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Abstract

Title: An Optimisation-Based Approach to FKPP-Type Equations

Author: David Philip Driver

In this thesis, we study a class of reaction-diffusion equations of the form ∂u
∂t = Lu+φu− 1

ku
k+1

where L is the stochastic generator of a Markov process, φ is a function of the space variables

and k ∈ R\{0}. An important example, in the case when k > 0, is equations of the FKPP-type.

We also give an example from the theory of utility maximisation problems when such equations

arise and in this case k < 0. We introduce a new representation, for the solution of the equation,

as the optimal value of an optimal control problem. We also give a second representation which

can be seen as a dual problem to the first optimisation problem. We note that this is a new

type of dual problem and we compare it to the standard Lagrangian dual formulation.

By choosing controls in the optimisation problems we obtain upper and lower bounds on the

solution to the PDE. We use these bounds to study the speed of the wave front of the PDE in

the case when L is the generator of a suitable Lévy process.
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Chapter 1.

Introduction

1.1. FKPP-Type Equations

In this work, we will study the behaviour of solutions to reaction-diffusion equations of the form

∂u

∂t
= Lu+ φ(x)u− 1

ku
k+1

u(0, x) = u0(x) for all x ∈ E,
(1.1.1)

where the measurable functions φ : E → R and u0 : E → [0,∞) are given, the exponent

k ∈ R\{0} is constant and the operator L is the generator of a Markov process, X, valued in

the state space E. The notion of a solution that we use will be defined rigorously in Chapter 2.

We will call equations of this type, FKPP-type equations. This particular formulation is

slightly unusual but is justified since equation (1.1.1) is a generalisation of the equation studied,

in 1937, by Fisher, Kolmogorov, Petrovskii, and Piskunov, from whom the equation gets its

name. In fact, many equations that are commonly described as being of FKPP- (or simply

KPP-) type, are of the form in equation (1.1.1). We note here that the case when k < 0 is

not usually described as an FKPP-type equation (since the nonlinearity does not satisfy the

KPP conditions) but this case fits naturally into the optimisation-based framework that we will

introduce below and so in this work we will refer to the equation as an FKPP type equation.

The prototypical FKPP-type equation was first introduced by Fisher, in 1937, to model a

biological problem and studied rigorously, in the same year, by Kolmogorov, Petrovskii and

Piskunov (KPP). Equations of this form arise in many situations and have been well studied

using a diverse set of techniques. These equations have been studied because of their interest to

PDE theorists and, since the 1960s, their links to probability. There has been much interplay

between these two branches of mathematics and also some effort to reproduce results using

only ‘PDE-based techniques’ or only ‘probabilistic techniques’. Over time there have been

many generalisations to the original FKPP equation and there is still active research into the

behaviour of the solutions to such equations.

We will give a brief history of the study of FKPP-type equations of the form of equation

(1.1.1) and some of the applications to modelling physical phenomena.
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Chapter 1. Introduction

1.1.1. Applications of FKPP-Type Equations

Fisher’s seminal paper [Fis37] was published in 1937. In his paper, Fisher modelled the spread

of an advantageous gene throughout a linear habitat. He modelled the frequency of occurrence

of the advantageous gene by the equation,

∂u

∂t
= c1

∂2u

∂x2
+ c2u(1− u)

u(0, x) = u0(x)

where u : [0,∞)×R→ [0, 1]. u(t, x) represents the frequency of the advantageous gene at time

t and position x; c1 > 0 is the coefficient of diffusion and c2 > 0 is the intensity of selection

in favour of the advantageous mutant gene. Here the frequency is normalised with respect to a

saturation level of 1; that is to say, the u takes values in [0, 1].

We would expect that when an advantageous mutation occurs, the change in frequency over

time will depend on both the frequency of the advantageous gene and the frequency of the

other allelomorph. Here the ‘reaction’ term is of the form of a simple population growth model,

for example the logistic equation. In the FKPP model, there is an extra diffusion term, which

describes the way the advantageous gene should spread throughout the population in a wave-like

manner over time.

By changing variables x 7→
√

c2
c1
x and t 7→ c2t, we can assume without loss of generality that

c1 = 1
2 and c2 = 1. We will refer to the equation

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u)

u(0, x) = u0(x)

(1.1.2)

as the canonical FKPP equation.

It is natural to consider the simplest initial condition where one side of x = 0, there is a habitat

consisting solely of a population with an advantageous gene adaptation and the other side is the

other allelomorph. Therefore the equation is often studied in the case when u0(x) = 1(−∞,0).

A survey of the links to biology can be found in the book of Murray [Mur07].

An important summary of various applications of FKPP type equations can be found in the

work of Champneys, Harris, Toland, Warren and Williams [CHT+95].

Another interesting application is from physics and the theory of spin glasses. In 1988, Derrida

and Spohn [DS88] showed a connection between travelling wave solutions of equation (1.1.2) and

disordered trees. Their ideas are extended in more recent papers such as those by Brunet and

Derrida [BD09] which also include links between the particles in a branching Brownian motion

(cf. Section 1.1.3).

In 2009, Munier and Peschanski [MP03] and later Munier [Mun09] consider the equation

(1.1.2) and show how after transformations it describes high energy scattering from the point of

view of quantum chromodynamics.

In 2003, del-Castillo-Negrete, Carreras and Lynch [CNCL03] proposed using (1.1.1) with

the generator L being the fractional Laplacian operator to model situations when Gaussian

2



1.1. FKPP-Type Equations

diffusion is unrealistic. Such a situation arises in the study of plasma physics where there can be

‘anomalously large particle displacements’ which can be described by probability distributions

with heavier tails than a Gaussian distribution.

In Chapter 3, we see a new application of equation (1.1.1) in the setting of a Merton type

utility maximisation problem.

1.1.2. PDE Approach

In their 1937 paper [KPP37], Kolmogorov, Petrovskii and Piskunov studied the travelling wave

behaviour of the equation

∂u

∂t
=

1

2

∂2u

∂x2
+ f(u) (1.1.3)

u(0, x) = u0(x) (1.1.4)

under the following assumptions:

f ∈ C1([0, 1]) (1.1.5a)

f(0) = f(1) = 0

f(v) > 0, for all 0 < v < 1

f ′(0) = α ∈ (0,∞) and f ′(v) < α for 0 < v ≤ 1. (1.1.5b)

Clearly, if f(u) = u(1− u), as in Fisher [Fis37], then f satisfies these conditions.

These conditions on the nonlinearity f are commonly called the KPP conditions. There is

some variation in what is meant by the KPP conditions but for the sake of the discussion in this

Chapter, we will assume that the preceding conditions hold but some of the references included

may use weaker conditions but for ease of exposition we won’t mention the precise conditions

required in these cases.

Given the biological description, it is natural to consider travelling wave solutions to equation

(1.1.3); that is, solutions to the ODE

1

2
w′′ + cw′ + f(w) = 0. (1.1.6)

If w solves (1.1.6), then, u defined by u(t, x) = w(x− ct) solves the PDE (1.1.3).

In order to obtain uniqueness, one can restrict attention to monotone waves with fixed trans-

lation. For example, we only consider w ∈ W, where

W =
{
w ∈ C2(R, [0, 1]) | w′ < 0, w(−∞) = 1, w(0) = 1

2 and w(∞) = 0
}
.

As suggested by Fisher [Fis37] and proved in [KPP37], there exist travelling waves in W of

speed c if and only if c ≥
√

2f ′(0). We say c =
√

2f ′(0) is the critical or minimal speed. We

denote a solution to equation (1.1.6) by wc for c >
√

2f ′(0) and by w if c =
√

2f ′(0).

The travelling wave of critical speed has the following relation to u: suppose, for example that

u0 = 1(−∞,0) and set m to be the increasing function that defines the median value of u; that

3



Chapter 1. Introduction

is, u(t,m(t)) = 1
2 . m has the interpretation of the position of the wave front at time t. Then,

the following holds:

u(t, x+m(t))→ w(x) as t→∞.

where, w solves equation (1.1.6) with c =
√

2f ′(0).

The precise form of m(t) is of interest, and determining the exact behaviour is still an open

problem, even for the canonical FKPP equation. KPP [KPP37], showed the following low order

approximation:
m(t)

t
→
√

2f ′(0) as t→∞.

Aronson and Weinberger [AW75, AW78] extended these results to more general nonlinear-

ities. They extended the biological application to a population living in Rd and allowed for

intermediate genotypes. For dominant and recessive alleles, A and a, respectively the possible

genotypes in this model are aa, aA and AA. In this case the equation modelling the spread of

the advantageous gene would be

∂u

∂t
=

1

2
∆u+ f(u) (1.1.7)

u(0, x) = u0(x)

where

f(u) = u(1− u)[τ1 − τ2 − (τ1 − 2τ2 + τ3)u]

where τi for i = 1, 2, 3, represent the different death rates corresponding to the genotypes,

AA, Aa and aa, respectively. Without loss of generality, we assume that τ3 < τ1. Here we are

interested in the so called ‘Heterozygote Intermediate’ case. That is to say, we have τ1 > τ2 ≥ τ3.

In this case, f is of the KPP type.

In their 1978 paper, Aronson and Weinberger [AW78] looked for plane wave solutions, i.e.

solutions to equation (1.1.7) of the form u(t, x) = w(x · η − ct) for w ∈ W, where η ∈ Rd is an

arbitrary unit vector and
1

2
w′′ + cw′ + f(w) = 0.

as in the d = 1 case. Again, there are such travelling waves for all speeds c > c∗ =
√

2f ′(0).

It was shown that, as long as u0 is, for example, compactly supported, then

lim
t→∞

u(t, x) = 1,uniformly for|x| ≤ ct, and c ∈ [0, c∗)

lim
t→∞

u(t, x) = 0, uniformly for |x| ≥ ct, and c ∈ (c∗,∞)
(1.1.8)

Aronson and Weinberger also treat the ‘Heterozygote Inferior’ and ‘Heterozygote Superior’ cases

in their 1978 paper.

Uchiyama [Uch78] showed using techniques from the theory of PDEs that

m(t) =
√

2t− 3

23/2
log t+O(1)

for equation (1.1.3) with some conditions on f and with u0(x) equal to zero for large x. The

form of m(t) was also given independently by Bramson [Bra78] using probabilistic methods and

this is referred to as the Bramson logarithmic correction term.

4



1.1. FKPP-Type Equations

Larson [Lar78] considered equation (1.1.3) and compares the super-and-sub-solutions of Mon-

troll [Mon67] and Rosen [Ros74] and considers asymptotic behaviour in the case of exponentially

decaying initial conditions in an extension of the results of McKean [McK75].

Lau [Lau85] gave a simplified proof of the form of the Bramson correction term in the case of

a more general forcing term f using maximum principle methods.

More recently, Hamel and Roques [HR10] studied equation (1.1.3) under the additional as-

sumption that f(s) ≥ f ′(0)s−Ms1+δ for s ∈ [0, s0], for some δ > 0, s0 ∈ (0, 1) and M ≥ 0. In

their paper they look at the previously unstudied slowly decaying initial conditions. In particu-

lar they show that under (not necessarily decreasing) initial conditions, such that for any ε > 0,

u0(x) ≥ e−εx for large x. This case is of interest because, if

mλ(t) = {x ∈ R : u(t, x) = λ}, (1.1.9)

then for any fixed λ ∈ (0, 1),

lim
t→∞

1

t
minmλ(t) =∞

which is in contrast to the linear speed of the wave front the case when the initial condition has

exponential decay. Hamel and Roques study the precise asymptotic behaviour of the level sets

mλ in this case.

Hamel, Nolen, Roquejoffre and Ryzhik [HNRR13] gave a short proof of the form of the Bram-

son correction term for rather general conditions. Nolen, Roquejoffre and Ryzhik [NRR17]

showed an improved result in a more specialised setting before refining the result in their next

paper [NRR16]. In their paper [NRR16], they studied the speed of the wave front for the solu-

tion to (1.1.2), given that, for example, u0 decreasing with u0(x) ≤ exp(−βx) for β >
√

2 and

x sufficiently large (cf. condition (1.1.12) below). They improved a conjecture of Ebert and van

Saarloos [ES98] and van Saarloos [Saa03], and showed that

m(t) =
√

2t− 3

23/2
log t+ c0 −

3
√
π√

2t
+ o

(
1

t1−ε

)
for all ε > 0, where c0 depends on the initial condition, u0. Ebert and van Saarloos suggested

this result with ε = 1/2. Interestingly, the coefficient of the t−1/2 term does not depend on u0.

Under similar conditions, Berestycki and Brunet [BB16] also studied equation (1.1.2). In this

case the process mλ(t) such that u(t,mλ(t)) = λ is single valued. Define xλ to be such that

w(xλ) = λ where w solves the travelling wave ODE. Berestycki and Brunet conjecture a further

refinement on the particular form of mλ(t) and suggest that

mλ(t) =
√

2t− 3

23/2
log t+ C + xλ −

3
√
π√

2t
+K

log t

t
+O

(
1

t

)
where C and K are constants that do not depend on λ.

1.1.3. Links to Probability

The FKPP equation has often been studied in a probabilistic setting by using an observation,

such as the following, linking branching processes and PDEs. Skorokhod [Sko64] was perhaps

5



Chapter 1. Introduction

the first to notice such a connection in the context of a general branching diffusion process and

gave equations for the transition probabilities and conditions on when solutions exist. Later,

Watanabe [Wat68] studied branching processes in relation to PDEs in a very general setting.

Let

G(s) =
∞∑
i=0

pis
i

be a probability generating function of a positive integer valued random variable. For suitably

regular v0 and X, the function

v(t, x) = Ex
[∏
i∈It

v0(Xi
t)

]
(1.1.10)

can been shown to solve the equation

∂v

∂t
= Lv +G(v)− v

v(0, x) = v0(x) for all x ∈ E

where {Xi
t , i ∈ It, t ≥ 0} is a branching process constructed from the Markov process X with

generator L as follows: initially there is one particle located at x, and moves according to the law

of X. At an exponentially distributed time T ∼ exp(1), this particle disappears and is replaced

with N independent and identical copies located at same position, where P(N = n) = pn. This

procedure then repeats. We are using the notation It for the index set of the particles alive at

time t.

The function defined by u = 1 − v then satisfies then satisfies a PDE with nonlinearity

f(u) = 1−u−G(1−u) which we can see if of the KPP type (for G continuously differentiable).

The first person to use a branching process representation to explicitly study an FKPP-type

equation was McKean. In 1975, McKean [McK75, McK76] studied the simplest branching dif-

fusion process which corresponds to the canonical FKPP equation. Independently of Skorokhod

(cf. equation (1.1.10)), McKean wrote the solution to the equation

∂v

∂t
=

1

2

∂2v

∂x2
+ v(v − 1)

v0(x) = 1(0,∞)

as

v(t, x) = P
(

max
i∈It

Xi
t ≤ x

)
where X is a standard Brownian motion, and N ≡ 2. In other words, the process is a dyadic

branching Brownian motion (BBM). We see that v(t, ·) is the distribution function of the max-

imal particle at time t.

After substituting v 7→ 1− u, we see that this is precisely of the form in equation (1.1.2) and

rewriting we have

u(t, x) = P
(

max
i∈It

Xi
t ≥ x

)
(1.1.11)

6



1.1. FKPP-Type Equations

McKean simplified the proof of KPP [KPP37] that u(t, x + m(t)) converges to the travelling

wave solution of critical speed for more general initial conditions.

McKean also studied more general initial conditions: for u0 taking values in [0, 1], and b ∈
(0,
√

2], limx→∞ u0(x)ebx = a, for some a ≥ 0, then,

lim
t→∞

u(t, x+ ct) = wc(x)

where wc solves the travelling wave ODE (1.1.6) with c = 1
b + b

2 .

If we, consider the case when u0 = 1(−∞,0) and write Rt = maxi∈It X
i
t , we see that in this

probabilistic framework, the convergence u(t, x+m(t))→ w(x) can be interpreted as a statement

about convergence in distribution of Rt−m(t). Also, by knowing the speed of m, we have a law

of large numbers for a BBM in the sense that

Rt
t

P→
√

2, as t→∞.

McKean also obtained an upper bound on m:

m(t) ≤
√

2t− 2−3/2 log t.

Bramson [Bra78, Bra83] (see also the review article [Bra86]) extended these results to a BBM

with an average of two branches and finite second moment:

∞∑
i=1

ipi = 2

∞∑
i=1

i2pi <∞

and showed that McKean’s bound on m was not sharp. In fact, it was shown that

m(t) =
√

2t− 3 · 2−3/2 log t+O(1).

if and only if ∫ ∞
0

ye
√

2yu0(y) <∞ (1.1.12)

Bramson also extended the results to more general nonlinearities by a comparison principle

argument. Finally, Bramson improved upon the results of McKean [McK75] and Uchiyama

[Uch78] and gave necessary and sufficient conditions for an initial condition to give rise to

travelling waves of a certain speed. It was shown that

u(t, x+m(t))→ w(x)

uniformly in x as t→∞, if and only if the Bramson conditions on u0 hold: for some h, η,M,N >

0

lim sup
z→∞

1

z
log

∫ z(1+h)

z
u0(y)dy ≤ −

√
2

and ∫ z+N

z
u0(y)dy > η (1.1.13)

7



Chapter 1. Introduction

for all z ≤ −M . Similarly, for m̃(t) = ct+ o(t),

u(t, x+ m̃(t))→ wc(x)

uniformly in x as t→∞ if and only if condition (1.1.13) holds and

lim sup
z→∞

1

z
log

∫ z(1+h)

z
u0(y)dy = −b.

A multidimensional analogue of Bramson’s results for spherically symmetric initial conditions

was found by Gärtner [Gär82].

In 1988, Chauvin and Rouault [CR88] gave another probabilistic interpretation. One can

rewrite the representation (1.1.11) as u(t, x) = P (Zt((x,∞)) > 0) where Zt(A) counts of the

number of particles of, for example, a standard branching Brownian motion, in the set A at

time t for suitable A ⊂ R.

Chauvin and Rouault studied the large deviations of the right-most particle process Rt; that

is P(Rt ≥ ct) for c >
√

2. To obtain their results, they exploit the relationship between this

and a sub-critical Galton-Watson process (ζn)n≥0; recall, that in this case, if E[ζ1 log ζ1] < ∞,

as n→∞ then P(ζn > 0) ∼ CE[ζn] for C > 0. Analogously,

P(Zt((ct+ x,∞) > 0) ∼ CE[Zt((ct+ x,∞))] as t→∞,

for some constant C > 0.

In terms of the PDE, this means that for c >
√

2,

u(t, ct+ x) ∼ CU(t, ct+ x) as t→∞,

for a constant C > 0, where U is the solution of the linearised PDE

∂U

∂t
=

1

2

∂2U

∂x2
+ U.

Note that Chauvin and Rouault state their results for more general branching Brownian pro-

cesses.

Harris [Har98] showed existence and uniqueness (up to translation) of monotone travelling

wave solutions w ∈ W for the canonical FKPP equation (1.1.2), using only probabilistic tech-

niques. Harris constructed the travelling wave by extending the martingale approach of Neveu

[Nev88], Biggins[Big92] and Champneys et al. [CHT+95].

The travelling wave of speed c >
√

2 is given in terms of the ‘additive’ martingale

Z(t) =
∑
i∈It

e−λ(Xi
t+λt).

where λ = c−
√
c2 − 2. In particular, the travelling wave is given by

1− w(x) = E
[
exp

(
−e−λxZ(∞)

)]
.

The travelling wave of critical speed is given in terms of the ‘derivative’ martingale

Z ′(t) =
∑
i∈It

(Xi
t +
√

2t)e−
√

2(Xi
t+
√

2t)

8



1.1. FKPP-Type Equations

and the travelling wave is given by

1− w(x) = E
[
exp

(
−e−

√
2xZ ′(∞)

)]
.

Kyprianou [Kyp04] gave an alternative to Harris’ methods also using purely probabilistic

approach to Harris’ methods. The ‘spine decomposition’ approach of Kyprianou is shown for

more general branching processes of a similar form to Bramson.

1.1.4. More General Generators

So far we have only considered equation (1.1.1) in the case when the generator L is a Laplacian

and the corresponding Markov process X is a Brownian motion. More recently, there has been

interest in studying equation (1.1.1) and the corresponding branching processes for more general

Markov processes.

Non-local models of equations for the spread of a population or epidemic have a long history.

Schumacher [Sch80] showed a travelling wave solutions to a class of integro-differential equations

and Carr and Chmaj [CC04] showed uniqueness of travelling waves for the equation

∂u

∂t
= H ∗ u− u+ f(u) (1.1.14)

where H ∗ v(x) =
∫
RH(x − y)v(y)dy for a function v : R → R where f is a KPP nonlinearity

and H : R→ [0,∞) is compactly supported, H(x) = H(−x) and
∫
RH(y)dy = 1.

The generator defined by Lu = H∗u corresponds to a compound Poisson process (c.f. Example

(4.4.3)).

In 2013, Cabré and Roquejoffre [CR13] studied equations such as

∂u

∂t
= −(−∆)α/2u+ f(u)

u(0, x) = u0(x)

on (0,∞) × Rd where −(−∆)α/2 denotes the fractional Laplacian for α ∈ (0, 2), f is a KPP

nonlinearity and 0 ≤ u0 ≤ 1. They showed that if u0(x) = O(|x|−d−α) for large |x|, then

lim
t→∞

u(t, x) = 1, uniformly for|x| ≤ ect, and c ∈ [0, c∗)

lim
t→∞

u(t, x) = 0, uniformly for |x| ≥ ect, and c ∈ (c∗,∞)

where c∗ = f ′(0)
d+α and thus proved an analogous result to Aronson and Weinberger cf. (1.1.8) and

the later results for exponentially decaying initial conditions. Notice, however, that in this case

the wave front moves with exponential speed rather than with linear speed.

In the case when d = 1 and u0(x) ≤ x−α for large x and u0 6≡ 0 is decreasing on R, the wave

front moves with speed f ′(0)
α > c∗. This faster spread for non-compact initial data is in contrast

to the case when the diffusion is Gaussian (cf. Aronson and Weinberger [AW78]).

Cabré and Roquejoffre also consider level sets analogous to mλ in equation (1.1.9) in the

special case of f(u) = u(1− u) and d = 1.

9
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In 1999, Kyprianou [Kyp99] studied branching Lévy processes in the sense of Section 1.1.3 but

with the more general assumption that, upon splitting, the child particles are scattered according

to a random process. This built upon the work of Neveu [Nev88] and Chauvin [Cha91] in the

setting of branching Brownian motion and Biggins [Big95, Big97] general discrete branching

processes. In 2016, Groisman and Jonckheere [GJ16], use Biggins’ [BLSW91] and Kyprianou’s

[Kyp99] results to generalise the work of Harris [Har98] to show the existence of travelling waves

for the equation

∂u

∂t
= Lu+ ru(1− u)

u(0, x) = u0(x)

with speeds c such that Λ∗(c) ≥ r where Λ∗ is the Legendre transform of the Laplace exponent

of L under some conditions including that the underlying Lévy process has non-zero diffusion

part and X1 has exponentially decaying tails.

1.2. Summary of New Results

1.2.1. The Value of k

In order to treat such a general equation as equation (1.1.1) in a unified manner, we try to make

as few assumptions as possible. We will see that to establish the optimisation results, there are

three cases to consider, when k > 0, −1 < k < 0 and k < −1, which must be treated separately.

Note that by setting φ = 1/k constant in equation (1.1.1), the non-linearity becomes f(u) =

1
ku(1− uk).

1. When k > 0, this is of the KPP form. Note f is only Lipschitz on [0, 1], when k > 0.

2. When k ∈ (−1, 0), f is not of the KPP form. However, f satisfies the KPP conditions

with (1.1.5a) replaced by f ∈ C1((0, 1)) ∩ C0([0, 1]) and condition (1.1.5b) modified with

α =∞.

3. When k < −1, the form of the nonlinearity is very different from the nonlinearities satis-

fying the KPP conditions.

Furthermore, in the case where −1 < k ≤ 1, the FKPP equation is directly amenable to

the branching representation discussed above in Section 1.1.3. Here, the probability generating

function G is of the form

G(v) = v + 1
k [(1− v)1+k + v − 1]

=
(1 + k)

2!
v2 +

(1 + k)(1− k)

3!
v3 +

(1 + k)(1− k)(2− k)

4!
v4 + . . .

This is a probability generating function since G(1) = 1.

We will avoid the degenerate cases k = −1 and k = 0. In this case we see that equation (1.1.1)

is a linear equation.
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1.2.2. The Results

Now, we briefly summarise the new results that are presented in this work. Suppose that

u : [0,∞)×E → [0,∞) solves equation (1.1.1) in a sense to be made precise in Chapter 2. Then,

we show that u can be computed in two ways: as the value function of a certain maximisation

problem and as the value function of a related minimisation problem. These representations

make up what we refer to as the optimisation-based representations of equation (1.1.1).

One potential application of this approach is in providing a systematic method of obtaining

upper and lower bounds to solutions of FKPP-type equations. Indeed, we can simply choose an

arbitrary control to insert into the objective function of the corresponding optimisation problem

and obtain a bound. As demonstrated in Section 1.1, there are many examples of practical

interest and theoretical interest. Not all cases of interest are covered by this framework but an

extension to nonlinearities coming from the theory of branching processes is also considered in

Appendix A.

As we saw, the classical and perhaps most important example is when the state space E = Rd

and L = 1
2∆ is the Laplacian, in which case the Markov process is Brownian motion. However,

the Markov process plays no important part in the derivation of our representations. In fact, we

will see that our optimisation-based representations hold with no assumption on L other than

that equation (1.1.1) has a solution in a rather weak sense which is made precise in Definition

2.1.1.

Another important situation in which equations of the form in equation (1.1.1) naturally

arise, is in the theory of financial mathematics. We will see that this equation appears in

the study of a certain optimal investment problem in the context of a model of a market with

stochastic volatility and an investor with constant relative risk aversion. Indeed, equation (1.1.1)

arises from applying the nonlinear transformation proposed by Zariphopoulou [Zar01] to the

Hamilton-Jacobi-Bellman (HJB) equation associated with the optimisation problem. Details

of this example will be provided in Chapter 3. In this application, the exponent k appearing

equation (1.1.1) is defined by

k = − 1

R(1− ρ2) + ρ2

where R > 0 is the investor’s coefficient of relative risk aversion and ρ is the correlation between

the infinitesimal increments of the price of the risky asset and its volatility. Furthermore, in

this setting, the coefficient φ, in equation (1.1.1), is a linear combination of the interest rate,

the Sharpe ratio of the stock and rate of subjective discounting. In particular, the exponent k is

negative and the coefficient φ is generally a non-constant function of the state variable. These

observations motivate the generality in which we study equation (1.1.1).

In the special case of equation (1.1.1) when L is the generator of a suitable Lévy process, u0

an initial condition with fast enough decay, and k > 0, one expects that wave fronts will develop

and by studying the upper and lower bounds on the solution one can find the speed of this front.

By using the optimisation-based representation, we will derive such bounds and study the wave

speed for a variety of choices of generator, L and initial condition u0. Further details can be

11
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found in Chapter 4 and Appendix A.

1.2.3. The Outline

The rest of this work is organised as follows: in Chapter 2, we present the precise formulation of

the mathematical framework in which we will work and the representations of the solution to the

equation we will study. In Section 2.2, we present the first main result which is a representation

of the solution to an equation of the form (1.1.1) in terms of an optimisation problem which we

will call the primal problem. In Section 2.3, we introduce a second representation as another

optimisation problem which we will see as a dual problem in a way to be made precise. We show

the duality is a strong duality. After giving proofs of these representations in Section 2.4, we

will present some immediate consequences of the representations and compare the dual problem

to the Lagrangian dual problem in Sections 2.6 and 2.5, respectively. In Section 2.7, we will give

sufficient conditions for existence of solutions to equation (2.1.1).

In Chapter 3, we set up a Merton-type utility maximisation problem in Section 3.1. Then, in

Section 3.2, we show the relationship between the corresponding HJB equation and FKPP-type

equations in the form of equation (1.1.1) and thus the representations of Chapter 2.

Finally, in Chapter 4, we use the representations of Chapter 2 to calculate the speed of the wave

front for various examples of equation (1.1.1) when the nonlinearity is given by f(u) = 1
ku(1−uk).

In Section 4.1, we deduce some useful preliminary results from Chapter 2 and then in Section

4.2 we apply these results to prove Aronson-and-Weinberger-type results in the case when the

Markov process is a standard Brownian motion. Then, we give analogous results for a class

of Lévy processes in Section 4.3. We apply these results to some examples in Section 4.4. In

Sections 4.4.1 and 4.4.2, we consider two specific examples of X that don’t fit into the class of

Lévy processes of Section 4.3 but where results can still be obtained by slight modifications in

the arguments.

In Appendix A, we show how the primal representation given in Chapter 2 can be adapted to a

class of equations with concave nonlinearity. This allows us to consider equations corresponding

to a more general class of branching processes than those covered by Chapter 4. We briefly

explain how the techniques of Chapter 4 can be adapted to this important case.

In Appendix B we give an alternative view of the primal optimisation problem of Section

2.2 and study the problem in a simplified setting using and see how the optimisation problem

gives rise to equation (1.1.1) via the dynamic programming principle. We also present a direct

proof of strong duality in the sense of Lagrangian duality. We highlight the technical challenges

inherent in this stochastic control approach.
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Chapter 2.

The Representations

2.1. The Set-Up

For each t we consider a probability space (Ω,F ,P) with filtration (Fs)s≥0 and a Markov process

(Xs)0≤s≤t taking values in a Borel space (E,B(E)). We use the usual notation of Px for P(·|X0 =

x) and, analogously, we define Ex but we may drop the x from the notation when the meaning

is clear from the context.

Usually one considers the case when E = Rd and takes X to be a Lévy process or, more

generally, a Feller process, but, as we will see, the properties of X do not play a large role in

the results of this section.

As noted in the introduction we will study the following equation:

∂u

∂t
= Lu+ φ(x)u− 1

ku
k+1,

u(0, x) = u0(x), for all x ∈ E.
(2.1.1)

We suppose that φ : E → R and u0 : E → [0,∞) are measurable functions and are known.

The exponent k ∈ R\{−1, 0} is constant. We define the operator L to be the infinitesimal

generator of the Markov process X.

We make the following definition of a solution.

Definition 2.1.1. We say that a measurable function u : [0,∞) × E → [0,∞) is a solution to

equation (2.1.1) if for every (t, x) there exists a measurable E-valued process (Xs)0≤s≤t defined

on some probability space with X0 = x almost surely and adapted to a filtration satisfying the

usual conditions such that

u(0, x) = u0(x)

and such that the process (M∗s )0≤s≤t defined by

M∗s = u(t− s,Xs)e
∫ s
0 [φ(Xr)− 1

k
u(t−r,Xr)k]dr (2.1.2)

is a càdlag̀ martingale.

Remark 1. Intuitively, one may think of Definition 2.1.1 as replacing the assumption of smooth-

ness of a classical solution with an assumption of integrability. Indeed, consider the following

result.

13
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If u is a non-negative classical solution to equation (2.1.1) with generator L corresponding to

a Markov process X, then M∗ is a local martingale.

Indeed, by applying Itô’s formula, we see that

du(t− s,Xs) = = (−ut + Lu)ds+ dNs

= (−φu+ 1
ku

k+1)ds+ dNs

a local martingale N , since u is a classical solution to equation (2.1.1). Thus,

d
(
u(t− s,Xs)e

∫ s
0 [φ(Xr)− 1

k
u(t−r,Xr)k]dr

)
= e

∫ s
0 [φ(Xr)− 1

k
u(t−r,Xr)k]drdNs.

Integrating both sides, we see that left hand side is a local martingale, since the integrand is

continuous, as required.

We also see that if u is a classical solution and u and φ are bounded, as is often the case,

then M∗ is a true martingale. �

If u is a solution of equation (2.1.1) in the sense of Definition 2.1.1, then M∗ is a martingale

and so we have the following representation of u:

u(t, x) = E
[
u0(Xt)e

∫ t
0 [φ(Xr)dr− 1

k
u(t−r,Xr)k]

]
. (2.1.3)

In other words, a generalised solution in the sense of Freidlin [Fre85, Chapter 5.1] is also a

solution of the form of Definition 2.1.1.

In order to elucidate Definition 2.1.1 further, we look at some examples of equations of the

form in equation (2.1.1).

Example 2.1.2. For the following examples, we take E = Rd.

1. a) We can consider X to be a Lévy process starting at x ∈ Rd. It then follows that the

operator L is of the integro-differential form

Lf =
∑

1≤i≤n
bi
∂f

∂xi
+

1

2

∑
1≤i,j≤n

aij
∂2f

∂xi∂xj

+

∫
Rd\{0}

f(x+ y)− f(x)− 1{‖y‖≤1}
∑

1≤i≤n
yi
∂f

∂xi
(x)

 ν(dy)

for constant bi, aij such the matrix (aij)ij is non-negative definite and the measure ν

such that
∫
Rd\{0} ‖y‖

2 ∧ 1 ν(dy) <∞, corresponding to the Lévy process with charac-

teristic triple (b, a, ν). See, for instance, [App04].

b) The simplest example is when X is an d-dimensional Brownian motion starting at

x ∈ Rd. Then, L = 1
2∆ is a multiple of the Laplacian. Then equation (2.1.1) is the

standard FKPP equation considered in Aronson and Weinberger [AW78], for example.

c) In Chapter 4 we will restrict our attention to the univariate case (d=1), where the

Lévy measure ν has a finite exponential moment such that∫
eθy1{|y|>1}ν(dy) <∞

for all θ in a neighbourhood of 0.
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d) Another special case is when b = 0 and a = 0 and the Lévy measure ν has a density

proportional to ‖y‖−(α+d) for 0 < α < 2. With this choice, the operator is the

fractional Laplacian L = −(−∆)α/2 corresponding to a rotationally symmetric α-

stable process. This corresponds to the equation considered in the work of Cabré and

Roquejoffre [CR13].

2. a) Another direction to generalise is to take the operator L to be an elliptic differential

operator of the form

L =
∑

1≤i≤n
bi(x)

∂

∂xi
+

1

2

∑
1≤i,j≤n

aij(x)
∂2

∂xi∂xj

for suitably regular functions bi, aij : Rd → R corresponding to the Markov process X

solving the stochastic differential equation

dXs = b(Xs)ds+ σ(Xs)dWs

where a = σσᵀ and W is a Brownian motion. We consider the univariate case of

such a diffusion in the financial application in Chapter 3.

b) In Chapter 4 we look at the particular example when X is an Ornstein-Uhlenbeck

process.

As demonstrated in these examples, the operator L is not everywhere-defined. In particular, if

we look at classical solutions to equation (2.1.1) we must assume a certain amount of regularity

of u in order for Lu to make sense.

In proving the following representation formulas, we will not need to use the special structure

of L, φ or u0 other than the assumption that M∗ is a càdlàg martingale. In this chapter, we

will mostly keep these unspecified. The statement and proof of Theorems for existence and

uniqueness of solutions are deferred to the end of this Chapter. For now, we will simply assume

that equation (2.1.1) has a solution in the sense of Definition 2.1.1.

There are three natural cases to consider in terms of k. The non-linearity changes behaviour

at k = −1 and k = 0 and so the results in Chapter 2 will usually be stated in each of these cases.

Note also that when k < 0, the integral term involving u(t − r,Xr)
k in the notion of solution

blows up if u is allowed to vanish. This corresponds to the nonlinearity u1+k failing to be

Lipschitz at u = 0. Therefore, in the case that k < 0, we will assume that u is strictly positive

everywhere, to avoid these problems. We include this assumption and one more simplifying

assumptions throughout.

In summary, we always assume the following.

Assumption 2.1.3. 1. u0(x) ≥ 0 for all x ∈ E.

2. For each fixed k, we have∫ t

0
|φ(Xs)|ds <∞ and

∫ t

0
u(t− s,Xs)

kds <∞ almost surely.
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3. A solution, u, to equation (2.1.1) exists in the sense of Definition 2.1.1.

Sufficient conditions for the third assumption to hold are given in Section 2.7.

2.2. Primal Representation

We will now introduce the first representation of the solution u in terms of an optimisation

problem. We refer to this as the primal representation; this refers to the fact that the optimisa-

tion problem has a natural interpretation where u is the value function of a certain optimisation

problem and then equation (2.1.1) is the corresponding HJB equation. Moreover, in we will

introduce another representation in Section 2.3 which can be seen as a dual problem.

We begin with an Feynman-Kac-type formula which will motivate the representations to

follow. Recall that a Feynman-Kac result is one of the form

Theorem 2.2.1 (Feynman-Kac Theorem). Let u be a classical solution to

∂u

∂t
(t, x) = Lu(t, x) + V (t, x)u(t, x) + f(t, x),

u(0, x) = u0(x).

Given sufficiently regular L, V and f and u0, (see, for example [IW89]),

u(t, x) = Ex
[∫ t

0
e
∫ s
0 V (r,Xr)drf(s,Xs)ds+ e

∫ t
0 V (r,Xr)dru0(Xt)

]
.

Given sufficiently nice L, V and f and u0, the result follows easily from Itô’s formula. One

can see that the result can be extended to the case when V and f depend on the solution u.

Now we can introduce the starting point for our discussion. Notice that the following Feynman-

Kac type result holds for a solution to equation (2.1.1). Define a process (Y ∗s )0≤s≤t by

Y ∗s = e−
∫ s
0 u(t−r,Xr)kdr. (2.2.1)

Note that Y ∗ is positive, non-increasing, absolutely continuous and adapted.

There is an important link between the process Y ∗ and the martingale M∗ from Definition

2.1.1. Two important properties that will simplify the following calculations are

e
∫ t
0 φ(Xr)dr(Y ∗t )

1
ku0(Xt) = M∗t (2.2.2)

and

e
∫ s
0 φ(Xr)dr(−Ẏ ∗s )

1
k = M∗s for 0 ≤ s ≤ t (2.2.3)

Here we are using the notation ḣ to denote the weak derivative of an absolutely continuous

function h. Notice that

Ẏ ∗s = −u(t− s,Xs)
kY ∗s .

As the notation suggests, the processes Y ∗ and M∗ will play important roles in the discussion

that follows.

The following lemma is a motivation for the primal representation in Theorem 2.2.3.
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Lemma 2.2.2. Fix (t, x) and let the process X be as in Definition 2.1.1. Then,

u(t, x) = E
[∫ t

0
e
∫ s
0 φ(Xr)dr|Ẏ ∗s |1+ 1

k ds+ e
∫ t
0 φ(Xr)dr|Y ∗t |1+ 1

ku0(Xt)

]
(2.2.4)

Proof. Fix t and x. Since M∗ is a martingale with M∗0 = u(t, x), we have

u(t, x) = E[M∗t ]

= E [M∗t (1− Y ∗t + Y ∗t )]

= E
[
−
∫ t

0
Ẏ ∗s M

∗
t ds+ Y ∗t M

∗
t

]
= E

[∫ t

0
e
∫ s
0 φ(Xr)dr|Ẏ ∗s |1+ 1

k ds+ e
∫ t
0 φ(Xr)dr|Y ∗t |1+ 1

ku0(Xt)

]
.

To go from the second to the third line, we used the tower property of conditional expectation:

E
[
−
∫ t

0
Ẏ ∗s M

∗
t ds

]
=

∫ t

0
E
[
−Ẏ ∗s E[M∗t |Fs]

]
ds

= E
[
−
∫ t

0
Ẏ ∗s M

∗
s ds

]
.

Since all of the terms are non-negative, there are no technical issues involving integrability. The

final line follows by equations (2.2.2) and (2.2.3).

Because of the nonlinearity, in equation (2.1.1), the Feynman-Kac formula is implicit and so

we can not use it directly to describe the behaviour of u. However, we will now introduce the

primal representation of u in which we write u in terms of an optimisation problem with the

optimal control given by the process Y ∗. Choosing other controls will give us explicit upper

bounds on u.

Theorem 2.2.3. Fix (t, x) and let X be as in Definition 2.1.1.

• If k < −1, then

u(t, x) = max
Y

E
[∫ t

0
e
∫ s
0 φ(Xr)dr|Ẏs|1+ 1

k ds+ e
∫ t
0 φ(Xr)drY

1+ 1
k

t u0(Xt)

]
where the maximum is over positive, decreasing, adapted and absolutely continuous pro-

cesses, (Ys)0≤s≤t, with Y0 = 1.

• If −1 < k < 0, then

u(t, x) = min
Y

E
[∫ t

0
e
∫ s
0 φ(Xr)dr|Ẏs|1+ 1

kds+ e
∫ t
0 φ(Xr)drY

1+ 1
k

t u0(Xt)

]
where the minimum is over positive, strictly decreasing, adapted and absolutely continuous

processes, (Ys)0≤s≤t, with Y0 = 1.

• If k > 0, then

u(t, x) = min
Y

E
[∫ t

0
e
∫ s
0 φ(Xr)dr|Ẏs|1+ 1

k ds+ e
∫ t
0 φ(Xr)dr|Yt|1+ 1

ku0(Xt)

]
where the minimum is over adapted and absolutely continuous processes, (Ys)0≤s≤t, with

Y0 = 1.

17



Chapter 2. The Representations

In each case, the unique optimiser is given by Y = Y ∗.

Consequently, we can write that

u(t, x) =
1

k + 1
min
Y

(k + 1)E
[∫ t

0
e
∫ s
0 φ(Xr)dr(−Ẏs)1+1/k ds+ e

∫ t
0 φ(Xr)dru0(Xt)Y

1+1/k
t

]
where the minimum is taken over positive, decreasing, adapted and absolutely continuous

(Ys)0≤s≤t with Y0 = 1.

We postpone the proof of Theorem 2.2.3 to Section 2.4 where we will exploit a certain duality

to be defined in Section 2.3, below. However, another way to view Theorem 2.2.3 is that equation

(2.1.1) is essentially the Hamilton–Jacobi–Bellman equation of the stochastic control problem.

We will go into more details of this in Appendix B.

2.3. Martingale-Dual Representation

We saw in Section 2.2 that we can write the solution u of equation (2.1.1) in terms of a min-

imisation/maximisation problem. Therefore, if we try any admissible control, we automatically

obtain an upper/lower bound. Naturally, we may then compute the standard Lagrangian dual

formulation and try to obtain lower/upper bounds on the solution. This approach runs into some

difficulties and requires stronger assumptions on u. In this section, we introduce a new type of

dual representation and we will call this the martingale-dual representation. The martingale-

dual representation improves upon the Lagrangian representation in the sense that it is more

general and there is a correspondence between it and the Lagrangian dual: the martingale-dual

problem gives tighter bounds on u for the same control when the control is admissible in both

formulations. We discuss the Lagrangian approach in more detail in Section 2.5 and Appendix

B.

Fix (t, x) and let the processes X and M∗ be as in Definition 2.1.1.

Before giving the dual representation we write u in terms of the optimal control which will be

the process M∗.

Lemma 2.3.1. For fixed (t, x), the following identity holds

u0(Xt)
k =

(
e−
∫ t
0 φ(Xr)drM∗t

)k
+ u0(Xt)

k

∫ t

0

(
e−
∫ s
0 φ(Xr)drM∗s

)k
ds. (2.3.1)

In particular, we can write u as

u(t, x) = E

 M∗t u0(Xt)[(
e−
∫ t
0 φ(Xr)drM∗t

)k
+ u0(Xt)k

∫ t
0

(
e−
∫ s
0 φ(Xr)drM∗s

)k
ds

] 1
k

 .
Proof. Since M∗ is a martingale, we only need to show the identity (2.3.1) and this follows from

the definition of M∗. Indeed, note that(
e−
∫ s
0 φ(Xr)drM∗s

)k
= u(t− s,Xs)

ke
∫ s
0 u(t−r,Xr)kdr

18



2.4. Proof of Representation Theorems

Therefore, we have the following two relations between M∗ and u(
e−
∫ t
0 φ(Xr)drM∗t

)k
= u0(Xt)

ke
∫ t
0 u(t−r,Xr)kdr∫ t

0

(
e−
∫ s
0 φ(Xr)drM∗s

)k
ds = 1− e

∫ t
0 u(t−r,Xr)kdr

The following theorem is what we will refer to as the martingale-dual representation.

Theorem 2.3.2. Fix (t, x) and let u solve equation (2.1.1).

• If k < −1, then

u(t, x) = min
M

E

[
Mtu0(Xt)

[(Mte
−
∫ t
0 φ(Xr)dr)k + u0(Xt)k

∫ t
0 (Mse

−
∫ s
0 φ(Xr)dr)k]1/k

]

where the minimum is over positive martingales M .

• If k > −1 and k 6= 0, then

u(t, x) = max
M

E

[
Mtu0(Xt)

[(Mte
−
∫ t
0 φ(Xr)dr)k + u0(Xt)k

∫ t
0 (Mse

−
∫ s
0 φ(Xr)dr)k]1/k

]

where the maximum is over non-negative martingales M .

Remark 2. When k < 0 we have assumed the u0 is strictly positive, but when k > 0 we allow

for u0(x) to be zero for some x ∈ E. In particular, for k > 0 the martingale Ms may vanish for

some 0 ≤ s ≤ t with positive probability. We thus make the convention that 0/0 = 0 so that the

expression on the right-hand side is always well-defined. �

It is interesting to note that the optimisation problem in Theorem 2.3.2 - unlike the one in

Theorem 2.2.3 - is not in a form amenable to dynamic programming and the HJB equation.

2.4. Proof of Representation Theorems

In light of Lemmas 2.2.2 and 2.3.1 we see that Theorems 2.2.3 and 2.3.2 will follow directly from

the following lemma.

Lemma 2.4.1. For any non-negative Ft measurable H and positive, continuous, adapted process

(hs)0≤s≤t

• for k < −1 we have

E

[
HMt

(Mk
t +Hk

∫ t
0 (Ms/hs)k)

1
k

]
≥ E

[∫ t

0
hs|Ẏs|1+ 1

k ds+HY
1+ 1

k
t

]
for all positive martingales M and positive, decreasing, adapted and absolutely continuous

Y with Y0 = 1.
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Chapter 2. The Representations

• for −1 < k < 0 we have

E

[
HMt

(Mk
t +Hk

∫ t
0 (Ms/hs)k)

1
k

]
≤ E

[∫ t

0
hs|Ẏs|1+ 1

kds+HY
1+ 1

k
t

]
for all positive martingales M and positive, strictly decreasing, adapted and absolutely

continuous Y with Y0 = 1.

• for k > 0 we have

E

[
HMt

(Mk
t +Hk

∫ t
0 (Ms/hs)k)

1
k

]
≤ E

[∫ t

0
hs|Ẏs|1+ 1

k ds+H|Yt|1+ 1
k

]
for all non-negative martingales M and adapted and absolutely continuous Y with Y0 = 1.

In each case, there is equality if and only if there is a constant c > 0 such that

−Ẏs = c(Ms/hs)
k. (2.4.1)

and

Mk
t +Hk

∫ t

0
(Ms/hs)

k = Hk/c (2.4.2)

The proof of Lemma 2.4.1 and thus Theorems 2.2.3 and 2.3.2 is based on two further lemmas;

the first lemma we use is the following.

Lemma 2.4.2. Fix k /∈ {0,−1} and measurable functions f, g on the interval [0, t], where g is

positive and the functions f , |f |1+ 1
k g and g−k are integrable.

• If k < −1 we have ∫ t

0
f(s)1+ 1

k g(s)ds ≤

(∫ t
0 f(s)ds

)1+ 1
k

(∫ t
0 g(s)−kds

) 1
k

for positive f .

• If −1 < k < 0 we have

∫ t

0
f(s)1+ 1

k g(s)ds ≥

(∫ t
0 f(s)ds

)1+ 1
k

(∫ t
0 g(s)−kds

) 1
k

for strictly positive f .

• If k > 0 we have ∫ t

0
|f(s)|1+ 1

k g(s)ds ≥

∣∣∣∫ t0 f(s)ds
∣∣∣1+ 1

k

(∫ t
0 g(s)−kds

) 1
k

In all cases, there is equality if and only if there is a constant C such that

f(s) = C g(s)−k for almost every 0 ≤ s ≤ t.
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2.4. Proof of Representation Theorems

Proof. The proof of this result follows from applying Hölder’s inequality. We write p and q for

the Hölder coefficients and so 1/p+ 1/q = 1 with p, q > 1.

Some care needs to be taken with each range of k. In particular, note that if k < −1, we have

0 < 1 + 1/k < 1; if −1 < k < 0, then 1 + 1/k < 0 and if k > 0, then 1 + 1/k > 1.

If k < −1, we can use Hölder’s inequality with p = k
k+1 and q = −k:

∫ t

0
f(s)

k+1
k g(s)ds ≤

(∫ t

0
f(s)ds

)1+ 1
k
(∫ t

0
g(s)−kds

)− 1
k

If −1 < k < 0, we can use Hölder’s inequality with p = −1/k and q = 1
k+1 and then,∫ t

0
g(s)ds =

∫ t

0
g(s)−kf(s)−(1+k)f(s)1+kds

≤
(∫ t

0
g(s)f(s)

k+1
k

)−k (∫ t

0
f(s)ds

)k+1

If k > 0, we can use Hölder’s inequality with p = 1 + 1/k and q = k + 1 and so,∣∣∣∣ ∫ t

0
f(s)ds

∣∣∣∣ ≤ ∫ t

0
|f(s)|g(s)

k
k+1 g(s)−

k
k+1 ds

≤
(∫ t

0
|f(s)|

k+1
k g(s)ds

) k
k+1
(∫ t

0
g(s)−kds

) 1
k+1

In each case we can easily check that p > 1 and so also q > 1.

For each case we verify that we have equality if and only if f(s) = Cg(s)−k.

The second lemma we need is the following.

Lemma 2.4.3. • For k < −1, ζ, η > 0 and 0 < y < 1 we have

(1− y)1+ 1
k

ζ
1
k

+
y1+ 1

k

η
1
k

≤ 1

(ζ + η)
1
k

• For −1 < k < 0, ζ, η > 0 and 0 < y < 1 we have

(1− y)1+ 1
k

ζ
1
k

+
y1+ 1

k

η
1
k

≥ 1

(ζ + η)
1
k

• For k > 0, ζ, η > 0 and y ∈ R we have

|1− y|1+ 1
k

ζ
1
k

+
|y|1+ 1

k

η
1
k

≥ 1

(ζ + η)
1
k

.

In all cases there is equality if and only if y = η
ζ+η .

Proof. Viewed as a function of y, the left-hand side is strictly concave for k < −1 since the sum

of strictly concave functions is again strictly concave. Similarly, the left hand side is strictly

convex for k > −1.

Differentiating, we see that there is always a stationary point for y ∈ (0, 1) and in particular at

the point y∗ = η
ζ+η . Since the left hand side is strictly concave/convex in the relevant ranges of

y, the stationary point y∗ maximises/minimises the left hand side with the value (ζ + η)−
1
k .
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Chapter 2. The Representations

We are now ready for the proof of Lemma 2.4.1 and the representations of u.

Proof of Lemma 2.4.1. Let M be a non-negative martingale, and if k < 0 assume that M is

positive. Also let Y be adapted and absolutely continuous, and if k < 0 assume that Y positive

and decreasing (strictly so, in the case when k ∈ (−1, 0)). Let Z = −Ẏ .

To keep the direction of the inequality the same in the following calculation, we multiply by

k + 1. Applying tower property of conditional expectation, we have

(k + 1)E
[∫ t

0
hs|Zs|1+ 1

k ds+H|Yt|1+ 1
k

]
≥ (k + 1)E

[∫ t

0
hs|Zs|1+ 1

k
Mt

Ms
1{Ms>0}ds+H|Yt|1+ 1

k

]

≥ (k + 1)E

 |1− Yt|1+ 1
k(∫ t

0

(
Ms
hsMt

)k
ds

) 1
k

+H|Yt|1+ 1
k



≥ (k + 1)E

 H(
1 +Hk

∫ t
0

(
Ms
hsMt

)k
ds

) 1
k


using Lemma 2.4.2 to pass from the first to second line with

f(s) = Zs and g(s) =
hsMt

Ms

and using Lemma 2.4.3 to pass from the second to third line with

η = H−k and ζ =

∫ t

0

(
Ms

hsMt

)k
ds.

For the case of equality, note that by Lemma 2.4.2 there is equality only if there exists a

random variable C such that

Zs = C

(
Ms

hsMt

)k
.

Since,

C

Mk
t

= − Ẏsh
k
s

Mk
s

,

and the right hand side is adapted to Fs, we must have that there is a constant c such that

C = cMk
t . In other words,

1− Ys = c

∫ s

0

(
Mr

hr

)k
dr

Now, by Lemma 2.4.3 there is equality only if

Yt =
Mk
t

Mk
t +Hk

∫ t
0 (Ms/hs)kds

.

By combining these two conditions, we have the result.
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Remark 3. Note that if we set

hs = e
∫ s
0 φ(Xr)dr

and

H = e
∫ t
0 φ(Xr)dru0(Xt)

we arrive at the formulation in Theorems 2.2.3 and 2.3.2. In this case, the equality conditions

(2.4.2) and (2.4.1) with c = 1, are satisfied at Y ∗ and M∗ (by Lemmas 2.2.2 and 2.3.1). In

particular,

E

[
HM∗t

((M∗t )k +Hk
∫ t

0 (M∗s /hs)
k)

1
k

]
= u(t, x) = E

[∫ t

0
hs|Ẏ ∗s |1+ 1

kds+H|Y ∗t |1+ 1
k

]
.

�

Remark 4. Note that we have used no specific assumptions on the Markov process X for in

this proof. Indeed, the only role that X plays in the above calculation is through the formulae

hs = e
∫ s
0 φ(Xr)dr and H = e

∫ t
0 φ(Xr)dru0(Xt). We saw, however, that the above proof works for

any positive process (hs)0≤s≤t and H > 0. In particular, the Markov property is not needed at

all. �

2.5. Lagrangian Duality

Note that the primal representation given in Section 2.2 expresses the quantity u(t, x) as the

value of a convex minimisation problem. In particular, it is natural to apply standard Lagrangian

methods to find the dual problem. We will see that the dual variable is again a martingale M .

However, it turns out that our new dual problem given in Section 2.3, which exploits the special

structure of the problem, is stronger in a sense to made precise.

We do the formal calculation to identify the standard Lagrangian dual problem for the primal

problem of minimising

E
[∫ t

0
hs|Zs|1+ 1

k ds+HY
1+ 1

k
t

]
over positive, adapted, absolutely continuous processes Y and negative adapted, measurable

process Z such that Z = −Ẏ and Y0 = 1, and where (hs)0≤s≤t is a given positive adapted

measurable process and H is a given positive random variable.

Consider the Lagrangian

L(Y, Z;λ,M) = E
[∫ t

0
hs|Zs|1+ 1

k ds+HY
1+ 1

k
t − (1 + 1

k )

∫ t

0
Ms(Ẏs + Zs)ds

]
+ λ(1− Y0)

where the Lagrange multiplier M is a martingale and the multiplier λ is a real number. We

rewrite the Lagrangian as

L(Y, Z;λ,M) =E
[∫ t

0
[hs|Zs|1+ 1

k ds− (1 + 1
k )ZsMs]ds+HY

1+ 1
k

t − (1 + 1
k )MtYt

]
+ λ+ [(1 + 1

k )M0 − λ]Y0 + (1 + 1
k )E

[∫ t

0
YsdMs

]
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Chapter 2. The Representations

We henceforth assume that the expected value of the stochastic integral on the second line

vanishes. Assuming M is positive and λ = (1 + 1
k )M0 we see that the minimum of L(Y,Z;λ,M)

occurs when Yt = (Mt/H)k and Zs = (Ms/hs)
k.

Therefore, the standard Lagrangian dual problem is to maximise

(1 + 1
k )M0 −

1

k
E
[∫ t

0
h−ks Mk+1

s ds+H−kMk+1
t

]
over positive martingales M . By pulling out the initial condition M0 and maximising over this,

we see that, heuristically, the dual problem is to consider

max
M

E
[∫ t

0
h−ks Mk+1

s ds+H−kMk+1
t

]−1/k

(2.5.1)

over positive martingales M with M0 = 1.

In the case when h andH correspond to the representations in Theorem 2.2.3 and given enough

regularity on u, we see that this is the correct formulation of the Lagrangian dual approach and

the cases when k < 0 are analogous.

We note that the above standard Lagrangian dual problem has at least one advantage over

the dual problem presented in Section 2.3 in the case of interest where hs = e
∫ s
0 φ(Xr)dr and

H = e
∫ t
0 φ(Xr)dru(Xt) and X is a Markov process. This advantage is that objective is in the

standard form for stochastic control and hence can be studied via the dynamic programming

principle and the HJB equation.

However, there is an advantage to the new dual problem of Section 2.3. Notice that

E

 HMt(
Mk
t +Hk

∫ t
0 (Mk

s /h
k
s)ds

)1/k

 = E

M1+1/k
t

H(
Mk+1
t +HkMt

∫ t
0 (Mk

s /h
k
s)ds

)1/k

 (2.5.2)

≥ E
[
H−k

(
Hk

∫ t

0
(MtM

k
s /h

k
s)ds+Mk+1

t

)]−1/k

(2.5.3)

= E
[∫ t

0
h−ks Mk+1

s ds+H−kMk+1
t

]−1/k

(2.5.4)

where we used Hölder’s inequality as in Lemma 2.4.2 (adapted for expectations) and the as-

sumption that the martingale M starts at M0 = 1 to go from the first to the second line. To go

from the first to the second line we use the tower property of condition expectation. If k < −1,

the inequality is reversed.

We have equality when

Mt = cH−kMt

(
Mk
t +Hk

∫ t

0
(Mk

s /h
k
s)ds

)
,

for some constant c. We can see that M∗ satisfies this as long as it the right hand side of (2.5.2)

is well defined.

Recognising the expression on the right-hand side as the objective function of the martingale

dual problem introduced in Section 2.3, we have shown that the new duality is stronger than the

standard Lagrangian duality in the following sense: for the same control M the new objective
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function is closer to the common optimal value than the standard objective function. Indeed,

note that if H = 0 with positive probability, the standard objective function is finite only for

those martingales such that {H = 0} ⊆ {Mt = 0}. We can see that the Lagrangian dual is also

more restrictive in terms of necessary conditions for it to hold.

More details on this approach and a direct proof in a simplified setting can be found in

Appendix B.

2.6. Simple Consequences

2.6.1. Corollaries of the Representations

Here, we list some simple consequences of Theorems 2.2.3 and 2.3.2. This result corresponds to

restricting the set of admissible processes in the representations of Theorems 2.2.3 and 2.3.2 to

deterministic controls. The bounds will be improved upon in Chapter 4.

Corollary 2.6.1. Fix (t, x) and let X be as in Definition 2.1.1. Then,

• for k < −1, we have

u(t, x) ≥
(
E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]−k
+

∫ t

0
E
[
e
∫ s
0 φ(Xr)dr

]−k
ds

)−1/k

.

• For k > −1, k 6= 0 we have

u(t, x) ≤
(
E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]−k
+

∫ t

0
E
[
e
∫ s
0 φ(Xr)dr

]−k
ds

)−1/k

.

On the other hand,

• For k < −1 we have

u(t, x) ≤ E

[(
e−k

∫ t
0 φ(Xr)dru0(Xt)

−k +

∫ t

0
e−k

∫ s
0 φ(Xr)drds

)−1/k
]
.

• For k > −1, k 6= 0 we have

u(t, x) ≥ E

[(
e−k

∫ t
0 φ(Xr)dru0(Xt)

−k +

∫ t

0
e−k

∫ s
0 φ(Xr)drds

)−1/k
]
.

Proof. Let

−Ẏs =
E
[
e
∫ s
0 φ(Xr)dr

]−k
E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]−k
+
∫ t

0 E[e
∫ r
0 φ(Xν)dν ]−kdr

.

in Theorem 2.2.3. This gives,

Ys =
E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]−k
+
∫ t
s E
[
e
∫ r
0 φ(Xν)dν

]−k
dr

E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]−k
+
∫ t

0 E
[
e
∫ r
0 φ(Xν)dν

]−k
dr

.

Note that Y is positive, decreasing with Y0 = 1.

For the second part, we plug in the control M = 1 in Theorem 2.3.2.
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Note that there is an interesting relationship between these upper and lower bounds. For

example, in the case where k > 0, the bounds are of the form

E

[
H

(1 +Hk
∫ t

0 h
−k
s ds)1/k

]
≤ u(t, x) ≤ E[H]

(1 + E[H]k
∫ t

0 E[hs]−kds)1/k
.

We will observe this kind of behaviour again in Chapter 4.

As noted above, the choice of Y in the proof of Corollary 2.6.1 is deterministic. In fact, it

achieves the optimum value of the right-hand side over all deterministic controls.

Remark 5. Fix a constant H > 0 and a positive, deterministic function h on [0, t]. Consider

the problem of minimising ∫ t

0
h(s)|ẏ(s)|1+ 1

kds+H|y(t)|1+ 1
k

over absolutely continuous functions y with y(0) = 1. We can appeal to the above duality proof.

Since nothing is random, the only martingales are constant. Since scaling is irrelevant we may

let Ms = 1 for all 0 ≤ s ≤ t. The dual optimality condition

Hk/c = Mk
t +Hk

∫ t

0
[Ms/h(s)]kds

yields

c =
1

H−k +
∫ t

0 h(s)−kds
.

The primal optimality condition is then

−ẏ(s) = c[Ms/h(s)]k =
h(s)−k

H−k +
∫ t

0 h(r)−kdr
.

By choosing

H = E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]
and h(s) = E

[
e
∫ s
0 φ(Xr)dr

]
we see that the control given the proof of Corollary 2.6.1 is optimal over deterministic controls

as claimed. �

Remark 6. Recall that we have the trivial bound u(t, x) ≤ etEx[u0(Xt)] from the Feynman-Kac

representation. The upper bound in Corollary 2.6.1 gives a slight improvement on this. �

2.6.2. Choosing a control, M

We can use the representation of Theorem 2.3.2 directly to obtain a lower bound on u. One

simple example is given below as a demonstration but the best bounds presented in this work

will follow from iterating the bounds in Section 2.6.1 and are presented in Chapter 4.

Proposition 2.6.2. Let u be a solution to the equation

∂u

∂t
= Lu+ u− u2

u0(x) = 1(−∞,0)(x)
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Let M be a continuous non-negative martingale with Mt = 0 ⇐⇒ u0(Xt) = 0. Then,

u(t, x) ≥ M2
0

M2
0 + E

[∫ t
0 e
−sd〈M〉s

] . (2.6.1)

Proof. By Theorem 2.3.2, we have

u(t, x) ≥ E
[

Mtu0(Xt)

Ztu0(Xt) + (1− u0(Xt))e−tMt

]
where

Zs = e−sMs +

∫ s

0
e−rMrdr.

Since, u0(x) = 1(−∞,0)(x), and Mt1(−∞,0)(Xt) = Mt, by assumption, we see that

u(t, x) ≥ E
[
Mt

Zt

]
with equality for M∗. By the Cauchy-Schwarz inequality:

u(t, x) ≥ E [Mt]
2

E[MtZt]

=
M2

0

M2
0 + E

[∫ t
0 e
−sd〈M〉s

]
since Z0 = M0 and

dZs = e−sdMs.

In order to obtain an explicit lower bound, we can choose a particular martingale, M . We

want to choose a martingale to approximate

M∗s = u(t− s,Xs)e
∫ s
0 [1−u(t−r,Xr)]dr.

Let’s consider the case when X is a Brownian motion.

In order to approximate M∗, we will need to approximate u. It is well known that the position

of the front is
√

2t+ o(t) (and we show this in Chapter 4). This suggests that we could use an

approximation of u such as u(t, x) ≈ u0(x−
√

2t). For simplicity, we work with the martingale

given by

Ms = E [1(x+Wt < 0)|Fs] .

We can rewrite this as

Ms =

∫ ∞
x+Ws√
t−s

e−y
2/2

√
2π

dy

and so

dMs = − e
− (x+Ws)

2

2(t−s)√
2π(t− s)

dWs

and

d〈M〉s =
e
− (x+Ws)

2

(t−s)

2π(t− s)
ds.
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Now we see that

1

u(t, x)
≤ 1 +

1

M2
0

∫ t

0

e−s−
x2

s+t

2π
√
t2 − s2

ds (2.6.2)

For x ≤ c
√
t for a constant c, we have that

1

M2
0

∫ t

0

e−s−
x2

s+t

2π
√
t2 − s2

ds→ 0

as t→∞. This follows from estimating M0 with the standard Gaussian tail bound, x2/(s+ t)

by x2/2t, and noting that ∫ t

0

e−s√
t2 − s2

ds→ 0.

This gives us that u(t, x)→ 1 for x ≤ c
√
t for any c. This is a slight improvement on the result

that follows from the trivial bound

u(t, x) ≥ Φ

(
− x√

t

)
obtained by setting M = 1 in the representation of Theorem 2.3.2, where Φ is the CDF of the

standard normal distribution. In that case we see that limt→∞ u(t, x) ≥ 1/2 when x = o(
√
t).

Neither of these bounds are very good. However, in Chapter 4, we iterate the trivial bound

here to obtain the speed of the wave front up to the linear term. We can not directly iterate

the bound in (2.6.2) since it only holds when u0 is an indicator function but the bound could

be improved with a better choice of control, M . One possible choice of control would be

Ms = E
[
1(x+Wt < 0)e

∫ t
0 1(x+Wr−

√
2(t−r)>0)

∣∣∣∣Fs]
but this requires more work.

Remark 7. By using the Lagrangian framework, one can obtain some information about a

suitable set of admissible controls to use when bounding a solution u using Proposition 2.6.2.

We will see that it is essential to have a condition such as {Ms = 0} = {Xs > 0} in this way.

If u0 = 1(−∞,0), then, for t > 0

1

u(t, x)
≤ min

M∈M1

E
[∫ t

0
e−sM2

s ds+ e−tM2
t

]
(2.6.3)

where M1 is the set containing all non-negative martingales M , with M0 = 1, such that 〈M〉 is

differentiable and Ms = 0 ⇐⇒ u0(Xs) = 0 ⇐⇒ Xs > 0. We can see this as follows: for any

M ∈M1,

E[M2
s ] = M2

0 + E
[∫ s

0

d〈M〉s
ds

]
(2.6.4)

and so
d

ds
E[M2

s ] = E
[

d〈M〉s
ds

]
.

Expanding ∫ t

0
e−s

d

ds
E[M2

s ]ds
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using integration by parts, we see that

M2
0 + E

[∫ t

0
e−sd〈M〉s

]
= E

[
e−tM2

t +

∫ t

0
e−sM2

s ds

]
and thus, by the bound (2.6.1),

u(t, x) ≥ M2
0

E
[
e−tM2

t +
∫ t

0 e
−sM2

s ds
]

for all M ∈M1 and the bound (2.6.3) follows.

Compare this to the Lagrangian representation, (2.5.1). We see that

1

v(t, x)
≡ 1 = min

M∈M2

E
[∫ t

0
e−sM2

s ds+ e−tM2
t

]
where M2 is defined in the same way as M1 without the condition that Ms = 0 ⇐⇒ Xs > 0.

We have, above, that v ≡ 1, since 1 is the unique solution to the equation

∂v

∂t
= Lv + v − v2

with v0 ≡ 1.

Take X to be a standard Brownian Motion. Since, when u0 = 1(−∞,0), we have u(t, x) ≤ 1 for

t > 0 and so we see that the additional condition {Ms = 0} = {Xs > 0} in the bound (2.6.3) is

an important and natural restriction and when bounding u using this method one should choose

controls, M , with this feature. �

2.7. Existence of Solutions

So far we have been working under the assumption that solutions to equation (2.1.1) exist. Here,

we give some sufficient conditions for existence and uniqueness. Since such questions are well

studied for mild solutions, we will first give results for existence and uniqueness of mild solutions

and show that, in the cases below, this is an equivalent notion to solutions defined in the sense

of Definition 2.1.1.

Throughout this section we will use the following notation. Let f : [0,∞)× E × R→ R and

u0 : E → R be measurable. We let X be a time-homogeneous Markov process with generator L.

Note that sometimes f will not be time-dependent and we will consider the special case

f : E × R→ R.

Definition 2.7.1. We say that a measurable function, u : [0,∞) × E → R, is a mild solution

to the equation

ut = Lu+ f(t, x, u) (2.7.1)

u(0, ·) = u0

if for all (t, x) ∈ [0,∞)× E,

u(t, x) = Ex
[
u0(Xs) +

∫ t

0
f(t− r,Xr, u(t− r,Xr))dr

]
.
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The following result is based on a standard Picard iteration proof. For further details, one

can see, for example, Cabré and Roquejoffre [CR13].

Theorem 2.7.2. Suppose that f(t, x, ·) is Lipschitz uniformly in t and x and that u0 : E → R

be bounded. Fix some T > 0. Then, the equation

ut = Lu+ f(t, x, u) (2.7.2)

u(0, ·) = u0

has a unique mild solution u : [0,∞)× E → R and u is bounded on [0, T ]× E.

Furthermore, let ui0 : E → R, i = 1, 2 be bounded with

u1
0(x) ≤ u2

0(x)

for all x ∈ E and let ui, i = 1, 2 be the corresponding solutions of equation (2.7.2) corresponding

to initial conditions ui0. Then,

u1(t, x) ≤ u2(t, x),

for all (t, x) ∈ [0,∞)× E.

Note that for KPP-type nonlinearities, this result does not apply directly. However, because

of the comparison principle, one can extend the result to these nonlinearities by showing that the

solution takes values in a compact set for all time and then assuming, without loss of generality,

that f is globally Lipschitz outside of this set. This is the idea for the next theorem:

Theorem 2.7.3. Suppose that f : E × R → R is Lipschitz on [0, c] for c > 0 with f(x, 0) = 0

and that f(x, c) ≤ 0 and that 0 ≤ u0(x) ≤ c for all x ∈ E.

Then, the equation

ut = Lu+ f(x, u) (2.7.3)

u(0, ·) = u0

has a unique mild solution u with 0 ≤ u(t, x) ≤ c for all (t, x) ∈ [0,∞)× E.

Proof. For all x ∈ E, we define a new function f̃(x, ·) that is equal to f(x, ·) on the interval [0, c]

and is globally Lipschitz. By Theorem 2.7.2, there is a unique mild solution ũ to

ũt = Lũ+ f̃(x, ũ) (2.7.4)

ũ(0, ·) = u0.

Let u1
0 ≡ 0 and u2

0 ≡ c and let u1 and u2 be the corresponding solution to (2.7.4) with u1
0 and

u2
0 as initial conditions.

Since f̃(·, 0) = 0, we have u1(t, x) = 0 for all t and x. Similarly, we see that u2 is equal to the

solution to the ODE

dv

dt
= f̃(x, v)

v(0) = c.
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2.7. Existence of Solutions

Since f̃(·, c) ≤ 0, it follows that u2(t, x) ≤ c.
Since 0 = u1

0 ≤ u0 ≤ u2
0 = c, it follows, by Theorem 2.7.2, that 0 ≤ ũ(t, x) ≤ c for all t and x.

Finally, since f and f̃ agree on [0, c], we can set u = ũ and then u is the required mild solution

to equation (2.7.3) and the result follows.

2.7.1. Solutions when k > 0

In this section, we consider the non-linearity f(x, u) = u(φ(x)− 1
ku

k) with k < 0.

The following result is a corollary of Theorem 2.7.3:

Theorem 2.7.4. Let k > 0 and suppose that φ : E → R with φ(x) ≤ ck/k for c > 0. Suppose

0 ≤ u0(x) ≤ c for all x ∈ E. Then, the equation

ut = Lu+ u(φ− 1
ku

k) (2.7.5)

u(0, ·) = u0

has a unique mild solution u with 0 ≤ u(t, x) ≤ c for all (t, x) ∈ [0,∞)× E.

So far, we have been dealing with mild solutions. Now, we reconcile this with the generalised

solution of Definition 2.1.1. Recall, we say that a measurable function u : [0,∞) × E → [0,∞)

is a solution to equation (2.7.5), if, M∗ defined by

M∗s = u(t− s,Xs)e
∫ s
0 [φ(Xr)− 1

k
u(t−r,Xr)k]dr

is a martingale.

Theorem 2.7.5. Let u be as in Theorem 2.7.4. Then there exists a unique solution to equation

(2.7.5) in the sense of Definition 2.1.1.

Proof. By Theorem 2.7.4, u satisfies

u(t, x) = Ex
[
u0(Xt) +

∫ t

0
f(Xr, u(t− r,Xr))dr

]
where f(x, u) = u(φ(x)− 1

ku
k) for u ≥ 0.

From this we see that

Zs ≡ u(t− s,Xs) +

∫ s

0
f(Xr, u(t− r,Xr))dν

defines a martingale. Indeed, for 0 ≤ s ≤ t,

Zs − EX0=x[Zt|FXs ] = u(t− s,Xx
s )− EX0=x

[
u0(Xt) +

∫ t

s
f(Xr, u(t− r,Xr))dr

∣∣∣∣Xs

]
where we used the Markov property of X. By the definition of a mild solution we have

Zs − Ex[Zt|Fs] = u(t− s,Xx
s )− Ey

[
u0(Xt−s) +

∫ t−s

0
f(Xr, u(t− s− r,Xr))dr

] ∣∣∣∣
y=Xx

s

= 0.
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Since Z is a martingale, the process M defined by

Ms = u(t, x) +

∫ s

0
e
∫ r
0 h(Xν ,u(t−r,Xν))dνdZr

is a martingale, since the integrand is bounded and continuous. Here we define h : E × R→ R

by h(x, u) = 1
k (φ(x)− uk). Using integration by parts, we have

Ms = u(t− s,Xs)e
∫ s
0 h(Xr,u(t−r,Xr))dr.

In other words, u is a solution in the sense of Definition 2.1.1.

2.7.2. Solutions when k < 0

Here we consider the non-linearity f(x, u) = u(φ(x)− 1
ku

k) with k < 0. In this case f(x, ·) is not

Lipschitz at u = 0. Therefore, we do not expect a unique mild solution for each initial condition.

If the initial condition is bounded away from zero, we can, without loss of generality, modify

the nonlinearity around zero to be Lipschitz and then the above discussion and Theorem 2.7.5,

in particular, can be directly applied to this case:

Theorem 2.7.6. Let k < 0. Suppose that φ is bounded below. Then there exists ε such that for

any 0 < ε ≤ ε, if u0(x) ≥ ε for all x ∈ E, then the equation

ut = Lu+ u(φ− 1
ku

k) (2.7.6)

u(0, ·) = u0

has a unique solution u with u(t, x) ≥ ε for all (t, x) ∈ [0,∞)× E in the mild sense and in the

sense of Definition 2.1.1.

The proof mirrors the proofs of Theorems 2.7.3 – 2.7.5.

Proof. Since φ is bounded below, we can find ε > 0 such that for all 0 < ε ≤ ε we have

φ(x) ≥ 1
kε
k ≥ 1

kε
k. Now, we fix one such ε.

Let f(x, u) = u(φ(x)− 1
ku

k) and we can define, for all x ∈ E, f̃(x, ·) so that f̃(x, u) = f(x, u)

for u ≥ ε and f̃(x, ·) is globally Lipschitz. For the modified PDE there is a unique mild solution

by Theorem 2.7.2.

Let u1 be the solution corresponding to initial condition u1
0 ≡ ε. Then, u1(t, x) ≥ ε, since

f̃(x, ε) ≥ 0 by the fact that φ ≥ 1
kε
k. Therefore, u(t, x) ≥ ε by the comparison principle Theorem

2.7.2. Since f and f̃ agree for u ≥ ε, the result holds when u is a mild solution.

The fact that u is also a solution in the sense of Definition 2.1.1, follows from the same proof

as in Theorem 2.7.5 (since h(x, ·) is bounded on [ε,∞)).

There are not unique mild solutions when f is not Lipschitz. However, the optimisation

problems we considered still make sense and would be interesting to know when solutions in the

sense of Definition 2.1.1 exist.
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When k ∈ (−1, 0) we set

Ut(f)(x) = min
Y

Ex
[∫ t

0
e
∫ s
0 φ(Xr)dr|Ẏs|1+1/k + e

∫ t
0 φ(Xr)drY

1+1/k
t f(Xt)

]
where the minimum is taken over positive, strictly decreasing, adapted and absolutely continuous

(Ys)0≤s≤t with Y0 = 1. Similarly, for k < −1, we define U in terms of the corresponding

maximisation problem.

By Lemma 2.4.1/Corollary 2.6.1, we see that for k ∈ (−1, 0):

Ut(u0)(x) ≥ E

[(
u0(Xt)

−ke−k
∫ t
0 φ(Xr)dr +

∫ t

0
e−k

∫ s
0 φ(Xr)dr

)−1/k
]
, (2.7.7)

and for k < −1:

Ut(u0)(x) ≥
(
E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]−k
+

∫ t

0
E
[
e
∫ s
0 φ(Xr)dr

]−k
ds

)−1/k

(2.7.8)

Note that this does not require U to be a solution in any sense.

Suppose that 0 < ε < ε as in Theorem 2.7.6. From the bounds above, we see that for any

such ε, there exists δ > 0 such that Ut(u0)(x) ≥ ε for any t > δ and that ε → 0 if and only if

δ → 0. Therefore, by Theorem 2.7.6, for t > δ, u(t, x) = Ut(u0)(x) defines a mild solution and

a solution in the sense of Definition 2.1.1 to

ut = Lu+ f(x, u) for t > δ

u(δ, x) = Uδ(u0)(x)

for any δ > 0.

We would like to take the limit δ ↘ 0.

Set h(x, u) = φ− 1
ku

k. Then, for all t > δ > 0,

u(t+ δ, x) = E
[
u(δ,Xt)e

∫ t
0 h(Xs,u(t+δ−s,Xs))ds

]
and so

u(t, x) = E
[
u(δ,Xt−δ)e

∫ t−δ
0 h(Xs,u(t−s,Xs))ds

]
.

Let

ũ(t, x) ≡ E
[
u0(Xt)e

∫ t
0 h(Xs,u(t−s,Xs))ds

]
. (2.7.9)

To show existence of a solution in the sense of Definition 2.1.1, one must show, by taking the

limit δ ↘ 0, that u = ũ. Then, by the Markov property of X, it would follow that M∗ is a

martingale and that u is a solution to

ut = Lu+ f(x, u) for t > 0

u(0, x) = u0(x).

If we can show that

u(δ,Xt−δ)e
∫ t−δ
0 h(Xs,u(t−s,Xs))ds P−→ u0(Xt)e

∫ t
0 h(Xs,u(t−s,Xs))ds (2.7.10)
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and that (
u(s,Xt−s)e

∫ t−s
0 h(Xr,u(t−r,Xr))dr

)
0≤s≤t

(2.7.11)

is uniformly integrable, then we will be done.

In general, showing uniform integrability would require some subtlety to use the trade-off

between u(s,Xt−s)e
∫ t−s
0 h(Xr,u(t−r,Xr))dr but here we give a simple sufficient condition:

Theorem 2.7.7. Let X be a Lévy process. Suppose that φ is bounded and that u0 is continuous,

bounded, and satisfies

E
[
eCu0(Xt)k

]
<∞ (2.7.12)

for all t, where C(t,Xt) = t
−ke

k
∫ t
0 φ(Xr)dr. Then, there exists a solution to

ut = Lu+ u(φ− 1
ku

k) (2.7.13)

u(0, ·) = u0

in the sense of Definition 2.1.1 and it is given by u(t, x) = Ut(u0)(x).

In the case when X is a Brownian motion we have the following corollary.

Corollary 2.7.8. Let X be standard one-dimensional Brownian motion. Suppose that φ is

bounded and that u0 is bounded, continuous and satisfies

u0(x) ≥ c|x|−α

for |x| sufficiently large and α < 2
−k . Then, there exists a solution to

ut =
1

2

∂2u

∂x2
+ u(φ− 1

ku
k) (2.7.14)

u(0, ·) = u0

in the sense of Definition 2.1.1 and it is given by u(t, x) = Ut(u0)(x).

Proof of Corollary 2.7.8. By Theorem 2.7.7, the result will follow if

E
[
exp

(
c2(t)|Xt|(−k)α

)
1|Xt|≥c1

]
<∞

where c2 = 1
−kcte

bt and b is a constant such that φ ≥ b/k, and c1 > 0 is some constant. Since

X is a Brownian motion, the expectation is finite whenever (−k)α < 2.

Proof of Theorem 2.7.7. We need to show the convergence and uniform integrability properties

in (2.7.10) and (2.7.11), respectively.

Since u0 is bounded above, it follows, from Corollary 2.6.1, that u(s, x) is bounded above for

all s ≤ t and x ∈ E. Therefore, from the discussion above if we bound(
e
∫ t−s
0 h(Xr,u(t−r,Xr))dr

)
s≤t

by a function in L1(P), we will have the required uniform integrability of (2.7.11).
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From (2.7.7) and (2.7.8), we have the following trivial bound:

u(t, x) ≥ E
[
e
∫ t
0 φ(Xr)dru0(Xt)

]
and therefore

u(t− s,Xs) ≥ e−
∫ s
0 φ(Xr)drE

[
e
∫ t
0 φ(Xr)dru0(Xt)

∣∣Fs]
and Ns := E

[
e
∫ t
0 φ(Xr)dru0(Xt)

∣∣Fs] defines a martingale.

Write φ ≤ c. Then, for all s ∈ [0, t],

E
[
e
∫ t−s
0 h(Xr,u(t−r,Xr))dr

]
≤ ectE

[
exp

(
1
−k

∫ t−s

0
Nk
r dr

)]
≤ ectE

[
sup
r≤t

exp
(

t
−kN

k
r

)]
≤ ect+1E

[
exp

(
t
−kN

k
t

)]
≤ ect+1E

[
exp

(
t
−ke

k
∫ t
0 φ(Xr)dru0(Xt)

k
)]

In the first line we used the fact that φ ≤ c and the definition of N . To go from the second to

third line, we use Doob’s submartingale inequality with the fact that exp(CNk) and CNk are

sub-martingales for any constant C > 0 independent of s. In particular we used the fact that if

(Ms)s≤t is a submartingale, then for p > 1

E
[
sup
s≤t

eMs

]
≤ E

[
sup
s≤t

(e
Ms
p )p

]
≤
(

p

p− 1

)p
E
[
sup
s≤t

eMt

]
and infp>1

(
p
p−1

)p
= e. Therefore, by condition (2.7.12), we have the required uniform integra-

bility.

Next, we show that the convergence in (2.7.10). We will use the product rule for convergence

in probability and show that

u(δ,Xt−δ)
P−→ u0(Xt) (2.7.15)

and that

e
∫ t−δ
0 h(Xs,u(t−s,Xs))ds P−→ e

∫ t
0 h(Xs,u(t−s,Xs))ds. (2.7.16)

The convergence in (2.7.15) follows from Corollary 2.6.1. Indeed, take k ∈ (−1, 0) (the case

k < −1 is similar). Then,

E

[(
e−k

∫ δ
0 φ(Xt−δ+r)dru0(Xt)

−k +

∫ δ

0
e−k

∫ s
0 φ(Xt−δ+r)drds

)−1/k ∣∣∣∣Xt−δ

]
≤ u(δ,Xt−δ) ≤(
E
[
e
∫ δ
0 φ(Xt−δ+r)dru0(Xt)

∣∣Xt−δ

]−k
+

∫ δ

0
E
[
e
∫ s
0 φ(Xt−δ+r)dr

∣∣Xt−δ

]−k
ds

)−1/k

and the upper and lower bounds converge to u0(Xt) in probability, since u0 is continuous and

bounded and X is continuous in probability and so the limit (2.7.15) holds.

From above, we see that ∫ t

0
h(Xs, u(t− s,Xs))ds <∞
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almost surely and so the expression∣∣∣e∫ t−δ0 h(Xs,u(t−s,Xs))ds − e
∫ t
0 h(Xs,u(t−s,Xs))ds

∣∣∣
is defined and converges to 0, proving limit (2.7.16). Therefore, we have the required convergence

in probability and it follows that u(t, x) is given by equation (2.7.9), as required.
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Chapter 3.

An Application To A Merton-Type Utility

Maximisation Problem

3.1. Merton-Type Utility Maximisation Problems

In this chapter we consider an HJB equation coming from a utility maximisation problem. This

equation is usually not considered as an FKPP-type equation since the non-linearity is not of

the KPP form but we see that in this case the equation is in the class of equations of the form

(2.1.1).

The mathematics of utility maximisation problems has been intensively studied since Merton

wrote his seminal papers [Mer69, Mer71]. We will use a model based on Merton’s work as well

as ideas from the work of Zariphopoulou [Zar01].

A summary of the financial model that we consider is the following. We will study a finite

horizon model. In the model, our investor wants to maximise their utility over a fixed time

interval and the utility function will depend on the amount of money they consume and also the

wealth left over at the end of the time interval. The investor can only increase their wealth by

investing in either a riskless account or a risky stock and can only consume money coming from

their wealth. The investor can choose how to invest and also how much they consume at all

times. In this model there are no transaction costs. Now we will set up the problem rigorously

below.

Consider the following utility maximisation problem. Firstly, we suppose that we have a

simple market model. In particular, suppose that we have a money market account with price

process (Bs)s≥0 and a stock with price process (Ss)s≥0. We assume that the dynamics evolve

according to

dBs = rsBsds

dSs = Ss(µsds+ σsdWs)
(3.1.1)

where r, µ and σ are predictable and locally bounded and W is a standard Brownian motion.

The process r can be interpreted as the interest rate which evolves over time. µ represents the

mean return of the stock and σ is the volatility process.

Now, we introduce an investor into the market. We write Ys for the total wealth at time s.

To avoid doubling strategies, we will make the assumption that the investor can’t go into debt;
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that is,

Ys > 0 for all s ≥ 0 almost surely.

We write π0
s for the number of shares invested in the money market account and πs for the

number of shares invested in the stock at time s. We allow the processes π0 and π to take any

positive real values. Therefore, by definition,

Ys = π0
sBs + πsSs.

We allow the investor to consume at a rate cs ≥ 0 at time s and assume the self financing

condition. In this case, this means that the wealth of the investor evolves according to

dYs = π0
sdBs + πsdSs − csds.

Combining these we see that

dYs = (rsYs + πs(µs − rs)Ss − cs)ds+ πsσsSsdWs

= Ys[(rs + θsλs − ηs)ds+ θsdWs]
(3.1.2)

where we define θ and η to be the normalised controls given by

θsYs = πsσsSs,

ηsYs = cs,
(3.1.3)

and λ to be the Sharpe ratio defined by

λs =
µs − rs
σs

.

Thus, given initial wealth Y0, the process Y θ,η is well defined if∫ t

0

(
|rs + θsλs − ηs|+ θ2

s

)
ds <∞ almost surely. (3.1.4)

The original controls, can be recovered via

πs =
θsY

θ,η
s

σsSs

π0
s =

Y θ,η
s

Bs

(
1− θs

σs

)
cs = ηsY

θ,η
s .

(3.1.5)

Now, we can state the utility maximisation problem. For a fixed time horizon t > 0, we aim

to maximise

E
[∫ t

0
e−
∫ s
0 γνdνU(cs)ds+ e−

∫ t
0 γνdνGtU(Yt)

]
where the process (γs)0≤s≤t is the investor’s subjective stochastic rate of discounting, U is an

increasing concave function representing the investor’s utility function, and where Gt > 0 is an

additional random factor.
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3.2. Solving the Maximisation Problem

This type of problem was first considered by Merton in his seminal paper [Mer69]. In order

to make the problem tractable, however, we make some simplifications based on the work of

Zariphopoulou [Zar01].

We introduce an underlying economic process (Xs)0≤s≤t which evolves according to

dXs = β(Xs)ds+ α(Xs)dW̃s

where α and β are regular enough (for instance, Lipschitz continuous) for there to exist a unique

strong solution X starting from a given X0 = x and where W̃ is a standard Brownian Motion.

We will work with the filtration F generated by the pair (W, W̃ ).

We suppose that W and W̃ have a constant covariation ρ and so

〈W, W̃ 〉s = ρs.

In the market, we assume that the spot interest rate and the Sharpe ratio depend on the

economic factor X. That is

rs = r(Xs),

λs = λ(Xs), for all s ∈ [0, t]

where r, λ : R→ R with some slight abuse of notation.

Apart from the assumption that the correlation ρ is constant and that the economic factor X

is one-dimensional, the construction given is fairly general.

Now, for the preferences of the investor, we also assume that the subjective rate of discounting

and G depend on the economic factor X:

γs = γ(Xs) for all s ∈ [0, t],

Gt = G(Xt),

where γ,G : R→ R, again with some slight abuse of notation.

Finally, we assume that the utility function U corresponds to constant relative risk aversion

(CRRA) and is of the form

U(y) =
y1−R

1−R
, for R > 0.

3.2. Solving the Maximisation Problem

Here, we show that it is possible to write this maximisation problem over two variables in terms

of the solution to an FKPP-type equation of the form

∂u

∂t
= Lu+ φu− 1

ku
1+k.

We will consider the following special case: let

δ =
R

R+ (1−R)ρ2
.
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and set

Lu =
α2

2

∂2u

∂x2
+

[
β +

1−R
R

αρλ

]
∂u

∂x

φ =
1−R
δ

[
r +

λ2

2R
− γ

1−R

]
k = − δ

R
.

(3.2.1)

In this case, the operator L is the stochastic generator of the process, Z, solving the SDE

dZs = α(Zs)dWs +

(
β(Zs) +

1−R
R

ρα(Zs)λ(Zs)ρ

)
ds. (3.2.2)

Note that the particular value of R used in practice is debated and depends on the individual

investor. In the important paper by Mehra and Prescott [MP85] on the Equity Premium Puzzle,

R is set to be between 0 and 10. Note that, if R ∈ (0, 1), then k ∈ (−∞,−1) and if R ∈ (1,∞),

then k ∈ (−1, 0).

Before we give the representation, we introduce the following technical definition.

Definition 3.2.1. We say that a pair of controls (θ, η) has Property (D) if the process defined

by

e−
∫ s
0 γ(Xr)dru(t− s,Xs)

δU(Y θ,η
s )

is in class D.

Assumption 3.2.2. We adopt the set-up from Section 3.1 and define δ as above. Suppose that

the following holds:

1. G1/δ ∈ C2(R) and is bounded and uniformly continuous and there exists ε > 0 such that

G(x) > ε for all x ∈ R.

2. α and β are globally Lipschitz and bounded, and r, λ, and γ are continuously differentiable

and bounded.

Theorem 3.2.3. Suppose that Assumption 3.2.2 holds. Then, there exists a classical solution

u : [0,∞)× R→ (0,∞) to

∂u

∂t
=
α2

2

∂2u

∂x2
+

[
β +

1−R
R

αρλ

]
∂u

∂x
+

1−R
δ

[
r +

λ2

2R
− γ

1−R

]
u+

R

δ
u1−δ/R

u(0, x) = G(x)1/δ.

(3.2.3)

Moreover, we have

U(Y0)u(t, x)δ = max
θ,η

E
[∫ t

0
e−
∫ s
0 γ(Xr)drU(ηsY

θ,η
s )ds+ e−

∫ t
0 γ(Xr)drG(Xt)U(Y θ,η

t )

]
with the maximum taken over all admissible strategies such that Property (D) holds. Suppose

also that Property (D) holds for (θ∗, η∗).

The optimal θ and η are given by

θ∗s =
1

R

(
λ(Xs) + ρδα(Xs)

∂

∂x
log u(t− s,Xs)

)
,

η∗s = u(t− s,Xs)
−δ/R,

(3.2.4)
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Proof of Theorem 3.2.3. Since G > ε for some ε > 0 and φ (defined in equation (3.2.1)) is

bounded below, Theorem 2.7.6 applies and guarantees the existence of a mild solution with

u ≥ ε̃ for some ε̃ > 0. On the range [ε̃,∞), the nonlinearity f , defined by f(u) = φu− 1
ku

1+k, is

continuously differentiable and outside of this range it can be modified, without loss of generality,

to be smooth, globally Lipschitz and bounded. Therefore, we can consider the PDE with this

modified nonlinearity which we denote by f̃ .

Let Cu,b(R) be the Banach space of bounded and uniformly continuous functions mapping

R → R equipped with the uniform norm. If u ∈ Cu,b(R), then f̃(u) ∈ Cu,b(R). By Assumption

3.2.2, it follows that L generates a strongly continuous semigroup in Cu,b(R) and G1/δ is in the

domain of L. Therefore, the mild solution u is also a classical solution – see, for example, Pazy

[Paz92, Theorem 6.1.5] and a straightforward adaptation of the proof in [SP12, Theorem 19.9].

Now we show why the representation holds. We use Itô’s Lemma:

(?) ≡ d

(∫ s

0
e−
∫ r
0 γ(Xν)dνU(ηrYr)dr + e−

∫ s
0 γ(Xr)dru(t− s,Xs)

δU(Ys)

)
= e−

∫ s
0 γ(Xr)dr

[
U(ηsYs)− γ(Xs)u(t− s,Xs)

δU(Ys) + d(u(t− s,Xs)
δU(Ys))

]
.

Note that

dU(Ys) = Y 1−R
s

[(
r +

(
θλ− R

2 θ
2
)
− η
)

+ θdWs

]
du(t− s,Xs)

δ = δuδ−1
[(
−ut + α2

2 uxx + βux + α2 δ−1
2

u2x
u

)
ds+ αuxdW̃s

]
d〈U(Y·), u(t− ·, X·)δ〉s = δuδ−1Y 1−R

s αρθux

Then, for all θ, η, we have

(?) = e−
∫ s
0 γ(Xr)drY 1−R

s uδ−1
[

1
uδ−1

(
η1−R

1−R − ηu
δ
)

+
(
(λu+ δραux)θ − Ru

2 θ
2
)

+
(
r − γ

1−R

)
u+ δ

1−R

(
−ut + α2

2 uxx + βux + δ−1
2 α2 u2x

u

)]
+ dMs

where M is a local martingale.

We see that for R > 0,

1

uδ−1

(
η1−R

1−R
− ηuδ

)
≤ R

1−R
u1−δ/R

with equality if and only if η = η∗ and(
(λu+ δραux)θ − Ru

2
θ2

)
≤ (λu+ δραux)2

2Ru

with equality if and only if θ = θ∗.

Combining this with the fact that u solves the PDE (3.2.3) we see that

(?) ≤
(
δ2ρ2

R
+
δ(δ − 1)

1−R

)
e−
∫ s
0 γ(Xr)drY 1−R

s uδ−2α
2

2
u2
xds+ dMs

= dMs
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by the definition of δ; this is the reason for choosing δ as it is defined.

Let (τn)n≥1 be an increasing sequence of stopping times that reduce M and such that τn ↗ t

as n→∞. Then, integrating over [0, τn] and taking expectations gives

E
[∫ τn

0
e−
∫ r
0 γ(Xν)dνU(ηrYr)dr + e−

∫ τn
0 γ(Xν)dνu(t− τn, Xτn)δU(Yτn)

]
≤ u(t, x)δU(Y0)

with equality for θ∗ and η∗ defined above.

We can interchange the limit and the expectation for the first term by the Monotone Conver-

gence Theorem and the second term by since

e−
∫ s
0 γ(Xr)dru(t− s,Xs)

δU(Y θ,η
s )

is in class D, by assumption.

Remark 8. In the case that R ∈ (0, 1), we can maximise over a larger set of controls; we do

not need to specify that all controls (θ, η) satisfy Property (D). Indeed, we only require this for

the optimal controls; in the proof above, we can use Fatou’s Lemma to see

E
[∫ t

0
e−
∫ r
0 γ(Xν)dνU(ηrYr)dr + e−

∫ t
0 γ(Xν)dνG(Xt)

δU(Yt)

]
≤ u(t, x)δU(Y0)

since all terms are positive. We then only use the class D assumption for interchanging limits

for the optimal controls. �

3.2.1. Motivation for Theorem 3.2.3

The FKPP type equation (3.2.3), occurs naturally in this setting; in fact, it arises from the

HJB equation corresponding to the maximisation problem. We outline the details here. The

following type of argument is due to Zariphopoulou [Zar01].

Define the value function, v, by

v(s, x, y) = supE
[∫ t

s
e−
∫ r
s γ(Xν)dνU(ηrYr)dr + e−

∫ t
s γ(Xr)drG(Xt)U(Yt)

∣∣∣∣Xs = x, Ys = y

]
where the supremum is taken over all admissible processes (θr, ηr)s≤r≤t.

The corresponding HJB problem is:

0 =
∂v

∂s
+
α2

2

∂2v

∂x2
+ β

∂v

∂x
− γv

+ sup
(θ,η)

[
U(ηy) + y(r + θλ− η)

∂v

∂y
+
y2θ2

2

∂2v

∂y2
+ yρθα

∂2v

∂y∂x

]
v(t, x, y) = G(x)U(y)

(3.2.5)

Considering the scaling properties of the utility function, we make the ansatz v(s, x, y) =

U(y)w(t− s, x). Then, finding v simplifies to solving the equation

∂w

∂s
=
α2

2

∂2w

∂x2
+

[
β +

(1−R)

R
λρα

]
∂w

∂x
+ (1−R)

[
r +

λ2

2R
− γ

1−R

]
w

+Rw1−1/R +
1−R

2R
ρ2α2

(
∂w
∂x

)2
w

w(0, x) = G(x).

(3.2.6)
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This was obtained by simply substituting v(s, x, y) = U(y)w(t−s, x) and noting that due to the

special form of U , the finding the supremum simplifies to maximising two simpler expressions:

max
η>0

[
η1−R

1−R
− ηw

]
and

max
θ>0

[(
λw + ρα

∂w

∂x

)
θ − Rw

2
θ2

]
This gives optimal controls

θ∗s =
1

R

(
λ(Xs) + ρα(Xs)

∂

∂x
logw(t− s,Xs)

)
,

η∗s = w(t− s,Xs)
−1/R,

(3.2.7)

Finally, in order to remove the nonlinearity in the derivative term, we appeal to the transfor-

mation popularised by Zariphopoulou [Zar01], w(s, x) = u(s, x)δ, where

δ =
R

R+ (1−R)ρ2
.

Then, solving the HJB equation reduces to solving

∂u

∂t
=
α2

2

∂2u

∂x2
+

[
β +

1−R
R

αρλ

]
∂u

∂x
+

1−R
δ

[
r +

λ2

2R
− γ

1−R

]
u+

R

δ
u1−δ/R

u(0, x) = G(x)1/δ

(3.2.8)

In terms of u, the optimal controls become

θ∗s =
1

R

(
λ(Xs) + ρδα(Xs)

∂

∂x
log u(t− s,Xs)

)
,

η∗s = u(t− s,Xs)
−δ/R.

(3.2.9)
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Chapter 4.

Wave Fronts in FKPP-Type Equations

As we noted in Chapter 1, there has been much work on studying travelling wave solutions to

FKPP-type equations and also in studying the propagation and speed of the wave front for a

given initial condition. In this Chapter, we see how we can use the representations of Chapter 2

to study the speed of the wave front for several examples of FKPP type equations. In particular,

we use the optimisation-based representations to obtain bounds on the solution to the FKPP-

type equations, and by comparing the speed of the fronts of the upper and lower bounds, we

can find bounds the speed of the wave front.

As we noted before, the role of the Markov process X does not play a role in obtaining the

representations. For this reason, it is to be expected that the methods we use below for the case

when X is a Brownian motion and u solves the classical FKPP equation may be generalised.

This turns out to be the case; we will introduce the results separately for the case of the classical

FKPP equation and then generalise suitably for other types of equation.

First of all, we need to provide upper and lower bounds on the solution to equation (2.1.1)

under some mild conditions.

4.1. Bounds on u

We introduce bounds on the solution to

ut = Lu+ 1
ku(1− uk), in (0,∞)× Rd

u(0, x) = u0(x), for x ∈ Rd,
(4.1.1)

and write (Xt)t≥0 for the Lévy process with X0 = 0 with stochastic generator given by L. Here

we deal with the case when k > 0.

We will then be able to use the bounds below to describe the position of the front of the

solution given an initial condition u0 satisfying a simple, exponential decay condition.

For simplicity later on, we introduce the following notation.

Definition 4.1.1. Define the function D by

Dt(f)(x) =
f(x)et/k

(f(x)k(et − 1) + 1)
1/k

(4.1.2)
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for any function t ≥ 0, x ∈ Rd, and f : Rd → R. Define the function P by

Pt(f)(x) = E[f(x+Xt)] (4.1.3)

for any function t ≥ 0, x ∈ Rd, and f : Rd → R.

We have the following bounds on u.

Lemma 4.1.2. Let u be a solution to equation (4.1.1) and D and P be defined as above. Then,

(Pt ◦Dt)(u0)(x) ≤ u(t, x) ≤ (Dt ◦ Pt)(u0)(x).

This follows from rewriting Corollary 2.6.1.

Remark 9. Let P and D defined as above. By definition, for sufficiently regular v0, v defined

by v(t, x) = Pt(v0)(x) solves

∂v

∂t
= Lv

v(0, x) = v0(x)

and w defined by w(t, x) = Dt(w0)(x) solves

dw

dt
=

1

k
w(1− wk)

w(0, x) = w0(x)

since D corresponds to the deterministic optimisation problem.

In other words, P and D are semigroups and the bounds of Lemma 4.1.2 correspond to splitting

equation (4.1.1) into the linear and nonlinear parts. In the spirit of the Trotter-Kato Theorem

[Kat78], we will iterate these bounds over small time steps and obtain convergent bounds as the

time-step size converges to zero. In fact, this is the content of Section 4.1.1 and for t fixed, we

will have uniform convergence. �

4.1.1. Iterative Bounds

We now generalise the above bounds by approximating over small time steps.

In order to generalise Lemma 4.1.2 we will need the following simple observation.

Lemma 4.1.3. Let D and P be defined as above. Fix t. Then, Ds and Ps are increasing; that

is, if f1, f2 : Rd → R with

f1(x) ≤ f2(x) for all x,

then

Dt(f1)(x) ≤ Dt(f2)(x)

and

Pt(f1)(x) ≤ Pt(f2)(x).

Moreover, if l(x) = x, then Dt(l) : [0, 1]→ [0, 1] with Dt(l)(0) = 0 and Dt(l)(1) = 1. Also, with

some abuse of notation, Pt(0) = 0 and Pt(1) = 1. Finally, D0(f) = f and P0(f) = f for all

x ∈ Rd and f : Rd → R.
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The proof is clear.

We introduce the following notation.

Y = {Y : Y : [0, t]→ R, is absolutely continuous, decreasing and Y0 = 1} . (4.1.4)

We will obtain the result by using Theorem 2.2.3 and minimising over a subset and superset

of set

Y = {Y ∈ Y : Y is adapted to the filtration F}

We denote, by (tk){0≤k≤n}, where t0 = 0 and tn = t, a partition of the interval [0, t]. Then, we

set

Yn =

{
Y ∈ Y : Ys =

n−1∑
k=0

1(tk,tk+1](s)ξ
k
s , ξ

k
s ∈ Ftk for s ∈ [tk, tk+1)

}
. (4.1.5)

This is a generalisation of the set of deterministic functions.

We also define

Yn =

{
Y ∈ Y : Ys =

n∑
k=1

1(tk−1,tk](s)ξ
k
s , ξ

k
s ∈ Ftk for s ∈ (tk−1, tk]

}
, (4.1.6)

to be piecewise functions that can see ahead to the next point in time in the partition.

By definition, we have

Yn ⊂ Y ⊂ Yn.

As we saw in Lemma 4.1.2,

(Pt ◦Dt)(u0)(x) ≤ u(t, x) ≤ (Dt ◦ Pt)(u0)(x).

If we iterate this approximation backwards over each time point in the partition we will obtain

a better bounds on u. This suggests the following result

Theorem 4.1.4.

(Pt1−t0 ◦Dt1−t0) ◦ · · · ◦ (Ptn−tn−1 ◦Dtn−tn−1)(u0)(x)

≤ u(t, x)

≤ (Dt1−t0 ◦ Pt1−t0) ◦ · · · ◦ (Dtn−tn−1 ◦ Ptn−tn−1)(u0)(x)

(4.1.7)

Mostly, we will use the partition with tk = kt/n and then this result simply becomes

(P t
n
◦D t

n
)(n)(u0)(x) ≤ u(t, x) ≤ (D t

n
◦ P t

n
)(n)(u0)(x). (4.1.8)

Proof of Theorem 4.1.4. Using Theorem 2.2.3 we see that

u(t, x) = min
Y

E
[∫ t

0
es/k|Ẏs|1+1/kds+ et/ku0(x+Xt)|Yt|1+1/k

]
.

If we replace Y by Yn, we will obtain an upper bound on u(t, x) since Yn ⊂ Y. Similarly, if we

replace Y by Yn, we obtain a lower bound on u(t, x).
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1. Upper Bound

We will write Y i,j for processes in Y defined analogously for a partition on the interval

[ti, tj ].

Then we write

V j(x) = min
Yj,n

E
[∫ t−tj

0
er/k|Ẏr|1+1/kdr + e(t−tj)/ku0(x+Xt−tj )|Yt−tj |1+1/k

]
and so V n(x) = u0(x)

V 0(x) = u(t, x)

≤ min
Yn

E
[∫ t

0
es/k|Ẏs|1+1/kds+ et/ku0(x+Xt)|Yt|1+1/k

]
= min
Yn

E
[∫ t1

0
es/k|Ẏs|1+1/kds

+ E
[∫ t

t1

es/k|Ẏs|1+1/kds+ et/ku0(x+Xt)|Yt|1+1/k

∣∣∣∣Ft1]]
= min
Y0,1

E
[∫ t1

0
es/k|Ẏs|1+1/kds+ et1/k|Yt1 |1+1/kV 1(x+Xt1)

]
= min
Y0,1

(∫ t1

0
es/k|Ẏs|1+1/kds+ et1/k|Yt1 |1+1/kE

[
V 1(x+Xt1)

])
= (Dt1 ◦ Pt1)(V 1)(x)

where the last line follows from Lemma 4.1.2 since the upper bound corresponds to the

optimal value when minimising over optimal controls (see Corollary 2.6.1).

We can pull out the Yt1 factor since for (Zs)t1≤s≤t, with Zs = Ys
Yt1

we have

Zs = 1 +

∫ t

t1

Żs

and Z ∈ Y1,n.

Using Lemma 4.1.3, we can continue this process up to V n = u0, by induction and we are

done.

2. Lower Bound

The lower bound follows by a similar argument to the above: define

V j(x) = min
Y
j,n

E
[∫ t−tj

0
er/k|Ẏr|1+1/kdr + e(t−tj)/ku0(x+Xt−tj )|Yt−tj |1+1/k

]
and so V n(x) = u0(x)

V 0(x) = u(t, x)

≥ min
Y
n

E
[∫ t

0
es/k|Ẏs|1+1/kds+ et/ku0(x+Xt)|Yt|1+1/k

]
= min
Y

0,1

E
[∫ t1

0
es/k|Ẏs|1+1/kds+ et1/k|Yt1 |1+1/kV 1(x+Xt1)

]
≥ (Pt1 ◦Dt1)(V 1)(x)

by Lemma 4.1.2.
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Remark 10. We see that the proof of 4.1.4 above requires that φ is constant so that we can use

the Bellman method above. �

We will often use the following bound on D throughout this section.

Lemma 4.1.5. For any a ∈ (0, 1), f : Rd → [0, 1] and s > 0, and we have

Ds(f)(x) ≥ a1
{
f(x) ≥ abe−s/k

}
where,

b =
1

(1− ak)1/k
.

Proof. We rearrange the equation Ds(f)(x∗) = a for f(x∗) to find that

f(x∗) =
a

(ak + (1− ak)es)1/k
.

Since, D is increasing in the sense of Lemma 4.1.3, we find that

Ds(f)(x) ≥ a1{f(x) ≥ f(x∗)}

≥ a1
{
f(x) ≥ abe−s/k

}
.

Theorem 4.1.6. For t fixed, the bounds in Theorem 4.1.4, with partition given as in equation

(4.1.8), converge to u(t, x) uniformly in x.

Proof.

(P t
n
◦D t

n
)(n)(u0)(x) ≤ u(t, x) ≤ (D t

n
◦ P t

n
)(n)(u0)(x)

We consider the difference,

(D t
n
◦ P t

n
)(n)(u0)(x)− (P t

n
◦D t

n
)(n)(u0)(x) = (D t

n
− Idx) ◦ P t

n
◦ (D t

n
◦ P t

n
)(n−1)(u0)(x)

+ (P t
n
◦D t

n
)(n−1) ◦ P t

n
◦ (Idx −D t

n
)(u0)(x)

≡ (A) + (B).

By differentiating and finding the maximum, we see that

|D t
n

(f)− f | ≤ e
t
2n − 1

e
t
2n + 1

= tanh
(
t

4n

)
= O(n−1)

for f : Rd → [0, 1] and so

|D t
n

(f)− f | → 0, as n→ 0.

Since P t
n
◦ (D t

n
◦ P t

n
)(n−1)(u0)(x) is always bounded above and below by 1 and 0, respectively,

we have that (A)→ 0.

For the term (B), note that

|(B)| ≤ D(n−1)
t
n

(
tanh

(
t

4n

))
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Chapter 4. Wave Fronts in FKPP-Type Equations

Since, Dδ(f)(x) ≤ f(x)eδ, we have

|(B)| ≤ et tanh
(
t

4n

)
→ 0

as n→∞, for fixed t and so we are done.

4.2. Speed of the Wave Front for the Canonical FKPP Equation

First of all, we consider the canonical FKPP equation in one dimension. Suppose that u :

[0,∞)× R→ [0, 1] solves the equation

∂u

∂t
=

1

2

∂2u

∂x2
+

1

k
u(1− uk)

u(0, x) = u0(x)

(4.2.1)

in the sense of Definition 2.1.1 for k > 0.

Here we show how bounds above can be used to estimate the speed of the wave front in this

case given suitable initial conditions.

We will write Xs = x + Ws, where W is a standard Brownian motion. This corresponds to

L = 1
2
∂2

∂x2
.

Firstly, we consider the case when u0 = 1(−∞,0].

Theorem 4.2.1. Suppose that u is the solution to equation (4.2.1) with u0 = 1(−∞,0). Then,

for all fixed (t, x) ∈ [0,∞)× R, n ≥ 1 and a ∈ [0, 1) we have

aΦ

(
−x
√
n

t
− (n− 1)Φ−1

(
be−

t
nk

))
≤ u(t, x) ≤ et/kΦ

(
− x√

t

)
(4.2.2)

where b = (1− ak)−1/k.

Proof. The upper bound follows from Theorem 4.1.4 with n = 1 (i.e. Lemma 4.1.2):

(Dt ◦ Pt)(1(−∞,0))(x) =
E[1(−∞,0)(x+Wt)]e

t/k(
E[1(−∞,0)(x+Wt)]k(et − 1) + 1

)1/k
≤ et/kP(Wt ≤ −x)

= et/kΦ

(
− x√

t

)
.

For the lower bound, we use Theorem 4.1.4 again with fixed n. Using Lemma 4.1.3, we see that

(P t
n
◦D t

n
)(1)(1(−∞,0))(x) = P(x+Wt/n ≤ 0)

= Φ

(
−x
√
n

t

)
.

We can apply induction to the inequality

(P t
n
◦D t

n
)(m)(1(−∞,0))(x) ≥ aΦ

(
−x
√
n

t
− (m− 1)Φ−1

(
be−t/nk

))
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4.2. Speed of the Wave Front for the Canonical FKPP Equation

where m ∈ Z with 1 ≤ m ≤ n. Since a ∈ [0, 1), this clearly holds for m = 1.

For the inductive step we use Lemma 4.1.5. In particular for f : [0, 1] → [0, 1], strictly

decreasing, we have the bound

(Pt/n ◦Dt/n)(af)(x) ≥ aP
(
f(x+Wt/n) ≥ be−t/nk

)
= aP

(√
t
nW1 ≤ −x+ f−1(be−t/nk)

)
where b = (1− ak)−1/k.

Remark 11. We can modify the above proof to obtain a lower bound when the initial condition

is shifted and scaled. Suppose that u0(x) ≥ c11(−∞,−c2) where c1 ∈ (0, 1] and c2 ∈ R. Suppose

also that instead of evenly spaced time steps, we have an increasing sequence of fixed times

t0 = 0 < t1 < .... < tj < ...t = tn and if we set sj = tj − tj−1, then we find that there exists T

depending on n, k, a and c1 such that for t ≥ T we have

u(t, x) ≥ aΦ

 1
√
s1

−x+ c2 −
n∑
j=2

√
sjΦ

−1
(
be−

sj−1
k

) . (4.2.3)

�

4.2.1. Wave Speed

A corollary of Theorem 4.2.1 is the classical result [KPP37] giving the speed of the wave front.

Theorem 4.2.2. Let u be as in Theorem 4.2.1 and define m(t) to be the median value. That is

to say, u(t,m(t)) = 1
2 . Then,

m(t) =

√
2

k
t+ o(t)

To prove Theorem 4.2.2, we use the following elementary lemma, the proof of which is given

below.

Lemma 4.2.3. The following holds:

Φ−1(ε) ∼ −
√

2
√
− log(ε)

as ε↘ 0.

Given this lemma, we can prove Theorem 4.2.2.

Proof of Theorem 4.2.2. Fix t > 0. Since u is decreasing, if x is such that u(t, x) ≤ 1/2, then

m(t) ≤ x. Setting the right hand side of equation (4.2.2) equal to a half and rearrange for x.

Then, we see that if u(t, x) ≤ 1/2 when

x = −
√
tΦ−1

(
1

2et/k

)
.

So,

m(t)

t
≤
√

2

k

√
1 + k

t log 2(1 + o(1))
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Chapter 4. Wave Fronts in FKPP-Type Equations

by Lemma 4.2.3 and so

lim sup
t→∞

m(t)

t
=

√
2

k

For the lower bound, we choose a ∈
(

1
2 , 1
)
. Similarly to above, if x is such that u(t, x) ≥ 1/2,

then m(t) ≥ x. Setting the left hand side of equation (4.2.2) equal to a half and rearranging for

x, we find that if

x

√
n

t
= −Φ−1

(
1

2a

)
− (n− 1)Φ−1

(
be−t/nk

)
,

then u(t, x) ≥ m(t). Thus,

m(t)

t
≥
√

2

k

n− 1

n
(1 + o(1))

by Lemma 4.2.3. Therefore,

lim inf
t→∞

m(t)

t
=

√
2

k

(
1− 1

n

)
for all n.

We have shown that,

lim
t→∞

m(t)

t
=

√
2

k

as required.

All that remains is the proof of Lemma 4.2.3.

Proof. [of Lemma 4.2.3] The result follows by the following elementary tail bounds on Φ:

1− 1

y
e−

y2

2 ≤ Φ(y) ≤ 1− y2 − 1

y3
e−

y2

2

for y > 1.

We set z = Φ(y) and so y = Φ−1(z). If we take the logarithm of both sides of the inequality,

we have

log(y) +
y2

2
≤ − log(1− z) ≤ y2

2
− log(y2 − 1) + log(y3)

For y large enough, we have for any η,

(y − η)2

2
≤ − log(1− z) ≤ (y + η)2

2

and since y = Φ−1(z), we have

−η +
√
−2 log(1− z) ≤ Φ−1(z) ≤

√
−2 log(1− z) + η.

Since y → ±∞ ⇐⇒ z → 1
2±

1
2 , we can rewrite this in the form that we wish by setting z 7→ 1−z

and y 7→ −y and use Φ−1(1− z) = −Φ−1(z) to obtain the form given in the Lemma.

Remark 12. We can see from the proof of Corollary 4.2.2, above, that we could take m(t) to

be defined so that u(t, x) = ε where ε ∈ (0, 1) and the value of m(t) is still
√

2
k t + o(t). The

estimate is not fine enough for this to affect it.

Also, in general m(t) can be multi-valued (in which case m(t) = {x : u(t, x) = 1/2}) but this

is not the case if u0 is decreasing. �
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4.2. Speed of the Wave Front for the Canonical FKPP Equation

4.2.2. General Initial Conditions

We can easily extend the above results to the case when u0 is bounded below at −∞ by a shifted

and scaled indicator function. As we know from McKean [McK75], the wave front should still

move at speed
√

2
k for quickly exponentially decaying initial conditions.

Theorem 4.2.4. Suppose that u solves equation (4.2.1) with initial condition, u0 such that

lim infx→−∞ u0(x) > 0 and u0(x) ≤ 1 ∧ Ce−βx

u(t, rt)→ 0 if r > r̃

where

r̃ =


β
2 + 1

kβ if β <
√

2
k√

2
k if β ≥

√
2
k

and

u(t, rt)→ 1 if r <

√
2

k
.

Remark 13. It is not clear how to recover the fact that u(t, rt)→ 1 when β <
√

2
k (see McKean

[McK75]) from Theorem 4.2.1. �

Proof. Using Gaussian tail bounds we have

0 ≤ u(t, rt) ≤ et/kE[u0(Xt)]

≤ et/kΦ
(
−r
√
t+

logC

β
√
t

)
+ Ce( 1

k
−βr+β2

2
)tΦ

(
(r − β)

√
t− logC

b
√
t

)

≤

e
( 1
k
− r

2

2
)t · O

(
1√
t

)
if β > r

e( 1
k
−βr+β2

2
)t · O(1) if β ≤ r

→ 0 as t→ 0.

since 1
k −

r2

2 ≤
1
k − βr + β2

2 with equality when r = β.

If β >
√

2
k , then since u is decreasing in its second component, we can assume without loss

of generality that
√

2
k < r < β and so in this case u(t, rt)→ 0 as t→∞.

If β ≤
√

2
k , then r > β

2 + 1
kβ ≥ β and so 1

k − βr + β2

2 < 0 and u(t, rt)→ 0.

The upper bound easily follows from Theorem 4.2.2 and the bound (4.2.3) since we can write

u0 ≥ c11(−∞,−c2)(x) for some constants c1 > 0, c2 ∈ R.

We present the following trivial corollary to refer back to after proving Theorem 4.3.10 below.

Corollary 4.2.5. Consider the equation,

vt =
σ2

2
vxx + bvx + 1

kv(1− vk) (4.2.4)

with k > 0 and σ > 0, and initial condition v0 such that lim infx→−∞ v0(x) > 0 and v0(x) ≤
1 ∧ Ce−βx where β ≥

√
2
k . Then, the position of the wave front is given by

m(t) =

(√
2σ2

k − b
)
t+ o(t).
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Chapter 4. Wave Fronts in FKPP-Type Equations

Proof. Let u be the solution to equation (4.2.4), with initial condition u0 as in the Theorem, in

the case when σ = 1 and b = 0. Then, v defined by v(t, x) = u(t, σ−1(x + bt)) solves equation

(4.2.4) with initial condition v0 = u0(σ−1(x+bt)). We see that v(t,m(t)) = u(t, σ−1(m(t)+bt)) =

1
2 and then we apply Theorem 4.3.10.

4.2.3. Initial Conditions with Compact Support

In this section we see how the above results can be extended to the case when u0 has compact

support. We present the proof separately since the proof does not extend directly to the case of

more general L. Note, however, that above results follow from the following theorem:

Theorem 4.2.6. Let u solve equation (4.2.1) with u0 such that 0 < u0(x) ≤ 1 on some interval.

Then,

u(t, rt)→ 1 for |r| <
√

2
k

u(t, rt)→ 0 for |r| >
√

2
k .

Before we prove this result, we introduce some notation and a lemma that we will use during

the proof.

Definition 4.2.7. For, c, ρ, n, t > 0, we define Ψc : R+ → [0, 1] by

Ψc(ρ) = P
(
W1 ∈

[
(−c+ ρ)

√
n
t , (c+ ρ)

√
n
t

])
. (4.2.5)

Note that Ψc : R+ → [0, 1] is strictly decreasing and hence invertible. However, since Ψc does

not have an explicit inverse we bound it below by a function fc : R+ → [0, 1] that has an explicit

inverse in the appropriate range that we will consider.

Lemma 4.2.8. Let l > 0 be a constant and let j = 0, 1, · · · , n. Set cj+1 = l +
√

2
k
jt
n (1 + αt)

where αt → 0 as t→∞.

For Ψcj+1 defined as in equation (4.2.5), there exists a function fcj+1 such that for ρ > 0,

Ψcj+1(ρ) ≥ fcj+1(ρ),

f−1
cj+1

(be−t/nk) exists, and

f−1
cj+1

(be−t/nk) = cj+1 +
t

n
·
√

2

k
(1 + o(1))

for t sufficiently large.

Proof. For t sufficiently large, there exists ε ∈ (0, 1) with

Ψc(ρ) =
1√
2π

∫ (c+ρ)
√

n
t

(ρ−c)
√

n
t

e−y
2/2dy

≥ 1√
2π

1{ρ>c}

[(
1

(ρ−c)
√
n
t

− 1(
(ρ−c)

√
n
t

)3
)
e−

(ρ−c)2n
2t − 1

(ρ+c)
√
n
t

e−
(ρ+c)2n

2t

]

≥ e−
(ρ−c)2n

2t

√
2π

1{
(ρ−c)
√

n
t
>
√

1
1−ε

}
[

ε

(ρ−c)
√
n
t

− e
−2ρcn
t

(ρ+c)
√
n
t

]
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4.2. Speed of the Wave Front for the Canonical FKPP Equation

using the standard Gaussian tail bounds.

The behaviour of this bound changes slightly depending on whether c = cj is constant (the

case when j = 0) or linear in t (the case when j > 0). Therefore, we split the proof into these

two cases.

Case 1. j = 0

Firstly, consider the case when c = c1 = l. Here,

Ψl(ρ) ≥ e−
(ρ−l)2n

2t

√
2π

1{
(ρ−l)
√

n
t
>
√

1
1−ε

} 1

(ρ− l)
√

n
t

[
ε− e

−2ρln
t

]
≥ e−

(ρ−l)2n
2t · βt−1

1A

≡ fl(ρ)

where

A =

{
(ρ− l)

√
n
t >

√
1

1−ε

}
∩
{

(ρ− l)
√

n
t ≤ γt

}
∩
{
ρl > −1

2
t
n log(εδ)

}
and β = (1−δ)ε

γ
√

2π
for some constant δ ∈ (0, 1) to be chosen later and γ > 0.

Let y be such that fl(ρ) = y and y > 0. Then, ρ = f−1
l (y) is well defined. Then,

f−1
l (y) = l +

√
2t

n

(
− log y − log

t

β

)
.

If y = be−t/nk, then

ρ = l +
t

n
·

√
2

k

(
1− kn

t
log

t

bβ

)
since ρ ∈ A if t is large enough and we choose ε and δ such that e

−2l
√

2
k < εδ < 1.

Case 2. j ≥ 1.

For j ≥ 0, cj+1 = O(t) and is close in size to ρ and so we adapt the above calculation. We use

the following:

Ψc(ρ) ≥ e−
(ρ−c)2n

2t

√
2π

1{
(ρ−c)
√

n
t
>
√

1
1−ε

} 1

(ρ−c)
√
n
t

(
ε− ρ−c

ρ+c

)
≥ e−

(ρ−c)2n
2t · βt−1

1B

≡ fc(ρ)

where

B =

{
(ρ− c)

√
n
t >

√
1

1−ε

}
∩
{

(ρ− c)
√

n
t ≤ γt

}
∩
{
ρ ≤ 1+εδ

1−εδ c
}

and β = (1−δ)ε
γ
√

2π
for some constant δ ∈ (0, 1) to be chosen later and γ > 0 .

As with above, let y be such that fcj+1(ρ) = y and y > 0. Then, ρ = f−1
cj+1

(y) is well defined.

If y = be−t/nk, then

ρ = cj+1 +
t

n
·
√

2

k
(1 + o(1)).

We check that ρ ∈ B for j ≥ 1. We have ρ ≤ cj+1(1 + 1/j)(1 + o(1)) and so we pick ε and δ so

that 1
1+2j < εδ < 1 for j ≥ 1.
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Proof of Theorem 4.2.6. For simplicity, let u0 = 1[−l,l]; otherwise bound u0 above and below by

a shifted and scaled indicator function. Let Vt/n = Pt/n ◦Dt/n. Then,

Vt/n(u0)(x) ≥ P
(
W1 ∈

[
(−l − x)

√
n
t , (l − x)

√
n
t

])
≡ Ψc1(|x|)

where we set c1 = l and Ψ defined in equation (4.2.5). cj for j > 0 is defined below and we see

that it is of the form specified in Lemma 4.2.8 and so the notation is not ambiguous.

We define the sequence (cj)j≥0 by induction with c1 = l: abusing notation we have,

(Vt/n)(afcj (|x|)) ≥ aP
(
|x+Wt/n| ≤ f−1

cj (be−t/nk)
)

≥ afcj+1 (|x|)

where we define

cj+1 = f−1
cj

(
be−t/nk

)
.

By Lemma 4.2.8, we bound Ψcj+1(ρ) ≥ fcj+1(ρ) for all j = 0, 1, · · · , n and appropriate ρ.

Therefore, by Theorem 4.1.4, we have

u(t, x) ≥ afcn(|x|).

The Wave Position

Set |x| = rt where 0 < r <
√

2
k and set 0 < ε̃ < 1

2

(√
2
k − r

)
. Choose n > 2√

2
k−r

. Then,

|x| − cn < −ε̃t for t sufficiently large and so

u(t, rt) ≥ afcn(rt)

≥ aP(Wt/n ∈ [−ε̃t, rt])

for all a ∈ (0, 1) and so

u(t, rt)→ 1 for |r| <
√

2
k .

The fact that

u(t, rt)→ 0 for |r| >
√

2
k

follows from previous calculations: considering and 1[−l,l] ≤ 1[−l,∞) and 1[−l,l] ≤ 1(∞,l] we see

that

u(t, rt) ≤ et/kΦ
(
l√
t
− |r|

√
t

)
→ 0 if |r| >

√
2

k
.
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4.3. Speed of the wave front

4.3. Speed of the wave front

Using similar techniques to Section 4.2 we can find the speed of the wave front in more general

situations; this is the content of the main result of this section – Theorem 4.3.2 (and its corollary

4.3.10).

Let k > 0 and let u solve

ut = Lu+ 1
ku(1− uk), in (0, T )× R

u0(x) = 1(−∞,0)(x), for x ∈ R.
(4.3.1)

in the sense of Definition 2.1.1, where (Xt)t≥0 is a Lévy process with stochastic generator given

by L.

If the moment generating function of the process −X exists and is given by Λ i.e.

E[e−θXs ] = esΛ(θ),

then we can write Λ in the Lévy-Khintchine form as

Λ(θ) = −bθ +
1

2
σ2θ2 +

∫
R\{0}

(e−θy − 1 + θy1|y|>1)ν(dy)

for b, σ ∈ R and a Borel measure ν on R\{0} such that
∫
R\{0}(y

2 ∧ 1)dν(y) <∞.

We will make the following assumption throughout Section 4.3.

Assumption 4.3.1.

Suppose that the moment generating function, Λ, of −X exists for θ in a neighbourhood of 0;

that is,

E[e−θXs ] = esΛ(θ).

Equivalently, we assume that ∫
e−θy1{|y|>1}ν(dy) <∞

for all θ in a neighbourhood of 0.

Let q be defined by

q = inf
θ>0

1/k + Λ(θ)

θ
. (4.3.2)

We will show that q is the speed of the wave front for suitable choices of L.

Remark 14. For x ∈ R, we define Λ∗ to be the Legendre-Fenchel dual of Λ:

Λ∗(x) = sup
θ≥0

(θx− Λ(θ)).

If the supremum is attained at θ = θ∗, then q is simply the unique number such that

Λ∗ (q) =
1

k
.

�
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We will prove the following analogue to Theorem 4.2.2 in Section 4.3.2.

Theorem 4.3.2. Suppose that Assumption 4.3.1 holds and that u solves equation (4.3.1). Let

q be defined as in equation (4.3.2). Then,

u(t, rt)→ 0, for r > q,

u(t, rt)→ 1, for r < q.

A similar result was shown independently by [GJ16] based on the ideas of [Kyp99] using

branching processes.

Remark 15. We can also see Theorem 4.3.2, in terms of the position of the wave front

m(t) = sup
{
x : u(t, x) ≥ 1

2

}
.

Then,

m(t) = qt+ o(t), as t→∞. �

4.3.1. Preliminaries

Lemma 4.3.3 (Properties of Λ). Let Λ and Λ∗ be defined as above. Then, the following state-

ments hold.

1. Λ and Λ∗ are both convex.

2. Λ∗(−E[X1]) = 0.

3. Λ∗ is strictly increasing on [−E[X1],∞).

Proof. 1. These properties are simple consequences of the definition. Firstly, we show that

Λ is convex. Let λ ∈ (0, 1) and θ1, θ2 ∈ R. Then, by Hölder’s inequality,

Λ(λθ1 + (1− λ)θ2) = logE
[
(e−θ1X1)λ(e−θ2X1)1−λ

]
≤ logE

[
(e−θ1X1)

]λ
+ logE

[
(e−θ2X1)

]1−λ

= λΛ(θ1) + (1− λ)Λ(θ2)

as required.

Next, we show that Λ∗ is convex. Let λ ∈ (0, 1) and x1, x2 ∈ R.

Λ∗(λx1 + (1− λ)x2) = sup
θ>0

[(λx1)θ + (1− λ)x2θ − (λ+ 1− λ)Λ(θ)]

≤ sup
θ>0

[λ(x1θ − Λ(θ))] + sup
θ>0

[(1− λ)(x2θ − Λ(θ))]

= λΛ∗(x1) + (1− λ)Λ∗(x2)

as required.
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4.3. Speed of the wave front

2. By Jensen’s inequality, we see that Λ(θ) ≥ −θE[X1]. Thus, we see that Λ∗(x) ≤ sup(θ(x+

E[X1])) and so 0 ≤ Λ∗(−E[X1]) ≤ 0.

3. Pick θ0 > 0 so that Λ is defined for |θ| < θ0. Take y > Λ′(0) = −E[X1] and find ε ∈ (0, θ0)

such that y > Λ′(ε). By convexity,

Λ(ε)− Λ(θ) ≤ Λ′(ε)(ε− θ)

< y(ε− θ)

for θ < ε and so for any z > y > −E[X1],

Λ∗(y) = sup
θ>ε

(yθ − Λ(θ))

≤ −ε(z − y) + sup
θ>ε

(zθ − Λ(θ))

< Λ∗(z)

In order to show Theorem 4.3.2, we will need some preliminary results. First of all we introduce

some notation.

We write

Fs(y) = P(Xs ≤ y)

for the distribution function of Xs and we write

F−1
s (y) ≡ inf{z : Fs(z) ≥ y}

for the generalised, left-continuous inverse. This is sometimes referred to as the quantile function.

We use the convention that inf ∅ =∞. In the case, that Fs is invertible, the generalised inverse

coincides with the usual inverse.

We will use the following observation, below.

Lemma 4.3.4. Let Fs and F−1
s be defined as above. Let z ∈ [0, 1]. Then,

Fs(y) ≥ z ⇐⇒ y ≥ F−1
s (z)

The proof is elementary and can be found in [EH13], for example.

We can now give the bounds on u that will allow us to prove the Theorem 4.3.2. The following

result is analogous to Theorem 4.2.1.

Theorem 4.3.5. Fix t,x and n and a ∈ (1/2, 1) and set b = (1− ak)−1/k. Let u solve equation

(4.3.1). Then,

aF t
n

(
−x− (n− 1)F−1

t
n

(
be−t/nk

))
≤ u(t, x) ≤ et/kFt(−x) (4.3.3)
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Proof. The upper bound follows from Theorem 4.1.4 with n = 1:

(Dt ◦ Pt)(1(−∞,0))(x) =
Ex[1(−∞,0)(Xt)]e

t/k(
Ex[1(−∞,0)(Xt)]k(et − 1) + 1

)1/k
≤ et/kPx(Xt ≤ 0)

= et/kFt(−x).

For the lower bound, we use Theorem 4.1.4 again with fixed n. By definition, or Lemma 4.1.3,

we see that

(P t
n
◦D t

n
)(1)(1(−∞,0))(x) = Ft/n (−x) .

We can apply induction to the inequality

(P t
n
◦D t

n
)(m)(1(−∞,0))(x) ≥ aFt/n

(
−x− (m− 1)F−1

t/n

(
be−t/nk

))
where m ∈ Z with 1 ≤ m ≤ n. Since a ∈ (1/2, 1), this clearly holds for m = 1.

For the inductive step we use Lemma 4.1.5. In particular for f : [0, 1] → [0, 1], we have the

bound

(Pt/n ◦Dt/n)(f)(x) ≥ aP
(
f(x+Wt/n) ≥ abe−t/nk

)
where b = (1− ak)−1/k.

(P t
n
◦D t

n
)(m+1)(1(−∞,0))(x) ≥ aP

(
Ft/n

(
−Xt/n − x− (m− 1)F−1

t/n

(
be−t/nk

))
≥ be−t/nk

)
= aP

(
−Xt/n ≥ x+mF−1

t/n

(
be−t/nk

))
for 0 ≤ m ≤ n − 1. In the second line we used Lemma 4.3.4 if be−t/nk ≤ 1 and if be−t/nk > 1

the result clearly holds. The lower bound in (4.3.3) follows.

Remark 16. By slightly changing the proof of Theorem 4.3.5 we can obtain the following more

general bound. Suppose that u0(x) ≥ c11(−∞,−c2) where c1 ∈ (0, 1] and c2 ∈ R. For an increasing

sequence of times t0 = 0 < t1 < .... < tj < ...t = tn, we set sj = tj − tj−1. Then, the following

bound holds

u(t, x) ≥ aFs1

−x+ c2 −
n∑
j=2

F−1
sj

(
be−sj−1/k

) (4.3.4)

for all x ∈ R and t ≥ T where T depends on n, k, a and c1.

Furthermore, if u0 is left continuous and decreasing, we can define a generalised inverse by

u−1
0 (z) = sup{y : u(y) ≤ z}

and then, by following the proof of Lemma 4.3.4 and Theorem 4.3.5, mutatis mutandis, we see

that

u(t, x) ≥ aFs1

−x+ u−1
0

(
be−sn/k

)
−

n∑
j=2

F−1
sj

(
be−sj−1/k

) . (4.3.5)

�
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In the case of a general Lévy process, we will need a substitute for the explicit asymptotics

in Lemma 4.2.3. For this, we can use Crámer’s Theorem from the theory of Large Deviations

(see, for example, Grimmett and Stirzaker [GS01]).

Theorem 4.3.6 (Crámer’s Theorem). Let Y be a Lévy process with a finite cumulant generating

function given by Λ. Let Λ∗ be the Legendre-Fenchel dual function. Then, for any α > E[Y1],

P(Yt ≥ αt) ≥ e−tΛ
∗(α)−C(t)

where C(t)/t→ 0 as t→∞. If P(X1 > α) > 0, then Λ∗(α) > 0.

Lemma 4.3.7.

−E[X1] ≤ q

The inequality is strict if X is not deterministic.

Proof. By Jensen’s Inequality,

q = inf
θ>0

[
1

kθ
+

1

θ
logE[e−θX1 ]

]
≥ inf

θ>0

[
1

kθ
− E[X1]

]
= −E[X1]

with equality if and only if X is deterministic, since log is strictly concave.

We treat the degenerate case, when Xs = bs separately here.

Lemma 4.3.8. Suppose that X is a deterministic Lévy process, i.e. for all s, Xs = bs for some

constant b. Suppose that u solves equation (4.3.1) with u0 = 1(−∞,0). Then,

m(t)

t
= −b.

In fact, u is given explicitly by u(t, x) = 1(x+ bt < 0).

Proof. We just check the proposed solution is actually a solution:

M∗s = 1(x+ bt < 0)e
s
k

(1−1(x+bt<0))

= 1(x+ bt < 0)

for all s ≥ 0 and so is trivially a martingale.

4.3.2. Proof of Theorem 4.3.2

Now we can prove Theorem 4.3.2.

Proof. By Lemma 4.3.8 and the remark above, we may assume that X is random with E[X1] = 0

and so Λ is strictly convex and the inequalities in Lemma 4.3.7 are strict.
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By Theorem 4.2.1 and Markov’s inequality, we have for θ > 0,

u(t, x) ≤ et/kE[1(e−θXt ≥ eθx)]

≤ exp

(
t

k
+ tΛ(θ)− θx

)
We minimise over θ > 0. We set x = rt for r > q where q is given by (4.3.2). Then Λ∗(r) > Λ∗(q)

by Lemma 4.3.3. Thus,

lim sup
t→∞

u(t, rt) = 0,

and u(t, x) ≥ 0, for all (t, x). Therefore,

u(t, rt)→ 0, as t→∞.

Next, we show that

u(t, rt)→ 1, as t→∞

for all r < q.

We use the bound

u(t, rt) ≥ aF t
n

(
−rt− (n− 1)F−1

t
n

(
be−t/nk

))
We define a new constant r ∈ (r, q). By Lemma 4.3.4,

F−1
t
n

(
be−t/nk

)
≤ −rt

n
⇐⇒ be−t/nk ≤ F t

n

(
−rt
n

)
Since u(t, x) is increasing in x, we can assume without loss of generality that q > r > r >

−E[X1] by Lemma 4.3.7. Thus, we can use Crámer’s Theorem (Theorem 4.3.6), to see that

there exists a T1 > 0 such that for all t > T1,

F t
n

(
rt

n

)
≥ be−t/nk

Then, there exists T1 > 0 such that for t > T1,

logF t
n

(
−rt
n

)
= logP

(
−Xt/n ≥ r tn

)
≥ − t

n
Λ∗(r)− o(t)

≥ − t
n

Λ∗(q) + log b

≥ − t

nk
+ log b.

To go from the second to third line we use the fact that Λ∗ is strictly increasing by Lemma 4.3.3.

The last line follows from the fact that Λ∗(q) ≤ 1
k .

Now, we fix

n ≥ r + 1 + E[X1]

r − r
.
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4.3. Speed of the wave front

By the weak law of large numbers, for any ε > 0, there exists T2 > 0 such that for t > T1 ∨ T2,

we have

u(t, rt) ≥ aF t
n

(
(−rn+ r(n− 1))

t

n

)
≥ aP

(
Xt/n ≤ (1 + E[X1])

t

n

)
≥ a(1− ε)

In other words,

lim inf
t→∞

u(t, rt) ≥ a, for all r > q.

Since a ∈ (0, 1) was arbitrary and u(t, x) ≤ 1 for all (t, x), we have shown,

u(t, rt)→ 1, as t→∞

for all r < q, as required.

4.3.3. General Initial Conditions

We can generalise Theorem 4.3.2 for initial conditions with fast enough decay and are bounded

below by a shift of the Heaviside function. These assumptions are made rigorous in Hypothesis

4.3.9 below.

Firstly, for θ > 0, we will write

J(θ) =
1/k + Λ(θ)

θ
. (4.3.6)

Hypothesis 4.3.9. 1. Suppose that there exists θ∗ with q = J(θ∗).

2. Suppose that the initial condition u0 taking values in [0, 1] satisfies the following assump-

tions:

lim inf
x→−∞

u0(x) > 0

and

u0(x) ≤ 1 ∧ Ce−βx

for some C > 0 and β > θ∗.

We have the following corollary to Theorem 4.3.2.

Theorem 4.3.10. Suppose that u solves equation (4.3.1) with initial condition u0 satisfying

Hypothesis 4.3.9. Then,

u(t, rt)→ 0 if r > q

u(t, rt)→ 1 if r < q

Remark 17. Recall in Lemma 4.3.8, we have θ∗ =∞ and so Theorem 4.3.10 does not apply in

the case when Xs = bs for a constant b. If we look for solutions of the form u(t, x) = u0(x+ bt),

we see that we must have u0(x)(1 − u0(x)k) = 0 for all x and this can not be true if u0 takes

values outside of {0, 1}. �
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Proof. By Lemma 4.3.8, we can assume that Λ∗ is strictly convex. First of all, let’s suppose

that r > q

0 ≤ u(t, rt) ≤ et/kE[u0(Xt)]

≤ et/kP
(
Xt ≤ −x+

1

β
logC

)
+ Cet/kE

[
e−β(x+Xt)1

(
x+Xt >

1

β
logC

)]
≡ (A) + (B)

where (A) and (B) refer to the first and second term respectively. By Markov’s inequality,

(A) ≤ Cθ/βet(
1
k
−(θr−Λ(θ))

for all θ > 0 and so setting θ = θ∗,

(A) ≤ Cθ∗/βet(
1
k
−Λ∗(r)) → 0

as Λ∗(q) = 1
k and r > q. Similarly,

(B) ≤ C−θ/βet(
1
k
−(β−θ)r+Λ(θ−β))

. Setting θ = β − θ∗ > 0, we see that

(B) ≤ Cθ∗/β−1et(
1
k
−Λ∗(r)).

Since 1
k − Λ∗(r) < 1

k − Λ∗(q) = 0, we see that u(t, rt)→ 0 when r > q.

The case when r < q follows since there exist constants c1 > 0, c2 ∈ R such that u0(x) ≥
c11(−∞,−c2)(x) and so the Theorem 4.3.2 can be adapted using the bound in (4.3.4).

Finally, we see how Theorem 4.2.4 can be used to show that if u0 decays more slowly than

exponentially, the wave front moves faster than linearly.

Proposition 4.3.11. Suppose that u solves equation (4.3.1) with initial condition u0 such that

for all ε > 0 and x sufficiently large, u0(x) ≥ e−εx. Then,

lim inf
t→∞

m(t)

t
=∞.

Proof. Let α = E[X1]. By the bound (4.3.5), we see that for any r ∈ R,

u(t, rt) ≥ aFt/n
(
−rt+ u−1

0

(
be−t/nk

)
− (n− 1)F−1

t/n

(
be−t/nk

))
≥ aFt/n

(
t

n

(
−rn+

1

εk
− αn

)
− 1

ε
log b

)
where we used the fact that

(n− 1)F−1
t/n(be−t/nk) ≤ αt ⇐⇒ be−t/nk ≤ Ft/n

(
αt
n−1

)
since

Ft/n

(
αt
n−1

)
= P

(
n
tXt/n ≤ α

(
1 + 1

n−1

))
≥ be−t/nk
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for n fixed and t sufficiently large, by the weak law of large numbers.

We also used that

u0(x) ≥ e−εx ⇐⇒ u−1
0 (y) ≥ −1

ε log y

for x ∈ (a,∞) for some a and y ∈ (0, u0(a)).

Therefore, for t sufficiently large,

u(t, rt) ≥ aP
(
n
tXt/n ≤ (1 + E[X1])

)
for all ε < [k(1 + (n + 1)E[X1] + r)]−1. Thus, lim inft→∞ u(t, rt) ≥ a(1 − δ), for all a ∈ (0, 1),

δ > 0 and so lim inft→∞ u(t, rt) = 1 and the result follows.

This type of initial condition was studied in detail in Hamel and Roques [HR10].

4.4. Examples

We give some examples of Theorem 4.3.10 for specific Lévy processes X.

Firstly, we consider the following well-known result.

Example 4.4.1. Let us consider the case when L = 1
2σ

2 ∂2

∂x2
+ b ∂∂x which corresponds to a the

Markov process X defined by Xt = bt + σWt. Then Λ(θ) = −bθ + σ2

2 θ
2, and so θ∗ =

√
2
kσ2 .

Thus, if Hypothesis 4.3.9 holds for some β >
√

2
kσ2 . Then

m(t)

t
→ inf

θ>0

1
k − bθ + 1

2θ
2

θ

=

√
2σ2

k
− b

As we saw in Corollary 4.2.5, the result also holds with β =
√

2σ2

k .

The next simplest example is with a Brownian motion with drift plus a jump process.

Example 4.4.2. Set Xt = x+ bt+ σWt +
∑n

i=1 P
i
t , where P i are Poisson processes with jumps

of size yi with intensity λi > 0. Then the Lévy measure is given by ν(A) =
∑
λiδyi(A) for a

measurable set A ∈ R. So, the equation is

ut =
σ2

2
uxx + βux +

n∑
i=1

λiu(·, ·+ yi) +

(
1
k −

n∑
i=1

λi

)
u− u1+k

k
(4.4.1)

where u0 satisfies Hypothesis 4.3.9 and β = b−
∑n

i=1 λi1|yi|≤1yi and

Λ(θ) =

(
n∑
i=1

λi1|yi|≤1yi − b

)
θ +

σ2

2
θ2 +

n∑
i=1

λi

(
e−θyi − 1

)
By Theorem 4.3.2, we know that Equation (4.4.1) has a wave front moving at speed qt + o(t)

where

q = inf
θ>0

1/k + Λ(θ)

θ
.
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Here,

q = inf
θ>0

[
n∑
i=1

λi1|yi|≤1yi − b+
σ2

2
θ +

n∑
i=1

λi
e−θyi − 1

θ
+

1

kθ

]
.

We see that J is differentiable and strictly convex with J(0+) = J(∞) = ∞ and so there is a

stationary point.

Even in very simple situations, the value of θ∗ is not likely to be explicit. Consider the equation

ut =
1

2
uxx + u(·, ·+ 1)− u2. (4.4.2)

Then θ∗ is the root of 1
2θ

2eθ = 1 + θ. Thus, θ∗ ≈ 1.163 and q ≈ 1.581.

Example 4.4.3. Set Xt = x + bt + σWt +
∑N(t)

i=1 Zi, where Zi are IID random variables with

law µ and N(t) is a Poisson process with mean λt.

Then the Lévy measure is given by ν(A) = λµ(A) for a measurable set A ∈ R. So, the equation

is

ut =
σ2

2
uxx + bux + λ

∫
R

(u(·, ·+ y)− u(·, ·))µ(dy) +
1

k
u(1− uk) (4.4.3)

with u0 satisfying Hypothesis 4.3.9 and

Λ(θ) = −bθ +
σ2

2
θ2 + λ

∫
R

(e−θy − 1)µ(dy).

By Theorem 4.3.2, we know that equation (4.4.3) has a wave front moving at speed qt + o(t)

where

q = inf
θ>0

1/k + Λ(θ)

θ
.

Here,

q = inf
θ>0

[
1

kθ
+ b+

σ2

2
θ + λ

∫
R

e−θy − 1

θ
µ(dy)

]
.

This is convex with J(0+) = J(∞) =∞ and so there is a minimum.

Let’s consider the special case when b = θ = 0, λ = 1 and µ(dy) = H(y)dy where H : R →
[0,∞) is compactly supported, even and

∫
RH(y)dy = 1. In this case, equation (4.4.3) becomes

ut = H ∗ u− u+
1

k
u(1− uk) (4.4.4)

where H ∗ v(x) =
∫
RH(x− y)v(y)dy since

H ∗ u(t, x)− u(t, x) =

∫
R

(u(t, x+ y)− u(t, x))H(y)dy.

Equation (4.4.3) is of the form in equation (1.1.14). In this case

q = min
θ>0

1

θ

(∫
R
H(y)eθydy +

1

k
− 1

)
for all u0 satisfying Hypothesis 4.3.9.

Carr and Chmaj [CC04] showed this q to be the minimal speed of travelling waves i.e. de-

creasing solutions to

−cu′ = H ∗ u− u+
1

k
u(1− uk)

with w(−∞) = 1 and w(∞) = 0.
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Example 4.4.4. Set Xt = x+ bt+ Pt, where P is a Poisson process with jumps of size y with

intensity λ > 0 and where b = λ1|y|≤1y. Then the Lévy measure is given by ν(A) = λδy(A) for

a measurable set A ∈ R. So, the equation is

ut = λu(·, ·+ y) +
(

1
k − λ

)
u− u1+k

k
(4.4.5)

where u0 satisfies Hypothesis 4.3.9. Then,

Λ(θ) = λ(e−θy − 1)

and

q = inf
θ>0

[
1
k + λ(e−θy − 1)

θ

]
.

Note that if y < 0, then J is convex with J(0+) = J(∞) = ∞ and so there is a minimum and

the speed of the front is qt + o(t). If, on the other hand, y ≥ 0 then infθ>0 J(θ) = 0 although

this is not attained at a finite θ.

4.4.1. Fractional Laplacian

As we saw in the Section 1.1, one particular Markov process of interest is the α-stable Lévy

process. There, the Lévy measure is given by

ν(dy) =
c

|y|1+α
dy

and so

Λ(θ) =∞

for all θ > 0. Therefore, Theorem 4.2.4 does not tell anything useful but the result is consistent

with the result of Cabré and Roquejoffre [CR13] that m(t) increases exponentially in t.

However, we can adapt the techniques in the proof of Theorem 4.2.1 to obtain the following.

Proposition 4.4.5. Let u be a solution to

ut = −
(
− ∂2

∂x2

)α/2
u+ 1

ku(1− uk)

u0 = 1(−∞,0)(x).

(4.4.6)

Then,

lim
t→∞

1

t
logm(t) =

1

kα
.

Proof. Let

Fs(x) = P(Xs ≤ x).

By the bound (4.3.4), we have that for t large enough,

u(t, x) ≥ aFs1

−x− n∑
j=2

F−1
sj

(
be−sj−1/k

) . (4.4.7)
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Write sj = βjt for some constants βj > 0,
∑n

k=1 βj = 1. Setting the right hand side equal to

1/2 and rearranging we have

m(t) ≥− F−1
s1

(
1
2a

)
−

n∑
j=2

F−1
sj

(
be−sj−1/k

)
= exp

(
max

1≤j≤n−1
βjt/kα

)
· O(t)

where we used

F−1
s (x) ∼ Ctx−

1
α as x↘ 0

for some constant C > 0 (see, for example [ST94]).

Thus,

lim inf
t→∞

1

t
logm(t) ≥ maxj βj

kα
.

In particular, we can choose β1 = 1− ε and β2 = ε for ε ∈ (0, 1). Thus,

lim inf
t→∞

1

t
logm(t) ≥ 1− ε

k

for any ε ∈ (0, 1) and so

lim inf
t→∞

1

t
logm(t) ≥ 1

k
.

For the upper bound note that,

u(t, x) ≤ et/kFt(−x)

Setting the RHS equal to 1/2 we see that

m(t) ≤ et/kα · O(t)

and so,

lim sup
t→∞

1

t
logm(t) ≤ 1

k

as required.

Remark 18. By using a similar idea to the proof of Theorem 4.2.4, the result of Proposition

4.4.5 can be easily adapted to any initial condition satisfying

lim inf
x→−∞

u0(x) > 0 (4.4.8)

and

u0(x) ≤ 1 ∧ Cx−α (4.4.9)

for some C > 0 and all x > 0. Firstly, we can easily show the result for u0(x) = c11(−∞,c2) for

constants c1, c2. The first condition then implies that

lim inf
t→∞

1

t
logm(t) ≥ 1

k
.

For the upper bound, we can use that the transition kernel p of X satisfies

p(t, x) ≤ Ct−
1
α

1 + t−
1
α |x|1+α

.

for a constant C > 0. Thus, Ex[X−αt 1(c,∞)(Xt)] ≤ Cx−α for constants c, C > 0 and x large

enough (x > c), as required. �
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4.4.2. Ornstein-Uhlenbeck Processes

Suppose that k > 0, and the Markov process X is an Ornstein-Uhlenbeck process solving the

equation

dXs = θ(µ−Xs)ds+ σdWs

X0 = x

for constants µ ∈ R, and θ, σ > 0. Then,

L(f)(x) =
σ2

2

∂2f

∂2x
+ θ(µ− x)

∂f

∂x
.

Then, consider the equation
∂u

∂t
= Lu+ 1

ku(1− uk)

u0 = 1(−∞,0)

(4.4.10)

In this case, the analogue to Theorem 4.2.1 is the following.

Theorem 4.4.6. Let u be a solution to equation (4.4.10). Then,

aΦ

(
−α
β
x+

1− αn−1

1− α
ρ

αn−1
− γ

βαn−1

)
≤ u(t, x) ≤ et/kΦ

(
−α
β
x− γ

β

)
.

Moreover,

−β
α

Φ−1

(
1

2a

)
+

β

αn
1− αn−1

1− α
ρ− γ

αn
≤ m(t) ≤ −β

α
Φ−1

(
1

2et/k

)
− γ

α

where m(t) = sup{x : u(t, x) ≥ 1
2}.

Proof. Note that

Xs ∼ N
(
e−θsx+ µ(1− e−θs), σ

2

2θ
(1− e−2sθ)

)
.

We rewrite this as Xs ∼ N (α(s)x+ γ(s), β(s)2) where,

α(s) = e−θs,

γ(s) = µ(1− e−θs),

β(s) =
σ√
2θ

√
1− e−2θs.

Following the proof of Theorem 4.2.1, and writing

Vt/n = Pt/n ◦Dt/n.

we see that

u(t, x) ≥ V (n−1)
t/n Φ

(
−α
β
x− γ

β

)
Write ρ = −Φ−1(be−t/nk) and note that for n and b fixed and t large, we have ρ > 0.
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We define two sequences, cn and dn, with c1 = α
β and d1 = − γ

β , by

Vt/n(aΦ(−cj ·+dj)(x) ≥ aP(Φ(−cjX + dj) ≥ be−t/nk)

= aΦ (−cj+1x+ dj+1)

and so

cj+1 =
α

β

dj+1 =
ρ+ dj
cjβ

for all j = 1, · · · , n− 1.

Thus, we find

cn =
α

β
,

dn =
1− αn−1

1− α
ρ

αn−1
− γ

βαn−1
.

To see the second part of the Theorem, since u is decreasing in x, we can simply set the upper

and lower bounds equal to 1/2 and rearrange for x.

Remark 19. Compare this to Theorem 4.2.1. The proof above works with θ = 0 (and then

β(s) = s), µ = 0 and σ = 1. Then, we see that cn and dn above simplify to

cn =

√
n

t
,

dn = (n− 1)ρ,

as we saw before. �

Theorem 4.4.7. Let u be the solution to equation (4.4.10). Then,

lim
t→∞

logm(t)

t
= θ

Proof. From Theorem 4.4.6, we have

m(t) ≤ − σ√
2θ

√
1− e−2θteθtΦ−1

(
1

2et/k

)
− µ(1− e−θt)eθt

≤ C1

√
teθt

for a constant C1(θ, µ, σ, a) > 0 by Lemma 4.2.3.

Similarly, for t sufficiently large,

m(t) ≥ C2

√
teθt/n

for a constant C2(θ, µ, σ, a, n) > 0.
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4.5. Waves fronts when k < 0

Consider equation (4.3.1). So far we have only studied the case when k > 0. The reason for

this is that the nonlinearity given by f(u) = u
k (1 − uk) is not Lipschitz at 0 and so may have

multiple solutions. Indeed, take k ∈ (−1, 0) and u0 = 0. Then, we can define a mild solution by

both u(t, x) = 0 and by u(t, x) = Dt(0)(x) = (1− e−t)−
1
k .

Moreover, for any u0 such that we have a solution in the sense of Definition 2.1.1, we have

u(t, x) ≥ (1− e−t)−
1
k

where u is defined by the relevant optimisation problem and so the solution arising from the

optimisation problem does not give rise to wave fronts. Given that we should expect wave fronts

to occur in the setting of branching processes, it follows that the optimisation method does not

define the natural solution in this setting.

However, one could study these solutions using the operators P and D and in this case

Corollary 2.6.1 give u that when k ∈ (−1, 0),

Pt ◦Dt ◦ u0(x) ≤ u(t, x) ≤ Dt ◦ Pt ◦ u0(x)

and when k ∈ (−∞,−1), we have

Dt ◦ Pt ◦ u0(x) ≤ u(t, x) ≤ Pt ◦Dt ◦ u0(x)

where (Pt ◦ f)(x) = Ex[f(Xt)] and (Dt ◦ f)(x) = (e−tf(x)−k + 1− e−t)−
1
k .
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Appendix A.

A Generalisation for Concave Nonlinearities

In this Appendix, we give another application of the ideas presented so far. In this work, we

have been studying the general equation

∂u

∂t
= Lu+ φ(x)u− 1

ku
k+1

u(0, x) = u0(x) for all x ∈ E,
(A.0.1)

and when studying wave fronts, we considered the special case when k > 0 and φ = 1/k, L is the

generator of some Lévy process and E = R. In this case all of the representations of Chapter 2

hold. However, another possible generalisation of the FKPP equation was introduced in Section

1.1.3. Recall that we can define the probability generating function of a non-negative integer

valued random variable N by

G(s) = E[sN ].

Then, if E[N ] <∞, the generalisation of the FKPP equation is given by

∂u

∂t
= Lu+ f(u)

u(0, x) = u0(x) for all x ∈ Rd.

Here, we define f by f(u) = 1− u−G(1− u). f is a KPP-type nonlinearity when E[N ] <∞.

As in Chapter 4, we suppose that L is the generator of a Lévy process X with moment

generating function, Λ, of −X defined in a neighbourhood of θ = 0; that is,

E[e−θXs ] = esΛ(θ).

for all θ in a neighbourhood of 0.

We see that in this case the results presented in this work so far do not apply directly.

Indeed, the specific form of the nonlinearity that we have so far been studying is integral to

the martingale representation when we used Hölder’s inequality in Chapter 2 and the FKPP

equation arising in the financial setting of Chapter 3 is not of this form. However, the specific

form of the nonlinearity f(u) = 1
ku(1 − uk) was not as integral to the study of wave speed

and the semigroup (Ds)s≥0 was the salient object to study in relation to f . In fact, the wave

speed is only given in terms of the important term f ′(0) (which is equal to 1
k in this case).

Therefore, one might expect that it is possible to adapt the primal representation to this case
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– and use analogous methods to those used in Chapter 4 – to obtain results for a different class

of nonlinearities such as the one above arising from a general class of branching processes. This

is the content of the rest of this Appendix.

A.1. Representation for Concave Nonlinearities

Firstly, we define the equation that we will study in this section. Here it is natural to define

solutions in the mild sense.

Assumption A.1.1. Suppose that the function f : [0,∞) × E × R → R is measurable and

f(t, x, ·) is concave and differentiable for all (t, x). Suppose that u : [0,∞) × E → K is a mild

solution to equation
∂u

∂t
= Lu+ f(t, x, u), in (0,∞)× E

u(0, x) = u0(x), for all x ∈ E.
(A.1.1)

for some set K ⊂ R and that
∣∣∂f
∂u

∣∣ < C in [0,∞)× E ×K for some constant C > 0.

We include the condition on the derivative of f here so that the optimal control in Theorem

A.1.3 is in the set of admissible controls.

Results on existence and uniqueness of mild solutions were given in Theorem 2.7.2.

Definition A.1.2. Let g : [0,∞) × E × R → R, and suppose that g(t, x, ·) is concave for any

(t, x) ∈ [0,∞)× E. We define a function ĝ by

ĝ(·, ·, z) = sup
u≥0

(g(·, ·, u)− uz).

Remark 20. Usually, for a function h : R→ R, one defines the Legendre transform by h∗(z) =

supu≥0(uz − h(u)). In this case, ĥ(z) = (−h)∗(−z).
One could alternatively consider the PDE with convex nonlinearities and obtain analogous

results, to the following, in terms of f∗. �

We have the following representation.

Theorem A.1.3. Let u be a mild solution to equation (A.1.1), as in Definition A.1.1 above.

Then, the following holds:

u(t, x) = min
Z

E
[∫ t

0
e
∫ s
0 Zrdrf̂(t− s,Xs, Zs)ds+ e

∫ t
0 Zrdru0(Xt)

]
(A.1.2)

where the minimum is taken over all bounded processes Z which are adapted to the filtration

generated by X. The minimum is attained at Z = Z∗ where

Z∗ =
∂f

∂u
(t− s,Xs, u(t− s,Xs))

Proof. Set

Ms = u(t− s,Xs) +

∫ s

0
f(t− r,Xr, u(t− r,Xr))dr.
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Since, u is a mild solution, it follows from the Markov property of X, that M is a martingale

with respect to the filtration generated by X.

Define,

ξs =

∫ s

0
e
∫ r
0 Zνdν f̂(t− r,Xr, Zr)dr + e

∫ t
0 Zrdru(t− s,Xs).

Then,

ξt =

∫ t

0
e
∫ s
0 Zrdr[usZs + f̂(t− s,Xs, Zs)− f(t− s,Xs, us)]ds

+Mt +

∫ t

0
(Mt −Ms)Zse

∫ s
0 Zrdr (A.1.3)

where us = u(t− s,Xs). This follows from Fubini’s Theorem and integration by parts.

Since f is concave, by the definition of f̂ , it follows that

uz + f̂(τ, x, z)− f(τ, x, u) ≥ 0

with equality for z = ∂f
∂u(τ, x, u). Since M is a martingale, it follows that

E[ξt] ≥ ξ0 = u(t, x).

with equality for Z = Z∗

To see where equation (A.1.3) comes from, note that if u and X are sufficiently regular, then

equation (A.1.3) would follow directly from Itô’s formula.

Remark 21. When k > 0, we can see that Theorem A.1.3 is a generalisation of representation

(2.2.3). Indeed, if f(u) = 1
k (u− uk+1), then

f̂(z) =


(

1−zk
k+1

)1+1/k
if z ≤ 1/k

0 if z > 1/k

In other words,

u(t, x) = min
Z

E
[∫ t

0
e
∫ s
0 Zrdr

(
1−Zsk
k+1

)1+1/k
ds+ e

∫ t
0 Zrdru0(Xt)

]
(A.1.4)

where, without loss of generality, the minimum is taken over the set of all bounded above by 1/k

which are adapted to the filtration generated by X.

Setting

Ys = exp

(
− 1
k+1

∫ s

0
(1− kZr)dr

)
we recover

u(t, x) = min
Y

E
[∫ t

0
es/k

(
−Ẏs

)1+1/k
ds+ et/kY

1+1/k
t u0(Xt)

]
. (A.1.5)

where the minimum is over the set of positive, absolutely continuous, adapted and decreasing

processes Y . Note that the set of Y that we are taking the minimum over is smaller than in

Theorem 2.2.3, but this does not matter for the subsequent results in this work. �
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A.2. Application to Branching Lévy Processes

Now we restrict attention to the one-dimensional case when d = 1 and f does not depend on t

or x.

Analogously to Theorem 4.1.4, one can find iterative bounds using the nonlinear semigroup

corresponding to f and the linear semigroup corresponding to L. In particular, one can easily

show that analogous bounds hold.

Definition A.2.1. For any t ≥ 0, x ∈ R, and g : R→ R, Define the function P by

Pt(g)(x) = E[g(x+Xt)] (A.2.1)

and the function D to be such that D·(g)(x) is the solution to the ODE:

dψ

dt
= f(ψ) (A.2.2)

ψ(0) = g(x). (A.2.3)

The following result is analogous to Theorem 4.1.4:

Theorem A.2.2. Let u be as in Theorem A.1.3 and D and P as in Definition A.2.1. Then,

(Pt/n ◦Dt/n)(n)(u0)(x) ≤ u(t, x) ≤ (Dt/n ◦ Pt/n)(n)(u0)(x)

for t ≥ 0, x ∈ R.

Proof. As before, we consider the optimisation problem restricted to deterministic processes: by

Theorem A.1.3, we have

u(t, x) ≤ min
Z deterministic

∫ t

0
e
∫ s
0 Zrdrf̂(Zs)ds+ e

∫ t
0 ZrdrE [u0(Xt)]

= Dt(E [u0(Xt + ·)])(x)

Here, we used Theorem A.1.3 with L = 0 to show

Dt(g)(x) = min
Z deterministic

∫ t

0
e
∫ s
0 Zrdrf̂(Zs)ds+ e

∫ t
0 Zrdrg(x).

Similarly, by considering X pathwise,

Dt(u0)(Xt) ≤
∫ t

0
e
∫ s
0 Zrdrf̂(Zs)ds+ e

∫ t
0 Zrdru0(Xt)

almost surely for all adapted processes Z (and even anticipative Z). Therefore,

u(t, x) ≥ E[Dt(u0)(Xt + x)]

If we write u(t, x) = Ut(u0)(x), then Pt ◦ Dt ≤ Ut ≤ Dt ◦ Pt and since each of the operators

Pt, Dt and Ut are increasing, for any t, we can iterate the above expression to complete the

proof.
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It is now straightforward to generalise Theorem 4.3.2 to the case of a general concave nonlin-

earity that is of the form f(u) = 1− u−G(1− u) described above.

In particular, setting u0 = 1(∞,0), the following result can also be interpreted in terms of the

distribution function for the maximum particle of the corresponding branching Lévy process

and thus about the speed of maximum particle. Note that results of this type can also be found

in the work of Biggins [BLSW91], Kyprianou [Kyp99] and, recently, Groisman and Jonckheere

[GJ16].

Theorem A.2.3. Let f : R→ R be concave, and differentiable with uniformly bounded deriva-

tive. Suppose that u is a mild solution to

∂u

∂t
= Lu+ f(u)

u0(x) = 1(−∞,0).

Suppose that Λ is finite in a neighbourhood of 0. Write f ′(0) = γ > 0, f(0) = f(β) = 0.

Then, for

q = inf
θ>0

γ + Λ(θ)

θ
, (A.2.4)

we have

u(t, rt)→

0, if r > q

β, if r < q.
(A.2.5)

The relevant existence and uniqueness theorem for this equation is Theorem 2.7.3.

Note that since the probability of the branching process going extinct is given by the smallest

non-negative root of G(s) = s (see, for example, Athreya and Ney [AN72]), we see that β

corresponds to the probability of survival over all time.

The proof follows by using the same techniques as Section 4.3. In particular, for x ∈ (0, β), t

sufficiently large and c < γ, we have

xect ≤ Dt(Id)(x) ≤ xeγt

where Id is the identity map. Therefore, the techniques used in Section 4.3 apply almost

verbatim. One can also see the paper by Driver and Tehranchi [DT18a] for more details.
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A Dynamic Programming Approach

In Sections 2.2 and 2.3, we saw that a solution, u, to equation (2.1.1), can be represented in

the primal form of Theorem 2.2.3 and in the martingale-dual form in Theorem 2.3.2. We also

saw in Section 2.5 that, formally, there is a natural Lagrangian dual formulation but we did not

make this rigorous.

In this appendix we give more intuition behind Theorem 2.2.3 in case when k > 0. In par-

ticular, we study the result in the context of the well studied dynamic programming approach.

We will then show directly (that is, without Lagrangian techniques) that the formula in (2.5.1)

is correct under the right conditions. The cases when k < 0 can be treated analogously given

appropriate assumptions. As noted before, the Lagrangian dual is less general than the martin-

gale dual in Section 2.3. Indeed, it is necessary that the initial condition u0 is strictly positive

and for the proof below we will require that the generator L is a strictly elliptic operator of the

form

L =
∑

1≤i≤n
bi
∂

∂xi
+

1

2

∑
1≤i,j≤n

aij
∂2

∂xi∂xj
(B.0.1)

This corresponds to the process X satisfying the SDE

dXs = b(Xs)ds+ σ(Xs)dWs

with X0 = x ∈ Rd and where a = σσᵀ. Here b : Rd → Rd, σ : Rm × Rd → Rd and W is a

standard m-dimensional Brownian motion.

We will assume that u0 takes values in [0, 1]. Then, for non trivial initial conditions, 0 <

u(t, x) < 1 for all t > 0, x ∈ R (which can be seen, for example, by a comparison principle

argument).

We remark that Hypothesis 2.1.3 is automatically satisfied in this appendix.

B.1. Primal Formulation

For simplicity, we are assuming that k > 0 and L is of the form (B.0.1) and φ = 1/k but these

assumptions are not necessary. We will suppose that u is a classical solution to

∂u

∂t
= Lu+

1

k
(u− uk+1) (B.1.1)

with initial condition u0.

81



Appendix B. A Dynamic Programming Approach

It follows from Theorem 2.2.3, that we can write

u(t, x) = min
Y ∈Y1

0,t

E
[∫ t

0
es/k|Ẏs|1+ 1

k ds+ et/k|Yt|1+ 1
ku0(Xt)

]
(B.1.2)

where we define Yys,t to be the set of all adapted, absolutely continuous processes (Yr)s≤r≤t with

Ys = y.

We saw that this representation can be thought of as a generalisation of the Feynman-Kac

formula. However, it is, perhaps, more natural to think of equation (B.1.1) as the Hamilton-

Jacobi-Bellman (HJB) equation (up to change of variables) corresponding to the optimisation

problem (B.1.2). We will formally derive the HJB equation corresponding to (B.1.1) and then

show that the representation (B.1.2) can be shown by the standard argument for verifying that

the formal HJB equation is actually the correct equation.

B.1.1. The HJB Equation

Let X be the solution to the SDE corresponding to L with X0 = x and let Y be as above with

Y0 = y. Define the value function V by

V (s, x, y) = inf
Y ∈Yys,t

E
[∫ t

s
f(r,Xr, Ẏr)dr + g(t,Xt, Yt)

∣∣∣∣Xs = x, Ys = y

]
for some suitably differentiable functions f and g.

By the dynamic programming principle we expect that

V (0, x, y) = inf
Y ∈Yy0,s

E
[∫ s

0
f(r,Xr, Ẏr)dr + V (s,Xs, Ys)

]
and so by the Martingale Principle of Optimal Control we look for

Ms :=

∫ s

0
f(r,Xr, Ẏr)dr + V (s,Xs, Ys)

to be a submartingale for all Y and a true martingale at the optimal choice of Y . Applying

Itô’s formula to M , we minimising the drift term pointwise in y and formally obtain the HJB

equation,

inf
z

[Vt + LV + zVy + f ] = 0.

with V (t, x, y) = g(t, x, y). Set

f(s, x, y) = es/k|y|1+ 1
k ,

g(s, x, y) = et/k|y|1+ 1
ku0(x).

By scaling, we make the ansatz that V (s, x, y) = es/k|y|1+1/ku(t − s, x). We see that the HJB

equation simplifies to

inf
z

[
es|y|1+1/k(−ut + Lu+

u

k
) + (1 + 1/k)z sign(y)|y|1/kesu+ es|z|1+1/k

]
= 0.
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B.1. Primal Formulation

or

ut = Lu+
u

k
+ inf

w

[
w1+1/k − (1 + 1/k)wu

]
= Lu+

1

k
(u− u1+k).

as required. Choosing w = uk is optimal.

We see that the optimal Y satisfies

− Ẏs
Ys

= u(t− s,Xs)
k.

We write this optimal control as Y ∗ where

Y ∗s = e−
∫ s
0 u(t−r,Xr)k dr for all 0 ≤ s ≤ t.

Remark 22. Here we see that the specific form of the nonlinearity is integral to this approach

and any alternative is only likely to work if f and g are sufficiently tractable. �

B.1.2. Verifying the HJB Equation

Theorem B.1.1. Let u be as above. Then,

u(t, x) = min
Y ∈Y1

0,t

E
[∫ t

0
es/k|Ẏs|1+1/k ds+ et/ku0(Xt)|Yt|1+1/k

]
where the minimum is taken over all adapted, absolutely continuous, processes Y with Y0 = 1.

Moreover, the minimum is attained at Y = Y ∗.

Note that Theorem B.1.1 follows from Theorem 2.2.3 but here we will give an alternative

proof.

Proof. Fix (t, x) ∈ (0,∞)×Rd and drop it from the notation below. By applying Itô’s formula,

we have

d

(∫ s

0
er/k|Ẏr|1+1/kdr + es/k|Ys|1+1/ku

)
= es/k

(
|Ẏs|1+1/k + k+1

k sign(Ys)|Ys|1/k|Ẏs|u+ |Ys|1+1/k(−ut + Lu+ u)
)

ds+ dMs

= es/k
(
|Ẏs|1+1/k + k+1

k sign(Ys)|Ys|1/k|Ẏs|u+
1

k
|Ys|1+1/kuk+1

)
ds+ dMs

≥ dMs

(B.1.3)

where the terms involving u are evaluated at (t− s,Xs).

Ms =

∫ s

0
er/k|Yr|1+1/k(∇xu)(t− r,Xr)

ᵀσdWr

is a local martingale. In the last line we used the fact that for all k > 0, u ≥ 0, y, z ∈ R,

ε = sign(y) we have

|z|1+1/k + k+1
k ε|y|1/kzu+

|y|1+1/kuk+1

k
≥ 0 (B.1.4)
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with equality if

z = −yuk.

This follows since the expression on the left hand side of (B.1.4) is convex in z with its unique

stationary point at z = −yuk.

Now let (τn)n≥1 be an increasing sequence of stopping times such that τn ↗ t as n→∞ and

which reduces the local martingale M . By integrating equation (B.1.3), and taking expectations,

we have

u(t, x) ≤ E
[∫ τn

0
er/k|Ẏr|1+1/kdr + eτn/ku(t− τn, Xτn)|Yτn |1+1/k

]
(B.1.5)

with equality when Ẏs = −u(t− s,Xs)
kYs.

We need to take limits inside the expectation. The first term clearly converges by the Mono-

tone Convergence Theorem. By the boundedness of u, the process Y ∗ is automatically in class

D. Therefore, we will be done if the process defined by

es/ku(t− s,Xs)Y
1+1/k
s

is also in class D for any Y . Since es/ku(t− s,Xs) ≤ et/k for any s, we only need to show that

Y is uniformly dominated by an integrable random variable.

We can assume without loss of generality that

E
[∫ t

0
es/k|Ẏs|1+1/k ds

]
<∞

since, otherwise, there is nothing to prove.

Now note that by Jensen’s inequality applied to the integral we have

E
[

sup
0≤s≤t

|Ys|1+1/k

]
≤ E

[(
1 +

∫ t

0
|Ẏr|dr

)1+1/k
]

≤ 21+1/k

(
1 + E

[∫ t

0
|Ẏr|1+1/kdr

])
<∞.

B.2. Lagrangian Dual

Now we consider the Lagrangian Dual formulation and make the discussion in Section 2.5 rigor-

ous in the particular setting described above. Unlike in the primal case above, the proof below

uses the fact that L is of the form (B.0.1) and so is less general. We also require u0 to decay

slowly enough. This will automatically imply that u(t, x) > 0 for all t > 0, x ∈ R. Neither of

these conditions are required in the case of the martingale dual of Section 2.3.

Define Nt to be the set of bounded positive F-martingales. We define α to be such that for

all s,

Ns = E
(∫ s

0
αᵀ
rdWr

)
.
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We also define a process N∗ by

N∗s =
u(t− s,Xs)

u(t, x)
e

1
k

∫ s
0 (1−u(t−r,Xr)k)dr

for each s ∈ [0, t]. Recall that this is simply the martingale M∗ scaled to start at 1.

Theorem B.2.1. Suppose that

E
[
u0(Xt)

−k
]
<∞. (B.2.1)

Then,

1

u(t, x)k
= min

N∈Nt
E

[∫ t

0
e−sNk+1

s ds+
e−sNk+1

t

u0(Xt)k

]
.

Moreover, N = N∗ attains the minimum.

The proof is essentially the same as the verification proof above for the PDE with solution

defined by u(t− s, x)−k. In this spirit, we have the following lemma.

Lemma B.2.2. Suppose that u0 is such that u is a positive solution to equation (B.1.1). Fix

t > 0 and let

v(s, x) = u(t− s, x)−k.

Then, v solves

∂v

∂s
+ Lv =

(1 + k)

2k

‖∇vᵀσ‖2

v
+ v − 1

v(t, x) = u0(x)−k.

Proof. We simply calculate

1

v
∂tv =

k

u
∂tu (B.2.2)

1

v
∂xiv = −k

u
∂xiu (B.2.3)

1

v
∂2
xixjv = −k 1

u
∂2
xixju+

1 + k

k

1

v2
(∂xiv)(∂xjv) (B.2.4)

Thus,

1

v
(vt + Lv) =

k

u
(ut − Lu) +

1 + k

2kv2
‖∇vᵀσ‖2

=
1 + k

2kv2
‖∇vᵀσ‖2 +

(
1− 1

v

)
as required.

Proof of Theorem B.2.1. Fix x ∈ Rd and N ∈ Nt. By Itô’s formula we have

dNk+1
s = (k + 1)Nk+1

s αᵀ
sdWs +

k(k + 1)

2
Nk+1αᵀαds

and by Lemma B.2.2,

d(e−sv) = e−s∇xvᵀσ(Xs)dWs + e−s(vt + Lv − v)

= e−s∇xvᵀσdWs + e−s
(

(1+k)
2k

‖∇vᵀσ‖2
v − 1

)
ds
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where the terms involving v are evaluated at (s,Xs).

Finally,

d〈Nk+1
· , e−·v(·, X·)〉s = (∇xv)ᵀσ(Xs)αsds

Putting this together, we have

d

(∫ s

0
e−rNk+1

r dr + e−sNk+1
s v(s,Xs)

)
=
k + 1

k

e−sNk+1
s

2v(s,Xs)
‖kvα+∇vᵀσ‖2 ds+ dMs

where M is a local martingale. The drift term is obviously non-negative. Now let (τn)n≥1 be an

increasing sequence of stopping times such that τn ↗ t as n→∞ and which reduces M . Then

E
[(∫ τn

0
e−sNk+1

r dr + e−τnNk+1
τn v(τn, Xτn)

)]
≥ v(0, x). (B.2.5)

We now send n→∞.

The optimal α is defined by

αs =
∇u(t− s,Xs)

ᵀσ(Xs)

u(t− s,Xs)
.

It is simple to check that this corresponds to N∗. The fact that N∗ ∈ Nt is clear.

We can use the Monotone Convergence Theorem for the first term in (B.2.5) and take limits

for the second term if we show that for any N ∈ Nt, the process defined by e−sNk+1
s u(t−s,Xs)

−k

is of class D. Note that this holds automatically for N∗ as u is bounded.

We will show that under the assumption (B.2.1) on u0,

E sup
0≤s≤t

u(t− s,Xs)
−k <∞ (B.2.6)

and this will complete the proof.

By the representation (2.1.3), we have

u(t, x) ≥ E[u0(Xt)]

and so

u(t− s,Xs)
−k ≤M−ks

where M is the martingale defined by

Ms = E[u0(Xt)|Fs].

Since M is a martingale, M−1 is a submartingale and hence by Doob’s inequality

E sup
0≤s≤t

u(t− s,Xs)
−k ≤ E

[
sup
s

(M−k/ps )p
]

≤ p

p− 1
E[u0(Xt)

−k]

<∞

for all p > 1, by the assumption on u0.

Remarks
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1. We can consider a bigger set of admissible controls if we have more conditions on u0.

For example, we can stipulate that E[N
(k+1)p
t ] < ∞ if E[u0(Xt)

−qk] < ∞ for 1
p + 1

q = 1,

(p, q > 1), by Hölder’s Inequality and Doob’s Lp Inequality.

2. The assumption that E
[
u0(Xt)

−k] < ∞ is reasonable for many applications. Take, for

example, the case when X is Brownian motion, and there are constants c, C > 0 such that

for sufficiently large ‖x‖ we have

u0(x) ≥ Ce−c‖x‖.

Importantly, however, Theorem B.2.1 is not suited to initial conditions such as the Heav-

iside function.

3. Theorem B.2.1 can be adapted to the case when k < 0 however, one additional complication

arises in showing that N∗ is admissible and an assumption on u0 is necessary.

B.3. Simple Consequences

Using the dynamic programming method, we can give more intuition behind the bounds that

we used in Chapter 4 which were proven in Corollary 2.6.1. In particular we have the following

proposition.

Proposition B.3.1. Let u be the solution to equation (B.1.1). Then,

E

[
es/ku0(x+Xt)

((es − 1)u0(x+Xt)k + 1)1/k

]
≤ u(t, x) ≤ es/kE[u0(x+Xt)]

((es − 1)E[u0(x+Xt)]k + 1)1/k

We will see that these bounds is come from solving an ODE which corresponds to a trivial

HJB equation when there is no random process.

Proof. 1. Upper Bound on u

Recall the notation,

Y = {Y : Y : [0, t]→ R, is absolutely continuous, decreasing and Y0 = 1} . (B.3.1)

We will obtain the result by using Theorem 2.2.3 and minimising over a subset and superset

of set

Y = {Y ∈ Y : Y is adapted to the filtration F}

If h solves the ODE
dh

ds
=

1

k
h(1− hk) (B.3.2)

then,
d

ds

(∫ s

0
er/k|Ẏr|1+1/kdr + es/k|Ys|1+1/kh(t− s)

)
≥ 0

with equality for Ys = exp(−
∫ s

0 h(t− s)kds). Thus,∫ t

0
er/k|Ẏr|1+1/kdr + et/k|Yt|1+1/kh(0) ≥ h(t)
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We can solve for h explicitly and then we see that

h(s) =
es/kh(0)

((es − 1)h(0)k + 1)1/k

Let Y = {y ∈ Y : Y is F0-measurable}. This defines the set of admissible, deterministic

processes.

u(t, x) ≤ min
Y

(∫ t

0
es/k|Ẏs|1+1/kds+ et/k|Yt|1+1/kE[u0(x+Xt)]

)
and so setting Ys = exp(−

∫ s
0 h(t− s)kds) with h(0) = E[u0(x+Xt)] we see that

u(t, x) ≤ es/kE[u0(x+Xt)]

((es − 1)E[u0(x+Xt)]k + 1)1/k

2. Lower Bound on u

We can also use this for a lower bound. Set

Y = {Y ∈ Y : Ys ∈ Ft for all s} (B.3.3)

Then since Y ⊂ Y, we have

u(t, x) ≥ min
Y

E
[∫ t

0
es/k|Ẏs|1+1/kds+ et/k|Yt|1+1/ku0(x+Xt)

]
≥ E

[
es/ku0(x+Xt)

((es − 1)u0(x+Xt)k + 1)1/k

] (B.3.4)

The second inequality is an equality for Ys = exp(−
∫ s

0 h(t−s)kds) with h(0) = u0(x+Xt)

with Y ∈ Y.

88



Bibliography

[AN72] Athreya, K.B. ; Ney, P.E.: Branching processes. Die Grundlehren der mathema-

tischen Wissenschaften in Einzeldarstellungen, Springer-Verlag, 1972
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