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Abstract

Argument mining with informal text

Yuxiao Ye

The rapid growth of online discussions has led to a wealth of user-generated text,
rich in arguments and diverse in nature. However, the complexity of these informal
arguments presents a challenge for argument mining. Argument mining is the task of
automatically analysing arguments, such that the unstructured information contained in
them is converted into structured representations. Current practice in argument mining
largely focuses on well-structured and edited formal text, but the annotation schemes and
models developed for these simpler texts cannot account well for the phenomena found in
informal text.

To capture the characteristics of informal arguments, I designed an annotation scheme
which includes undercuts, a counterargument device that challenges the relationship
between a premise and a claim. Other computational approaches conflate undercuts with
direct attacks, a device where the truth of the claim or the premise itself is challenged.
I also presented the resultant large-scale Quora dataset featuring informal arguments,
complemented by a layer of annotation detailing complete argument structures.

I then proposed an end-to-end approach to argument mining based on dependency
parsing. My approach uses new dependency representations for arguments and two new
neural dependency parsers, one based on biaffine parsing and the other on GNNs. It
comfortably beats a strong baseline on the Quora dataset. When applied to an existing
benchmark dataset of formal arguments, my approach establishes a new state of the art. It
is also the first automatic argument mining approach that is able to recognise undercuts.

Furthermore, I conducted a study on external knowledge integration for end-to-end
argument mining, such as information from syntax, discourse, knowledge graphs, and
large language models. I found that feature-based integration using GPT-3.5 is the most
effective method among those I have surveyed.

Overall, I hope that my work, by providing automatic analyses of arguments in
online discussions, will eventually foster better understanding among people with different
opinions.
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Chapter 1

Introduction

The pervasive prevalence of the internet and social media stands as a defining feature of
contemporary society. It has opened unprecedented avenues for individuals to express their
opinions and engage in conversations on a wide range of subjects. A common approach
for expressing these opinions, either to clarify one’s stance or to persuade others, involves
constructing an argument (Mercier and Sperber, 2011, Van Eemeren and Henkemans,
2016).

An example for arguments in online discussions is shown in Figure 1.1. The argument in
the example is is an answer to the question “Do you support same sex marriage? Why?” It
is taken from Quora, a popular question-answering platform where users can ask questions
and get answers from other users. In this argument, the author starts by explaining why
marriage is necessary for two adults in love. They then refute several popular reasons
given by the opposing party. The author concludes by saying that they support same-sex
marriage because those opposing reasons do not stand. This example gives us a taste of
arguments in online discussions, which are usually less formal than those in argumentative
essays and formal debates, but are often still rational and informative.

Social media allows people to express divergent opinions on the same subject and to
reach many more people than was possible in earlier times. However, the ubiquity of the
internet and social media also has some negative consequences. One of these is the growing
polarisation between individuals holding different beliefs and opinions. This makes it
increasingly important to promote productive communication and understanding among
people with opposing perspectives.

To achieve this goal, we need to first analyse the arguments contained in online
discussions. However, manually analysing and making sense of these arguments can be
a daunting task due to the sheer volume of data. This is where argument mining comes
into play. Argument mining is a computational technique that automatically identifies
and extracts arguments from natural language texts (Peldszus and Stede, 2013, Green
et al., 2014). It can convert unstructured textual information into structured argument
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Figure 1.1: An example answer on Quora to the question “Do you support same sex
marriage? Why?”

data, which not only identifies the argumentative text segments in the text but also the
relations between them (Prakken and Vreeswijk, 2002, Lawrence and Reed, 2020). By
convention, argumentative text segments are called “argument components” and relations
between them are called “argument relations”. An example of such a conversion is shown
in Figure 1.2, where nodes correspond to argument components and edges to two kinds of
argument relations, namely attack and support.

Argument mining has a wide range of applications in various fields, including politics,
law, education, and business. In politics, argument mining can be used to analyse political
speeches and debates to gain insights into the arguments made by political candidates
(Menini et al., 2017). In law, argument mining can assist in legal summarisation with the
automatic analysis of legal documents (Yamada et al., 2019a,b). In education, argument
mining can be used to automatically classify student utterances in classroom discussions
(Lugini and Litman, 2018). In business, argument mining can be used to analyse customer
feedback and reviews to identify customer preferences and complaints (Park, 2016).

Argument mining can also be a valuable tool in the context of online discussions,
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Figure 1.2: An example argument and its structure, using the annotation scheme in
Peldszus and Stede (2015a). Nodes represent two different types of argument components
(blue and grey). Edges represent two kinds of argument relations (arrow-head and circle-
head.

allowing for the identification and analysis of arguments from diverse perspectives. Consider
an online discussion forum where users are discussing a controversial topic, such as climate
change. Opinions on climate change can range widely, from denial of its existence to a belief
in its extreme urgency. The number of user-generated posts can be overwhelming, which
makes manual analysis of the arguments in such a discussion time-consuming and error-
prone. Argument mining can greatly simplify this task by automating the identification of
opinions expressed by each participant, as well as their underlying reasoning. In this way,
it can provide valuable insights into the underlying reasons and motivations for opinions
and beliefs, leading to the discovery of common ground and the facilitation of mutual
understanding.

1.1 Motivation

Many existing studies employ pipelined approaches to argument mining, first training
separate models for components and relations, and subsequently reconstructing the final
argument structure based on rules or model ensemble methods (Persing and Ng, 2016, Stab
and Gurevych, 2017, Mirko et al., 2020, Dutta et al., 2022). As with many other pipelined
approaches, these methods are susceptible to error propagation. Additionally, many of
these models heavily rely on feature engineering, such as those by Moens et al. (2007),
Palau and Moens (2009), and Park (2016), which requires considerable manual effort.
Such approaches are also limited in terms of flexibility and robustness in cross-domain
scenarios.

In contrast to arguments found in formal text such as student essays and legal docu-
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ments, arguments in online discussions generally exhibit implicit language use and flexible
structures (Boltužić and Šnajder, 2014). Informal argumentation does not mean that
people argue badly. The informal arguments I have observed are in general logical and
reasonable, but the presentation of the argument is so informal that the logic might not be
immediately obvious. There is irregular syntax, incomplete sentences, and irony. Personal
and emotional statements are often mixed together with more objective statements. This
makes the automated analysis of such informal arguments a particularly challenging task.
Efforts have been made to apply argument mining to online discussions. However, most
of these attempts either only involve simple and short texts like tweets (Schaefer and
Stede, 2020, Iskender et al., 2021) and customer reviews (Wachsmuth et al., 2014, Park,
2016), which are unlikely to contain structured arguments, or they focus solely on stance
detection (Sridhar et al., 2015) or component identification (Habernal and Gurevych, 2017)
without addressing the relations within argument structures.

The informal nature of arguments in online discussions also makes it difficult to develop
annotation schemes. Annotation schemes define the structured output of argument mining.
The design of the annotation scheme is a crucial factor in any argument mining datasets.
While simple claim-premise based annotation schemes may fall short in capturing key
attributes of informal arguments, excessively complex schemes are often less flexible and
may exhibit low inter-annotator agreement. As a result, it is a considerable challenge to
create an annotation scheme that balances the informativeness and reliability of annotation
on informal arguments (Habernal and Gurevych, 2017). Moreover, the form of arguments
in online discussions varies considerably depending on the platforms used, the topics
discussed, and the individual users participating (Spatariu et al., 2007, Ruiz et al., 2011,
Coe et al., 2014, Muddiman and Stroud, 2017), which adds to the complexity of the task.

In addition to being less formal, arguments in online discussions present further
challenges due to the diversity of topics, the variety of linguistic expressions, and the
implicit assumptions often embedded within them. Accurate interpretation of such
arguments often requires a comprehensive grasp of external knowledge (Saint Dizier, 2016,
Moens, 2018). Several strategies for integrating external knowledge have been explored in
argument mining research, such as Lv et al. (2020), Dutta et al. (2022), and Rodrigues and
Branco (2022). However, these studies often focus on specific subtasks and use distinct
techniques tailored for individual model architectures. Such specificity complicates the
application of these techniques. In some cases, it may even make it impossible to use them
at all in end-to-end argument mining approaches.

Looking at the big picture, in this thesis I propose to apply argument mining to
informal text sourced from online discussions, addressing the challenges described above.
The main motivation is to help people with different perspectives better understand each
other. Not being able to understand others’ opinions or reasoning can often lead to
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discrimination, prejudice, and stereotyping (Fiske, 1998, Fishbein, 2014). Ultimately, I
aspire to contribute to the promotion of constructive dialogue and mutual understanding
among individuals with varied viewpoints, potentially mitigating discrimination, prejudice,
and stereotyping. By successfully applying argument mining to informal text in online
discussions, we can foster a more inclusive and well-informed discourse, enabling individuals
to better comprehend and appreciate the diverse opinions that shape our society.

1.2 Thesis outline

In Chapter 2, I provide the relevant background information necessary to understand
the thesis. I first introduce the definitions of argumentation and argument, along with
argumentation models and argumentation schemes as frameworks to analyse arguments. I
also introduce the task of argument mining and its subtasks.

In Chapter 3, I provide an overview of existing research in the field of argument mining,
in terms of annotation schemes, technical approaches, and external knowledge integration
methods.

In Chapter 4, I present a simple, concise, and informative annotation scheme for
informal arguments. The resultant dataset consists of 400 argumentative texts collected
from Quora. I also conduct a human agreement study and provide an analysis of the
results.

In Chapter 5, I propose an end-to-end approach to argument mining by formulating it
as a dependency parsing task. My dependency representations and dependency parsers
are proved to be effective for formal arguments as well as informal arguments. I conclude
that argument mining as dependency parsing is a promising approach for both formal and
informal arguments.

In Chapter 6, I present a comprehensive study on external knowledge integration for
end-to-end argument mining. I experiment with various knowledge sources and techniques,
and analyse their effects on formal and informal arguments.

In Chapter 7, I conclude the thesis by summarising the principal contributions and by
suggesting potential directions for future research.
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Chapter 2

Background

In this chapter I will establish the necessary background knowledge that contextualises and
supports the subsequent chapters. The term “argumentation” and “argument” are often
used interchangeably in the field of argument mining, but it is still necessary to distinguish
them. Following the convention in Besnard and Hunter (2008), argumentation is defined in
this thesis as the process of constructing and evaluating arguments, and arguments as the
product of such a process. I first introduce the definitions of argumentation and argument
in Section 2.1, from various perspectives including theoretical linguistics, computational
linguistics and communication theories. The divergent foci in these definitions give
rise to two crucial categories of frameworks for analysing arguments: those that fall
under the umbrella of argumentation models, and those that focus on argumentation
schemes. Argumentation models (Section 2.1.2) describe arguments in a structural point
of view, while argumentation schemes (Section 2.1.3) emphasise the persuasion patterns in
arguments.

In Section 2.2, I present an introduction to argument mining, a task within the field of
natural language processing (NLP) that focuses on the automated extraction and analysis
of argumentative structures from text. Following this, I discuss the two fundamental
subtasks of argument mining, namely component identification (Section 2.2.1) and relation
identification (Section 2.2.2).

2.1 Argumentation and argument

Argumentation is a multifaceted concept that has been defined and formalised from
various perspectives in different fields. One of the earliest and most influential studies on
argumentation was provided by Aristotle in ancient Greece. In his treatise On Rhetoric
(translated by Kennedy, 2006), Aristotle defines argumentation as the art of communication
and philosophical disputation. According to Aristotle, an inductive argument contains
a particular conclusion drawn from one or more examples, while a deductive argument
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consists of a series of premises that lead to a conclusion through logical deduction. In
deductive arguments, the premises are statements that are accepted as true or likely to
be true, while the conclusion is the statement that follows logically from the premises.
Aristotle identifies three modes of persuasion that can be used in argumentation: logos,
pathos, and ethos. Logos refers to the use of reasoning and logical arguments to persuade
an audience, pathos refers to the use of emotions and feelings to appeal to the audience’s
sympathies and values, and ethos refers to the speaker’s personal character, credibility,
and trustworthiness. At its core, the Aristotelian theory of argumentation is concerned
with the analysis and evaluation of arguments, with the aim of distinguishing between
good and bad arguments.

2.1.1 Definitions

Regarding their different emphases on logos, pathos, or ethos, I categorise definitions of
argumentation and argument into logos-centred or audience-centred. The logos-centred
approach focuses on the logical structure and content of arguments (logos), while the
audience-centred approach combines pathos and ethos, emphasising the importance of
adapting arguments to the audience’s values, beliefs, and emotions.

2.1.1.1 Logos-centred

One of the most fundamental frameworks under the logos-centred approach is Toulmin’s
model of argumentation (Toulmin, 1958). Although Toulmin does not present an abstract
definition of argumentation or argument, his model provides a tool to understand the logical
structure of arguments. Toulmin’s model deconstructs an argument into six interconnected
components, each serving a unique functional role in the reasoning process. This argument
layout has become the basis for many formal approaches to argumentation. Details of this
model will be introduced in Section 2.1.2.2.

Freeman (1991, 2011) defines argumentation by integrating Toulmin’s model into
argument diagramming techniques. In his theory of the macro-structure of argumentation,
argumentation is modelled as a hypothetical dialectical exchange between a “proponent”
and an “opponent”. Each move in the exchange corresponding to a structural element in
the argument graph.

Two other influential logos-centred definitions of argument come from Pollock (Pollock,
1987, 1992), and Besnard and Hunter (Besnard and Hunter, 2001, 2008, 2009). According
to Pollock, an argument is defined as a finite sequence of propositions, where each
proposition is either an epistemic basis or a result of the reasoning process of a set of
earlier propositions1. The recursive nature of this definition makes it more flexible than

1This is Pollock’s definition of linear arguments. More complex arguments are called indirect arguments,
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Toulmin’s model. Besnard and Hunter define an argument as a pair ⟨Φ, α⟩, where α is
a claim supported by the support Φ, which is a minimal consistent subset of formulae
in a database. These two definitions are similar in that they both use formal logic to
conceptualise arguments, and the structure of arguments in the two definitions are almost
equivalent. Details of these two definitions will be introduced in Section 2.1.2.3.

All definitions discussed above place emphasis on the structural aspect of arguments.
Such an emphasis has led to the development of a category of frameworks known as
argumentation models (Section 2.1.2), which is an important theoretical tool for analysing
arguments.

2.1.1.2 Audience-centred

While logos-centred definitions focus on the logical structure and content of arguments,
audience-centred definitions prioritise the communicative process and the persuasive effects
on the audience. Despite the lack of consensus on the definitions themselves, many
audience-centred definitions are based on several key elements of argumentation, including
the context in which the argumentation occurs, the agents involved in the argumentation,
the objectives of the argumentation, and the strategies utilised to achieve those objectives.

The definition of argumentation provided by Van Eemeren and Grootendorst (1984,
2004) addresses the communicative aspect of argumentation. They characterise argument
as a dialogical exchange between a “speaker” and a “hearer”. Argumentation is defined
by them as “a verbal, social, and rational activity aimed at convincing a reasonable critic
of the acceptability of a standpoint by putting forward a constellation of propositions
justifying or refuting the proposition expressed in the standpoint”. This activity is further
seen as occurring in the context of communication, being directed towards an audience,
and being intended to persuade the audience using intellectual reasoning and emotional
appeals. Definitions of argumentation with similar emphases can also be found in Freeman
(1991), Walton (1998), O’Keefe (2012), Freeley and Steinberg (2013), and Zarefsky (2019).

One of the key elements in audience-centred definitions is the strategies used in
argumentation. Patterns of argument strategies are called “argumentation schemes”, which
can be applied to different situations to construct an argument (Perelman, 1971). They
provide a framework for identifying the types of reasoning strategies used in an argument,
which can be used to evaluate the quality of the argument based on its adherence to the
underlying scheme (Nussbaum, 2011). Various studies on the classification of argumentation
schemes (Hastings, 1962, Kienpointner, 1992, Grennan, 1997, Prakken, 2010) have been
conducted, but the most comprehensive and systematic one is the one by Walton et al.
(2008). Walton et al.’s argumentation schemes include logical reasoning, but also arguing

which allow the adoption of unestablished premises as suppositions. Considering the concern of this thesis,
I only introduce Pollock’s definition of linear arguments.
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by appealing to emotions and by establishing speaker’s credibility. Some of their schemes
will be introduced in Section 2.1.3.

2.1.2 Argumentation models

Argumentation models aim to provide a structural representation of arguments, enabling
a systematic analysis of their components and relations, and to capture the relationships
between arguments. These models abstract away from the surface form of an argument to
a conceptual level, focusing on the interconnections between the different elements of an
argument and how they relate to each other (Prakken and Vreeswijk, 2002).

According to the taxonomy presented in Bentahar et al. (2010), argumentation models
can be classified into three categories: monological models, which are designed to represent
the internal structure of a single argument; dialogical models, which aim to capture the
relationships between arguments in entire debates or dialogues; and rhetorical models,
which are used to describe persuasion patterns in arguments with a special focus on the
audience’s perception. It should be noted that rhetorical models in this taxonomy is in fact
closer to the notion of argumentation schemes rather than argumentation models, as they
emphasise persuasion patterns and the audience’s perception and ignore the structural
aspect of arguments.

In this section, I will only introduce influential monological argumentation models, as
the research target of this thesis is limited to monological arguments.

2.1.2.1 Walton’s model

Walton (1996) defines several basic argument structures from a pragmatic perspective,
as illustrated in Figure 2.1. He refers to the representations of argument structures as
argument diagrams. An argument diagram illustrates the inference process of an argument.

(a)

1

2
(b)

2

1

3 2

1

3
(c)

2

1

3
(d)

3

1 2

(e)

Figure 2.1: Basic argument structures in Walton’s model: (a) single argument, (b) linked
argument, (c) convergent argument, (d) serial argument, and (e) divergent argument.
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It consists of nodes symbolising argument components and edges connecting these nodes.
Since Walton’s argument diagrams are about argument structures, they can be seen as a
type of argumentation model.

Walton lists five basic structures of arguments as follows:

• Single argument (Figure 2.1a), in which there is only one premise and one con-
clusion. This is the simplest form of argument where a single proposition supports
another.

• Linked argument (Figure 2.1b), in which multiple premises jointly support a single
conclusion. All the premises are necessary for the conclusion to be valid. Example 2.1
shows a linked argument: in order to compare the population density of The United
States and Canada, it is necessary to know both their total area and population.

Example 2.1
Component 1: The population density of The United States is much higher
than that of Canada.
Component 2: The total area of The United States and Canada is similar.
Component 3: The United States has a population about 7 times larger
than that of Canada.

• Convergent argument (Figure 2.1c), in which multiple independent premises
separately support the same conclusion. Even if one premise is removed, the
conclusion can still be valid based on the remaining premises. Example 2.2 shows a
convergent argument: Carlos has two good properties, each of which on their own is
already sufficient to make him excel in his studies.

Example 2.2
Component 1: Carlos will excel in his studies.
Component 2: Carlos is a dedicated student.
Component 3: Carlos is smart.

• Serial argument (Figure 2.1d), in which a premise supports a conclusion, and
that conclusion, in turn, serves as a premise for another conclusion. This creates
a chain-like structure of reasoning. Example 2.3 shows a serial argument: tourism
should be stopped because it is a threat to nature; tourism is a threat to nature
because it has killed much marine life.

Example 2.3
Component 1: Tourism should be stopped.

25



Component 2: Tourism is a threat to nature.
Component 3: Tourism has killed much marine life.

• Divergent argument (Figure 2.1e), in which a single premise supports multiple
conclusions. Example 2.4 shows a divergent argument: holding a degree in computer
science, Sean can be familiar with algorithms and data structures, and he can also
be bad at thinking from human-centric perspectives.

Example 2.4
Component 1: Sean always misses out on human-centric perspectives.
Component 2: Sean is familiar with algorithms and data structures.
Component 3: Sean has a degree in computer science.

2.1.2.2 Toulmin’s model

Toulmin’s argumentation model (Toulmin, 1958) is based on the perspective that argu-
mentation is a reasoned and logical attempt to convince someone of the acceptability of a
particular claim.

Toulmin’s model is usually illustrated as a connected set of nodes, as depicted in
Figure 2.2. It deconstructs an argument into six interconnected components, each serving
a unique functional role in the reasoning process. The six components of Toulmin’s model
are as follows:

Figure 2.2: A graphical representation of Toulmin’s model, along with an example argument
taken from Toulmin (1958). Nodes represent argument components: C = Claim, D =
Data, W = Warrant, B = Backing, Q = Qualifier, R = Rebuttal.
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1. Claim: the central proposition or statement that the argument is trying to establish.
It is what the argument is ultimately arguing for.

2. Data: the evidence or information that supports the claim. The data can be factual,
statistical, anecdotal, or any other kind of information that is relevant to the claim.

3. Warrant: the justification or reasoning that connects the data to the claim. It is
the underlying principle or rule that makes the leap from the data to the claim. The
warrant can be explicit or implicit, and it can be based on a variety of sources such
as logic, experience, authority, or common sense.

4. Backing: the additional support or justification for the warrant. It provides further
evidence or reasoning to support the warrant and to help strengthen the argument.

5. Qualifier: the acknowledgment of the limitations or scope of the argument. It sets
the parameters for accepting the argument by indicating the strength or certainty of
the claim.

6. Rebuttal: the acknowledgment of counterarguments to the claim by providing
conditions or situations supporting the qualifier. It addresses potential weaknesses or
objections to the argument in order to strengthen the argument, by demonstrating
that it has been carefully and objectively analysed rather than reflecting a biased or
one-sided perspective.

While this model does not define the relationships between its components, it can
be inferred that all relationships are supportive, except for the connection between the
Qualifier and the Claim, and the connection between the Rebuttal and the “qualified
claim” that it attacks.

Toulmin’s model has been widely used in fields such as philosophy, rhetoric, communi-
cation, and education (Verheij and Hitchcock, 2006, Tindale, 2007, Van Eemeren et al.,
2013, Bailin and Battersby, 2016). However, it also has some limitations: its components
are defined informally, and it is not flexible with respect to how such argument structures
can be combined to represent complex arguments (Bentahar et al., 2010); the distinction
between Data and Warrant is not sustainable in practice (Habernal and Gurevych,
2017).

2.1.2.3 Pollock’s model, and Besnard and Hunter’s model

In contrast to the informal and ambiguous nature of Toulmin’s model, Pollock’s model
and Besnard and Hunter’s model provide a formal approach to argumentation by utilising
formal logic.
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Pollock’s argumentation model formalises defeasible reasoning, which is a form of
reasoning that is tentative and subject to revision in the face of new information (Pollock,
1987, 1992). While the initial intention of this model was to address certain aspects of
defeasible reasoning, its underlying logic remains grounded in classical logic. Therefore,
Pollock’s model is a foundational framework for logic-based argumentation.

In Pollock’s model, an argument is defined as a finite sequence of propositions, where
each proposition is either an epistemic basis or a result of the reasoning process of a set
of earlier propositions. Pollock breaks down an argument into smaller structures, which
he calls “lines of argument”. A “line of argument” is an ordered triple ⟨P,R, {m,n, . . . }⟩
consisting of a proposition P that is supported by the line, a rule of inference R, and a set
of indices {m,n, . . . } that identify the previous lines that support the present line through
R.

A visualisation of this model can be found in Figure 2.3. The argument in this figure
can be represented as a sequence of propositions: {P1, P2, P3, P4}. Lines of argument
are illustrated as dashed boxes in this figure. For example, the line from P2 to P4 can
be written as L4 = {P4, R2, {L2}}. L4 is the index of this line of argument, P4 is the
proposition supported by this line, R2 is the inference rule used to reach P4, and L2 is the
previous line, which supports the present line L4 through R2.

Unlike Pollock’s model, Besnard and Hunter’s argumentation model is based on
deductive reasoning. In deductive reasoning, a conclusion is necessarily derived from its
premises, meaning that if the premises are true, the conclusion must also be true (Besnard
and Hunter, 2001, 2008, 2009). An argument in this model is defined as a pair ⟨Φ, α⟩
consisting of a claim α and its support Φ, where Φ is a minimal consistent subset of formulae
in a database ∆. The formulae in ∆ can represent certain or uncertain information, and can

Figure 2.3: A graphical representation of Pollock’s model. Nodes are propositions. Edges
are inference rules. Items in dashed boxes are lines of argument.
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denote objective, subjective, or hypothetical statements. Such formulae can contain logical
operations including implication (→), conjunction (∧), disjunction (∨), and negation (¬).
The ordering of formulae in Φ is arbitrary and does not affect the argument.

The primary difference between Besnard and Hunter’s model and Pollock’s model
lies in the nature of their inference rules. In defeasible reasoning, inference rules can be
challenged given new information. In contrast, in deductive reasoning, inference rules are
fixed and must always be upheld regardless of new evidence. This difference leads to two
different ways of incorporating inference rules into argumentation models. Pollock’s model
explicitly lists the rule of inference as an element (i.e. R) in the triple of a line, whereas
Besnard and Hunter’s model embeds it into the support (i.e. Φ) of an argument. This
is because for deductive reasoning, the rule of inference is always the logical operation
implication (i.e. →).

Nonetheless, in other aspects, Besnard and Hunter’s model and Pollock’s model are
equivalent. In fact, the last proposition P in Pollock’s model is equivalent to the claim α

in Besnard and Hunter’s model, and compositions of formulae in the support Φ in Besnard
and Hunter’s model can produce all the lines in Pollock’s model. For example, using
Besnard and Hunter’s model, the argument in Figure 2.3 can be written as ⟨{P1, P3, P1 →
P2, P2 → P4, P3 → P4}, P4⟩.

2.1.2.4 Counterargument and undercut

In argumentation, counterarguments play a critical role in challenging the soundness or
validity of an argument. They provide an opportunity to anticipate and address potential
objections or alternative viewpoints, making the argument more robust and convincing.
In this section, I will discuss the concept of counterarguments in detail, including their
types and structures.

In Toulmin’s model, counterarguments are integrated into the argumentation model
itself as rebuttals. A rebuttal attempts to demonstrate the weakness or invalidity of an
opponent’s argument by providing conditions or situations where the claim may not stand.
A strong rebuttal acknowledges and addresses the reservations that the arguer or their
audience might have about the argument, and is usually followed by a response to the
rebuttal that demonstrates why the argument remains strong despite those reservations.

Unlike Toulmin’s model, counterarguments are defined as separate entities that attack
the main argument in Pollock’s model and Besnard and Hunter’s model. In Pollock’s
model, counterarguments are referred to as “defeaters”. This is because in this model,
counterarguments attack “prima facie reasons” (i.e. defeasible reasons), which are reasons
that can be overturned by further information or evidence (Pollock, 1987). Pollock explains
defeasibility as follows:
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Example 2.5
“An observation like ‘X appears red to me’ may initially provide a reason to
believe that X is indeed red. However, this reason is defeasible in the sense
that it can be undermined by other evidence or information. For instance, if
someone with a reputation for reliability informs me that X is not actually red
but only appears so due to unusual lighting conditions, then the combination
of these two pieces of information would no longer support my belief that X is
red. ” (Pollock, 1987)

Counterarguments (i.e. defeaters) in Pollock’s model are therefore reasons that can
defeat such prima facie reasons. A defeater must not conflict with the original defeasible
reason. For example, “X appears black to me” conflict with “X appears red to me”, so that
the former is not a defeater of the latter. There are two subcategories of defeaters, namely
rebutting defeaters and undercutting defeaters, which are defined as follows (Pollock,
1987):

Definition 2.1 R is a rebutting defeater for P as a prima facie reason for Q

iff R is a defeater and R is a reason for believing ¬Q.

Definition 2.2 R is an undercutting defeater for P as a prima facie reason
for Q iff R is a defeater and R is a reason for denying that P wouldn’t be true
unless Q were true.

The difference between a rebutting defeater and an undercutting defeater therefore
lies in the way they defeat a defeasible reason. A rebutting defeater directly attacks the
conclusion by providing reasons to believe the opposite of it, while an undercutting defeater
challenges the relation (i.e. the inference rule) between the reason and the conclusion.
Consider the following two examples:

Example 2.6
Reason: Carlos turned in all assignments on time.
Conclusion: Carlos should get an A in this course.
Rebutting defeater : The instructor discovered that Carlos had plagiarised in
his final paper.

Example 2.7
Reason: Carlos turned in all assignments on time.
Conclusion: Carlos should get an A in this course.
Undercutting defeater : The quality of Carlos’ assignments was poor.
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The rebutting defeater in Example 2.6 directly attacks the conclusion by showing that
Carlos did not meet the academic integrity requirements, and therefore does not deserve
an A. In contrast, the undercutting defeater in Example 2.7 suggests that despite Carlos’s
timeliness, the poor quality of his assignments could undermine the initial reasoning
process.

Counterarguments defined by Besnard and Hunter (2009) also have two subcategories,
namely rebuttals and undercuts:

Definition 2.3 An argument ⟨Ψ, β⟩ is a rebuttal for an argument ⟨Φ, α⟩
iff β ↔ ¬α is a tautology.

Definition 2.4 An undercut for an argument ⟨Φ, α⟩ is an argument ⟨Ψ,¬(ϕ1∧
· · · ∧ ϕn)⟩ where ϕ1, . . . , ϕn ⊆ Φ.

We can see that a counterargument in Besnard and Hunter’s model is an argument
consisting of a support and a claim, while a counterargument in Pollock’s model is only
a reason and does not include claims. When we overlook this distinction, a rebuttal as
defined by Besnard and Hunter is equivalent to that by Pollock, with both being an attack
on the conclusion. However, their definitions of undercuts are different, in that Pollock
defines undercuts as an attack on the relation between the support and the conclusion,
while Besnard and Hunter define it as an attack on the support. Since inference rules are
incorporated into the support in Besnard and Hunter’s model, undercuts as defined by
Besnard and Hunter include those by Pollock. This inclusiveness can be illustrated by the
following example:

Example 2.8
Support : The new medication has been approved by the FDA.
Conclusion: The new medication is safe.
Counterargument1: The FDA approval was based on limited clinical trials
which might overlook unexpected side effects.
Counterargument2: That the new medication has been approved by the FDA
is fake news.

In this example, the first counterargument attacks the relation between the support
and the conclusion, and the second counterargument attacks the support. As a result,
they are both regarded as undercuts according to Besnard and Hunter’s definition, but
only the first is considered as an undercut by Pollock’s definition.

In this thesis, I aim to distinguish the attacks on relations from those on supports
or conclusions. Therefore, throughout the rest of this thesis, I will adhere to Pollock’s
definition in terms of the concept of undercuts.
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2.1.3 Argumentation schemes

In addition to proposing structural models of argumentation, another approach to analysing
arguments is through the use of argumentation schemes.

Walton et al. (2008) propose a set of argumentation schemes which are particularly
frequent in informal arguments, such as “argument from sign”, “argument from example”,
and “argument from consequences”. Each argumentation scheme in Walton et al.’s frame-
work is represented as an abstract description of the general inference process involved
in that type of argumentation. For instance, “argument from consequences” is a form of
reasoning where the truth of a proposition is argued based on the perceived consequences
that would result from its acceptance or rejection (e.g. “If we do not water this plant, it
will die. Therefore, we should water the plant.”). The inference process for this scheme is
described as follows:

If A is brought about, then good (bad) consequences will (may plausibly) occur.

Therefore, A should (not) be brought about.

In this framework, an argumentation scheme is always accompanied by a set of critical
questions, which serve as a tool to evaluate the strength and soundness of an argument.
Critical questions aim to test the validity and coherence of an argument and identify any
weaknesses or gaps in the reasoning (Hastings, 1962). For example, critical questions for
“argument from consequences” are (Walton et al., 2008):

1. How strong is the likelihood that these cited consequences will (may, must, etc.)
occur?

2. If A is brought about, will (or might) these consequences occur, and what evidence
supports this claim?

3. Are there other consequences of the opposite value that should be taken into account?

There are typically two types of critical questions in this framework: presumptive
and conclusive. Presumptive critical questions are used to evaluate the plausibility of
the premises of an argument, while conclusive critical questions are used to evaluate the
validity of the inference from the premises to the conclusion. By asking critical questions,
interlocutors in an argument can challenge the arguments put forward by the other party
and encourage them to provide further evidence or reasoning to support their claims.

In what follows, I will introduce some of the argumentation schemes by Walton et al.
(2008) that are closely related to the design of the annotation scheme proposed in this
thesis.
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2.1.3.1 Argument from position to know

The argumentation scheme “argument from position to know” involves using a person’s
position or expertise to support a claim or conclusion they put forward. In this type of
argumentation, the opinion or assertion made by the interlocutor with presumed access to
information is given greater weight and is considered more credible than if it were made
by someone without such access. This is because the interlocutor’s presumed privileged
access to information is seen as providing additional support for the claim being made.
For example, a company’s CFO may be more trusted to provide accurate information
about the company’s financial performance than an external financial analyst, as the CFO
has privileged access to internal financial data. The inference process for this scheme and
its accompanying critical questions are listed in Table 2.1.

“Argument from position to know” is a type of argumentation scheme that is frequently
used in everyday argumentation. While it can be effective in shifting the responsibility
between interlocutors to prove a claim, it is also subject to weaknesses such as the
credibility of the source, the potential for misquotation or misinterpretation, and the
lack of transparency in identifying sources, making it vulnerable to potential biases and
inaccuracies. Careful evaluation of the source and the exact wording of the assertion is
crucial in assessing the value and reliability of this type of argumentation.

2.1.3.2 Argument from expert opinion

As a special type of “argument from position to know”, “argument from expert opinion”
relies on the presumed knowledge or expertise of an individual in a particular domain
to support a claim or conclusion they put forward. In this type of argumentation, the
opinion or assertion made by an expert is given greater weight and is considered more
credible than if it were made by someone without the same level of expertise. For example,
a doctor’s opinion on a medical issue may carry more weight than that of a non-expert.
The inference process for this scheme and its accompanying critical questions are listed in
Table 2.2.

Argument from position to know

Inference process
a is in a position to know whether A is true.
a asserts that A is true.
Therefore, A is true.

Critical questions
Is a in a position to know whether A is true?
Is a an honest (trustworthy, reliable) source?
Did a assert that A is true?

Table 2.1: The inference process for “argument from position to know”, and its accompa-
nying critical questions (Walton et al., 2008).
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Argument from expert opinion

Inference process

E is an expert in domain D.
E asserts that A is known to be true.
A is within D.
Therefore, A may (plausibly) be taken to be true.

Critical questions

Is E a genuine expert in D?
Did E really assert A?
Is A relevant to domain D?
Is A consistent with what other experts in D say?
Is A consistent with known evidence in D?

Table 2.2: The inference process for “argument from expert opinion”, and its accompanying
critical questions (Walton et al., 2008).

“Argument from expert opinion” is a powerful type of argumentation that can be
particularly useful in discussions on specialised topics where expert knowledge is needed.
Besides the problems in argument from position to know, this argumentation scheme also
suffers from the potential for conflicting opinions among experts, and the inappropriate
use of expert opinions in an unrelated domain. Therefore, it is important to evaluate the
credibility of the expert, and whether the assertion is relevant to the domain at hand.

2.1.3.3 Argument from example

The argumentation scheme “argument from example” involves using one or more examples
to support a generalisation or claim. The examples are usually presented as specific
instances of the generalisation or claim, and are meant to illustrate the claim or provide
evidence in favour of it. For instance, in order to support the opinion that dropping out
of college is not detrimental to success, it is common to use examples of college dropout
founders of successful companies such as Apple and Microsoft. The inference process for
this scheme and its accompanying critical questions are listed in Table 2.3.

“Argument from example” is a common form of argumentation used in everyday
discourse, and is often used to support claims in fields such as science, law, and politics.
However, the strength of the argument depends on the quality and representativeness of
the examples provided, the nature of the generalisation being supported, whether there
are any counter-examples to the generalisation, and whether the number of examples is
sufficient to support the generalisation. A single example may be sufficient to support
a plausible or defeasible generalisation, but would be insufficient to support a strict or
universal generalisation.
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Argument from example

Inference process

In this particular case, the individual a has property F and also property G.
a is typical of things that have F and may or may not also have G.
Therefore, generally, if x has property F , then x also has property G.

Critical questions

Is the proposition presented by the example in fact true?
Does the example support the general claim it is supposed to be an instance of?
Is the example typical of the kinds of cases that the generalisation ranges over?
How strong is the generalisation?
Were there special circumstances present in the example that would impair its
generalisability?

Table 2.3: The inference process for “argument from example”, and its accompanying
critical questions (Walton et al., 2008).

2.1.3.4 Argument from analogy

“Argument from analogy” is another common type of argumentation scheme, in which an
argument is made by drawing a comparison between two cases that are said to be similar
in a certain respect. For instance, when a baseball coach is teaching a golfer, they may
instruct the golfer to swing a bat with a similar technique to a golf swing. The inference
process for this scheme and its accompanying critical questions are listed in Table 2.4.

“Argument from analogy” can be a powerful way to make an argument when the
target subject is hard to explain or unfamiliar to the audience, but it can be flawed if the
differences between the two cases are overlooked. Critical evaluation of the similarities
and differences between the two cases and the exact nature of the analogy being made is
crucial in assessing the strength of this type of argumentation.

Argument from analogy

Inference process
Generally, case C1 is similar to case C2.
A is true in case C1.
Therefore, A is true in case C2.

Critical questions

Are C1 and C2 similar, in the respect cited?
Is A true in C1?
Are there differences between C1 and C2 that would tend to undermine the force of
the similarity cited?
Is there some other case C3 that is also similar to C1, but in which A is false?

Table 2.4: The inference process for “argument from analogy”, and its accompanying
critical questions (Walton et al., 2008).
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2.1.4 Argument interchange format

Both argumentation models and schemes provide theoretical frameworks for analysing
arguments. However, the heterogeneity among various argumentation models and schemes
makes it challenging to establish a standardized or universally applicable method for
argument analysis. In order to address the challenges posed by such heterogeneity, Ches-
nevar et al. develop the argument interchange format (AIF). AIF uses an abstract model
with multiple possible “reifications” (i.e. concrete realisations), providing a standardised
framework for representing arguments among various argumentation tools and applications.

The AIF ontology consists of three main aspects:

• Arguments and argument networks. This involves defining the core ontology for
argument components and their relationships, essential for AIF reification. It assumes
that argument components and their relations can be represented as nodes in a
directed graph, forming an argument network (AN).

• Communication. This group focuses on elements related to the interchange of
arguments, including locutions (i.e. individual words or expressions) and interaction
protocols.

• Context. This includes elements associated with the environments in which argu-
mentation takes place, such as participants in argument exchanges and theories used
for argumentation.

In terms of monological arguments, the notion of AN in the AIF is especially useful, as
ANs are capable of representing monological arguments annotated with a wide range of
existing annotation schemes. An AN is a directed graph consisting of nodes and edges,
as illustrated in Figure 2.4. There are two kinds of node in ANs, namely information
nodes (I-nodes) and scheme nodes (S-nodes). I-nodes represent textual content in an
argument, and S-nodes are applications of annotation schemes. S-nodes can be further
categorised into rule of inference application nodes (RA-nodes), conflict application nodes
(CA-nodes), and preference application nodes (PA-nodes). RA-nodes are close to the
"support relations" we have seen in most argumentation models, and CA-nodes are similar
to the "attacking relations". Edges in ANs usually are not explicitly labelled or supplied
with semantic pointers, because their types can be easily inferred from the types of nodes
they connect.

With those abstract node types, besides usual argument structures including single,
linked, convergent, serial and divergent argument, ANs can also represent undercuts as
distinct from rebuts. For instance, in Figure 2.4, I-node 12 undercuts the relation from
I-node3 to I-node1.
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Figure 2.4: An example argument network. Reproduced from Chesnevar et al. (2006).

The AIF has been used as a basis of many annotation schemes, such as those in the
studies by Peldszus and Stede (2015a), Lawrence and Reed (2017), Visser et al. (2020),
Hautli-Janisz et al. (2022). It is also the basis of the annotation scheme that I will propose
in this thesis.

2.2 Argument mining

Based on the frameworks of argumentation models and schemes, argument mining aims
to analyse arguments automatically (Peldszus and Stede, 2013, Green et al., 2014). It
typically includes three subtasks (Persing and Ng, 2016, Eger et al., 2017, Habernal and
Gurevych, 2017, Stab and Gurevych, 2017, Lawrence and Reed, 2020):

1. Segmentation: Cutting a raw sequence into minimal units of analysis that are
either argumentative or non-argumentative (only argumentative segments are called
argument components). Argument components usually cover clauses or proposition-
like units of text.

2. Component classification: Labelling each argument component with a tag in a
pre-defined annotation scheme (e.g. Premise or Claim).
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3. Relation identification: Deciding if each argument component directly relates to
other components or relations (for undercuts), and categorising a detected relation
into a class in a pre-defined annotation scheme (e.g. Attack or Support).

The first two subtasks are often referred to together as component identification.

2.2.1 Component identification

Component identification involves identifying the boundaries of argumentative segments in
a text (i.e. segmentation) and classifying them into different types of argument components
(i.e. component classification). The goal is to separate argumentative segments from
non-argumentative ones, and to identify different types of argument components.

Segments that are argumentative are referred to as argument components (or just
components) throughout this thesis. In other works on argument mining, they are also
referred to as argumentative discourse units (ADUs) (Peldszus and Stede, 2013, Al Khatib
et al., 2016b, Wachsmuth et al., 2018). Boundaries of argument components are not always
sentence boundaries. Instead, they can be at any point in a sentence. As a result, an
argument component can be either a subpart of a sentence, a complete sentence, or a text
span covering several consecutive sentences or even paragraphs. The choice of component
boundaries usually depends on the objectives of the research and the nature of the target
text.

Pre-defined categories of argument components are often based on their functional roles
in the argument (e.g. Premise and Claim) (Stab and Gurevych, 2017), their dialogical
or pragmatic roles (e.g. Proponent, Opponent, and Callout) (Ghosh et al., 2014,
Peldszus and Stede, 2015a), and the nature of their content (e.g. Policy, Value and
Fact) (Wagemans, 2016).

Consider the following text which we have already encountered in Figure 1.2:

Example 2.9
I think [it’s not necessary for universities to provide laptops for all students]1.
[Not every student needs a laptop]2, as [they can simply use the computers
in the library for studying]3. Also, [the “provided” laptops aren’t really free —
they are likely covered by the tuition fees paid by students themselves]4. Some
may argue that [universities are wealthy enough to pay using their own funds]5,
but I doubt it since [they can hardly offer a fair salary to their teachers]6. And
even if it’s true, [these money should be used on something more important
first]7.

Here, segments in brackets are identified as argument components; the remaining text
spans are considered non-argumentative. The labels of argument components depend on
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the specific annotation scheme used. For example, possible labels of the first component
in the example text can be Premise, Proponent, or Policy.

2.2.2 Relation identification

Relation identification involves determining if a relation exists between two argument
components or between a component and another relation and, if so, also determining the
type of this relation.

Generally, in relation identification, two argument components are considered directly
related if there is an inferential connection between them, which can either be supportive
or opposing. The most commonly used types of argument relations are Support and
Attack (Mochales and Moens, 2011, Stab and Gurevych, 2017). These two categories are
based on the intuitive understanding that one argument component can either support or
challenge another argument component. Relation types can be also defined based on other
frameworks. For example, following the Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988), an argument relation can be classified as Antithesis, Concession, or
Evidence (Green, 2010).

By Pollock’s definition given in Section 2.1.2.4, an undercut attacks the inferential
connection between two components. This leads to a special kind of relation, which is
always an opposing relation between a component and another relation.

In Example 2.9, component 2 and component 1 are considered to be directly related, and
the relation between them could can be categorised as Support or Evidence, depending
on the specific annotation scheme used. Similarly, the relation between component 5 and
component 4 can be categorised as Attack, and component 7 is an undercut for that
relation. The structure of the argument in Example 2.9 are illustrated in Figure 1.2.

2.3 Chapter summary

I began this chapter by examining the definitions of argumentation and argument, including
logos-centred and audience-centred definitions. Logos-centred definitions emphasise the
logical structure and content of arguments, while audience-centred definitions emphasise
the importance of adapting arguments to the audience’s values, beliefs, and emotions.

Such different emphases corresponded to two crucial categories of argument analysis
frameworks: argumentation models and argumentation schemes. The focus of argumenta-
tion models is on the structure of arguments, while argumentation schemes concern the
reasoning strategies employed in arguments.

Besides introducing important argumentation models and argumentation schemes, I
also discussed counterarguments as a means to challenge the soundness or validity of an
argument, as well as the concept of undercuts as a specific type of counterargument.
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Furthermore, I introduced argument mining as a task that aims to automatically extract
and analyse arguments from natural language texts. I described two critical subtasks
within argument mining: component identification and relation identification. Component
identification involves segmentation of raw text and classification of argument components.
Relation identification determines if a relation exists between two components or between
a component and another relation, as well as the type of that possible relation.

Having described the prior theoretical research pertinent to my thesis, I will introduce
in the next chapter relevant practical work in the field of argument mining.
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Chapter 3

Related work

In this chapter, I begin by reviewing some existing annotation schemes and their resultant
datasets in Section 3.1, followed by some influential approaches to argument mining in
Section 3.2. I also introduce how existing approaches integrate external knowledge into
argument mining models in Section 3.3.

After introducing the theoretical background in Chapter 2 and related work in this
chapter, I then establish my vision for argument mining with informal arguments in online
discussions (Section 3.4.1), with a special interest in undercuts (Section 3.4.2). This vision
directly leads to the research objectives of this thesis in Section 3.4.3.

3.1 Annotation schemes and datasets

For successful argument mining model development, it is essential to have an annotation
scheme that accurately captures the characteristics of arguments in concern. Meanwhile,
it is also important for such a scheme to ensure satisfactory inter-annotator agreement.
Typically, annotation schemes are presented and evaluated in conjunction with their
resultant datasets. Therefore, in this section, I review various existing annotation schemes
alongside their resultant datasets, scrutinising their respective features and limitations.
Table 3.1 presents a list of recent argument mining datasets and their annotation schemes,
with a preference for those that include informal text.

Annotation schemes used to create these datasets vary a lot in terms of the information
extracted from the source text. For example, the annotation scheme used for the dataset
by Al Khatib et al. (2016b) only contains the fine-grained categories of premises in an
argument, while the one used for the QT30 dataset by Hautli-Janisz et al. (2022) describes
the hierarchical structure among all argument components and their relations to the
structure of dialogues. In this thesis, the desired output of argument mining models is
the complete structure of monological arguments, which should include both labelled
components and relations. Only some of the datasets listed in Table 3.1 contain such
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Dataset Source Scheme Domain Genre Size (token)

Walker et al.
(2012)

Debate posts on political
issues on 4forums.com

Stance and
relation on the
post level

Politics
Forum
post

1,031,398

Peldszus and
Stede

(2015a)

Manually created short
texts in a controlled
experiment

Proponent-
opponent
macro-structure

Politics,
moral,
daily life

Argumentative
short text

7,846

Rinott et al.
(2015)

Wikipedia articles
concerning controversial
topics randomly selected
on idebate.org

Typed
claim-premise
pairs

Mixed
Wikipedia
article

2,376,785

Abbott et al.
(2016)

Conversational posts on
forums and debate portals

Typed
quote-response
pairs

Mixed
Forum
post

~63.8M

Al Khatib
et al.

(2016b)
Editorials on news portals Typed premises Mixed Editorial 287,364

Habernal
and

Gurevych
(2017)

User comments, forum
posts, blogs and
newspaper articles online

Modified
Toulmin

Education

Online
user-
generated
text

84,673

Lawrence
and Reed
(2017)

Transcripts of the BBC
Radio 4 programme Moral
Maze

Claim-premise
pairs

Banking
Live
debate

5,768

Niculae et al.
(2017)

Online user comments
about rule proposals
regarding Consumer Debt
Collection Practices

Directed graph
with typed
claims and
premises

Finance
Forum
post

~88,000

Stab and
Gurevych
(2017)

Essays written with given
writing prompts on
essayforum.com

Majorclaim-
claim-premise

Mixed Essay 147,271

Visser et al.
(2020)

Transcripts of the 2016
US presidential debates,
and reaction posts on
Reddit

Inference
Anchoring
Theory

Politics
Live
debate,
forum post

97,099

Bhatti et al.
(2021)

Posts about Planned
Parenthood on Twitter

Typed premises Abortion
Social
network
post

24,100
tweets

Hautli-
Janisz et al.

(2022)

Transcripts of political
debates on BBC’s
“Question Time”

Inference
Anchoring
Theory

Politics
Live
debate

280,000

Mim et al.
(2022)

Initial argument and
counterargument pairs
written by experts

Template-based
directed graph
including
node-edge
relations

Education,
law

Parliamentary
debate

250 pairs

Table 3.1: Existing datasets for argument mining.

annotation, namely Peldszus and Stede (2015a), Habernal and Gurevych (2017), Stab and
Gurevych (2017), Mim et al. (2022), and Niculae et al. (2017). The first four are closely
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related to my research, and will be introduced in more detail in the following.

3.1.1 Persuasive Essays

The Persuasive Essays dataset introduced in Stab and Gurevych (2017) consists of 402
persuasive essays. These essays were randomly selected from an online forum where users
upload their papers and essays for feedback.

The annotation scheme used to create this dataset results in a connected tree structure,
illustrated in Figure 3.1. In this scheme, a MajorClaim represents the author’s viewpoint
on the topic. The text expressing this viewpoint is typically located in the introduction
and conclusion of an essay. Each body paragraph comprises one or more Claims. A
Claim has a stance attribute (for or against), indicating whether it supports or attacks
the MajorClaim. Each Claim is supported or attacked by one or more Premise

components, which in turn may be supported or attacked by additional Premises. The
label of a relation between a Premise and a Claim, or between two Premises, is either
Support or Attack.

Some notable characteristics of this dataset are as follows:

• Each essay may contain one or more MajorClaims. When multiple MajorClaims
are present, they must express equivalent meaning and are treated as equivalent
components. In such cases, the argument structure deviates from a tree structure.

• Claims without Premises are allowed.

Figure 3.1: An example argument structure of the Persuasive Essays dataset. Edges
represent argument relations: arrow-head = Support, circle-head = Attack. Dashed-
edges indicate component stance: arrow-head = For, circle-head = Against. Reproduced
from Stab and Gurevych (2017).
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• Relations including Premise→Claim and Premise→Premise must occur within
the same paragraph, while Claim→MajorClaim relations can reach across para-
graph boundaries.

The annotation task for creating the Persuasive Essays dataset consists of text segmen-
tation, component classification, and relation identification. The inter-annotator agreement
for this dataset was reported as Krippendorff’s unitised alpha (Krippendorff, 2004), which
is an agreement measure that can take into account segmentation and categorisation
simultaneously. For component identification, the scores are α = 0.81, α = 0.52, and
α = 0.82 for MajorClaim, Claim, and Premise, respectively. In terms of relation
identification, the scores for Support and Attack are α = 0.71 and α = 0.74, respectively.
The component categories most prone to confusion are Claim and Premise, which might
be due to one annotator systematically never splitting sentences containing a Claim and
a Premise.

While the simplicity of the annotation scheme of the Persuasive Essays dataset might
have contributed to the relatively high inter-annotator agreement, it simultaneously
constrains the depth of information that can be extracted from the source text. The
predefined component categories — MajorClaim, Claim, and Premise — only denote
the tier of components in the argument’s overall hierarchical structure. For instance, a
component placed at the top of a tree invariably falls under the MajorClaim category.
As a result, this scheme does not provide any information about the content of components
or the persuasion patterns involved. This drawback rules it out for the research in this
thesis.

3.1.2 Gold Standard Toulmin

The Gold Standard Toulmin dataset presented in Habernal and Gurevych (2017) includes
340 texts selected from user comments, forum and blog posts, and newswire articles. The
source text is considered informal due to its origin in user-generated web discourse. Texts
in this dataset were selected arbitrarily from six controversial topics in the domain of
education, such as homeschooling, redshirting, and single-sex education.

The prototype of the annotation scheme used for this dataset is Toulmin’s model. Com-
pared to the six component categories in Toulmin’s model, there are only five component
categories in the Gold Standard Toulmin scheme: claim, premise, backing, rebuttal,
and refutation. We can see that Habernal and Gurevych omitted warrant from their
scheme. This is because they observed that warrants were often expressed implicitly
in arguments. Also, it is usually difficult to distinguish warrants from other categories
in practice (Van Eemeren et al., 2019). During annotation, annotators were asked to
first segment the raw text and then to label each component as one of the five categories.
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Figure 3.2: An example annotation of the Gold Standard Toulmin dataset. Reproduced
from Habernal and Gurevych (2017).

The claim component is required to exist in every argument, and can be either explicit
or implicit. The other four components are optional and may or may not be present in
the argument. An example of the annotated text in this dataset is shown in Figure 3.2.
Although relations are not explicitly labelled, they can be inferred according to the nature
of each type of component: a premise always supports a claim; a rebuttal always
attacks a claim; and a refutation always attacks a rebuttal. A backing is not
directly related to any component, but instead supports the entire argument.

The reported inter-annotator agreement score of the Gold Standard Toulmin dataset is
α = 0.48 in Krippendorff’s unitised alpha. According to the authors, possible reasons for
this low agreement include the long average length (around 11.5 sentences per text) and the
low readability of texts, difficulties in deciding segment boundaries, the confusion between
some certain types of components, and the perplexity brought by rhetorical questions,
sarcasms, and fallacies which are frequent in online discussions.

Apart from those reasons, the overly complex annotation scheme could also be a factor
that leads to the low agreement. This scheme categorises argument components according
to their functional roles in an argument. However, those categories are not formally defined
in Toulmin’s model, as discussed in Section 2.1.2.2. Although the creators of the Gold
Standard Toulmin dataset have modified Toulmin’s model and reduced the number of
component categories to five, this scheme might still be too complex. The Gold Standard
Toulmin scheme is therefore also not a suitable scheme for the research in this thesis.

3.1.3 Microtext

The Microtext dataset introduced by Peldszus and Stede (2015a) consists of 112 German
texts, along with professional English translations that preserve linearisation and argu-
mentative structure. The source text was produced in a highly controlled text generation
experiment. Participants were instructed to write a short argumentative text for a given
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Figure 3.3: An example annotation in the Microtext dataset. Nodes represent argument
components: round = Proponent, square = Opponent. Edges represent argument
relations: arrow-head = Support, circle-head = Rebut, square-head = Undercut.
Reproduced from Peldszus and Stede (2015a).

question and were required to include certain elements in the text.
The Microtext annotation scheme is based on Freeman’s theory of the macro-structure

of argumentation (Freeman, 1991, 2011). The pre-defined categories for components
in this annotation scheme are Proponent and Opponent. Relations in this scheme
are Support, Rebut, and Undercut. Additionally, this annotation scheme allows
for combining multiple components in one move to form a linked argument, either for
supporting or attacking moves. Figure 3.3 shows an example of the annotated text in this
dataset. In this figure, component 3 undercuts the relation between component 2 and
component 1. Notably, to the best of my knowledge, the Microtext dataset is the first
and only one that contains explicitly annotated undercuts (N = 62), where undercuts are
distinguished from direct attacks.

There are two types of elementary structures in the Microtext annotation scheme:

• Component-component pair: This elementary structure includes two components,
where one component supports or attacks another, as well as the relation between
them.
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• Component-relation pair: This elementary structure includes a component and a
relation that it attacks1 (or rebuts, according to the Microtext nomenclature), and
the relationship between them. The relation between the source component and the
target relation in this elementary structure is labelled as Undercut.

The concept of undercutting in this scheme is similar to Pollock’s definition of under-
cutting defeaters in Definition 2.2, in that they both describe the undercutting move as an
attack on the inference process. However, in Pollock’s definition, an undercutting move
is shown through an undercutting defeater, which is a component, while in this scheme,
it is shown through an argument relation called undercut. Formalising undercuts as a
relation is a more straightforward and intuitive solution, because the undercutting move is
concerned with how a component relates to its target, rather than with the attribute of
this component itself.

In the Microtext dataset, sentence boundaries are used as segment boundaries. The
annotation task therefore only consists of component classification and relation identifica-
tion. The inter-annotator agreement was measured at κ = 0.83 in Fleiss’ kappa (Fleiss,
1971). This agreement is relatively high considering the fact that undercuts are included
in the annotation scheme. This result indicates that the explicit annotation of undercuts
might be feasible.

However, the source text of the Microtext is relatively too simple. On average, each
document only contains about five segments. Additionally, the highly controlled text
generation process leads to some degree of homogeneity among texts in the dataset.
The relatively small size of this dataset and the homogeneity among texts may also
lead to overfitting for some machine learning models. There is also a problem with the
categorisation of argument components in its annotation scheme. The two component
categories, namely Proponent and Opponent, are designed based on the hypothetical
dialectical exchange in arguments. As a result, the focus of such a design is the dialectical
role of each component. In contrast, what I want to explore instead is the persuasion
patterns contained in the components, such as “argument from example” and “argument
from analogy”. It would allow for a more nuanced understanding of the rhetorical strategies
employed in arguments, focusing on how different components contribute to the persuasive
power of a text. The Microtext scheme therefore also does not fulfil my requirements.

3.1.4 LPAttack

The LPAttack dataset by Mim et al. (2022) consists of 250 pairs of argument and coun-
terargument. The source text (Naito et al., 2022) was written to simulate parliamentary

1Similar to the Gold Standard Toulmin scheme, the Microtext scheme also does not include warrants,
in which a component supports a relation. No discussions on this decision are provided by Peldszus and
Stede (2015a).
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Figure 3.4: An example annotation of the LPAttack dataset. C = Conclusion, P =
Premise. Reproduced from Mim et al. (2022).

debates. For each topic, there are two rival teams: the “prime minister” (PM) and the
“leader of the opposition” (LO). The PM advocates for the topic, while the LO opposes it.
The PM’s speech serves as the initial argument (IA), with the LO’s speech responding as
the counterargument (CA).

The primary goal of the annotation scheme was to capture the underlying logic patterns
that characterise attacks in arguments. Each document in this dataset includes an IA
and a CA, each of which features only one Conclusion and one Premise, as shown
in Figure 3.4. The LPAttack annotation scheme redefines the smallest annotation unit
from traditional clause-sized argument components to concepts (e.g. “death penalty” and
“rehabilitation of the criminals” in Figure 3.4). Each of these concepts has pre-defined
attributes, mainly based on value judgments such as Good and Bad. These concepts are
then interconnected by relations based on rhetorical moves including Promote, Suppress,
and Nullify. Such concepts and relations together form the components in the dataset —
Conclusions and Premises. These same relations are employed to connect components
in the initial argument and the counterargument, thereby revealing the logic patterns of
attacks between them.

Although undercuts are not explicitly represented in this annotation scheme, they
can be inferred from the annotated logic patterns of attacks. For example, in Figure 3.4,
the CA agrees with the premise in the IA (i.e. “death penalty deprives the chance of
rehabilitation of the criminals”), but it disagrees with the conclusion that “death penalty
should be abolished” because “death penalty is more important than rehabilitation of the
criminals”. Such an attacking relation is in fact an undercut, in which neither the premise
nor the conclusion is directly attacked, but the reasoning process is challenged instead.
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The inter-annotator agreement for the LPAttack dataset was reported in Cohen’s
kappa (Cohen, 1960). When IA-pattern, CA-pattern and attack pattern are considered
a combined representation of a debate, the inter-annotator agreement score is κ = 0.49.
The score increases to κ = 0.63 when each type of pattern is considered separately. The
annotation task is structured as a template-choosing and slot-filling task. Typically, this
format simplifies the process and leads to higher agreement scores. However, the agreement
for this dataset is moderate at best. This could signal certain inherent complexities or
ambiguities within the annotation scheme: it includes nine relation types and four attribute
types, resulting in twenty unique nuanced logic patterns of attacks within the dataset.

Although the aim and the depth of the LPAttack annotation scheme are different from
what I envision for my research, the distribution of logic patterns within this dataset
provides an interesting empirical finding regarding undercuts in arguments. Approximately
40% of all logic patterns of attacks in the LPAttack dataset can be interpreted as undercuts.
This finding suggests that undercuts frequently serve as a device for attacks and that
human annotators are generally proficient at detecting them.

3.2 Argument mining approaches

In this section, I will present an overview of recent argument mining approaches, both
pipelined and end-to-end ones. These approaches are listed in Table 3.2. The last three
columns in the table indicate whether an approach performs the following subtasks: SEG =
segmentation, CC = component classification, and RI = relation identification. Approaches
listed above the double line are pipelined, and those below are end-to-end. I will discuss
the strengths and limitations of these approaches, which constructs the foundation of my
own research in this thesis.

3.2.1 Pipelined approaches

Pipelined approaches to argument mining break down argument mining into several sub-
tasks, typically including segmentation, component classification and relation identification.
These subtasks are processed sequentially, and the intermediate outputs are then combined
in some way so that the full argument structure is generated. This section also covers
approaches that focus only on some specific subtasks to provide a comprehensive review.

In recent pipelined approaches, segmentation is often jointly modelled with component
classification as a token-level sequence labelling problem, using the BIO scheme to encode
segment boundaries and component labels to encode component categories (Schulz et al.,
2018, Mayer et al., 2020). Recurrent neural networks (RNNs) (Medsker and Jain, 2001)
and long short-term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are
frequently used for these sequence labelling tasks.
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Approach Description
Task

SEG CC RI
Sardianos et al.

(2015)
Component classification using CRFs with linguistic features
and word embeddings

✗ ✓ ✗

Persing and Ng
(2016)

Segmentation using handcrafted rules, component
classification and relation identification using feature-based
maximum entropy, ILP for joint inference

✓ ✓ ✓

Hou and Jochim
(2017)

Sentence pair classification for relation identification using
feature-based logistic regression within a multi-task framework
using Markov logic networks

✗ ✗ ✓

Stab and Gurevych
(2017)

Component classification and relation identification using
feature-based SVMs, ILP for joint inference

✗ ✓ ✓

Schulz et al. (2018) Sequence labelling using LSTMs for component identification ✓ ✓ ✗

Gemechu and Reed
(2019)

Decomposing components into four new functional
components, classification these new components and
identifying the relations between them

✗ ✓ ✓

Reimers et al. (2019)
Component classification using RNNs with and without topic
information

✗ ✓ ✗

Chakrabarty et al.
(2020)

Component classification using BERT, relation identification
using BERT and XGBoost

✗ ✓ ✓

Mayer et al. (2020)
Sequence labelling using RNNs for component identification,
sentence pair classification and multiple choice using BERT for
relation identification

✓ ✓ ✓

Ruiz-Dolz et al.
(2021)

Sentence pair classification for relation identification using
various Transformer-based pre-trained models

✗ ✗ ✓

Peldszus and Stede
(2015b)

Generating argument graphs using feature-based evidence
graph with MST decoding

✗ ✓ ✓

Eger et al. (2017)
Dependency parsing and sequence labelling using various
neural networks

✓ ✓ ✓

Niculae et al. (2017)
Generating argument graphs using a factor graph model with
SVMs and LSTMs

✗ ✓ ✓

Morio et al. (2020) Dependency parsing using biaffine networks ✗ ✓ ✓

Bao et al. (2021) Dependency parsing using a neural transition-based model ✗ ✓ ✓

Galassi et al. (2021)
Joint component classification and relation identification using
multi-task attentive residual networks

✗ ✓ ✓

Table 3.2: Existing approaches to argument mining.

Component classification is sometimes formulated as a text classification problem which
is solved by feature-based machine learning algorithms (Sardianos et al., 2015, Persing
and Ng, 2016, Stab and Gurevych, 2017). Methods such as conditional random fields
(CRFs) (Lafferty et al., 2001), maximum entropy classification (Nigam et al., 1999), and
support vector machines (SVMs) (Hearst et al., 1998) are often used. Features used in
these approaches include n-grams, verbs, discourse indicators, and word embeddings. Some
other approaches employ feature-free neural networks (Reimers et al., 2019, Chakrabarty
et al., 2020, Mayer et al., 2020). These methods use RNNs and LSTMs, and pre-trained
Transformer-based models (Vaswani et al., 2017) like BERT (Devlin et al., 2019).
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Relation identification is often formulated as a sentence-pair classification problem.
The features of two components are fed into feature-based machine learning algorithms
(Persing and Ng, 2016, Hou and Jochim, 2017, Stab and Gurevych, 2017), or the two
components are concatenated into one piece of text so that text classification techniques
can apply (Chakrabarty et al., 2020, Mayer et al., 2020, Ruiz-Dolz et al., 2021). Pre-trained
Transformer-based models such as BERT, ALBERT (Lan et al., 2019), and RoBERTa
(Liu et al., 2019b) are often used because sentence-pair classification is a built-in ability of
these models.

During the combination of each subtask’s output, global optima can be achieved by
joint learning or multi-task learning, where the dependencies between subtasks are utilised.
Both Persing and Ng (2016) and Stab and Gurevych (2017) use integer linear programming
(ILP) (Schrijver, 1998) for a joint inference on component classification and relation
identification. Hou and Jochim (2017) use Markov logic networks to jointly model stance
detection and component classification in order to improve the performance on component
classification. These approaches allow for better information sharing between subtasks,
and have been shown to improve performance over traditional pipelined approaches.

There are some limitations to pipelined approaches. One is error propagation, which
can occur when the performance of one subtask is dependent on the quality of the output
from the previous one. For example, if the segmentation task is not accurate, then the
component classification task may classify the wrong component, which can then cause
the relation identification task to produce incorrect results. This may lead to a decrease
in the overall performance of the system.

Another limitation of such approaches is that they often require human experts to
carefully design and handcraft features for each subtask, which can be time-consuming
and requires extensive domain knowledge.

Despite these limitations, pipelined approaches to argument mining are still widely used
in the field, and they have their place. They are useful for investigating the relationship
between different subtasks and for identifying areas where performance can be improved.
Furthermore, pipelined approaches can be combined with end-to-end approaches to achieve
a better balance between accuracy and efficiency. Overall, the success of pipelined
approaches depends on the careful design of each subtask and the effective management of
error propagation.

3.2.2 End-to-end approaches

End-to-end approaches to argument mining allow for the prediction of the full argument
structure with a single model, and have been gaining popularity due to their advantages
over pipelined approaches, including avoiding error propagation and eliminating the need
for designing different models for different subtasks. However, such approaches also pose
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a challenge due to the difference in granularity among the subtasks of argument mining:
segmentation is typically a token-level task, where each token is labelled separately;
component classification can be solved at either the token-level or segment-level, where
each segment is assigned a label; relation identification is typically a segment-level task,
where the relationship between two or more segments is identified. As a result, many
existing end-to-end approaches avoid the segmentation subtask by assuming that the input
text for their models is already segmented (Peldszus and Stede, 2015b, Niculae et al., 2017,
Morio et al., 2020, Bao et al., 2021, Galassi et al., 2021).

If the segmentation subtask is ignored, one way to approach end-to-end argument
mining is to use a multi-task framework with neural networks. For instance, Galassi
et al. (2021) utilise a shared dense layer and a shared LSTM layer to encode a pair
of segments, along with an attention mechanism (Vaswani et al., 2017) and a residual
connection (He et al., 2016), and jointly predict segment types and relation types using
three dense classifiers at the bottom of the neural model. However, this approach predicts
each segment pair independently. Each time the classifiers only see the text in the segment
pair, without the access to other text in the argument. It is therefore less likely to reach a
global optimum.

Some end-to-end approaches directly predict the full argument structure so that global
information is always available. As the full argument structure is often represented as
a tree or a graph, some end-to-end approaches choose graph models to learn argument
structures. For example, Peldszus and Stede (2015b) propose using evidence graphs (Wang
and Daniels, 2005) to learn segment types and relations between segments. Each node
in the evidence graph represents a segment in the text, and the score of each edge is a
combination of various probabilities in terms of relations predicted by feature-based linear
log-loss models. From each evidence graph, a minimum spanning tree (MST) (Graham
and Hell, 1985) can then be generated by the Chu-Liu-Edmonds algorithm (Chu and Liu,
1965, Edmonds, 1967). Similarly, Niculae et al. (2017) adopt factor graphs (Kschischang
et al., 2001) to learn full argument structures. A factor graph decompose a full structure
into smaller units and dependencies between them, which are called “factors” of the graph.
Niculae et al. use SVMs and LSTMs to parameterise factors of the graph. For inference,
they use the alternating directions dual decomposition algorithm (Martins et al., 2015).
These two approaches ignore the segmentation subtask, assuming that input text is already
segmented.

The tree or graph structure of arguments also enables some end-to-end approaches
to formulate argument mining as a dependency parsing problem. For example, Morio
et al. (2020) use bidirectional LSTMs (BiLSTMs) (He et al., 2016) to encode argument
components, and a biaffine dependency parser (Dozat and Manning, 2018) to classify
components and their relations. Bao et al. (2021) propose a neural transition-based model
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to predict the dependency structure of arguments. They use BERT to encode components,
LSTM to encode parser states, and a dense classifier to predict transition actions. These
two approaches also assume that the input text is already segmented.

In contrast, Eger et al. (2017) address the segmentation subtask in their proposed
approach based on dependency parsing. They develop a dependency representation
for arguments, which is designed to convert segment-level dependencies to token-level
dependencies for relations. In Section 5.1, this dependency representation will be explained
further and will be compared with my own dependency representations. Eger et al. explore
several feature-based parsers (McDonald et al., 2005, Bohnet and Nivre, 2012) and neural
parsers (Dyer et al., 2015, Kiperwasser and Goldberg, 2016), but neither type of parsers
achieves satisfactory performance. In addition to dependency parsing, Eger et al. (2017)
also investigate other end-to-end neural argument mining approaches, including sequence
labelling (Ma and Hovy, 2016), multi-task tagging (Søgaard and Goldberg, 2016), and
relation extraction (Miwa and Bansal, 2016). Among all the approaches tested, relation
extraction performs best.

Eger et al. (2017) experiment with two input variations: the document-level approach,
which means the parsers process one entire document at a time; and the paragraph-level
approach, which means the parsers process one paragraph of a document at a time. The
paragraph-level approach requires a post-processing step where the paragraph-level outputs
are merged to form the final argument tree. In their experiments, the paragraph-level
approach always outperforms the document-level approach.

Formulating argument mining as dependency parsing is intuitively a promising approach
because argument structures and dependency parsing structures are similar in some ways.
However, Eger et al. (2017) tested one such approach and then discarded it due to its
unsatisfactory performance. In this thesis, I also frame argument mining as dependency
parsing, and address the segmentation subtask as well. By developing a more efficient
dependency representation for arguments and a more powerful dependency parser, I
demonstrate that dependency parsing is indeed a promising approach for argument mining,
a fact that was overlooked in the past.

3.3 External knowledge integration into argument

mining

External knowledge integration is a crucial component in many NLP tasks, including
argument mining. External knowledge can refer to various information sources beyond
the available training data, such as domain-specific ontologies, curated knowledge graphs,
or general world knowledge. By incorporating external knowledge into argument mining
models, additional information that may not be explicitly stated in the text can be

53



accessed, thereby potentially enhancing the accuracy and robustness of the models. In this
section, I present an overview of two types of external knowledge integration techniques
in argument mining systems: feature-based knowledge integration and transfer-based
knowledge integration.

3.3.1 Feature-based knowledge integration

Feature-based knowledge integration is a technique where external knowledge is incorpo-
rated into argument mining models as additional features. These features can capture
domain-specific information or background knowledge that may not be directly present in
the text.

One type of feature-based knowledge integration is the use of pre-trained word em-
beddings (Ando et al., 2005, Mikolov et al., 2013, Peters et al., 2017). These embeddings
represent general linguistic characteristics learned from unsupervised natural language
text. They have become an essential component of contemporary NLP systems, providing
enhancements over embeddings trained from scratch (Turian et al., 2010, Peters et al.,
2018). Many neural-based argument mining models (Eger et al., 2017, Schulz et al., 2018,
Reimers et al., 2019, Morio et al., 2020, Galassi et al., 2021) incorporate pre-trained word
embeddings as an integrated component without specifically recognising them as external
knowledge. However, Fromm et al. (2019) use pre-trained word embeddings as a feature
that incorporates external knowledge, and explicitly acknowledge the improvement brought
by the embeddings.

In addition to pre-trained word embeddings, another approach for using knowledge
from unsupervised natural language text as features is the clusters-as-features method, as
named by Søgaard (2013). This method is adapted by Habernal and Gurevych (2015) in
their work on component classification, which involves collecting unlabelled sentences and
posts from online debate portals, clustering them using word embeddings, and then using
the distance between a target segment and all cluster centroids as real-valued features in
the classification algorithm.

Specific linguistic features, either crafted by humans or extracted by NLP tools, can
also be used as external knowledge and integrated into argument mining models. These
features can include syntactic information and sentiment information, among others. For
example, syntactic information such as syntactic parse trees and part-of-speech tags are
frequently used in feature-based argument mining approaches (Persing and Ng, 2016,
Niculae et al., 2017, Stab and Gurevych, 2017), and are sometimes used in neural-based
approaches (Eger et al., 2017). Sentiment information, such as sentiment word count
and emotion expression count, is used by Park (2016) as external knowledge to improve
component classification. These features can be directly fed into feature-based algorithms
or encoded as vectors for neural models.
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Curated knowledge graphs are another type of external knowledge source. They are
believed to be more reliable than databases that are purely automatically generated, as
they often undergo review and validation by humans, or contain knowledge from expert-
created databases or human input (Nickel et al., 2015). Nodes in a knowledge graph
typically represent entities, concepts, and events, while edges represent relationships and
attributes. DBpedia (Auer et al., 2007) and Wikidata (Vrandečić and Krötzsch, 2014)
are two influential curated knowledge graphs, both containing structured information
extracted from Wikipedia. ConceptNet (Liu and Singh, 2004, Speer et al., 2012, 2017) is
also often used in NLP research, whose sources include the Open Mind Common Sense
project (Singh et al., 2002), Open Multilingual WordNet (Bond and Foster, 2013), and
DBpedia. Researchers have explored various ways to incorporate curated knowledge graphs
into argument mining models. For instance, Fromm et al. (2019) integrate the knowledge
in DBpedia into their component classification model by generating embeddings for entities
in the knowledge graph using TransE (Bordes et al., 2013), which are then used in the
same way as word embeddings in the neural classification model. Meanwhile, Abels et al.
(2021) use a more complex method to incorporate knowledge graphs into their component
classification model. They first select subgraphs containing relevant entities in the sentence
from Wikidata using latent Dirichlet allocation (Blei et al., 2003). They then prune the
subgraphs based on the cosine similarity between word embeddings of each entity and
the sentence vector using a dynamic breadth-first search algorithm. Finally, they encode
the pruned subgraphs into a single vector using a BiLSTM layer, which generates a final
sentence representation through an attention mechanism (Hermann et al., 2015).

Feature-based knowledge integration has several advantages, including the ability to
integrate diverse external knowledge sources and flexibility in adapting to various model
structures. However, a drawback is the increase in computational complexity when a large
number of features are added, leading to longer training time and potential overfitting due
to the noise in the input features.

3.3.2 Transfer-based knowledge integration

Transfer-based knowledge integration involves transferring knowledge from other source
domains, tasks, and languages to improve the performance of the target task (Ruder,
2019). In recent years, transfer learning has been closely linked to neural networks, and as
a result, most transfer-based knowledge integration techniques in argument mining are
employed in the context of neural-based approaches.

Knowledge transfer across domains and languages are similar. They both pre-train
models on data from other sources other than the target data. The pre-trained models are
either used to directly predict on the target domain or language, or are first fine-tuned with
the training data in the target domain or language. In the case of domain adaptation for
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argument mining, Al Khatib et al. (2016a) first map unlabelled source data from an online
debate portal to a set of pre-defined class labels, and then directly use a feature-based
classifier trained on the mapped source data to predict component classes on the target
data. For cross-lingual knowledge transfer, Rocha et al. (2018) train several neural models
for the relation identification subtask on an English dataset and then fine-tune these models
on a Portuguese dataset. Ajjour et al. (2017) evaluate knowledge transfer across domains
on the segmentation subtask using datasets from three different domains, including essays,
editorials, and web discourse, by training sequence labelling models on two of the three
datasets and testing on the remaining one.

Knowledge transfer across tasks involves pre-training a model on a related source task
and then using it for the target task. Usually, the source task and the target task should
be based on the same text. For example, in the work on argument mining by Accuosto and
Saggion (2019), a BiLSTM sequence labelling model is first trained on the SciDTB dataset
(Yang and Li, 2018) for a discourse parsing task. Then, the encoder in the trained BiLSTM
model is used to generate token representations for various combinations of argument
mining subtasks on the same dataset.

With the rise of powerful pre-trained Transformer-based language models such as
BERT and RoBERTa, a new hybrid method for transfer-based knowledge integration has
been employed in many studies in argument mining. As these models are pre-trained on
general natural language text with training tasks including masked language modelling
and next sentence prediction, fine-tuning them for argument mining can be seen as a
hybrid knowledge transfer technique across domains and tasks. Additionally, sequence
labelling and sentence-pair classification are built-in functions of such pre-trained models,
allowing for their direct use in all argument mining subtasks without the need to alter
model structures. For example, Fromm et al. (2019) adopt an off-the-shelf pre-trained
BERT model for component classification. Rodrigues and Branco (2022) pre-train a
RoBERTa model on a wide range of source data for masked language modelling and then
fine-tune it on the Persuasive Essays dataset for all argument mining subtasks. Dutta
et al. (2022) fine-tune a pre-trained Longformer (Beltagy et al., 2020) with unsupervised
data from an online discussion forum called ChangMyView on Reddit, using a modified
masked language modelling training objective, and use it for component classification. For
relation identification, they adapt a prompt-based strategy (Liu et al., 2023a) to predict
the conjunctions between two components in a prompt, and then classify the relation
according to the predicted conjunctions.

Transfer-based knowledge integration offers several advantages, such as being compu-
tationally efficient and requiring less labelled data for the target task. The new hybrid
transfer strategy, in particular, is free from issues related to the quality of source data
and task similarity. This is because pre-trained Transformer-based language models are
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trained on a massive amount of unsupervised natural language data. However, existing
approaches using this strategy can only perform argument mining in a pipelined manner,
as the built-in functions of such models do not support direct end-to-end argument mining.
Therefore, in this thesis, I will explore new methods for knowledge integration using
powerful pre-trained language models, with the goal of supporting end-to-end argument
mining with informal text.

3.4 Goal of this thesis

The discussion above concludes my examination of how prior research approaches arguments.
The main difference between previous studies and my research objectives lies in the informal
nature of online discussion texts, as contrasted with the more formal texts traditionally
addressed. This difference in text implies that I need to find a new approach on my part.
At the same time, it is essential to incorporate the successful ideas evident in the existing
state of the art.

3.4.1 Vision

Informal arguments in online discussions often involve a multitude of contributors. My
vision is to establish a form of argument mining that can effectively summarise multiple
arguments on the same topic, thereby highlighting their similarities and differences. What is
implemented in this thesis is only the analysis of individual arguments at a single-document
level. However, to effectively conceptualise what such an analysis should encompass, we
must also consider how arguments from several documents could be brought together. In
the following, I will sketch my envisioned objectives for an approach to multi-document
argument mining.

Consider Figure 3.5. It represents ten individual arguments on the same topic “private
schools vs. public schools”, manually annotated by myself2. The ten arguments are
represented in boxes of ten different colours (blue, red, green, etc.). Please note that the
text in the figure is very small, and it is not necessary for the reader to be able to read the
text. The purpose of the image is to convey the intuition behind how complex multi-party
arguments could be displayed and interpreted.

There are clusters of subtopics (represented by grey boxes) that span across different
coloured boxes, indicating shared subtopics among various arguments. For example, the
large grey box at the bottom right of Figure 3.5 addresses the comparison of teacher
quality in private and public schools (detail shown in Figure 3.6), whereas the large grey

2This graph was produced before the finalisation of the annotation scheme in Chapter 4, so the
annotation in this graph is not necessarily in line with the annotation scheme proposed in this thesis. For
illustration purposes, such detail should not matter.
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Figure 3.5: A graph summarising ten arguments on the topic “private schools vs. public
schools”. Coloured boxes represent argument components. Edges represent argument
relations: arrow-head = Support, circle-head = Attack.
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Figure 3.6: Detailed view of the grey box at the bottom right of Figure 3.5.

Figure 3.7: Detailed view of the grey box at the centre top of Figure 3.5.
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box at the centre top discusses opportunities and special classes available at each type
of school (detail shown in Figure 3.7). The size of these boxes could be interpreted as
the relative importance of each subtopic for a certain topic in online discussions. This
is because the more contributors and components engage with a specific subtopic, the
more relevant or prominent it is in its community. Such insights could be utilised for
real-time automated statistics, providing a dynamic overview of how an argument is being
deliberated in online discussions.

Inside each large grey box, components are strategically organised into four quadrants.
Each quadrant indicates the overall stance behind the opposing subjects (private schools
vs. public schools), each with a positive or a negative stance. This segmentation yields
four comprehensive quadrants in a left-to-right and top-to-bottom order: private school is
good, private school is bad, public school is good, public school is bad. By systematically
arranging components according to their inherent stance, we can formulate logically-
grouped summaries of arguments. This can be beneficial for individuals interested in
surveying diverse viewpoints on a specific topic. It can also be useful for those trying to
broaden their understanding by examining arguments from opposing sides. My hope is
that this might enable people to see beyond their own bubble.

If we were able to create such a structure automatically, we would be able to see much
more:

• We can zoom in and see similarities in subarguments. Interestingly, the same
facts are sometimes interpreted positively by one group and negatively by another.
Consider, for instance, the box at the centre bottom that discusses the subtopic of
school uniforms (detail shown in Figure 3.8). Both proponents and opponents of
private schools recognise that these institutions tend to have stricter dress codes.
Despite sharing the same premise, they arrive at very different conclusions. The blue
argument favouring private schools regards uniforms as beneficial, positing that a
uniform policy alleviates concerns about clothes-related competition. Conversely, the
green argument against private schools views the strict uniform rules as a restriction
of individual freedom.

• Note that this analysis explicitly express undercuts. One example, depicted in detail
in Figure 3.9, involves the premise that private schools assign a large amount of
homework, which seemingly attacks the conclusion “I would recommend private
school”. However, the author undercuts this connection with two reasons: one stating
the existence of study groups and the other asserting that the homework is relevant.
These two undercuts justify why a significant homework load is not necessarily bad
in this context.

• When analysing text in online arguments, I found that people often argue from
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Figure 3.8: Detailed view of the grey box at the centre bottom of Figure 3.5.

Figure 3.9: Detailed view of two example undercuts in Figure 3.5.

personal experience. This is often taken to be a weak argumentation strategy
because such experiences do not generalise. However, isolating such experiential
narratives from the more factual portions of an argument can be an effective means of
spotlighting personal experiences. The following examples can be found in Figure 3.5:

– “I hate common core”

– “I thought I just wasn’t smart. It wasn’t until I was 22 . . . that I learned I had
an above average IQ”
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Such experiences could also serve as the basis of experience-based statistics. This
analysis thus presents numerous opportunities for facilitating a more personalised
perspective within the broader context of an argument.

• In the source text (not shown in the figure), I also found declarations of authors’
personal backgrounds, such as the following:

– “As someone who went to private school from k-8 and switched to public for
high school . . . ”

– “I was a public school teacher who attended a parochial elementary and a private
secondary school, so I have divided loyalties”

– “I want to start off this answer by saying that I have never attended a public
school. I’ve been at the same private elementary school from pre-kindergarten
until this year, my eighth grade year of high school”

These examples illustrate that there are different roles, i.e. different stakeholders in
such arguments: parents, pupils and teachers. This information can possibly either
enhance or limit the strength of the argument, and can therefore be useful for others
to interpret their arguments.

In summary, I have sketched a structure made up out of multiple arguments. I consider
this structure as a potential basis for a new task of large-scale argument summarisation,
which I call “multi-document argument mining”. This task could go in many different
directions. In the rest of my thesis, I will consider how the underlying argument structure
(i.e. the annotation scheme for single arguments) should look like and how it can be
automatically extracted. The aim is to enable such summarisation tasks in the future. In
this thesis, I will present an annotation scheme for single arguments designed by myself,
and will present automatic methods of recognising the structures of single arguments. I
will leave the realisation of large-scale argument summarisation for future work.

3.4.2 Undercuts

Undercuts have not received the attention in the NLP literature they should have. As
we have seen earlier in this chapter, Peldszus and Stede (2015a) include undercuts in the
Microtext dataset, but they do not subcategorise them or provide any automatic method
to recognise them in their follow-up experiments. As we have also seen, Mim et al. (2022)
also present some ideas that touch upon the phenomenon of undercuts, although they do
not explicitly mention undercuts when doing so. But nobody has studied which kinds of
undercut strategies exist, nor is there large corpus data about them available.
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I included undercuts as a subcategory of relations in my annotation, because I think
they are not only frequent in online discussions, but also important for other reasons. For
instance, undercuts have been connected to the values involved in arguments (Mim et al.,
2022). Having access to an automatic, large-scale analysis of undercuts, as opposed to
direct attacks, could be interesting for several disciplines and applications:

• Psychologists and sociologists could learn more about people’s convictions related to
values.

• Linguists could computationally analyse the specific language patterns used in
undercuts.

• Researchers could test their hypotheses on social media using structures such as
these, populated with thousands of structured arguments.

I have manually examined all the undercuts in my data, and found that there are
different ways how a component can attack a relation in an undercut. I classified these
undercuts into three categories that I formulated. These categories are:

• Rejection: rejecting the relation by denying the relevance between the source
component and the target component. In Example 3.1, component 3 undercuts the
relation between component 2 and component 1. It directly rejects this relation by
saying that other people’s feelings are irrelevant to same-sex marriage.

Example 3.1
Question:
Do you support same-sex marriage?
Answer:
“[I literally cannot think of one coherent reason to not support
same sex marriage]1.
[. . . ]
[Some people are disgusted by same sex relationships]2.
[You feelings don’t matter here]3.
[. . . ]”

Figure 3.10: The structure of the argument in Example 3.1.
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• Low importance: questioning the importance of the relation, or providing more
important reasons. In Example 3.2, component 2 undercuts the relation between
component 1 and component 3. It does not completely deny the relation. Instead,
it weakens this relation by saying that bravery and distinction in battle are less
important than what people fight for.

Example 3.2
Question:
Do you think all Confederate monuments statues should be removed from
public areas in the South?
Answer:
“[. . . ]
The point here is that although [bravery and distinction in battle are
important]1, [WHAT people fight for is ultimately of far greater
importance]2.
[. . . ]
For this reason, [they do not deserve to be honored]3”.

Figure 3.11: The structure of the argument in Example 3.2.

• Alternative option: stating that the current solution is not the only option, or
providing alternative options. This kind of undercuts often appears in arguments
about policies. In Example 3.3, component 3 undercuts the relation between compo-
nent 2 and component 1. Component 3 attacks this relation by pointing out that a
firm and explicit dress code does not necessarily require uniforms — there are many
other clothing options that conform to this dress code.

Example 3.3
Question:
Is it necessary for children to wear school uniforms?
Answer:
“[. . . ]
Every, and I mean [every argument in favor of school uniforms
doesn’t hold water]1.
[. . . ]
[There’s absolutely nothing wrong with a firm, explicit dress code
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requiring coverage from shoulders to knees, banning see-through
fabrics, and limiting obscene slogans on shirts]2. [That doesn’t
require uniforms]3. ”

Figure 3.12: The structure of the argument in Example 3.3.

As readers may have noticed, all the relations being undercut in the examples above
are attacks. This is because in a monological argument, undercuts are usually used to
attack the possible opposing opinions that are raised by the author themselves. Such
“attacks on attacks” are meant to support the author’s own argument.

3.4.3 Research objectives

In this thesis, I propose to apply argument mining techniques to large-scale informal text
in online discussions. I will not only explore approaches to argument mining in general
but also address specific challenges that arise when dealing with arguments in online
discussions. My research objectives in this thesis are as follows:

1. Developing an annotation scheme for informal text in online discussions.
In this chapter, I have found that existing annotation schemes are either too simple or
too complex for argument mining with informal text in online discussions. Therefore,
I will now set out to create my own annotation scheme, in accordance to the envisaged
large-scale summarisation task I just introduced. This annotation scheme should
capture logical structures and persuasion patterns in informal arguments in online
discussions while still maintaining satisfactory inter-annotator agreement. Since I
consider undercuts a unique and important argument structure, the desired scheme
should include undercuts. The scheme is described in Section 4.1, applied on informal
text collected from an online question-answering platform (Sections 4.2, 4.3 and 4.4).
I also conduct an annotation study to evaluate the resultant dataset in Section 4.5.

2. Applying argument mining to informal arguments in an end-to-end ap-
proach. Considering the limitations of existing approaches to argument mining,
there is a need for effective end-to-end approaches that can generate argument
structures directly from raw text. To achieve this objective, in Chapter 5 I formulate
end-to-end argument mining as dependency parsing. I do this by designing two
dependency representations for arguments (Section 5.1) and two neural dependency
parsers (Section 5.2). My approach includes undercuts, something that no existing
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approach is able to model (neither in informal or formal texts). I evaluate my ap-
proach on formal arguments without undercuts (Section 5.3) and informal arguments
with undercuts (Section 5.4).

3. Improving argument mining with external knowledge integration. External
knowledge should help argument mining with informal text in online discussions, but
to the best of my knowledge the integration of external knowledge for model-agnostic
end-to-end argument mining has not been extensively studied. I propose feature-
based and transfer-based approaches that explore various knowledge sources and
integration techniques in Section 6.1, and evaluate and compare these approaches in
Section 6.2.

3.5 Chapter summary

In this chapter, I provided an overview of existing work on argument mining, laying the
foundation for subsequent chapters.

I introduced relevant existing annotation schemes and their resultant datasets. Existing
schemes are either too simple or too complicated to be directly used on informal arguments
that I studied in this thesis. The source text for those datasets are also not ideal for my
research interest in terms of genre or size. These factors became the reason for me to
designed my own annotation scheme and to create my own argument mining dataset.

I reviewed different approaches to argument mining, including pipelined and end-to-
end approaches. I also discussed their respective strengths and limitations. Pipelined
approaches support investigation into specific subtasks, but they often suffer from error
propagation and heavy feature-engineering. The amount of existing approaches that
are truly end-to-end is limited, because segmentation is a token-level subtask, while
the remaining subtasks are at the segment-level. The end-to-end approach based on
dependency parsing by Eger et al. (2017) is especially relevant to my work, although this
approach did not yield satisfactory results at that time.

Additionally, I reviewed existing methods for external knowledge integration into argu-
ment mining models. I grouped them into two categories: feature-based and transfer-based.
In feature-based knowledge integration, external knowledge is incorporated as additional
features. Advantages of feature-based knowledge integration include its inclusiveness for
diverse external knowledge sources and its flexibility towards various model structures. Its
potential limitations include longer training time and overfitting. Transfer-based knowledge
integration transfers knowledge from other source domains, tasks, and languages. Recent
work on knowledge transfer with pre-trained language models have been shown to be
effective, but most existing methods of this kind do not support end-to-end argument min-
ing. These observations motivated me to experiment with various methods for knowledge
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integration into end-to-end models.
Having reviewed how existing research approaches argument mining theoretically and

practically, I then presented my vision for graph-based representation of multiple arguments
in online discussions. Based on my observations and vision, I listed my research objectives
of this thesis, and each of the following chapters, except the last one, is dedicated to one
of them.
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Chapter 4

The annotation scheme and the
Quora dataset

In this chapter, I propose an annotation scheme that aims to capture major logical struc-
tures and persuasion patterns in informal online arguments. Particularly, this annotation
scheme includes undercuts.

I collected 400 arguments from Quora, the question-answering platform I talked about
in the introduction. I manually pre-segmented the Quora dataset, and then trained two
annotators to annotate this dataset using my annotation scheme. In chapters 5 and 6 this
data will be used for my automatic experiments. To the best of my knowledge, this is the
biggest argument mining dataset that contains annotation of undercuts.

I present the annotation scheme in Section 4.1, and describe the creation of the Quora
dataset in Sections 4.2, 4.3 and 4.4. To evaluate the quality of the annotation, I conduct
an annotation study and present it in Section 4.5.

4.1 The annotation scheme

My scheme includes four argument component categories and two argument relation types.
The design of this scheme mirrors some of the facets of the established argumentation
schemes and argumentation models I introduced in Chapter 2. It can be seen as an
extension to the AIF reviewed in Section 2.1.4.

My scheme is illustrated in Figure 4.1. The unit of annotation for components
in my scheme is a segment that can be part of a sentence, a sentence or a sequence of
sentences. Besides “supports” (e.g. component 2 supporting component 1) and “attacks” (e.g.
component 7 attacking component 3), my schemes also includes undercuts (e.g. component 4
undercutting the relation between component 5 and component 2). Component 9 is a
stand-alone component. It is a Stake, a component category I will explain in subsequent
sections.
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Figure 4.1: An example argument graph using my annotation scheme. Nodes in different
colours represent components of different categories. Edges represent relations: arrow-head
= Support, circle-head = Attack.

4.1.1 Component categories

The component categories in my annotation scheme are designed to reflect persuasion
patterns embedded in components. In contrast, the simple claim-premise component cate-
gorisation in most annotation schemes only reflects the structural function of components.
Each of the categories I define is related to one or more persuasion patterns in Walton
et al.’s argumentation schemes (Section 2.1.3). The four component categories in my
annotation scheme are:

• Proposition (PRP): Regular argumentative statements.

• Stake (STA): Declarations of the author’s personal circumstances.

• Anecdote (ANE): Descriptions of personal episodes the author experienced which
are connected to their stance in the argument.

• Analogy (ANA): Metaphorical explanations of the argument that can make the
argument more understandable and relatable.

If a text segment does not fit into any of the pre-defined categories, it is considered as
non-argumentative. I will now define the component categories.

4.1.1.1 Proposition

A Proposition is a statement expressing one’s beliefs and opinions (e.g. “I do support
same-sex marriage”), or a statement about factual evidence that supports or opposes those
beliefs and opinions (e.g. “Marriage is defined as the legally or formally recognised union
of two people”). Propositions are the most common components in most arguments,
whether formal or informal. They are similar to the general components in most annotation
schemes.
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4.1.1.2 Stake

In informal online arguments, authors sometimes provide personal background information
related to the topic at hand. They may do so to indicate that they are biased, which could
decrease the credibility of their answers. Or they want to signal their expertise on the
topic which comes from their personal experience; in that case, their credibility would be
increased (Example 4.1). Such components are categorised as Stakes.

Example 4.1
Question:
Is China a good place to live in?
Answer:
[I have been living in China for 12 years]STA. I’d say it’s a perfect place
to live in. For people who love big cities, you’ll find [. . . ]

This component category is closely related to some of Walton et al.’s argumentation
schemes, namely “argument from position to know” (Section 2.1.3.1) and “argument from
expert opinion” (Section 2.1.3.2). In my opinion, such components are not part of the
argumentation per se, because they cannot function as an independent component either
to support or attack another component or relation. However, they give information which
can be essential for the interpretation and evaluation of the entire argument. I therefore
treat these as meta-information and make them stand-alone components in argument
graphs.

4.1.1.3 Anecdote

An Anecdote is a short story about the author or individuals personally known to
them. Authors in online discussions sometimes use Anecdotes as evidence to support
their arguments, as shown in Example 4.2. This component category is closely related to
Walton’s argumentation scheme “argument from example” (Section 2.1.3.3).

Example 4.2
Question:
“Which group is better for the whole US? Republicans or Democrats?”
Answer:
Most Democrats are good, and the bad Republicans are recognisably awful.
[I’ve never had a Democrat look me in the eye and say “I think you
deserve to be waterboarded for having a boyfriend.” I have heard
that from a Republican before, an unpleasant elderly relative who
identified as a Republican because she agreed with their economic
policies]ANE.
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4.1.1.4 Analogy

Analogies are sometimes used in online discussions to imply that some conclusions that
apply to A also apply to B, because B is like A, where B is the subject of the argument
at hand (Example 4.3). Using analogies in an argument can help make complex concepts
or ideas more understandable to the audience, by comparing them to something more
familiar. This can increase the persuasiveness of the argument. The argument component
category Analogy is reserved for such cases. This component category is closely related
to Walton et al.’s argumentation scheme “argument from analogy” (Section 2.1.3.4).

Example 4.3
Question:
Do you support same-sex marriage? Why?
Answer:
I very much support equal marriage. [Sexual orientations are just like var-
ious flavours of ice-cream. You may prefer vanilla but you should not
prevent others choosing chocolate. Equal marriage is like that]ANA.

Anecdotes and Analogys are included in my annotation scheme because I observed
many of these in my initial study of the material in online discussions. The persuasion
patterns behind them are usually considered to be relatively weak (Walton et al., 2008),
so I think they are more likely to appear in informal arguments than in formal arguments.
Therefore, in future studies, they might be useful for distinguishing between formal and
informal arguments, and for evaluating the quality of arguments.

4.1.2 Relation types

Relations in my annotation scheme closely follow those in the Microtext annotation scheme
(Section 3.1.3). The two types of elementary structures I inferred from the Microtext

Figure 4.2: Examples of (a) component-component pairs and (b) component-relation pairs.
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annotation scheme, namely component-component pairs and component-relation pairs,
are kept in my scheme. If we ignore the edge labels, a component-component pair
(Figure 4.2a) is equivalent to the basic argument structure that Walton (1996) refers to as
a “single argument” (Section 2.1.2.1). A component-relation pair (Figure 4.2b) includes
a component-component pair and one extra undercutting component. This component
always attacks the relation in the component-component pair. Following Habernal and
Gurevych (2017) and Peldszus and Stede (2015a), I also omitted warrants from my scheme.

In my scheme, the label of a relation is either Support or Attack. Attacks can
be further categorised into direct Attacks and undercuts. This is the major difference
in terms of relations between my scheme and the Microtext scheme. In the Microtext
scheme, labels of relations include Support, Rebut and Undercut. The Microtext
scheme distinguishes between direct Attacks and undercuts through assigning them
different labels. My distinction between them does not rely on relation labels, but on the
elementary structure they occur in: Attacks always appear in component-component
pairs, and undercuts in component-relation pairs.

4.1.2.1 Intermediate structures and final argument graphs

The final structure of my scheme is built by repeatedly applying the elementary structures.
When doing so, there are some constraints:

• A source component can have only one target component or relation.

• A target component or relation can have multiple source components.

• Undercuts are limited to the first-order level and cannot be applied to other undercuts,
meaning that an undercut cannot itself be the target of another undercut.

When multiple elementary structures are combined, I call the result an “intermediate
structure”, which is a structure between the elementary structures and the final argument
graph. With the constraints above, two types of intermediate structures can result:

Figure 4.3: Examples of (a) serial and (b) convergent intermediate structures. Square-
headed edges can represent either Support or Attack relations.
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• Serial intermediate structure: in this intermediate structure, multiple components
are related one after another, as illustrated in Figure 4.3a.

• Convergent intermediate structure: in this intermediate structure, a target component
or relation is related to multiple source components, as illustrated in Figure 4.3b.

If we ignore the edge labels, the serial intermediate structure in my scheme is identical
to the “serial argument” in Walton’s argumentation model (Walton, 1996) that I have
reviewed in Section 2.1.2.1. The convergent intermediate structure is similar to Walton’s
“convergent argument”, except that the target in the convergent intermediate structure
can be either a component or a relation.

In Walton’s argumentation model, two other structures, namely “linked argument”
and “divergent argument”, are presented. However, they are not incorporated into my
annotation scheme. I excluded linked arguments in order to avoid confusions because
they closely resemble convergent intermediate structures. This resemblance is also noted
in Walton (1996). In my scheme, all linked arguments are transformed into convergent
intermediate structures. Divergent arguments are omitted because I fear that they might
complicate the annotation process. I have imposed a rule to avoid possible divergent
arguments: a source component can only target the component or relation that is most
directly related to it. With all this in place, a final graph consisting of multiple intermediate
structures can be constructed for an argument, such as the one in Figure 4.1.

4.2 Arguments on Quora

I use my annotation scheme described above to annotate arguments collected on Quora,
where controversial topics usually receive a significant amount of attention and engagement
from users.

Compared to user-generated content on other online discussion platforms such as
ChangeMyView, Kialo, idebate.org, and Twitter, arguments on Quora are more in line
with my research interest. On Quora, users can present detailed and well-reasoned points
of view in their answers to a question. As a result, each answer on Quora can be seen as
containing a stand-alone cogently structured complete argument, often supplemented with
explanations and supporting evidence. Platforms including ChangeMyView, Kialo and
idebate.org are specifically designed for interactive debates and discussions, with a focus
on the process of changing one’s mind through constructive conversations. Each post on
such platforms may only contain an incomplete argument, and intertextual referencing is
frequent among posts, making the analysis of such posts more difficult. Twitter, unlike
those previous platforms, is a more open and informal platform, where arguments can
take on a more combative tone. As a result, arguments there may not always be rational
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and often lack the depth and nuance seen on the other platforms. Additionally, due to
Twitter’s character limit, arguments in tweets tend to be very short, with structures that
may be too simplistic to warrant a detailed analysis. Therefore, I chose Quora over other
online discussion platforms for my research in this thesis.

4.3 Collection method

I used a systematic method to collect data from Quora, in order to reduce bias in the
distribution of topics. My aim was to collect 400 answers on Quora, evenly distributed
across 20 topics. For each topic, I first chose one question, and then selected 20 answers
to that question.

Ideally, the chosen questions should be controversial, have a diverse coverage, and be
representative of the concerns of many users in online discussions. However, Quora does
not provide a direct way to search for questions that meet these criteria. Therefore, in
order to select candidate questions that I would later apply to Quora, I first turned to
Kialo, which provides a comprehensive catalogue of argument topics, such as “Politics”,
“Society”, “Science”, and “Technology”, as shown in Figure 4.4. These topics represent
general domains of arguments on Kialo.

The data collection process consists of three steps, 1) topic and candidate question
selection on Kialo, 2) question selection on Quora, and 3) answer selection on Quora.

In the first step, I chose the first 20 topics in the topic catalogue on Kialo. Under

Figure 4.4: Topics on Kialo.
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Figure 4.5: Controversial questions under the topic “Politics” on Kialo.

each topic (e.g. Politics), there are many specific controversial questions that people argue
about (e.g. “Is Capital Punishment in the United States justified?”), as can be seen from
Figure 4.5. I selected the first five questions by popularity under each of the 20 selected
topic as candidate questions. This step resulted in 20 topics and 5×20 candidate questions.
These candidate questions taken from Kialo would be next used to search for relevant
questions on Quora.

In the second step, my aim was to select only one question on Quora for each of the 20
topics. This was achieved by searching on Quora using the Kialo questions from the first
step, using its full string as a query. Among the relevant Quora questions returned by this
search, I selected a suitable one. Suitability is defined as relevance to the Kialo question
and availability of a sufficient amount of answers (at least 50). If a suitable Quora question
was found, the remaining Kialo questions under this topic would no longer be processed. If
not, I would manually choose key words (e.g. “Capital Punishment”) from the current Kialo
question for another search. If I still was unable to find a suitable Quora question, I would
proceed to the next Kialo question. This step resulted in 20 selected Quora questions.
The complete list of topics and candidate questions on Kialo, and selected questions on
Quora can be found in Appendix A.

In the third step, I selected 20 answers to each selected Quora question in the second
step. To be considered a qualified answer, the following criteria need to apply:

• Relevance. A qualified answer must directly address the topic raised in the
corresponding question. Irrelevant answers, such as those that deviate from the
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question (Example 4.4), or deny the necessity of the question (Example 4.5), are
excluded.

Example 4.4
Question:
Do you support Trump banning TikTok from the USA?
Answer:
Most people here are not fond of TikTok it seems. It ain’t that bad if you
use the search feature. The stuff that I get at the homepage is mostly
cancer. The algorithm shows me what most people that use the app like,
instead of my own preferences. Basically the algorithm only works if you’re
a normie lol. You just gotta use the search feature to find the content that
you like.

Example 4.5
Question:
What is better, democracy or communism?
Answer:
No we can’t compare the both systems. It clearly meant for different
geographical, economical and social location.
[. . . ]
The solution for the best is considered as Mixture of Democracy and
Socialist like India.

• Argumentativeness. I will manually judge the argumentativeness of an answer. A
qualified answer must contain at least 30% material that is reasonably and objectively
argumentative, rather than declarations of opinion without any reasoning or overly
emotional statements.

• Length. The length of a qualified answer must be between 60 and 800 wordpieces
after being tokenised by the BERT WordPiece tokeniser (Wolf et al., 2020). Based on
my observation, answers shorter than 60 wordpieces often fail to express meaningful
or well-formed arguments. The upper limit of 800 wordpieces is chosen to prevent
answers from needing to be split into more than two parts when fed into a pre-trained
BERT encoder, as BERT can only process a maximum length of 512 wordpieces at
a time. In practice, only a few answers exceed this upper limit.

Using this data collection method, I selected 400 (20× 20) answers that cover various
topics such as politics, environment, education, equality, and so on. Since arguments
on Quora happen in a question-answering context, I have appended each answer to its

77



corresponding question, placing a paragraph break after the question. To refer to this
merged text consisting of the question and the answer, I will from now on use the term
“document” when talking about the Quora dataset. The 400 documents were then manually
annotated with my annotation scheme.

4.4 Annotation of the dataset

I first manually segmented the raw text in the Quora dataset, and then employed two
annotators to annotate the pre-segmented dataset using my annotation scheme.

4.4.1 Pre-segmentation

Pre-segmentation can make the annotation process more efficient, as it reduces the cognitive
load on the annotators, and can lead to higher consistency across annotations. However,
pre-segmentation could introduce bias, because the decisions made during pre-segmentation
may influence the way annotators perceive and label the data. In order to reduce bias, I
devised segmentation rules before pre-segmentation and tried to adhere to them during
pre-segmentation as well as I could. These rules are:

• Conciseness rule: A component should include all words that are relevant to the
main idea of the component. Removing such words would change the core meaning
of the component. In contrast, irrelevant tokens at either ends should be trimmed.
Punctuation marks are considered as irrelevant. In Example 4.6, several words at
the beginning of the sentence and the full stop at the end are considered irrelevant.

Example 4.6
“There is evidence of this from the fact that [children in wealthier areas
of the U.K. spend more hours on their work in the lockdown
than those in less well off parts]PRP ”.

• Splitting rule: A sentence containing multiple statements should be split into
multiple components only if one of the statements supports or attacks another
(Example 4.7), or if these statements are not involved in the same argument relation
(Example 4.8). In Example 4.7, the sentence is split because component 2 supports
component 1. In Example 4.8, component 1 and component 2 in the first sentence
are not involved in the same argument relation, because component 1 is supported
by component 3 but component 2 is not. As a result, the first sentence is split, even
though there is no supporting or attacking relation between the two components in
it.
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Example 4.7
“[We should not develop Artificial Intelligence]1PRP , because [losing
control of AI could be catastrophe for humans]2PRP ”.

Example 4.8
“[Develop Artificial Intelligence is too expensive]1PRP , and [losing
control of AI could be catastrophe for humans]2PRP . According to
some relevant studies, [a major company in America has invested 2
billion in the past 6 years]3PRP ”.

• Combination rule: If multiple neighbouring statements about the same subject are
used together to make a point, but neither of them on its own can serve an independent
role as a stand-alone component in the argument, those multiple statements should
be combined to form one argumentative component.

These pre-segmentation rules cannot cover all phenomena and do not always seem
reasonable. The pre-segmentation rules, as currently defined, encounter limitations in
capturing some linguistic phenomena and may not always align with our intuitive reasoning.
Consider the sentence “I do not think those developing countries, which are consuming a big
share of natural resources on the planet, should take less responsibility in reducing carbon
emission”. In this complex sentence, there exist two distinct components: an overarching
claim “I do not think those developing countries should take less responsibility in reducing
carbon emission” and a supporting premise “which are consuming a big share of natural
resources on the planet”. However, the first component is dislocated, being interrupted
by the second component. My pre-segmentation rules do not support the combination of
non-consecutive segments into a single component. Consequently, the example sentence
would be annotated as a single component. This decision is a compromise between
minimising annotation complexity and ensuring a reasonable level of representativeness in
the annotation.

4.4.2 Annotation guideline and annotation process

I wrote a 25-page guideline for prospective annotators of the Quora dataset. This guideline
contains a detailed introduction to the Quora dataset and my argumentation scheme, and
a step-by-step guide on how to annotate a document in the dataset.

The step-by-step annotation procedure is as follows:

1. Annotators first read through the document.

2. They then decide which of the segments in the document best qualify as the main
components (i.e. the components expressing the author’s overall stance). This is
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important because they first need to understand what the author is arguing for or
against.

3. Next, annotators label all segments they consider argumentative as either Proposi-

tion, Stake, Anecdote or Analogy (these are explained elsewhere in guidelines).
They leave all segments they consider non-argumentative unlabelled.

4. Starting from the first component to the last, for each component except Stake,
annotators decide whether it supports or attacks something — either an already
identified component or an already identified relation. This relationship between the
two entities is then marked and labelled as either Support or Attack. Sometimes
the target relation of a component might appear later in the text. Annotators are
therefore reminded that if they cannot find a target of a component at the moment,
they can move on to the next component. After finishing all components in this step,
they can go back to the remaining unlinked components and try to find their targets.
This process can be repeated until all Propositions, Analogys and Anecdotes
are now connected to the argument graph.

5. If annotators are considering a potential Analogy or Anecdote candidate segment
in step 4, but fail to find its target component or relation, this probably indicates
that the candidate is not sufficiently closely related to the argument. As a result,
they remove the current label of the candidate Analogy or Anecdote and leave
it unlabelled.

A sample document annotated following the steps above is shown in Figure 4.6. Square

Figure 4.6: An example of an annotated document in the annotation tool interface.

80



nodes represent segments: grey = unlabelled (non-argumentative), blue = Proposition,
olive = Stake. Oval nodes represent relations: green = Support, red = Attack. Note
that in this figure, stand-alone nodes are non-argumentative segments (shown as a grey
box) and a Stake component (shown as an olive box).

I then hired two annotators and trained them to annotate the Quora dataset. One
annotator is a researcher in NLP, and the other in linguistics. While the annotators are
not native English, they have lived in the UK for several years and are very familiar with
reading and writing scientific papers in English as part of their day-to-day work.

Before the training session, the annotators were asked to read through the annotation
guideline. The training session took place as a video conference with three participants
(myself and the annotators), where I explained my scheme and the annotation procedure
using 27 slides. I also demonstrated the annotation of a sample Quora document using a
web-based annotation tool. This training session lasted approximately 50 minutes and was
recorded for reproducibility. Immediately following the training, I asked each annotator
to annotate two identical sample documents from Quora. After reviewing their work, I
offered feedback on any errors, aiming to clarify potential misunderstandings regarding
the guideline.

Once these preliminary steps were completed, the annotators commenced the official
annotation of the Quora dataset, proceeding as follows:

1. Three documents from each of the 20 topics were randomly selected from the Quora
dataset. Both annotators annotated the 60 documents, which served as the basis for
my annotation study in Section 4.5.

2. The remaining 340 documents were randomly split into two equal subsets. Each
subset was assigned to one annotator for annotation. To compile the final collection
of 400 annotated documents, I randomly selected one of the doubly annotated
documents from the first step and combined it with the 340 documents from this
step.

3. Upon completing the first two steps, I initiated a quality control process for the final
dataset. In order to identify any violations of the annotation scheme, an automated
check was performed on each annotated document in the set. Documents with invalid
annotations were sent back to the respective annotator for corrections, with the
invalid parts explicitly stated. This process was reiterated until all annotations met
the validity criteria.

Overall, this annotation process took about 80 hours for each annotator.

81



4.4.3 Dataset statistics

The Quora dataset as distributed is randomly divided into three subsets: 280 documents
for training, 40 for development, and 80 for testing. Table 4.1 shows the statistics of the
Quora dataset. The dataset contains a total of 118,573 tokens, which is comparable in size
to the Persuasive Essays dataset (147,271 tokens), but much larger than the Microtext
dataset (7,846 tokens) and the Gold Standard Toulmin dataset (84,673 tokens). There are
over 7,800 segments in the dataset, and approximately 56% of them are argumentative.

Table 4.2 shows the distribution of components and relations. Looking at the distribu-
tion of components, the Quora dataset includes over 4,000 Propositions, which are the
core building blocks of arguments in the dataset. There are approximately 200 instances
of Analogy and 79 instances of Anecdotes in the dataset, which may provide useful
information on how analogies and anecdotes are used in argumentation on Quora. The
instances of Stake are relatively rare, with only 28 instances in the dataset. This small
number may cause some problems for quantitative analysis or machine learning algorithms.
Therefore, in my experiments on the Quora dataset in Sections 5.4 and 6.2, I will merge
all instances of Stake and Anecdote and re-label them as Stake+Anecdote. I made
this decision for two reasons. On the one hand, there are only three Stakes in the test
set, which may not have too much influence on the overall results of the experiments. But
if I report the results on the three Stakes, the variance caused by the extremely small
test sample may lead to imprecise results. I assume the influence on the overall results
is less detrimental compared to the uninterpretability of the results on Stakes. On the
other hand, I chose Anecdote as the category to merge Stake with because Stakes and
Anecdotes share some similarities, as they both provide information about the authors,
either about their personal background or personal experiences. However, when releasing
the Quora dataset, I have preserved these two original categories, Stake and Anecdote,
in the hope that future studies may find them useful.

In terms of relations, the Quora dataset includes 2,752 instances of Support and
1,190 instances of Attack. There are 326 undercuts in the dataset, which constitutes
approximately 27% of all Attacks. This result confirms the importance of undercuts in
Quora arguments.

All Per document

Token 118,573 296.4
Segment 7,883 19.7
Component 4,381 11.0
Sentence 6,398 16.0
Paragraph 2,826 7.1

Table 4.1: Statistics of the Quora dataset.
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All Per document

Component

Proposition 4,075 (51.7%) 10.2
Stake 28 (0.4%) 0.1
Anecdote 79 (1.0%) 0.2
Analogy 199 (2.5%) 0.5
Total 4,381 11.0
Non-argumentative 3,502 (44.4%) 8.8

Relation

Support 2,752 (69.8%) 6.9
Attack 1,190 (30.2%) 3.0

Normal attack 864 (72.6%) 2.2

Undercut 326 (27.4%) 0.8

Total 3,942 9.9

Table 4.2: Component and relation distribution of the Quora dataset.

I manually counted the number of undercuts in the Quora dataset under each category
from Section 3.4.2. Figure 4.7 shows this distribution. The most frequent type is “Low
importance”, which constitutes about 41% of all undercuts, followed by “Alternative option”
(36%), “Rejection”(15%), and others (8%) — those cannot be categorised into any of those
previously mentioned types. According to this result, we can see that even when using
undercuts rather than direct Attacks, authors on Quora prefer the less direct methods
over straight rejection, which is relatively rare at only 15% of all cases. Instead, when
undercutting a relation, they are more likely to point out the weaknesses of that relation,
or to provide alternative reasons or options.
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Figure 4.7: Distribution of undercuts in the Quora dataset.
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4.5 Annotation study

To evaluate the quality and consistency of the annotation in the Quora dataset, I conducted
an annotation study. The study involved the doubly annotated 60 documents previously
mentioned. I used the original version of the dataset with four categories, i.e. Stakes and
Anecdotes are distinguished.

4.5.1 Evaluation metrics for inter-annotator agreement

If an annotation scheme is reliable, we should be able to observe high inter-annotator
agreement. In the annotation study for the Quora dataset, I measure inter-annotator
agreement for components and relations separately, following most existing studies on
annotating argument mining datasets.

For components, frequently used measures include observed agreement, Cohen’s kappa
(Cohen, 1960), Fleiss’ kappa (Fleiss, 1971), and Krippendorff’s alpha (Krippendorff, 2018).
These measures have been used in many argument mining related annotation tasks, such
as in Peldszus and Stede (2015a), Habernal and Gurevych (2017), and Stab and Gurevych
(2017). I chose to report only two of them, namely observed agreement and Krippendorff’s
alpha. Conceptually, Cohen’s kappa, Fleiss’ kappa and Krippendorff’s alpha are similar.
They all measure the extent to which the observed agreement exceeds the expected
agreement purely by chance. But mathematically, kappa coefficients may overestimate
agreement when annotators have “unequal preferences for coding categories” (Krippendorff,
2018). So I abandoned kappa measures and only report Krippendorff’s alpha among the
chance-corrected measures. When calculating these metrics for component classification,
each segment is regarded as a markable item.

Kappa and alpha measures can only be applied when each markable item is independent
of each other (Cohen, 1960, Fleiss, 1971, Krippendorff, 2018). Component classification
meets this requirement well, but for relation identification the independence assumption
does not fully hold. When calculating kappa and alpha metrics for relation identification,
each possible component-component pair is usually regarded as a markable item. This
approach is problematic because there could be dependencies between annotations of
component-component pairs. For instance, if a source component is already linked to a
target, it can no longer be linked to other targets. As a result, in the calculation of kappas
and alphas, there will be many markable items where no relation exists. Such “unrelated”
markable items will lead to an overestimation of agreement. For example, in an argument
containing N components, for a source component, even if two annotators disagree on its
target components, they still agree on the remaining N − 3 possible component-component
pairs containing this source component. Despite this, several argument mining studies
have applied kappa and alpha measures to relations, including Peldszus and Stede (2015a)
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and Stab and Gurevych (2017). I refrained from doing so in my annotation study.
Therefore, for relations, I only report observed agreement. A markable item for this

measure is a triple consisting of a source segment, its target, and the relation between
them. For a source segment having no target, its target and the relation are both marked
as ∅. Agreement is reached only when all three elements in a relation are identical for both
annotators, including the source and the target, their labels, and the label of the relation.
The total number of markable items for an argument equals the number of the union of
markable items by the two annotators, instead of all possible component-component and
component-relation pairs in that argument. This is much preferable as it does not have
the problem of excessively many unrelated cases and thus should avoid overestimation of
agreement.

I also use another agreement measure when reporting the results for binary relation
identification which is less strict. I need this metric because I wanted to measure the
confusion between the three distinct relation types: Support, direct Attack, and
undercut. It is also necessary to measure the confusion that arises when one annotator
identifies one of these three relations and the other does not (i.e. “unrelated”). For a source
segment, agreement is reached when 1) the relation is labelled identically by the two
annotators, and 2) the type of its target chosen by the two annotators is the same, either
a component or a relation, or ∅. Criterion 1 distinguishes between Supports, Attacks,
and “unrelated” cases. Criterion 2 tells direct Attacks and undercuts apart. For example,
if a relation is labelled as an Attack by both annotators, but one annotator puts it in a
component-component pair while the other in a component-relation pair, this agreement
measure distinguishes between these two Attacks by counting one as a direct Attack

and the other as an undercut.
To add more perspectives to the measurement of agreement in terms of relations, I

use four graph-based metrics to measure the structural similarity between two argument
graphs, ignoring all component and relation labels. These metrics assess the holistic
agreement on relations across two graphs, rather than focusing on individual relations
in isolation. The first graph-based metric is the one proposed by Kirschner et al. (2015).
It measures the extent to which one graph is included in the other, doing so in both
directions. Equation 4.1 shows the calculation of IA⊂B, the extent to which graph A is
included in graph B.

IA⊂B =
1

|EA|
∑

(x,y)∈EA

1

SPB(x, y)
(4.1)

In this equation, EA is the set of edges in A, x is the source node, y is the target node
for an edge, and SPB(x, y) is the length of the shortest path from x to y in B. When
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adapting this metric to graphs containing undercuts, I declare a path from an undercutting
component to the target component in the component-component pair (length = 0.5),
and no path between that undercutting component to the source component in the
component-component pair.

IB⊂A is computed analogously. According to the equation, this metric detects if an
edge in one graph also exists in another graph, either as an edge or as a path with multiple
hops. The final similarity score between A and B can be either the mean of IA⊂B and
IB⊂A, or their F1 score. In this annotation study I report both versions, referring to them
as Kirschnermean and Kirschnerf .

Other graph-based metrics I use have been proposed by Putra et al. (2022). Compared
to Kirschner et al.’s, their metrics are more comprehensive in that they evaluate the
mutual inclusiveness between two graphs from different dimensions, namely links (i.e.
edges), paths, and sets of descendant nodes. The corresponding metrics are referred to
as MARlink, MARpath, and MARdSet respectively. The calculation of these metrics are as
follows:

MARlink =
1

2

(
|EA ∩ EB|
|EA|

+
|EA ∩ EB|
|EB|

)
(4.2)

MARpath =
1

2

(
|PA ∩ PB|
|PA|

+
|PA ∩ PB|
|PB|

)
(4.3)

MARdSet =
1

2

∑
x∈NA

|dSetA(x)∩dSetB(x)|
|dSetB(x)|

|NB|
+

∑
x∈NB

|dSetA(x)∩dSetB(x)|
|dSetA(x)|

|NA|

 (4.4)

In Equation 4.2, EA and EB are sets of edges in graph A and graph B. In Equation 4.3,
PA and PB are sets of paths in A and B. A path here is represented as an ordered tuple
consisting of nodes on the path. In Equation 4.4, NA and NB are sets of nodes in A and B

(including stand-alone nodes), and dSetA(x) denotes the set of descendant nodes of the node
x in A. When adapting these metrics to graphs containing undercuts, I treat undercuts as
nodes. Stand-alone nodes, which usually represent non-argumentative segments, do not
affect MARlink or MARpath, but they do affect MARdSet. In the calculation of MARdSet,
stand-alone nodes are counted as a match if they are deemed non-argumentative in both
annotations. In my case, stand-alone nodes also include Stakes.

Since Kirschner et al.’s and Putra et al.’s’ measures are relatively new, I wanted to
provide a reasonable reference for interpreting their results. For this purpose, I compare
these metrics against a tailored baseline that I devised. In this context, a baseline system
is a method that automatically generates argument graphs, omitting labels of either
components or relations. A simple approach might be to draw random links between any
two segments within an argument. I did not choose it because I consider it a rather weak
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baseline system. My method is more sophisticated in that it always generates valid graph
structures that align with my annotation scheme, and it allows for undercuts. Further
more, it incorporates the distributions of component and relation categories from the
annotation study. Given a pre-segmented argument consisting of s segments, my baseline
system generates a graph in the following way:

1. Mirroring the proportion of stand-alone nodes amongst all nodes from the annotation
study, the system first randomly selects s× |NA|+|STA|

S
segments from the argument

and add them to the graph as stand-alone nodes. |NA| is the number of non-
argumentative segments in all arguments in the annotation study. |STA| is the
number of Stakes. S is the total amount of segments.

2. The system then uses the remaining segments in the argument to generate a tree. It
starts by randomly choosing one segment from the remaining segments as the root
of the tree. From the root, the tree is iteratively constructed by appending random
segments as child nodes to each parent node, progressing in a breadth-first manner.
The number of child nodes generated at each step is decided by a random process
where an integer is sampled from a normal distribution N (µ, σ), bound between 1
and the amount of segments currently available. This distribution is also informed
by the observed annotation. The tree is finished when when no segments are left.

3. Mirroring the proportion of undercuts within all relations, the system randomly
selects r × |UC|

R
tree edges from the prior step and transforms them into undercuts.

Here r is the number of edges in the tree. |UC| is the number of undercuts in
all arguments. R is the number of relations. To transform a selected edge which
connects a child node and a parent node into an undercut, the system reroutes the
edge from the child to the parent’s outgoing edge. The only exception arises when
the parent is the root; here, the edge remains unaltered.

With this strong baseline system, I can generate a distinct version of annotation for
each annotator. The Kirschner and MAR scores derived from this baseline can then be
used as a lower bound to compare against the actually observed scores. I ran the baseline
system ten times and report the average scores.

4.5.2 Results and disagreement analysis

The overall inter-annotator agreement scores are presented in Table 4.3. For component
classification, the observed raw agreement is P (A) = 0.88. The score of Krippendorff’s
alpha is α = 0.78 (N = 7, 883, n = 2, k = 5). According to the interpretation scale in
Krippendorff (2018), this score is acceptable for “drawing tentative conclusions” (α ≥ 0.67),
and is close to the threshold (α ≥ 0.80) for being considered “reliable”.
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Human Baseline

Component
Observed 0.88 -
Krippendorff’s alpha 0.78 -

Relation

Observed 0.73
Kirschnermean 0.69 0.04
Kirschnerf 0.67 0.03
MARlink 0.64 0.02
MARpath 0.54 0.01
MARdSet 0.84 0.41

Table 4.3: Inter-annotator agreement for components and relations.

For relation identification, the observed agreement is P (A) = 0.73. In terms of the graph-
based measures, scores achieved by the baseline are close to zero, except MARdSet = 0.41.
The relatively high MARdSet score for the baseline might be a result of the measure’s
inherent nature, because stand-alone nodes agreed by both annotators always positively
contribute to MARdSet. Human agreement easily beats the baseline (p < 0.01 in all paired
t-tests, in which agreement for each document is regarded as a sample): Kirschnermean =

0.69, Kirschnerf = 0.67, MARlink = 0.64, MARpath = 0.54, and MARdSet = 0.84. The
same graph-based metrics are also reported by Putra et al. (2022) in their annotation
work: Kirschnermean = 0.63, Kirschnerf = 0.63, MARlink = 0.56, MARpath = 0.39, and
MARdSet = 0.85, but of course no comparison against my scores is possible because of
different tasks, schemes, and data.

In order to examine to which degree annotators agree per component category, I
calculate inter-annotator agreement on binary classification per category and present
the alpha scores (N = 7, 883, n = 2, k = 2) in Table 4.4. We can see that the two
annotators completely agree on Stake and Anecdote, which is a remarkable item
result. This could be because components under these two categories are characteristic
enough to be easily distinguished from other categories. Among the remaining component
categories, agreement on recognising Analogys (α = 0.82) is slightly higher than that on
non-argumentative segments (α = 0.77) and Propositions (α = 0.77).

I do not report observed agreement for binary classification per category. Since observed
agreement is not chance-corrected, it is largely effected by the distribution of categories.
For example, if the number of instances in a category is extremely small, the number of
true negatives is likely to be large, which will lead to a high observed agreement for that

Non-arg Proposition Stake Anecdote Analogy
Krippendorff’s alpha 0.77 0.77 1.00 1.00 0.82

Table 4.4: Inter-annotator agreement for binary component classification.
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Non-arg Proposition Stake Anecdote Analogy

Non-arg

Proposition

Stake

Anecdote

Analogy

0.915 0.077 0.000 0.000 0.007

0.143 0.852 0.000 0.000 0.005

0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000

0.000 0.125 0.000 0.000 0.875
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.8: The confusion matrix for component classification, normalised by row.

category.
I present the confusion matrix for component classification in Figure 4.8. In the matrix,

the number on the i-th row and j-th column is the amount of instances (normalised by
row) that is classified as the i-th component category by one annotator while the j-th
category by the other. Results show that the two categories most frequently confused
with each other are non-argumentative segments and Propositions. This is reflected
by the relatively high off-diagonal values in the corresponding cells (0.143 and 0.077).
One reason for this confusion might be the difficulty in labelling components containing
rhetorical questions. The annotation guideline requires that rhetorical questions should be
considered argumentative only if an explicit answer is present in the text, or if the answer
to that question is obvious enough for most readers to reach an agreement (e.g. “Is the
Earth flat?”). However, this criterion is subjective and proved to be a problem.

Example 4.9
Question:
Should animal testing be banned?
Answer:
[. . . ] [What is to be learned from the body of animals, except for how the
animals work]PRP? [What is to be learned from humans, except for how
humans work]PRP ? [. . . ]

In Example 4.9, for instance, one annotator considers the two rhetorical questions
argumentative because they believe that the answers are obvious — what are learned from
animals cannot be applied to humans, so that animal testing is meaningless. However, the
other annotator regards them as information-seeking questions and categorises them as
non-argumentative. This provides another example of the challenges of argument mining

89



with informal text in online discussions, where irony, rhetorical devices, and ellipsis are
frequent.

The confusion between Proposition and Analogy is also relatively high (0.125
and 0.005). One possible reason for this confusion is that sometimes the key entity being
discussed in an Analogy is too semantically close to that in the argument. Recognising
the distinction between the two key entities is crucial for identifying Analogys. As a
result, failing to notice this distinction can lead to missing Analogys. For instance, in
Example 4.10, one annotator correctly recognises the component as an Analogy, while
the other annotator labels it as a Proposition, as the latter thinks that this component
is still talking about healthcare because it is also a kind of “product”.

Example 4.10
Question:
Would a completely free market healthcare system with zero government
involvement and no subsidies for anyone work better in the long run?
Answer:
[. . . ] [Just like with shoes or kitchen cutlery sets or televisions, I can evaluate
how much my money is worth to me, how much the product is worth to me,
and then make a choice to buy or not buy]ANA. [. . . ]

Moving on to relation identification, I present the confusion matrix in Figure 4.9.
Results show that the "Unrelated" instances are frequently confused with Supports
(0.137 and 0.056) and direct Attacks (0.158 and 0.013). Most cases of such confusion
are due to a prior disagreement in component classification. If a segment is considered
argumentative by one annotator but non-argumentative by the other, confusion with
“Unrelated” in relation identification necessarily follows.

Unrelated Support Att_direct Att_undercut

Unrelated

Support

Att_direct

Att_undercut

0.925 0.056 0.013 0.006

0.137 0.778 0.085 0.000

0.158 0.158 0.632 0.053

0.045 0.091 0.136 0.727

0.0

0.2

0.4

0.6

0.8

Figure 4.9: The confusion matrix for relation identification, normalised by row.
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Among the remaining relation categories, the confusion between Support and direct
Attack is the most frequent (0.158 and 0.085). This happens mostly because a component
is linked to two different targets that contradict each other, so that this component supports
one target and attacks the other (e.g. “private schools have much more funding” supports
“private schools are better” and attacks “private schools are worse”). For such cases, the
guideline instructs annotators to link the source component to the target that requires the
least inference. But again, this criterion is subjective and proved to be a problem.

The confusion between direct Attack and undercut is slightly lower (0.136 and 0.053).
This is good because it suggests that undercut recognition for humans is potentially
objectively achievable, despite the nuanced nature of undercuts. When an annotator fails
to recognise an undercut, they often incorrectly associate the source component with
a target component, rather than a relation. In these cases, an undercut is mistakenly
identified as a direct Attack. As reported by the annotators, it was difficult for them
to consider the entire search space necessary when recognising an undercut, because
they needed to consider not only the direct relation between two components, but also
the potential existence of an undercut and its impact on the relation between the two
components. However, discussions with the annotators during training and the quality
control process indicated that they were able to correctly identify most mislabelled
undercuts when prompted to “think twice”1.

In conclusion, results of the annotation study suggest that the annotation of components
in the Quora dataset is acceptable for “drawing tentative conclusions”, and that of relations
is better than chance.

4.6 Chapter summary

In this chapter, I introduced my annotation scheme, which is tailored to informal online
arguments. Component categories in this scheme include Proposition, Stake, Anec-

dote, and Analogy. Different from simple claim-premise categorisation, these categories
were designed to reflect persuasion patterns in arguments. My annotation scheme includes
undercuts, allowing for investigation into how arguments are undermined or weakened.

I then presented the Quora dataset, which was annotated with this scheme. It consists
of a collection of 400 informal arguments collected from online discussions. It is by far
the biggest dataset that contains explicitly annotated undercuts. I designed a systematic
collection method to achieve good coverage and balance of topics in this dataset. I also
trained two annotators with my detailed annotation guideline. The dataset contains 118,573
tokens and over 7,800 segments, and approximately 56% of them are argumentative. Among

1Please note that during the annotation study, all agreement was measured on annotation that was
performed independently. No such discussion or prompting took place.
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the component categories, Stake is relatively small in number, making it challenging to
conduct statistical analysis. When it comes to argument relations, out of the 1190 Attacks
in the dataset, 326 are undercuts. This suggests that undercuts are indeed a frequent
counterargument device in online argumentation.

I also conducted an annotation study and showed that the annotation of my dataset is
acceptable. For component classification, the inter-annotator agreement is acceptable for
“drawing tentative conclusions” at Krippendorff’s alpha α = 0.78 (N = 7, 883, n = 2, k =

5). For relation identification, I reported observed agreement and several graph-based
metrics, namely the Kirschner and MAR metrics. On these graph-based measures, human
annotation substantially beats a strong random baseline.

With the Quora dataset, I now have at my disposal material that can be used for
my planned experiments in undercut-aware argument mining. These experiments will be
described in the next two chapters.
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Chapter 5

End-to-end argument mining as
dependency parsing

In this chapter, I present an approach to end-to-end argument mining based on dependency
parsing. I name my approach as AMDP (Argument Mining as Dependency Parsing).
Eger et al. (2017) and Morio et al. (2020) are the first to formulate argument mining as
dependency parsing. However, Eger et al.’s implementation of such an approach does not
yield satisfactory results. The approach by Morio et al. (2020), on the other hand, is not a
full end-to-end approach because it assumes that the input text is already segmented. In
contrast, my approach achieves a new state of the art on a benchmark argument mining
dataset and is truly end-to-end.

I create two versions of dependency representations (Section 5.1), one that does not
model undercuts, and one that does. To the best of my knowledge, I am the first to
model undercuts computationally. Undercuts appear in the Microtext dataset, but they
have never been processed by argument mining models. Even in the study by Peldszus
and Stede (2015b), who are also creators of the Microtext dataset (3.1.3) that includes
explicitly annotated undercuts, undercuts are not treated in any way by their argument
mining models. I suspect this could be due to their structure, being a relation between a
component and anther relation. This is very different from the traditional structure of
relations in argument mining, which is between two components. Through a redesign of
existing dependency representations of arguments, I am able to directly use existing neural
dependency parsers to computationally model undercuts.

I introduce two neural models as dependency parsers: a biaffine model in Section 5.2.1
and a model based on Graph Neural Networks (GNN) (Veličković et al., 2017) in Sec-
tion 5.2.2.

I also evaluate AMDP on two datasets: firstly a popular argument mining dataset
(Section 5.3), and secondly my newly introduced Quora dataset (Section 5.4).
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5.1 Dependency representations for arguments

Many annotation schemes represent arguments as trees or directed acyclic graphs (Toulmin,
1958, Peldszus and Stede, 2013, Habernal and Gurevych, 2017, Visser et al., 2020). Such
structures bear resemblance to those used in syntactic and semantic parsing, which
can be analysed using dependency parsers (Dozat and Manning, 2017, 2018, Qi et al.,
2018). However, unlike syntactic or semantic parsing, which operates at the token-level
(Figure 5.1a), the dependency structures in argument mining operate at the segment-level
(Figure 5.1b). Therefore, in order to utilise the current dependency parsing techniques for
argument mining, it is necessary to transform the dependencies at the segment-level into
those at the token-level.

I have created two versions of dependency representation for arguments, one that does
not represent undercuts, and one that does. I will first introduce the undercut-exclusive
representation here. The undercut-exclusive representation contains information about
segment boundaries and types of relations that could potentially hold between segments,
as illustrated in Figure 5.2. Please note the difference in arrow conventions between
argument mining and dependency parsing. This figure shows dependencies pointing from

Figure 5.1: The dependency structure of the sentence “Just because it killed much marine
life, tourism has threatened nature.” in (a) syntactic parsing and (b) argument mining.
The syntactic parse tree is produced using Stanford CoreNLP (Manning et al., 2014).

Figure 5.2: My undercut-exclusive dependency representation of the argument “Just
because it killed much marine life, tourism has threatened nature.” C = Claim, P =
Premise, Sup = Support, N = non-argumentative, App = append.
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head to dependant, as is common in dependency parsing. In contrast, in argument mining,
relations are shown in the opposite direction (i.e. pointing from source to target), as can
be seen in Figure 1.2. In the rest of this paper, A → B means A pointing to B in terms of
argument structures, while A ⇐ B means B pointing to A with B being the head of A in
terms of dependency structures. Please also note that this figure uses the category labels
in the Persuasive Essays dataset, which I will later use for evaluation. My dependency
representation is not limited to a certain set of pre-defined labels. This flexibility means
that it can be adapted to various annotation schemes.

My undercut-exclusive representation is as follows:

• Each token is allowed to have zero, one, or more heads, which makes the representation
a dependency graph.

• Information on segment boundaries and segment labels is captured through within-
segment labelled edges. Within a segment (e.g. tokens 3-7 in Figure 5.2), either
argumentative or non-argumentative, each token except the last one is headed by its
succeeding token (token 4 ⇐ token 5). Labels of within-segment edges are written
as (segment_label ∈ [component_label, N ], App), where component_label is the
component category (e.g. Claim and Premise), N represents “non-argumentative”,
and App denotes “append”. In this way, segment boundaries are encoded topologically
— if the label of an edge does not contain App, we know that a segment boundary
has occurred. For example, the edge between token 4 and token 5 is labelled as (P,
App), indicating that they are two neighbouring tokens within a Premise.

• Information on relations and their labels is captured through inter-segment labelled
edges. If a relation exists between two components, it is expressed as a labelled edge
between the last token of the head component and the last token of the dependant
component. Labels of inter-segment edges are written as (component_label of
dependant node, relation_label), where relation_label is the relation category (e.g.
Attack and Support). For instance, the label of the edge between token 7 and
token 12 is (P, Sup), which means that token 7 is the last token of a Premise, and
this Premise supports the component that includes token 12. The last token in a
non-argumentative segment does not have any head node.

• A pseudo-token ROOT is added to the beginning of each argument. In syntactic
parsing, a hypothetical root acts as the head of each sentence. Similarly, in my
representation the pseudo-token ROOT acts as the head of each argument1.

1Theoretically, the ROOT token could represent the topic or the main point of the entire argument,
such as “uniforms” in my multi-argument example in section 3.4.1. I do not model such ROOT -represented
topics or points in this thesis, but such a design can be a placeholder for future studies.
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Figure 5.3: The dependency representation in Eger et al. (2017).

My dependency representation differs from the one in Eger et al. (2017), as illustrated
in Figure 5.3, in several ways:

• The dependencies among tokens in the same segment are represented differently
by Eger et al. and myself. In Eger et al.’s representation, each token within a
segment is headed by the first token in its head component. This means that
their representation does not directly express within-segment dependencies. In my
representation, each token within a segment is headed by its succeeding token within
the same component, and only the last token is linked to its head component. As
a result, most dependencies in my representation will be within-segment relations
instead of inter-segment relations. This difference is important because, according to
my linguistic intuition, relations between neighbouring tokens within a segment are
more likely to be meaningful than relations between a token and the first token in
another component. Therefore, I would expect that my representation should model
within-segment and long-distance inter-segment dependencies better.

• Segment boundaries are also encoded differently. Eger et al. (2017) use the BIO
scheme to encode segment boundaries, which results in a larger prediction space
than the topological encoding in my representation. My encoding method is thus
computationally more efficient and might result in better results because segment
boundaries can be inferred without BIO tags.

• We also conceptualise the root node of an argument differently. Eger et al. (2017)
declare the terminating token in an argument as root. All non-argumentative tokens
are also headed by this root. Their conceptualisation of the root node is problematic
for two reasons. First, the relations between all non-argumentative segments and
the terminating token seem arbitrary. Second, in some annotation schemes, the
terminating token could be a part of a component. Linking non-argumentative
segments to the terminating token would then spuriously include them into the
argument graph. In contrast, my representation uses the pseudo-node ROOT as
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the root node, which is outside all textual segments and thus avoids those problems.
Additionally, non-argumentative segments are not linked to any other segments in
my representation.

My dependency representation in Figure 5.2 cannot be used for arguments containing
undercuts, as undercuts involve relations between a component and a relation, and a
relation cannot be a dependent or a head in typical dependency representations. Therefore,
I have designed a specialised undercut-inclusive dependency representation for arguments
that allows existing neural dependency parsers to process undercuts directly.

The undercut-inclusive representation is illustrated in Figure 5.4. It is a modification of
the undercut-exclusive representation in Figure 5.2. New features of the undercut-inclusive
representation are as follows:

• A relation node (shown as dashed-line nodes in Figure 5.4) for each token in the
argument is added. Each relation node is indexed with the token number of its
corresponding token, followed by a prime. The relation nodes are meant to represent
relations. This is very different from the undercut-exclusive representation, where
relations are represented by edges.

• The relation node (e.g. relation node 7
′) of the last token (token 7) in a component

is always the head of that token, and represents the relation from that component
to its target, or the other way around. The edge label between the last token in a
component and its corresponding relation node is written as (segment_label, Rel),

Figure 5.4: The structure of an example argument with a pseudo undercutting component
(written as “An undercut”), and its undercut-inclusive dependency representation.
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where Rel means “relation”. For example, the label of the edge between token 7 and
relation node 7

′ is (P, Rel).

• If the relation is a Support or a direct Attack, the relation node’s outgoing edge
points to the last token in the source component. Its incoming edge comes from
the last token of the target component. For example, the fact that “it killed much
marine life” (tokens 3-7) supports “tourism has threatened nature” (tokens 9-12) is
expressed by the incoming edge of relation node 7

′ from token 12, and the outgoing
edge of relation node 7

′ to node 7. This is also written as “tokens 9-12 ⇒ relation
node 7

′ ⇒ tokens 3-7”.

• If the relation is an undercut, the relation node’s outgoing edge points to the last
token in the undercutting component. The incoming edge comes from another
relation node, rather than the last token in a component. For example, the fact that
tokens 14-15 undercuts the relation between tokens 3-7 and tokens 9-12 is expressed
by the incoming edge of relation node 15

′ from relation node 7
′ , and the outgoing

edge of relation node 15
′ to node 15. This is also written as “relation node 7

′ ⇒
relation node 15

′ ⇒ tokens 14-15”.

I believe that a crucial insight of my undercut-inclusive representation is its treatment
of all relations as nodes. This design allows undercuts to be modelled as relations between
nodes, all the while preserving the unique status of undercuts via the mechanism of “relation
nodes”. In this way, existing neural dependency parsers are able to process undercuts
directly. Peldszus and Stede (2015b) chose a different path: they transformed undercuts
into direct attacks, redirecting the undercutting component to the target component in
the component-component pair. Their method makes undercuts indistinguishable from
direct attacks, the nature of undercuts therefore remains untreatable. Thus, my method
enables true undercut processing for the first time.

In Sections 5.3 and 5.4, I will experimentally test whether my representations can
indeed improve argument mining.

5.2 Neural models for argument mining

In this section, I describe the two modified neural dependency parsers I use, a biaffine
parser and a GNN-based parser. The biaffine parser is designed to learn direct dependencies
between the tokens in the input text, while the GNN-based parser is expected to capture
more complex dependencies by modelling the relations between the nodes in the graph
structure. I have adapted both parsers to incorporate my dependency representations for
arguments.
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Figure 5.5: (a) the biaffine parser in Dozat and Manning (2018), and (b) my modified
biaffine parser. FFN = Feedforward Network. DAN = Deep Averaging Network.

5.2.1 Biaffine dependency parser

The modified biaffine dependency parser is based on the parser proposed by Dozat and
Manning (2018) (Figure 5.5a), which has been adopted in many studies (Liu et al., 2019a,
Zhang et al., 2019). It is composed of a BiLSTM layer that encodes the input text and a
deep biaffine attention classifier that scores and labels each possible head-dependent pair.

The structure of my biaffine parser is shown in Figure 5.5b. The mathematical
description of this parser is as follows:

rS = BERT(s1s2...sn) (5.1)

rROOT = FFNROOT(mean(rS), axis=0) (5.2)

R = [rS; rROOT ], axis=0 (5.3)

He_h, H l_h, He_d, H l_d = FFN(R) (5.4)

He_h
r , H l_h

r , He_d
r , H l_d

r =

FFNrel_node(R) if undercut_inclusive

∅ if undercut_exclusive
(5.5)

Biaff(x, y) = x⊤Uy +W(x⊕ y) + b (5.6)

scedge = Biaffedge(([He_h;He_h
r ], axis=0), ([He_d;He_d

r ], axis=0))

(5.7)

sclabel = Biaff label(([H l_h;H l_h
r ], axis=0), ([H l_d;H l_d

r ], axis=0)) (5.8)

y
′edge
i,j = {scedgei,j ≥ 0} (5.9)

y
′label
i,j = argmax sclabeli,j (5.10)

L = (1− λ)L edge + λL label, λ ∈ (0, 1) (5.11)

I replace the Embedding layer and the BiLSTM layer with a pre-trained BERT encoder
(Wolf et al., 2020), so that the parser can benefit from a huge amount of unsupervised
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data2. Equation 5.1 describes how the encoded representation rS ∈ Rn×denc of a text
sequence S = s1s2...sn is calculated using BERT.

Equation 5.2 shows the calculation of rROOT ∈ R1×denc , which is the representation
of the root node ROOT . ROOT is not processed by the BERT encoder. Instead, it is
calculated using a Deep Averaging Network (DAN), because it can potentially represent
the overall gist of the argument. FFN in Equation 5.2 means a Feedforward Network.

Equation 5.3 shows the calculation of R ∈ R(n+1)×denc , which is the representation of
ROOT plus S. It is derived by concatenating rROOT and rS.

Equation 5.4 creates four representations for R, including two head representations
and two dependant representations for edge and label prediction respectively. These are
the deep representations for all tokens in ROOT plus S.

Equation 5.5 creates four further representations for R in the undercut-inclusive
scenario. These are the deep representations for the relation nodes in the undercut-
inclusive dependency representation. In the undercut-exclusive scenario, this step is
skipped.

The biaffine classifier in Equation 5.6 scores and labels edges between head-dependent
pairs, where U , W , and b are trainable variables. The predicted edges and their labels are
computed in Equations 5.7, 5.8, 5.9, and 5.10, respectively. The edge-classifier is trained
with sigmoid cross-entropy, while the label-classifier is trained with softmax cross-entropy,
in the same manner as is done by Dozat and Manning (2018).

The total loss is calculated in Equation 5.11, where λ balances the edge and label
losses. The back-propagation of the losses to the label-classifier uses only edges in the gold
standard, and not other hypothetical edges between each two tokens in the representation.

Dropout (Srivastava et al., 2014) is applied for each layer in my model. Hyperparameters
of the modified biaffine parser are set to the default values in Dozat and Manning (2018).

5.2.2 GNN-based dependency parser

Considering the graph nature of the dependency structure of arguments, GNNs can be
seen as a natural choice for argument mining tasks. GNNs have been shown to be effective
in modelling graph-structured data and have achieved state-of-the-art performance in
many graph-related tasks (Wang et al., 2019, Chen et al., 2020, Minaee et al., 2021).
Therefore, I chose to experiment with a modified GNN-based dependency parser. The
GNN-based parser I use is based on the dependency parser proposed by Ji et al. (2019)
(Figure 5.6a), which adapts the Graph Attention Networks (GANs) (Veličković et al.,
2017) to explicitly model higher-order dependencies. Compared to the biaffine parser, I

2I abandoned another pre-trained encoder GPT-2 (Radford et al., 2019) because it performed slightly
below BERT.
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Figure 5.6: (a) the GNN-based parser in Ji et al. (2019), and (b) my modified GNN-based
parser.

expect the GNN-based parser to have the advantage of modelling global information of
the argument structure and to be better at capturing higher-order dependencies.

The structure of my GNN-based parser is shown in Figure 5.6b. The mathematical
description of this parser is as follows:

rS = BERT(s1s2...sn) (5.12)

rROOT = FFNROOT(mean(rS), axis=0) (5.13)

R = [rS; rROOT ], axis=0 (5.14)

He_h, H l_h, He_d, H l_d = FFN(R) (5.15)

He_h
r , H l_h

r , He_d
r , H l_d

r =

FFNrel_node(R) if undercut_inclusive

∅ if undercut_exclusive
(5.16)

H
e_h
G , H

l_h
G , H

e_d
G , H

l_d
G = GNNlayer=2(([H

e_h;H l_h], axis=1), ([He_d;H l_d], axis=1),

([He_h
r ;H l_h

r ], axis=1), ([He_d
r ;H l_d

r ], axis=1))

(5.17)

Biaff(x, y) = x⊤Uy +W(x⊕ y) + b (5.18)

scedge = Biaffedge(H
e_h
G , H

e_d
G ) (5.19)

sclabel = Biaff label(H
l_h
G , H

l_d
G ) (5.20)

y
′edge
i,j = {scedgei,j ≥ 0} (5.21)

y
′label
i,j = argmax sclabeli,j (5.22)

The calculation of the four kinds of representation for all tokens in ROOT plus
S, namely He_h, H l_h, He_d, H l_d, as described in Equations 5.12-5.15, is the same as
Equations 5.1-5.4 in the biaffine model described earlier. Equation 5.16 produces the four
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kinds of representation for relation nodes when necessary, namely H
e_h
r , H

l_h
r , H

e_d
r , H

l_d
r ,

which is equivalent to Equation 5.5 in the biaffine model.
In Equation 5.17, the eight kinds of representation above are fed into a GNN encoder

consisting of two GNN layers, converting them into GNN-encoded representations. Inside
the GNN layers, each token in the input sequence, as well as ROOT , is represented as
a node. In the undercut-inclusive scenario, each relation node is also represented as a
node inside the GNN layers. Such a node connects bidirectionally to all other nodes,
so that a fully connected graph is formed. The head representation and the dependant
representation of each node are concatenated to form a general representation. The general
representation of each node is then aggregated and updated through the GNN layers.

αt
ij = Attention(ht−1

i , dt−1
j ) (5.23)

αt
ji = Attention(dt−1

i , ht−1
j ) (5.24)

ht
i = Whead

∑
j∈N (i)

(αt
jih

t−1
j + αt

ijd
t−1
j ) + bheadht−1

i (5.25)

dti = Wdependant
∑

j∈N (i)

(αt
ijh

t−1
j + αt

jid
t−1
j ) + bdependantdt−1

i (5.26)

Equations 5.23-5.26 show what happens inside Equation 5.17. Equations 5.25 and 5.26
show the aggregation and updating process for the t-th GNN layer. Here, N (i) denotes
the set of neighbours of node i, and W and b are trainable variables. The attention
mechanism for aggregating node representations is described in Equations 5.23 and 5.24.
Here, αt

ij denotes the attention score between the head-wise representation of node i and
the dependant-wise representation of its neighbour j, and αt

ji denotes the attention score
between the dependant-wise representation of node i and the head-wise representation of
its neighbour j. This aggregation and update mechanism explicitly models higher-order
dependencies, namely grandparents, grandchildren, and siblings, allowing the GNN-based
parser to capture more complex argument structures.

The GNN-encoded representations are then used for edge and label prediction, as
described in Equations 5.18, 5.19, 5.20, 5.21, and 5.22, in the same manner as in the
biaffine model.

The output of each GNN layer can be interpreted as a soft parse graph (i.e. a fully
connected graph with weighted edges) without label information. The structural loss of
each GNN layer is incorporated into the final training loss, as shown in Equation 5.27.

L = λ1L
edge + λ2L

label + (1− λ1 − λ2)
t=2∑
t=1

L t
GNN, λ1 ∈ (0, 0.5), λ2 ∈ (0, 0.5) (5.27)
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The same dropout strategy in the biaffine model is applied for each layer in my model.
Hyperparameters of the modified GNN-based parser are set to the default values given by
Ji et al. (2019).

Now that I have explained how my dependency representations and neural parsers
work, I will proceed to their evaluation.

5.3 Experiment: argument mining without undercut

modelling

In this experiment, I evaluate the performance of my end-to-end approach on a popular
benchmark dataset that does not include undercuts. The objective is to assess the
effectiveness of the approach in comparison to existing approaches, and to experimentally
quantify the effects of my representations and parsers.

5.3.1 Dataset

The dataset used in this experiment is the Persuasive Essays dataset introduced in
Section 3.1.1, which is a benchmark constructed by Stab and Gurevych (2017). This
dataset is also used in Eger et al. (2017). It comprises 402 persuasive essays randomly
selected from an online forum, with 322 essays used for training and 80 essays for testing.
Table 5.1 provides statistics of the dataset. Table 5.2 shows the distribution of its
component and relation distributions.

5.3.2 Dataset-specific adaptation and post-processing

When training my neural parsers on the Persuasive Essays dataset, I first need to make
sure that the parsers, the dataset, and the dependency representations are compatible with
each other. I therefore performed some dataset-specific adaptation and post-processing.

Considering that most relations hold within paragraphs in this dataset, my approach
operates at the paragraph-level, in line with Stab and Gurevych (2017). This means that
each paragraph is processed as an argument, having its own argument graph and acting

All Per essay

Token 147,271 336.3
Component 6,089 15.1
Sentence 7,116 17.7
Paragraph 1,833 4.6

Table 5.1: Statistics of the Persuasive Essays dataset.
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All Per essay

Component

MajorClaim 751 10.2
Claim 1,506 0.1
Premise 3,832 0.2
Total 6,089 11.0

Relation

For 2,345 5.8
Against 496 1.2
Support 3,613 9.0
Attack 219 0.5

Table 5.2: Component and relation distribution of the Persuasive Essays dataset.

as an individual data point during training and inference. As a result, each paragraph
has a pseudo-token ROOT in its dependency representation. If a paragraph contains one
or more MajorClaims, ROOT considers all of them as dependants. Otherwise, if no
MajorClaims are present, ROOT includes all Claims in the paragraph as dependants.

Once the structure of a paragraph has been predicted by the parser, I apply a series of
post-processing steps, which also operate at the paragraph-level. These steps are designed
to resolve conflicts and to create coherent argument graphs, following similar techniques
used by Eger et al. (2017). The following post-processing steps are performed in order:

1. All tokens in a segment should be of the same category, but this is not always the
case in the predictions. To handle this, I define the category of each segment as the
category which is assigned to at least three-fifths of the tokens in that segment.

2. Any incoming or outgoing inter-segment edge of any token in a segment count as an
edge of the entire segment.

3. For the links between segments, only valid edges are retained. These valid edges in-
clude MajorClaim→Root, Claim→Root, Claim→MajorClaim, Premise→
Claim, and Premise→Premise.

4. There cannot be more than one edge between any two segments. Therefore, in
the case of two linked segments having multiple edges, the one with the highest
prediction probability is retained.

5. When a segment has multiple outgoing edges, only Claim→MajorClaim edges
are preserved. This is because only Claims can have multiple heads, and they must
be MajorClaims. If there is no Claim→MajorClaim edge among the multiple
outgoing edges, only the edge with the highest probability is retained.

After these paragraph-level post-processing steps, I combine the sub-graphs gener-
ated from each paragraph into a complete argument graph of the entire essay. In the
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paragraph-level predictions, Claims in a paragraph might be linked to the Root node
of that paragraph. But in the Persuasive Essays dataset, every Claim is linked to all
MajorClaims. Adhering to this rule, when generating the argument graph of the entire
essay, I first remove all Claim→Root edges, and then link every Claim to all Major-

Claims (if the link does not already exist) while preserving the original edge label. This
process ensures the generation of a valid final argument graph of the entire essay.

5.3.3 Systems

I select two models from Eger et al. (2017) as the baselines for evaluation:

• LSTM-Parser : the best-performing model in an end-to-end dependency parsing
approach.

• LSTM-ER: the overall best-performing model that frames argument mining as
end-to-end sequence labelling.

To gain access to the actual predictions of the baseline models, which are required by
the significance test, I reimplemented the baseline models. My reimplementation yields
similar results to those reported in Eger et al. (2017) on the Persuasive Essays dataset.
These results are displayed in Table 5.5 from Section 5.3.6.

For my approach AMDP, I have implemented four models to compete with the baselines:

• Biaff_exc: the biaffine parser with my undercut-exclusive representation.

• Biaff_inc: the biaffine parser with my undercut-inclusive representation.

• GNN_exc: the GNN-based parser with my undercut-exclusive representation.

• GNN_inc: the GNN-based parser with my undercut-inclusive representation.

Although the Persuasive Essays dataset does not contain any undercuts, I still have
included the undercut-inclusive representation in this experiment. This is because I want
to test if the undercut-inclusive representation will have any positive or negative effect on
analysing arguments without undercuts.

5.3.4 Experimental setup

The baseline models are trained at the paragraph-level using the default hyperparameter
configuration provided in the source code. The pre-trained GloVe embeddings (Pennington
et al., 2014) used in Eger et al. (2017) are employed for all LSTM encoders throughout the
experiment. Additionally, the Stanford syntactic dependency parser (Chen and Manning,
2014) is utilised to generate the syntactic trees required by the LSTM-ER model.
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During the training of my AMDP models, I randomly select 30 essays from the training
set as the development set. This set is used to tune the following hyperparameters:
the interpolation factor λ in Equation 5.11 for the biaffine parser (λ = 0.05), λ1, λ2 in
Equation 5.27 for the GNN-based parser (λ1 = 0.75, λ2 = 0.05), the dropout rate for the
biaffine parser and the GNN-based parser (dropout = 0.1), and the number of training
epochs for the early stopping mechanism. I use the pre-trained BERT-base-cased model
by Wolf et al. (2020) as the encoder, and freeze its weights during training. I abandoned
GPT-2 Radford et al. (2019), another pre-trained encoder, because of its slightly inferior
performance compared to BERT in the pilot experiment. I use the Adam optimiser
(Kingma and Ba, 2014) with parameters β1 = 0.95, β1 = 0.98, and ϵ = 1e−9, and adopt
the learning rate strategy from Vaswani et al. (2017) with warm-up steps set to 1000. All
unspecified hyperparameters follow the default values from Dozat and Manning (2018)
and Ji et al. (2019), respectively.

Each model is trained ten times with different random initialisations, except the
LSTM-based models and their variants, which are trained only once due to excessively
long training time. The reported results are the average performance.

5.3.5 Evaluation metrics

I use the standard evaluation metric proposed in Persing and Ng (2016) to compare the
predicted argument graphs against the ground truth annotations. The metric measure
the F1 scores for component identification and relation identification respectively: F =

2TP
2TP+FP+FN

, where TP represents true positive, FP false positive, and FN false negative.
This metric operates at the segment-level, i.e. the units considered are segments (as
opposed to tokens) and relations among them. While component segmentation should
be evaluated at the token-level, some studies adopt flexible strategies in adapting the
segment-level F1 metric to the evaluation of argument mining models. For example, Eger
et al. (2017) report two different types of F1 scores in their experiments: one at a 50%
match and another at a 100% match. A match at 50% is counted if a segment overlaps
with at least 50% of the tokens in the corresponding gold standard segment. A 50% match
is counted if a segment overlaps with at least 50% of the tokens in the corresponding gold
standard segment, while a 100% match occurs if a segment has the exact same boundaries
as its corresponding gold standard segment. In my experiments, I only report results using
the strictest 100% match criterion.

For component identification, a TP is a gold standard component that has an exact
match in the predictions — having exactly the same segment boundaries and the same
component label. An FP is a predicted component that has no exact match in the gold
standard. An FN is a gold standard component that has no exact match in the predictions.

For relation identification, TPs, FPs, and FNs are defined analogously. Here an exact
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match means 1) the source as well as the target is an exact match, and also 2) they have
the same relation label.

There exist alternative evaluation metrics for assessing argument mining models, and
one such metric that accommodates partial agreement in component segmentation is the
CASS metric proposed by Duthie et al. (2016). The CASS metric considers the degree of
difference in segment boundaries, assigning a higher score to cases where there is a small
mistake in determining segment boundaries (e.g. missing a word or two around the gold
standard boundaries) compared to a full miss. However, I have chosen not to employ the
CASS metric in my evaluation, because partial agreement in component segmentation is
not a primary focus of my experiments, and also because the F1 metric is more widely
adopted, facilitating a more straightforward comparison with other systems.

In order to evaluate the statistical significance of the performance difference between
two argument mining models, I conduct paired Monte Carlo permutation tests with a
two-tailed approach (Dwass, 1957, Nichols and Holmes, 2002, Marozzi, 2004). In a paired
Monte Carlo permutation test, the observed differences between paired data points are
randomised many times to generate a null distribution of the test statistic under the
assumption that the models perform identically. The actual observed test statistic is then
compared to this distribution to determine its significance.

Applying these paired tests directly to argument mining is not straightforward, because
the numbers of components or relations returned by two models may be different. To
address this, I first construct a permutation table as depicted in Table 5.3. Taking
component identification as an example, the first column in this table consists of component
indices. There are two kinds of components used to construct the permutation table: 1)
all components g1, g2, ..., gm in the gold standard, and 2) components p1, p2, ..., pn that are
not in the gold standard but are predicted as argumentative by either model, excluding
duplicates.

The other two columns in the table contains the predicted labels of the items in the first

Item Modela Modelb

g1 TP FN
g2 FN FN
... ... ...
gm TP TP

p1 FP TN
p2 FP FP
... ... ...
pn TN FP

Table 5.3: A permutation table for paired permutation tests.
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column, one column per model. The gold standard components g1, g2, ..., gm are assigned
TP or FN labels following the definitions above. The predicted components p1, p2, ..., pn

are introduced to the permutation tests by me; they can only be labelled as FP or TN
(true negative). Since these components are not present in the gold standard, whenever a
model proposes such a component, it should be penalised by receiving an FP label. But
the other model should not be penalised if it does not propose this component. As a result,
if a component pi is predicted by Modela but not by Modelb, it is labelled as an FP for
Modela and an TN for Modelb.

Then, permutations are generated by swapping labels in the second and third columns
for randomly selected rows. The two-tailed p-value is then calculated using Equations 5.28
and 5.29:

diffi =

1 , |Fa − Fb| < |F
′i
a − F

′i
b |

0 , |Fa − Fb| ≥ |F
′i
a − F

′i
b |

(5.28)

p =
1 +

∑N
i=1 diffi

1 +R
(5.29)

In Equation 5.28, diffi indicates if the actual performance difference between the two
models is smaller than that in the i-th permutation. Here Fa represents the actual F1

score for Modela, and F
′i
a denotes the F1 score for Modela in the i-th permutation. In

Equation 5.29, p is calculated as the percentage of occasions where the actual performance
difference is smaller than that in a random permutation. Here R is the number of sampled
permutations.

In this thesis, I choose α = 0.01 as the threshold (i.e. the “alpha level”) for p-value,
and the number of sampled permutations R = 10000 following the suggestion in Marozzi
(2004). In cases where a model is trained with multiple initialisations, the permutation
tests are performed using the model instance that performs closest to the average.

5.3.6 Results

Table 5.4 displays the F1 scores for the baseline models and my models in the AMDP
approach, in terms of component identification and relation identification respectively.
Results for the corresponding permutation tests are shown in Table 5.5.

The F1 scores achieved by the various AMDP models range from 72.8% to 73.8% for
component identification, and from 45.9% to 49.4% for relation identification. Compared
to my four AMDP models, the baseline models LSTM-Parser and LSTM-ER achieve
significantly lower F1 scores of 58.4% (eight paired permutation tests, all p < 0.01) and
70.2% (eight paired permutation tests, all p < 0.01) for components, and 34.9% (eight
paired permutation tests, all p < 0.01) and 45.1% (eight paired permutation tests, all

108



Model Component Relation

Baseline
LSTM-Parser 58.4 (58.9) 34.9 (35.6)
LSTM-ER 70.2 (70.8) 45.1 (45.5)

AMDP
Biaff_exc 72.9 45.9
Biaff_inc 72.8 45.9
GNN_exc 73.8 49.4
GNN_inc 73.8 49.4

Table 5.4: F1 scores for baseline models and models in my approach (AMDP) on the
Persuasive Essays dataset. For LSTM-Parser and LSTM-ER, I report the results in my
own implementation and also those published by Eger et al. (2017) (in parentheses).

LSTM-Parser LSTM-ER Biaff_exc Biaff_inc GNN_exc GNN_inc

LSTM-Parser - < < < < <

LSTM-ER > - < < < <

Biaff_exc > > - = < <

Biaff_inc > > = - < <

GNN_exc > > > > - =

GNN_inc > > > > = -

Table 5.5: Results for the permutation tests regarding Table 5.4. P-values in blue are
for component identification, red for relation identification. Symbols express whether the
system mentioned in the row is significantly better (>), worse (<) or indistinguishable (=)
from the system mentioned in the column, at α = 0.01.

p < 0.01) for relations. Therefore, my models outperform not only the best-performing
model in Eger’s dependency parsing approach, namely LSTM-Parser, but also their
overall best-performing model LSTM-ER, and therefore establish a new state of the art
on this dataset. The results demonstrate the effectiveness of my approach in achieving
end-to-end argument mining, and indicate that formulating argument mining as end-to-end
dependency parsing is a promising direction.

In terms of the comparison between my models using the GNN-based parser against
those using the biaffine parser, GNN_exc significantly outperforms Biaff_exc by 0.9%
absolute F1 score for component identification (GNN_exc = 73.8%, Biaff_exc = 72.9%,
p < 0.01) and 3.5 % for relation identification (GNN_exc = 49.4%, Biaff_exc = 45.9%,
p < 0.01). The differences are similar between GNN_inc and Biaff_inc. This reveals that
the GNN-based parser exhibits superior performance compared to the biaffine parser.

Regarding the comparison between the undercut-exclusive and the undercut-inclusive
representations, the results reveals no significant difference in performance. Both represen-
tations yield similar F1 scores for component and relation identification, which implies
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that the undercut-inclusive representation can be used even in scenarios without un-
dercuts, without compromising performance. This result suggests the flexibility of the
undercut-inclusive representation.

In conclusion, the results show the effectiveness of my AMDP approach in end-to-end
argument mining. The GNN-based parser performs better than the biaffine parser, and the
undercut-inclusive representation can be applied to either undercuts or normal arguments
without compromising performance.

5.3.7 Ablation study: neural parsers vs. dependency representa-

tions

The observed advantage of the AMDP approach over the competing approaches in Eger
et al. (2017) might be attributed to two key factors: my dependency representations and
my neural dependency parsers. Firstly, my dependency representations in the AMDP
approach might be more informative than the representations used in Eger et al. (2017), as
I have speculated in Section 5.1. Secondly, the biaffine parser and the GNN-based parser
might be more suitable for argument mining than the LSTM dependency parser used in
Eger et al. (2017). I want to determine which of these two factors is the decisive one, or
if they both contribute to the success of AMDP. To achieve this, I build systems where
the factors can be selectively switched off and present the results in an ablation format.
Since there is no significant performance difference between my two representations on the
Persuasive Essays dataset, I only use the undercut-exclusive representation.

The ablation study compares six different combinations of parsers and representations:

• LSTM_Eger : the LSTM parser and the representation used in Eger et al. (2017).

• LSTM_exc: the LSTM parser used in Eger et al. (2017) and my undercut-exclusive
representation.

• Biaff_Eger : my biaffine parser and the representation used in Eger et al. (2017).

• Biaff_exc: my biaffine parser and my undercut-exclusive representation.

• GNN_Eger : my GNN-based parser and the representation used in Eger et al. (2017).

• GNN_exc: my GNN-based parser and my undercut-exclusive representation.

The results of the cross-comparisons are shown in Table 5.6. Results for the corre-
sponding permutation tests are shown in Table 5.7. Comparing the parsers, both the
biaffine parser and the GNN-based parser significantly (eight paired permutation tests,
all p < 0.01) outperform the LSTM parser used in Eger et al. (2017), regardless of which
representation is used. For example, using my undercut-exclusive representation, the
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Representation
Eger Exc

Component Relation Component Relation

Parser
LSTM 58.4 34.9 67.9 36.0
Biaffine 65.7 38.4 72.9 45.9
GNN 66.1 40.3 73.8 49.4

Table 5.6: F1 scores for models with different combinations of parsers and representations
on the Persuasive Essays dataset. Exc = my undercut-exclusive representation. Eger =
the representation used in Eger et al. (2017).

LSTM_Eger LSTM_exc Biaff_Eger Biaff_exc GNN_Eger GNN_exc

LSTM_Eger - < < < < <

LSTM_exc > - > < > <

Biaff_Eger > > - < < <

Biaff_exc > > > - > <

GNN_Eger > > > < - <

GNN_exc > > > > > -

Table 5.7: Results for the permutation tests regarding Table 5.6. P-values in blue are for
component identification, red for relation identification.

GNN-based parser achieves an F1 score of 73.8% for component identification and 49.4%
for relation identification, significantly (two paired permutation tests, all p < 0.01) higher
than those of the LSTM parser, which are 67.9% and 36.0%. This demonstrates that the
two parsers in the AMDP approach are more powerful at capturing dependencies than the
LSTM parser in Eger et al. (2017).

Regarding the representations, every parser with the undercut-exclusive representation
achieves significantly (six paired permutation tests, all p < 0.01) higher F1 scores compared
to its counterpart with the representation used in Eger et al. (2017). This shows the
effectiveness of the undercut-exclusive representation in my AMDP approach.

When designing this representation, I anticipated it to be more effective at capturing
within-segment and long-distance inter-segment dependencies. Figure 5.7 shows an example
where my representation indeed captures some such dependencies better than Eger et al.’s.
In the given example, Biaff_exc accurately predicts all the components and relations in the
paragraph from the test data. Biaff_Eger fails to identify the parenthetical phrase “such as
Beijing Place, Shanghai Artist Museum” within the relatively long component Premise1

as an argumentative segment. With Eger et al.’s representation, the parser would be
forced to infer a relation between the first token in Claim (“historic”) and all tokens in this
text sequence, the distance between which are 14 to 20 tokens. With my representation,
those tokens are treated as one unit through within-segment relations, so that the distance
of such relations is only one token. Biaff_Eger also fails to detect the relation between

111



Figure 5.7: Argument structures of an example paragraph predicted by Biaff_exc (identical
to the gold standard) and by Biaff_Eger.

Premise3 and Claim. This might be due to the fact that these two components are
located at opposite ends of the paragraph. With Eger et al.’s representation, the parser
would be forced to infer many relations between the first token in Claim (“historic”) and
all tokens in Premise3 (“Our governments will be happy with those efficient consequences,
and a majority of cities also can imitate this economical cycle”). However, in the actual
prediction of Biaff_Eger, the majority of such relations are not correctly predicted.

In conclusion, the ablation study confirms that it is both the parsers and the dependency
representation which contribute to the improved performance of my AMDP approach.

5.4 Experiment: argument mining with explicit un-

dercut modelling

Having established that the biaffine and the GNN-based parsers are good processors and
that both my representations work well, I can now move to the experiment that is far
more central to my thesis, namely the experiment with explicit undercut modelling on the
Quora dataset.

5.4.1 Dataset-specific adaptation and post-processing

In the previous experiment, my AMDP approach operated at the paragraph-level, as
most relations are within-paragraph in the Persuasive Essays dataset. In the upcoming
experiment, it will operate at the document-level. This means that each document is
regarded as a data point during training and inference. This is because relations in the
Quora dataset are more likely to span across paragraphs, rather than operating within
individual paragraphs, as paragraph breaks are used less consistently in the Quora dataset
than in the Persuasive Essays dataset. Therefore, it is necessary to consider the entire
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document to capture the full range of argument relations.
In terms of adapting the ROOT node in my representations to the Quora dataset, for

each argument graph, the ROOT node takes all nodes that have at least one dependant
but no head as its dependants.

In this experiment, I merged all instances of Stake and Anecdote in the Quora
dataset to form a new category called Stake+Anecdote, as discussed in Section 4.4.3.

Post-processing in this experiment operates at the document-level. The same post-
processing steps as in Section 5.3.2 are performed, except that when a segment has multiple
outgoing edges, all edges except the one with the highest probability are removed. This is
because a source component in the Quora dataset cannot have more than one target.

5.4.2 Systems

Unlike in the previous experiment, direct comparisons with existing approaches are not
possible as no one so far has computationally modelled undercuts. However, I still wanted
to provide a baseline. Therefore, I adapted my reimplementation of the LSTM-ER model
and use it as the baseline model in this experiment. My baseline simulates Peldszus
and Stede (2015b)’s approach by transforming all undercuts into direct Attacks during
training. During inference, I randomly convert all predicted direct attacks to undercuts in
proportion to the ratio of undercuts to overall attacks in the original Quora dataset. The
dependency representation chosen for the baseline is my undercut-exclusive representation
which I have already shown to be the best known representation for arguments without
undercuts. This baseline therefore is considered to be a very strong one.

As for my AMDP approach, I have implemented two models: Biaff_inc and GNN_inc.

5.4.3 Experimental setup

As we have already seen in Section 4.4.3, the distribution of segment categories in the Quora
dataset is skewed: Proposition = 51.7%, Stake + Anecdote = 1.4%, Analogy =
2.5%, non-argumentative = 44.4%. To address this imbalance, I use the leaning strategy
introduced in Ting (1998) throughout this experiment. This strategy, called the cost-
sensitive learning strategy, works by assigning different weights for different segment
categories when calculating the loss during training. The weight Wi for a segment category
i among the set of all segment categories S is calculated as in Equation 5.31:

αi =

∑
k∈S |k|
|i|λ

(5.30)

Wi =
αi∑
k∈S αk

(5.31)
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Here |i| means the number of instances of category i in the dataset. I have modified
the original strategy by adding a hyperparameter λ in Equation 5.31, which can be tuned
using the development set. In this experiment, the λ in Equation 5.31 is set to 0.25.

All other experimental settings not specified here follow the same configurations as in
the previous experiment (Section 5.3.4) where applicable.

5.4.4 Results

The F1 scores for the baseline model and my models on the Quora dataset are presented in
Table 5.8. Results for the corresponding permutation tests are shown in Table 5.9. Both
my models comfortably beat the baseline in terms of the overall performance: Biaff_inc
outperforms the baseline by 3.3% for component identification (Biaff_inc = 62.4%,
baseline = 59.1%, p < 0.01) and 10.2% for relation identification (Biaff_inc = 41.7%,
baseline = 31.5%, p < 0.01); GNN_inc outperforms the baseline by 7.1% for component
identification (GNN_inc = 66.2%, baseline = 59.1%, p < 0.01) and 14.3% for relation
identification (GNN_inc = 45.8%, baseline = 31.5%, p < 0.01).

The results confirm that the GNN-based parser is more efficient than the biaffine
parser: GNN_inc significantly outperforms Biaff_inc by 3.8% for component identification
(GNN_inc = 66.2%, Biaff_inc = 62.4%, p < 0.01) and 4.1% for relation identification
(GNN_inc = 45.8%, Biaff_inc = 41.7%, p < 0.01).

Baseline Biaff_inc GNN_inc

Component 59.1 62.4 66.2
Proposition 60.6 63.7 67.8

Stake + Anecdote 47.9 51.2 53.3

Analogy 35.4 38.6 41.5

Relation 31.5 41.7 45.8
Support 40.5 45.1 48.0

Attack 10.5 33.8 39.9

Direct Attack 12.5 38.4 40.3

Undercut 5.2 21.6 38.8

Table 5.8: F1 scores for models in my AMDP approach on the Quora dataset.

Baseline Biaff_inc GNN_inc

Baseline - < <

Biaff_inc > - <

GNN_inc > > -

Table 5.9: Results for the permutation tests regarding Table 5.8. P-values in blue are for
component identification, red for relation identification.
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When considering the performance on undercuts, both models significantly outperform
the baseline by a large margin, with an increase of 16.4% for Biaff_inc (Biaff_inc =

21.6%, baseline = 5.2%, p < 0.01) and 33.6% for GNN_inc (GNN_inc = 38.8%,
baseline = 5.2%, p < 0.01). This suggests that undercuts, despite their intricate nature,
are structures that can be effectively analysed in argument mining. It also shows that the
GNN-based parser is better than the biaffine parser at recognising undercuts: GNN_inc
significantly outperforms Biaff_inc by 17.2% (GNN_inc = 38.8%, Biaff_inc = 21.6%,
p < 0.01).

The overall results show a slight decrease in F1 scores compared to that on the
Persuasive Essays dataset. This could be attributed to the informal and complex nature
of arguments in the Quora dataset. These arguments are more challenging to analyse
compared to the more well-structured arguments found in the Persuasive Essays dataset.

Let us now look at my models’ performance by component category. Both models
exhibit a consistent trend: their performance is best on Propositions (Biaff_inc =

63.7%, GNN_inc = 67.8%), followed by Stake+Anecdotes (Biaff_inc = 51.2%,
GNN_inc = 53.3%), and lastly Analogys (Biaff_inc = 38.6%, GNN_inc = 41.5%).
It is understandable that they are best at recognising Propositions, because Proposi-

tion is the predominant component category in the Quora dataset.
Both models perform better in recognising Stake+Anecdotes compared to Anal-

ogys. This observation could be attributed to the frequent presence of distinct linguistic
cues in Stakes and Anecdotes. For instance, in the sentence “I have been a teacher
in a public school for ten years . . . ”, the phrase “I have been” serves as a clear linguistic
cue for the presence of a Stake. Similarly, in the sentence “When I was in college, I
encountered a similar situation . . . ”, the phrase “When I was in college” indicates the
presence of an Anecdote. On the other hand, Analogys exhibit more varied forms
and often lack such explicit cues, and very often they can look like a sudden change of
topic. For example, when arguing about whether animal testing should be banned, the
author uses the analogy “If someone was gifted a new, functioning ceiling fan as a gift and
then they use it to kill themselves, that’s on them. That doesn’t make the concept of
gifting someone a ceiling fan to keep themselves cool a bad thing” to support the point
that “Anything, no matter how universally good it’s considered, can be misused”. The
analogy compares the action of gifting someone a ceiling fan to animal testing, and the
textual material is mostly about the fan. My models fail to recognise this analogy. Instead,
they predict it as non-argumentative, which is understandable as Analogys can appear
to be off-topic.
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5.4.5 Recognising undercuts: biaffine parser vs. GNN-based

parser

In the analysis of the results in Table 5.8, I have already shown that the GNN-based parser
is more efficient than the biaffine parser at recognising undercuts. To understand the
reasons for this disparity in performance, I will now compare the errors made by the two
models on undercuts. Undercuts structurally consist of different parts: three components
and two relations. This post-hoc analysis aims to discern which parts of an undercut is
most error-prone for the GNN-based parser.

Figure 5.8 shows the structure of an undercut with its dependency representation. In
this figure, nodes 1-3 are components, with nodes 1’ and 2’ being their corresponding
relation nodes – 1’ representing an undercutting relation and 2’ representing a supporting
relation. An undercut consists of three elements: an undercutting component (e.g. node 1
in Figure 5.8), its target relation (“node 2 ⇐ node 2’ ⇐ node 3”), and the link between
them (“node 1’ ⇐ node 2” ’). This structure is recursive because the target relation itself
consists of a source component (node 2), a target component (here node 3), and the link
between them (node 2’).

Therefore, an error can be caused by either the failure to recognise any single element
in an undercut, or a combination of some of such failures. For example, failing to recognise
the undercutting component, failing to recognise the target relation, or failing to recognise
either of them will all lead to an error in recognising the entire undercut. Moreover, some
such errors are interdependent of each other. For example, an error in recognising the
source component in the target relation will automatically lead to an error in recognising
the entire target relation. These facts make it infeasible to thoroughly investigate every
potential type of error in undercut recognition. I will therefore only look at the three types
illustrated in Figure 5.8: type I, i.e. errors in recognising the undercutting component;

Figure 5.8: The dependency representation of an undercut, and three types of error in
undercut recognition. Labels of nodes or edges are not displayed in this figure.
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Figure 5.9: Distribution of three types of error in undercut recognition.

type II, i.e. errors in recognising the target relation; type III, i.e. errors only in recognising
the link between them. Please note that type III only include the cases where the link is
incorrectly predicted but the undercutting component and the target relation are correctly
predicted. Since errors of type I and type II will usually lead to errors in recognising the
link, by defining type III in this way, I am able to examine the errors in link recognition
independently of undercutting component and target relation recognition.

I performed an error analysis by counting the errors made by my models. Figure 5.9
shows the distribution of the three types of error among all undercuts (N=58) in the test
set. Due to the small sample size, I refrain from testing the statistical significance of the
results in this figure, and instead interpret the numbers only qualitatively. According to
Figure 5.9, Biaff_inc produces relatively 20% more type I errors and 26% more type II
errors than GNN_inc. For type III errors, the difference becomes much bigger, which is
300%. This pattern suggests that the GNN-based parser recognises all three elements of
an undercut more effectively than the biaffine parser. The most pronounced difference is
observed in type III errors. This may suggest that when it comes to undercut recognition,
the GNN-based parser’s advantage over the biaffine parser could be in recognising the link
between the undercutting component and the target relation.

Regarding the disparity in link recognition between the GNN-based parser and the
biaffine parser, I hypothesise that the GNN-parser’s advantage in identifying higher-order
dependencies, as elaborated in Section 5.2.2, plays an important role. As depicted in
Figure 5.10:

• (a) In the undercut-exclusive representation, a direct Attack requires one hop.

• (b) In the undercut-inclusive representation, a direct Attack requires two hops.
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Figure 5.10: Illustration of the number of hops required for different relation represen-
tations: (a) a direct attack in the undercut-exclusive representation, (b) a direct attack
in the undercut-inclusive representation, and (c) an undercut in the undercut-inclusive
representation.

• (c) In the undercut-inclusive representation, an undercut requires three hops.

A direct Attack is represented as a 1-hop relation in the undercut-exclusive represen-
tation, but in the undercut-inclusive representation it becomes a 2-hop relation. Despite
such an increase, the performance difference on the Persuasive Essays dataset in terms
of my two dependency representations is not significant, as discussed in Section 5.3.6.
This implies neither parser sees a performance loss transitioning from a 1-hop to a 2-hop
relation.

However, the narrative changes when comparing direct Attacks and undercuts in the
undercut-inclusive representation, where direct Attacks and undercuts are represented
as 2-hop and 3-hop relations, respectively. According to Table 5.8, both Biaff_inc
and GNN_inc display weaker performance in identifying undercuts compared to direct
Attacks. However, the magnitude of this difference in performance varies between the two
models. Specifically, the F1 score of Biaff_inc for undercuts lags behind its score for direct
Attacks by 16.8%, while for GNN_inc the difference is only 1.5%. These results suggest
that as hop count increases from two to three, the GNN-based parser suffers a smaller
performance loss than the biaffine parser. This aligns well with my earlier prediction that
the GNN-based parser would perform well in capturing higher-order dependencies.

5.5 Chapter summary

In this chapter, I introduced my approach to argument mining. This approach formulates
argument mining as a dependency parsing task.

My approach models argument mining in an end-to-end fashion. More importantly,
it has the ability to model undercuts computationally. To achieve this, I designed two
new dependency representations for arguments, one that does not model undercuts, and
one that explicitly models undercuts. My representations unify all subtasks of argument
mining as tasks at the token-level, so that all can be processed simultaneously within one
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neural model. My undercut-inclusive representation converts undercuts into relational
nodes, so that they can be directly modelled by existing neural models. Additionally, I
introduced two neural dependency parsers for my approach, namely a biaffine parser and
a GNN-based parser.

I evaluated my approach on the newly introduced Quora dataset, making it the first
end-to-end approach applied to informal arguments in online discussions. The results show
that my biaffine parser and my GNN-based parser are both significantly better than a
strong baseline. The GNN-based parser is also more effective than the biaffine parser.

In order to compare the relative effectiveness of the two parsers in undercut recognition,
I performed an error analysis. Although the data size is small, allowing only preliminary
conclusions, the results show that the GNN-based parser outperforms the biaffine parser
in undercut recognition. Upon examining the errors from the two parsers, I found that
the primary difference is in identifying the link between the undercutting component and
its target relation.

I also evaluated my approach on the Persuasive Essays dataset which is a bench mark
containing formal arguments. The results show that all models in my approach significantly
outperform a strong baseline and achieve a new state of the art. In the ablation study
I conducted, I found that my dependency representation and my neural parsers both
contribute to the performance boost.

119



120



Chapter 6

External knowledge integration

In addition to exploring new dependency representations and neural parsers, I also examine
the benefits of integrating external knowledge into argument mining models. In this chapter,
I employ two types of external knowledge integration techniques, namely feature-based
integration (Section 6.1.1) and transfer-based integration (Section 6.1.2). My exploration
encompasses a variety of external knowledge sources, including syntax, discourse structures,
knowledge graphs, and large language models. In Section 6.2, I evaluate the effectiveness
of these techniques and knowledge sources on the same two datasets that were used in
Chapter 5, one formal (the Persuasive Essays dataset), the other informal (the Quora
dataset).

The integration methods I employ are designed to be model-agnostic, so that they do
not need to be tailored to any particular model. I avoid model-specific strategies in this
experiment, such as refining the BERT encoder with supplemental text. Furthermore,
given the end-to-end nature of my AMDP approach, I only study holistic techniques
that cover all subtasks of argument mining. Strategies that target specific subtasks, like
leveraging a pre-trained BERT specifically for enhancing relation identification, fall outside
the scope of this investigation.

6.1 Approaches to external knowledge integration

External knowledge can be integrated into argument mining models in different ways,
for instance as features to be added to the input text, and as pre-trained model weights
through transfer learning. The knowledge to be integrated can be obtained from various
sources. Such integration allows models to benefit from additional information and context.
In this section, I will introduce the external knowledge sources used in this study and how
they are integrated into argument mining models.
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6.1.1 Feature-based approach

In the feature-based approach, external knowledge is provided to the model in the form
of additional features that augment the input text. In the context of end-to-end neural
models, these features are usually vector representations extracted from external knowledge
sources, which are then combined with the input original representation of the input text.

For this approach, I investigate various sources of external knowledge, including
syntactic information, discourse information, information in a curated knowledge graph,
and information obtained from a pre-trained large language model. Notably absent from
this list is the inclusion of pre-trained word embeddings, despite their use as a knowledge
integration feature in some argument mining studies, e.g. Fromm et al. (2019). This is
because these embeddings have already demonstrated their effectiveness across multiple
NLP tasks (Gururangan et al., 2020, Raffel et al., 2020) and have become a standard and
integral component of most neural models. Instead of treating pre-trained word embeddings
as a variable to be examined, I will use them in all my experiments. The pre-trained BERT
encoder employed in my biaffine and GNN-based parsers already integrates WordPiece
embeddings (Wu et al., 2016), a specific kind of pre-trained word embeddings.

6.1.1.1 Syntactic information

Syntactic information plays a crucial role in the analysis of the internal structure of
sentences. A syntactic parse tree provides a hierarchical representation of the sentence
structure, illustrating the syntactic relationships between tokens. An example of such a
tree is given in Figure 6.1. In the example, the token “threatened” is the head of “killed”
“tourism”, “has”, “nature”, and two punctuation marks. The label of the relation between
“threatened” and “nature” is “obj”, which means that “nature” is the direct object of the
verb “threatened”.

My choice of using syntactic parse trees as a source of external knowledge for argument
mining is motivated by two reasons. First, understanding the syntactic structure of
a sentence can be beneficial for determining segment boundaries in argument mining.
Second, syntactic information can assist in resolving ellipsis and anaphora (Dalrymple
et al., 1991, Lappin and Leass, 1994), which are common phenomena in argumentative
texts, particularly informal arguments. Ellipsis refers to the omission of certain words or
phrases that can be inferred from the context, while anaphora involves the reference of a

Figure 6.1: An example syntactic parse tree produced by Stanford CoreNLP (Manning
et al., 2014).

122



word or phrase to a previously mentioned antecedent.
In order to integrate syntactic information, I first obtain the syntactic parse tree of

each sentence in an argument using the Stanford CoreNLP syntactic dependency parser
(Manning et al., 2014). I next encode the information of each token within the syntactic
parse tree as its path to the root node in the parse tree, in the form of a list of tuples
(edge_label, node_index) that are collected along the path. For example, in Figure 6.1,
the token “life” has the path [(obj, 4), (advcl, 11), (root, 0)]. Such encoded information is
then used as an additional feature for each token.

6.1.1.2 Discourse information

While syntactic information reveals the structure of a sentence through token-level depen-
dencies, discourse information describes the overall structure of an entire document through
clause-level dependencies. Discourse structures can be represented using the Rhetorical
Structure Theory (RST) framework (Mann and Thompson, 1988), which describes how
different segments in a document are hierarchically organised into larger discourse units.
At the core of RST is the idea that a document is not just a random sequence of sentences
but is organised hierarchically, where different segments, or spans of text, contribute to
the overall meaning of the document.

Consider the following example text:

Example 6.1
“[Farmington police had to help control traffic recently]1 [when hundreds of
people lined up to be among the first applying for jobs at the yet-to-open
Marriott Hotel.]2 [The hotel’s help-wanted announcement - for 300 openings
- was a rare opportunity for many unemployed.]3 [The people waiting in line
carried a message, as refutation, of claims that the jobless could be employed if
only they showed enough moxie.]4 [Every rule has exceptions,]5 [but the tragic
and too-common tableaux of hundreds or even thousands of people snake-lining
up for any task with a paycheck illustrates a lack of jobs,]6 [not laziness.]7”
(Mann and Thompson, 1988)

Figure 6.2 shows an RST diagram of the text in Example 6.1. In RST, the basic
units of discourse are called “Elementary Discourse Units” (EDUs) (e.g. text segments in
Example 6.1). These EDUs are grouped hierarchically into larger units called “spans” (e.g.
indexed nodes in Figure 6.2). A span can consist of a single EDU or multiple EDUs. For
instance, in Figure 6.2, span 1 consists of only one EDU, while span 4-7 consists of four
EDUs. In an RST diagram, the directed connections between two non-overlapping spans
are characterised by rhetorical relations. The source span is called the “Satellite”, and the
target is called the “Nucleus”. For example, the relation between span 6 (the Nucleus) and
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Figure 6.2: An RST diagram of the text in Example 6.1. Numbers are indices of segments.
Taken from Mann and Thompson (1988).

span 7 (the Satellite) is Antithesis, which means that the situation describe in span 7
contradicts to that in span 6.

While there are many rhetorical relations identified in RST, some of the central relations
include:

• Justify: The Satellite provides a justification for some actions or positions taken
in the Nucleus.

• Background: The Satellite provides background or context to the Nucleus.

• Evidence: The Satellite supports or strengthens the claims made in the Nucleus.

• VolitionalResult: The Satellite presents a situation or action that is voluntarily
caused or brought about by the agent mentioned in the Nucleus.

• Concession: The Satellite presents information that one would expect to contradict
or oppose the Nucleus, yet the latter remains unaffected or valid despite the potential
counterpoint presented by the former.

I chose to use RST discourse structures because they have been acknowledged to
be useful in many NLP tasks, such as summarisation (Marcu, 2000), text classification
(Burstein et al., 2001), and argument mining (Accuosto and Saggion, 2019). Moreover,
some relations in the RST framework are indicative of relation categories in my annotation
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scheme. For instance, in Figure 6.2, the Evidence relation between span [5-7] and span 4
may indicate a Support relation between span 6 and span 4, and the Concession

relation between span 5 and span [6-7] can be a signal of segment 5 undercutting the
relation between span 6 and span 4. However, incorporating RST discourse structures
as an external knowledge source in argument mining models may introduce a potential
source of noise. This is because EDUs in RST trees and argument components in argument
graphs may often have different segment boundaries. Despite this challenge, I made the
decision to use RST trees with the expectation that the valuable information they contain
would not be overshadowed by the noise introduced.

As we can see from Figure 6.2, an RST diagram is not a typical tree structure. RST
diagrams as a representation is ambiguous in that its placement of nodes indicates some
form of hierarchy, but edges also exist between Nuclei and their Satellites. As a result,
there are different ways to transform an RST diagram into an RST tree. One is to adhere
to the placement of nodes in the RST diagram, making a Nucleus and its Satellite siblings
in a branch. I call an RST tree transformed in this way a “span-oriented RST tree”.
Another is to adhere to the edges in the RST diagram, so that a Nucleus is the parent of
its Satellite. I call it a “dependency-oriented RST tree”.

By the convention in the field of RST parsing, RST diagrams are often transformed
into span-oriented RST trees (Carlson et al., 2003). In a span-oriented RST tree (shown
in Figure 6.3), leaves represent EDUs, and nodes represent spans. Out of the two siblings
in a branch, either one is a Nucleus and one Satellites, or both are Nuclei. When an RST
diagram is transformed into a span-oriented RST tree, the label of the relation between
a Nucleus and its Satellite in the RST diagram is assigned to the Satellite node in the
span-oriented RST tree. For instance, in Figure 6.3, node 1 and node 2-3 are sibling nodes.

Figure 6.3: A span-oriented RST tree converted from the diagram in Figure 6.2 (nodes
only).
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Node 1 has the label “VolitionalResult”, meaning that node 1 (the Satellite), is a
situation that is voluntarily caused by node 2-3 (the Nucleus).

However, such span-oriented RST trees are not ideal for argument mining for two
reasons. First, the notion of Nuclei and Satellites to some degree resembles that of heads
and dependants in syntactic dependencies (Sagae, 2009). But in span-oriented RST trees,
information of such dependencies is not directly available, because the Nucleus and its
Satellite are siblings. Second, in span-oriented RST trees, rhetorical relations exist between
sibling nodes, and hierarchical relations only indicate nestedness — a parent node is the
concatenation of all its child nodes. This is very different from what an edge means in
argument graphs: argument relations are shown as the hierarchical relations between a
source component and is the target component.

Therefore, in order to make the rhetorical relations in an RST tree more analogous
to the argument relations in an argument graph, I reconstruct dependency-oriented RST
trees from span-oriented RST trees: staring from the bottom of a span-oriented RST tree,
for each labelled node, its outgoing edge is redirected to its unlabelled sibling node in
a dependency-oriented RST tree; the label of that node becomes the label of the new
outgoing edge of that node in a dependency-oriented RST tree. Figure 6.4 shows the
dependency-oriented RST tree reconstructed from the span-oriented RST tree in Figure 6.3.
Dashed edges in red are original edges in the span-oriented RST tree that have been
redirected. Edges in red are the corresponding new edges. In such a dependency-oriented
RST tree, the dependencies between Nuclei and Satellites are directly shown. For instance,
in Figure 6.4, node 6 is now the parent of node 7, and the rhetorical relation between
them is now shown by the label of the edge between them.

I use the RST parser by Wang et al. (2017) to obtain the span-oriented RST tree of

Figure 6.4: A dependency-oriented RST tree reconstructed from the span-oriented RST
tree in Figure 6.3.
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each document1, and then convert it into a dependency-oriented RST tree. Since the
minimal unit in an RST tree is a segment, each token in a segment shares the same
discourse information. To encode the information in a dependency-oriented RST tree,
I represent the path from each segment to the root node as a list of tuples in the form
of (edge_label, start_index of target node, end_index of target node) along that path.
As the relation between a Nucleus and its parent is left unlabelled up to now, I use a
dummy label called “span” to encode these relations. For example, segment 5 has the path
[(concession, 78, 107), (span, 73, 107), (evidence, 46, 72), (span, 46, 107), (span, 1, 107),
(root, 0, 0)].

6.1.1.3 Knowledge graph

Knowledge graphs encode structured information about entities, concepts, and events, as
well as the relationships between them. ConceptNet-5.5 (Speer et al., 2017) is a large-scale,
open-source curated knowledge graph. In ConceptNet, a node is a word or phrase of
a natural language, and an edge is the relationship between two nodes. There are 36
relations in ConceptNet, including bi-directional (i.e. symmetrical) relations, such as
LocatedNear, RelatedTo, and Synonym, and uni-directional (i.e. asymmetrical)
relations, such as IsA, PartOf, and UsedFor. The five most frequent relations among
these are:

• RelatedTo: A connection exists between A and B, though the specific nature of
the relationship remains unspecified.

• FormOf: A represents an inflected version of B, with B being the base or root
form.

• IsA: A is either a subset or a specific instance of B, implying that all instances of
A fall under B.

• PartOf: A is a component or segment of B.

• HasA: B is associated with A, either as an inherent component or through a socially
constructed notion of ownership.

Figure 6.5 shows a partial list of entries related to the entry “argument” in ConceptNet,
together with the four types of relations between them, namely “synonyms”, “related
terms”, “derived terms”, and “types of argument”. For example, from this list we can see
that “clincher” is a type of argument. In ConceptNet, there are twenty types of relations
occurring with “argument”.

1Since this parser does not support segmentation, I use sentence boundaries as segment boundaries for
RST parsing.
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Figure 6.5: A partial list of entries related to “argument” and their relations in ConceptNet.

I decided to evaluate ConceptNet as an external knowledge source for several reasons.
One, arguments often contain terms like specialised terminologies, acronyms, and cultural
references that might not be explicitly explained in the data. I expect ConceptNet to
support argument mining by providing relevant semantic information about such terms.
Two, I believe that ConceptNet can assist in uncovering relationships between terms in
arguments, especially when these connections require knowledge not evident in the given
data. For example, consider the argument, “Carlos does ten minutes of jumping rope every
day and his cardiovascular health has significantly improved”. “Jumping rope” may appear
rarely in the data, and the connection between “jumping rope” and “cardiovascular health”
might not be apparent from the data alone. However, in ConceptNet we can find that
jumping rope is “a type of” good exercise and it is “used for” cardiovascular health.

Word and phrase entries in ConceptNet cover multiple languages such as Arabic, English,
and Spanish. Since this study targets English text and my AMDP approach operates at the
token-level, I incorporate only the single-word English entries from ConceptNet. Sometimes,
the meaning of a word changes according to its part-of-speech. Most entries in ConceptNet
are stated in their non-disambiguated form, but some entries are disambiguated. For
instance, the entry “record/n” refers to the noun sense of the word “record”. I select only
the non-disambiguated entry, given that my AMDP approach does not incorporate any
kind of disambiguation, neither by word sense nor by part-of-speech.

I encode the information of each ConceptNet entry as a list of tuples in the form
(relation_label, linked_entry, edge_direction). Here, linked_entry means the entry
that is linked to the current entry, relation_label is the label of the relation between the
two entries, and edge_direction indicates if the edge comes from the current entry, goes to
the current entry, or is bi-directional. Examples of such tuples extracted from Figure 6.5 in-
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clude (debate, Synonym, bidirectional), (fight, RelatedTo, bidirectional), (argumentable,
DerivedFrom, incoming), and (adducing, IsA, incomining).

6.1.1.4 Pre-trained large language model

In recent years, many pre-trained large language models adopt a Transformer-based
architecture, and are trained on a broad range of internet text (Radford et al., 2018, Devlin
et al., 2019, Radford et al., 2019, Brown et al., 2020). Exemplified by GPT-3.5 (Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023), these models have exhibited strong capabilities
in Natural language Understanding (NLU) and Natural language Generation (NLG), such
as opinion summarisation (Bhaskar et al., 2023), taking medical examinations (Lin et al.,
2023), and writing argumentative essays (Liu et al., 2023b). Also, these models have
demonstrated few-shot learning capabilities (Bommarito II and Katz, 2022, Chen et al.,
2023), which means that they can generalise and perform tasks effectively with minimal
training examples.

Pre-trained large language models may serve as external knowledge sources for argument
mining. Their extensive training data may enable them to implicitly acquire world
knowledge, linguistic patterns, and reasoning capabilities to some extent. I selected
GPT-3.5 as the external knowledge source in this study, because it is the most powerful
pre-trained large language model that I have free access to. In order to use GPT-3.5 as an
external knowledge source, I use specifically designed prompts that simulate the argument
mining task to instruct GPT-3.5 to generate responses. I use the responses to construct
an argument graph for each argument, which is then encoded as features given to my
parsers. The algorithm for prompting GPT-3.5 and argument graph generation is given as
Algorithm 12. Crucial steps in this algorithm are detailed below:

1. Lines 1-3: I designed the first prompt in the hope to find the main statements
of an argument. The first prompt (Promptmain) given to GPT-3.5 is the entire
argument text followed by the question “Which exact segments in the text above are
the main statements of this argument?” The segments returned are then added to
the argument graph.

2. Lines 7-13: The second prompt aims to find all the supporting components of a
given component. For every segment that GPT-3.5 returns in the previous step,
the second prompt (Promptsup) is the complete argument followed by the question
“Which exact segments in the text above support the claim that ‘[segment]’?” The
segments returned are then treated as candidate supporting dependants of the input
segment, if they are not already in the argument graph.

2As prompting strategies for large language models is not a major concern of my thesis, the sensitivity
of this algorithm to the exact casting of the prompts is not studied.
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Algorithm 1 Argument Mining with GPT-3.5
Require: Argument A
0: Initialise ArgumentGraph
1: Promptmain ← “Which exact segments in the text above are the main statements

of this argument?′′

2: Segments← GPT (A+ Promptmain)
3: Add Segments to ArgumentGraph
4: CurrentSegments← Segments
5: for i = 1 to 3 do
5: Initialise DepSegments
6: for each CurrentSegment in CurrentSegments do
7: Promptsup ← “Which exact segments in the text above support the claim

that ‘[CurrentSegment]′?′′

8: SupportingSegments← GPT (A+ Promptsup)
9: for each SupportingSegment in SupportingSegments do

10: if SupportingSegment in ArgumentGraph then
11: Remove SupportingSegment from SupportingSegments
12: end if
13: end for
14: Promptatt ← “Which exact segments in the text above attack the claim

that ‘[CurrentSegment]′?′′

15: AttackingSegments← GPT (A+ Promptatt)
16: for each AttackingSegment in AttackingSegments do
17: if AttackingSegment in ArgumentGraph then
18: Remove AttackingSegment from AttackingSegments
19: end if
20: if AttackingSegment in SupportingSegments then
21: Promptop ← “Does the claim ‘[AttackingSegment]′ support or attack

the conclusion that ‘[CurrentSegment]′?′′

22: OverlapCheck ← GPT (Promptop)
23: if ‘support’ in OverlapCheck then
24: Remove AttackingSegment from AttackingSegments
25: else
26: Remove AttackingSegment from SupportingSegments
27: end if
28: end if
29: end for
30: Add SupportingSegments to ArgumentGraph with target segment index and

relation label
31: Add AttackingSegments to ArgumentGraph with target segment index and

relation label
32: Add SupportingSegments to DepSegments
33: Add AttackingSegments to DepSegments
34: end for
35: CurrentSegments← DepSegments
36: end for
37: return ArgumentGraph
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3. Lines 14-19: The third prompt aims to find all the attacking components of a
given component. For every input segment in the previous step, the third prompt
(Promptatt) is the complete argument followed by the question “Which exact segments
in the text above attack the claim that ‘[segment]’?” The segments returned are
then treated as candidate attacking dependants of the input segment, if they are not
already in the argument graph.

4. Lines 20-28: There are instances when a single segment is identified by GPT-3.5 as
a supporting and attacking segment at the same time for the same input segment,
which is a structure not permissible in my annotation scheme. The fourth prompt
aims to solve this problem by keeping such a segment as either a supporting or
attacking segment. For each segment returned in step 2 and step 3 at the same time
(i.e. an overlapping segment), the question “Does the claim ‘[overlapping segment]’
support or attack the conclusion ‘[input segment]’?” is presented as the fourth
prompt (Promptop). The relation between the overlapping segment and the input
segment is determined based on GPT-3.5’s response. The overlapping segment is
removed from one of the candidate sets generated in step 2 or step 3 accordingly.

5. Lines 30-33: The remaining candidate segments in step 2 are added to the argument
graph as supporting dependants of the input segment. The remaining candidate
segments in step 3 are added to the argument graph as attacking dependants of the
input segment.

6. Steps 2-5 are iteratively conducted up to three times, or until no new segments are
returned.

There is one special step that is not shown in Algorithm 1, because it is automatically
applied every time GPT-3.5 returns a segment in steps 1-3. This step checks if there is
an exact match between a segment returned and a corresponding segment in the original
argument. This is because GPT-3.5 does not guarantee to always return exact segments
in the original argument. If the segment returned is not an exact match, the original
argument followed by the instruction “Please find the exact segment in the original text
for ‘[segment]’.” is presented to GPT-3.5. This step is repeated until an exact match is
found. The segment initially returned is then replaced by this exact match for subsequent
steps of Algorithm 1.

In an effort to exploit the few-shot learning abilities of GPT-3.5, I randomly select
ten documents from the training set. These documents serve to teach the model how to
respond to the prompting questions in Algorithm 1. I transformed all undercuts into direct
Attacks in this teaching material. This is because the Persuasive Essays dataset does
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not contain undercuts and I wanted all data to have a coherent structure3.
Biases might arise from the order in which documents are presented if GPT-3.5 processes

multiple documents within on session. I therefore present each document in the test set to
GPT-3.5 in a separate session.

After an argument graph is generated for each document by GPT-3.5, I encode the
information in the graph in a manner similar to that of the discourse information, as
described in Section 6.1.1.2.

6.1.2 Transfer-based approach

In the transfer-based approach, I examine cross-domain and cross-task transfer methods.
Cross-domain transfer refers to the practice of applying knowledge learned from one
domain to another. Cross-task transfer involves applying knowledge learned from one task
to another.

In the setting of end-to-end neural models, the integration of external knowledge begins
by training models on a source task or domain. This process allows external knowledge to
be stored within the pre-trained model weights. Subsequently, instead of initialising from
scratch, these pre-trained weights serve as the foundation for training the model on the
target task or domain.

The external knowledge used for this approach comes from an argument mining dataset
distinct from the target datasets, and from two NLP tasks closely related to argument
mining: syntactic parsing and discourse parsing.

6.1.2.1 Cross-domain transfer

In the context of argument mining, different domains can refer to different types of text,
such as online forum debates, legal documents, and scientific literature. Domain differences
can also arise from the topics of arguments, such as education, religion, and politics.

Each of these domains may have its own semantic, stylistic, and structural charac-
teristics. For instance, online forum debates may be characterised by informal language,
personal anecdotes, and emotion-driven assertions. Legal documents are more formal,
follow a stringent structure, and prioritise clarity and precision. Scientific literature is often
dense with domain-specific terminology and follows a systematic approach in presenting
arguments, often rooted in empirical evidence. Such discrepancies in argument structure
and language use across different domains can create challenges for the successful transfer
of knowledge.

When transferring the knowledge in the source dataset to the target dataset, it is also
important to consider the difference in annotation schemes between them. Differences in

3In future work, it is possible to devise a prompting strategy that teaches GPT-3.5 more specifically
about undercuts, at least for the Quora section of these experiments.
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annotation schemes can result in inconsistencies in how data is interpreted or labelled. For
instance, a MajorClaim and a Claim in the Persuasive Essays dataset would both be
labelled as Proposition under my annotation scheme. Such differences might mislead
the model and lower the accuracy of its predictions.

Therefore, for successful knowledge transfer, the chosen source dataset should closely
align with the target datasets, namely the Persuasive Essays dataset and the Quora dataset,
in terms of argument structures, linguistic style, and annotation schemes. Given these
prerequisites, I selected the Gold Standard Toulmin dataset from the datasets reviewed in
Section 3.1 as the source for cross-domain transfer. While the Microtext dataset was a
promising contender, its limited size, which is only 7,846 tokens, made me disregard it.

In the Gold Standard Toulmin dataset, argument relations are not labelled, but
Habernal and Gurevych (2017) describe a procedure on how they can be inferred:

• Backings are not related to any other components.

• The relation between a Premise and a Claim is always a Support.

• The relation between a Rebuttal and a Claim is always an Attack.

• The relation between a Refutation and a Rebuttal is always an Attack.

After establishing these relations, I use this dataset to pre-train my model from scratch.
The pre-trained model wights are then used to initialise the model trained on the target
datasets.

6.1.2.2 Cross-task transfer

For cross-task transfer, the source task and the target task should bear some resemblance
to each other. More importantly, they should be solvable using the same neural model.

I chose syntactic parsing and discourse parsing as the source tasks for cross-task transfer.
In Sections 6.1.1.1 and 6.1.1.2, I have already discussed the connection between syntactic
parsing and argument mining, as well as the connection between discourse parsing and
argument mining. Syntactic parsing provides information on the structure of sentences,
and discourse parsing on that of documents. I expect these two tasks to help argument
mining, a task which is similar in spirit.

The datasets for the source task and the target task usually originate from the same
underlying raw text. In order to perform cross-task transfer for the Persuasive Essays
dataset and the Quora dataset, I therefore need datasets with syntactic and discourse
parses of their text. To achieve this, I use the Stanford CoreNLP syntactic dependency
parser to create syntactic parse trees for the two dataset, and the RST parser by Wang
et al. (2017) to generate discourse parse trees.
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Figure 6.6: A new discourse parse tree reconstructed from the dependency-oriented RST
tree in Figure 6.4.

When adapting syntactic parse trees for my neural parser, I regard all syntactic parse
trees (one per sentence) in a document together a graph. Such a graph composed of many
isolated subgraphs is one data point for the parser.

It is not as straightforward to adapt RST trees to my neural parser. Besides nodes that
contain just one EDU, RST trees also include nodes that contain multiple EDUs. My neural
parser does not support this structure, as it is only capable of predicting relationships
between individual segments, not between a single segment and a unit comprising multiple
segments. I therefore have to exclude such nodes from RST trees, but in such a way that
the loss of information is minimised. I designed an method to automatically transform a
span-oriented RST tree into a new discourse parse tree in which each node only contains
one EDU. Figure 6.6 shows the new tree reconstructed from the dependency-oriented RST
tree in Figure 6.4. When describing this method, I refer to a node that only contains one
EDU as a single-EDU node (e.g. node 1 in Figure 6.4), a node containing multiple EDUs
as a multi-EDU node (e.g. node [2-3]). The method is as follows:

• I define the “core span” of a multi-EDU node as the first single-EDU node encountered
when traversing from the multi-EDU node down the tree, while bypassing any labelled
edges. For instance, the core span of node [1-3] is node 2. The core span of a single-
EDU node is itself.

• I define the “temporal parent” of any node as the node reached by traversing from
the initial node up the tree, after a labelled edge is encountered. The label of this
labelled edge also becomes the “temporal edge label” between the source node and its
temporal parent. For instance, the temporal parent of node 2 is node [4-7], and the
temporal edge label between node 2 and node [4-7] is Background. The temporal
parent of node 6 is node 4, and the temporal edge label is Evidence.
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• A new discourse parse tree is constructed as follows: for each single-EDU node in
the original dependency-oriented RST tree, its parent in the new discourse parse
tree is the core span of its temporal parent in the original dependency-oriented RST
tree; the label of the edge between that single-EDU node and its parent in the new
discourse parse is the same as the temporal edge label between the source node and
its temporal parent in the original dependency-oriented RST tree.

After these adaptations, I use these adapted syntactic parse trees and discourse parse
trees to pre-train my model from scratch. The pre-trained model wights are then used to
initialise the model trained on the target datasets.

6.2 Experiment

In this section, I describe an experiment carried out to evaluate the feature-based and
transfer-based approaches described earlier. The goal is to explore the impact of diverse
knowledge sources and integration techniques on formal versus informal arguments. Addi-
tionally, I explore their effect on undercut recognition, aiming to pinpoint which sources
and techniques stand out in their effectiveness for this specific recognition task.

6.2.1 Systems

In this experiment, I use my the GNN-based dependency parser in conjunction with my
undercut-inclusive dependency representation as the baseline. Specifically, there are two
models within this baseline: one trained on the Persuasive Essays dataset (i.e. GNN_inc
in Table 5.4) and another on the Quora dataset (i.e. GNN_inc in Table 5.8).

For the feature-based approach, I investigate the four kinds of features described in
Sections 6.1.1.1-6.1.1.4:

• Syn: Using syntactic information as additional features.

• Dis : Using discourse information as additional features.

• CN : Using ConceptNet as additional features.

• GPT : Using GPT-3.5 as additional features.

For the transfer-based approach, I experiment with three transfer techniques:

• GST : Cross-domain transfer using the Gold Standard Toulmin dataset as the source
dataset.

• SynPar : Cross-task transfer using syntactic parsing as the source task.

• DisPar : Cross-task transfer using discourse parsing as the source task.
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6.2.2 Experimental setup

To integrate features into the neural parser, I first project each kind of features with an
LSTM layer, and then combine the projected tensors with the BERT-encoded representa-
tions of the input text through point-wise addition.

During transfer-based integration, I use the fine-tuning strategy in Howard and Ruder
(2018) to fine-tuning the GNN-based parser on the target datasets and task. The BERT
encoder in the GNN-based parser is kept static during fine-tuning.

In all other aspects, the experimental setup follows that from Sections 5.3 and 5.4.

6.2.3 Results

Results of the experiment on the Persuasive Essays dataset are presented in Table 6.1 and
those on the Quora dataset in Table 6.3. Results for the corresponding permutation tests
are shown in Table 6.2 and Table 6.4.

In terms of the overall performance, feature-based knowledge integration with GPT-3.5
significantly (28 paired permutation tests, all p < 0.01) outperforms all other methods
on both datasets and for both tasks. Specifically, GPT achieves an F1 score of 75.3% for
component identification and 50.5% for relation identification on the Persuasive Essays
dataset. On the Quora dataset, GPT reaches an F1 score of 69.2% for components and
48.5% for relations.

Regarding the effectiveness of diverse external knowledge sources within the feature-

Feature-based Transfer-based
Baseline Syn Dis CN GPT GST SynPar DisPar

Component 73.8 74.4 75.0 74.2 75.3 73.3 74.6 74.9
Relation 49.4 49.8 50.1 49.6 50.5 48.9 49.7 50.2

Table 6.1: Results for external knowledge integration on the Persuasive Essays dataset.

Baseline Syn Dis CN GPT GST SynPar DisPar

Baseline - < < < < > < <

Syn > - < > < > = <

Dis > > - > < > > =

CN > < < - < > < <

GPT > > > > - > > >

GST < < < < < - < <

SynPar > = < = < > - <

DisPar > > = > < > > -

Table 6.2: Results for the permutation tests regarding Tables 6.1. P-values in blue are for
component identification, red for relation identification.
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Feature-based Transfer-based
Baseline Syn Dis CN GPT GST SynPar DisPar

Component 66.2 67.8 68.0 67.0 69.2 65.7 67.4 68.6
Relation 45.8 47.0 47.5 46.4 48.5 45.6 46.6 47.9

Table 6.3: Results for external knowledge integration on the Quora dataset.

Baseline Syn Dis CN GPT GST SynPar DisPar

Baseline - < < < < > < <

Syn > - < = < > > <

Dis > > - > < > > <

CN > < < - < > < <

GPT > > > > - > > >

GST < < < < < - < <

SynPar > < < = < > - <

DisPar > > > > < > > -

Table 6.4: Results for the permutation tests regarding 6.3. P-values in blue are for
component identification, red for relation identification.

based approach, each knowledge source brings significant (p < 0.01) improvement to
the baseline. The results suggest a pattern: GPT-3.5 consistently leads in effectiveness,
followed in order by discourse information, syntactic information, and ConceptNet. Among
these knowledge sources, we can see that:

• The knowledge from GPT-3.5 leads to the biggest improvement for component
identification. Compared to the baseline, GPT excels by 2.5% on the Persuasive
Essays dataset (GPT = 75.3%, baseline = 73.8%, p < 0.01) and 3.0% on the Quora
dataset (GPT = 69.2%, baseline = 66.2%, p < 0.01). It is also the best-performing
system for relation identification, with an increase of 1.1% on the Persuasive Essays
dataset (GPT = 50.5%, baseline = 49.4%, p < 0.01) and 2.7% on the Quora dataset
(GPT = 48.5%, baseline = 45.8%, p < 0.01). This success might be attributed to
GPT-3.5’s ability in few-shot learning and in using context, and the vast array of
world knowledge embedded in its training data.

• Discourse information appears to be the second most effective knowledge source.
For component identification, Dis achieves a 1.2% increase over the baseline on the
Persuasive Essays dataset (Dis = 75.0%, baseline = 73.8%, p < 0.01) and 1.8%
on the Quora dataset (Dis = 68.0%, baseline = 66.2%, p < 0.01). For relation
identification, the increase is 0.7% (Dis = 50.1%, baseline = 49.4%, p < 0.01) and
1.7% (Dis = 47.5%, baseline = 45.8%, p < 0.01).

• Syntactic information ranks third. For component identification, Syn outperforms the
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baseline by 0.6% on the Persuasive Essays dataset (Syn = 74.4%, baseline = 73.8%,
p < 0.01) and 1.6% on the Quora dataset (Syn = 67.8%, baseline = 66.2%, p < 0.01).
For relation identification, the increase is 0.4% (Syn = 49.8%, baseline = 49.4%,
p < 0.01) and 1.2% (Syn = 47.0%, baseline = 45.8%, p < 0.01).

• The improvement introduced by ConceptNet is the least, but it is still significant. For
component identification, CN outperforms the baseline by 0.4% on the Persuasive
Essays dataset (CN = 74.2%, baseline = 73.8%, p < 0.01) and 0.8% on the Quora
dataset (CN = 67.0%, baseline = 66.2%, p < 0.01). For relation identification, the
increase is 0.2% (CN = 49.6%, baseline = 49.4%, p < 0.01) and 0.6% (CN = 46.4%,
baseline = 45.8%, p < 0.01). The limited effect size could be due to the discrepancy
between what the knowledge ConceptNet provides and what is required by the target
datasets. For example, while the Quora dataset contains many names of actual
persons, most of them do not have corresponding entries in ConceptNet.

Discourse information and syntactic information both provide information about the
structure of text. Comparing these two knowledge sources, I find that in the feature-based
approach discourse information is significantly more effective than syntactic information.
For component identification, Dis outperforms Syn by 0.6% on the Persuasive Essays
dataset (Dis = 75.0%, Syn = 74.4%, p < 0.01) and 0.2% on the Quora dataset (Dis =

68.0%, Syn = 67.8%, p < 0.01). For relation identification, the increase is 0.3% (Dis =

50.1%, Syn = 49.8%, p < 0.01) and 0.5% (Dis = 47.5%, Syn = 47.0%, p < 0.01). This
difference in performance could be attributed to two potential reasons. Firstly, the scope
of information in a discourse parse tree is the entire document, while for a syntactic parse
tree it is only a sentence. When it comes to identifying how components are hierarchically
structured to form an argument, the global view of discourse information may be more
effective. Secondly, most relations in an argument stretch across sentences. Therefore, the
relations in syntactic parsing, which only occur within sentences, might not be that useful
for relation identification in argument mining.

The two cross-task transfer methods significantly outperform the baseline. Among the
two source tasks used in cross-task transfer, we can see that:

• Discourse parsing as a source task has the biggest improvement over the baseline.
For component identification, DisPar outperforms the baseline by 1.1% on the
Persuasive Essays dataset (DisPar = 74.9%, baseline = 73.8%, p < 0.01) and 1.6%
on the Quora dataset (DisPar = 68.6%, baseline = 66.2%, p < 0.01). For relation
identification, the increase is 0.8% (DisPar = 50.2%, baseline = 49.4%, p < 0.01)
and 1.9% (DisPar = 47.9%, baseline = 45.8%, p < 0.01).

• Syntactic parsing as a source task can also improve argument mining. For component
identification, SynPar outperforms the baseline by 0.8% on the Persuasive Essays
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dataset (SynPar = 74.6%, baseline = 73.8%, p < 0.01) and 1.6% on the Quora
dataset (SynPar = 67.4%, baseline = 66.2%, p < 0.01). For relation identification,
the increase is 0.3% (SynPar = 49.7%, baseline = 49.4%, p < 0.01) and 0.8%
(SynPar = 46.6%, baseline = 45.8%, p < 0.01).

Comparing the two source tasks, I find that discourse parsing is significantly more
effective than syntactic parsing as a source task. For component identification, Dis-
Par outperforms SynPar by 0.3% on the Persuasive Essays dataset (DisPar = 74.9%,
SynPar = 74.6%, p < 0.01) and 1.2% on the Quora dataset (DisPar = 68.6%, SynPar =

67.4%, p < 0.01). For relation identification, the increase is 0.5% (DisPar = 50.2%,
SynPar = 49.7%, p < 0.01) and 1.3% (DisPar = 47.9%, SynPar = 46.6%, p < 0.01).
This finding is in line with my previous finding from feature-based integration that dis-
course information as an additional feature is more useful than syntactic information.
All of this suggests that knowledge about the structure of an entire document can be
particularly effective for argument mining.

Compared to the baseline, cross-domain transfer with the Gold Standard Toulmin
dataset as the source dataset significantly lowers performance. For component identification,
GST shows a decline of 0.5% compared to the baseline on the Persuasive Essays dataset
(GST = 73.3%, baseline = 73.8%, p < 0.01) and 0.5% on the Quora dataset (GST =

65.7%, baseline = 66.2%, p < 0.01). For relation identification, the decrease is 0.5%
(GST = 48.9%, baseline = 49.4%, p < 0.01) and 0.2% (GST = 45.6%, baseline = 45.8%,
p < 0.01). This result implies that the Gold Standard Toulmin dataset might have
introduced too much noise during knowledge transfer. The noise may stem from the
disparity in annotation schemes between the source dataset and the two target datasets.
This problem appears to have overshadowed the potentially useful knowledge offered by
the Gold Standard Toulmin dataset.

Regarding the different impact of external knowledge on formal versus informal text,
the Quora dataset benefits more from external knowledge than the Persuasive Essays
dataset does. For component identification, the average improvement of all the knowledge
integration systems over the baseline is 0.7% on the Persuasive Essays dataset and 1.4% on
the Quora dataset. For relation identification, the average improvement is 0.4% and 1.3%.
The information contained in the more formal Persuasive Essays dataset may already
be in the form that models can exploit more easily. In contrast, the informal nature of
the Quora dataset, coupled with its diverse styles and potentially less clear argument
structures, could result in a greater profit from external knowledge.

In conclusion, most of the methods investigated in this chapter are effective for argument
mining. GPT-3.5 emerges as a standout feature-based knowledge source. Discourse
information and syntactic information are also useful as either additional features or
source tasks in cross-task transfer. Knowledge transfer from the Gold Standard Toulmin
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dataset is not successful, which indicates the difficulties in cross-domain adaptation. The
results further suggest distinctions between formal and informal arguments, with the latter
benefiting more from external insights.

6.2.4 Influence of external knowledge integration on undercuts

Considering the importance of undercuts for this thesis, I will now look in more details at
the specific results related to undercuts in the Quora dataset.

Table 6.5 shows the F1 scores for undercut recognition. Results for the corresponding
permutation tests are given in Table 6.6.

The results show that discourse information as an additional feature leads to the most
prominent increase over the baseline. As the best-performing system, Dis significantly
outperforms the baseline by 6.6% (Dis = 45.4%, baseline = 38.8%, p < 0.01). Feature-
based integration with syntactic information (i.e. Syn) also significantly outperforms the
baseline by 3.7% (Syn = 42.5%, baseline = 38.8%, p < 0.01).

The improvement brought by ConceptNet as an additional feature (i.e. CN ) or syntactic
parsing as a source task (i.e. SynPar) over the baseline is not significant.

The remaining methods, namely the Gold Standard Toulmin dataset as a source
dataset (i.e. GST ), GPT-3.5 as an additional feature (i.e. GPT ), and discourse parsing as
a source task (i.e. DisPar), are all significantly worse than the baseline. GST achieves an
F1 score significantly lower than the baseline by 5.9% (GST = 32.9%, baseline = 38.8%,
p < 0.01). For GPT and DisPar, the decreases are 8.1% (GPT = 30.7%, baseline = 38.8%,
p < 0.01) and 9.7% (DisPar = 29.1%, baseline = 38.8%, p < 0.01). This indicates that

Feature-based Transfer-based
Baseline Syn Dis CN GPT GST SynPar DisPar
38.8 42.5 45.4 39.1 30.7 32.9 40.4 29.1

Table 6.5: Results for undercut recognition on the Quora dataset using various external
knowledge integration methods.

Baseline Syn Dis CN GPT GST SynPar

Syn > - - - - - -
Dis > > - - - - -
CN = < < - - - -
GPT < < < < - - -
GST < < < < > - -
SynPar = = < = > > -
DisPar < < < < = < <

Table 6.6: Results for the permutation tests regarding Table 6.5.
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these methods might not be suitable for undercut recognition.
An interesting point is the difference in performance between Dis and DisPar. While

both methods incorporate discourse information, Dis significantly outperforms DisPar by
a margin of 16.3% (Dis = 45.4%, DisPar = 29.1%, p < 0.01). This disparity might be
related to my adaptation of RST trees when I accommodate my neural parser. During
this adaptation, all segments initially targeting multi-segment spans were redirected to
single-segment spans, as I have described in Section 6.1.2.2. If some of these segments
happen to be undercutting segments, pre-training with such adapted RST trees may
confuse the parser in terms of undercut recognition. This leaves the challenge for future
studies to effectively use discourse parsing for cross-task transfer.

Another observation is the difference in GPT ’s performance between addressing the
overall task and addressing undercut recognition specifically. GPT outperforms all other
systems in both component and relation identification, but when it comes to undercut
recognition, its performance is much lower than the baseline. I assume this might be
caused by the constraints of my prompting strategy. The prompting strategy only asks
GPT-3.5 to find the supporting and attacking segments, so that no undercuts can possibly
be correctly recognised by GPT-3.5. Out of the 326 undercutting components in the
Quora dataset, GPT-3.5 misclassifies 191 as direct attacking components4. These incorrect
classifications could potentially confuse the parser when in terms of distinguishing between
undercuts and direct Attacks.

6.3 Chapter summary

In this chapter, I experimented with various methods for model-agnostic external knowledge
integration, in order to evaluate their influence on end-to-end argument mining.

In the feature-based approach, I incorporated knowledge from multiple sources as
additional features. These knowledge sources include syntactic information, discourse
information, ConceptNet, and GPT-3.5. In the transfer-based approach, I used the Gold
Standard Toulmin dataset as the source dataset for cross-domain transfer, as well as
syntactic parsing and discourse parsing as the source tasks for cross-task transfer.

In the experiment on the Persuasive Essays dataset and the Quora dataset, we saw
that most of these methods significantly outperforms the baseline. Among the methods,
feature-based knowledge integration with GPT-3.5 is most effective. Cross-domain transfer
with the Gold Standard Toulmin dataset is the only method that significantly lags behind
the baseline. I also found that the Quora dataset benefits more from external knowledge
than the Persuasive Essays dataset does.

4GPT-3.5 does not predict precisely very often in terms of segment boundaries. Therefore, when
compiling this number, I declare a match if a segment overlaps with at least 50% of the tokens in the
corresponding gold standard segment.
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When analysing the specific results on undercuts in the Quora dataset, I found that
only two methods significantly outperform the baseline, namely feature-based integration
with discourse information and with syntactic information.

The results in this chapter, together with those in Chapters 4 and 5, set the stage for
the final chapter, where I will draw overarching conclusions, discuss the limitations of my
thesis, and explore potential avenues for future research.
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Chapter 7

Conclusions and future work

In this thesis, I have addressed the challenge of argument mining, with a specific focus
on informal arguments in online discussions. The driving force behind this research is
to foster better understanding among diverse parties engaged in controversial topics, by
developing methods capable of automatically analysing the vast amount of user-generated
text in online discussions. In pursuit of the research objectives, I have designed an
annotation scheme for informal arguments, proposed an effective end-to-end approach
to argument mining, and carried out an extensive investigation into the integration of
external knowledge for argument mining.

7.1 Contributions

The contributions of this thesis are four-fold:

1. Designing an annotation scheme for informal arguments in online discus-
sions. I have designed an annotation scheme that is both simple and informative,
tailored specifically for informal arguments in online discussions. This scheme goes
beyond most existing models by explicitly marking undercuts, thus capturing the
deeper structural nuances of arguments. The argument components in the scheme
were designed to reflect persuasion patterns within arguments. To test this scheme,
I have collected 400 texts from Quora, an online platform for rational discussions on
controversial topics. I have provided a layer of annotation using two trained annota-
tors. My annotation study indicates good inter-annotator agreement, implying the
practicability of the annotation scheme and the reliability of the resultant dataset.

2. Proposing an effective end-to-end approach to argument mining. My
novel end-to-end approach to argument mining is based on dependency parsing. I
have created two new dependency representations for arguments, and applied two
neural parsers to the task. This approach is the first end-to-end approach applied
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to informal arguments in online discussions. When applied to a more traditional
benchmark containing formal arguments, it establishes a new state of the art.

3. Computational modelling of undercuts. An undercut represents a relation
that exists between a component and another relation. Undercuts have rarely been
investigated in the field of argument mining and have yet to be computationally
modelled by automatic approaches. This thesis presents the first computational
modelling of undercuts. One of the above-mentioned dependency representations
I have created allows existing neural models to handle undercuts directly. I have
evaluated my method on the Quora dataset which contains a substantial amount of
undercuts.

4. Investigating external knowledge integration for argument mining. I
have investigated various integration techniques and external knowledge sources for
integrating external knowledge into end-to-end argument mining models. I have
proposed feature-based and transfer-based approaches for integration, and have
explored different types of knowledge sources: syntax, discourse, knowledge graphs,
and large language models. These integration techniques and knowledge sources
have been evaluated on both formal and informal arguments, and most of them have
boosted the performance of argument mining models.

7.2 Limitations and future work

In this section, I present an outlook into the future for argument mining with text in
online discussions in particular and for argument mining in general, drawing from the
findings of this thesis.

Direct adaption of pre-trained large language models for argument mining.
In my investigation into external knowledge integration, GPT-3.5, a pre-trained large
language model, emerges as the most potent external knowledge source for argument
mining out of those I have considered. In this thesis, it is employed to generate argument
graphs using a structured prompting strategy. It would be advantageous to directly adapt
pre-trained large language models for argument mining, thereby fully exploiting their
robust capabilities in reasoning, few-shot learning, and the integration of a wide range of
common sense knowledge. For instance, the dependency representations for arguments
proposed in this thesis could be serialised into sequences, which could then be directly
generated by pre-trained large language models.

Datasets with more balanced component categories. My annotation scheme includes
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four types of components. I designed those categories because of their ability to reflect
persuasion patterns and their prevalence during my manual analysis on Quora texts. In
the actual annotation of the Quora dataset, Stakes are relatively rare, so I had to merge
them with Anecdotes for statistical analysis in the experiments. I hypothesise that these
component categories may appear more frequently in topics closely related to personal
experience. Future studies can include more arguments in such topics that empirically
have more Stakes, so as to achieve more balanced component categories in the dataset.

Expanding sources and advancing techniques for external knowledge integration.
The methods for external knowledge integration explored in this thesis are confined to
model-agnostic methods. I chose this approach because I wanted to concentrate on
the impact of external knowledge sources and integration techniques, rather than their
interaction with a specific argument mining model. However, this focus also restricts the
selection of external knowledge sources and integration techniques. Consequently, future
research could expand the range of sources and explore more advanced techniques to
enhance argument mining.

Investigating undercuts as a device for expressing value-based disagreement.
Besides their unique structural characteristic, I was particularly interested in undercuts
because I have a hypothesis that they often express disagreement on values. Not all
disagreements arise from a divergence on basic facts: many are based on differing inter-
pretations of how these facts lead to a conclusion. This type of attacking strategy aligns
with the structural characteristics of undercuts, making undercuts a potential subject
for investigation in the study of value-based disagreement. The Quora dataset, with its
relatively frequently occurring undercuts, and the ability of my argument mining approach
to effectively identify them, can provide a solid foundation for this line of research in the
future.
Improving external knowledge integration for enhanced undercut recognition.
Most knowledge integration methods I investigated can effectively improve argument
mining. However, when it comes to undercut recognition, some methods not only fall short
of enhancing performance but on the contrary even impair it. Notably, while GPT-3.5 and
discourse information boost argument mining in general, they hinder undercut recognition.
I suppose this is due to the limitations in my integration strategy, which lacks specific
considerations for undercuts. It would be desirable if future work could develop improved
integration strategies that specifically cater to the intricacies of undercut recognition.

Argument mining with multiple arguments. It is my vision to establish a form of
argument mining that can effectively summarise multiple arguments on the same topic. I
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hope it can help people understand ideas of different parties by distilling and comparing
their arguments. In this thesis, I only studied argument mining with single arguments,
which I consider the basis for multi-document argument mining. Future studies can build
upon this work to develop methods that can aggregate and contrast various arguments
from multiple sources.
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Appendix A

List of topics and candidate questions
on Kialo, and selected questions on
Quora

Under each topic, the first five questions are candidate questions on Kialo, and the last
question (in bold) is the selected question on Quora.

1. Politics

• Should the primary focus of prisons be rehabilitation or punishment

• Should the US adopt stricter gun controls

• Is Putin’s attack on Ukraine unjustifiable and wrong

• Should there be a universal basic income (UBI)

• there should be no limit to freedom of speech

• Do you support gun control

2. Ethics

• All humans should be vegan

• The existence of god

• Is morality objective

• Is BDSM abusive

• Should teachers be allowed to wear religious symbols at school

• Should teachers be allowed to wear religious symbols at school

3. Society
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• Should women only spaces be open to anyone identifying as a woman

• Should humans act to fight climate change

• Would the world be a better place without humans

• Was Donald Trump a good president

• Should inheritance be minimized to create an equal outset for everyone

• Should women only spaces be open to anyone who identifies as a
female

4. Law

• Pro life vs. pro choice: should abortion be legal

• Should private cars be forbidden in large cities

• Should jury trials be abolished

• Should all drugs be legalised

• Should cosmetic surgery be banned

• Should abortion be legal

5. USA

• Is it time to free the nipple toplessness and gender equality in the US

• Is the USA a good country to live in

• Is Joe Biden better than Donald Trump

• Should racial profiling be banned

• Should the US remove Confederate memorials flags and monuments from public
spaces

• Do you think all Confederate monuments statues should be removed
from public areas in the South

6. Philosophy

• Free will or determinism do we have free will

• Is political correctness detrimental to society

• should all religions be banned on a global scale

• Which one is more accurate rationalism or empiricism

• Should humans procreate

• Is political correctness good or bad for society
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7. Government

• Is preferential voting the most effective system for ensuring fairer election
outcomes

• Can man-made climate change be reversed

• Who should provide healthcare the government or the market

• Should the government provide funding for arts programs

• Is GDPR beneficial

• Would a completely free market healthcare system with zero govern-
ment involvement and no subsidies for anyone work better in the
long run

8. Technology

• Do we need nuclear power for sustainable energy production

• Can creativity be enhanced by technology

• Can Kleros (PNK) provide an effective platform for arbitration and dispute
resolution

• Should mobile phones be used in the classroom

• Should humans be allowed to explore DIY gene editing

• Should nuclear energy be banned

9. Economics

• Governments should structure fiscal policy in line with modern monetary theory
(MMT) to better manage their economy

• Is Elon Musk’s takeover of Twitter good for the public

• Does trickle down economics do more harm than good

• A socialist economy would work better than a capitalist economy

• Is globalisation good or bad

• Which do you prefer: a socialist or capitalist economy

10. Religion

• Has religion been a good thing for humanity

• Does the Bible support the conclusion that homosexuality is a sin against god

• Should creationism be taught in schools
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• Should religion be involved in politics

• Do we need religion for morality

• Are religions good for us

11. Science

• Do aliens exist

• If scientifically possible should humans become immortal

• Is sexual orientation a choice

• Is cloning animals ethical

• Is there a need for testing on lab animals in research

• Should animal testing be banned

12. Health

• Is sex reassignment surgery the best option for transgender people

• The ethics of eating animals: is eating meat wrong

• Has social media been good for humanity

• Is vegetarianism a healthy or unhealthy diet to have

• Is organic farming better than conventional farming

• Which is a better way to be healthy: being vegetarian or non-
vegetarian

13. Education

• Should school uniforms be banned

• Should single sex schools be banned

• Should children learn about gender identity and sexual orientation in school

• Should higher education be publicly funded

• Should school be mandatory

• Is it necessary for children to wear school uniforms

14. Children

• Should a license be required in order to have a child

• Is opposite sex parenting preferable to same-sex parenting

• The primary purpose of marriage is procreating and raising children
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• Should men pay child support when abortion is legal

• Should the age of consent be lowered to fourteen

• Should same-sex couples be able to adopt children

15. Gender

• Does feminism empower both women and men

• Gender neutral bathrooms: should they be standard

• Are trans women real women

• Should all transgender athletes have to compete in men’s divisions

• Does feminism strive for equality

• Is feminism corrupting the society

16. Environment

• Are the rich or the poor more responsible for environmental damages

• We should adapt to climate change rather than advert it

• Disposable plastic items should be banned

• Is Greta Thunberg’s impact on society positive

• Should drinking water be fluoridated

• Is Greta Thunberg bringing a positive change

17. Justice

• Do gun control laws reduce crime

• Should animal testing be banned

• Juveniles who commit violent crimes should be treated as adults in the criminal
justice system

• Is OKC police officer Daniel Holtzclaw really guilty of the crimes he was
convicted of

• Should US presidents have the power to issue pardons

• Should juvenile criminals be punished like adults

18. Equality

• Should society work towards becoming colorblind in regards to race/ethnicity

• Should hate speech be legally protected
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• Should society normalise men wearing dresses/skirts

• Should private education be banned

• Should sex work be legal

• Should hate speech be protected under the free speech amendment

19. Democracy

• Democratic governments need safeguards against their own military

• Will liquid democracy be a better mechanism of governance than representative
democracy

• Should burning the US flag be illegal

• Compulsory voting: should voting be mandatory

• Is capitalism good

• Should voting in US elections be mandatory for US citizens

20. Culture

• Is cultural appropriation wrong

• Is freedom of sexuality inducing harm?

• The fewer languages there are the better the world is

• Should bullfighting be banned

• Should public nudity be legal

• Do you support same-sex marriage
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