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Foreword

The 28-year term of Martin Jones as the first George 
Pitt-Rivers Professor of Archaeological Science wit-
nessed, and in part created, a transformation in the 
fields of environmental and biomolecular archaeol-
ogy. In this volume, Martin’s colleagues and students 
explore the intellectual rewards of this transformation, 
in terms of methodological developments in archaeo-
botany, the efflorescence of biomolecular archaeology, 
the integration of biological and social perspectives, 
and the exploration of archaeobotanical themes on 
a global scale. These advances are worldwide, and 
Martin’s contributions can be traced through cita-
tion trails, the scholarly diaspora of the Pitt-Rivers 
Laboratory and (not least) the foundations laid by 
the Ancient Biomolecules Initiative of the Natural 
Environment Research Council (1989–1993), which he 
chaired and helped create. As outlined in Chapter 6, 
Martin’s subsequent role in the bioarchaeology pro-
gramme of the Wellcome Trust (1996–2006) further 
consolidated what is now a central and increasingly 
rewarding component of archaeological inquiry. 
Subsequently, he has engaged with the European 
Research Council, as Principal Investigator of the 
Food Globalisation in Prehistory project and a Panel 
Chair for the Advanced Grant programme. As both 
practitioner and indefatigable campaigner, he has 
promoted the field in immeasurable ways, at critical 
junctures in the past and in on-going capacities as a 
research leader. 

The accolades for Martin’s achievements 
are many, most recently Fellowship of the British 
Academy. Yet it is as a congenial, supportive—and 
demanding—force within the Pitt-Rivers Laboratory 
that the foundations of his intellectual influence were 
laid. Here, each Friday morning, the archaeological 
science community would draw sticks to decide 
who would deliver an impromptu research report 
or explore a topical theme. Martin is among the 
most laid-back colleagues I have worked with, yet 
simultaneously the most incisive in his constructive 
criticism. As a provider of internal peer-review he 
was fearless without being unkind. The themed Pitt-
Rivers Christmas parties were equally impactful—on 
one occasion Alice Cooper appeared, looking ever so 
slightly like our professor of archaeological science.

Martin’s roles as a research leader extended to 
several stints as head of the Department of Archaeol-
ogy, chairing the Faculty of Archaeology and Anthro-
pology and serving as a long-term member of the 
Managing Committee of the McDonald Institute for 
Archaeological Research. Having started his profes-
sional career as an excavation-unit archaeobotanist 
in Oxford, he was a long-standing proponent of the 
highly successful Cambridge Archaeological Unit. In 
the wider collegiate community, he is a Fellow (and 
was Vice-Master) of Darwin College and was the staff 
treasurer of the Student Labour Club. In all roles he 
fought valiantly and often successfully for the interests 
of his constituency. His capacity to fight for deeply 
held priorities while recognizing the value of diverse 
perspectives was of utmost importance. His nostalgic 
enthusiasm for the debate with archaeological science 
that was engendered by the post-processual critique 
is one signal of an underlying appreciation of plural-
ity. His active support for the recent merger of the 
Divisions of Archaeology and Biological Anthropol-
ogy, within our new Department of Archaeology, is 
another. As a scientist (Martin’s first degree, at Cam-
bridge, was in Natural Sciences) he values the peer-
reviewed journal article above all scholarly outputs, 
yet has authored as many highly regarded books as 
a scholar in the humanities. His Feast: Why humans 
share food has been translated into several languages 
and won Food Book of the Year from the Guild of 
Food Writers. He views academia and society as a 
continuum, campaigning for archaeobotanical con-
tributions to global food security (e.g. by promoting 
millet as a drought-resistant crop) and working with 
world players such as Unilever to encourage archaeo-
logically informed decisions regarding food products. 

That Martin’s achievements and influence merit 
celebration is clear. That his colleagues and students 
wish to honour him is equally so. Yet does the McDon-
ald Conversations series publish Festschriften? This is 
a semantic question. As series editor I am delighted to 
introduce a collection of important papers regarding 
the past, present and future of archaeobotany, rep-
resenting its methodological diversity and maturity. 
That this collection concurrently pays respect to a 
treasured colleague is a very pleasant serendipity.

Dr James H. Barrett
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Chapter 4

Phytoliths and the Human Past: Archaeology, 
Ethnoarchaeology and Palaeoenvironmental Studies

Carla Lancelotti & Marco Madella

In this chapter we will explore the evolution of phyto-
lith studies since its inception in Europe. We will bring 
together the historical development of the methodo-
logical approach and the current contribution of this 
proxy to our understanding of plant use, the origin 
of agriculture and agricultural techniques in the past.

A brief history of phytolith studies

Microscopic hydrated silica particles formed in plants 
have over the years been referred to as ‘opal phyto-
liths’, ‘biogenic silica’, ‘silica phytoliths’, ‘plant opal’, 
‘biogenic opal’ and simply ‘phytoliths’. The first obser-
vation of mineral particles from plants was reported by 
Leeuwenhoek in 1675, though he used the term phyto-
liths to describe calcium oxalates (Mulholland & Rapp 
1992). The term phytolith for defining microscopic 
opaline bodies deposited in plants initially appeared 
in a paper by Ruprecht (cited in Baker 1959a,b), but 
their discovery and description dates back to the first 
half of the nineteenth century. According to Powers 
(1992 and references therein), the history of phytolith 
studies can be divided into four periods.

Discovery and exploration period: (c. 1835–1900)
Struve, a German scholar at the University of Berlin, 
in 1835 produced a dissertation on silica in plants 
(cited in Powers 1992), thus placing the ‘scientific 
discovery’ of phytoliths one year before that of pollen. 
A decade later Ehrenberg, another German scholar, 
observed, described and classified silica particles he 
found in sediment samples, calling them ‘Phytolitaria’ 
(from the greek φυτόν/phutón ‘plant’ and λίθος/líthos 
‘stones’). It was Ehrenberg himself who identified 
phytoliths in the samples of dust collected by Darwin 
on the deck of HMS Beagle (Darwin 1846).

Botanical research period (c. 1895–1936)
Towards the end of the nineteenth century and dur-
ing the first half of the twentieth, phytoliths were 

recognized as particles produced within plants and 
studies related to production, taxonomy and morphol-
ogy flourished (Grob 1896; Haberlandt 1914; Mobius 
1908). It is in this period that the first applications of 
phytolith analysis to archaeological studies appear 
(Netolitzky 1900; 1914; Schellenberg 1908). As for the 
previous period of discovery and exploration, the 
German school dominates phytolith studies and the 
body of literature is therefore published in German.

Ecological and paleoecological research (c. 1955–1975)
During the 1950s and 1960s, scholars from the United 
States, the United Kingdom and Australia started 
investigating phytoliths, thus producing the earliest 
body of literature in English. In this period morphol-
ogy is examined in more detail and in many more 
plant families, resulting in studies that are considered 
the bases of phytolith classification and they are still 
in use (e.g. Metcalfe 1960; Twiss et al. 1969). Studies in 
archaeology also proliferate, with researchers starting 
to work on different types of deposits and materials 
(e.g. Helbaek 1961; 1969: working on ashes and ceram-
ics from the Near East) and in different areas of the 
world (e.g. Watanabe 1955; 1968; 1970: identifying 
rice phytoliths in prehistoric deposits from Japan). A 
seminal publication, which contributed to increase 
phytoliths visibility in Quaternary studies, was the 
review of the potential of phytoliths in palaeoecologi-
cal reconstruction published by Rovner (1971) in the 
journal Quaternary Research.

Modern period (c. 1978–2000)
The last two decades of the twentieth century are 
characterized by an exponential increase in phytolith 
studies (Fig. 4.1), both geographically and in scope. 
Specific studies on families or species become rou-
tine: Cucurbitaceae (Bozarth 1987; Piperno et al. 2000), 
Fabaceae (Bozarth 1990) and Cyperaceae (Ollendorf 
1992; Ollendorf et al. 1987) become a focus of interest, 
as well as some dicotyledonous species for their inter-
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est in past vegetation and human use (Bozarth 1992). 
Maize (Mulholland et al. 1988; Piperno 1984; Piperno 
& Pearsall 1993), rice (Houyan et al. 1997) and wheat/
barley (Ball et al. 1993; 1999) occupy, for their economic 
interest, a prominent spot in this area of studies. The 
geographical zones investigated in phytolith studies 
also expand, with research in Africa (Alexandre et al. 
1997; Barboni et al. 1999; Jansen & van Iperen 1991; 
Mercader et al. 2000; Runge & Runge 1997), Central 
Asia (Madella 1997) and South East Asia (Bowdery 
1999; Kealhofer & Penny 1998) appearing together 
with New Zealand (Kondo et al. 1994), Israel (Albert 
et al. 1999; 2000), China (Yongji 1991) and Brazil 
(Alexandre et al. 1999). The scope of research also 
widens and phytoliths are used as activity markers 
to study irrigation (Rosen & Weiner 1994), identify 
dietary practices from dental calculus (Ciochon et al. 
1990; Danielson & Reinhard 1998; Fox et al. 1994) and 
infer function of stone tools (Anderson 1980; Jahren 
et al. 1997; Kealhofer et al. 1999; Sobolik 1996) and the 
formation of pastoral sites (Brochier et al. 1992). New 
techniques such as the isotopic study of phytoliths 
are also introduced (Fredlund & Tieszen 1997; Kelly 
et al. 1998; McClaran & Umlauf 2000; Shahack-Gross 
et al. 1996; Webb & Longstaffe 2000). Phytolith stud-
ies also assume the character of a mature discipline 
with the proliferation of meta-studies, in particular 
on extraction methods (Lentfer & Boyd 1998; Madella 
et al. 1998; Middleton & Rovner 1994; Powers & Gil-
bertson 1987).

In the next paragraphs, we will outline some of 
the major breakthroughs and developments in phyto-
lith research in archaeology and palaeoenvironmental 
studies and, especially, in ethnoarchaeology.

Methodological advances

The stage of maturity reached by the discipline in 
the last 15 years is testified by the number of works 
published since 2000 that critically reflect on the 
methodology itself. At the same time, technological 
improvements and the introduction of more sophis-
ticated analytical tools contributed to an increase in 
research involving isotopic and genetic analysis of 
phytoliths.

Phytolith extraction, identification and interpretation
On the one hand, phytoliths from archaeological 
sites have been used to document crop plants, plant 
food, plant-made objects like mats and baskets, fuel 
types and construction materials. On the other hand, 
phytoliths from natural sequences have been used to 
understand vegetation changes between major ecologi-
cal types (e.g. savannah, forest, grassland, etc.) or the 
dynamics of soil-formation processes. Several authors, 
however, have concentrated on extraction methods, 
either proposing new and improved techniques 
(Lombardo et al. 2016), concentrating on specific and 
problematic types of sediments (Calegari et al. 2013), 
combining extraction of several micro-remains (Hor-
rocks 2005), improving the efficiency both in time and 
cost (Katz et al. 2010), comparing the results of different 
extraction methods (Parr 2002), or assessing the best 
extraction method for specific analyses for example iso-
topic studies (Asscher et al. 2017; Corbineau et al. 2013) 
or genetic analyses (Kistler 2012). Other methodologi-
cal aspects on which researchers have concentrated are 
counting and nomenclature. Strömberg (2009) and 
Zurro (2017) question whether changing the count size 

Figure 4.1. Increase in phytolith 
studies in the last 15 years from 
a search on ScienceDirect, using 
as keyword the term ‘phytolith’ in 
any field (trend line); only in ‘title’, 
‘abstract’ and ‘keywords’ in both books 
and journals (black columns); and only 
journals (grey columns).
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influences the interpretations of results and propose 
minimum count size as well as statistical techniques to 
ensure the robustness of results. The creation in 2000 of 
the International Committee on Phytolith Morphology 
responded to the need of the phytolith communities 
to standardize the terms that were used to describe 
phytoliths. The main result of this committee was the 
publication of the first International Code for Phytolith 
Nomenclature in 2005 (Madella et al. 2005). In 2014 the 
International Society for Phytolith Research appointed 
a new International Committee for Phytolith Tax-
onomy to continue this effort. Their first output was 
the publication of standardized guides for morpho-
metric analysis of phytoliths (Ball et al. 2016b). Another 
important issue that has been deeply addressed in 
recent years concerns the role of taphonomic processes 
on the composition of phytolith assemblages. Madella 
and Lancelotti (2012) have offered a comprehensive 
review of the possible impacts of various taphonomic 
processes and proposed some ways of counterbalanc-
ing them in the analysis. At the same time, Cabanes 
and Shahack-Gross (2015) have performed experi-
ments to assess phytolith preservation fully in sedi-
ments and understand the role of dissolution on the 
robustness of interpretations.

Isotopes and DNA
Isotopes from archaeological sites have been used 
for understanding, among other things, climatic and 
environmental change, past human diet, nutrition and 
mobility, past animal and crop management prac-
tices, and to build reliable chronologies. The isotopic 
analysis of occluded carbon in phytoliths, both for 
dating as well as for palaeoenvironmental reconstruc-
tion purposes, is an issue that has been abundantly 
debated in recent years (Piperno 2016). Studies have 
been performed to understand soil carbon sequestra-
tion in phytoliths (Parr & Sullivan 2005; Song et al. 
2016), as well as the incidence of atmospheric carbon 
occluded in phytoliths (Carter 2009). Some of these 
publications have generated a debate centred on the 
validity of carbon isotopic analyses in phytoliths and 
what exactly is the signature measured through this 
technique (Santos & Alexandre 2017; Santos et al. 2016). 
Hodson and colleagues (2008) explored the potential 
of oxygen and silicon isotopes alongside carbon on the 
same plants of Triticum sp. and concluded that silicon 
and carbon are the most promising isotopic systems to 
be used in palaeoenvironmental studies, while more 
work on oxygen isotopes was needed to explain its 
patterns of variation. Following this, several groups 
have been working on oxygen isotope methodology 
(Chapligin et al. 2011; Crespin et al. 2008) up to the 
point where this technique has been fully validated 

for palaeoenvironmental studies (Alexandre et al. 
2012). Work on silicon isotopes, on the contrary, is 
much rarer, although the potential of this technique 
is gaining recognition (Leng & Sloane 2008; Leng et 
al. 2009), to the point that Hodson (2016) recognizes 
it as a commonly used technique.

Ancient DNA in archaeology has been used to 
understand human evolution and, when extracted 
from plants and animals, as a way to understand the 
processes involved in domestication. The extraction 
of DNA directly from phytoliths is related to the pos-
sible presence of organic material occluded within 
the silica. However, this seems to be a problematic 
avenue of study, as observed by Elbaum et al. (2009). 
An interesting side of DNA studies and phytoliths is 
the exploration of the genetic mechanisms involved 
in phytolith production. Despite the evidence that 
silicon is fundamental for plant growth, as it provides 
strength, detoxification and protection from animals 
(Piperno 2006), the exact mechanism for phytolith 
formation is still not fully understood. Piperno et al. 
(2002) indicate that phytolith formation in Cucurbita-
ceae is regulated by a dominant genetic locus previ-
ously associated with the production of lignin. The 
same research establishes that this locus also has an 
important role in phytolith morphology, constituting a 
major breakthrough in the understanding of phytolith 
formation and taxonomy.

Phytoliths in archaeology

The process of domestication of plants and the set-
ting and spread of agriculture was a transformational 
moment in the socio-ecological history of our species. 
Currently, the archaeological record shows that, start-
ing around 12,000 years ago, plant cultivation and 
domestication developed independently in several 
regions of the world and then spread via cultural or 
demic diffusion into most geographical areas (Larson 
et al. 2014). Archaeobotany has focused on developing 
methods for identifying the domestication process, the 
cultivation of plants and fully fledged agriculture from 
wild plants and crops remains. During the last 20 years, 
phytoliths in all regions of the world have become an 
important proxy in this research, alongside macro 
remains, pollen and starch grains (e.g. Pearsall 2015b; 
Piperno 2006; 2009). After many years of work focused 
on the standardization of identification characteristics 
based on reference collections and morphometric 
analysis of phytoliths from wild species and crops, 
the discipline has finally reached sound and repli-
cable procedures. Piperno (2006) performed the first 
review of crop phytoliths, followed by more recent 
endeavours from Piperno (2012) and Ball et al. (2016a). 
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Phytoliths have been used in a number of dif-
ferent ways to understand agricultural origin and 
dispersal:
1) as direct proxies for cultivation and domestication 

of certain species
2) as part of a multi-proxy research to identify past 

crops or wild species
3) as low-level taxonomic identifiers (e.g. species 

level) or identifiers of plant structures (e.g. inflo-
rescences, leaves) less visible with other fossils

4) as proxies for the expansion of ancient crops.
Phytoliths significantly increase the traceability of 
several Old and New World crops, including taxa that 
are normally invisible in the charred record, such as 
some fruits or root crops, as well as enabling the iden-
tification of different plant structures pertaining to the 

same crop (e.g. Corteletti et al. 2015; García-Granero 
et al. 2015a,b; Iriarte et al. 2012; Madella et al. 2014). 
The level of taxonomic significance of phytoliths will 
differ from species to species in the same manner as 
other fossil indicators of plant exploitation, such as 
charred remains of seeds.

In Table 4.1 we summarize the present under-
standing of crop identification based on phytoliths 
and in the following text we discuss the utility of 
phytoliths for identifying major crops and therefore 
agricultural origins and crop dispersal.

Triticum and Hordeum spp. (wheat and barley)
Wheat and barley are major silica accumulators, pro-
ducing a variety of morphotypes such as the ones from 
epidermal cells: short cells; long cells; cork cells; papil-

Plant Phytolith 
production

Taxonomic 
specificity Plant Part

Southwest Asia

Triticum spp. (einkorn, emmer, 
other species) Very high Genus Inflorescence bracts (glume, lemma 

and palea)

Hordeum spp. (barley, other 
wheats) Very high Genus Inflorescence bracts (glume, lemma 

and palea)

East Asia

Oryza sativa (rice) Very high Species Glume, Leaf (bulliform cells)

Setaria spp. (foxtail millets) Very high Genus Glume

Panicum spp. (broomcorn millets) Very high Genus Glume

South and 
Southeast Asia

Musa spp. (bananas) High Genus, Section, 
Species Leaf, Seed

Benincasa hispida (wax gourd) Very high Genus (?) Fruit rind

Cocos nucifera (coconut) Very high Family or Subfamily All plant parts

Africa

Lagenaria siceraria (bottle gourd) Moderate Genus Fruit rind

Ensete ventricosum (Abyssinian or 
Ethiopian bananas) High Genus Leaf and seed

Sorghum bicolor (sorghum) High Genus Glume

Americas

Zea mays (maize) Very high to low Species Cob (glume/cupule), Leaf, Husk

Cucurbita spp. (squashes and 
gourds) Very high/high Family, Genus, 

Species Fruit rind, Leaf

Lagenaria siceraria (bottle gourd) Moderate Species Fruit rind

Sicana odorifera (cassabanana) High Genus Fruit rind

Manihot esculenta (manioc or 
yuca) Very low Genus Most plant parts

Maranta arundinacea (arrowroot) Very high Species Seed

Calathea allouia (llerén) Very high to 
Moderate Species Seed, Rhizome

Ananas comosus (pineapple) Very high Family Leaf, Seed

Canna edulis (achira) Very high Genus (?) Leaf

Phaseolus vulgaris and lunatus 
(common/lima  bean) Moderate Genus Pod

Helianthus annuus (sunflower) High Family (Genus?) Achene

Arecaceae (palms) Very high Family, Subfamily, 
Genus (?) All parts

Table 4.1. Phytolith production and taxonomic specificity for the world’s major crops.
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lae; trichomes; and trichome bases. These bodies are 
very characteristic and can be diagnostic at genus level 
when a morphotypic and morphometric approach is 
used (e.g. Ball et al. 1999; 2009). There has also been 
some success in identification to species level, primar-
ily based on the morphometric differences observed 
in the short cell (rondel), dendritic and/or papillae 
phytoliths (e.g. Ball et al. 1999; Rosen 1992; Tubb et al. 
1993). Moreover, features of the anatomy displayed in 
the silicified epidermal tissues of cereals can be used 
to distinguish plant parts.

Setaria and Panicum millets (foxtail and broomcorn 
millets) and other small millets 
Phytoliths from the inflorescence of Setaria and Pani-
cum are extremely useful for identifying Setaria italica 
(foxtail millet), Setaria viridis (green foxtail) and Panicum 
miliaceum (common or broomcorn millet) and thus doc-
umenting the earliest history of domesticated millets in 
Eurasia (García-Granero et al. 2015a,b; Zhang et al. 2011; 
2013). Important features to distinguish these taxa are 
the silica body shape, papillae characteristics (includ-
ing presence/absence), epidermal long cell patterns and 
glume surface sculpture (Lu et al. 2009). A cautionary 
note is due when differentiating crop phytoliths from 
their Panicoid weedy wild relatives in archaeological 
contexts, as this can be a challenge due to similarities 
of identifiable Panicoid husk morphotypes. Strict iden-
tification criteria must therefore be followed for correct 
identifications. The discrimination between S. italica 
and its wild ancestor, S. viridis, is based on the mor-
phometry of phytoliths in the upper lemma and palea 
(Zhang et al. 2011), although some uncertainty remains 
and more studies are needed to detect the presence of 
other potentially diagnostic features. Morphological 
and basic morphometric studies of glumes of other 
minor millets also show the potential of phytoliths for 
differentiating these important crops in the prehistory 
of Eurasia and Africa (Madella et al. 2014).

Oryza sativa (rice) 
Phytoliths play a very important part in the archaeo-
logical study of rice domestication and cultivation. 
Currently, three distinct phytolith morphotypes are 
used to identify rice: double-peaked glume cells from 
the rice husk; bulliform cell phytoliths from the leaves; 
and articulated bilobate phytoliths from stems and 
leaves (Gu et al. 2013; Piperno 2006). Double-peaked 
glume cell phytoliths are unique to the genus Oryza 
and can discriminate domesticated rice from wild 
rice species of South and Southeast Asia on the basis 
of linear discriminant function analysis of glume cell 
measurements (Zhao & Piperno 2000) or three-dimen-
sional measurements (Gu et al. 2013). The morphologi-

cal characters of bulliform cell phytoliths seems to be 
under genetic control, therefore reflecting taxonomical 
significance (Gu et al. 2013), and some features such 
as surface ornamentations have been employed to 
distinguish domesticated from wild rice (Huan et al. 
2014; Wang & Lu 2012). Phytoliths can also be used as 
a tool for understanding the development and spread 
of rice (Oryza sp.) arable systems using arable weed 
ecologies as pioneered by Fuller and Weisskopf (2011).

Musa spp. (true bananas) and Ensete ventricosum 
(Ethiopian/Abyssinian banana)
The domestication and spread of true bananas (Musa 
spp.) is difficult to untangle. Current domestic 
bananas derive from the Eumusa (Musa acuminata 
[AA] and Musa balbisiana [BB]) and Australimusa (M. 
maclayi) sections of Musaceae through intra- and inter-
specific hybridization, polyploidization and soma-
clonal mutations, which resulted in seed sterility and 
parthenocarpy (De Langhe et al. 2009). Prehistoric and 
historical human populations spread domesticated 
Eumusa throughout the tropics and any evidence for 
Musa phytoliths outside Asia is indicative of cultiva-
tion (Vrydaghs & De Langhe 2003). Phytoliths can 
be produced in various plant tissues and organs of 
bananas (e.g. Chen & Smith 2013), with seed and leaf 
phytoliths being the most studied to date. In Musa and 
Ensete leaves, the silicification of cells from around 
the vascular tissue produces volcaniform (volcano-
shaped) phytoliths (Ball et al. 2006). Both morphotypic 
(e.g. Vrydaghs et al. 2009) and morphometric studies 
(e.g. Lentfer 2009; Vrydaghs et al. 2009) have been car-
ried out to be able to identify different Musa and Ensete 
species. The results show that volcaniform phytoliths 
can be discriminated at the genus level (distinguish-
ing bananas from Ensete in archaeological records: e.g. 
Lentfer 2009; Mbida et al. 2001), but reliable identifica-
tion at the species level is still wanting.

Sorghum bicolor (sorghum), Pennisetum glaucum 
(pearl millet) 
A certain number of recent studies have showcased 
phytolith production in African domesticated grains 
and their wild progenitors (Logan 2012; Madella et al. 
2014; Novello & Barboni 2015; Out & Madella 2017; 
Radomski & Neumann 2011). However, there are cur-
rently too few studies on phytolith production in the 
wild grasses inflorescences (Novello & Barboni 2015) 
to be able to identify specific morphotypes diagnostic 
to the genus or species level.

Zea mays (maize)
Maize is native to the central Balsas River region of 
tropical southwest Mexico (see van Heerwaarden et 
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al. 2011) and represents the main cereal crop of the 
Americas. More than three decades of focused research 
have demonstrated that phytoliths produced in the 
leaf and cob of maize are diagnostic, and distinguish-
able from those of teosinte (its wild ancestor) and 
other wild non-Zea grasses native to North, Central 
and South America (Ball et al. 2016a). The criteria used 
for the identification of maize phytoliths employ both 
size and morphology and, as with phytoliths from 
other crop plants, vegetative and inflorescence struc-
tures can be distinguished (leaf, stalk and seed chaff).

Cucurbita squashes and gourds and other Cucurbitaceae
Squashes and gourds pertaining to the genus Cucur-
bita, as well as other types of Cucurbitaceae, were 
important early plants of the Americas, and they 
produce phytoliths of high taxonomic information to 
document their archaeological history. Many parts of 
the squash/gourd plants are high phytolith producers 
and the phytoliths obtained from fruit rinds are the 
most diagnostic. Morphotypic and morphometric 
studies have been used to discriminate between wild 
and domesticated Cucurbita species, with domesti-
cated fruits often producing much larger and thicker 
phytoliths (Piperno 2006). Bottle gourd (Lagenaria 
siceraria) is indigenous to Africa, but spread to other 
continents by the early Holocene, and its large, scal-
loped phytoliths from fruit rinds have been recovered 
from early Holocene and later deposits in Central and 
South America (e.g. Piperno 2011). 

Maranta and Calathea (arrowroot and llerén, 
Marantaceae); Canna (Achira, Cannaceae); Manioc 
(Manihot esculenta, Euphorbiaceae)
These tropical root crops (roots, rhizomes, tubers 
and corms) are today of minor importance, with the 
exception of manioc. The plants from the Zingiberales 
(Marantaceae and Cannaceae) generally produce 
(abundant) phytoliths that can be taxonomically 
diagnostic at order, family, genus and species level 
(e.g. Pearsall 2015a). Manioc, today one of the major 
root crops of the Americas, is a low silica accumula-
tor (Piperno 2006), but by processing considerable 
quantities of tissues it was possible to identify silicified 
secretory bodies in the root rind, leaf, stem and fruit 
(Chandler-Ezell et al. 2006).

Modern comparative approaches

Phytolith studies with an ethnoarchaeological or 
modern comparative approach started to become 
widespread from the late 2000s. This type of research 
concentrates on the analysis of phytoliths—often 
combined with other proxies—extracted from mod-

ern or historical ethnographic contexts. The aim of 
these studies is to build strong reference collections 
of phytolith assemblages produced by specific activi-
ties or materials. The rationale, grounded in middle-
range theory, is that phytolith assemblages observed 
in ethnographic contexts can be linked directly to 
the anthropic or natural activity that produced them, 
thus offering interpretative values for archaeological 
and natural assemblages. The main themes in which 
ethnoarchaeological research on phytolith have been 
concentrated are:
1) The creation of plant and soil reference collections
2) Subsistence practices and other plant-related activi-

ties, such as crop processing
3) Use of space and spatial activities
4) The use of non-food plant resources, with a special 

focus on the identification of dung.

Plant and soil reference collections
Although not normally considered part of ethno-
archaeological research, the creation of reference 
collections responds to the general aim of creating a 
middle-range theory approach that help interpreting 
the archaeological (or environmental) record. Sev-
eral studies have been devoted to the morphological 
and morphometric analyses of phytoliths produced 
by some of the major crops: Triticaceae and Avenae 
(Ball et al. 2009; 2017; Portillo et al. 2006); millets and 
sorghum (Lu et al. 2009; Madella et al. 2016; Out & 
Madella 2016; 2017; Tripathi et al. 2013; Zhang et al. 
2011); and banana (Ball et al. 2006; Vrydaghs et al. 2009). 
Fewer studies have concentrated on non-domesticated 
species, focusing on phytolith production in wild 
grasses (Babot et al. 2017; Neumann et al. 2017), in 
dicotyledonous species (Collura & Neumann 2017; 
Mercader et al. 2009) or in a combination of plants 
(Tsartsidou et al. 2007). Reference collections of phy-
tolith assemblages from sediments and soils are also 
investigated in order to be able to identify past vegeta-
tion cover (e.g. Blinnikov et al. 2013; Esteban et al. 2017; 
Gomes Coe et al. 2017; Iriarte & Paz 2009; Mercader et 
al. 2009). Either directed to the phytolith production 
of specific species or groups of species, conducted 
directly on the plants, or of phytolith assemblages 
representative of a specific vegetation type, these 
studies form the basis of the correct reconstruction of 
past plant use and plant cover.

Subsistence practices and plant-related activities
The major advances regarding subsistence practices 
and plant-related activities, in general, include the 
identification of the exploitation of wild and garden 
species (Weisskopf 2016) thereby addressing one of 
the major problems in archaeobotany, that is the vis-
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ibility of so-called ‘alternative resources’. Phytoliths, 
being both exceedingly resistant to taphonomic altera-
tions and plant-part specific, can be extremely useful 
in identifying different crop-processing steps. Harvey 
and Fuller (2005) showed how the chaîne opératoire 
of processing of millets and rice produces phytolith 
assemblages exclusive for each step. Specific stages of 
the crop-processing chain can also be investigated: Liu 
et al. (2017) analyse the use-wear effect of phytoliths 
on lithic tools, an approach that can offer fundamental 
insights to our understanding of pre-domestication 
processes. Ruiz-Perez et al. (2016) analysed phytolith 
assemblages from two ethnographic threshing floors, 
showing that the general pattern of phytolith deposi-
tion on the floor mirrored the circular movement of 
the activity performed.

Spatial analyses of anthropic activities
One of the most novel aspects of phytolith research 
in ethnoarchaeology is the application of multi-proxy 
and statistical methods for the identification of spatial 
distribution of activities. Briz Godino et al. (2011) and 
Zurro et al. (2017) use phytoliths in combination with 
other proxies to detail the formation processes and 
distinguish between specialized and generic activities 
in a shell-midden context in Tierra del Fuego. Hunter-
gatherer contexts are especially difficult to study as 
they leave much more scanty evidence on the ground 
in respect to settled villages. Thus the work by Friesem 
et al. (2016) is particularly important in that it outlines 
a methodology that allows the identification of activ-
ity areas and their maintenance even in hostile pres-
ervation environments, such as tropical rainforests. 
On the other hand, settled farming villages produce 
assemblages that are much richer and often better 
preserved so that activities are recognizable at both 
domestic and village level (Jenkins et al. 2017; Portillo 
et al. 2014; Tsartsidou et al. 2008; 2009).

Use of non-food resources: dung and mud bricks
Amongst the plant non-food resources, much research 
has been invested in using phytoliths as one of the 
proxies for the identification of animal dung. Dung 
is widespread in archaeological contexts, although it 
is not always easy to identify as sometimes it leaves 
ephemeral traces and the most common proxy for 
dung—spherulites—is not always reliable (Lancelotti 
& Madella 2012). The correct identification of animal 
dung is fundamental for the implication that the use 
of this material has on the interpretation of human 
behaviour, on the one hand, for the correct identifica-
tion of husbandry practices and pastoral sites (Elliott 
et al. 2015; Shahack-Gross et al. 2003; 2004) and on the 
other hand, for its importance as a fuel resource in 

arid and semi-arid environments, where its presence 
and constant use can indicate signs of environmental 
degradation and wood-resource overexploitation. 
Ethnographic fireplaces have thus been intensively 
investigated in recent years in order specifically to 
identify signatures of dung (Portillo et al. 2017) or 
with the aim of discriminating various fuel sources 
(Friesem et al. 2017; Gur-Arieh et al. 2013; Lancelotti 
et al. 2017). All of these studies have highlighted the 
potential of phytoliths, as part of a wider set of prox-
ies and with the right statistical treatment of data, for 
the identification of fireplaces and fuels, including 
fuels alternative to wood. Lastly, a few studies have 
concentrated on the analysis of construction materials, 
such as mud bricks (Friesem et al. 2014; Jenkins et al. 
2017), to be able to distinguish between the signature 
left by their degradation and that of other intentional 
human activities.

Environmental reconstructions and past land use

Phytoliths have been successfully used as a proxy for 
reconstructing Quaternary vegetations, especially in 
depositional environments where other organic prox-
ies are poorly preserved, such as alluvial deposits and 
soils (e.g. Bremond et al. 2017; Calegari et al. 2017; 
McMichael et al. 2013; Wallis 2001) and rocks (e.g. 
Strömberg et al. 2007). Phytolith assemblages from 
ancient superficial sediments reflect deposition from 
local vegetation and therefore local climatic character-
istics, making it possible to use them to infer palaeo-
climate and palaeoenvironments. However, precise 
assessment of past environments might be hampered 
by pre- and post-depositional processes that tend to 
alter the original plant community production. A 
diverse set of approaches supported by multivariate 
statistical methods, such as phytolith indexes (Bre-
mond et al. 2005; 2008) and modern analogues analysis 
(Watling et al. 2016), were recently developed partly 
to solve this problem. The application of these quali/
quantitative techniques has made it possible to deter-
mine which vegetation and environmental factors are 
dominant in influencing phytolith type distributions 
and to identify these parameters in the fossil phytolith 
assemblages on the basis of modern assemblages.

Earth system models help in understanding the 
earth system as a whole and the drivers of change 
and assist in envisaging our future. A major research 
question that cross-cuts the social, biological and 
physical sciences is to understand the scope of early 
human land use, the resultant changes in land cover 
and the consequent feedbacks to climate and human 
cultural systems during the Holocene and Anthro-
pocene. There remains disagreement over the forms, 
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scope and intensity of prehistoric land use and the 
degree to which early anthropogenic land-cover 
change affected the global climate system. Researchers 
agree that the intensity and extent of human land use 
increased during the Holocene, when hunter-gatherer 
societies gave way to early pastoral and agricultural 
societies, which in turn increased in complexity. These 
effects of human land use on terrestrial ecosystems 
were profound at local to regional scales, but there is 
uncertainty about how important they were at global 
scale, and this uncertainty is fostered by the lack of 
high-quality data-based syntheses of global land use 
and anthropogenic land-cover change for the last 
12,000 years. Phytoliths have been useful in extend-
ing on- and off-site high-quality datasets to supply 
more refined synthesis of land use in areas such as 
understanding the irrigation of crops (Madella et 
al. 2009), arable land (Golyeva & Svirida 2017), past 
agricultural systems (Meister et al. 2017) and forest 
management (Levin & Ayres 2017; Levis et al. 2017; 
Nogué et al. 2017).

Final remarks

Phytoliths were observed, as part of mineral particles 
produced by plant tissues, more than 340 years ago, 
but it was Struve who pioneered the first scientific 
study in 1835. Research on phytoliths has seen vari-
ous moments of interest, such as the early works on 
plant studies and (palaeo)ecology, but it was within 
archaeology that phytoliths gained momentum and 
widespread acknowledgement. This ‘popularity’ 
originates in the new avenues opened by phytoliths to 
investigate central archaeological questions, with the 
possibility of identifying previously unrecognizable 
(or difficult to discern) plants in the archaeological 
record, as well as human activities (e.g. crop process-
ing). The development and refinement of phytolith 
systematics and crop identification via a double 
morphotypic and morphometric approach were major 
endeavours that stemmed from archaeology. Future 
advances should look at augmenting the comparative 
collections available together with their accessibility to 
researchers and refining the field-sampling approach 
and laboratory processing to further standardization, 
and push on the ethnoarchaeology and experimental 
archaeology work to provide a framework for a bet-
ter understanding of the relationship between human 
activities and phytolith signatures.
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