We use this decomposition to define a decomposition

(Tα, βα, γα) on A as follows:

• Tα is the tree T restricted to the set {sa | a ∈ A}.

• βα(s) := {a ∈ A | α(a) ∈ β(s)}.

• γα(s) := {a ∈ A | α(a) ∈ γ(s)}.

We now show, firstly, that this is an extended tree decomposition, secondly that it has

width k and arity n and finally that it is structured.

(Tα, βα, γα) is an extended tree decomposition First of all, this requires that Tα

be a tree. For any s ∈ Tα we have some a ∈ A with α(a) = [s|a]. Suppose that

s = [l1|l2| . . . |lm]. It is sufficient to show that si ∈ Tα for any prefix si = [l1| . . . |li] of s

(including the empty sequence). This fact can be deduced from the comultiplication law

that for all a Hn,kα(α(a)) = δA(α(a)). The left-hand side of this equation is Hn,kα(α(a)) =

[s|α(a)] where s = [l1|l2| . . . |lm] and the right-hand side is δA(α(a)) = [s̃|α(a)] where

s̃ = [l̃1|l̃2| . . . |l̃m]. Taking any li = [(b1, p1), . . . (bmi , pmi)] it is not hard to see that li =

[([α(b1)|b1], p1) . . . ([α(bmi)|bmi], pmi)] and l̃i = [([si−1|b1], p1), . . . ([si−1|bmi], pmi)]. From

this we can conclude that for any b appearing in li for any 1 ≤ i ≤ m we have that

α(b) = [si−1|b] where s0 is the empty sequence. This proves that all prefixes of s appear

in Tα. Now we show that Bα := βα ∪ γα (Tα, Bα) defines a tree decomposition of A.

Indeed B−1
α (a) is a subtree because it is really the intersection of two subtrees of the

original T . Furthermore, for any a ∈ RA, we have that α(a) ∈ RHn,kA. As (T, β, γ)

is a tree decomposition, there is an s ∈ T with α(a) ⊂ β(s) ∪ γ(s). You can assume

α(a) ∩ γ(s) 6= ∅ by taking the longest prefix of s which satisfies this2. This means that

s ∈ Tα and a ⊂ βα(s) ∪ γα(s). This shows that (Tα, βαγα) defines an extended tree

decomposition.

2This works by noting that for s′ a parent of s in T , β(s) \ β(s′) ⊂ γ(s)

112 6.2. STRUCTURE AND POWER OF HN,K

(Tα, βαγα) has width k and arity n As α is injective by the coalgebra law ε◦α = idA,

we know that for any s ∈ Tα |βα(s)| ≤ |β(s)|. As (T, β, γ) has width k this means that

|βα(s)| ≤ k for all s ∈ Tα and so (Tα, βα, γα) has width k. For arity, we have that for any

related tuple a in A the tuple α(a) is related in Hn,kA. As (T, β, γ) has arity n we know

that, for any s ∈ T , |α(a) ∩ γ(s)| ≤ n. So again by the injectivity of α |a ∩ γα(s)| ≤ n

and so (Tα, βα, γα) has arity n.

(Tα, βα, γα) is structured Finally the extended tree decomposition is structured be-

cause (T, β, γ) is structured and the coalgebra laws guarantee that |βα(s)| = |β(s)| and

|βα(s′) ∩ γα(s)| = |β(s′) ∩ γ(s)| for any s ∈ Tα with child node s′. This first equation is

deduced by noting that injectivitiy guarantees |βα(s)| ≤ |β(s)|. The reverse inequality

comes from the fact that any t ∈ β(s) is the ≈n equivalence class of some prefix of s. As

we saw before, the comultiplication law guarantees that such classes are realised as α(b)

for an appropriate b so we have |βα(s)| = |β(s)|. The second equation follows from the

same reasoning. Together these ensure that the conditions for being structured which are

satisfied in (T, β, γ) are also satisfied in (Tα, βα, γα).

(2 =⇒ 1) Defining a Hn,k coalgebra from a structured extended tree decomposition

(T, β, γ) of width k and arity n requires some careful bookkeeping which is presented

explicitly here. Throughout we rely on the fact that our tree T comes with an order ≤
and so has a root which we call r. By the conditions of being structured, we have for each

a ∈ A a ≤-minimal node ca ∈ A where a appears in B(ca) and we have that a ∈ γ(ca).

This means in particular that at the root β(r) = ∅.

The general strategy in defining the coalgebra αT is to assign to each node c ∈ T a

structured n, k-history sc ∈ ((A × [k])≤n)∗ which records the elements of A which have

appeared in (T, β, γ) on the path from r to c. We then show that αT (a) = [sca |a] defines

a Hn,k coalgebra for A.

Defining sc Starting at the root we define sr to be the empty list. At each new node

in c ∈ T with parent c′ we define lc ∈ (A × [k])≤n to record the elements of A which

appear in γ(c′) and persist in β(c), assisted by a function ιc : β(c) → [k] which keeps

track of the indices assigned to each element. As the arity of (T, β, γ) is n we know that

|γ(c′) ∩ β(c)| ≤ n. We now define sc, lc and ιc inductively on the nodes of the tree T ,

such that for c a child of c′, ιc = ιc′ on β(c) ∩ β(c′) and sc is formed by appending lc to

sc′ . This defines sc on all the nodes of T .

Defining lc in such a way as to ensure sc is a structured n, k-history requires some care

with assigning pebble indices from [k] to the elements in γ(c′) ∩ β(c). We say that a live

prefix of sc is a prefix s′ of the flattened list F (sc) ∈ (A×[k])∗ with final element (b, i) such

that no larger prefix of F (sc) ends with (b′, i) for any b′ ∈ A. We say that b is live in sc if

it appears at the end of some live prefix s′. The end goal is that sc will be an n, k-history

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 113

where the live elements are exactly those in β(c) and that for each such element b there

is a live prefix of sc ending in the pair (b, ιc(b)).

At each c we partition β(c) as Nc∪Rc where Nc := γ(c′)∩β(c) is the set of new elements in

βc and Rc := β(c)∩β(c′) is the set of elements retained from the parent node. Firstly, we

define ιc to be equal to ιc′ on Rc. As the width of (T, β, γ) is k we know that |β(c)| ≤ k and

so the number of free indices |[k]\ ιc(Rc)| is at least as big as the number of new elements

|Nc| so we can assign to each element b of Nc a distinct index ιc(b) from [k] \ ιc(Rc). In

many cases this is enough and we can pick any ordering b1, . . . bm of the elements in Nc

and set lc to be the list [(b1, ιc(b1)), . . . (bm, ιc(bm))].

We now need to define some modifications to this to ensure that sc is structured. Recall

that an n, k-history s is structured if and only if for every pair of successive blocks l′

appearing immediately before l in s we have that either |l| = n or the first pebble index

in l must have appeared in l′. To ensure this holds true for each sc, we need to take extra

care defining lc in cases where |lc′ | or |Nc| are less than n.

If |lc′| < n then we must choose ιc(b1) to be an index which appeared in lc′ . To see that we

can do this recall that (T, β, γ) is structured and so for each non-root node c′ with child

c we have (using our new language from this proof) that at least one of the following is

true

1. |Nc′| = n,

2. |β(c′)| < k; or

3. Rc \Nc′ 6= ∅.

In the first case, we have |lc′| = n so no action needs to be taken. In the second case,

where |Nc′ | < n and |β(c′)| < k then there is a spare index i ∈ [k] \ ιc′(β(c′)) and we

define lc′ to be [(b′1, ιc′(b
′
1)), . . . (b′m, ιc′(b

′
m′), (b

′
m′ , i)] and we define ιc(b1) := i. In the third

case, there may not be a spare index i but instead there is some element b ∈ Nc′ \ Rc

meaning that some element which appears in lc′ does not need to be live after lc. In this

case we simply define ιc(b1) := ιc′(b). Collectively, these modifications ensure that sc is

structured and so the definition αT (a) := [sca|a] is well-defined. It remains to show that

αT is a coalgebra.

αT is a coalgebra To show that αT is a homomorphism, take any related tuple a ∈ RA.

As (T, β, γ) is an extended tree decomposition there is some c such that a ⊂ β(c) ∪ γ(c).

Now as the arity of the decomposition is n there are at most n elements a ∈ a with

a ∈ γ(c) and so α(a) = [sc|a]. For all the other elements a′ ∈ a there must be some earlier

c0 with a′ ∈ γ(c0) and a unique path c0 < c1 < · · · < cq = c linking c0 and c in T . We

must have a′ ∈ β(c1) and a′ ∈ Rci for all 1 ≤ i ≤ q so by the definition of sc above we

114 6.2. STRUCTURE AND POWER OF HN,K

know that the index ιc1(a
′) used to pebble a′ in lc1 has not been reallocated by the end

of sc. From this it is easy to see that the tuple α(a) (with function application defined

component-wise on the tuple) is related in Hn,kA. Finally, we verify that α satisfies the

coalgebra laws. The counit law, ε◦α = idA is satisfied by definition. For comultiplication,

it suffices to check that for any a, b ∈ A, if b appears in sca = [lc1| . . . |lcq] then it appears

in exactly one of the lci and α(b) = [[lc1| . . . |lci−1
]|b]. This can be seen to hold from the

construction above, concluding our proof.

In this chapter, we have a achieved a central aim of the thesis by providing a comonadic

semantics to a logic which is strictly more expressive than Lω∞(#). We did this by con-

structing, for each n the family of comonads (Hn,k)k∈N which together capture the n-ary

generalised quantifier logic Lω∞(Qn) and other related logics, as well as new notions of

structural decomposition for these logics. Additionally, by constructing this as a quotient

of Pk and establishing that the quotient map qn is a natural transformation which com-

mutes with the counit and comultiplications of Pk and Hn,k we can extend the network of

known game comonads from Figure 3.1 to the new state of affairs summarised in Figure

6.2.

H1,k . . . Hn,k . . .

Pk

Ek PRk Pn,k

Figure 6.2: A new hierarchy of game comonads. Arrows are comonad morphisms.

While Lω∞(Qn) is a very expressive logic, from the viewpoint of descriptive complexity

theory it is somewhat unsatisfactory for two reasons. The first is that, for n > 1, even

the first order version of this logic FO(Qn) is capable of expressing properties which are

uncomputable. In particular, it can express any isomorphism-closed query on graphs.

Secondly, it was shown by Hella [58] that for any fixed n there are PTIME properties which

are not expressible in Lω∞(Qn). Despite these shortcomings, Dawar [32] showed that if

there is a logic for PTIME then there is such a logic of the form FO(Q) where Q is some

uniform family of generalised quantifiers.

Inspired by the inability of Lω∞(#) to express solvability of linear equations over finite

fields (see [14] for an overview), one source of candidate logics for PTIME has involved

expanding FO by linear-algebraic generalised quantifiers. Such logics have included rank

logic [35] and linear-algebraic logic [34]. Although both of these have been shown by

Lichter [72, 36] to be insufficient to capture PTIME, we remain interested in finding a

CHAPTER 6. GAME COMONADS AND GENERALISED QUANTIFIERS 115

compositional approach to this kind of extension to counting logic. There are many open

questions about applying the comonadic approach to the some of these logics and, in

particular, a so far unfulfilled aim of the game comonads programme has been a game

comonad for Dawar and Holm’s invertible maps game [37]. In the next two chapters,

however, we depart from comonads and show that different tools from category theory are

useful for studying linear-algebraic approximations to homomorphism and isomorphism.

In Chapter 7, we demonstate how monads can be used to capture well studied linear

programming relaxations of the homomorphism problem and in Chapter 8 we see how

presheaves and cohomology can help us expand the Lω∞(#)-equivalence to distinguish

structures which differ on those properties which Lichter [72] showed not to be expressible

in rank logic.

Chapter 7

Monads for approximating

homomorphism

So far in this thesis, we have explored the effectiveness of comonads in capturing games

which describe different logical relations approximating homomorphism and isomorphism

on relational structures. We have shown that the remit of such comonadic methods

extends far beyond the realm of k-variable logics with counting quantifiers which were

central to Abramsky, Dawar and Wang’s pebbling comonad [6] and other variations on

this. However, as noted at the end of the last chapter, one area of finite model theory

and descriptive complexity where these methods have so far struggled to find application

is that of approximations to homomorphism and isomorphism which incorporate linear

algebraic powers. As linear algebra is a source of problems which are solvable in PTIME, for

example, computing ranks of matrices and solving systems of linear equations, these ap-

proximations are especially interesting for algorithms and descriptive complexity theory.

In the next two chapters, we go beyond comonads in search of category-theoretic construc-

tions which help us to reason compositionally about these linear-algebraic approximations

to homomorphism and isomorphism.

In this chapter, we recall some simple examples of linear algebraic approximations to

homomorphism which occur in the study of constraint satisfaction problems. These ap-

proximations involve relaxing the homomorphism condition A → B into a system of linear

equations over some semiring S and the power of these approximations on finite structures

and for certain values of S has been extensively studied, particularly in the promise CSP

community.

We show that these approximations admit a category-theoretic semantics in terms of mon-

ads which is somewhat dual to the comonadic semantics of earlier chapters. In Chapter

3, we saw how the non-empty list comonad could be lifted to relational structures to

represent Spoiler moves in model comparison games. In this chapter, we see how to lift

the vector space and distribution monads, VS and DS to relational structures. In doing

116

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 117

so, we prove an analogue of the Power theorems seen earlier for comonads (Theorem 3.13

& 6.13) by showing that Kleisli morphisms of the form A → DSB correspond to satisfying

assignments to systems of S-linear equations which approximate the relation A → B.

We note, in Section 7.2.3, that for some values of S the structures DSB have appeared

before under different guises in the constraint satisfaction literature and without the

monad structure. This helps us to establish links between Kleisli maps and various well-

known CSP algorithms in Section 7.3.2 and between maps of the form DSB → B and

structure polymorphisms in Section 7.4.1. The presentation in this chapter also allows us

to see these examples in the wider context of their relation to the distribution monad for

any semiring S. This raises interesting questions about Kleisli isomorphisms and algebras

for these monads, inspired by the parallel Power and Structure results for game comonads.

7.1 Linear programming relaxations for homomor-

phism and isomorphism

Since Tinhofer [87, 88], it has been common to study relaxations of homomorphism and

isomorphism between graphs in terms of linear programming problems. This comes from

the fact that the existence of a homomorphism between relational structures is equivalent

to the a 0-1 solution to a system of linear equations as seen in Definition 7.1. While these

problems are in general difficult to solve, the relaxations obtained by replacing the 0-1

valued matrices with those taking values in some semiring S may be easily computable and

often provide approximations to → and ∼= which are interesting in finite model theory

and descriptive complexity. Examples of these are fractional homomorphism [26] and

isomorphism [84], the related Sherali-Adams hierarchy and the basic and affine linear

programming relaxations of the constraint satisfaction problem. In this section, we present

a unified and general framework for these relaxations, drawing largely on the presentation

of Butti and Dalmau [26].

To provide a homomorphism f : A → B between two relational structures, we provide

two pieces of data. Firstly for each element in the underlying set of A we provide an

element in B and for each related tuple a ∈ RA we provide a related tuple b ∈ RB which

agrees with the assignments on the elements. It has long been recognised that these

interrelated conditions can be written down as the following system of equations where

there is a homomorphism if and only if there is a solution in the set {0, 1}. The current

presentation is due to Butti and Dalmau [26].

Definition 7.1. We define the system of equations LP0-1(A,B) as follows. Let there be

variables xa,b for each a ∈ A and b ∈ B and xRa,b for each R ∈ σ and tuples a and b in A

and B respectively with length ar(R).

118
7.1. LINEAR PROGRAMMING RELAXATIONS FOR HOMOMORPHISM AND

ISOMORPHISM

∀a ∈ A, b ∈ B xa,b ∈ {0, 1}
∀a ∈ RA,b ∈ Bar(R) xRa,b ∈ {0, 1}

∀a ∈ A
∑
b∈B

xa,b = 1 (Hom.1)

∀a ∈ RA,b /∈ RB xRa,b = 0 (Hom.2)

∀a ∈ RA, a ∈ {a}, b ∈ B
∑

f : {a}→B
f(a)=b

xRa,f(a) = xa,b (Hom.3)

Solving this system of equations is equivalent to determining if there is a homomorphism

A → B. As noted in Chapter 2, any constraint satisfaction problem can be expressed as

such a homomorphism problem and so solving this system of equations is NP-Complete in

general. This motivates studying the relaxation of these equations to different algebraic

domains which we define as follows.

Definition 7.2. Let S = (S,+, ·, 0S, 1S) be a semiring. We define the system of equations

LPS(A,B) as follows.

∀a ∈ A, b ∈ B xa,b ∈ S

∀a ∈ RA,b ∈ Bar(R) xRa,b ∈ S

∀a ∈ A
∑
b∈B

xa,b = 1S (LPS.1)

∀a ∈ RA,b /∈ RB xRa,b = 0S (LPS.2)

∀a ∈ RA, a ∈ {a}, b ∈ B
∑

g : {a}→B
g(a)=b

xRa,g(a) = xa,b (LPS.3)

Another variant of this system which is considered by the CSP algorithms community, for

example by Brakensiek, Guruswami, Wrochna and Živný in Section 2.3 of [23], involves

replacing LPS.3 with the following condition. While it may not be obvious from the

statement, this is a relaxtion of LPS.3 as we establish later in Theorem 7.16.

∀a ∈ RA, i ∈ [ar(R)], b ∈ B
∑
b[i]=b

xRa,b = xa[i],b (BLPS.3)

Taking the name from the Basic Linear Program which is exactly this system of equations

with S = Q≥0, we call this system BLPS(A,B).

We now recap over some well-known aliases of these systems of equations.

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 119

Observation 7.3. Let Q≥0 and Z be, respectively, the semiring of non-negative rationals

and the integers. Then the following cases of LPS and BLPS have the following well-

known aliases.

• If LPQ≥0
(A,B) has a solution we also say that there is a fractional homomorphism

from A to B. LPQ≥0
(A,B) is also called SA1(A,B) because it is the first level of a

Sherali-Adams-inspired hierarchy. (Butti & Dalmau, [26])

• BLPQ≥0
(A,B) is also called the basic linear program (BLP) for the CSP instance

(A,B). (Brakensiek, Guruswami, Wrochna & Živnỳ, [23])

• BLPZ(A,B) is also called the affine integer relaxation (AIP) of the CSP instance

(A,B). (Brakensiek, Guruswami, Wrochna & Živnỳ, [23])

In the next section, we construct a monad on relational structures inspired by these

relaxations of homomorphism. In Section 7.3, we show that solutions to the systems of

equations are equivalent to Kleisli morphisms of these monads.

7.2 Linear-algebraic monads

So far in this thesis, we have studied comonads on the category of relational structures.

These are interesting in finite model theory and descriptive complexity because they can

represent approximations to the homomorphism relation by some Spoiler-Duplicator game

where Spoiler has only limited access to the structure A. They do this by replacing A
with some structure CkA such that CkA → A so that the existence of a map of the form

CkA → B is a weaker condition in general than the existence of a map of the form A → B.

We now wish to consider a somewhat dual method of approximating homomorphisms

by replacing the right-hand-side structure, B with a construction TB with B → TB so

that maps A → TB approximate A → B. Dually to the story told in Chapter 3 the

structure required to make such maps compose nicely is that of a monad on the category

of relational structures for any signature. This technique was first employed by Abramsky,

Barbosa, de Silva and Zapata [3] who constructed a monad on the category of relational

structures whose Kleisli morphisms characterised winning strategies in quantum-inspired

non-local games.

In this section, we define two new families of monads on relational structures based on free

linear-algebraic monads on Set which are parameterised by a semiring S in a similar way

to the systems of equations in Section 7.1. The first monad is based on the vector space

monad (or more generally the free left semimodule monad) and the second, a submonad of

the first, is based on the distribution monad. We end this section by observing examples

of these general constructions which have previously appeared in the logic and algorithms

literature.

120 7.2. LINEAR-ALGEBRAIC MONADS

7.2.1 The vector space monad: VS

Recall from Chapter 2 that a semiring S is an algebraic structure consisting of an underly-

ing set S with binary operations · and +, called multiplication and addition respectively,

and two constants 0 and 1 which are respectively the identity for + and ·. In the examples

we are concerned with both · and + are commutative.

Given such a semiring S and a relational structure A, we construct the relational structure

VSA on the set of formal S-linear sums over elements of the underlying set A as follows.

Definition 7.4. For a relational structure A over a finite signature σ and a semiring S,

the structure VSA has as the underlying set all functions α : A → S with finite support,

meaning that the set {a | α(a) 6= 0} is finite. We write the elements as formal S-linear

sums over the elements of A as follows, where we abbreviate α(a) to αa,

VSA :=

{∑
a∈A

αaa | α : A→ S

}
.

The related tuples for each relation R ∈ σ are witnessed by functions γ : RA → S of finite

support and are written as follows, where we abbreviate γ(a) to γa,

RVSA :=

{(∑
a∈RA

γaa[1], . . . ,
∑
a∈RA

γaa[m]

)
| γ : RA → S

}

where R ∈ σ has arity m.

On the underlying sets this is in fact the free left-S-semimodule monad (see, for example,

Example 2.8 of [48]) which has the following associated definitions for VSf : VSA→ VSB

for any function f : A→ B and unit and multiplication natural transformations η and µ.

When S is a field this is precisely the vector space monad.

Definition 7.5. For any semiring S, structures A and B, and morphism f : A → B,

we define the functions VSf : VSA → VSB, ηA : A → VSA and µA : VSVSA → VSA as

follows.

f(
∑
a∈A

αaa) =
∑
a∈A

αaf(a)

ηA(a) = a

µA(γ1[
∑
a∈A

α1
aa] + . . .+ γm[

∑
a∈A

αma a]) =
m∑
i=1

∑
a∈A

γ1α
1
aa

As the triple (VS, η, µ) inherits a monad structure on the underlying sets from the free

left-semimodule monad, it only remains to check that these maps are relational homo-

morphisms to lift this monad structure to R(σ). We do this in the next result.

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 121

Proposition 7.6. For any finite relational signature σ the triple (VS, η, µ) defines a

monad on R(σ).

Proof. For this proof we write a generic element θ ∈ VSA as

θ =
∑
a∈A

αθaa.

Now, we show that the monad on Set defined above is also a monad on R(σ), by showing

that VSf , ηA and µA are homomorphisms.

Given a homomorphism f : A → B, to show that VSf is a homomorphism we must show

that, for any R ∈ σ and any tuple (θ1, . . . θm) ∈ (VSA)m,

(θ1, . . . θm) ∈ RVSA =⇒ (VSf(θ1), . . .VSf(θm)) ∈ RVSB.

Suppose that (θ1, . . . θm) ∈ RVSA. By definition this means there is a set of variables γa

for each a ∈ RA such that, for each i ∈ [m],

θi =
∑
a∈RA

γaa[i].

As f is a homomorphism, we must also have that f(a) ∈ RB and so we can set

γfb :=
∑
a∈RA
f(a)=b

γa.

This then gives that ∑
b∈RB

γfbb[i] =
∑
a∈RA

γaf(a[i]) = VSf(θi),

and so (VSf(θ1), . . . ,VSf(θm)) ∈ RVSB, as required.

Showing that ηA is a homomorphism is much easier. Indeed, if (a1, . . . am) ∈ RA then set-

ting γηa = 1S if a = (a1, . . . , am) and γηa = 0S otherwise. We have that (ηA(a1), . . . , ηA(am)) ∈
RVSA.

Finally, we show that µA is a homomorphism. Suppose we have some related tuple in

RVSVSA and we write this as(∑
θ∈VSA

α1
θθ, . . . ,

∑
θ∈VSA

αmθ θ

)
∈ RVSVSA.

This means that there is some function γ : RVSA → S such that, for each i ∈ [m],∑
θ∈RVS

γθθ[i] =
∑
θ∈VSA

αiθθ.

Now to show that µA is a homomorphism we need to show that(∑
θ∈VSA

∑
a∈A

α1
θα

θ
aa, . . . ,

∑
θ∈VSA

∑
a∈A

αmθ α
θ
aa

)
∈ RVSA.

122 7.2. LINEAR-ALGEBRAIC MONADS

To do this note that for each θ ∈ RVS there is, by definition, a function γθ : RA → S such

that, for each i ∈ [m], ∑
a∈RA

γθaa[i] = θ[i].

Then define the function γµ : RA → S as

γµa :=
∑

θ∈RVSA

γθγ
θ
a.

Then we can deduce from the equations above that, for each i ∈ [m],∑
a∈RA

γµaa[i] =
∑
a∈RA

∑
θ∈RVSA

γθγ
θ
aa[i]

=
∑

θ∈RVSA

γθ
∑
a∈RA

γθaa[i]

=
∑

θ∈RVSA

γθθ[i]

=
∑
θ∈VSA

αiθθ

=
∑
θ∈VSA

∑
a∈A

αiθα
θ
aa.

Which concludes the proof that µA is a homomorphism.

While this construction yields a monad on relational structures the following observation

shows that we can not hope for the Kleisli morphisms A → VSB to yield any of the

interesting relaxations observed in Section 7.1.

Observation 7.7. The relational structure VSA defined in Definition 7.4 is somewhat

degenerate in the sense that it always contains an element on which there is a loop for

every relation R ∈ σ. For any S and structure A, consider the element 0 =
∑

a∈A 0S · a
obtained by setting each αa to the additive identity 0S in S. Now given any relation R ∈ σ,

we have, by definition, that the tuple (
∑

a∈RA γaa[1], . . . ,
∑

a∈RA γaa[m]) is in RVSA for

any choice of weightings γa. So, setting γa = 0S, we have that (0, . . . ,0) ∈ RVSA, for

all R. This means that the constant function f0 : A → VSB which maps all a ∈ A to

0 ∈ VSB is always a homomorphism.

For the rest of this section we focus on the definition of another monad DS which avoids

the pitfall pointed out in the observation above.

7.2.2 The distribution monad: DS

For any semiring S, there is another well-studied monad on Set which is a submonad of

VS. This is the distribution monad which restricts the underlying set to

DSA :=

{∑
a∈A

αaa ∈ VSA |
∑
a∈A

αa = 1S

}
.

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 123

It is not hard to see that the functions DSf, ηA, µA all preserve membership of this subset

and so (DS, η, µ) defines a monad on Set. We now define a relational structure on DSA

and show that the monad lifts to R(σ).

Definition 7.8. For a relational structure A over a finite signature σ and a semiring S,

the structure DSA has the underlying set{∑
a∈A

αaa ∈ VSA |
∑
a∈A

αa = 1S

}

and relations

RDSA :=

{(∑
a∈RA

γaa[1], . . . ,
∑
a∈RA

γaa[m]

)
∈ RVSA |

∑
a∈RA

γa = 1S

}

where R ∈ σ has arity m.

We now show that the proof of Proposition 7.6 can be strengthened to show that DS also

defines a monad on R(σ).

Proposition 7.9. For any finite relational signature σ the triple (DS, η, µ) defines a

monad on R(σ).

Proof. To prove this, we need to show that DSf , ηA and µA are all homomorphisms with

respect to the new relational structures defined in Definition 7.8.

This can be done by showing that the functions γf , γη, and γµ, used in the proof of Propo-

sition 7.6, each sum to 1S, on the condition that the functions which witness relations in

the antecedents of this proof also sum to 1S. We check these as follows.

Firstly to show that DSf is a homomorphism we recall that for θ ∈ RDS witnessed by

γ : RA → S we defined

γfb :=
∑
a∈RA
f(a)=b

γa.

We know that γf : RB → S witnesses that VSf(θ) ∈ RVS , so it remains to show that∑
b γ

f
b = 1S. To this end, note that we have the following equivalences∑

b∈RB
γfb =

∑
b∈RB

∑
a∈RA
f(a)=b

γa

=
∑
a∈RA

γa.

This final sum is equal to 1S by the assumption that θ ∈ RDSA, so we have
∑
γfb = 1S

and so VSf(θ) ∈ RDS , as required.

124 7.2. LINEAR-ALGEBRAIC MONADS

For ηA, the proof is easy as γηA is non-zero for exactly one tuple (a1, . . . , am) and takes

the value 1S on this.

For µA, we assume that we have a function γ : RDSA → S witnessing that (φ1, . . . φm) ∈
RDSDSA and for each θ ∈ RDSA, we have functions γθ : RA → S witnessing these relations.

Now the argument in the proof of Proposition 7.6 shows that (µA(φ1), . . . , µA(φm)) ∈
RVSA is witnessed by γµ : RA → S defined as

γµa :=
∑

θ∈RVSA

γθγ
θ
a.

We now show that (µA(φ1), . . . , µA(φm)) ∈ RDSA by showing that
∑
γµa = 1S. This

follows by rearranging finite sums as follows.∑
a∈RA

γµa =
∑
a∈RA

∑
θ∈RVSA

γθγ
θ
a

=
∑

θ∈RVSA

γθ
∑
a∈RA

γθa

=
∑

θ∈RVSA

γθ(1S)

= 1S.

So we have shown that µA : DSDSA → DSA is a homomorphism and thus the S dis-

tribution monad on Set lifts to the DS monad on relational structures, completing the

proof.

7.2.3 Distribution constructions in constraint satisfaction

We now see how for certain values of S the construction DSB has appeared in various forms

in the literature of constraint satisfaction problems. In particular, Chen, Dalmau and

Grußien [30] considered the case of the Boolean semiring, B and Barto, Buĺın, Krokhin,

and Opršal [18] considered cases of the non-negative rationals, Q≥0; and the integers,

Z. Despite the equivalence of the structures in these works with DS neither consider the

functorial or monadic nature of the construction.

Boolean semiring and the powerset construction

In [30], Chen, Dalmau and Grußien define a construction called the power set construction

as follows.

Definition 7.10. For any relational structure B over some signature σ, define the rela-

tional stucture P(B) on the set of non-empty subsets of B as follows. For each R ∈ σ,

define the relation

RP(B) := {(π1S, . . . πmS) | S ⊂ RB},

where πi : B
m → B is the projection map onto the ith component.

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 125

Chen et al. use this construction to investigate the power of the well-known arc consistency

algorithm. We define this algorithm and cite some of the applications from [30] later in

this chapter. For now, we show that this construction is simply the distribution monad

construction given above for S = B.

Proposition 7.11. For any relational structure B,

DBB ∼= P(B)

Proof. The isomorphism between these two structures is straightforward. For any element

α =
∑

b αbb ∈ DBB, we construct the subset Pα of B as those b ∈ B such that αb = 1B. As

the semiring B has only two elements, this map is also invertible by mapping any subset

P of B to αS =
∑

b α
S
b b where

αSb =

1B if b ∈ S

0B otherwise.

It is not hard to see that the condition that
∑

b αb = 1B is exactly the condition that Sα is

non-empty and, using the same correspondence as above between B-valued distributions

and subsets, we see that related tuples in RDBB are given projections of by subsets of RB

exactly as in Chen et al.’s definition.

Two constructions for equations over rationals and integers

Two other constructions which we show to be cases of the distribution monad appear

in the work of Barto, Buĺın, Krokhin, and Opršal [18] and are used by those authors

to bound the power of the basic linear program and affine integer relaxation, which we

noted in Observation 7.3 to be equivalent to the systems of equations BLPQ≥0
and BLPZ

respectively. Their results will be useful later on in this chapter. First, we define their

constructions and show that they are isomorphic to those given above.

Definition 7.12 (Definition 7.10, [18]). For any finite relational structure B over the

signature σ, the structure LP (B) has as elements the functions φ : B → Q ∩ [0, 1] such

that
∑

b∈B φ(b) = 1. For any m-ary relation R ∈ σ the relation RLP (B) contains every

tuple (φ1, . . . , φm) such that there exists a function γ : RB → Q ∩ [0, 1] satisfying∑
b∈RB,b[i]=b

γ(b) = φi(b).

In a very similar way Barto et al. also define the following structure.

126 7.3. KLEISLI CATEGORY OF DS

Definition 7.13 (Definition 7.20, [18]). For any finite relational structure B over the

signature σ, the structure IP (B) has as elements the functions φ : B → Z such that∑
b∈B φ(b) = 1. For any m-ary relation R ∈ σ the relation RIP (B) contains every tuple

(φ1, . . . , φm) such that there exists a function γ : RB → Z satisfying∑
b∈RB,b[i]=b

γ(b) = φi(b).

It is easy to see that both of these constructions are isomorphic to those given above by

the distribution monad.

Proposition 7.14. For any relational structure B,

DQ≥0
B ∼= LP (B)

and

DZB ∼= IP (B)

Proof. In both of these cases the isomorphism is simple. Indeed, the functions φ : B → S

which define elements in each case can easily be seen as defining a formal sum
∑

b φ(b)b in

the free left semimodule over B for the semirings Q≥0 and Z respectively. The condition

that
∑

b φ(b) = 1 also ensures that these are elements of DSB. It is straightforward to

check that the relation condition is also equivalent to that given in Definition 7.8.

In their work, Barto et al. use these structures to classify the strength of the basic linear

program and affine integer relaxation algorithms in two ways. Firstly they show that for

any structures A and B, the equations BLPQ≥0
(A,B) and BLPZ(A,B) are satisfiable if,

and only if, there are homomorphism of the types A → LP (B) and A → IP (B), respec-

tively. Secondly, they show that homomorphism of the type LP (B)→ B and IP (B)→ B,

characterise exactly the polymorphisms required by B to ensure that the respective linear

programming approximations are sufficient to solve all constraint satisfaction problems

with domain B.

In the next two sections, we show that such results hold in general for the monads DS and

that these are neat analogues to the Power and Structure theorems we saw in the case of

monads.

7.3 Kleisli category of DS

In this section, we prove Theorem 7.16, an important relationship between linear program-

ming relaxations of homomorphisms from Section 7.1 and the monad DS from Section 7.2.

We call this result the Morphism Power Theorem for DS as it establishes the power of

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 127

the approximation to homomorphism provided by the Kleisli maps of DS in a way which

is comparable to the similar results in Theorems 3.13 and 6.13 for the comonads Pk and

Hn,k.

The notion of an I∗-structure is needed to make the second correspondence work for

reasons similar to those that lead to the introduction of I-structures for game comonads.

To state the main theorem of this section, we first need to define the notion of the I∗-

structure for a relational structure A. This is related to Definition 3.4 which introduced

I-structures and the reasons for introducing this notion are similar to those in Chapter

3. There, I-structures were introduced in order to overcome the fact that if, for the game

comonad Pk, an arbitrary Kleisli morphism PkA → B was translated into a Duplicator

strategy for the k-pebble game, it could result in positions in the game which preserve all

relations except the identity relation. In other words, positions which fail to be partial

homomorphisms simply because they fail to be functions.

In translating from morphisms f : A → DSB to solutions to linear programs LPS(A,B) we

have a similar concern. In particular, for any related tuple a ∈ RA, we have that the image

f(a) is a related tuple in DSB. This means, by the definition of the relations on DSB that

f(a) can be written as a weighted sum over related tuples in B. However if there is some

i 6= j such that a[i] = a[j], there is no way to guarantee that the sum of related tuples

which witnesses f(a) ∈ RDSB uses only tuples b ∈ RB such that b[i] = b[j]. However to

satisfy the linear program LPS(A,B), it is required by (LPS.3) that the variable xa,b is

non-zero only if b is the image f(a) of some function f . Thus any such b must satisfy

the equality relations satisfied by a.

For this reason, we define a new relational signature σ∗ as follows. Write Πk for the set

of equivalence relations on the elements of the set [k] and then for every R ∈ σ and

π ∈ Πar(R), σ
∗ contains a relational symbol Rπ with arity ar(R). This allows us to define

I∗-structures as follows.

Definition 7.15. For any relational structure A over the signature σ the I∗-structure A
is the unique relational structure over the signature σ∗ which has the same underlying set

A and, for each R ∈ σ and π ∈ Πar(R),

RAπ =
{
a ∈ RA | ∀i, j ∈ [ar(R)].iπj =⇒ a[i] = a[j]

}
.

We can now state the main theorem of this section.

Theorem 7.16 (Morphism Power Theorem for DS). For any two relational structures A
and B and a semiring S the following are equivalent:

1. There is a Kleisli morphism A → DSB.

2. The linear program BLPS(A,B) has a solution.

128 7.3. KLEISLI CATEGORY OF DS

Separately, we have that the following are equivalent:

1. There is a Kleisli morphism A → DSB for the I∗-structures A and B.

2. The linear program LPS(A,B) has a solution.

This relationship encourages us to ask whether there is a matching notion of an Isomor-

phism Power Theorem for DS, relating isomorphisms in K(DS) to linear relaxations of

isomorphism. We show in Section 7.3.3 that this hope is misleading for certain choices of

S and gives rise to open problems in other cases.

We now prove Theorem 7.16 and we apply it to specific cases for S.

7.3.1 Proof of Theorem 7.16

Proof of Theorem 7.16. The first equivalence is relatively straightforward. Given a ho-

momorphism f : A → DSB, for each a ∈ A write f(a) :=
∑

b∈B αa,bb.

Then f(a) ∈ DSB implies that setting xa,b := αa,b, for each a ∈ A and b ∈ B, satisfies the

equation LPS.1. Furthermore, for every related tuple a ∈ RA there is function γa : RB → S

witnessing that f(a) ∈ RDSB. Letting xRa,b := γab for b ∈ RB and setting it to 0S otherwise,

we satisfy LPS.2 by definition. Finally, we see that BLPS.3 is satisfied because for each

a ∈ RA , i ∈ [ar(R)] and b ∈ B we have that∑
b[i]=b

xRa,b =
∑
b[i]=b

γab,

and because γa witnesses that f(a) ∈ RDSB, we must have that∑
b[i]=b

γab = αa[i],b

which is the coefficient of b in f(a[i]) and, by definition, the value of xa[i],b. This completes

the forward direction of the first part.

For the other direction we want to use a solution to BLPS(A,B) given as (xa,b)a∈A,b∈B

and (xRa,b)a∈RA,b∈Bar(R) to construct a homomorphism f : A → DSB. We claim that the

function f which sends each a ∈ A to

f(a) :=
∑
b∈B

xa,bb

is exactly such a homomorphism. Firstly the range of this function is contained in DSB
because the xa,b satisfy LPS.1 and so

∑
b xa,b = 1S and so f(a) ∈ DSB. To show that f

is a homomorphism we take any a ∈ RA and show that f(a) is in RDSB. To do this we

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 129

claim that (xRa,b)b∈RB witnesses this. Indeed, as LPS.2 implies that xa,b = 0S whenever

b /∈ RB, we can rephrase BLPS.3 as saying that for each a ∈ RA, i ∈ [ar(R)] and b ∈ B,∑
b∈RB
b[i]=b

xa,b = xa[i],b.

This means that for each i, ∑
b∈RB

xRa,bb[i] = f(a[i])

and so we have witnessed that f(a) ∈ RVSB. To finish the proof that f is a homomorphism

of the desired type, we must show that for each a ∈ RA,
∑

b x
R
a,b = 1S. This can be derived

from BLPS.3 and LPS.1 as follows.∑
b∈RB

xa,b =
∑
b∈B

∑
b∈RB
b[1]=b

xRa,b

=
∑
b∈B

xa[1],b

= 1S

For the second part, we have the same maps between solutions of the equations and

homomorphisms but we additionally have to show that satisfying the equational condition

LPS.3 corresponds exactly to the relational condition of preserving the I∗ structures.

Firstly, suppose we have a homomorphism f : A → DSB between I∗-structures. As before,

we define the values xa,b by the coefficients αa,b in f(a) and this satisfies LPS.1. Now we

need to make assignments to the variables xRa,b for a ∈ RA in the original structure A
and b ∈ Bar(R). Given such an a, let πa be the equivalence relation on [ar(R)] such that

iπaj ⇐⇒ a[i] = a[j]. By definition, we know that a ∈ RAπa in the I∗-structure A. As f is

a homomorphism, we have f(a) ∈ RDSB
πa . This is witnessed by some function γa : RBπa → S

such that for each i ∈ [ar(M)]

f(a[i]) =
∑

b∈RBπa

γabb[i].

Setting xRa,b to be γab where defined above and 0S elsewhere. Then focusing on the coeffi-

cient of any b ∈ B, the above equation yields:

xa[i],b =
∑

b∈RBπa
b[i]=b

xRa,b.

However, it is easy to see from the conditions imposed by πa that each b ∈ RBπa is uniquely

identified as the image g(a) of some function g : {a} → B so the above equation can be

rewritten finally as, for each a ∈ {a} and b ∈ B:

xa,b =
∑

g : {a}→B
g(a)=b

xRa,g(a).

130 7.3. KLEISLI CATEGORY OF DS

S B Q≥0 Z
A → DSB AC BLP AIP

Table 7.1: Kleisli morphisms for the monad DS capture the expressive power of different

algorithms for CSP as we vary S.

So this assignment to the x variables satisfies LPS.3.

To go the other direction, we define the homomorphism from A to DSB as in the last part

by setting f(a) :=
∑

b xa,bb. We now need to show that satisfying LPS.3 for each a ∈ RA

is enough to show that f is a homomorphism between I∗-structures. To do this we need

to show that for any a ∈ RAπ we have f(a) ∈ RDSB
π . For every function g : {a} → B,

define the weighting γag(a) to be xa,g(a) as given in the solution to LPS(A,B). As any

function g preserves all equalities mandated by π and the assignment to the x variables

satisfies LPS.2, we have that γab 6= 0S only if b ∈ RBπ . Now we can see that the function

γa : RBπ → S witness f(a) ∈ RDSB by deducing from LPS.3 that for each i

f(a[i]) =
∑
b∈RBπ

γabb[i]

and noting that, as before,
∑

b γ
a
b = 1S.

7.3.2 Algorithms and Kleisli morphisms

Theorem 7.16 shows that the monadic constructions given in the last section capture the

approximations to homomorphism given by the linear equations in Section 7.1. While in

general these systems of equations do not admit efficient solutions, for certain semirings

S these maps capture well-known PTIME algorithms for approximating homomorphism.

Here, we briefly recall some of these connections which have been studied for the the

distribution constructions reviewed in Section 7.2.3. The relations between Kleisli maps

and algorithms are summarised in Table 7.1.

For S = Q≥0 and S = Z, we recall from Observation 7.3 that the systems of equations

BLPS are more commonly known as the basic linear program and affine integer relaxation

for the homomorphism problem. These are used extensively in work on promise constraint

satisfaction, for example in [23]. In [18], Barto et al. prove a version of Theorem 7.16 in

these cases by showing that the existence of a homomorphism of the form A → LP (B)

or A → IP (B) corresponds to the acceptance of the pair (A,B) by the BLP or AIP

algorithm respectively.

In the case of the boolean semiring, we can characterise the Kleisli morphisms in terms

of an algorithm which doesn’t immediately look like a system of linear equations. The

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 131

arc consistency (AC) algorithm has been studied since Feder and Vardi’s seminal work

on constraint satisfaction [44] where it was called the (1, k)-consistency algorithm with k

standing for the arity of the underlying signature. We give a definition of this algorithm

here due to Chen et al. [30].

Definition 7.17. Given two finite relational structures A and B, we define the arc con-

sistency algorithm on the pair (A,B) as follows:

1. For each a ∈ A set Sa := B.

2. While there exists some R ∈ σ and (a1, . . . , am) ∈ RA and some j such that

Saj 6= projj
(
RB ∩ (Sa1 × . . .× Sam)

)
,

modify Saj by setting it to S ′aj := projj(R
B ∩ (Sa1 × . . .× Sam)).

3. On exiting the loop in Step 2,

• If there is any Sa = ∅, reject (A,B).

• Otherwise, accept.

Also in [30], Chen, Dalmau and Grussien show that the acceptance of a given pair (A,B)

by this algorithm is equivalent to the existence of a homomorphism of the formA → P(B),

where P(B) is the power set construction given in Section 7.2.3. As this construction is

isomorphic to DBB by Proposition 7.11, this gives an alternate characterisation of the

Kleisli morphisms in this case and, additionally, via Theorem 7.16, shows that the arc

consistency algorithm is equivalent to solving the basic linear program over the semiring

B.

7.3.3 Isomorphisms in K(DS)

Having comprehensively classified the morphisms in K(DS), it is natural to ask whether

an equally interesting classification exists for the isomorphisms. We saw for example in

Theorems 3.14 and 6.14 how isomorphisms of the Kleisli categories of Pk and Hn,k capture

winning strategies in appropriate bijective games.

The first result of this section shows that for two of the semirings that we are interested in

above, namely B and Q≥0, there is no additional merit in considering Kleisli isomorphism

of DS. Indeed, in these cases, this notion can be seen to be equivalent to the normal

isomorphism of structures as stated in the following result.

Proposition 7.18. For any semiring S = (S,+, ·, 0S, 1S), where the non-zero elements

of S are closed under both + and ·, we have that for any structures A and B

A ∼=K(DS) B ⇐⇒ A ∼= B.

132 7.3. KLEISLI CATEGORY OF DS

Proof. The backwards direction is trivial as any isomorphism lifts to being a Kleisli iso-

morphism.

For the other direction, let f : A → DSB and g : B → DSA be inverses in the Kleisli

category of DS witnessing that A ∼=K(DS) B. Writing f(a) =
∑

b αa,bb and g(b) =
∑

a βb,aa,

we have that the composite functions g∗ ◦ f and f ∗ ◦ g act as

g∗ ◦ f(a) =
∑
a′∈A

∑
b∈B

αa,bβb,a′a
′

and

f ∗ ◦ g(b) =
∑
b′∈B

∑
a∈A

αa,b′βb,ab
′.

Now, as f and g are inverse to each other K(DS) we must have that g∗ ◦ f(a) = a for all

a ∈ A and f ∗ ◦g(b) = b for all b ∈ B. So the above equations imply that for any a, a′ ∈ A,

∑
b∈B

αa,bβb,a′ =

1S if a = a′

0S otherwise

and for any b, b′ ∈ B, ∑
a∈A

αa,b′βb,a =

1S if b = b′

0S otherwise.

Closure of the nonzero elements of S under + and · means that we have, for all a ∈ A.b ∈
B,

αa,b 6= 0S =⇒ ∀a′ ∈ A βb,a′ =

1S if a = a′

0S otherwise
=⇒ g(b) = a

and

βb,a 6= 0S =⇒ ∀b′ ∈ B αa,b′ =

1S if b = b′

0S otherwise
=⇒ f(a) = b.

Linking these two implications together we see that f and g are simply morphisms between

A and B which are inverse to each other and so A ∼= B.

This result has established that Kleisli isomorphisms for DS are essentially uninteresting

when the conditions of the proposition hold. There are however many semirings where

these conditions don’t hold. In particular, any ring S has additive inverses for all elements

and so non-zero elements are not closed under +.

In the rest of the section, we lay the groundwork for future investigations of Kleisli iso-

morphisms in K(DS) beyond the reach of Proposition 7.18. To do this, we first prove

Proposition 7.20 which states that the composition of maps in K(DS) can be seen as the

multiplication of left stochastic matrices with entries in S. This is not a novel result as

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 133

such matrices are exactly the morphisms in the category of S-distribution, see for example

[61] for the S = Q≥0 case. However, we present the details here to aid the understanding

of this new structure. We start by defining the matrix for any Kleisli map.

Definition 7.19. For any Kleisli map f : A → DSB, which we write as f(a) =
∑

b αa,bb

for each a ∈ A, define the B × A matrix M f where the rows and columns are indexed by

the elements of B and A respectively, as

M f
b,a = αa,b.

Due to the condition that
∑

b αa,b = 1S for every a ∈ A, we have that the matrix M f is

left stochastic, meaning that the row sums are all equal to 1S.

Given such a B × A left stochastic matrix M , we can also define the unique function

fM : A→ DSB represented by M as

f(a) =
∑
b∈B

Mb,ab.

As this definition makes clear there is one-to-one correspondence between functions of the

type A → DSB and left stochastic B × A matrices over S. From now on we use such a

function and its related matrix interchangeably. We now show that see that composition

of maps in K(DS) corresponds to matrix multiplication of these related matrices.

Proposition 7.20. Given two Kleisli morphisms f : A → DSB and g : B → DSC we have

that, writing the composition in the Kleisli category as g∗ ◦ f : A → DSC,

Mg∗◦f = Mg ·Mf .

Proof. First write the functions f and g as

f(a) =
∑
b∈B

αa,bb

for each a ∈ A and

g(b) =
∑
c∈C

βb,cc

for each b ∈ B. Then we have that the composition g∗ ◦ f , where the Kleisli extension g∗

is defined from the monad structure as µC ◦ DSg, is given by

g∗ ◦ f(a) =
∑
b∈B

αa,bf(b)

=
∑
b∈B

αa,b
∑
c∈C

βb,cc

=
∑
c∈C

∑
b∈B

αa,bβb,cc.

134 7.4. ALGEBRAS FOR DS

So the matrix for g∗ ◦ f , is

(Mg∗◦f)c,a :=
∑
b∈B

αa,bβb,c

and so, Mg∗◦f = Mg ·Mf , as required.

An easy consequence of this lemma is that Kleisli isomorphisms in K(DS) are witnessed

by pairs M,N of left stochastic matrices over S which are inverses of each other. So

the proof of Proposition 7.18 can be seen as showing that any pair of left stochastic

inverse matrices over a semiring S satisfying the conditions of the proposition must be

permutation matrices.

The following example shows that for some semirings S there are inverse pairs of stochastic

matrices which are not permutation matrices.

Example 7.21. Over the ring of integers, Z the following is a pair of left stochastic

matrices which are inverse to one another but are not permutation matrices:(
2 1

-1 0

) (
0 -1

1 2

)

The existence of such examples proves that it would be possible for there to be an isomor-

phism of structures in a category K(DS) for some S between two non-isomorphic relational

structures. Whether such a pair does in fact exist remains an open question for future

reseach.

7.4 Algebras for DS

Earlier in this thesis, we saw that the coalgebras of game comonads such as Pk and

Hn,k corresponded to interesting structural decompositions, as captured in the so-called

Structure theorems (Theorem 3.16 & 6.19). Thus, it is natural to ask what happens in the

dual picture for the new monadic constructions in this chapter. This means investigating

the algebras of the form φ : DSB → B and their relationship to the structure of B.

We approach this in two ways. First, we show that the existence of a simple homomor-

phism f : DSB → B is enough to prove that all constraint satisfaction problems over the

domain B can be solved by BLPS. This result extends known results of Barto et al. [18]

in the case of BLP and AIP. Further to this, we see that homomorphisms of this type

correspond to families of polymorphisms of the underlying structures. Secondly, we ask

whether the condition of being an algebra gives a strictly stronger notion of structure on

B and answer this positively in the case of B, by showing that the DB-algebras correspond

to semilattice operations.

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 135

7.4.1 Homomorphisms and polymorphisms

Here we show that homomorphisms of the form DSB → B are exactly the structural

condition required to ensure that constraint satisfaction problems over the domain B are

solvable if and only if the equations BLPS are solvable.

Recall that we write CSP (B) for the set of finite structures A such that A → B. We

say that BLPS decides CSP (B) when A ∈ CSP (B) if, and only if, there is a solution to

the system of equations BLPS(A,B). This allows us to state the following result which

is easy to prove but surprisingly effective.

Theorem 7.22. For any S and any finite structure B, we have that BLPS decides

CSP (B) if, and only if, there is a homomorphism of the form DSB → B.

Proof. By Theorem 7.16, we know that BLPS(A,B) has a solution if and only if there is

a homomorphism A → DSB. This means that the statement that BLPS decides CSP (B)

is equivalent to saying that, for any structure A,

A → B ⇐⇒ A→ DSB,

i.e. that CSP (B) = CSP (DSB).

We now show that this is equivalent to B � DSB, in the case where S is finite. The

forward direction follows from the existence of identity maps B → B and DSB → DSB.

Applying the equality CSP (B) = CSP (DSB) to these gives that B → DSB and DSB →
B, as required. The other direction is gotten by composition. Suppose we have C ∈
CSP (B) and D ∈ CSP (DSB) then post composing the respective homomorphisms with

the homomorphic equivalence B � DSB we have that

C → B → DSB and D → DSB → B,

as required.

Finally, as we always have the homomorphism ηB : B → DSB, the condition that B and

DSB are homomorphically equivalent reduces to the existence of a homomorphism of the

form DSB → B.

When S is infinite, the forward argument above fails as DSB is an infinite structure and

so is not in CSP (DSB) as defined. However, we get around this by observing that for

any finite substructure C ↪→ DSB we have that C ∈ CSP (DSB) and so if BLPS solves

CSP (B), we have that C → B. So, by compactness of B we have that DSB → B.

For the rings B, Q≥0 and Z, we can now show that this theorem recovers some previous

results on the power of the respective CSP algorithms.

For B, Chen et al. show that a homomorphism of the form P(B)→ B is equivalent to the

existence of totally symmetric polymorphisms on B of all arities, where a polymorphism

136 7.4. ALGEBRAS FOR DS

f is totally symmetric if f(x1, . . . , xn) relies only on the set {x1, . . . , xn}. Recalling the

isomorphism between P(B) and V∗BB from Proposition 7.11, this recovers an important

characterisation of width 1 structures as a consequence of Theorem 7.22. From Feder and

Vardi [44], a structure B is said to have width 1 if the arc consistency algorithm decides

CSP (B).

Corollary 7.23. For a finite relational structure B, the following are equivalent:

• B has width 1

• BLPB decides CSP (B)

• B admits totally symmetric polymorphisms of all arities

• There exists a homomorphism DBB → B

For the Q≥0 and Z, recalling the isomorphism in Section 7.2.3, Barto et al. [18] show

that the existence of morphisms of the form DSB → B can be characterised in terms of

polymorphisms. They show, in particular, that there is a homomorphism DQ≥0
B → B if,

and only if, B admits symmetric polymorphism of every arity, where a polymorphism f

is symmetric if for any permutation π ∈ Sn, f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). They also

show that there is a homomorphism DZB → B if, and only if, B admits an alternating

polymorphism of every odd arity. A polymorphism is alternating if for every parity-

preserving permutation π ∈ Sn, f(x1, . . . xn) = f(xπ(1), . . . , xπ(n)) and for any z and w,

f(x1, . . . , z, z) = f(x1, . . . , w, w). This gives us the following corollaries of Theorem 7.22

which, in fact, also follow from Barto et al.’s Theorems 7.9 and 7.19.

Corollary 7.24. For a finite relational structure B, the following are equivalent:

• BLPQ≥0
decides CSP (B)

• B admits symmetric polymorphisms of all arities

• There exists a homomorphism DQ≥0
B → B

Corollary 7.25. For a finite relational structure B, the following are equivalent:

• BLPZ decides CSP (B)

• B admits alternating polymorphisms of all odd arities

• There exists a homomorphism DZB → B

We now show that requiring homomorphism DSB → B to be algebras is a strictly stronger

condition on B.

CHAPTER 7. MONADS FOR APPROXIMATING HOMOMORPHISM 137

7.4.2 Algebras and operations

We end this section by showing that for B, the condition of a homomorphism φ : DBB → B
being an algebra results in B admitting a more restrictive type of polymorphism than those

given in Corollary 7.23. Indeed, we show the following result relating DB-algebras and

semilattice operations.

Proposition 7.26. For any relational structure B, there exists an algebra φ : DBB → B
if, and only if, B admits a semilattice operation.

A semilattice operation on B is a binary polymorphism ∧ : B2 → B which is associative,

commutative and idempotent, in the sense that it satisfies the following three equations

for any x, y, z ∈ B:

• ∧(x,∧(y, z)) = ∧(∧(x, y), z)

• ∧(x, y) = ∧(y, x)

• ∧(x, x) = x.

These have been studied in the theory of constraint satisfaction at least since the work of

Jeavons, Cohen and Gyssens [63], who aptly called them ACI (associative, commutative

and idempotent) operations and it is known that there are structures which have width 1

which do not admit such an operation. See, Example 1.6.2 from the notes of Zarathustra

Brady [22]. This establishes the desired separation between algebras of the form DBB → B
and homomorphisms of the same type. We now prove the result.

Proof of Proposition 7.26. Recall that an algebra of the DB monad is a homomorphism

φ : DBB → B which satisfies the following two rules which we call the identity law

∀x ∈ B φ ◦ ηB(x) = x

and associativity law

∀s ∈ DBDBB φ ◦ DBφ = φ ◦ µB,

where η and µ are the unit and multiplication of the monad.

Using the set notation for elements of DBB which is permitted by Propostion 7.11, the

rules above state precisely that for all x φ({x}) = x and for all non empty subsets

P1, . . . Pm ⊂ B,

φ(
⋃
i

Pi) = φ({φ(Pi) | i ∈ [m]}).

Given such an algebra we define a binary operation ∧φ by ∧φ(x, y) = φ({x, y}). This

is a polymorphism because φ is a homomorphism and it satisfies the conditions of be-

ing a semilattice operation as follows. Idempotency follows directly from the unit law.

138 7.4. ALGEBRAS FOR DS

Commutativity is given by definition. Associativity follows as

∧φ(x,∧φ(y, z)) = φ({x, φ({y, z})})

which by the associativity law of the algebra is just φ({x, y, z}) which is equal, by a similar

argument, to ∧φ(∧φ(x, y), z).

To go the other direction, we take a semilattice operation ∧ and first note that the idem-

potency, commutativity and associativity of ∧ together guarantee that for any elements

x1, . . . xm in B, the element x1 ∧ . . . ∧ xm is well-defined and depends only on the set

{x1, . . . xm}. We denote this element
∧
i xi and use it to define a function φ∧ : DBB → B

as φ∧({x1, . . . xm}) :=
∧
i xi. We now show that this is an algebra. Idempotency and

associativity of ∧ guarantee that the unit and associativity laws are satisfied. So, it re-

mains to show that φ∧ is a homomorphism. Suppose that (P1, . . . Pm) ∈ RDBB meaning

that there is a set S ⊂ RB such that Pi is the ith projection of S. Writing S as a large

array of elements (s1,1, . . . , s1,m), . . . (sl,1, . . . sl,m) we can think of applying f∧ to each

column {s1,i, . . . sl,i} = Pi as repeatedly applying ∧ on adjacent rows. As ∧ is a poly-

morphism, all rows in the resulting array after each step will be in RB and so the tuple

(f∧(P1), . . . , f∧(Pm)) ∈ RB, as required.

This example suggests the important questions of whether we can provide satisfying char-

acterisation of the DS algebras for other semirings and whether such algebras have a

more general significance to the constraint satisfaction problem as homomorphism do in

Theorem 7.22. In this direction, it should be noted that over Set, the algebras of the

S-distribution monad are known as convex spaces and have been widely studied in cate-

gory theory. An interesting survey of these for the non-negative rational case is given by

Fritz [47].

In this chapter, we have seen how monads can be used to provide a different approach

to approximating homomorphism between relational structures to that seen in the game

comonads of earlier chapters. We also saw that similar, somewhat dual results about

Kleisli morphisms and monad algebras could be found connecting these new construc-

tions to known notions in finite model theory. Despite these similarities this theory also

has apparent differences to that of game comonads, notably in the areas of Kleisli iso-

morphisms and the seeming importance of non-algebraic homomorphisms over algebras.

These differences provide fruitful directions for future work.

Despite the many interesting facets of this new theory, the developments of this chapter

fall short of the aim expressed at the end of Chapter 6 to find a new category theoretic

semantics for approximations to structure isomorphism which are both efficiently com-

putable and go beyond the realm of fixed-point logic with counting. In the next and final

chapter we tackle this problem using a new set of tools from algebraic topology.

Chapter 8

Cohomology for homomorphism and

isomorphism

So far in this thesis, we have explored compositional semantics for two types of approxi-

mation to homomorphism and isomorphism. In Chapters 3 to 6, we saw that comonads

give an interesting perspective on Duplicator strategies for a wide variety of k-pebble

games. These comonads weaken the homomorphism relation A → B by replacing A with

some resourced-indexed unfolding of TkA. Then, homomorphisms TkA → B only require

that the “k-local” structure of A is preserved, with the structure of TkA mediating how

local patches are attached to one another. In Chapter 7, we used monads to weaken ho-

momorphisms in a dual way. Instead replacing B with some semiring-indexed completion

WSB. In this case, homomorphisms A → WSB are “global” assignments of images to

elements of A which take values in a generally more regular structure WSB.

In this chapter, we introduce a new approach to approximating homomorphism and iso-

morphism which encompasses elements from both of these approaches and gives a topo-

logical meaning to this intuitive language of “local” and “global” approximations. We do

this by showing that local solutions to any instance of the homomorphism or isomorphism

problems form a topological object known as a presheaf. With this new perspective, we

establish that homomorphisms and isomorphisms are global sections of these presheaves

and approximating these relations efficiently can be seen as computing obstructions to

these global sections. This approach owes owes a great deal by means of inspiration

to the sheaf-theoretic approach to quantum contextuality introduced by Abramsky and

Brandenburger [5]. We show that well-known local approximation, k-consistency (→k)

and k-Weisfeiler-Leman equivalence1 (≡k), can be recovered as greatest fixed points of

presheaf operators. Furthermore, we show how invariants from sheaf cohomology can be

used to find further obstacles to combining local homomorphisms and isomorphisms into

1The algorithm we call “k-Weisfeiler-Leman” is more commonly called “(k − 1)-Weisfeiler-Leman”

in the literature, see for example [27]. We prefer “k-Weisfeiler-Leman” to emphasise its relationship to

k-variable logic and sets of k-local isomorphisms.

139

140 8.1. LOCAL METHODS FOR HOMOMORPHISM AND ISOMORPHISM

global ones. We use these to construct new efficient extensions to the k-consistency and

k-Weisfeiler-Leman algorithms computing relations →Z
k and ≡Z

k which refine →k and ≡k.

In Section 8.1, we recount known relationships between Kleisli homomorphisms and iso-

morphisms of Pk and the k-consistency and k-Weisfeiler-Leman algorithms. In Section

8.2, we show how k-local homomorphisms and isomorphisms form a presheaf and that the

relations →k and ≡k correspond to the existence of certain natural subpresheaves of this.

In Section 8.3, we show how to use the cohomology of these presheaves to create new

efficiently-computable algorithms which compute new relations →Z
k and ≡Z

k , refining →k

and ≡k. In Section 8.4, we establish the power of these new cohomological algorithms,

showing that →Z
k decides all affine CSPs and that ≡Z

k can distinguish structures which

differ on many variants of the CFI property including a recent variant due to Lichter [72]

which is inexpressible in rank logic.

8.1 Local methods for homomorphism and isomor-

phism

In this chapter, we use presheaves and their algebraic invariants to extend two classic

algorithms for approximating homomorphism and isomorphism. These algorithms are

the k-consistency algorithm which was introduced as the (k, k)-consistency algorithm by

Feder and Vardi [44], and the k-Weisfeiler-Leman algorithm which is a generalisation

of the näıve vertex classification algorithm (see, for example, Read and Corneil [85])

introduced for all dimensions k by Babai and named for Weisfeiler and Leman’s algebraic

contributions to the k = 3 case [90]. For a full history of the k-Weisfeiler-Leman algorithm

refer to Cai, Fürer and Immerman [27]. Explicit modern presentations of these algorithms

can be seen, for example, in [13] and [66]. We instead focus on equivalent formulations in

terms of positional strategies for Duplicator in the k-pebble games which were featured

extensively in earlier chapters of this thesis.

In this section, we fix definitions for these algorithms and recap some of the known

limitations of these approximations, which motivate the later constructions of this chapter.

8.1.1 Local algorithms and forth systems

LetA and B be two relational structures over a common signature σ and let k be a positive

integer. We assume throughout this chapter that k is greater than the arity of σ. As in

Chapter 4, we write homk(A,B) for the set of partial homomorphisms from A to B of size

at most k, we call these the k-local homomorphisms from A to B. Additionally we write

isomk(A,B) for the set of all partial isomorphisms in homk(A,B). The k-consistency

and k-Weisfeiler-Leman algorithms can now be presented in the following ways.

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 141

Classical k-consistency algorithm

Recall from Definition 4.7 that a forth system is a set of partial homomorphisms S ⊂
homk(A,B) which is downward-closed and such that every f ∈ S with |dom(f)| < k

satisfies the property Forth(S, f) which states that there is a function φf : A → B such

that for any a ∈ A, f ∪{(a, f(a))} ∈ S. We saw in Lemma 4.8 that the existence of a non-

empty forth system is equivalent to a Duplicator strategy in the game ∃Pebk(A,B). This

result is known to Kolaitis and Vardi [67] who also show that this condition is equivalent

to the pair (A,B) being accepted by the k-consistency algorithm. This allows us to give

the following presentation of k-consistency.

Given S ⊂ homk(A,B) which is downward-closed, we define S to be the largest subset

of S which is downwards-closed and has the forth property. Note that ∅ satisfies these

conditions, so such a set always exists. For a fixed k there is a simple algorithm for

computing S from S. This is done by starting with S0 = S and then entering the

following loop with i = 0

1. Initialise Si+1 as being equal to Si.

2. For each s ∈ Si, check if Forth(Si, s) holds and if not remove it from Si+1 along

with all s′ > s.

3. If none fail this test, halt and output Si.

4. Otherwise, increment i by one and repeat.

It is easily seen that this runs in polynomial time in |A|k|B|k.

Now for a pair of structuresA,B we say that the pair (A,B) is k consistent if homk(A,B) 6=
∅. We denote this by writing A →k B and the algorithm above shows how to decide this

relation in polynomial time for fixed k. This relation has many equivalent logical and

algorithmic definitions as seen in [44], and [19].

Classical k-Weisfeiler-Leman algorithm

In a similar way to above, we exploit a well-known relationship between k-variable logics

and the k-Weisfeiler-Leman algorithm to give the following presentation. Indeed, Immer-

man and Lander [60] first established that two structures are k-WL-equivalent if and only

if they satisfy the same formulas of infinitary k-variable logic with counting quantifiers

(written A ≡Lk∞(#) B).

A modified version of Lemma 4.8 (which was known to Hella [58]), shows that this is true

if and only if there is a non-empty set S ⊂ isomk(A,B) which is downward-closed and

has the bijective forth property, meaning that each f ∈ S with |dom(f)| < k satisfies

142 8.2. PRESHEAVES FOR HOMOMORPHISM AND ISOMORPHISM

BijForth(S, f), which is the forth property where the witnessing function φf can be

chosen to be a bijection. Whether such a bijection exists can be determined efficiently

given A,B, S and f by determining if the bipartite graph with vertices A t B and edges

{(a, b) | f ∪ {(a, b)} ∈ S} has a perfect matching.

For downward-closed S ⊂ isomk(A,B), let S be the largest subset of S which is downward-

closed and satisfies the bijective forth property. For fixed k this can be computed in

polynomial time in the sizes of A and B and so an alternative polynomial time algorithm

for determining ≡k−WL is computing isomk(A,B) and checking if it is non-empty.

8.1.2 Limitations of local methods

The limitations of these algorithms are well-known. For k-consistency, we recall from

Chapter 7 that the question of whether there is a homomorphism A → B is the same

as an instance of the constraint satisfaction problem CSP (B). In this context Feder and

Vardi [44], showed that k-consistency decides CSP (B) if, and only if, B has bounded

width. While this is a strictly wider class of structures than the width 1 structures of

Corollary 7.23, there are many domains which have unbounded width. An important

class of examples for this chapter are domains which encode systems of linear equations

over finite fields.

For k-Weisfeiler-Leman equivalence, Cai, Fürer and Immerman showed that k-WL can

only distinguish structures which differ on properties expressible in Ck and in the same

paper they demonstrated an efficiently decidable graph property which is not expressible

in Ck for any k. This property is known as the Cai-Fürer-Immerman (CFI) property and

forms the basis of many constructions used for lower bounds in descriptive complexity.

One such construction of particular interest to this chapter is that of Lichter [72] which

was used very recently to distinguish rank logic from PTIME. We revisit these constructions

later in the chapter.

8.2 Presheaves for homomorphism and isomorphism

The two algorithms in the last section for computing →k and ≡k have a similar flavour.

Both of them make use of local information about the homomorphism and isomorphism

problem to try and approximate the global problem. This situation of accessing some

object, in this case the space of homomorphisms, only through some local representations

of it is common in other areas of mathematics, in particular, algebraic topology. There

and in the wider mathematical world the notion of a presheaf has been employed in

the study of such situations. In this section, we show how to apply this terminology to

the homomorphism and isomorphism problems on finite relational structures and how to

recover the k-consistency and k-Weisfeiler-Leman algorithms in this framework. First we

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 143

recall some basic definitions about presheaves. For a complete account of the background

of presheaves we refer to Chapter 2 of MacLane and Moerdijk’s textbook [76].

For any categories C and S, an S-valued presheaf over C is a contravariant functor

F : Cop → S. In the cases of interest to us C is some subset of the powerset of some set

X with subset inclusion as the morphisms. We call X the underlying space of C. For this

reason, when U ′ ⊂ U in C we write (·)|U′ for the restriction map F(U ′ ⊂ U) : F(U) →
F(U ′). When S = AbGrp, we call F an abelian presheaf and when S = Set we just

call F a presheaf or a presheaf of sets where there is ambiguity. These are the only

cases we will consider. A global section of F is a natural transformation s : I =⇒ F ,

where I is the terminal presheaf which sends all objects to the terminal object in S, i.e.

the singleton set in Set or the trivial group in AbGp. We represent such an s as a

collection {sU ∈ F(U)}U∈C where naturality implies that for any subsets U and U ′ in C

(sU)|U∩U′ = (sU ′)|U∩U′ . In the theory of abelian presheaves, an important concept is that of

exact sequences. For any sequence of abelian groups A1, A2, . . . and group homomorphisms

di : Ai → Ai+1, we say the sequence is exact at i if im(di−1) = ker(di) where the kernel,

ker(di), is defined as the subgroup of Ai consising of all a ∈ Ai such that di(a) = 0. The

whole sequence is said to be exact if it is exact at each i. By analogy to this situation,

a sequence of abelian presheaves F1,F2, . . . over the the same category C and natural

transformations δi : Fi =⇒ Fi+1 is said to be exact if for each object C ∈ C, the sequence

of abelian groups F1(C),F2(C) . . . and homomorphisms δiC : Fi(C) → Fi+1(C) is exact.

We now see how to make sense of this abstract structure in the case of homomorphisms

and isomorphisms between relational structures.

8.2.1 Defining presheaves of local solutions

The sets homk(A,B) and isomk(A,B) were central to our definition of the k-consistency

and k-Weisfeiler-Leman algorithms. We now show that they can be given the natural

structure of presheaves on the underlying space A. Indeed, we define the presheaf of ho-

momorphisms from A to B H(A,B) : P(A)op → Set as H(A, B)(U) = {s ∈ hom(A,B) |
dom(s) = U} with restriction maps H(A,B)(U ′ ⊂ U) given by the restriction of partial

homomorphisms (·)|U′ . Similarly, let I(A,B) be the subpresheaf of H(A,B) containing

only partial isomorphisms. Now, consider the cover of A by subsets of size at most k,

written A≤k ⊂ P (A). We take this set to contain the empty set ∅ ⊂ A. We define the

presheaves of k-local homomorphisms and isomorphisms Hk(A,B) and Ik(A,B) as the

functors H(A,B) and I(A,B) restricted to the subcategory (A≤k)op ⊂ P(A)op. For ∅,
Hk(A,B)(∅) and Ik(A,B)(∅) are both singleton sets containing the unique empty function

which we call ε. This will be important in Section 8.4. We now see that these presheaves

encode the full homomorphism and isomorphism problems respectively.

144 8.2. PRESHEAVES FOR HOMOMORPHISM AND ISOMORPHISM

8.2.2 Global sections and full solutions

A crucial fact about these presheaves of k-local solutions to the homomorphism and

isomorphism problem is that, for large enough k, these presheaves encode the answer to

the full homomorphism and isomorphism problems. In fact, we see in the following result

that there is a correspondence between the existence of a homomorphism or isomorphism

and the existence of a global section in the corresponding presheaf of local solutions.

Lemma 8.1. For a relational structures A,B over the same signature, σ, and k at least

the arity of σ then

A → B ⇐⇒ Hk has a global section

and if |A| = |B| then

A ∼= B ⇐⇒ Ik has a global section.

Indeed, in each case, there is a bijection between the set of morphisms and the set of global

sections.

Proof. (=⇒) This direction is easy. In the case of homomorphisms the argument pro-

ceeds as follows. Suppose that h : A → B is a homomorphism. Consider the collection of

maps {hU}U∈A≤k defined by hU = h|U . This forms global section of Hk because, firstly,

hU ∈ Hk(U) as the restriction of a homomorphism is a partial homomorphism and, sec-

ondly, the naturality condition is satisfied as (hU)|U′ = h|U′ for any U ′ ⊂ U . The argument

follows similarly for isomorphism and Ik.

(⇐=) For this direction, in the case of homomorphisms, let s : I =⇒ Hk be a

global section. Firstly, we claim that there is a single function h : A → B such that

sU = h|U for all U ∈ A≤k. Indeed, this is the function h which sends any element

a ∈ A to the element h(a) := s{a}(a) ∈ B. This satisfies the required property that

for any U , sU = h|U , by the naturality of s along the inclusion {u} ⊂ U which ensures

that sU(u) = s{u}(u) = h(u). To show that h is a homomorphism, take any related

tuple (a1, . . . , am) ∈ RA. Then, U = {a1, . . . am} has size at most k and so sU is a

homomorphism and (sU(a1), . . . , sU(am)) ∈ RB.

In the case of isomorphisms, we can define the map h in the same way. As its projections

sU = h|U are all partial isomorphisms, h will be injective and so is bijective by the assump-

tion on sizes of A and B. So applying the above, h will be a bijective homomorphism.

To show that it is indeed an isomorphism we show that it reflects related tuples in B.

Suppose (b1, . . . , bm) ∈ RB then consider the set V = {b1, . . . , bm}. As h is bijective there

is a set U = h−1(V) ∈ A≤k. Then h|U = sU is an isomorphism between U and V and so

(h−1(b1), . . . , h−1(bm)) ∈ RA as required.

Noting that Hk and Ik can be computed for any relational structures A and B in

O(poly(|A| · |B|)), this also gives us an interesting starting point for designing efficient

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 145

algorithms for approximating homomorphism and isomorphism. In particular, any effi-

cient algorithms which find obstacles to the existence of global sections in Hk and Ik will

provide a tractable approximation to homomorphism and isomorphism. We now see how

this approach can be used to capture some classical approximations of these problems.

8.2.3 Flasque subpresheaves and local consistency

In this section, we show that the relations →k and ≡k computed respectively by the

k-consistency and k-Weisfeiler-Leman algorithms can be seen as the absence of certain

local obstructions to global sections in Hk(A,B) and Ik(A,B). In particular, we define

efficiently computable monotone operators on subpresheaves of Hk and Ik and show that

they have non-empty greatest fixpoints if and only if A →k B and A ≡k B respectively.

Proposition 8.2 is reproduced with permission from an unpublished technical report of

Samson Abramsky [1] and the formulation of the fixpoint operators is inspired by the

same report.

Flasque presheaves and k-consistency

Here, we show that a pair of structures is accepted by the k-consistency algorithm if and

only if Hk(A,B) contains a non-empty flasque subpresheaf, where a presheaf F is flasque

if all of the restriction maps F(U ⊂ U ′) are surjective. To do this we recall the relationship

between k-consistency and forth systems from Section 8.1 and prove the following result.

This result was originally proved by Samson Abramsky during a collaboration on an

earlier version of the work for this chapter and appears in [1].

Proposition 8.2. For A,B relational structures and any k there is a bijection between:

• forth systems in homk(A,B), and

• non-empty flasque subpresheaves S ⊂ Hk(A,B).

Proof. Suppose that A →k B and that this is witnessed by a non-empty forth system S ⊂
homk(A,B). We claim that S ⊂ Hk(A,B), defined by S(U) := {f ∈ S | dom(f) = U},
is a flasque subpresheaf. As S is downward-closed we have that the restriction maps are

well defined on S and so it remains to prove that it is flasque. To do this, we show that

for any f ∈ S(U) and U ⊂ U ′ f is in the image of S(U ⊂ U ′) = (·)|U . We prove this

by induction on the size of d := |U ′ \ U |. If d = 0, then U ′ = U and the restriction

map S(U ⊂ U ′) is the identity map, so the conclusion holds. If d > 0, then remove any

element x ∈ U ′ \ U from U ′ to get U ′′ which also contains U . By induction f is in the

image of S(U ⊂ U ′′), meaning that there is some f ′′ ∈ S(U ′′) with f ′′|U = f . Now, as

|U ′′| < k by definition we know that Forth(S, f ′′) and so there is some y ∈ B such that

f ′ := f ′′ ∪ {(x, y)} ∈ S. Thus we have f ′ ∈ S(U ′) such that f ′|U = f , as required.

146 8.3. COHOMOLOGY FOR APPROXIMATING GLOBAL STRUCTURE

For the other direction we take a flasque subpresheaf S of Hk(A,B) and define S :=⋃
U S(U), a subset of homk(A,B). It is not hard to see that S is a forth system. Indeed,

the existence of the restriction maps S(U ⊂ U ′), guarantees downward closure and sur-

jectivity of these maps proves the forth property in the following way. Let f ∈ S be some

partial homomorphism with domain U of size less than k and let a ∈ A be any element

of A. Then we have that U ′ := U ∪{a} ∈ A≤k and so S(U ′) is defined and the restriction

map S(U ⊂ U ′) is surjective. This means that there is some f ′ ∈ S(U ∪ {a}) such that

f ′|U = f , meaning that f ′ witnesses the condition Forth(S, f), as required.

This gives an alternative description of the k-consistency algorithm as constructing the

largest flasque subpresheaf Hk of Hk and checking if it is empty. As pointed out by

Abramsky [1], Hk is the coflasquification of the presheaf Hk and can be seen as dual to

the Godement construction [49], an important early construction in homological algebra.

Hk can be computed efficiently as the greatest fixpoint of the presheaf operator (·)↑↓

which computes the largest subpresheaf of a presheaf S ⊂ Hk such that every s ∈ S↑↓(U)

satisfies the forth property Forth(S, s).

Greatest fixpoints and k-Weisfeiler-Leman

In a similar way, we saw in the last section that the k-Weisfeiler-Leman algorithm can be

formulated as computing the largest bijective forth system betweenA and B. This inspires

the definition of another efficiently computable presheaf operator (·)#↓ which computes

the largest subpresheaf of a presheaf S ⊂ Ik such that every s ∈ S#↓(U) satisfies the

bijective forth property BijForth(S, s). We call the greatest fixpoint of this operator S
and we have that A ≡k B if and only if Ik is non-empty.

In the next section, we look at sheaf-theoretic obstructions to forming a global section

which come from cohomology and see how these can be used to extend the local methods

in this section and define stronger approximations of homomorphism and isomorphism.

8.3 Cohomology for approximating global structure

In this section, we extend the local algorithms, described in the last section in terms of

operators on presheaves, by considering efficiently computable obstructions which arise

naturally from presheaf cohomology. From this, we derive new cohomological algorithms

for approximating homomorphism and isomorphism. While the motivation for these new

algorithms comes from the theory of Čech cohomology of presheaves, the actual algo-

rithms require only a single invariant derived from this more general theory. For this

reason, we omit a detailed technical description of cohomology from this thesis. Instead,

we give an overview of the general technique of presheaf cohomology and its use in quan-

tum contextuality by Abramsky, Barbosa, Kishida, Lal and Mansfield [4] which inspires

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 147

the invariant of Z-extendability. We then show how to use this invariant to define new

algorithms for approximating homomorphism and isomorphism.

8.3.1 Presheaf cohomology and quantum contextuality

The notion of computing cohomology valued in an abelian presheaf F on a topological

space X has a long history in algebraic geometry and algebraic topology which dates

back to Grothendieck’s seminal paper on the topic [53]. The cohomology of X valued

in F consists of a sequence of abelian groups H i(X,F) where H0(X,F) is the free Z-

module over global sections of F . As seen in the previous section we may be interested in

such global sections but their existence may be difficult to determine. This is where the

functorial nature of cohomology is extremely useful. Indeed, any short exact sequence of

abelian presheaves

0→ FL → F → FR → 0

lifts to a long exact sequence of cohomology groups

0→ H0(X,FL)→ H0(X,F)→ H0(X,FR)
δ−→ H1(X,FL)→ . . .

where we call the group homomorphisms δ between “levels”, the connection maps. This

tells us that the global sections of FR which are not images of global sections of F are

mapped to non-trivial elements of the group H1(X,FL) by the maps in this sequence.

This means that these higher cohomology groups can be seen as a source of obstacles to

lifting “local” solutions in FR to “global” solutions in F .

An important recent example of such an application of cohomology to finite structures can

be found in the work of Abramsky, Barbosa, Kishida, Lal and Mansfield [4] in quantum

foundations. They show that cohomological obstructions of the type described above can

be used to detect contextuality (locally consistent measurements which are globally incon-

sistent) in quantum systems which were earlier given a presheaf semantics by Abramsky

and Brandenburger [5].

In this work they represent quantum measurement scenarios usuing presheaves. These

consist of a set of possible measurements X, a set O of outcomes to each measurement

and a cover M ⊂ P (X) which indicates which measurements can be performed together.

The presheaf of outcomes, E : M op → Set, is defined by mapping a set of compatible mea-

surements U to the function space of all joint outcomes on those measurements OU , with

the normal restriction maps. They are particularly interested in flasque subpresheaves

S ⊂ E which they call possibilistic empirical models as the flasque condition ensures that

the “possible measurements” described by S satisfy the no-signalling law from quantum

mechanics. See [5], for more details.

For our purposes we are interested in their treatment of global sections. They say an

empirical model S is contextual if it has no global section. And that a local section

148 8.3. COHOMOLOGY FOR APPROXIMATING GLOBAL STRUCTURE

s ∈ S(U) is contextual if there is no global section ρ : I =⇒ S such that ρU = s. They

employ cohomology to find sufficient conditions for contextuality. To do this they first

construct an abelian presheaf ZS by composing S with the free abelian group functor,

so that local sections r ∈ ZS(U) are simply formal Z-linear combinations of elements of

S(U). It is not hard to see that any global section of S is also a global section of ZS. So

obstructions to global sections of ZS are also obstructions to global sections for S. They

then use the general cohomological method described above to find such obstructions. We

give a sketch of this here and refer to [4] for more details.

From ZS and any set of compatible measurements U ∈ M , we can define two other

presheaves ZSŨ and ZSU , which respectively collect the elements of ZS which vanish

inside U and outside U . The details of the constructions are unimportant but importantly

we have a short exact sequence

0→ ZSŨ → ZS → ZSU → 0

and the Čech cohomology groups H0(ZS) and H0(ZSU) are generated freely from the

global sections of ZS and the local sections in ZS(U), respectively. Furthermore in the

long exact sequence we have the section

. . .→ H0(ZS)
(·)|U−−→ H0(ZSU)

δ−→ H1(ZSŨ)→ . . .

where δ is the connection map. From the exactness of the sequence, we know that the im-

age of the restriction map is the kernel of δ. This means that, for any s ∈ S(U), δ(s) 6= 0

if, and only if, there is no global section r : I =⇒ ZS such that rU = s. This is sufficient

for s to be logically contextual in S. For this reason, Abramsky et al. say that s ∈ S(U) is

cohomologically contextual if δ(s) 6= 0. For our purposes, this connection with the connec-

tion maps is purely motivational and we don’t define it or the higher cohomology groups

explicitly. However, these have been used to define other cohomological obstructions to

contextuality, for example in the thesis of Giovanni Caru [28]. In this chapter, we stick

to the equivalent condition for cohomological contextuality in terms of non-existence of

global sections of ZS which restrict to s. As our aim is to approximate the existence

of global sections we focus on the negation of the cohomological contextuality condition

which we will call Z-extendability.

8.3.2 Z-local sections and Z-extendability

Returning to presheaves of local homomorphisms and isomorphisms, let S be a sub-

presheaf of Hk(A,B) or Ik(A,B). We fix some terminology inspired by the previous

section. Call the abelian presheaf ZS the presheaf of Z-linear sections of S. For any

U ∈ A≤k, elements of ZS(U) are called local Z-linear sections of S and are written as

sums
∑

s αss where α ∈ Z. Global sections of ZS are called global Z-linear sections. Now

we can define Z-extendability as follows.

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 149

Definition 8.3. For S a subpresheaf of Hk or Ik, say that some s ∈ S(U) is Z-extendable

in S, and write Zext(S, s), if there is a global Z-linear section r of S, such that rU = s.

Equivalently, there exists a collection {rU ′ ∈ ZS(U ′)}U ′∈A≤k such that rU = s and for all

U ′, U ′′ ∈M we have

(rU ′)|U′∩U′′ = (rU ′′)|U′∩U′′ .

Importantly for our purposes, deciding the condition Zext(S, s) for any S ⊂ Hk(A,B)

is computable in polynomial time in the sizes of A and B. This is because the com-

patibility conditions for a collection {rU ∈ ZS(U)}U∈A≤k being a global section of ZS
can be expressed as a system of polynomially many linear equations in polynomially

many variables. Indeed, we write each rU as
∑

s∈S(U) αss where αs is a variable for each

s ∈ S(U). This gives a total number of variables bounded by O(|A|k · |B|k), the size

of homk(A,B). For each of the O(|A|2k) pairs of contexts U,U ′ ∈ A≤k, the compatibil-

ity condition (rU)|U∩U′ = (rU ′)|U∩U′ yields a linear equation in the αs variables for each

s′′ ∈ S(U ∩ U ′) namely, ∑
s∈S(U)

s|U∩U′
=s′′

αs =
∑

s′∈S(U ′)
s′|U∩U′

=s′′

αs′ .

This leads to a total number of equations bounded by O(|A|2k · |B|k). By an algorithm

of Kannan and Bachem [65], such a system can be solved in polynomial time in the sizes

of A and B. This allows us to define the following efficient algorithms for approximating

homomorphism and isomorphism based on removing cohomological obstructions.

8.3.3 Cohomological algorithms for homomorphism and isomor-

phism

We saw in Section 8.2 that the k-consistency and k-Weisfeiler-Leman algorithms can be

recovered as greatest fixpoints of presheaf operators removing local sections which fail the

forth and bijective-forth properties respectively. Now that we have from cohomological

considerations a new necessary condition Zext(S, s) for a local section to feature in a

global section of S, we can define natural extensions to the k-consistency and k-Weisfeiler-

Leman algorithms as follows.

Cohomological k-consistency

To define the cohomological k-consistency algorithm, we first define an operator which

removes those local sections which admit a cohomological obstruction. Let (·)Z↓ be the

operator which computes for a given presheaf S ⊂ Hk the subpresheaf SZ↓ where SZ↓(U)

contains exactly those local sections s ∈ S(U) which satisfy Zext(S, s). As this process

may remove the local sections in S which witness the extendability of other local sections

150 8.3. COHOMOLOGY FOR APPROXIMATING GLOBAL STRUCTURE

we need to take a fixpoint of this operator to get a presheaf with the right extendability

properties at every local section. So, we write SZ
for the greatest fixpoint of this operator

starting from S. As Zext(S, s) is computable in polynomial time in the size of S and

SZ
has a global section if and only if S has a global section, this allows us to define the

following efficient algorithm for approximating homomorphism.

Definition 8.4. The cohomological k-consistency algorithm accepts an instance (A,B)

if the greatest fixpoint Hk(A,B)
Z

is non-empty and otherwise rejects.

If (A,B) is accepted by this algorithm we write A →Z
k B and say that the instance (A,B)

is cohomologically k-consistent.

We begin with two easy observations about this algorithm. Firstly, this algorithm is at

least as strong as the k-consistency algorithm.

Observation 8.5. It is not hard to see that Zext(S, s) implies both Forth(S, s) and that

for any U ⊂ dom(s), s|U ∈ S. Indeed both of these conditions are subsumed in the global

Z-linear section witnessing Zext(S, s). Thus, for any A and B,

A →Z
k B =⇒ A→k B

The second is that we can rephrase →Z
k in terms of a non-empty set of k-local homomor-

phisms, as we did for →k and forth systems in Section 8.1.

Observation 8.6. For any structures A and B, A →Z
k B if and only if there exists a set

∅ 6= S ⊂ homk(A,B) in which each element s ∈ S is Z-extendable in S.

We conclude this section by showing that the relation →Z
k is transitive.

Proposition 8.7. For all k, given A,B and C structures over a common finite signature

A →Z
k B →Z

k C =⇒ A→Z
k C.

Proof. Success of the →Z
k algorithm for the pairs (A,B) and (B, C) results in two non-

empty sets SAB ⊂ homk(A,B) and SBC ⊂ homk(B, C) in both of which each local section

is Z-extendable. By Observation 8.6, to show that A →Z
k C, it suffices to show that the

set SAC = {s ◦ t | s ∈ SBC , t ∈ SAB} has the same property.

To show that every p0 = s0 ◦ t0 ∈ SACa0
is Z-extendable in SAC we construct a global

Z-linear section extending p0 from the Z-linear sections {rt0a :=
∑

t ztt}a∈A≤k and {rs0b :=∑
swss}b∈B≤k extending t0 and s0 respectively. Define {rp0a }a∈A≤k as

rp0a =
∑
t∈SABa

∑
s∈SBC

t(a)

ztws(s ◦ t)

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 151

To show that this is a global Z-linear section extending p0 we need to show firstly that

rp0a0
= p0 and secondly that the local sections of rp0 agree on the pairwise intersections of

their domains.

To show that rp0a0
= p0 we observe that, as rt0 Z-linearly extends t0, for all t ∈ SABa0

we

have zt0 = 1 and for other values of t zt = 0 and similarly, for all s ∈ SBCt0(a0), ws0 = 1 and

for other values of s ws = 0. From this we have that

rp0a0
= zt0ws0(s0 ◦ t0) = p0

as required.

Finally, we need to show for any a, a′ in A≤k with intersection a′′ that

rp0a|a′′
= rp0a′|a′′

.

To do this we show that the left hand side depends only on a′′ and not on a. As this

argument applies equally to the right hand side, the result follows.

To begin with the left hand side is a dependent sum which loops over t ∈ SABa and s ∈ SBCt(a)

as follows:

rp0a|a′′
=
∑
t,s

wszt(s ◦ t)|a′′

To emphasise the dependence on a′′ we can group this sum together by pairs t′′, s′′ with

t′′ ∈ SABa′′ and s′′ ∈ SBCt′′(a′′). Within each group the the sum loops over t ∈ SABa such that

t|a′′ = t′′ and s ∈ SABt(a) such that s|a′′ = s′′. We write this as

∑
t′′,s′′

∑
t|a′′

=t′′

zt
∑

s|t′′(a′′)
=s′′

ws(s ◦ t)|a′′

We now show that for each t′′, s′′ the corresponding part of the sum depends only on t′′

and s′′. This follows from three observations.

The first observation is that in the sum∑
t|a′′

=t′′

zt
∑

s|t′′(a′′)
=s′′

ws(s ◦ t)|a′′

the formal variables (s ◦ t)|a′′ are, by definition, all equal to the variable (s′′ ◦ t′′). Thus

we need only consider the coefficients, given by the sum∑
t|a′′

=t′′

zt
∑

s|t′′(a′′)
=s′′

ws

The second observation is that for each t such that t|a′′ = t′′ the sum∑
s|t′′(a′′)

=s′′

ws

152 8.3. COHOMOLOGY FOR APPROXIMATING GLOBAL STRUCTURE

is simply the s′′ component of (rs0t(a))|t′′(a′′) . As rs0 is a global Z-linear section this is equal

to the fixed parameter ws′′ . So the sum in question reduces to

ws′′ ·

 ∑
t|a′′

=t′′

zt


The final observation, is that the remaining sum is the t′′ component of (rt0a)|a′′ which, as

rt0 is a global Z-linear section, is equal to rt0t′′ . This gives the final form of the expression

for (rp0a)|a′′ as ∑
t′′,s′′

zt′′ws′′(t
′′ ◦ s′′)

It is easy to see that the same arguments apply to rp0a′ and so

(rp0a)|a′′ = (rp0a′)|a′′

as required.

Cohomological k-Weisfeiler-Leman

We now define cohomological k-equivalence to generalise k-WL-equivalence in the same

way as we did for cohomological k-consistency, by removing local sections which are not

Z-extendable. As Z-extendability in S ⊂ isomk(A,B) is not a priori symmetric in A and

B we need to check both that s is Z-extendable in S and s−1 is Z-extendable in S−1 =

{t−1 | t ∈ S}. We call this s being Z-bi-extendable in S and write it as Zbext(S, s). We

incorporate this into a new presheaf operator (·)Z# as follows. Given a presheaf S ⊂ Ik let

SZ# be the largest subpresheaf of S such that every s ∈ SZ#(U) satisfies both the bijective

forth property BijForth(S, s) and the Z-bi-extendability property Zbext(S, s). We write

S
Z

for the greatest fixpoint of this operator starting from S. As both BijForth(S, s) and

Zbext(S, s) are computable in polynomial time in the size of S and S
Z

has a global

section if and only if S has a global section, this allows us to define the following efficient

algorithm for approximating isomorphism.

Definition 8.8. The cohomological k-Weisfeiler-Leman algorithm accepts an instance

(A,B) if the greatest fixpoint Ik(A,B)
Z

is non-empty and otherwise rejects.

If (A,B) is accepted by this algorithm we write A ≡Z
k B and say that the instance (A,B)

is cohomologically k-equivalent.

Analogously to Observation 8.6, we note that the existence of any non-empty S satisfying

these properties is a witness of ≡Z
k .

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 153

Observation 8.9. For any two structures A and B, A ≡Z
k B if and only if there exists a

subset S ⊂ Isomk(A,B) such that both S and S−1 are downward-closed, have the bijective

forth property and have Z-extendability for each of their elements.

Finally, we observe that the existence of a non-empty subpresheaf of Ik satisfying the

BijForth and Zbext properties also satisfies the conditions for witnessing cohomological

k-consistency of the pairs (A,B) and (B,A). Formally, we have

Observation 8.10. For any two structures A and B, A ≡Z
k B implies that A →Z

k B and

B →Z
k A.

To better understand how the cohomological k-Weisfeiler-Leman algorithm operates, we

consider the case of k = 2 on undirected graphs where 2-WL coincides with the well-known

colour refinement algorithm, as demonstrated for example by Immerman and Lander [60].

The colour refinement algorithm works by starting with a uniform colourings cG0 and cH0
of the vertices of the input graphs G and H and refining this colouring in rounds where

in each round we define colour ci(x) by the pair consisting of ci(x) and the multiset

of colours ci(y) such that y is adjacent to x. The algorithm stops when the partition

defined by the ci is the same as that defined by ci+1 for some round i. We call the

final colourings cG and cH and the pair (G,H) is accepted if the multiset of colours from

cG and cH are equal. The equivalence of this algorithm with 2-WL can be shown by

observing that, if colour refinement accepts (G,H), then the set C ⊂ isom2(G,H) of

partial isomorphisms which preserve the final colourings on G and H is a bijective forth

system, and the existence of a bijective forth system implies that (G,H) is accepted by

colour refinement. Cohomological 2-Weisfeiler-Leman refines this algorithm as follows.

Suppose two graphs (G,H) are accepted by colour refinement. Take the bijective forth

system C ⊂ isom2(G,H) of isomorphisms which preserve the final colourings and for

each such isomorphism s ∈ C decide whether the linear equations defining Zbext(C, s)

are satisfiable. The list of maps s which pass this test defines a relation between vertices

of G and vertices of H where x and y are related if and only if for each set S of size

at most 2 containing either there is an acceptable map s on this set which maps x to

y. We use this relation to refine the colourings cG and cH , defining two new colourings

(cG)′ and (cH)′. If their multisets of colours are not equal, we stop and reject (G,H). If

they are equal, we start another round of colour refinement followed by another round of

cohomological refinement. We repeat this until the colourings stabilise and perform the

same equality test as in the colour refinement. As we will demontrate in the next section

this algorithm is strictly stronger than 2-WL.

In Section 8.4, we demonstrate the power of these new algorithms by showing that both

cohomological k-consistency and cohomological k-Weisfeiler-Leman are strictly more pow-

erful than their classical counterparts.

154 8.4. THE EXPRESSIVE POWER OF COHOMOLOGY

8.4 The expressive power of cohomology

In this section, we prove that the new algorithms arising from this cohomological ap-

proach to homomorphism and isomorphism are substantially more powerful than the

k-consistency and k-Weisfeiler-Leman algorithms. For constraint satisfaction, we show

that cohomological k-consistency can decide all CSPs decided by the BLPZ algorithm

detailed in Chapter 7. For isomorphism, we show that for a fixed small k cohomolog-

ical k-Weisfeiler-Leman can distinguish structures which differ on a very general form

of the CFI property, in particular, showing that cohomological k-Weisfeiler-Leman can

distinguish a property which Lichter [72] shows not to be expressible in rank logic.

8.4.1 Cohomological k-consistency and ring CSPs

We observed in Section 8.3 that the cohomological k-consistency algorithm is at least

as powerful as the k-consistency algorithm and so, as noted in Section 8.1 it decides all

CSPs over domains of bounded width. We now show that the new algorithm also decides

CSP (B) whenever this is decided by BLPZ, which was studied at length in Chapter 7.

In Corollary 7.25, we saw that these structures B are characterised by the existence of a

homomorphism f : DZB → B. We prove the following theorem by showing that any such

homomorphism can reduce a global Z-linear section of S ⊂ Hk(A,B) to an actual global

section of S.

Theorem 8.11. For any structure B, if BLPZ decides CSP (B) then there is a k such

that cohomological k-consistency algorithm decides CSP (B).

Proof. As noted in Corollary 7.25, BLPZ decides CSP (B) if, and only if, there is a

homomorphism f : DZB → B. Fix k as the maximum arity of σ, the signature of B.

Cohomological k-consistency decides CSP (B) if for any A over the same signature A →Z
k

B implies A → B. To prove this recall from Observation 8.6 that A →Z
k B is equivalent to

the existence of a non-empty subpresheaf S ⊂ Hk(A,B) such that for every local section

s ∈ S(U) we have Zext(S, s). In particular, that means for ε ∈ S(∅) there is a global

Z-linear section r such that r∅ = ε. We use this r to construct a homomorphism g : A → B
as follows. For each a ∈ A, r{a} =

∑
s αss where s loops over the elements of S({a}).

As r is a global section, we have that ε = r∅ =
∑

s αss|∅ =
∑

s αsε and so for any a∑
s αs = 1. This means that we can define an element ba :=

∑
s αss(a) ∈ DZB and use

the homomorphism f to map this to a single element of B, giving g(a) := f(ba). We now

show that g is a homomorphism. To this end, consider, for any a = (a1, . . . , am) ∈ RA,

the sum r{a1,...,am} =
∑

t αtt for t ranging over S({a1, . . . , am}). As each t in this sum is

a homomorphism, we have that t(a) ∈ RB and, using the naturality of the global section

r we see that
∑

t αt = 1 and
∑

t αtt(a) witnesses that (ba1 , . . . bam) ∈ RDZB. Then, as f is

a homomorphism we see that g(a) ∈ RB, completing the proof.

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 155

Remark 8.12. This theorem is notable because it shows in particular that cohomological

k-consistency can solve systems of linear equations with at most k variables per equation

over any finite ring. This can be seen by defining for any k and any ring R, a structure

R with the same underlying set as R and relations Ra,b = {(x1, . . . , xm) |
∑
aixi = b}

for all a ∈ Rm, b ∈ R with m ≤ k. This structure admits a homomorphism DZR → R
via the natural Z-action on the underlying abelian addition group of R. This is enough

to show that →Z
k is strictly stronger than →k as even for the ring Z2 it has been known

since Feder and Vardi [44], that CSP (Z2) has unbounded width.

We use this ability to solve equations over all rings to great effect in Section 8.4.3. First

however, we show that cohomological k-Weisfeiler-Leman behaves well with respect to

logical interpretations.

8.4.2 Working with logical interpretations

We first introduce a slight generalisation of the notion of a logical interpretation between

signatures given in Definition 5.1.

Definition 8.13. For a logic L and any two (finite) relational signatures σ and τ =

{R1, . . . , Rm} an L-interpretation of order n of τ in σ is a collection of L[σ] formulas

I(xR1 , . . . ,xRm , z) = (φR(xR, zR))R∈τ

where the tuple xR has n · ar(R) distinct elements and can be written as a ar(R)-tuple

of n-tuples as (x1
R, . . . ,x

ar(R)
R) and z is the tuple of parameters consisting of all unique

variables appearing in zR for some R ∈ τ . For each R, xR and zR are disjoint from each

other but the variables in xR may be reused in zR′ for some other R′.

For any such interpretation, we have a mapping which sends any σ-structure A with an

assignment b the variables in z to a τ -structure I(A,b) with the underlying set An as A
and with related tuples, for each R ∈ τ , given by

RI(A,b) = {(a1, . . . , aar(R)) ∈ (An)ar(R) | A, a1, . . . , aar(R),b |= φR(x1
R, . . . ,x

ar(R)
R , zR)}.

In the next result, we show that the equivalence ≡Z
k is preserved by C l-interpretations in

the following way.

Proposition 8.14. For any finite, relational signatures σ and τ , σ-structures A and B,

natural numbers n and k, and any order n Cnk-interpretation Φ of τ in σ we have that

A ≡Z
nk B =⇒ Φ(A) ≡Z

k Φ(B)

Proof. By Observation 8.9, it suffices to show that there is a set S ′ ⊂ isomk(Φ(A),Φ(B))

which is downward-closed, satisfies the bijective forth property and in which every map

156 8.4. THE EXPRESSIVE POWER OF COHOMOLOGY

is Z-bi-extendable. As A ≡Z
nk B, there is already a set S ⊂ isomnk(A,B) satisfying these

properties. For any Q ⊂ A we use SQ to mean the elements of S with domain Q. We

now show how to construct a suitable S ′ from S.

For any C ⊂ Φ(A), let π(C) be the set of elements in A which appear in some tuple of

C. As elements of Φ(A) are n-tuples over A, it is clear that |π(C)| ≤ n|C|. We can now

define S ′C as the set of partial isomorphisms in Sπ(C) applied coordinatewise to C, namely,

{(f, . . . , f)|C | f ∈ Sπ(C)}

This is well defined for all C ∈ (Φ(A))≤k as |π(C)| ≤ nk. That these maps define partial

isomorphisms between Φ(A) and Φ(B) follows from Hella’s Lemma 5.1 in [58] which

states that the elements of isomnk(A,B) are exactly those which preserve and reflect

Cnk formulas. As the relations on Φ(A) and Φ(B) are defined by Cnk formulas they are

preserved and reflected by the members of S. We now show that S ′ =
⋃
C∈Φ(A)≤k S

′
C

satisfies the required properties.

Downward-closure This follows easily from downward-closure of S. Suppose f =

(f, . . . , f)|C ∈ S ′ and g ≤ f . Then there is some C ′ ⊂ C such that g = f|C′ and

g = (f|π(C′) , . . . , f|π(C′))|C′ but f|π(C′) ≤ f and so is an element of S.

Bijective forth property Let f ∈ S ′C with |C| < k, with f given as the coordinatewise

application of some f ∈ Sπ(C). To show that S ′ has the bijective forth property we must

show that there is a bijection b : Φ(A) → Φ(B) such that for any a ∈ Φ(A) the function

f ∪ {(a, b(a))} is in S ′C∪{a}. For any such f , we can construct a bijection b whose image

on any a ∈ Φ(A) is given as

b(a) = (bε(a1), ba1(a2), . . . , b(an−1)(an))

where ai is the i-tuple of the first i elements in a and each bai is a bijection A → B.

For any a ∈ Φ(A) we choose the bijections bai using the bijective forth property on

S. As f is a coordinatewise application of some f ∈ Sπ(C) and as |C| < k implies

|π(C)| ≤ nk−n < nk, the bijective forth property for S implies the existence of a b1 such

that f1 = f ∪ {a1, b1(a1)} ∈ Sπ(C)∪{a1}. Let bε := b1. Now suppose for any i < n we have

defined the bijections bε, ba1 , . . . , bai and fi = f ∪ {(aj, baj−1(aj))}1≤j≤i ∈ Sπ(C)∪{a1,...,ai}.

We still have |π(C)∪{a1, . . . , ai}| < nk so can use the bijective forth property on S again

to find a bijection bai such that fi+1 = fi∪{(ai, bai(ai))} ∈ Sπ(C)∪{a1,...,ai+1}. This inductive

procedure defines all the required bijections and furthermore shows that f ∪ {(a, b(a)} is

the coordinatewise application of some fn ∈ Sπ(C∪{a}). This means in particular that

f ∪ {(a, b(a)} is in S ′C∪{a}, as required.

Z-extendability Our choice of S ′ makes Z-extendability rather easy. Indeed, we see that

any f = (f, . . . , f) ∈ S ′C is Z-extendable because the global Z-linear section extending

f ∈ Sπ(C) given as sC =
∑

g∈SC αgg can be lifted to a Z-linear extension of f by defining

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 157

s′C =
∑

g∈Sπ(C)
αg(g, . . . , g). The properties of being a Z-linear extension follow from those

properties on S.

8.4.3 Cohomological k-Weisfeiler-Leman and CFI constructions

The Cai-Fürer-Immerman construction [27] on ordered finite graphs is a very powerful

tool for proving expressiveness lower bounds in descriptive complexity theory. While it

was originally used to separate the infinitary k variable logic with counting from PTIME,

it has since been used in adapted forms to prove bounds on invertible maps equiva-

lence [34], computation on Turing machines with atoms [20], symmetric circuits [39] and

rank logic [72]. In this section, we show that ≡Z
k separates a very general form of this

construction.

Recall from Chapter 2 the definition of the CFI structure CFIq(G, g) for any prime power

q, totally ordered graph G = (G,<) and function g : E(G) → Zq. The construction

consists of disjoint gadgets Ax for each vertex x ∈ G. Elements of these gadgets are

functions a : N (x) → Zq such that
∑

y∈N (x) a(y) = 0. The elements of these gadgets are

connected with those of neighbouring gadgets using relations which are aware of the order

<, the ring structure Zq and the twisting function g. Full details appear in Section 2.4.

This construction has the property given in Fact 2.5 that two structures CFIq(G, g) and

CFIq(G, h) are isomorphic if, and only if,
∑
g =

∑
h. This leads to the definition of the

CFI property satisfied by all CFIq(G, g) such that
∑
g = 0. Two important applications

of this construction are given in Chapter 2 as Theorem 2.6 and Theorem 2.7. These results

respectively exhibit classes of CFI structures where the CFI property is not expressible

in FPC and rank logic.

Despite this CFI property proving to be inexpressible in both FPC and rank logic, we

show that (perhaps surprisingly) there is a fixed k such that cohomological k-Weisfeiler-

Leman algorithm can separate structures which differ on this property in the following

general way.

Theorem 8.15. There is a fixed k such that for any q, the class of structures Kq =

{CFIq(G, g) |
∑
g = 0} is invariant under ≡Z

k -equivalence, meaning that for any A,B
with A ≡Z

k B, A ∈ Kq ⇐⇒ B ∈ Kq.

As a direct consequence of this result, there is some k such that the set of structures

with the CFI property in Lichter’s class K from Theorem 2.7 is closed under ≡Z
k . This

means that, by the conclusion of Theorem 2.7, the equivalence relation ≡Z
k can distinguish

structures which disagree on a property that is not expressible in rank logic. Indeed,

Dawar, Grädel and Lichter [36] show further that this property is also inexpressible in

linear algebraic logic. By the definition of our algorithm for ≡Z
k this implies that solvability

158 8.4. THE EXPRESSIVE POWER OF COHOMOLOGY

of systems of Z-linear equations is not definable in linear algebraic logic. Furthermore,

a similar argument shows that ≡Z
k cannot be expressed in any logic for which there is a

class of CFI structures on which the logic cannot express the CFI property.

In the next section, we conclude this chapter by proving Theorem 8.15.

8.4.4 Proof of Theorem 8.15

The proof of this theorem proceeds in two parts. The first establishes that the property∑
g = 0 for a structure CFIq(G, g) is equivalent to the solvability of a system of equations,

Eqq(G, g), over Zq. The second shows that Eqq(G, g) can be obtained from CFIq(G, g) by

an interpretation with a uniform bound on the number of variables per equation. Together

with Proposition 8.14, we show that this is enough to prove the theorem.

The first lemma is an adaptation of Lemma 4.36 from Wied Pakusa’s PhD thesis [82]. We

begin by defining for any CFIq(G, g) a system of linear equations over Zq. This system,

Eqq(G, g), is the following collection of equations:

• Xa,u for all u ∈ G and all a ∈ Au ⊂ CFIq(G, g),

• Ia,b,v for all u ∈ G and a,b ∈ Au such that v ∈ N (u) and there exists c ∈ Av such

that (a,b, c) ∈ RI ,

• Ca,b,v for all u ∈ G and a,b ∈ Au such that v ∈ N (u) and there exists c ∈ Av

(a,b, c) ∈ RC , and

• Ea,b,c for all a ∈ Au,b ∈ Av and (a,b) ∈ RE,c

where the variables are wa,v for every u ∈ G, a ∈ Au and v ∈ N (u) and the equations are

given as:

Xa,u :
∑

v∈N (u)

wa,v = 0

Ia,b,v : wa,v − wb,v = 0

Ca,b,v : wa,v − wb,v = 1

Ea,b,c : wa,v + wb,u = c

Then we have the following lemma the proof of which is very similar to that in [82] and

so we omit it here.

Lemma 8.16. CFIq(G, g) a CFI structure, has
∑
g = 0 if and only if Eqq(G, g) is

solvable in Zq

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 159

It is not hard to see that the system Eqq(G, g) is first order interpretable in CFIq(G, g).

However, in Remark 8.12 we saw that cohomological k-consistency decides satisfiability

of systems of equations over any ring with up to k variables per equation. Thus to use

this theorem to show that cohomological k-equivalence distinguishes positive and negative

instances of the CFI property for some fixed k we need to show that an equivalent system

of equations can be interpreted which fixes the number of variables per equation. This is

the content of the following lemma.

Lemma 8.17. For any prime power q, there is an interpretation Φq from the signature

of the CFI structures CFIq(G, g) to the signature of the ring Zq with relations of arity at

most 3 such that

Φq(CFIq(G, g))→ Zq ⇐⇒
∑

g = 0

Proof. From Lemma 8.16, we know that interpreting the system of equations Eqq(G, g)

would suffice for this purpose. However, the X equations in Eqq(G, g) contain a number

of variables which grows with the size of the maximum degree of a vertex in G. As this

is, in general, unbounded - and in particular is unbounded in Lichter’s class - we need to

introduce some equivalent equations in a bounded number of variables. To do this we will

introduce some slack variables and utilise the ordering on G to turn any such equation in

n variables into a series of equations in 3 variables. We now describe the interpretation

Φq as follows.

Let 3-Zq denote the relational structure on the set Zq which contains a relation Tα,β for

each α a tuple of elements of Zq size up to 3 and β ∈ Zq. Each related tuple (x, y, z) ∈ Tα,β
in a 3-Zq structure is an equation

α1x+ α2y + α3z = β

To help define the interpretation we introduce some shorthand for some easily inter-

pretable relations on CFI structures A. For a,b ∈ A write a ∼ b if the two elements

belong to the same gadget in A and a _ b if they belong to adjacent gadgets. Both of

these relations are easily first-order definable as a ∼ b if and only if they are incomparable

in the ≺ relation and a _ b if and only if (a,b) ∈ RE,c for some c. For a _ b in A we will

refer to the elements (a, a,b) and (a,b,b) as wa,b and za,b. These will be the variables

in the interpreted system of equations. As A comes with a linear pre-order ≺ inherited

from the order on G, we can also define a local predecessor relation in the neighbourhood

of any a ∈ A. We say that b is a local predecessor of b′ at a and write b `a b′ if a _ b

and a _ b′ and there is no b′′ with a _ b′′ such that b ≺ b′′ ≺ b′.

Now we define the interpretation on A3 in three steps, resulting in a system of equations

which is solvable if and only if Eqq(G, g) is solvable.

Step 1: Reducing variables We note that in Eqq(G, g) there are only variables wa,y

for a ∈ Ax and y ∈ N (x), whereas the shorthand above describes variables wa,b and za,b

160 8.4. THE EXPRESSIVE POWER OF COHOMOLOGY

for all a ∈ Ax and b ∈ Ay. To reduce the number of variables we want to interpret, for

all a _ b and b ∼ b′, the equations wa,b = wa,b′ and za,b = za,b′ . This is done by adding

the pairs (wa,b, wa,b′) and (za,b, za,b′) to the relation T(1,−1),0 which can be done as _ and

∼ are definable.

Step 2: Interpreting I, C and E equations Defining these equations in Φ(A) is

straightforward as they all have fewer than 3 variables. In particular we want to add

equations

wa,b − wa′,b = 0

for any (a, a′,b) ∈ RI ,

wa,b − wa′,b = 1

for any (a, a′,b) ∈ RC , and

wa,b + wb,a = c

for any (a,b) ∈ RE,c. These are all easily first-order definable in the CFIq signature.

Step 3: Interpreting X equations To interpret the equations for each u ∈ G and

a ∈ Au ∑
v∈N (u)

wa,v = 0

in Φ(A), we first note that the linear order on G restricts to a linear order on N (u) which

we can write as {v1, . . . , vn} where i < j if and only if vi < vj. To do this it suffices to

impose the equations

wa,b1 + · · ·+ wa,bn = 0

for each sequence of elements b1 `a . . . `a bn with bi ∈ Avi . To do this in equations

with at most three variables we employ the auxiliary z variables in the following way. For

any ab ∈ A such that a _ b, if there is no b′ such that b′ `a b, then we interpret the

equation

wa,b − za,b = 0

if there is b′ such that b′ `a b then interpret for all such b′ the equation

za,b′ + wa,b − za,b = 0

and if there is no b′ such that b `a b′ then interpret the equation

za,b = 0

In this system of equations the za,b variables act as running totals for the sum
∑
wa,bi

and so it is not hard to see that solutions to these equations are precisely solutions to the

equations
∑
wa,bi = 0. Furthermore, as the relation `a is definable in the signature of

the CFIq structures so too are these equations.

To conclude, we have interpreted in Φ(CFIq(G, g)) a system of linear equations with

three variables per equation which is solvable over Zq if and only if Eqq(G, g) is solvable.

CHAPTER 8. COHOMOLOGY FOR HOMOMORPHISM AND ISOMORPHISM 161

Thus there is a homomorphism Φ(CFIq(G, g)) → Zq (as 3-Zq structures) if and only if∑
g = 0.

We can now conclude with the proof of Theorem 8.15.

Proof of Theorem 8.15. By Fact 2.5, the reverse implication is easy as
∑
h = 0 implies

that CFIq(G, g) ∼= CFIq(G, h) and so the structures are cohomologically k-equivalent for

any k.

The converse follows from the series of lemmas we have just presented. If
∑
h 6= 0 then by

Lemma 8.17 there is an interpretation Φq of order 3 such that Φq(CFIq(G, g))→ Zq but

Φq(CFIq(G, h)) 6→ Zq. By Theorem 8.11, this is means that Φq(CFIq(G, g)) →Z
3 Zq but

Φq(CFIq(G, h)) 6→Z
3 Zq. So by Observation 8.10, we must have that Φq(CFIq(G, g)) 6≡Z

3

Φq(CFIq(G, h)). Then noting that the number of variables used in the interpretation

Φq is some constant c not depending on q and assuming without loss of generality that

k is greater than 3c then Proposition 8.14 implies that CFIq(G, g) 6≡Z
k CFIq(G, h), as

required.

In this chapter we have introduced a completely new compositional approach to approxi-

mating homomorphism and isomorphism using presheaves and presheaf cohomology. This

approach and its wider connections to algebraic topology and quantum contextuality sug-

gest new lines of research into algorithms for constraint satisfaction and structure iso-

morphism. The cohomological algorithms in this chapter were shown to subsume the

expressive power of elements of the comonadic and monadic approaches presented in ear-

lier chapters of this thesis but, as yet, no non-trivial upper bounds are known on the

expressive power of →Z
k and ≡Z

k . We review some of the open questions in this direction

and from other parts of the thesis in the next and final chapter.

Chapter 9

Conclusion and future directions

Since their invention by Abramsky, Dawar and Wang [6], game comonads have developed

from a fascinating and rare example of the application of categorical semantics in finite

model theory to a substantial framework for uncovering new connections in logic and

algorithms. However, this framework has limitations. Before this thesis, it was not

possible to apply this new compositional framework to current questions in the descriptive

complexity of PTIME where the expressive power of the logics and algorithms of interest

generally go far beyond the logics ∃+Lω∞ and Cω. This was due to the lack of game

comonads capturing logics or algorithms stronger than those captured by the comonad

Pk in Abramsky, Dawar and Wang’s original paper.

This thesis set out to explore the extent to which game comonads can be used for stronger

logics than those captured by Pk and whether other similar constructions from category

theory can help to expand the reach of this compositional framework. This goal has

been achieved in a variety of ways throughout this thesis. Firstly, we have deepened

our understanding of the hitherto “strongest” game comonad, Pk, proving new relation-

ships between its Kleisli maps, counting quantification and unary generalised quantifiers.

Secondly, we have created new families of game comonads, Hn,k, for capturing logics ex-

tended by n-ary quantifiers — an achievement which pushes game comonads beyond the

expressive power of Ck for the first time. Finally, we have provided glimpses of what may

lie beyond comonads in the application of category theory to finite model theory. We

have shown, in particular, how monads, presheaves and cohomology all provide interest-

ing insights into approximations of homomorphism and isomorphism which are common

throughout finite model theory and descriptive complexity.

In this conclusion, we summarise the main contributions of the thesis and we provide

some open questions which we hope will form the basis of future work on compositional

methods in finite model theory.

162

CHAPTER 9. CONCLUSION AND FUTURE DIRECTIONS 163

9.1 Summary of main results and insights

The contributions of this thesis fall into three main areas: new perspectives on existing

game comonads, the construction of new comonads for generalised quantifiers, and new

compositional approaches to logic and algorithms.

Unpacking the Kleisli category of Pk In Chapters 4 and 5, we proved new results

about the Kleisli maps for the Pk comonad. Before this thesis, it was known from Abram-

sky, Dawar and Wang [6] and Abramsky and Shah [11] that morphisms, isomorphisms and

“spans of open pathwise embeddings” in K(Pk) correspond to the logics ∃+Lk∞, Lk∞(#)

and Lk∞ respectively. In Theorem 4.3 we established further connections between branch-

injective, branch-surjective and branch-bijective maps in K(Pk) which are intermediate

between morphisms and isomorphisms, and the logic ∃+Lk∞ extended by limited forms

of counting quantification. Theorem 5.7 gave a new perspective on these connections by

showing that different maps in K(Pk) correspond to extending infinitary first order logic

with different classes of unary generalised quantifiers. Furthering this connection, Theo-

rem 4.16 showed that for a modified version, P∗k, of the pebbling comonad branch-injective

maps are exactly the monomorphisms in K(P∗k).

Game comonads for generalised quantifiers One of the main achievements of this

thesis is the construction of the Hella comonad, Hn,k in Theorem 6.1. Made possible

by new games for logics with generalised quantifiers introduced in Theorem 5.17, this

construction is the first to to capture extensions of first order logic which go beyond Ck.
The method of constructing Hn,k as a quotient of the comonad Pk is also an innovation

which opens the door for future constructions of this kind. Theorems 6.13, 6.14 and 6.15

showed how morphisms, isomorphisms and branch-injective/surjective/bijective maps in

the Kleisli category of Hn,k relate to k-variable logics extended by different classes of n-ary

generalised quantifiers, generalising the connections made in Chapter 5 for Pk. Inspired

by this construction, we introduced a new structural decomposition generalising the well-

known notion of a tree decomposition of a relational structure, and proved in Theorem

6.19 that the coalgebras of Hn,k correspond to witnesses of this decomposition.

New horizons in compositional constructions Beyond game comonads, this thesis

has introduced new constructions from category theory to the study of logic and algo-

rithms.

In Chapter 7, we showed that linear programming approximations to homomorphism can

be captured in a very satisfying way using monads. Propositions 7.6 and 7.9 showed how

to lift the free left-semimodule and distribution monads VS and DS for any semiring S to

the category of relational structures. This enabled us to prove Theorem 7.16, relating the

164 9.2. OPEN QUESTIONS AND FUTURE WORK

Kleisli maps of DS to fractional homomorphisms and other linear programming approx-

imations to homomorphism. We also proved Theorem 7.22 which classifies the strength

of these approximations in terms of maps of the form DSB → B.

In Chapter 8, we introduced a new semantics for pebble games and “local” algorithms

using presheaves. Building on analogous work from quantum contextuality, we showed

how the cohomology of these presheaves could be exploited to define new approximations,

→Z
k and ≡Z

k for homomorphism and isomorphism, and PTIME “cohomological” algorithms

for computing these. We also demonstrated interesting lower bounds on the strength of

these algorithms. Theorem 8.11 showed that →Z
k was at least as strong as a combination

of k-consistency and the linear programming approximations of Chapter 7, while Theorem

8.15 showed that ≡Z
k is capable of distinguishing structures which differ only on properties

which are inexpressible in rank logic.

9.2 Open questions and future work

We conclude by recording some of the important questions that emerged from the work

presented in this thesis and suggesting directions of further work. Some of these are

technical and may make easy questions for future students of this field, while others

represent new lines of research whose answers are far from obvious.

Perfecting Pk In Section 4.2.2, we showed that branch-injective and branch-surjective

strategies for the k-pebble game do not correspond to monomorphisms and epimorphisms

in the category K(Pk). This could be perceived as a deficiency in the definition of Pk es-

pecially in light of Theorem 5.7 which showed that branch-injective and branch-surjective

strategies capture generalised quantifiers closed under the monomorphisms and epimor-

phisms of the category of relational structures. The construction of P∗k showed that

changing the definition of Pk could repair this deficiency for monomorphisms. We thus

ask if there is a yet-more-perfect version of Pk which also fixes this discrepancy for epi-

morphisms.

Question 9.1. Can Theorem 4.16 be extended to included a relationship between epimor-

phisms and branch-surjective maps?

If not, is there an alternative modification, P̃k of Pk such that monomorphisms and epi-

morphisms in K(P̃k) correspond to branch-injective and branch-surjective maps?

Generalised quantifiers logics In Section 5.4, we reflected on an often overlooked

discrepancy between the generalised quantifier logics used by Hella, and Kolaitis and

Väänänen to prove their seminal results (Theorems 5.14 and 5.5) in the theory of finite

variable logics extended with generalised quantification. In particular, Proposition 5.28

CHAPTER 9. CONCLUSION AND FUTURE DIRECTIONS 165

demonstrated an equivalence between their logics for unary generalised quantifiers that

was off-by-one in the variable count. It is is natural to ask if this works for all other

arities.

Question 9.2. Can the result of Proposition 5.28 be generalised to all arities of generalised

quantifiers?

The Hella comonad The construction of the family of game comonads Hn,k has ex-

panded the realm of applicability of game comonads but there is still work to do on better

understanding the construction itself. On the technical side, the following is an important

question about the related structural decompositions.

Question 9.3. Can the proof of Theorem 6.19 be improved to drop the condition that the

extended tree decompositions are structured?

Stated equivalently, is it the case that for any A there exists an extended tree decomposi-

tion of A with width k and arity n if and only if there exists a structured extended tree

decomposition of A with width k and arity n?

Another important question is whether the comonad can be used to prove, via Theorem

3.22, a version of Lovasz’s theorem [74] for generalised quantifier logic.

Question 9.4. Does Hn,k satisfy the conditions given by Dawar, Jakl and Reggio [38] that

would guarantee a Lovasz-type type theorem linking ≡Lk∞(Qn) and homomorphism counts

from structures admitting (structured) extended tree decompositions of width k and arity

n?

Finally, we reflected at the end of Chapter 6 on the use of generalised quantifiers in

candidate logics for PTIME including in rank logic [35] and linear algebraic logic [36]. As

Spoiler-Duplicator games exist for bounding these logics, such as the matrix equivalence

and invertible maps games of Dawar and Holm [37], we ask whether we can use Hn,k to

construct a game comonad for these games.

Question 9.5. Can we use a similar approach to the construction of Hn,k to capture

the matrix equivalence and invertible maps games of Dawar and Holm [37], or, more

generally, to provide a comonadic semantics for rank or linear algebraic logic?

Uniting game comonads with monads and presheaves As the constructions in

Chapters 7 and 8 introduce new objects from category theory, distinct from comonads,

an interesting and important question is whether these constructions can be related to

game comonads in any formal way. This leads us to ask the following two questions.

Firstly, we ask if the monads in Chapter 7 can be related to game comonads. Relating

monads and comonads formally has been studied before in category theory, for example

166 9.2. OPEN QUESTIONS AND FUTURE WORK

by Power and Watanabe [83]. This usually involves the definition of distributive laws

between a monad M and a comonad T which are natural transformations of the form

λ : TM =⇒ MT satisfying certain laws. Forthcoming work of Amin Karamlou and Nihil

Shah has investigated the existence of such distributive laws for game comonads and could

be instrumental in answering the following question.

Question 9.6. Can we formally relate, via a distributive law or other natural transfor-

mation, the pebbling comonad, Pk, to the monads VS or DS?

If so, does the resulting joint structure provide a way to give a semantics to a form of

linear algebraic logic?

Another question relates to the sheaf-theoretic approach in Chapter 8. We saw in that

chapter that this formalism was able to characterise the relations →k and ≡k which are

captured by the morphisms and isomorphisms in K(Pk). It is therefore interesting to

ask whether the cohomological algorithms defined in that chapter can be captured by

comonads or similar constructions.

Question 9.7. Does there exist a comonad Ck for which the notion of morphism and

isomorphism in the Kleisli category are →Z
k and ≡Z

k?

If not, is there some other way to capture these relations using a combination of monads

and comonads?

Cohomology and PTIME The cohomological algorithms introduced in Chapter 8 for

approximating homomorphism and isomorphism appear to be truly novel approaches to

the problems of constraint satisfaction and structure isomorphism. In light of recent ad-

vances in these fields we ask how these algorithms compare to state-of-the-art approaches

to these problems.

Bulatov and Zhuk’s recent independent resolutions of the Feder-Vardi conjecture [25, 91],

show that for all domains B either CSP(B) is NP-Complete or B admits a weak near-

unanimity polymorphism and CSP(B) is tractable. As the cohomological k-consistency

algorithm expands the power of the k-consistency algorithm which features as one case

of Bulatov and Zhuk’s general efficient algorithms, we ask if it is sufficient to decide all

tractable CSPs.

Question 9.8. For all domains B which admit a weak near-unanimity polymorphism,

does there exists a k such that for all A

A → B ⇐⇒ A→Z
k B?

As cohomological k-Weisfeiler-Leman is an efficient algorithm for distinguishing some non-

isomorphic relational structures we ask if it distinguishes all non-isomorphic structures.

As the best known structure isomorphism algorithm is quasi-polynomial [15], we do not

expect a positive answer to this question but expect that negative answers would aid our

understanding of the hard cases of structure isomorphism in general.

CHAPTER 9. CONCLUSION AND FUTURE DIRECTIONS 167

Question 9.9. For every signature σ does there exists a k such that for all σ-structures

A,B
A ∼= B ⇐⇒ A ≡Z

k B?

Bibliography

[1] Abramsky, S. Notes on presheaf representations of strategies and cohomological

refinements of k-consistency and k-equivalence, 2022.

[2] Abramsky, S. Structure and power: an emerging landscape. Fundam. Informaticae

186, 1-4 (2022), 1–26.

[3] Abramsky, S., Barbosa, R. S., de Silva, N., and Zapata, O. The Quantum

Monad on Relational Structures. In 42nd International Symposium on Mathematical

Foundations of Computer Science (MFCS 2017) (Dagstuhl, Germany, 2017), K. G.

Larsen, H. L. Bodlaender, and J.-F. Raskin, Eds., vol. 83 of Leibniz International

Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik, pp. 35:1–35:19.

[4] Abramsky, S., Barbosa, R. S., Kishida, K., Lal, R., and Mansfield,

S. Contextuality, Cohomology and Paradox. In 24th EACSL Annual Conference

on Computer Science Logic (CSL 2015) (Dagstuhl, Germany, 2015), S. Kreutzer,

Ed., vol. 41 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 211–228.

[5] Abramsky, S., and Brandenburger, A. The sheaf-theoretic structure of non-

locality and contextuality. New Journal of Physics 13, 11 (Nov 2011), 113036.

[6] Abramsky, S., Dawar, A., and Wang, P. The pebbling comonad in finite model

theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS) (2017), pp. 1–12.

[7] Abramsky, S., Jakl, T., and Paine, T. Discrete density comonads and graph

parameters, 2022.

[8] Abramsky, S., and Marsden, D. Comonadic semantics for guarded fragments.

In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)

(Los Alamitos, CA, USA, Jul 2021), IEEE Computer Society, pp. 1–13.

[9] Abramsky, S., and Marsden, D. Comonadic semantics for hybrid logic. In

47th International Symposium on Mathematical Foundations of Computer Science

168

BIBLIOGRAPHY 169

(MFCS 2022) (Dagstuhl, Germany, 2022), S. Szeider, R. Ganian, and A. Silva,

Eds., vol. 241 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, pp. 7:1–7:14.

[10] Abramsky, S., and Reggio, L. Arboreal Categories and Resources. In 48th In-

ternational Colloquium on Automata, Languages, and Programming (ICALP 2021)

(Dagstuhl, Germany, 2021), N. Bansal, E. Merelli, and J. Worrell, Eds., vol. 198

of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, pp. 115:1–115:20.

[11] Abramsky, S., and Shah, N. Relating structure and power: Comonadic semantics

for computational resources. Journal of Logic and Computation 31, 6 (08 2021),

1390–1428.

[12] Aigner, M., and Fromme, M. A game of cops and robbers. Discrete Applied

Mathematics 8, 1 (1984), 1–12.

[13] Atserias, A., Bulatov, A., and Dalmau, V. On the power of k-consistency.

In Automata, Languages and Programming (Berlin, Heidelberg, 2007), L. Arge,

C. Cachin, T. Jurdziński, and A. Tarlecki, Eds., Springer Berlin Heidelberg, pp. 279–

290.

[14] Atserias, A., Bulatov, A., and Dawar, A. Affine systems of equations and

counting infinitary logic. Theoretical Computer Science 410, 18 (2009), 1666–1683.

Automata, Languages and Programming (ICALP 2007).

[15] Babai, L. Graph isomorphism in quasipolynomial time. CoRR abs/1512.03547

(2015).

[16] Babai, L., and Luks, E. M. Canonical labeling of graphs. In Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing (New York, NY, USA,

1983), STOC ’83, Association for Computing Machinery, p. 171–183.

[17] Baldwin, J. Finite and infinite model theory-a historical perspective. Logic Journal

of the IGPL 8, 5 (2000), 605–628.

[18] Barto, L., Buĺın, J., Krokhin, A., and Opršal, J. Algebraic approach to

promise constraint satisfaction. J. ACM 68, 4 (Jul 2021).

[19] Barto, L., and Kozik, M. Constraint satisfaction problems of bounded width.

pp. 595–603.

[20] Bojanczyk, M., Klin, B., Lasota, S., and Torunczyk, S. Turing machines

with atoms. In 2013 28th Annual ACM/IEEE Symposium on Logic in Computer

Science (2013), pp. 183–192.

170 BIBLIOGRAPHY

[21] Bonato, A., and Nowakowski, R. The Game of Cops and Robbers on Graphs.

Student mathematical library. American Mathematical Society, 2011.

[22] Brady, Z. Notes on CSPs and Polymorphisms, 2022.

[23] Brakensiek, J., Guruswami, V., Wrochna, M., and Živný, S. The power of

the combined basic linear programming and affine relaxation for promise constraint

satisfaction problems. SIAM Journal on Computing 49, 6 (2020), 1232–1248.

[24] Bulatov, A., Jeavons, P., and Krokhin, A. Classifying the complexity of

constraints using finite algebras. SIAM Journal on Computing 34, 3 (2005), 720–

742.

[25] Bulatov, A. A. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS) (2017), pp. 319–

330.

[26] Butti, S., and Dalmau, V. Fractional homomorphism, weisfeiler-leman invari-

ance, and the sherali-adams hierarchy for the constraint satisfaction problem. In 46th

International Symposium on Mathematical Foundations of Computer Science, MFCS

2021, August 23-27, 2021, Tallinn, Estonia (2021), F. Bonchi and S. J. Puglisi, Eds.,

vol. 202 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 27:1–27:19.

[27] Cai, J.-Y., Fürer, M., and Immerman, N. An optimal lower bound on the

number of variables for graph identification. Combinatorica 12, 4 (Dec. 1992), 389–

410.

[28] Caru, G. Logical and topological contextuality in quantum mechanics and beyond.

PhD thesis, University of Oxford, 2019.

[29] Chandra, A., and Harel, D. Structure and complexity of relational queries.

Journal of Computer and System Sciences 25, 1 (1982), 99–128.

[30] Chen, H., Dalmau, V., and Grußien, B. Arc consistency and friends. Journal

of Logic and Computation 23, 1 (Nov. 2011), 87–108.

[31] Dalmau, V. Linear Datalog and Bounded Path Duality of Relational Structures.

Logical Methods in Computer Science Volume 1, Issue 1 (Apr. 2005).

[32] DAWAR, A. Generalized Quantifiers and Logical Reducibilities. Journal of Logic

and Computation 5, 2 (Apr. 1995), 213–226.

[33] Dawar, A. Constraint Satisfaction, Graph Isomorphism, and the Pebbling

Comonad, 2022.

BIBLIOGRAPHY 171

[34] Dawar, A., Grädel, E., and Pakusa, W. Approximations of Isomorphism and

Logics with Linear-Algebraic Operators. In 46th International Colloquium on Au-

tomata, Languages, and Programming (ICALP 2019) (Dagstuhl, Germany, 2019),

C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, Eds., vol. 132 of Leib-

niz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, pp. 112:1–112:14.

[35] Dawar, A., Grohe, M., Holm, B., and Laubner, B. Logics with rank op-

erators. In Proceedings of the Twenty-Fourth Annual IEEE Symposium on Logic

in Computer Science (LICS 2009) (August 2009), IEEE Computer Society Press,

pp. 113–122.

[36] Dawar, A., Grädel, E., and Lichter, M. Limitations of the invertible-map

equivalences. Journal of Logic and Computation (Sept. 2022).

[37] Dawar, A., and Holm, B. Pebble games with algebraic rules. Fundamenta

Informaticae Vol. 150, nr 3/4 (2017), 281–316.

[38] Dawar, A., Jakl, T., and Reggio, L. Lovász-Type Theorems and Game Comon-

ads. Association for Computing Machinery, New York, NY, USA, 2021.

[39] Dawar, A., and Wilsenach, G. Lower Bounds for Symmetric Circuits for the De-

terminant. In 13th Innovations in Theoretical Computer Science Conference (ITCS

2022) (Dagstuhl, Germany, 2022), M. Braverman, Ed., vol. 215 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, pp. 52:1–52:22.

[40] Dvořák, Z. On recognizing graphs by numbers of homomorphisms. Journal of

Graph Theory 64, 4 (2010), 330–342.

[41] Ebbinghaus, H.-D. Extended logics: The general framework. In Model-Theoretic

Logics, J. Barwise and S. Feferman, Eds. Springer-Verlag, New York, 1985, pp. 25–76.

[42] Ehrenfeucht, A. An application of games to the completeness problem for for-

malized theories. Fundamenta Mathematicae 49, 2 (1961), 129–141.

[43] Fagin, R. Generalized first-order spectra and polynomial-time recognizable sets.

Complexity of Computation 7 (1974), 43–73.

[44] Feder, T., and Vardi, M. Y. The computational structure of monotone monadic

SNP and constraint satisfaction: A study through Datalog and group theory. SIAM

Journal on Computing 28, 1 (1998), 57–104.

[45] Flum, J., and Grohe, M. On fixed-point logic with counting. The Journal of

Symbolic Logic 65, 2 (2000), 777–787.

172 BIBLIOGRAPHY

[46] Foniok, J., and Tardif, C. Digraph functors which admit both left and right

adjoints. Discrete Mathematics 338, 4 (2015), 527–535.

[47] Fritz, T. Convex spaces i: Definition and examples, 2009.

[48] Gehrke, M., Petrişan, D., and Reggio, L. Quantifiers on languages and

codensity monads. Mathematical Structures in Computer Science 30, 10 (2020),

1054–1088.

[49] Godement, R. Topologie algébrique et théorie des faisceaux. The Mathematical

Gazette 44 (1960), 69.

[50] Grohe, M. Descriptive Complexity, Canonisation, and Definable Graph Structure

Theory, vol. 47 of Lecture Notes in Logic. Cambridge University Press, 2017.

[51] Grohe, M. Counting bounded tree depth homomorphisms. In Proceedings of the

35th Annual ACM/IEEE Symposium on Logic in Computer Science (New York, NY,

USA, 2020), LICS ’20, Association for Computing Machinery, p. 507–520.

[52] GROHE, M., and OTTO, M. Pebble games and linear equations. The Journal

of Symbolic Logic 80, 3 (2015), 797–844.

[53] Grothendieck, A. Sur quelques points d’algèbre homologique, I. Tohoku Mathe-

matical Journal 9, 2 (1957), 119 – 221.

[54] Gurevich, Y. Logic and the Challenge of Computer Science. Computer Science

Press, July 1988, pp. 1–57.

[55] Hall, P. On representatives of subsets. Journal of the London Mathematical Society

s1-10, 1 (1935), 26–30.

[56] Halpern, J. Y., Harper, R., Immerman, N., Kolaitis, P. G., Vardi, M. Y.,

and Vianu, V. On the unusual effectiveness of logic in computer science. Bulletin

of Symbolic Logic 7, 2 (2001), 213–236.

[57] Hell, P., and Nešetřil, J. The core of a graph. Discrete Mathematics 109, 1

(1992), 117 – 126.

[58] Hella, L. Logical hierarchies in PTIME. Information and Computation 129, 1

(1996), 1 – 19.

[59] Immerman, N. Descriptive complexity. Graduate texts in computer science.

Springer, 1999.

[60] Immerman, N., and Lander, E. Describing Graphs: A First-Order Approach to

Graph Canonization. Springer New York, New York, NY, 1990, pp. 59–81.

BIBLIOGRAPHY 173

[61] Jacobs, B. Probabilities, distribution monads, and convex categories. Theoretical

Computer Science 412, 28 (2011), 3323–3336. Festschrift in Honour of Jan Bergstra.

[62] Jakl, T., Marsden, D., and Shah, N. A game comonadic account of Courcelle

and Feferman-Vaught-Mostowski theorems, 2022.

[63] Jeavons, P., Cohen, D., and Gyssens, M. A unifying framework for tractable

constraints. In Principles and Practice of Constraint Programming — CP ’95 (Berlin,

Heidelberg, 1995), U. Montanari and F. Rossi, Eds., Springer Berlin Heidelberg,

pp. 276–291.

[64] Joyal, A., Nielsen, M., and Winskel, G. Bisimulation and open maps. In

In Proc. LICS’93, Eighth Annual Symposium on Logic in Computer Science (1993),

pp. 418–427.

[65] Kannan, R., and Bachem, A. Polynomial algorithms for computing the smith

and hermite normal forms of an integer matrix. SIAM Journal on Computing 8, 4

(11 1979), 499–9.

[66] Kiefer, S. Power and limits of the Weisfeiler-Leman algorithm. Dissertation,

RWTH Aachen University, Aachen, 2020. Veröffentlicht auf dem Publikationsserver

der RWTH Aachen University; Dissertation, RWTH Aachen University, 2020.

[67] Kolaitis, P., and Vardi, M. On the expressive power of Datalog: Tools and a

case study. Journal of Computer and System Sciences 51, 1 (1995), 110–134.

[68] Kolaitis, P. G., and Väänänen, J. A. Generalized quantifiers and pebble games

on finite structures. Annals of Pure and Applied Logic 74, 1 (1995), 23 – 75.

[69] Krokhin, A. A., Oprsal, J., Wrochna, M., and Zivný, S. Topology and ad-

junction in promise constraint satisfaction. Electron. Colloquium Comput. Complex.

TR20-040 (2020).

[70] Leinster, T. Categories, functors and natural transformations. Cambridge Studies

in Advanced Mathematics. Cambridge University Press, 2014, p. 9–40.

[71] Libkin, L. Elements Of Finite Model Theory (Texts in Theoretical Computer Sci-

ence. An Eatcs Series). SpringerVerlag, 2004.

[72] Lichter, M. Separating rank logic from polynomial time. In 36th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,

June 29 - July 2, 2021 (2021), IEEE, pp. 1–13.

[73] Lindström, P. First order predicate logic with generalized quantifiers. Theoria 32,

3 (1966), 186–195.

174 BIBLIOGRAPHY

[74] Lovász, L. Operations with structures. Acta Mathematica Academiae Scientiarum

Hungarica 18, 3 (Sept. 1967), 321–328.

[75] Luks, E. M. Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences 25, 1 (1982), 42–65.

[76] Mac Lane, S., and Moerdijk, I. Sheaves of Sets. Springer New York, New York,

NY, 1994, pp. 64–105.

[77] Montacute, Y., and Shah, N. The pebble-relation comonad in finite model

theory, 2021.

[78] Ó Conghaile, A. Cohomology in constraint satisfaction and structure isomor-

phism. In 47th International Symposium on Mathematical Foundations of Computer

Science, MFCS 2022, August 22-26, 2022, Vienna, Austria (2022), S. Szeider, R. Ga-

nian, and A. Silva, Eds., vol. 241 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, pp. 75:1–75:16.

[79] Ó Conghaile, A., and Dawar, A. Game comonads & generalised quantifiers.

CoRR abs/2006.16039 (2020).

[80] Ó Conghaile, A., and Dawar, A. Game Comonads & Generalised Quantifiers. In

29th EACSL Annual Conference on Computer Science Logic (CSL 2021) (Dagstuhl,

Germany, 2021), C. Baier and J. Goubault-Larrecq, Eds., vol. 183 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, pp. 16:1–16:17.

[81] Paine, T. A pebbling comonad for finite rank and variable logic, and an application

to the equirank-variable homomorphism preservation theorem. Electronic Notes in

Theoretical Computer Science 352 (2020), 191–209. The 36th Mathematical Foun-

dations of Programming Semantics Conference, 2020.

[82] Pakusa, W. Linear Equation Systems and the Search for a Logical Characterisation

of Polynomial Time. PhD thesis, RWTH Aachen University, 2016.

[83] Power, J., and Watanabe, H. Combining a monad and a comonad. Theoretical

Computer Science 280, 1 (2002), 137–162. Coalgebraic Methods in Computer Science.

[84] Ramana, M. V., Scheinerman, E. R., and Ullman, D. Fractional isomorphism

of graphs. Discrete Mathematics 132, 1 (1994), 247–265.

[85] Read, R. C., and Corneil, D. G. The graph isomorphism disease. Journal of

Graph Theory 1, 4 (1977), 339–363.

[86] Robertson, N., and Seymour, P. Graph minors. iii. Planar tree-width. Journal

of Combinatorial Theory, Series B 36, 1 (1984), 49–64.

BIBLIOGRAPHY 175

[87] Tinhofer, G. Graph isomorphism and theorems of Birkhoff type. Computing 36,

4 (Dec. 1986), 285–300.

[88] Tinhofer, G. A note on compact graphs. Discrete Applied Mathematics 30, 2

(1991), 253–264.

[89] Watanabe, K., Eberhart, C., Asada, K., and Hasuo, I. A compositional

approach to parity games. In Proceedings 37th Conference on Mathematical Founda-

tions of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online,

30th August - 2nd September, 2021 (2021), A. Sokolova, Ed., vol. 351 of EPTCS,

pp. 278–295.

[90] Weisfeiler, B., and Lehman, A. A reduction of a graph to a canonical form and

an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 9, 9

(1968), 12 – 16. Cited by: 348.

[91] Zhuk, D. A proof of the CSP dichotomy conjecture. J. ACM 67, 5 (aug 2020).

	Introduction
	Contributions of this thesis
	Collaborations and previous work

	Preliminaries and definitions
	Mathematical basics and notation
	Finite model theory
	Complexity theory and algorithms
	Cai-Fürer-Immerman constructions
	Category theory

	A review of game comonads
	Motivation for the pebbling comonad
	Categories in Finite Model Theory
	Duplicator Strategies in the Pebble Game
	Outlines of a comonad

	Pk : the prototypical game comonad
	Definition of Pk
	Kleisli category of Pk
	Eilenberg-Moore category of Pk

	Other game comonads
	Ek : the Ehrenfeucht-Fraïssé comonad
	PRk : the pebble-relation comonad
	Pn,k : the k pebble n round comonad

	Other topics in game comonads

	Quantifiers in the Kleisli Category
	Branch-injective and branch-surjective strategies
	Branch maps and functional games
	Functional games and counting quantifiers

	Monomorphisms and epimorphisms in K(Pk)
	Branch-injective = monomorphic in K(Pk)
	Pk and the Monomorphism Power Theorem

	Kleisli maps and generalised quantifiers
	Generalised quantifiers
	Kolaitis and Väänänen’s result in K(Pk)
	Hella's games for generalised quantifiers
	Relaxing Bijkn
	Generalising Hella’s Theorem
	Proof of Theorem 5.17

	Discord between Hella and Kolaitis-Väänänen
	Showing that Lk(Q1) Lk(#)
	Showing that Lk(Q1) Lk+1(#)

	Game comonads and generalised quantifiers
	Constructing the Hella Comonad
	Translating Duplicator strategies
	Structural quotients and morphism power
	Definition of Hn,k

	Structure and power of Hn,k
	Kleisli maps of Hn,k
	Coalgebras of Hn,k

	Monads for approximating homomorphism
	Linear programming relaxations for homomorphism and isomorphism
	Linear-algebraic monads
	The vector space monad: VS
	The distribution monad: DS
	Distribution constructions in constraint satisfaction

	Kleisli category of DS
	Proof of Theorem 7.16
	Algorithms and Kleisli morphisms
	Isomorphisms in K(DS)

	Algebras for DS
	Homomorphisms and polymorphisms
	Algebras and operations

	Cohomology for homomorphism and isomorphism
	Local methods for homomorphism and isomorphism
	Local algorithms and forth systems
	Limitations of local methods

	Presheaves for homomorphism and isomorphism
	Defining presheaves of local solutions
	Global sections and full solutions
	Flasque subpresheaves and local consistency

	Cohomology for approximating global structure
	Presheaf cohomology and quantum contextuality
	Z-local sections and Z-extendability
	Cohomological algorithms for homomorphism and isomorphism

	The expressive power of cohomology
	Cohomological k-consistency and ring CSPs
	Working with logical interpretations
	Cohomological k-Weisfeiler-Leman and CFI constructions
	Proof of Theorem 8.15

	Conclusion and future directions
	Summary of main results and insights
	Open questions and future work

	Bibliography

