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Summary

This work is about convergence to equilibrium problems for equations coming from kinetic theory.
The bulk of the work is about Hypocoercivity. Hypocoercivity is the phenomenon when a semi-
group shows exponentially relaxation towards equilibrium without the corresponding coercivity
(dissipativity) inequality on the Dirichlet form in the natural space, i.e. a lack of contractivity.
In this work we look at showing hypocoercivity in weak measure distances, and using probabilis-
tic techniques. First we review the history of convergence to equilibrium for kinetic equations,
particularly for spatially inhomogeneous kinetic theory (Boltzmann and Fokker-Planck equations)
which motivates hypocoercivity. We also review the existing work on showing hypocoercivity using
probabilistic techniques.

We then present three different ways of showing hypocoercivity using stochastic tools. First we
study the kinetic Fokker-Planck equation on the torus. We give two different coupling strategies to
show convergence in Wasserstein distance, W2. The first relies on explicitly solving the stochastic
differential equation. In the second we couple the driving Brownian motions of two solutions with
different initial data, in a well chosen way, to show convergence. Next we look at a classical
tool to show convergence to equilibrium for Markov processes, Harris’s theorem. We use this to
show quantitative convergence to equilibrium for three Markov jump processes coming from kinetic
theory: the linear relaxation/BGK equation, the linear Boltzmann equation, and a jump process
which is similar to the kinetic Fokker-Planck equation. We show convergence to equilibrium for
these equations in total variation or weighted total variation norms. Lastly, we revisit a version
of Harris’s theorem in Wasserstein distance due to Hairer and Mattingly and use this to show
quantitative hypocoercivity for the kinetic Fokker-Planck equation with a confining potential via
Malliavin calculus.

We also look at showing hypocoercivity in relative entropy. In his seminal work work on
hypocoercivity Villani obtained results on hypocoercivity in relative entropy for the kinetic Fokker-
Planck equation. We review this and subsequent work on hypocoercivity in relative entropy which
is restricted to diffusions. We show entropic hypocoercivity for the linear relaxation Boltzmann
equation on the torus which is a non-local collision equation. Here we can work around issues
arising from the fact that the equation is not in the Hörmander sum of squares form used by
Villani, by carefully modulating the entropy with hydrodynamical quantities. We also briefly
review the work of others to show a similar result for a close to quadratic confining potential
and then show hypocoercivity for the linear Boltzmann equation with close to quadratic confining
potential using similar techniques.

We also look at convergence to equilibrium for Kac’s model coupled to a non-equilibrium
thermostat. Here the equation is directly coercive rather than hypocoercive. We show existence
and uniqueness of a steady state for this model. We then show that the solution will converge
exponentially fast towards this steady state both in the GTW metric (a weak measure distance
based on Fourier transforms) and in W2. We study how these metrics behave with the dimension
of the state space in order to get rates of convergence for the first marginal which are uniform in
the number of particles.
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Chapter 1

Introduction

This thesis is about proving quantitative rates of convergence to equilibrium for a range of equations
coming from kinetic theory. In this introduction first we introduce kinetic theory, Boltzmann’s
equation and give Boltzmann’s H-theorem as the main historical example related to convergence
to equilibrium for kinetic equations. We introduce a range of equations which will be discussed
throughout this work. After this we give a review of some of the existing work on convergence
to equilibrium, briefly discussing the entropy-entropy production method, and then focusing on
spatially inhomogeneous kinetic equations. We also discuss hypocoercivity particularly in this
context. Lastly we briefly describe the contents of each of the chapters.

1.1 Kinetic Equations

Kinetic theory was developed in the 19th century, most notably by Boltzmann and Maxwell, in
the modelling of dilute gases. Kinetic equations model the evolution of a gas in an intermediate
scale between the microscopic description which is given by Newton’s laws and a macroscopic fluid
descriptions of the observed behaviour.

If we have a system of N particles performing either deterministic or stochastic dynamics we
can write their joint distribution at time t,

FN (t, z1, . . . , zN ).

In this case zi is either vi, the velocity of the ith particle, or (xi, vi), the position and velocity of the
ith particle. We look at the situation where this equation models a large number of indistinguishable
agents, for example gas particles. In this situation the dynamics are relatively simple, Newton’s
laws, but the equation is very high dimensional. Kinetic equations are derived by looking at the
average behaviour of one particle as the total number of particles tends to infinity, i.e. if Π1 is the
marginal distribution of the first particle then

f(t, z) = lim
N→∞

Π1[FN ](z).

Under appropriate assumptions on the scaling and dynamics it is then possible (at least formally)
to write an equation for f and also show that f describes the average behaviour in the system in

9



10 CHAPTER 1. INTRODUCTION

the sense that the empirical measure

fN =
1

N

N∑
i=1

δ(xi,vi)

will converge weakly towards f .

We study particles interacting in a gas by Newton’s laws, then they will follow the equations

ẋi =vi,

v̇i =
∑
j

Fj,i + F,

where Fj,i is the force acting on particle i due to particle j and F is an external force. For collisional
gases the equation derived in this process, via the Boltzmann-Grad scaling, is Boltzmann’s equation

∂tf + v · ∇xf = Q(f, f).

Here
Q(f, g) =

∫
Rd

∫
Sd−1

B(|v − v∗|, (v − v∗) · σ) (f(v′)g(v′∗)− f(v)g(v∗)) dσdv∗,

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ.

We also sometimes write this using the ω formulation where we reparametrise to have

v′ = v − (v − v∗) · ωω, v′∗ = v∗ + (v − v∗) · ωω.

Here
σ =

(v − v∗)
|v − v∗|

− 2

(
(v − v∗)
|v − v∗|

· ω
)
ω,

and this transformation is invertible. B is called the collision kernel. Here f represents the density
in phase space of a single particle in the ensemble. We can observe here the general structure of a
collisional kinetic equation

∂tf + v · ∇xf = L(f),

where the v ·∇x operator comes from the transport term in Newton’s law. The L(f) operator acts
only in v and is the result of collisions between particles or between particles and a background
medium. We can derive macroscopic quantities from this density.

ρ(x) =

∫
f(x, v)dv,

is the local density,

u(x) =
1

ρ(x)

∫
vf(x, v)dv,

is the local speed and

T (x) =
1

ρ(x)

∫
|v − u(x)|2f(x, v)dv,

is the local temperature. The steady state solution of Boltzmann’s equation was derived by Maxwell



1.1. KINETIC EQUATIONS 11

and shown to be the unique asymptotic equilibrium by Boltzmann. It is known as the Maxwellian

M(v) = ρ(2πT )−d/2 exp

(
− 1

2T
|v|2
)
.

Here ρ, T are the spatial averages of the local quantities above. Since this is a steady state of the
equation it becomes natural to ask whether the solution to Boltzmann’s equations will eventually
come close to the Maxwellian and if so how fast this will happen.

Boltzmann’s H-theorem

The first and most celebrated work relating to convergence to equilibrium for a kinetic equation
is Boltzmann’s H-theorem, which can be found in [23, 109]. Boltzmann showed that the entropy
of a solution to the Boltzmann equation will always increase. We will give a sketch of the proof in
this section.

Definition 1.1. If f is a probability density then we define the entropy of f by

H(f) =

∫
Rd
f(v) log(f(v))dv.

In order to look at how entropy behaves along the flow of Boltzmann’s equation it is helpful to
look at a dual formulation of the Boltzmann equation.

Lemma 1.1. Suppose f(t, x, v) is a smooth solution to the spatially inhomogeneous Boltzmann
equation then, if φ is a smooth function depending only on v, we have

d

dt

∫
Rd
f(t, v)φ(v)dv =

1

2

∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗) (φ(v′) + φ(v′∗)− φ(v)− φ(v∗)) dσdv∗dv.

Proof. We use the fact that if we define k as (v − v∗)/|v − v∗| then

(v, v∗, σ)↔ (v′, v′∗, k) and (v, v∗, σ)↔ (v∗, v,−σ),

are invertible transformations with Jacobian 1 which leave B constant. Also a φ only depends on
v the transport term vanishes. This gives,

d

dt

∫
Rd
f(t, v)φ(v)dv =

∫
Rd
Q(f, f)φ(v)dv

=

∫
Rd

∫
Rd

∫
Sd−1

B (f(v′)f(v′∗)− f(v)f(v∗))φ(v)dσdv∗dv

=

∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗)φ(v′)dσdv∗dv

−
∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗)φ(v)dσdv∗dv

=

∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗)φ(v′∗)dσdv∗dv

−
∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗)φ(v∗)dσdv∗dv

=
1

2

∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗) (φ(v′) + φ(v′∗)− φ(v)− φ(v∗)) dσdv∗dv.
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Here to get the last expression we just average the previous two.

We can use Lemma 1.1 to look at the derivative of H(f).

Theorem 1.1 (Boltzmann’s H-theorem). If f(t, v) is a smooth solution to the spatially inhomo-
geneous Boltzmann equation with finite entropy then

d

dt
H(f) = −D(f) ≤ 0

and
D(f) = 0⇔ f(v) = C(2πT )−d/2 exp

(
− 1

2T
|v − u|2

)
,

for fixed C, T, u. The C, T, u possible are determined by the initial conditions.

Proof. We have that by Lemma 1.1 taking φ = log(f) assuming f > 0 everywhere,

d

dt

∫
Rd
f(v) log(f(v))dv =

1

2

∫
Rd

∫
Rd

∫
Sd−1

Bf(v)f(v∗) log

(
f(v′)f(v′∗)

f(v)f(v∗)

)
dσdv∗dv

=
1

4

∫
Rd

∫
Rd

∫
Sd−1

B (f(v)f(v∗)− f(v′)f(v′∗)) log

(
f(v′)f(v′∗)

f(v)f(v∗)

)
dσdv∗dv.

We know that the function
(a− b) log(a/b)

is positive. So it follows that
d

dt
H(f) ≤ 0.

From this we see that H(f) will always be non-increasing. We can see that the dissipation is only
zero when

f(v′)f(v′∗) = f(v)f(v∗)

for all values of v, v∗ and σ. We can integrate the left hand side in σ to see that the product
f(v)f(v∗) only depends on |v − v∗| and (v + v∗)/2. i.e.

f(v)f(v∗) =

∫
Sd−1

f

(
v + v∗

2
+
|v − v∗|

2
σ

)
f

(
v + v∗

2
− |v − v∗|

2
σ

)
dσ.

We can write this in terms of the total momentum

m = v + v∗,

and the total energy

e =
|v|2

2
+
|v∗|2

2
.

Therefore we have that
log(f(v)) + log(f(v∗)) = g(m, e).

We can differentiate this in v to give

(∇ log(f))(v) = ∇mg(m, e) + ∂eg(m, e)v.



1.1. KINETIC EQUATIONS 13

Symmetrically,
(∇ log(f))(v∗) = ∇mg(m, e) + ∂eg(m, e)v∗.

Therefore
(∇ log(f))(v)− (∇ log(f))(v∗)

is parallel to v − v∗. Immediately we can write

(∇ log(f))(v) = (∇ log(f))(0) + α(v)v,

for some scalar function α. Then we also have that for all v∗

α(v)v − α(v∗)v∗ = α(v)(v − v∗) + (α(v)− α(v∗))v∗,

is parallel to (v − v∗) for all v and v∗. This shows that α(v) = α(v∗) whenever v is not parallel to
v∗ therefore α must be constant. Therefore for some µ ∈ Rd we have

(∇ log(f))(v) = αv + µ.

It follows from this that f is a Maxwellian.

1.1.1 Equations

First we make a distinction between spatially inhomogeneous and spatially homogeneous kinetic
equations. We call an equation spatially homogeneous if we do not track the transport part of
the equation and look only at the velocity process. We can see that this is the equation we would
follow if f did not depend on x for all t. The equation is the same just removing the transport
operator. For the Boltzmann equation it is

∂tf = Q(f, f), f = f(t, v), t ∈ R+, v ∈ Rd.

On the other hand we can look at a pure transport equation

∂tf + v · ∇xf = 0.

Here, we can solve this explicitly to get

f(t, x, v) = f in(x− vt, v).

We can see from this that the transport operator does not have a unique equilibrium state. However,
when we combine this operator with a spatially homogeneous kinetic equation it often produces a
global equilibrium state.

We can also look at equations where instead of just transport we have both transport and
confinement. This allows us to have equilibrium states where the x variable is in the whole of Rd.
This represents an external confining force. We write this equation as

∂tf + v · ∇xf −∇xU(x) · ∇vf = Q(f, f). (1.1)
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Throughout the rest of this thesis we use the notation M(v) to refer to the normalised
Maxwellian with u = 0 and T = 1. That is

M(v) = (2π)−d/2 exp

(
−|v|

2

2

)
.

The kinetic Fokker-Planck equation

The kinetic Fokker-Planck equation is one of the simplest equations in kinetic theory. It is also
known as the Kramers-Fokker-Planck equation. It is a kinetic version of the Fokker-Planck equation
which was developed by Fokker [44], and Planck [106]. The Fokker-Planck and kinetic Fokker-
Planck equation were later independently derived by Kolmogorov [87]. It is a basic model for a
solute being dispersed by a medium. It is derived from Langevin dynamics, where the time scale of
observation is much larger than the correlation time of the solute-fluid interactions (see e.g. [118]).
We write it

∂tf + v · ∇xf − (∇xU(x) · ∇vf) = ∇v · (∇vf + vf) . (1.2)

Here the phase space is either Rd × Rd or Td × Rd. The equilibrium state is

e−U(x)M(v) = exp

(
−
(
U(x) +

1

2
|v|2
))

.

This is an equation for the law of a particle satisfying the stochastic differential equation. dXt = Vtdt,

dVt = −Vtdt− (∇xU(Xt)dt) +
√

2dWt.
(1.3)

The spatially homogeneous version of this equation is called the Fokker-Planck equation corre-
sponding to the Orstein-Uhlenbeck process,

∂tf = ∇v · (∇vf + vf) . (1.4)

We look at long time behaviour of the kinetic Fokker-Planck equation in Chapters 2 and 4 and
briefly mention it in Chapter 5.

The linear relaxation Boltzmann equation

The linear relaxation Boltzmann equation is the simplest example of a scattering equation from
kinetic theory. It is also known as the linear BGK equation. We write it

∂tf + v · ∇xf − (∇xU(x) · ∇vf) = ΠMf − f, ΠMf =

(∫
Rd
f(x, u)du

)
M(v). (1.5)

Here again the phase space is either Rd × Rd or Td × Rd. The equilibrium state is

e−U(x)M(v) = exp

(
−
(
U(x) +

1

2
|v|2
))

.
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This is an equation for the law of a particle satisfying the stochastic differential equation, in
integrated form, 

Xt = X0 +
∫ t

0
Vsds

Vt = V0 −
(∫ t

0
∇xU(Xs)ds

)
+
∫ t

0

∫
Rd (w − Vs−)P (ds,dw).

(1.6)

Here P is a Poisson point process with intensity Leb × γ where dγ = M(v)dv. The spatially
homogeneous version of this equation is particularly simple. The solution has probability e−t to
be in its original state and probability 1− e−t of being in a normal distribution.

There are variants of this equation which we do not study but exhibit similar behaviour. First
we can generalise the collision kernel

∂tf + v · ∇xf − (∇xU(x) · ∇vf) =

∫
Rd
k(v, u)f(x, u)du− f. (1.7)

Here k(v, u) represents the rate of jumping from velocity u to velocity v.

Second we can look at the equation when the rate of collision depends on space

∂tf + v · ∇xf − (∇xU(x) · ∇vf) = σ(x) (ΠMf − f) . (1.8)

We look at the linear relaxation Boltzmann equation in Chapters 3 and 5.

The linear Boltzmann equation

We also look at the linear Boltzmann equation. This is a scattering type equation which can be
derived from microscopic dynamics with particles interacting with a heat bath. The equation is

∂tf + v · ∇xf − (∇xU(x) · ∇vf) = Q(f,M). (1.9)

Here Q is the Boltzmann collision operator as given before. This equation is much simpler than
the full Boltzmann equation. It is linear and is the equation of the density for a Markov process
provided B is sufficiently nice. The spatially homogeneous linear Boltzmann equation

∂tf = Q(f,M), (1.10)

has been well studied. The convergence to equilibrium problem is studied in [115, 93, 17]. We look
at the linear Boltzmann equation in Chapters 3 and 5.

Kac’s Model

Kac’s model is a probabilistic model meant to have many of the same qualitative behaviours as the
particle system leading to the Boltzmann equation. Here the spatial variable is treated as hidden
information. It was introduced by Marc Kac in [85]. The N -particle model is

∂tFN = N(Q[FN ]− FN ). (1.11)
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Here,

Q[FN ] =
1(
N
2

) ∑
i<j

∫ 2π

0

b(θ)FN (Rθi.j(v))dθ,

and Rθi,j is a rotation in the i and jth variables of angle θ. There is no spatially inhomogeneous
version of Kac’s master equation as the randomness can be thought of replacing the x-variable for
the particle system. We study Kac’s model in Chapter 6.

1.1.2 Entropy-entropy production inequalities

A major way of showing convergence to equilibrium with a given rate is to show an entropy-
entropy production inequality. If we can prove such an inequality quantitatively this will give us
quantitative rates. If ft is the solution to an equation then we define the entropy production, D,
by

d

dt
H(f) = −D(f). (1.12)

Then an entropy-entropy production inequality relates the functional D(f) to H(f). It is usually
of the form

D(f) ≥ Θ(H(f)), (1.13)

where Θ is an increasing function. This is most useful when Θ is linear then we get that

d

dt
H(f) ≤ −CH(f),

for some constant C. This combined with Grönwall’s inequality allows one to show exponential
convergence towards equilibrium.

The Fokker-Planck equation

A first example of this is to look at the Fokker-Planck equation.

∂tf = ∇v · (∇vf + vf) . (1.14)

We can define h = f/M and get the equation

∂th = (∇v − v) · ∇vh. (1.15)

Then instead of looking at the absolute entropy we can look at the entropy relative toM.

Definition 1.2. The relative entropy of a measure ν to another µ is given by

H(ν|µ) =

∫
log

(
dν

dµ

)
dν.

We also sometimes write this with the argument h where dν/dµ = h rather than with the argument
ν

Hµ(h) =

∫
h log(h)dµ.

Then in the same way as for the Boltzmann equation we can look at the production of this
entropy. We have that if h is a solution to (1.15) and if µ is the measure which has density M
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then

d

dt
H(f |µ) =

∫
(∂th) log(h)dµ

=

∫
((∇v − v) · ∇vh) log(h)dµ

=−
∫
|∇vh|2

h
dµ.

We define the relative Fisher information,

I(f |µ) =

∫
|∇h|2

h
dµ.

Now we would like to have a relationship between H(f |µ) and its time derivative.

Definition 1.3. We say that a measure µ satisfies a logarithmic Sobolev inequality if there exists
a C such that for all h we have

H(f |µ) ≤ CI(f |µ).

Then we have due to [63] that µ, in our situation which is a standard Gaussian, will satisfy a
logarithmic Sobolev inequality with C = 1/2. Using this inequality we have

d

dt
H(f |µ) ≤ −2H(f |µ).

Therefore, after Grönwall’s inequality we have

H(f(t)|µ) ≤ e−2tH(h(0)|µ).

This shows that H(f |µ) converges exponentially fast towards zero. We also have the Csiszar-
Kullback-Pinsker inequality which can be found in [117] in Chapter 22 remark 22.12. It was
derived independently by Csiszár [43], Kullback [88] and Pinsker [105].

Lemma 1.2 (Csiszar-Kullback-Pinsker Inequality). If µ and ν are two probability measures then

‖ν − µ‖TV ≤
√

1

2
H(ν|µ).

This shows that the relative entropy controls the total variation distance and also that Hµ(ν)

can only be zero when µ = ν almost everywhere.

The Boltzmann equation

Entropy-entropy production inequalities for the spatially homogeneous Boltzmann equation are
more complicated. In 1999, Bobylev and Cercignani [18] showed that for physical collision kernels
there is no hope of a linear entropy-entropy production inequality as we see in the Fokker-Planck
case. In 1988-89 Desvillettes established an entropy-entropy production inequality using compact-
ness tools [45] The first quantitative entropy-entropy production inequality was established by
Carlen and Carvalho in 1992 [36] and looks like

D(f) ≥ C(f0)Θ(H(f)),
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where Θ is very flat around 0 and f0 is the initial condition. It was then shown by Toscani and
Villani in 1999 [111] that when B is sufficiently well behaved one can prove an entropy-entropy
production inequality of the form

D(f) ≥ Cε(f0)H(f)1+ε,

for any ε > 0.

1.1.3 Other Metrics/Entropies

Entropy and relative entropy are not the only ways to measure the convergence of a solution
towards equilibrium The entropy or relative entropy we define sits within a class of other entropies
which we call Φ-entropies. These are introduced properly in chapter 4. In general they take the
form ∫

Φ

(
dν

dµ

)
dµ.

The most important examples are the entropy from above where

Φ(t) = t log(t)− t+ 1

and the squared entropy
Φ(t) = (t− 1)2.

This second one also corresponds to the Sobolev space L2(µ−1) when µ has a density. There are
also the p-entropies which interpolate between them when p ∈ (1, 2] and

Φ(t) = (t− 1)p.

Exponentially Weighted Sobolev spaces

Suppose that ft is a density and a solution to an equation with equilibrium state µ then let us
write for ε > 0

f = µ+ εh.

Then we have that the relative entropy is

Hµ(f) =

∫
(µ+ εh) log(1 + εh/µ).

Assuming that ε > 0 is small this is approximately

Hµ(f) ≈ ε
∫
h+ ε2

1

2

∫
h2µ−1 +O(ε3) = ε2

1

2

∫
h2µ−1 +O(ε3).

Therefore in a perturbative setting it makes sense to study the equation in L2(µ−1). We see that
if H(f |µ) is a Lyapunov function for a linear or non-linear flow then L2(µ−1) will be a Lyapunov
function for the flow or the linearised flow.

In many situations Sobolev spaces are the most natural way of studying convergence to equi-
librium. We can look at entropy-entropy production inequalities in this situation. For example for
the Fokker-Planck equation if we look at g = f/µ then the L2(µ−1) norm of f is the L2(µ) norm
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of g, and we have
d

dt
‖gt‖2L2(µ) = −2‖∇vgt‖2L2(µ).

Then instead of the logarithmic Sobolev inequality we can use the Poincaré inequality, which can
be derived by linearising the logarithmic Sobolev inequality to get

d

dt
‖gt‖2L2(µ) ≤ −2C‖gt‖2L2(µ).

Using L2(µ−1) or Hk(µ−1) also gives us many other tools such as spectral theory, geometry of
Hilbert spaces, and much more.

Probabilistic metrics

All the equations we look at model the time evolution of a probability density. In fact many of
them also correspond to a stochastic process. It therefore makes sense to study the behaviour of
the solution in probabilistic distances. This allows us to use tools from probability and also to look
at weaker convergence of solutions. We can look at total variation

‖µ− ν‖TV = sup
A

(µ(A)− ν(A)− µ(Ac) + ν(Ac)) = 2 sup
A
|µ(A)− ν(A)|. (1.16)

We also look at Wasserstein-p distances corresponding to a metric d. That is

W(µ, ν) = inf
π

(∫
d(x, y)pπ(dx, dy)

)1/p

, (1.17)

where the infimum is taken over all couplings π, where π is a measure on X ×X if X is the state
space and π has marginals µ and ν. Lastly, in the chapter about Kac’s model we will look at
the Gabetta-Toscani-Wennberg metric on probability measures with finite second moment and the
same first moment [59]:

dGTW (µ, ν) = sup
ξ 6=0

|µ̂(ξ)− ν̂(ξ)|
|ξ|2

. (1.18)

A simple example of how this can lead to different types of proof is looking at constructing
a coupling of two solutions to show convergence to equilibrium in Wasserstein distance for the
Fokker-Planck equation. We can generate two different solutions to the SDE with different initial
conditions but the same driving Brownian motion (i.e. a synchronous coupling). We have that

d(V 1
t − V 2

t ) = −(V 1
t − V 2

t )dt.

Therefore,
E((V 1

t − V 2
t )2) ≤ e−2tE((V 1

0 − V 2
0 )2).

We can use this to evolve any coupling of µ(0), ν(0), the initial data, to a coupling of two solutions
µ(t), ν(t). This gives that

W2(µ(t), ν(t)) ≤ e−tW2(µ(0), ν(0)).
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1.1.4 Spatially inhomogeneous equations

We will look at convergence to equilibrium problems for spatially inhomogeneous kinetic equations.
Recall that is an equation of the form

∂tf + v · ∇xf − (∇xU(x) · ∇vf) = Qv(f).

Here f(t, ·, ·) is a probability density on phase space. We have that v ∈ Rd and x ∈ Rd or Td.
Importantly Qv acts only in the velocity variable. For simplicity of exposition, let us look at the
common situation where

Qv(M) = 0,

where M(v) is the Maxwellian, (2π)−d/2 exp
(
−|v|2/2

)
. This means a global steady state will be

the Gibb’s state
µ(x, v) = exp(−U(x))M(v) or µ(x, v) =M(v).

Let us again assume this will be the unique global equilibrium. If we look at entropy dissipation
L2 or H1 spaces weighted by µ−1 then we have that

d

dt
Hµ(f) =

∫
Qv(f) log(f/µ)dµ

or
d

dt
‖f(t)‖2L2(µ−1) = 2〈Qv(f), f〉L2(µ−1).

The transport operator is anti-symmetric on these spaces so the terms coming from this will
disappear. More explicitly for relative entropy the term coming from the transport part is∫

(v · ∇xf −∇xU(x) · ∇vf)(log(f/µ) + µ) =

∫
(v · ∇x −∇xU(x) · ∇v) (f log(f/µ)) .

Integrating by parts means that this term disappears. This means that the production of the
entropy will vanish on functions of the form ρ(x)M(v). This shows that the equation cannot be
coercive in these norms or indeed in any norms where the transport operator is antisymmetric.
This situation is typical for hypocoercivity. We see convergence in the velocity variable but not
the spatial direction.

In 1974 Ukai showed the existence of a spectral gap for the spatially inhomogeneous Boltzmann
equation for hard spheres [114]. This paper is non-quantitative as it relies on compactness through
Weyl’s theorem. Exponential convergence was shown for the Vlasov-Poisson-Boltzmann equation
[66] and the Landau equation [65] via non-constructive estimates on the average of the collision
operator over small times, this approach was applied to the Boltzmann equation in a perturbative
setting [67]. This approach was then made constructive in order to show exponential convergence
for the Vlasov-Maxwell-Boltzmann system in a perturbative setting [68], the Boltzmann equation
in a perturbative setting in [69] and to show almost exponential convergence for various spatially
inhomogeneous kinetic equations in a perturbative setting in [110]. The work [91] also shows
polynomial convergence to equilibrium for the Boltzmann equation in a perturbative setting.
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1.1.5 Desvillettes-Villani method for inhomogeneous equations

Prior to hypocoercivity and the works of Guo and Liu, Yang and Yu quoted above the only
quantitative tool for dealing with such equations is the method of Desvillettes and Villani [46, 47]
which shows quantitative convergence to equilibrium like O(t−∞) i.e. faster than any inverse
power of t. This method is conditional on existence and regularity of solutions and works in a
non-perturbative setting. This method was used by Desvillettes and Villani to show convergence
to equilibrium for the kinetic Fokker-Planck equation and the full Boltzmann equation (not in a
perturbative setting). It has also been adapted to work for linear relaxation equations in [33]. The
result for the kinetic Fokker-Planck equation is

Theorem 1.2 (Desvillettes-Vilani 2001 [46]). If f is a solution to the kinetic Fokker-Planck equa-
tion (1.2), µ the equilibrium. Then if there exists a,A such that

aµ ≤ f0 ≤ Aµ,

and the confining potential U satisfies

U(x) = ω2
0

|x|2

2
+ Ψ(x) + U0,

with ω0, U0 constants and Ψ a smooth function which goes to zero as |x| → ∞, and U0 chosen
so that exp(−U) integrates to one, then for every ε > 0 there is a constant Cε(f0) > 0 which is
explicitly computable and only depends on U, f0, ε such that

‖f(t)− µ‖1 ≤ Cε(f0)t−1/ε.

For the Boltzmann equation the situation is much more complicated. They achieve convergence
rates like O(t−∞) in polynomially weighted Sobolev spaces conditional on a priori smoothness and
lower bounds.

We very briefly sketch the proof for the kinetic Fokker-Planck equation. Now suppose that µ
is the global equilibrium state, and the local equilibrium state we write as ρM. Then

d

dt
H(f |µ) ≤ −2H(f |ρM). (1.19)

This encodes the fact that the dissipation of H(f |µ) depends on how far f is from the set of local
equilibria It is then natural to look at how H(f |ρM) behaves in time. They then show that for
any ε ∈ (0, 1) that

d2

dt2
H(f |ρM) ≥ K

2
H(f |µ)− Cε(f0)H(f |ρM)1−ε. (1.20)

They then show that any solution to this pair of equations has H(f |µ) converging to 0 like 1/t1−1/ε.

1.2 Hypocoercivity

The name hypocoercivity was first used by Villani in his mémoire Hypocoercivity [116]. He credits
the name to Thierry Gallay to emphasise the link with hypoellipticity. Let us begin by giving a
definition of hypocoercivity
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Definition 1.4. If we have an equation

∂tf + Lf = 0,

and we write f(t) to be the solution to this at time t, then we say the equation is hypocoercive in
the norm ‖ · ‖, if there exists constants C, λ such that for all initial data f(0) we have

‖f(t)‖ ≤ Ce−λt‖f(0)‖.

This is not necessarily a very helpful definition since this concept pre-dates hypocoercivity sig-
nificantly. This inequality on the semigroup is equivalent to the generator L having a spectral gap
in the norm ‖ · ‖. Hypocoercivity is generally a name for an extension of the entropy-entropy pro-
duction method. We therefore wish to prove convergence of the above form by proving functional
inequalities. These functional inequalities must necessarily be not on the entropy and entropy pro-
duction but on different functionals which we can relate to entropy. However, hypocoercivity has
become a name used for theorems which show exponential convergence for spatially inhomogeneous
kinetic equations and equations with similar types of degeneracies even if they do not work via
functional inequalities.

The operator is called coercive if this inequality is true with C = 1. In this case, if ‖ · ‖ is a
Hilbert space norm, it is more normal to say an operator L is coercive if it satisfies the functional
inequality

〈(L+ L∗)f/2, f〉 ≥ λ‖f‖.

This is equivalent to the earlier definition. We can see that if 〈Lf, f〉 ≥ ‖f‖2 then we have formally

d

dt
‖f(t)‖2 = −〈(L+ L∗)f(t), f(t)〉 ≤ −2λ‖f(t)‖2.

Therefore by Grönwall’s lemma we have

‖f(t)‖2 ≤ e−2λt‖f(0)‖2.

On the other hand if we know that the equation is coercive we have that at t = 0,

d

dt

∣∣∣∣
t=0

‖f(t)‖2 ≤ −2λ‖f(0)‖2.

Therefore we have
〈(L+ L∗)f(0)/2, f(0)〉 ≥ λ‖f(0)‖2.

Since we can choose f(0) freely this gives equivalence. On the other hand we cannot differentiate
the hypocoercivity inequality with C = 0 to get information on the operator L. Hypocoercivity is
usually used in the situation where

〈Lg, g〉 = 0,

for some class of functions which is larger than the set of global equilibria.

A key aspect of hypocoercivity is to try and prove constructive theorems which give explicit
forms for C and λ. In particular constructive estimates for C which are important because it
allows us to know the time after which the convergence effects shown by the inequality will act. An
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inequality of the form shown in hypocoercivity does not give any convergence until t ≥ log(C)/λ,
so if C is unknown and potentially very large the result may not hold in the time frame for which
the model is valid. This means it is not sufficient to know the spectral gap for a non symmetric
operator. However, even the spectral gap is not computed when using many methods based on
compactness.

Before hypocoercivity, there were many influential works showing convergence to equilibrium.
We have discussed [66, 65, 67, 68, 69, 91, 110]. Another very influential paper was [80] which studies
convergence to equilibrium for the kinetic Fokker-Planck equation with a confining potential in L2

norm. This paper shows what we would now call hypocoercivity as well as hypoellipticity for
the kinetic Fokker-Planck equation with a confining potential. This is a first example of what we
will call L2-hypocoercivity which is theorems which show hypocoercivity directly in weighted L2

distances. This paper was one of the influences for Villani’s seminal mémoire Hypocoercivity, [116].
In this work Villani named and formalised the study of hypocoercivity. He proved a more general
result for hypoelliptic type operator in both H1 and entropy distance, as well as reformulating the
work in [102] and discussing this in the context of his earlier work with Desvillettes [46, 47]. In this
section we review in more detail the proofs of hypocoercivity in H1, relative entropy and directly
in L2. We then also review the proofs of convergence for kinetic equations using probabilistic tools.

1.2.1 H1 Hypocoercivity

The key works in H1 hypocoercivity are [102, 116]. We present a version of the proof in [116] in
a simple setting. First we review equations in what Villani calls Hörmander sum of squares form.
That is

∂tf +
∑
i

A∗Af +Bf = 0,

where A∗ is the conjugate in L2(µ) for some probability measure µ and B∗ = −B. We review the
results in a simple 2D setting where the space is spanned taking only one order of commutators
and we make several more simplifying assumptions on the commutators. We also look at the case
where A and B are differentials. It does not materially change the calculations. A key example of
an equation in this sum of squares form is the kinetic Fokker-Planck equation.

∂tf + v · ∇xf = ∇v · (∇vf + vf).

Showing convergence to equilibrium for the kinetic Fokker-Planck equation is the main goal of the
methods based on Hörmander sum of squares form. The abstract form introduced in [116] allows
us to see the importance of the commutator brackets.

Let us look at an equation of the form

∂tf +Bf +A∗Af = 0, f = f(z), z ∈ R2 (1.21)

where A,B are first order differential operators, with A = a(z) · ∇, B = b(z) · ∇. We have a
probability distribution µ with A∗ the conjugate in L2(µ), B∗ = −B and Aµ = 0. let us write
C = [A,B].

Theorem 1.3 (Theorem 18 in section 1.4 of [116] in a simplified setting). Let f(t, z) be a solution
of (1.21) with initial data f(0, z). Suppose that µ satisfies a Poincaré inequality. Suppose that
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C = c(z) · ∇ and aaT + ccT ≥ λI, and [A∗, A] = 0, [C∗, C] = 0, [A,C] = 0 and ‖[C,B]f‖ ≤
c1‖Af‖+ c2‖Cf‖. Then we will have

‖f(t)‖H1(µ) ≤ Ke−λt‖f(0)‖H1(µ).

Proof. We have that

d

dt
‖f‖2L2(µ) = −〈Bf, f〉L2(µ) − 〈Af,Af〉L2(µ) = −〈Af,Af〉L2(µ) = −

∫
∇fT

(
a(z)a(z)T

)
∇fdµ.

Since a is one dimensional the matrix aaT has rank one so the dissipation will vanish when ∇f is
perpendicular to a at each point. We need to be able to see dissipation in the other direction. Let
us look at

F (f) = ‖f‖L2(µ) + αη‖Af‖2L2(µ) + 2βη〈Af,Cf〉L2(µ) + γη‖Cf‖2L2(µ),

with β2 < αγ so that this is equivalent to H1. We have

d

dt
F (f) =− 2‖Af‖2 − 2αη〈Cf,Af〉 − 2βη‖Cf‖2 − 2γη〈[C,B]f, Cf〉

− 2αη‖AAf‖2 − 2βη〈AAf,ACf〉 − 2γη‖ACf‖2

≤− 2‖Af‖2 − 2αη‖Cf‖‖Af‖ − 2βη‖Cf‖2 + 2γηc1‖Af‖‖Cf‖+ 2γηc2‖Cf‖2

=− 2‖Af‖2 − 2η(β − γc2)‖Cf‖2 + 2η(α+ γc1)‖Af‖‖Cf‖

≤ − (2− η(α+ γc1)/ε)‖Af‖2 − η(2(β − γc2)− ε(α+ γc1))‖Cf‖2.

Now we can choose ε small enough so that the coefficient in front of ‖Cf‖ is negative and then η
small enough so that the coefficient in front of ‖Af‖ is negative so that

d

dt
F (f) ≤− δ

(
‖Af‖2 + ‖Cf‖2

)
≤− δλ‖∇f‖2

≤− δλ

2
‖∇f‖2 − δλCP

2
‖f‖2

≤− ΛF (f).

In the last line we use the equivalence between F (·) and the H1 norm. By Grönwall’s lemma this
gives us that

F (f(t)) ≤ e−ΛtF (f(0)),

then the equivalence between F (·) and H1 gives

‖f(t)‖2H1(µ) ≤ Ke
−Λt‖f(0)‖2H1(µ).

Remark. Here one of the key properties of the equation that we used is that, although the operator
A did not show diffusion in all the directions, it mixed with B to give C which we could use to
generate convergence in the other direction. This is very similar to the kind of mechanism used to
prove hypoellipticity.
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Now let us look at proving hypoellipticity in a similar way. This is an adaptation of some of
the material in [79], which was originally shown in in [78] and similar results appear in the second
appendix of [116].

Theorem 1.4. With the same assumptions as above we can show that for some constant K we
have

‖∇f(t)‖ ≤ K

t3/2
‖f(0)‖.

Proof.
F (t, f) = ‖f‖2 + α(t)‖Af‖2 + 2β(t)〈Af,Cf〉+ γ(t)‖Cf‖2.

Then we have

d

dt
F ≤− 2‖Af‖2 + α̇‖Af‖2 − 2α〈Cf,Af〉+ β̇〈Af,Cf〉 − 2β‖Cf‖2

+ γ̇‖Cf‖2 − 2γ〈[C,B]f, Cf〉

≤ − (2− α̇)‖Af‖2 + (2α+ β̇)‖Af‖‖Cf‖ − (2β − γ̇)‖Cf‖2

+ 2γc1‖Af‖‖Cf‖+ 2γc2‖Cf‖2

≤− (2− α̇)‖Af‖2 − (2β − γ̇ − 2γc2)‖Cf‖2 + (2α+ β̇ + 2γc1)‖Af‖‖Cf‖.

Let us set α = α̃εt, β = β̃εt2, γ = γ̃εt3. This gives

d

dt
F ≤− (2− εα̃)‖Af‖2 − t2ε(2β̃ − 3γ̃ − 2γ̃c2t)‖Cf‖2 + tε(2α̃+ 2β̃ + 2t2γ̃c1)‖Af‖‖Cf‖

≤ −
(

2− εα̃− εη

2
(2α̃+ 2β̃ + 2t2γ̃c1)

)
‖Af‖2

− t2ε
(

2β̃ − 3γ̃ − 2t2γ̃c2 −
1

2η
(3α̃+ 2β̃ + 2t2γ̃c1)

)
‖Cf‖2.

Now for t < 1 (for example) we can choose α̃ = 2(2c2 + 3), β̃ = 1, γ̃ = 1/(2c2 + 3). This gives

d

dt
F ≤−

(
2− ε2(2c2 + 3)− εη

2
δ
)
‖Af‖2 − t2ε

(
1− 1

2η
δ

)
‖Cf‖2,

where
δ = 6(2c2 + 3) + 2 + 2c1/(2c2 + 3).

So we choose η = δ. Then we need to make ε small so that

ε(2(2c2 + 3− δ2/2) = 1.

With this ε we have that
d

dt
F ≤ −εt2

(
‖Af‖2 + ‖Cf‖2

)
.

Therefore, for t < 1
d

dt
F ≤ 0.

Still for t < 1 we have
F (f(t)) ≤ F (f(0)) = ‖f(0)‖2.
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And F bounds some multiple of

t
(
‖Af‖2 + t2‖Cf‖2

)
≥ t3

(
‖Af‖2 + ‖Cf‖2

)
.

Therefore for t < 1 we have
‖Af‖2 + ‖Cf‖2 ≤ K

t3
‖f(0)‖2.

In fact we can prove both things simultaneously, as inspired from [41].

Theorem 1.5. With the same assumptions as above we can show that

‖f(t)‖2 + δ(t)3‖∇f(t)‖2 ≤ De−λt‖f(0)‖2.

Here δ(t) is a function of t which looks like t for small t and 1 for large t (δ(t) = 1− e−t).

Proof. Let us set δ(t) = (1− e−t)

F = ‖f‖2 + ε
(
αδ‖Af‖2 + 2βδ2〈Af,Cf〉+ γδ3‖Cf‖2

)
We have from before that

d

dt
F ≤ −(2−εαδ̇)‖Af‖2−ε

(
2βδ2 − 3γδ̇δ2 − 2γc2δ

3
)
‖Cf‖2+ε

(
2αδ + 2βδ̇δ + 2γc1δ

3
)
‖Af‖‖Cf‖.

Using that δ ≤ 1, δ̇ ≤ 1 we have

d

dt
F ≤−

(
2− ε

(
α+

1

2η
(2α+ 2β + 2γc1)

))
‖Af‖2

− εδ2
(

2β − 3γ − 2γc2 −
η

2
(2α+ 2β + 2γc1)

)
‖Cf‖2.

As before we choose β = 1 and γ so that

3γ + 2γc2 = 1.

Then we fix α large enough to make sure αγ > 1. This means we can choose η small so that the
coefficient of ‖Cf‖2 is negative then, given this, choose ε small enough so that the term in front
of ‖Af‖2 is negative. So after this we have

d

dt
F ≤ −Kδ2

(
‖Af‖2 + ‖Cf‖2

)
.

As before this gives
d

dt
F ≤ −Kδ2F .

Therefore,

F (t, f(t)) ≤ exp

(
−λ
∫ t

0

δ2(s)ds

)
F (0, f(0)).

Integrating δ2 gives that the exponential term is bounded by De−λt for some constant D. Then,
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working as before, we have for some other constant, which we also call D that

‖f(t)‖2 + δ(t)3‖∇f(t)‖2 ≤ De−λt‖f(0)‖2.

These theorems work well for degenerate diffusion equations. We would like to also be able to
deal with integro-differential equation which are an important class of kinetic equations. In particu-
lar we look at equations like the linear relaxation Boltzmann equation on the torus. Hypocoercivity
was first shown for these equations in [102]. This is related to the earlier works of Guo and Liu,
Yang and Yu [66, 65, 67, 68, 69, 91, 110].

We recall that the linear relaxation Boltzmann equation is

∂tf + v · ∇xf = ΠMf − f, f = f(t, x, v), (x, v) ∈ Td × Rd, (1.22)

where
ΠMf =

∫
Rd
f(x, u)duM(v), M(v) := (2π)−d/2e−|v|

2/2.

Here it is possible to write the equation in the form

A∗A+B,

however we can see that we will not fulfil the criteria. In this case A = I −ΠM and B = v · ∇x.

[A,B]f = −ΠM (v · ∇xf) + v · ∇xΠM(f) = ∇x ·
(∫

Rd
(v − u)f(x, u)du

)
M(v).

In the earlier proof we we had that ‖f‖2 was controlled by ‖Af‖2 + ‖Cf‖2. This isn’t the case
here. We need to use a different strategy. This is from [102] and is what Villani calls the auxiliary
operator method.

Theorem 1.6. Suppose f is a solution to (1.22). Then there exists some explicitly computable C
such that

‖∇ht‖2 ≤ Ce−t‖∇h0‖2.

Proof. The idea is to use the same entropy functional as for the kinetic Fokker-Planck equation.
In this case the entropy functional would be

‖h‖2 +A1‖∇xh‖2 + 2A2〈∇xh,∇vh〉+A3‖∇vh‖2,

for well chosen A1, A2, A3. A key element which helps in this proof is that the collision operator
acts only in the v-variable in a way which means we can use the dissipation of ‖∇xh‖ to help
control mixed terms. Here f = µ + hµ1/2, where µ is the equilibrium measure dµ = M(v)dxdv,
and the inner product is

〈h, g〉 =

∫
Td×Rd

h(x, v)g(x, v)dxdv.

We have that
∂th+ v · ∇xh = µ1/2

∫
h(x, u)µ1/2(u)du− h(x, v) = Πh− h.
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Differentiating along the flow we have

d

dt
‖h‖2 =− 2‖(I −Π)h‖2,

d

dt
‖∇xh‖2 =2

∫
Rd×Td

∇x(Πh− h) · ∇xhdxdv = −2‖∇x(I −Π)h‖2,

d

dt
〈∇xh,∇vh〉 =− ‖∇xh‖2 −

∫
Rd×Td

∇x(h−Πh) · ∇vhdxdv

−
∫
Rd×Td

∇xh · ∇v(h−Πh)dxdv

=− ‖∇xh‖2 − 2〈∇x(h−Πh),∇vh〉,
d

dt
‖∇vh‖2 =− 2〈∇xh,∇vh〉 − 2〈∇v(h−Πh),∇vh〉.

We have that
∇v(h−Πh) = ∇vh+

1

2
vΠh,

〈∇vΠh,∇vh〉 =
1

2
〈vΠh,∇vh〉 ≤

1

2
‖Πh‖‖∇vh‖.

We also have that thanks to the Poincaré inequality on the torus

‖Πh‖2 ≤ C‖∇xΠh‖2 ≤ C‖∇xh‖2.

Now let us look at a functional of the form

F (h) = α‖∇xh‖2 + 2〈∇xh,∇vh〉+ γ‖∇vh‖2.

Differentiating this gives

d

dt
F (h) ≤− (2α− 1/ε1)‖∇x(Πh− h)‖2 − (2− γ)‖∇xh‖2

− (2γ − ε1 − γ/2− γ)‖∇vh‖2 + γ/2‖Πh‖2

≤− (2α− 1/ε1)‖∇x(Πh− h)‖2 − (2− γ − Cγ/2)‖∇xh‖2 − (γ/2− ε1)‖∇vh‖2.

Now set ε1 = γ/4 and γ = 1/(1 + C/2) This gives

d

dt
F (h) ≤ −(2α− (4 + 2C))‖∇x(Πh− h)‖2 − ‖∇xh‖2 −

1

4 + 2C
‖∇vh‖2,

so we can set α = 2 + C. We have that

2

6 + 3C
‖∇h‖2 ≤ F (h) ≤ (4 + 2C)‖∇h‖2.

Then we have
d

dt
F (h) ≤ − 1

4 + 2C
‖∇h‖2 ≤ −F (h).

Which then implies
‖∇ht‖2 ≤ 3(2 + C)2e−t‖∇h0‖2.
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Remark. Some of the theorems in [102] require use of a ‖h‖2 term in the entropy as well. This
theorem only works for kinetic equations on the torus.

1.2.2 Entropic Hypocoercivity

Hypocoercivity in relative entropy was introduced in section 6 of part 1 of [116] alongside the H1

theory. Here Villani shows that very similar calculations and results hold when the H1 norm is
replaced by a combination of relative entropy and Fisher information. Working in relative entropy
and Fisher information increases the space of possible starting conditions. As mentioned before
the L2(µ−1) norm is strong and requires that the initial data f0 decays faster than a Gaussian
at infinity. However requiring relative entropy and Fisher information to be finite imposes much
weaker conditions on the tail of the distribution. We show Villani’s result from [116] for the kinetic
Fokker-Planck equation in the situation mirroring the result of the last section which combines
both regularisation and long time convergence from [41].

Theorem 1.7. If f is a solution to (1.2) with U having bounded Hessian then there exists some
C and λ that we can calculate so that

Hµ(h(t)) + δ3(t)Iµ(h(t)) ≤ Ce−λtHµ(h(t)).

Proof. As before we look at a twisted functional using the components of Fisher information. We
can calculate that

d

dt

∫
h log(h)dµ =−

∫
|∇vh|2

h
dµ,

d

dt

∫
|∇xh|2

h
dµ =2

∫
∇xhHess(U)∇vh

h
dµ− 2

∫
|∇x∇vh|2

h
dµ,

d

dt

∫
∇xh · ∇vh

h
dµ =−

∫
|∇xh|2

h
dµ+

∫
∇vhHess(U)∇vh

h
dµ

−
∫
∇x · ∇vh

h
dµ− 2

∫
∇x∇vh : ∇v∇vh

h
dµ,

d

dt

∫
|∇vh|2

h
dµ =− 2

∫
∇xh · ∇vh

h
dµ− 2

∫
|∇v∇vh|2

h
dµ

− 2

∫
|∇vh|2

h
dµ.

Therefore let us take a functional F of the form

F (t, h) = Hµ(h) + ε
(
A1δ(t)

3IX + δ(t)2IM +A3δ(t)I
V
)
.

For constants A1, A2, A3, ε all positive. Here as before δ(t) = (1 − e−t) and IX is the component
of Fisher information with derivatives only in x, IM is the component with mixed derivatives and
IV is the component with v-derivatives. Suppose Hess(U) ≤M then we have

Ḟ ≤− (1 + 2εδA3 −Mεδ2 − εδ̇A3)IV

− εδ2(1− 3δ̇A1)IX

+ εδ
(

2A1Mδ2 + 2δ̇ + 2 +A3δ
)√

IXIV .
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Letting A1 = 1/6, A3 = 6 we have

Ḟ ≤− (1 + 12εδ −Mεδ2 − 6εδ̇)IV

− εδ2(1− δ̇/2)IX

+ εδ(Mδ2/3 + 2δ̇ + 2 + 6δ)
√
IXIV

≤−
(

1 + 12εδ − ε(Mδ2 + 6δ̇ + (Mδ2/3 + 2δ̇ + 2 + 6δ)/2ηδ)
)
IV

− εδ2
(

1− δ̇/2− η(Mδ2/3 + 2δ̇ + 2 + 6δ)/2
)
IX ,

for any η > 0. So we choose η sufficiently small so that the coefficient of X is negative. Then for
this η we can choose ε small enough so that the coefficient of IV is positive. Therefore for some C
we have

Ḟ ≤ −Cδ2(IX + IV ).

Then as before this leads to

Hµ(h(t)) + δ3(t)Iµ(h(t)) ≤ Ce−λtHµ(h(t)).

1.2.3 L2 Hypocoercivity

L2 hypocoercivity was developed in [77] to show hypocoercivity for the linear relaxation Boltzmann
equation. It was then generalised in [50] to give a strategy for showing hypocoercivity for a range
of kinetic equations with one conservation law. We briefly describe the results of [50]. Here we
write an abstract kinetic equation

∂tf + Tf = Lf. (1.23)

Here the theorem gives abstract conditions which T and L should fulfil but we essentially imagine
T to be a transport operator

T = v · ∇xf −∇xU(x) · ∇vf,

and L to be a collision operator which acts multiplicatively on functions which only depend on
x. We write Π to be the projection on the null space of L. Generally this will be the set of local
equilibria ρ(x)M(v) for some function ρ. So in the case of the kinetic Fokker-Planck and the linear
relaxation Boltzmann equation we have

Πf =

(∫
Rd
f(x, u)du

)
M(v).

The idea of this theorem is that hypocoercivity can be seen as the combination of two effects.

• Microscopic coercivity which is coercivity on the kinetic level. There exists λm > 0 such that

−〈Lf, f〉L2(µ−1) ≥ λm‖(I −Π)f‖L2(µ−1).

i.e. the equation pushes the solution toward the set of local equilibria.

• Macroscopic coercivity which is coercivity on the level of the hydrodynamic limit equation.
This is seen through coercivity of the operator T on the set of local equilibria, there exists
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λM > 0 such that
‖TΠf‖2L2(µ−1) ≥ λM‖Πf‖

2
L2(µ−1).

In the situation where Π and T are as above we have that

‖TΠf‖2L2(µ−1) =

∫ (
vM ·∇x

(
ρ(x)

e−U(x)

)
e−U(x)

)2

M(v)−1eU(x)dvdx

=

∫ ∣∣∣∣∇x( ρ(x)

e−U(x)

)∣∣∣∣2 e−U(x)dx,

and

‖Πf‖2L2(µ−1) =

∫ (
ρ(x)

e−U(x)

)2

e−U(x)dx.

Theorem 1.8 (Dolbeault-Mouhot-Schmeiser ’15). Suppose that T, L satisfy the microscopic and
macroscopic coercivity assumptions. Suppose further that ΠTΠ = 0 and various auxiliary operators
are bounded. Then, there exists constants C, λ such that

‖et(L−T )f‖L2(µ−1) ≤ Ce−λt‖f‖L2(µ−1).

Remark. The bounding of the auxiliary operators mentioned in the statement is via an elliptic
regularity type estimate.

Like in H1 hypocoercivity the proof proceeds by showing an entropy-entropy production in-
equality for a functional which is equivalent to our desired distance. In this case the functional
has a very different form. The proof of hypocoercivity in L2 then begins by constructing the new
norm

H(f) =
1

2
‖f‖2L2(µ−1) + ε〈Af, f〉L2(µ−1),

where
A = (1 + (TΠ)∗(TΠ))−1(TΠ)∗.

In [80, 77] the new entropy constructed has a similar form. The main disadvantage of this ap-
proach is that it can currently only deal with equations with one conservation law. In general H1

hypocoercivity methods do not work for equations with a confinement potential which are also not
a diffusion. It can also be extended to work with equations where the equilibrium measure is not
explicit and so no Poincaré inequality is known as in [27, 82].

1.2.4 Probabilistic Hypocoercivity methods

Many hypocoercive equations are the Kolmogorov backwards equations of the laws of SDEs. Both
kinetic Fokker-Planck style diffusions and linear scattering equations have an interpretation as a
Markov process. Consequently, tools from probability can be fruitfully used to study the long time
behaviour of these equations.

Coupling methods for hypocoercivity

To the best of my knowledge direct coupling methods have been mainly used to show convergence
for diffusion equations. In [22], the authors study the kinetic Fokker-Planck equation when the
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confining potential is close to quadratic. They then extend this to dealing with a weakly non-linear
case. If we look at a kinetic Fokker-Planck equation with quadratic confinement we can write it as

dXt =Vtdt,

dVt =− Vtdt− λXtdt+ dWt.

Suppose we generate two solutions to this SDE, (X1
t , V

1
t ), (X2

t , V
2
t ) and give them the same driving

Brownian motion. Then if we write Yt = X1
t −X2

t , Pt = V 1
t − V 2

t we have

dYt =Ptdt,

dPt =− Ptdt− λYtdt.

Then we have that
|Yt|2 + |Pt|2 ≤ Ce−γt(|Y0|2 + |P0|2),

where we can calculate C and γ explicitly. We can reach close to quadratic confinement by a
perturbation of this result.

However, this result does not use the diffusivity of the solution at all and a similar method
cannot be expected to work when the confining potential is not strictly convex. We can see if
we have the kinetic Fokker-Planck on the torus without confining potential this still converges to
equilibrium but if we try a similar procedure we get

dYt =Ptdt,

dUt =− Ptdt.

We can solve this explicitly to get that Pt = e−tP0 and Yt = Y0 + (1 − e−t)P0. So we have
that Yt does not converge towards zero. Here, however, we did not need to couple the processes
synchronously for all time in order to get convergence towards equilibrium We would like to add
some randomness to Pt for short times in order to compensate for Y0 +P0. This is the idea behind
the work in chapter 2. Suppose we couple the two processes independently up to a stopping time
T and then we couple them synchronously We get

Pt = e−(t−T )PT , Yt = YT+(1−e−(t−T ))PT , YT = Y0+(1−e−T )P0+

∫ T

0

∫ s

0

e−(s−r)d(W 1
r−W 2

r )ds.

Then Yt behaves sufficiently randomly for t ≤ T that we can set T to be the first time Yt +Pt hits
0.

The same problem occurs in a much more complex setting when we do have a confining potential
but it is only strictly convex at infinity. A coupling strategy to show convergence in this situation
is given in [52]. Here the idea is to combine reflection coupling. Suppose we have the SDE

dXt =Vtdt,

dVt =− Vtdt−∇xU(Xt)dt+ dWt.

Then they define two solutions with driving Brownian motions W 1 and W 2 and use two different
ways of coupling W 1 and W 2. One is a well chosen reflection coupling which means that the
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noise acts to cancel out the difference in initial data for the X processes and one is a synchronous
coupling which brings the V processes closer together when the X processes are already close
together. They also need to combine these couplings with a Lyapunov condition which shows that
the dynamics return to the centre of the phase space sufficiently often.

Hypocoercivity via Bakry-Emery style methods

Following on from the works of Bakry and Emery [10, 4] methods have been developed to prove
functional inequalities and then rates of convergence for diffusions. Suppose we have the equation

∂tf + Lf = 0,

then we can define the carré du champ by

Γ(f, g) =
1

2
(L(fg)− fLg − gLf).

We can then iterate this and define

Γ2(f, g) =
1

2
(LΓ(f, g)− Γ(f, Lg)− Γ(Lf, g)).

The celebrated Bakry-Emery criterion curvature dimension criterion CD(ρ, n) is

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2.

If this condition is satisfied then one is able to show local logarithmic Sobolev and Poincaré
inequalities which can be used to show convergence to equilibrium results.

If we try to follow this procedure for the kinetic Fokker-Planck equation we get that

Γ(f, g) = ∇vf · ∇vg,

and
Γ2(f) = |Hessv(f)|2 + |∇vf |2 −∇xf · ∇vf.

We see that this cannot possibly satisfy a curvature dimension criterion since that would involve
bounding ∇xf · ∇vf by terms involving only ∇vf .

However, the Bakry-Emery method has been extended in [12, 98] to help give results for hypoco-
ercive operators including the kinetic Fokker-Planck equation. Here the role of the twisted norm is
replaced by altering Γ so it does not depend so directly on L. They replace Γ by a new quadratic
form which in the case of the kinetic Fokker-Planck equation is written

Γ̃(f, g) = a∇xf · ∇xg + b∇xf · ∇vg + b∇vf · ∇xg + c∇vf · ∇vg,

then define
Γ̃2(f, g) =

1

2
(LΓ̃(f)− 2Γ̃(Lf, f)).

This does not allow one to prove Poincaré or log Sobolev inequalities but a new curvature dimen-
sion criterion combined with local inequalities gives point wise convergence results for semigroup
generated by L. These point wise results can be integrated to show existing results and in [11]
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they show that these point wise results also imply convergence in Wasserstein distance.

1.3 List of the works in this thesis

Hypocoercivity via coupling for the kinetic Fokker-Planck equation on the torus

This chapter is the paper [48] which was written in collaboration with Helge Dietert and Thomas
Holding. The paper is accepted for publication in Kinetic and related models.

It is an open question given at the end of part 1 in [116] to find direct coupling strategies to
show convergence to equilibrium for hypocoercive equations coming from SDEs such as the kinetic
Fokker-Planck equation. In this paper we look at the kinetic Fokker-Planck equation on the torus
with no confining potential and give two coupling strategies to show convergence to equilibrium in
Wasserstein-2. First we give a straightforward strategy for coupling based on an explicit solution
to the SDE which is possible only in the unconfined case. Using this we can show that for two
solutions to the kFP we have the following theorem

Theorem 1.9. If µt and νt are two solutions to the kinetic Fokker-Planck equation (1.2), then we
have

W2(µt, νt) ≤
(
e−λt + c e−t/2λ

2L2
)
W2(µ0, ν0)

for a constant c only depending on L, where we place the equation on the torus of length L.

This strategy is unusual in that it is not adapted to the filtration generated by the driving
Brownian motions defining the solution to the SDE. It is also a strategy which is only possible
after having an explicit solution to the SDE. We therefore develop a new method of coupling two
solutions which relies on switching between synchronous and asynchronous couplings of the driving
Brownian motions of two solutions. Using this coupling strategy we have the following result

Theorem 1.10. Given initial distributions µ0 and ν0, then we have a coupling ((X1
t , V

1
t ), (X2

t , V
2
t ))

such that

W2(µt, νt) ≤
(
E
[
|X1

t −X2
t |2T + (V 1

t − V 2
t )2
])1/2

≤ Cζ(t)(
√
W2(µ0, ν0) +W2(µ0, ν0)),

where

ζ(t) =

e−min(2λ,1/(2λ2L2))t 4L2λ3 6= 1

e−2λt(1 + t) 4L2λ3 = 1

and C is a constant that depends only on λ and L.

We show that this loss in the dependence on the initial data is necessary in the set of all co
adapted couplings. We do not show that our rates our sharp but we believe that they are close
to being optimal since it is the minimum of the rate of convergence corresponding to the Orstein-
Uhlenbeck process in velocity and the rate of convergence for a diffusion on the torus. After this
work, as discussed earlier, Eberle, Guillin and Zimmer [52] have shown hypocoercivity in weighted
Wasserstein distances for the kinetic Fokker-Planck equation with confinement using a combination
of reflection and synchronous coupling along with Lyapunov structure of the equation. This uses
a similar but much more intricate strategy as the second strategy we give.



1.3. LIST OF THE WORKS IN THIS THESIS 35

Perspectives

As we have mentioned the paper [52] shows how to use coupling techniques to show hypocoercivity
for a kinetic Fokker-Planck equation with fairly general conditions on the confining potential. A
natural next step might be to investigate showing hypocoercivity via coupling strategies for other
commonly studied kinetic equations. The work in Chapters 3 and 4 could be reinterpreted to give
a coupling strategy to show that the equations studied there converge. In these we take a very
different direction in constructing couplings. It would be interesting to see if the work [52] could
be extended to the linear relaxation equation to give convergence in Wasserstein distances for that
equation.

Hypocoercivity via Harris’s theorem for kinetic equations with jumps

This work is done in collaboration with José Cañizo, Cao Chuqi and Havva Yoldas. The work is
not intended to be published in its current state. We intend to submit it for publication in the
near future.

Harris’s theorem [74, 96, 73] is a result from the theory of Markov processes. Reproving and
writing Harris’s theorem in a PDE context is a subject of an ongoing work from José Cañizo and
Stéphane Mischler. Harris’s theorem shows quantitative rates of convergence to equilibrium for
processes satisfying two assumptions. First we need a Lyapunov condition which says that there
is a function V s.t.

d

dt

∫
f(t, x, v)V (x, v)dxdv ≤ −λ

∫
f(t, x, v)V (x, v)dxdv + C

∫
f(t, x, v)dxdv.

This shows that the majority of the mass concentrates in the set where V is small, so if V → ∞
as (x, v)→∞ then this shows that the mass of f(t) concentrates in the centre of the phase space.

The next assumption is a generation of a lower bound on the centre of the phase space. It
says that for any z in the centre of the space if fz(t) is the solution with initial condition δz then
uniformly in z there is a constant α ∈ (0, 1) and a probability measure ν such that

fz(t) ≥ αν.

If you have these two assumptions then we can define the weighted TV distance by

‖µ1 − µ2‖ =

∫
(1 + V (z))|µ1 − µ2|(dz).

And we have constants A, γ depending in an explicit way on V, α, λ, C such that

‖f1(t)− f2(t)‖ ≤ Ae−γt‖f1(0)− f2(0)‖.

Harris’s theorem has been used to show convergence to equilibrium for kinetic equations. In [94]
they show convergence for kinetic Fokker-Planck equations using Harris’s theorem. They do not
verify the minorisation condition with a quantitative method. Therefore the end result is not
quantitative. In [14] they show convergence to equilibrium using Harris’s theorem for various
scattering equations that includes equations similar to the ones studied in these chapters. Again
it gives rates which are not quantitative. In [38] the authors use Doeblin’s theorem to prove
quantitative rates of convergence for some non-linear kinetic equations on the torus with a non-
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equilibrium steady state.

In this chapter we study three different kinetic equations with jumps. The linear relaxation
Boltzmann equation both with a confining potential and on the torus, the linear Boltzmann
equation on the torus and the kinetic non-local diffusion equation which is a non-local diffusion
equation approximating the kinetic Fokker-Planck equation. We show convergence to equilibrium
in a weighted total variation distance with quantitative rates. The weighting is comparable to
U(x) + |x|2 + |v|2 where U(x) is the confining potential. A similar method using Harris’s theo-
rem to get quantitative rates for jump equation has been used in [60, 32] to show convergence to
equilibrium for equations modelling biological processes.

The precise results are the following.

Theorem 1.11. The solutions to equation (1.5) on the flat torus without confining potential con-
verge exponentially fast to equilibrium in total variation distance. This rate is explicitly calculable.
i.e. There exists some λ > 0 and C > 0 such that

‖f(t)− µ‖TV ≤ Ce−λt‖f(0)− µ‖TV ,

where f(t) is a solution to (1.5) at time t.

Theorem 1.12. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ CU(x)η

for some η ∈ (0, 1) and
x · ∇xU(x) ≥ γ1|x|2 + γ2U(x)−A

for strictly positive constants C, γ1, γ2, A and γ1 ≤ 1. Then the solution to (1.5) converges ex-
ponentially fast to equilibrium in a weighted total variation norm. More specifically there exists
C > 0 and λ > 0 which we can calculate explicitly such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫
(1 + U(x) +

1

2
|v|2 +

1

4
x · v +

1

8
|x|2)|µ1 − µ2|(dxdv).

Furthermore as U is super quadratic at infinity ρ is equivalent to the distance weighted by the
Hamiltonian

ρ̃(µ1, µ2) =

∫
(1 +H(x, v))|µ1 − µ2|(dxdv).

Remark. We have a tentative proof which allows us to remove the condition that

|∇xU(x)| ≤ CU(x)η

for some η ∈ (0, 1) and replace it with the assumption that U is C2.

Theorem 1.13. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ U(x)η, x · ∇xU(x) ≥ γ1〈x〉β + γ2U(x)−A.
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Where
〈x〉 = 1 + |x|2,

and β ∈ (0, 1). Then the solution to (1.5) converges to equilibrium in a weighted total variation
norm in the following way. We define the function M by

M(x, y) = U(x) +
1

2
|v|2 +

1

4
x · v +

1

8
|x|2.

Then there exits a constant C > 0 such that

‖Ptδz1 − Ptδz2‖TV ≤ C(M(z1) +M(z2))(1 + t)−1/(1−β),

and
‖Ptδz − µ‖TV ≤ CM(z)(1 + t)−1/(1−β) + C(1 + t)−β/(1−β).

Theorem 1.14. If f(t) is the solution to the linear Boltzmann equation, (1.9), for Maxwell
molecules with cut off and b bounded below then there exists C > 0 and λ > 0, which we can
compute explicitly, such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫
(1 + |v|2)|µ1 − µ2|(dxdv).

Remark. Our hope is to extend this to the confining potential case before submitting the paper.

We also look at what we call the kinetic non-local diffusion equation

∂tf + v · ∇xf −∇xU · ∇vf = K ∗ f − f +∇v · (vf). (1.24)

Here K is smooth radial and compactly supported.

Theorem 1.15. The solution to (1.24) on the torus converges exponentially fast in a weighted TV
distance. Specifically there exists C > 0 and λ > 0, which we can compute explicitly, such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫
(1 + |v|2)|µ1 − µ2|(dxdv).

Theorem 1.16. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ CU(x)η

for some η ∈ (0, 1) and
x · ∇xU(x) ≥ γ1|x|2 + γ2U(x)−A

for positive constants and γ1 ≤ 1. Then the solution to (1.24) converges exponentially fast to
equilibrium in a weighted total variation norm. More specifically there exists C > 0 and λ > 0,
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which we can calculate explicitly, such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫ (
1 + U(x) +

1

2
|v|2 +

1

2
x · v +

1

4
|x|2
)
|µ1 − µ2|(dxdv).

Furthermore if V is super quadratic at infinity (which is implied by earlier assumptions) then ρ is
equivalent to the distance weighted by the Hamiltonian

ρ̃(µ1, µ2) =

∫
(1 +H(x, v))|µ1 − µ2|(dxdv).

Theorem 1.17. Suppose that U(x) is a function satisfying for some η ∈ (0, 1)

|∇xU(x)| ≤ U(x)η, x · ∇xU(x) ≥ γ1〈x〉β + γ2U(x)−A,

where
〈x〉 = 1 + |x|2,

and β ∈ (0, 1). Then the solution to the non-local diffusion equation converges to equilibrium in a
weighted total variation norm in the following way. We define the function M by

M(x, y) = U(x) +
1

2
|v|2 +

1

2
x · v +

1

4
|x|2.

Then there exits a constant C > 0, explicitly computable, such that

‖Ptδz1 − Ptδz2‖TV ≤ C(M(z1) +M(z2))(1 + t)−1/(1−β),

and
‖Ptδz − µ‖TV ≤ CM(z)(1 + t)−1/(1−β) + C(1 + t)−β/(1−β).

Perspectives

This method works very well for kinetic equations with jumps. It seems hopeful that it could
be applied to many more models. It seems likely that these ideas could be applied to relaxation
equations with spatially inhomogeneous jump rates. For example it is an open problem to show
quantitative rates of convergence to equilibrium for the equations

∂tfv · ∇xf = σ(x)

(∫
f(t, x, u)du− f

)
, x ∈ Td, a ≤ |v| ≤ A

Where σ is a function which vanishes at more than isolated points. It is known [16, 15] that this
equation will converge exponentially fast to equilibrium in L1 provided σ satisfies the geometric
control condition but there is no quantitative rate.

Another possible application would be to look at the linear Boltzmann equation with soft
potentials. In this chapter we look at the hard potential case and with cut off. There is a version
of Harris’s theorem which will give sub geometric rates of convergence given a weaker Lyapunov
condition. It seems likely that we could apply this to the linear Boltzmann equation with cut off
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and soft potentials to see rates of convergence.
It would be interesting to try and extend this to diffusion equations via a limiting process. The

kinetic non-local diffusion equation is

∂tf + v · ∇xf = λ(K ∗ f − f) +∇v · (vf).

We can choose a sequence of constants λn and smooth functions Kn such that solutions to this
equations converge to solutions of the kinetic Fokker-Planck equation. If we can apply our method
with constants that don’t depend on n then we could use this to get rates of convergence for the
kinetic Fokker-Planck equation. In the chapter after this one we give another way of applying
these ideas to the kinetic Fokker-Planck equation.

Hypocoercivity for the kinetic Fokker-Planck equation with a confining potential via
Hairer and Mattingly’s Wasserstein-2 Harris theorem and Malliavin calculus

This chapter studies convergence to equilibrium for the kinetic Fokker-Planck equation with a
confining potential. This work is not in collaboration and has not been submitted for publication.

There are strong mathematical connections between hypocoercivity and hypoellipticity because
of these the original goal of this project was to see if it is possible to understand anything about
hypocoercivity for SDEs using Malliavin calculus [92, 103, 104]. In some sense the Malliavin
derivative can be thought of as a way of differentiating the solution to an SDE in terms of the
driving Brownian motion. We write the Malliavin derivative of Z as DZ. DZ is a function so we
write its value at time s as DsZ. The Clarke-Ocone formula is

Zt = E(Zt) +

∫ t

0

E(DsZt|Fs)dWs.

This is a Malliavin calculus version of the fundamental theorem of calculus. Here F is the filtration
or the Brownian motion. Now if Zt = E(Zt) +Gt where Gt is a (possibly degenerate) Gaussian, if
E(Zt) is sufficiently well behaved then we can show a uniform minorisation iff Gt is non-degenerate.
We can think of this as saying that uniform minorisation would happen in this situation if and
only if the law of Zt is spreading out in all direction. Now if Z satisfies the SDE

dZt = B(Zt)dt+A(Zt)dWt,

we can show that DsXt satisfies an SDE (differentiating in s) where the commutators between
A,B appear in the coefficients. In the context of the kinetic Fokker-Planck equation this means
that we can Taylor expand to get that

Ds

(
Xt

Vt

)
=

(
0

1

)
− (t− s)

(
−1

1

)
+ Es,t.

Here Es,t is an error which is order (t − s)2. Combining this with the Clarke-Ocone formula we
can see that (Xt, Vt) behaves like a Gaussian centred around its expectation up to a small error,
and this Gaussian is non-degenerate. However, whilst the error is small in the sense that

E

((∫ t

0

E(Es,t|Fs)dWs

)2
)
≤ Ct2,
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as t → 0 this bound is to weak too get a minorisation condition from this expansion. This
means that instead of using Harris’s theorem we use a version of Harris’s theorem due to Hairer
and Mattingly [72] which gives convergence in Wasserstein distance. This theorem combines a
weaker minorisation condition with a Lyapunov structure. Our strategy allows us to verify the
minorisation condition. However there is another assumption which is a point wise gradient bound
on the semigroup. We verify this using hypocoercive type twisted norms in place of the Γ functional
in Bakry-Emery style calculus.

Precisely we have the following theorem.

Theorem 1.18. Suppose that Pt is a semigroup corresponding to the solution to the kinetic Fokker-
Plank (1.2) with the confining potential V being a smooth function satisfying

Hess(U)(x) ≤M, x · ∇xU(x) ≥ c1U(x) + c2x
2 − c3

for some constants M, c1, c2, c3. Then we can choose constants a∗ and k depending on these other
constants to define the function

L(x, v) = exp
(
a∗
(
v2 + 2U(x) + 2kx2 + kxv

))
.

We define ρ corresponding to L with

ρ(z1, z2) = inf
γ∈Γ

∫ 1

0

L(γ(t))‖γ̇(t)‖dt.

Here Γ is the set of all C1 paths between z1 and z2. Then if Wρ is the Wasserstein-1 distance
associated to ρ we have constants C > 0 and λ > 0, which we can compute explicitly, such that

Wρ(Ptµ,Ptν) ≤ Ce−λtWρ(µ, ν).

Perspectives

The most natural next step from this proof would be to try and extend it to a wider class of
kinetic equations. The first step would be to try and remove the assumption that the Hessian of
the confining potential is bounded. The proof relies very strongly on the fact that the first two
vector fields appearing in the Taylor expansion of the Malliavin derivative are constant. Removing
this assumption and the bounded Hessian assumption would be the first step towards finding
general sufficient conditions on A,B for an SDE

dZt = B(Zt)dt+A(Zt)dWt

to be hypocoercive in Wasserstein. In particular such a theorem might allow us to look at anhar-
monic chains of oscillators or similar systems.

Hypocoercivity in Φ-entropy for the linear relaxation Boltzmann equation

This chapter is adapted from the paper [58]. This paper is submitted for publication.
As we have seen relative entropy is a major tool for showing convergence to equilibrium for

kinetic equations. Hypocoercivity in relative entropy was first shown by Villani in section 6, part
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1 of [116]. This result holds for operators of the form∑
i

A∗iAi +B,

where the Ai are first order derivations and the conjugate is taken in L2(µ) for some probability
measure µ. Therefore the result holds for degenerate diffusion type equations. In the context of
kinetic equations the main example is the kinetic Fokker-Planck equation. Whilst most hypoco-
ercivity theory has been done in L2(µ−1), H1(µ−1) there are several motivations to try and push
the theory in the context of relative entropy.

• We can enlarge the space of initial data for which we can show exponentially fast convergence
to equilibrium. If we show a result for f ∈ L2(µ−1) then we are constrained to work with
initial data in L2(µ−1). This means that f0 must decay very fast at infinity. However, if
µ = exp(−|v|2/2 + U(x)) then we have

Hµ(f) =

∫
f log(f/µ)dxdv =

∫
f log(f)dxdv +

∫
f(|v|2/2 + U(x))dxdv.

Similarly, for Fisher information we have

Iµ(f) ≤ I(f) +

∫
f |∇(|v|2/2 + U(x))|2dvdx.

So these quantities will be finite provided we have some moment bounds (depending on U(x))
and finite entropy and Fisher information. This is true for many distributions which decay
only polynomially at infinity.

• If we want to eventually study non-linear equations then it is often the case that strong
spaces like L2(µ−1) will not be a natural space for the equation. For initial data which is
neither small nor close to the Maxwellian there is no well posedness theory for the Boltzmann
equation in Hilbert spaces weighted against the equilibrium This problem is solved in the
context of the Boltzmann equation by combining linearised theory with enlarging the space
of solutions [64] and Desvillettes-Villani results to show when the solution will enter the
linearised regime.

• The relative entropy and relative Fisher information functionals behave well with respect to
the dimension of the phase space that the equation is set in. Furthermore, constants in this
equation often depend on constants in the logarithmic Sobolev inequality which can often be
shown to behave well with dimension. More specifically, suppose that FN = f⊗N then we
have

H(FN ) =

∫
f⊗N (z)

∑
i

log(f(zi))dz =
∑
i

∫
f(zi) log(f(zi))dzi = NH(f).

We can also show that if Π1(FN ) is its first marginal, and the particles are indistinguishable
then

H(Π1(FN )) ≤ 1

N
H(FN ).
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Therefore, if we know that for all N that

H(FN (t)) ≤ Ce−λtH(FN (0)),

then we have that
H(Π1(FN (t))) ≤ C

N
e−λtH(FN (0)).

Furthermore if FN (0) is a tensor product or similar we will have

H(Π1(FN (t))) ≤ Ce−λt

where C does not depend onN . Therefore the rates of convergence to equilibrium are uniform
in N . On the other hand for L2 the distance ‖FN‖2 behaves like ‖Π1FN‖N2 . So if we try the
same computation we get that

‖Π1FN (t)‖2 ≤ Ce−λt/N .

This effect becomes particularly important if one wishes to study particle systems and derive
convergence results which are uniform in the number of particles. Entropic hypocoercivity
has been used in [90] to show convergence to the limit equation for oscillator chains.

Hypocoercivity in entropy has been studied by several authors. There is a series of works looking
at sharp rates for diffusions with linear drifts. This looks at functionals which are just Fisher
information with no entropy term and exploits some nice cancellations between mixed terms which
can be seen in [7, 3, 98, 6]. There is a work [41] which extends Villani’s proof of hypocoercivity
for the kinetic Fokker-Planck equation to a much wider class of confinement potential. Another is
[49] which looks at the kinetic Fokker-Planck equation in p-entropies, which interpolate between
L2 and relative entropy and shows improved rates in these distances. There are also several works
which look at point wise bounds on the semigroups rather than integrated estimates using similar
calculations to those of H1 hypocoercivity. These then give results in relative entropy as well as
other entropies and Wasserstein-2 distance [12, 98, 11]. All these works look at diffusion equations
which can be written in the form

A∗A+B

as in [116]. We study the linear relaxation Boltzmann equation on the torus

∂tf + v · ∇xf = ΠMf − f.

Theorem 1.19. If f is a solution to the equation above with initial data f0 such that

I(f0|µ) <∞, f0 ∈W 1,1(µ),

then there exist constants Λ > 0 and α > 0, β > 0, which we can compute explicitly, depending on
λ but not on the dimension such that

I(ft|µ) + βH(ΠMft|µ) ≤ exp (−Λt) (αI(f0|µ) + 2βH(ΠMf0|µ)) .
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This implies that for some γ,

H(ft|µ) ≤ exp (−Λt) (γI(f0|µ)) .

Hypocoercivity for the linear Boltzmann equation has already been shown in [102] and [77].
The L2 result implies the decay of relative entropy as L2(µ−1) controls relative entropy. However,
this theorem holds only for initial data in L2(µ−1) which is a distinct set to having finite relative
entropy and Fisher information. Also, this proof is directly in this non-linear distances. We also
show that this result holds when relative entropy is replaced with p-entropies. Here we also show
new functional inequalities which allow us to prove this convergence behaviour.

We have added some sections after the original submitted paper. We give an alternative way of
calculating the dissipation of Fisher information which is simpler and allows us to extend our proof
to a wider class of Φ-entropy. We then briefly review the paper [99] which extends the results of the
paper to the unconfined setting with close to quadratic force. We then show similar calculations
allow us to give a result for the linear Boltzmann equation with cut off, Maxwell molecules and
close to quadratic confinement.

Perspectives

The natural next step would be to try and show entropic hypocoercivity for the linear relaxation
Boltzmann equation with more general confining potentials. This is potentially quite challenging
as the proof here resembles the proof in [102] which is in the H1 setting. This type of proof does
not allow us to deal with confining potentials. Hypocoercivity in the confining potential case is
shown using L2 hypocoercivity theorems which are more structurally different to the proof given
here than [102]. It would also be interesting to try and extend the proof on the torus to other
operators for which Fisher Information is a Lyapunov functional in the spatially homogeneous case
such as the linear Boltzmann equation for Maxwell molecules.

More speculatively, as discussed already, showing entropic hypocoercivity is most relevant when
trying to study equations when we want control uniformly in the dimension of the phase space. An
example of this is oscillator chains. Here entropic hypocoercivity techniques have been used to show
hydrodynamic limits in [90]. Entropic hypocoercivity in this context is more challenging because
these systems have non-equilibrium steady states about which not much is known. Performing
hypocoercivity for these systems requires one to prove bounds on the derivative of the steady state
and functional inequalities for this state.

For some non-linear equations entropy-entropy production inequalities only hold for certain
Φ-entropies and not in L2. In this case the only hope of proving hypocoercivity for the fully
non-linear equation is to try and use Φ-entropic hypocoercivity.

Non-equilibrium steady states in Kac’s model coupled to a thermostat

This is the only work in this thesis not directly related to hypocoercivity. In this chapter we study
convergence to equilibrium for the Kac Master equation coupled to a thermostat. The chapter is
adapted from the paper [57]. This work has been published in The Journal of Statistical Physics.
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The model is

∂tFn = −λN(I −Q)[FN ]− µ
N∑
j=1

(I −Rj)[FN ] = L[FN ], (1.25)

where

Q[FN ] =
1(
N
2

) ∑
i<j

−
∫ 2π

0

FN (vi,j(θ))dθ,

and

Rj [FN ] =

∫
dw−
∫ 2π

0

dθg(w∗j )FN (vj(w, θ)).

In these

vij(θ) = (v1, . . . , vi cos(θ) + vj sin(θ), . . . ,−vi sin(θ) + vj cos(θ), . . . , vN ),

vj(w, θ) = (v1, . . . , vj cos(θ) + w sin(θ), . . . , vN ),

w∗j = w cos(θ)− vj sin(θ).

This corresponds to a simple 1D model of N gas particles colliding with each other and particles in
an infinite, unchanging heat bath. Each particle in the heat bath has velocity distributed according
to the density g. This work is fundamentally motivated by two others. Firstly [26] which studies
the Kac master equation coupled to a Gaussian thermostat. In this paper they show convergence
to Gaussian equilibrium in relative entropy. It is part of a series of papers where they aim to study
Kac’s model when a large proportion of the particles are already at equilibrium. The other paper
is [39] where they study the existence and convergence to non-equilibrium steady states for the
spatially homogeneous Boltzmann equation coupled to a non-equilibrium thermostat. We study
Kac’s model with the same non-equilibrium coupling. A ‘physical’ system this might correspond
to is if the gas could interact with a number of different thermostats at different temperatures. We
show existence and convergence to a non-equilibrium steady state. We work in both the Gabetta-
Toscani-Wennberg distance which is what is used in [39] and Wasserstein-2 using a simple coupling
strategy. This allows us to give both a ‘deterministic’ and a ‘probabilistic’ proof of convergence to
equilibrium for the system. We then study the behaviour of the system as the number of particles
goes to infinity. We show that both distances behave well with respect to the ambient dimension
and this allows us to get uniform convergence rates for the first marginal. Lastly, we add a short
section to the original paper which shows how the result of Hauray in [75] can be translated into
a result with Fourier distances.

The precise results for the fixed N model are the following.

Theorem 1.20. A steady state for the master equation exists, is unique and has the same moments
up to order 2 as g⊗N .

Furthermore if we start with initial data F 0
N and H0

N which are probability distributions on RN

with finite first and second moments then we have the following possible situations:

1. If F 0 and H0 have the same mean initially then the GTW distance between the solutions is
finite for all time and we get the exponential convergence:

dGTW,N (FN (t), HN (t)) ≤ e−µt/2dGTW,N (F 0
N , H

0
N ).
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2. If F 0 and H0 have different means then we can construct an altered distance in which
the solutions still converge exponentially fast towards each other with rate µ/2. We also have the
estimate

dT1,N (FN (t), HN (t)) ≤ e−µt/4dT1,N (F 0
N , H

0
N ).

Theorem 1.21. If µN and νN are two solutions to the master equation with finite second moments
then

W2(µN (t), νN (t)) ≤ e−µt/2W2(µN (0), νN (0)).

As we let N →∞ we have the following theorems.

Theorem 1.22. Let F 0
N and H0

N be respectively f and h chaotic families where the GTW distance
between F 0

N and f⊗N (resp. for H0
N and h⊗N ) is bounded uniformly in N . Furthermore if f and h

are probability densities with finite first and second moments and differentiable Fourier transforms,
then we can choose a family of functions χ (one for each N) to construct an altered distance d̃ so
that

d̃ (Π1[FN ],Π1[HN ])) ≤ (C1 + (C2 + C3)
√
N + d̃(f, h))e−

µ
2 t.

We also look at the T1 distance which is very similar to the GTW distance it is

dT1(µ, ν) = sup
ξ 6=0

|µ̂(ξ)− ν̂(ξ)|
|ξ|

.

Theorem 1.23. Suppose that f and h are probability densities on R with finite mean. Suppose
(FN (0, v))N≥2 and (HN (0, v))N≥2 are respectively f, h-chaotic families with respect to the T1 met-
ric, and the T1 distance between FN (0, ·) and f⊗N , and between HN (0, ·) and h⊗N are bounded
uniformly in N . Furthermore, let FN , HN be the solution to the N -particle coupled Kac’s master
equation with this initial data. Then there exists a C (the bound between the initial data and the
tensorised form) independent of N such that

dT1,1(Π1[FN ](t),Π1[HN ](t)) ≤ (C +
√
NdT1,1(f, h))e−µt/4.

Theorem 1.24. Suppose that µN (t) and νN (t) are solutions to the master equation at time t, with
initial data µ⊗N0 and ν⊗N0 . Then we have that for any N ,

W2,1(Π1(µN (t)),Π1(νN (t))) ≤ e−µt/2W2,1(µ0, ν0).

Perspectives

Since this work was completed, other works have been done on Kac’s model coupled to a thermostat.
This work is a route to studying Kac’s model when most of the system is in equilibrium [113, 25].
It has also been shown that the Kac semigroup is not contractive in GTW [112]. These papers all
deal with the case when the thermostat is Maxwellian and you have equilibrium steady states. It
would be interesting to see if the last section of this chapter which translates the results of [75]
into a Fourier distance can be extended to the multidimensional Kac model.
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Chapter 2

Hypocoercivity via coupling for the
kinetic Fokker-Planck equation on
the torus

2.1 Introduction

In this chapter we study the kinetic Fokker-Planck equation on the torus. We prove contraction
properties of the spatially periodic kinetic Fokker-Planck equation in the Wasserstein metric, and
show to what extent the probabilistic technique of coupling can be used in such situations. This is
of interest, both intrinsically, and in the broader context of analytic and probabilistic methods of
proving convergence to equilibrium and contraction properties of Fokker-Planck equations which
we summarise in the paragraphs below. Since this paper was originally written the paper [52]
appeared which shows a similar result in a similar but more challenging setting. They deal with
the kinetic Fokker-Planck equation with a confining potential. It seems likely their techniques
would adapt in a straightforward way to the situation studied here. They perform a similar change
of variables as to the one given in the Markovian section of this chapter and use a combination of
reflection and synchronisation couplings as is also used here. The Monge-Kantorovich-Wasserstein
(MKW) distance comes from optimal transport and is defined as

W2(µ, ν) = inf
π∈Πµ,ν

(∫
|x− y|2dπ(x, y)

)1/2

,

where Πµ,ν is the set of all couplings between µ and ν.

A common analytic technique to show contraction or convergence to equilibrium of Fokker-
Planck equations is to work in a L2 space weighted by the reciprocal of the equilibrium measure.
Here, in the spatially homogeneous setting, contractivity is established by showing that the gener-
ator of the Fokker-Planck semi-group is coercive on this L2 space, which implies that the generator
has a spectral gap. In the spatially inhomogeneous setting, which is common in kinetic theory, the
generator is, however, not coercive in this space and this method fails.

The kinetic Fokker-Planck equation in particular has received much attention [80, 61, 102]
both in the case of a spatial confining potential and in, the analytically simpler, case of spatial
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periodicity. The paper [61] considers exactly our equation and finds explicitly the optimal rates
of convergence in weighted L2 space. The motivation is similar to that of this paper, which is
to study a simple toy model on which more explicit calculations can be performed in order to
explore alternative methods for proving hypocoercivity. These works, however, do not address the
question of contraction in the Wasserstein metric W2, as this distance is currently inaccessible
from these analytic tools; the closest result to this being [97] where W1 results are obtained by
duality. Using interpolation estimates and convergence results in other spaces, one can conclude
exponential decay in the WassersteinW2 distance. However, then the control in terms of the initial
data only holds for a power strictly less than one.

Another viewpoint, strongly related to the first, comes from the theory of gradient flows [84],
in which the Fokker-Planck equation is identified with the steepest descent flow of an entropy
functional in the Wasserstein space W2. However, the theory does not cover the considered model
due to the kinetic structure. Dissipation in the Wasserstein distance can also be shown for non-
gradient drifts in the homogeneous setting using analytic methods [21].

A common probabilistic technique to show contraction or convergence is to construct a coupling
between two copies of the stochastic process that realises the desired bound on the metric between
the laws. In the spatially homogeneous Fokker-Planck equation, the synchronisation coupling,
where the infinitesimal motions of the noise are coupled together, gives contraction in Wasserstein
metrics when the velocity potential is strongly convex. In the spatially inhomogeneous case with
a confining potential, such a straightforward coupling only establishes contraction if the confining
potentials are quadratic (or a small perturbation thereof) see for example [22]. Establishing con-
traction in the Wasserstein metric for more general confining potentials is an open problem. In
the spatially periodic case results are even more limited. In this case the synchronisation coupling
does not cause the spatial distance on the torus to decay. Thus the spatially periodic case is more
difficult in the probabilistic case. This is in contrast to the analytic setting, where having the
spatial variable on the torus means hypocoercivity can be shown by a very similar, and in fact
slightly simpler, computation to that in part 1 section 7 of [116] will show hypocoercivity.

In this work we study the contraction properties in the Wasserstein metric of the kinetic Fokker-
Planck equation with spatial variable on the torus and a quadratic velocity potential. Despite the
simplicity of this equation, to the authors’ knowledge this question has not been answered in the
literature, and a second goal of this manuscript it to understand what difficulties might explain
this.

This kinetic Fokker-Planck equation describes the law of a particle moving in the phase space
T× R whose location in the phase space is (Xt, Vt) and evolves as{

dXt = Vtdt,

dVt = −λVtdt+ dWt,
(2.1)

where Wt is a Brownian motion and the spatial variable is in the torus T = R/(2πLZ) of length
2πL.

The corresponding law µt on T× R evolves as

∂tµt + v∂xµt = ∂v[λvµt +
1

2
∂vµt], (2.2)
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where this equation is considered in the weak sense. The equilibrium state for this equation is

1

2πL
Leb⊗

√
λ

π
exp

(
− 1

4λ
v2

)
Leb.

Solving the stochastic evolution, we show exponential decay of the distance between two solu-
tions.

Theorem 2.1. If µt and νt are two solutions to the kinetic Fokker-Planck equation (2.2), then we
have

W2(µt, νt) ≤
(
e−λt + c e−t/(2λ

2L2)
)
W2(µ0, ν0)

for a constant c only depending on L.

Remark. We are not aware of any paper showing optimal rate of convergence for this process in
W2. The paper [61] shows that for large times this is the optimal rate of convergence in a weighted
L2 space. Also, we show later that we can split the process in components which are broadly an
Orstein-Uhlenbeck process with rate λ and a Brownian motion with diffusivity 1/λ on the torus.
One would expect the optimal rate of convergence for an O-U process in any reasonable distance
to be λ and the optimal rate of convergence for the diffusion process to be 1/(2λ2L2). Therefore it
seems likely that our rates are optimal.

The key idea is that, after conditioning on the final velocity, the spatial variable has enough
randomness left to allow such a coupling. This approach is not based on a functional inequality
which is integrated over time.

In fact the evolution is not a contraction semigroup in the considered distance which we can
show directly in a straightforward way using the explicit solution to the SDE. Precisely,

Proposition 2.1. The kinetic Fokker-Planck operator is not coercive in the MKW distance. The
inequality

W2(µt, νt) ≤ e−γtW2(µ0, ν0), ∀µ0, ν0

cannot hold for any γ > 0.

In order to construct a coupling showing convergence in the MKW distance, random variables
(Xi

t , V
i
t ) are constructed for t ∈ R+ and i = 1, 2 such that (X1

t , V
1
t ) has law µt and (X2

t , V
2
t ) has

law νt. Then for t ∈ R+ the coupling ((X1
t , V

1
t ), (X2

t , V
2
t )) gives an upper bound of the MKW

distance W2(µt, νt).
The fact that (2.1) is an evolution equation means that it could be considered more natural

from a probabilistic viewpoint to consider couplings that evolve along the flow of the equation.
This motivates us to look at couplings where (Xi

t , V
i
t ) are continuous Markov processes with initial

distribution µ0 and ν0, respectively, and whose transition semigroup is determined by (2.1). For
such couplings we can consider a more restrictive class of couplings.

Definition 2.1 (co-adapted coupling). The coupling ((X1
t , V

1
t ), (X2

t , V
2
t )) is co-adapted if, for

i = 1, 2, under the filtration F that is generated by the coupling ((X1
t , V

1
t ), (X2

t , V
2
t )), the process

(Xi
t , V

i
t ) is a continuous Markov process whose transition semigroup is determined by (2.1).

This is an important subclass of couplings, which contains many natural couplings, and an
even more restrictive subclass is the class of Markovian couplings, where additionally the coupling
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itself is imposed to be Markovian. The existence and obtainable convergence behaviour under this
restriction has already been studied in different cases, e.g. [89, 30, 42]. Note that the co-adapted
coupling is equivalent to the condition that the filtration generated by (Xi

t , V
i
t ) is immersed in the

filtration generated by the coupling, which motivates Kendall [86] to call such couplings immersed
couplings.

By adapting the reflection/synchronisation coupling, we can still obtain exponential conver-
gence but with a loss in dependence on the initial data.

Theorem 2.2. Given initial distributions µ0 and ν0, then there exists a co-adapted coupling
((X1

t , V
1
t ), (X2

t , V
2
t )) such that

W2(µt, νt) ≤
(
E
[
|X1

t −X2
t |2T + (V 1

t − V 2
t )2
])1/2

≤ Cζ(t)(
√
W2(µ0, ν0) +W2(µ0, ν0)),

where

ζ(t) =

e−min(2λ,1/(2λ2L2))t 4L2λ3 6= 1

e−2λt(1 + t) 4L2λ3 = 1

and C is a constant that depends only on λ and L.

Here we used the notation |X1
t − X2

t |T to emphasis that this is the distance on the torus
T. In fact the filtrations generated by (X1, V 1) and (X2, V 2) agree which Kendall [86] calls an
equi-filtration coupling.

Remark. This achieves the same exponential decay rate as the non-Markovian argument, except
for the case 4L2λ3 = 1, when the spatial and velocity decay rates coincide and we have an addition
polynomial factor multiplied with the exponential.

In general the loss in the dependence is necessary.

Theorem 2.3. Suppose there exists a function α : R+ 7→ R+ and a constant γ > 0 such that for
all initial distributions µ0 and ν0 there exists a co-adapted coupling ((X1

t , V
1
t ), (X2

t , V
2
t )) such that

(
E
[
|X1

t −X2
t |2T + (V 1

t − V 2
t )2
])1/2 ≤ α(W2(µ0, ν0))e−γt.

Then there exists a constant C such that for z ∈ (0, πL] we have the following lower bound on the
dependence on the initial distance

α(z) ≥ C
√
z.

The idea is to focus on a drift-corrected position on the torus, which evolves as a Brownian
motion. By stopping the Brownian motion at a large distance we can then prove the claimed lower
bound.

This shows that a simple hypocoercivity argument on a Markovian coupling cannot work.
Precisely, there cannot exist a semigroup P on the probability measures over (T × R)×2, whose
marginals behave like the solution of (2.1) and which satisfies H(Pt(π)) ≤ cH(π)e−γt for H2(π) =∫

[(X1 −X2)2 + (V 1 − V 2)2]dπ(X1, V 1, X2, V 2). Otherwise, the Markov process associated to P
would be a coupling contradicting 2.3.
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2.2 Set up

The stochastic differential equation (2.1) has an explicit solution, when posed in R2. For clarity,
when we are considering X to be in R rather than the torus we will denote it X̂. The explicit
solution is

X̂t = X̂0 +
1

λ
(1− e−λt)V0 +

∫ t

0

1

λ
(1− e−λ(t−s))dWs,

Vt = e−λtV0 +

∫ t

0

e−λ(t−s)dWs,

(2.3)

where Wt is the common Brownian motion. In this we separate the stochastic driving as (At, Bt)

given by the stochastic integrals

At =

∫ t

0

1

λ
(1− e−λ(t−s))dWs,

Bt =

∫ t

0

e−λ(t−s)dWs,

which evolve as a vector in R2 with the common Brownian motion Wt. By Itō’s isometry (At, Bt)

is a Gaussian random variable with covariance matrix Σ(t) given by

ΣAA(t) =
1

λ2

[
t− 2

λ
(1− e−λt) +

1

2λ
(1− e−2λt)

]
, (2.4)

ΣAB(t) =
1

λ2

[
(1− e−λt)− 1

2
(1− e−2λt)

]
, (2.5)

ΣBB(t) =
1

2λ
(1− e−2λt). (2.6)

From this we calculate that the conditional distribution of At given Bt is a Gaussian with variance
ΣAA(t)− Σ2

AB(t)Σ−1
BB(t) and mean given by

µA|B(t, b) = ΣAB(t)Σ−1
BB(t)b.

We write gA|B for the conditional density of A given B and gB for the marginal density of B.
Hence

g(t, a, b) = gA|B(t, a, b)gB(t, b) (2.7)

is the joint density of A and B.

The last part of the set up is the change of variables we will need for the Markovian coupling.
We define new coordinates (Y, V ) in T× R by taking the drift awayY = X +

1

λ
V,

V = V.

(2.8)

The motivation for this change is the explicit formulas found in (2.3) from which we see that Y is
the limit as t→∞ of Xt without additional noise. In the new variables, (2.1) becomes dYt =

1

λ
dWt,

dVt = −λVtdt+ dWt,
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for the common Brownian motion Wt. Note that the motion of Yt does not depend explicitly upon
Vt and is a Brownian motion on the torus.

It remains to show that these new coordinates define an equivalent norm on T×R. This follows
from the triangle inequality and we have

|X1 −X2|T + |V 1 − V 2| ≤ |Y 1 − Y 2|T +

(
1 +

1

λ

)
|V 1 − V 2|

and the other direction is similar. Thus, the two norms are equivalent up to a constant factor that
depends only on λ.

2.3 Non-Markovian Coupling

We wish to estimate how much the spatial variable will spread out over time. We will then use
this to construct a coupling at a fixed time t which exploits the fact that a proportion of the
spatial density is distributed uniformly. In order to do this we give a lemma on the spreading of a
Gaussian density wrapped on the torus.

Lemma 2.1. For σ2 > 2L2 log(3) consider the Gaussian density h on R given by

h(x) =
1√

2πσ2
e−x

2/2σ2

and wrap it onto the torus T, i.e. define the density Qh on T by

(Qh)(x) =
∑
n∈Z

h(x+ 2πLn). (2.9)

We have the following estimate on the spatial spreading

Qh(x) ≥ β

2πL

where

1− β =
2e−σ

2/2L2

1− e−σ2/2L2 ∈ (0, 1).

Proof. We define the Fourier transform of a function on T to be

(Fg)(k) =

∫
T
eikx/Lg(x)dx,

where ∫
T
g(x)dx =

∫ 2πL

0

g(x)dx.

By the definition of Q, the Fourier transform of Qh is given by

(FQh)(k) =

∫
T

∑
n∈Z

h(x+ 2πLn)eikx/Ldx =

∫
R
h(x)eikx/Ldx = exp

(
−k

2σ2

2L2

)

where we have used the well-known Fourier transformation of a Gaussian.
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Writing Qh in terms of its Fourier series and subtracting the k = 0 term, we have for any x ∈ T

Qh(x)− β

2πL
=

1

2πL

∑
|k|≥1

e−k
2σ2/2L2−ikx/L +

1− β
2πL

.

We want this to be positive. Therefore it is sufficient to show that∣∣∣∣∣∣
∑
|k|≥1

e−k
2σ2/2L2−ikx/L

∣∣∣∣∣∣ ≤ 1− β.

We estimate the left hand side by∣∣∣∣∣∣
∑
|k|≥1

e−k
2σ2/2L2−ikx/L

∣∣∣∣∣∣ ≤ 2
∑
k≥1

e−kσ
2/2L2

= 1− β

where the final equality follows from summing the geometric series.

We can now use this to construct a coupling at time t. We will use this coupling to prove
exponential decrease in the Wasserstein distance.

Lemma 2.2. Let t ≥ 0, be large enough so the variance of gA|B is greater than 2L log(3), and β
be such that

(QgA|B)(t, a, b) ≥ β

2πL
,

where gA|B is defined by (2.7) above. Let µt resp. νt be the distribution of the solution to the Fokker-
Planck equation (2.2) with deterministic initial data µ0 = δx1

0,v
1
0
and ν0 = δx2

0,v
2
0
respectively, at

time t. Then there exists a coupling ((X1
t , V

1
t ), (X2

t , V
2
t )) between µt and νt satisfying

E
[
(V 1
t − V 2

t )2
]

= e−2λt
[
(v1

0 − v2
0)2
]

and
E
[
|X1

t −X2
t |2T
]
≤ 2(1− β)

[
|x1

0 − x2
0|2T +

1

λ2
(v1

0 − v2
0)2

]
.

Proof. Let us construct such a coupling. Since we have seen that gA|B is Gaussian density with
variance σ2 = ΣAA(t)− Σ2

AB(t)Σ−1
BB(t), we can use 2.1 to split the distribution QgA|B as

QgA|B(t, a, b) =
β

2πL
+ (1− β)s(t, a, b).

Then by assumption s is again a probability density for the variable a on the torus T. We now
consider the torus as a subset of R and then QgA|B and 1/2πL are probability density functions.
Therefore, s is also probability density functions supported on [0, 2πL]. Let B be an independent
random variable with density gB(t, b), let Z be an independent uniform random variable over [0, 1]

and let U be an independent uniform random variable over the torus. Finally let S be a random
variable on R with density s(t, ·, B), viewed as a density function on R, only depending on B.
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With this define the random parts A1, A2 of X1
t , X

2
t as

A1 =1Z≤β

[
U − x1

0 −
1

λ
(1− e−λt)v1

0

]
+ 1β>ZS,

A2 =1Z≤β

[
U − x2

0 −
1

λ
(1− e−λt)v2

0

]
+ 1β>ZS.

We then construct (X̂1
t , V

1
t ) defined by

X̂1
t = x1

0 +
1

λ
(1− e−λt)v1

0 +A1,

V 1
t = e−λtv1

0 +B,

and (X̂2
t , V

2
t ) defined by

X̂2
t = x2

0 +
1

λ
(1− e−λt)v2

0 +A2,

V 2
t = e−λtv2

0 +B.

We then construct Xi
t by wrapping X̂i

t onto the torus (i.e. Xi
t ∈ [0, 2πL) and Xi

t ≡ X̂i
t mod 2πL).

By construction the pairs (Xi, V i) have the right laws so they form a valid coupling.

We find
E
[
(V 1
t − V 2

t )2
]

= e−2λt
[
(v1

0 − v2
0)2
]

and

E
[
|X1

t −X2
t |2T
]

= (1− β)

[∣∣∣∣x1
0 − x2

0 +
1

λ
(1− e−λt)(v1

0 − v2
0)

∣∣∣∣2
T

]
and we can use Young’s inequality to find the claimed control.

We now put these two lemmas together to prove 2.1, which states exponential convergence in
the MKW W2 distance.

Proof of 2.1. We first show that we can reduce to working with deterministic initial conditions.
We denote µx,vt to be the law of the solution to the SDE initialized at (x, v). Suppose we know
that

W2(µx1,v1
t , µx1,v2

t ) ≤ ω(t)d((x1, v1), (x1, v2)).

Since, µt, νt are the laws of Markov processes we know that,

µt(φ) =

∫ ∫
φ(y, u)dµ

(x,v)
t (y, u)dµ0(x, v).

Hence given, π a coupling of µ0, ν0 we can construct a coupling of µt, νt by

πt(ψ) =∫ (∫
ψ((y1, u1), (y2, u2))dµ

(x1,v1)
t (y1, u1)dν

(x2,v2)
t (y2, u2)

)
dπ((x1, v1), (x2, v2)).

The couplings of this form are a subset of all the couplings of µt, νt therefore we can take the
infimum over these couplings in order to bound the Wasserstein distance. Then given any coupling
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π of initial measures µ0, ν0 we have

W2(µt, νt)
2 ≤

∫
(T×R)2

W2(µx1,v1
t , µx2,v2

t )2dπ((x1, v1), (x2, v2))

≤ ω(t)2

∫
(T×R)2

d((x1, v1), (x2, v2))2dπ((x1, v1), (x2, v2)).

Then taking an infimum over π shows that this implies

W2(µt, νt) ≤ ω(t)W2(µ0, ν0).

Given any initial points ((x1
0, v

1
0), (x2

0, v
2
0)), we can use 2.2 to construct a coupling ((X1

t , V
1
t ), (X2

t , V
2
t ))

of µt and νt. From explicitly calculating the variance of the distribution of A|B using (2.4), (2.5),
(2.6), we see that the variance grows asymptotically as t/λ2. Hence by 2.1 we can choose β so that
1− β → 0 exponentially fast with rate 1/2λ2L2. This, combined with the control from the second
lemma, shows that

E
[
(V 1
t − V 2

t )2 + |X1
t −X2

t |2T
]
≤
(
e−2λt + ce−t/2λ

2L2
) [

(v1
0 − v2

0)2 + |x1
0 − x2

0|2T
]
.

The explicit solution also allows to prove that the evolution is not a contraction semigroup.

Proof of 2.1. We will prove the theorem by contradiction. Suppose γ > 0 and let a 6= b be two
distinct points on the torus. Consider the initial measures

µ0 = δx=aδv=0

and
ν0 = δx=bδv=0.

Then the distance is W2(µ0, ν0) = |a− b|T.
At time t the spatial distribution of µt and νt, interpreted in R, is a Gaussian with variance

ΣAA which by the explicit formula 2.4 can be bounded as

ΣAA(t) ≤ CAt2

for a constant CA and t ≤ 1.
Hence for d > 0 and t ≤ 1 the spatial spreading is controlled as

µt((T \ [a− d, a+ d])× R) ≤ 2ΣAA(t)

d
√

2π
exp

(
−d2

2Σ2
AA(t)

)
≤ C1

t2

d
exp

(
−C2

d2

t4

)
for positive constants C1 and C2, where we have used the standard tail bound for the Gaussian
distribution (see e.g. [100, Lemma 12.9]).

For any d > 0 small enough that a± d and b± d do not wrap around the torus, any coupling
between µt and νt must transfer at least the mass

1− µt((T \ [a− d, a+ d])× R)− νt((T \ [b− d, b+ d])× R)
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between [a− d, a+ d] and [b− d, b+ d].

Hence the Wasserstein distance is bounded by

W2
2 (µt, νt) ≥ (|a− b|T − 2d)2

(
1− 2C1

t2

d
exp

(
−C2

d2

t4

))
.

Taking d = |a− b|Tt3/2 for t sufficiently small, this shows that

W2
2 (µt, νt) ≥ |a− b|2T(1− 2t3/2)2

(
1− 2C1

|a− b|T
√
t exp

(
−C2|a− b|2T

t

))
.

However, for all small enough positive t, we have

(1− 2t3/2)2 > e−γt/2

and (
1− 2C1

|a− b|T
√
t exp

(
−C2|a− b|2T

t

))
> e−γt/2

contradicting the assumed contraction. For the second estimate we use exp(−c/t) ≤ (1 + c/t)−1 =

t/(c+ t).

2.4 Co-adapted couplings

2.4.1 Existence

For 2.2 we construct a reflection/synchronisation coupling using the drift-corrected positions Y it . As
the positions are on the torus we can use a reflection coupling until Y 1

t and Y 2
t agree. Afterwards,

we use a synchronisation coupling which keeps Y 1
t = Y 2

t and reduces the velocity distance.

For a formal definition let ((X1
0 , V

1
0 ), (X2

0 , V
2
0 )) be a coupling between µ and ν obtaining the

MKW distance (the existence of such a coupling is a standard result, see e.g. [117, Theorem 4.1.]).

We then define the evolution of this coupling in two stages. First, define (X1
t , V

1
t ) and (X3

t , V
3
t )

to be strong solutions to (2.1) with initial conditions ((X1
0 , V

1
0 ) and (X2

0 , V
2
0 ) respectively and

driving Brownian motion W 1
t . Then we recall the definition of Y i from (2.8), and define the

stopping time T := inf{t ≥ 0 : Y 1
t = Y 3

t }. Then we define a new process W 2
t by

W 2
t =

−W 1
t t ≤ T,

W 1
t − 2W 1

T t > T.

By the reflection principle,W 2 is a Brownian motion. We use this to define a new solution (X2
t , V

2
t )

to be the strong solution to (2.1) with driving Brownian motionW 2 and initial condition (X2
0 , V

2
0 ).

Note now that T = inf{t ≥ 0 : Y 1
t = Y 2

t }.

For the analysis we introduce the notation

Mt = Y 1
t − Y 2

t ,

Zt = V 1
t − V 2

t .
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Then by the construction the evolution is given by

dMt =
2

λ
1t≤TdW 1

t , (2.10)

dZt = −λZtdt+ 2 · 1t≤TdW 1
t , (2.11)

where Mt evolves on the torus T.
As a first step we introduce a bound for T .

Lemma 2.3. The stopping time T satisfies

P(T > t|M0) =
4

π

∞∑
k=0

1

2k + 1
exp

(
− (2k + 1)2

2λ2L2
t

)
sin

(
(2k + 1)|M0|T

2L

)
. (2.12)

Proof. As Mt evolves on the torus, T is the first exit time of a Brownian motion starting at M0

from the interval (0, 2πL). See [100, (7.14-7.15)], from which the claim follow after rescaling to
incorporate the 2/λ factor.

Remark. The second expression in (2.12) is obtained by solving the heat equation on [0, 2πL] with
Dirichlet boundary conditions and initial condition δM0 .

Lemma 2.4. There exists a constant C such that for any t > 0 the following holds

P(T > t|M0) ≤ C|M0|T(1 + t−1/2)e−t/(2λ
2L2). (2.13)

Proof. Using (2.12) and the inequality sin(x) ≤ x for x ≥ 0, we have

P(T > t|M0) ≤ 4

π
e−t/(2λ

2L2)
∞∑
k=0

|M0|T
2L

2k + 1

2k + 1
e−4k2t/(2λ2L2)

≤ 2

πL
|M0|Te−t/(2λ

2L2)

(
1 +

∫ ∞
0

e−4u2t/(2λ2L2)du

)
=

2

πL
|M0|Te−t/(2λ

2L2)

(
1 +

√
π

8t/(λ2L2)

)
≤ C|M0|T(1 + t−1/2)e−t/(2λ

2L2)

where on the second line we have bounded the sum by an integral.

Using these simple estimates, we now study the convergence rate of the coupling.

Lemma 2.5. There exists a constants C such that for any t ≥ 0 we have the bound

E
[
|Mt|2T + |Zt|2

∣∣(Z0,M0)
]
≤ |Z0|2e−2λt +


C|M0|Te−2λt 2λ < 1/(2λ2L2)

C|M0|T(1 + t)e−2λt 2λ = 1/(2λ2L2)

C|M0|Te−t/(2λ
2L2) 2λ > 1/(2λ2L2).

Proof. Without loss of generality we may assume that Z0 and M0 are deterministic in order to
avoid writing the conditional expectation.

Applying Itō’s lemma, we find from (2.11) that

d|Zt|2 = −2λ|Zt|2dt+ 4 · 1t≤TZtdW 1
t + 2 · 1t≤Tdt.
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After taking expectations we see that

d

dt
E|Zt|2 = −2λE|Zt|2 + 2P(t ≤ T ). (2.14)

By explicitly solving (2.14) and using 2.4, we obtain

E|Zt|2 = |Z0|2e−2λt + 2e−2λt

∫ t

0

e2λsP(s ≤ T ) ds

≤ |Z0|2e−2λt + C|M0|Te−2λt

∫ t

0

e(2λ−1/(2λ2L2))s(1 + s−1/2) ds︸ ︷︷ ︸
=:It

.

Let us bound It. As the integrand is locally integrable, we have for a constant C

It ≤ C
(

1 +

∫ t

0

e(2λ−1/(2λ2L2))s ds

)
.

Here the s−1/2 term can be bounded by 1 for s > 1 and for s ≤ 1 the additional contribution can
be absorbed into the constant. To bound the remaining integral we consider three cases:

• 2λ < 1/(2λ2L2): The integral (and It) are uniformly bounded, It ≤ C.

• 2λ = 1/(2λ2L2): The integrand is equal to 1 and It ≤ C(1 + t).

• 2λ > 1/(2λ2L2): The integrand grows and It ≤ C(1 + e(2λ−1/(2λ2L2))t).

In each case we multiply It by e−2λt to obtain the decay rate. In the first two cases this gives the
dominant term with |M0|T (as opposed to |Z0|) dependence, while in the last case it is lower order
than the e−t/(2λ

2L2) decay we obtain from E|Mt|2T below.

Next let us consider E|Mt|2T. Using the finite diameter of the torus we have the simple estimate

E|Mt|2T ≤ π2L2P(T > t).

For t ≥ 1 (say), we can use 2.4, to obtain

E|Mt|2T ≤ C|M0|Te−t/(2λ
2L2) for t ≥ 1.

This leaves the case when t ≤ 1 where (2.13) blows up. We instead use the martingale property of
Mt. Without loss of generality we may assume that M0 ∈ [0, πL]. Then as Mt is stopped at T we
know that Mt ∈ [0, 2πL] for all t ≥ 0. Hence, for any t ≥ 0,

E|Mt|2T ≤ E|Mt|2 ≤ 2πLEMt = 2πLM0 = 2πL|M0|T

by the martingale property. Combining the t ≤ 1 and t ≥ 1 estimates we have

E|Mt|2T ≤ C|M0|Te−t/(2λ
2L2) for t ≥ 0.

This together with the bound for E|Zt|2 provides the claimed bounds of the lemma and completes
its proof.
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Proof of 2.2. By the equivalence of the norms from (X,V ) and (Y, V ), we see that

E
(
|X1

t −X2
t |2T + |V 1

t − V 2
t |2
)
≤
(

1 +
1

λ

)
E
(
|Mt|2T + |Zt|2

)
≤ C ′ζ(t)E(|M0|T + |Z0|2)

≤ Cζ(t)E
((
|X1

0 −X2
0 |2T + |V 1

0 − V 2
0 |2
)1/2

+
(
|X1

0 −X2
0 |2T + |V 1

0 − V 2
0 |2
))
.

Here we used 2.5 to go between the first and second line, and to find the exponentially decreasing
term ζ. The constants C and C ′ come from the constants in equivalence of norms.

2.4.2 Optimality

In order to show 2.3, we focus on the drift-corrected positions Y 1
t and Y 2

t which behave like time-
rescaled Brownian motion on the torus. For their quadratic distance we prove the following decay
bound.

Proposition 2.2. Suppose there exist functions α : (0, πL] 7→ R+ and ζ : [0,∞) 7→ R+ with
ζ ∈ L1([0,∞)), such that, for any z ∈ (0, πL] there exist two standard Brownian motions W 1

t and
W 2
t taking values on the torus T = R/(2πLZ) and both adapted to a common filtration such that
|W 1

0 −W 2
0 | = z, and for t ∈ R+ it holds that

E[|W 1
t −W 2

t |2T] ≤ (α(z))2ζ(t).

Then with a constant c only depending on L, the function α satisfies the bound

α(z) ≥ c ‖ζ‖−1/2
L1([0,∞))

√
z.

From this 2.3 follows easily.

Proof of 2.3. Fix z ∈ (0, πL] and consider the initial distributions µ = δX=0δV=0 and ν =

δX=zδV=0. Between µ and ν, there is only one coupling and W2(µ, ν) = z.

If there exists a co-adapted coupling ((X1
t , V

1
t ), (X2

t , V
2
t )) satisfying the bound, then Y 1

t/λ2 and
Y 2
t/λ2 are Brownian motions on the torus with a common filtration. Moreover,

E[|Y 1
t − Y 2

t |2T] ≤ C E[|X1
t −X2

t |2T + |V 1
t − V 2

t |2]

for a constant C only depending on λ. Hence we can apply 2.2 to find the claimed lower bound
for α.

For the proof of 2.2, we first prove the following lemma.

Lemma 2.6. Given two Brownian motionsW 1
t andW 2

t on the torus adapted to the same filtration,
then there exists a numerical constant c such that

E[|W 1
t −W 2

t |2T] ≥ c e−2t/L2

E[|W 1
0 −W 2

0 |2T].

Proof. The natural (squared) metric |x−y|2T on the torus is not a global smooth function of x, y ∈ R
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as it takes x, y mod 2πL. Therefore we introduce the equivalent metric

d2
T(x, y) = L2 sin2

(
x− y

2L

)
,

which is a smooth function of x, y ∈ R. Moreover, the constants of equivalence are independent of
L, i.e. there exist numerical constants c1 and c2 such that

c1|x− y|2T ≤ d2
T(x, y) ≤ c2|x− y|2T.

Now consider Ht defined by

Ht = L sin

(
W 1
t −W 2

t

2L

)
exp

(
[W 1 −W 2]t

4L2

)
.

As W 1
t and W 2

t are Brownian motions, their quadratic variation is controlled as [W 1 −W 2]t ≤ 4t.
By Itō’s lemma

dHt =
1

2
cos

(
W 1
t −W 2

t

2L

)
exp

(
[W 1 −W 2]t

4L2

)
d(W 1 −W 2)t.

Therefore we may bound the quadratic variation of H by

[H]t =

∫ t

0

1

4
cos2

(
W 1
t −W 2

t

2L

)
exp

(
[W 1 −W 2]t

2L2

)
d[W 1 −W 2]t

≤
∫ t

0

exp

(
2t

L2

)
dt

<∞.

Therefore, as also |H0| ≤ L, the local martingale Ht is a true martingale and by Jensen’s inequality

E[|Ht|2] ≥ E[|H0|2].

Using the equivalence of two metrics, we thus find the required bound

E[|W 1
t −W 2

t |2T] ≥ c−1
2 E

[
|Ht|2 exp

(
− [W 1 −W 2]t

2L2

)]
≥ c−1

2 E
[
|H0|2

]
exp

(
− 2t

L2

)
≥ c1c−1

2 E[|W 1
0 −W 2

0 |2T] exp

(
− 2t

L2

)
.

With this we approach the final proof.

Proof of 2.2. Fix a ∈ (0, 1), let z ∈ (0, πL] be given, and by symmetry assume without loss of
generality that W 1

0 −W 2
0 = |W 1

0 −W 2
0 | = z. Then define the stopping time

T = inf{t ≥ 0 : W 1
t −W 2

t 6∈ (az, πL)}.
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The distance can be directly bounded as

E[|W 1
t −W 2

t |2T] ≥ P[T ≥ t](az)2.

As ζ is integrable, it must decay along a subsequence of times and thus T must be almost surely
finite.

AsW 1
t andW 2

t , considered on R, are continuous martingales, their difference is also a continuous
martingale. By the construction of the stopping time, the stopped martingale (W 1 −W 2)t∧T is
bounded by πL and the optional stopping theorem implies

P[W 1
T −W 2

T = πL] =
z − az
πL− az

.

Since Brownian motions satisfy the strong Markov property, we find together with 2.6

E
∫ ∞

0

|W 1
t −W 2

t |2Tdt ≥ E
∫ ∞
T

|W 1
t −W 2

t |2Tdt

≥ P[W 1
T −W 2

T = πL]E
[∫ ∞

T

|W 1
t −W 2

t |2T dt

∣∣∣∣W 1
T −W 2

T = π

]
≥ P[W 1

T −W 2
T = πL]c (πL)2

∫ ∞
0

e−2t/L2

dt

≥ z − az
πL− az

c (πL)2L
2

2

≥ Caz

for a constant Ca only depending on a and L, where the strong Markov property and then the
lemma are applied on the second line.

On the other hand, integrating the assumed bound gives

E
∫ ∞

0

|W 1
t −W 2

t |2Tdt ≤ (α(z))2

∫ ∞
0

ζ(t)dt ≤ (α(z))2 ‖ζ‖L1([0,∞)) .

Hence
Caz ≤ (α(z))2 ‖ζ‖L1([0,∞))

which is the claimed result.
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Chapter 3

Hypocoercivity via Harris’s theorem
for Kinetic Equations with jumps

3.1 Introduction

The goal of this chapter is to give quantitative rates of convergence to equilibrium for some kinetic
equations with jumps via Harris’s theorem. Harris’s theorem [74, 96, 73] is a classical theorem
in Markov processes. It is originates in the paper [74] where Harris gave conditions for existence
and uniqueness of a steady state for Markov processes. It was then pushed forward by Meyn and
Tweedie [96] to show exponential convergence to equilibrium. The paper, [73], gives an efficient way
of getting quantitative rates for convergence to equilibrium once you have quantitatively verified the
assumptions. Harris’s theorem says, broadly speaking, that if you have a good confining property
and some uniform mixing property in the centre of the state space then you have exponentially fast
convergence to equilibrium in a weighted total variation norm. We give the precise statement in
the next section. Harris’s theorem has already been used to show convergence to equilibrium for a
kinetic equation in [94]. Here the authors show convergence to equilibrium for the kinetic Fokker-
Planck equation with non-quantitative rates. In [14] the authors use a strategy based on Harris’s
theorem to show non-quantitative rates for convergence to equilibrium for scattering equations
similar to those we study. In [38] the authors show convergence to a non-equilibrium steady state
for some non-linear kinetic equations on the torus using Doeblin’s theorem.

We will show quantitative rates of convergence for the following equations.

• The linear relaxation Boltzmann equation

∂tf + v · ∇xf − (∇xU · ∇vf) = Πf − f, (3.1)

where
Πf =

(∫
f(t, x, u)du

)
M(v).

This simple equation is well studied in kinetic theory and can be thought of as a toy model
with similar properties to either the non-linear BGK equation or linear Boltzmann equation.
Its also one of the simplest examples of a hypocoercive equation.

63
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• The linear Boltzmann equation

∂tf + v · ∇xf = Q(f,M), (3.2)

whereM is the Maxwellian with temperature 1 and mean 0, and

Q(f, g) =

∫
Rd

∫
Sd−1

B(v, v∗, σ) (f(v′)g(v′∗)− f(v)g(v∗)) dσdv∗,

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ.

This equation models gas particles interacting with a background medium which is already
in equilibrium.

• The kinetic non-local diffusion equation

∂tf + v · ∇xf − (∇xU · ∇vf) = K ∗ f − f +∇v(vf), (3.3)

where K is a smooth, radial, compactly supported function. This is a non-local equation so a
jump process which behaves in a similar way to a kinetic Fokker-Planck or fractional kinetic
Fokker-Planck equation.

These are all spatially inhomogeneous equations where we would expect to see hypocoercivity
[102, 50]. Hypocoercivity is proved using well chosen changes of norms and a combination of
functional inequalities. Here we present a different strategy of proof. As an example let us look
at the linear relaxation Boltzmann equation on the torus as a stochastic process. We can write an
SDE in an integrated form

Xt =X0 +

∫ t

0

Vsds,

Vt =V0 +

∫ t

0

∫
Rd

(w − Vs−)P (ds,dw).

Here P is a Poisson point process on [0,∞) × Rd with intensity measure the tensor product of
Lebesgue in time and a Gaussian in velocity space. This is a piecewise deterministic Markov
process, at each jump time noise enters the system at the level of velocity. This noise is then
transferred into the spatial variable by the transport operator. We will write this in more detail in
the later sections but here we give a flavour of the strategy. Consider initial data which has the law
δ(x1,v1). After one jump the noise is the velocity variable but not the spatial variable, the spatial
variable is deterministic but the velocity is now random. The transport operator mixes between
the velocity and the spatial variable so after one jump and some transport we are still supported
on a d-dimensional subset of the 2d dimensional space but we can view this as having noise in the
spatial variable and the velocity variable taking one of a discrete set of values conditional on the
spatial variable. If we jump again after this we inject noise in again at the level of velocity so now
the support of the solution is 2d dimensional. Following this carefully will allow us to bound the
law at time t, f(t), below by

α1B(0,R1)(x)1B(0,R2)(v),

for some strictly positive constants α,R1, R2. This effect is in some ways reminiscent of transferring



3.2. HARRIS’S THEOREM 65

the coercivity to the other directions given by higher order Hörmander brackets as in part one of
[116].

Using Harris’s theorem gives an alternative and very different strategy to the methods following
on from Villani in [116] for proving quantitative hypocoercivity theorems. It allows us to look at
hypocoercive effects on the level of SDEs and to look at specific trajectories which might allow
one to produce quantitative theorems based on more trajectorial intuition. Another difference is
that the confining behaviour is shown here by exploiting good behaviour of moments rather than
a Poincaré inequality. These are often equivalent [9, 40] and have advantages and disadvantages.
However, the condition on the moments used here might be much easier to verify in the case where
the equilibrium state cannot be made explicit. Harris’s theorem has a restriction which is that
we can only consider linear Markov processes which does not include some important spatially
inhomogeneous kinetic equations.

We also look at Harris type theorems with weaker controls on moments to give analogues of all
our theorems when the confining potential is weaker and give algebraic rates of convergence with
rates depending on the assumption we make of the confining potential. Subgeometric convergence
for kinetic Fokker-Planck equations with weak confinement has been shown in [51, 9, 34]. To our
knowledge this is the only work showing this type of convergence in a quantitative way for the
equations we present.

The plan of the chapter is as follows. We introduce Harris’s theorem. Then we have a section
on each equation describing how to verify the assumptions of Harris’s theorem.

In all our theorems it is possible to compute the constants in the final exponential convergence
to equilibrium result. The proofs are constructive and do not rely on contradiction or compactness
techniques. When the equations are set on the flat torus these constants depend on the collision
operator but not on any a priori information about the solution. When we look at equations
with confining potentials the constants depend both on the collision operator and on the confining
potential. The dependence on the confining potential can be made explicit in terms of the various
bounds we will assume on this potential. There is no mathematical difficulty in actually calculating
the constants but they will be extremely cumbersome and complicated. They are also extremely
unlikely to be sharp.

3.2 Harris’s Theorem

Now let us be more specific about Harris’s theorem. We give the theorems and assumption as in
the setting of [73] where they make it clear how the rates depend on those in the assumptions. Let
us define our setting. Rather than looking at these equations as PDEs we can consider the Markov
semigroup Pt. This is the continuous space version of a Markov transition matrix. Ptµ is the weak
solution to the PDE with initial data µ. Therefore Pt = etG where G is the generator. Saying
that Pt is a Markov semigroup means that if M(S) is the space of measure on phase space S then
we have that Pt is a linear map given by a measurable kernel. This means that, if we consider Pt
acting on density functions, then Pt will be linear, mass preserving and positivity preserving. We
can also look at the action of Pt on observables.

P∗t φ(z) =

∫
φ(z′)Ptδz(dz′).
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Then we can define the forwards operator, L, associated to Pt by

d

dt
P∗t φ

∣∣∣∣
t=0

= Lφ.

We begin by looking a Doeblin’s theorem. Harris’s theorem is a natural successor to Doeblin’s
theorem. Harris’s and Doeblin’s theorems are normally stated for a fixed time t∗. In our theorems
we work to choose an appropriate t∗.

Hypothesis 3.1 (Doeblin’s Condition). We have a Markov semigroup Pt∗ where there exists ν a
probability distribution and α ∈ (0, 1) such that for any z in the state space we have

Pt∗δz ≥ αν

Using this we prove

Theorem 3.1 (Doeblin’s Theorem). If we have a semigroup Pt∗ satisfying Doeblin’s condition
then for any two measures µ1 and µ2 we have that

‖Pnt∗µ1 − Pnt∗µ2‖TV ≤ (1− α)n‖µ1 − µ2‖.

Proof. This proof is classical and can be found in various versions in [73] and many other places.
The key idea is that the minorisation condition tells us that the two measures share a proportion
or their distribution after a certain time. First suppose that ‖µ1 − µ2‖TV = 2β then there exists
µ0, µ̃1, µ̃2 probability measures such that we can write

µi = (1− β)µ0 + βµ̃i

and ‖µ̃1 − µ̃2‖ = 2. We find this by setting

µ0(A) =
1

1− β
min{µ1(A), µ2(A)}, µ̃i =

1

β
(µi − (1− β)µ0) .

So then since Pt∗ is linear we have that

‖Pt∗µ1 − Pt∗µ2‖TV = β‖Pt∗ µ̃1 − Pt∗ µ̃2‖TV .

Therefore we may as well assume that β = 1 initially. Once we have done this, since Pt∗ is Markov
we can disintegrate over the possible starting conditions to get

‖Pt∗ µ̃1 − Pt∗ µ̃2‖TV =

∫ ∫
‖Pt∗δz1 − Pt∗δz2‖TV µ̃1(dz1)µ̃2(dz2).

We now use our assumption to rewrite

Pt∗δzi = αν + (1− α)γi,

where γi is a probability measure. This means that,

‖Pt∗δz1 − Pt∗δz1‖TV = (1− α)‖γ1 − γ2‖TV ≤ 2(1− α).
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Substituting this all back in gives that

‖Pt∗µ1 − Pt∗µ2‖TV ≤ (1− α)‖µ1 − µ2‖TV .

We then iterate this to get the final result.

Harris’s theorem extends this to the setting where we cannot prove minorisation uniformly on
the whole of the state space. The idea is to use the argument given above on the centre of the
state space then exploit the Lyapunov structure to show that any stochastic process will return to
the centre infinitely often.

We make two assumptions on the behaviour of Pt∗ , for some fixed t∗

Hypothesis 3.2. There exists some function V : Td×Rd → [0,∞) and constants D ≥ 0, α ∈ (0, 1)

such that
P∗t∗(V )(x, v) ≤ αV (x, v) +D.

Remark. We use the name Lyapunov condition as it is the standard name used for this condition
in probability literature. However, we should stress this condition is not closely related the Lyapunov
method for proving convergence to equilibrium. We do prove monotonicity of a functional.

Remark. In our situation where we have an equation on the law f(t) this is equivalent to the
statement ∫

S

f(t, z)V (z)dz ≤ α
∫
S

f(0, z)V (z)dz +D.

We normally verify this by showing that

d

dt

∫
S

f(t, z)V (z)dz ≤ −λ
∫
S

f(t, z)V (z)dz +K,

for some positive constants K and λ.

The idea behind verifying the Lyapunov structure in our case comes from [94] where they use
similar Lyapunov structures for the kinetic Fokker-Planck equation. When we work on the torus
the Lyapunov structure is only needed in the v variable and the result is purely about how moments
in v are affected by the collision operator.

The next assumption is a minorisation condition as in Doeblin’s theorem

Hypothesis 3.3. There exists a probability measure ν and a constant β ∈ (0, 1) such that

inf
(x,v)∈C

Pt∗δx ≥ βν,

where
C = {(x, v) : V (x, v) ≤ R}

for some R > 2D/(1− α).

Remark. Production of quantitative lower bounds as a way to quantify the positivity of a solution
has been proved and used in kinetic theory before. For example it is an assumption required for the
works of Desvillettes and Villani [46, 47]. Such lower bounds have been proved for the non-linear
Boltzmann equation in [101, 28, 29].
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This second assumption is more challenging to verify in our situations. Here we use a strategy
based on our observation about how noise is transferred from the v to the x variable as described
earlier. The actual calculations are based on the PDE governing the evolution and iteratively using
Duhamel’s formula.

We define a distance on probability measures for every a > 0

ρa(µ1, µ2) =

∫
(1 + aV (x, v))|µ1 − µ2|(dxdv).

Theorem 3.2 (Harris’s Theorem). If hypotheses 3.2 and 3.3 hold then there exists ᾱ ∈ (0, 1) and
a > 0 such that

ρa(Pt∗µ1,Pt∗µ2) ≤ ᾱρa(µ1, µ2).

Explicitly if we choose β0 ∈ (0, β) and α0 ∈ (α + 2D/R, 1) then we can set γ = β0/K and
ᾱ = (1− (β − β0)) ∧ (2 +Rγα0)/(2 +Rγ).

Remark. We have that

min{1, a}ρ1(µ1, µ2) ≤ ρa(µ1, µ2) ≤ max{1, a}ρ1(µ1, µ2).

We can also iterate Theorem 3.2 to get

ρa(Pnt∗µ1,Pnt∗µ2) ≤ ᾱnρa(µ1, µ2).

Therefore we have that

ρ1(Pnt∗µ1,Pnt∗µ2) ≤ ᾱnmax{1, a}
min{1, a}

ρ1(µ1, µ2).

Remark. In this paper we always consider functions V where V (z) → ∞ as |z| → ∞. In this
case we can replace C in hypothesis 3.3 with some ball of radius R′ which will contain C.

In order to prove Harris’s theorem we follow [73] and formulate the weighted total variation
norm as dual Lipschitz.

Sketch proof of Harris’s Theorem. We are looking at convergence in a weighted total variation
which is the dual of

‖φ‖ = sup
x

|φ(x)|
1 + U(x)

.

We wish to write this as a Lipschitz norm. We also introduce a parameter which we can tune to
help adapt the proof to give quantitative rates in a simple way. If we write

da(z1, z2) =

{
0 z1 = z2

2 + aV (z1) + aV (z2) z1 6= z2

,

and define
‖φ‖a = sup

z

|φ(z)|
1 + aV (z)

,

Then
‖φ‖Lipda = inf

c∈R
‖φ+ c‖a.
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For details of this see [73].

Lets look when V (z1) + V (z2) ≥ R. We have that if ‖φ‖Lipda ≤ 1 then

|P∗t∗φ(z1)− P∗t∗φ(z2)| ≤2 + aP∗t∗V (z1) + aP∗t∗V (z2)

≤2 + aα (V (z1) + V (z2)) + aD

≤α̃ (2 + a(V (z1) + V (z2))) = α̃da(z1, z2).

Where
α̃ =

2 + aRα

2 + aR
.

Now we look at the case V (z1)+V (z2) ≤ R and hence z1 and z2 are in C. By similar arguments
to Doeblin’s theorem we get that

|P∗t∗φ(z1)− P∗t∗φ(z2)| ≤ 2(1− β) + aα(V (z1) + V (z2)) + aD.

So now we choose a sufficiently small to mean that this is a contraction.

There are versions of Harris’s theorem adapted to weaker Lyapunov conditions which give
subgeometric convergence [9]. We use the following theorem which can be found in section 4 of
[70].

Theorem 3.3 (Subgeometric Harris’s Theorem). Given the forwards operator, L, of our Markov
semigroup P, suppose there exists a continuous function M valued in [1,∞) with pre compact level
sets such that

LM ≤ K − φ(M),

for some constant K and some strictly concave function φ : R+ → R. Assume that for every C > 0

we have the minorisation condition like 3.3. i.e. for some T a time and ν a probability distribution
and α ∈ (0, 1), then for all z with M(z) ≤ C

Ptδz ≥ αν.

With these conditions we have that

• There exists a unique invariant measure µ for the Markov process and it satisfies∫
φ(M(z))dµ ≤ K.

• Let Hφ be the function defined by

Hφ =

∫ u

1

ds

Φ(s)

then there exists an constant C such that for every z1, z2 we have

‖Ptδz1 − Ptδz2‖ ≤ C
M(z1) +M(z2)

H−1
φ (t)

.
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• There exists another constant C such that

‖Ptδz − µ‖ ≤
CM(z)

H−1
φ (t)

+
C

(φ ◦H−1
φ )(t)

We will apply this abstract theorem as well as Harris’s theorem to the PDEs we study to show
convergence when they only satisfy a weaker confinement condition.

3.3 Linear relaxation equation

We begin with the linear relaxation equation. This is the simplest of our equations. This allows
us to present the key ideas of the strategy of proof which can then be built on to show similar
results for the more complicated cases. On the torus without confining potential we do not even
need to use a Lyapunov structure so we use Doeblin’s theorem. Convergence to equilibrium for
this equation has been shown in [33] in H1 to converge faster than any polynomial function of t. It
was then shown to converge exponentially fast in both H1 and L2 using hypocoercivity techniques
[77, 102, 50].

3.3.1 On the flat torus

We consider
∂tf + v · ∇xf = Lf, (3.4)

posed for (x, v) ∈ Td × Rd, where

Lf(x, v) := L+f(x, v)− f(x, v) :=

(∫
Rd
f(x, u) du

)
M(v)− f(x, v). (3.5)

As in the introduction either of these equations is a PDE on the law of a Markov jump process
which can be written

Xt =X0 +

∫ t

0

Vsds, (3.6)

Vt =V0 +

∫ t

0

∫
Rd

(w − Vs−)P (ds,dw). (3.7)

P is a Poisson random measure with intensity measure λR+
⊗ γd. Here λR+

is Lebesgue measure
on R+ and γd is the d dimensional standard Gaussian measure.

Theorem 3.4. The solutions to equation (3.4) converge exponentially fast to equilibrium in total
variation distance. This rate is explicitly calculable. i.e. There exists some λ > 0 and C > 0,
which we can compute, such that

‖f(t)− µ‖TV ≤ Ce−λt‖f(0)− µ‖TV ,

where f(t) is a solution to (3.4) at time t.

As already mentioned here we can show a global Doeblin condition so we do not need a Lya-
punov condition. We focus on showing uniform minorisation. We define (Tt)t≥0 as the transport
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semigroup associated to the operator −v ·∇xf ; that is, t 7→ Ttf0 solves the equation ∂tf+v∇xf = 0

with initial condition f0. When f0 is a function one can write Tt explicitly as

Ttf0(x, v) = f0(x− tv, v). (3.8)

Lemma 3.1. Let f(t) be a solution of (3.4) with initial data f0, (f(t) = Ptf0) then we have that

etf(t) ≥
∫ t

0

∫ s

0

Tt−sL
+Ts−rL

+Trf0 dr ds. (3.9)

Remark. This is to say that ft will be bounded by the density restricted to the set where there are
only two jumps in time t. i.e.

P(Zt ∈ A) ≥ P(Zt ∈ A and there are exactly two jumps before time t).

Proof. Here we look at measures as well as densities in which case we take ≥ to mean when
integrated against a positive test function. We prove this only in the case of functions but the
same proof works with small adaptations when understanding everything by duality. First we note
that

∂t (T−tf(t)) = T−t
(
L+f − f

)
.

Therefore we have
∂t
(
etT−tf(t)

)
= etT−tL

+f(t).

So Duhamel’s formula gives

etT−tf(t) = f(0) +

∫ t

0

esT−sL
+f(s)ds,

changing variables we have

etf(t) = Ttf(0) +

∫ t

0

esTt−sL
+f(s)ds.

Looking at just the first term, and noting that L+ is positive, we have that

etf(t) ≥ Ttf(0),

this also clearly holds replacing t by s. Again as L+ is a positive operator so we can substitute
this into the second term to get

etf(t) ≥
∫ t

0

Tt−sL
+Tsf(0)ds.

We can then again substitute this into Duhamel’s formula to get

etf(t) ≥
∫ t

0

∫ s

0

Tt−sL
+Ts−rL

+Trf(0)drds.

We will now check two properties. The first one says that the operator L always allows jumps
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to any velocity:

Lemma 3.2. There exist αL, rL > 0 such that for all non-negative measures ν on the velocity
space, Rd, we have

L+ν ≥ αLν(Rd)1|v|≤rL . (3.10)

Here ≥ is understood by duality.

Proof. This is true for any rL and αL will depend on rL just by setting

M(v) ≥M(rL)1|x|≤rL .

The second one says that the transport part can move a particle to a neighbourhood of 0, given
that one starts out with the correct velocity:

Lemma 3.3. For all R > 0 there exist αT , rT , t0 > 0, t0 > ε > 0 (possibly depending on R) such
that for all non-negative measures µ on Td we have

Tt(µ⊗ 1B(0,rL))(A×Rd) ≥ αTµ(B(0, R))|B(0, rT ) ∩A| ∀t ∈ (t0 − ε, t0 + ε), A ∈ B(Td). (3.11)

Proof. We show this assuming that µ has density h. This is just in order to write the transport
semi group more explicitly. Exactly the same proof works in the measure case. We have that

Tt
(
h(x)1B(0;rL)(v)

)
= h(x− vt)1B(0;rL)(v).

Integrating this and changing variables gives that∫
Tt
(
h(x)1B(0;rL)(v)

)
dv =

1

td

∫
h(y)1B(0;rL)

(
x− y
t

)
dy.

We have that
1B(0;rL)

(
x− y
t

)
≥ 1B(0;rL/2)(x/t)1B(0,rL/2)(y/t).

Therefore for all t > 2R/rL we have

1B(0;rL)

(
x− y
t

)
≥ 1B(0;R)(x)1B(0;R)(y).

Hence
Tt
(
h(x)1B(0;rL)(v)

)
≥ 1

td

∫
|y|≤R

h(y)dy1B(0,R)(x).

So if we take t to be in (2R/rL, 2R/rL + ε) we have our assumption with αT = (2R/rL + ε)d and
rT = R.

Proof of Theorem 3.4. Take now f0 = δ(x0,v0). Let us write Zr(x, v) = (Xr, Vr)(x, v) for the
solution to the equation Ẋr = Vr, V̇r = 0 with initial data (x, v). With these two properties we
have the following lower bounds, which we will use to obtain a lower bound in (3.9):

Trf0 = δZr(x0,v0).
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Using Lemma 3.2,
L+Trf0 ≥ αL δXr(x0,v0)(x) 1|v|≤rL =: αLh(x) 1|v|≤rL .

Using Lemmas 3.2 and 3.3, whenever s− r ∈ (t0 − ε, t0 + ε) we have

L+Ts−rL
+Trf0 ≥ αL

(∫
Rd
Ts−rL

+Trf0 du

)
1|v|≤rL

≥ α2
L

(∫
Rd
Ts−r

(
h(x) 1|u|≤rL

)
du

)
1|v|≤rL

≥ α2
LαT 1|x|≤rT 1|v|≤rL .

We now need to allow for a final bit of movement along the flow Tt−s. Let us assume that ε is
sufficiently small that rLε ≤ rT /2 then

Tt−s1B(0;rT )(x)1B(0;rL)(v) = 1B(0;rT )(x− vt)1B(0;rL)(v) ≥ 1B(0;rT /2)(x)1B(0;rL)(v).

This means that for all t, s, r such that r ≤ ε, t− s ≤ ε and s− r ∈ (2R/rL, 2R/rL + 2ε) we have

Tt−sL
+Ts−rL

+Trf0 ≥ α2
LαT 1|x|≤rT /21|v|≤rL .

We now integrate this setting t = 2R/rL + 2ε then∫ t

0

∫ s

0

Tt−sL
+Ts−rL

+Trf0drds ≥ α2
LαT

∫ t

t−ε

∫ ε

0

1|x|≤rT /21|v|≤rLdrds

≥ α2
LαT ε

21|x|≤δT /21|v|≤rL .

Now since we are on the torus we can just make R large enough so the ball of size R covers
the whole torus. Therefore this bound is uniform in starting positions. This means we can use
Doeblin’s theorem rather than Harris’s theorem and get that

‖ft − µ‖TV ≤ e−λt‖f0 − µ‖TV .

3.3.2 With a Confining Potential

Consider the equation

∂tf + v · ∇xf −∇xU(x) · ∇vf = Lf, (3.12)

here L is defined as before and x, v ∈ Rd. Now we have to use the full power of Harris’s theorem
to show convergence to equilibrium. This is because the behaviour in x is necessarily local and we
cannot expect the trajectories to reach the centre at the same time for any x. This means we also
have to find a Lyapunov function for the flow and weight our norm by this function. This means
weighting the TV norm with moments in v as well as x in order to see the confinement through
the transport operator which mixes x and v we need weights in v as well.
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Theorem 3.5. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ CU(x)η

for some η ∈ (0, 1) and
x · ∇xU(x) ≥ γ1|x|2 + γ2U(x)−A

for positive constants and γ1 ≤ 1. Then the solution to (3.12) converges exponentially fast to
equilibrium in a weighted total variation norm. More specifically there exists C > 0 and λ > 0

which we can calculate explicitly and do not depend on the initial data such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫ (
1 + U(x) +

1

2
|v|2 +

1

4
x · v +

1

8
|x|2
)
|µ1 − µ2|(dxdv).

Furthermore as U is super quadratic at infinity ρ is equivalent to the distance weighted by the
Hamiltonian

ρ̃(µ1, µ2) =

∫
(1 +H(x, v))|µ1 − µ2|(dxdv).

Remark. The conditions on U hold for any C2 function which is super quadratic and grows
polynomially at infinity. This includes multiple wells. The standard assumption is that U needs to
satisfy a Poincaré inequality in [50] and others. In this paper they also need that

lim
|x|→∞

(
|∇xV |2 −∆xV

)
> 0.

Therefore our condition seems to be stronger as it limits how fast the potential can grow at infinity.

To show the minorization condition we use that the jump operator instantaneously produces
large velocities.

Lemma 3.4. For any R1 there exists δM and R2 such that there will be a range (s∗, s
∗) for which

if s ∈ (s∗, s
∗) we have ∫

Ts(δx0
1|v|≤R2

)dv ≥ 1|x|≤δM

for any U(x0) ≤ R1.

Proof. Let Xt, Vt be the solutions to the flow Tt. Then

Ẋt = Vt, V̇t = −∇xU(Xt).

So by Taylor expanding we have

Xt = X̃t + error = x+ vt+ error.

Furthermore
|Xt − X̃t| ≤ max

τ≤t

1

2
t2|∇xU(Xτ )|.

The energy U(x) + |v|2/2 is fixed by the flow of the equation and the energy of an initial point in
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the set we wish to evolve is bounded by R1 +R2
2/2. Using our assumption this means that

|Xt − X̃t| ≤ Ct2
(
R1 +

R2
2

2

)η
.

If we evolve the set under X̃t we get the ball of radius R2t around x0. So if we want to hit the
target set B(0, δM ) then we need that

Xt (δx0 ×B(0, R2)) ⊃ B(0, δM ).

This is if and only if
δx0
×B(0, R2) ⊃ X−1

t B(0, δM ).

Furthermore, since X̃t is a bijection we have that this is if and only if

X̃t (δx0
×B(0, R2)) ⊃ X̃tX

−1
t B(0, δM ).

In the same was as above

|X̃t(X
−1
t (x, v))− (x, v)| = |X̃t(X

−1
t (x, v))−Xt(X

−1
t (x, v))| ≤ Ct2

(
R1 +

R2
2

2

)η
.

Therefore X̃tX
−1
t B(0, δM ) is contained within B(0, δM + Ct2(R1 + R2

2/2)η) so we want to show
that

X̃t (δx0
×B(0, R2)) ⊃ B

(
0, δM + Ct2

(
R1 +

R2
2

2

)η)
.

That is all possible displacements of the target ball by amounts less that Ct2(R1 + R2
2/2)η are

contained in the ball of radius R2t around x0. This will happen if

R2t ≥ 2R1 + δM , Ct
2

(
R1 +

R2
2

2

)η
≤ R1,

⇔ t2 ≥ 4R2
1

R2
2

, t2 ≤ R1

C(R1 +R2
2/2)η

.

The denominator in the lower bound grows faster than the denominator in the upper bound so for
R2 sufficiently large we have our required bound.

Proof of Theorem 3.5. Now the strategy is to verify both the hypotheses 3.2 and 3.3 of Harris’s
theorem then use the quantitative version of Harris’s theorem to get convergence with explicit
rates. We start by proving the minorisation condition. Proof of hypothesis 3.3. If we take a point
(x0, v0) with

U(x0) +
1

2
|v0|2 ≤ R1,

then we take f0 = δ(x0,v0) and evolve it we get

Trf0 = δ(x1,v1)

where the energy bound is still satisfied. Then for our required R2 we have that

L+Trf0 ≥ αR2
δx1

1B(0,R2).
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We now apply our lemma to get that if (s− r) is in our given range then we have

Ts−rL
+Trf0 ≥ αR2

δv=G(x)1B(0,δM )(x).

Then applying hypothesis 3.2 again gives

L+Ts−rL
+Trf0 ≥ α2

R2
1B(0,δM )(x)1B(0,R2)(v).

Now if we make t− s small we can bound

|Tt−s(x, v)− (x, v)| ≤ max
τ≤t−s

√
|Vτ |2 + |∇xU(Xτ )|2(t− s)

≤C max
τ≤t−s

(
1

2
|Vτ |2 + U(Xτ )

)
(t− s)

≤C
(

1

2
|v|2 + U(x)

)
(t− s).

We can find someK depending on δM , R2 such that the energy is bounded byK on 1B(0,R2)(v)1B(0,δM )(x).
Also B(0, R2) × B(0, δM ) contains some ball B(0, δ′M ) so we make t − s ≤ δ′M/2K which means
that

Tt−sL
+Ts−rL

+Trf0 ≥ α2
R2

1B(0,δ′M/2),

provided that t− s is sufficiently small and s− r lies in the correct range. We then integrate over
our permissible range of times to get minorisation.

Now we look at the Lyapunov condition. Proof of hypothesis 4.2. We look at the forwards
operator

Sf = v∇xf −∇xU(x) · ∇vf + L+f − f.

We want a function M(x, v) s.t
SM ≤ −λM + C

for some constants λ > 0, C ≥ 0. We need to make the assumption that

x · ∇U(x) ≥ γ1|x|2 + γ2U(x)−A.

with γ1 ≤ 1. We then try the function

M(x, v) = U(x) +
1

2
|v|2 + ax · v + b|x|2.
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We want this to be positive so we impose a2 < 2b. We calculate that

SM =
1

2
− 1

2
|v|2 − ax · v + a|v|2 − ax · ∇xU(x) + 2bx · v

≤C ′ −
(

1

2
− a
)
|v|2 + (2b− a)x · v − aγ1|x|2 − aγ2U(x)

(a = 1/4, b = 1/8) =C ′ − 1

4
|v|2 − γ1

4
|x|2 − γ2

4
U(x)

≤C ′ − γ1

4
(|x|2 + |v|2)− γ2

4
U(x)

≤C ′ − γ1

4

(
1

2
|v|2 +

1

4
x · v +

1

8
|x|2
)
− γ2

4
U(x)

So M(x, v) works with

λ =
min(γ1, γ2)

4
.

3.3.3 Subgeometric convergence

When we have the sub quadratic behaviour of the confining potential at infinity we can still use a
Harris type theorem to show convergence to equilibrium. This translates into having subgeometric
rates of convergence. Now instead of our earlier assumption on the Φ we instead make a weaker
assumption

Theorem 3.6. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ CU(x)η, x · ∇xU(x) ≥ γ1〈x〉β + γ2U(x)−A.

Where
〈x〉 = 1 + |x|2,

and β ∈ (0, 1). Then the solution to (3.12) converges to equilibrium in a weighted total variation
norm in the following way. We define the function M by

M(x, y) = U(x) +
1

2
|v|2 +

1

4
x · v +

1

8
|x|2.

Then there exists a constant C > 0 such that

‖Ptδz1 − Ptδz2‖TV ≤ C(M(z1) +M(z2))(1 + t)−1/(1−β),

and
‖Ptδz − µ‖TV ≤ CM(z)(1 + t)−1/(1−β) + C(1 + t)−β/(1−β).

Proof. The proof of the minorisation condition is exactly the same. We can also replicate the
calculations for the Lyapunov function as in the proof of Theorem 3.5 to get that in this new
situation we have for a = 1/4, b = 1/8 that

SM ≤ C ′ − 1

4
|v|2 − γ1

4
〈x〉β − γ2

4
U(x).
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For x, y ≥ 1

(x+ y)β ≤ xβ + yβ .

So we have

SM ≤C ′′ − γ1

4
(〈v〉+ 〈x〉β)− γ2

4
U(x)

≤C ′′ − γ1

4
(1 + |x|2 + |v|2)β − γ2

4
U(x)β

≤C ′′ − λ
(

1 +
1

2
|v|2 +

1

4
x · v +

1

8
|x|2
)β
− λU(x)β

≤C ′′ − λ
(
U(x) +

1

2
|v|2 +

1

4
x · v +

1

8
|x|2
)β

.

So we have that
SM ≤ −λMβ + C ′′.

This means we can take φ(s) = 1 + sβ Therefore

Hφ(u) =

∫ u

1

1

1 + tβ
dt ∼ 1 + u1−β

for u large. Therefore
H−1
φ (t) ∼ 1 + t1/(1−β)

for t large and
φ ◦H−1

φ ∼ (1 + t)β/(1−β).

3.4 The Linear Boltzmann Equation on the Torus

We now look at the Linear Boltzmann equation. This has been studied in the spatially homogeneous
case in [17, 31]. Here the interest is partly that this is a more complex and physically relevant
operator. Also, it presents less globally uniform behaviour in v which means that we have to use
a Lyapunov function even on the torus. Apart from this the strategy is very similar to that from
the linear relaxation Boltzmann equation. The Lyapunov condition on the torus and the bound
below on the jump operator have to be verified in this situation.

We consider for x ∈ Td

∂tf + v · ∇xf =

∫
Rd

∫
Sd−1

B

(
v − v∗
|v − v∗|

· σ, |v − v∗|
)

(f(v′)M(v′∗)− f(v)M(v∗)) dσdv∗. (3.13)

We assume that B splits as

B

(
v − v∗
|v − v∗|

· σ, |v − v∗|
)

= b

(
v − v∗
|v − v∗|

· σ
)
|v − v∗|γ .

We make the cut off assumption that b is integrable in σ. In fact we make the much stronger
assumption that b is bounded below by a constant. We also work in the hard spheres/Maxwell
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molecules regime that is to suppose γ ≥ 0. We have

∂tf + v · ∇xf = L+f − σ(v)f.

We have that
σ(v) ≥ 0,

and σ(v) behaves like |v|γ for large v. See [31] Lemma 2.1 for example.

We can write this as the equation on the law of the following jump process

Xt =X0 +

∫ t

0

Vsds,

Vt =V0 +

∫ t

0

∫
Sd−1

∫
Rd

∫ ∞
0

∫ ∞
0

((
w + Vs−

2
+
|w − Vs− |

2
σ

)
− Vs−

)
1
p≤b

(
V
s−−w
|V
s−−w|

·σ
)

1q≤|Vs−−w|γP (ds,dσ, dw,dq,dp).

Here P is a Poisson random measure with intensity measure given by λR+
⊗λSd−1⊗γd⊗λR+

⊗λR+
.

Here λS is Lebesgue measure on S and γd is d-dimensional standard Gaussian.

Theorem 3.7. If f(t) is the solution to the linear Boltzmann equation, (3.13), for Maxwell
molecules with cut off and b bounded below then there exists C > 0 and λ > 0, which we can
compute explicitly, such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫
(1 + |v|2)|µ1 − µ2|(dxdv).

We want to reduce to a similar situation the linear relaxation equation.

Lemma 3.5. For f a solution to (3.13) we have that

f(t, x, v) ≥ e−tC(1+(R+r2L/2)γ/2)

∫ t

0

∫ s

0

Tt−sL
+Ts−rL

+Trf0(x, v)1|v|2≤R+2r2L
drds.

Proof. We look at Duhamel’s formula again and let us call

Σ(s, t, x, v) =

∫ t

s

σ(Vr(x, v))dr.

We get

f(t, x, v) ≥
∫ t

0

∫ s

0

Tt−se
−Σ(s,t,x,v)L+Ts−re

−Σ(r,s,x,v)L+Tre
−Σ(0,r,x,v)f0(x, v)drds.

We restrict to paths where |v|2 ≤ R+ 2r2
L for these

Σ(s, t, x, v) ≤ (t− s)C
(

1 + (R+ 2r2
L)γ/2

)
.
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Therefore

f(t, x, v) ≥ e−tC(1+(R+2r2L)γ/2)

∫ t

0

∫ s

0

Tt−sL
+Ts−rL

+Trf0(x, v)1|v|2≤R+2r2L
drds.

We have that

L+f =

∫
Rd

∫
Sd−1

b

(
v − v∗
|v − v∗|

· σ
)
|v − v ∗ |γf(v′)M(v′∗)dσdv∗.

Using Carleman representation we rewrite this as

L+f =

∫
Rd

f(v′)

|v − v′|d−1

∫
Ev,v′

B(|u|, ξ)M(v′∗)dv
′
∗.

We want to bound this in the manner of the lemma from the first part. We look at hard spheres
and no angular dependence this means

B(|u|, ξ) = C|u|γξd−2

with γ ≥ 0. We also have that

ξ =
|v − v′|

|2v − v′ − v′∗|
, |u| = |2v − v′ − v′∗|.

So we have that
L+f =

∫
Rd

f(v′)

|v − v′|

∫
Ev,v′

|2v − v′ − v′∗|γ−d−2M(v′∗)dv
′
∗.

We want to prove something similar to Lemma 3.2 but we look at this localised so we want

Lemma 3.6. L+ from the linear Boltzmann equation for hard spheres and no angular dependence
satisfies for all RL, rL, there exists α such that

L+g ≥ α
∫
B(0;RL)

g(u)du1|v|≤rL .

Therefore the semigroup generated by this equation satisfies a minorisation equation for all starting
points with |v| ≤ rL.

Proof. First we note that on Ev,v′ we have

|2v − v′ − v′∗|−d−2 ≥ Cd exp

(
−1

2
|v − v′∗|2 −

1

2
|v − v′|2

)
.

Then since γ ≥ 0 we have

|2v − v′ − v − v′∗|γ =
(
|v − v′|2 + |v − v′∗|2

)γ/2 ≥ |v − v′∗|γ .
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So this means that∫
Ev,v′

|2v − v′ − v′∗|γ−d−2M(v′∗)dv
′
∗ ≥Ce−|v−v

′|2/2
∫
Ev,v′

|v − v′∗|γ exp

(
−1

2
|v − v′∗|2 −

1

2
|v′∗|2

)
dv′∗

≥Ce−|v−v
′|2/2−|v|2

∫
Ev,v′

|v − v′∗|γe−|v−v
′
∗|

2/2dv′∗

=C ′e−|v−v
′|2/2−|v|2 .

So we have that

L+f ≥C
∫
Rd
f(v′)|v − v′|−1e−|v−v

′|2/2−|v|2dv′

≥C
∫
Rd
f(v′)e−2|v′|2−3|v|2

≥Ce−2R2
L

∫
B(0,R)

f(v′)dv′e−3|v|2 .

So we see we have bounded by a Maxwellian as before.
For the minorisation we can argue almost exactly as for the linear relaxation equation. Suppose

that we satisfy the condition in Lemma 3.6. Then we choose a starting point δ(x0,v0) where |v0|2 ≤ R
after the first transport this energy is preserved. Then after at each jump we add at most r2

L/2

to the total energy, as we only follow trajectories where the velocity jumps to something smaller
than rL. This means for a path with two jumps we always stay within the the set |v|2 ≤ R+ 2r2

L.
Then the largest velocity we can reach is

√
2(R+ 2r2

L) so if we set RL to be this in Lemma 3.6.
Therefore as for the linear relaxation equation we have that

Trδ(x0,v0) = δ(x1,v0).

Then since |v0|2 ≤ RL we have
L+Trδ(x0,v0) ≥ α1|v|≤rL .

Now we have as for the linear relaxation Boltzmann.

Ts−rL
+Trδ(x0,v0) ≥ α1x∈B(x1,trL)1v∈G(x).

Now we can see that G(x) ⊂ B(0, rL) therefore if (s − r) is sufficiently large so that B(x1, trL)

covers the whole torus we have

L+Ts−rL
+Trδ(x0,v0) ≥ α21|v|≤rL .

Then since Tt−s doesn’t alter the v-variable we have

Tt−sL
+Ts−rL

+Trδ(x0,v0) ≥ α21|v|≤rL .

Minorisation follows from integrating over the permitted values of s, r as for the linear relaxation
equation.

We now reprove the moment control result from [17] in more detail On the torus we do need a
Lyapunov functional in this case. We want to test with M = v2. Let us use the n-representation
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for the collisions:
v′ = v − n(u · n), v′∗ = v∗ + n(u · n).

We assume the collision kernel can be written as

B(|v − v∗|, |ξ|) = |v − v∗|γb(|ξ|),

where
ξ :=

u · n
|u|

, u := v − v∗.

We also assume that b is normalised, that is,∫
Sd
b(|w · n|) dn = 1

for all unit vectors w ∈ Sd−1.

Lemma 3.7. Let L be the linear Boltzmann operator. There are constants C,K > 0 such that∫
Rd
L(f)|v|2 dv ≤ −C

∫
Rd
|v|2f dv +K

∫
Rd
f

for all non-negative measures f .

Proof. Using the weak formulation of the operator,∫
Rd
L(f)|v|2 dv =

∫
Rd

∫
Rd

∫
Sd−1

f(v)M(v∗)|v − v∗|γb(|ξ|)(|v′|2 − |v|2) dndv dv∗.

Now we notice that

|v′|2 − |v|2 = |v∗|2 − |v′∗|2 = −(u · n)2 − 2(v∗ · n)(u · n)

= −|u|2ξ2 − 2(v∗ · n)(v · n) + 2(v∗ · n)2

= −|v|2ξ2 − |v∗|2ξ2 + v · v∗ξ2 − 2(v∗ · n)(v · n) + 2(v∗ · n)2.

Note that the first term is negative and quadratic in v, and the rest of the terms are of lower order
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in v. Hence, calling γb :=
∫
Sd−1 ξ

2b(|ξ|) dξ we have∫
Rd
L(f)|v|2 dv =− γb

∫
Rd
|v|2f(v)

∫
Rd
M(v∗)|v − v∗|γ dv∗ dv

− γb
∫
Rd
f(v)

∫
Rd
|v∗|2M(v∗)|v − v∗|γ dv∗ dv

+ γb

∫
Rd
vf(v)

∫
Rd
v∗M(v∗)|v − v∗|γ dv∗ dv

− 2

∫
Sd−1

∫
Rd

(v · n)f(v)

∫
Rd

(v∗ · n)M(v∗)|v − v∗|γ dv∗ dv dn

+

∫
Sd−1

∫
Rd
f(v)

∫
Rd

(v∗ · n)2M(v∗)|v − v∗|γ dv∗ dv dn

≤− γb
∫
Rd
|v|2f(v)

∫
Rd
M(v∗)|v − v∗|γ dv∗ dv

+ (2 + γb)

∫
Rd
|v|f(v)

∫
Rd
|v∗|M(v∗)|v − v∗|γ dv∗ dv

+

∫
Rd
f(v)

∫
Rd
|v∗|2M(v∗)|v − v∗|γ dv∗ dv.

We can now use the following bound, which holds for all k ≥ 0 and some constants 0 < Ak ≤ Ck

depending on k:

Ak(1 + |v|γ) ≤
∫
Rd
|v∗|kM(v∗)|v − v∗|γ dv∗ ≤ Ck(1 + |v|γ), v ∈ Rd.

We get∫
Rd
L(f)|v|2 dv ≤−A0γb

∫
Rd
|v|2(1 + |v|γ)f(v) dv + C1(2 + γb)

∫
Rd
|v|(1 + |v|γ)f(v) dv

+ C2

∫
Rd
f(v)(1 + |v|γ) dv

≤
∫
Rd
f(v)(C2 + C1(1 + γb/2)/ε) (1 + |v|γ) dv

− (A0γb − εC1(1 + γb/2))

∫
Rd
|v|2(1 + |v|γ)f(v)dv

≤
∫
Rd
f(v)

(
C2 + C1(1 + γb/2)/ε+ (εC1(1 + γb/2)−A0γb)|v|2

)
(1 + |v|γ)f(v)dv

− (A0γb − εC1(1 + γb/2))

∫
Rd
|v|2f(v)dv

≤α1

∫
Rd
f(v)dv − α2

∫
Rd
|v|2f(v)dv.

Here we choose ε sufficiently small to make the constant in front of the second moment negative.
This also means that

(C2 + C1(1 + γb/2)/ε+ (εC1(1 + γb/2)−A0γb|v|2)(1 + |v|γ)

is bounded above. These things together give the final line.

Proof of Theorem 3.7. We have minorisation hypothesis 3.3 from lemma 3.2 and the Lyapunov
structure 4.2 from lemma 3.7.
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3.5 Kinetic non-local diffusion equation

Here the equation is

∂tf + v · ∇xf = K ∗ f − f +∇v · (vf), x ∈ Td, v ∈ Rd. (3.14)

or
∂tf + v · ∇xf −∇xU · ∇vf = K ∗ f − f +∇v · (vf), x ∈ Rd, v ∈ Rd. (3.15)

Where K is a smooth, radial, compactly supported function which integrates to one. The big
difference with this equation is that we only spread the velocities out in a small ball around our
current velocity. This means we cannot hope to prove something like Lemma 3.2. However we can
instead make a large number of jumps where we only travel for small distances in between them.
We make the assumption that

K(w) ≥ α1B(0,δ).

This equation gives the evolution of the law of the following Markov jump process.

Xt =X0 +

∫ t

0

Vsds,

Vt =V0 −
(∫ t

0

∇xU(Xs)ds

)
−
∫ t

0

Vsds+

∫ t

0

∫
Rd
wP (ds,dw).

Here P is a Poisson random measure with intensity measure λR+
⊗K.

We take a slightly different transport map to before which takes into account the confinement
term in velocity as well. We can see that if

Ẋt = Vt, V̇t = −∇xU(Xt)− Vt, X0 = x, V0 = v

then we have that

∂t

(
e−(d−1)tf(t,Xt, Vt)

)
= e−(d−1)t(K ∗ f)(t,Xt, Vt).

We write
Ttf(x, v) = f(Xt, Vt)

and
L+f = K ∗ f.

This means we get a similar result as before that

e−(d−1)tf(t, x, v) ≥
∫ t

tn

∫ t

tn−1

· · ·
∫ t

0

Tt−tnL
+Ttn−tn−1L

+ . . . L+Tt1f0(x, v)dt1 . . . dtn.

We also have that H(x, v) = U(x) + |v|2/2 decreases under the flow Tt.
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3.5.1 On the torus

Let us begin with looking on the torus so the transport part is simplified.

Theorem 3.8. The solution to (3.14) converges exponentially fast in a weighted TV distance.
Specifically there exists C > 0 and λ > 0, which we can compute explicitly, such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫
(1 + |v|2)|µ1 − µ2|(dxdv).

Proof. Our strategy is to show that for any R, there exists n such that∫
Tt−tnL

+Ttn−tn−1L
+ . . . Tt2−t1L

+Tt1δx0,v0dx ≥ αL1B(0,
√
d) ∀ v0 ∈ B(0, R).

If we have this we can just let the transport part run so that we then cover the whole of the torus
then we jump n times again to decouple the space and velocity.

Here the transport map reduces velocity

Tt1δx0,v0 = δx1,v1 .

Then we have
L+δx1,v0 ≥ αδx1

(x)1B(v1,δ).

After transporting for a short time we have

Tt2−t1αδx1
(x)1B(v0,δ) ≥ 1x∈G(v)1B(v1,3δ/4).

L+1x∈G(v)1B(v0,δ) ≥ α1x∈G2(v)

∣∣∣∣B(w +
v1 − w
|v1 − w|

3δ

4
,
δ

4

)∣∣∣∣ 1B(v1,5δ/4)(w)

≥ αC(δ/4)d1x∈G3(v)1B(v0,5δ/4).

We continue like this to get that∫
Tt−tnL

+Ttn−tn−1L
+ . . . Tt2−t1L

+Tt1δx0,v0dx ≥ αn(δ/4)(n−1)d1B(v1,δ(1+n/4))

≥ αL1B(0,(1−e−1)−1e
√
d).

Now we have that

T1

(
δx∈G(v)1B(0,(1−e−1)−1e

√
d)

)
=

∫
G(v)

T1(δx̃(x)1B(0,(1−e−1)−1e
√
d)(v)dx̃

=

∫
G(v)

δx̃+(1−e−1)v(x)1B(0,(1−e−1)−1
√
d)(v)dx̃

=

∫
G(v)

1B(x̃,
√
d)δv∈H(x,x̃)dx̃

=

∫
G(v)

δv∈H(x,x̃)dx̃ = 1v∈K .
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Here H(x, x̃) is the set of velocities which in B(0,
√
d) which will go from x̃ to x. So we end up

v lying within some complicated set, K, inside B(0, δ). We now repeat our n steps and since we
began with uniform distribution in x. We have that

Ttn−tn−1
L+Ttn−1−tn−2

L+ . . . L+Tt1(1v∈K) ≥ αL1v∈B(0,(1−e−1)−1e
√
d).

This gives the minorisation condition.

Now we need a Lyapunov condition since our estimate cannot be made uniform in the starting
velocity. We look at the kinetic energy and see that

d

dt

∫
f(t, x, v)|v|2dxdv =

∫ ∫
K(v − u)f(t, x, u)|v|2dvdudx−

∫
f(t, x, v)|v|2dxdv

+

∫
∇v · (vf(t, x, v))|v|2dxdv

≤2

∫ ∫
K(v − u)(|u|2 + δ2)f(t, x, u)dudvdx− 3

∫
f(t, x, v)|v|2

=2δ2 −
∫
f(t, x, v)|v|2dvdx.

Therefore we have both the minorisation 3.3 and Lyapunov 4.2 hypotheses satisfied.

3.5.2 With a confining potential

Theorem 3.9. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ CU(x)η

for some η ∈ (0, 1) and
x · U(x) ≥ γ1|x|2 + γ2∇xU(x)−A

for positive constants and γ1 ≤ 1. Then the solution to (3.15) converges exponentially fast to
equilibrium in a weighted total variation norm. More specifically there exists C > 0 and λ > 0

which we can calculate explicitly such that

ρ(Ptµ1,Ptµ2) ≤ Ce−λtρ(µ1, µ2),

where
ρ(µ1, µ2) =

∫ (
1 + U(x) +

1

2
|v|2 +

1

2
x · v +

1

4
|x|2
)
|µ1 − µ2|(dxdv).

Furthermore if U is super quadratic at infinity (which maybe implied by earlier assumptions) then
ρ is equivalent to the distance weighted by the Hamiltonian

ρ̃(µ1, µ2) =

∫
(1 +H(x, v))|µ1 − µ2|(dxdv).

We emulate the strategy from earlier. We want to restrict the amount we move when jumping
to build up. Suppose we start with (x0, v0) such that H(x0, v0) ≤ R1 then we will add at most
R2 to this by increasing the velocity. So we stay in the set with H(x, v) ≤ R1 +R2. We also have
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that same assumption as earlier that

|∇xU | ≤ CU(x)η.

First we don’t need to use the result with η. Using these facts we have

|Xt −X0| ≤ tC(R1 +R2), |Vt − V0| ≤ tC(R1 +R2).

So now we see that
Tt1δ(x0,v0) = δ(x1,v1),

where (x1, v1) are also inside our good set. Then

L+Tt1δ(x0,v0) ≥ αδx1
(x)1B(v1,δ).

Then we want to transport this set. If we make t2 − t1 suitable small then the velocity variable
can have moved at most δ/2 so we get to

Tt2−t1L
+Tt1δ(x0,v0) ≥ αδx∈G(v)1B(v1,δ/2).

We proceed as on the torus except this time we must transport for only small amounts of time and
pay the price of shrinking the set. So we get∫

Tt−tnL
+Ttn−tn−1L

+ . . . Tt2−t1L
+Tt1δx0,v0dx ≥ αn(δ/8)(n−1)d1B(v1,δ(1+n/2))/2

≥ αL1B(0,R3).

Here how large we make n depends on R3.

Now we want to use the earlier strategy

Lemma 3.8. For any R there exists δM and R4 and a range (s∗, s
∗) such that for all s ∈ (s∗, s

∗)

we have that ∫
Ts
(
δx0

(x)1|v|<R2
(v)
)

dv ≥ 1|x|≤δM .

Proof. Again we define
X̃t = x+ vt.

We have that
|Xt − X̃t| ≤

1

2
t2 max

τ≤t
|∇xU(Xτ ) + Vτ |.

So as before we can bound

|Xt − X̃t| ≤ Ct2
(
R+

1

2
R2

4

)η
.

So we now are in almost the same situation as the earlier lemma. However we need to worry about
the fact that the Hamiltonian might be increasing if we go backwards in time so when we are
estimating

|X̃t(X
−1
t (x, v))−Xt(X

−1
t (x, v))| ≤ Ct2et

(
R+

1

2
R2

4

)η
.

However this extra factor of et is negligible for very small t so the same proof works.
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For the Lyapunov function we suppose that K is an even function and note that∫ ∫
K(v − u)f(u)|v|2dudv =

∫ ∫
f(u)K(w)|u+ w|2dudw ≤

∫
f(u)(|u|2 + δ2)du.

Also, ∫ ∫
K(v − u)f(u)vdudv =

∫ ∫
f(u)K(w)(w + u)dwdu =

∫
f(u)udu.

So we look for a Lyapunov function of the form

M(x, v) = U(x) +
1

2
|v|2 + ax · v + b|x|2.

We can calculate that

d

dt

∫
Mfdxdv ≤

∫
f(a|v|2 + 2bx · v − ax · ∇xU(x) + δ2 − |v|2 − ax · v)

let a = 1/2, b = 1/4 ≤
∫
f

(
δ2 +A/2− 1

2
|v|2 − γ1

2
|x|2 − γ2

2
U(x)

)
≤
∫
f

(
C − 2

3

(
1

2
|v|2 +

1

2
x · v +

1

4
|x|2
)
− γ2

2
U(x)

)
≤−min

{
2

3
,
γ2

2

}∫
fM + C.

3.5.3 Subgeometric convergence

As with the other equations we can also show subgeometric convergence with weaker conditions
on the confining potential

Theorem 3.10. Suppose that U(x) is a function satisfying

|∇xU(x)| ≤ U(x)η, x · ∇xU(x) ≥ γ1〈x〉β + γ2U(x)−A.

Where
〈x〉 = 1 + |x|2,

and β ∈ (0, 1). Then the solution to the non-local diffusion equation converges to equilibrium in a
weighted total variation norm in the following way. We define the function M by

M(x, y) = U(x) +
1

2
|v|2 +

1

2
x · v +

1

4
|x|2.

Then there exits a constant C > 0 such that

‖Ptδz1 − Ptδz2‖TV ≤ C(M(z1) +M(z2))(1 + t)−1/(1−β),

and
‖Ptδz − µ‖TV ≤ CM(z)(1 + t)−1/(1−β) + C(1 + t)−β/(1−β).

Proof. As before we have already got the minorisation condition, we only need to prove a new
Lyapunov condition. We take the same Lyapunov function as for the geometric case. The result
follows in exactly the same way as for the linear BGK equation.



Chapter 4

Hypocoercivity for the kinetic
Fokker-Planck equation with a
confining potential via Hairer and
Mattingly’s Wasserstein-1 Harris’s
theorem and Malliavin calculus

4.1 Hypocoercivity and hypoellipticity

In this chapter we return to one of the first equations which was studied in the context of hypoco-
ercivity, the kinetic Fokker-Planck or Langevin equation

∂tf + v · ∇xf −∇xU · ∇vf = ∆vf +∇v · (vf).

Here µ = M exp(−|v|2/2−U(x)) for some normalising constant M . Hypocoercivity for the kinetic
Fokker-Planck equation has been shown by many authors. It was shown in L2(µ−1) in [80]. This
paper then inspired the mémoire of Villani [116] where he proves a general theorem in the first
section which he then applies to the kinetic Fokker-Planck. The L2 and H1 results are also given
as special cases of the theorems proven in [50] and [102] respectively.

The kinetic Fokker-Planck equation is an equation in the sum of squares form given in [116]
with B = v · ∇x −∇xU · ∇v and A = −∇v. Then

∂tf +Bf +A∗Af = 0.

This equation is also hypoelliptic. The hypocoercivity and hypoellipticity of some degenerate dif-
fusions can be proved using similar techniques and the name hypocoercivity was inspired by this
similarity. The main examples of this is the paper [80] where they prove hypocoercivity and hypoel-
lipticity simultaneously using pseudo differential techniques and the new proof of hypoellipticity
for the kinetic Fokker-Planck equation given in [79]. The link is expressed clearly in [79]. These

89
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proofs of both hypocoercivity and hypoellipticity for kinetic Fokker-Planck equation use crucially
the fact that

[B,A] = −∇x.

More generally both hypocoercivity and hypoellipticity rely on the diffusion being spread to the
other direction seen by taking successive iterated commutators between the vector fields [81].

Some degenerate diffusions equations are also the Kolmogorov backwards equations for the law
of the SDE

dZt =
∑
i

ÃidW
i
t + B̃dt.

Where the tilde vector fields are closely related to the the ones appearing in the PDE. In [116]
(Part 1, Prop 5) Villani shows that all SDEs which converge to an equilibrium state have backwards
equations which can be written in the form

∂tf +
∑
i

A∗iAif +Bf = 0.

This is the form for which it is possible to state his hypocoercivity theorem. Here the vector fields
are different to those in the Itō SDE form of the equation. Hypoellipticity has been understood
on the level of SDEs via Malliavin calculus see for example [92, 103]. The machinery of Malliavin
calculus allow one to see how the effect of the Brownian motions is transferred along different
directions given by the iterated commutators of the driving vector fields.

Kinetic Fokker-Planck equations were shown to converge to equilibrium in [94] using techniques
from [96]. These works use probabilistic techniques, relying on Harris’s Theorem which gives expo-
nential convergence to equilibrium based on a Lyapunov condition and a minorization condition.
The minorization condition is typically of the form that for all R there exists some probability
measure ν and constant α such that for all z in B(0, R) we have

fzt ≥ αν.

Here fzt is the solution to the PDE at time t, with initial condition δz.

These proofs do not give explicit constants and this lack of quantifiability arises when showing
the minorisation condition. They first show that fzt has a density using hypoellipticity theory.
Then they show via control theory that for some compact C then there is some y ∈ C such that
for any δ we have t1(δ) with

Pt1(x,Bδ(y)) > 0 ∀x ∈ C.

They then use these to prove a minorisation condition. Its not clear how to make this argument
quantitative as it would require us to be able to estimate pt(x, y) from below at a specific point and
uses compactness arguments. As the proof of hypoellipticity can be made using Malliavin calculus
it makes sense to ask whether the minorisation condition can be shown directly and quantitatively
using Malliavin calculus. This would then allow one to prove hypocoercivity for the SDE quan-
titatively on the level of the SDE itself rather than via the PDE. Convergence to equilibrium in
Wasserstein for the kinetic Fokker-Planck equation is shown very nicely in [52] by a direct coupling
approach. In [52] they use a Lyapunov structure to show that the solution concentrates in the
centre of the state space. Within this centre they show contraction in Wasserstein by using a
mixture of reflection and synchronisation couplings. In this setting the reflection coupling should
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push the x coordinates of the processes towards each other and the synchronisation coupling should
push the v-coordinates towards each other The final result of this paper is very similar to the one
given here. However, our techniques for looking at the behaviour in the centre of the space are
very different. We use a much less trajectorial viewpoint. This means we are unlikely to get as
sharper constants as with a coupling approach. It does allow us to see how we are exploiting the
hypoelliptic structure of the equations more clearly.

We could not show something as strong as the minorisation condition quantitatively. This is
because we use Malliavin calculus to approximate our solutions by Gaussians for which spreading
out in all directions is clear but we then get an error from this process which is not bounded in
L∞ as we would need to show minorisation. However this error is sufficiently well behaved that
we can bound below the probability that any two solutions to the SDE started within a compact
will be within a distance δ from each other at some time T , i.e.

inf
|x|,|y|≤C

sup
Γ∈C(P∗T δx,P∗T δy)

Γ{(x′, y′) : d(x′, y′) < δ} ≥ a.

Where
C(P∗T δx,P∗T δy)

is the set of couplings of the solutions at time T . This is one of the assumptions of the Wasserstein-
1 version of Harris’s theorem proved by Hairer and Mattingly in [72] to show spectral gaps in
Wasserstein for the stochastically forced Navier-Stokes equation.

Therefore the goal is to show exponentially fast convergence to equilibrium in a weighted
Wasserstein-1 distance for the kinetic-Fokker Planck or Langevin equation

dXt =Vtdt, (4.1)

dVt =− (Vt +∇xU(Xt))dt+
√

2dWt. (4.2)

4.2 Harris’s theorem in Wasserstein

We are going to use the version of Harris’s theorem in a Wasserstein-1 distance proved by Hairer
and Mattingly in [72] for use in giving explicit rates of convergence to equilibrium for the 2D
Navier-Stokes equation. We first introduce the distance for some function L

ρr(x, y) = inf
γ

∫ 1

0

Lr(γ(t))‖γ̇(t)‖dt,

where r is an exponent and the infimum runs over all paths γ between x and y. Let us write
ρ1 = ρ.

The assumptions of this theorem are

Assumption 1. There exists a continuous function L ≥ 1 which has the following properties:

1. There exist strictly increasing functions L∗, L∗ such that

L∗(|z|) ≤ L(z) ≤ L∗(|z|),

with lima→∞ L∗(a) =∞.
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2. There exist constants C and κ ≥ 1 such that for all a

aL∗(a) ≤ CLκ∗(a).

3. Finally, there exist constants C∗ > 0, 0 < r0 < 1 and a function ξ : [0, 1] → [0, 1] which is
non increasing with ξ(1) < 1 such that for every h with |h| = 1 we have

Lr(Φt(z))(1 + ‖∇zΦt(z)h‖) ≤ C∗Lrξ(t)(z),

for every z and every r ∈ [r0, 2κ] and every t ∈ [0, 1]. Here Φt is the flow map which takes an
initial position z to the random variable which is the solution to the SDE at time t.

Assumption 2. There exists a C1 > 0 and p ∈ [0, 1) so that for every α ∈ (0, 1) there exists
positive T (α), C(α) with

‖∇zPtφ(z)‖ ≤ L(z)p
(
C(α)

√
(Pt|φ|2)(z) + α

√
(Pt‖∇zφ‖2)(z)

)
,

for every z ∈ Rd, φ ∈ C1
b and every t > T (α).

Assumption 3. For any C > 0, r ∈ (0, 1) and δ > 0, there exists a T0 so that for any T ≥ T0

there exists and a > 0 so that

inf
|z1|,|z2|≤C

sup
π∈Π(P∗T δz1 ,P

∗
T δz2 )

π{(z′1, z′2) : ρr(z
′
1, z
′
2) < δ} ≥ a.

Here Π(µ, ν) is the set of couplings of µ and ν. In our situation we actually only use the coupling
where they are independent. This depends on L through the distance ρ but not very strongly. We
can rewrite this as

inf
|z1|,|z2|≤C

∫
R2d

∫
R2d

1ρr(z′1,z
′
2)<δP∗T (dz′1)P∗T (dz′2) ≥ a.

Then the theorem is

Theorem 4.1 (Hairer & Mattingly 2008). If the semigroup Pt satisfies the assumptions above
then for all µ, ν there exists C and λ which we can calculate from the constants in the assumptions
so that

Wρ(P∗t µ,P∗t ν) ≤ Ce−λtWρ(µ, ν),

for any µ, ν. Here Wρ is the Wasserstein-1 distance corresponding to the distance ρ. i.e.

Wρ(µ, ν) = inf
π∈Π

∫
ρ(z1, z2)π(dz1,dz2).

Π is the set of couplings of µ and ν probability measures on R2d which have marginals µ and ν on
the first and last d dimensions.

Our goal is to verify each of these assumptions with explicit constants. I will briefly describe
the strategy.

• The first assumption is a Lyapunov structure. We verify this using more tools from [72] and
known Lyapunov functions for the kinetic Fokker-Planck equation from [94].
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• The second assumption is a gradient bound. This is an additional condition needed for the
Wasserstein proof to work and is not present in Harris’s theorem in any form. We verify this
using tools similar to those of Bakry-Emery calculus. Some work on Hypoelliptic diffusions
via Bakry-Emery stuff has been done in [12, 98] and papers referenced therein. We need the
Hessian of the confining potential to be bounded for this to work but it seems plausible to
relax this assumption.

• The third assumption is a kind of uniform boundedness condition. We verify this using
Malliavin calculus by showing that for any positive the solution spreads out in all directions.
This part should work for any equation satisfying the Hörmander bracket condition provided
that it also satisfies the very strong assumptions that all the vector fields appearing in the
commutator conditions are constant.

Theorem 4.2. Suppose that Pt is a semigroup corresponding to the solution to the kinetic Fokker-
Plank with the confining potential U being a smooth function satisfying

Hess(U)(x) ≤M, x · ∇xU(x) ≥ c1U(x) + c2x
2 − c3

for some strictly positive constants M, c1, c2, c3. Then we can choose constants a∗ and k depending
on these other constants to define the function

L(x, v) = exp
(
a∗
(
v2 + 2U(x) + 2kx2 + kxv

))
.

We define ρ corresponding to L with

ρ(z1, z2) = inf
γ∈Γ

∫ 1

0

L(γ(t))‖γ̇(t)‖dt.

Here Γ is the set of all C1 paths between z1 and z2. Then if Wρ is the Wasserstein-1 distance
associated to ρ we have constants C > 0 and λ > 0 which we can calculate explicitly such that

Wρ(Ptµ,Ptν) ≤ Ce−λtWρ(µ, ν).

Remark. The conditions on U are equivalent to requiring it to behave roughly like a quadratic at
infinity. This allows it to have ‘bad’ behaviour on a compact set. For example multiple wells or
being flat in large areas. In particular this would allow for the double well potential which behaves
quadratically at infinity in 1D.

Remark. Wρ(µ, ν) bounds the Wasserstein 1, distance associated to the euclidean metric. We can
see that there exists some M such that

|z1 − z2| ≤ ρ(z1, z2) ≤ |z1 − z2| exp
(
M
(
|z1|2 + |z2|2

))
.

We structure the paper as follows. We split the proof of Theorem 4.2 into three parts relating to
the three assumptions. We then deal with each of these parts separately. We rely on the theorem
of Hairer and Mattingly but in order to make it clear how the proofs work we include a proposition
showing how each assumptions will allow us to show contraction for a different part of the space.
These propositions follow closely Hairer and Mattingly’s proof of theorem 4.1 and are not original.
They are intended for expository purposes and to make this chapter more self contained.
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Proof of 4.2. We prove Theorem 4.2 by showing that we can verify all the assumptions of Theorem
4.1 and then applying this result. Assumption 1 is verified in Lemma 4.2. Assumption 2 is verified
in Lemma 4.3. Assumption 3 is verified in Lemma 4.5.

We also give the proof of 4.1 in our context. We note that for any distance d we have

W1,d(Ptµ,Ptν) ≤ inf
π∈Π(µ,ν)

∫
W1,d(Ptδz1 ,Ptδz2)π(dz1,dz2).

Therefore if we can show for each z1, z2 that

W1,d(Ptδz1 ,Ptδz2) ≤ αd(z1, z2)

then we have
W1,d(Ptµ,Ptν) ≤ αW(µ, ν).

We do not work directly with the distance ρ and instead look at the equivalent distance

d(z1, z2) =

(
ρr(z1, z2)

δ
∧ 1

)
+ βρ(z1, z2).

For any r < 1 and δ, β to be chosen later.

In Proposition 4.1, we show that there exists some K such that for all r ∈ [r0, 1) and for all
β ∈ (0, 1) we have that Pt gives a contraction between measures δz1 and δz2 in W1,d uniformly
over the set ρ(z1, z2) > K and uniformly over all t sufficiently large. In Proposition 4.2, we then
show that there exists an r ∈ [r0, 1) and a δ > 0 such that Pt is a contraction in W1,d uniformly
over the set ρr(z1, z2) < δ, β ∈ (0, 1) and t sufficiently large. Finally in Proposition 4.3, we show
that for this given r, δ and K we can choose β such that, for every t sufficiently large, Pt gives a
contraction in W1,d uniformly over the set ρ(z1, z2) ≤ K and ρr(z1, z2) > δ.

4.3 Proofs

4.3.1 Assumption 1

We would like to show that these assumptions hold with explicit constants for the kinetic Fokker-
Planck equation. We begin with assumption 1 where our treatment closely mirrors that of Hairer
and Mattingly in [72]. Here the Lyapunov function we find is essentially the exponential of the
Lyapunov function used by Mattingly, Stuart and Higham in [94]. We write J0,t = ∇zΦ0,t(z)

Let us define

Q(x, v) = |v|2 + 2U(x) +
1

2
|x|2 + x · v, Pk(x, v) = 2(|x|2 + |v|2 + kU(x)).

We will choose k later.

Lemma 4.1. Let U be a smooth function satisfying that for all x x ·∇xU(x) ≥ c1U(x)+ c2x
2− c3,

for strictly positive constants c1, c2, c3 and Hess(U) ≤ M for some M > 0. Define La(x, v) =

exp(aQ(x, v)). Then we show there exists a∗ > 0 such that, for 0 < a ≤ a∗ and uniformly over
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t ∈ [0, 1], there is a constant β > 0 such that

E(La(Φt(x, v))‖J0,t‖) ≤ Lae−βt/4(x, v).

Proof. Note first that we may as well choose c1 ≤ 1. We have that

d(aQ(Zs)) =
(
−a|Vs|2 − aXs · ∇xU(Xs) + 2a

)
ds+a(Xs+2Vs)dWs = −aHsds+a(Xs+2Vs)dWs.

Where
Hs = |Vs|2 +Xs · ∇xU(Xs)− 2.

Therefore with k = c1 we have that as functions of z

Hs(z) ≤ βPk(z) + c3,

for some β which depends on c1, c2. We also have that Q(z) ≤ P (z)/c1. Now we define

Ys = eγ(s−t)aQ(Zs) + γ

∫ s

0

eγ(r−t)ac1P (Zs), Ms =

∫ s

0

eγ(r−t)a(2Vr +Xr)dWr.

Differentiating this gives us that,

dYs = eγ(s−t)(aHs + aγ(Q(Zs) + c1P (Zs)))ds+ dMs.

Hence for s < t we have

Ys ≤Ms + Y0 + a

∫ s

0

eγ(r−t)(Hr + γ(Q(Zr) + c1P (Zr)))dr

≤Ms + Y0 + a

∫ s

0

eγ(r−t)((2γ − β)P (Zr) + 2 + c3)dr.

Therefore we have that

Ys ≤Ms + Y0 + C + a

∫ s

0

eγ(r−t)(2γ − β)P (Zr)dr.

We now note that we have
Y0 = ae−γtQ(Z0),

and that

Yt ≥ aQ(Zt) + ac1γe
−γt

∫ t

0

P (Zs)dz.

We also have that
〈M〉s ≤ 16a2

∫ s

0

eγ(r−t)P (Zr)dr,

therefore for every s < t we have

Ms − (β − 2γ)c1a

∫ s

0

eγ(r−t)P (Zr) ≤Ms −
c1(β − 2γ)

16a
〈M〉s.



96CHAPTER 4. MALLIAVIN CALCULUS APPROACH FOR THE KINETIC FOKKER-PLANCK

The exponential martingale inequality gives that

P
(

sup
s≤t

(
Ms −

c1(β − 2γ)

16a
〈M〉s

)
> K

)
≤ exp

(
−Kc1(β − 2γ)

8a

)
.

Now we choose γ = β/4 this gives

Ys − Y0 − C ≤Ms −
β

2
ac1

∫ s

0

eγ(r−t)P (Zr)dr ≤Ms −
c1β

32a
〈M〉s.

Combining this with our earlier assumptions we have

aQ(Zt) + ac1
β

4
e−βt/4

∫ t

0

P (Zs)ds− ae−βt/4Q(Z0)− C ≤Ms −
βc1
32a

.

Therefore,

P
(

exp

(
aQ(Zt) + ac1

β

4
e−βt/4

∫ t

0

P (Zs)ds− ae−βt/4Q(Z0)− C
)
> x

)
≤ x−c1β/16a.

We can make a smaller than a∗ = βc1/32 we have the exponent is bigger than 2 so we integrate
to get

E
(

exp

(
aQ(Zt) + ac1

β

4
e−βt/4

∫ t

0

P (Zs)ds− ae−βt/3Q(Z0)− C
))
≤ c1β

c1β − 16a
.

Therefore,

E
(

exp

(
aQ(Zt) + ac1

β

4
e−βt/4

∫ t

0

P (Zs)ds

))
≤ C(a) exp (aQ(Z0)) .

Now we have that

dJ0,t =

(
0 I

−Hess(U)(Xt) −1

)
J0,tdt.

It therefore follows that

d‖J0,th‖ =
(J0,th)T

‖J0,th‖

(
0 I

−Hess(U)(Xt) −1

)
J0,thdt ≤ (1 +M)‖J0,th‖dt.

This means that for every t ∈ [0, 1] we have

‖J0,th‖ ≤ e1+M .

Then we have that for t ∈ [0, 1], h a unit vector, η > 0

‖J0,th‖ ≤ e1+M exp

((
η

∫ t

0

(|Xs|2 + |Vs|2 + kU(Xs))ds

))
.

Therefore for any a < a∗ and η small enough in terms of a we have

‖J0,th‖ ≤ e1+M exp

(
ac1

β

4
e−βt/4

∫ t

0

P (Zs)ds

)
.
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This combined with our earlier result gives the lemma.

Lemma 4.2. Provided that U is a smooth function satisfying

x · ∇xU(x) ≥ c1U(x) + c2x
2 − c3, HessU(x) ≤M

for some positive constants we can choose a∗, k such that

L(x, v) = exp
(
a∗
(
v2 + 2U(x) + 2kx2 + kxv

))
is a function satisfying assumption 1.

Proof. We can add a constant in the definition of U so we may as well take U ≥ 0. Since
Hess(U) ≤M we have

3

4
(|x|2 + |v|2) ≤ Q(x, v) ≤ (2 +M)(|x|2 + |v|2).

We also have that

|z|ea(2+M)|z|2 ≤ 1

a
e(3+M)|z|2 ≤ 1

a

(
e3a|z|2/4

)4(3+M)/3

≤ 1

a
e4a(3+M)Q(z)/3.

Therefore if 8a(3 +M)/3 ≤ a∗ Then by lemma 4.1 we have that

E
((
|Φt(z)|ea(2+M)|Φt(z)|2

)2
)
≤ 1

a
e4a(3+M)e−βt/4Q(z)/3

Therefore if we set
a∗ = 3a∗/8(3 +M)

then we can set
L(z) = ea∗Q(z), L∗(z) = e3a∗|z|2/4, L∗(z) = e(2+M)a∗|z|2 .

Then our calculation shows that
L∗ ≤ L ≤ L∗,

and furthermore that
|z|L∗(|z|) ≤ L∗(z)κ,

with κ = 3(3 +M)/3. Then lemma 4.1 shows that

E(Lr(Φt(z))) ≤ Lre
−βt/4

(z),

for all r ≤ 2κ.

Now we briefly describe how the proof of Hairer and Mattingly uses this lemma to show con-
vergence for ρ(z1, z2) ≥ 4C1 with C1 given below.

Proposition 4.1. If we define ρ as above then for every α ≥ 1/2, T1 > 0 there exists constants
C1, C such that for all t ≥ T1

E(ρ(Φt(z1),Φt(z2))) ≤ Cρ(z1, z2),
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E(ρ(Φt(z1),Φt(z2))) ≤ C1 + αρ(z1, z2).

Furthermore, there exists some radius R2 such that if |z1| or |z2| ≥ R2 then,

E(ρ(Φt(z1),Φt(z2))) ≤ αρ(z1, z2).

Proof. Fix z1, z2, t > T1 then there exists some curve joining z1, z2 such that∫ 1

0

Lr(γ(s))|γ̇(s)|ds ≤ ρr(z1, z2) + ε.

So then we can evolve every point along this curve by Φt to make a curve joining Φt(z1),Φt(z2).
Using lemma 4.2 this gives

E(ρ(Φt(z1),Φt(z2)) ≤ E
(∫ 1

0

L(Φt(γ(s)))|J0,tγ̇(s)|ds
)
≤ C

∫ 1

0

L(γ(s))|γ̇(s)|ds ≤ C(ρ(z1, z2) + ε).

ε was arbitrary. In fact we could have written

E(ρ(Φt(z1),Φt(z2))) ≤ C
∫ 1

0

Le
−βt/4

(γ(s))|γ̇(s)|ds.

Then since L grows at infinity there is some R so that CLe
−βt/4

(z) ≤ αL(z) for |z| ≥ R. Therefore

E(ρ(Φt(z1),Φt(z2))) ≤ αρ(z1, z2) +

∫ 1

0

L(γ(s))| ˙γ(s)|1γ(s)∈B(0,R)ds

Now we recall that there exists constants m and M so that

Cem|z|
2

≤ L(z) ≤ eM |z|
2

.

If we replace the segment of γ in B(0, R) by a straight line segment this means we can never need
to pick up more than

ReMR2

+ ε

in our integral while travelling through B(0, R) so we have that

E(ρ(Φt(z1),Φt(z2))) ≤ αρ(z1, z2) + CReMR2

.

So we know we are contractive if ρ(z1, z2) ≥ 4C1 say, and also we can see from this proof that we
will be contractive whenever almost optimal paths between z1, z2 do not pass through the B(0, R).
We can calculate that the distance, ρ, from z to B(0, R) is bounded below by

C

∫ |z|
R

emr
2

dr.

Therefore we have R2 such that if |z| > R2 then this will be greater than 4C1. This means that if
γ is a path from z1, z2 going through B(0, R) with |z1| or |z2| greater than R2 then∫

γ

L(γ(s))|γ̇(s)|ds ≥ 4C1.
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This means that if |z1| ≥ R2 or |z2| ≥ R2 then either close to optimal paths do not go through
B(0, R) or ρ(z1, z2) ≥ 4C1. Therefore

E(ρ(Φt(z1),Φt(z2))) ≤ αρ(z1, z2),

for |z1| ≥ R2 or |z2| ≥ R2.

4.3.2 Assumption 2

Assumption 2 looks very similar to the gradient bounds found in Malliavin’s proof of Hörmander’s
theorem see for example [103]. It seems to be more of a technical challenge than anything else
to make the estimates here explicit. However, it is simpler to use more standard hypocoercive
techniques based on point wise Bakry-Emery style estimates on the semigroup Pt. Let us write

Γ(f, g) = 2∇xf · ∇xg −∇xf · ∇vg −∇vf · ∇xf + 2∇vf · ∇vg.

Now write
L = ∆ + v · ∇x − v · ∇v −∇xU · ∇v

this is the forwards operator for the solution to the SDE. We set Γ2(f) = LΓ(f, f)− 2Γ(f, Lf).

Lemma 4.3. For Pt the semigroup associated to the SDE when U ′′ is bounded we have that for
an explicit constant CM

|∇xPtf |2 + |∇vPtf |2 ≤ CMPt(f2) + 3e−t/3Pt
(
|∇xf |2 + |∇vf |2

)
.

Proof.

Γ2(f) =4|∇x∇vf |2 − 4∇x∇vf : ∇v∇vf + 4|∇v∇vf |2 + 4∇xfHess(U)∇vf − 2∇vfHess(U)∇vf

+ 2|∇xf |2 − 2∇xf · ∇vf + 4|∇vf |2 − 4∇xf · ∇vf

≥4∇xHess(U)∇vf − 2∇vHess(U)∇vf + 2|∇xf |2 − 6∇xf · ∇vf + 4|∇vf |2

≥(2− 3ε1 − 2Mε2)|∇xf |2 +

(
4− 3

ε1
− 2M

ε2
− 2M

)
|∇vf |2

We set ε1 = 1/6 and ε2 = 1/4M to get

Γ2(f) ≥ |∇xf |2 − (14 + 6M2 + 2M)|∇vf |2.

Let Γ̃(f) = Γ(f) + (15 + 6M2 + 2M)f2, and write CM = 15 + 6M2 + 2M . Then we get

LΓ̃(f)− 2Γ̃(f, Lf) ≥ |∇xf |2 + |∇vf |2 ≥
1

3
Γ(f) =

1

3

(
Γ̃(f)− CMf2

)
.

Therefore, let
ψ(s) = PsΓ̃(Pt−s(f)).

Then

ψ̇(s) ≥ 1

3

(
PsΓ̃(Pt−sf)− CMPs(Pt−s)2

)
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Hence,
d

ds
(e−s/3ψ(s)) ≥ −CM

3
e−s/3Ps(Pt−sf)2 ≥ −CM

3
e−s/3Pt(f2).

So
e−s/3ψ(s)− ψ(0) ≥ −CM

(
1− e−s/3

)
Pt(f2)

which means that
e−t/3Pt(Γ(f))− Γ(Ptf)− CM (Ptf)2 ≥ −CMPt(f2).

Rearranging this gives

Γ(Ptf) + CM (Ptf)2 ≤ CMPt(f2) + e−t/3Pt(Γ(f)).

We also have that
|∇xf |2 + |∇vf |2 ≤ Γ(f) ≤ 3

(
|∇xf |2 + |∇vf |2

)
.

So we have that

|∇xPtf |2 + |∇vPtf |2 ≤ CMPt(f2) + 3e−t/3Pt
(
|∇xf |2 +∇vf |2

)
.

Now we look at how this is used to show convergence in the main theorem. We define a new
metric

d(z1, z2) =

(
ρr(z1, z2)

δ
∧ 1

)
+ βρ(z1, z2).

We see that for ρ(z1, z2) > 4C1 proposition 4.1 still gives a contraction in this metric for every β.

Proposition 4.2. If ρr(z1, z2) < δ then we have that for t sufficiently large

W1,d(Ptδz1 ,Ptδz2) ≤ γd(z1, z2)

for some explicit γ < 1.

Proof. In this section we want to use the dual Lipschitz formulation of the Wasserstein 1 distance.
We have that

W1,d(Ptδz1 ,Ptδz2) = sup
φ

(Ptφ(z1)− Ptφ(z2)).

Here the infimum is taken over all Lipschitz φ with |φ|Lip ≤ 1. In fact by density and adding and
subtracting we can take a supreme over phi ∈ C1 with φ(0) = 0. If φ is such a function then

|φ(z)| ≤ (1 + β)|z|L∗(z), |∇φ(z)| ≤ (1/δ + β)L∗(z).

Therefore by lemma 4.3 and lemma 4.1 we have that

|∇Ptφ(z)| ≤ Lκe
−βt/4

(z)(C + 3e−t/3(1/δ + β))

Therefore for t sufficiently large so that κe−β/4 ≤ r and 3e−t/3 ≤ 1/4 we have that

|∇Ptφ(z)| ≤ (δ(C + 2) + 1/4)
1

δ
Lr(z).
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Now take δ ≤ 1/2(C + 2) so we have

|∇Ptφ(z)| ≤ 3

4

1

δ
Lr(z).

So we have that

Ptφ(z1)− Ptφ(z2) ≤
∫ 1

0

∇Ptφ(γ(s)) · γ̇(s)ds ≤ 3

4

1

δ

∫ 1

0

Lr(γ(s))|γ̇(s)|ds.

For any path γ joining z1 and z2. Therefore we have

Ptφ(z1)− Ptφ(z2) ≤ 3

4

1

δ
ρr(z1, z2).

Since ρr(z1, z2) ≤ δ this means

W1,d(Ptδz1 ,Ptδz2) ≤ 3

4
d(z1, z2).

4.3.3 Assumption 3

Before starting we need some material from Malliavin calculus

Malliavin Calculus

The material in this section is all standard and follows [104, 71]. Malliavin calculus is a way
of ‘differentiating’ a random variable whose randomness comes from some Brownian motion with
respect to this Brownian motion. Since it is the driving Brownian motion which causes the diffusive
behaviour of the solutions to SDEs, the Malliavin derivative allows us to measure the strength and
direction of this diffusion. We will denote the Malliavin derivative of a function by DF, this
derivative is in fact a function and if F is a functional of Ws, 0 ≤ s ≤ t then the Malliavin
derivative is a function on [0, t] we denote the evaluation of this function at a particular time s by
DsF. We quickly introduce some of the definitions in Malliavin calculus. First we need to know
what kind of functions can be differentiated. Let

Ω = C0 = {f | f ∈ C([0, T ]n;Rd), f(0) = 0},

be Wiener space, and P the Wiener measure. Let H be the Hilbert space H = L2([0, T ]). Then
we define a simple type of Weiner functional

W : H → R, W (h) =

∫ T

0

h(t)dWt

by Ito integration. We have that DW (h) = h. For each h ∈ H,W (h) is a random variable. Let G

be the sigma-algebra generated by {W (h) : h ∈ H}. We want to look a Weiner functionals which
are in the Hilbert space G,

G = L2(Ω,G , P ).
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The Malliavin derivative operator is D : G → H is a closable, unbounded operator much like the
weak derivative operator on L2. Since, we are dealing mainly with SDEs we wish to know how to
find the Malliavin derivative of the solution to an SDE. If we work purely formally we can derive
an SDE for the Malliavin derivative to an SDE, writing in integral form we have

Zt = Z0 +

n∑
k=1

∫ t

0

Ak(Zs)dWk,s +

∫ t

0

B(Zs)ds

then we can formally take derivatives

Dk
r Zt = Ak(Zr) +

n∑
j=1

∫ t

r

∇Aj(Zs) ·Dk
r (Zs)dWj,s +

∫ t

r

∇B(Zs) ·Dk
r (Zs)ds.

Here the k in the exponent corresponds to the Malliavin derivative with respect to the kth Brownian
motion. The Malliavin derivative can be constructed rigorously and in the case that Ak are smooth
and uniformly Lipschitz it can be shown that Dk

r will satisfy this SDE, see [104, 71].

We now wish to look at our solution in a different form. If we write the map

Φωs,t(Zs) = Zt,

the solution map. Then we can differentiate with respect to the initial conditions to get

∂Φs,t = Js,t.

Then we would like to write an SDE for Js,t. Let us write

Js,tZs = Zs +

∫ t

s

∇Ak(Zr) · Js,rZsdWk,r +

∫ t

s

∇B(Zr) · Js,rZsdr.

Comparing this with the SDE for DsZt shows that, formally anyway,

DsZt = Js,tA(Zs).

Furthermore we can write an SDE for Js,t on its own in both Ito and Stratanovich form.

Js,t = I +

n∑
k=1

∫ t

s

∇Ak(Zr) · Js,rdWk,r +

∫ t

s

∇B(Zr) · Js,rdr,

= I +

n∑
k=1

∫ t

s

∇Ak(Zr) · Js,r ◦ dWk,r +

∫ t

s

∇A0(Zr) · Js,rdr.

We also notice that as
Φs,t = Φr,t ◦ Φs,r

the chain rule gives us that
Js,t = Jr,tJs,r.

We can also show that Js,t is invertible by writing a suitable SDE for Js,t and showing that the
solution will not blow up. This lack of blow up comes from global controls on the size of ∇A and
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∇B which we would like to impose. This SDE is

J−1
s,t = I −

n∑
k=1

∫ t

s

J−1
s,r∇Ak(Zr) ◦ dWk,r −

∫ t

s

J−1
s,r∇B(Zr)dr.

Putting these two facts together gives that

Js,t = J0,tJ
−1
0,s ⇒ DsZt = J0,tJ

−1
0,sA(Zs).

This is useful because J−1
0,sA(Zs) is a measurable function of Zr, r ≤ s so we could write an SDE

purely on this quantity. This will be useful later, we do this in Stratanovich form where V is any
smooth bounded vector field,

◦d
(
J−1

0,t V (Zt)
)

=
(
◦dJ−1

0,t

)
V (Zt) + J−1

0,t (dV (Zt))

=−
n∑
k=1

∇Ak(Zt)J
−1
0,t V (Zt) ◦ dW

(k)
t −∇A0(Zt)J

−1
0,t V (Zt)dt

+ J−1
0,t∇V (Zt)

[
n∑
k=1

Ak(Zt) ◦ dW
(k)
t +A0(Zt)dt

]

=

n∑
k=1

J−1
0,t [Ak, V ](Zt) ◦ dW

(k)
t + J−1

0,t [A0, V ](Zt)dt.

Converting this to Ito form gives

d
(
J−1

0,t V (Zt)
)

=

n∑
k=1

J−1
0,t [Ak, V ](Zt)dW

(k)
t + J−1

0,t

(
1

2

n∑
k=1

[Ak, [Ak, V ]](Zt) + [A0, V ](Zt)

)
dt.

We also need another important theorem from Malliavin calculus

Theorem 4.3 (Clark-Ocone Representation Formula). If F is Malliavin differentiable and E(F 2) <

∞,E((DsF )2) <∞ and W is a Brownian motion with natural filtration Ft then,

F = E(F ) +

∫ t

0

E(DsF |Fs)dWs.

This could be considered a version of the fundamental theorem of calculus in this context. A
proof of this can be found in [104].

Back to Assumption 3

Now we return to assumption 3. We are now in the setting of looking the the kinetic Fokker-Planck
SDE

dXt = Vtdt, dVt = −Vtdt−∇xU(Xt)dt+ dWt.

For this SDE we have that n = 1 and A1 = (0, 1) and B = (v,−v −∇xU(x)). We define C1 by

C1 := [A1, B](z) =

(
−1

1

)
.
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The key idea of this sections is that we can use Malliavin calculus to show that for very small t
the solution behaves approximately like

E(Zt) +A1Wt + C1

∫ t

0

sdWs.

Then because (Wt,
∫ t

0
sdWs) is a 2d dimensional non-degenerate Gaussian and because A1 and C1

are linearly independent this shows that the solution spreads out in every direction. In particular
if we take two independent realisations Z1

t and Z2
t with different starting points the solutions will

spread in the direction E(Z1
t )− E(Z2

t ) which allows us to show there is some positive probability
of them becoming close.

Lemma 4.4. Let U be smooth and satisfy Hess(U) ≤M and fix δ and R. There exists T = T (δ,R)

such that for fixed 0 < t < T there exists an α = α(t, δ, R) with the property that for any two
independent solutions to the SDE, Z1

t , Z
2
t with initial points having z1, z2 ∈ B(0, R), then

P(|Z1
t − Z2

t | < δ) ≥ α.

We have that
α(t, δ, R) = 1− Cδ2 1

t2
exp

(
− k
t3
m2

)
+ 8 exp

(
− δ2

16Ct5

)
.

Here k and m are explicit numerical constants. This value of α(t, δ, R) is only positive for t
sufficiently small and T is the value for which α(T, δ,R) = 0.

Proof. The key idea of this proof is to use the fact that the solution spreads out in every direction
due to hypoelliptic effects. We represent the solution by a deterministic part, a Gaussian part and
a small error. We begin by approximating the Malliavin derivative of the solution using the SDEs

d

ds
Js,tA1 = Js,tC1,

d

ds
Js,tC1 = Js,tC1 − U ′′(Xs)Js,tA1

We can then Taylor expand and use the Clarke-Ocone formula to get

Zt = E(Zt) +

∫ t

0

((
0

1

)
− (t− s)

(
−1

1

)
+ Es,t

)
dWs.

Es,t = −E
(∫ t

s

(Jr,tC1 − U ′′(Xr)Jr,tA1)(t− r)dr|Fs

)
At this point we have to assume that U ′′ is bounded in order to get bounds on Es,t. Using the
first part with the Lyapunov structure we know that J0,t can be bounded in terms of Lyapunov
function we have

‖Js,t‖ ≤ e1+M exp

(
η

∫ t

s

(X2
r + V 2

r + U(Xr))dr

)
≤ e1+M exp

(
η

∫ t

0

(X2
r + V 2

r + U(Xr))dr

)
≤ CL(Z0).

Taking the supremum over possible starting points in B(0, R) we have Es,t ≤ C(t − s)2 for some
constant C. Let us write

Et =

∫ t

0

Es,tdWs.
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We would like to get bounds on the expectation of exp c|Et|. Since

Er =

∫ r

0

Es,tdWs

is a Martingale for r ≤ t then by the exponential martingale inequality

E (exp (ξ · Et)) ≤ exp

(∫ t

0

C|ξ|2(t− s)4ds

)
≤ exp

(
C|ξ|2t5

)
.

Alternatively, we can bound Js,t in a way that doesn’t depend on the initial data but does use that
Hess(U) ≤M . We can use the equation to see that

|Js,tA1 + Js,tC1|2 ≤ 4e(2+M)t.

Then the rest follows exactly as before but we replace C with Ce(2+M)t. Since we are looking at
the asymptotics for small t this makes no difference.

So we have decomposed Zt into a deterministic part E(Zt) a Gaussian part which we call Gt
and an error which has exponential moments.

P
(
Z1
t − Z2

t /∈ B(0, δ)
)
≤P
(
E(Z1

t )− E(Z2
t ) +G1

t −G2
t /∈ B(z, δ/2)

)
+ P

(
E1
t /∈ B(0, δ/4)

)
+ P

(
E2 /∈ B(0, δ/4)

)
.

So we have by Markov’s inequality

P (Et /∈ B(0, δ/2)) ≤ 4 exp
(
Cη2t5 − ηδ/2

)
.

Optimising over η gives

P (Et /∈ B(0, δ/2)) ≤ 4 exp

(
− δ2

16Ct5

)
.

We can write down the density for G1
t −G2

t . We have

d

dt
E(|Z1

t − Z2
t |2) ≤ (2 +M)E(|Z1

t − Z2
t |2) + 4d.

This implies that

E(|Z1
t − Z2

t |2) ≤ e(2+M)t(E(|Z1
0 − Z2

0 |2) + 4d) ≤ e(2+M)t(R2 + 4d).

We can therefore find the smallest that the density of G1
t − G2

t can be on a ball of size δ/2 at
the point −E(Z1

t − Z2
t ) when G1 and G2 are independent. Using this we make the two processes

independent. The covariance matrix for G1
t , G

2
t has eigenvalues (t/3+o(t3), t−t2+t/3+o(t3)). Lets

call σm(t) the smallest eigenvalue and σM (t) the largest eigenvalue. We also have that z ≤ L(z)/a∗

so using Lemma 4.2 we have that E(Z1
t − Z2

t ) ≤ 2C∗max|z|≤R(L(z))/a∗ =: m So we can bound
the probability by

1− δ2(2πσM (t))d/2 exp

(
− m2

σm(t)

)
.
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We then have that can approximate for t ≤ 1,

P
(
E(Z1

t − Z2
t ) +G1

t −G2
t /∈ B(0, δ/2)

)
≤ 1− Cδ2 1

t2
exp

(
− k
t3
m2

)
.

Here k and m are constants we can calculate explicitly. In total we have that

P(Z1
t − Z2

t /∈ B(0, δ)) ≤ 1− Cδ2 1

t2
exp

(
− k
t3
M2

)
+ 8 exp

(
− δ2

16Ct5

)
So as t→ 0 we can see that for a fixed sufficiently small t we have

P(Zt ∈ B(z, δ)) ≥ α.

Where we can calculate α explicitly in terms of t, δ, R and the other constants appearing in the
equation.

Lemma 4.5. Suppose we fix δ, t and R. Then there exists α such that for any two independent
solutions to the SDEs Z1

t , Z
2
t with initial points having z1 − z2 ∈ B(0, R) then

P(|Z1
t − Z2

t | < δ) ≥ α.

Furthermore if they start with initial points both in B(0, R) then

P(ρr(Z
1
t , Z

2
t ) < δ) ≥ α′.

Proof. We want to extend the previous Lemma to larger times by showing that if two solutions
start with z1 − z2 ∈ B(0, R) then they stay there with some positive probability. To do this
we repeat the calculation but replacing δ by R then since the two processes are independent the
probability that their difference stay inside B(0, R) is given by the first lemma. So we have for
some t∗

P(Z1
t∗ − Z

2
t∗ ∈ B(0, R) | Z1

0 − Z2
0 ∈ B(0, R)) ≥ b

Therefore if t = nt∗ + s with s ≤ t∗ then

P(Z1
t − Z2

t ∈ B(0, δ) | Z1
t − Z2

t ∈ B(0, R)) ≥ abn.

Here a, b, t∗ are explicitly calculable constants depending on M,F . However, we in fact need to
look at ρr instead of the normal distance. In order to do this we need to look at

P(Z1
t − Z2

t ∈ B(0, δ), Z1
t , Z

2
t ∈ B(0, R′)),

for some R′. We have that

P(Z1
t − Z2

t ∈ B(0, δ), Z1
t , Z

2
t ∈ B(0, R′)) =P(Z1

t , Z
2
t ∈ B(0, R′))

− P(Z1
t − Z2

t /∈ B(0, δ), Z1
t , Z

1
t ∈ B(0, R′))
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So we bound

P(Z1
t − Z2

t /∈ B(0, δ), Z1
t , Z

2
t ∈ B(0, R′)) ≤P(Z1

t , Z
2
t ∈ B(0, R))−

P(E(Z1
t − Z2

t ) +G1
t −G2

t ∈ B(0, δ/2), Z1
t , Z

2
t ∈ B(0, R′))

+ P(‖E1
t ‖ ≤ δ/4) + P(‖E2

t ‖ ≤ δ/4)

Furthermore we have

P(E(Z1
t − Z2

t ) +G1
t −G2

t ∈ B(0, δ/2), Z1
t , Z

2
t ∈ B(0, R′)) ≥ Cδ2R′

1

t2
exp

(
−K/t3

)
for explicitly computable constants C and K. So in the same way we have for all t, R,R′ there is
a(t, R,R′, δ) > 0 such that

P(Z1
t − Z2

t ∈ B(0, δ), Z1
t , Z

2
t ∈ B(0, R′) | Z1

0 , Z
2
0 ∈ B(0, R)) ≥ a(t, R,R′, δ).

Then we can find an R′′ such that on any optimal path between two points in B(0, R′) we have
L(γ(t)) ≤ R′′ so this implies that for x, y ∈ B(0, R′) we have

ρr(x, y) = inf
γ

∫ t

0

L(γ(t))γ̇(t)dt ≤ inf
γ
R′′
∫ t

0

γ̇(t)dt = R′′|x− y|.

We mean that the two distances are equivalent on compact sets. So if |x− y| ≤ δ/R′′ we have that
ρr(x, y) ≤ δ therefore

P(ρr(Z
1
t , Z

2
t ) ≤ δ | Z1

0 , Z
2
0 ∈ B(0, R)) ≥ a(t, R,R′, δ/R′′).

Now for this section we look again at how this shows contraction in the theorem of Hairer and
Mattingly. We have that

Proposition 4.3. If ρ(z1, z2) ≤ 4C1 and ρr(z1, z2) > δ then there exists γ such that

W1,d(Ptδz1 ,Ptδz2) ≤ γd(z1, z2).

Proof. Suppose that we have that ρ(z1, z2)r ≥ δ and ρ(z1, z2) ≤ 4C1 then we have that z1, z2 are
contained in some ball. There is some R such that for |z| ≥ R we have

L∗(z)r ≤ δ

8C1
L∗(z).

Then as we discussed there is some R′ such that∫ R′

R

L∗(r)dr ≥ 8C1.

Therefore if |z1|, |z2| ≥ R′ and ρ(z1, z2) ≤ 4C1 then if γ is a path such that∫ 1

0

L(γ(s))|γ̇(s)|ds ≤ ρ(z1, z2) + ε
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then γ must not pass through B(0, R). and for such a path

ρr(z1, z2) ≤
∫ 1

0

Lr(γ(s))| ˙γ(s)|ds ≤ δ

8C1

∫ 1

0

L(γ(s))|γ̇(s)|ds ≤ δ

8C1
(4C1 + ε).

Since ε is arbitrary this shows that ρ(z1, z2) ≤ δ. Therefore if ρ(z1, z2) ≤ 4C1 and ρr(z1, z2) ≥ δ

we have that z1, z2 ∈ B(0, R′). Then for this R′ we can apply lemma 4.5 to get that there is some
a such that if we make Z1, Z2 independent then we have

P(ρr(Z
1
t , Z

2
t ) ≤ δ/2 | Z1

0 , Z
2
0 ∈ B(0, R′)) ≥ a.

Using this we have for the independent coupling

E(d(Z1
t , Z

2
t )) ≤ 1

2
P(ρ(Z1

t , Z
2
t ) ≤ δ/2) + (1− P(ρ(Z1

t , Z
2
t ) ≤ δ/2)) + βE(ρ(Z1

t , Z
2
t ))

≤ (1− a/2) + β(E(ρ(0, Z1
t )) + E(ρ(0, Z1

t ))).

Now we can see that
E(ρ(0, Z1

t )) ≤ E(|Z1
t |L∗(Z1

t )) ≤ CLκ(z1) ≤ C∗

since z1 ∈ B(0, R′). So if we take β ≤ a/8C∗ then we have that

E(d(Z1
t , Z

2
t )) ≤ 1− a/4 ≤ (1− a/4)d(z1, z2).



Chapter 5

Hypocoercivity in Φ-entropy for the
linear relaxation Boltzmann equation

5.1 Introduction

In this chapter we constructively prove convergence to equilibrium for the linear relaxation Boltz-
mann equation on the torus in relative entropy. We also look at other entropy functionals, the
p-entropies. The equation is

∂tf + v · ∇xf = λΠ̃(f)− λf. (5.1)

Where f = f(t, x, v) : R+×Td×Rd → R and λ is a positive constant. We always consider f to be
a probability density so it is positive and of mass one, this is well known to be preserved by the
equation. The operator Π̃ is defined by

Π̃(f) =

(∫
Rd
f(t, x, u)du

)
(2π)−d/2 exp

(
−1

2
|v|2
)

=:

(∫
Rd
f(t, x, u)du

)
M(v).

The equilibrium state of this equation is µ(x, v) =M(v)× 1. We give two separate notations here
to emphasize when we consider it as a function of v alone or a function of x and v. We will always
work in terms of h = f/µ which satisfies,

∂th+ v · ∇xh = λΠh− λh, (5.2)

here we define Π by

Πh =

∫
Rd
h(t, x, u)M(u)du.

So the function Πh does not depend on v.

We want to study the convergence to equilibrium for solutions to this equations in relative
entropy, H, and Fisher information, I, of f to µ. Studying the relative entropy has been an impor-
tant way of showing convergence to equilibrium for kinetic equations since Boltzmann’s H-theorem
[23]. Fisher information was introduced into kinetic theory by McKean to study convergence to
equilibrium for a caricature of the Boltzmann equation [95]. These quantities are defined in terms

109
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of h = f/µ, and are

H(h) =

∫
Rd×Td

h log(h)dµ,

I(h) =

∫
Rd×Td

|∇h|2

h
dµ.

Villani and Desvillettes demonstrated convergence to equilibrium in weighted H1 for spatially
inhomogeneous kinetic equations including the Boltzmann equation in [46, 47], their techniques
were also applied to the linear Boltzmann equation in [33] where they show convergence faster than
any power of t. After this the theory of hypocoercivity was developed and the equation is shown to
converge to equilibrium in weighted L2 [77] by Hérau in order to demonstrate the applicability of
the tools used in [80]. Convergence in weighted H1 is also demonstrated in section 5.1 of [102] by
Neumann and Mouhot as a consequence of a more general theorem. The techniques used in both
these papers exploit commutator relations between the transport and collision part of the equation
using the tools of hypocoercivity also see [54, 80, 116, 76, 97, 50]. The paper [2], shows convergence
in Sobolev spaces with improved rates, and studies the convergence in relative entropy for models
with discrete velocities. The convergence demonstrated in all these papers is of the form

H(f(t)|µ) ≤ Ce−γtH(f(0)|µ),

where C and γ are explicit constants. If C = 1 the equation would be coercive in this norm. When
C > 1, we use the terminology introduced in [116] and say that it is hypocoercive. We can see
that our equation is hypocoercive not coercive as if it were coercive for all initial data that would
be equivalent to the inequality

d

dt
H(f(t)|µ) ≤ −γH(f(t)|µ).

If we call the left hand side of this inequality the functional −D(f(t)|µ) then having this inequality
for all initial data in some set A is equivalent to

D(f |µ) ≥ γH(f |µ) ∀f ∈ A.

We can check that this last inequality does not hold for the functionals we consider when f is in
local equilibrium (i.e. of the form ρ(x)M(v)). More precisely we can check that D(ρM|µ) = 0.

Entropic hypocoercivity was introduced by Villani in [116]. More recently entropic hypocoerciv-
ity and hypocoercivity in different Φ entropies have been studied for diffusion operators [12, 98, 11]
using Bakry-Emery type methods, in [19] for non-linear diffusions and in[7, 3] for linear or close to
linear operators to find optimal rates. Working in relative entropy allows us to show convergence
to equilibrium for a different class of initial data than if we were to use the results in Hilbert spaces.
Another important advantage of working in entropy and Fisher information is that these distances
behave well as the dimension of the space increases. The proofs also rely on logarithmic Sobolev
inequalities where the constants do not depend on dimension. In part 1 section 6 of [116], Villani
studies entropic hypocoercivity for derivative operators in a ‘A∗A + B’ form. As in the Hilbert
space theory this is done by constructing a ‘twisted norm’ which he then shows will converge to
equilibrium. Here the role of the ‘twisted norm’ is taken by a distorted Fisher information like
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term ∫
∇h · S∇h

h
dµ,

where S is a non-diagonal matrix. Crucially, as in many previous works we need to introduce a
term with mixed derivatives. This term allows us to use the transport part of the equation to
generate dissipation in the directions not dissipated by the collision operator.

The main purpose of this work is to demonstrate that entropic hypocoercivity can be proved
for an equation which is not in ‘A∗A+B’ form. The key difference between the proofs given here
and those of previous hypocoercivity results arises because we do not have a diffusion operator.
Therefore we cannot use the chain rule or understand the dissipation in terms of commutators or
compositions of first order derivatives as is done in the first section of [116]. We find that these
terms produce more extra terms which do not have an analogy in the Hilbert space case in the
proof of Theorem 1.1 in [102]. Therefore, we need to add an extra entropy term to the functional.
This term can be bounded above by H(f) so we can still state our results in terms of the entropy
and fisher information.

Theorem 5.1. If f is a solution to (5.1) with initial data f0 such that∫
Rd×Td

|∇x,vh0|2

h0
dµ <∞, f0 ∈W 1,1(µ),

then there exist constants Λ > 0 and α > 0, β > 0, which we can calculate explicitly depending on
λ but not on the dimension such that

I(ht) + βH(Πht) ≤ exp (−Λt) (αI(h0) + 2βH(Πh0)) .

This implies that for some γ,
H(ht) ≤ exp (−Λt) (γI(h0)) .

We then look at the convergence to equilibrium in p-entropy, that is for p ∈ (1, 2] we consider
entropies of the form

H(p)(h) =

∫
Rd×Td

hp − h
p(p− 1)

dµ,

where h is as in the first section, and here the analogy of Fisher information is

I(p)(h) =

∫
Rd×Td

hp−2|∇x,vh|2dµ.

These quantities interpolate between the Hilbert space case p = 2, and the Boltzmann entropy case,
p ∼ 1. They are used in [8, 20] to study Fokker-Planck equations and convergence to equilibrium.
Here we have inequalities due to Beckner in [13] which play the same role as the logarithmic Sobolev
inequality does in showing hypocoercivity in Boltzmann entropy. They are of the form∫

Rd×Td

hp − h
p(p− 1)

dµ ≤ C
∫
Rd×Td

hp−2|∇x,vh|2dµ.

These can be shown by interpolating between Poincaré and logarithmic Sobolev inequality [5].
Using this we can prove a similar theorem in the p-entropy case.
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Theorem 5.2. If f is a solution to (5.1) with initial data f0 such that∫
Rd×Td

hp−2
0 |∇h0|2dµ <∞, f0 ∈W 1,1(µ),

then there exist constants Λ > 0 and α > 0, β > 0, which we can calculate explicitly depending on
λ, p, d such that

I(p)(ht) + βH(p)(Πht) ≤ exp (−Λt)
(
αI(p)(h0) + βH(p)(Πh0)

)
.

This implies that for some γ,

H(p)(ht) ≤ exp (−Λt)
(
γI(p)
µ (h0)

)
.

Remark. For the case p = 2 we recover the result of section 5.1 in [102].

Lastly, we briefly look at the kinetic Fokker-Planck equation and its convergence to equilibrium
in p-entropy. It is already known that this is hypocoercive in H1 and relative entropy see for
example [80, 116]. We show here that, as in the linear relaxation Boltzmann case, we can extend
this result to the p-entropies. The proof in p-entropies is very similar to that of these other results.
The equation in terms of h is

∂th+ v · ∇xh = (∇v + v) · ∇vh. (5.3)

Theorem 5.3. If f is a solution to (5.3), with finite initial Fisher information, then there exists
an explicit constant k such that

I(p)(ht) +
27

2
H(p)(ht) ≤ e−kt

(
3I(p)(h0) +

27

2
H(p)(h0)

)
.

This implies for some C we have,

H(p)(ht) ≤ e−kt(CI(p)(ht)).

Here k does depend on p.

Remark. We now briefly consider the case where x ∈ Rd and the transport operator also involves a
confining potential term. For the kinetic Fokker-Planck equation Villani shows convergence in H1

and Boltzmann entropy in the first section of [116]. In [98] Monmarché proves a general theorem
which shows that hypocoercivity holds for the kinetic Fokker-Planck equation with confining potential
in a class of Φ entropies which include the p-entropies. The proof here is different in strategy to
the one given here or in [116] but very similar calculations to the ones used here in the proof
of Theorem 3 can show hypocoercivity for the kinetic Fokker-Planck in the confining potential
case. The situation is different for the linear relaxation Boltzmann equation. It is shown to be
hypocoercive in L2 in [77, 50]. To show hypocoercivity for the linear relaxation Boltzmann equation
with a confining potential in Φ-entropies would involve a very different strategy to our proofs in this
equation. However, in the near to quadratic case it is possible to exploit additional cancellations
happening in the operator to show convergence as is shown in [99].
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5.2 Boltzmann entropy

Throughout the main parts of this paper we work with an h which is bounded above and below
by constants and has bounded derivatives of all orders. In this set of possible h, all the integration
by parts and differentiating through the integral are justified. In the appendix we show that these
properties are propagated by the equation and that we can extend the result to a wider set using
a density argument.

We now outline our strategy for the proof. Our goal is to get constructive rates of convergence
to equilibrium by closing a Grönwall estimate on a functional that we construct. This functional
is composed from the components of Fisher information and an entropy term. We introduce the
components of Fisher information.

IX :=IX(h) =

∫
Rd×Td

|∇xh|2

h
dµ,

IV :=IV (h) =

∫
Rd×Td

|∇vh|2

h
dµ,

IM :=IM (h) =

∫
Rd×Td

∇xh · ∇vh
h

dµ.

We note here that IM does not have a sign. We also introduce a projected entropy which we use
in our functional,

HΠ(h) =

∫
Td

Πh log(Πh)dx.

We have several more terms which only appear in the intermediate steps of the proof,

IΠX/X :=

∫
Rd×Td

|∇x(Πh/h)|2

(Πh/h)
hdµ,

IΠX :=

∫
Rd×Td

|∇x(Πh)|2

(Πh)
dµ,

IΠV/V :=

∫
Rd×Td

|∇v(Πh/h)|2

(Πh/h)
hdµ =

∫
Rd×Td

|∇vh|2

h

Πh

h
dµ.

We prove later in this section that IX − IΠX ≥ 0.

By differentiating along the flow of the equation we show that

d

dt
IX ≤− λIΠX/X − λ

(
IX − IΠX

)
, (5.4)

d

dt
IM ≤− IX − λIM +

λ

ε
IΠX/X + λεIΠV/V , (5.5)

d

dt
IV ≤− 2IM − λIV − λIΠV/V . (5.6)

We begin by constructing a functional of the form

J = A1I
X +A2I

M +A3I
V ,

with A1A3 −A2
2/4 ≥ 0. This inequality means that J is equivalent to the Fisher information I.
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We now give a strategy for choosing the Ai. Whenever A1A3 − A2
2/4 ≥ 0 we can choose ε so

that the sum of terms in the derivative of J which involve IΠX/X , IΠV/V will be negative. We need
that A2 is non-zero since inequality 5.5 provides the negative IX which we want in the derivative.
The most natural next step would be to use the Cauchy-Schwarz inequality to control IM by IX ,
and IV . However, we can check that the quantity of IM is too large for this to be possible. We
need to utilise inequality 5.4. We do this by showing that

−IM ≤ η

2
IV +

1

2η

(
IX − IΠX

)
− d

dt
HΠ. (5.7)

This is the key new element in our proof.

By adding a quantity of HΠ to the functional and using inequality 5.7, we can now control IM

by IV and IX − IΠX . Since the inequality 5.4 doesn’t produce bad terms we are free to add as
much IX to the functional as we need. Therefore, by adding a large amount of HΠ and IX to our
functional we can cancel out the positive IX − IΠX . Therefore we can make η small. This means
the sum of the positive IV from controlling IM and the negative IV from inequality 5.6 will sum
to a negative amount of IV . We recall that we also have some negative IX for inequality 5.5. So
we have,

d

dt
(J +A4HΠ) ≤ −C(IX + IV ).

We then use the equivalence between J and I and the logarithmic Sobolev inequality to get

d

dt
(J +A4HΠ) ≤ −C(J +A4HΠ).

So we can close a Gronwall estimate and then use the equivalence between J and I again to
translate this to an inequality on I.

Before beginning the main proof it is helpful to separate out some lemmas. The first result
relates the quantities involving only Πh to quantities coming from the full Fisher information. For
this we define the local average speed U(x), of a solution to (5.1) by

U(x) :=

∫
Rd
vh(v, x)M(v)dv =

∫
Rd
vf(v, x)dv.

Lemma 5.1. For any h we have that

IΠX(h) =

∫
Rd×Td

|∇xΠh|2

Πh
dµ ≤

∫
Rd×Td

|∇xh|2

h
dµ.

This implies that for all h there exists a constant C such that

HΠ(h) =

∫
Td

Πh log(Πh)dx ≤ C
∫
Td×Rd

|∇xh|2

h
dµ.

Finally, if h is a solution to (5.2) then

d

dt
HΠ(h(t)) = −

∫
Td

log(Πh)∇x · U(x)dx.



5.2. BOLTZMANN ENTROPY 115

Proof. We can see that the first inequality will follow if

|∇xΠh|2

Πh
≤ Π

(
|∇xh|2

h

)
.

Since Π is integrating against a probability measure we would like to use Jensen’s inequality.
Instead of looking at h we consider H = (∇xh, h) and the function φ(x, y) = |x|2/y which is
convex so we have from Jensen’s inequality that,

φ(ΠH) ≤ Π(φ(H)),

which implies our desired result since Π commutes with ∇x. (Here Π acts component wise on
vectors).

The second inequality follows since the log-sobolev inequality on the torus with uniform measure
says that ∫

Td
Πh log(Πh)dx ≤ C

∫
Td

|∇xΠh|2

Πh
dx.

We then use the first inequality to get the final result.

For the last part,

∂tΠh =−
∫
Rd
v · ∇xhM(v)dv + λΠ(Πh)− λΠh

=−∇x · U(x).

Since, ∫
Td
∂tΠhdx = ∂t

∫
Rd×Td

hdµ = 0,

we have that
∂tHΠ(h) =

∫
Td

(∂tΠh) log(Πh)dx = −
∫
Td

log(Πh)∇x · U(x)dx.

We now prove inequalities 5.4, 5.5, 5.6. First, for simplicity, we introduce some notation. Let
T = −v · ∇x and L = λ(Π − I) then let (d/dt)O represent the derivative along the semi-group
generated by any given operator O.

Lemma 5.2. We have the following inequalities or inequalities on the derivatives of the components
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of Fisher information,

−
(

d

dt

)
T

IX =0,

−
(

d

dt

)
T

IV =2IM ,

−
(

d

dt

)
T

IM =IX ,(
d

dt

)
L

IV =− λ
(
IV + IΠV/V

)
,(

d

dt

)
L

IX ≤− λIΠX/X − λ
(
IX − IΠX

)
,(

d

dt

)
L

IM ≤λεIΠV/V +
λ

ε
IΠX/X − λIM .

Here ε is any strictly positive number.

Remark. The first three equalities simply follow in a very similar way to [102]. When we are
differentiating under the flow of L we begin to see terms appearing which correspond to the relative
Fisher information of h to Πh or vice versa. These terms are similar in spirit to terms like
‖∇x(h−Πh)‖ appearing in [102].

Proof. The first three equalities are straightforward calculations. They are also given in a different
form in [116].

−
(

d

dt

)
T

∫
Rd×Td

|∇xh|2

h
dµ =2

∫
Rd×Td

∇xv · ∇xh · ∇xh
h

dµ−
∫
Rd×Td

|∇xh|2

h

v · ∇xh
h

dµ

=

∫
Rd×Td

v · ∇x
(
|∇xh|2

h

)
dµ

=0.

−
(

d

dt

)
T

∫
Rd×Td

|∇vh|2

h
dµ =2

∫
Rd×Td

∇vv · ∇xh · ∇vh
h

dµ−
∫
Rd×Td

|∇vh|2

h

v · ∇xh
h

dµ

=2

∫
Rd×Td

∇xh · ∇vh
h

dµ+

∫
Rd×Td

v · ∇x
(
|∇vh|2

h

)
dµ

=2

∫
Rd×Td

∇xh · ∇vh
h

dµ.

−
(

d

dt

)
T

∫
Rd×Td

∇xh · ∇vh
h

dµ =

∫
Rd×Td

∇vv · ∇xh · ∇xh
h

dµ+

∫
Rd×Td

∇vh · ∇xv · ∇xh
h

dµ

−
∫
Rd×Td

∇xh · ∇vh
h

v · ∇xh
h

dµ

=

∫
Rd×Td

v · ∇x
(
∇xh · ∇vh

h

)
dµ+

∫
Rd×Td

|∇xh|2

h
dµ

=

∫
Rd×Td

|∇xh|2

h
dµ.
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For the last three terms we have that,(
d

dt

)
L

∫
Rd×Td

|∇vh|2

h
dµ =2λ

∫
Rd×Td

∇v(Π− I)h · ∇vh
h

dµ− λ
∫
Rd×Td

|∇vh|2

h

(Π− I)h

h
dµ

=− λ
∫
Rd×Td

|∇vh|2

h

(I + Π)h

h
dµ.

where this last result follows from the fact that ∇vΠh = 0.(
d

dt

)
L

∫
Rd×Td

|∇xh|2

h
dµ =2λ

∫
Rd×Td

∇x(Π− I)h · ∇xh
h

dµ− λ
∫
Rd×Td

|∇xh|2

h

(Π− I)h

h
dµ

=− λ
∫
Rd×Td

|∇xh|2

h
dµ+ 2λ

∫
Rd×Td

∇xΠh · ∇xh
h

dµ

− λ
∫
Rd×Td

|∇xh|2

h

Πh

h
dµ

=λ

∫
Rd×Td

|∇xΠh|2

Πh
dµ− λ

∫
Rd×Td

|∇xh|2

h
dµ

− λ
∫
Rd×Td

∣∣∣∣∇xΠh

Πh
− ∇xh

h

∣∣∣∣2 Πhdµ

=λ

(∫
Rd×Td

|∇xΠh|2

Πh
dµ−

∫
Rd×Td

|∇xh|2

h
dµ

)
− λ

∫
Rd×Td

|∇x(Πh/h)|2

(Πh/h)
hdµ

≤− λ
∫
Rd×Td

|∇x(Πh/h)|2

(Πh/h)
hdµ.

Here the last inequality follows from the first inequality in Lemma 5.1.(
d

dt

)
L

∫
Rd×Td

∇xh · ∇vh
h

dµ =λ

∫
Rd×Td

∇x(Π− I)h · ∇vh
h

dµ+ λ

∫
Rd×Td

∇xh · ∇v(Π− I)h

h
dµ

− λ
∫
Rd×Td

∇xh · ∇vh
h

(Π− I)h

h
dµ

=− λ
∫
Rd×Td

∇xh · ∇vh
h

(I + Π)h

h
dµ+ λ

∫
Rd×Td

∇xΠh · ∇vh
h

dµ

=λ

∫
Rd×Td

∇x
(

Πh

h

)
· ∇vhdµ− λ

∫
Rd×Td

∇xh · ∇vh
h

dµ

≤λε
∫
Rd×Td

|∇vh|2

h

Πh

h
dµ+ λ

1

ε

∫
Rd×Td

|∇x(Πh/h)|2

(Πh/h)
hdµ

− λ
∫
Rd×Td

∇xh · ∇vh
h

dµ.

We can check that all the terms appearing on the right hand side can be bounded in terms of∫
Rd×Td

(
1 +

Πh

h

)
|∇h|2

h
dµ,

which justifies switching integration and differentiation.
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It might appear at this point that if we were to split IM ≤ IX/2η + ηIV /2 then we would be
able to close a Gronwall type estimate but we cannot close an estimate doing this. We can see
that unlike in [102] we have not bounded (d/dt)LI

M by terms only involving v-derivatives and
the distance between h and Πh with x-derivatives, this produces some extra mixed term in the
derivative which has to be dealt with.

Lemma 5.3. For any positive η we have

−IM ≤ η

2
IV +

1

2η
(IX − IΠX)− d

dt
HΠ.

Proof. First we notice that∫
Rd×Td

h

Πh

|∇x(Πh/h)|2

(Πh/h)
hdµ =

∫
Rd×Td

|∇x log(Πh/h)|2hdµ

=

∫
Rd×Td

|∇x log(Πh)−∇x log h|2hdµ

=

∫
Rd×Td

|∇xΠh|2

(Πh)2
hdµ

− 2

∫
Rd×Td

∇xΠh · ∇xh
Πh

dµ

+

∫
Rd×Td

|∇xh|2

h
dµ

=

∫
Rd×Td

|∇xh|2

h
dµ−

∫
Rd×Td

|∇xΠh|2

Πh
dµ,

where here we push the integration in v onto either h or ∇xh and use the fact that Π commutes
with ∇x. Now we can see that

−
∫
Rd×Td

∇xh · ∇vh
h

dµ =−
∫
Rd×Td

∇x log h · ∇vhdµ+

∫
Rd×Td

∇x log(Πh) · ∇vhdµ

−
∫
Rd×Td

∇x log(Πh) · ∇vhdµ

=

∫
Rd×Td

∇x log(Πh/h) · ∇vhdµ−
∫
Td
∇x log(Πh) ·

∫
Rd
∇vhM(v)dvdx

=

∫
Rd×Td

∇x(Πh/h) · ∇vh
(Πh/h)

dµ+

∫
Td

log(Πh)∇x ·
(∫

Rd
hvM(v)dv

)
dx

≤η
2

∫
Rd×Td

|∇vh|2

h
dµ+

1

2η

∫
Rd×Td

h

Πh

|∇x(Πh/h)|2

(Πh/h)
hdµ

− d

dt

(∫
Td

Πh log(Πh)dx

)
=
η

2
IV +

1

2η

(
IX − IΠX

)
− d

dt
HΠ.

We are now able to prove the main theorem

Proof of Theorem 5.1. We look at

J(h) = A1I
X +A2I

M +A3I
V .
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Using Lemma 5.2 we can see that

d

dt
Jµ(f) =− λ

(
A1 −

A2

ε

)
IΠX/X

−A1λ(IX − IΠX)

− λ (A3 − εA2) IΠV/V

−A2I
X − λA3I

V − (λA2 + 2A3)IM .

We therefore have for any ε > 0, η > 0 and α ∈ (0, 1),

d

dt
(J + (λA2 + 2A3)HΠ) ≤−

(
λA1 −

λA2

ε

)
IΠX/X

−
(
λA1 −

1

2η
(λA2 + 2A3)

)
(IX − IΠX)

− λ(A3 − εA2)IΠV/V

−
(
λA3 −

η

2
(λA2 + 2A3)

)
IV

− αA2I
X

− (1− α)A2I
X

≤−
(
λA1 −

λA2

ε

)
IΠX/X

−
(
λA1 −

1

2η
(λA2 + 2A3)

)
(IX − IΠX)

− λ(A3 − εA2)IΠV/V

−
(
λA3 −

η

2
(λA2 + 2A3)

)
IV

− αA2I
X

− (1− α)A2CHΠ.

We set,

A1 =
1

η

(
λ+

2

λ

)
A3,

A2 =λA3,

ε =
1

λ
,

α =
1

2
.

Since if we send η to 0 then A1 will become much larger than A2 and A3 we can choose η sufficiently
small so that

1

2
A3I(h) ≤ J(h) ≤ 2A1I(h).
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Then the inequalities we have to satisfy become

1

η

(
λ2 + 2

)
A3 − λ3A3 ≥0,

1

2η

(
λ+

2

λ

)
A3 ≥0,(

λ− η

2

(
λ2 + 2

))
A3 ≥

λ

2
A3.

So we can choose η sufficiently small so that all these inequalities are satisfied and we get that

d

dt

(
J(h) + (λ2 + 2)A3HΠ

)
≤ −λA3

2
I(h)− λA3

2
CHΠ.

Which becomes,

d

dt

(
J(h) + (λ2 + 2)A3HΠ

)
≤ − λ2η

4(λ2 + 2)
J(h)− Cλ

2(λ2 + 2)

(
(λ2 + 2)A3HΠ

)
.

Since, η is small (or if not we can make η even smaller), and HΠ ≥ 0, the first term will dominate
so we get

d

dt

(
J(h) + (λ2 + 2)A3HΠ

)
≤ − λ2η

4(λ2 + 2)

(
J(h) + (λ2 + 2)A3HΠ

)
.

So if we now convert to I we have

I(h) + 2(λ2 + 2)HΠ ≤
2

A3

(
J(h) + (λ2 + 2)A3HΠ

)
≤ 2

A3
exp

(
− λ2ηt

4(λ2 + 2)

)(
J(h0) + (λ2 + 2)A3HΠ(h0)

)
≤ exp

(
− λ2ηt

4(λ2 + 2)

)(
4

ηλ
(λ2 + 2)I(h0) + 2(λ2 + 2)HΠ(h0)

)
Since H(h) ≤ I(h), and HΠ(h) ≤ H(h) we can write this as in the theorem.

5.3 p-entropies

In this section we will prove Theorem 5.2. Here for compactness of notation we suppress the p in
the notation for the entropy functional. The proof is similar to the proof of Theorem 5.1 except
that it is useful to understand the dissipation of IX in a different way. Also, a number of extra
terms appear which can be shown to have a good sign and are therefore easy to deal with. We
can justify switching the order of integration and differentiation as in section 2. We recall that
p ∈ (1, 2]. We again make some notation

IX =

∫
Rd×Td

h2−p|∇xh|2dµ, IV =

∫
Rd×Td

h2−p|∇vh|2dµ, IM =

∫
Rd×Td

h2−p∇xh · ∇vhdµ,

and
IΠX

∫
Rd×Td

Πh2−p|∇xΠh|2dµ.

Our first lemma is Lemma 5.1 in the p-entropy setting.
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Lemma 5.4. For any h we have that

IΠ(h) =

∫
Rd×Td

(Πh)p−2|∇xΠh|2dµ ≤
∫
Rd×Td

hp−2|∇xh|2dµ.

This implies that for all h there exists a constant C such that

HΠ(h) =

∫
Td

(Πh)p −Πh

p(p− 1)
dx ≤ B

∫
Td×Rd

hp−2|∇xh|2dµ.

Finally, if h is a solution to (5.2) then

d

dt
HΠ(h(t)) = −

∫
Td

(Πh)p−1

p− 1
∇x · U(x)dx.

Proof. The proof is similar to that of Lemma 5.1 we first note that |x|2yp−2 is a convex function
of x and y for x ∈ Rd, y ∈ (0,∞). As the sum of convex functions is a convex function, we can
particularize to the case d = 1 where the Hessian matrix is(

2yp−2 2(p− 2)xyp−3

2(p− 2)xyp−3 x2(p− 2)(p− 3)yp−4

)
.

The trace is 2yp−2 +x2(p−2)(p−3)yp−4 ≥ 0, and the determinant is −2(p−2)(p−1)y(2p−6)x2 ≥ 0.
So the Hessian is positive definite. Therefore by the same argument as before we have that

IΠ(h) ≤ IX(h).

Now by the Beckner inequalities for the torus, [5], we have that

HΠ(h) ≤ CIΠ(h),

from which the second inequality follows. Lastly we know that

∂tΠh = −∇x · U(x),

so
d

dt
HΠ(h) = −

∫
Td

(Πh)p−1

p− 1
∇x · U(x)dx.

We can also prove a Lemma which is very similar to Lemma 5.3

Lemma 5.5. For any positive η we have

−IM ≤ η

2
IV +

1

2η
(IX − IΠX)− d

dt
HΠ.
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Proof.

−
∫
Td×Rd

hp−2∇xh · ∇vhdµ =−
∫
Td×Rd

∇x
(
hp−1

p− 1

)
· ∇vhdµ

=−
∫
Td×Rd

∇x
(
hp−1 − (Πh)p−1

p− 1

)
· ∇vhdµ

−
∫
Td×Rd

∇x
(

(Πh)p−1

p− 1

)
· ∇vhdµ

≤η
2
IV +

1

2η

∫ ∣∣∣∇x ( (Πh)p−1−hp−1

p−1

)∣∣∣2
hp−2

dµ

+

∫
Td×Rd

(Πh)p−1

p− 1
∇x · U(x)dµ

≤η
2
IV +

1

2η
(IX − IΠX)− d

dt
HΠ.

Here for the last inequality we expand out and use that Π∇xh = ∇xΠh and Π(h2−p) ≤ (Πh)2−p

since x2−p is a concave function.∫ ∣∣∣∣∇x( (Πh)p−1 − hp−1

p− 1

)∣∣∣∣2 h2−p =∫
Rd×Td

(
|∇xΠh|2Πh2p−4h2−p − 2∇xΠh · ∇xh(Πh)p−2 + |∇xh|2hp−2

)
dµ

≤
∫
Rd×Td

(
|∇xΠh|2(Πh)p−2 − 2|∇xΠh|2(Πh)p−2 + |∇xh|2hp−2

)
dµ

≤IX − IΠX .

Before we continue the proof as before we need to be able to deal with another term which
appears for the p-entropies but not elsewhere.

Lemma 5.6. The function Fp(r) defined for r ∈ [0,∞) by

Fp(r) = p− 1 + (2− p)r − r2−p,

is positive when r is positive. Note that Fp is zero whenever p is 1 or 2.

Proof. Fp(1) = 0, F ′p(1) = 0, F ′′p (r) = −(2 − p)(1 − p)r−p ≥ 0. Therefore, by Taylor’s theorem we
have Fp(r) = −(2− p)(1− p)s−p(r − 1)2 for some s between r and 1. So Fp(r) ≥ 0.

We now calculate the derivatives of different components of I(f). In order that we can write
things compactly we introduce the following extra notation

IX,F =

∫
Td×Rd

hp−2|∇xh|2Fp(Πh/h)dµ, IV,F =

∫
Td×Rd

hp−2|∇vh|2Fp(Πh/h)dµ,

IVΠ =

∫
Td×Rd

hp−2|∇vh|2(Πh/h)2−pdµ.
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Lemma 5.7.

−
(

d

dt

)
T

IX =0,

−
(

d

dt

)
T

IV =2IM ,

−
(

d

dt

)
T

IM =IX ,(
d

dt

)
L

IV =− λ
(
IV,F + IV,Π + IV

)
,(

d

dt

)
L

IX ≤− λD − λIX,F ,(
d

dt

)
L

IM ≤λε1
2
IV,Π +

λ

ε1
D +

λ

2ε2
IX,F +

λε2
2
IV,F − λIM .

Here ε1, ε2 are any strictly positive real numbers and,

D =

∫
Td×Rd

∣∣∣∇x ( (Πh)p−1−hp−1

p−1

)∣∣∣2
(Πh)p−2

dµ.

Proof. The calculation for the first three terms is identical so we do not repeat it. We first expand
out D to make it easier to recognise in the calculations later.

D =

∫
Td×Rd

∣∣(Πh)p−2∇xΠh− hp−2∇xh
∣∣2 (Πh)2−pdµ

=

∫
Td×Rd

(
(Πh)p−2|∇xΠh|2 − 2hp−2∇xΠh · ∇xh+ (Πh)2−ph2p−4|∇xh|2

)
dµ

Now we can proceed to calculate the derivatives.(
d

dt

)
L

IX =− pλ
∫
Td×Rd

hp−2|∇xh|2dµ+ 2λ

∫
Td×Rd

hp−2∇xh · ∇xΠhdµ

− (2− p)λ
∫
Td×Rd

hp−2 Πh

h
|∇xh|2dµ

=− λ
∫
Td×Rd

(Πh)2−p|∇xh|2h2p−4dµ+ 2λ

∫
Td×Rd

hp−2∇xh · ∇xΠhdµ

− λ
∫
Td×Rd

(Πh)p−2|∇xΠh|2dµ

− pλ
∫
Td×Rd

hp−2|∇xh|2dµ− (2− p)λ
∫
Td×Rd

hp−2 Πh

h
|∇xh|2dµ

+ λ

∫
Td×Rd

(Πh)2−p|∇xh|2h2p−4dµ+ λ

∫
Td×Rd

(Πh)p−2|∇xΠh|2dµ

≤− λD + (1− p)λ
∫
Td×Rd

hp−2|∇xh|2dµ− (2− p)λ
∫
Td×Rd

Πh

h
hp−2|∇xh|2dµ

+ λ

∫
Td×Rd

(
Πh

h

)2−p

hp−2|∇xh|2dµ− λ
(
IX − IΠX

)
=− λD − λ

∫
Td×Rd

F

(
Πh

h

)
hp−2|∇xh|2dµ− λ

(
IX − IΠX

)
.



124 CHAPTER 5. HYPOCOERCIVITY IN Φ-ENTROPY

Using very similar calculations for the v-derivatives we have,(
d

dt

)
L

IV =− pλ
∫
Td×Rd

hp−2|∇vh|2dµ− (2− p)
∫
Td×Rd

hp−2 Πh

h
|∇vh|2dµ

=− λ
∫
Td×Rd

(
Πh

h

)2−p

hp−2|∇vh|2dµ− λ
∫
Td×Rd

F

(
Πh

h

)
hp−2|∇vh|2dµ

− λ
∫
Td×Rd

hp−2|∇vh|2dµ.

(
d

dt

)
L

IX,V =− pλ
∫
Td×Rd

hp−2∇xh · ∇vhdµ− (2− p)λ
∫
Td×Rd

Πh

h
hp−2∇xh · ∇vhdµ

+ λ

∫
Td×Rd

hp−2∇xΠh · ∇vhdµ

=− pλ
∫
Td×Rd

hp−2∇xh · ∇vhdµ− (2− p)λ
∫
Td×Rd

Πh

h
hp−2∇xh · ∇vhdµ

+ λ

∫
Td×Rd

(
Πh

h

)2−p

∇x
(

(Πh)p−1

p− 1

)
· ∇vhdµ

=λ

∫
Td×Rd

(
Πh

h

)2−p(
∇x
(

(Πh)p−1

p− 1
− hp−1

p− 1

))
· ∇vhdµ

+ λ

∫
Td×Rd

hp−2∇xh · ∇vhF
(

Πh

h

)
dµ

− λ
∫
Td×Rd

hp−2∇xh · ∇vhdµ

≤ λ

2ε1
D +

λε1
2

∫
Td×Rd

(
Πh

h

)2−p

hp−2|∇vh|2dµ

+
λ

2ε2

∫
Td×Rd

hp−2|∇xh|2F
(

Πh

h

)
dµ+

λε2
2

∫
Td×Rd

hp−2|∇vh|2F
(

Πh

h

)
dµ

− λ
∫
Td×Rd

hp−2∇x · ∇vhdµ.

Proof of Theorem 5.2. As before, first we consider an entropy of the form

J(h) = A1I
X +A2I

M +A3I
V .

So by Lemma 5.7 we have

d

dt
J ≤− λ

(
A1 −

A2

2ε1

)
D − λA1

(
IX − IΠX

)
− λ

(
A1 −

A2

2ε2

)
IX,F −A2IX

− λ
(
A3 −

A2ε1
2

)
IV,Π − λ

(
A3 −

A2ε2
2

)
IV,F

− λA3I
V − (λA2 + 2A3) IM .
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We can now use Lemma 5.5 to see

d

dt
J =− λ

(
A1 −

A2

2ε1
+

)
D −

(
λA1 −

λA2 + 2A3

2η

)(
IX − IΠX

)
− λ

(
A1 −

A2

2ε2

)
IX,F −A2IX

− λ
(
A3 −

A2ε1
2

)
IV,Π − λ

(
A3 −

A2ε2
2

)
IV,F

−
(
λA3 −

η

2
(λA2 + 2A3)

)
IV − (λA2 + 2A3)

d

dt
HΠ.

We set A2 = λA3, ε = 2/λ,A1 = (λ+ 2/λ)/η to get

d

dt
J ≤− λ

(
1

η
(λ+ 2/λ)− λ2/4

)
A3D

− 1

2η
(λ2 + 2)A3(IX − IΠX)

− λ
(

1

η
(λ+ 2/λ)− λ2/4

)
A3I

X,F

− λA3I
X

−
(
λ− η

2
(λ2 + 2)

)
A3I

V

− (λ2 + 2)A3
d

dt
HΠ.

Making η small enough we have

d

dt
(J + (λ2 + 2)A3HΠ) ≤− λ

2
A3(IX + IV )− λ

2
A3CHΠ.

As before we have for η sufficiently small

1

2
A3I ≤ J ≤ 2A1I.

Hence, for η possibly even smaller

d

dt
(J + (λ2 + 2)A3HΠ) ≤− λ2η

2(λ2 + 2)
J − λC

λ2 + 2

(
(λ2 + 2)A3HΠ

)
≤− λ2η

2(λ2 + 2)

(
J + (λ2 + 2)A3HΠ

)
.

Phrasing this in terms of I we get

I(t) + 2(λ2 + 2)HΠ(t) ≤ exp

(
− λ2η

2(λ2 + 2)
t

)(
4(λ2 + 2)

λη
I + 2(λ2 + 2)HΠ

)
.

5.4 The kinetic Fokker-Planck Equation

Here we consider the case where L = (∇v − v) · ∇v, and still in the case where I,H represent the
p-entropies. The proof is similar to the proof in section one of [116]. We use a different formalism
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to make the connection with the earlier sections. Again new terms appear which vanish in the case
where p = 1, 2.

The strategy of the proof is much simpler than in sections 2 and 3. This is because when we
differentiate the entropy we get −IV . This means our proof does not need to involve HΠ as we
can control IM terms in the derivative of J by splitting it as a very large amount of IV and a very
small amount of IX . Then we can cancel out the IV terms by adding a large amount of H to our
functional.

First we calculate the dissipation of the various parts as before.

Lemma 5.8. (
d

dt

)
L

IX = −2IV,X − (2− p)(p− 1)I2,X,V ,

(
d

dt

)
L

IM ≤ IV,V + IV,X +
(2− p)(1− p)

2

(
I2,V + I2,V,X

)
+

1

2
IX +

1

2
IV ,

(
d

dt

)
L

IV = −2IV,V − (2− p)(p− 1)I2,V + 2IV .

Where,

IV,X =

∫
Td×Rd

∣∣∣∣∇v∇x( hp−1

p− 1

)∣∣∣∣2 h2−pdµ, I2,X,V =

∫
Td×Rd

|∇vh|2|∇xh|2hp−4dµ,

IV,V =

∫
Td×Rd

∣∣∣∣∇v∇v ( hp−1

p− 1

)∣∣∣∣2 h2−pdµ, I2,V =

∫
Td×Rd

|∇vh|4hp−4dµ.

Proof. First we calculate that∣∣∣∣∇c∇c′ ( hp−1

p− 1

)∣∣∣∣2 h2−p =
∣∣∇c (hp−2∇c′h

)∣∣2 h2−p

=
∣∣hp−2∇c∇c′h+ (p− 2)hp−3∇ch∇c′h

∣∣2 h2−p

=hp−2|∇c∇c′h|2 + 2(p− 2)hp−3∇ch · ∇c∇c′h∇c′h

+ (p− 2)2hp−4|∇ch|2|∇c′h|2.

where c, c′ are equal to either x or v. A similar argument shows

h2−p∇v∇v
(
hp−1

p− 1

)
: ∇v∇x

(
hp−1

p− 1

)
=hp−2∇v∇v : ∇v∇xh

+ (p− 2)hp−3∇vh · ∇x∇vh∇vh

+ (p− 2)hp−3∇xh · ∇v∇vh∇vh

+ (p− 2)2hp−4|∇vh|2∇vh · ∇xh.
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Now we can calculate we have(
d

dt

)
L

IX =(p− 2)

∫
Td×Rd

hp−3(∇v + v) · ∇vh|∇xh|2dµ

+ 2

∫
Td×Rd

hp−2∇x((∇v + v) · ∇v) · ∇xhdµ

=− (p− 2)

∫
Td×Rd

∇v
(
hp−3|∇xh|2

)
· ∇vhdµ

− 2

∫
Td×Rd

∇v
(
hp−2∇xh

)
: ∇x∇vhdµ

=− (p− 2)(p− 3)

∫
Td×Rd

hp−4|∇xh|2|∇vh|2dµ

− 2(p− 2)

∫
Td×Rd

hp−3∇xh · ∇x∇vh∇vhdµ

− 2(p− 2)

∫
Td×Rd

hp−3∇x · ∇x∇vh∇vhdµ− 2

∫
Td×Rd

hp−2|∇x∇vh|2dµ

=− 2

∫
Td×Rd

∣∣∣∣∇v∇x( hp−1

p− 1

)∣∣∣∣2 h2−pdµ− (2− p)(1− p)
∫
Td×Rd

hp−4|∇vh|2|∇xh|2dµ.

The calculation for IV is similar except an additional term appears as the commutator of ∂vi + vi

and ∂vi is non-zero meaning we gain a +2IV when doing integration by parts on the second term
in the first line. Again for IM the calculations are similar, this time we only gain +IM due to the
non-zero commutator.

Remark. Here again we can see additional terms appearing for p ∈ (1, 2) which are not present
at the limit cases similarly to the linear relaxation case.

We are now able to prove Theorem 5.3.

Proof. Since,
d

dt

∫
hp − h
p(p− 1)

dµ = −IV ,

we have a lot more flexibility in our proof as we can add H rather that HΠ to the entropy functional
and thereby make the coefficient of IV in the derivative of J as large as we want. So we calculate
as before

d

dt
Jµ ≤− 2A1I

V,X − (2− p)(p− 1)A1I
2,X,V

−A2I
X +A2I

V,V +A2I
V,X +

(2− p)(p− 1)

2
A2(I2,V + I2,X,V ) +

A2

2
IX +

A2

2
IV

A3

ε
IX +A3εI

V − 2A3I
V,V − (2− p)(p− 1)A3I

2,V + 2A3I
V

= (−2A1 +A2) IV,X

+ (2− p)(p− 1)

(
−A1 +

A2

2

)
I2,X,V + (A2 − 2A3) IV,V

+ (2− p)(p− 1)

(
A2

2
−A3

)
I2,V +

(
−A2

2
+
A3

ε

)
IX

+

(
A2

2
+A3ε+ 2A3

)
IV .
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Set ε = 4A3 and A2 = 1 then we have

d

dt
Jµ ≤ (−2A1 + 1) IV,X + (2− p)(p− 1)

(
−A1 +

1

2

)
I2,X,V

+ (1− 2A3) IV,V + (2− p)(p− 1)

(
1

2
−A3

)
I2,V

− 1

4
IX +

(
1

2
+ 4A2

3 + 2A3

)
IV .

So now set A1 = A3 = 1 to get

d

dt
Jµ ≤ −

1

4
IX +

13

2
IV .

So we have from Beckner’s inequalities that

H ≤ CI

for some constant C and we have
1

2
I ≤ J ≤ 3

2
I.

Therefore,

d

dt

(
J +

27

4
H

)
≤− 1

4
I

≤− 1

8
I − 1

8C
H

≤− 1

12
J − 1

8C
H

≤−min{ 1

12
,

4

216C
}
(
J +

27

4
H

)
= −k

(
J +

27

4
H

)
.

Recasting this in terms of I we get

I(t) +
27

2
H(t) ≤ e−kt

(
3I(0) +

27

2
H(0)

)
.

5.5 Quadratic and close to quadratic confinement

This section reviews the work [99] (Monmarché 2017) which proves results based on the calculations
in the beginning of this section. We also present it here for completeness, to make some comparisons
with Fokker-Planck case and as it motivates the next section which uses similar ideas for the true
linear Boltzmann equation. In [7, 3] they study hypocoercivity in φ-entropy for kinetic Fokker-
Planck equations with linear forces. i.e. equations of the form

∂tf + v · ∇xf − βx · ∇v = ∇v · (∇vf + vf) .
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The goal of these papers is to get sharp rates for the convergence to equilibrium. To do this
they take a strategy similar to that of Villani in [116], however they exploit nicely cancellations
appearing between the different terms which allow them to close a Grönwall estimate purely on
Fisher information. We show these calculations for the above equation in the case of relative
entropy rather than general φ-entropies. We now write T to be the operator involving confining
as well as transport, v · ∇x − βx · ∇v.(

d

dt

)
T

IX =2βIM ,(
d

dt

)
T

IV =− 2IM ,(
d

dt

)
T

IM =− IX + βIV ,(
d

dt

)
L

IX =− 2IXV ,(
d

dt

)
L

IV =− 2IV V − 2IV(
d

dt

)
L

IM =2
√
IXV IV V − IM .

As before we construct a functional of the form

J = AIX + 2A2I
M +A3I

V .

We choose A2
2 < A1A3 so this means that as before the higher order terms will always give a

negative contribution. Therefore,

d

dt
J ≤ −2A2I

X + (2βA1 − 2A3 − 2A2)IM + (2βA2 − 2A3)IV .

Therefore we can set A1 = 1/β + 2, A2 = 1, A3 = 2β to have

d

dt
J ≤ −2IX − 2βIV .

We can then close a Grönwall estimate as before. We can choose the coefficients in J better in
order to get sharp rates but the key idea is that we can choose A1 to cancel the rest of the mixed
term appearing. We can also extend this to the case where the confining is force is close to being
linear, in the sense that

U(x) =
β

2
|x|2 + Ũ(x)

where HessŨ ≤ Cβ . It was shown in [99] that the same strategy works to get convergence for the
linear relaxation Boltzmann case. Here suppose we have the equation

∂tf + v · ∇xf − βx · ∇vf = λ(Π̃f − f).
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Then we can work in the same way to get(
d

dt

)
T

IX =2βIM ,(
d

dt

)
T

IV =− 2IM ,(
d

dt

)
T

IM =− IX + βIV ,(
d

dt

)
L

IX =− λIΠX/X − λ(IX − IΠX),(
d

dt

)
L

IV =− λIΠV/V − λIV(
d

dt

)
L

IM =λ
√
IΠX/XIΠV/V − λIM .

This gives us that

d

dt
J ≤ −2A2I

X + (2βA1 − 2A3 − 2λA2)IM + (2βA2 − λA3)IV .

So we can set A1 = 2/λ+ λ/β,A2 = 1, A3 = 2β to get

d

dt
J ≤ −2IX − 2βIV .

So again we can close a Grönwall estimate as before. This can also be extended to close to
quadratic confinement when the perturbation away from the quadratic term must be bounded by
some constant that depends on both β and λ. The precise statement is given in [99].

It might be interesting at this point to look at how the effect of linear forces looks on the level
of SDEs. In the kinetic Fokker-Planck case our equation is the Kolmogorov backwards equation of
the SDE

dXt =Vtdt

dVt =− βXtdt− Vtdt+
√

2dWt.

Suppose that we generate two coupled solutions to this SDE with the same driving Brownian
motion then we have

d(X1
t −X2

t ) =(V 1
t − V 2

t )dt,

d(V 1
t − V 2

t ) =− β(X1
t −X2

t )dt− (V 1
t − V 2

t )dt.

So the difference between these two solutions is deterministic given the initial data and this ODE
has an explicit solution from which we can see that

(X1
t −X2

t )2 + (V 1
t − V 2

t )2 ≤ Aβe−cβt
(
(X1

0 −X2
0 )2 + (V 1

0 − V 2
0 )2
)
.
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Where cβ is the spectral gap of the matrix(
0 1

−β −1

)
.

This gives an easy proof of a spectral gap in Wasserstein which captures the rates given in [7, 98]
which are there shown to be optimal in relative entropy. This idea can also be extended to the
case of close to linear forces as is done in [22]. This is a very different situation to the torus where
constructing a coupling to show convergence in Wasserstein is more complicated as is shown in
this thesis and in [48]. This is also the case when the confining potential is not a perturbation of
quadratic [52]. The couplings used in both these papers really need to use the mixing generated
by the Brownian motion to show that the solutions will get close together.

For the linear relaxation Boltzmann equation the stochastic interpretation is less useful. We
can write SDEs in integrated form by defining P to be a Poisson point process on [0,∞)×Rd with
intensity measure given by the tensor product of Lebesgue in time and Gaussian in velocity space.
Then we have

Xt =X0 +

∫ t

0

Vsds,

Vt =V0 −
∫ t

0

βXsds+

∫ t

0

∫
Rd

(w − Vs−)P (ds,dw).

Now if we couple two processes to have the same law we do not get something deterministic

X1
t −X2

t =X1
0 −X2

0 +

∫ t

0

(V 1
s − V 2

s )ds

V 1
t − V 2

t =V 1
0 − V 1

0 −
∫ t

0

β(X1
s −X2

s )ds−
∫ t

0

∫
Rd

(V 1
s− − V

2
s−)P (ds,dw).

So the dynamics of this are that the difference between the solutions follows a deterministic path
keeping (V 1

t −V 2
t )2 +β(X1

t −X2
t )2 constant then at random times the velocity part jumps to zero.

It seems very likely that this coupling should give exponential convergence to equilibrium but it is
not immediate as it was for the kinetic Fokker-Planck equation.

5.6 The linear Boltzmann equation

We now look at the linear Boltzmann equation for Maxwell molecules with cut off. This equation
is written as

∂tf + v · ∇xf −∇xU · ∇vf =

∫
Rd×Sd−1

B

(
v − v∗
|v − v∗|

· σ
)
f(v′)M(v′∗)dv∗dσ − f. (5.8)

Where
v′ =

v + v∗
2

+
|v − v∗|

2
σ = v − (v − v∗) · σ̃σ̃,

v′∗ =
v + v∗

2
=
|v − v∗|

2
σ.
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Where
σ̃ =

k − σ√
2(1− k · σ)

, k =
v − v∗
|v − v∗|

.

We note at this point that ∣∣∣∣∂σ̃∂σ
∣∣∣∣ = −4(1− k · σ)3.

We also have that ∫
B(k · σ)dσ = 1.

Now we look at h = f/M we get that

∂th+ v · ∇xh =

∫
Rd×Sd−1

B(k · σ)h(v′)M(v∗)dv∗dσ − h.

Our goal is to see if we can prove similar theorems as for the linear relaxation Boltzmann equation
for this more complicated operator. Unfortunately, I don’t know how to replicate this proof on the
torus using techniques similar to the first chapter. However, we can show a result for a close to
quadratic confining potential as was discussed in the last section. In order to do this we need work
out how to control the dissipation of Fisher information type terms along the flow of the collision
operator. We do this using techniques from [115]. In order to do this we need to change the way
we write the twisted Fisher information terms. We define

Ia,b =

∫
|a∇xh+ b∇vh|2

h
dµ.

We will write our twisted Fisher information as

J = Ia,b + I0,c,

and choose a, b, c.

Lemma 5.9. We can calculate that(
d

dt

)
L

Ia,b ≤ −
∫
Rd×Rd

(
b2

2

|∇vh|2

h
+ ab

∇xh · ∇vh
h

)
dµ.

Proof. We define

Q+(h) =

∫
Rd×Sd−1

B(k · σ)h(v′)M(v∗)dv∗dσ,

and we want to bounds ∫
Rd×Td

|(a∇x + b∇v)Q+(h)|2

Q+(h)
dµ.

Now we follow very closely [115] but adapting it to our case where we work in terms of h not
f and use derivatives in x as well as v. We define as in [115]

Mσkx = (σ⊥ · x)k⊥, Pσkx = (σ · x)k +Mσkx.

We use the following lemmas.
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Lemma 5.10 (Lemma 1 from [115]).

∇v(B(k · σ)) =
1

|v − v∗|
B′(k · σ)Πk⊥σ.

Lemma 5.11 (Lemma 2 in [115]).∫
Sd−1

dσB′(k · σ)F (σ)Πk⊥σ =

∫
Sd−1

dσB(k · σ)Mσk∇σF (σ).

Lemma 5.12 (Lemma 4 in [115]).
‖Pσkx‖ ≤ ‖x‖.

With these we can compute that

(a∇x + b∇v)Q+(h) =

∫
Rd×Sd−1

(
B(k · σ)(a∇xh(v′) + b

1

2
(I + σkT )(∇vh)(v′))

+
b

|v − v∗|
B′(k · σ)Πk⊥σh(v′)

)
M(v∗)

=

∫
Rd×Sd−1

B(k · σ)

(
(a∇xh(v′) + b

1

2
(I + σkT )(∇vh)(v′))

+
b

|v − v∗|
Mσk∇σ(h(v′))

)
M(v∗)

=

∫
Rd×Sd−1

B(k · σ)

(
a∇xh(v′) + b

1

2
(I + σkT +Mσk)(∇vh)(v′)

)
M(v∗)

=

∫
Rd×Sd−1

B(k · σ)

(
a∇xh(v′) + b

1

2
(I + Pσk)(∇vh)(v′)

)
M(v∗).

Squaring this and using Jensen’s inequality gives and that |Pσkx|2 ≤ |x|2

|(a∇x + b∇v)Q+h|2(v)

(Q+(h))2
≤ 1

Q+(h)

∫
Rd×Sd−1

B(k · σ)M(v∗)

(
a2 |∇xh(v′)|2

h(v′)
+
b2

2

|(∇vh)(v′)|2

h(v′)

+ab
∇xh(v′) · (∇vh)(v′)

h(v′)
+

(
a∇xh(v′) + b

2∇vh(v′)
)
· Pσk∇vh(v′)

h(v′)

)
.

Integrating and switching the primes to not primes we get that∫
Rd×Td

|(a∇x + b∇v)Q+(h)|2

Q+(h)
dµ ≤

∫
Rd×Td×Rd×Sd−1

B(k · σ)M(v∗)

(
a2 |∇xh(v)|2

h(v)
+
b2

2

|∇vh(v)|2

h(v)

ab
∇xh(v) · ∇vh(v)

h(v)
+

(a∇xh(v) + b
2∇vh(v)) · Pkσ∇vh(v)

h(v)

)
.

Integrating in σ gets rid of the last term as Pkσ is an odd function of σ and B is even. So finally
we get that∫

Rd×Td

|(a∇x + b∇v)Q+(h)|2

Q+(h)
dµ ≤

∫
Rd×Td

(
a2 |∇xh|2

h
+
b2

2

|∇vh|2

h
+ ab

∇xh · ∇vh
h

)
dµ.

So now we know that Ia,b is a convex function of h. Therefore if L = Q+ − I we have that

Ia,b(e
tLh) = Ia,b ((1− t)h+ t (Q+(h) + o(t))) ≤ (1− t)Ia,b(h) + tIa,b(Q+(h) + o(t)).
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Consequently,
d

dt
Ia,b(e

tLh) ≤ Ia,b(Q+(h))− Ia,b(h).

Using our expression for Ia,b(Q+(h)) this gives

d

dt
Ia,b(e

tLh) ≤ −
∫
Rd×Td

(
b2

2

|∇vh|2

h
+ ab

∇xh · ∇vh
h

)
dµ

Now we want to look at the case that

U(x) = β|x|2 + Ũ(x).

Let us define T1 = −v · ∇x + βx · ∇v and T2 = ∇xŨ · ∇v.

Lemma 5.13. Suppose that ‖HessŨ‖ ≤ δ then we have that(
d

dt

)
T1

Ia,b =− 2ab

∫
|∇xh|2

h
dµ+ 2(a2β − b2)

∫
∇xh · ∇vh

h
dµ+ 2abβ

∫
|∇vh|2

h
dµ,(

d

dt

)
T2

Ia,b ≤2a2δ

(∫
|∇xh|2

h
dµ

∫
|∇vh|2

h
dµ

)1/2

+ 2abδ

∫
|∇vh|2

h
dµ.

Proof. The first line follows simply from the chain rule as before. For the second we just use the
chain rule and then split the mixed term using Cauchy-Schwartz.

Theorem 5.4. Suppose f(t) is a solution to the linear Boltzmann equation as shown above (5.8)
with

U(x) = β
|x|2

2
+ Ṽ (x)

where HessŨ ≤ δ with δ satisfying

(9 + 8(β + δ))δ < 4β.

Then we have that
Iµ(f(t)) ≤ Ce−λtIµ(f(0)).

Proof. We define J = Ia,b + Ic then using Lemmas 5.13 and 5.9 we have that

d

dt
J ≤ −2abIX + (2abβ + 2abδ − b2/2− c2/2)IV + (−ab+ 2(a2β − b2 − c2))IM + 2a2δ

√
IXIV .

We can choose a, b, c such that

ab = 1, b2 + c2 = 4(β + δ) + 4, a2 =
2β

(9 + 8(β + δ))
.

This gives
d

dt
J ≤ −2(IX + IV ) +

9 + 8(β + δ)

β

√
IXIV .
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Then provided that δ is small in terms of β as required above we have that

d

dt
J ≤ −2λJ.

We do not keep track of the constants but they can be made explicit. Since J is equivalent to
Iµ(f) and we get exponential convergence for J :

Iµ(f(t)) ≤ Ce−λtIµ(f(0)).

5.7 Proofs that the results extend beyond smooth functions

We show for h, being bounded above and below and having bounded derivatives of all orders is
propagated by the equation (this is similar to what is shown in the appendix of [33]). In this set
we can do all the calculations given in the main part of the paper. We then show for h ∈W 1,1(µ)

with finite Fisher information then we can make a density argument to show that the result still
holds in this case.

Lemma 5.14. The equation preserves bounded derivatives of all orders.

Proof. We rewrite the equation for h in a mild formulation as follows

eλth(t, x, v) = h(0, x− vt, v) + λ

∫ t

0

eλs
∫
h(s, x− v(t− s), u)M(u)duds.

This leads to the following inequality

eλt‖Dα
xh(t)‖∞ ≤ ‖Dα

xh(0)‖+ λ

∫ t

0

eλs‖Dα
xh(s)‖∞ds.

Therefore by Grönwall’s inequality we have that

‖Dα
xh(t)‖∞ ≤ ‖Dα

xh(0)‖∞.

We also from this mild formulation that any mixed derivative can be written in terms of x derivative
and derivatives of the initial data. Therefore, the derivatives will remain in L∞ for all time.

Lemma 5.15. The equation preserves positivity and constants are a steady state of the equation
therefore being bounded above and below is preserved.

Proof. We can show that

∂t
(
eλth(t, x+ vt, v)

)
=

∫
λeλth(t, x+ vt, u)M(u)du.

Therefore if eλth(t, x + vt, v) is positive for all x and v then so is its derivative. Therefore it will
remain positive for all time.

It is easy to check that constants are a steady state so if h(0)−c is positive then since positivity
is preserved so is h(t)− c and similarly if C − h(0) is positive then so is C − h(t).
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Lemma 5.16. Suppose that we have h(0) is in W 1,1(µ) with bounded Fisher information, and
also suppose we have a sequence hn(0) which has all our good properties and converges to h(0) in
L1(µ) with

H(hn(t)) ≤ Ae−ΛtI(hn(0)),

for every n then we have
H(h(t)) ≤ Ae−ΛtI(h(0)).

Proof. Convergence in L1 implies that hn tends to h a.e. along a subsequence. Also, suppose that
h1 and h2 are two solutions to the equation then

sup
s≤t
‖h1(s)− h2(s)‖L1(µ) ≤ e−λt‖h1(0)− h2(0)‖L1(µ) + sup

s≤t
‖h1(s)− h2(s)‖L1(µ)(1− e−λt).

Therefore,
sup
s≤t
‖h1(s)− h2(s)‖L1(µ) ≤ ‖h1(0)− h2(0)‖L1(µ),

hence hn(t) tends to h(t) in L1 therefore hn(t) also converges to h(t) almost everywhere along a
subsequence.

Then since hn log(hn)− hn + 1 ≥ 0 by Fatou’s lemma we have∫
(h(t, x, v) log(h(t, x, v))−h(t, x, v)+1)dµ ≤ lim inf

n

∫
(hn(t, x, v) log(hn(t, x, v))−hn(t, x, v)+1)dµ.

Therefore, if we have h a solution to the equation with initial data h(0) as defined above we have
that

H(h(t)) ≤ lim inf
n

Ae−ΛtI(hn(0)).

So to prove our theorem holds in this larger set it remains to show that we can find a sequence
hn(0) converging to h(0) in L1(µ) where for every n hn(0) is positive, integrates to 1 against µ, is
bounded below and has derivatives bounded of all orders which also satisfies

lim inf
n

I(hn(0)) ≤ I(h(0)).

To do this we make a very standard mollifier argument. Let χ be a smooth function on R+

with χ(x) = 1 for x < 1 and χ(x) = 0 for x > 2 and |χ′(x)|2/χ(x) integrable. Then define
χR(x, v) = χ(‖v‖/R). Also let φ be a molifier integrating to one and compactly supported in
B(0, 1) then set φε(x, v) = ε−2dφ((x, v)/ε). Take some h in W 1,1(µ) with finite Fisher information.
Let hR = hχR, then set hε,R = φε ? hR and then hη,ε,R = (hε,R + η)/(‖hε,R‖1 + η). So hη,ε,R is
bounded below and has derivatives bounded of all orders and fairly clearly converges to h in L1(µ).

So first we try and get rid of η since ∇hη,ε,R = ∇hε,R/(‖hε,R‖1 + η) we get that

|∇hη,ε,R|2

hη,ε,R
increases to

|∇hε,R|2

hε,R
.

Therefore, by monotone convergence,

lim
η→0

I(hη,ε,R) = I(hε,R).

Now we work on ε, we have that ∇hε,R = φε ? ∇hR. We can now make a similar argument
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based on Jensen’s inequality and the fact that |x|2/y is convex to get that

|∇hε,R|2

hε,R
≤ φε ?

(
|∇hR|2

hR

)
.

Since, the mollification of an L1 function converges in L1 to that function we get that

lim
ε→0

I(hε,R) ≤ I(hR).

Now we work on R, we note that

|∇hR|2

hR
= χR

|∇h|2

h
+

2

R
χ′(‖v‖/R)

v

‖v‖
· ∇h+ h

1

R2

(χ′(‖v‖/R))2

χ(‖v‖/R
.

Since, h,∇h, |∇h|2/h are all in L1(µ) we can see that

lim
R→∞

I(hR) = I(h).

5.8 General Entropies

In fact the proofs given above work for a more general class of entropies, Φ-entropies defined by

HΦ =

∫
Rd×Td

Φ(h)dµ

IΦ =

∫
Rd×Td

Φ′′(h)|∇h|2dµ.

We work with Φ a positive function such that Φ(1) = 0,Φ′′(t) > 0 ∀t, 1/Φ′′(t) a concave function
and Φ(t)Φ′′(t) > 2Φ′(t)2 ∀t. We use a new method of differentiating the entropies which allows us
to extend the calculations to a more general class of Φ-entropy.

Let us define the entropy

JΦ
µ (h) =

∫
Rd×Td

Φ′′(h)
(
a|∇xh|2 + 2b∇xh · ∇vh+ c|∇vh|2

)
dµ.

Lemma 5.17. Let Φ satisfy for all t > 0:

• Φ(t) ≥ 0

• Φ′′(t) ≥ 0

• Φ′′(t)Φ(4)(t) > 2Φ(3)(t)2

Then if b2 ≤ ac then J is a convex functional.

Proof. Since b2 < ab we can write J as the sum of functionals like

J̃(h) =

∫
Rd×Td

Φ′′(h)|α∇xh+ β∇vh|2dµ.
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Then if the function
φ(x, y) = Φ′′(y)|x|2

the whole functional will be convex. This is because if φ is convex then

J̃(th+ (1− t)g) =

∫
Rd×Td

φ(t(α∇xh+ β∇vh) + (1− t)(α∇xg + β∇vg), th+ (1− t)g)dµ

≤
∫
Rd×Td

(tφ(α∇xh+ β∇vh, h) + (1− t)φ(α∇xg + β∇vg, g)) dµ

=tJ̃(h) + (1− t)J̃(g).

It remains to prove that φ is convex. We know that φ is the sum of functions φ̃ = Φ′′(y)x2 where
now x is one dimensional. So we only need to show that these are convex. The Hessian of φ̃ is(

2Φ′′(y) 2xΦ(3)(y)

2xΦ(3)(y) x2Φ(4)(y)

)
.

This has positive trace as both diagonal terms are positive by our assumptions. It also has deter-
minant 2x2Φ′′(x)Φ(4)(x)− 4x2Φ(3)(x)2 which is again positive due to he assumptions we made on
Φ therefore the Hessian is positive definite so φ̃ is convex.

Theorem 5.5. Let Φ satisfy the conditions in Lemma 5.17 and also let Φ be such that the uniform
measure on the torus satisfies a Φ Sobolev inequality and 1/Φ′′ is a concave function. If f is a
solution to (5.1) with initial data f0 such that∫

Rd×Td
Φ′′(h0)|∇x,vh0|2dµ <∞, f0 ∈W 1,1(µ),

then there exist constants Λ > 0 and A > 0 depending on λ and the constant in the Φ-Sobolev
inequality, such that

IΦ
µ (ht) +HΦ

µ (Πht) ≤ A exp (−Λt)
(
IΦ
µ (h0) +HΦ

µ (Πh0)
)
.

This implies that if the equilibrium measure satisfies a Φ-Sobolev inequality then for some γ,

H(ht) ≤ γ exp (−Λt) I(h0).

We can take
Λ = min

{
1,

C

4(1 + λ)

}
min{2, λ/2}

and
A = 4 max{2(1 + 1/λ)2, (1 + λ)}.

Here C is the constant in the Φ-Sobolev inequality for the uniform measure on the torus.

Remark. The conditions of Φ are satisfied when Φ is one of

Φ1(t) := t log(t)− t+ 1
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and
Φp(t) :=

1

p− 1
(tp − 1− p(t− 1)),

where p ∈ (1, 2] which are introduced below.

In order to prove our theorem we would like to study how a functional like J behaves under
the action of the collision part of the operator. We write L = λ(Π− I) and T = −v · ∇x and write
(d/dt)O to write the derivative along the flow of the operator O. We have that

Lemma 5.18. We can differentiate J along the flow of L to get that(
d

dt

)
L

JΦ
µ (h) ≤a

(∫
Rd×Td

Φ′′(Πh)|∇xΠh|2dµ−
∫
Rd×Td

Φ′(h)|∇xh|2dµ

)
− 2b

∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ− c
∫
Rd×Td

Φ′′(h)|∇vh|2dµ.

Proof. As JΦ
µ is convex we can see by Taylor expanding that

JΦ
µ (eLsh(t)) =JΦ

µ (h(t) + λs(Π− I)h(t) + o(s))

≤(1− λs)JΦ
µ (h(t) + o(s)) + λsJΦ

µ (Πh(t)).

Now we calculate that

JΦ
µ (Πh) =

∫
Rd×Td

Φ′′(Πh)
(
a|∇xΠh|2 + 2b∇xΠh · ∇vΠh+ c|∇vΠh|2

)
dµ

=a

∫
Rd×Td

Φ′′(Πh)|∇xΠh|2dµ.

This means that

JΦ
µ (esLh(t))− JΦ

µ (h(t)) ≤λsa
(∫

Rd×Td
Φ′′(Πh)|∇xΠh|2dµ−

∫
Rd×Td

Φ′′(h)|∇xh|2dµ

)
− λsb

∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ

− λsc
∫
Rd×Td

Φ′′(h)|∇vh|2dµ

+ JΦ
µ (h(t) + o(s))− JΦ

µ (h(t)).

Dividing by s and taking the limit as s→ 0 gives the result.

We now look at how J behaves under the flow of T .

Lemma 5.19. We can differentiate J along the flow of T to get that(
d

dt

)
T

JΦ
µ (h) =− 2b

∫
Rd×Td

Φ′′(h)|∇xh|2dµ− 2c

∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ.
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Proof. We apply the chain rule. We have(
d

dt

)
T

JΦ
µ (h) =− a

∫
Rd×Td

Φ′′′(h)(v · ∇xh)|∇xh|2dµ− 2a

∫
Rd×Td

Φ′′(h)∇x(v · ∇xh) · ∇xhdµ

− 2b

∫
Rd×Td

Φ′′′(h)(v · ∇xh)∇xh · ∇vhdµ− 2b

∫
Rd×Td

Φ′′(h)∇x(v · ∇xh) · ∇vhdµ

− 2b

∫
Rd×Td

Φ′′(h)∇xh · ∇v(v · ∇xh)dµ− c
∫
Rd×Td

Φ′′′(h)(v · ∇xh)|∇vh|2dµ

− 2c

∫
Rd×Td

Φ′′(h)∇v(v · ∇xh) · ∇vhdµ

=

∫
Rd×Td

v · ∇x
(
Φ′′(h)(a|∇xh|2 + 2b∇xh · ∇vh+ c|∇vh|2

)
dµ

− 2b

∫
Rd×Td

Φ′′(h)|∇xh|2dµ− 2c

∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ

=− 2b

∫
Rd×Td

Φ′′(h)|∇xh|2dµ− 2c

∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ.

Now we need to show our helpful lemma relating projected entropy to the mixed term. This
result relates the quantities involving only Πh to quantities coming from the full Fisher information.
For this we define the local average speed U(x), of a solution to (5.1) by

U(x) :=

∫
Rd
vh(v, x)M(v)dv =

∫
Rd
vf(v, x)dv.

Lemma 5.20. Suppose that the uniform measure on the torus satisfies a Φ-Sobolev inequality.
Then for any h we have that

IΠX(h) =

∫
Rd×Td

Φ′′(Πh)|∇xΠh|2dµ ≤
∫
Rd×Td

Φ′′(h)|∇xh|2dµ.

This implies that for all h there exists a constant C such that

HΠ(h) =

∫
Td

Φ(Πh)dx ≤ C
∫
Td×Rd

Φ′′(h)|∇xh|2dµ.

Finally, if h is a solution to (5.2) then

d

dt
HΠ(h(t)) = −

∫
Td

Φ′(Πh)∇x · U(x)dx.

Proof. We can see that the first inequality will follow from

Φ′′(Πh)|∇xΠh|2 ≤ Π
(
Φ′′(h)|∇xh|2

)
.

Since Π is integrating against a probability measure we would like to use Jensen’s inequality.
Instead of looking at h we consider H = (∇xh, h) we have already shown the function φ(x, y) =

Φ′′(y)|x|2 is convex so from Jensen’s inequality we have

φ(ΠH) ≤ Π(φ(H)).
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This implies our desired result since Π commutes with ∇x. (Here Π acts component wise on
vectors).

Now since we have a Φ-Sobolev inequality for the uniform measure on the torus we have∫
Td

Φ(Πh)dx ≤ C
∫
Td

Φ′′(Πh)|∇xΠh|2dx.

We can then conclude this part by the first inequality.

For the last part,

∂tΠh =−
∫
Rd
v∇xhM(v)dv + λΠ(Πh)− λΠh

=−∇x · U(x).

This implies that

∂tHΠ =

∫
Td

Φ′(Πh)∂tΠhdx = −
∫
Td

Φ′(Πh)∇x · U(x)dx.

We now need a lemma which will help us control the mixed derivative.

Lemma 5.21. If 1/Φ′′(t) is a concave function then for any positive η we have

−
∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ ≤η
2

∫
Rd×Td

Φ′′(h)|∇vh|2dµ

+
1

2η

(∫
Rd×Td

Φ′′(Πh)|∇xΠh|2dµ−
∫
Rd×Td

Φ′′(h)|∇xh|2dµ

)
− d

dt

∫
Rd×Td

Φ(Πh)dµ.

Proof. We need to rewrite the mixed term

−
∫
Rd×Td

Φ′′(h)∇xh · ∇vhdµ =−
∫
Rd×Td

∇xU ′(h) · ∇vhdµ

=−
∫
Rd×Td

(∇xU ′(h)−∇xU ′(Πh)) · ∇vhdµ

−
∫
Rd×Td

∇xU ′(Πh) · ∇vhdµ

≤η
2

∫
Rd×Td

Φ′′(h)|∇vh|2dµ

+
1

2η

∫
Rd×Td

|∇xU ′(h)−∇xU ′(Πh)|2

Φ′′(h)
dµ

−
∫
Rd×Td

Φ′(Πh)∇x · U(x)dµ.

We get the equality for the last term since

−
∫
∇vhM(v)dv = −

∫
vhM(v)dv = U(x).
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Then we can use the last part of lemma 5.20. Now we observe that∫
Rd×Td

|∇xΦ′(h)−∇xΦ′(Πh)|2

Φ′′(h)
dµ =

∫
Rd×Td

Φ′′(h)|∇xh|2dµ

− 2

∫
Rd×Td

Φ′′(Πh)∇xh · ∇xΠhdµ

+

∫
Rd×Td

Φ′′(Πh)2

Φ′′(h)
|∇xΠh|2dµ.

Now we see in the second term the only part which depends on v is the ∇xh so we can replace it
by ∇xΠh. The last term is positive and the only term which depends on v is 1/Φ′′(h) since we
have that 1/Φ′′(h) is a concave function we have

Π

(
1

Φ′′(h)

)
≤ 1

Φ′′(Πh)
.

Therefore we have that∫
Rd×Td

|∇xΦ′(h)−∇xΦ′(Πh)|2

Φ′′(h)
dµ ≤

∫
Rd×Td

Φ′′(h)|∇xh|2dµ−
∫
Rd×Td

Φ′′(Πh)|∇xΠh|2dµ.

This completes the proof of our lemma.

Now we can prove the main theorem

Proof of Theorem 5.5. The proof of this is now exactly the same as for Boltzmann entropy.



Chapter 6

Non-equilibrium steady states in
Kac’s model coupled to a thermostat

6.1 Introduction

Kac’s model was introduced by Mark Kac in 1956 [85]. It is a stochastic N-particle model designed
to mimic the dynamics of velocities of particles in a spatially homogeneous dilute gas. The dynamics
are those of N particles with one dimensional velocities, these particles interact in a Markov process,
where two particles “collide” resulting in a mixing of their velocities. The state of the system can
be described by the vector of velocities of each of the particles. Kac derived an equation on the law
of this system, this equation is usually called the Kac master equation and it is a linear integro-
differential equation. Kac showed that, in a certain sense, as the number of particles goes to infinity
the master equation tends to a Boltzmann like equation. This motivates estimates on the behaviour
of the marginals of solutions which are uniform in the number of particles, which could then be
used to show, or at least indicate, the same behaviour for the Boltzmann equation. In general
a direct study of the Boltzmann equation has proved more fruitful, however the master equation
has become an object of study in its own right. Convergence to equilibrium and spectral gaps
have been studied in Kac’s master equation in both entropy [37, 56] and L2 [83, 35]. This paper
studies convergence to equilibrium for solutions of the master equation coupled to a thermostat.
More precisely, we study the master equation for a system of N particles who, as well as “colliding”
with each other, can also “collide” with some infinite collection of other particles whose velocities
lie in some fixed distribution. When this fixed distribution is not a Maxwellian this allows for
the possibility of a non-equilibrium steady state. One possible more physical interpretation of this
would be if the system was interacting with two different heat baths at different temperatures.
Situations related to the existence and convergence to non-equilibrium steady states are studied
in [24, 1, 62, 55, 107] and in particular looking at exponential convergence in [108, 53].

This chapter is fundamentally motivated by two others the first [26] studies a similar model but
only in the situation where the thermal bath is a Maxwellian distribution. They show exponential
convergence to equilibrium in both entropy and L2. The second [39] studies the existence of non-
equilibrium steady states in various coupled equations arising from mathematical physics including
the non-linear spatially homogeneous Boltzmann equation. The paper [26] suggest as a further
question, what would happen in the case of a non-Maxwellian reservoir and we adapt the techniques
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of [39] to study this situation. We also include a study of how our estimates on the first marginal
behave as the number of particles N → ∞. This allows us, in some sense, to commute the long
time and N → ∞ limit. The N → ∞ limit is very similar to the equations studied in [39], they
study a coupled Boltzmann equation where in our case the limit would be a coupled Boltzmann-
Kac equation. The convergence, both in this paper and in the Maxwellian case studied in [26], is
primarily driven by the external force and not by the Kac mixing part. However, the effect of the
Kac part is more evident in this paper since it affects the form of the steady state. The work in
[26] has been extended in [113, 25] to study how their thermostatted model relates to a partially
thermostatted model and to the original Kac’s model. In this second paper they make use of the
GTW distance used in our work.

Following the strategy of [39] we study the problem of convergence to equilibrium in the
Gabetta-Toscani-Wennberg metric . This metric is introduced in [59] and is

dGTW,N (f, h) = sup
ξ∈RN ,ξ 6=0

|f̂(ξ)− ĥ(ξ)|
|ξ|2

,

where f̂ represents the Fourier transform of f . This is a metric on the space of probability measures
with finite second moment and the same finite first moment. We also study convergence in the
metric

dT1,N (f, h) = sup
ξ∈RN ,ξ 6=0

|f̂(ξ)− ĥ(ξ)|
|ξ|

,

This is a metric on the space of probability distributions with finite mean.
If we choose g to be the distribution of the particles in the thermostat and we pick g ∈ L2 such

that g is a probability distribution function with zero mean and finite second moment Kg then the
master equation for the system we study is

∂tFN = −λN(I −Q)[FN ]− µ
N∑
j=1

(I −Rj)[FN ] = L[FN ], (6.1)

where

Q[FN ] =
1(
N
2

) ∑
i<j

−
∫ 2π

0

FN (vi,j(θ))dθ,

and

Rj [FN ] =

∫
dw−
∫ 2π

0

dθg(w∗j )FN (vj(w, θ)).

In these

vij(θ) = (v1, . . . , vi cos(θ) + vj sin(θ), . . . ,−vi sin(θ) + vj cos(θ), . . . , vN ),

vj(w, θ) = (v1, . . . , vj cos(θ) + w sin(θ), . . . , vN ),

w∗j = w cos(θ)− vj sin(θ).

We show that

Theorem 6.1. A steady state for the master equation exists, is unique and has the same moments
up to order 2 as g⊗N .

Theorem 6.2. If we start with initial data F 0
N and H0

N which are probability distributions on RN
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with finite first and second moments then we have the following possible situations:
1. If F 0 and H0 have the same mean initially then the GTW distance between the solutions is

finite for all time and we get the exponential convergence:

dGTW,N (FN (t), HN (t)) ≤ e−µt/2dGTW,N (F 0
N , H

0
N ).

2. If F 0 and H0 have different means then we can construct an altered distance in which
the solutions still converge exponentially fast towards each other with rate µ/2. We also have the
estimate

dT1,N (FN (t), HN (t)) ≤ e−µt/4dT1,N (F 0
N , H

0
N ).

Remark. The altered distance involves adding a correction term and is defined in order to deal
with the fact that the GTW distance cannot deal with initial data with non-zero mean. If the two
solutions initially have the same mean this reduces to the GTW distance. We give the theorem in
both distances which shows we can either sacrifice something in the dependence on initial data or
in the rate. In the asymptotic study as N →∞ the two distances give the same dependence on N
through different mechanisms which suggests that the dependence on N occurring here is in some
way intrinsic to the problem.

Remark. Here µ/2 is the rate found in [26] to be the L2 spectral gap and the rate of convergence
to equilibrium in relative entropy.

Furthermore we wish to study how the N particle Kac’s model behaves as N → ∞ in the
manner originally proposed by Kac to link it with the spatially homogeneous Boltzmann equation.
In order to do this we study how the convergence results which we have obtained can be translated
into convergence results on the first marginal. We prove properties of the GTW metric which
are similar to subadditivity. If the initial data (FN (0))N≥2 forms a chaotic family then we can
control the convergence rate of the first marginals to equilibrium uniformly in N . We formally
define the notion of chaotic family later. Similarly to [26] we can prove propagation of chaos in
exactly the same manner as Kac in [85]. This means that the first marginals of the solution to the
master equation will limit to the solution of a Boltzmann like equation. This motivates our proof
of uniform in N convergence rates for the first marginal.

Theorem 6.3. Suppose that f and h are mean zero probability densities on R. If (FN (0, v))N≥2

and (HN (0, v))N≥2 are respectively f, h-chaotic families with respect to the Gabetta-Toscani-Wennberg
metric. If furthermore, the distance between FN (0, ·) and f⊗N , and between HN (0, ·) and h⊗N are
bounded uniformly in N , and FN , HN are the solution to the N -particle coupled Kac’s master
equation with this initial data then there exists a constant C independent of N such that

dGTW,1(Π1(FN ),Π1(HN )) ≤ (C + dGTW,1(f, h))e−
µ
2 t.

Here we say that a family is f -chaotic with respect to a family of metrics, (dk), if

dk(Πk[FN ], f⊗N )→ 0,

as N → 0 for every k. Here dk is a metric on Rk and Πk is a projection onto this subspace of RN .
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This is the standard notion of chaoticity which was introduced by Kac. Here we write it in terms
of a distance which metrises weak convergence of measures as it is more convenient for our set up.

Remark. Our theorem is really designed to work in the case of tensorised initial data and can be
extended slightly as we have shown. If we no longer wanted our estimates to depend on the first
marginal of the initial data we could replace the assumption of being close to tensorised initial data
with the weaker, but difficult to check, condition

dN (FN , HN ) ≤ C ∀N.

We also have two theorems in the case where we have non-zero and non equal mean for f and
h using each of the different metrics which we use to study this case.

Theorem 6.4. Let F 0
N and H0

N are respectively f and h chaotic families where the GTW distance
between F 0

N and f⊗N (resp. for H0
N and h⊗N ) is bounded uniformly in N . Furthermore if f and

h are probability densities with finite first and second moments, then we can construct an altered
distance d̃ so that

d̃ (Π1[FN ],Π1[HN ])) ≤ (C1 + (C2 + C3)
√
N + d̃(f, h))e−

µ
2 t.

Theorem 6.5. Suppose that f and h are probability densities on R with finite mean. If (FN (0, v))N≥2

and (HN (0, v))N≥2 are respectively f, h-chaotic families with respect to the T1 metric, and the T1

distance between FN (0, ·) and f⊗N , and between HN (0, ·) and h⊗N are bounded uniformly in N .
Furthermore, let FN , HN are the solution to the N -particle coupled Kac’s master equation with this
initial data, then there exists a C (the bound between the initial data and the tensorised form) of
N such that

dT1,1(Π1[FN ](t),Π1[HN ](t)) ≤ (C +
√
NdT1,1(f, h))e−µt/4.

We can also prove two similar theorems in Wasserstein distance on measures with finite second
moment. The Wasserstein distance is given by

W2,d(µ, ν) = inf
π

(∫
R2d

‖x− y‖2π(dx,dy)

)1/2

,

here π ranges over measures with marginals µ, ν.

Theorem 6.6. If µN and νN are two solutions to the master equation with finite second moments
then

W2(µN (t), νN (t)) ≤ e−µt/2W2(µN (0), νN (0)).

Theorem 6.7. Suppose that µN (t) and νN (t) are solutions to the master equation at time t, with
initial data µ⊗N0 and ν⊗N0 then we have that for any N ,

W2,1(Π1(µN (t)),Π1(νN (t))) ≤ e−µt/2W2,1(µ0, ν0).

Lastly we have a section where we look at Kac’s model without coupling to a thermostat.
Recently there has been a lot of work on Kac’s model in GTW -distance. We have the result in
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[112] which gives rates of convergence to equilibrium and shows that initially the decay in Kac’s
model in GTW can be very small. We also have the paper [25] which looks at Kac’s model when a
large number of particles are already in equilibrium and shows this can be uniformly approximated
by the system coupled to a Gaussian thermostat. Convergence with uniform rates in N has been
shown for the 1D Kac’s model in Wasserstein-4 by Maxime Hauray [75]. We show that this result
has an analogy in the GTW setting. The original goal of showing this was to see if reinterpreting
the results in this form might allow us to extend this result to non-uniform collision kernels or to
the 3D Kac’s model.

Definition 6.1. The seminorm ρ is given by

ρ(µ, ν) = sup
ξ 6=0,Σξ=0

|R(µ− ν)(ξ)|
|ξ|2

.

Here µ and ν are two probability measures on RN with the same second moment (energy) and finite
fourth order moments. Also, R is a linear functional from the space of finite signed measures with
finite second and fourth moments to the space of continuous functions which are differentiable up
to order two at zero. This is given by

R(µ)(ξ) =

∫
exp

(
−i
(
ξ1v

2
1 + · · ·+ ξNv

2
N

))
µ(dv).

Remark. This is in fact the GTW distance between the laws of the V 2
i .

Theorem 6.8. If µ(t) and ν(t) are two solutions to the Kac master equation that are supported
on the sphere

√
NSN−1 then we have the following convergence

ρ(µ(t), ν(t)) ≤ exp

(
−
(

1 +
1

2(N − 1)

)
t

)
ρ(µ, ν).

Further we have that ρ(µ, ν) = 0 iff the probability densities for the V 2
i corresponding to µ and ν

are the same. Further we show that solutions converge towards the set where the signs of the Vi
are uniformly distributed on {−1, 1} with bound 2Ne−t. I.e. if S is the set of measures µ such
that µ({sgn(Vi) = σi∀i}) = 1/(2N ) for every σi a vector of +1s and −1s, then

‖µ(t)− S‖TV ≤ 2Ne−t.

6.2 Behaviour of the Moments

In this section we prove some basic lemmas on how the moments of a solution behave. We recall
that Kg is the second moment of g our fixed distribution.

Lemma 6.1. The kinetic energy of a solution to the coupled master equation converges exponen-
tially fast to NKg with rate µ/2.

Proof. Let

K(t) =

∫
Rn
‖v‖2FN (v)dv.

Differentiating under the integral and recalling that radial functions are in the kernel of (I − Q)
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and that (I −Q) is self adjoint we get,

∂tK = µ

N∑
j=1

∫
RN

dv

∫
dw−
∫ 2π

0

dθg(w∗j )FN (vj(w, θ))‖v‖2 − µNK.

The Jacobian of the change of variables (vj(w, θ), w
∗
j )↔ (v, w) is 1. Also we have that ‖v‖2 +w2 =

‖vj(w, θ)‖2 + w∗2j . Using these we have

∂tK =µ

N∑
j=1

∫
RN

dv

∫
dw−
∫ 2π

0

dθg(w)FN (v)(‖v‖2 + w2)

− µ
N∑
j=1

∫
RN

dv

∫
dw−
∫ 2π

0

dθg(w)FN (v)w∗2j − µNK,

=µNK + µNKg − µNK

− µ
N∑
j=1

∫
RN

dv

∫
dw−
∫ 2π

0

dθg(w)FN (v)(w2 cos2 θ − 2wvj cos θ sin θ + v2
j sin2 θ),

=µNKg − µN
1

2
Kg −

µ

2
K,

=− µ

2
(K −NKg).

Lemma 6.2. The first moments of a solution to the coupled master equation converge to 0 with
rate greater than µ/2. Also the second order moments

dk,l =

∫
RN

FN (v)vkvldv,

(k 6= l) converge to 0 with rate greater than µ/2.

Proof. Let dk =
∫

dvFN (v)vk then we get the equation

∂tdk = −N(λ+ µ)dk + λ(N − 2)dk + µ(N − 1)dk,

= −(2λ+ µ)dk.

For the second set we can calculate

∂tdk,l =

(
−4λ− 2µ+

2λ

N − 1

)
dk,l

6.3 Existence, Uniqueness and Convergence to a Steady State

We wish to show existence and uniqueness of a steady state via the Banach fixed point theorem
in the space of probability measures with zero mean and finite second moment with the GTW
distance. In order to do this we write the steady state equation for FN as a fixed point theorem.



6.3. EXISTENCE, UNIQUENESS AND CONVERGENCE TO A STEADY STATE 149

We set γ = λ/(λ+ µ) to mirror the notation in [39].

FN = γQ[FN ] + (1− γ)
1

N

N∑
j=1

Rj [FN ] = Φ[FN ].

We want to show that Φ is a contraction in the Gabetta-Toscani-Wennberg metric. We first need
to show that Φ preserves the metric space that we are working in.

Lemma 6.3. Suppose FN has mean zero and finite second moment then Φ[FN ] has mean zero and
finite second moment.

Proof.∫
RN

Q[FN ]vkdv =
N − 2

N

∫
RN

FN (v)vkdv +
1(
N
2

) ∑
i<k

∫
RN
−
∫ 2π

0

FN (v)(vi cos θ + vk sin θ)dθdv

+
1(
N
2

) ∑
k<j

∫
RN
−
∫ 2π

0

FN (v)(−vk sin θ + vj cos θ)dθdv,

=
N − 2

N

∫
RN

FN (v)vkdv = 0.

It is immediate that
∫
Rj [FN ](v)vkdv = 0 for j 6= k. So it remains to look at∫

RN
dvRk[FN ](v)vk =

∫
RN

∫
dw−
∫ 2π

0

dθg(w∗j )FN (vj(w, θ)vk

= −
∫ 2π

0

dθ

∫
RN

∫
dvdwg(w)FN (v)(vk cos θ − w sin θ) = 0.

The fact that Φ[FN ] has finite second moments is clear since Q∗, R∗j acting on ‖v‖2 or similar
produces a finite linear combination of other functions to make second moments.

Further we would like to calculate how Q and Rj act in Fourier space.

Lemma 6.4.

Q̂[FN ](ξ) =
1(
N
2

) ∑
k<j

−
∫ 2π

0

F̂N (ξk,j)dθ,

where ξk,j = (ξ1, . . . , ξk cos θ + ξj sin θ, . . . ,−ξk sin θ + ξj cos θ, . . . , ξN ). Also,

R̂j [FN ](ξ) = −
∫ 2π

0

F̂N (ξj(θ))ĝ(ξj sin θ)dθ,

where ξj(θ) = (ξ1, . . . , ξj cos θ, . . . , ξN ).

Proof. ∫
RN

Q[FN ]e−iv·ξdv =
1(
N
2

) ∑
k<j

−
∫ 2π

0

dθ

∫
RN

dvFM (vkj(θ))e
−iv·ξ,

=
1(
N
2

) ∑
k<j

−
∫ 2π

0

dθ

∫
RN

dvFN (v)e−ivk,j(θ)·ξ,

= (2π)N/2
1(
N
2

) ∑
k<j

−
∫ 2π

0

dθF̂N (ξk,j).
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Where ξk,j = (ξ1, . . . , ξk cos θ + ξj sin θ, . . . ,−ξk sin θ + ξj cos θ, . . . , ξN ).∫
RN

dvRj [FN ]e−iv·ξ = −
∫ 2π

0

dθ

∫
dw

∫
RN

dvg(w∗j )FN (vj(w, θ))e
−iv·ξ

= −
∫ 2π

0

dθ

∫
dw

∫
RN

dvg(w)FN (v)e−ivj(w,θ)·ξ

= (2π)N/2−
∫ 2π

0

dθF̂N (ξj(θ))ĝ(ξj sin θ).

Where ξj(θ) = (ξ1, . . . , ξj cos θ, . . . , ξN ).

Now we can show existence and uniqueness.

Proof of Theorem 6.1. Calculating we have

Φ̂[FN ](ξ) =
1

(2π)N/2

γ ∫
RN

Q[FN ](v)e−v·ξdv + (1− γ)
1

N

N∑
j=1

∫
RN

Rj [FN ]e−iv·ξdv

 .

Using the results of 6.4 we have

Φ̂[FN ] = −
∫ 2π

0

dθ

 γ(
N
2

) ∑
i<j

F̂N (ξi,j(θ)) +
1− γ
N

N∑
j=1

F̂N (ξj(θ))ĝ(ξj sin θ)

 .

Therefore

sup
ξ 6=0

|Φ̂[FN ](ξ)− Φ̂[HN ](ξ)|
|ξ|2

≤ sup
ξ 6=0

|F̂N (ξ)− ĤN (ξ)|
|ξ|2

−
∫ 2π

0

dθ

 γ(
N
2

) ∑
i<j

|ξi,j(θ)|2

|ξ|2
+

1− γ
N

N∑
j=1

ĝ(ξj sin θ)
|ξj(θ)|2

|ξ|2


≤
(
γ +

1− γ
N

(
N − 1

2

))
dGTW (FN , HN )

≤
(

1− 1− γ
2N

)
dGTW (FN , HN ).

Here to go between the second and third line we used

N∑
j=1

ĝ(ξj sin θ)
|ξj(θ)|2

|ξ|2
≤

N∑
j=1

|ξj(θ)|2

|ξ|2

=

N∑
j=1

|ξ|2 − ξ2
j sin2 θ

‖ξ‖2

= N − sin2 θ.

So we have the required contraction property for any fixed N . Which shows existence and unique-
ness of a steady state thanks to the contraction mapping theorem. The moments being the same
up to order 2 as g follow from the lemmas on the behaviour of moments in the previous section.

We also want to prove a contraction estimate in the T1 distance.
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Lemma 6.5.
dT1,N (Φ[FN ],Φ[HN ]) ≤

(
1− 1− γ

4N

)
dT1,N (FN , HN ).

Proof. The proof is the same as for the GTW distance but here it is necessary to use

(1− x2)1/2 ≤ 1− 1

2
x2,

when bounding |ξj(θ)|/|ξ|. This time we have

N∑
j=1

ĝ(ξj sin θ)
|ξj(θ)|
|ξ|

≤
N∑
j=1

√
|ξ|2 − ξ2

j sin2 θ

|ξ|2

≤
n∑
j=1

(
1− 1

2

ξ2
j sin2 θ

|ξ|2

)

= N − 1

2
sin2 θ.

Using these estimates we can also show convergence to equilibrium.

Proof of Theorem 6.2. Suppose initially that FN (t) and HN (t) both have zero mean. From the
above calculation we have

FN (t+s)−HN (t+s) = (1−s(λ+µ)N)(FN (t)−HN (t))+s(λ+µ)N(Φ[FN (t)]−Φ[HN (t)])+o(s).

Therefore

dGTW (FN (t+ s), HN (t+ s)) ≤(1− s(λ+ µ)N)dGTW (FN (t), HN (t))

+ s(λ+ µ)NdGTW (Φ[FN ],Φ[HN ]) + o(s)

≤(1− s(λ+ µ))dGTW (FN (t), HN (t))

+ s(λ+ µ)N

(
1− 1− γ

2N

)
dGTW (FN (t), HN (t)) + o(s)

=
(

1− µ

2
s
)
dGTW (FN (t), HN (t)) + o(s).

Hence,
d

dt
dGTW (FN (t), HN (t)) ≤ −µ

2
dGTW (FN (t), HN (t)).

So that we have exponential decrease with the stated rate. Since in 6.2 we showed that if we start
the dynamics with two distribution which have zero mean then this property will be preserved, we
see that if we start the dynamics with a zero mean distribution then it will converge exponentially
fast towards the steady state. Now we would like to add a correction term so that we can deal
with a wider class of initial data as in [39]. We define

M̂[FN ] := χ(ξ)

N∑
k=1

(∫
RN

vkFN (v)dv

)
iξk,

where χ is a smooth, compactly supported function which is 1 in some neighbourhood of 0. There-
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fore, if DN = FN −HN −M[FN −HN ] we will have that

D̂N =

∫
RN

dv (FN (v)−HN (v))

e−iv·ξ − χ(ξ)

N∑
j=1

vjξj

 .

This means that

sup
ξ 6=0

D̂N (ξ)

|ξ|2
<∞.

We calculate that

∂tDN =∂tFN − ∂tHN − ∂tM[FN −HN ]

=λN(I −Q)[DN ]− µ
N∑
j=1

(I −Rj)[DN ]

− λ(I −Q)[M[FN −HN ]]− µ
N∑
j=1

(I −Rj)[M[FN −HN ]]− ∂tM[FN −HN ].

So if we let

W = −λN(I −Q)[M[FN −HN ]]− µ
N∑
j=1

(I −Rj)[M[FN −HN ]]− ∂tM[FN −HN ],

then DN is a zero momentum, zero integral function and we have the equation

∂tDN = −(λ+ µ)N(DN − Φ[DN ]) +W.

So if we want to show that

sup
ξ 6=0

|D̂N |
|ξ|2

,

converges to zero exponentially fast it is sufficient to show that,

sup
ξ 6=0

|Ŵ (ξ)|
|ξ|2

,

converges to zero exponentially fast. Since ∂t commutes with Fourier transform and χ is compactly
supported we know that

M̂[FN −HN ] = χ(ξ)

N∑
k=1

(mf (0)−mh(0))e−(2λ+µ)tiξk,

So ignoring χ and looking near 0 we have, after Taylor expanding and using the formula from
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lemma 6.4

− λN ̂(I −Q)[M]− µ
N∑
j=1

̂(I −Rj)[M] =

− (2λ+ µ)(mf (0)−mh(0))e−(2λ+µ)t
N∑
k=1

ξk

− 1

2
µKg(mf (0)−mh(0))e−(2λ+µ)t|ξ|2

N∑
k=1

ξk + o(|ξ|3).

Therefore near ξ = 0, we have

Ŵ (ξ)

|ξ|2
= −1

2
µKg

N∑
k=1

ξk +
1

2
µKg

∑N
k=1 ξ

3
k

|ξ|2
+ o(ξ).

This is because the lower order terms cancel. So in particular we have that

lim
ξ→0

Ŵ (ξ)

|ξ|2
= 0.

Therefore, since Ŵ has compact support we can bound

Ŵ (ξ)

|ξ|2
≤ Ce−(2λ+µ)t

where C may increase with N . At 0 the gradient of

w(ξ) =
Ŵ (ξ)

|ξ|2

is C
√
NµKg/2 so the gradient of w cannot be bounded uniformly in N . Since we can calculate

w(ξ) explicitly if χ is always radial as

µ

1−
N∑
j=1

(1− αj(ξ))

 M
|ξ|2

where

αj(ξ) = −
∫ 2π

0

(
1− ξj(1− cos θ)∑

k ξk

)
ĝ(ξj sin θ)

χ(ξj(θ))

χ(ξ)
dθ.

This can be bounded uniformly provided we can bound the ration of the χs. Therefore under these
additional assumptions we see that w increases no faster than

√
N . This will give that

sup
ξ 6=0

|D̂N (t)|
|ξ|2

≤

(
C
√
N +

|D̂N (0)|
|ξ|2

)
e−

µ
2 t.

Therefore if we define a new distance

d̃N (FN , HN ) = sup
ξ 6=0

|D̂N |
|ξ|2

+ sup
ξ 6=0

|Ŵ |
|ξ|2

,
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we will get the inequality
d̃N (FN (t), HN (t)) ≤ Ce−

µ
2 t.

For the exponential convergence in the T1 distance we use the same argument as for the GTW
distance with the same mean and the contraction estimate in Lemma 6.5.

Remark. If it were possible to get a bound on |∇w(ξ)| in terms of
√
N then it might in fact allow

us to choose χ for each N such that we didn’t get the increase with N by letting the radius of the
support of χ decrease with

√
N . However, since the goal is to control the behaviour as N → ∞

then in the case of different marginals working with the correction term would introduce an error
of at least

√
N when trying to control the initial data by its first marginal. In general because of

having to choose a χ for each N the altered distance is not well adapted to asymptotic analysis. We
include it to show that for each N we can get the rate µ/2 and to compare with the limit equation
case which is studied using this method in [39].

6.4 Convergence Rate of the First Marginal

It is shown in [26] that propagation of chaos holds for this type of coupled Kac’s model. The
argument is very similar to Kac’s original argument therefore is not repeated here. Since we have
propagation of chaos we know that the first marginal of FN (t) will converge weakly towards a
solution of the Boltzmann-Kac equation. In some sense we would like to be able to understand the
two limits t → ∞ and N → ∞ simultaneously. For this reason we prove a bound on convergence
to equilibrium for the first marginal which is uniform in N . Unfortunately, the GTW distance and
our correction term W behave differently as N →∞ so it was only possible to get these estimates
when the initial data has zero mean.

The functions we work with will be invariant under permutations of variables so we can define
the kth marginal for k ≤ N

Πk[FN ] :=

∫
RN−k

FN (v1, . . . , vN )dvi1 . . . dviN−k

for any choice of 1 ≤ i1 < i2 < · · · < iN−k ≤ N . Many of the distances in which we could study
Kac’s model, typically weighted L2 distances will not behave well as the number of particles tends
to infinity so will not give convergence of the first marginal to an equilibrium in entropy, here the
subadditivity property of entropy in the number of variables is crucial. We wish to show that the
GTW and related distances will possess similar subadditivity properties, which will allow us to
control things in a similar way.

Lemma 6.6.
dGTW,k(Πk[FN ],Πk[HN ]) ≤ dGTW,N (FN , HN ),

d̃k(Πk[FN ],Πk[HN ]) ≤ d̃k(FN , HN ),

and
dT1,k(Πk[FN ],Πk[HN ]) ≤ dT1,N (FN , HN ).

Proof. The proof is the same for all the distances so we only do it in the case of GTW . We can
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notice that
Π̂k[FN ](ξ1, . . . , ξk) = F̂N (ξ1, . . . , ξk, 0, . . . , 0).

Using this we have that

dGTW,k(Πk[FN ],Πk[HN ]) = sup
ξ 6=0,ξk+1=···=ξN=0

|F̂N (ξ)− ĤN (ξ)|
|ξ|2

≤d̃(FN , HN ).

Lemma 6.7. If f, h have the same first moments

dGTW,N (f⊗N , h⊗N ) = dGTW,1(f, h)

where dGTW,k is the GTW distance on probability densities with k-variables.

Proof.

dGTW (f⊗N , h⊗N ) = sup
ξ 6=0

|f̂(ξ1) . . . f̂(ξN )− ĥ(ξ1) . . . ĥ(ξN )|
|ξ|2

≤ sup
ξ 6=0

∑N
i=1 |f̂(ξ1) . . . f̂(ξi−1)(f̂(ξi)− ĥ(ξi))ĥ(ξi+1) . . . ĥ(ξN )|

|ξ|2

≤ sup
ξ 6=0

N∑
i=1

f̂(ξi)− ĥ(ξi)

ξ2
i

ξ2
i

|ξ|2

≤ sup
ξ 6=0

N∑
i=1

dGTW,1(f, h)
ξ2
i

|ξ|2
= dGTW,1(f, h).

Since f, h are the first marginals of f⊗N , h⊗N respectively we have by the earlier lemma that

dGTW,1(f, h) ≤ dGTW,N (f⊗N , h⊗N )

putting the two inequalities together gives the required result.

We have already seen that
Ŵ (ξ)

|ξ|2
,

may increase with N so this will cause us problems if we wished to try and control d̃N (f⊗N , h⊗N )

by d̃1(f, h) . Even given this it would be good to be able to push the control by first marginals to
general functions. However, the next lemma shows that this is not possible.

Lemma 6.8. There exist f, g with finite second moment such that f, g are symmetric and mean
zero and they have the same marginals but f, g are not the same. This means we cannot control
the GTW distance between f and g in terms of the GTW distance between their first marginals.

Proof. Let φ be a density function on R which is mean zero but not even. Define

f(v1, v2) :=
1

2
(φ(v1)φ(−v2) + φ(−v1)φ(v2)),
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and
g(v1, v2) =

1

2
(φ(v1)φ(v2) + φ(−v1)φ(−v2)).

Then it is easy to see that f and g have the required properties.

We wish to combine these lemmas in such a way as to get uniform control on the first marginal.
Given the restriction shown by Lemma 6.8 we want to choose ‘good’ initial data in order that the
distance between the initial data is controlled by the distance between the first marginals.

Proof of Theorem 6.3. Since f, h have mean zero and the GTW distance between FN (0) and f⊗N

is finite, we have that FN and HN have zero mean initially. By 6.2 this holds for all time. Therefore
we have by Lemma 6.6

dGTW,1(Π1[FN ],Π1[HN ]) ≤ dGTW,N (FN , HN ).

Furthermore, by Theorem 6.2

dGTW,N (FN (t), HN (t)) ≤ dGTW,N (FN (0), HN (0))e−
µ
2 t.

Now we use the chaoticity property and our control on tensorised functions form Lemma 6.7 to get

dGTW,N (FN (0), HN (0)) ≤ dGTW,N (FN (0), f⊗N ) + dGTW,N (f⊗N , h⊗N ) + dGTW,N (h⊗N , HN (0))

= C1 + dGTW,1(f, h).

Here C1 only depends on how close the initial data is to tensorised. Putting this together gives

dGTW,1(Π1[FN ](t),Π1[HN ](t)) ≤ (dGTW,1(f, h) + C1)e−
µ
2 t.

We do not have from our conditions that C1 will decrease to 0 as N →∞, but since in this situation
the real interest is just to choose any f -chaotic family we may as well have that FN (0) = f⊗N and
similarly with H which would dispense with the C1 altogether.

Now we would like to prove a theorem in the spirit of Theorem 6.3 when we do not have f and
h having zero mean initially. We cannot recover uniform estimates in N but we can control the
growth with N . We have from lemma 6.6 control of marginals by the function for the d̃ distance
so we have

d̃k(Πk[FN ],Πk[HN ]) ≤ d̃(FN , HN ).

Following this we would like to prove something in the spirit of lemma 6.7 in order to control in
the other direction.

Lemma 6.9. Suppose we have f and h probability distributions on R with differentiable Fourier
transforms. If we define

nf =

∫
|v|f(v)dv,

and let M = max
{

nf
|mf | ,

nh
|mh|

}
then we have the following control by the first marginals for the d̃

distance on tensorised functions.

d̃N (f⊗N , h⊗N ) ≤ d̃1(f, h) +M |mf −mh|
√
N.
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Proof. Using the same bridging argument as before we see that

f̂(ξ1) . . . f̂(ξN )− ĥ(ξ1) . . . ĥ(ξN )− (mf −mh)χN (ξ)
∑
k

iξk

=
∑
k

f̂(ξ1) . . . f̂(ξk−1)(f̂(ξk)− ĥ(ξk)− χ1(ξk)(mf −mh)iξk)ĥ(ξk+1) . . . ĥ(ξN )

+
∑
k

f̂(ξ1) . . . f̂(ξk−1)(mf −mh)χ1(ξk)iξkĥ(ξk+1) . . . ĥ(ξN )− χN (ξ)
∑
k

(mf −mh)iξk.

In order to complete the proof we want to bound the last term by something of the form

M |mf −mh|
√
N |ξ|2.

Provided the radius of the set in which the χ are 1 is sufficiently large this will be true. So if we
look at the last term where the χ are 1, we have

(mf −mh)i
∑
k

ξk

(
f̂(ξ1) . . . f̂(ξk−1)ĥ(ξk+1) . . . ĥ(ξk)− 1

)
.

If instead we try and bound

A =
f̂(ξ1) . . . f̂(ξk−1)ĥ(ξk+1) . . . ĥ(ξN )− 1

mf

∑
j<k iξj +mh

∑
k<j iξj

≤M

then we would have the bound∣∣∣∣∣
∑
k(f̂(ξ1) . . . f̂(ξk−1)ĥ(ξk+1) . . . ĥ(ξN )− 1)ξk(mf −mh)

|ξ|2

∣∣∣∣∣
≤M

∣∣∣∑N
k=1(mf

∑
j<k iξj +mh

∑
k<j iξj)ξki(mf −mh)

∣∣∣
|ξ|2

≤M |mf −mh|
√
N.

Therefore it remains to prove the bound on A, we do this first by noting that by Taylor expanding
we can see that as |ξ| → 0, A → 1 and that as |ξ| → ∞, A → 0. A is differentiable everywhere
except possibly 0. Now we differentiate to get that at any stationary point of A and for every l < k

we have

f̂(ξ1) . . . f̂ ′(ξl) . . . f̂(ξk−1)ĥ(ξk+1) . . . ĥ(ξN )

mf

∑
j<k

iξj +mh

∑
k<j

iξj


= imf

(
f̂(ξ1) . . . f̂(ξk−1)ĥ(ξk+1) . . . ĥ(ξN )− 1

)
.

Substituting this into our expression for A shows that at a stationary point

A =
1

imf
f̂(ξ1) . . . f̂ ′(ξl) . . . f̂(ξk−1)ĥ(ξk+1) . . . ĥ(ξN ) ≤M.

This gives the claimed bound. It seems like there will be a problem if mf = 0 but if so we can
always choose to differentiate in a direction so that we will get mh rather than mf and the cannot
both be 0. Here C1, in the statement, only depends on the distance between the initial data and
the tensorised functions, C2 only depends on g and χ and C3 is a constant times M |mf − mh|
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where M is the maximum of
∫
|v|f(v)dv with the same quantity for h.

We can now prove the theorem

Proof of Theorem 6.4. This is found by putting together the convergence theorems and lemmas
on distance control in exactly the same way as Theorem 6.2.

If we move on to looking at the T1 distance we again have the bound on the T1 distance
between marginals by the distance between the full function from Lemma 6.6. We would like to be
able to control the distance between tensorised functions by the marginals in order to give similar
arguments to Theorem 6.3 and Theorem 6.4.

Lemma 6.10.
dT1,N (f⊗N , h⊗N ) ≤

√
NdT1,1(f, h).

Furthermore, the square root dependence is the best possible if f, h have different means.

Proof. This follows a similar argument to the others

sup
ξ 6=0

|f̂(ξ1) . . . f̂(ξN )− ĥ(ξ1) . . . ĥ(ξN )|
|ξ|

≤ sup
ξ 6=0

∑
k |f̂(ξ1) . . . f̂(ξk−1(f̂(ξk)− ĥ(ξk))ĥ(ξk+1) . . . ĥ(ξN )|

|ξ|

≤ sup
ξ 6=0

∑
k

|f̂(ξk)− ĥ(ξk)|
|ξk|

|ξk|
|ξ|

≤ supξ 6=0
|f̂(ξ)− ĥ(ξ)|

|ξ|
∑
k

|ξk|
|ξ|

≤
√
N sup

ξ 6=0

|f̂(ξ)− ĥ(ξ)|
|ξ|

.

The fact that the square root dependence is necessary for functions with different means can be
seen by Taylor expanding

f̂(ξ1) . . . f̂(ξN )− ĥ(ξ1) . . . ĥ(ξN )

|ξ|

around ξ = 0 then we can see that the limit as ξ → 0 of this expression has modulus
√
N |mf −

mh|.

Proof of Theorem 6.5. Again we combine the convergence theorem that we have for the T1 distance
with the control on distances as in Theorem 6.2.

6.5 Contraction in Wasserstein-2

We can also show contraction of this model in Wasserstein distances using a simple coupling of
two different systems. This coupling involves taking two of the coupled Kac’s models and giving
them simultaneous collisions with the same angle if it is an internal collision and the same angle
and velocity of the external particle if it is an external collision. We can represent the stochastic
process as an integral against several Poisson point processes. This is done in [75] and is helpful
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here to prove contraction for the energy process in Kac’s model.

Vi,t =Vi,0 + λ
∑
j 6=i

∫ t

0

∫ 2π

0

(
Vi,s− cos θ + Vj,s− sin θ − Vi,s−

)
Πi,j(ds,dθ) (6.2)

+ 2µ

∫ t

0

∫ ∞
−∞

∫ 2π

0

(
Vi,s− cos θ + w sin θ − Vi,s−

)
νi(ds,dw,dθ). (6.3)

Here Πi,j is a Poisson point process on [0,∞)× [0, 2π] with intensity measure being 1/2π(N − 1)

times Lebesgue measure, and νi is a Poisson point process with intensity measure g tensored with
1/2π(N − 1) times Lebesgue. Using this representation we can prove contraction in Wasserstein-2.

Proof of Theorem 6.6. Using the representation above we can write out a similar formula for the
difference between two solutions coupled by giving them the same driving Poisson processes. If we
call this difference in the ith variable ∆i,t then we can write

∆2
i,t =∆2

i,0 + λ
∑
j 6=i

∫ t

0

∫ 2π

0

(
∆2
i,s−(cos2 θ − 1) + ∆2

j,s− sin2 θ + 2 cos θ sin θ∆i,s−∆j,s−

)
Πi,j(ds,dθ)

+ 2µ

∫ t

0

∫ ∞
−∞

∫ 2π

0

(
∆2
i,s−(cos2θ − 1) + 2∆i,s−w sin θ cos θ

)
ν(ds,dw,dθ).

Summing over i and taking expectations gives

d

dt
E

(
n∑
i=1

∆2
i,t

)
=2λ(N − 1)

1

2π

∫ 2π

0

(cos2 θ + sin2 θ − 1)dθE

(
n∑
i=1

∆2
i,t

)

+ 2µ
1

2π

∫ 2π

0

∫ ∞
−∞

g(w)(cos2 θ − 1)dθdwE

(
n∑
i=1

∆2
i,t

)

=− µE

(
n∑
i=1

∆2
i,t

)
.

Which gives the result after taking the infimum over possible couplings.

We can also prove a similar controls over how Wasserstein distances behave in as the dimension
goes to infinity. Here we write Wp,d to be the Wasserstein-2 distance related to the euclidean
distance on Rd.

Lemma 6.11. If µ, ν are measures on R with finite second moment then

W2,N (µ⊗N , ν⊗N ) =
√
NW2,1(µ, ν).

Proof. We know that there exists an optimal coupling, π1 so that

W2,1(µ, ν) =

(∫
R2

(x− y)2π1(dx, dy)

)1/2

and an optimal coupling, πN , such that

W2,N (µ⊗N , ν⊗N )

(∫
R2N

‖x− y‖2πN (dx,dy)

)1/2

.
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Suppose that πN 6= π⊗N1 then we have that∫ (
(x1 − y1)2 + · · ·+ (xN − yN )2

)
πN (dx,dy)

<

∫ (
(x1 − y1)2 + · · ·+ (xN − yN )2

)
π1(dx1,dy1) . . . π1(dxN ,dyN )

=N

∫
(x− y)2π1(dx, dy).

Therefore, there exists some k such that∫
R2N

(xk − yk)2πN (dx,dy) <

∫
R2

(x− y)2π1(dx, dy).

Since the integrand on the left hand side only depends on xk, yk πN induces a coupling of µ and ν
by projection onto the kth variables. The cost under this measure is strictly less that the optimal
cost which is a contradiction. Hence, the optimal coupling is achieved by π⊗N1 . This gives that,

W2,N (µ⊗N , ν⊗N ) =

(∫ (
(x1 − y1)2 + · · ·+ (xN − yN )2

)
π1(dx1,dy1) . . . π1(dxN ,dyN )

)1/2

=

(
N

∫
(x− y)2π1(dx,dy)

)1/2

=
√
NW2,1(µ, ν).

Lemma 6.12. If µN and νN are symmetric probability distributions on RN with finite second
moment then

W2,1(Π1(µN ),Π1(νN )) ≤ 1√
N
W2,N (µN , νN ).

Proof. Suppose that πN is a coupling of µN and νN then the marginals of πN induce couplings of
the marginals of µN and νN .(∫ (

(x1 − y1)2 + · · ·+ (xN − yN )2
)
πN (dx,dy)

)1/2

=

(∫
(x1 − y1)2πN (dx,dy) + · · ·+

∫
(xN − yN )2πN (dx,dy)

)1/2

≥
(
NW2,1(Π1(µN ),Π1(νN ))2

)1/2
=
√
NW2,1(Π1(µN ),Π(νN )).

Like with the earlier sections we can combine this behaviour with our contraction estimates to
show uniform behaviour of the first marginal. For simplicity we only looked at tensorised initial
data.
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Proof of Theorem 6.7.

W2,1(Π1(µN (t)),Π1(νN (t))) ≤ 1√
N
W2,N (µN (t), νN (t))

≤ 1√
N
e−µt/2W2,N (µ⊗N0 , ν⊗N0 )

= e−µt/2W2,1(µ0, ν0).

Remark. These uniform estimates in N combined with propagation of chaos means that the limit
Boltzmann-Kac equation will also show exponential convergence to equilibrium in Wasserstein-2.
This is very similar to the result shown in [39] in the Toscani distance.

6.6 Kac’s Model in the GTW-like Metric

Lastly we look the uncoupled Kac’s model in the GTW-metric. We translate the results of Hauray
in [75] from a Wasserstein-2 result into a GTW result. We study the behaviour of this model under
a semi-norm. We wish to show contraction in this seminorm to the set on which it is zero, between
any two solutions to the Kac master equation. In order to do this we need to look at

ρ(Qµ,Qν),

where ρ is this seminorm to be defined shortly. Let us work in the case where µ and ν are absolutely
continuous with respect to the indicator function of the sphere of radius

√
N . Here we can write

out how Q acts on the measures explicitly. Furthermore observe that here the restriction in the
range of ξ that Σξ = 0 will make no difference to the supremum. Let us write F and G for
the Radon-Nikodym derivatives of µ and ν respectively against the uniform measure on the Kac
sphere. Then since Q does not act on the uniform measure on the Kac sphere, we write

Q[µ] = Q[F ] =
1(
N
2

) ∑
i<j

1

2π

∫ 2π

0

F (vij(θ))dθ,

where
vij(θ) = (v1, . . . , vi cos θ + vj sin θ, . . . ,−vi sin θ + vj cos θ, . . . , vN ).

Lemma 6.13. We have that

R[Q[F ]](ξ) =
1(
N
2

) ∑
i<j

1

2π

∫ 2π

0

R[F ](ξi,j(θ))dθ.

Where
ξi,j(θ) = (ξ1, . . . , ξi cos2 θ + ξj sin2 θ, . . . , ξi cos2 θ + ξj sin2 θ, . . . , ξN ).
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Proof. We calculate

R [Q[F ]] (ξ) =

∫
RN

1

2π
(
N
2

) ∑
i<j

∫ 2π

0

F (vij(θ)) exp
(
−i
(
ξ1v

2
1 + · · ·+ ξnv

2
N

))
dvdθ,

=

∫
RN

1

2π
(
N
2

) ∑
i<j

∫ 2π

0

F (v) exp(−i(ξ1v2
1 + · · ·+ ξi(vi cos θ + vj sin θ)2+

· · ·+ ξj(−vi sin θ + vj cos θ)2 + · · ·+ ξnv
2
N ))dvdθ

=

∫
RN

1

2π
(
N
2

) ∑
i<j

∫ 2π

0

F (v) exp(−i(ξ1v2
1 + · · ·+ (v2

i + v2
j )(ξi cos2 θ + ξj sin2 θ) + · · ·+ ξNv

2
N ))dvdθ

=
1(
N
2

) ∑
i<j

1

2π

∫ 2π

0

R [F ] (ξ1, . . . , ξi cos2 θ + ξj sin2 θ, . . . , ξi cos2 θ + ξj sin2 θ, . . . , ξN )

=
1(
N
2

) ∑
i<j

1

2π

∫ 2π

0

R [F ] (ξij(θ)).

Here we first made a change of variables v ↔ vijθ which has Jacobian 1. Then we notice, as in the
work of Hauray [75], that there exists α such that vi =

√
v2
i + v2

j cosα and that after the rotation

we go to
√
v2
i + v2

j cos(α+ θ). Then we make a new change of variables θ + α→ θ which also has
Jacobian 1.

Lemma 6.14. Following this we have

ρ(Qµ,Qν) ≤
(

1− 1

N
− 1

2N(N − 1)

)
ρ(µ, ν).

Proof. We calculate that

ρ(Qµ,Qν) ≤ 1(
N
2

) ∑
i<j

sup
ξ 6=0,

∑
ξ=0

|−
∫ 2π

0
R(µ− ν)(ξij(θ))dθ|

|ξ|2

≤ρ(µ, ν)
1(
N
2

) sup
ξ 6=0,

∑
ξ=0

−
∫ 2π

0

|ξij(θ)|2

|ξ|2
dθ

≤ρ(µ, ν) sup
ξ 6=0,

∑
ξ=0

1− 1(
N
2

) ∑
i<j

−
∫ 2π

0

(2 cos4 θ − 1)ξ2
i + (2 sin4 θ − 1)ξ2

j + 4ξiξj sin2 θ cos2 θ

|ξ|2


≤ρ(µ, ν) sup

ξ 6=0,
∑
ξ=0

1− 1(
N
2

) ∑
i<j

−1/4(ξ2
i + ξ2

j ) + 1/2ξiξj

|ξ|2


≤ρ(µ, ν) sup

ξ 6=0,
∑
ξ=0

(
1− 1

N
+

1

4

1(
N
2

) (
∑
k ξk)

2 − |ξ|2

|ξ|2

)

≤ρ(µ, ν)

(
1− 1

N
− 1

2N(N − 1)

)
.

Before we begin the main proof we have one more definition.

Definition 6.2. Let σ be a vector in {−1, 1}N . Then let us define Aσ to be the subset of RN where
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the vi has sign σi. Then we can write the operator

S[F ](σ) =

∫
RN

F (v)1Aσdv.

Then S[F ] is a probability density on the set {−1, 1}N .

Now we can prove the theorem.

Proof of Theorem 6.8. We can use this to show exponential decay of the seminorm. Suppose µ
and ν are solutions to the Kac master equation supported on the Kac sphere then

ρ(µ(t+ s), ν(t+ s)) =ρ(µ(t), ν(t))(1−Ns) +Nsρ(Qµ,Qν) + o(s)

≤ρ(µ(t), ν(t))

(
1−Ns+Ns− s− s

2(N − 1)

)
+ o(s).

Therefore,
d+

dt
ρ(µ(t), ν(t)) ≤ −

(
1 +

1

2(N − 1)

)
ρ(µ(t), ν(t)).

Given this we would like to know about the measures supported on the Kac sphere such that
ρ(µ, ν) = 0. We know that it means that

R(µ− ν)(ξ) = 0, ∀ξ.

We know split the domain of integration defining R into sections where the vi have constant sign.
We represent the signs by ε which is a string of ±1s. Then in each of these sections we use the
change of variables vi = εi

√
k2
i .∑

ε

∫
sgn(v)=ε

F (v) exp
(
−i
(
ξ1v

2
1 + . . . ξNv

2
N

))
dv

=
∑
ε

∫
sgn(v)=ε

F (ε1
√
k1, . . . , εN

√
kN )e−iξ·k

ε1 . . . εN

2N
√
k1 . . . kN

dk.

We know that the Fourier transform in invertible on the chosen domain so this shows that when
ρ(µ− ν) = 0 then∑

ε

F (ε1
√
k1, . . . , εN

√
kN )

ε1 . . . εN

2N
√
k1 . . . kN

=
∑
ε

G(ε1
√
k1, . . . , εN

√
kN )

ε1 . . . εN

2N
√
k1 . . . kN

.

We can see by a similar change of variables that this sum is the probability density of the energies
of the individual particles.

Following this it is interesting to look at the process on the signs of the velocities of the particles.
After a collision between particles i and j, with uniform collision kernel the probability that the
sign of vi is positive is 1/2 and similarly for vj this is easiest to see with the

vi →
√
vi + vj cos(θ + α)

representation. Therefore the probability of a uniform distributions of signs is greater than the
probability that all of the particles have been involved in a collision.
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With the definition of the operator S, we have that

‖S[F ]− S[G]‖TV ≤ 2Ne−t

This is very similar to a lazy random walk on a hypercube which is well studied. We couple
the processes as in [75] as described above. Then we just need to wait for every coordinate to be
jump. Each particle collides with some other particle with rate 1 and there are N particles so the
probability that at least one particle hasn’t collided is bounded by 2Ne−t.
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