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Abstract

Deep neural networks for medical image super-resolution

Jin Zhu

Super-resolution plays an essential role in medical imaging because it provides an alterna-

tive way to achieve high spatial resolutions with no extra acquisition cost. In the past

decades, the rapid development of deep neural networks has ensured high reconstruction

fidelity and photo-realistic super-resolution image generation. However, challenges still

exist in the medical domain, requiring novel network architectures, training tricks, and

SR image evaluation techniques. This dissertation concentrates on backbone networks for

supervised single-image super-resolution tasks on various medical images with challenging

magnification scales. Besides incorporating widespread methods designed for natural

images, I explore progressive learning, adversarial learning and meta-learning in end-to-end

frameworks based on convolution neural networks, generative adversarial networks and

vision transformers for robust medical image super-resolution. In addition to general

image quality assessments, task-specific objective and subjective evaluation metrics are

implemented for comprehensive comparisons. Specifically, the proposed approaches contain

three directions, achieving state-of-the-art performance on diverse medical image modalities.

First, I implement progressive and adversarial learning for perceptually realistic tex-

ture generation in super-resolution tasks with challenging magnification scales (i.e. ×4).

I present a CNN-based multi-scale super-resolution image generator that decomposes

the complex mapping problem into simpler sub-problems to avoid over-smoothing the

structural information and introducing non-realistic high-frequency textures in super-

resolved images. Moreover, it involves a lesion-focused training strategy and an advanced

adversarial loss based on the Wasserstein distance for more efficient and stabilised training.

This proposed method dramatically improves the perceptual quality of generated images,

achieving comparable subjective scores of experienced radiologists with ground truth

high-resolution images in the experiments of the brain and cardiac magnetic resonance im-

ages. It competed for state-of-the-art perceptual quality in medical image super-resolution

in 2019 and became the pioneer of GAN-based medical image research with enduring effects.



Second, I introduce meta-learning and transfer learning to GANs for efficient and robust

medical image super-resolution with arbitrary scales (e.g. (1, 4]). In the post-upsampling

framework, I implement a lightweight network based on EDSR for productive low-resolution

feature extraction and a weight prediction module for scale-free feature map upsampling.

Compared with existing SISR networks, this framework supports non-integer magnification

with no adverse effects of pre-/post- processing. Specifically, this approach achieves com-

parable reconstruction accuracy and objective perceptual quality performance with much

fewer parameters than SOTA methods. Additionally, I robustly transfer the pre-trained SR

model of one medical image dataset (i.e. brain MRI) to various new medical modalities (e.g.

chest CT and cardiac MR) with a few fine-tuning steps. Moreover, exhaustive ablation

studies are conducted to discuss the perception-distortion tradeoff and to illustrate the

impacts of residual block connections, hyper-parameters, loss components and adversarial

loss variants on medical image super-resolution performance.

Finally, I propose an efficient vision transformer with residual dense connections and

local feature fusion to achieve superior single-image super-resolution performances of medi-

cal modalities. Due to the improved information flow, this CNN-transformer hybrid model

has advanced representation capability with fewer training computational requirements.

Meanwhile, I implement a general-purpose perceptual loss with manual control for desired

image quality improvements by incorporating prior knowledge of medical image segmenta-

tion. Compared with state-of-the-art methods on four public medical image datasets, the

proposed method achieves the best PSNR scores of 6 modalities among seven modalities

with only 38% parameters of SwinIR (the most recent SOTA method). On the other

hand, the segmentation-based perceptual loss increases by +0.14 dB PSNR on average for

prevalent super-resolution networks without extra training costs. Additionally, I discuss

potential factors for the superior performance of vision transformers over CNNs and GANs

and the impacts of network and loss function components in a comprehensive ablation study.

In conclusion, this dissertation represents my research contributions of applying deep

neural networks on robust medical image super-resolution tasks, including efficient network

architectures, broad applicability training techniques, and clinically meaningful image

quality evaluation. When publishing, these proposed approaches perform state-of-the-art

on various public and private medical image datasets in simulation experiments. These

algorithms potentially apply in hospitals for advanced clinical processes with proper case-

specific modifications and supplementary techniques. Moreover, the novel methods and

findings of super-resolution may also benefit other low-level image processing tasks, while

the discussion and ablation studies provide exciting future research directions.
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Abbreviations

ACDC the open-access CT image dataset for automated cardiac diagnosis challenge.

AWGN additive white Gaussian noise.

BraTS the brain tumour segmentation dataset, one of the biggest open-access medical

image segmentation benchmarks, including multi-modal brain MR scans and manual

labels of tumour components.

CNN convolution neural network.

COVID coronavirus disease 2019.

COVID-CT an open-access dataset of CT scans of patients with COVID infections.

COVID-19 CT another open-access dataset of 3D CT scans of 20 patients with COVID

infections and annotations.

CT computed tomography (images/scans).

DNN deep neural network.

DSTB a dense swin (i.e. shifted-window attention) transformer block proposed in Chapter.

5.

DT-CMR diffusion tensor cardiovascular magnetic resonance (images/scans).

EDSR a super-resolution network with enhanced residual blocks by removing the batch

normalisation.

FC fully-connected layer, also called as linear layer.

FID Frechet Inception Distance, an automatic perceptual quality evaluation method of

images by measuring the distance between the distributions of two groups of images

in the feature domain.



FPS inference frame rate (i.e. frame-per-second), a metric to evaluate the model efficiency

on throughput: bigger FPS means a faster model.

GAN generative adversarial networks.

GFF global feature fusion.

GPU graphics processing unit.

GT ground truth.

HAN a CNN-based super-resolution network with holistic attention (i.e. channel-spatial

attention and layer-wise attention).

HR high-resolution (images/feature maps/matrices etc.).

IQA image quality assessment.

LFF local feature fusion.

LFSR lesion-focused super-resolution, an advanced super-resolution method by introduc-

ing lesion detection and ROI-focused training to the original SRGAN.

LEG-CMR Late gadolinium-enhanced cardiovascular magnetic resonance (images/scans).

LR low-resolution (images/feature maps/matrices etc.).

MACs multi-add calculations, a metric to evaluate the model efficiency: fewer MACs

means a more efficient model.

MAE mean absolute error (i.e. L1 loss).

MetaRDN a super-resolution network which proposes meta-upscale module for arbitrary

scale super-resolution.

MIASSR the proposed method in Chapter 4 for scale-free medical image super-resolution.

MLP multi-layer perceptron.

MOS mean opinion score, an perceptual quality evaluation method of images by manual

scores.

MR magnetic resonance (images/scans) while MRI denotes MR images.

MSE mean squared error.



MS-GAN the proposed method in Chapter 3 for medical image super-resolution, con-

sisting of a multi-scale image generator.

OASIS the open access series of imaging studies dataset.

PSNR peak signal-to-noise ratio, the most widespread evaluation criteria for image

restoration tasks, measuring the pixel-wise accuracy.

RCAN a CNN-based super-resolution network with residual blocks and channel attention.

RDN a super-resolution network with residual dense blocks and local feature fusion.

RDST the proposed method in Chapter 5 for medical image super-resolution with residual

dense vision transformer.

RDSTB a residual dense swin (i.e. shifted-window attention) transformer block proposed

in chapter 5.

ReLU an activation function, Rectified Linear Unit.

ROI region of interest.

SISR single image super-resolution, an operation/task to apply super-resolution based

on the input of only one image.

SOTA state-of-the-art.

SR super-resolution, an operation/task to increase the resolution of images.

SRGAN a super-resolution network with GAN for photo-realistic results.

SRResNet a super-resolution network with residual blocks, the SR image generator

proposed in SRGAN.

SSIM structural similarity, widespread evaluation criteria for image restoration tasks,

reflecting the global structural information.

STL a swin (i.e. shifted-window attention) transformer layer.

SwinIR a CNN-transformer hybrid super-resolution network with shifted-window atten-

tion.

U-Net a network proposed in 2015 for medical image segmentation, the U-shape archi-

tecture also benefits image enhancement tasks.



VGG a network proposed in 2014 for objection detection, popularly used in perceptual

loss function design.

ViT vision transformer.

WGAN Wasserstein GAN.

WGAN-GP Wasserstein GAN with gradient penalty.



Notations

α a scalar (so are β, γ, η and λ), normally indicate the scale of loss function components.

A unified form of the single-head attention operation in vision transformers.

ai,j the normalised attention vector across the i-th and j-th tokens in vision transformers.

bd a vector/matrix with indicated shape (e.g. d), as the trainable bias of one layer/node

in neural networks.

B a block in neural networks, consisting of batch normalisation layers, convolution layers,

activation layers etc. φB indicates its trainable parameters. The potential superscript

indicates a successive connection of blocks (e.g. Bn means n stacked blocks) and the

subscript indicates the type of block (e.g. BR denotes a residual block).

Td→g(·) a bottleneck/local feature fusion module consisting of convolution/FC layers in

neural networks. It compresses the dimension of feature maps from d to g (so-called

the growth rate in dense blocks.

C a convolution layer, φC indicates its trainable parameters.

? convolution operation, modifies the shape and values of one function (e.g. an image

or feature maps) by kernels. This is the basic calculation of convolution neural

networks..

?κi convolution operation with the i-th kernel κi.

%(·) the patch cropping operation in the meta-upscale module.

d a scalar, normally indicates the embedding dimension of vision transformers.

D a set of label and image pairs, as the training/testing dataset. Additionally, X indicates

the set of inputs while Y indicates the set of outputs..

?δ image degradation during capturing process.

D a network, normally indicates the discriminator in GAN.



↓s down-sampling with scale s.

D(·) a dense swin transformer block proposed in chapter 5.

E the expectation.

F(·) the feature extraction module in super-resolution networks.

F the feature maps of one layer/module, potential subscript and superscript indicate the

shape (e.g. Hout,Wout, c) and order (e.g. in or out).

f i the i-th feature map calculated by the i-th kernel in a convolution layer.

Ψ embedding function in transformers.

nσ Gaussian noise with standard deviation σ.

G a network, normally indicates the SR image generator.

H(·) the CNN-based shallow feature extraction head in SwinIR and RDST.

H,W height and width of images/feature maps.

Ihr a high-resolution image obtained from the training/testing dataset (i.e. the ground

truth).

I lr a low-resolution image obtained from the training/testing dataset (i.e. the input of

the super-resolution networks).

I a set of images.

L,H the low-dimension and high-dimension spaces of images.

Isr a high-resolution image super-resolved by super-resolution networks (i.e. the output

of the SR networks). The potential superscript indicates the magnification scale (e.g.

I×4
sr denotes a ×4 super-resolution result).

Kh,w,c the convolution kernels of one convolution layer with shape h,w, c, where c indicates

the number of kernels/channels (i.e. layer width) and h,w indicate the shape of each

2D kernel.

k a scalar, the kernel size.

L ground truth labels in segmentation tasks.



LD a lesion detection network.

ι a scalar, normally indicates the learning rate in gradient descent.

L a loss function.

M(·) ↑s the up-sampling module in super-resolution networks for feature maps magnifica-

tion with scale s. Its simplified version is Ms.

Q,K,V the query, key and value matrices for all tokens of one attention layer in vision

transformers.

N a normalisation layer (e.g. batch normalisation or layer normalisation), φN indicates

its trainable parameters.

P(·) a multi-layer perceptron.

P predicted labels by pre-trained U-Net in segmentation tasks.

s a scalar, the magnification scale in super-resolution tasks.

S(·) swin transformer layer.

θ trainable weights of a network (e.g. θG indicates the parameters of the network G).

ti the i-th token in transformers after embedding.

U a U-Net trained for medical image segmentation. It supports the segmentation-based

perceptual loss in chapter 5. Specifically, U [Ei](·) indicates the output feature maps

of the i-th encoder block and U [D](·) indicates the output feature maps of the

decoder. θU denotes its trainable parameters.

ϕ(·) a non-linear activation layer in neural networks.

qi,ki,vi the query, key and value vectors of the i-th token in vision transformers after

embedding.

V the pre-trained VGG network, while Vl(·) indicates the output feature maps of the l-th

layer in the network..

wc weights of a convolution kernel.

W d,k a matrix with the indicated shape (e.g. [d, k]), as the weights of one layer/operation.



wq,wk,wv matrix with shape d × d for embedding operations of query, key and value

vectors q,k,v in vision transformers, where d is the embedding dimension.

W(·) the weights prediction network in the meta-upscale module.

x a scalar, the input of a function.

x a vector/matrix as the input of a function/layer/network, potential subscript may

indicate the index or the shape (e.g. xi means the i-th sample while xd is a

1-dimension vector with the length of d).

y a scalar, the output of a function.

ȳ a vector/matrix, the ground truth label/values/image in the training/testing dataset.

y a vector/matrix as the output of a function/layer/network, potential subscript may

indicate the shape or index (e.g. yi means the i-th sample while yd is a 1-dimension

vector with the length of d).



CHAPTER 1

Introduction

Download the high-quality PDF of this dissertation with uncompressed figures here1.

1.1 Motivation

Medical images are crucial in the current clinical process, including early detection, staging,

guiding intervention procedures and surgeries, radiation therapy, and monitoring disease

recurrence [1]. For example, computed tomography (CT) and magnetic resonance (MR)

scans are widely used in the diagnosis and study of Alzheimer’s disease [2], stroke [3],

autism [4], Parkinson’s disease [5] and coronavirus disease (COVID) [6]. Although people

have witnessed the importance of in-vivo radiology images, their spatial resolution is

subject to the scan time, body motion, dose limit and hardware configurations. Thus,

super-resolution methods are introduced as alternative post-processing to achieve higher

resolution and better image quality without extra acquisition costs [7].

Image super-resolution (SR) is a process to recover an image of high-resolution (HR)

from low-resolution (LR) versions. Depending on the number of input and output images,

there are two main categories: single image super-resolution (SISR) and multi image

super-resolution. With the rapid development of deep learning algorithms, SISR methods

with neural networks achieve superior performance on natural images than the previous

interpolation-based, reconstruction-based, and learning-based methods [8–10]. However,

introducing deep neural networks to medical image super-resolution tasks is still an open

problem. In the clinic, super-resolved images always proceed to medical image analysis

tasks, and the datasets are relatively small [11–13]. Thus, super-resolution methods for

medical images require novel mechanisms and modifications on training datasets, loss func-

tions, evaluation metrics and network architecture design to preserve sensitive information

1https://www.dropbox.com/sh/8juz2jv9bp09hsg/AAC332wIaVX2M06_hEZyDadHa?dl=0
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and to enhance the structures of interest for radiologists and physicians [7]. It is worth

discussing the capacity and limitations of deep learning methods in this typical low-level

medical image enhancement task. Additionally, successful characteristics and novel findings

in SR tasks may potentially benefit other pixel-to-pixel medical image analysis tasks such

as reconstruction [14], synthesis [15] and denoising [16]. The fundamental goal of these

tasks is non-linear transform approximation from one image space to another with high

pixel-wise accuracy and global perceptual fidelity. Thus, they share common mechanisms

with super-resolution solutions, such as network framework, loss function and evaluation

assessment design.

Furthermore, the image quality assessment (IQA) of medical images is different to nat-

ural images [17]. Using IQA metrics in medical SR tasks must be more reliable with

domain-specific prior knowledge. For example, artefacts of medical images are unique

because they are related to the imaging system (e.g. ghosting in MR images) and scanning

process (e.g. blurring caused by patient motion) [18]. Meanwhile, medical images usually

attach importance to focal lesions and may sacrifice the overall image quality. Thus,

the bias, efficiency and robustness of widespread IQA metrics are worth discussing in

medical image SR tasks. Although the quality measurement of medical images does

not equal diagnostic accuracy [19], radiologists and medical consultants always prefer

high-quality images for accurate diagnosis. Thus, involving related medical image analy-

sis topics for task-based evaluation is necessary to benefit the super-resolution pipeline [20].

In summary, medical image super-resolution is essential in the clinic process and medical

image analysis fields. It can lead to high-quality medical images, decreasing scan costs

and improving user experience. At the same time, the novel approaches and findings

of super-resolution may benefit a wide range of pixel-wise low-level image processing

tasks. As a domain-specific task, innovations in training datasets, loss functions, model

architectures and evaluation metrics for medical images are necessary for superior results,

besides incorporating deep learning-based methods for natural images. It is also worth

exploring the connection between super-resolution and related medical image analysis

tasks and its applicability to various medical image modalities.

1.2 Contribution

The fundamental aim of this dissertation is to explore deep neural networks (DNNs) for

robust medical image super-resolution with better performance and efficiency, which can

apply to a broad range of medical modalities. In the past decades, the rapid development

of neural networks has led to dramatic performance improvement in a wide range of
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computer vision tasks [21], especially on natural image super-resolution enhancement tasks

[9]. The following chapters will present how my proposed DNN-based methods achieve

state-of-the-art (SOTA) results in comparison studies with existing SISR algorithms on

various public and private medical datasets. I explore supervised methods based on

convolution neural networks (CNNs), generative adversarial networks (GANs) and vision

transformers (ViTs) for single image super-resolution tasks with specific magnification

scales and arbitrary scales. The main directions include efficient network architectures,

training tricks for better performance with broad applicability, and more straightforward

evaluation. Here, I elaborate on four aspects and highlight the main novel contributions

of my research work:

1. Network architectures Novel networks based on CNNs and vision transformers

are proposed for robustness, efficiency and performance improvement. Avoiding

unstable training and unrealistic textures is demanding when adversarial learning

applies to super-resolution tasks with large magnification scales (e.g. ×4). Thus,

I develop a CNN-based multi-scale SR image generator (so-called MS-GAN) in

Chapter 3, which decomposes the challenging ×4 SR task into a series of two ×2

SR tasks. It results in the high perceptual quality of SR images without generating

unrealistic textures, equalling high-resolution ground truth images. Meanwhile, I

conduct a comprehensive comparison study of CNN-based SR image generators

in Chapter 4. Based on the feature extraction network architectures and hyper-

parameter discussions, I implement an efficient CNN model for scale-free image

super-resolution (so-called MIASSR). Additionally, I develop a residual dense vision

transformer (so-called RDST) in Chapter 5 by incorporating dense connection and

local feature fusion of CNNs to shifted-window attention transformers. It achieves

state-of-the-art SR performance with a rapid reduction of trainable parameters.

2. Training tricks Although perceptual loss and adversarial loss are popularly used

in the super-resolution of natural images, operating them correctly on medical

images is difficult. Because medical datasets are relatively small, incorporating

GANs in medical image SR causes time-consuming hyper-parameter searching and

network warm-up training. Thus, I conduct comprehensive comparison studies of

GAN variants, the proportion of loss function components and training processes on

integral-scale and scale-free super-resolution tasks in Chapter 3 and 4. Based on

these conclusions, I provide a guideline for using Wasserstein GAN with gradient

penalty (WGAN-GP)[22] in medical image super-resolution tasks, which dramati-

cally improves the perceptual quality with declining the time-consuming warm-up.

Additionally, I restrict the super-resolution network to the regions of interest to avoid

the adverse effects of backgrounds by involving lesion detection as pre-processing
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of super-resolution in Chapter 3. Moreover, existing perceptual losses primarily

depend on natural images, while I highlight the limitation of applying them to

medical images. Instead, I develop a novel perceptual loss based on medical image

segmentation in Chapter 5. By incorporating relevant prior knowledge of high-level

medical image analysis networks, the segmentation-based perceptual loss variants

robustly work with SOTA CNN and transformers, leading to a notable advancement

of SR image quality.

3. Evaluation metrics In a supplementary manner of widely-used image quality

assessment metrics of SR image reconstruction fidelity, I evaluate perceptual quality

for human viewers and corresponding medical image analysis tasks. In Chapter 3,

I apply an opinion scoring metric to measure the quality of human perception by

experienced radiologists with manual grades and markers of artefacts. Meanwhile,

I introduce the objective perceptual quality metric of generated natural images

to medical image SR evaluation and discuss the perception-distortion trade-off in

Chapter 4. Since one primary purpose of medical image SR is to benefit related

medical image analysis tasks with higher resolution, task-based evaluation also

applies in this dissertation. The performances achieved in the downstream tasks,

such as feature maps reconstruction and segmentation, are used as metrics of the

machine perception in Chapter 3 and 5.

4. General applicability My research focuses on radiology images and involves various

public and clinical datasets to illustrate applicability comprehensively. All the

proposed methods compare with SOTA SISR methods on various medical image

modalities, including brain and cardiac MR images and chest CT scans. Public

medical image datasets such as single-/multi- brain MR contains plenty of well-

processed data, so ablation studies of each method mainly depend on them for general

and reliable conclusions. On the other hand, I also explore the robust performance of

modifying pre-trained models to new medical image modalities with transfer learning

because large and clean datasets are hard to obtain in the clinic. In summary, this

dissertation entangles seven medical image datasets, including two open-accessed

multi-modal brain MR datasets w/wo tumours, one public and two clinical cardiac

MR datasets, and two released chest CT datasets of COVID patients.

1.3 Organisation

The dissertation is organised as follows (Fig. 1.1):

Chapter 2: In this chapter, I give the necessary background on medical image super-

26



resolution, including preliminaries of deep neural networks and medical imaging techniques.

I also review the development of deep learning-based SISR methods, which have had

significant impacts over the past decades, by illustrating the network architectures, loss

functions and evaluation metrics. Particularly I summarise the super-resolution applica-

tions on medical images with a discussion of their limitations to better understand the

motivation of my research work.

Chapter 3: This chapter presents my research contributions to medical image super-

resolution with a large magnification scale. I propose a multi-scale SR image generator

with a lesion-focused strategy (MS-GAN) by incorporating generative adversarial networks

on this challenging task. I conduct simulation experiments on one public and two clinical

datasets to compare the proposed and SOTA SR methods by objective metrics, experts’

opinion scores and performance in clinical downstream analysis tasks. I also discuss

the impacts of lesion-focused training and a guideline for using GANs in medical image

super-resolution tasks without unstable training.

Chapter 4: This chapter presents my research contributions to medical image super-

resolution with arbitrary magnification scales. I propose an efficient GAN-based SR image

generator MIASSR that incorporates the weights prediction method of meta-learning.

Simulation experiments are conducted on four public datasets to compare the proposed

and SOTA SR algorithms on reconstruction fidelity and human perception. I involve

the objective metrics of perceptual quality and discuss the fidelity-perception trade-off in

medical image super-resolution tasks. Well-designed ablation studies address the impacts

of network architectures, hyper-parameters, adversarial learning and loss function compo-

nents.

Chapter 5: This chapter presents my research contributions to medical image super-

resolution with vision transformers. I propose a residual dense vision transformer (RDST)

that incorporates the practical architecture design of CNNs to SOTA vision transformers.

A novel perceptual loss is invented that leads to superior SR results by connecting super-

resolution with medical image segmentation. In addition to objective metrics of image

quality, the performance of SR images in the downstream segmentation task is considered

supplementary. Simulation experiments on four public datasets are conducted to com-

pare the proposed and SOTA SR methods on reconstruction fidelity and segmentation

accuracy. I also discuss the essential factors of vision transformers performing better than

CNNs and the impacts of the segmentation-based perceptual loss and its broad applicability.

Chapter 6: In this chapter, I conclude the contributions made in this dissertation,
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Figure 1.1: An overview of the main contributions presented in this dissertation. Preliminaries
of deep neural networks and single image super-resolution are firstly introduced in Chapter
2 with a review of medical image applications. Then, a CNN-based lesion focused multi-scale
GAN is presented Chapter 3 for perceptually realistic texture generation. Following, weight
prediction of meta-learning is introduced to GANs for scale-free magnification in Chapter 4.
Lastly, a residual dense vision transformer is implemented with a segmentation-based perceptual
loss for advanced super-resolution performance in Chapter 5.

summarise the results, review the research questions that arise from the work presented,

and propose potential research directions in the future.
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1.4 Publication List

The work of MS-GAN in Chapter 3 has been publicly realised on https://github.com/

GinZhu/MSGAN. with the following publications [23–26]:

1. Zhu, J., Yang, G. and Lio, P., 2019, March. Lesion focused super-resolution.
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The work of MIASSR in Chapter 4 has been publicly realised on https://github.com/

GinZhu/MIASSR. with the following publications [27, 28]:

5. Zhu, J., Tan, C., Yang, J., Yang, G. and Lio’, P., 2021. Arbitrary scale super-

resolution for medical images. International Journal of Neural Systems, 31(10),
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6. Tan, C.*, Zhu, J.*2 and Lió, P., 2020, June. Arbitrary scale super-resolution

for brain MRI images. In IFIP International Conference on Artificial Intelligence
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The work of RDST in Chapter 5 has been publicly realised on https://github.com/
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7. Zhu, J., Yang, G. and Lió, P., 2023. A residual dense vision transformer for medical

image super-resolution with segmentation-based perceptual loss fine-tuning. arXiv:

https://arxiv.org/abs/2302.11184

2* indicates equal contributions
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Additionally, I have also joined in related medical image analysis tasks such as segmentation
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11. Lv, J., Zhu, J. and Yang, G., 2021. Which GAN? A comparative study of generative

adversarial network-based fast MRI reconstruction. Philosophical Transactions of

the Royal Society A, 379(2200), p.20200203.
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works (GAN) Powered Fast Magnetic Resonance Imaging–Mini Review, Comparison

and Perspectives. arXiv preprint arXiv:2105.01800.
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CHAPTER 2

Preliminaries

In this chapter, I give the necessary background regarding deep neural networks and single

image super-resolution with a brief review of current applications on medical images for a

better understanding of my research motivation and contribution in the following three

chapters.

2.1 Deep neural netwokrs

In past decades, people have witnessed the revolutionary success of deep learning in a

broad range of domains, such as computer vision [21] and natural language processing

[35]. Thanks to the rapid development of affordable and efficient computing hardware (e.g.

GPU), machine learning platforms (e.g. TensorFlow [36] and PyTorch [37]) and vibrant

open-source communities, researchers can implement deep neural networks concisely like

playing LEGO blocks. In this section, I introduce the basic concepts of deep neural

networks, including several widespread network architectures with their fundamental units

and some general training strategies. The fantastic references [38, 39] refer to a thorough

and systematic overview of the long history of deep neural networks.

2.1.1 Layers and network units

Any deep neural network can be considered a stack of linear and non-linear layers with

corresponding operations. Generally, the output (i.e. feature maps) of one layer serves

as the input of the next layer, and sometimes feature maps are fed to other layers by

skip-connections. In most cases, the successive layers utilise non-linear activation functions

in between to facilitate the representation capability.

31



Figure 2.1: Comparison of fully-connected and convolution layers. Compared to FC layers,
convolution layers avoid the expanding computational cost with weight sharing and window
operations.

Fully connected layers Fully connected (FC) layers are the most basic linear operators

in a deep neural network. Mathematically, an FC layer conducts matrix multiplication on

the input vector xk:

yd = W d,k × xk + bd, (2.1)

where yd is the output, (d, k) are the input and output dimensions and W d,k and bd

indicate the trainable weights within this FC layer. The matrix multiplication principles

show that the dimension d of the output vector can differ from that of the input vector,

controlled by the weights matrix W . Consequently, this allows embedding the inputs to

expand hidden features and compress the features to constrained labels.

Convolution layers The convolution operation is introduced to neural networks because

FC layers lead to expanding computational cost with high-dimensional inputs, for example,

images. In convolution layers, computing is locally focused in much smaller windows with

shared kernels, resulting in a huge decline in calculation and trainable parameters (Fig.

2.1). Notice that weight sharing and window operation are essential in computer vision

tasks because they restrict the kernels to recurring features (e.g. textures) of images and

make very deep neural networks possible. For instance, two-dimensional (2D) convolution

layers are predominantly used in image processing networks because they preserve spatial

information by operating directly on 2D images with channels. In this process, tensors

transition from 1D vectors to 2D maps, embedding features within the third dimension,

namely the channels. Concurrently, each convolution kernel generates a new channel in
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Figure 2.2: An example of convolution layers. H and W indicate the shape of input and output
feature maps, while h and w represent the kernel size. Notice that each convolution kernel
actually has an extra dimension Cin corresponding to the input feature maps for the matrix
product. The number of kernels (i.e. layer width) decides the channel of output feature maps.

the output feature maps. Therefore, the number of channels in the output feature maps

equates to the number of convolution kernels. In this context, the embedding dimension,

also referred to as the width or channel of this layer, is dictated by this layer itself, much

like how FC layers regulate the embedding dimensions of 1D features. This process can be

illustrated as Fig. 2.2 and mathematically presented as:

F out
Hout,Wout,c = F in

Hin,Win,Cin
?Kh,w,c + bHout,Wout,c, (2.2)

where b indicates the bias and Kh,w,c indicates the convolution kernels with size [h,w, c].

Notice that ? denotes the convolution operation, which modifies the shape and values

of one function (e.g. an image or feature maps) by the kernels. The number of kernels,

c, is called the convolution layer’s width or the channels. H,W indicate the height and

width of the feature maps F , while the output shape depends on the input shape, padding,

dilation [40], stride and kernel size:

H/Wout =

⌊
H/Win + 2× padding− dilation× (kernel− 1)− 1

stride
+ 1

⌋
. (2.3)

Thus, a convolution layer can remain or adjust the shape of feature maps with corresponding

parameter settings, leading to an alternative spatial sub-sampling operation more than

polling layers [41]. These parameters also decide the receptive field [42] of each convolution

layer and the network with successive expansion along the layers. Fig. 2.3 illustrates an

example of 2D convolution, which can be precisely described as:

F out(i, j) =
∑

wc × F in

[
i− h

2
: i+

h

2
; j − w

2
: j +

w

2

]
, (2.4)

where wc is the convolution kernel. It conducts matrix multiplication on a patch of the
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Figure 2.3: 2D convolution operation.

input feature maps.

Nonlinear activation: It is important to apply non-linear activation functions in multi-

layer networks because consecutive linear operations are mathematically equivalent to one

linear function. Thus, activation functions are often conducted after each linear layer (i.e.

FC and convolution layer) in deep neural networks to boost the representation capability.

It is reported that the choice of activation functions affects the training efficiency and

overall performance [43–45]. In the training of deep neural networks, activation functions

introduce non-linearity into the output of a layer and narrow the value of feature maps

from [−∞,∞] to limited ranges. It also becomes possible to update the trainable weights

in backpropagation [46] because the calculation of gradients along with error is well-defined

by the non-linearity. In contrast, the derivative of linear functions equals 0, resulting in

no gradients for weight updating. Fig. 2.4 illustrates a comparison of common activation

functions, while the most widespread ones are the Rectified Linear Unit (ReLU) [47] and

its improvements. The ReLU activation is defined as:

y =

x if x ≥ 0;

0 if x < 0.
(2.5)

x and y are scalars.

It looks like a linear function but mathematically differs since its derivative equals 1 with

any positive inputs. Meanwhile, it requires less computation than Sigmoid and Tanh and

avoids the vanishing gradients caused by near-zero gradients [45]. However, ReLU has no

responses to negative inputs because of the 0 gradients and leads to a perpetually inactive

state of backpropagation, so-called the ”Dying ReLU” problem. Thus, Leaky ReLU is
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Figure 2.4: Activation functions.

proposed, which adds a closing-to-zero scalar α for the negative inputs of ReLU:

y =

x if x ≥ 0;

αx if x < 0.
(2.6)

The small constant α is usually set to 0.01, so it avoids the ”Dying ReLU” problem with

non-zero derivatives for negative inputs. There are various modifications of ReLU proposed

for superior performance, such as Parametric Rectified Linear Unit (PReLU [48]), Random-

ized Leaky Rectified Linear Unit (RReLU [49]), Exponential Linear Unit (ELU [50]) and

Gaussian Error Linear Unit (GELU [51]). Some other activation functions are also widely

used, such as softmax, Maxout [52], Adaptive Piecewise [53] and Network-in-Network [54].

2.1.2 Neural network training

Gradient descent methods An end-to-end neural network G can be defined as:

y = G(x;θG), (2.7)

where θ is a set of trainable parameters, and x and y indicate the input and output of

the network. In the data-driven supervised and non-supervised training, the aim is to

find a group of parameters that minimise a pre-defined loss function L with optimisation

methods:

θ̂G = arg min
θG
L(G(x), ȳ); (x, ȳ) ∈ D, (2.8)

where D indicates the training dataset and ȳ is one ground truth label. However, there is

no closed-form global optimum solution for this equation because of the nonlinearity in

neural networks. Thus, backpropagation [46] is introduced to perform optimisation of deep

neural networks. It updates the trainable parameters with gradient descent algorithms
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[55] that calculate gradients depending on the loss of a batch of data:

∇L
∇θ

=
1

N

N∑ ∇L(Gθ(x), ȳ)

∇θ
, (2.9)

where N is the batch size. As one deep neural network consists of a stack of layers, the

partial gradient of each layer can be computed in the opposite direction of data forward

by the chain rule. In each training step, the parameters can be updated as:

θ = θ − ι∇L
∇θ

, (2.10)

where ι is the learning rate. SGD (Stochastic Gradient Descent [56]) is one of the most

popular batch gradient descent methods because it mathematically guarantees global

minimums without expensive computation. However, it works poorly for ravines where

one dimension curves much more steeply than others [57], so optimisation methods with

momentum [58] are implemented, such as NAG (Nesterov Accelerated Gradient [59]). On

the other hand, the convergence of SGD tends to local minimums for non-convex surfaces

but not the global minimums without a proper learning rate. Thus, several advanced

methods with adaptive learning rates are proposed, such as Adadelta [60] and RMSprop1.

Additionally, Adam (Adaptive Moment Estimation [61]) and Nadam (Nesterov-accelerated

Adam [62]) combine momentum with adaptive learning rates. As an essential foundation

of deep neural networks, gradient descent algorithms remain a hot research topic, and the

discussion of which optimiser to use will always continue.

Training strategies Building a well-performing deep neural network highly depends

on human expertise and time-consuming trial and error. To create high-quality networks,

even experts need substantial resources and unproductive tuning of the model, including

data preparation, network architecture, optimisation method and hyperparameters. Al-

though AutoML (i.e. automated machine learning) techniques are processed and quickly

developed on object detection, text processing, and image classification tasks [63], such

pipelines rarely apply on low-level image processing tasks. They are limited by the require-

ment of onerous computational cost, the lack of objective evaluation and high coupling

on the training dataset [64]. Thus, developing high-performance deep neural networks

for super-resolution tasks still jointly relies on the prior knowledge of state-of-the-art

works and manual tuning. Here I introduce common strategies, such as initialisation,

normalisation and data preparation.

A deep neural network may not converge without careful initialisation because of gradients

exploding or vanishing [65]. As a vital role of efficient backpropagation, weight initialisation

1http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Figure 2.5: Normalisation methods in deep neural networks. Blue cubes indicate flatten
feature maps for clear illustration, while green cubes represent where the normalisation works: a
mini-batch, a layer, and an instance.

methods mainly includes two directions: with and without pre-training [66]. Initialising a

network with pre-training means obtaining a start point from unsupervised or correlated

tasks, so the learned meaningful representations may lead to better accuracy and faster

convergence. This idea is close to transfer learning [67], in which some network layers

are frozen, and only partial weights are fine-tuned. For example, powerful well-trained

models, such as MAE (masked autoencoders [68]), successfully work on medical image

processing tasks [69]. On the other hand, initialisation without pre-training consists of

three main categories: data-driven, random and hybrid. In computer vision tasks, random

initialisation methods are widely used because they meet the randomness requirement in

gradient descent with proper-designed distributions, defined with network characteristics,

such as activation function and layer width [70].

Normalisation methods [71] are also essential in training acceleration and stabilisation. The

normalisation operation can conduct on various dimensions (Fig. 2.5), such as batch [72],

layer [73], instance [74], weights [75], and group [76]. It transfers the input data D = {xi}Ni=1

to a new distribution D̂ = {x̂i}Ni=1 with certain statistical properties. By removing the

magnitude difference between different features, it benefits the training process. Interest-

ingly, the learnable parameters in adaptive normalisation methods [77, 78] can represent

the style of an image, which leads to high-fidelity image generation [79–81] and editing [82].

In addition to the above aspects, dropout [83] and data augmentation [84, 85] are also

moderately applied in super-resolution tasks [86]. Dropout operation prevents overfitting

with improved generalisation capability. It keeps each neuron (e.g. a convolution kernel)

active with a probability p and inactive for the rest during training and behaves as usual

in the testing stage. It mathematically equals a simple form of ensemble models, fusing

numerous randomly sampled sub-networks. Data augmentation is a trick to increase the
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diversity of the training dataset by applying random transformations. In super-resolution

tasks, rotation and flip operations are used for training and inference.

38



Figure 2.6: The VGG-19 [87] framework. It consists of successive convolution layers with small
kernel size and pooling layers for feature sub-sampling. Fully-connected layers at the end for
classification.

Figure 2.7: Comparison of (a) plain layer concatenation and (b) residual block. It avoids
gradient vanishing with the skip connection and residual learning.

2.1.3 Network architecture

In this section, I will introduce several widespread deep neural network blocks and archi-

tectures that form the basis of many of my experiments.

VGG A landmark in the prosperity of deep learning is the dominant performance in

large-scale computer vision tasks. AlexNet [88] first achieves dramatic improvements

(10.8% lower top-5 error rate than previous methods) on the ImageNet large-scale visual

recognition challenge (ILSVRC [89]) in 2012 by applying network initialisation, ReLU ac-

tivation and dropout techniques to CNN. Following this direction, VGG [87] was proposed

in 2014 with the superior performance of objection detection with the pioneering network

design principles: smaller filters and more layers (Fig. 2.6). It claims that a stack of three

3× 3 convolution layers has an equal receptive field to a 7× 7 convolution layer (e.g. in

AlexNet) but with much fewer parameters and less computation cost.

Residual networks The plain layer concatenation succeeds in AlexNet and VGG, but it

results in a performance decline in very deep networks (e.g. more than 100 layers). ResNet

[90] successfully solves this problem by proposing the residual block (Fig. 2.7), in which

the identity skip connection passes the shallow features forward and the deep gradients
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Figure 2.8: U-Net.

backwards directly in supplement to the main path. Since then, residual block variants,

such as dense block [91], have become the fundamental unit of deep neural networks.

U-Net U-Net is primarily designed for medical image segmentation [92]. It consists of

an encoder and a decoder that contract and expand the feature maps, respectively (Fig.

2.8). Each encoder block consists of several convolution layers and a pooling layer for

×2 down-sampling. In contrast, each decoder block consists of convolution layers and

one up-convolution layer for ×2 up-sampling. Then, the multi-scale feature maps of the

encoder pass and concatenate with corresponding feature maps in the decoder by skip

connections. The U-shape framework ensures pixel-to-pixel outputs, which are different

from downstream networks (e.g. AlexNet and VGG) with outputs of labels. Meanwhile,

the encoder/decoder blocks and the down-/up-sample operations can easily change to

alternatives, so U-Net has become one of the most popular frameworks in semantic seg-

mentation [93–96] and image restoration [97–99] tasks, especially for medical images [100].

Generative adversarial networks Generative adversarial networks are probably the

most exciting idea in machine learning in the past decade. Since 2014 [101], it has

revolutionised a broad range of computer vision, natural language processing and signal

processing tasks [102, 103]. Medical image analysis is also benefited [104, 105]. GANs

consist of a generator and a discriminator, jointly trained by playing a game (Fig. 2.9). The

generator aims to approximate a mapping from one distribution to a target distribution,
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Figure 2.9: Generative adversarial networks: (a) fake image generated from noise; (b) real
image from the training dataset.

while the discriminator aims to distinguish the estimated distribution from the real one.

Take high-fidelity image generation as an example. The generator produces as authentic

as possible images to fool the discriminator from a noise input (e.g. Gaussian noise nσ).

Meanwhile, the discriminator learns to differentiate the generated images from real ones.

Ideally when the optimisation of both networks terminates, the discriminator achieves the

maximum classification accuracy while the generator maximally confuses the discriminator

D:

θ̂G, θ̂D = arg min
θG

max
θD

Ep(ȳ)logD(ȳ) + Ep(x)(1− logD(G(x))); x ∼ nσ, ȳ ∈ Y, (2.11)

where E is expectation.

The fantastic advantage of GANs is that no training pairs and task-specific loss func-

tions are required. The discriminator takes the place of the generator’s loss function

instead. However, the vanilla GAN struggles with unstable training, mode collapse and

non-convergence. Thus, advanced works are proposed with improvements on representation

[106, 107], loss distance [22, 108], training skills [109], network architectures [110, 111] etc.

Meanwhile, GANs become a conditional model when specific data distributions replace

the noise inputs [112], such as in image translation [113], super-resolution [114], and

text-to-image synthesis [115].
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Figure 2.10: Self-attention module in transformers.

Vision transformers Transformers are first applied for natural language processing [116]

and then introduced to vision tasks [117, 118] by embedding image and feature maps to

tokens. Self-attention (Fig. 2.10) is the key component of transformers, which dynamically

predicts weights relying on the input. After feature embedding (e.g. localisation or

adaptive embedding), each token ti is transformed into the query, key and value vectors

qi,ki,vi with the same dimension d:

ti = Ψ(xi)

qi,ki,vi,= wqti,wkti,wvti, (2.12)

where Ψ is the embedding function and wq,wk,wv are d×d matrices. Then, the attention

vector ai,j between two embedded tokens are calculated and normalised as:

āi,j = qi · ki/
√
d,

ai,j = exp(āi,j)/

j∑
āi,j, (2.13)

where softmax function translates the attention scores āi,j into probabilities ai,j. Finally,

the output yi is obtained by:

yi =

j∑
ai,j · vi. (2.14)

The above process of self-attention can be unified as:

A(Q,K, V ) = softmax(
Q ·K>√

d
) · V , (2.15)
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Figure 2.11: Self-attention in windows [119]. Compared to global attention with plain tokens
(left), it conducts self-attention locally in each window with sharing weights, leading to a quadratic
decline in computational cost.

Figure 2.12: Shifted window partition in swin transformer [119]. Colours indicate the window
partition w/wo shift operation. In practice, regular window partition (left) and shifted window
partition (right) process alternately in successive layers for global information flow.

43



where Q,K,V are query, key and value matrices of all input tokens and A indicates the

attention operation.

In transformers, the self-attention layer works in the encoder and the decoder. No-

tice that the key and value matrixes K and V are only calculated in the encoder and

directly passed to the decoder. Additionally, multi-head attention boosts performance

by giving tokens to various attention layers (i.e. heads) and fusing the final outputs. In

recent years, advanced transformers have been proposed for computer vision tasks. ViT

[120] first embeds image to 16 × 16 tokens and performs better than CNNs on image

recognition tasks. The performance is further improved by DERT [121] and its variants

with novel techniques such as 2D position encoding, deformable attention [122] and adap-

tive clustering [123]. Transformers also apply to high-quality image synthesis with GANs

[124, 125] and from text captions [126]. Specifically for low-level image restoration tasks,

IPT [127] involves CNN-based shallow feature embedding before self-attention layers and

transfer learning of pre-trained model on ImageNet [128]. Furthermore, Swin transformer

[119] dramatically improves the performance and efficiency with shifted window operation,

drawing on localisation operation and weight sharing of CNNs. In contrast to previous

vision transformers, the swin transformer splits the feature maps into small windows. It

only applies self-attention to tokens in each window (Fig. 2.11), resulting in a quadratic

decline of computation. On the other hand, the shifted window approach (Fig. 2.12)

ensures connections of local information between the windows, leading to a global receptive

field in successive layers.
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2.2 Single image super-resolution

In this section, I introduce the basic concepts of single-image super-resolution, especially

the current methods based on deep neural networks. In addition to a quick review of the

super-resolution question definition, SR image evaluation and objective loss functions,

widespread SISR networks are illustrated with an emphasis on the up-sampling modules

and network frameworks.

2.2.1 The ill-posed super-resolution problem

Super-resolution techniques are proposed for high-resolution displays with low-resolution

observation devices [129]. It aims to reconstruct a higher-resolution image from one or

a sequence of observed low-resolution images. In practice, the observation is limited by

various interferences, leading to the degradation of warping, blurring, down-sampling

and noise in the acquired LR images. However, obtaining the correct model for each

degradation factor for every LR image is hard, so super-resolution turns into an ill-posed

inverse problem. One HR image has several corresponding LR images, while one LR image

may be degraded from various potential HR images. Additionally, it is challenging to

acquire multiple low-resolution images in practice. Thus, single-image super-resolution

methods are proposed.

Single image super-resolution aims to restore a high-resolution image Ihr∈ H from one low-

resolution observation I lr∈ L of the same object, where L,H are high and low dimensional

spaces. Generally in the real world, the LR image is modelled as [8]:

I lr = (Ihr ? δ) ↓s +n, (2.16)

where ?δ denotes a simplified degradation during the image-capturing process and ↓s
indicates the down-sampling with scale s. When deep neural networks apply to the

SISR problem, they approximate the inverse mapping of this Equation 2.16 to recover a

super-resolved image Isr∈ H from I lr [9]:

Isr = G(I lr, s;θG), (2.17)

where G is an SR image generator and s is the magnification scale. In each step of

training, errors between the approximation Isr and the HR ground truth Ihr are measured

by a well-designed loss function LSR, and passed to the whole network in backpropagation
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for gradients calculation and weights update:

θ̂G = arg min
θG
LSR(G(I lr), Ihr), . (2.18)

where {I lr, Ihr} ∈ {L,H} is a corresponding training pair.

2.2.2 Loss functions for super-resolution

Here I introduce the most commonly used loss functions in training SISR deep neural

networks.

Pixel-wise L1 and L2 losses Since the nature of SISR is to predict the correct value of

each pixel in the super-resolved images, loss functions that measure pixel-wise errors are

always the fundamental term. L1 and L2 loss represent the pixel-wise mean absolute error

(MAE) and mean square error (MSE), respectively:

L1(Isr, Ihr) =
1

H ∗W
∑

(i,j)∈I

‖Ihr[i, j]− Isr[i, j]‖ , (2.19)

L2(Isr, Ihr) =
1

H ∗W
∑

(i,j)∈I

‖Ihr[i, j]− Isr[i, j]‖2 , (2.20)

where H and W are the height and width of the images, and I[i, j] denotes a pixel. Early

researches on SISR, such as SRCNN [130], VDSR [131], and SRGAN [114], prefer L2

loss because it straightforwardly connects to the most popular evaluation metric PSNR.

However, it is sensitive to outliers because it squares the differences. It tends to produce

more stable solutions, leading to over-fitting and over-smoothed results. In contrast,

L1 loss is more robust to outliers because of its linear errors. It can preserve edges

and achieve more visually appealing results. Thus, L1 loss becomes more widely used

in the following works [132–138] for improved performance. Notice that the pixel-wise

loss functions do not present the global structures, so they cannot benefit the percep-

tual quality and realistic textures generation, resulting in unreal artefacts and fewer details.

Perceptual loss The above pixel-wise losses ensure good reconstruction fidelity of SR

images, while perceptual losses are introduced for superior perceptual quality and realistic

SR images. Instead of manually defining a distance between human experiences, the

perceptual losses rely on the prior knowledge of pre-trained networks on related computer

vision tasks because the hidden layers represent high-level image features. Take the

widespread VGG-based perceptual loss [139] as an example. Instead of calculating the

pixel-wise errors, it considers the distance of the distributions of generated SR images and
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ground truth images in the feature domain. In practice, the images are first converted as

features maps by a pre-trained VGG-19 [87] model V , and then the L2 distance between

the two distributions is calculated as:

Lperc(Isr, Ihr) = E(‖Vl(Ihr)− Vl(Isr)‖2), (2.21)

where l denotes the specific layer to generate feature maps. The way of training V and

the choice of l have inferences on the final performance. Following the success of SRGAN

[114], most SISR works [140, 141] use the VGG-19 model, which is pre-trained with

ImageNet [128] on classification tasks and use the feature maps of deeper layers to achieve

more semantic information. Meanwhile, advanced perceptual losses are implemented for

more realistic-looking images in various super-resolution tasks, such as perceptual loss of

multiple feature maps [142], in the frequency domain [143] and in specific tasks [144]. In

ESRGAN [134], feature maps before activation of shallow layers of a VGG model trained

on material detection [145] are used for more texture information. Semantic information on

segmentation labels also applies to single image super-resolution for boundary enhancement

in SR images [146].

Adversarial loss As mentioned in Section 2.1.3, generative adversarial networks benefit

high-fidelity image generation and editing. They are also widely used in single image

super-resolution tasks for perceptually more realistic results [147]. As a specific task of

conditional GANs, the generators take the low-resolution image as input, instead of the

noise vector in Equation 2.11. During training, the discriminator considers the generated

super-resolved images as fake images and the ground truth high-resolution images as real

images. The vanilla adversarial loss function is defined as [101]:

LGAN = −EIhr [logD(Ihr)]− EIlr [log(1−D(G(I lr)))] , (2.22)

where E is the expectation of the whole dataset. This vanilla adversarial loss first applies

to SISR tasks in SRGAN [114], where the same discriminator to DCGAN [110] is used. It

has successfully achieved photo-realistic natural images with ×2 and ×4 magnifications

but requires a time-consuming warm-up of the generator to stabilise the training of GANs.

Advanced researches on GANs in super-resolution are mainly about applying novel adver-

sarial loss functions, such as relativistic GAN [106], Wasserstein GAN variants [22, 108]

and cycle GAN [148].

Additional task-specific regularisation terms and losses also work on super-resolution

tasks. Total variation loss [149] can ensure smoothness across sharp edges in the generated

SR images [150]. Texture similarity loss [151] improves the perceptual quality with a more
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realistic reconstruction of image style [152]. Rank-content loss [153] learns the behaviour

of perceptual metrics and combines the strengths of various SR methods for better visually

pleasing results [154]. In practice, loss functions combine to improve reconstruction accu-

racy, perceptual quality and task-driven performance simultaneously. However, selecting

appropriate loss components and weights seriously affects the final performance, relying

on human experiences in trial and error [155].

2.2.3 Evaluation of SR images

Generally, image quality assessment metrics of SR images include subjective and objective

methods. The former can ideally represent human perception but rely on time-consuming

manual scoring with inter-/inner- variances. In contrast, objective methods are easy to

compute and fair for comparison but usually focus on only one aspect of image quality

evaluation. Thus, various metrics are used to comprehensively evaluate SR images, such

as the reconstruction fidelity [156] and perceptual quality [157]. This section introduces

the most popular objective metrics for reconstructed image quality evaluation.

Reconstruction fidelity Peak signal-to-noise ratio (PSNR) is the most widespread

evaluation criteria for image restoration tasks (e.g. reconstruction, super-resolution and

denoising). It involves the data range to measure the pixel-level mean squared error (MSE):

PSNR(Irec, Igt) = 10 · log10(
L2

1
N

∑N
i=1(Irec(i)− Igt(i))2

), (2.23)

where L denotes the data range (generally L = 1.0 in medical image reconstruction tasks),

and N is the number of all pixels in Irec and Igt. PSNR represents the pixel-wise accuracy

of the results without the impacts of image format variations.

Additionally, considering the importance of image structural information, such as lu-

minance, contrast and structures, the structural similarity (SSIM) is proposed as [158]:

SSIM(x, y) =
2µxµy + κ1

µ2
x + µ2

y + κ1

· σxy + κ2

σ2
x + σ2

y + κ2

, (2.24)

where x, y denote two images, µ and σ2 are the mean and variance, σxy is the covariance

between x and y, and κ1, κ2 are constant relaxation terms. SSIM is a typical top-down

framework of full-reference image quality assessment (FR-IQA), which assumes that con-

trast and structural distortions are essential to the human visual system (HVS). Compared

with PSNR, SSIM reflects global structural information. However, native SSIM and

multi-scale SSIM [159] may struggle with noisy and distorted images [160], on which PSNR

works well.
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Perceptual quality assessment With the rapid development of generation models

(e.g. GANs and diffusion models [161–164]), it becomes increasingly important to evaluate

the perceptual quality of images in computer vision tasks [157], which represents how real-

istic an image looks. The most reliable perceptual quality assessment is the mean opinion

score (MOS), which asks experienced raters to score the reconstructed images with criteria

on characteristics (e.g. sharpness, artefacts, contrast, exposure) and average the scores.

For example, in the domain-specific medical image restoration tasks [165, 166], experienced

radiologists grade all images from 0 to 4 according to the quality (i.e., non-diagnostic,

poor, fair, good, and excellent). Sometimes, the rater may also mark the low perceptual

quality features such as low signal-to-noise ratio and motion artefacts. Although the MOS

is faithful, it still has limitations such as inter-/inner-raters bias and variance of rating

criterion and time consumption.

Thus, objective metrics are proposed for image perceptual quality evaluation, includ-

ing learning-based and feature-based methods. The former ones learn the behaviour of

the human visual system on specific IQA datasets. For example, DeepQA [167] trains

a CNN for full-reference image quality assessment, taking both the distorted image and

error map as input. DeepIQ [168], MEON [169] and NIMA [170] learn the blind opinion

for no-reference IQA tasks. Additionally, RankIQA [171] learns from ranked images of

known degradation and outperforms no-reference and full-reference SOTA IQA methods

in specific applications. Notice that most learning-based methods are proposed for natural

images and fine-tuned with specific IQA datasets and known distortions. Meanwhile, they

mainly focus on the image quality assessment of one image w/wo a reference. In contrast,

feature-based methods concentrate on the distribution of generated images. For example,

inception score [172] relies on the pre-trained Inception [173] image classification network

and evaluates images’ variety and perceptual quality. However, it closely corresponds to

the training dataset, limiting the application of out-of-domain tasks. Instead, the similarity

of distributions in the feature domain of the target and generated images seems more

reliable, such as LPIPS [174] and FID [175]. For instance, Frechet Inception Distance

(FID) [175] assumes the distribution of images in the feature domain is a multidimensional

Gaussian distribution (i.e. N (µ,Σ)). Thus, the distance between the feature distributions

can represent the perceptual similarity of two image sets, such as restored images Ires and

ground truth images Igt. In practice, each image group is converted to a distribution of

2048 features in the latent space of a pre-trained image classification model Inception-V3

[173]. Then, the FID between these two distributions is:

FID(Ires, Igt) = ‖µgt − µres‖2 + Tr(Σgt + Σres − 2(ΣgtΣres)
1/2), (2.25)
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Figure 2.13: De-convolution layer for feature map ×2 upsampling. It works for integer
magnification scales with expansion and convolution operations. The low-resolution input is first
expanded with additional zeros inserted between the pixels, and then a convolution operation
applies on the expansion with zero-padding for the output feature maps with targeted shape.

where I indicates a group of images and Tr is the trace calculation (i.e. the sum of elements

along the main diagonal of the square matrix). FID becomes popular for perceptual quality

assessment in image generation tasks [81, 126, 161] because it is fully automatic and the

features extracted from Inception-V3 are close to real-world object classifications which

tend to mimic human perception similarity in images.

Other full-reference and non-reference IQA methods are also designed on natural scene

statistics [176], prior knowledge of human judgements and distortions [177], spatially active

regions [178] and a combination of local and global frequency and spatial features [179].

However, the image quality assessment of generated and enhanced images is still an open

problem [156], especially on medical images. Although the diagnostic accuracy is not

equal to image quality [19], the performance of SR images in downstream medical image

analysis tasks occasionally represents the SR image quality [20].

The above metrics only focus on image quality assessment because it is crucial to explore

the best super-resolution results regardless of computational cost [180]. Generally, larger

models lead to advanced performance with more powerful representation capabilities of

more parameters and layers. However, they also require higher memory consumption and

longer runtime during inference, which limit their applicability on mobile devices and

real-time tasks. Thus, researchers also discuss the model efficiency of SR networks with

different metrics, such as runtime, number of parameters, computation complexity (e.g.

number of multi-add calculations) and memory consumption [181]. The primary focus of

this thesis is on enhancing the quality of SR images. Simultaneously, I strive to strike a

balance between image quality and model efficiency.
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Figure 2.14: The Sub-Pixel layer [189] increases the width and height of the feature maps by
two steps. First, it keeps the dimension of feature maps but increases the number of channels
(i.e. C) by convolution operation. Second, it aggregates the low-resolution feature maps and
builds the high-resolution SR feature maps by reshaping them. F∗ represents the feature maps of
each step, s is the magnification scale and [W,H] are the width and height of the feature maps.

2.2.4 Feature map up-sampling

Before introducing the widespread network frameworks for super-resolution, I illustrate

three popular up-scale modules in SR networks for feature map magnification. In super-

resolution, it is the key component to increase the resolution of input LR images or feature

maps. Although interpolation-based methods (e.g. bilinear and bicubic interpolation)

and up-pooling operations are widely used in the decoders of U-Net architectures for

segmentation and restoration tasks, they result in resolution increase with no representa-

tional capacity of the upsampling process. Thus, they lead to blocky and blurry results in

super-resolution networks. In contrast, these three learning-based up-sampling modules

can achieve superior SR results with the high-fidelity representation of magnifications

learned from the training dataset.

Deconvolution layer Deconvolution layer [182] (also called the transposed convolution

layer) is widely used in image super-resolution tasks [183–187]. However, it occasionally

introduces chequerboard artefacts within the restored high-resolution images, resulting

in poor SR performance [188]. The deconvolution layer is a converse of a convolution

layer (Fig. 2.13). It predicts the potential input of high-resolution feature maps based on

the available low-resolution feature maps. Like down-sampling with convolution layers,

deconvolution layers implement the feature map up-sampling with proper parameters of

stride, padding, dilation and kernelsize. Take ×2 magnification as an example. The LR

feature maps Flr is first expanded with additional zeros inserted between the pixels, and

then a convolution operation applies on the expansion with zero-padding.

Sub-pixel layer Instead of increasing the width and height of feature maps directly, the

Sub-Pixel layer [189] introduces additional information by expanding the channels (Fig.
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2.14). As mentioned in Section 2.1.1, suitable convolution layers can remain the width and

height of the feature maps but increase the number of channels by s2 times (where s is the

aimed magnification scale). Then, it aggregates low-resolution feature maps and builds

high-resolution feature maps by reshaping them. Compared to the deconvolution layer

[182], the convolution operation within the sub-pixel layer applies on feature maps with low

resolution, so it is more efficient. Meanwhile, it can avoid potential checkerboard artefacts

caused by the overlapped window operations in deconvolution layers. Mathematically,

this two-step process of increasing the dimensions of the LR feature maps F lr of shape

[C ×Wlr ×Hlr] to feature maps F sr of shape [C × sWlr × sHlr] can be notated as:

f i = F lr ? ki; for f i ∈ Fmid[1 · · · s2], (2.26)

where ?κi is a convolution operation with corresponding padding to remain the shape of

the i-th feature map f i, while Fmid[1 · · · s2] denotes the hidden feature maps with expand

channels. Then the feature maps Fmid of shape [s2C ×Wlr ×Hlr] are rearranged to the

aimed shape by a periodic shuffling operation:

F sr(c, x, y) = Fmid(c+ C ·mod(x, s) + C · s ·mod(y, s),
⌊x
s

⌋
,
⌊y
s

⌋
), (2.27)

where [c, x, y] are the location indexes. The sub-pixel layer can generate perceptually

realistic textures since its wide respective field involves more contextual information in

the up-sampling process. Thus, it becomes the most popular feature map up-sampling

module in deep neural networks [133, 136, 138, 190, 191], although it only works with

integer magnification scales. However, unreal artefacts still exist in some cases because of

the uneven distribution of the respective field and random initialisation. Thus, advanced

up-sampling operations are proposed to further improve the smoothness and perceptual

quality of generated images without false artefacts [192, 193].

Meta up-scale module The above feature map up-sampling modules are all designed

for specific integer scales, but arbitrary scale magnification is necessary for more practical

applications. Meta up-scale module is proposed [135] for scale-free super-resolution tasks

with introducing weight prediction strategy [194] of meta-learning [195] in existing SR

networks. Compared to deconvolution [182] and sub-pixel [189] layers, it achieves promising

performance on non-integer scale factors with no extra computational cost (less than 1%

of the feature extraction module). Meanwhile, it dynamically predicts the weights of filters

for each scale factor and requires no memory cost of storing groups of weights for different

scales, such as in other multi-scale SR networks [133, 196]. The meta up-scale module

consists of three components (Fig. 2.15: the location projection, the weight prediction

and the feature mapping. In practice, the location projection first projects each pixel on
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Figure 2.15: Meta upscale module [135] for feature map magnification with arbitrary scales.
Value of each pixel in the up-sampled feature map are calculated in three steps: (1) local
projection to the low-resolution feature maps; (2) weight prediction by a two-layer FC network;
and (3) feature mapping with matrix product.

the SR feature maps (i, j) on the LR feature maps with floor function:

i′, j′ =

⌊
i

s
,
j

s

⌋
, for F lr(i

′, j′) ∼ F sr(i, j). (2.28)

Then, the weights of the filters for each magnification scale are predicted with an input of

the relative offsets of location projection and the magnification scale:

vi,j = (
i

s
−
⌊
i

s

⌋
,
j

s
−
⌊
j

s

⌋
,
1

s
). (2.29)

Notice that the weights prediction applies on every pixel in the SR feature map respectively:

W i,j = P (vi,j), (2.30)

where P is a two-layer fully-connected network. Finally in the feature mapping, the value

of (i, j) in SR feature maps is calculated with the predicted weights and corresponding

patch in F lr by matrix product:

F sr(i, j) = %(F lr(i
′, j′))×W i,j, (2.31)

where %(·) is a cropping operation and the window size is controlled as the kernel size of

convolution operations.

2.2.5 SR networks

Implementation of super-resolution networks includes CNNs [130, 133, 136], vision trans-

formers [138, 190, 197], diffusion models [127, 161, 198] and hybrid methods [199]. De-
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Figure 2.16: Pre-upsampling and post-upsampling super-resolution frameworks.

pending on where and how the magnification applies in the networks, the super-resolution

frameworks mainly divide into pre- and post-upsampling frameworks (Fig. 2.16). These

frameworks involve a wide range of deep learning techniques, such as recursive learning

[199–202], local and global residual learning [131, 132, 203, 204], multi-path learning

[133, 205–207], attention mechanisms [136, 137, 208] and U-Net architectures [97, 99, 209].

In this section, I restrict myself to the post-upsampling networks with an emphasis on

SISR methods based on residual networks, attention CNNs and vision transformers. For a

comprehensive review of SISR networks, I refer to the three citations [8–10].

Post-upsampling SR framework Early SISR networks follow the pre-upsampling

architecture design, which first upsamples the LR image to the desired size and refines the

magnified results with convolution layers, such as SRCNN [130], VDSR [131], MemNet[200]

and DRCN [201]. Since this framework supports flexible magnification methods and scales,

it can conveniently collaborate with non-network SR methods, such as degradation kernel

estimation [210], learned data prior with flexible degradation control [211] and iterative

back-projection [212–214]. However, the calculation of this pre-upsampling framework

mainly conducts on high-resolution feature maps, leading to expensive computational costs

and high memory requirements. Meanwhile, the predefined up-sampling may result in SR

performance decline with noise amplification and image blur. Thus, the post-upsampling

framework is introduced to SR networks in ESPCN [189] and FSRCNN [215], which first

apply feature learning in low-resolution space and achieve feature maps magnification
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Figure 2.17: Widespread residual blocks in SISR networks. The residual block is introduced in
SRGAN [114]; the enhanced residual block is introduced in EDSR [133]; and the residual dense
block is introduced in RDN [132].

subsequently:

Isr = G(I lr) =M(F(I lr)) ↑s, (2.32)

whereM(·) ↑s is an up-sampling module introduced in Section 2.2.4 and F(·) is the feature

extraction module. This framework becomes the mainstream of SR networks with superior

computational efficiency and improved super-resolution performance [114, 132, 133, 136,

138]. Meanwhile, progressive upsampling frameworks are used to reduce the learning

difficulty of challenging SR tasks with big (e.g. ×4 and ×8) and multi magnification

scales [24, 216–218], which perform intermediate supervision at multi scales in the network.

Moreover, global residual learning further reduces the learning complexity because the

target SR image highly corresponds to the input LR image. Networks can restrict the

mapping to the high-frequency differences between interpolated LR images and HR images

[131, 204] and to the residuals of shallow and deep feature maps before magnification

[132, 138].

In the following part of this section, post-upsampling SISR networks based on CNNs, GANs

and vision transformers will be introduced. They all have achieved SOTA performance on

a broad range of SISR tasks with paper publishing.

Residual networks SRResNet [114] first introduces the residual block of ResNet [90]

into deep super-resolution networks with GANs (i.e. SRGAN), resulting in photo-realistic

high-resolution images. However, it is suboptimal to transplant this residual block from

high-level recognition tasks to low-level image processing tasks with no modification. In

EDSR [133], researchers claim that removing the unnecessary batch-normalisation layer

[72] can lead to higher PSNR scores and more robust capability because this normalisation
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disposes of the range flexibility from networks. Meanwhile, they experimentally show

that training with L1 loss leads to better convergence and SR performance than L2, as

reported in [219]. Moreover, SRDenseNet [220] employs the densely connected convolution

block [91] to alleviate the gradient vanishing problem with improved information flow in

super-resolution networks. In the dense block, feature maps are concatenated to the output

of each convolution layer with skip connections, resulting in a growth rate of network

width. Due to the extensive computation cost, the dense block struggles with a low growth

rate that leads to relatively poor performance. Thus, the residual dense block (Fig. 2.17)

is proposed in RDN [132], which introduces local feature fusion (LFF) in each dense block.

Compared to a dense block, the LFF module fuses the feature maps of all convolution layers

to the exact dimension of input feature maps with a 1× 1 convolution layer. Meanwhile,

the local and global residual learning and global feature fusion further improve the network

representation ability of RDN. The feature fusion and residual learning mechanisms in

RDN significantly reduce the computation cost of dense networks and encourage more

stable information and gradient flows, leading to better performance than SRDenseNet

with a bigger growth rate and more blocks. Additionally, the residual-in-residual dense

block (RRDB) is introduced in ESRGAN [134], which combines successive RDBs with

residual scaling [133, 221].

Attention CNNs The attention mechanism adaptively realises deep neural networks

to the most informative regions of the input, leading to a more efficient and practical

understanding of complex scenes in computer vision tasks [222]. It also demonstrates supe-

rior performance on CNN-based super-resolution networks with three categories: channel

attention, spatial attention and non-local attention [223]. RCAN [136] first introduce the

channel attention mechanism into residual SR networks. In contrast to non-attention meth-

ods (e.g. EDSR [133] and RDN [132]), RCAN considers the dependence of channel-wise

features with global average pooling and sigmoid function, leading to flexible processing of

low- and high- frequency information. The channel attention improves the representational

ability of the network because SR tasks try to recover more high-frequency information

than low-frequency information which remains in the LR image. DRLN [224] applies

Laplacian pyramid attention to adaptively rescale features and model dependencies to

learn the features at multiple sub-band frequencies. SAN [208] proposes second-order

channel attention, which replaces the first-order global average pooling with second-order

feature statistics to improve the discriminative ability further. Meanwhile, it captures

long-distance spatial contextual information with region-level non-local attention, as in

[225, 226]. On the other hand, SelNet [227] and RFANet [228] introduce spatial attention

into SR networks. Moreover, PAN applies hybrid channel-spatial modules on efficient

super-resolution while HAN [137] further implements a holistic attention network with
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Figure 2.18: Attention modules in CNN for super-resolution. From top to the bottom: (a)
channel attention considers the dependence of channel-wise features for flexible processing of
low-/high- frequency information; (b) spatial attention captures long-distance spatial contextual
information; and (c) hybrid channel-spatial attention holds both advantages.

the hybrid channel-spatial attention and the layer attention modules. Fig. 2.18 illustrates

channel and spatial attention modules in these works.

Vision transformers With the boost success of vision transformers [117], IPT [127] first

applies standard transformer blocks within a multi-task learning framework on low-level

image restoration tasks, including super-resolution, deraining and denoising. Although it

beats CNNs on a wide range of image processing tasks, the required computation resource

and pre-training on a large-scale dataset [128] limits its applicability on domain-specific

tasks (e.g. medical images). To avoid these limitations, SwinIR [138] proposes an efficient

transformer block based on the shifted-window attention (Swin transformer [119] in Section

2.1.3 and Fig. 2.11 and 2.12). As a CNN-transformer hybrid method, it consists of a

CNN-based shallow feature extractor and a group of high-quality image reconstruction

modules (e.g. sub-pixel layers for super-resolution). Its main body is a stack of residual
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Figure 2.19: SwinIR [138] consists of three components: a CNN-based shallow feature extractor,
various CNN-based tails for high-quality image reconstruction of multi-task learning, and a main
body of shifted window attention transformer layers.

swin transformer blocks, each comprising six successive swin transformer layers (Fig. 2.19).

Similarly, Uformer [229] implements a U-Net framework with locally-enhanced window

transformer blocks and a novel multi-scale restoration modulator for multi-task learning on

image restoration. Both transformers successfully avoid the expensive computational cost

of global self-attention on high-resolution feature maps and the limitation of transformers

in capturing local dependencies. Meanwhile, the multi-deconv transposed attention and

gated-dconv feed-forward network are presented in Restormer [190] to aggregate local and

non-local pixel interactions for controlled feature transformation. Additionally, hybrid

CNN and transformer methods are proposed for efficient and lightweight super-resolution

[197, 230, 231].

The progression of super-resolution approaches is not always linear, although the in-

troduced methods successively push the SOTA performance forward. In practice, the

choice of SR method depends on the exact requirements of the scenario, including the

type and quality of available data, computational resources, desired output quality and

image-specific characteristics of the images to be up-scaled. Classic methods (e.g. bicubic

interpolation) are suitable when a quick and quality-regardless up-scaling result is required.

They are fast, simple and friendly to any device. Deep learning-based methods can achieve

SOTA SR image quality with substantial computational cost. They are suitable for

scenarios when high-quality output is crucial, unlimited computational resources and an

enormous amount of high-quality training data are available. Lightweight super-resolution

methods balance output quality and model efficiency for using devices with finite computa-

tional resources (e.g. mobile devices) [232]. Additionally, super-resolution methods involve

precise characteristics of domain-specific tasks, such as introducing identity preservation in

face super-resolution tasks [233]. The following section will show how researchers explore

the possibility of SR networks in the medical image domain.
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2.3 Applications on medical images

In this section, I will briefly review super-resolution applications in the medical domain,

emphasising CT and MR images. In contrast to natural image SISR tasks, medical

image super-resolution often correlates with medical image analysis applications such as

segmentation, classification and diagnosis, so it is required to preserve sensitive information

and to enhance the structures of interest [234]. Meanwhile, modality-specific noises and

artefacts may occur during the acquisition and further processing stages [16]. For example,

the noise in MR images is generally formed as a stationary Rician distribution [235, 236],

which performs as the additive square root of two independent Gaussian variables on

the noiseless signal. The actual noise statistics in CT images are more challenging to

determine, so it is assumed as a mixed Poisson-Gaussian distribution [237] or a Gaussian

distribution [238, 239]. To simplify the impacts of noise models in super-resolution tasks

(as in Equation 2.16), I use native Gaussian noises on the images in this thesis.

Before the explosion of deep neural networks, early applications of medical image super-

resolution mainly relied on interpolation, reconstruction and example-learning methods

[240]. Although these methods involve multi frames [241–243] and reference slices [244, 245]

for HR image reconstruction, they achieve poor performance due to the limited represen-

tational capacity and lack of additional information of the training data. In contrast, deep

learning-based methods significantly improve the performance of 2D (i.e. single-slice) and

3D (i.e. volumes) super-resolution of medical images. Generally, 2D methods have better

applicability to a broad range of medical image modalities because they require fewer

computation resources and adapt to most image formats with adjusted operations. On the

other hand, 3D methods mainly focus on CT and MR images because of the limitation of

data format. They may outperform 2D methods by involving more structural information

along the slices (e.g. tumour boundaries), although heavier calculation and memory costs

are required.

In [246], researchers implement 3D convolution in SRCNN [130] with global residual

learning for brain MRI super-resolution. Meanwhile, SRCNN extends to multi-input

image SR in [247] to reconstruct HR 3D images from multiple 2D slices of cardiac MR.

In [248], researchers develop a context-sensitive SR algorithm with 3D SRCNN to learn

organ-specific appearance for high-resolution image reconstruction with sharp edges and

rich details. FSCWRN [249] presents a pre-upsampling SR framework with two main

modifications in the residual block of EDSR [133] for 2D brain MR slices. First, it uses

PReLU [48] to avoid the ’Dying ReLU’; second, it proposes a progressive wide residual

block [250] with a fixed connection strategy to carry more high-frequency details to learn
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local residuals effectively. The network in [251] is a deeper 3D SRCNN with local and global

residual learning, applying on brain MR 3D super-resolution tasks with a comparison study

to illustrate the superior performance than interpolation, non-local means [252] and sparse

coding methods. DCSRN [253] applies 3D convolution in SRDenseNet [220] for 3D brain

MR super-resolution. Due to the cumulative computation cost of 3D convolutions and

dense connections, it consists of only one dense residual block of five layers. Meanwhile,

Volumenet [254] implements a lightweight CNN module for fast and accurate 3D SR on

brain MR and liver tumour CT images. It consists of a DenseNet [91] framework with

group convolution and feature aggregation and a 3D sub-pixel module for feature map

upsampling. In [255], researchers propose a channel splitting network with global feature

fusion [132] and merge-and-run mapping [256], leading to a representational redundancy

decline and hierarchical features integration. U-Net architectures are also widely used in

medical image super-resolution tasks [97, 209, 257], especially for multi-task learning with

segmentation [258, 259].

Due to the expensive computation cost, GAN-based medical image super-resolution

methods rarely conduct 3D operations [260, 261]. MedSRGAN [262] implements a condi-

tional GAN framework for 2D super-resolution on CT and MR images. The researchers

use a modified RCAN [136] for SR image generation and a conditional discriminator,

which takes the image pair of (LR,HR) and (LR, SR) as input. In addition to PSNR and

SSIM, they also apply a 5-rank mean opinion score evaluation. FA-GAN [263] proposes

a fused attentive GAN with CNN-based channel and non-local attentions for 2D MR

super-resolution. FP-GANs [264] alleviates the detail-insensitive problem of CNN-based

SR models by conducting SR in a divide-and-conquer manner with multiple GANs in the

wavelet domain. Inspired by ESRGAN [134], a generator based on residual-in-residual

blocks and the relativistic adversarial loss [106] is used for each sub-band of wavelet trans-

formation. In [20], researchers propose a conditional GAN to synthesise high-resolution

anatomically plausible 3D cardiac MR images with higher resolution. This method im-

plements a multi-scale discriminator and a residual network generator with optical flow

estimation to achieve through-plane super-resolution with transfer learning. Notice that

they evaluate the SR result with reconstruction fidelity (i.e. PSNR and SSIM) and in seg-

mentation tasks. CycleGAN [148] also benefits medical image super-resolution [184], such

as with lesion-focused [265] and semi-supervised training [266]. Meanwhile, Wasserstein

distances [22, 108] is widely used for robust and superior performance [267–270].

Vision transformers boost the performance of medical image super-resolution and re-

lated low-level image processing tasks such as reconstruction and denoising [271]. For

example, ReconFormer [272] is proposed for high-resolution MR image reconstruction from
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under-sampled k−space data. Compared to SwinIR [138], it incorporates the pyramid

structure inside a transformer layer to perceive multi-scale representation and employs

recurrent pyramid layers to exploit deep feature correlation. In [273], researchers present

a SwinIR application on medical images in comparison with SRGAN [114], BSRGAN

[274] and Real-ESRGAN [275], including chest x-ray, skin lesion and funds image. In

[276], researchers implement 3D operation and self-supervised pre-training on a U-Net

framework with swin transformer layers [119] for medical image analysis tasks such as

segmentation. In contrast, in [277] the SwinIR [138] framework works in the frequency

domain for fast MR reconstruction. In [278], McMRSR applies SwinIR for multi-contrast

MR super-resolution with multi-scale contextual matching and aggregation schemes. It

achieves SR images with rich details by capturing more long-range dependencies and

transferring visual contexts from reference images to target LR MR images at different

scales.

2.4 Chapter summary

In this chapter, I introduce the fundamental concepts of deep neural networks and

widespread architectures of convolutional neural networks, generative adversarial networks

and vision transformers. Then I explain the single image super-resolution problem with

a comprehensive review of advanced deep learning-based methods, including problem

definition, network frameworks, SR image quality assessment, loss function design and

medical image applications. These SISR networks are the baseline for comparison in my

research work, which I will present in the next Chapter 3, 4 and 5.
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CHAPTER 3

Lesion-focused Multi-Scale GAN

for Medical Image

Super-Resolution

3.1 Introduction

Achieving perceptually realistic high-resolution results in medical image magnification

tasks is challenging. While generative adversarial networks have shown impressive results

in producing photo-realistic images for natural image super-resolution tasks, they face

certain limitations when applied to medical images. Briefly speaking, there are two main

research questions when applying GANs to medical image super-resolution tasks for robust

performance with limited training data. First, how to stabilise the training of GANs?

Second, how to avoid generating unreal textures? This chapter will present my research

on developing a lesion-focused multi-scale GAN to solve these questions. By introducing

several modifications to the original SRGAN [114], the proposed method has led to more

stable and efficient training and significant improvements in pixel-wise reconstruction

fidelity (e.g. PSNR scores) and perceptual quality.

SRGAN [114] is successful in generating photo-realistic natural images because of its

powerful SR image generator and the well-designed combination loss. As mentioned in Sec-

tion 2.2.5, it develops a deep generator of 16 residual blocks [90], which enhances the ability

to reconstruct high-resolution details. Compared to earlier SR networks [130, 201, 215],

the ResNet-based SR image generator (referred to as SRResNet) significantly improves

the PSNR scores on ×2 and ×4 SR tasks for natural images, such as photos of animals

and buildings. Meanwhile, SRGAN utilises adversarial learning to attain rich textures in

high-resolution results. It incorporates pixel-wise L2 loss, vanilla GAN loss, and perceptual
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loss to encourage generating reliable and perceptually realistic details that closely resemble

natural images.

However, SRGAN experiences difficulty with unstable training and abnormal textures

when applied to medical images. First, the unstable training of the vanilla GAN [101]

means the issues of convergence during the training process [108, 110] (i.e. the loss value

cannot decrease smoothly). When using deep architectures, GANs are susceptible to

vanishing gradients and oscillation, leading to no updates of the networks, rapidly changing

loss values or fluctuations in the quality of generated samples. Additionally, mode collapse

and mode dropping may occur when the generator fails to capture the full diversity of

the data distribution or the discriminator becomes too effective at distinguishing between

real and generated images. In this case, the generator will restrict itself to certain modes

of the training data distribution to avoid the heavy penalty of adversarial loss. Thus,

network implementation and training settings are very important. Researchers work on

training tricks, including hyper-parameters searching, discriminator architecture design

[110] and generator pre-training [114]. For example, SRGAN applies warm-up training (i.e.

to train the generator separately with L2 loss before training the GAN) to achieve a good

start point for the GAN, because the training stability is sensitive to the network weights

initialisation. However, these skills are either time-consuming or task-specific, resulting in

limitations to apply in medical image super-resolution tasks generally.

In contrast, without GANs, CNN-based methods can avoid the unstable training and

perform well in SR tasks with small magnification scales (e.g. ×2 magnification) but

lead to over-smoothing in SR tasks with larger magnification scales such as ×4. These

blurred images are unacceptable in clinics for following analysis tasks or for doctors because

high-frequent textures with crucial information are missing.

Moreover, the distributions of textures in different regions in medical images are desper-

ate. In practice, spatial resolution and image quality inside lesion regions capture more

attention than in regular regions. For example, the boundaries and textures of tumours

are more critical than other brain parts because they are the core information in tumour

segmentation, reconstruction, and clinical processing [279]. LR-HR patches cropped from

the noisy background or non-lesion areas increase convergence difficulty because they

misdirect the training. As a result, SR networks learn useless noise transformations and

tend to generate SR images with unrealistic textures.

Finally, it is also challenging to quantify the perceptual quality of generated high-resolution

medical images. PSNR and SSIM perform well in measuring the reconstruction fidelity
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but cannot evaluate how good the generated images are in clinical tasks. Thus, a reliable

metric is also needed.

In this chapter, I restrict myself to the more challenging ×4 single image super-resolution

with medical images. To tackle the above problems in GAN-based methods, I take SRGAN

[114] as a baseline and apply three improvements in the proposed method MS-GAN. First,

the lesion-focused training strategy (Section. 3.2.2) is proposed to avoid the adverse effects

of non-lesion regions in training SISR networks. Second, a multi-scale SR image generator

(Section. 3.2.3) is designed to decompose the challenging ×4 SR task into a series of

simpler sub-problems and to improve the perceptual quality of generated images. Third, to

stabilise the training, I implement Wasserstein distance with gradient penalty (WGAN-GP

[22]) as the adversarial loss (Section. 3.2.4). Simulation experiments are conducted on

three medical image datasets (one public dataset and two real clinical datasets) to compare

the proposed method with state-of-the-art SISR methods. In addition to PSNR and SSIM,

a subjective evaluation based on mean opinion scores (MOS) is designed and performed

by experienced radiologists on the testing images to quantify the perceptual reality of

generated SR images. Briefly speaking, the main contributions of this work are:

• A lesion-focused multi-scale GAN (MS-GAN) is proposed for medical image single-

image super-resolution tasks with large magnification scales (×4 of each side). It

dramatically improves the perceptual quality of generated SR images, leading to

comparable scores to ground truth high-resolution images in the subjective evaluation

of experienced radiologists. Compared with SRGAN [114] (SOTA method in 2018),

it is more efficient and robust because the time-consuming warm-up training is no

longer necessary.

• I implement a lesion-focused training strategy to stabilise the training of GAN-

based SISR methods for medical images. In ×2 and ×4 SISR tasks (w/wo additive

white Gaussian noise in the k−space) with brain tumour MR images, it results in a

significant improvement of PSNR (+1.13 dB) and SSIM (+0.029) on average.

• I first introduce the Wasserstein GAN with gradient penalty into medical image

super-resolution tasks. With a comprehensive comparison study of GAN variations,

a combined SR loss function based on WGAN-GP is finally proposed. It has achieved

the most perceptually realistic results in the challenging ×4 magnification tasks.

Compared with SRGAN in a 4-rank (1 for the worst and 4 for the best perceptual

quality) MOS evaluation, it leads to significant improvements of +0.80 on cardiac

MR images and +1.46 on brain MR images.

This chapter is organised as follows: Section 3.2 introduces the lesion-focused training

strategy and the multi-scale GAN with the SR loss functions; Section 3.3 claims the
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experimental settings, including data, evaluation and implementation details; Section

3.4 compares the SR results of the proposed MS-GAN with SOTA SISR methods and

illustrates the impacts of each component in the ablation study; and finally Section 3.5

concludes the work of this chapter. All related publications and code are publicly realised

on https://github.com/GinZhu/MSGAN.
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3.2 Methodology

Single image super-resolution methods aim to obtain a high-resolution image from a

low-resolution image. Generally, deep learning-based SISR methods are designed for

magnification tasks with a specific scale such as ×2, ×3, and ×4, which can be defined as:

Isr = Gs(I lr;θG), (3.1)

where I lr is the low-resolution image as the input, Isr is the aimed super-resolved image,

Gs is the SR image generator which is designed with the magnification scale s, and θG is its

trainable parameters. Most CNN-based frameworks are post-interpolation to avoid the bias

of early interpolation and reduce computational costs. They first extract low-dimensional

image features with a sub-network and increase the dimensions of the feature maps to

achieve a high-resolution result at the end, which can be defined as:

Isr = G(I lr) =Ms(F(I lr)), (3.2)

Where F is the low dimensional feature extraction network and Ms is an up-sampler

which increases both dimensions of the feature maps by s times.

Here, I introduce a popular single image super-resolution generator SRResNet [114]

in Fig. 3.1, which is the baseline of my proposed method.

3.2.1 SRResNet

SRResNet is an end-to-end high-resolution image generator, which consists of a residual

neural network [90] for low dimensional feature extraction and an upsampling module (Fig.

3.1).

ResNet for LR feature extraction The feature extractor, F , is constructed by stack-

ing up n residual blocks BR. Each residual block consists of two convolution layers Ci,
non-linear activation layers ϕ(·), batch normalisation layers N i and a residual connection:

F out = BR(F in) = F in + ϕ(N2(C2(ϕ(N1(C1(F in;φC1);φN1));φC2);φN2)), (3.3)

where φC1 , φC2 , φN1 , φN2 ∈ θGs are trainable parameters of each layer in the block. F in and

F out are the input and output feature maps, respectively. The dimensions of the input and

output feature maps remain because zero-padding operations are applied correspondingly

in these convolutional layers. Finally, the LR feature maps F lr are extracted from the
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Figure 3.1: SRResNet [114] consists of a residual neural network-based low-dimension image
feature extractor and an upsampling layer. The feature extractor contains 16 residual blocks,
each of which has two 3 × 3 convolutional layers followed by non-linear activation and batch
normalisation. The upsampling layer is designed for one specific magnification scale s. The
network takes one low-resolution image I lr as the input and generates its super-resolved version
Isr with a higher resolution.

input LR image:

F lr = BnR(I lr;φB), (3.4)

where φB ∈ θG denotes the trainable parameters of each block, and n is the number of

residual blocks.

Sub-Pixel for upsampling In the original SRResNet, a transposed convolutional layer

(i.e. de-convolution layer [182]) is used for the feature maps magnification. Here a more

efficient up-sampler layer, the sub-pixel layer [189], is used to reduce the calculation cost by

s2 times where s is the upscale factor. The sub-pixel layer increases the dimensions of the

LR feature maps F lr of shape [C×Wlr×Hlr] to feature maps F sr of shape [C×sWlr×sHlr]

in two steps. First, the width and height remain, but the number of channels is increased

by s2 times to achieve the hidden feature maps Fmid. Then the feature maps Fmid of

shape [s2C ×Wlr ×Hlr] are rearranged to the aimed shape. Take ×2 magnification as an

example:

Fmid(i) = F lr ? ki, for i ∈ (1, 2, 3, 4)

F sr = Fmid(1)⊕ Fmid(2)⊕ Fmid(3)⊕ Fmid(4), (3.5)

where ki is a convolution kernel and ⊕ denotes the periodic shuffling operation. Notice

that the sub-pixel layer can only work with integer scales such as 2, 3, and 4.

Training of SRResNet The SISR image generator can be trained end-to-end with paired
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Figure 3.2: The lesion detection network consists of a resizing layer as the head, a 5-level
encoder as the body and three fully-connected layers as the tail. Each level of the encoder has
a max pooling residual block, which consists of two residual blocks and a max pooling layer.
Similar to the U-Net [92] encoder, the size of the feature maps is halved at the end of each level
while the number of convolutional kernels is doubled. Finally, ROI is cropped based on the
predicted centre (cx, cy).

LR and HR images:

θ̂G = arg min
θG
L(G(I lr; I lr ∈ Ilr), Ihr; Ihr ∈ Ihr), (3.6)

where Ihr and Ilr are the distributions of HR and LR images in high dimensional and low

dimensional spaces, and for each Ihr ∈ Ihr, there is a degraded version I lr ∈ Ilr. LSR is a

well-designed loss function for super-resolution as mentioned in Section 2.2.2.

3.2.2 lesion-focused training

However, in practice, solving Equation (3.6) for medical image SISR tasks with large

magnification scales is very challenging. In practice, the images are normally cropped

to smaller patches before feeding to the network because of the limitation of GPU mem-

ory. However, the texture distribution of different regions, such as tumours and brains,

are divergent. This requires the network to learn various magnification transformations

synchronously, increasing convergence difficulty. Meanwhile, not all regions are equally

important in the clinic. Diagnosis and follow-up image analysis tasks such as segmentation

and detection mainly concentrate on the lesion.

Thus, I propose a lesion-focused training strategy for medical image SISR tasks to avoid the

impacts of incidental textures. The region of interest (ROI) of the lesions or abnormalities

(e.g. tumours in brain MR images) are first cropped by a lesion detection network LD.
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As a result, the original training LR-HR image pairs (Ilr, Ihr) are reduced to (I′lr, I′hr). For

each pair of (I lr, Ihr), there is:

I
′

lr, I
′

hr = LD(I lr, Ihr;θLD), (3.7)

where θLD denotes the trainable parameters of the lesion detection network. Notice that

I
′

lr and I
′

hr must be corresponded, which means each new image pair must be in the same

region. The lesion detection network only takes one image as input. It predicts the centre

(cx, cy) of the ROI, then projects the coordinates to the image pair and crops the ROIs of

a preset size on both images.

The lesion detection network (Fig. 3.2) is input-scale free because a resizing layer is

applied as the head to adjust the shape of input images. In practice, HR images are

used for training, but LR images are used to predict the ROI for inference. The main

body of LD is a 5-level encoder. Similar to the U-Net encoder [92], each level consists of

two residual blocks and halves the size of feature maps by max pooling. Meanwhile, the

width of each level (i.e. the number of convolutional kernels) is doubled. In the end, three

fully-connected layers flatten the feature maps and predict the ROI centre (cx, cy). In the

lesion-focused SISR tasks, LD is first trained separately with the same dataset:

ˆθLD = arg min
θLD
L2(LD(Ihr), (c̄x, c̄y); Ihr ∈ Ihr), (3.8)

where (c̄x, c̄y) is the centre of ROI generated from manual labels, and the training aims to

minimise the L2 distance (i.e. L2) between the predicted and ground-truth centres.

Then it runs on Ilr and updates both LR and HR images in the training dataset:

I′lr, I′hr = LD(Ilr, Ihr). (3.9)

Thus, the training processing of the SR image generator is updated as:

θ̂G = arg min
θG
L(G(I

′

lr; I
′

lr ∈ LD(Ilr)), I
′

hr; I
′

hr ∈ LD(Ihr)). (3.10)

3.2.3 Multi scale SR image generator

GAN-based adversarial learning is introduced to SISR tasks [114] to generate perceptually

realistic images. However, it tends to introduce non-realistic textures and unstable train-

ing in SR tasks with large magnification scales (e.g. ×4 super-resolution). To stabilise

the training process and avoid these textures, I propose a multi-scale GAN (MS-GAN)
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architecture to decompose this problem into simpler sub-problems.

Take the ×4 SR task as an example. The MS-GAN not only generates the final SR

image I×4
sr but also generates a ×2 SR image I×2

sr as an intermediate result:

I×2
sr , I

×4
sr = G(I lr; s = 4,θG). (3.11)

Correspondingly, the ×2 ground truth images need to be generated from the ×4 high-

resolution images by down-sampling, and the loss function also needs to be updated:

θ̂G = arg min
θG
LSR(G(I lr), Ihr, ↓2 Ihr). (3.12)

Two multi-scale SR image generators (Fig. 3.3) are proposed and tested for ×4 medical

image SR tasks. Both generators are based on SRResNet. The first one, the so-called

MS-SRResNet, remains the LR feature extractor but replaces the ×4 up-sampling layer

with two ×2 sub-pixel layers. It also adds a convolutional layer in between to reconstruct

the intermediate ×2 SR image. The second one, MS-GAN, consists of two sequential ×2

SRResNets. The first network generates ×2 SR image and passes the enlarged feature maps

to the second network to achieve the final ×4 result. Although I implement both models

for ×4 SR tasks, the same architectures can be easily extended to other magnification

scales. Depending on the superior performance in the following experiments in Section 3.3,

the MS-GAN framework is suggested. It can be mathematically represented as:

I×2
sr = C1(M1

×2(F1(I lr))),

I×4
sr = C2(M2

×2(F2(M1
×2(F1(I lr))))), (3.13)

where Ci represents a convolutional layer which converts feature maps to super-resolved

images.

3.2.4 SR loss functions with WGAN-GP

Following the success of SRGAN [114] on natural image super-resolution tasks, a combined

loss is used in this work. It consists of the pixel-wise mean-square-error (MSE), adversarial

loss and VGG-based perceptual loss:

LSR = LMSE + λLadv + ηLperc. (3.14)

Briefly speaking, the MSE loss represents the reconstruction fidelity of generated images.

In contrast, the perceptual and adversarial losses help make the generated images percep-
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Figure 3.4: The discriminator of Wasserstein GAN consists of 4 dual-convolution blocks and two
fully-connected layers. In the dual-convolution block, the first convolutional layer has stride = 1
and remains the size of feature maps; the second layer doubles the number of convolution kernels
and halves the size of the feature maps by setting stride = 2. After that, the fully-connected
layers flat the features maps and predict a flag in [0, 1], where 0 means the input image is a
generated SR image while 1 means the input image is an HR ground truth image.

tually more realistic, so the scale factors λ and η balance their impacts.

Mean square error (L2 loss) Mean-square-error represents the pixel-wise L2 distance

between ground truth HR images and generated SR images and is prevalent in training

SISR models. It is defined as:

L2(Isr, Ihr) =
1

H ∗W
∑

(i,j)∈I

‖Isr[i, j]− Ihr[i, j]‖2 (3.15)

where H and W are the height and width of the images. In this work, both MSEs in

between the ×4 and ×2 images are considered:

LMSE = αL2(I×2
sr , Ihr ↓2) + βL2(I×4

sr , Ihr), (3.16)

where α and β are scale factors.

The VGG-based perceptual loss The perceptual loss [139] is based on a VGG-19

network [87], which has been well-trained on natural image classification tasks. It measures

the average L2 distance of two image groups in the feature domain:

Lperc(Isr, Ihr) = E(‖Vl(Ihr)− Vl(Isr)‖2), (3.17)
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where l denotes the layer index of feature maps in the pre-trained VGG-19 network V.

Technically, these feature maps represent hidden visual information of images. In the

feature domain, early layers are more about local and structural information, such as edges

and corners, while deep layers may denote global and semantic information. Similar to

SRGAN [114], the feature maps after activation of deep layers are used in this work.

Wasserstein GAN with gradient penalty Unlike SRGAN, I use Wasserstein GAN

with gradient penalty (WGAN-GP) in the training of MS-GAN, to avoid unstable training

and mode collapse.

GANs can help to generate more perceptually realistic images. During training, the

discriminator aims to learn a metric to distinguish the fake samples (e.g. generated SR

images) from the real ones (e.g. HR ground truth images). In contrast, the generator

aims to fool the discriminator. Both networks are trained jointly, so the capability of the

discriminator for recognising generated SR images and the generator’s ability to generate

realistic SR images ideally increase synchronously. This learning process can be defined as:

θ̂G, θ̂D = arg min
θG,θD

Ladv(G(Ilr), D(Ihr, G(Ilr))). (3.18)

The WGAN discriminator (Fig. 3.4) predicts a value as the real-or-fake flag for each

image. It consists of 4 dual-convolution blocks and two fully-connected layers. Each

dual-convolution block reduces the size of feature maps by a convolution operation with

stride = 2 and doubles the number of convolution kernels. The FC layers flat the feature

maps and predict the flag as a float number. Notice that this is not a binary classification

problem, although fake and real samples are respectively labelled as 0 and 1. Instead, the

Wasserstein distance between the predicted flags and the true labels is used to measure

the error of D:

LWGAN = Lreal + Lfake
= EIhr(|1−D(Ihr)|) + EIlr(|0−D(G(I lr))|)

= EIhr(|1−D(Ihr)|) + EIlr(|D(G(I lr))|).

(3.19)

The gradient penalty must be added as a restriction term of the gradients to ensure that

the weights of D will not change rapidly for the condition of derivable Wasserstein distance.

Thus, the advanced adversarial loss is defined as:

Ladv = LWGAN + EI
[
‖5ID(I)‖p − 1

]2

, (3.20)

where ‖‖p is the p-norm.
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Notice that the adversarial and perceptual losses are only applied to ×4 SR images

to avoid introducing non-realistic textures in the early image reconstruction stage. In

summary, the loss I used to train MS-GAN is defined as:

LSR = αL2(I×2
sr , Ihr ↓2) + βL2(I×4

sr , Ihr) + λLadv(I×4
sr , Ihr) + ηLperc(I×4

sr , Ihr). (3.21)

In summary, the lesion-focused training strategy (Equation. 3.10) and the multi-scale loss

(Equation. 3.21) are jointly applied in ×4 medical image SISR tasks.

3.3 Experiments

The experiments are conducted on one public dataset and two clinical ones from my

collaborator. Section 3.3.1 will introduce more details about the data format and acquisition.

Two objective metrics and one subjective metric are used to evaluate the quality of

generated images (Section 3.3.2). Section 3.3.3 presents the implementation details. Notice

that all experiments are conducted on 2D images, but the proposed method can be

extended to 3D constructs by modifying 2D operations to 3D.

3.3.1 Data and pre-processing

This section will introduce the details of data extraction and pre-processing of the three

MR datasets. Due to the limitation of acquiring LR-HR medical image pairs in the clinic,

experiments are conducted on simulated samples. Low-resolution images are generated by

down-sampling the original high-resolution slices, as follows.

Training/testing data generation In the training dataset, the original images, consid-

ered as the HR ground truth, are down-sampled with scale 2 as the intermediate ground

truth images and with scale 4 as the LR images:

∀Iori ∈ Itrain, Ihr = Iori;

Ihr ↓2= Iori ↓2;

I lr = Iori ↓4 .

(3.22)
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In the testing dataset, the HR images are only down-sampled by 4 to generate LR images:

∀Iori ∈ Itest, Ihr = Iori;

I lr = Iori ↓4 .
(3.23)

Notice that no random patch cropping is used in this work. During the training of SR

networks, the undivided ROIs of HR GT and generated LR samples are fed to the networks.

Thus, the input and output shapes of training patches depend on the ROI size of each

dataset. The HR patch size (i.e. the output shape) is the same as the ROI size, while the

LR patch size (i.e. the input shape) is scaled down. The original pixel value and data

format varies depending on the MR sequences. In the pre-processing, I convert all samples

to 32-bit floats in the [0, 1] range by dividing each dataset’s maximum value, leading to

consistent network implementation and simplified comparison. Additionally, lesions and

sizes are defined separately for each dataset. The lesion centre coordinates are calculated

based on manual labels by averaging the location of all masked pixels. More details will

be introduced with each dataset soon.

BraTS 2018 As one of the biggest and most widespread open-access medical image

datasets, the brain tumour segmentation dataset (BraTS) [280–282] provides MRI scans

acquired from patients with various types of brain tumours, including glioblastoma and

lower grade glioma. It consists of multiple MR modalities, including T1-weighted (T1),

T1-weighted contrast-enhanced (T1ce), T2-weighted (T2) and fluid-attenuated inversion

recovery (FLAIR) images. Although these scans are acquired from different sources and

institutions, they have been pre-processed to the same original size [155×240×240] before

releasing. Because this chapter focuses on single-image super-resolution, only one sequence

is used in this simulation experiment. I randomly select the tumour slices from 163 T1ce

MR scans on the axial plane (i.e. horizontal plane). Afterwards, these N = 11927 images

are divided into training (N = 9559) and testing (N = 2368) datasets. This dataset also

provides manually segmented labels (approved by experienced neuron radiologists) of the

enhancing tumour (ET), the peritumoral edema (ED), and the necrotic and non-enhancing

tumour core (NCR/ET). In this work, I consider the whole tumour as the region of interest

(i.e. the lesion) by fusing all the labels. All slices have the original shape of (240, 240),

and the ROI size is set as (120, 120) to cover tumours as much as possible.

Late Gadolinium Enhancement CMR Late gadolinium-enhanced (LGE) cardiovascu-

lar MR (CMR) in patients with atrial fibrillation (AF) can show native and post-ablation

treatment scar within the left atrium (LA) [283]. Although many studies have shown

promising results, there are still ongoing concerns regarding the accuracy of identifying
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scars using this technique [284, 285]. This is partially because the LA wall is very thin,

and the limited spatial resolution of the LGE CMR can lower its diagnostic value. The

acquisition durations for 3D LGE imaging are long (typically 5–10 minutes) and increasing

the acquired spatial resolution is not usually practical. Instead, super-resolution (SR)

based post-processing has the potential to provide an inexpensive yet effective way to

increase the spatial resolution of the LGE data.

This is a clinic dataset provided by my collaborator from Imperial College. With ethical

approval, CMR data were collected from 20 patients presenting with longstanding persis-

tent AF on a Siemens Magnetom Avanto 1.5T scanner. Transverse navigator-gated 3D

LGE CMR [286, 287] was performed using an inversion prepared segmented gradient echo

sequence ((1.4–1.5)× (1.4–1.5)× 4mm3 reconstructed into (0.7–0.75)× (0.7–0.75)× 2mm3)

15 minutes after gadolinium administration (Gadovist—gadobutrol, 0.1mmol/kg body

weight) [288]. A dynamic inversion time (TI) was designed to null the signal from normal

myocardium [289]. The 3D LGE data were acquired during free-breathing using CLAWS

respiratory motion control to increase respiratory efficiency [284]. Navigator artefact in

the LA was reduced by introducing a navigator-restore delay of 100 ms [286]. In this

work, I select the 2D slices (N = 743) on the axial plane from these 3D LGE scans and

randomly divide them into training (N = 615) and independent testing (N = 128) groups.

The original shape of each slice is [512× 512], while the ROI (i.e. lesion) is defined as a

[160× 120] box with left-atrium inside. Experienced radiologists manually annotate the

labels of the left atrium.

Diffusion Tensor CMR Diffusion tensor cardiovascular MR (DT-CMR) is an emerging

contrast-free non-invasive technique providing rich information on myocardial microstruc-

ture [290, 291]. Despite great efforts to drive DT-CMR towards a clinical utility, it is

still limited by the low spatial resolution [292, 293]. Here, I use super-resolution-based

post-processing to provide a low-cost but effective way to boost the spatial resolution of

DT-CMR data retrospectively.

My collaborator from Imperial College also provides this DT-CMR dataset. With ethical

approval, short-axis DT-CMR data were collected on a Siemens Skyra 3T scanner. All

DT-CMR data were acquired at peak-systole (N = 133) or in diastasis (N = 115) in

healthy volunteers, using a breath hold STEAM-EPI sequence with diffusion encoded over

one complete cardiac cycle [292]. The acquired spatial resolution was 2.8 × 2.8 ×mm2,

1.4× 1.4×mm2 reconstructed, with 8mm slice thickness, repetition time 2 cardiac cycles,

echo time 23–25ms, with SENSE factor of 2. During acquisition, slices of 6 diffusion

directions at one coordinate are obtained with various diffusion weightings ranging from 150
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to 600s/mm2. These slices are one case for clinic diagnosis and parameter map calculation.

Each case may contain 8 to 10 images because of duplicate acquisitions on the same

diffusion direction. In this super-resolution research, I randomly select N = 208 cases for

training and another N = 40 for testing (including 20 diastole cases and 20 systole cases).

The original shapes of these slices vary from 160 to 256, but the ROI is set as [80× 80]

with the vessel inside. Experienced radiologists manually annotate labels of vessel walls.

3.3.2 Evaluation protocol

The proposed method MS-GAN is compared with bilinear interpolation, SRResNet and

SRGAN [114]. Conventional Peak signal-to-noise ratio (PSNR) and Structural SIMilarity

(SSIM) index are used to measure the pixel-wise and image-wise similarity between

generated SR results and ground truth HR images. A mean opinion score (MOS) evaluation

is designed and performed quantify the perceptual reality of generated SR images. Ground

truth slices and SR images generated by different methods are shuffled for blind scoring

by an experienced MR physicist. The evaluation is based on a Likert-type scale—0 (non-

diagnostic), 1 (poor), 2 (fair), 3 (good), and 4 (excellent)—depending on the image qualities

[165, 166]: over-Smooth; motion and other kinds of Artefacts; Unrealistic textures; and

too Noisy or low SNR. The MOS is then derived by calculating each method’s mean and

standard deviation.

3.3.3 Implementation details

All the implementation, including MS-GAN and the comparison methods, has been done

using Python 3.5, with TensorFlow [36] library. OpenCV-python [294] has been used for

image pre-processing, such as resize and blur operations. All experiments are performed

on a Linux workstation with a single NVIDIA TITAN X Pascal GPU. The lesion detection

network has 5 max pooling residual blocks, each of which has 4 convolutional layers (width

= [32, 64, 128, 128, 128] and kernel size = 3 × 3). The three fully connected layers have

[1024, 128, 2] nodes, respectively. ReLU activation applies after each batch normalisation

layer and the FC layer. This network is trained for 50 epochs with Adam optimiser

[61] (momentum = 0.9, betas= (0.9, 0.999), learning rate = 0.001). The multi-scale SR

image generator and the WGAN-GP discriminator are trained jointly from scratch. The

generator (Fig. 3.3) consists of two ×2 SRResNet, each of which has 16 residual blocks,

and each block has 64 convolution kernels (kernel size = 3 × 3) in every convolutional

layer. ReLU [47, 295] applies as the non-linear activation after each layer. Notice that

the warm-up training of the SR image generator is not applied, although it is required

in the previous GAN-based method SRGAN [114]. The networks are trained with Adam

optimiser ((momentum = 0.9, betas= (0.9, 0.999)) for 300 epochs. The learning rate starts
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as ι = 10−4 and decays to ι = 10−5 at the midpoint of the training.
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3.4 Results and Discussion

In this section, I first present the results of MS-GAN on two private medical image datasets

in Section 3.4.1. In addition to PSNR and SSIM representing the reconstruction fidelity, SR

images are evaluated with the mean opinion score and clinical analysis tasks to illustrate

the real perceptual quality in the clinic for doctors. In the following Section 3.4.2 and

3.4.3 simulation experiments are executed on the BraTS dataset for an ablation study of

the lesion-focused training and the multi-scale GAN. As a clean and public dataset with

numerous brain tumour slices, it can support the representative discussion of the impacts

of each component in the proposed method, and the conclusions can be reliably extended

to a wide range of medical image modalities.

3.4.1 MS-GAN performance

Performance on LGE-CMR First, in the ×4 SISR experiments with the LGE-CMR

dataset, the proposed method is compared with bilinear interpolation, SRResNet and

SRGAN. The boxplots in Fig. 3.5 summarise the PSNR and SSIM results. On average, it

achieves significantly superior scores compared with SRGAN and bilinear interpolation.

SRResNet, trained without perceptual and GAN-based loss, has the best PSNR and SSIM

scores. Regarding the perceptual quality of the SR results (Table. 3.1), the ground truth

images and generated SR images of 30 random samples (150 images in total) are shuffled

and blind-scored by an experienced CMR image processing physicist. The ground truth

images naturally achieve the highest score, while Wilcoxon rank-sum test shows that

the proposed MS-GAN method achieves comparable performance with the ground truth

images. In contrast, the other three SR methods can only generate low perceptual quality

SR images with multiple artefacts, such as over-smoothing. Fig. 3.6 shows an example,

while Fig. 3.7 illustrates the error maps. The SR results of bilinear interpolation are

conspicuous because of their poor perceptual quality. SRResNet aims to reduce the mean

pixel-wise error but leads to over-smoothing because of the lack of high-frequency textures.

SRGAN, which introduces perceptual loss and GAN-based adversarial loss to SRResNet,

successfully generates rich textures to avoid blurring. However, the textures are either

unreal or too noisy. In contrast, MS-GAN has successfully generated realistic textures,

significantly improving the perceptual quality of SR images.

Notice that as in previous works [114, 166], this study also demonstrates that conventional

quantitative metrics such as PSNR and SSIM have limitations on evaluating SR results

alone. PSNR and SSIM primarily depend on global information and pixel-wise accuracy,

with no attention to local structures (e.g. textures). Following the same idea, pixel-wise

loss functions such as LMSE are designed. They can lead to high PSNR/SSIM scores but
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also limit the network to generate high-frequent information to avoid increasing pixel-wise

errors. As a result, the trained networks, such as SRResNet, only generate over-smoothed

SR images. In Table 3.1, 28 of 30 SR images of SRResNet are marked as over-smoothed.

Introducing perceptual and adversarial losses in training SR image generators can solve

this problem. However, it may cause new issues because incorrect textures may make the

SR images unreal and too noisy, as SRGAN has performed. In the 30 SR results of SRGAN,

23, 16 and 17 images are marked with artefacts, unrealistic textures and too much noise,

respectively. In contrast, the proposed MS-GAN method has tackled both issues and gen-

erated SR images with high perceptual quality, few artefacts, and good PSNR/SSIM scores.

Table 3.1: Perceptual quality is measured by the MOS metric [166]. Thirty samples are
randomly selected from the testing dataset of LGE-CMR images. Each sample has one ground
truth image and 4 SR results corresponding to the 4 SR methods. A CMR image processing
physicist (> 3 years’ experience in LGE CMR) has performed blinded scoring of the image quality
of these 150 images on a Likert-type scale: 1 (Poor), 2(Fair), 3(Good), and 4(Excellent)[165, 166].
Wilcoxon rank-sum test shows no significant difference between the proposed MS-GAN (grey
row) and the ground truth. The best two MOS scores are in bold. S, A, U and N are MOS
remarks defined as over-Smooth, motion and other kinds of Artefacts, Unrealistic textures, and
too Noisy or low SNR.

MOS Poor Fair Good Excellent S A U N p-value

Bilinear 1± 0 30 0 0 0 30 22 22 0 < 0.05
SRResNet[114] 1.93± 0.36 3 26 1 0 28 2 1 0 < 0.05
SRGAN[114] 1.93± 0.63 6 21 2 1 1 23 16 17 < 0.05
MS-GAN 2.73± 0.73 0 13 12 5 1 8 7 9 > 0.05
GT 2.97± 0.80 0 10 11 9 1 7 4 5
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Performance on DT-CMR The proposed method obtains promising SR results in the

experiments with DT-CMR images (Fig. 3.9). Bilinear interpolation and SRResNet show

over-smoothed results as expected (Fig. 3.8). SRGAN achieves perceptually acceptable

results, but the difference in image and PSNR/SSIM demonstrate significant errors. The

mean PSNR and SSIM scores of all slices are calculated for each case in the testing

dataset. On average, SRResNet achieves the best PSNR and SSIM scores for diastole

and systole cases, closely followed by the lesion-focused MS-GAN. Furthermore, the SR

results are measured in the following clinical tasks. Four DT-CMR parameter maps

are calculated and compared with ground truth with pixel-wise root-mean-square-error

(RMSE): mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA) and secondary

eigenvector angulation (E2A). Although for MD, FA and E2A, bilinear interpolation

achieves relatively low RMSE, the inter-subject mean transmural HA line profile extracted

shows that the results from SRResNet, SRGAN and MS-WGAN are more realistic (Fig.

3.10). Furthermore, the DT-CMR parameter maps suggest that the results obtained by

SRResNet are over-smoothed (Fig. 3.11).
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Figure 3.10: Pixel-wise root-mean-square errors of the DT-CMR parameter maps are on the
left: (a) mean diffusivity (MD), (b) fractional anisotropy (FA), (c) helix angle (HA) and (d)
secondary eigenvector angulation (E2A). On the right is (e) the inter-subject septal mean HA
line profiles for each SR method and the ground truth (GT). Notice that the dip close to the
epicardium is due to warpping of the helix angles as it approaches the right ventricle for some of
the subjects. All methods, except bilinear interpolation, keep this structural information. The
statistical differences are given by Wilcoxon rank-sum test (* indicates significant differences
while n.s. means no significant difference.
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3.4.2 Impacts of the lesion-focused training

Experiments are designed to research how the lesion-focused training strategy affects the

final SR performance. For a simple and fair comparison, I implement lesion-focused super-

resolution (LFSR) by adding lesion detection and ROI-focused training to the original

SRGAN. Methods are compared in both ×2 and ×4 SR tasks with the clean dataset

BraTS of brain MR images for a general discussion of the impacts. Meanwhile, to simulate

the noise in the acquisition process of MR scans, various levels of additive white Gaussian

noise (AWGN) are added in ×2 SR tasks. Bilinear interpolation (with non-local mean

denoising [296] if necessary) and SRResNet are also considered baseline SR methods.

Lesion detection accuracy Regarding the lesion detection performance, three levels of

ROI detection accuracy are defined depending on the percentage of tumours covered by

the predicted bounding box (Fig. 3.12). First, perfect detection means the tumour is 100%

covered by the detected ROI. Second, the acceptable detection denotes that more than

95% of the tumour is covered. Finally, the other cases are called bad detection. In the

brain tumour MR images experiments, the lesion detection network LD is trained with

HR images from the training dataset but works on LR images from the testing dataset.

It has achieved high accuracy on average of 2368 testing images in both ×2 and ×4 SR

tasks (Table. 3.2). For ×2 down-sampled LR images, it has perfectly predicted the ROIs

of 2218 (93.7%) slices. For ×4 down-sampled LR images, it has perfectly predicted the

ROIs of 2109 (89.1%) slices. For both cases, the acceptable predictions are 111 (4.7%)

and 119 (5.0%) cases, respectively, while the bad predictions are 39 (1.6%) and 140 (5.9%)

cases, respectively. Notice that lesion detection is not the core goal of this project, so the

occasional errors are acceptable. Correct lesion detection results help address the most

informative patches during the SR network training, improving the final performance.

Table 3.2: ROI detection accuracy on LR images. Depending on the percentage of tumours
covered by the predicted ROI bounding box, three accuracy levels are defined: perfect (100%),
acceptable (> 95%) and bad (< 95%). The testing dataset includes 2368 brain tumour MR
images in total.

Perfect Detection Acceptable Detection Bad Detection

×2 2218 (93.7%) 111 (4.7%) 39 (1.6%)
×4 2109 (89.1%) 119 (5.0%) 140 (5.9%)
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Figure 3.12: Examples of ROI detection results by LD with brain tumour MR images. From
top to bottom: a perfect detection is defined as the tumour is 100% covered by the detected
bounding box; an acceptable detection is defined as more than 95% of the tumour is covered;
and other cases are defined as bad detection.
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Improvements with lesion-focused training In ×2 and ×4 SR tasks, LFSR generates

more perceptual realistic textures than the original SRGAN (Fig. 3.15). Both GAN-based

methods avoid the over-smoothing issue in bilinear interpolation and SRResNet. Compared

with SRGAN, the lesion-focused method achieves superior (of the ×2 cases) and equivalent

(of the ×4 cases) PSNR and SSIM performance on average (Fig. 3.13). Although SRResNet

obtains the highest scores, it fails to generate authentic texture-rich SR images. In ×2

SR with denoising tasks, the lesion-focused strategy significantly increases the PSNR and

SSIM scores compared with the original SRGAN (Fig. 3.14) because the noise in the

background is not involved in training anymore. In ×2 SR w/wo noise tasks, lesion-focused

training results in improvements of [+2.5dB,+1.4dB] PSNR and [+0.049,+0.043] SSIM

scores. Although lesion-focused training slightly decreases performance (−0.6dB PSNR

and −0.018 SSIM) in ×4 SR, it improves the results (+0.8dB PSNR and +0.041 SSIM)

in more challenging cases with additive noise. Fig. 3.16 shows the noisy LR image,

ground truth image and SR images of a random example. Perceptually the results of

bilinear-interpolation with non-local mean denoising and SRResNet have lost almost all

textures inside the brain and the tumour. In summary, SRResNet achieves the best PSNR

and SSIM performance in all tasks (Table. 3.3) but fails to generate realistic textures

in SR images. In contrast, GAN-based methods improve the perceptual quality of SR

images. Moreover, the lesion-focused training strategy performs high perceptual quality

and results in much better reconstruction fidelity than the original SRGAN.

Table 3.3: An ablation study of the lesion-focused training strategy in simulation ×2 and ×4
SR experiments w/wo additive Gaussian noise (σ = 20, 40). SRGAN with lesion-focused training
strategy (LFSR, in grey) is compared with (a) bilinear interpolation plus non-local means [296]
method (B+NLD), SRResNet, and original SRGAN [114].

×2 ×2(σg = 20) ×4 ×4(σg = 40)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

B+NLD [296] 29.1 0.900 20.7 0.623 25.2 0.761 17.1 0.483
SRResNet[114] 35.6 0.962 32.8 0.895 27.9 0.832 30.6 0.840
SRGAN[114] 29.6 0.865 27.6 0.789 25.7 0.741 26.2 0.731
LFSR 32.1 0.914 29.0 0.832 25.1 0.723 27.4 0.772
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3.4.3 Impacts of GAN variations

For a comparison study, I have implemented and tested 6 GAN-based variations, which

differed in SR image generator, discriminator, loss function and training strategy. Re-

garding the SR image generator, I have tested SRResNet [114], the multi-scale and the

stacked SRResNet in Fig. 3.11. The vanilla GAN [101], Wasserstein GAN [108] and

WGAN-GP [22], with and without the pre-training of the generator, are compared. Loss

functions, especially the adversarial loss and the multi-/sinlg-scale MSE loss, are cho-

sen correspondingly with the architectures of the generator and the discriminator. The

implementation details of all methods are introduced in Table. 3.4, in which they are

named as: (1) GAN+Pre train; (2) WGAN+Pre train; (3) WGAN; (4) WGAN-GP; (5)

WGAN-GP L×2
MSE; and (6) MS-GAN. The SR image generators of GAN+Pre train and

WGAN+Pre train are trained for 50 epochs before the experiments, but the other gen-

erators are not. The training of all GAN variations follows the same settings. A lesion

detection network LD is trained independently and used for lesion-focused training of all

GANs. Although methods based on WGAN(-GP) might converge faster than others, all

tested methods are trained for the same epochs to establish a fair comparison. In addi-

tion, I involve the bilinear interpolation, SRResNet and SRGAN for a comprehensive study.

In addition to PSNR and SSIM, the mean opinion score (MOS) evaluation is used to

quantify the perceptual reality of generated SR images (Table. 3.5). In this study, 100

testing slices are randomly selected for MOS evaluation. The scored group of each slice

has 1 HR ground truth and 6 SR results corresponding to the 6 GAN variations. Then, I

randomly shuffle these 700 images (including 100 HR ground truths). An MR physicist

(>6 years experience on brain tumour MRI images) has performed blinded scoring for

these shuffled images.

The vanilla GAN produced relatively poor PSNR/SSIM, but other GAN variations have

resulted in similar high PSNR/SSIM. The MS-GAN method obtains the highest MOS. Figs.

3.17 and 3.18 show the qualitative visualisation of an example slice. The MS-GAN achieves

high PSNR/SSIM with lesion edge and textural information preserved well. The vanilla

GAN produces noisier SR results than the ground truth images. All WGAN-based models

achieve similar results but are slightly smoother than the results produced by the MS-GAN.

Compared with the MS-GAN, although SRResNet yielded higher PSNR/SSIM, the results

are more blurry. SRGAN achieves lower PSNR/SSIM mainly due to the synthesised stripy

artefacts in the SR results with less SNR. Notice that both SRResNet and SRGAN conduct

on the whole slice, but only the ROIs are evaluated (Fig. 3.17). All the learning-based SR

methods show significant improvement over the bilinear interpolation. Both WGAN and

WGAN-GP can provide perceptually more realistic SR than the vanilla GAN, resulting
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in better PSNR/SSIM and significant improvement of the MOS. The proposed MS-GAN

achieves the most realistic SR with the highest MOS close to the ground truth images.

Similar to SRGAN [114], the study demonstrates the limitations of using PSNR/SSIM as

evaluation metrics for medical image SR tasks. Although blurry images are not perceptu-

ally realistic enough, they can still achieve relatively high PSNR/SSIM. Comparing all the

methods, SRResNet achieves the highest PSNR/SSIM. However, it smoothes out the edge

and textural information of the lesion, which are valuable and crucial for clinical diagnosis.

I have also evaluated the training and inference efficiency of all methods. The generators

impact training and inference costs, while the discriminators only affect the training cost.

The GAN+Pre train costs 229.6s/epoch for training and 4.04s to generate SR images

for the whole testing dataset (2368 slices). According to the additional calculation of

weight clipping in WGAN [108], the training time increases to 233.8s/epoch. WGAN-GP

[22], because of the calculation of gradient penalty, further increases the training time

to 305.7s/epoch. Moreover, generating the intermediate ×2 SR result slightly slows the

training process (314.3s/epoch using WGAN-GP). Finally, because the stacked SRResNet

generator has the most layers, it synchronously increases the training (422.2s/epoch)

and inference costs (7.75s for the whole testing dataset). In contrast, using WGAN and

WGAN-GP can reduce training costs. The time-consuming ’warm-up’ plays a critical

role in SRGAN and GAN+Pre train but is no longer necessary with WGAN(-GP) be-

cause they can stabilise the training much better than the vanilla GAN. Furthermore,

WGAN/WGAN-GP require fewer training epochs because they converge much faster than

the vanilla GAN.

Interestingly, the proposed lesion-focused MS-GAN method shows image quality im-

provement and signal restoration along with the SR. In Fig.3.19, it can be observed that

for these two example slices, the ground truth images are with lower SNR and noticeable

aliasing artefacts (thus, relatively lower MOS). The MS-GAN method can improve the

image quality by boosting the SNR and reducing the artefacts resulting in better lesion

characteristics (cyan arrows in Fig. 3.19). The benefits of the proposed SISR method

can be envisaged for the following clinical image analysis, segmentation and bio-marker

extraction and characterisation tasks.
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3.4.4 Limitations

Although the proposed method has achieved good performance on various MR image

datasets, there are certain limitations to be resolved in the future.

There is a gap between simulation experiments and clinical needs when processing medical

images. The current method involves processing images slice by slice, which can lead to

potential risks as scans are obtained and processed patient-wise in the clinic. Furthermore,

dividing the slides of the same scans into training and testing groups may cause network

over-fitting, as the similarities between the slides will push the networks only to remember

specific images rather than learning the LR-to-HR reconstruction. Thus, the slice-wise ex-

periment cannot accurately represent the SR performance for real applications. Therefore,

all experiments will be conducted patient-wise in my upcoming research to address these

challenges.

Additionally, lesion detection may limit the general applicability of the proposed method

because the training of SR networks requires extra labels of lesions. Although the lesion-

focused training strategy has improved the final performance, it cannot be applied to

datasets without lesion labels. Meanwhile, the lesion areas may be relatively small or hard

to distinguish from other regions, such as in microbleed and stroke detection scans. Thus,

I explore the more robust and flexible way of supervising SR networks with the pre-trained

segmentation models of public datasets in Chapter 5.

Furthermore, assessing the perceptual quality of generated images remains an ongoing

challenge. While the mean-opinion-score is a dependable metric, it is also time-consuming

and not widely applicable. During the experiments in DT-CMR images, I seek to evaluate

the SR outcomes using downstream medical image analysis tasks. Nevertheless, these

parameter maps are specific to this MR modality, and the error maps are unsuitable for

quantitative measurement. Thus, I will present my efforts towards automated, robust and

quantitative perceptual quality assessment in the upcoming chapters.

Finally, Understanding why deep neural networks perform well on medical image SR

tasks is consequential. On the one hand, conducting more ablation studies can help com-

pare various network implementations and identify the impact of small changes in detailed

modules. For instance, removing batch normalisation [133] or adding dropout operations

[86] can significantly help in general or specific tasks. Discussing other fundamental

components, such as padding operations and activation layers, can be worthwhile. On the

other hand, network interpretability is essential in healthcare research and applications.

However, it is challenging due to the difficulty in explaining and controlling the impact
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of each operation in the layers and nodes. In the following chapters, I will present more

precise ablation and comparison studies on network architecture and loss functions to

uncover the critical factors behind advanced SR networks.

3.5 Chapter summary

This chapter presents a GAN-based SISR method with large magnification scales for

medical images. I propose a multi-scale WGAN-GP method with a lesion-focused training

strategy, which successfully enhances spatial resolution without introducing unrealistic

textures in the simulation experiments with one open access and two clinical medical image

datasets. The merits of this work are three-fold: (1) the lesion-focused super-resolution is

developed to constrain the deep network to focus on the lesion ROIs, which does not only

imitate the clinicians’ scrutinising procedure, e.g., enlarge the ROIs, but also dramatically

reduce the possible synthesised artefacts from the organs beyond the lesion areas; (2) a

comparison study is carried out to test vanilla GAN with WGAN variants to seek possible

better GAN-based solutions for a more stabilised and efficient training that can yield an

improved perceptual quality for the super-resolved results; (3) based on the promises of

LFSR and more advanced GAN architectures, a novel MS-GAN model is developed to

tackle the challenges of SISR for medical images, especially for the more tricky cases with

X4 magnification. In addition to the widely used quantitative metrics (PSNR/SSIM), the

MOS is designed to incorporate experts’ domain knowledge to evaluate the medical image

SR results. Results have shown that the proposed lesion-focused multi-scale SISR method

(MS-GAN) can achieve efficient SISR for various MR scans and potentially benefit other

medical image modalities. Such models can be envisaged in a broader range of clinical

applications.
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CHAPTER 4

GANs with Meta-learning for

Arbitrary Scale Super-Resolution

4.1 Introduction

CNN-based and GAN-based super-resolution methods have performed remarkably on

various medical image modalities [23, 24, 97, 184]. However, most of these works are

designed for specific magnification scales and treat SR with different scales as independent

tasks. Thus, several models must be trained and stored for different magnification tasks.

Furthermore, collecting large clinical datasets of high- and low-resolution image pairs is

challenging to train these SR methods for new applications. As a result, the high cost of

training and implementation leads to poor clinical applicability and limits their applications.

Magnification with arbitrary scales is necessary for super-resolution tasks because the

zoom-in/-out process is continuous in practice. Preliminary deep learning super-resolution

methods such as SRCNN [130] and DRCN [201] support this characteristic because they

upsample the LR image to the targeted size with interpolation methods. However, this

pre-upsampling architecture in these networks requires lots of calculations on feature maps

with high resolutions and is time-consuming. Thus, state-of-the-art SISR methods such as

RDN [132] are mainly developed with a post-upsampling framework. The feature maps

are first learned with low-resolution and finally magnified by up-sampling modules (e.g.

sub-pixel [189] and deconvolutional layers [182]). This framework leads to computation

reduction and results in superior performance with more efficient training. Either the

sub-pixel or the deconvolution module is designed with a fixed magnification scale, so the

weights of multiple upscale modules must be trained and stored respectively for SR tasks

with multi-scales (e.g. ×2, ×3 and ×4) as in MDSR [133]. For magnification with arbitrary

scales, the input LR or output HR images must be up-sampled or down-sampled with in-
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terpolation methods. However, this pre-/post-processing may lead to image quality decline.

There are two main limitations of scale-free super-resolution. First, existing learning-based

up-scale modules (e.g. sub-pixel and deconvolution layer) can not meet the requirements of

continuous magnification scales. Second, it is impossible to acquire HR-LR pairs of all po-

tential scales. Thus, it is necessary to introduce meta-learning to this task. Meta-learning

[194, 195] is well-known as learning-to-learn, which focuses on leveraging prior experiences

to learn a model or strategy that can rapidly adapt to new tasks with limited data or re-

sources. This idea has been widely used in computer vision tasks, including model-agnostic

for fast adaptation [297], few-shot and zero-shot learning [298, 299], cross-domain model

adaptation [300] and weight prediction [301, 302]. Primarily, the weight prediction strategy

aims to train an extra network to predict the weights for the main task. For example, in

the scale-free super-resolution task [135], a weight prediction network is applied to generate

the convolution kernels for arbitrary magnification scales. Additionally, this meta-upscale

module operates location projection and feature mapping based on matrix product and

the predicted weights for feature map up-scaling to any shape. Instead of learning an

up-sample transformation on a specific magnification scale, this new upscale module learns

the relationship between up-sample transformations and scales of magnification, thus

allowing a single model to super-resolve images with arbitrary scales.

Considering the success of the meta-upscale module on natural image SISR tasks, it

is worth seeking to apply meta-learning to tackle scale-free super-resolution in medical

images. Specifically, what is the most efficient network architecture for feature extraction

cooperating with the meta-upscale module? How can the GANs result in robust visual

quality improvement on all scales? In this chapter, I implement an end-to-end medical

image SR network, which takes one LR image as input and generates corresponding

SR images of an arbitrary magnification scale. Additionally, the model is trained with

pixel-wise error, perceptual loss and GAN-based adversarial loss to improve generated

images’ perceptual and fidelity quality synchronously. Furthermore, I overcome the cost

of modifying well-trained models to new medical modalities using transfer learning. In

particular, I focus on SR tasks with arbitrary scales in (1, 4] to meet the most common

needs in clinical practice. Meanwhile, the method can tackle larger scales with proper

training settings. Briefly speaking, the main contributions of this work are:

• I first introduce meta-learning to medical image SR tasks and propose the first

scale-free super-resolution method for medical images. Compared with SOTA SISR

methods with a specific magnification scale (i.e. EDSR) and with arbitrary scales (i.e.

MetaRDN), the proposed MIASSR has much fewer parameters (1% of EDSR and

26% of MetaRDN). It achieves comparable PSNR scores (-0.30 dB on average) and
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superior FID scores (-8.43 improvement on average) in the simulation experiments

with four public medical image datasets.

• A comprehensive comparison study of SR image generators and SR loss functions is

conducted with the scale-free medical image SISR task. These comparison results

show that a lite version EDSR network is proper for model size reduction with no

performance decline in this scale-free method. Meanwhile, I introduce Wasserstein

GAN with gradient penalty for advanced adversarial learning, significantly improving

the perceptual quality of the enhanced images. The proposed method achieves the

best FID scores on all seven medical image modalities of the four datasets.

• The proposed method successfully applies to various medical image modalities,

including single-/multi-modal brain MR scans, cardiac MR scans and chest CT scans

of COVID-19 patients. Additionally, with transfer learning, the pre-trained model of

brain MR scans is robustly extended to new medical images (i.e. cardiac MR and

chest CT images) with only one-fifth training steps.

The rest of this chapter is structured as follows: in Section 4.2, I introduce the proposed

MIASSR method with details of the model architecture and the training loss; in Section

4.3, I demonstrate the experimental settings, including data, evaluation metrics and project

implementation; in Section 4.4, I illustrate the comparison study of MIASSR with SOTA

SISR methods on four medical image datasets and the impacts of each component in

the model; and finally in Section 4.5 I conclude the work of this chapter. All related

publications and code are publicly realised on https://github.com/GinZhu/MIASSR.
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4.2 Methods

Single image super-resolution aims to restore a high-resolution image Ihr from one low-

resolution observation I lr of the same object. Generally, the LR image is modelled as

[8]:

I lr = (Ihr ? δ) ↓s +n, (4.1)

where Ihr ? δ denotes the degradation during the image capturing with down-sampling

↓s and noise n. SISR aims to inverse this above degradation mapping to recover a

super-resolved image Isr from I lr[9]:

Isr = G(I lr, s;θG), (4.2)

where G is a CNN based SR image generator and θG denotes its trainable weights. In

each step of training, errors between the approximation Isr and the HR ground truth Ihr

are measured by a well-designed loss function LSR. The backpropagation passes this loss

to the whole network to calculate gradients and update the weights θG [9]:

θ̂G = arg min
θG
LSR(G(I lr), Ihr). (4.3)

The SR image generator in the approach consists of a feature extractor F which extracts the

feature maps of the low-resolution image and a meta-upscale moduleM which up-samples

the feature maps with arbitrary scales:

Isr = G(I lr) =M(F(I lr), s). (4.4)

Remember that the input and output layers are ignored to simplify this equation. They

normalise and convert the images to the generator’s feature domain and vice versa. The

rest of this section will introduce each component of the proposed MIASSR (Fig. 4.1) in

detail: the feature extraction, the meta-upscale module and the losses for training.

4.2.1 Feature extraction with EDSR-lite

I use an Enhanced Residual Block (ERB) BERB based feature extractor, namely EDSR-lite

in MIASSR. This residual block (Fig. 4.2) is first proposed in EDSR [133], which consists

of two convolution layers C, a non-linear activation layer ϕ, a residual connection, and no
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batch normalisation layer:

F out = BERB(F in)

= F in + C1
w(ϕ(C2

w(F in;φC2));φC1)× α,

φC1 , φC2 ∈ θG,

(4.5)

where F in and F out are the input and output feature maps, w presents the width of each

convolutional layer, and (φC1 , φC2) are trainable parameters of the convolution layers. Be-

cause padding is applied correspondingly with the convolution kernel size in all convolution

layers, feature maps can remain the same size. Thus, it becomes very convenient to build

deeper neural networks by just stacking up several residual blocks, and the low-dimension

feature maps F lr can be extracted from the input LR image I lr:

F lr = F(I lr) = Bb(I lr;φB), φB ∈ θG. (4.6)

In this work, I use a lite version of EDSR, which consists of b = 16 enhanced residual

blocks (Equation 4.5) and 64 convolution kernels with a size of 3× 3 for each convolutional

layer. Unlike the handcrafted feature extraction (e.g. texture, shape and morphological

features) [303], the feature extraction networks automatically learn relevant hierarchical

features ranging from basic edges and textures at initial layers to more complex patterns in

deeper layers. Thus, it has better general applicability with image types and pre-processing

operations. Section 4.4.2 will illustrate the comparison of widespread CNN-based blocks for

LR feature extraction and introduce how the hyper-parameters (e.g. block type, number

of blocks and width) are chosen.

4.2.2 Meta-upscale module

The low-dimension feature maps F lr extracted by F in Equation 4.6 need to be up-sampled

to generate HR output from LR input:

F sr =Ms(F lr;φMs), (4.7)

where F sr is the super-resolved feature maps, Ms is an up-sampler, and φMs is the group

of parameters for the magnification option with scale s. Common single scale up-samplers,

such as sub-pixel [189], only learn one group of parameters for a specific SR scale s. In

contrast, the meta-upscale module [135] learns to predict a group of weights for each SR

scale. Particularly, one pixel with indexes (i, j) in the super-resolved feature maps F sr is
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calculated as a weighted sum of all pixels in F lr:

F sr(i, j) = vi,j × F lr, (4.8)

where F lr with original shape [Hin,Win] is flattened to [Hin ×Win, 1] and vi,j is a vector

with a size of [1, Hin ×Win]. The parameters of vi,j are predicted by a weights prediction

network W in M according to the scale s and the pixel’s location (i, j):

vi,j =W(
i

s
−
⌊
i

s

⌋
,
j

s
−
⌊
j

s

⌋
,
1

s
), (i, j) ∈ F sr. (4.9)

Accordingly, all pixels in F sr can be achieved via matrix multiplication:

F sr = W s × F lr, (4.10)

where W s =W(s) denotes the magnification matrix consists of vi,j of all (i, j) ∈ F sr with

scale s. Thus, the meta-upscale module is represented as:

F sr =M(F lr, s) =W(s;φW)× F lr, φW ∈ θG. (4.11)

The weights prediction network W consists of only three layers, including two fully-

connected layers and a nonlinear activation layer. This meta-upscale module works with

any scale, which differs from sub-pixel up-samplers. Thus, it becomes possible to train an

end-to-end model for SR tasks with arbitrary magnification scales.

4.2.3 Loss functions

A combined super-resolution loss is used in this work to train MIASSR (Equation 4.2). It

consists of the pixel-wise L1 loss L1, adversarial loss Ladv and perceptual loss Lperc:

LSR = λ× L1 + γ × Ladv + η × Lperc, (4.12)

where λ, γ, and η are scale factors to balance each part of the loss function LSR. This

additive form of loss has proven effective for comprehensive objective capture, gradual

refinement, training stability and flexibility. However, it is essential to strike a balance

between each component. Inappropriate hyper-parameters (e.g. type and scale of loss)

may lead to issues such as training instability, local minima/over-fitting and complex

evaluation. In section 4.4.3, the ablation study will introduce the impacts of each loss

component and how the scales are determined.
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L1 loss SISR requires predicting the correct value of each pixel in the super-resolved

images. Thus, pixel-wise errors are important for evaluating and training SR networks.

In this work, I used the L1 loss, also called the mean absolute error (MAE), to train the

model for good performance on PSNR and SSIM scores. It is defined as:

L1(Isr, Ihr) =
1

H ∗W
∑

(i,j)∈I

‖Ihr[i, j]− Isr[i, j]‖ , (4.13)

where H and W are the height and width of the images. L1 Loss is a typical loss function

used to train SISR networks. However, it is also limited to generating perceptually realistic

textures in medical images because it leads to over-smoothing. In the visual system of

human beings, images are not processed as a set of pixels but as patches or as a whole, so

generating realistic features is also essential. Therefore, perceptual and adversarial losses

are also involved.

VGG based perceptual loss The VGG based perceptual loss Lperc was first intro-

duced in [139] and had been widely used in super-resolution tasks [23, 24, 114, 134]. It

presents the mean-square-error (MSE) between the super-resolved images and the HR

ground truth images in the feature domain:

Lperc(Isr, Ihr) = E(‖Vl(Ihr)− Vl(Isr)‖2), (4.14)

where V is a pre-trained VGG-19 model and l denotes the feature maps of the specific

layer of V . Following the conclusion in ESRGAN [134], I use the feature maps before the

non-linear activations of earlier layers to provide more textural information.

Adversarial loss To generate perceptually more realistic images, adversarial learning

with Wasserstein GAN is applied in the method. A GAN comprises the SR image generator

G and a discriminator D. Both networks are trained jointly. The discriminator aims to

correctly recognise any image as real or fake, while the generator aims to produce as real

as possible SR images. Thus, the primary adversarial loss function is defined as [101]:

LGAN = −EIhr [logD(Ihr)]− EIlr [log(1−D(G(I lr)))] . (4.15)

Whilst this basic version of adversarial loss has been successfully used in natural image

[114] and medical image [23] super-resolution tasks, it is susceptible to problems of training

instability and mode collapse. When the discriminator becomes too powerful (especially

at the beginning of the training), vanishing gradients may occur with the generator.
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Meanwhile, the logarithmic terms can cause sharp regions, saturations and poor gradients

in the loss landspace, leading to training instability. Additionally, this loss (Equation

4.15) has no direct correlation with perceptual quality, which means no clear signal of the

training procedure. Thus, Wasserstein GAN is proposed to resolve these issues [108]. It

measures the Earth Mover’s distance (also known as Wasserstein distance) between the

two probability distributions of authentic and generated data, representing the cost of

transforming one distribution into another. Compared to the Jensen-Shannon divergence

used in vanilla GANs, the Wasserstein distance provides meaningful and smooth gradients

regardless of the discriminator and generator states. The generator clearly knows how to

improve and tends to produce more diverse samples, thereby mitigating mode collapse.

In practice, the WGAN also removes the logarithmic terms to provide a smoother loss

landscape for more stable training:

LWGAN = EIlr [D(G(I lr))]− EIhr [D(Ihr)] . (4.16)

An essential trick is to clip all the discriminator’s weights to a constant range [−c, c] for

derivable Wasserstein distance in the training of WGAN. However, the clipping strategy

makes the weights the minimum or maximum values. As a result, the discriminator behaves

like a binary network and declines the non-linear simulating ability of the GAN. Thus, the

gradient penalty is proposed to replace the clipping operation [22]. The new trick restricts

the gradients of D to not change rapidly by adding a new term in the adversarial loss:

Ladv = LWGAN + EI
[
‖5ID(I)‖p − 1

]2

, (4.17)

where ‖‖p is the p-norm.
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4.3 Experiments

In the simulation experiments, the proposed method successfully applies to four different

medical image datasets (Section 4.3.1) in super-resolution tasks with arbitrary scales of

magnification in (1, 4]. HR ground truth (GT) and corresponding LR images are generated

from the original slices. To evaluate the method, metrics including PSNR, SSIM and

Fréchet Inception Distance (FID) [175] are used to measure the differences between the

super-resolved images and GT images in the test set (Section 4.3.2). Afterwards, the mean

performance over all scales in (1, 4] is compared with bicubic interpolation and 7 SOTA

SISR methods (Section 4.3.4).

4.3.1 Data and pre-processing

LR-HR image pairs for training, validation and testing are generated from the original

slices. HR images are achieved by removing the pure-black background margin of the

original slices. LR images are generated by down-sampling the corresponding HR images

and blurred with a 3 × 3 Gaussian kernel. I focus on the central regions of each slice

because the pure-black background regions only provide useless information and slow

down the training process. In the experiments, a suitable margin size for each dataset is

carefully chosen to ensure that no non-zero values are removed.

OASIS The open access series of imaging studies (OASIS) [304] dataset consists of a

cross-sectional collection of 416 subjects, including individuals with early-stage Alzheimer’s

Disease (AD). Each subject includes 3 or 4 individual T1-weighted MRI scans obtained

within a single imaging session. The brain-masked version of an atlas-registered gain

filed-corrected image, namely T88-111, is used for the single modality SR experiments.

Due to the limitations of computing resources, from the whole dataset, I randomly select

30 subjects for training, 3 subjects for validation and another 9 subjects for testing. Notice

that the validation dataset is only for hyperparameter searching. The original size of each

subject is [176 × 208 × 176], and only a central area of [144 × 180] is used. All these

experiments are applied on the axial plane.

BraTS The brain tumour segmentation dataset (BraTS) [280–282] provides multi-modal

MRI scans of 210 patients with glioblastoma (GBM/HGG) and the other 75 patients

with lower grade glioma (LGG). Each BraTS multi-modal scan includes 4 MR modalities:

native (T1), contrasted enhanced T1-weighted (T1ce), T2-weighted (T2), and T2 Fluid

Attenuated Inversion Recovery (T2-FLAIR) volumes. I randomly select 50 scans (35 HGG

and 15 LGG) for training and 10 scans (7 HGG and 3 LGG) for testing. The original

image shape is [240× 240× 155]. Slices on the axial plane are cropped to [180× 170] to
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focus the training on the brain area.

ACDC The automated cardiac diagnosis challenge (ACDC) [305] was established to

encourage the development of algorithms for the automatic segmentation, classification,

and analysis of cardiac pathologies using MR images. The open-access dataset includes

1.5T and 3.0T MR scans of 100 subjects with expert annotations of various cardiac

structures such as left ventricle, right ventricle and myocardium. It uniformly contains five

pathology categories: normal subjects, dilated cardiomyopathy, hypertrophic cardiomy-

opathy, myocardial infarction and abnormal right ventricles. In this work, I randomly

assign the samples to 80 cases for training and 19 cases for testing. All experiments are

conducted on the transverse plane, where the slices have various shapes from [174× 208] to

[184×288]. To standardise the slice shapes, only the central areas with a size of [128×128]

are cropped. This patch size can ensure all ROIs (i.e. ventricles and myocardium) remain.

COVID-CT The COVID-CT dataset [306] is published for the medical and research com-

munity amid the ongoing challenges posed by the SARS-CoV-2 pandemic. It encompasses

lung CT scans from 632 patients diagnosed with COVID-19 infections. All patients had a

positive Reverse Transcription Polymerase Chain Reaction (RT-PCR) confirmation for

the presence of SARS-CoV-2 from a sample obtained within one day of the initial CT. CT

scans were conducted without intravenous contrast and utilised a soft tissue reconstruction

technique. The images originally in DICOM format were later transformed into the NIfTI

format. In this work, I randomly selected the images of 199 patients for training and

images of another 25 patients for testing. The original image shape is [512× 512]. After

removing the background, only the [412× 332] centre area is used for training or testing.

The data was manually inspected to ensure the cropping operation preserved the lungs.

4.3.2 Metrics

Three objective image quality assessment methods measure the fidelity and perceptual

quality of the generated SR images compared with ground truth (GT) images in the

experiments. First, I use the peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM [158]) for local and structural reconstruction accuracy measurement. However, they

cannot evaluate perceptual quality. Over-smoothed images have been reported in [24, 114]

to achieve higher PSNR and SSIM scores than texture-rich images, but they might be

less perceptually realistic. Thus, I also calculate the Fréchet Inception Distance (FID)

[175], which is popular to evaluate the perceptual quality of generated images by GANs.

It measures the difference between high-level hidden features of generated SR images and

GT images by calculating the distance between the distributions of both groups of images

in the latent space of a pre-trained image classification model Inception-V3 [173]. Notice
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that higher scores of PSNR and SSIM represent better fidelity quality, while lower FID

indicates more perceptually realistic images.

4.3.3 Implementation details

I use PyTorch [37] to implement this method, NiBabel [307] to load medical data, and

OpenCV-python [294] for image resize and blur operations. All experiments are conducted

on an Nvidia Quadro RTX 8000 GPU. The details of training tricks and hyperparameters

are released as config files on GitHub.

The generator consists of b = 16 enhanced residual blocks, in which each convolution layer

has w = 64 feature maps. A residual scale α = 1.0 is used for the residual connections in

ERB. The discriminator is similar to in DCGAN [110] and SRGAN [114]. It consists of 7

down-sample blocks, each with one convolution layer with stride = 1 for feature expanding

and one convolution layer with stride = 2 for feature maps down-sampling. No batch

normalisation layers are used in either the generator or the discriminator, while leaky-ReLU

[308] with negative-slope = 0.2 is chosen as the non-linear activation function. In the

experiments without transfer learning, both networks are initialised with Kaiming-uniform

[70].

During training, LR and HR images are randomly cropped into small patches. The

original path size is set to Hp,Wp = (96, 96) for HR patches, but either the size of the LR

patches or the size of the HR patches is adjusted to match the magnification scale s:

Hlr,Wlr =

⌊
Hp

s

⌋
,

⌊
Wp

s

⌋
;

Hhr,Whr = bsHlrc , bsWlrc .
(4.18)

For each training step, a batch of 16 random patch-pairs with the same SR scale is fed

to the model. Firstly in pre-training, the generator of MIASSR is trained with only L1

for 1× 105 steps because the warm-up can make the training of GANs more stable [134].

Then I train both generator and discriminator with λ = 1, γ = 0.001 and η = 0.006 for

1× 105 steps. Adam optimiser [61], with an initial learning rate ι = 0.0001, momentum

= 0.9 and betas = (0.9, 0.999) is used for backpropagation. The learning rate is halved

every 5× 104 steps. Losses above 1× 108 are discarded to avoid the gradient explosion.

All the above hyperparameters are chosen based on the validation performance in the

experiments on the OASIS dataset. In the transfer learning experiments of the ACDC

and COVID-CT datasets, the model pre-trained on the OASIS dataset is fine-tuned for

1 × 104 steps with LSR. Meanwhile, to make MIASSR work with multi-modal scans,
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the single-channel input and output layers are modified to 4-channel in the experiments

with the BraTS dataset. The four modalities of BraTS (i.e. T1ce, T1, T2 and Flair) are

stacked during training and testing. Meanwhile, the loss function LSR is calculated on

each modality respectively and then averaged.

4.3.4 Comparison with SOTA methods

I compare the proposed method with the bicubic interpolation and 7 SOTA SISR methods:

SRGAN [114], EDSR [133], SRDenseNet [220], RDN [132], MDSR [133], ESRGAN-L1

[134] and MetaRDN [135]. All these methods are designed for natural images, which have

much bigger dimensions than the medical images used in this work. I have re-trained the

models with the medical image datasets with adjusted smaller patches to make them work

well with the experiments. For a fair comparison, all models are trained with the same

steps and learning rate decay policy without model embedding and data augmentation. I

use the original loss functions to train most of the models. However, the perceptual loss

based on material recognition in ESRGAN [145] hinders the training with medical im-

ages, so I use ESRGAN trained with only the MAE loss L1 (so-called ESRGAN-L1) instead.

All these SISR methods except MetaRDN are designed only for specific integer mag-

nification scales (e.g. ×2, ×3 and ×4). I have used an up-and-down strategy to evaluate

their performance on SR tasks with float scales. It contains two steps: in the first up-

sampling step, the well-trained model with the ceiling scale dse is used to generate an

over-magnified SR image, then in the down-sampling step, the over-magnified image is

resized to the target resolution with the bicubic interpolation.
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4.4 Results and discussion

In this section, I first present the performance of MIASSR with four datasets compared

with SOTA SISR methods with specific or arbitrary scales. Then, ablations studies will

illustrate the impacts of the LR feature extraction networks and the influence of each loss

component, explaining how the hyper-parameters of network architecture and the scales

of loss components are determined.

4.4.1 MIASSR performance

On the OASIS dataset and model efficiency First of all, in the experiments with

the OASIS dataset (Fig. 4.3), MIASSR is compared with SOTA methods with arbitrary

SR scales. On average, it achieves the third-best mean PSNR and SSIM scores and the

best FID with the fewest parameters (Table 4.1). With all SR scales, MIASSR generates

images with comparable fidelity and perceptual quality with SOTA methods (Fig. 4.5).

Considering the balance between cost and performance, the mean PSNR score and FID

are plotted with the number of parameters of each model in Fig. 4.4. Particularly for

SISR methods which only support one SR scale (i.e. EDSR, RDN, SRDenseNet and

ESRGAN), the model size denotes the number of all parameters of three models (for ×2,

×3 and ×4 SR respectively) because they are all required in inference. Methods designed

for multi-scale (i.e. MDSR) and arbitrary scales (i.e. MetaRDN and MIASSR) intensely

narrow the model size by reducing the required models to one.

Notably, MIASSR has the fewest parameters, only 26% of the existing scale-free method

MetaRDN and fewer than 1% of EDSR. Although they are learning more challenging

transformations from the low-resolution space to the high-resolution space, multi-task

methods (i.e. MDSR, MetaRDN and MIASSR) achieve much better PSNR scores than

single-scale SR methods. Instead of approximating one mapping with a specific SR scale,

they share parameters in approximations of mappings with various SR scales. The pa-

rameter sharing between tasks and the diversity of LR-HR image pairs with different

magnification scales make the models converge better in the training process. Suppose to

divide all the methods into two groups: methods with meta-learning and methods without

meta-learning. It is clear to observe the perception-distortion trade-off [309]. The stem

of workflow, including SR task design and upscale implementation, decides the primary

performance. At the same time, the details of model architectures, loss functions and

training tricks only affect the balance between fidelity and perceptual quality.
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Figure 4.5: Comparing the proposed method with bicubic interpolation and SOTA methods in
SR tasks with arbitrary scales in (1, 4]. Higher PSNR and SSIM denote better fidelity quality,
while lower FID represents better perceptual quality. Results of bicubic interpolation and SRGAN
are not fully plotted because of their poor performance. The proposed method has achieved
comparable performance with SOTA methods with all SR scales.
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On the BraTS, ACDC and COVID-CT datasets The proposed method also per-

forms well on various medical image modalities, including brain MR, cardiac MR and chest

CT scans (Table 4.2). Transfer learning, which decreases the training cost on medical

data processing [310], also helps to modify the pre-trained model of the OASIS dataset

to new single-modality medical image datasets efficiently and effectively. Compared with

the bicubic interpolation method, the proposed MIASSR significantly improves the perfor-

mance in experiments with the ACDC and COVID-CT datasets (Fig. 4.6). Compared

with EDSR and MetaRDN, MIASSR generates images with comparable fidelity quality

and better perceptual reality, with only one-fifth of the training steps. Indeed, transfer

learning reduces the required training steps from 1× 105 to 2× 104. Besides, MIASSR can

be extended to multi-modality images conveniently. By simply modifying the input and

output layers, it successfully works for the cross-modality SR task of the BraTS dataset

(Fig. 4.7). Compared with SOTA methods which work for a single modality, it achieves

comparable performance on all four modalities (T1, T2, T1ce and Flair).

In summary, the proposed method has good clinical applicability. In the experiments, it

successfully applies to various medical image super-resolution tasks with different situations

of modalities and diseases. It works with brain and cardiac MR images (i.e. the OASIS and

ACDC datasets), chest CT images (i.e. the COVID-CT dataset), and cross-modality MR

scans (i.e. the BraTS dataset). Compared with SOTA methods, MIASSR can generate

SR images with comparable reconstruction fidelity and better perceptual quality with a

smaller model size. With transfer learning, MIASSR can effectively and efficiently extend

to new datasets.
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Figure 4.7: MIASSR has successfully worked with the multi-modal brain MR image dataset
BraTS. All images are converted to [0, 1]. Differences between SR images and ground truth
images are rendered.
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4.4.2 Ablation study on the SR image generator

Referring to Equation 4.5 and 4.6, the SR image generator is influenced by three factors:

the block structure B, the number of blocks b (i.e. the depth of the network) and the

number of convolution kernels of each layer (namely the width w of the network). Briefly

speaking, the width and depth of the network determine the size of the network, while the

block structure represents the connection of these layers. They resolve the capability of

feature extraction jointly. I have designed an ablation study of generator architectures

to understand how each factor influences the final performance. Besides, the conclusion

also supports the choice of the final hyper-parameters (i.e. block type, number of blocks

and width of each layer) in the proposed method with a balanced consideration of SR

performance and model efficiency.

Impacts of the network architecture First, I compare a wide range of architectures

for LR feature extraction in MIASSR. Six SOTA networks, widely used in computer vision

and achieved high performance on SISR tasks, are tested. These networks contain various

residual and dense blocks (Fig. 4.2) and behave differently in simulating the LR-to-HR

transformation. To match MIASSR, I replace their scale-specific up-samplers with the

meta-upscale module, as in MetaSR [135], and keep all the other original settings (e.g.

depth and width). To compare the performance of these generators, I train them with

only the L1 loss L1 for 1× 105 steps with the same training settings. The generated SR

images’ reconstruction fidelity and visual qualities are evaluated synchronously (Fig. 4.8).

When training with only the pixel-wise loss L1, the performance divides these varia-

tions into two groups. Methods with more layers always perform better because the

deeper structures provide more capability for simulating non-linear transformations. Other

structures, such as skip connections in dense blocks and the width of models, lead to

no significant differences. However, suitable structures for minimising pixel-wise errors

might not fit the needs of generating perceptually realistic textures. Thus, I further

compare RDN, EDSR and EDSR-lite (i.e. the one used in the proposed MIASSR) with

adversarial learning (Fig.4.9). Although MetaRDN performs best with L1 loss, further

adversarial learning brings no additional improvements. In contrast, the other two models

gain from adversarial and perceptual loss. However, comparing the original EDSR with

the EDSR-lite, extra feature maps of each convolution layer only slightly improve the

performance, although nearly a hundred times more parameters are used.
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Figure 4.9: The sensitivity analysis of SR image generators to GAN-based adversarial learning.
Three networks, EDSR-lite, EDSR and RDN are trained with L1 only and compared with the
extra-trained models with additional Ladv and Lperc. Low FID represents good perceptual quality
of generated images, while high PSNR and SSIM indicate good fidelity quality. Adversarial
learning has significantly improved the performance of EDSR-based methods.
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Impacts of network width and depth Additionally, I research the influence of the

width and depth of the network over the final SR performance. Technically, deeper and

wider networks should have more capability of approximation, which would result in

better SR performance. However, more trainable parameters also lead to more challenging

optimisation of Equation 2.2.1 and over-fitting. Meanwhile, the number of parameters

grows linearly with the depth and quadratically with the width, so the cost and perfor-

mance balance should also be considered. In the network’s width experiments, the model

consisting of 64 convolution kernels in each layer achieves the best PSNR and FID (Table.

4.3). Wider networks do not improve the performance (e.g. w = 128) and even crash

the training when w = 256. Similarly, in the experiments of the depth of the network,

additional residual blocks over 16 rarely help (Table. 4.4).

The experiments of apposite architectures searching for LR feature extraction might

explain the impacts of skip connections, depth and width of networks in medical image SR

tasks. First, using extra skip connections is a double-edged sword. These connections in

dense blocks, such as RDB and RRDB, add more information flows. These extra pathways

pass gradients more efficiently and effectively to each layer during backpropagation. Thus,

the model (e.g., RDN) can perform very well, especially for minimising straightforward

errors such as L1 loss. However, the dense connections also make the model liable to

getting stuck in specific points and insensitive to uncertain losses such as GANs. As a

result, smaller models with fewer connections, such as EDSR-lite, achieve comparable

representation ability. Second, wider models are not necessary for medical images. RDN

and the original EDSR have much more feature maps than EDSR-lite in each convolu-

tional layer, which should be more potent in simulating and extracting features of nature

images in SR tasks. However, too many feature maps are overqualified for medical images

with limited size and relatively lower contrast information. As a result, I use EDSR-lite,

consisting of 16 residual blocks and 64 convolution kernels in each layer, because it has

the fewest parameters and achieves equal performance with bigger models.

Table 4.3: Effects of the width of the network w, which represents the number of convolution
kernels in each layer. Increasing width leads to additional parameters quadratically. Higher PSNR,
SSIM and lower FID denote better performance. Bold texts represent the best performance, and
the grey column denotes the hyperparameter of the method. I have chosen w = 64 because of its
best PSNR and FID scores.

w = 4 8 16 32 64 128
PSNR 34.58 34.83 35.22 35.89 36.46 36.44
SSIM 0.9346 0.9399 0.9469 0.9542 0.9576 0.9592
FID 84.17 73.49 58.23 49.57 39.85 43.84
Params 0.016M 0.041M 0.12M 0.42M 1.5M 5.8M
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Table 4.4: Effects of the depth of the network, which represents the number of residual blocks
b in the network. The unit of the number of parameters is in a million. Higher PSNR, SSIM and
lower FID denote better performance. Bold texts represent the best performance, and the grey
column denotes the hyperparameter of the method. I finally choose b = 16, because extra blocks
rarely improve the performance but lead to more parameters linearly.

b = 2 4 8 16 32 64
PSNR 35.09 35.48 36.03 36.46 36.73 36.46
SSIM 0.9438 0.9490 0.9549 0.9576 0.9622 0.9621
FID 62.47 54.44 49.61 39.85 37.46 37.39
Params 0.48M 0.63M 0.93M 1.5M 2.7M 5.1M

4.4.3 Ablation study on the loss functions

Referring to Equation 4.2 and 4.12, the joint loss function LSR plays an essential role in

the training of MIASSR. In the three components, L1 represents the pixel-wise errors,

while Lperc and Ladv denote the visual dissimilarity of the entire images. Particularly, the

perceptual loss Lperc considers the general visual features of images because it relies on

the well-trained VGG network with plenty of normal images. In contrast, the adversarial

loss Ladv focuses more on the training dataset’s inner features. Notice that there are two

stages during training: ”warm-up” and the GAN training. In the first stage, only the

generator is trained with the reconstruction accuracy loss (i.e. L1 loss), leading to a basic

understanding of the data distribution. This is good for training stability, preventing early

discriminator dominance and providing more informative feedback on the GANs. The

ablation study on the loss components only relates to the second training stage. Thus, all

experiments start with the same generator after warm-up.

To achieve the best performance and understand each component’s impact well, I have

compared the SR performances with various scales of each loss. I first set λ = 1, then test

different values of γ and η. Regarding the perceptual loss, I test η = (0, 0.006, 0.01, 0.1, 1)

and infinity (Table. 4.5). Particularly, η = 0 means no perceptual loss, while η = infinity

means only perceptual loss is used. Similarly, γ = (0, 0.001, 0.01, 0.1, 1) and infinity

are tested for the adversarial loss. None of these values in the experiments leads to the

best PSNR, SSIM and FID simultaneously. However, when γ = 0.001 and η = 0.006, it

performs well on both fidelity and perceptual evaluations.

Regarding the variations of adversarial loss, I have also compared four popular GAN

variations, which are widespread in SOTA SISR studies: vanilla GAN [101, 114], RaGAN

[106, 134], WGAN [24, 108] and WGANGP [22, 24]. They are trained with the same

hyper-parameters from the same start point of a pre-trained generator but with different

designs of Ladv. The adversarial losses of the vanilla GAN, WGAN and WGANGP are

129



defined in Equation 4.15, 4.16 and 4.17, respectively. The adversarial loss of RaGAN is:

LRaGAN = EIhr [logD(Ihr)− EIlr [logD(G(I lr))]]

+ EIlr [log(D(G(I lr)))− EIhr [logD(Ihr)]] .
(4.19)

In the experiments (Fig. 4.10), WGANGP helps MIASSR achieve the best performance

with all three metrics, so it is chosen in this work.

Table 4.5: Effects of the perceptual loss. In this experiment, I set λ = 1 and γ = 0.001, and
test different values of η. Particularly η = 0 means no perceptual loss, while η = ∞ means
only perceptual loss is used for training. Higher PSNR, SSIM and lower FID denote better
performance. Bold texts represent the best performance, and the grey column denotes the
hyperparameters of the method.

η = 0 0.006 0.01 0.1 1 ∞
PSNR 36.52 36.46 36.64 36.34 36.11 34.94
SSIM 0.9611 0.9576 0.9607 0.9583 0.9554 0.9532
FID 47.87 39.85 40.61 43.59 45.79 46.61

Table 4.6: Effects of the adversarial loss. In this experiment, I set λ = 1 and η = 0.006, and
test different values of γ. Particularly γ = 0 means no adversarial loss, while γ = ∞ means
only adversarial loss is used for training. Higher PSNR, SSIM and lower FID denote better
performance. Bold texts represent the best performance, and the grey column denotes the
hyperparameters of the method.

γ = 0 0.001 0.01 0.1 1 ∞
PSNR 36.60 36.46 35.74 36.26 30.92 30.52
SSIM 0.9592 0.9576 0.9555 0.9540 0.8798 0.8768
FID 41.94 39.85 37.47 44.17 114.9 103.1

4.4.4 Training tricks

Data processing tricks can significantly affect model training and the final performance.

First, transferring the well-trained model on the OASIS dataset to new datasets can

accelerate the training process, although it does not improve the final performance. Second,

when trained from scratch, the networks, including the generator and discriminator, must

be initialised by uniform functions (e.g., Kaiming-Uniform [70]). Initialising networks

with a normal distribution (e.g., Kaiming-Normal [70]) crashes the training process in the

experiments. Third, batch normalisation [72] should not be used, although it has succeeded

in a wide range of image processing tasks. As the only method with batch normalisation in

the comparison study, SRGAN performs poorly in the patient-wise experiment (Table. 4.1)

probably because the normalisation operation distorts the patient-wise contrast information
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during training and leads to poor performance on the test set. Finally, hyper-parameters

such as patch size and image size also affect the final performance. In Fig. 4.5, although

all methods tend to perform better with smaller magnification scales than bigger ones, the

best PSNR and SSIM scores always appear with the ×1.5 SR task. A potential reason

might be that 1.5 is the minor scale to fit the training patch size [96 × 96] and testing

image shape [144× 180] synchronously.

4.4.5 Limitations and future work

The dataset used for this study is limited to single-modality 2D radiology images (i.e. MR

and CT) with simulated down-sampling and additive noise. This restricts the general

applicability of the findings to clinical medical image enhancement applications. It is

worth exploring the method for a broader range of medical image modalities and data

types. Modifying MIASSR with techniques such as 3D convolution and recurrent networks

may extend it to 3D images [311] and temporal scans [312]. Meanwhile, I have tasted

cross-modality with naive transfer learning (e.g. from brain MR images to cardiac MR

and chest CT images) and multi-task training (multi-modal brain MR scans). It is worth

exploring with more specific cross-modality applications. Thirdly, the conclusions and

findings may also benefit other medical image analysis research studies such as synthesis

[15], reconstruction [14] and segmentation [313]. Finally, conclusions of training tricks in

Section 4.4.4 are also restricted with the dataset and simulation experiments. For example,

although the conclusion of avoiding batch normalisation is the same as other SR works

[133], it may be incorrect with other scenarios [314].

Although FID has been used to represent the visual reality of generated images, it

is still an open problem of perceptual quality evaluation. With this work published, there

were rare research works involving FID in medical image analysis or discussing the credence

of using FID for medical image evaluation. Fortunately and excitingly, in the following

research of human assessment and image quality metrics on GAN-generated MR images

[315], FID has shown a good correspondence with human behaviour. Meanwhile, further

research on the perception-distortion trade-off (Fig. 4.4) will be helpful for research and

clinical applications. However, explaining the FID score within the clinical process is

unclear. Finding more straightforward and task-specific measurements of medical image

perceptual quality is always desired. For example, evaluating the images in specific tasks

such as AD diagnosis [2] and Parkinson disease identification [316] could be a possible way.

In the following Chapter 5, I will introduce my work on involving segmentation accuracy

for SR image evaluation.
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Figure 4.10: Comparing GAN variations in MIASSR. Higher PSNR and SSIM indicate
better fidelity quality, while lower FID denotes more perceptual realistic images are generated.
WGANGP has achieved the best mean performance (the table at the bottom) and performed
the best with almost all SR scales.
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4.5 Chapter summary

This chapter presents a CNN-based framework for medical image arbitrary-scale super-

resolution tasks. It is the first attempt to develop a meta-learning scheme with adversarial

learning for this problem. The proposed method has reduced the model size (only 26%

parameters compared with the Meta-SR) by using a lightweight EDSR model as the LR

image feature extractor and achieved comparable reconstruction fidelity of SR images with

SOTA methods. Meanwhile, it involves WGAN-GP to improve the perceptual quality of

the generated images. Moreover, this approach has obtained good practical applicability.

It was successfully applied to T1-weighted brain MR images, and multi-modal brain MR

scans in the experiments. Furthermore, with transfer learning, the pre-trained model on

brain images has been efficiently modified to cardiac MR and chest CT scans. I have also

discussed the findings and understanding of model architecture design, training tricks and

adversarial learning in the comparison studies.
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CHAPTER 5

Residual Dense Swin Transformers

for Medical Image

Super-Resolution

5.1 Introduction

It is still an open problem to introduce vision transformers (ViTs) to medical image

SISR tasks, which achieve state-of-the-art performance on a wide range of natural image

restoration tasks [117] and medical image analysis tasks [118, 317]. To preserve sensitive

information and to enhance the structures of interest for radiologists and physicians in

medical image super-resolution tasks, existing vision transformers for natural images must

be modified on training datasets, loss functions, evaluation metrics and architecture design

[7]. Thus, the robustness, capacity, efficiency and limitation of vision transformers on

medical image SR tasks will be discussed in this section.

First, acknowledged tricks of CNN architecture design, such as localisation operation,

residual connection and feature fusion, are worth introducing to CNN-ViT hybrid models

for potential performance improvement. For example, inspired by the shared weights and

localisation operations of CNNs, a shifted window vision transformer (Swin Transformer

[119]) is proposed for high-level image processing tasks. The novel Swin layers are then

applied in natural image restoration [98, 138] and segmentation [96, 318].

Additionally, prior knowledge of related medical image tasks, such as segmentation,

can benefit the upstream super-resolution task. On the one hand, the challenges of per-

forming image quality assessment (IQA) on enhanced images [156] and on medical images

[17] still exist. Generally, IQA of generated and super-resolved natural images mainly
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includes reconstruction accuracy and human perception. Since current SISR methods are

getting close to the limitation of signal fidelity metrics [319], perceptual quality assessment

methods [157] have become more and more critical. However, various artefacts in medical

images, mainly caused by the hardware of imaging systems and the body motion of

individuals, are never seen in natural images. Peak signal-to-noise ratio (PSNR) and

structure similarity (SSIM [158]) are prevalent in almost every medical image SR work.

However, directly and only using the IQA methods designed for natural images may not

be reliable in medical image SR tasks. In a supplemental manner, researchers evaluate

the quality of SR images with the performance of downstream medical image analysis

tasks such as segmentation [20]. Although the quality measurement of medical images

does not equal diagnostic accuracy [19], radiologists and medical consultants always prefer

high-quality images for accurate diagnosis. In addition to the measurement of machine

perception, the prior knowledge of pre-trained segmentation models can also benefit the

training of medical image super-resolution models, similar to the existing perceptual losses

[139, 145].

In summary, this chapter has two main research questions. First, how to achieve su-

perior SR performance and improved model efficiency with CNN-ViT hybrid networks?

Second, how to involve the prior knowledge of segmentation tasks for super-resolution

network training and result evaluation? I explore the possibility of extending successful

architectures in CNNs to vision transformers to improve the single-image super-resolution

performance of medical images efficiently and robustly. I propose a Residual Dense Swin

Transformer (RDST) as a novel backbone for SR tasks by introducing residual dense

connections [91, 220] and local feature fusion [132, 134] to SOTA vision transformers.

Meanwhile, I take segmentation as a typical medical image analysis task in the clinic and

connect it with the upstream super-resolution task for model training and result evaluation.

I present a perceptual loss based on the prior knowledge of the pre-trained segmentation

U-Net [92] and extend its variants to a wide range of SOTA SISR models, including CNNs

and ViTs. I focus on supervised super-resolution with a single magnification scale (i.e.

×4) in this work. Meanwhile, the proposed method can extend to semi-/un-supervised

SR tasks with multi or arbitrary magnification scales. For a comprehensive comparison

with SOTA SISR methods, I run experiments on four big and small public medical image

datasets, including brain MR images, cardiac MR images and CT scans of COVID patients.

Ablation studies are also designed to discuss the impacts of critical characteristics of the

proposed model architecture, perceptual loss and training tricks.

Based on a comparison study of state-of-the-art single-image super-resolution methods

on four public medical image datasets, I claim that the main contributions of this work
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include:

• A Residual Dense Swin Transformer (RDST) is proposed by introducing the residual

dense connections to vision transformers. In the ×4 SR experiments on four medical

image datasets, it achieves the best PSNR scores of 6 modalities among 7 modalities

in total. It leads to +0.09 dB PSNR improvement on average than the SOTA SISR

method SwinIR with only 38% parameters. Additionally, the SR results of RDST

achieve the best segmentation accuracy of 8 sub-regions among all 15 target regions

in the downstream segmentation tasks and increase the dice coefficient by 0.0029 on

average than the SR results of SwinIR.

• The lite version RDST-E further improves the model efficiency with hyper-parameter

modification. It achieves comparable performance with the SOTA method SwinIR on

both SR image quality (+0.06 dB PSNR on average of 7 medical image modalities)

and downstream segmentation accuracy (-0.0026 dice coefficient on average of 15

target regions) but has only 20% parameters of SwinIR and is 46% faster than

SwinIR on inference.

• Two variants of SR perceptual loss are proposed with pre-trained segmentation U-

Nets, dramatically improving the SR image quality by transferring prior knowledge

of medical images in segmentation tasks to super-resolution tasks. The proposed

losses successfully extend to various SOTA SISR methods, including CNNs and

ViTs. Compared with the native L1 loss, the novel loss variant for SR fidelity (i.e.

LE(1)) results in a noticeable improvement of +0.14 dB PSNR on average, while the

proposed loss variant for machine perception (i.e. LHRL) leads to an improvement

of +0.0023 dice coefficient on average in the downstream segmentation task.

This chapter is organised as follows: in Section 5.2, I introduce the proposed residual dense

vision transformer and the segmentation-based perceptual loss; in Section 5.3, I describe

the experiment settings; in Section 5.4, I illustrate the qualitative and quantitative results

and discuss the essential characteristics of the proposed method in contrast with SOTA

SISR methods; and in Section 5.5 I provide concluding remarks of this work. All related

publications and code are publicly realised on https://github.com/GinZhu/RDST.
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Figure 5.1: Framework of the proposed RDST network. (a): the proposed RDST (notation
represented with Eq. 5.2, 5.3 and 5.4) consists of a convolution layer head for shallow feature
extraction, a SubPixel-based UpSampler, N RDSTB modules and a global residual connection.
(b): A residual dense Swin transformer block (notation presented with Eq. 5.7) is composed of
three DSTB modules and a local feature fusion module (LFF), which compress the feature maps
from (3× g + d) to d. (c): A Dense STL Block (notation presented with Eq. 5.6) is composed of
two successive swin transformer layers, a bottleneck layer and a concatenation operator. (d):
The two successive shifted-window transformer layers (notation presented in Eq. 5.5). Each STL
consists of two-layer normalisation layers, one multi-head self-attention layer with regular or
shifted windowing configurations (W-MSA and SW-MSA), one MLP layer and skip connections.
The patch embedding and un-embedding operations are ignored for a brief illustration. They
convert feature maps from [N × d×H ×W ] to [Nw ×P × d] and vice visa to adjust linear layers
and the convolution layers.
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5.2 Methods

In this work, I mainly focus on single image super-resolution tasks with certain magnifica-

tion scales (e.g. ×4), which can be represented as:

Isr = Gs(I lr;θG), (5.1)

where s is the magnification scale, I lr and Isr are a pair of one input image with a

low resolution of [H ×W × C] and its super-resolved output with a high resolution of

[sH × sW ×C]. Following the most popular and successful architecture of SISR networks,

the proposed residual dense Swin transformer consists of three components: a convolutional

layer consisting of shallow feature extraction head H(·), a feature map up-sampler M and

a main body for deep feature extraction (Fig. 5.1-a). Mathematically, the reconstruction

of a super-resolved image with increased resolution can be represented as three steps. First,

the LR input is embedded in shallow features with the CNN-based head:

F lr = H(I lr), (5.2)

where F lr is the shallow feature maps with shape [H × W × d] with the embedding

dimension d. Then, the CNN-ViT hybrid stem extracts deeper features with global feature

fusion:

F d = F lr + Ck×k(Bn(F lr)), (5.3)

where F d is the deep feature maps remain the same shape as [H ×W × d], Ck×k is a

convolutional layer for global feature fusion with kernel size k and Bn indicates n successive

blocks. Finally, the up-sampler increases the resolution of the feature maps and reconstructs

the output image with the higher resolution [sH × sW × C]:

Isr =Ms(F d). (5.4)

Similar to SOTA SISR methods, I use one convolutional layer as the head and a Sub-Pixel

[189] module as the up-sampler for super-resolution image generation. Regarding the main

body for deep feature extraction, I use a skip connection for global residual learning and

propose a residual dense swin transformer block (RDSTB), which will be introduced in

detail in the following.

5.2.1 Residual dense swin transformer block

Shifted-windows transformer layer (STL) is used as the most basic unit in the proposed

residual dense swin transformer block. To reduce the computation cost in the vision
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transformer, it splits the input feature maps of size [H ×W ] to windows of size [M ×M ]

first and then applies standard multi-head self-attention localised in each window. To

connect these local windows, in two successive STLs (Fig. 5.1-d), the first STL applies

regular window partition from top-left, while the second STL shifts the feature maps by

(M
2
, M

2
) pixels before partition:

F̂
i

= AW(N (F i−1)) + F i−1,

F i = P(N (F̂
i
)) + F̂

i
,

F̂
i+1

= AS(N (F i)) + F i,

F i+1 = P(N (F̂
i+1

)) + F̂
i+1
, (5.5)

where AW and AS are multi-head self-attention layers with regular and shifted window

configurations, respectively. N is layer normalisation, and P is a multi-layer perceptron

(MLP) consisting of two fully-connected layers with GELU non-linearity [51] in between.

Skip connections with pixel-wise addition are applied after each module. The key advan-

tages of STL are the localisation operation and shared weights, just like convolutional

layers. Additionally, with the reshaping operation, the size of its output feature maps

remains the same as the input feature maps (i.e. [N × d ×H ×W ]). Thus, it behaves

like a convolutional layer, and successful designs in CNN-based SISR models can be easily

introduced in STL-based models.

First, I introduce dense connection [91, 220] to STLs. As shown in Fig. 5.1-c, a dense

swin transformer block (DSTB) consists of two successive STLs S2 and an MLP-based

bottleneck module Td→g. Before concatenating to the input feature maps F i−1
d , the new

feature maps are compressed from [N ×H ×W × d] to [N ×H ×W × g] to reduce the

computation cost further. Thus, the output of the i-th DSTB is computed as:

F i
d+g = cat[F i−1

d , Td→g(S2(F i−1
d ))]. (5.6)

Then, the residual dense swin transformer block (RDSTB, Fig. 5.1-b) is proposed by

applying local feature fusion (LLF) [132] after stacking several DSTBs. One RDSTB

consists of three successive DSTBs and a 3× 3 convolutional layer for local feature fusion.

As reported in SRDenseNet [220] and RDN [132], combining dense connections and LLF

can preserve the feed-forward nature and extract local features without high computational

costs and training problems. The convolution-based LLF controls the output information

by reducing the number of feature maps from (3× g + d) to d. As a result, the output

feature maps F i of the i-th RDSTB block remains the same shape [N × d×H ×W ] as
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Figure 5.2: The segmentation U-Net [92] is used in this work for two purposes: for perceptual
losses and segmentation-based SR evaluation. It consists of 5 levels of ResNet-based encoders
and decoders, which are paired with skip connections. E1 to E5 indicate the output feature maps
of each encoder block correspondingly, while D denotes the output of the last decoder.

its input feature maps F i−1:

F i
d = F i−1

d + T3×g+d→d(D3(F i−1
d )), (5.7)

where D3 is a group of three successive DSTBs and T3×g+d→d is the bottleneck module for

local feature fusion.

5.2.2 Segmentation U-Net based perceptual loss

The proposed method RDST is trained in two stages: basic training with L1 loss and a

fine-tuning stage with perceptual loss. In the first stage, the parameters are optimised

by minimising the native pixel-wise L1 distance between the output SR images and HR

ground truth images:

L1(G(I lr), Ihr) =
1

sH × sW × C
‖G(I lr)− Ihr‖1 , (5.8)

where G is a RDST model, s is the magnification scale, I lr is the input low resolution

image with shape [H ×W ×C] and Ihr is the corresponding ground truth high resolution

image.

In the second stage, a U-Net [92] based perceptual loss is proposed to fine-tune the

parameters of the RDST after stage 1. Depending on the dataset, a U-Net model has been

first trained for medical image segmentation with the same training data Ihr ∈ HsH×sW×C

and the corresponding segmentation labels Lhr:

θ̂U = arg min
θU
Lseg(U(Ihr),Lhr), (5.9)

where U is the segmentation model, θU represents its trainable parameters and Lseg is a

loss function for segmentation tasks.
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Inspired by previous work on perceptual losses for SISR tasks [114, 134, 139], I define

the segmentation-based perceptual loss between two images (Isr, Ihr) as the L1 distance

between their feature maps of specific layers in the pre-trained U-Net. Layers of the

U-Net have learned various features at different levels from the segmentation task. Earlier

encoders usually capture basic geometric shapes such as edges and textures. Deeper

encoders represent more abstract features like organ parts and contextual information.

The final output directly indicates the semantic label of each pixel. Feeding the generated

and ground-truth images to the U-Net and calculating the distance between their hidden

features can represent the semantic and perceptual similarities. This perceptual loss can

have various formats, depending on the desired output quality and which level of feature

maps are used (Fig. 5.2):

LE(i) = L1(U [Ei](G(I lr))− U [Ei](Ihr)), (5.10)

LD = L1(U [D](G(I lr))− U [D](Ihr)), (5.11)

where U [Ei] indicates the i-th block of the encoder and U [D] is the decoder. Furthermore,

the differences between the predicted segmentation labels of Isr and Ihr can represent the

expected performance of the SR results in the downstream segmentation task, which is

crucial in the clinical process. During training, the gradients will be calculated with a

segmentation loss Lseg passed by the U-Net to the SR network:

LHRL = 1− Lseg(U(Isr), U(Ihr)). (5.12)

In this work, I use dice coefficient [320] as Lseg to evaluate the distance between two binary

segmentation labels X and Y , because it is popularly used in medical image segmentation

tasks [321]:

Dice(X,Y ) =
2 |X

⋂
Y |

|X|+ |Y |
. (5.13)

During model training and fine-tuning, these segmentation-based perceptual loss variants

can be used with the native L1 loss:

LSR = αL1 + λLU , (5.14)

where α and λ are scale factors and LU can be one or a combination of LE(i), LD and

LHRL.
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5.3 Experiments

5.3.1 Data and pre-processing

Four public medical image datasets are used in this work to evaluate the SR performance

and robustness of the proposed method in simulating the clinical situation as widely as

possible. Experiments are designed and applied on: the OASIS [304] dataset of single-

modality brain MR scans; the BraTS [280–282] dataset of multi-modal brain MR scans;

the ACDC [305] dataset of cardiac MR images; and the COVID [322] dataset of chest CT

scans. Notice that experiments of ablation studies are mainly conducted with the OASIS

dataset because it is clean and representative in the discussion of model architectures,

hyper-parameters, loss functions and model efficiency.

OASIS I randomly select 39 subjects (30 for training and 9 for testing) from the OASIS-

brain dataset1 for the ×4 super-resolution simulation experiments. Each subject includes

3 or 4 T1-weighted MRI scans and corresponding segmentation labels of one patient with

early-stage Alzheimer’s Disease (AD). Only one scan (T88-111) is used in this work, with

an original size of [176 × 208 × 176]. It includes plenty of black background regions,

providing useless information and slowing down the training process. Thus, the original

scans and their corresponding segmentation labels are first rotated to the axial plane and

centrally cropped to 145 slices of size [160× 128]. As a result, the OASIS training dataset

includes 4350 slices, and the testing dataset includes 1305 images.

BraTS The BraTS dataset2 consists of multi-modal MRI scans of 285 patients, in-

cluding 210 cases with glioblastoma and 75 cases with lower grade glioma. Scans of

each patient include 4 registered MR modalities: native (T1), post-contrast T1-weighted

(T1Gd), T2-weighted (T2) and T2 FLuid Attenuated Inversion Recovery (FLAIR). Manual

annotations of the enhancing tumour (ET), the peritumoral edema (ED) and the necrotic

and non-enhancing tumour core (NCR/NET) are also provided with each scan. In this

work, I randomly select 120 patients from the BraTS dataset for training and 30 other

patients for testing. In pre-processing, only slices with tumours are chosen for a fair

comparison in the downstream segmentation task. As a result, there are 7333 slices for

training and 1853 slices for testing. To remove the pure black background, all slices are

centrally cropped to [192× 192].

ACDC The ACDC dataset3 includes 1.5T and 3.0T cardiac MR scans of 150 patients

1OASIS: https://www.oasis-brains.org/
2BraTS: https://www.med.upenn.edu/cbica/brats2020/data.html
3ACDC: https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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consisting of 5 evenly divided subgroups: normal subjects, previous myocardial infarction,

dilated cardiomyopathy, hypertrophic cardiomyopathy and abnormal right ventricle. Addi-

tionally, the contours of the left ventricle (LV), right ventricle (RV) and myocardium are

manually drawn and double-checked by two independent experts with more than 10 years

of experience. These segmentation labels of 100 patients are released to the public. In this

work, I randomly divide these 100 patients for training (80 patients with 1462 slices) and

testing (20 patients with 373 slices). For a fair comparison, all slices are first centrally

cropped to [128× 128].

COVID-19 CT The COVID-19 CT dataset4 includes 3D CT scans with left lung, right

lung, and infection annotations of 20 COVID-19 patients. The proportion of infections in

the lungs ranges from 0.01% to 59%. Annotations of the left lung, right lung and infection

are manually labelled by experienced radiologists. In total, there are 300+ infections with

1800+ slices of various shapes. In this work, I uniformly crop a [512× 512] region in the

centre of each slice and randomly divide all scans to the training dataset (16 scans with

2264 slices) and the testing dataset (4 scans with 588 slices).

HR-LR image pair generation The original slices are used as high-resolution ground

truth images Ihr ∈ HH×W×c, and the corresponding low-resolution images are generated

by down-sampling:

I lr = (Ihr ? δ) ↓s +n,∀Ihr ∈ HH×W×c (5.15)

where δ is a bicubic down-sampling kernel and n is an additive Gaussian noise. I focus on

×4 super-resolution tasks in this work, so the HR and LR patches are cropped with size

[96× 96] and [24× 24], respectively.

5.3.2 Evaluation metrics

In addition to Peak Signal-to-Noise Ration (PSNR) and Structural Similarity (SSIM), the

SR results of the proposed RDST and SOTA methods are also evaluated in downstream

segmentation tasks. As described in Section 5.2.2, I first train a segmentation U-Net for

each dataset with HR images in the training subset and their corresponding ground truth

segmentation labels. Take the OASIS dataset as an example. The pre-trained U-Net

achieves reliable segmentation performance on HR images in the testing dataset so that

the segmentation-based SR performance measurement can be reliable. To evaluate the SR

results of SOTA methods and the proposed RDST variants, I use dice coefficients of the

whole region and tissues depending on each dataset. Notice that all datasets have expert

4COVID-19 CT: https://zenodo.org/record/3757476
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annotations as ground truth segmentation labels, so the dice scores in the downstream

segmentation tasks can correctly represent how SR images improve the segmentation

accuracy of each organ/lesion compared to LR images. For example, the experiments with

the OASIS dataset involve the dice coefficient scores on the whole brain (Dice-T), grey

matter (Dice-G), white matter (Dice-W) and cerebrospinal fluid (Dice-CSF):

P sr = U(Isr),

Dice-T = Dice(P sr,LGT ),

Dice-G = Dice(P sr[CG],LGT [CG]),

Dice-W = Dice(P sr[CW ],LGT [CW ]),

Dice-CSF = Dice(P sr[CCSF ],LGT [CCSF ]), (5.16)

where CG, CW , CCSF are label indexes of grey matter, white matter and CSF, respectively.

Similarly, I use dice coefficient scores of the left ventricular cavity (Dice-LV), the right

ventricular cavity (Dice-RV), the myocardium (Dice-MC) and the whole region (Dice-T)

for the ACDC dataset and the dice coefficient scores of the left lung (Dice-LL), the right

lung (Dice-RL), the lesion (Dice-Lesion) and the whole region (Dice-T) for the COVID

dataset. In the experiments with the BraTS dataset, I use dice coefficient scores of the

enhancing tumour (Dice-ET, including ET only), the tumour core (Dice-TC, including ET

and NCR/NET) and the whole tumour (Dice-WT, including ET, ED and NCR/NET).

5.3.3 Implementation details

The proposed RDST and SOTA models are implemented with PyTorch [37]. All experi-

ments performed on an Nvidia Quadro RTX 8000 GPU. Inspired by SwinIR [138], the

window size, attention head number and the basic feature embedding dimension are set

to [8 × 8], 6 and 60, respectively. As mentioned in Section 5.2.1, each RDSTB module

consists of 3 DSTBs with a growth rate of 30. Each DSTB module consists of 2 STLs. In

this work, I propose two RDST variants. The original one consists of 8 RDSTBs, while

the more efficient version (RDST-E) consists of only 4 RDSTBs. In the experiments, all

parameters are initialised by Kaiming-uniform [70] and optimised by the Adam optimiser

[61]. I set the batch size to 32 for each step for both training stages. In the first training

stage, the initial learning rate is set to 0.0002 with no decay, and the RDST is trained for

100k steps with only native L1 loss. The fine-tuning stage includes 20k steps. Its learning

rate is initialised as 0.0001 and halved at [10k, 15k, 17.5k]. The scale factors in Equation

5.14 are set as α = 1, λ = 10 to ensure the segmentation-based perceptual loss dominates

the fine-tuning stage. The L1 distance between feature maps of the first encoder block
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LE(1) is mainly used as the perceptual loss, and other variations of LU are used in ablation

study.

The segmentation U-Net model is implemented with Segmentation-Models-PyTorch [323].

It consists of 5 ResNet [90] based encoder blocks and a decoder of native convolutional

layers (Fig. 5.2). The channel number is set to 64 basically and doubled after each encoder

block. This model is trained with Dice loss (Equation 5.12) for 100k steps with the Adam

optimiser. The learning rate is initialised as 0.0001 and halved at [50k, 75k].
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5.4 Results and discussion

In this section, I first illustrate the superior performance of the proposed RDST variants

compared with SOTA SISR methods on four medical image datasets, then discuss the key

factors of RDST twofold: first, how the novel CNN-ViT hybrid dense block improves the

model efficiency; and second, how the proposed segmentation-based perceptual loss results

in controllable improvements of reconstruction accuracy and perceptual quality.

5.4.1 Comparing RDST with SOTA methods

Two variations of RDST are compared with 5 popular and representative state-of-the-art

SISR methods, including: (1). pure convolutional methods EDSR [133] and RDN [132];

(2) CNN based attention models RCAN [136] and HAN [137]; and (3) self-attention based

vision transformers SwinIR [138]. Additionally, I have done experiments with related

SR methods in a wider range, such as zero-shot super-resolution [210], scale-free super-

resolution [27, 135] and pre-trained ViT [127]. However, I finally decided not to involve

these methods in the comparison because of their mediocre performance.

RDST variants achieve the best image quality on all four datasets. Specifically, RDST-E

achieves the best PSNR performance on the ACDC dataset, and RDST achieves the best

PSNR scores on the OASIS dataset, the COVID dataset and every MR modality in the

BraTS dataset. On average, RDST increases by 0.09dB in PSNR, and RDST-E leads to

a 0.06dB increase compared with the most recent SOTA method SwinIR. Meanwhile, I

clearly show that improving image quality can lead to significantly better performance in

the downstream segmentation tasks. With the well-trained U-Net segmentation models

and introducing the segmentation-based SR results evaluation, SOTA SISR methods

considerably narrow the gap of segmentation accuracy between HR GT images and ×4

bicubic interpolated images. In summary, RDST achieves the best dice coefficient scores

of 8 targeted regions among all 15 regions. Detailed results of each dataset are as follows.

Performance on the OASIS dataset RDST achieves the best performance of almost all

metrics in the ×4 super-resolution experiment with the OASIS dataset (Fig. 5.3). It brings

noticeable improvements in image quality (+0.18dB PSNR and +0.0012 SSIM) to SwinIR.

In the downstream segmentation task, SR results of RDST get the best dice coefficient

scores of the whole brain, the grey matter and the white matter (Table 5.1). The pre-trained

U-Net achieves reliable segmentation performance on HR GT images. It clearly shows a

notable decline with native bicubic interpolation SR results: [0.1395, 0.2210, 0.1262, 0.1201]

on whole brains, grey matters, white matters and CSFs, respectively. The proposed

RDST narrows these gaps by [0.0774, 0.1335, 0.0551, 0.0667] respectively. Notice that
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room for improvement exists as the best segmentation dice scores of all SR images are

still significantly lower than HR images ([−0.0621,−0.0887,−0.0711,−0.0518]). On the

other hand, the smallest model RDST-E achieves the second-best PSNR and SSIM scores

with a slight decrease in segmentation performance. While visualising the SR results and

their corresponding segmentation predictions, the segmentation labels can help determine

the differences between SR images of SOTA methods, which are difficult to recognise

with only the images. Vision transformers (i.e. SwinIR and RDST) achieve superior

image quality on edges than CNNs (green box in Fig. 5.4). On the other hand, it is still

challenging for all methods to reconstruct rich textures of small regions (red box in Fig. 5.4).

Model efficiency Additionally, I compare the model efficiency in the experiment on the

OASIS dataset by calculating the number of parameters and the multi-add calculations

(MACs) with an [1× 40× 32× 1] input (Table 5.1). RDST-E is the smallest and requires

the fewest MACs, while RDST is the second smallest and requires fewer calculations than

SOTA methods. Compared with SwinIR, RDST has only 38% parameters, and RDST-E

has only 20% parameters. As a result, they reduce the computational cost by 58% and

76%, respectively.
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Figure 5.4: Comparing RDST with SOTA methods on ×4 super-resolution task with OASIS
dataset. SR results and corresponding segmentation predictions of a randomly selected slice
are shown with PSNR and dice coefficient of the whole brain. In the segmentation labels, grey,
yellow and cyan indicate grey matters, white matters and CSFs, respectively, and segmentation
errors are marked as red.
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Performance on the BraTS dataset Doing ×4 super-resolution in the multi-modal

brain tumour segmentation dataset is more challenging for the following reasons. First, the

super-resolution method must be synchronously applied on four registered MR scans (i.e.

T1Gd, T1, T2 and T2-FLAIR) so the input and output layers of RDST variants and SOTA

methods are modified. Second, the downstream multi-modal tumour issue segmentation

is challenging, and the U-Net with poor segmentation performance may misdirect the

fine-tuning stage. In this experiment, the pre-trained U-Net has achieved dice coefficients

of [0.7830, 0.6919, 0.6820] on the whole tumour, the enhancing tumour and the tumour

core, respectively. Compared with bicubic interpolation, SOTA deep neural networks

significantly improve the SR performance (Table. 5.2) on image quality and downstream

segmentation performance. The proposed RDST achieves the best PSNR scores on all

modalities, and the efficient version RDST-E achieves the second-best scores on three

modalities (i.e. T1Gd, T1 and T2-FLAIR). SwinIR, the SOTA vision transformer for SISR

tasks, also performs better than CNN models. It dominates the SSIM scores with RDST.

On average, RDST gets +0.13dB higher PSNR than SwinIR and equal SSIM (-0.0003) of

the four modalities. In the downstream tumour segmentation task, RDST achieves the best

dice coefficients of the whole tumours and the enhancing tumours. EDSR achieves the best

segmentation performance of the tumour cores. Interestingly, SR results of SwinIR and

RDST can even provide more accurate segmentation labels than HR GT images, probably

because the down-sample and super-resolve process removes some noises and misleading

textures. Similar to the experiments on the OASIS dataset, the segmentation labels help

to recognise the most challenging part in the SR image generation: reconstructing the blur

edges and irregular textures (Fig. 5.5).
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Figure 5.5: SR results of a random slice in the testing subset of BraTS. SR results of whole
slices are generated, but only the regions within the tumour of the four modalities are plotted
with predicted labels in the downstream segmentation task for better comparison. Annotations of
tumour sub-regions are the necrotic and the non-enhancing (NCR & NET) parts of the tumour
in yellow, the peritumoral edema (ED) in cyan and the enhancing tumour in grey. Segmentation
errors are indicated in red. PSNR and dice coefficient of the whole tumour (Dice-WT) are also
displayed.
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Performance on the ACDC dataset Single image SR of cardiac MR images is chal-

lenging because the motion artefacts caused by patients’ atrial fibrillation during the

scanning procedure are individual and hard to resolve. As a result, data-driven deep

learning methods can rarely bring a dramatic improvement in PSNR than traditional

interpolation methods. In the comparison study of ×4 magnification (Table. 5.3), SOTA

methods, including RDST variants, increase PSNR from +0.80 dB to +1.10 dB than

bicubic interpolation. In contrast, SOTA SISR methods can easily lead to more than 3 dB

improvement of PSNR on other datasets. Additionally, because the training data is limited

(only 1462 slices with size [128× 128]), over-fitting may happen. As a result, the smallest

model RDST-E achieves a significant advantage of PSNR (+0.20 dB higher than other

methods). However, it is hard to evaluate the SR performance with only PSNR because

most methods achieve very close scores from 27.03 dB to 27.06 dB. I guess the low PSNR

scores of RDST and SwinIR are caused by the over-fitting of background noise, which

leads to substantial pixel-wise errors but rare impacts in segmentation and visualisation

(Fig. 5.6). In contrast, evaluating SR results with the dice coefficient scores and SSIM

scores is more effective and robust. The segmentation U-Net is well-trained for the ACDC

dataset with reliable performance on HR GT images. Meanwhile, the segmentation-based

evaluation represents the global structure reconstruction accuracy in SR results. In this

experiment, vision transformers (i.e. SwinIR, RDST-E and RDST) achieve the highest

SSIM and perform the best in the downstream segmentation task, so I claim that they are

better than the CNN-based methods.
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Figure 5.6: SR results of a random slice in the testing dataset of ACDC. Accurate segmentation
predictions are annotated in grey (the RV cavity), yellow (the myocardium) and cyan (the LV
cavity), while wrong predictions are annotated in red. PSNR scores and dice coefficients of the
whole region are shown.
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Performance on the COVID dataset I also extend the proposed method to CT images.

Compared with MR scans, CT scans are with higher resolution (e.g. [512×512]) and fewer

artefacts. All methods achieve very close PSNR (from 34.56 dB to 34.70 dB) and SSIM

(from 0.8678 to 0.8707) scores in the ×4 SR experiment (Table. 5.4). Specifically, RDST

achieves the highest PSNR score and the best segmentation results of the whole region

and the right lung. Meanwhile, RCAN achieves the best SSIM, and HAN achieves the

best segmentation accuracy of the left lung and the lesion. Notice that both methods are

with very deep architectures (> 800 layers) and with more than 30M parameters, which

may benefit the reconstruction of the textures in lesion areas (Fig. 5.7).
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5.4.2 Network architecture, attention and inference efficiency

An ablation study is designed to figure out the critical factors of RDST variants achieve

superior performance than SOTA SISR methods on the OASIS dataset (Tabel. 5.5 and

Fig. 5.9). PSNR, SSIM and dice coefficient of the whole brain are used as SR image

evaluation metrics. Meanwhile, the numbers of MACs and parameters and the throughout

frame rate during inference are used to measure the model efficiency. All methods are

trained with the same settings (100k steps with L1 only) to avoid the impacts of the

segmentation-based perceptual loss and additional training steps.

Network architecture Comparing RDST variants and SOTA methods, the main dif-

ferences in network architecture are fourfold. First, a model can be created with only

convolutional layers or a hybrid of transformers (e.g. STL) and CNNs. Second, the window

size, which presents the receptive field of each layer, can be different. Third, the model

widths, which indicate the feature map dimensions, vary from 64 to 256. Fourth, one

network can be shallow (e.g. EDSR-lite with only 32 layers) or deep (e.g. HAN with

1610 layers). Thus, I divide all methods into four groups: (1) native CNN SISR methods,

including EDSR and RDN; (2) native CNN models with large window size, which are

implemented based on ConvNet [324]; (3) deep CNN models with more than 800 layers,

i.e. RCAN and HAN; and (4) STL based vision transformers such as SwinIR and RDST.

I propose the ConvNet-based SISR method to discuss the impacts of the receptive field

[42], which is considered the critical factor for the success of vision transformers [325].

Meanwhile, the lite versions of EDSR, SwinIR and ConvNet are also involved in comparing

small SISR models with RDST-E.

STL or CNN? First, vision transformers show more dramatically improved SR im-

age quality and segmentation accuracy than CNN methods. Notice that SwinIR and

RDST variants are all based on the Swin transformer layer, which learns from the shared

weights and localised operation of convolutional layers. Additionally, CNN layers are used

at intervals of STL blocks which further ensures the training stability of these hybrid

methods and leads to superior performance than pure CNN methods. Second, the larger

window size failed to extend the success with transformers to CNN models. Both versions of

the ConvNet-based methods perform worse than all the other methods. In deep networks,

the receptive field depends on the window size in one layer and the number of layers.

Thus, deeper networks with small window sizes can have an equal receptive field with

shallow networks with large window sizes. For CNNs, the former works better probably

because more non-linear activation is essential for feature extraction. Third, deeper models

consistently achieve better results in each group with similar network architectures. Notice

that both increases in width and depth lead to an increase in parameters and an efficiency
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Figure 5.8: A RDST variant with MLP-based global feature fusion (GFF).

decrease. In this comparison study on medical image SR tasks, increasing the number of

blocks is more effective. For example, RDST has more layers and a smaller width than

SwinIR, leading to fewer computational costs and parameters. It finally achieves equal

PSNR (+0.01 dB) and SSIM (-0.0001) scores with only 38% parameters of SwinIR.

Hyperparameters Additionally, experiments are designed on RDST-E to figure out

the impacts of hyperparameters of RDST (Fig. 5.10). In RDST there is a gradual growth

of feature map dimension because of the dense connections. I take the dimension after local

feature fusion as the model width. On the other hand, a deeper RDST can be created by

increasing three factors: the number of Swin transformer layers in the DSTB modules, the

number of DSTBs and the number of RDSTBs. Briefly speaking, increasing the number of

RDSTB modules, the window size and the model width in an adequate range can improve

SR image quality.

Attention The attention mechanism is briefly regarded as threefold depending on where

it works: channel attention, spatial attention and layer attention (Table. 5.5). Notice

that the global feature fusion in RDN [132] is considered elementary layer attention, and

the self-attention in transformers is considered a super-set of both channel and spatial

attention. Attention in CNN models raises training stability and leads to very deep

networks but rarely improves the medial image super-resolution performance. For example,

RCAN has 811 layers, and HAN has 1610 layers, but neither performs superior to other

methods. On the other hand, the self-attention in vision transformers, which introduce

dynamic parameters to the whole computation process, dramatically improves the SR

performance as in SwinIR[138] and RDST variations. Meanwhile, the GFF module has no

noticeable improvement or decline in SR results, so it is abandoned in the final design of

RDST.

Inference frame rate In addition to the number of parameters and calculations (MACs),

I introduce the inference frame rate (i.e. frame-per-second FPS) as a more straightforward
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evaluation of model efficiency. Compared with MR and CT scanning in the clinic, all

methods can almost real-time (at least 6 slices per second on an Nvidia RTX 8000 GPU

for [40× 32× 1]→ [160× 128× 1] SR. In addition to MACs and parameters, the inference

efficiency depends on GPU acceleration and model architecture. Thus, transformers are

generally slower than CNNs, although they have fewer parameters. Additionally, the depth

of each model plays a crucial role in inference efficiency because it cannot be executed

in parallel. For example, RCAN is the slowest model as it has the most layers. Among

the vision transformers, RDST has fewer parameters and requires less computation but is

slower than SwinIR because of more layers. The main advantage of vision transformers

is that self-attention activates the capability of parameters more adequately, so superior

performance is achieved with less computation and shallower networks. With potential

hardware acceleration support in the future, transformers may be smaller and faster than

CNNs. Specifically, RDST-E has a similar size to the lite version model (e.g. EDSR-lite

and SwinIR-lite) but achieves comparable performance with regular SISR methods such

as SwinIR.
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5.4.3 Impacts of the segmentation-based perceptual loss

In this section, I discuss the impacts of the proposed segmentation-based perceptual loss

LU with the following questions (Table. 5.6):

1. Is the segmentation-based perceptual loss better than existing perceptual and adver-

sarial losses?

2. Feature maps of which layer in the pre-trained U-Net should be used?

3. What connection has been created with this perceptual loss between super-resolution

and segmentation tasks?

4. Can this perceptual loss improve SR performance with other SISR methods?

5. How can this segmentation-based perceptual loss be extended to datasets without

segmentation labels?

To answer these questions, an RDST-E model is trained for 100k steps with only L1 as the

Baseline and then fine-tuned for extra 20k steps with different combinations of L1 and

perceptual losses. To avoid the impacts of the additional training steps, I further train an

RDST-E with L1 for the same steps (so-called ”L1 only” in Table. 5.6).

Comparison with L1, VGG and WGANGP The shallow feature map based percep-

tual loss LE(1) achieves the best SR image quality in all models. It results in significant

increases of PSNR (+0.20 dB) and SSIM (+0.0013) than the Baseline (100k-steps training

with only L1) and +0.14 dB PSNR and +0.0005 SSIM comparing with the 120k-steps L1

model, so the improvement is mainly caused by the proposed loss function but not the extra

training steps. In contrast, neither the VGG-based perceptual loss nor the WGANGP loss

combination can lead to better image quality. Actually, in the experiments, I have tested

a big range (0.0001 < γ < +∞) of the scale factor of the VGG-based perceptual loss when

using it with the L1 loss (L1 + γLV GG) and find that all the combinations decline the

image quality in the medical image SR task.

Comparison of LU variations As mentioned in Section. 5.2.2, variants of the segmentation-

based perceptual loss are defined depending on the choice of feature maps in the U-Net.

Generally, researchers agree that shallow layers represent local and basic features while

deep layers represent global and semantic information in networks. I conduct experiments

to compare the LU variations. Narrowing the distance between the feature maps of the

first encoder block (i.e. LE(1)) in the segmentation U-Net is an effective restriction of

pixel-wise and structure reconstruction, leading to an increase of PSNR and SSIM scores.
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On the other hand, decreasing the dice coefficient of the predicted labels (i.e. LHRL) and

the distance between the output of decoders (i.e. LD) help semantic information recovery,

leading to better segmentation performance. For example, the model fine-tuned with

LHRL achieves the best dice scores of the whole brain, the grey matter and the white

matter and the second best dice score of the CSF with a slight decline of PSNR and SSIM.

Meanwhile, the experiments show that outputs of both ends in the U-Net are more useful

for the SR task, but the feature maps of hidden layers seem useless. Perceptual losses

based on the feature maps of the second to the fifth encoder block neither increase the

PSNR and SSIM scores nor improve the segmentation performance.

SR for humans or machines? In addition to the distortion-perception trade-off of SR

results, I find a human and machine perceptual difference in the experiments of perceptual

losses. I admit that both PSNR and SSIM are essential for SR image evaluation of

fidelity. However, neither can represent human perception or the performance in potential

downstream image analysis tasks. Similarly, Fréchet Inception distance (FID [175]) has

been used in previous works of medical image analysis tasks [104, 105] to evaluate the

perceptual quality. However, its significance for medical images is also doubtful because

the metric is designed for and pre-trained with natural images. In clinics, medical images

are mainly for doctors to view and for machines to auto analysis. However, it is hard to

explain how PSNR, SSIM and FID represent the perceptual performance in both cases.

Inspired by [20], I take segmentation as a typical downstream task to discuss the difference

between human perception (with FID) and machine perception (with dice coefficients)

of super-resolved medical images. Based on the conclusions and discussions in previous

works [27], I agree that PSNR and SSIM represent the fidelity of SR images and assume

that FID denotes human perception quality. Additionally, I take the segmentation dice

coefficient scores as the measurement for machine perception. In general, PSNR and

SSIM closely correspond, but they are independent with either FID or dice scores. There

is a trade-off between these three aspects, and none of the models can achieve superior

performance in more than two directions. Thus, I suggest SR models be customised to suit

the particular task. For example, the RDST variant fine-tuned with LE(1) is proper for

general purpose, and the variations fine-tuned with LV GG and LWGANGP are recommended

for human viewing. Furthermore, I suggest using the segmentation label-based loss LHRL
for SR model fine-tuning to meet the particular needs of downstream segmentation tasks.
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SR for segmentation I fine-tune RDST and RDST-E with LHRL and both models

achieve superior segmentation performance than SOTA methods on all datasets (Table.

5.7). Compared with LE(1) fine-tuned RDST variants, the RDST-E (with LHRL) improves

the segmentation performance of the whole regions in the experiments with the OASIS,

the ACDC and the COVID-CT datasets and increases the dice coefficient scores by 0.0040

on average of all four datasets, while the RDST (with LHRL) improves the segmentation

performance on the OASIS, the BraTS and the ACDC datasets and increases the dice

coefficient scores by 0.0008 on average of all four datasets. In addition, I choose one SOTA

method with the best segmentation performance for each dataset and compare it with the

LHRL fine-tuned RDST variants in detail (Table. 5.8). Among the 15 sub-regions in total,

both RDST and RDST-E (with LHRL) achieve the best scores on 7 sub-regions (with one

overlap) and RCAN achieves the best segmentation performance of the right lung and

lesion of the COVID-CT dataset.

Table 5.8: Dice coefficients of each tissue in the downstream segmentation tasks of SR results.
RDST variations (fine-tuned with LHRL) and one SOTA method with the best performance are
compared for each dataset. The highest scores are highlighted in red.

OASIS Dice-T↑ Dice-G↑ Dice-W↑ Dice-CSF↑
SwinIR [138] 0.8888(0.0097) 0.8506(0.054) 0.8688(0.020) 0.8880(0.015)
RDST-E(LHRL) 0.8899(0.0082) 0.8532(0.050) 0.8693(0.021) 0.8890(0.013)
RDST(LHRL) 0.8906(0.0081) 0.8567(0.049) 0.8693(0.021) 0.8885(0.013)

BraTS Dice-WT↑ Dice-ET↑ Dice-TC↑
SwinIR [138] 0.7836(0.12) 0.6816(0.12) 0.6710(0.16)
RDST-E(LHRL) 0.7825(0.13) 0.7039(0.12) 0.6922(0.17)
RDST(LHRL) 0.7842(0.13) 0.6970(0.12) 0.6869(0.17)

ACDC Dice-T↑ Dice-LV↑ Dice-RV↑ Dice-MC↑
SwinIR [138] 0.8705(0.026) 0.9001(0.043) 0.6964(0.12) 0.8456(0.039)
RDST-E(LHRL) 0.8745(0.024) 0.9005(0.044) 0.7068(0.12) 0.8501(0.032)
RDST(LHRL) 0.8732(0.024) 0.8996(0.036) 0.7197(0.11) 0.8476(0.036)

COVID-CT Dice-T↑ Dice-LL↑ Dice-RL↑ Dice-Lesion↑
RCAN [136] 0.8365(0.17) 0.8175(0.21) 0.8684(0.13) 0.6207(0.11)
RDST-E(LHRL) 0.8347(0.18) 0.8237(0.21) 0.8632(0.14) 0.5974(0.097)
RDST(LHRL) 0.8411(0.16) 0.8265(0.20) 0.8585(0.15) 0.6173(0.089)
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Extending to SOTA methods The proposed segmentation-based perceptual loss varia-

tions can successfully extend to other SOTA methods (Tabel. 5.9 and Fig. 5.11). To verify

the universality and usability, LE1 and LHRL are used to fine-tune three popular SOTA

SISR methods, including CNNs and vision transformers: RDN [132], RCAN [136] and

SwinIR [138]. In contrast to the baselines (trained with L1 for 100k steps), extra training

steps with only L1 bring limited improvements of PSNR (+0.04 dB) and segmentation

performance (+0.0005 Dice-T/WT) on average. Conversely, the proposed segmentation-

based perceptual loss variations significantly boost both image quality (+0.16 dB PSNR

on average with LE(1)) and segmentation accuracy (+0.0028 Dice-T/WT on average with

LHRL). Similar to the above conclusion in this section, models fined-tuned with LHRL
achieve the best dice scores in the downstream segmentation tasks in all cases, as expected.

On the other hand, models fine-tuned with LE1 achieve the best PSNR for all cases and

the second-best dice scores in most cases.

171



F
ig
u
re

5
.1
1
:

E
x
te

n
d

th
e

se
g
m

en
ta

ti
o
n

b
a
se

d
p

er
ce

p
tu

a
l

lo
ss

va
ri

a
ti

o
n
s
L
E

(1
)

a
n
d
L
H
R
L

to
th

re
e

p
o
p
u
la

r
S
O

T
A

m
et

h
o
d
s:

R
D

N
[1

32
],

R
C

A
N

[1
3
6
]

a
n

d
S

w
in

IR
[1

38
].

F
o
r

ea
ch

m
et

h
o
d

,
th

re
e

fi
n

e-
tu

n
ed

va
ri

a
ti

o
n
s

(w
it

h
L

1
,
L
E

(1
)

a
n

d
L
H
R
L

,
re

sp
ec

ti
v
el

y
)

a
re

co
m

p
a
re

d
w

it
h

th
e

b
a
se

li
n

e
(t

ra
in

ed
fo

r
1
00

k
st

ep
s

w
it

h
L

1
o
n

ly
).

172



T
a
b
le

5
.9
:

E
x
te

n
d
in

g
th

e
p
ro

p
os

ed
se

gm
en

ta
ti

on
-b

as
ed

p
er

ce
p
tu

al
lo

ss
es

to
S
O

T
A

m
et

h
o
d
s.

F
or

ea
ch

m
et

h
o
d
,

th
e

b
as

el
in

e
m

o
d
el

is
tr

ai
n
ed

w
it

h
L

1
o
n
ly

fo
r

1
0
0
k

st
ep

s.
T

h
re

e
fi
n
e-

tu
n
ed

va
ri

a
ti

o
n
s

a
re

a
d
d
it

io
n
a
ll
y

tr
a
in

ed
fo

r
2
0
k

st
ep

s
w

it
h
:

(1
)
L

1
o
n
ly

;
(2

)
L

1
w

it
h
L
E

(1
);

a
n
d

(3
)
L

1
w

it
h

L
H
R
L

.
In

ea
ch

gr
ou

p
o
f

th
e

sa
m

e
m

et
h

o
d

,
th

e
b

es
t

an
d

th
e

se
co

n
d

-b
es

t
sc

or
es

ar
e

in
h

ig
h

li
g
h
te

d
in

re
d

an
d

b
lu

e,
re

sp
ec

ti
v
el

y.

M
o
d
e
l

T
ra

in
in

g
P

S
N

R
↑

S
S
IM
↑

D
ic

e
-T
↑

D
ic

e
-G
↑

D
ic

e
-W
↑

D
ic

e
-C

S
F
↑

10
0k

-L
1

32
.5

7(
3.

2)
0
.9

2
4
1
(0

.0
3
6
)

0.
88

02
(0

.0
10

)
0.

83
16

(0
.0

59
)

0.
86

20
(0

.0
21

)
0
.8

8
4
5
(0

.0
1
5
)

+
20

k
-L

1
3
2
.6

2
(3

.3
)

0.
92

17
(0

.0
37

)
0.

88
10

(0
.0

10
)

0.
83

43
(0

.0
58

)
0.

86
21

(0
.0

21
)

0.
88

40
(0

.0
15

)
+

20
k
-L

E
(1

)
3
2
.7

8
(3

.4
)

0
.9

2
2
7
(0

.0
3
7
)

0
.8

8
1
5
(0

.0
0
9
9
)

0
.8

3
6
1
(0

.0
5
8
)

0
.8

6
2
2
(0

.0
2
1
)

0.
88

30
(0

.0
14

)
R

D
N

[1
32

]

+
20

k
-L

H
R
L

32
.3

0(
3.

1)
0.

91
53

(0
.0

38
)

0
.8

8
4
3
(0

.0
0
8
8
)

0
.8

4
4
0
(0

.0
5
2
)

0
.8

6
4
0
(0

.0
2
1
)

0
.8

8
5
9
(0

.0
1
4
)

10
0k

-L
1

3
2
.8

1
(3

.6
)

0
.9

2
2
4
(0

.0
3
8
)

0.
88

28
(0

.0
09

4)
0.

84
24

(0
.0

54
)

0.
86

19
(0

.0
21

)
0.

88
31

(0
.0

13
)

+
20

k
-L

1
3
2
.8

1
(3

.6
)

0.
92

21
(0

.0
38

)
0.

88
27

(0
.0

09
4)

0.
84

19
(0

.0
55

)
0.

86
19

(0
.0

21
)

0.
88

28
(0

.0
13

)
+

20
k
-L

E
(1

)
3
2
.9

4
(3

.7
)

0
.9

2
3
1
(0

.0
3
8
)

0
.8

8
3
3
(0

.0
0
9
3
)

0
.8

4
3
2
(0

.0
5
4
)

0
.8

6
2
3
(0

.0
2
1
)

0
.8

8
3
6
(0

.0
1
4
)

R
C

A
N

[1
36

]

+
20

k
-L

H
R
L

32
.6

4(
3.

5)
0.

91
87

(0
.0

38
)

0
.8

8
5
1
(0

.0
0
8
2
)

0
.8

4
7
7
(0

.0
5
0
)

0
.8

6
3
7
(0

.0
2
1
)

0
.8

8
4
1
(0

.0
1
3
)

10
0k

-L
1

33
.2

4(
3.

7)
0.

92
87

(0
.0

36
)

0.
88

88
(0

.0
09

7)
0.

85
06

(0
.0

54
)

0.
86

88
(0

.0
20

)
0
.8

8
8
0
(0

.0
1
5
)

+
20

k
-L

1
3
3
.3

3
(3

.7
)

0
.9

2
9
5
(0

.0
3
6
)

0.
88

91
(0

.0
10

)
0
.8

5
2
3
(0

.0
5
4
)

0.
86

88
(0

.0
21

)
0.

88
72

(0
.0

15
)

+
20

k
-L

E
(1

)
3
3
.4

6
(3

.7
)

0
.9

3
0
3
(0

.0
3
6
)

0
.8

8
9
3
(0

.0
1
1
)

0.
85

21
(0

.0
54

)
0
.8

6
9
2
(0

.0
2
1
)

0.
88

74
(0

.0
15

)
S
w

in
IR

[1
38

]

+
20

k
-L

H
R
L

33
.0

8(
3.

6)
0.

92
48

(0
.0

37
)

0
.8

9
0
8
(0

.0
0
8
6
)

0
.8

5
7
3
(0

.0
4
8
)

0
.8

6
9
7
(0

.0
2
1
)

0
.8

8
9
9
(0

.0
1
4
)

10
0k

-L
1

33
.2

5(
3.

5)
0.

92
86

(0
.0

35
)

0.
88

80
(0

.0
09

7)
0.

84
89

(0
.0

55
)

0.
86

79
(0

.0
21

)
0
.8

8
8
1
(0

.0
1
5
)

+
20

k
-L

1
3
3
.2

9
(3

.6
)

0
.9

2
9
3
(0

.0
3
5
)

0
.8

8
9
0
(0

.0
0
9
4
)

0.
85

12
(0

.0
54

)
0
.8

6
9
0
(0

.0
2
0
)

0.
88

77
(0

.0
15

)
+

20
k
-L

E
(1

)
3
3
.4

2
(3

.7
)

0
.9

2
9
9
(0

.0
3
5
)

0.
88

89
(0

.0
09

7)
0
.8

5
1
4
(0

.0
5
4
)

0.
86

88
(0

.0
21

)
0.

88
74

(0
.0

15
)

R
D

S
T

+
20

k
-L

H
R
L

33
.0

1(
3.

5)
0.

92
43

(0
.0

37
)

0
.8

9
0
6
(0

.0
0
8
1
)

0
.8

5
6
7
(0

.0
4
9
)

0
.8

6
9
3
(0

.0
2
1
)

0
.8

8
8
5
(0

.0
1
3
)

173



To datasets without segmentation labels In the above experiments, the segmentation-

based perceptual loss LE(1) has demonstrated its robust applicability and effectiveness. In

most cases, it significantly improves image fidelity quality (i.e. PSNR and SSIM) with

comparable segmentation performance. Although I train a segmentation model for each

dataset independently, the training is not a limitation. To use LE(1), a U-Net can be

trained on one dataset with segmentation labels and straightly extended to a new dataset

without segmentation labels. In the simulation experiment, I use the pre-trained U-Net

models with the OASIS, the ACDC and the COVID-CT datasets to fine-tune the RDST-E

model of every dataset and achieve equal performance (Table. 5.10). Compared with

the baselines (120k steps training with L1), they result in obvious improvement of PSNR

and dice coefficient scores in almost all cases. The prior knowledge of the pre-trained

segmentation model with one medical image dataset can be effectively transferred to new

datasets. Proposed segmentation perceptual loss LE(1) can become regular in a wider

range of medical image low-level tasks.

Table 5.10: A transfer learning study on the segmentation-based perceptual loss in the fine-
tuning stage. For each testing dataset of OASIS, ACDC and COVID, the RDST is trained for
120k steps with only L1 as the baselines to avoid the impacts of extra training steps. In the
fine-tuning stage, pre-trained U-Net models with OASIS, ACDC and COVID datasets are used
respectively to calculate LE(1). Scores in red indicate better performance than baselines, and
scores in green indicate worse performance.

Testing Baseline Which U-Net for LE(1)

PSNR↑ 120k-L1 OASIS ACDC COVID
OASIS 33.12(3.4) 33.26(3.4) 33.27(3.4) 33.26(3.4)
ACDC 27.23(3.0) 27.24(3.0) 27.24(3.0) 27.24(3.0)
COVID 34.58(4.4) 34.60(4.4) 34.62(4.4) 34.62(4.5)
Dice-T↑ 120k-L1 OASIS ACDC COVID
OASIS 0.8874(0.0094) 0.8871(0.0096) 0.8874(0.0094) 0.8875(0.0094)
ACDC 0.8681(0.026) 0.8684(0.025) 0.8691(0.025) 0.8683(0.025)
COVID 0.8241(0.19) 0.8284(0.18) 0.8301(0.18) 0.8264(0.19)
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5.4.4 Limitations and future works

Although the above experiments illustrate the superior performance and robustness of the

proposed method, three limitations are worth to be noticed. First of all, all results and

comparisons are achieved in simulation SR tasks. The degradation and noise formulation

I used for HR-LR image pair generation in Section 5.3.1 may not represent the actual

condition of various medical modalities in the clinic. Thus, it is worth exploring the

capacity of the proposed method in enhancement tasks with clinical medical images in the

future. Second, it is challenging to avoid over-fitting in medical image SR tasks. In Section

5.4.1, the proposed method RDST achieves the best performance (i.e. PSNR) for three

datasets but achieves worse performance than the lite version RDST-E with the small

dataset ACDC. I deduce that the decline is caused by over-fitting because fewer training

steps of regular-size models (e.g. RDST and SwinIR) result in higher PSNR scores in

the experiments of ACDC. Thus, developing data-driven early-stopping methods [326] for

each case of medical image dataset is necessary and significant. Third, in the ablation

study of model efficiency (Section 5.4.2), vision transformers are much slower in inference

than CNN models with similar sizes. Although RDST variants have achieved the smallest

model size and fewest parameters, non-attention CNN methods (i.e. EDSR and RDN)

are still more than twice faster as our proposed method. Exploring more efficient vision

transformers [327, 328] with the remaining SR performance will be very interesting.

Additional feature works can also be arranged in the following two directions. On the one

hand, the proposed method can be a potential backbone for broader low-level medical

image analysis tasks. For example, the residual dense vision transformer can be extended

to MR and CT synthesis [329] tasks with shallow feature extraction and up-sampler

layers modifications. Meanwhile, the proposed perceptual losses can be alternatives in

MR imaging reconstruction and image registration [330, 331]. On the other hand, super-

resolution tasks can be integrated into more downstream medical image analysis tasks than

segmentation. Thus, the proposed method can be introduced to more medical modalities

in addition to radiology scans. For example, novel perceptual losses may be designed with

pre-trained models of retinal image classification [332] and improve the performance of

retinal image synthesis [333].
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5.5 Chapter Summary

In this chapter, I aim to improve the single-image super-resolution performance and

efficiency of supervised vision transformers on medical images by introducing popular

mechanisms in previous CNNs to transformers and transferring prior knowledge of segmen-

tation tasks to SR tasks. I propose an efficient and robust single-image super-resolution

method RDST for medical images by successfully introducing the residual dense connection

and local feature fusion to vision transformers. The proposed RDST and its efficient

version RDST-E have achieved superior or equal performance to the SOTA SISR methods

of both SR image fidelity quality and downstream auto segmentation tasks. In the simu-

lation experiments of four public medical image datasets, including MR and CT scans,

the proposed RDST variants have resulted in averaged improvements of +0.09 dB and

+0.06 dB PSNR receptively with only 38% and 20% parameters of SwinIR. Meanwhile,

I present a perceptual loss for SR tasks based on the prior knowledge of pre-trained

segmentation models and successfully extend its variants to SOTA methods, including

CNNs and ViTs. The perceptual loss variant for reconstruction fidelity has led to an

improvement of +0.14 dB PSNR on average, and the variant for machine perception (i.e.

downstream segmentation tasks) has led to an improvement of 0.0023 dice coefficient on

average. In summary, this work has introduced a framework with novel and practical

designs on model architecture, loss function, training tricks and evaluation metrics. It

has achieved SOTA performance in super-resolution tasks with various medical image

modalities. It is also a potential backbone for more medical image low-level tasks such as

reconstruction and synthesis.
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CHAPTER 6

Conclusion and Future Works

This dissertation presents several deep learning-based frameworks with applications on

various medical image modalities, incorporating network architectures, loss functions and

training tricks for robust medical image super-resolution. In this chapter, I will summarise

the work presented in this dissertation and outline possible directions for the future.

6.1 Contribution summary

This dissertation explores deep neural networks for efficient and robust medical image

super-resolution. Besides incorporating SOTA algorithms designed for natural images,

I implement novel network frameworks based on convolution neural networks, genera-

tive adversarial networks and vision transformers for medical image applications. More

specifically, by introducing experts’ opinions and in-clinic medical image analysis tasks,

I conduct comprehensive comparison studies of current methods, with subjective and

objective evaluations of the super-resolved images’ reconstruction fidelity and perceptual

quality. I present general improvements of super-resolution loss functions with experienced

tricks and corresponding settings for stable and efficient training, potentially benefiting

other low-level image processing tasks in the medical domain. The proposed approaches

achieve state-of-the-art super-resolution results on various public and private medical

image modalities with these modifications. Specifically, the main contributions include:

1. Chapter 3 presents a multi-scale GAN for the challenging super-resolution task

of rich perceptually realistic texture generation with large magnification scales (e.g.

×4). I implement a progressive super-resolution framework with a lesion-focused

training strategy to decline the convergence difficulty of training large-scale SR GANs

and avoid the adverse effects of non-ROIs (e.g. meaningless and noisy backgrounds

and unrelated organs). When this work was published, I first introduced Wasserstein

distance with gradient penalty into medical single-image super-resolution for advanced
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adversarial learning, leading to more efficient and stable training with no requirement

of ’warm-up’. In addition to the widespread image quality assessment metrics

PSNR and SSIM, a mean-opinion-score evaluation is applied to super-resolution

results in a comparison study on brain and cardiac MR images. This approach

has achieved comparable perceptual quality with ground truth HR images with

significant improvements in PSNR, SSIM and the MOS scores than existing SISR

methods when publishing.

2. In Chapter 4, I focus on efficient arbitrary-scale super-resolution with meta learning,

adversarial learning and transfer learning on medical images. I implement a CNN-

based lite version feature extraction network correlating to a scale-free upscale module

that relies on weight prediction. In the simulation experiments on brain and cardiac

MR images and chest CT scenes, the proposed method has achieved comparable

performance on local-/global- accuracy reconstruction accuracy (i.e. PSNR and

SSIM) and objective perceptual quality (i.e. FID) with much fewer parameters than

SOTA SISR networks (e.g. EDSR, RDN and MetaSR). Additionally, I illustrate the

impacts of various widespread residual blocks in the SR image generator and the

consequences of GAN variants. I also discuss the distortion-perception trade-off of

high-quality image reconstruction in a comprehensive ablation study of network and

loss function components.

3. In Chapter 5, I present a backbone framework of vision transformers and a general-

purpose perceptual loss for superior performance in medical image super-resolution

tasks. I implement a residual dense transformer by introducing dense connections and

local feature fusion to shifted-window attention transformers. This CNN-transformer

hybrid model improves the representation capability with gradual-growing feature

maps and efficient residual learning, leading to decreased trainable parameters and

inference costs. In the experiments on four medical image datasets, it achieves

superior performance with only 38% parameters of the SOTA methods SwinIR.

Meanwhile, potential reasons behind the success of vision transformers over CNNs

are discussed in ablation studies. Besides, I present a novel perceptual loss for

low-level medical image processing by incorporating the prior knowledge of in-clinic

segmentation. With the manual selection of corresponding variants, this perceptual

loss can lead to desired improvements in reconstruction fidelity or segmentation

accuracy in downstream medical image analysis tasks. The experiments declare that

this segmentation-based perceptual loss significantly increases the PSNR scores of

SOTA SISR networks.
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6.2 Future works

In previous chapters, I have discussed the limitations of the presented works, which lead

to some potential directions for the future.

Generation models Exploring and applying more advanced generation models will

always be fundamental to super-resolution tasks. This dissertation has noticed how the de-

veloping generation methods (i.e. CNNs, GANs and transformers) benefit super-resolution

performance. Their evolution will further benefit SR tasks shortly in the following aspects.

First, novel techniques may help CNN-based backbones achieve superior performance with

efficient computation, such as sizeable receptive field [324, 334] and activation-free block

[335]. The second, efficient design of vision transformers [327, 328] may accelerate the

inference for better clinical applicability. Third, it is worth exploring the capability of

diffusion models [161–164] in super-resolution tasks for new SOTA performance.

Clinical Applications Simulation experiments can rarely estimate the authentic arte-

facts during medical image acquisition in the clinic. In this dissertation, I concentrate on

the generated LR-HR images for a fair comparison with SOTA methods and the general

applicability in super-resolution tasks. Although this dissertation involves various medical

image modalities, exploring the proposed approaches with clinical needs is worth studying.

Besides the radiology images (e.g. MR and CT) that I mainly focus on in this dissertation,

super-resolution is also necessary for other medical images with very different signal

statistics. For example, endoscopy super-resolution [336] requires real-time techniques

with frame-wise recurrent learning [337]. In addition to super-resolution tasks, I expect

the proposed frameworks (based on CNNs, GANs and ViTs) can be potential backbones

or components for a broad range of medical image processing tasks such as reconstruction

[14, 330] and translation [113]. Meanwhile, the clinic may require an end-to-end pipeline

which embeds multi models of successive medical image analysis tasks. It will be a great

research topic for evaluating and applying image enhancement in such a framework.

General-purpose foundation models The emerging general-purpose multimodal foun-

dation models may bring a promising feature of medical image analysis, including medical

image super-resolution. These large-scale pre-trained models have recently dominated

high-level computer vision and vision-text tasks [338, 339], but low-level image synthesis

tasks are still challenging [340]. In contrast, there are rare reports of foundation models for

low-level image processing tasks. Specifically, the potential general-purpose cross-modality

models may benefit medical image enhancement tasks for the advanced representability of

medical data and the flexible applicability of new tasks with limited training data. Notably,
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the multimodal medical data may provide crucial prior knowledge for high-quality image

restoration with preserved structural information and generated rich details. On the other

hand, it is hard to obtain coordinated image pairs with high-/low- resolution and quality,

limiting the applicability of medical image analysis networks. Foundation models may

solve this issue by pre-training on a large dataset and fine-tuning for specific applications.

Meanwhile, the aligned cross-modality representations in the large-scale foundation models

[341] may play an alternative perceptual loss for image generation tasks [342, 343]. Thus,

the challenges in general-purpose foundation models for low-level medical image processing

are worth discussing, such as data encoding and explainability problems [344].

6.3 Conclusion

In summary, I have presented my research on deep neural networks for efficient and robust

medical image super-resolution tasks in this dissertation. These proposed approaches

achieved state-of-the-art performance on a broad range of medical image datasets when

published. Besides the novel network architectures, applicable training techniques and

clinically significant image quality evaluation in super-resolution, the methods and findings

also benefit other low-level image processing tasks. In the future, they could apply

in hospitals for advanced clinical processes with proper case-specific modifications and

supplementary techniques. Moreover, the discussion and ablation studies provide exciting

future research directions.
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Dimitri Papadopoulos Orfanos, Anibal Sólon, Brendan Moloney, Félix C. Morency,

Mathias Goncalves, Zvi Baratz, Ross Markello, Cameron Riddell, Christopher

Burns, Jarrod Millman, Alexandre Gramfort, Jaakko Leppäkangas, Jasper J.F.
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