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Summary: Novel applications of the Josephson effect: Ferroelectric

characterisation and capacitively shunted grain boundary junctions

This thesis describes applications of the ac Josephson effect. Firstly, results are presented

from bicrystal grain boundary YBa2Cu3O7-δ junctions shunted with a YBa2Cu3O7-δ/SrTiO3/Au

multilayer external capacitor, to make a junction with a hysteretic current voltage characteristic

operating at high temperatures. A hysteretic junction with a McCumber parameter of 1.01 at

72.3K, with a critical current of 451µA and a resistance of 0.56Ω was achieved for a junction

shunted with a 150µm2 external capacitor with a 50nm SrTiO3 dielectric. The measured

capacitance was less than that expected from a calculation of the parallel plate shunt

capacitance. The explanation was thermal noise suppression of the hysteresis and the junction

saw the shunt capacitor as a distributed impedance rather than a lumped circuit element.

It was found during these investigations that the influence of the SrTiO3 substrate on the

intrinsic junction capacitance was poorly understood. The permittivity of SrTiO3 is 24000 at

4.2K. A series of YBa2Cu3O7-δ Josephson junctions of lengths from 2µm to 20µm was

patterned on a SrTiO3 bicrystal and the Fiske resonance dispersion relation was measured. The

dispersion relation consisted of two branches, one at low frequencies with a high resonator

capacitance per unit length and a high frequency branch with a low resonator capacitance per

unit length. This was due to the frequency dependence of the permittivity of bulk SrTiO3,

which drops above the soft optic phonon frequency. From the dispersion relation, the

permittivity of bulk SrTiO3 was 750 and the soft optic phonon frequency was 145GHz.

The ac Josephson effect was exploited to measure the permittivity of thin films of

SrTiO3 at microwave frequencies using Josephson junctions coupled to external resonators.

The permittivity of 50nm, 100nm and 200nm SrTiO3 films was frequency independent

between 100GHz and 900GHz and to decrease with film thickness. The permittivity of the

50nm film was 35 and that of the 200nm film was 187 at 4.2K. The permittivity of the 200nm

film was tunable with a dc voltage bias between 245 and 112 at 30K and 116GHz.

The grain boundary capacitance was used to probe grain boundary current transport. The

capacitance per unit area scaled inversely with resistance area product and increased linearly

with critical current density, for undoped and Ca doped YBa2Cu3O7-δ grain boundaries on 24°

bicrystals. This behaviour could not be explained by tunneling models of grain boundary

current transport, and requires current flow over a fraction of the area of the grain boundary.
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Chapter 1: Introduction

1.1 Motivation and objectives of this thesis

One of the most promising areas for applications of superconductivity has been the Josephson

effect. This is the observation of a supercurrent between two superconductors separated by a

weak link. The Josephson junction is a natural voltage tunable microwave oscillator in a region

of the frequency spectrum where there are few alternative sources. The junction can be

configured to act both as a microwave source and a detector. Two Josephson junctions in

parallel are known as a Superconducting QUantum Interference Device (SQUID). The SQUID

is a very sensitive detector of magnetic flux, with applications in biomagnetism and other areas

where non-destructive evaluation is required.

The first experiment described in this thesis is the coupling of an external shunt capacitor to

aYBa2Cu3O7-δ grain boundary Josephson junction, with the aim of creating a device with a

hysteretic current voltage characteristic at high temperatures (>50K). Most Josephson

junctions fabricated from cuprate superconductors to date have not had hysteretic current

voltage characteristics. The primary application of such a device is the relaxation oscillation

SQUID, which oscillates with a frequency dependent on the applied flux. Hysteretic Josephson

junctions are also a useful element for Josephson junction based logic circuits.

As a result of these investigations it was apparent that the influence of the SrTiO3 bicrystal

substrate on the capacitance of the grain boundary Josephson junctions was not well

understood. The permittivity of SrTiO3 is very large (24000) at 4.2K. However, the

capacitance determined from the hysteresis in the current voltage characteristics of the

junctions was not consistent with that calculated for the co-planar contribution to the junction

capacitance from the SrTiO3 substrate with its large permittivity. The permittivity of bulk

SrTiO3 is known to be strongly frequency dependent in the same frequency range as the

Josephson oscillations. Therefore, experiments were performed on a series of Josephson

junctions of various lengths with the aim of ascertaining the influence of the SrTiO3 substrate

on the junction capacitance.

The Josephson oscillations were exploited to measure the permittivity of thin films of SrTiO3

at microwave frequencies. An external resonator coupled to a Josephson junction perturbs the
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current voltage characteristic of that junction. The parameters of the resonator, such as the

permittivity of its dielectric, can be extracted from the position and shape of the perturbation in

the current voltage characteristic of the junction. The frequency dependence of the permittivity

of thin film and bulk SrTiO3 could then be compared and contrasted.

Having obtained a more thorough understanding of the influence of the SrTiO3 substrate on

the capacitance of YBa2Cu3O7-δ grain boundary Josephson junctions, their capacitance was

used as a probe of the current transport mechanism across the grain boundary. Over a decade

after the discovery that grain boundaries limit the critical current of polycrystalline cuprate

superconductors, the mechanism of current transport across the grain boundary still remains

controversial.

The thesis is organised as follows. The remainder of this chapter is devoted to the Josephson

effect and transmission lines. The resistively and capacitively shunted model of the Josephson

junction is presented, followed by an examination of the effect of an applied magnetic field on

the Josephson behaviour. An overview of transmission line theory is given, in terms of a

model consisting of distributed circuit elements. The effect of a transmission line on the

Josephson junction is then discussed. Chapter 2 reviews the properties of YBa2Cu3O7-δ  and

YBa2Cu3O7-δ  Josephson junctions. The structural and electrical properties of YBa2Cu3O7-δ

grain boundaries are described. Chapter 3 reviews the dielectric properties of ferroelectrics and

incipient ferroelectrics such as SrTiO3. The differences between bulk, single crystal SrTiO3

and thin film SrTiO3 are highlighted. The experimental techniques and apparatus needed for

the study are described in Chapter 4. The operation of the relaxation oscillation SQUID and

results from YBa2Cu3O7-δ  grain boundary junctions coupled to external capacitors are

presented in Chapter 5. Chapter 6 reports the experiment to determine the influence of the

SrTiO3 substrate on the capacitance of the grain boundary. Chapter 7 presents measurements

of the permittivity of a series of thicknesses of SrTiO3 films at microwave frequencies, using

Josephson junctions coupled to external resonators. The scaling of the YBa2Cu3O7-δ  grain

boundary resistance area product, critical current density and capacitance per unit area for a

series of junctions is described in Chapter 8. Finally, Chapter 9 concludes the work.

1.2 Basic concepts of superconductivity

The resistance of a superconductor vanishes abruptly to zero when it is cooled below its
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critical temperature Tc. Below Tc a superconductor exhibits perfect diamagnetism, whereby

magnetic and electric fields are completely excluded its bulk. This is the Meissner effect and it

is reversible. The magnetic field decays exponentially in the superconductor over a

characteristic length known as the London penetration depth. Screening supercurrents flow

within a penetration depth of the surface which prevent any magnetic field from penetrating

the bulk of the superconductor.

A complete microscopic theory of superconductivity was developed by Bardeen, Cooper and

Schreiffer (BCS theory). As a result of a strong interaction between the electrons and the

phonons in the superconductor it becomes energetically favourable for the electrons to

condense into pairs, known as Cooper pairs. The pairs are bosons and can therefore be

described by a single macroscopic quantum wavefunction with an amplitude and a phase. The

squared amplitude of this wavefunction can be interpreted as the fraction of the conduction

electrons in the superconducting state. The theory predicts a maximum Tc for

superconductivity, but the Tc of the cuprates is higher than this maximum. Therefore, BCS

theory cannot be directly applied to the cuprates. However, the concept of a macroscopic

quantum wavefunction is still valid for describing the properties of the  cuprate

superconductors, even though the detail of the pairing mechanism remains unclear.

1.3. The Josephson Effect

1.3.1 Introduction and Feynman derivation

In 1962 Josephson[1] predicted that a supercurrent would flow across a weak link between two

superconductors. The effect is the result of the decaying of the superconducting order

parameter Ψ into the weak link. If the order parameters on either side of the weak link overlap

a supercurrent can flow through the weak link. Josephson effects were first convincingly

observed experimentally by Anderson[2].

Here, a derivation of the Josephson effect due to Feynman[3] is given. The superconducting

order parameter is considered as a macroscopic wavefunction and the time dependent

Schrodinger equation L GΨ/dt= Ψ is applied to the superconducting weak link. This gives

(1.1) for the time evolution of the wavefunction on each side of the weak link, where K is a

coupling constant for the interaction of the wavefunction between the two superconductors and
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U1,2 is the energy of the wavefunction in each superconductor.
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If the weak link is insulating then a constant voltage bias V applied across it produces a

difference in potential energy of –2eV, where –2e is the charge on a superconducting pair. If

the zero of energy is taken as (U2-U1)/2, then (1.1) becomes,
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Next, a superconducting wavefunction (1.3) with a phase ϕ1,2 on either side of the weak link

can be substituted into (1.2). The square of the amplitude of the wavefunction n1,2 is interpreted

as the superconducting pair density.
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From (1.4), it can be seen that the rate of increase of the pair density in the first superconductor

is the rate of decrease of pair density in the second. If there is a circuit connected to the

junction, then (1.4) gives the rate of change of pair density or the supercurrent flow Js across
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the junction (1.6).

J Js c= sin φ0 5 (1.6)

This is the dc Josephson relation.  A supercurrent can flow through the weak link up to a

maximum value Jc. For currents larger than Jc, a potential difference is developed across the

junction. The difference between the phases of the wavefunctions of the superconductors is

φ=ϕ2-ϕ1.

The term in cos(ϕ) in (1.5) can be eliminated by subtraction to give (1.7).

∂
∂

=φ
t

e
V

2

h
(1.7)

This is the ac Josephson relation. Integration of (1.7) and substitution into (1.6) gives (1.8),

where φ0 is a constant of integration. The phase difference between the order parameters of the

two superconductors increases linearly with time.

J J
e

Vts c= +�
�

�
�sin

2
0

h
φ  (1.8)

Therefore, when the junction is voltage biased an ac current flowes at an angular frequency ω

given by (1.9).

ω = 2e
V

h
(1.9)

The Josephson junction therefore acts as a natural voltage tunable microwave oscillator. A dc

voltage of 1mV across the junction produces a frequency of 483.6 GHz.

1.3.2 The shunted junction model

1.3.2.1 A junction shunted by a resistor

The resistively shunted junction (RSJ) model provides a phenomenological approach to the

determination of the current voltage (IV) characteristics of the Josephson junction. It was

devised independently by Stewart[4] and McCumber[5]. The junction is modelled as a

Josephson element shunted by a resistor in parallel. In the RSJ model the junction is current
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biased, which is the most straightforward way to measure the IV characteristic. The current

flowing through the junction can be broken down into two components. The supercurrent

arises from the dc Josephson effect and is given by (1.6). A finite voltage across the junction

gives rise to the quasiparticle current In, given by (1.10), where Rn is the junction normal state

resistance.

I V Rn n= (1.10)

The addition of (1.6) and (1.10) combined with the ac Josephson relation (1.7) gives (1.11) for

the total current I flowing through the junction.

I I
eR

d

dtc
n

= +sin φ φ0 5 h

2
(1.11)

Equation (1.11) can be solved analytically[6],[7]. The mean voltage across the junction is

determined by the averaging of the time derivative of the phase, which no longer increases

linearly with time. It is given by (1.12), which determines the form of the dc IV characteristic

of a resistively shunted junction, as shown in Fig. 1.1.

V = 0 I<Ic

V R I In c= −2 2 I>Ic                            (1.12)

For I>Ic the time dependent voltage is given by (1.13)[6].

V t V V m tm
m

( ) sin( )= +
>

∑ ω
0

(1.13)

The amplitudes of the time dependent voltages Vm, determined by Fourier analysis are  (1.14).
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I I

I I I I
m c n

c

c c
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−

+ −�� ��

2 1
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2 1 2

2 1 2

1 64 9
1 6 1 64 9

/
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The time dependent voltage in turn generates microwave currents flowing in the resistor.
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Figure 1.1 A normalised RSJ IV characteristic, showing the time averaged ac supercurrent Is

flowing in the resistor and the quasiparticle current In flowing in the resistor.

 When biased just above the critical current, the higher harmonics of the ac Josephson

oscillations are significant and their average dominates the voltage drop across the junction. At

higher currents, the oscillations become monochromatic and their average voltage tends to

zero, as shown in Fig 1.2. The normal current in the junction resistance dominates and the

junction IV characteristic tends towards the ohmic line.

The characteristic voltage of the junction Vc is equal to the IcRn product. It is the maximum

amplitude of the first harmonic of the ac supercurrent. The normalised amplitudes of the first

four harmonics of the Josephson oscillations are shown in Fig. 1.3. For voltages greater than

~Vc, the oscillations are approximately monochromatic.

0
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Figure 1.2. The time dependent voltage across the Josephson junction for I/Ic=1.2 and 5.
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Figure 1.3. The normalised amplitude of the first four harmonics of the ac supercurrent versus
normalised voltage.

1.3.2.2 A junction shunted by  a resistor and a capacitor

The RSJ model can be developed to include the junction capacitance. The equivalent circuit is

shown in Fig 1.4, with a capacitor in parallel with the Josephson element and the resistor. This

is the resistively and capacitively shunted junction (RCSJ) model.

The displacement current flowing through the capacitance C is given by C(dV/dt). The

displacement current is added to (1.11) for the RSJ model and expressed in terms of the phase

difference across the junction with (1.7) to give (1.15).

I I
eR

d

dt

C

e

d

dtc
n

= + +sinφ φ φh h

2 2

2

2
(1.15)

The model can no longer be solved analytically. The McCumber parameter βc determines

whether or not the capacitance term in (1.15) drives the IV characteristic hysteretic. It is

defined by (1.16), where Φ0=h/2e is the flux quantum.

C

Rn

I

Figure 1.4. An equivalent circuit for a Josephson junction. The cross represents the Josephson
element.
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β τ
τ π

π
c

RC

J

n

c n

c nR C

I R

I R C= = =
Φ Φ0

2

02

2
(1.16)

The McCumber parameter is the ratio of the two characteristic time constants of the system.

These are the RC time constant of the resistor and the capacitor τRC and the period of the

Josephson oscillations at the frequency corresponding to IcRn.

When βc<<1 the time constant of the capacitor is much less than the period of the Josephson

oscillations. The charge stored on the capacitor relaxes much faster than the time taken for the

junction to switch into the zero voltage state. The IV curve is single valued for all voltages.

Junctions with βc<<1 are also referred to as overdamped.

When βc>>1 the time constant of the capacitor is much larger than the period of the Josephson

oscillations. Consider biasing the junction with a slowly increasing dc current, starting from

I=0. As the magnitude of the current increases the junction switches into the voltage state in

the normal way. However, if the current is decreased back past the critical current there is still

charge stored on the capacitor. The charge relaxes causing the junction to remain in the voltage

state until it returns to the zero voltage state at some current Ir. Junctions with βc>>1 are

referred to as underdamped. The IV characteristic is therefore hysteretic as shown in Fig. 1.5.

A junction with βc<<1 has Ic=Ir and is not hysteretic. A junction with βc>>1 has Ic>Ir and is

hysteretic. A junction with βc=∞ has Ir=0.

0
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c

Figure 1.5 A normalised hysteretic IV characteristic with βc=15.
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Figure 1.6 Zappe’s approximation (1.17) and numerical simulations of βc versus α.

McCumber[5] solved (1.16) numerically to give βc as a function of α=Ic/Ir. Zappe[8]

determined an approximate expression for βc as a function of α, given in (1.17).

β
π α
αc =

− −2 2
2

0 51 6
(1.17)

The form of βc versus α from Zappe’s approximation is given in Fig. 1.6, together with

numerical simulations (from JSIM) to determine the real value of βc. The majority of junctions

in this study had 1<βc<10. Zappe’s approximation underestimates βc  by ~10% for α<0.96,

and overestimates βc for α>0.96.

In summary, there are three important parameters that can be determined from the IV

characteristic of the Josephson junction. These are the junction critical current, the junction

resistance, from a fit to the IV characteristic at high current biases and the junction capacitance

from the hysteresis in the IV characteristic. Resonances which cause perturbations in the IV

characteristic at particular voltages can also be used to determine junction parameters, and

these are discussed in section 1.4 and Chapters 5, 6 and 7.

1.3.2.3 Josephson coupling energy and noise fluctuations

In the zero voltage state no energy is dissipated within the junction. However, some energy is

stored in the junction. This can be found by considering the work done by an external system

on the ac supercurrent when the junction is in the voltage state causing a phase change from φ1
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to φ2[6]. Using both the dc and ac Josephson relations (1.6) and (1.7) the work done is

therefore given by (1.18).

W
I

e
d

I

e
c c= = −Ih h

2 21

2

1 2sin cos cosφ φ φ φ
φ

φ 0 5 1 6 (1.18)

For a Josephson junction, this is interpreted as a potential energy. The maximum energy that

can be stored in the junction is therefore given by ,c/2e=Φ0Ic/2π.

The primary source of noise in the high Tc superconducting junctions in this study was thermal

fluctuations in the critical current. These fluctuations are quantified with the noise parameter

Γ, defined in (1.19) which is the ratio of the thermal energy kBT, where T is the temperature

and kB is Boltzmann’s constant, to the Josephson coupling energy.

Γ
Φ

= 2

0

πk T

I
B

c

(1.19)

When  Γ~0, thermal noise has little effect on the IV  characteristic. However, when Γ>1, the

critical current step in the IV characteristic becomes rounded. Thermal noise also suppresses

the hysteresis of a junction with βc>1. This effect is discussed in more detail in section 3.5.

External electromagnetic interference suppresses the junction critical current in the same way

as thermal noise.

1.3.3 Magnetic field effects

The discussion of the Josephson effect in sections 1.2.1 and 1.2.2 tacitly ignored the presence

of any magnetic fields. In this section, the influence of a magnetic field on the behaviour of a

Josephson junction is discussed. Magnetic field effects on Josephson behaviour are discussed

in more detail in the book by Barone and Paterno[9].

1.3.3.1 Flux quantisation

The current density Js of a superconductor with an order parameter of the form (1.3) is given

by (1.20).
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ring of 
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Figure 1.7. A ring of superconductor in a magnetic field.

J As
sen

m
e= ∇ +2

2h ϕ0 5 (1.20)

The magnetic vector potential A is defined by B=∇xA where B is the magnetic field. The

mass of the charge carriers is m and ns is the superconducting pair density. A ring of

superconductor in a magnetic field is shown in Fig. 1.7. Screening currents flow only on the

surface of the superconductor, so deep inside the ring, no supercurrents flow and Js=0.

Integration of -∇ϕ  around the contour CI in Fig. 1.7 gives:

h∇ =I Iϕ. .dl A dl2e (1.21)

For a complete circuit of the contour, the phase change must either be zero or a multiple of 2π,

otherwise the order parameter will not be single valued at the start and finish of the circuit. The

line integral of the magnetic vector potential around the contour is equal to the magnetic flux

Φ enclosed by that contour. The flux through the ring is therefore quantised in integer

multiples of the flux quantum Φ0.

h2 2
20 0π = ⇒ =e
h

e
Φ Φ (1.22)

The flux quantum is equal to 2.07x10-15 Tm2.

1.3.3.2 Quantum interference in a single junction

Next, consider a weak link placed in the superconducting ring in Fig 1.7. The phase difference

between the superconducting electrodes is now defined as (1.23) to preserve gauge invariance.

φ ϕ ϕ= − − I2 1

2e

h
A dl. (1.23)
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Integration of -∇ϕ  around the contour CI as for the ring without a weak link gives (1.24).

ϕ ϕ π= −0
0

2
Φ
Φ

(1.24)

The phase difference across the weak link is therefore proportional to the flux through the ring.

A flux in the y direction applied directly through a weak link in a superconducting film of

thickness h is shown in Fig. 1.8. The film thickness is much greater than the penetration depth

of the magnetic field B into the superconducting electrodes λL. From (1.24), at a distance z

along the weak link the phase difference is given by (1.25). The thickness of the weak link is

tJ, and the screening supercurrents and the overall bias current flow in the x direction.

ϕ ϕ
π λ

= −
+

0
0

2 2Byz tJ L1 6
Φ

(1.25)

The critical current at a given flux through the junction is found by substituting (1.25) into the

dc Josephson relation for the critical current density (1.6). This expression is then integrated

along the length l of the weak link to give (1.26). The critical current at zero applied flux is Ic0.

I
B z t

dz Ic
y L J

l

l

cΦ
Φ

Φ Φ
Φ Φ

1 6 1 6 1 6= −
+�

��
�
�� =

−
I Jc sin

sin

/

/

ϕ
π λ π

π0
02

2

0
0

0

2 2
(1.26)

B

h

z

tJ

λL

y

x

l

Figure 1.8 A Josephson junction in an applied magnetic field in the y direction.
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Figure 1.9. The characteristic Fraunhofer pattern for the modulation of the Josephson critical
current by an applied flux.

This is the analogue of the Fraunhofer pattern for the intensity of diffracted light from a single

slit. It is characteristic Josephson behaviour and is shown in Fig. 1.9. The minima and maxima

in the modulation of the critical current with applied flux can be explained as follows. At zero

applied flux, the phase difference between the order parameters of the superconducting

electrodes is constant across the length of the weak link. When flux is applied, there is a phase

gradient along the length of the weak link such that the supercurrent flows both backwards and

forwards across it. When exactly one flux quantum is applied the forward and back

components of the supercurrent cancel and the critical current is zero. The variation of critical

current density with position along the z axis of the junction is shown in Fig. 1.10, for zero,

half and one flux quantum through the junction.
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Figure 1.10.  The dependence of normalised critical current density Jc/Jc0 with position along the
z axis of the junction, for zero, half and one flux quantum through the junction.
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1.3.3.3 Quantum interference for two Josephson junctions

The argument that led to (1.24) can be repeated to show that the phase difference between two

Josephson junctions connected in parallel threaded by a flux Φ is given by 2πΦ/Φ0. The total

current flowing through the two junctions is given by the sum of the currents through each one

and is found to be 2Iccos(πΦ/Φ0), where Ic is the critical current of one junction. The critical

current varies periodically with the applied flux. The two junctions in parallel are known as a

superconducting quantum interference device (SQUID) and provide a very sensitive detector

of magnetic flux. The SQUID is the most widely used application of the Josephson effect (see

for example Kang[10]).

1.3.3.4 Long Josephson junctions

The above analysis of a Josephson junction in a magnetic field assumed that the junction was

short and that the magnetic field completely penetrated the entire weak link. This situation is

not necessarily true for longer (in the z direction) Josephson junctions. In this case, the

electrodynamics of the junction must be considered with use of the Maxwell equation

(1.27)[7,11,12].

∇ × = +B J
E

cµ µ ε ε0 0 0 R

d

dt
(1.27)

In (1.27), µ0 and ε0 are the permeability and permittivity of free space, εR is the relative

permittivity (dielectric constant) of the junction barrier and E is the electric field across the

junction. In the geometry in Fig. 1.8, the current flows in the x direction and the magnetic field

is in the field is in the y direction. Initially assuming time independence, (1.27) reduces to

(1.28), which is Ampere’s law in the x direction.

∂
∂

= −
B

Jy
cz

µ 0 (1.28)

The phase gradient is given by (1.25). Differentiating (1.25) twice with respect to z gives

∂By/∂z. Again, substitution of (1.25) into (1.6) gives Jc, enabling (1.28) to be written as (1.29),

where λJ is the Josephson penetration depth given by (1.30).
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∂
∂

=
2

2 2

ϕ ϕ
λz

z

J

sin 0 5
(1.29)

λ
πµ λJ

c L JJ t
2 0

02 2
=

+
Φ
1 6 (1.30)

In the limit where l is small compared to λJ, ∂2ϕ/∂z2≈0, and therefore ∂ϕ/∂z is a constant. This

is the short junction limit described in section 1.3.3.2. It is clear from (1.29) that λJ is a

penetration depth (consider small ϕ where sin(ϕ)≈ϕ). It is the distance over which the external

magnetic field penetrates into the weak link, or the distance over which the Josephson currents

flow. It arises because the currents flowing in the junction produce a self field which screens

the external field. There are two important consequences of the self field. These are that the

critical current of a junction does not increase indefinitely with its area and that for a long

junction with l>>λJ a magnetic field cannot completely suppress the Josephson critical current.

Furthermore, the critical current density is non uniform along the z axis of a long junction even

in zero applied field.

Next, time dependence can be introduced. The electric field across the parallel plate structure

in Fig. 1.8. is given by –V/tJ. With the aid of the ac Josephson relation (1.7), the Maxwell

equation (1.27) can therefore be written as (1.31).

∂
∂

=
+

+ ∂
∂

�
��

�
��

2

2
0

0
0 0

2

2

2 2

2

ϕ π λ
µ ϕ ε ε

π
ϕ

z

t
J

t t
L J

c
R

J

1 6
Φ

Φ
sin (1.31)

A wave equation (also known as the sine-Gordon equation) can therefore be written for the

junction as (1.32), where cJ is the speed of a plane wave propagating in the cavity between the

superconducting electrodes, given by (1.33). It is known as the Swihart[13] velocity for waves

propagating in a superconducting transmission line.

∂
∂

− ∂
∂

=
2

2 2

2

2 2

1ϕ ϕ ϕ
λz c tJ J

sin
(1.32)

c
c

t

t

J

R
L J

J

=
+�

��
�
��

0

2ε λ
(1.33)
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In (1.33), c0 is the velocity of light in free space. Substituting plane wave solutions of the form

ϕ=exp(i(ωt+kzz)) yields the dispersion relation (1.34) for electromagnetic waves in the

Josephson junction.

ω ω2 2 2 2= +c kJ z p (1.34)

The dispersion relation (1.34) shows that electromagnetic waves do not propagate in the

junction below the plasma frequency ωp. However, if there is no Josephson current there is no

final term in (1.32) and Swihart modes can propagate with a linear dispersion relation. The

form of the dispersion relation for the Josephson junction is shown in Fig. 1.11.

1.4 Transmission lines

In this section a review of transmission line theory is presented. The effect on the IV

characteristic of waves propagating in the Josephson junction cavity is discussed. Furthermore,

the wavelength of the Josephson oscillations in any external circuit connected to the junction

can be short enough to be comparable to the dimensions of the components in the circuit

themselves. In this situation a distributed circuit model is required.

1.4.1 Transmission line theory

Following Collin[14] the equivalent circuit of a differential length of transmission line is

shown in Fig. 1.12.
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Figure 1.11. The dispersion relation for electromagnetic waves propagating in the cavity formed
by the Josephson junction. Swihart modes can propagate in the absence of a Josephson current.
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G’ C’

R’L’

Figure 1.12. A differential length of transmission line.

The inductance and capacitance per unit length of the line are given by L’ and C’ respectively.

The resistive losses in the inductor and the dielectric losses in the capacitor are given by R’ and

G’ per unit length respectively. Application of Kirchoff’s laws to the current I and the voltage

V at either end of the circuit yields (1.35).
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∂
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(1.35)

Assuming that the current and voltage vary sinusoidally with time so that I=I0exp(iωt) and

V=V0exp(iωt) reduces (1.35) to (1.36).

∂
∂

= − +

∂
∂

= − +

V

z
R i L I

I

z
G i C V

’ ’

’ ’

ω

ω

0 5

0 5
(1.36)

Elimination of I or V from (1.36) gives a wave equation for the with a general solution (1.37)

for the variation of current and voltage along the length of the transmission line.

V V e V e

I I e I e

z z

z z

= +

= +

+ − − +

+ − − +

γ γ

γ γ
(1.37)

The propagation constant for the transmission line γ  is given by (1.38).

γ ω ω α β= + + = +R i L G i C i’ ’ ’ ’0 50 5 (1.38)

This equation describes the dispersion relation for the transmission line. The characteristic
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impedance of the transmission line Z0 is defined in (1.39).

Z
V

I

R i L

G i C0 = = +
+

±

±

’ ’

’ ’

ω
ω

(1.39)

An ideal lossless transmission line has R’=G’=0 and so γ=iω(L’C’ )1/2. Hence a wave

propagates through the line with wave number ω(L’C’ )1/2
 and phase velocity c=(L’C’ )1/2. The

boundary condition for (1.37) in the case of an open ended transmission line (such as the

cavity in a Josephson junction) is that no current flows at the ends. Electromagnetic waves

propagating through it are reflected at each end. The forward and backward propagating waves

combine to give resonant standing wave modes of the field with the form (1.40), where l  is the

length of the transmission line and n is an integer.

V z t e
n z

l
i t, cos0 5 = �

�
�
�

ω π
(1.40)

The resonant modes have frequencies (1.41).

ω π
n

n c

l
=

2
(1.41)

1.4.2 The Josephson junction as a transmission line

1.4.2.1 Fiske resonances

Fiske resonances[15] appear as a peak the IV characteristic of the Josephson junction.  The

Fiske resonances are caused by the excitation of electromagnetic modes in the cavity formed

by the superconducting electrodes of the junction. The form of the standing wave mode is

described by (1.40). The resonances are excited by the Josephson oscillations. The peaks

appear at the voltages in the IV curve which correspond to the resonant frequencies of the

cavity from (1.41). The resonant voltages Vn of order n are therefore determined by

substitution of (1.41) into the ac Josephson relation (1.9).

V
n c

ln
J= Φ0

2
(1.42)

The Fiske resonances only appear upon application of a magnetic field to the junction, because
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a non uniform distribution of the current density is required to excite the modes. The

maximum amplitude of the first order resonance is close to a flux of Φ0/2. Intuitively, this is

because the spatial variation of the current density in the junction at Φ0/2 (see Fig. 1.10) is the

same as the spatial distribution of the current at the first order resonance. The dependence of

the amplitude of the first order Fiske resonance on the applied flux is shown in Fig. 1.13. The

Fiske resonance voltage does not vary with the applied flux.

The speed of light in the junction can also be derived from the transmission line theory in

section (1.3.1) from the inductance and capacitance per unit length of the Josephson cavity.

The cavity shown in Fig. 1.8 is a parallel plate resonator so its capacitance per unit length is

given by (1.43).

C h
t

R’= ε ε0 (1.43)

The inductance per unit length is given by (1.44). The magnetic field penetrates into the

superconducting electrodes for a distance of one penetration depth on either side of the cavity.

L
h

t L’= +µ λ0 21 6 (1.44)

For a cuprate grain boundary Josephson junction the film thickness is comparable to or much

less than the penetration depth of the magnetic field. In the situation where λL>>h the

correction to the penetration depth is λeff=λL
2/h. In this study, this correction was also used in

the limit λL≈h. The speed of light in the junction cJ is given by (L’C’ )-1/2 and found to be equal

to the Swihart velocity (1.33).
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Figure 1.13. The dependence of the amplitude of the first order Fiske resonance on the applied
flux[16].

1.4.2.2 Flux flow resonances

Flux flow resonances occur for Josephson junctions in the long limit and are also known as

Eck peaks[12]. Above a certain critical magnetic field the Josephson currents cannot screen the

external field from the interior of the weak link. The spatial distribution of the Josephson

current density in the weak link is no longer sinusoidal as in Fig. 1.10 but instead consists of

Josephson vortices. The distribution of the vortices remains periodic. When a voltage is

applied across the weak link the vortices acquire a velocity cv given by (1.45).

c
V

B tv
L J

=
+2λ1 6 (1.45)

A resonance is observed in the IV characteristic when the velocity of the Josephson vortices is

equal to the velocity of electromagnetic waves in the cavity formed by the Josephson junction.

Combining (1.45) with (1.33) thus gives the voltage Vff of the flux flow resonance.

V c
t t

ff
J L J

R

=
+�

��
�
��0

1 2
2λ

ε
1 6 /

(1.46)

The voltage of the flux flow resonance is therefore dependent on the magnetic field applied to

the junction.

A unified theory of Fiske modes and Eck peaks in long junctions has recently been presented

by Cirillo et al[17]. The sine-Gordon equation is solved numerically by treating the Josephson

oscillation as a perturbation phase of the voltages of the resonant modes. However, the Fiske
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resonance voltages are still given by (1.42) regardless of whether the junctions are in the long

or the short limit.

1.4.3 Josephson junctions coupled to external transmission lines

The Josephson oscillations can also be used to drive a resonator other than that formed by the

junction cavity itself. The external resonator presents a shunt impedance to the Josephson

junction. The impedance of the resonator is real at its resonant frequencies. Therefore, at the

resonance microwave power from the Josephson oscillation is coupled out of the junction into

the resonator giving rise to a dip in the current at the resonant voltage. The resonant voltages

are given by (1.42), with cJ replaced by the speed of light in the resonator, which is determined

by its inductance and capacitance per unit length. A magnetic field is not required for the

Josephson oscillations to excite resonances in external transmission lines. The position of the

resonances in the IV characteristic can be used to extract the dielectric properties of the

transmission line. A more detailed discussion of the effect of an external resonator on the IV

characteristic of the Josephson junction can be found in Chapter 7.

1.4.4 A summary of types of resonances in Josephson junctions

It is therefore possible to observe 3 types of resonance in the IV characteristics of Josephson

junctions. Fiske resonances are propagated by currents and voltages in the superconducting

electrodes of the Josephson junction, which must be separated by an insulating cavity. Flux

flow resonances are propagated in the distribution of the Josephson current in the weak link

itself. Fiske resonances and flux flow resonances both require magnetic fields to excite them.

They can be distinguished by observing the dependence of the resonant voltage on the applied

magnetic field. The Fiske resonant voltage is independent of the applied magnetic field

whereas the flux flow voltage is proportional to it (see (1.46)).

External transmission line resonances and Fiske resonances can be distinguished by their

presence or absence with zero applied magnetic field. The most reliable method of

distinguishing Fiske resonances from external transmission line resonances is to determine

whether the resonant voltage is inversely proportional to the junction length or to the length of

the external resonator.
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1.4.5 Losses

In this section, the origins of losses in transmission lines are briefly discussed. In this study,

microstrip transmission lines with normal metal electrodes have also been used, so high

frequency losses in the normal metal are also reviewed. Resistive losses in a normal metal at

high frequencies result from the penetration of the tangential component of the electric field

into the metal. The conduction current in the metal is given by Ohm’s law, so that J=σE,

where σ  is the conductivity, and the displacement current is assumed to be small compared to

the conduction current. Assuming sinusoidal variation of the electric field with time, a

combination of Faraday’s law and the Maxwell equation  (1.27) yields (1.47). An equivalent

relation can be derived for both the magnetic field and the current density.

∇ =2
0E Eiωµ σ (1.47)

The electric field therefore decays exponentially into the metal, with a decay length known as

the skin depth δs given by (1.48).

δ
ωµ σs = 2

0

(1.48)

The surface resistance Rs of a conductor is defined as the resistance per unit length per unit

width, or resistance per square, and given by (1.49).

Rs
s

= 1

σδ
(1.49)

The resistance per unit length R’ in section 1.3.1 can be recovered by multiplying by the length

of the element and dividing by its width as the width elements are in parallel. For a normal

metal, the resistance per unit length is proportional to the square root of the frequency of the

electromagnetic waves.

For a superconductor, using the two fluid model, the conductivity is complex and given by

σ=σ1-iσ2. The real and imaginary components represent electrons in the unpaired (normal) and

paired (superconducting) states respectively. The conductivity components are given by (1.50)

assuming that σ1<<σ2. The number of pairs and conductivity in the normal state are nn and σn
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respectively.

σ σ
σ ωµ λ

1

2 0
21

=

=
n n

L

n n
(1.50)

A superconductor therefore has a surface impedance Zs given by (1.51)[11].

Z
n

n
is

L n n
L= +ω µ λ σ ωµ λ

2
0
2 3

02
(1.51)

The surface resistance of a superconductor is therefore proportional to the square of the

frequency. The temperature dependence of the surface resistance of the superconductor is

determined by the temperature dependence of the penetration depth. In the two fluid model of

superconductivity this is modelled by (1.52).

λ λ
L

L

c

T
T T

0 5 0 5
1 6

=
−

0

1
4

(1.52)

Dielectric losses are modelled with a complex permittivity so that ε=ε1+iε2. A loss tangent is

defined as tan δ =ε2/ε1 and the conductance per unit length of the transmission line G’ is given

by (1.53).

G C’ ’ tan= ω δ (1.53)
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Chapter 2: The properties of YBa2Cu3O7-δ and YBa2Cu3O7-δ

Josephson junctions

2.1 Introduction

The cuprate ‘high Tc’ superconductors were discovered in 1986 by Bednorz and Muller[18]. A

barium doped lanthanum cuprate was found to have a superconducting transition temperature

Tc of 36K. This result was of great significance as the Tc value measured was higher than the

maximum predicted by the BCS theory for conventional superconductors. In 1987 a material

with a Tc of 93K was discovered by Wu et al[19]. The material was YBa2Cu3O7 (YBCO), a

cuprate related to the initial compound studied by Bednorz and Muller, and its Tc  was much

higher than any which had been observed up to that point. The Josephson junctions used in this

study were fabricated from YBCO thin films, so the properties of YBCO are reviewed in this

chapter.

2.2 Physical properties and crystal structure

The YBa2Cu3O7-δ crystal structure is shown in Fig. 2.1. The structure consists of three

perovskite unit cells stacked along the c-axis. The structure contains a layer of yttrium atoms

sandwiched between copper oxide planes, followed by a barium oxide layer, copper oxide

chains and another barium oxide layer. The oxygen content of the copper oxide chains can be

varied, and YBCO undergoes an orthorhombic to tetragonal phase transition at an oxygen

content δ between 0.32 and 0.5. When the oxygen content is saturated such that δ=0, YBCO is

orthorhombic.

Figure 2.1 The crystal structure of YBCO. Dashed circles indicate partially filled oxygen sites. In
the orthorhombic phase, a=0.381nm, b=0.388nm and c=1.18nm.
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Figure 2.2 The oxygen doping phase diagram for YBCO[20].

The critical temperature of YBCO is also strongly dependent on the oxygen doping. A

combination of neutron scattering and electrical transport measurements on single crystals of

YBCO led to the doping phase diagram shown in Fig. 2.2. The orthorhombic to tetragonal

structural phase transition corresponds to a transition from a metallic, superconducting phase

to an insulating antiferromagnetic phase. The Neel temperature for the onset of

antiferromagnetic ordering is also strongly dependent on the oxygen doping.

The electrical properties of YBCO are highly anisotropic depending on which direction

relative to the crystallographic axes they are measured. The normal state resistivity

perpendicular to the c-axis is much larger than that parallel to it[21], as shown in Fig. 2.3. The

penetration depth of the magnetic field is also anisotropic. Values at 4.2K are approximately

140nm in the ab-plane[22] perpendicular to the c-axis and 900nm parallel to the c-axis[23].

The coherence length is 2nm in the ab-plane and 0.4nm parallel to the c-axis[23]. YBCO is

therefore a type II superconductor where flux vortices can penetrate above a certain magnetic

field before superconductivity is destroyed.

The charge carriers in YBCO are holes in the copper oxide layers. The hole concentration n is

controlled by the oxygen doping and YBCO has n=4/3-2δ/3 holes per unit cell. The

localisation of the holes in the copper oxide planes provides an explanation for the differences

between the c-axis and ab-plane transport properties.
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Figure 2.3 The normal state resistivity of single crystal YBCO perpendicular and parallel to the
c-axis versus temperature[21].

The order parameter of YBCO has been shown to contain a d-wave component. The most

convincing initial experiment was performed by Tsuei et al[24]. A d-wave order parameter

consists of lobes which have both positive and negative signs as in Fig. 2.4. In the tricrystal

geometry used by Tsuei et al, the lobes of the d-wave order parameter could overlap in such a

way as to produce a Josephson junction which causes an additional π phase shift in the order

parameter at the weak link. This type of Josephson junction is known as a π junction where the

dc Josephson relation (1.6) is modified to become Js=Jcsin(φ+π). A π junction formed at a

facet in a grain boundary is shown in Fig. 2.8. The π phase shift gives rise to half integer flux

quantisation in the loop around the 3 junctions, which was observed with a scanning SQUID

microscope.

+

--

+(a) (b)

Figure 2.4 A superconducting order parameter with (a) s-wave and (b) dx2-y2 symmetry.
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A subsequent experiment by Wollman et al[25] gave more evidence for dx2-y2 symmetry of the

order parameter. Josephson junctions were manufactured from YBCO-gold-lead interfaces.

The gold layer acts as the weak link and the lead is a conventional superconductor with an s-

wave order parameter. A junction was made parallel to the edge of a YBCO single crystal with

the current flowing in the ab-planes. Standard Fraunhofer modulation of the critical current

with a magnetic field was observed (see Fig.1.8). Another junction was manufactured around a

90° corner in the YBCO single crystal. At the a-c crystal face the signs of the order parameters

in the YBCO and the lead are both positive, but at the b-c face the YBCO order parameter is

negative. A π junction is formed at the junction with the b-c crystal face, so the supercurrent

flows in the opposite direction to that through the a-c interface. At zero applied flux, the

supercurrent tunneling from the b-c face of the crystal into the gold-lead cancels that flowing

through the a-c face, so no critical current is observed. The modulation of the critical current

with applied flux showed the splitting of the central peak of the Fraunhofer pattern. Half

integer flux quantisation and the corner YBCO-Au-Pb junctions give clear evidence for dx2-y2

order parameter symmetry.

The YBCO order parameter is currently believed to consist of a mixture of s and d wave

components[26].

More recently, SQUIDs consisting of one standard junction at one π junction have been

fabricated from YBCO tricrystal Josephson junctions. The periodic modulation of the critical

current with flux is shifted by π/2 for the π-SQUID[27].

2.3 YBCO Josephson junctions

2.3.1 Josephson junction categories

Josephson junctions can in general be divided into 3 groups depending on the method of

current transport across the weak link. The supercurrent transport across a junction with an

insulating barrier occurs by quantum mechanical tunneling. These are superconductor-

insulator-superconductor (SIS) junctions. SIS junctions with niobium electrodes and an

aluminium oxide weak link are fabricated commercially[28]. The second category consists of

junctions with a normal metal weak link, or superconductor-normal-superconductor (SNS)

junctions. The weak link in a SNS junction could also be a superconductor above its transition

temperature, in which the junction is known as SS’S. The transport mechanism in a SNS
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junction is the proximity effect where the supercurrent diffuses into the metal. An example of a

SNS junction is the planar niobium copper niobium junction fabricated with a focused ion

beam[29]. The third junction category is that where the weak link is a constriction of a size

much less than the coherence length of the superconductor. The niobium point contact junction

is an example of a junction in the constriction category[30].

2.3.2 Types of YBCO Josephson junction

The fabrication of YBCO Josephson junctions suitable for applications has proved to be

challenging. However, the ease of refrigeration of circuits manufactured from high Tc as

opposed to from low Tc compounds has stimulated a large research effort. There are several

stringent criteria for Josephson junctions from which commercial circuits can be

manufactured. The junctions require a high IcRn product, reproducible on chip and from chip to

chip plus suitability for dense packing. Hysteretic and non-hysteretic junctions should be

available on the same chip. The junctions should also be chemically stable and be able to

withstand infinite thermal cycling.

The requirements described above are difficult to satisfy. The small coherence length of

YBCO and related compounds means that the interface between the weak link and the

superconductor must be controlled on an atomic scale. Furthermore, the cuprates are highly

anisotropic and extremely chemically reactive. Only metals such as gold and silver and certain

other perovskite compounds do not undergo a chemical reaction with YBCO.

Josephson junctions which have been developed for YBCO fall roughly into 3 types[31]:

1) Ion or electron beam implanted junctions (junctions without interfaces)

These junctions exploit the dependence of the superconducting transition temperature of the

YBCO on oxygen doping and defects. A film is grown epitaxially on a single crystal substrate

and junctions are fabricated via the irradiation of a small area of the film with either

electrons[32] or ions[33]. The irradiated area thus has a lower Tc and the junctions are SNS in

character[34]. The positioning of junctions on the chip is very flexible and ion implanted

junctions can potentially be mass produced. The Ic  and Rn of the junctions is also controllable

via the energy of the beam and the total irradiation time. The fabrication of resistors is also

possible with either technique[35,36]. Ion and electron beam implanted junctions also
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overcome the problems with establishing a good interface between the superconducting

electrodes and the weak link.

2) Junctions with a barrier of non-superconducting material (junctions with extrinsic

interfaces)

Junctions can be manufactured using a normal metal bridge, e.g. gold[37], or with a

PrBa2Cu3O7-δ barrier layer on an a-axis film[38]. These junctions require complex multilayer

fabrication techniques and careful control of the barrier superconductor interface. The junction

critical currents and resistances are less reproducible than those of implanted junctions.

3) Junctions with intrinsic interfaces

A Josephson junction is formed at a grain boundary in YBCO due to its short coherence

length, which is comparable to the length of the structurally disordered region of the grain

boundary. Junctions with reproducible Ic and Rn can be formed on an epitaxial film grown on a

bicrystal substrate. A bicrystal consists of two single crystals fused together at a well defined

misorientation angle θ, as shown in Fig. 2.5. The YBCO film growth is epitaxial so the grain

boundary in the substrate propagates into the film. Two other misorientations are possible

apart from that in Fig 2.5. These are a twist of the [010] axes whilst keeping the [100] axes

parallel and a tilt of the [001] axes. The rotation of the axes may be either symmetric or

antisymmetric with respect to the boundary.

Grain boundary junctions were first fabricated by Chaudhari et al[39]. Epitaxial YBCO films

were grown on polycrystalline SrTiO3 substrates with 100µm grains and tracks were patterned

θ

c

a a

c

bicrystal 
line

bicrystal 
line

YBCO 
film

Figure 2.5 A tilt bicrystal grain boundary with misorientation angle θ. The arrows represent the
relative orientation of the [100] lattice planes. The [001] planes remain parallel to one another.
The YBCO film is grown epitaxially on the bicrystal.
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across a single grain boundary. The IV characteristics observed were RSJ like, as shown in Fig.

1.1. The magnetic field modulation of the critical current was Fraunhofer like for a single grain

boundary and periodic for two grain boundaries in parallel. This confirmed that the grain

boundaries were Josephson coupled.

Another type of intrinsic barrier junction is the step edge junction. A film is grown epitaxially

across a substrate which has had a  step etched into it. A grain boundary forms at the top and

bottom of the step.

Bicrystal YBCO Josephson junctions are the most straightforward to fabricate, especially

when multilayer deposition is required, and so they were used in this study. The critical current

and resistance of grain boundary junctions has been found to be stable over a period of

years[40]. The properties of grain boundaries are discussed in the next section. The

disadvantage of bicrystal junctions is the restriction that all the junctions must be placed along

the bicrystal line in the centre of the substrate. Bicrystal junctions are therefore most suitable

for applications which only require a few junctions, such as SQUIDs. The most promising

junction technology for circuits with many junctions is implantation.

2.4 YBCO grain boundaries

2.4.1 Microstructure and angular dependence of the critical current

The decrease of the critical current density with grain boundary misorientation angle was

observed in the first bicrystal junctions manufactured by Dimos et al[41]. The most recent

study was carried out by Hilgenkamp and Mannhart[42]. The trend is shown in Fig. 2.6.

Gurevich and Pashitskii[43] have postulated that there is a transition with misorientation angle

in the coupling behaviour of the supercurrent across the grain boundary. Grain boundaries with

a greater than 10° misorientation angle (high angle grain boundaries – HAGB) exhibit

Josephson coupled behaviour whilst flux flow coupled behaviour is observed in grain

boundaries with less than 10° misorientation angles (low angle grain boundaries – LAGB). For

a 10° grain boundary, the transition from flux flow to Josephson coupled grains has been

found to be temperature dependent, occurring at 75K[44].
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Figure 2.6. The dependence of critical current density on grain boundary misorientation
angle[42].

The origins of the decrease in critical current density with grain boundary misorientation angle

and the LAGB-HAGB transition can be traced to the grain boundary microstructure. Scanning

transmission electron microscopy studies indicate that the grain boundary consists of arrays of

dislocations[45]. Gurevitch and Pashitskii[43] propose that the YBCO in the dislocation cores

is driven into the antiferromagnetic insulating state by strain. The size of the dislocation cores

increases with increasing misorientation angle. At a certain critical angle the dislocation cores

overlap to form a continuous region of structural disorder and the crossover from flux flow

LAGB coupling to Josephson HAGB coupling occurs. In the LAGB regime the current

transport is via superconducting channels in between the dislocation cores. Scanning electron

transmission microscopy also indicates that the width of the structurally disordered region in

the HAGB regime increases linearly with the misorientation angle[45]. If the current transport

across this region were by tunnelling, this would account for the exponential decrease of the

critical current density with misorientation angle. Current transport across the grain boundary

is discussed in more detail in Chapter 8.

Another contribution to the decrease in critical current density with grain boundary

microstructure is the combination of grain boundary faceting and the d-wave symmetry of the

order parameter. Grain boundary faceting occurs as a natural consequence of the growth

mechanism of YBCO films. The misorientation angle of the YBCO does not necessarily

follow that of the grain boundary in the bicrystal substrate, but rather has a sawtooth pattern

across the bicrystal line. A transmission electron microscope image of faceting in a 6°
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misoriented grain boundary is shown in Fig. 2.7[46]. The length scales of the facets are

between 10 to 100nm. Depending on the orientation of the facets with respect to the grain

boundary the d-wave symmetry of the order parameter means that either 0 or π junctions can

be formed at the facet, as shown in Fig 2.8. The π junctions have a negative critical current

density, so the current flows in the opposite direction to the current bias. This leads to an

inhomogeneous critical current density across the width of the grain boundary. The overall

critical current density of the grain boundary is thus reduced. Hilgenkamp et al[47] estimated

that the π facets cover 5% of the junction area for a 24° grain boundary and up to 20% of the

area of a 36° grain boundary from transmission electron microscope images.

2.4.2 Electrical properties of high angle grain boundaries

The critical current of a HAGB YBCO junction decreases approximately linearly with

temperature[49]. However, the temperature dependence of the critical current cannot be used

to unambiguously determine whether the current transport across the boundary is by tunneling

or by a proximity effect mechanism[50]. The mechanism of current transport across the grain

boundary is still  controversial and the various models are reviewed in Chapter 8. The normal

state resistance and the capacitance of the grain boundary are temperature independent[51,52].

The IV characteristics of the grain boundaries can be modelled with the RCSJ model. At 4.2K,

the IcRn products are approximately equal to 1mV for a 24° grain boundary junction and βc is

approximately equal to 1[31]. Grain boundary junctions therefore have an intrinsic capacitance

Figure 2.7 Faceting in a 6° YBCO grain boundary[46]. The length of each facet is on the order of
a few tens of nanometres. Sub-faceting on length scales of a few nanometres was also observed.
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Figure 2.8. A facet at a grain boundary. The facet may cause an additional phase difference of π
between the two superconducting grains[48].

and this points towards the existence of an insulating barrier layer within the grain boundary.

The McCumber parameter decreases with temperature as it is proportional to the critical

current. Hence, for temperatures above approximately 40K grain boundary junctions have

βc<1.

There are two possible contributions to the intrinsic capacitance of  a bicrystal grain boundary

junction: the junction cavity itself behaves as a parallel plate capacitor with the barrier layer as

the dielectric and the substrate can provide a co-planar shunt capacitance (see Fig 5.4, the

equvialent circuit in Fig. 5.5 and Fig 6.8). An attempt to make this contribution to the junction

capacitance dominate is described in section 3.4.1. There are two methods to measure the

intrinsic capacitance of the grain boundary. It can be obtained directly from the hysteresis in

the IV characteristic followed by the use of Zappe’s approximation (1.17) to determine the

McCumber parameter. The critical current and the normal state resistance can also be read

directly from the IV curve and hence the capacitance can obtained using (1.16). The

capacitance per unit length of the barrier can also be obtained via the position of the Fiske

resonance in the IV curve, with (1.42), (1.43) and (1.44). However, a reliable estimate of the

penetration depth is also needed. Using both the hysteresis and the Fiske resonance the

penetration depth can be calculated[53]. It is assumed that the structural width of the grain

boundary  is negligible compared to the effective penetration depth in (1.44) for the inductance

per unit length. This is true for all YBCO grain boundaries which have a maximum structural

width of 1nm[45] and a minimum a-b penetration depth of 140nm at 4.2K[22].
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Table 2.1 The dielectric constants of substrates using for YBCO film growth.

Substrate Dielectric constant
(T=4.2K)

Reference

SrTiO3 24000 Neville et al[54]

MgO 9.7 Krupka et al[55]

Yttria stabilised
zirconia

27 Scheel et al[56]

LaAlO3 23.5 Krupka et al[55]

A comparison of the total capacitance per unit area of grain boundary junctions grown on

different substrates can be used to see whether or not the substrate makes a contribution to the

capacitance. It is difficult to measure the dielectric constant of the boundary itself as this

requires a measurement of its thickness. The dielectric constant of the different substrates used

for growing YBCO films varies over several orders of magnitude, see Table 2.1. Assuming the

barrier thickness remains relatively constant between different substrates the capacitance per

unit area should give a useful measure of the substrate contribution to the grain boundary

capacitance. Strontium titanate (SrTiO3) substrates were used in this study and its properties

are discussed in more detail in Chapter 3.

Table 2.2 gives a summary of measurements of the capacitance per unit area of grain boundary

YBCO junctions together with the substrate, the method used to obtain the capacitance and the

type of junction. It can be  seen  from  Table 2.2  that  there is a possible contribution to the

intrinsic capacitance of the grain boundary from the substrate, but only over one order of

magnitude, whereas the substrate permittivity varies over several orders of magnitude.

Tarte et al presented convincing evidence against a large substrate contribution to the intrinsic

capacitance of the grain boundary[57]. The capacitance per unit length of a series of different

junctions with different YBCO film thicknesses on SrTiO3 bicrystal substrates was measured.

The capacitance was determined from both hysteresis and Fiske resonance measurements. The

plot of capacitance per unit length versus film thickness obtained is shown in Fig. 2.9.
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Table 2.2 The capacitance per unit area of YBCO grain boundary junctions at 4.2K.

Substrate Junction Type Capacitance per
unit area pF µm-2

Method used to
obtain

capacitance

Reference

SrTiO3 36.8° bicrystal 0.295 Hysteresis Nakajima, Yokota
et al[58]

SrTiO3 24° bicrystal 0.126 Fiske resonance
and hysteresis

Tarte et al[59]

SrTiO3 24° bicrystal 0.246 Fiske resonance Beck et al[60]

SrTiO3 36° bicrystal 0.295 Fiske resonance Beck et al[60]

MgO 24° bicrystal 0.0520 Fiske resonance Beck et al[60]

LaAlO3 Step edge 0.0239 Fiske resonance
and hysteresis

Yi, Winkler et
al[61]

YSZ 0-32° bicrystal 0.0492 Fiske resonance Zhang, Winkler et
al[62]

YSZ 0-32° bicrystal 0.0221 Fiske resonance Winkler, Zhang et
al[63]

If the substrate and intrinsic grain boundary capacitances add in parallel then the plot in Fig.

2.28 has an equation of the form (2.1).

C
h

t

a

t
R

J

RSTO

J

’ ln= + −
�
��

�
��

�
��

�
��

ε ε ε ε
π

π0 0 1

2
(2.1)

In (2.1), h is the film thickness, tJ is the thickness of the grain boundary barrier layer, εR and

εRSTO are the dielectric constants of the grain boundary and the SrTiO3 substrate respectively

and a is the length of the track containing the junction. The gradient of the line should give the

grain boundary contribution and its intercept the substrate contribution. The upper limit on the

STO dielectric constant was found to be 60, far below that of 24000 reported by Neville et

al[54]. This discrepancy is thought to be due to the frequency dependence of the permittivity

of STO,
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Figure 2.9 Junction capacitance per unit length at 4.2K versus film thickness from hysteresis and
Fiske resonance measurements[57].

which is discussed in Chapters 3 and 6.

The dielectric constant of SrTiO3 is also strongly temperature dependent in the region from

4.2K to 90K[54]. Therefore, if the substrate were contributing to the grain boundary

capacitance, it would be expected that the total capacitance should be temperature dependent.

However, the grain boundary capacitance is effectively independent of temperature for

junctions on SrTiO3 bicrystals[52].

The evidence is therefore against a substrate contribution to the grain boundary capacitance.

However, the dielectric constant of SrTiO3 is strongly frequency dependent in the domain of

the frequency of the Josephson oscillations, as discussed in Chapter 3. This should be taken

into account when shunt capacitance from the substrate is calculated, as discussed in Chapter

6.
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Chapter 3: The dielectric properties of strontium titanate

3.1 Introduction

Strontium titanate substrates were used for the YBCO grain boundary junctions in this study.

As discussed in section 2.4.2, the influence of strontium titanate on the capacitance of grain

boundary Josephson junctions is not fully understood. In this chapter, a review of the dielectric

properties of bulk single crystal strontium titanate paying particular attention to temperature

and frequency dependencies is presented. Thin films of strontium titanate were used as a

dielectric both in shunt capacitors and microstrip resonators coupled to the YBCO Josephson

junctions. The dielectric properties of thin film strontium titanate are also reviewed and

contrasted with the behaviour of bulk single crystal strontium titanate.

3.1.1 Strontium titanate

In recent years there has been a renewal of interest in dielectrics such as strontium titanate

(SrTiO3 - STO) and related ferroelectrics (e.g. BaxSr1-xTiO3). This has been driven by the need

for a higher dielectric constant εR material for use in random access memory[64] in order to

increase the density of capacitors whilst retaining the same amount of charge stored on the

capacitor. Ferroelectric memories are also being developed[65], where the ‘bit’ is represented

by the direction of spontaneous polarisation in the ferroelectric and the memory is ‘non-

volatile’ – i.e. the contents of the memory are not lost when no electrical power is supplied.

STO also has a lattice constant compatible with YBCO, and this leads to applications in low

loss cryogenic filters for cellular communications[66]. Furthermore, the εR of STO can be

tuned with an applied voltage bias and hence frequency agile microwave filters can be

constructed as well as other microwave devices[67,68].

An obstacle to the realization of these applications has been the difference in dielectric

properties between single crystal bulk and thin film STO, and particularly the decrease in the

εR of thin film as compared to single crystal bulk STO. A value of 1800 at 20K has been

reported for a 400nm thick film[69], whereas for single crystal STO the εR is 24000 at 4.2K,

and is 16000 at 20K for 1x1x1.5mm samples[54]. The variation of εR with temperature T is

also very different for the thin film and bulk regimes. As the temperature is decreased, εR(T)

for bulk STO rises monotonically to 24000 at 4.2K and then saturates[70] which is behaviour
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characteristic of an incipient ferroelectric, but εR(T) for thin film STO displays relaxor

ferroelectric behaviour with a peak either around 40K or 90K[71]. Furthermore, for

applications both in filters and memories it is important to have a thorough understanding of

dielectric losses in STO, and particularly at microwave frequencies there exists neither a large

volume of experimental data nor a complete understanding of the loss mechanisms involved

for either thin film or bulk STO[72].

3.2 Background theory

3.2.1 Definition of a ferroelectric

A ferroelectric crystal is one which possesses two or more stable states with spontaneous

polarisation, or electric dipole moment, even in the absence of an applied electric field. On

application of a large enough electric field the crystal can be made to switch between the two

states. However, the crystal structure of the two states is otherwise indistinguishable. The first

ferroelectric to be discovered was Rochelle salt in 1920, and in this compound the spontaneous

polarisation is the result of the ordering of hydrogen bonds below a certain temperature, called

the Curie temperature. At this temperature there is a sudden decrease in εR and the crystal is

said to have undergone a ferroelectric phase transition. Hysteresis is exhibited in curves of

electric field versus polarisation in an analogous manner to the hysteresis seen in the

permanent magnetisation of a ferromagnet. The phase change to the ferroelectric state below

the Curie temperature is always accompanied by a structural phase transition, and in fact the

ferroelectric phase transition is a subgroup of crystals which undergo a structural phase

transition.

Oxygen octahedral ferroelectrics form the largest single class of ferroelectrics, and the first to

be discovered was barium titanate in 1945. These ferroelectrics are based around the

perovskite crystal structure, shown in Fig. 3.1. Above its Curie temperature, 393K, barium

titanate has the cubic perovskite structure shown in Fig. 3.1. Below 393K barium titanate

undergoes a structural phase transition to a ferroelectric tetragonal crystal with a permanent

dipole moment or spontaneous polarisation formed by the displacement of the Ti4+ ion with

respect to the octahedron of O2- ions[73].
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Figure 3.1 The cubic perovskite lattice structure. The strontium / barium atoms are white, the
oxygens are grey shaded and the titanium is black (for temperatures greater than the Curie
temperature).

3.2.2 Ginzburg-Landau-Devonshire (GLD) theory for ferroelectric phase transitions

For a linear, isotropic and homogeneous (LIH) dielectric an applied electric field E gives rise

to an induced dipole moment with polarisation P. The displacement field D is then defined (in

SI units) as D=ε0E+P. The dielectric constant (permittivity) is defined as εR= (1/ε0)(dD/dE), so

for the LIH dielectric with P=ε0χE, where χ is the electric susceptibility, εR=(1+χ). To

correctly describe non-linear dielectrics such as ferroelectrics, however, higher order P terms

are required in the definition of the displacement field.

GLD theory provides a phenomenological understanding of ferroelectricity in terms of the

macroscopic electric fields and the free energy. Following Lines and Glass[73], it is assumed

that an expression for the free energy of the system can be written in terms of an order

parameter, in this case P. For the situation where all stresses on the crystal are zero, and on the

assumption that E and P are directed along one of the crystallographic axes, the free energy F

can be expressed in the polynomial form (3.1).

F C T P C T P EP= + + −1
2

2
4( ) ( ) ..... (3.1)

Differentiating F with respect to P to find thermodynamic equilibrium and setting dF/dP=0

gives (3.2) for the electric field in terms of the polarisation.

E A T P A T P= +1 2
3( ) ( ) (3.2)

When A1(T) is positive there is a single minimum in F at P=0, but when A1(T) is negative there

are two minima in F(P) at non zero P, i.e. the stable state has a spontaneous polarisation. So, P

undergoes a continuous second order phase transition when A1(T)=0. In the paraelectric phase
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above the Curie temperature Tcf it can be seen that A1(T) is the reciprocal of εR/ε0 for large εR.

In the GLD theory it is assumed that near Tcf  A1(T) is given by (3.3) for T>Tcf.

A T B T Tcf1 1( ) ( )= −      T>Tcf (3.3)

Now, the spontaneous polarisation can be found by setting E=0 in (3.2), and from this the zero

field temperature dependence of  A1(T) for T<Tcf is given by (3.4).

A T B T Tcf1 12( ) ( )= −      T<Tcf (3.4)

The behaviour of εR(T) predicted by (3.3) and (3.4) is shown in Fig. 3.2(a). Together, (3.3) and

(3.4) are known as the Curie-Weiss law for the temperature dependence of the dielectric

constant of a ferroelectric. In (3.3) and (3.4), B1 is a constant.

Close to the ferroelectric phase transition where εR  is large and A1(T) is small the two limiting

cases for the behaviour of εR(E) are that of large E where the non linear term in (3.2) is

dominant,

ε ε0

1

1 2
2 1 33R A T A E1 6− = +( ) ( ) / (3.5)

and small E, where the linear term in (3.2) is dominant, (3.6).
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Figure 3.2. Behaviour of (a) εR(T) from (3.3) and (3.4), and (b), εR(E) in the high field and low
field limits from (3.5) and (3.6). The scales serve as a guide to the magnitude of the variation.
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The form of εR(E) predicted by (3.5) and (3.6) is shown in Fig. 3.2(b).

3.2.3 Lattice dynamics

Ferroelectricity can be interpreted in terms of the softening of a transverse optic phonon mode.

For BaTiO3 the mode is associated with the oscillation of the Ti4+ ion with respect to the O2-

ion octahedron. As T→Tcf from above, the frequency of the phonon ωTO→0, and the mode

freezes completely at Tcf. At this temperature there is a structural phase transition and the Ti4+

ion becomes permanently displaced with respect to the oxygen octahedron, resulting in a

permanent dipole moment in the crystal unit cell and hence spontaneous polarisation. The

crystal has undergone a ferroelectric phase transition. The intercell interaction between the

dipoles has become stronger than the intracell interactions between the Ti4+ and the oxygen

octahedron.

It is also evident that for temperatures above Tcf there will be a discontinuity in εR measured as

a function of frequency ω  at ωTO, because above ωTO the contribution to εR from the dipoles

vanishes and so εR decreases. εR(ω) is derived by considering the harmonic oscillations of a

lattice of interacting dipoles[73], and is given by (3.7) for the case where a single phonon only

is active in the determination of εR.

ε ω ε
νε ω ω ωηR R

TO

q

m i
( ) ( )= ∞ +

�
��

�
�� − +
�
��

�
��

2

0
2 2

1
(3.7)

In (3.7), εR(∞)  gives the contribution to the dielectric constant from the electronic

polarisability, q is a charge coupling constant for the oscillator, m is its reduced mass, ν  is the

volume of the unit cell and η  is a damping constant.

The Lyddane-Sachs-Teller relation (3.8) connects the low frequency dielectric constant εR(0)

to the high frequency value εR(∞) via the frequencies of the soft optic phonon and the

corresponding longitudinal mode frequency ωL. It is derived by setting εR=0 in (3.7) with no

damping, which defines the frequency of the longitudinal optic phonon. In (3.8), A is a
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constant of proportionality. The pole of εR(ω) then defines ωTO.

ε
ε

ω
ω

R

R

L

TO

A
( )

( )

0 2

2∞
= (3.8)

The longitudinal phonon corresponds to oscillations whose wave vector is parallel to the

direction of the electric field inside the unit cell. The longitudinal optic phonon has a flat

dispersion relation with its frequency independent of its wave vector. The transverse optic

phonon corresponds to oscillations where the wave vector is perpendicular to the electric field

inside the cell. Its dispersion relation is non linear and there are gaps where oscillations are

completely suppressed. Combining (3.3) and (3.8) gives (3.9), the variation of the soft mode

frequency with temperature. In (3.9), K is a constant of proportionality.

ω TO cfK T T= −( ) /1 2 (3.9)

It should also be noted that the disappearance of a transverse optic phonon is not a necessary

criterion for ferroelectricity. There is the possibility of the coupling of two or more phonons to

produce a net dipole moment in a crystal, and hence ferroelectricity.

3.2.4 Microscopic theory of ferroelectricity

A more complete microscopic description of ferroelectricity uses a Hamiltonian for the motion

of a dipole in a single ferroelectric unit cell. A mean field approximation is applied for the

interaction between this cell and the other cells in the crystal and thermodynamic averaging

gives measurable properties such as the electric field and temperature dependence of the

dielectric permittivity. The theory is described in detail in the book by Lines and Glass[73] and

Zhou and Newns[74].

The Hamiltonian in the mean field approximation in terms of the local dipole moment p at site

l is given by (3.10).

H V p Ep V p pl l l
l

= − − < >∑ ( ) 0 (3.10)

V(pl) is the local potential well seen by the dipole. For STO, this is given by a harmonic

oscillator with a small anharmonic perturbation. E is the internal electric field at the site, <p>
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is the average polarisation per site and thus V0<p> is the mean field acting on the dipole pl.

The key elements of the model are the interactions between the dipoles and the anharmonic

perturbation of the local potential well. Classical thermodynamic averaging of this

Hamiltonian recovers the Curie-Weiss law for εR(T). There is a ferroelectric phase transition at

kBTcf=V0<p2> when the mean field interaction becomes greater than the depth of the local

potential well, and the anharmonicity of the local potential well determines the degree of

spontaneous polarisation in the ferroelectric state. The introduction of a small oscillating

component into E enables the derivation of (3.9), the linear dependence of the square of the

soft mode frequency on temperature.

3.3 Relevant experiments on single crystal bulk strontium titanate

3.3.1 The temperature dependence of the dielectric constant

The dielectric constant of single crystal barium titanate follows the behaviour predicted by

GLD theory in (3.3) both above and below its Tcf=393K[75]. Neville et al.[54] measured the

temperature dependence of the dielectric constant of single crystal STO, εRSTO, and found that

(3.3) was followed between 300K and 65K, and extrapolation of εRSTO
-1(T) gave Tcf=30K. This

is shown in Fig. 3.3. However, no singularity is found in εRSTO(T) and εRSTO continues to rise

up to 4.2K. It was clear therefore that GLD theory was inadequate to explain the behaviour of

εRSTO(T) at low temperatures. Hence, STO is known as an incipient ferroelectric.
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Figure 3.3. The temperature dependence of the dielectric constant of strontium titanate, from
Neville et al.[54]. The straight line is a fit to the Curie-Weiss law (3.3).
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3.3.2 The frequency dependence of the dielectric constant and the transverse soft optic

phonon frequency

Only εR(0), εR(∞), ωTO and η are required to determine the complete form of εR(ω), so (3.7) can

be re-written as (3.11).

ε ω ε ω ε ε
ω ω ωηRSTO RSTO

TO RSTO RSTO

TO i
( ) ( )

( ( ) ( ))= ∞ + − ∞
− +

�
��

�
��

2

2 2

0
(3.11)

The form of (3.11) is plotted in Fig. 3.4 for STO at 4.2K with the parameters

εRSTO(0)=24000[54], εRSTO(∞)=6[76], ωTO=420GHz[77] and η=30GHz[77]. The form of

εRSTO(ω) for STO has also been confirmed to fit to (3.11) using infrared reflectivity

measurements of the refractive index[78]. In particular, it was demonstrated that εR is positive

below ωTO and negative above ωTO.

The temperature dependence of ωTO for single crystal STO has been experimentally measured

using neutron scattering by Yamada and Shirane[79]. For single crystal STO, (3.9) was

followed from 300K down to 60K, in agreement with the temperature dependence of εR from

low frequency measurements. An extrapolation of ωTO(T) to ωTO=0 gave Tcf=40K. Below 20K

ωTO was found to saturate at 450±60GHz so the Lyddane-Sachs-Teller relation (3.8) was found

to be valid over all temperatures. Fleury and Worlock[80] performed electric field induced

Raman scattering measurements on single crystal STO.
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Figure 3.4. Behaviour of εR(ω) from (4.11) for STO at 4.2K, near the first transverse soft optic
phonon frequency.
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Again, (3.9) was followed to around 60K. Use of the Lyddane-Sachs-Teller relation (3.8) and

(3.2), and measurements of ωTO(T) at various applied electric fields enabled a calculation of

the parameters A1(T) and A2(T), which Fleury and Worlock found to be in good agreement

with those calculated from measurements of the εR of STO at low frequencies. Fleury and

Worlock also compared the measured linewidth of the soft optic phonon in STO with theories

predicting it based on a ferroelectric phase transition at 32K. The measured linewidth was

found to be inconsistent with the theory.

For STO there are 3 further optic phonon frequencies above that of the first transverse optic

phonon. The frequency of the second order transverse optic phonon mode is 5.3THz[78], and

the other modes have higher frequencies. These higher order modes are not temperature

dependent and therefore can be included in A’ in the Lyddane-Sachs-Teller relation

(3.8)[78],[80]. By writing (3.8) as εR(0)ωTO
2=B’ Neville et al.[54] were able to verify that the

variation of the low frequency dielectric constant with temperature followed quantitatively the

behaviour predicted from measurements of the temperature dependence of the soft optic

phonon frequency. B’1/2=nωL(ωL2/ωTO2)(ωL3/ωTO3)(ωL4/ωTO4), where ωLn are the higher optic

phonon frequencies and n is the refractive index, and Neville et al. calculated B’=9.65x1028s-2.

The agreement between ωTO(T) for single crystal STO as measured by neutron scattering by

Yamada and Shirane[79], and the prediction using the Lyddane-Sachs-Teller relation (3.8)

from εRSTO(T) from Neville et al., is shown in  Fig. 3.5.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

prediction from ε
RSTO

(0)

Neutron scattering

ω T
O
 (

G
H

z)

Temperature (K)

Figure 3.5. ωTO(T) for STO from neutron scattering measurements[79]and a prediction using
(4.8) and low frequency εRSTO(T) measurements[54].



Chapter 3: The dielectric properties of strontium titanate

47

STO undergoes a structural phase transition to an antiferrodistortive phase at 105K[81]. The

oxygen octahedron in the unit cell rotates a small amount about an axis parallel to one of the

faces of the cube. This causes one axis of the unit cell to elongate slightly, so the crystal

structure changes from cubic above 105K to tetragonal below 105K. More recent Raman

studies by Vogt[77] have shown that the soft mode splits into two components in the

antiferrodistortive phase, with the frequencies of each dropping to 540GHz and 270GHz

respectively at 4.2K.

3.3.3’Quantum mechanical suppression’ of the ferroelectric phase transition in STO

The reason for the absence of a ferroelectric phase transition at 30K in STO was deduced by

Muller and Burkard[70]. Using Tcf=36K they found that the mean displacement of the Ti4+ ion

<p>  was 0.045Å from the classical theory outlined above, but the mean displacement (or

effectively the uncertainty in the position of the Ti4+ ion) calculated from the zero point energy

of the equivalent quantum mechanical oscillator was found to be 0.077Å. Thus the

ferroelectric phase transition in STO is quantum mechanically suppressed.

3.4 Thin film strontium titanate

3.4.1 The contrast between thin film and bulk STO

There are major differences between the dielectric behaviour of thin film and bulk STO. At

low frequencies the permittivity of thin film STO, εRTF, is typically much less than that of bulk

STO, εRSTO. The highest value reported for εRTF is 5000 at 90K for 200-500nm thick films

grown by rf magnetron sputtering[71]. This high value was achieved by a 12 hour anneal at

500°C in oxygen after deposition. Another method to obtain a large εRTF=1800 at 20K[69] is to

cool to room temperature (from a deposition temperature of 760°C) in an oxygen atmosphere

after every 50nm STO deposited. However, εRTF  can vary down to 400 for a 500nm film[82],

and 80 for a 100nm film[83].

The temperature dependences of the permittivities of thin film and bulk STO are very

different. As shown in Fig 3.3, εRSTO(T) rises monotonically to 4.2K[54], where it saturates at

24000[70]. However, there is typically a broad peak in εRTF(T), either at around 90K[71], or at

around 40K[82],[83]. Fig. 3.6 shows the typical form of εRTF(T).
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Figure 3.6 The typical form of the temperature dependence of the dielectric constant of thin film
strontium titanate.

The broad peak is indicative of a diffuse phase transition[73]. Different regions of the crystal

have different Curie temperatures, so there is no longer a sharp discontinuity at one

temperature. A diffuse phase transition is a common feature in systems with structural

disorder. In a thin film, such structural disorder could arise due to the strain caused by the

lattice mismatch between the film and the substrate. Systems which have inhomogeneous

compositional disorder also exhibit such behaviour.

For thin film STO, loss tangents between 0.05 and 0.1 are typically reported at low

frequencies[71,82]. However, for single crystal STO, the loss tangent is considerably less and

has been measured as 10-3[72].

Furthermore, Fuchs et al.[71], report hysteretic curves of polarisation as a function of electric

field for thin film STO and interpret this spontaneous polarisation with as ferroelectricity with

Tcf=137K. No evidence of spontaneous polarisation is found for single crystal strontium

titanate[83],[54]. However, neither Petrov et al[69] or Basceri et al[84] report hysteresis in the

permittivity as a function of voltage bias for their STO and Ba0.7Sr0.3TiO3 films respectively.

The dielectric properties of incipient ferroelectric thin films have been treated theoretically by

Vendik et al[85,86]. Vendik introduced a phenomenological dispersion parameter into the

equivalents of A1(T) and A2(T) to derive a modified version of (3.2). The addition of a

dispersion parameter takes into account that the electric field is not necessarily homogeneous
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inside the dielectric as a result of defects and mechanical stresses inside the film. A

consequence of a non zero dispersion parameter was the introduction of a broad peak into the

variation of the dielectric constant with temperature for  incipient ferroelectrics without the

need for a ferroelectric phase transition. A non zero dispersion parameter also gives rise to

hysteretic electric field – polarisation curves due to the redistribution of trapped charge upon

reversal of the electric field direction.

Fuchs et al.[71] claimed that the peak in the permittivity at 90K of their STO films with

temperature was due to a ferroelectric phase transition in contrast to the Vendik theory.  Fuchs

et al. obtained a good fit to the spontaneous polarisation versus temperature measured for their

films from standard GLD theory. The peak in permittivity at 40K observed for other STO

films was attributed to a tetragonal to trigonal structural phase transition at this temperature.

3.4.2 The causes of the differences between the dielectric properties of thin film and bulk

STO

According to Streiffer et al[87] there are believed to be three distinct phenomena behind the

differences in dielectric behaviour between thin film and single crystal STO. Streiffer et al.

were able to separate them by making low frequency dielectric measurements on the solid

solution BaxSr1-xTi1+yO3+z, by independently varying y[87].

The phenomena are:-

 i. A reduction in film polarisability resulting from Ti non-stoichiometry. An effective

dielectric constant for the Streiffer et al. films was found to decrease from 900 for y=0.04

to 300 for y=0.15.

 ii. The effect of the mechanical constraints imposed by the substrate on the film stress and

strain. This leads to structural disorder and a diffuse phase transition. A film removed from

the substrate was found to show an increase in dielectric constant from 272 to 378, at room

temperature.

 iii.  A size or interface effect, which is displayed as a decrease in the film dielectric constant

with decreasing film thickness.

The causes of the size effect are most relevant for the experiments on a range of thicknesses of
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STO thin films described later in this chapter. The size effect was observed by Streiffer et al.

for BaxSr1-xTi1+yO3+z films for thicknesses between 24 and 160nm over a temperature range

between 300K and 480K. The effect was also observed for Ba0.7Sr0.3TiO3 films of thicknesses

between 24 and 160nm down to 73K in earlier experiments by the same group[84]. The effect

has also been reported by Kotecki et al.[64] for BaxSr1-xTiO3 films, and by Abe and

Komatsu[88] for STO films with thicknesses between 23 and 92nm. All  these experiments

used metallic electrodes to measure the dielectric constant.

Fuchs et al.[71] observed no thickness dependence of the dielectric properties of their STO

films for thicknesses between 200 and 500nm. No difference between the properties of the

STO films when either Au or YBCO electrodes were used, with the exception of a shift in the

maximum of capacitance from zero voltage bias.

Phenomenologically, the size effect can be modelled by modifying (3.2) to give a thickness

dependence in the first order polarisation term, as in (3.12).

E
d

A T P A T P= +�
��

�
�� +ξ

1 2
3( ) ( ) (3.12)

In (3.12), d is the thickness of the dielectric film and ξ is a constant. Basceri et al.[84] found

that no modification of γ(T) was necessary to model the thickness dependence of the dielectric

constant of their films. The capacitance of thin film STO has two series contributions, one

from the dielectric constant of the bulk, Cb and the other from an interface layer at the

boundary between the electrode and the dielectric Ci, as in (3.13).
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In (3.13), di is the thickness of the interface layer, εi  is the permittivity of the interface layer

and A is the area of the capacitor.
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From (3.13) the effective thin film dielectric constant is given in (3.14).
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Fig. 3.7 shows the capacitor geometry described by (3.13), together with the Abe and Komatsu

data[88] for the thickness dependence of εRTF for STO films at 295K. From the intercept, εRSTO

is found to be 340 in agreement with the Neville et al[54] measurement at this temperature.

Streiffer et al[87] have summarised the variety of mechanisms that could be responsible for the

dependence of  εRTF on film thickness. The mechanisms are either intrinsic or extrinsic to the

dielectric film itself. The extrinsic mechanisms consist of contamination of a layer near to the

interface, either as a result of chemical species which are not Ba, Sr, Ti or O, or a change in

growth mechanism at the interface resulting in a non uniform stoichiometry or grain size

across the thickness of the film.

3.4.3 Intrinsic mechanisms for the size effect

The relevant intrinsic mechanisms for the thickness dependence of εRTF are the formation of an

intrinsic dead layer at the surface of an incipient ferroelectric film and the existence of a

Schottky barrier at the interface between the metal electrode and the dielectric film.

Zhou and Newns[74] have developed a modified version of the microscopic theory of

ferroelectricity, which was described in section 3.2.4, to encompass the effect of finite size on
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the dielectric behaviour. A mean field approximation was used as in the bulk case, but the

polarisation  and the mean field due to the surrounding dipoles were assumed to be dependent

on the distance from the surface of the film. The mean field was assumed to decay

exponentially at the film surface with a range parameter λf, and the polarisation decays

exponentially to zero at the surface of the film. The theory leads to two predictions. Firstly,

there an exists an intrinsic dead layer at the surface of a ferroelectric with width di, and hence

the effective dielectric constant scales linearly with film thickness as shown in (3.15).

ε
λRTF

f cf

T

T T d T
=

+ −
1

03 8 (3.15)

In (3.15), T1=1/β is the Curie-Weiss constant (see (3.3)) and T0 is a temperature parameter. For

bulk STO T0 and T1 can be obtained from the temperature dependences of the frequency of the

soft optic phonon and the permittivity. Zhou and Newns found T0=2060K and T1=1.01x105K.

By fitting (3.4) to the room temperature Abe and Komatsu data for the size effect in STO films

(Fig 3.7), Zhou  and Newns found λf=1nm-1. From (3.15) it can be seen that below a

characteristic film thickness dc=(T0/λfT), εRTF starts to drop. For STO at 4.2K, this thickness is

490nm. The second prediction, also evident from (3.15) is that Tcf decreases with decreasing

film thickness, becoming negative for very thin films. This prediction was also verified by

experimental data.

The size effect was also treated by Vendik et al. by introducing dependence of the film

polarisation on position, this time into the modified Ginzburg-Landau-Devonshire expression

for E(P). Since the polarisation vector cannot vary within short distances such as one cell of

the crystal lattice, below a certain sample size the dielectric properties must become size

dependent. An equation equivalent to (3.4) was derived[85], which defined a ‘correlation

radius’, equivalent to T0/λf in (3.15) and approximately equal to 2µm from the Zhou and

Newns parameters, or 2.5µm at 78K according to Vendik. The correlation radius is analogous

to the coherence length in a superconductor.

Vendik et al.[86] identified the electrode material as a further cause of the size effect. It was

postulated that the ferroelectric polarisation cannot decay into a metal. Therefore, the

ferroelectric polarisation must be zero at the metal – dielectric interface. However, the

ferroelectric polarisation can decay into an oxide electrode such as YBCO. The effect was
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observed experimentally by Hwang et al.. A size effect was observed for Pt/Ba1-xSrxTiO3/Pt

capacitors, but not for IrO2/Ba1-xSrxTiO3/IrO2 capacitors[89]. The intrinsic dead layer was

therefore not present for the capacitors with oxide electrodes.

At the interface between a metal and an incipient ferroelectric, a Schottky barrier is formed.

Charge carriers diffuse from the incipient ferroelectric into the metal to compensate for the

difference between the work function of the metal and the Fermi level of the ferroelectric. The

barrier results in a built in voltage at the interface which shifts the maximum of the

permittivity versus voltage bias curve (see Fig 3.2(b)) away from the origin[82]. Initially, the

film was thought to be depleted only near the electrodes, and so the application of a voltage

bias changed the effective length of the depletion region, hence changing the effective

dielectric constant[82]. Dietz et al. claimed that measurements of the leakage current in

Ba0.7Sr0.3TiO3 films showed that films thinner than 162nm were completely depleted, so an

applied voltage bias could not change the thickness of the depleted region as described

above[90]. Furthermore, the capacitance-voltage curves obtained could be described

quantitatively by GLD theory[84], so this was believed to be the correct mechanism

responsible for the tuning of the dielectric constant. However, Hwang et al.[89] proposed a

partially depleted model to explain their leakage current measurements of Ba1-xSrxTiO3 films.

Regardless of whether the film is fully or partially depleted, there still exists a small built in

field at the electrode-dielectric interface, which could suppress the dielectric constant near the

interface and thus appear as an interface capacitance[87].

3.4.4 Frequency dependence of the dielectric constant of thin film ferroelectrics

The frequency dependence of the dielectric constant of Ba0.7Sr0.3TiO3 films has been studied

by Baniecki et al.[91], between 1mHz and 20GHz at room temperature. The dielectric constant

εR of the films was found to obey a Curie-von Schweidler relationship with the real part

εR’ (ω)=εR’ (0)-A’ω p and the imaginary part εR’’ (ω)=A’’ ω p. εR’  was found to vary by less than

7% in the frequency range studied. For BaTiO3 films, p varies between 0.03 and 0.05[92].

Systems with diffuse phase transitions typically have a frequency dependent  dielectric

constant, with   the   dielectric   constant   maximum  occurring   at  higher  temperatures   with



Chapter 3: The dielectric properties of strontium titanate

54

38

40

42

44

46

48

50

52

10-1 101 103 105 107 10910111013101510171019

1e-06
1e-02
1e+02
1e+06

C
ap

ac
ita

nc
e 

(f
F)

Angular frequency (rad s-1)

Ci
Ci

Cb

Rb

Figure 3.8 The Maxwell – Wagner interface capacitance model and the expected variation of
capacitance with frequency for various Rb and Ci=100fF and Cb=200fF.

increasing frequency[73]. In polycrystalline films natural variation in grain sizes could cause

the Curie-von Schweidler behaviour[91]. Oxygen vacancies in the depletion region could be a

further cause[91]. For epitaxial films, any mismatch of the film to the lattice causes

inhomogeneous local strain leading to structural disorder, a further possible cause of the Curie-

von Schweidler behaviour[92].

Partially depleted incipient ferroelectric films would exhibit a Maxwell – Wagner relaxation

step in the variation of capacitance with frequency. The partially depleted system is modelled

as two fully depleted (lossless) interface capacitors Ci in series with a lossy (Rb) bulk capacitor

Cb as shown in Fig. 5.3.

The expected variation of capacitance with frequency for the Maxwell – Wagner model is also

shown in Fig. 5.3, for various values of Rb and Ci=100fF and Cb=200fF. The limiting values

are Ci/2 at low frequency and CiCb/(Ci+2Cb) at high frequencies, with the step at angular

frequency ω=2π/RbCb. The Baniecki et al.[91] measurement of the frequency dependence of

the dielectric constant found no evidence for Maxwell Wagner relaxation between 1mHz and

20GHz. Dietz et al.[90] claim that this constitutes more evidence for a fully depleted model of

Ba1-xSrxTiO3 thin films. A step below 1mHz would require carrier densities too low to give the

required built in voltage at the dielectric metal interface. A step above 20GHz requires the bulk

to be so lossy as to resemble a strongly conducting semiconductor. However, Hwang et al.[89]

claim that reasonable parameters for the carrier concentration and electron mobility could lead

to Rb~1Ω which would give Maxwell – Wagner relaxation in the THz region.

The Zhou and Newns theory also has a third consequence, as mentioned in the original
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paper[74], and by Streiffer et al.[87]. Since the environment near the surface of the film

contains less dipoles, the tendency to drive the transverse optic phonon soft is reduced.

Therefore the frequency of the soft optic phonon in thin film STO should be increased with

respect to that measured in bulk STO. This would also be expected if the Lyddane-Sachs-

Teller relation (3.8) were obeyed in STO thin films.

High frequency measurements (between ~50GHz and 1THz) of the dielectric constant of thin

film STO  using Josephson junctions coupled to external resonators could therefore provide

information regarding the hardening of the soft optic phonon and Maxwell Wagner relaxation.
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Chapter 4: Experimental Methods

4.1 Introduction

This chapter describes the fabrication techniques needed to manufacture Josephson junctions,

shunt capacitors and YBCO / strontium titanate / gold resonators. The pulsed laser ablation

systems that were used to deposit the films are briefly reviewed. Next, descriptions of the

photolithography, etching methods and contact deposition procedures are given. Finally, the

measurement rig used for the electrical characterisation of the devices at cryogenic

temperatures is described.

4.2 Pulsed Laser Deposition

The YBa2Cu3O7 (YBCO) / SrTiO3 (STO) bilayers used in this study were from three sources.

These were the off-axis laser ablation system at the IRC in Superconductivity at the University

of Cambridge and the on-axis system at the Department of Physics and Applied Physics at the

University of Strathclyde. Calcium doped YBCO films were grown at the University of

Augsburg. The films were grown by Dr. E. Tarte, Dr. A. Moya and Dr. F. Kahlmann at the

University of Cambridge, by Dr. E. Romans at the University of Strathclyde and by the

Mannhart group at the University of Augsburg. All the films were grown on 24° misorientated

STO bicrystal substrates, with the exception of one 36° misorientation angle.

A diagram of the off-axis laser ablation system in Cambridge is shown in Fig. 4.1. A laser is

incident on a YBCO target. The substrate on which the film is to be deposited is placed in the

plume of ablated material from the target. In principle, the stoichiometry of the film is the

same as that of the target. The system uses a KrF excimer laser with a wavelength of 248nm

and pulse duration of 10ns. The energy density of the laser at the target surface was 1.8 J cm-2.

The targets were water cooled during deposition to prevent excess heating and oxygen

depletion. The targets were also rotated to minimise damage to any one part of the surface of

the target. The system was pumped to a base pressure of  <10-7 mbar. The substrate was heated

to 780°C during deposition, which took place in a 0.3 mbar oxygen atmosphere. The number

of laser pulses controlled film thickness. After deposition of both the YBCO and STO layers,

the substrate was cooled to room temperature at 20°C min-1 at an oxygen pressure of 1 bar.
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Figure 4.1 The Cambridge off-axis laser ablation system[10].

The system and surface morphology of the films prepared by it are described in more detail by

Santiso et al[93].

The difference between on and off-axis laser ablation lies in the orientation of the substrate

with respect to the plume. The substrate is parallel to the plume in an off-axis system, and

perpendicular to the film in an on-axis system. Fewer large clusters of atoms reach the surface

of the film in an off-axis system.

In Cambridge, the YBCO film thickness was calibrated by wet etching a step in the film with

phosphoric acid (H3PO4(aq)), and measuring the step height with a profilometer to an accuracy

of ±25nm. The STO deposition rate was assumed to be equal to the YBCO deposition rate. In

Strathclyde, the deposition rates were determined independently for both the YBCO and the
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STO. The films were ion milled (see section 2.3.2) in a system fitted with a mass spectrometer

for endpoint detection. The thicknesses were measured with a Dektac profilometer to an

accuracy of  ±1nm.

4.3 Device fabrication

4.3.1 Photolithography

The majority of the films were patterned with the standard photolithographic techniques

described in this section. The stages of patterning of the YBCO/STO bilayers are shown in

Fig. 2.3.

The films were cleaned prior to patterning by ultrasonic stirring in acetone for 2 minutes. If the

film surface was particularly dirty chloroform, then acetone and then propanol were used. The

films were then airbrushed with acetone followed by propanol.

The following is a positive photoresist technique. Opaque areas of the mask are the regions

where the photoresist remains on the film after patterning. Photoresist (AZ1529) was spun

onto the film at 6000 RPM for 30 seconds. The film was then baked at 100°C for one minute.

For features larger than 5µm, a Cannon projection mask aligner was used to expose the films

for 3 minutes. The photoresist undergoes a chemical reaction when exposed to ultra violet light

rendering it soluble in developer. After exposure, the resist was developed for 30 seconds in

AZ developer diluted 4 parts developer to one part water.

The patterning of fine features (to 1µm) and alignment of the pattern to the grain boundary in

the bicrystal required the use of a Carl Suss contact mask aligner. As a result of spinning, a

thick layer of photoresist known as the edge bead forms around the edges of the film. The edge

bead was first removed to achieve good contact between the mask and the film. Multiple

exposures and subsequent developings were sometimes required to completely remove the

edge bead. The film was exposed for 8 seconds in the Carl Suss. The resist was developed for

between 15 and 45 seconds. The endpoint of the developing was detected visually.

4.3.2 Ion milling

After the resist had been patterned, ion milling was used to physically etch away the unwanted

areas of the film. The Kaufman ion gun was powered with a Princeton Applied Research
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power supply. The chamber was pumped down to less than 4x10-6mbar with a diffusion pump

prior to milling. The film was milled in a 2% oxygen in argon gas mixture at a pressure of

2x10-4mbar. The beam current of the Ar+ ions was 10mA with a 500V accelerating voltage.

The purpose of the oxygen gas was to enhance the etching rate by oxidising the debris from

the areas of film being removed.  The sample holder was cooled with water to minimise

oxygen depletion from the YBCO film and grain boundary during milling. The angle of the

step between the film and the substrate could be controlled by adjusting the angle of incidence

of the ion beam to the substrate between 0° and 45°. The sample was rotated whilst being

milled to ensure a uniform etch rate across its entire area.

The milling rate was calibrated by measuring step heights of patterned films with a

profilometer. Typical milling rates at 0° incidence to the beam were 3.3 nm min-1 for STO and

5nm min-1 for YBCO. These rates approximately double at 45° incidence to the beam. The

milling rate of the STO is two thirds of that of the YBCO. The milling rate was found to

decrease by 1nm min-1 over a period of months. The milling rate recovered to its original value

when the ion gun filament was replaced.

To ensure that the film had milled completely, it was checked that the resistance between two

points on the bare substrate was greater than 1MΩ.

4.3.3 Patterning an YBCO/STO bilayer on a bicrystal

This section describes the additions required to the above techniques when patterning a film on

a bicrystal. Resist was spun and baked as in section 4.3.1. Off-axis films had a layer of YBCO

on their reverse side. This layer could cause difficulties with any subsequent electrical

characterisation, so it was removed by etching in 2.5% phosphoric acid solution. The endpoint

was detected visually after approximately 30 seconds when the film and substrate became

translucent.

A grain boundary etch mask was then patterned in the film using the projection mask aligner

as in section 4.3.1. The film edges could be removed by etching in phosphoric acid for bare

YBCO films, but STO/YBCO bilayers required these regions to be removed by ion milling.

STO does not etch in phosphoric acid. Care was taken not to overmill which would result in a

step height large enough that the grain boundary and the film surface could not be brought into
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YBCO film

STO substrate

grain boundary

Figure 4.2 The film and the grain boundary after etching in hydrofluoric acid.

focus simultaneously in the contact mask aligner. The remaining resist was removed in

acetone. Another layer of resist was spun and patterned into the grain boundary etch mask.

Then, the STO bicrystal grain boundary was etched for 30 seconds in 7% hydrofluoric acid.

The grain boundary was then visible in the substrate to enable the device pattern to be aligned

to it. The film after the grain boundary has been etched is shown in Fig. 4.2.

Following this stage, the devices were patterned with the contact mask aligner and the film

was ion milled as in sections 4.3.1 and 4.3.2. Next, holes were patterned over the areas of the

film where contact pads were required and the STO layer was milled away in these regions.

This enabled electrical contact to be made through to the YBCO. After this stage of patterning,

it was checked that the resistance of an YBCO track was ~1 kΩ to ensure that the STO layer

had been completely removed over the contact pads.

A diagram of the process is shown in Fig. 4.3.

4.3.4 Lift-off and gold contact pad deposition

To achieve the contact resistances necessary for low noise electrical characterisation of the

devices, gold contact pads were deposited with the lift-off technique described below.

Holes were patterned in a layer of photoresist over the films, in the areas in which contact pads

were required. The resist was slightly overdeveloped to ensure that there no resist remained in

the regions where contact pads were required. Next, gold was deposited over the entire area of

the film using dc sputtering. The chamber was pumped to below 5x10-5 mbar prior to gold

deposition. The gold was sputtered at a pure argon pressure of 5x10-2mbar at 30W power. The

gold deposition rate at this power is  3.3nm s-1. Again,  the sample  holder was water  cooled to
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Figure 4.3 The stages of patterning of the YBCO/STO bilayer films (not to scale).

minimise oxygen depletion  caused  by  heating  during  gold  deposition. The resist  was  then

stripped with acetone, leaving gold over the contact pads where there was no resist. A diagram

of the lift-off process is shown in Fig. 4.4.

4.3.5 A hard masking process for thick films

The fabrication techniques described in sections 4.3.1 to 4.3.3 performed well for films up to

300nm thick. However, it was found to be impossible to pattern thicker films to high

resolutions using photoresist. Mill times greater than one hour at 45° incidence to the beam led

to the resist itself milling away. The resist was also found to etch faster at an edge, so narrow

tracks disappeared first. It was desired to pattern a 200nm YBCO / 200nm STO bilayer film.

Therefore the niobium masking technique described below was developed.
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Figure 4.4 The lift-off process for gold contact pad deposition (not to scale).

The grain boundary in the substrate was exposed with the process described in section 2.3.3.

The metal mask was deposited using a lift-off process. A negative resist or image reversal

process was used for the patterning, where the resist underneath the opaque area of the mask is

developed. The AZ5214 photoresist was spun at 4000 RPM for 30 seconds. The resist was

then baked for 10 minutes at 80°C. The edge bead was removed. The resist was exposed

through the required mask for 5 seconds in the contact mask aligner. The resist was then baked

for a further 2 ½ minutes at 120°C. The resist was then flood exposed (with no mask) in the

contact mask aligner for 25 seconds, and then developed for 30 seconds in 2 parts AZ

developer to 1 part water solution.

A gold / niobium bilayer was sputter deposited onto the film. The gold was required to prevent

any chemical reaction or diffusion of the niobium into the STO film. The gold was also

necessary to provide an endpoint for subsequent carbon tetrafluoride (CF4) plasma etching.

The chamber was pumped overnight to a base pressure ~10-7mbar. Prior to deposition the

diffusion pump trap was filled with liquid nitrogen to further reduce the chamber pressure. The

sample  was  milled  for 30  seconds  prior  to deposition to clean  its  surface  and  improve the
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Figure 4.5 Image reversal using negative resist and a hard masking process for thick films (not to
scale).

adhesion of the gold niobium bilayer. A 50nm gold film was deposited first, with the

conditions described in section 4.3.4. The niobium was then sputtered for 15 seconds at a

pressure of 2.3x10-3 mbar of pure argon with 75W power  The argon pressure was then

increased to 3.2x10-3 mbar and niobium was sputtered for 17 minutes. The niobium film

thickness was 700nm.

The lift-off was performed by soaking in acetone for 2-3 hours. The sample was then ion

milled for 75 minutes at 45° incidence to the beam. The mill rate of niobium is approximately

the same as that of STO. The 700nm niobium film was therefore a sufficient mask for the

longer mill time. The required 2µm features were reliably patterned in this way.

After milling, the remaining niobium was removed using CF4 RF plasma etching. The base
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pressure of the plasma etching chamber was 10-5mbar. The sample was first cleaned for 1

minute in an oxygen plasma at a pressure of 0.25mbar with 50W incident and 7W reflected

power giving a discharge voltage of 120V. The niobium was then removed by etching for 6

minutes in a 0.175mbar CF4 plasma with the same power and a discharge voltage of 100V.

The gold film is not etched by the CF4, so this provided a natural endpoint for the process.

After the CF4 etching, the chamber was flushed with argon and pumped to 10-3mbar before

opening, as CF4 gas is toxic.

The gold was then removed by wet chemical etching for 30seconds in a solution of 4g

potassium iodide and 1g iodine in 150ml water.  The STO was then removed from the contact

pads and gold contacts deposited using the same procedure as in sections 4.3.3 and 4.3.4. A

diagram of the hard masking process is shown in Fig. 4.5.

Table 4.1 shows the film thicknesses of the various chips used in this study. The substrate were

all 24° misorientated STO bicrystals, with the exception of Xros36 which was a 36.8°

misorientated STO bicrystal.

Table 4.1 Film thicknesses

Chip Name YBCO  thickness (nm) STO  thickness (nm) Gold electrode thickness(nm)

Subros 100 20nm capping layer N/A

Xros24a 100 20 162

Xros24b 200 100 162

Xros24c 200 100 297

Xros24d 200 50 495

3tdev 200 200 594

Xros36 200 100 162

1D_res 200 50 594

Y998 100 None N/A

Fiske 170 None N/A
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4.4 Electrical characterisation of devices

The samples were mounted using nail varnish onto chip carriers consisting of a copper block, a

printed circuit board and a plug or socket. The samples were ultrasonically wire bonded to the

chip carriers with 30µm diameter aluminium wire. The chip carrier was plugged into a probe

which was dipped into a liquid helium dewar for electrical characterisation between 4.2K and

300K.

The measurement rig is shown in a block diagram in Fig. 4.6. The devices were current biased

and the voltage and current were measured by a standard 4 point measurement technique. The

low noise current source and voltage amplifiers were designed by Dr. Wilfred Booij. A Dell

PC via a 16 bit National Instruments analogue to digital I/O card controlled the electronics.

Current voltage characteristics were measured with LabVIEW software written by Dr. Gavin

Burnell. The software also controlled the temperature controller, lock-in amplifier and voltage

source.

The computer generated a 30Hz sinusoidal voltage, which was used to drive the current

source. A second current source was used to drive Helmholtz coils to apply a magnetic field up

to 100mT perpendicular to the direction of current flow through the junction. The ambient

magnetic field was minimised with a µ-metal shield.

The EG&G 5302 lock-in amplifier enabled the direct measurement of differential resistance

(or dynamic resistance) versus voltage curves. A 1kHz voltage with 5mV amplitude was

generated by the lock-in amplifier. This signal was added to a slowly varying voltage ramp

generated by the current source power supply. The amplitude of the 1kHz current applied to

the device therefore changed depending upon the range of the current source. The lock-in

measured the amplitude of the voltage across the device at 1kHz. The differential resistance

could then be calculated with knowledge of the current source range and voltage amplifier

gain. Variation of the current source range and voltage amplifier gain were found not to affect

the differential resistance measurement. The differential resistance measurement was also not

affected by changes in the frequency of the lock-in signal up to ~7kHz. Above 7kHz the

amplitude of the voltage signal measured by the lock-in was reduced by passive RCR low pass

filters in the probe.
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Figure 4.6. A block diagram of the electronics used for device measurement.

A Keithley 487 dc voltage source was used to voltage bias shunt capacitors and resonators on

the sample being characterised.

The temperature of the sample was measured with a silicon diode temperature sensor with a

Lakeshore 340 PID (proportional, integrating, differentiating) temperature controller. The

calibration of the temperature sensor was checked in boiling liquid nitrogen at 77.4K and

boiling liquid helium at 4.2K.

The Lakeshore temperature controller, the Keithley voltage source and the lock-in amplifier

were connected to the computer with a GPIB card.

The peak to peak voltage noise of the system was 1µV. The following steps were taken to

minimise the voltage noise. The current source and voltage amplifier power supply contained

active low pass filters to minimise electromagnetic interference from the mains and from the

A/D card. The current source and voltage amplifier were fixed to the probe itself. This
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minimised the length of cable through which low level signals traveled, and thus reduced

electromagnetic interference.

The heater was power supply was isolated from the ground of the measurement electronics.

The heater, thermometer and coil leads were made from twisted pairs of wires. This minimised

inductive cross talk between these leads and the measurement lines. Each heater line was also

filtered separately with a ferrite bead. The passive low pass RCR filters for the heater power

supply and the voltage source were found to be essential for the correct measurement of

Josephson junction critical currents and hysteresis. In the absence of these filters, the critical

current was found to be significantly suppressed. For some devices with small critical currents

(e.g. 60µA at 4.2K), this suppression could be up to 20µA. The upgrade of the measurement

computer from an Apple Quadra to a Dell Pentium PC enabled the rapid measurement of

thousands of critical currents. The absence of low pass filtering of the heater power supply was

found to substantially increase the standard deviation of one thousand measurements of a

device critical current.
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Chapter 5: Josephson junctions with hysteretic current voltage

characteristics at high temperatures

5.1 Introduction

This chapter describes the testing of grain boundary YBCO Josephson junctions shunted with

an external capacitor. A capacitive shunt was used to obtain a junction with a hysteretic current

voltage characteristic at a high temperature (T>50K). As described in Chapter 1, typical high

Tc Josephson junctions have βc≈1 at 4.2K and βc<1 at T>50K. The primary motivation behind

fabricating a hysteretic junction at T>50K is that hysteresis is vital for the correct operation of

a relaxation oscillation SQUID (ROS)[94,95].

First, the operation of the relaxation oscillation SQUID is described, followed by that of

double relaxation oscillation SQUIDs. Next, previous experiments on both low Tc  and high Tc

hysteretic Josephson junctions is reviewed. Initial attempts to achieve coupling of the junction

to co-planar and parallel plate external capacitors are discussed. Then, experiments where

junctions were successfully coupled to external capacitors with hysteretic current voltage

characteristics both at low and high temperatures are described. Simulations of junctions

shunted with distributed impedances and lumped capacitances are performed. The feasibility

of manufacturing relaxation oscillation SQUIDs from high Tc junctions is assessed.

5.2 The relaxation oscillation SQUID

A ROS consists of a SQUID made with hysteretic Josephson junctions shunted in parallel by

an inductor L and a resistor Rb in series. However, unlike the dc SQUID, where a small change

in magnetic flux produces a small change in read-out voltage, the ROS produces voltage

pulses the frequency of which is determined by the applied magnetic field. An equivalent

circuit for the ROS is shown in Fig. 5.1.

The ROS is operated at a constant current bias Ib slightly greater than twice the critical current

of each junction. The cycle of operation is, starting from the point where the ROS has just

switched into the voltage state:- (see also Fig. 5.2)

1. The current through the L-Rb combination slowly increases. The current through the SQUID

decreases as the return branch of the IV curve is followed. The ROS remains in the voltage state.
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Figure 5.1 The equivalent circuit for a ROS

2. When the current through the SQUID reaches the return current of the junctions, the

SQUID switches back into the superconducting state, so the voltage across the ROS is zero.

3. Now the current through the L-Rb combination decreases and the current through the

SQUID increases until its critical current is reached at which point the SQUID returns to the

voltage state and the cycle is repeated.

The frequency with which the cycle repeats is determined by the critical current of the SQUID,

which is in turn determined by the magnetic flux through the SQUID (see Chapter 1). So, the

ROS operates as a flux to frequency converter. By varying L, Rb and Ib the frequency of the

oscillations can be varied from a few MHz up to 40GHz[95]. However,
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Figure 5.2 The voltage pulses measured from a ROS (R=0.659Ω, Cj=60pF, Ic=440µA, L=1nH,
Rb=0.1Ω bias current 900µA) output and a hysteretic IV curve as a guide. ( junction IV
parameters and ROS parameters do not correspond.)
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Figure 5.3. The equivalent circuit for a DROS.

it is important to choose Rb and Ib such that V
�
=RbIb<Vmin, where Vmin is the voltage at which

the SQUID switches back into the superconducting state, otherwise the oscillations will cease

in the voltage state at stage 2 of the cycle[95].

More sophisticated devices based upon the ROS have also been demonstrated. A Double-ROS

(DROS) is shown in Fig. 5.3 and consists of two SQUIDs in series shunted in parallel by an

inductor and a resistor[95]. A reference flux is applied to one of the SQUIDs, and the dc

voltage across the other (signal) SQUID is measured. The SQUID which has the lowest critical

current participates in the relaxation oscillations. Either the average voltage of these

oscillations is measured, or zero voltage, so the DROS acts as a critical current (or flux)

comparator. Thus, the DROS can be read out digitally making it extremely useful for

potentially unshielded SQUID imaging systems.

5.3 A survey of hysteretic junctions

5.2.1 Representative low TC  hysteretic junctions

Low Tc SIS tunnel junctions typically have a very high resistance (resistance area product ~

100 - 1x104 Ω µm2) and also a high capacitance (~ 0.038 pF µm-2)[28]. The ideal SIS junction

has βC→�[96]. Experimental investigations of these junctions were mainly concerned with

verifying the predictions of the Stewart-McCumber phenomenological model of the Josephson

junction IV characteristic, and also the form of  βcα). Hansma et al[96] fabricated Sn-SnO-Sn

junctions with a resistance area product of 6.1x104 Ωµm2 shunted with an Ag resistor
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with a value between 1mΩ and 10Ω. The junctions had a capacitance of around 100pF, arising

from the parallel plate structure formed by the junction and its electrodes, and the critical

current was adjusted either by varying the temperature or by applying a magnetic field in order

to change βC  between 80 and 1. The form of βc(α) predicted by Stewart and McCumber was

verified and agreement between the predicted and measured IV characteristics was obtained.

The effect of current noise on βc(α) was also examined and it was found that this suppressed

the hysteresis – i.e. for a given βc, α was increased in the presence of current noise.

The capacitively shunted variable thickness Pb microbridges described by Yeh et al[97] are

more directly analogous to the experiments on grain boundary high Tc junctions described later

in this chapter. A microbridge junction typically has βc=0 and an external capacitor is required

to produce hysteresis. Yeh et al measured junctions shunted with multilayer capacitors with a

SiO / photoresist dielectric and either a normal Au or superconducting Pb top capacitor

electrode, similar to the structures shown in Fig 5.7. The IV characteristics were measured

before and after deposition of the capacitor structure and indeed the capacitor did give rise to

hysteresis. However, hysteresis only occurred with a superconducting top electrode and the

hysteresis was found to be much less than expected given a low frequency measurement of the

capacitance. The explanation advanced for this behaviour was that at the Josephson frequency

the junction sees a distributed impedance (Fig. 5.36) rather than a lumped capacitance (Fig.

5.8). For a distributed impedance the wavelength of the Josephson oscillations inside the

capacitor is smaller the length of the capacitor itself. The shunt capacitance is reduced from its

low frequency value because such a structure does not necessarily produce a -90° phase shift

in the alternating current. Furthermore, losses in the transmission line further reduce the shunt

capacitance. Also the geometry of the capacitive shunt was such that it also contained a

significant shunt inductance.

5.3.2 High Tc  hysteretic junctions

Josephson junctions manufactured from the high Tc materials (in the short limit where the

current density is uniform across the junction) typically have a resistance area products of 1Ω

µm-2 and specific junction capacitances of 1 pF µm-2 so in general βc≈1[31,37,57,59,60,63,98-

100]. This capacitance results from the intrinsic capacitance of the grain boundary, as

discussed in section 2.4.2. This is in contrast to the low Tc SIS junctions which have much
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larger resistance area products, and hence much greater βc.Therefore, to make a hysteretic high

Tc junction an external shunt capacitor of the type used by Yeh et al[97] is required, rather than

the resistive shunt used by Hansma et al[96] to control βc.

Of the YBCO grain boundary junctions shunted with an external capacitor the most

convincing report has been that of Daly[100]. Here, multilayer shunt capacitors were deposited

over YBCO step edge junctions on LaAlO3 substrates. Two different dielectrics were used,

LaAlO3, which gave rise to a hysteretic IV at 67K with βc=1.3, and SrTiO3 which gave

hysteresis at 4.2K with βc=6. Control structures with no top electrode were also fabricated, and

these did not have hysteretic IV characteristics which confirmed that the hysteresis was caused

by the capacitor. However, the top electrode used was the normal metal Ag, in contrast to the

result of Yeh et al. Again the hysteresis obtained was much less than that predicted assuming a

lumped capacitance calculated from a low frequency measurement of the dielectric constant.

Dong[37,101] has fabricated YBCO SNS ramp edge junctions with a multilayer shunt

capacitance, with a SrTiO3 dielectric and an Au top electrode. The junctions themselves are

similar to step edge junctions but with a small layer of Au deposited between the YBCO

grains, with the aim of better control over the junction resistance. These devices show

hysteresis at 77K with βc=1.1. Lee et al[102]  have fabricated hysteretic junctions using a

YBCO film on a 36.8° SrTiO3
 bicrystal. The same multilayer capacitor geometry was used

with a SrTiO3 dielectric and a gold top electrode. However, hysteresis was observed only up to

30K with a maximum βc of 4. Thus, it is questionable whether or not it is the shunt capacitor

and not the grain boundary which is dominating the effective capacitance in this case.

Hysteretic junctions have also been reported in Tl compounds using a multilayer shunt

capacitor and a step edge junction[103]. βC  in excess of 1000 was measured at 77K, but with a

small critical current and a very high Rn (1kΩ). βc=10 was reported for a trilayer c-axis

junction made using Bi compounds with molecular beam epitaxy (MBE)[104]. However, these

devices functioned as a Josephson junction only up to 30K, and MBE is a somewhat complex

junction fabrication technique. The trilayer junctions of Fink et al[105] had βc>100 up to 16K,

but the superconducting top electrode used (Ba1-xKxBiO3) had Tc=16K.

An array of YBCO junctions on a 24° SrTiO3 bicrystal with βc=2 were reported by Tarutani et

al[106]. In this experiment the junctions were shunted by a co-planar capacitor in an attempt to
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take advantage of the high dielectric constant of the SrTiO3 substrate. However, as hysteresis

was not observed above 40K it is again questionable whether or not this hysteresis was due to

the shunt capacitor or the intrinsic grain boundary capacitance of the junctions.

5.4 Designs of shunt capacitor investigated

5.4.1 Co-planar shunt capacitance

The ‘subros’ mask was designed to add a co-planar shunt capacitance to a YBCO grain

boundary junction on a SrTiO3 bicrystal, taking advantage of the high dielectric constant of

this material at low temperatures[54]. The mask design is shown in Fig. 5.4, together with a

cross sectional view of the junction and capacitor showing the coupling of the electric field

lines through the substrate. Also, the devices were designed to try and resolve the discrepancy

between the Tarte result[59] and that of Beck[60] as to the contribution of the SrTiO3 substrate

to the junction capacitance (see section 2.4.2). Specifically, could the extra capacitance

introduced from the superconducting wiring on the substrate used to measure the junction be

large enough to introduce hysteresis into the junction IV curve?

The theoretical capacitance per unit length C’ of the structure is given by (5.1)[107],

)(2

)’()1(
’ 0

kK

kK
C R += εε

 (5.1)

where  εR is  the relative  dielectric  constant of the substrate and K(k)  is the  complete   elliptic
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Figure 5.4 A cross sectional view showing the coupling of the electric field lines through the
substrate, and the planar view of the mask design for the co-planar shunt capacitance.

Rn

Cjunction

Cshunt
L L

Figure 5.5 An equivalent circuit for the co-planar shunt capacitor. L represents the total
inductance of the track, Cjunction and Cshunt are the intrinsic grain boundary capacitance and the
external shunt capacitance respectively.

integral of the first kind with k=s/(s+w) and k’= (1-k2). As shown in Fig. 5.4, s is the separation

of the electrodes,   w is the width of the electrodes and l is the length of the electrodes. The

purpose of the ‘bow tie’ (the broadening of the track containing the junction towards the

capacitor electrodes) as opposed to a simple rectangular track connecting the electrodes was to

try and reduce the kinetic inductance of the track, which is inversely proportional to the width

of the track[108] (LK=µ0sλL
2/wth, where wt is the width of the junction and h is the film

thickness). Hence, the bow tie maximises the width of the track and thus minimises the kinetic

inductance. Lee et al[102] argued this inductance reduced the effective capacitance of the

shunt, but did not use a bow tie structure. An equivalent circuit for a subros device is shown in

Fig. 5.5, it is similar to that of Lee but without the resistance of the gold bridge connecting the

two shunt capacitors.



Chapter 5: Josephson junctions with hysteretic current voltage characteristics at high temperatures

75

0.1

1

10

100

1000

10 100 1000 104

4.2K
77K

C
ap

ac
it

an
ce

 (
pF

)

Electrode length (µm)

Figure 5.6 The expected shunt capacitance versus electrode length for the subros devices.

Six subros junctions were tested of width 2µm shunted by capacitor electrode lengths of 10,

60, 120, 500, 1000 and 2000µm respectively. Using low frequency measurements of the

dielectric constant of bulk SrTiO3 at 4.2K (εR=24000) and 77K (εR=1880)[54], Fig 5.6 shows a

theoretical prediction of the shunt capacitance versus capacitor electrode length calculated

using (5.1).

5.4.2 Multilayer shunt capacitance

The purpose of the ‘xros’ series of chips (and 3tdev) was to add a multilayer, parallel plate

shunt capacitance to a YBCO grain boundary Josephson junction, in a similar manner to the

shunt capacitors in refs [97,100,102]. The device design is shown in Fig. 5.7. The lengths of

electrode a on the mask were 10, 25, 50, 75,100, 125, 150 and 175µm respectively. Junction

widths of 2µm were investigated, as well as devices with and without a bow tie. A device was

also patterned with no track across the grain boundary to enable the isolation resistance

between the YBCO and the Au to be measured, which was found to be 0.7MΩ at 10Hz on

xros24a. An equivalent circuit for an xros device is shown in Fig. 5.8.

The devices were ion milled at 45° with rotation to give rounded steps between the

YBCO/SrTiO3 and the substrate in order to obtain a continuous layer of gold over the entire

width of the capacitor electrodes with the aim of minimising Rbridge. A crude prediction of the

shunt capacitance (ignoring L, Rbridge)  is given by C=ε0εRa2/2d where εR and d are the
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Figure 5.7 A cross sectional and planar view showing the parallel plate
YBCO/SrTiO3/Au capacitor structure of the xros devices.

dielectric constant and thickness of the thin SrTiO3 film respectively, and a2 is the area of one

of the shunt capacitors.

5.4.3 Film thicknesses of the chips measured

Table 4.1 shows the film thicknesses of the various chips measured, which were subros,

xros24a to d, xros36 and 3tdev. With the exception of xros36 where a 36.8° SrTiO3 bicrystal

substrate was used, all the chips were fabricated using 24° SrTiO3 bicrystal substrates. In the

text that follows, devices on a particular chip will be distinguished by the length of their shunt

capacitor electrode.

Rn

Cjunction

Cshunt

L L

Cshunt
Rbridge

Figure 5.8 An equivalent circuit for the multilayer shunt capacitor.
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5.5 Current Voltage Characteristics

5.5.1 Junctions with grain boundary capacitance dominant at all temperatures

5.5.1.1 Subros and xros24a – IV characteristics in absence of a magnetic field

Fig 5.9 shows IV characteristics for the 120µm junction on the subros chip measured at 15K

and 77K. (Some measurements of subros were carried out by R. H. Hadfield[109].) It is

representative of the IV curves measured for all of the devices on both subros and xros24a. At

higher temperatures, noise rounding of the critical current step was observed. The normal state

resistance (determined by measuring out to approximately 5xIc and fitting an Ohmic line) was

effectively temperature independent as expected for grain boundary junctions. The shape of

the IV curves was in qualitative agreement with the predictions of the RCSJ model, as

described in section 1.3.2.

However, no significant extra hysteresis was observed for any of the subros or xros24a devices

at any temperature within the measured range from 4.2K up to the point where the critical

current step was completely rounded away by noise. From the measured parameters of the

device shown in Fig 5.9 (Ic=463µA, Rn=4.76Ω) and using the shunt capacitance from Fig 5.6

(41pF) the theoretical βc was calculated  to  be  1320  using  (1.16).  For  the  subros   junctions
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Fig 5.9 IV characteristics for the subros 120µm junction at 15K and 77K.
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Figure 5.10 The effective shunt capacitance from the IV curve versus temperature for the subros
junctions.

hysteresis was generally not present above 35K, and the highest temperature where βc>1 was

observed was 44K for the 1000µm device. For the xros24a junctions the situation was worse

still, such that hysteresis was generally not observed above 20K and the highest temperature

where βc>1 was observed was 30K for the 175µm device.

From the hysteresis in the IV characteristic and using Zappe’s approximation (1.17) the

effective junction shunt capacitance could be calculated. This is plotted versus temperature for

all the subros devices in Fig 5.10, and was found to be effectively independent of temperature.

The small values of shunt capacitance measured are typical of other measurements of the

intrinsic capacitance of the grain boundary high Tc Josephson junctions (1 pF µm-2)

[31,57,59,60,63,98,99]. The capacitance also does not vary with the length of the shunt

capacitor, which would be expected if the junction was coupled to the external capacitor, nor

does it vary with temperature, which would be expected due to the dramatic decrease of the

dielectric constant of bulk SrTiO3 in this temperature range[54]. The capacitance of the grain

boundary in a high Tc Josephson junction was found to be independent of temperature by

Jansman et al[52]. Fig 5.11 shows the effective shunt capacitance plotted versus capacitor

electrode width for the xros24a devices. Again the effective shunt capacitance is independent

of the capacitor electrode width. Thus, the small values of βc observed are believed to be solely

due to the intrinsic capacitance of the grain boundary.
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5.5.1.2 Fiske resonances in subros – further evidence for absence of coupling to external

capacitor

The behaviour of all the devices in a magnetic field was investigated, and all showed a

Fraunhofer  type magnetic diffraction pattern of the junction critical current in good qualitative

agreement with (1.26). Fig 5.12 shows the response of the 120µm device on subros.

When a magnetic field was applied to the junctions over a range between the first maximum

and minimum in the Fraunhofer pattern, a resonance was observed in the IV characteristic at a

particular voltage varying from 1.2mV for the 10µm device to 1.9mV for the 500µm device at

4.2K. The step appeared over a range of from 4.2K to 55K for the 10 and 120µm junctions and

from 4.2K up to 45K for other junctions. Its position was found to be independent of

temperature to within experimental errors. A series of IV curves at various magnetic fields,

with V/Rn subtracted to emphasize the resonance, for the 10µm device at 15K are shown in Fig

5.13.
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Figure 5.11. The effective shunt capacitance versus capacitor electrode length at 4.2K for the
xros24a devices.
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Figure 5.12. Critical current versus applied field for the 120µm junction at 15K.

The step is a Fiske resonance as opposed to a transmission line resonance or a flux flow

resonance. It does not change position when the applied magnetic field is varied so it cannot be

a flux flow resonance. The resonance only appears when a field is applied so it is unlikely to

be a transmission line resonance which are present even in the absence of magnetic field[110].

Also, a transmission line resonance would propagate in the slit between the capacitor

electrodes. Thus, its position would be expected to scale with capacitor electrode length which

these resonances do not. Finally, based on a calculation using the dielectric constant of bulk

SrTiO3[54], (1.42) and (5.1) the transmission line resonance would be expected to be at a

much lower voltage (<0.3mV) for all the devices in the temperature range over which the

resonance appeared.
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Figure 5.13. IV’s at various magnetic fields for the 10µm device at 15K. The quasiparticle current
V/Rn has been subtracted to emphasize the Fiske resonance
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The capacitance per unit area calculated from the resonance position using (1.42) was found to

agree  with that determined from the hysteresis in the IV characteristic, assuming that the

effective shunt capacitance is dominated by that from the grain boundary. The correlation is

shown in Fig 5.13, and was obtained using the London penetration depth as a parameter equal

to 220nm at 4.2K in (1.44). The approximation λeff~λL
2/h was used for the limit where λL>>h.

Although this limit was not strictly satisfied, it has been shown to be valid previously when

extracting grain boundary capacitances from Fiske resonance data[59]. This value of the

penetration depth lies midway between inductive measurements of the YBCO penetration

depth of 140nm[22], and microwave resonator measurements giving 450nm[111] at 4.2K. The

agreement between the two methods of calculating junction capacitance shows that there was

no contribution to the shunt capacitance from the external capacitor. This would have resulted

in a systematic difference between the results of the hysteresis and Fiske resonance methods of

calculation. The agreement also indicates that heating effects were not responsible for the

observed hysteresis.

In Fig. 5.14, the capacitance is plotted against the junction resistance and indeed is seen to

scale with the junction resistance. This scaling is an intrinsic property of high Tc grain

boundary Josephson junctions[98,99] and will be discussed further in Chapter 8.

5.5.1.3 xros36

The first attempt to improve the coupling of the junction to the external capacitor was made by

increasing  the   misorientation  angle  of  the   bicrystal  used from 24° to 36.8°.  The  possible
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Figure 5.14 The correlation and scaling of junction capacitance with resistance for the subros
devices.



Chapter 5: Josephson junctions with hysteretic current voltage characteristics at high temperatures

82

-80

-40

0

40

80

-1 0 1

C
ur

re
nt

  (
µA

)

Voltage (mV)
10 20 30 40 50 60 70

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Resistance (Ω)

25 µm device after 
gold milled away

25 µm device 

C
apacitance (pF)

Figure 5.15. The IV curve of the 50µm device on xros36 (βc=9.6, Ic=60µA, Rn=20.3Ω) and the
scaling of capacitance with resistance for the xros36 devices.

benefit of this change was that the effect of the decrease in Ic (see section 2.4.1) on βc should

be more than compensated for by the increase in Rn, see (1.16).

The devices displayed significant hysteresis at 4.2K. The 50µm device had βc=9.6, with

Ic=60µA and Rn=20.3Ω, see Fig. 5.15. The junction critical currents were approximately a

factor of 10 smaller than those of xros24a and subros and were not measurable above 45K

despite a film Tc  equal to 87.5K. The hysteresis persisted only up to 30K.

Neither βc nor the effective capacitance from the hysteresis in the IV curve scaled with the

length of the capacitor electrode. Also, the effective junction capacitance was again found to

scale with junction resistance, see Fig. 5.15. Shown in Fig 5.15 is the capacitance of the 25µm

device after removal of the Au top electrode, which continued to scale with the junction

resistance. The increase in resistance is probably due to de-oxygenation of the grain boundary

during the ion milling to remove this electrode. These two observations both indicate that the

intrinsic grain boundary capacitance was again dominating the total shunt capacitance.

Plots of βc calculated from the hysteresis in the IV curve using Zappe’s approximation (1.17)

versus Ic were obtained for the 25µm device (before Au electrode removal) by varying Ic with

an applied magnetic field over a range of temperatures (see Fig 5.16). The relationship was

found to be linear, and the gradient of the lines, which gives the effective capacitance, (see

(1.16)) did not vary with temperature. (Within experimental error – each point in Fig 5.16  was

taken  from  an  average  of  10 measured   IV’s. However,  the  small critical   currents  of  the
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Figure 5.16 The variation of βc with critical current at various temperatures for the 25µm device.

 junctions made the measurement extremely sensitive to external sources of rf noise, which

causes the scatter seen in Fig 5.16.)

5.5.2 Junctions with the external (multilayer) shunt capacitor dominant

5.5.2.1 Hysteresis at low temperatures

Figure 5.17 shows the IV characteristics at 4.2K of the 25µm device on 3tdev before and after

the Au deposition of the top capacitor electrode. Two changes can be seen, firstly, the increase

in hysteresis and secondly the appearance of a resonance. The resonance is believed to be a

transmission line resonance since it was not present in the ‘control’ IV curve and was also

present in the absence of an applied magnetic field, so it cannot be a Fiske resonance. Table

5.1 gives the parameters of this device. The slight increase in junction resistance and decrease

in critical current can be attributed to heating of the sample, causing de-oxygenation of the

grain boundary during patterning and Au sputtering.

Table 5.1. 3tdev 25µm device parameters at 4.2K before and after Au deposition.

3tdev 25µm device
4.2K

Ic (µA) Rn (Ω) βc C (pF)

Before Au deposition 163 11.0 1.35 0.022
After Au deposition 124 11.4 5.77 0.117
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Figure 5.17. The IV characteristic of the 25µm device on 3tdev at 4.2K before and after Au
deposition. The resonance is indicated by an arrow.

The increase in βc and effective junction capacitance calculated from it shows that for this

device the external shunt capacitor dominates the effective junction capacitance. However, the

hysteresis observed is still much less than expected if the shunt capacitor is considered as a

lumped circuit element. The dielectric constant of the 200nm SrTiO3 film was calculated from

the position of the resonance and was found to be 120 for this device, (see Chapter 7) giving a

shunt capacitance of 1.66pF and βc=81 using (1.16) and the measured Ic and Rn of the junction

(Table 5.1).

In fact, the presence of the transmission line resonances indicates a possible explanation for

this behaviour. For the resonances to be present, the wavelength of the Josephson oscillations

in the external capacitor must be comparable to the length of the capacitor itself. So, it is not

valid to treat the shunt capacitor as a lumped circuit element as in Figs 5.5 and 5.8, but instead

it should be modelled as a distributed impedance, which reduces the effective capacitance of

the external shunt. This was verified explicitly by repetition of the experiment that gave rise to

Fig 5.16 and a plot of βc versus the junction critical current was obtained for the 25µm device

on 3tdev at 4.2K. Improvements in the measurement computer, software and electronics (see

Chapter 4) meant that hundreds of critical currents and return currents could be measured

rapidly, so each point in Fig. 5.18(b) corresponds to a distribution of critical currents and

return currents such as that in Fig 5.18(a).
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Figure 5.18(a) The distribution of critical currents measured at 4.2K for the 25µm device on
3tdev. (b) The variation of βc with Ic at 4.2K. The inset in (a) shows the variation of the maximum
βc with temperature. (These measurements were made after improvements had been made to the
filtering of the probe heater power supply, so the critical current is slightly bigger than that in
Fig. 5.17.)

By lowering the junction IcRn product the frequency at which the junction returns to the zero

voltage state is reduced. Hence, the wavelength of the Josephson oscillations in the external

shunt capacitor increases and the limit of a lumped shunt capacitance is approached, increasing

the effective shunt capacitance. In contrast to Fig. 5.16, the non-linear relationship between Ic

and βc shown in Fig. 5.18 indicates that the effective shunt capacitance of the junction is

varying with frequency.

However, as Ic is reduced towards zero, thermal noise suppression of the hysteresis dominates

and βc is once again reduced.

Figs 5.19 and 5.20 give further evidence that the dominant contribution to the effective

capacitance is the external shunt capacitor. Fig 5.19, a graph of the effective capacitance

versus shunt capacitor electrode length, shows that the junction capacitance has increased after

the deposition of the gold top electrode. There is now a trend in the variation of effective

capacitance with capacitor electrode length, but it is not what would be expected if the shunt

capacitor were behaving as a lumped circuit element.
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Figure 5.19. The variation of capacitance with capacitor electrode length before and after gold
deposition for the 3tdev devices at 4.2K.

Fig 5.20 shows effective capacitance versus resistance for the 3tdev devices before and after

deposition of the top capacitor electrode. For the junctions without a shunt capacitor, the same

trend in effective capacitance versus resistance that was observed for the junctions where the

grain boundary was the dominant contribution to the shunt capacitance is observed here also

(see Figs. 5.14 and 5.15).  However, for the junctions with an external shunt capacitor the

effective capacitance increases with the resistance, i.e. in the opposite direction to that of the

grain boundary trend.
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Figure 5.20. The scaling of capacitance with resistance before and after gold deposition for the
3tdev devices at 4.2K.
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Figure 5.21. The variation of critical current and capacitance with temperature for the 75µm
device on 3tdev.

In contrast to the junctions where the grain boundary capacitance was the dominant

contribution to the effective capacitance, for these devices where the external shunt capacitor

is dominant, the capacitance increases with temperature (see Fig 5.21).

The major drawback of the 3tdev devices was their low critical current. This is illustrated in

Fig. 5.21, which shows critical current and capacitance versus temperature for the 75µm

device, typical of the behaviour of all the devices on this chip. The most hysteretic junction at

the highest temperature was the 25µm device, which had βc=4.5, Ic=42.4±0.8µA, Rn=9.72Ω,

C=0.37pF and α=0.55 at 41.5K. There was no hysteresis above 50K and the junctions had no

measurable critical current above 60K, so the criterion of hysteresis above 50K for ROS

operation was not fulfilled.

5.5.2.2 Hysteresis at high temperatures

Figure 5.22 shows the IV characteristics at 4.2K of the 50µm device on xros24d before and

after Au deposition of the top capacitor electrode. Again, there are two changes, firstly the

increase  in   hysteresis   and   secondly   the  appearance   of   resonances. The  resonances  are

Table 5.2 xros24d 50µm device parameters at 4.2K before and after Au deposition.

Xros24d 50µm
device

Ic (µA) Rn (Ω) C (pF)

Before Au 2712 0.582 0.358
After Au deposition 2328 0.715 0.308
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Figure 5.22 The IV characteristic of the xros24d 50µm device at 4.2K before and after Au
deposition. Resonances are indicated by arrows.

transmission line resonances since they were not present in the ‘control’ IV curve and are

present in the absence of a magnetic field. However, upon use of Zappe’s approximation

(1.17) and (1.16) to calculate the effective shunt capacitance, it was found that the capacitance

had decreased on deposition of the top electrode (see Table 5.2).

Therefore, at 4.2K the grain boundary capacitance dominates the effective junction

capacitance. However, for xros24b, c and d the hysteresis (1<βc<1.6) was found to persist up

to at least 55K for all the devices. For certain devices the temperature up to which hysteresis

persisted was considerably higher, e.g. 72.3K for the xros24d 150µm device, the IV

characteristic of which is shown in Fig 5.23.

410

430

450

470

0 0.04 0.08 0.12

C
ur

re
nt

 (µ
A

)

Voltage (mV)

Figure 5.23 The IV characteristic of the xros24d 150µm device at 72.3K.
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The distribution of critical currents and return currents shown in Fig. 5.23 is due to thermal

and electromagnetic interference. The effective shunt capacitance of the xros24d 150µm

capacitor at 72.3K was found to be 2.28pF, see Table 5.3. At 20K, the capacitance of the

150µm device was 0.48pF, and below 20K the 150µm device was not hysteretic. This

temperature variation of the capacitance strongly indicates that the shunt capacitor was

dominating the total capacitance at high temperatures. The 50µm device had a similar

capacitance of 1.39pF at 68K. This represents a large increase over the grain boundary

dominated capacitance of 0.308pF at 4.2K, and since the grain boundary capacitance is

independent of temperature (see Fig. 5.10 and Jansman et al[52]) the increase is believed to be

due to the external shunt capacitor. Fig 5.24 confirms this, showing a plot of capacitance

versus resistance for the xros24d devices at 4.2K before Au deposition together with the

150µm device at 72.3K, which does not fit onto the trend.

So, at some temperature between 4.2K and 72.3K the dominant contribution to the capacitance

changes from the grain boundary to the external shunt capacitor. This is particularly true in the

case of the 150µm device which was not hysteretic below 20K.

Fig 5.25 shows a plot of capacitance versus capacitor electrode length for the xros24d devices

at 21K and 61K (respectively the lowest and highest temperatures at which all the junctions

had βc>1). At 21K, the capacitance remains effectively constant for all sizes of capacitor, but
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Figure 5.24. Capacitance versus resistance at 4.2K for hysteretic xros24d devices pre-Au
deposition, together with the 150µm device with Au at 72.3K.
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Figure 5.25. The variation of capacitance with capacitor electrode length for the xros24d devices
at 20K and 61K.

at 61K there is some scaling of the capacitance with capacitor electrode size. The explanation

for the saturation of the maximum value of the shunt capacitance is probably that the junction

sees the larger capacitors as a distributed impedance. Given that the critical current and

resistance of these devices were approximately equal, it would be expected that the wavelength

of the Josephson oscillations inside the capacitor should also be equal. So, it is not beneficial to

increase the size of the shunt capacitor beyond a certain limit at a given temperature.

To further demonstrate that the external shunt capacitance is dominating the effective

capacitance of these junctions, Fig 5.26 shows a plot of capacitance versus temperature for the

xros24d junctions. The capacitance increases with temperature, which is the behaviour

observed for the 3tdev junctions where the external shunt capacitor dominated, as opposed to

if the effective capacitance had been dominated by the grain boundary, in which case the

capacitance would remain constant with increasing temperature. (see Fig 5.10, and Jansman et

al[52])  The increase in capacitance with temperature shown in Fig. 5.26. is too large to be

explained by errors introduced by Zappe’s approximation (see Fig. 1.6).

The junctions on chips xros24b and c showed similar behaviour to that described above, and

illustrated in Figs 5.22 to 5.26, although the maximum temperature at which hysteresis was

observed was lower – 65K for the xros24b devices and 58K for the xros24c devices. The

parameters of all the hysteretic junctions investigated are given in Table 5.3 below, as

measured at the highest temperature for whichβc>1.
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Figure 5.26. Capacitance versus temperature for the xros24d devices.

Table 5.3. A summary of the parameters of junctions on chips which had devices hysteretic at
T>50K.

Chip Capacitor electrode
length

T(K) Ic (µA) Rn (Ω) βc C (pF)

Xros24b 10 51 220 4.5 1.01 0.073

50 65 210 3.6 1.18 0.140

75 55 300 3.1 1.13 0.130

100 42 100 9.8 1.12 0.038

Xros24c 10 51 310 1.8 1.21 0.40

25 54 316 1.4 1.16 0.60

50 53 220 1.1 1.01 1.17

75 58 245 1.2 1.05 0.96

Xros24d 10 53 582 1.27 1.04 0.36

25 61 279 1.46 1.03 0.56

50 64 683 0.66 1.07 1.18

75 71 447 0.68 1.03 1.60

100 68 380 0.64 1.07 2.22

125 71 341 0.81 1.01 1.48

150 72 451 0.56 1.01 2.28
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5.5.2.3 The effect of the bow tie.

On xros24c, junctions were patterned with and without bow-ties connecting them to the

external capacitors. The effect of such a bow-tie on the McCumber parameter of the 10µm

device is shown in Fig. 5.27. It can be seen that the bow tie both increases the effective shunt

capacitance and increases the temperature up to which hysteresis persists. The IcRn product of

these two junctions was equal at all the temperatures shown in the figure, so the increase in βc

must be attributed to the presence of the bow tie. The effect of the bow-tie can be interpreted in

two ways, either as a reduction of the kinetic inductance of the track connecting the capacitor

to the junction, or as an improvement of the impedance matching of the track containing the

junction to the capacitor itself.  When the bow-tie is absent there is a discontinuity in the

inductance and capacitance per unit length of the structure when the track containing the

junctions widens to the width of the capacitor electrode.

This confirms that one of the explanations in the literature[102], that the kinetic inductance of

the track connecting the junction to the capacitor is a factor in determining the small βc values

that are observed.

5.6 Principle factors involved in the reduction of hysteresis

In order to gain a more thorough understanding of the results presented above, there are two

questions which must be addressed. Firstly, why is there coupling of the junction to the shunt

capacitor on some chips and not  others,  and  secondly, for  the  chips  where  coupling  to  the
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Figure 5.27. McCumber parameter and capacitance versus temperature for the xros24c 10µm
device with and without a bow tie.
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shunt capacitor is observed, why is the hysteresis so much less than what is expected from a

simple calculation of the lumped capacitance?

5.6.1 The shunt capacitor as a distributed impedance, and impedance matching of the

junction to the capacitor

The non-linear relation between βc and Ic obtained at a given temperature for the 25µm device

on 3tdev (see Fig 5.18(b)) strongly suggested that the external capacitor was behaving as a

distributed impedance rather than the lumped capacitance required by the RCSJ model. Also,

both Yeh et al[97] and Daly et al[100] have mentioned this as a possible reason why they did

not observe as high βc values as those they calculated based on the area of their capacitors.  A

modified equivalent circuit for all the devices is given in Fig 5.28. Z(ω) represents the complex

impedance at angular frequency ω  of an open ended transmission line formed by the

propagation of Josephson oscillations in the cavity between the two capacitor electrodes. The

impedance of such an open ended transmission line in the case where there are no losses, is

given by[14],

Z jZ
a= − �

��
�
��0

2
cot

π
λ

(5.2)

where Z0 is the characteristic impedance of the line, λ is the wavelength and a is the length of

the resonator in the xros geometry (l for the subros geometry – see Figs. 5.7 and 5.4

respectively).

In the limit where λ>>a the line behaves as a capacitive impedance as Z→ -jZ0λ/2πa. So, the

condition which must be  fulfilled for  the line to behave as a capacitor is  λ>>a. The speed  of

R n

Z(w)

Fig 5.28. An alternative equivalent circuit for a Josephson junction shunted by an external
capacitor.
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propagation of electromagnetic waves in the cavity is given by c=(L’C’ )1/2 where L’ and C’ are

the inductance and capacitance per unit length of the transmission line respectively. By

substituting this relation into c=fλ (f is the frequency), and then using the ac Josephson relation

(1.9), the wavelength of the Josephson oscillation propagating in the transmission line can be

derived.

λ = Φ0 V L C’ ’ (5.3)

The voltage V at which the hysteretic IV curve of  a Josephson junction switches from the

critical current branch to the return current branch is given approximately by the IcRn product

of the junction. Therefore, this is the voltage which should be used in (5.3).

Fig 5.29 gives a plot of the wavelength of the Josephson oscillation in the external capacitor

versus temperature for the 10µm device on subros.  The capacitance per unit length was

determined from (5.1), using data for the variation of the dielectric constant of bulk SrTiO 3

with temperature from Neville et al[54]. The inductance per unit length was calculated from

the formula derived by Enpuku et al[112] for a co-planar superconducting transmission line,

with λL(4.2)=220nm (the parameter used to fit the capacitance determined from the hysteresis

in the IV curves with that from the Fiske resonances) and using the two fluid model for the

temperature dependence of the penetration depth (1.52). Up to 40K it can be seen that the

length of the junction (2µm) is larger than the wavelength of the Josephson oscillations. The

condition that  the wavelength  of the Josephson oscillations be much larger than the  length  of
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Figure 5.29. The wavelength of the Josephson oscillations in the external capacitor versus
temperature for the 10µm device on subros. The solid line shows the length of the shunt capacitor
electrode.
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the capacitor is not fulfilled over any temperature range, although above 55K the wavelength

is slightly larger than the electrode length, but even in this region no hysteresis due to the

external shunt capacitor was observed. Similar curves were calculated for the other devices on

subros.

For the junctions shunted with a multilayer capacitor, (5.4) and (5.5) were used to calculate the

inductance and capacitance per unit length of the transmission line[113]. The expression (5.5)

for the capacitance per unit length is that for a parallel plate capacitor. The inductance per unit

length formula is also that for parallel plates. The magnetic field penetrates up to the skin

depth in the gold and up to the penetration depth in the superconductor. The penetration depth

is corrected as it is comparable to the film thickness. The correction is different to that for

Fiske resonances (see section 1.4.2.1) as the resonator geometry and hence the magnetic field

distribution is different.

L
a

d
hs L

L’ coth= + + �
��

�
��

�
��

�
��

µ δ λ λ0 (5.4)

C
a

d
R’= ε ε0 (5.5)

In (5.4) and (5.5), d is the thickness of the dielectric, h is the thickness of the YBCO film, δs is

the skin depth of the Au given by (1.48)  and σ(4.2K) = 4.2x107 Ω-1m-1 is the conductivity of

the Au, and λL is the London penetration depth of bulk YBCO. Once again the two fluid model

was used for the temperature dependence of the penetration depth, but this time with

λL=140nm[22] as Fiske resonances could not be distinguished from higher order tranmission

line resonances for the junctions shunted with a multilayer shunt capacitor, so the fitting

method used to determine λL for the subros film could not be repeated.

Fig. 5.30 shows a plot of the wavelength of the Josephson oscillations versus temperature for

the 25µm device on 3tdev, where the external capacitor was found to be coupled to the

junction, and for the 25µm device on xros24a, where the grain boundary was found to

dominate the effective capacitance of the junction as calculated from the IV curve. As

expected, the wavelength in the 3tdev device is larger than that in the xros24a device,

explaining why coupling to the shunt capacitor was observed for the 3tdev device and not the

xros24a device.
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Figure 5.30. The wavelength of the Josephson oscillations in the external capacitor versus
temperature for the 25µm device on 3tdev and xros24a. The solid line shows the length of the
shunt capacitor electrode.

Fig 5.30 qualitatively explains the characteristic increase in capacitance calculated from the

hysteresis in the IV curve with temperature observed for junctions that were coupled to the

external capacitor (see Figs 5.21 and 5.26). As temperature increases, so the IcRn product

decreases and λ increases. So, as the temperature rises the limit of λ>>a is approached and the

load impedance (5.2) becomes more capacitive.

The decrease in capacitance with capacitor size for the 3tdev devices at 4.2K shown in Fig

5.19 can also be qualitatively explained. The IcRn product of the 3tdev junctions was

approximately equal at 4.2K, so the wavelength was also approximately equal (The L’C’

product is independent of capacitor electrode length a.). Therefore, as capacitor electrode

length increases λ<<a  and the load impedance (5.2) becomes more inductive. However, as

temperature increases the wavelength increases and so at T>65K it was junctions on xros24b,

c, and d which had a�50µm which were hysteretic.

It should be noted that (5.3) is an estimate of the wavelength at a particular frequency. It is

clear from (5.2) and (5.3) that when λ≈a the effective capacitance varies with frequency, but

the wavelength was determined only at the frequency equal to IcRn/Φ0 for each junction, rather

than the voltage at which the junction switches back to the zero voltage state.

But, Fig 5.30 raises a further issue. At high temperatures, the limit of λ>>a  is satisfied best,

but no hysteresis was observed above 41K for the 25µm junction on 3tdev. The discrepancy is
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illustrated again in Fig 5.31, showing the wavelength of the Josephson oscillations in the

external capacitor versus temperature for the 50µm device on xros24a and b. Although the

xros24b device coupled to the external capacitor, the wavelength is slightly larger in the

xros24a device which did not couple to the external capacitor. There must be another

mechanism controlling coupling to the external capacitor for these devices.

5.6.2 Thermal noise suppression of βC

The second mechanism responsible for suppression of hysteresis, especially at high

temperatures, is thermal noise suppression of both the junction critical current and the return

current. White noise currents in the resistor cause premature excitations of the junction into the

voltage state[114], and premature return to the zero voltage state from the return branch of the

IV characteristic. Recently, Castellano et al[115] have carried out a detailed investigation of

the return current distribution for Nb/AlOx/Nb tunnel junctions, and similar return current

distributions were observed for the junctions described here (see Fig. 5.18(a)).  When kBT

becomes comparable to the maximum Josephson coupling energy Φ0Ic/2π the critical current

step in the IV curve can be rounded off completely. The noise parameter Γ is defined as (see

also  section 1.3.2.3), and  quantifies  the effect  of  thermal  noise. It is the ratio of the  thermal
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Figure 5.31. The wavelength of the Josephson oscillations in the external capacitor versus
temperature for the 50µm device on xros24a and b. The solid line shows the length of the shunt
capacitor electrode.
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(5.6)

energy to the Josephson coupling energy, and the larger the Γ the greater the influence of

thermal noise. The noise parameter is plotted versus temperature in Fig. 5.32 for the junctions

which were most hysteretic at the highest temperature on each chip. It can be seen that the

xros24a 50µm junction had a larger Γ  than the xros24b 50µm junction so thermal noise, rather

than the small wavelength of the Josephson oscillation in the xros24a junction was the primary

cause of the absence of  coupling to the external capacitor.

Fig. 5.33 shows noise parameter versus temperature for the xros24a and 3tdev 25µm devices,

for which the wavelength of the Josephson oscillation was given in Fig. 5.30. In this case, the

3tdev device had a larger Γ  but was hysteretic. However, the wavelength of the Josephson

oscillations in the external capacitor was larger, so for these junctions this was the limiting

factor in determining the presence or absence of coupling to the external capacitor.
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Figure 5.32 The variation of noise parameter with temperature for the most hysteretic junction at
the highest temperature (for the chips which containing junctions which had βc>1 at T>50K, with
xros24a for comparison).
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Figure 5.33. The variation of the noise parameter with temperature for the 3tdev and xros24a
25µm device.

5.6.3 The noise temperature calculated from the critical current distribution

The critical current distributions measured for the 3tdev 25µm device (see Fig. 5.18(a))  were

analysed according to the method of Fulton and Dunkleberger[114] to try and determine the

effective noise temperature. Assuming that the energy distribution of the junction before

escape to the voltage state is near thermal, the lifetime τ of the junction in the zero voltage

state when the junction is biased at a particular current I is given by (5.7).

τ ω π−
−

=1 2J

E

k Te B N1 6 (5.7)

Here, ωJ is the angular attempt frequency of escape from the potential well and TN is the noise

temperature. The form of the Josephson potential energy barrier E at a given current I  is given

by (5.8) [114],

E I x x xc= − +− −
0 0

1 12 2 2Φ π π1 6 2 7 2 7sin cos sin (5.8)

where Ic0  is the absolute junction critical current in the absence of thermal noise and x=I/Ic0.

The expression (5.8) has the form of a tilted sinusoid. The measured current distribution gives

a probability P(I) that the junction will switch into the voltage state in the current interval

between I  and I+∆I. Since both the sweep frequency (30Hz) and the form of the current sweep

were known (sinusoidal), the inverse lifetime could be related to P(I) by (5.9) [114].
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A current I was associated with a particular channel K, with K=1 corresponding to the

maximum measured critical current. A plot of ln(τ-1) versus E at various temperatures is shown

in Fig. 5.34. The absolute critical current was taken to be the maximum measured value of the

distribution. The data covers only a small fraction of the range of the Josephson potential

energy barrier, which has a maximum depth (at x=0) of 4.7x10-20J or 3400K at a measurement

temperature of 4.2K.

The curvature in some of the lines in this plot (e.g. 20.7K) indicates extrinsic (non-thermal)

sources of noise[114]. The noise temperature TN  could then be determined from the gradient

of these lines using (5.7), and the results are given in Table 5.4. The 41.5K data was non linear

and is not included in Table 5.4. The higher the temperature, the smaller the maximum depth

of the Josephson potential energy barrier and so the more significant non-thermal sources of

noise become.
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Figure 5.34. The inverse lifetime in the zero voltage state versus the Josephson potential energy
barrier at various temperatures for the 3tdev 25µm device at various temperatures.
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Table 5.4 The noise temperature and Ic calculated from Fig. 5.33.

Temperature TM

(K)
Noise Temperature
TN (K)

Maximum measured Ic

(µA)
Ic  required for TM=TN

 (K)

4.2 6.59 142.7 N/A

13.6 11.32 124.0 126.0

20.7 16.10 104.0 107.0

30.4 15.45 73.7 88.0

From Table 5.4 it can be seen that, at 4.2K, the noise temperature is greater than the

measurement temperature. However, at higher temperatures, the noise temperature is less than

the measurement temperature. This is clearly unphysical, and the most likely explanation is

that the maximum measured critical current is less than the absolute critical current of the

junction, leading to a systematic error in the calculation of E. Therefore, the Ic required for the

noise temperature to equal the measurement temperature was calculated, and this gives a lower

limit for the absolute critical current of the junction. As seen in section 5.5.2 there is

significant suppression of the critical current at higher temperatures.

5.6.4 Simulations of hysteretic junctions

In order to confirm the validity of the factors that were believed to be controlling the coupling

of the junction to the external capacitor, computer simulations were carried out using the

program JSIM[116] with extensions written by Dr. C. Pegrum to enable the program to

simulate hysteretic IV curves and voltage dependent resistances, and by Dr. J. Satchell[117] to

add a stochastic noise current from any shunt resistors.

5.6.4.1 Thermal noise

To verify Zappe’s approximation and the effect of thermal noise, a junction with a 300µA

critical current was shunted with a lumped 1pF capacitor and various shunt resistances from

1.5 to 7Ω and simulated at temperatures of ‘0K’ and 60K. The results are shown in Fig. 5.35.

As expected, at 60K the critical current was reduced, by up to 40µA for the 7Ω resistor, and

the return current was increased by up to 15µA. At 60K, for a given βc, α is increased – i.e. the

hysteresis  was reduced. This is  a  reproduction  of  the  experiments  of Hansma et al[96] who
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Figure 5.35 βc versus α  from Zappe’s approximation, simulations at ‘0K,’ and simulations at
60K.

were able to measure hysteretic junctions shunted with variable resistances by day and night to

give more or less external noise respectively. The increase of α means that the effective shunt

capacitance measured from the IV characteristic will be reduced at high temperatures.

5.5.4.2 Distributed impedance

The equivalent circuit given in Fig. 5.28 was tested using that given in Fig 5.36, modelling

Z(ω) as a one dimensional lossy transmission line with inductance and capacitance per unit

length given by 5.4 and 5.5 respectively.

Both R’ and G’ (the transmission line losses from the surface resistance of the YBCO and the

Au and the dielectric losses in the SrTiO3 respectively) are frequency dependent, and a patch

for JSIM written by Dr. C. Pegrum enabled simulation of frequency dependent losses, by

taking the last known value of the frequency from the previously determined voltage. The

surface resistance of the gold is given by (1.49) and combining this with the skin depth δs

from (1.48) and (1.9) gives (5.10).

R
V

Au =
�
��

�
��

π µ
σ

0

0

1
2

Φ
(5.10)

For the gold conductivity σ a value of 3.8x107 Ω-1m-1 at 60K was used. The YBCO surface
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Figure 5.36 The junction shunted with a distributed impedance as investigated using simulations.
(C and Rn are the junction grain boundary capacitance and normal state resistance respectively.)

resistance from (1.52) can be written as (5.11).

R k
V

YBCO =
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��60

0

2

Φ
(5.11)

where k60 is a constant equal to 0.83x10-23 ΩHz-2, as measured by Edstam et al[113] with a

transmission line resonator coupled to a bicrystal YBCO Josephson junction (see Chapter 7).

The resistance per unit length R’ due to these losses is then given by (5.12)[118].

R
l

a
R RAu YBCO’ ( )= + (5.12)

since the contributions from the YBCO and the Au add in series along the length of an

element, but are seen in parallel across the width of an element.

It was evident from the simulations that the lower the losses in the inductor, the lower the

suppression of observed hysteresis. From (5.10) and (5.11) and the plot of  surface resistance

versus junction voltage (frequency) in Fig 5.36 it can be seen that the crossover to where

YBCO has a larger surface resistance occurs at 0.23mV at 60K. This voltage decreases with

increasing temperature. Since the voltage at which the junctions switched back to the zero

voltage state was typically around 0.2mV, it was believed not to be worthwhile to use YBCO

as the top electrode.
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Figure 5.37 The surface resistance of Au and YBCO and their sum versus frequency and
equivalent voltage at 60K(data interpolated from[113]).

The parameters used were nominally those of the xros24d 50µm junction at 60K. The absolute

critical current was found to be 880µA, giving a measured critical current of 820µA (from a fit

to the measured IV curve). The normal state resistance was 0.659Ω and the grain boundary

capacitance was 0.3pF. Both 50 and 100 transmission line elements were used. A penetration

depth of 159nm and a gold skin depth of 52nm were used to give an inductance per unit length

from (5.4) of 0.0172 pH/2µm or 0.0088 pH/µm for a strip of capacitor of width 50µm. A

relative dielectric constant of 40 (calculated from the position of the first resonance  - see

Chapter 7) gave a capacitance per unit length of 0.708pF/2µm or 0.354pF/µm. The values used

for the surface resistance were those in Fig. 5.37 and G’ was taken to be zero. The lumped

capacitance IV assumed that the junction was shunted in parallel by two 50µm capacitors in

series (Ctotal=17.7pF), which gives half that of the sum of all the C’ elements used (Ctotal

=35.4pF).

The results of a simulation of the circuit in Fig. 5.36 are shown in Fig. 5.38. It can be seen the

effect of distributing the impedance is to reduce the hysteresis from that of the junction

shunted by a lumped capacitance, although not by as much as was observed experimentally.

To simulate the bow-tie, 5 elements of progressively increasing capacitance per unit length

from 0.0272pF/2µm and decreasing inductance per unit length from 0.42pH/2µm were added

onto either side of the junction. This was compared to a junction with 5 elements of

C’=0.0272pF/2µm        and            L’=0.42pH/2µm       followed by  a  discontinuous  jump  to
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Figure 5.38 Simulations of the IV characteristic of a Josephson junction (nominally xros24d
50µm T=60K parameters) shunted with various distributed and lumped impedances.

C’=0.708pF/2µm and L’=0.0172pH/2µm. It is clear from Fig. 5.38 that the bow tie improves

the couping of the shunt capacitor to the junction.

The line containing 100 elements gives less hysteresis than that containing 50 elements, as the

limit of differential lengths of inductance and capacitance is approached. The 50 element line

has an effective shunt capacitance of 2.9pF with a bow tie and 2.1pF without. The 100 element

line has an effective shunt capacitance of 1.9pF, and the lumped shunt capacitance gives an

effective shunt capacitance of 8.1pF, from the hysteresis in the IV curve.

Further simulations were carried out to elucidate the effect of non-zero G’, given in (1.53)[14].

G’ is an admittance, so the effective loss resistance is its inverse. A typical measurement of the

loss tangent of a SrTiO3 thin film is 0.06[119], but this was carried out at 1GHz rather than the

higher frequencies (hundreds of GHz) where the shunt capacitor was used here. However, this

value of the loss tangent was found to completely suppress the hysteresis at 60K. A lower

value of the loss tangent, 0.001, was investigated, but this too was found to completely

suppress the hysteresis. Measurements from the literature[69,71,119-122] indicate that 0.001 is

an unrealistically low value for the loss tangent of thin film SrTiO3. The most plausible reason

for this total suppression is probably that the simulation did not include enough transmission

line elements.

These simulations serve only as a qualitative guide only to the experimental data. The width as

well as the length of the capacitor electrode was comparable to the wavelength of the

Josephson oscillations in the capacitor, but only a one dimensional transmission line was
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simulated. The calculation of the surface resistance of the YBCO and the Au and of the

dielectric losses in the SrTiO3 did not include higher harmonics of the Josephson oscillations

(see Fig. 1.3), which are most certainly present at voltages below the IcRn product of the

junction.

However, the simulations verify that both thermal noise suppression of the critical current and

the distributed nature of the shunt capacitor are both significant factors in the reduction of βc

observed from that predicted from a simple calculation of the lumped capacitance. A further

factor was found to be dielectric losses in the SrTiO3 film. Therefore, optimisation of the

SrTiO3 film to reduce the loss tangent to the lowest value reported in the literature[69] (0.005)

should be considered to increase the hysteresis.

5.6.5 A comparison with hysteretic junctions in the literature

Table 5.5 gives a comparison of the data reported for other representative high Tc hysteretic

junctions. The βc value of 1.01 at 72K is comparable with that of Daly et al, who used a

similar geometry of shunt capacitor. The βc value achieved by Dong is considerably higher.

Dong used a ramp  edge  SNS junction, as shown  in Fig. 5.39. The  junctions  used  by  Dong

Table 5.5. Data from other studies of YBCO capacitively shunted Josephson junctions. C is that
calculated from the hysteresis in the IV curve.

Junction
type

Dielectric Capacitor
area
(µm2)

Ic

(µA)
Rn

(Ω)
βc C

(pF)
T
(K)

Wavelength
(µm)

Ref.

Step
edge on
LaAlO3

67nm
LaAlO3

220x220 160 1.4 1.3 4.3 67 215 Daly et
al[100]

Step
edge on
LaAlO3

80nm
SrTiO3

10x30 140 9.5 6 0.16 4.2 22 Daly et
al[100]

Ramp
edge
SNS

100nm
SrTiO3

100x100 180 0.5 9.1 67 77 100 Dong[37]

Xros24d 50nm
SrTiO3

150x150 451 0.56 1.01 2.28 72 58 This
work
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YBCO
STO

Au

STO substrate

ramp edge ‘SNS’ junction grain boundary junction

Figure 5.39 The ramp edge SNS junction geometry used by Dong[37] and the grain boundary
junction investigated in this work.

enabled more efficient coupling of the Josephson oscillations to the gold top electrode,

possibly eliminating the need for coupling structures such as the bow tie used in this work to

impedance match the track containing the junction to the capacitor itself. However, Dong

presents only one hysteretic IV curve and provides no explanation of the large βc obtained. In

all cases, the wavelength of the Josephson oscillations in the external capacitor is comparable

to the size of the external capacitor.

5.7 ROS simulations

In order to establish whether or not an operational ROS could be constructed with the small

amount of hysteresis observed, simulations were carried out to give V(t) for the circuit in Fig.

5.1 for the measured hysteretic junction parameters at high temperatures. The SQUID can be

approximated as a single junction[95]. Fig. 5.40 shows a V(t) trace for the xros24d 50µm

junction at 60K.
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Figure 5.40. Simulated relaxation oscillations for the xros24d 50µm junction at 60K. The circuit
parameters were (absolute) Ic=880µA, Rn=0.659Ω, C=1.8pF, L=1nH, Rb=0.1Ω and bias current
Ib= 860µA. (thermally suppressed Ic=830µA, Ir=770µA)
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The time spent in the zero voltage state T0  and the voltage state TV are given by[95],

T
L

R

I

I Ib

b

b c
0 =

−
�
��

�
��ln  (5.13)

T LCV = π (5.14)

Using these equations and the parameters from Fig. 5.41, T0=33ns and TV=0.13ns, in rough

agreement with the simulated values. The pulses are narrow (<0.13ns) and thus would require

a high bandwidth (tens of GHz) measurement system to be observed. A pre-amplifier (made

from superconducting or conventional electronics) operating at low temperatures, would be

required, or possibly a flip-flop which triggers on the pulses.  However, for the data shown, the

mean voltage is not significantly different from the noise voltage making the construction of a

DROS from junctions with this small βc value impossible.

5.8 Summary

Hysteretic junctions operating at high temperatures have been fabricated and tested. The

highest temperature at which an IV characteristic for which βc>1 was observed was 72.3K. A

combination of factors is believed to be responsible for the absence of hysteresis at higher

temperatures and the much lower βc values than would be expected if the shunt capacitor was

behaving as a simple lumped circuit element. The wavelength of the Josephson oscillations in

the shunt capacitor is comparable to the dimensions of the shunt capacitor itself, so the

junction sees a distributed impedance which has a lower effective capacitance than that of the

equivalent lumped circuit element, and the impedance of the track containing the junction is

mismatched to that of the external shunt. This was demonstrated both through simulations and

calculations of the wavelength of the Josephson oscillations in the shunt capacitor for various

measured devices with varying degrees of coupling to the shunt capacitor – devices with a

longer wavelength had larger βc values at higher temperatures. Junctions with an impedance

matching structure (a ‘bow tie’) were found to be better coupled to the shunt capacitor than

those without. At high temperatures, thermal noise suppression of the hysteresis was found to

play a significant role, and it was shown that for two junctions with the same wavelength of

Josephson oscillations the junction with the lower noise parameter was hysteretic at higher

temperatures. From the measured distribution of critical currents, it was found that the
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measured critical current was suppressed by up to 14.3µA The simulations also showed that

the dielectric losses in the SrTiO3 films used dramatically reduced the effective shunt

capacitance of the structures.

Simulations showed that even with the small βc values observed, it could be possible in

principle to manufacture a working ROS, but due to the narrow pulses the measurement

system would need to be very carefully designed.
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Chapter 6: Single crystal strontium titanate characterisation using

internal junction (Fiske) resonances

6.1 Introduction

The Josephson junction is a natural voltage tuned oscillator with 1mV (a typical YBCO grain

boundary junction IcRn product at 4.2K - see section 2.4.2) equivalent to an oscillation

frequency of 483GHz. Bulk STO is expected to exhibit a large variation of its permittivity εR

in this angular frequency (ω) and temperature range. A comparison of the behaviour of thin

film and single crystal εR(ω) could bring insight into the reduction of εR seen for thin film STO

as compared to bulk STO as discussed in Chapter 3.

This chapter describes measurements of Fiske resonances in Josephson junctions of a series of

different lengths on a single SrTiO3 bicrystal. Initially, the aim of the experiment was to

establish the influence of the strontium titanate substrate on the capacitance of the grain

boundary. Subsequently it became apparent that a measurement of the dielectric constant of

bulk single crystal strontium titanate could be made above and below the soft optic phonon

frequency.

6.2 Mask Design

The subros chip described in Chapter 5 showed that parasitic capacitance from the STO

substrate could not be made to be the dominant contribution to the capacitance of an YBCO

grain boundary Josephson junction, since the size of shunt capacitor required to achieve the

necessary McCumber parameter was greater than the wavelength of the Josephson oscillations

in the capacitor. However,  the  geometry  of  the  subros  structure  did  not  vary  significantly

w =
200 µm

length of 
junction l

bicrystal line

YBCO

Figure 6.1 The series of tracks each containing a different junction length.
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within 10µm on either side of the junction. To investigate the effect of the substrate on this

length scale, a series of 11 junctions with ‘lengths’ (see Fig. 6.1) from 2 to 10µm, 15 and

20µm were patterned in a 170nm YBCO film deposited by off axis pulsed laser deposition on

a 24.8º STO bicrystal substrate in Cambridge. The corrected junction lengths were measured in

an optical microscope after patterning. IV measurements of the shorter junctions at 4.2K were

made by E. Inglessi[123] and Dr. F. Kahlmann.

6.3 Current Voltage Characteristics and Fiske resonances

IV characteristics were measured over the temperature range in which resonances appeared,

and in the range of magnetic fields between the first minima in the Fraunhofer modulation of

the critical current. Fig. 6.2(a) shows the IV characteristic of the 2µm long junction at 4.2K,

and Fig. 6.2(b) shows the IV characteristic of the same junction in a series of applied magnetic

fields with the normal state current V/Rn subtracted. The resonance appeared only upon

application of a magnetic field and did not change position with field and so it was assumed to

be a Fiske resonance. By equating the capacitance found from the hysteresis to the capacitance

per unit length from the position of the Fiske resonance (see section 5.4.1.2) the film

penetration depth was found to be 208nm at 4.2K. As the longer junctions were not hysteretic,

this method of penetration depth determination could not be applied, so it was assumed that

this value of the penetration depth remained constant across the film.
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Figure 6.2(a) The IV characteristic of the 2µm wide junction at 4.2K, and (b) the same junction in
magnetic fields 235, 283, 331 and 379µT with a Fiske resonance indicated by lines at 1.5mV. The
normal state current (V/Rn) has been subtracted.
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Figure 6.3(a) The variation of current with magnetic field at and below the voltage of the first
order Fiske resonance for the 5µm long junction at 15K. (b) IV curves with the normal state
current subtracted for the same junction in the same range of applied magnetic field.

Fig. 6.3(a) shows the dependence of the current on magnetic field at and below the Fiske

resonance voltage of the 5µm long junction at a temperature of 15K. The splitting of the zero

field peak in the normal Fraunhofer pattern for the critical current modulation with magnetic

field is characteristic behaviour at the Fiske resonance voltage (see Fig. 1.13). Fig 6.3(b)

shows the excess current peak due to the Fiske resonance in the corresponding junction IV

curve.

Fig 6.4 shows the position of the Fiske resonance versus applied magnetic field for various

lengths of junction. It can be seen that, for most junctions, the position of the Fiske resonance
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Figure 6.4. The voltage of the first order Fiske resonance versus magnetic field for various
lengths of junction.
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does not vary with field. Also, the Fiske resonance voltage decreases with increasing junction

length, the behaviour expected from (4.17). This provides further evidence that the resonances

are indeed Fiske resonances. There are two branches for the 3µm junction data, one which

remains constant with applied field and one which increases. The branch which varies with

field is believed to be a flux flow resonance or Eck peak, as described in section 1.4.2.2.

6.4 The Fiske resonance dispersion relation

6.4.1 A non-linear dispersion relation at 4.2K

Fig. 6.5 shows plots at 4.2K and 35K of inverse junction length versus Fiske resonance voltage

for all the junctions where a resonance was observed. The error bars in the resonance voltage

(where visible) arise from averaging over the magnetic field. This is effectively a dispersion

relation for the transmission line formed by the junction cavity, and if the inductance and

capacitance per unit length of the resonator were invariant with frequency, then this dispersion

relation would be expected to be linear. However, at 4.2K the dispersion relation is non-linear

and instead there are two branches, one with a higher gradient at low frequencies with a

transition between 158GHz and 240GHz to a lower gradient branch at higher frequencies. Two

branches in the dispersion relation were observed up to a temperature of 25K, but as can be

seen from Fig. 6.5, the dispersion relation became linear again at 35K.
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Figure 6.5. Inverse junction length versus the voltage of the first order Fiske resonance at 4.2K
and 35K.
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Assuming that the inductance per unit length L’  remains constant across the film then the

change in gradient must be due to a change in the capacitance per unit length C’ of the

resonator. L’  was calculated to be 3.76pHµm-1 from the penetration depth of 208nm using

(1.44). The penetration depth was comparable to the film thickness so it was corrected with

λeff=λL
2/h. At 4.2K, C’ was found to be 0.10±0.01pFµm-1 for the low frequency branch and

0.0240±0.0004pFµm-1 for the high frequency branch of the dispersion relation using (6.1),

where V1 is the voltage of the first order Fiske resonance (see section 1.4.2.1).

V
l L C

1
0

2
= Φ

’ ’
(6.1)

A comparison of capacitance per unit area versus resistance area product for these junctions

with those on subros is shown in Fig. 6.6. Junction area is defined as film thickness times

junction length. The specific junction capacitances calculated from the Fiske resonances above

the transition are similar to those subros junctions with a similar resistance area product.

Therefore, the capacitance of these junctions above the transition is dominated by the grain

boundary. Below the transition, the junctions have a similar resistance area product but a much

higher capacitance ‘per unit area.’ So, below the transition there must be a significant extra

contribution to the total junction capacitance.

As shown in Fig 3.4 and (3.11), below ωTO εRSTO suddenly rises from a negative value to a

large positive value. The frequency of the transition in the dispersion relation in Fig 6.5 is

believed to correspond  to  ωTO.  Below  ωTO,  parasitic  co-planar  capacitance  from  the  STO
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Figure 6.6. Capacitance per unit area versus resistance area product at 4.2K above and below the
change in gradient of the dispersion relation, together with the data from subros.
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substrate makes a significant addition to the total capacitance per unit length of the junction.

This gives rise to the two branches with different gradients in the dispersion relation. The

upper limit on the soft phonon frequency from the measured dispersion relation was 240GHz,

and this is in reasonable agreement with the frequency of 270GHz measured by Vogt[77] for

the lower frequency component of the soft optic phonon.

6.4.2 Temperature dependence of the dispersion relation

The voltages of the Fiske resonances below ωTO increased with increasing temperature up to

25K, and this is shown in Fig. 6.7 for the 7, 8 and 10µm long junctions. This increase in the

voltage of the first order Fiske resonance meant that the capacitance per unit length from the

gradient of the lower branch of the dispersion relation decreased with increasing temperature.

Table 6.1 shows the high and low frequency values of the junction capacitance per unit length,

where CGB’  and CSTO’ are the grain boundary and parasitic substrate contributions to the total

junction capacitance per unit length respectively.
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Figure 6.7. The variation of Fiske resonance voltage with temperature for the 7, 8 and 10µm long
junctions.
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Table 6.1 The high and low frequency junction capacitance per unit length.

Temperature
(K)

High frequency CGB’
(pFµm-1)

Low frequency (CGB’+ CSTO’)
(pFµm-1)

4.2 0.0240±0.0004 0.10±0.01

15 0.0260±0.0006 0.069±0.004

25 0.030±0.001 0.051±0.004

6.4.3 A fit to the dispersion relation

A fit was made to the Fiske resonance dispersion relation in Fig 6.5 using the transmission line

propagation constant γ given by (1.38). Above ωTO the dielectric constant of the substrate εRSTO

is negative (see (3.11) and Fig. 3.4). Therefore, above ωTO  the capacitance of the strontium

titanate layer becomes negative and should reduce the overall capacitance per unit length of

the resonator.

Tarte et al[57] showed that it is possible to separate the capacitance of the junction into two

contributions. The grain boundary is modelled as a parallel plate capacitor. The co-planar

capacitance from the substrate is conformally mapped onto a parallel plate capacitor structure.

The tangential electric field must be continuous across the boundary. If the first electric field

line in the substrate is linear, then this boundary condition is satisfied and the two contributions

can then be added as if they were in parallel. The geometry is shown in Fig 6.8, which is a

cross  sectional  view  of  the  junction  shown  in  Fig. 1.8.  After  the conformal  mapping, the

STO substrate

YBCOgrain boundary

magnetic field

electric field

y
x

Conformal

mapping

YBCOgrain boundary

STO substrate

Figure 6.8. Cross sectional views of the resonator geometry measured. The resonance propagates
into the page. The electric field lines in the grain boundary and the substrate are shown (not to
scale).
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structure is equivalent to that in Fig. 1.8, but the resonator now consists of two dielectrics.

It is also possible to separate the geometric inductance of the resonator into a contribution from

the ‘parallel plate’ structure of the grain boundary and the co-planar stripline formed by the

junction electrodes. However, the film thickness used is comparable to the penetration depth

and thus the current due to the resonance penetrates the entire thickness of the film, so the

kinetic inductance cannot be separated into two contributions from the substrate and the grain

boundary. The relative magnetic permeability of the STO substrate is one. Therefore, the

inductance of the resonator is not affected whether the STO substrate is present or absent and

is therefore effectively frequency independent.

It was assumed that the inductance calculated from the fitting of the capacitance from the

hysteresis in the IV curve to that from the Fiske resonance voltage for the 2µm junction was

the total geometric and kinetic inductance per unit length of the resonator, and that this value

was frequency independent and the same for all the junctions.

To take into account losses both in the YBCO grain boundary and the STO the wavenumber

must be taken as the imaginary part of the transmission line propagation constant γ as defined

in (1.38). CSTO’ can be calculated using (5.1) or equivalently (2.1) for the capacitance per unit

length of two co-planar strips. In (5.1), w is the ‘width’ of the track containing the junction and
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Figure 6.9. A fit to the Fiske resonance dispersion relation at 4.2K.



Chapter 6: Single crystal strontium titanate characterisation using internal junction (Fiske) resonances

118

is equal to 200µm. The spacing of the capacitor electrodes, or s in (5.1), is the width of the

cavity in which the Fiske resonances are propagating or approximately the thickness of the

disordered region around the grain boundary, ~1nm[45]. The expression (3.11) for εRSTO(ω)

was substituted into (5.1). Since (3.11) includes both real and imaginary parts of εRSTO(ω), this

naturally takes into account dielectric loss in the STO, and (1.38) can be written as (6.2) where

R’ are the losses in the inductance per unit length of the resonator, and it is assumed that

dielectric loss in the grain boundary is negligible compared to that from the STO.

k R i L i C Cx STO GB= = + +Im( ) Im((( ’ ’)( ( ’ ’)) )γ ω ω
1

2 (6.2)

The measured dispersion relation at 4.2K from Fig 6.5 was fitted to (6.2). The result is shown

in Fig. 6.9, using the zero frequency dielectric constant εRSTO(0) and the transverse optic

phonon frequency ωTO as the only variable fitting parameters. R’ was determined from (5.11)

with k4.2=0.23x10-23ΩHz-2[113], εRSTO(∞)=6[76] and η=30GHz[77]. The best fit to the

dispersion relation was obtained when ωTO was set equal to the frequency of the highest

frequency resonance in the low frequency branch of the dispersion relation.. CGB’  was left

constant over the entire frequency range of the dispersion relation and was set to 0.024pFµm-1

and L’ was set equal to 3.76pHµm-1 (see section 6.4.1) .

The best fit is obtained for εRSTO(0)=750. However, it is not clear why no downward curvature

is observed for junctions with Fiske resonances just above ωTO. The measured dispersion

relation above ωTO  is linear, with the speed of light independent of frequency and given by

(L’CGB’) -1/2. It is possible that the mode is propagating in the grain boundary unaffected by the

negative dielectric constant of the STO. The STO losses dominated the YBCO losses in

determining the shape of the dispersion relation.

The procedure was repeated for the dispersion relation at 15K and 25K, and the data obtained

is summarised in Table 6.2. At 35K, not enough Fiske resonances were observed to draw any

conclusions about the location of ωTO or the value of εRSTO(0). Table 6.2 shows that as

expected from the Lyddane-Sachs-Teller relation (3.8), εRSTO(0)  decreases and ωTO rises with

increasing temperature. These are also the trends observed in εRSTO(0) and ωTO with
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Table 6.2. The zero frequency dielectric constant and transverse soft optic phonon frequency of
bulk STO at various temperatures from fits to the measured Fiske resonance dispersion relation,
and measurements from the literature.

Temperature
(K)

εRSTO(0) εRSTO(0)
Neville[54]

ωTO (GHz) ωTO

(GHz)Vogt[77]

4.2 750 24123 145±10 390

15 500 18700 150±5 420

25 250 13935 170±10 450

temperature in both  the  zero  frequency  dielectric  constant  measurements (Fig 3.3)  and  the

neutron scattering measurements of ωTO(Fig 3.5). B’=εRSTO(0)ωTO
2  is found to be 6±1x1026s-2,

which is lower still than the Neville et al[54] calculation. This is to be expected, however, as

both εRSTO(0) and ωTO  are lower than previously measured values.

6.5 Further discussion

6.5.1 The measured values of the transverse soft optic phonon frequency and the zero

frequency dielectric constant

Qualitatively, the behaviour of the measured Fiske resonance dispersion relations at 4.2K, 15K

and 25K (see Figs. 6.5 and 6.9) supports the conclusion that parasitic capacitance from the

STO substrate makes a significant contribution to the total junction capacitance per unit length

only below ωTO. The temperature dependence of ωTO itself and εRSTO calculated from the

measured dispersion relation are in rough agreement with previously measured values (see

Table 6.2), and the trends follow the theoretical predictions. Quantitatively, however, possible

reasons for the low values of both ωTO  and εRSTO as compared to measurements from the

literature should be addressed.

The most likely explanation for the lowering of the bulk STO dielectric constant is the

formation of structural domains during cooling past the cubic to tetragonal phase transition at

105K. In the absence of an applied electric field during cooling, tetragonal domains form with

different c-axis orientation. Neville et al[124] have observed a resonance in the dielectric

constant of multi domain STO as a function of frequency, between 1MHz and 10MHz, at

4.2K. The dielectric constant decreases from 24000 below this resonance to a value between

50 and 9000 depending on the orientation of the crystal. The resonance was believed to be
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associated with oscillations of the ratio of the c to a-axis lattice parameters in the structural

domains with different c-axis orientation. In a multi-domain crystal the domains must rotate in

order to respond to changes in the applied electric field, but above a certain frequency

determined by the spacing of the domains and the piezoelectric coupling between the induced

polarization and the lattice strain, the domains are unable to respond to changes fast enough so

the dielectric constant is reduced.

A further problem with determining absolute values of the dielectric constant from the

measured dispersion relation is the co-planar geometry of the resonator. The electric field

inside the STO is non-linear and passes across a grain boundary, so it is not clear in which

direction with respect to the crystallographic orientation the dielectric constant is being

measured. Low frequency dielectric constant measurements are carried out in well defined

orientations with respect to the crystallographic lattice using a uniform, linear electric field,

and vary from 25600 at 4.2K for <110> planes to 14100 at 4.2K for <111> planes[54]. The

value of 750 at 4.2K from the Fiske resonance dispersion relation is a combination of these

numbers averaged in a way in which it is not straightforward to separate into contributions

from the different crystal planes. The same is true of the measured value of the transverse optic

phonon frequency of 145GHz at 4.2K, which is measured across two grains with different

orientations.

6.5.2 Fiske resonance dispersion relations in the literature

There have been several previous studies of Fiske resonances in YBCO grain boundary

Josephson junctions of various lengths on STO bicrystal substrates. None have observed two

branches in the dispersion relation. Tarte et al[59] measured junctions of various widths and

different film thicknesses and found a linear dispersion relation with no branches at 4.2K.

However, the lowest Fiske resonance voltage observed was 0.39mV, above the transverse

optic phonon frequency of 0.3mV measured at 4.2K here. Medici et al[125] again measured

junctions of various widths and obtained a linear dispersion relation with no branches, but the

lowest Fiske resonance voltage observed was 0.3mV, again above the low frequency branch of

the Fiske resonance dispersion relation measured here.  Hence, both these studies are

consistent with the dispersion relation presented in Fig. 6.5.

The most recent study of Fiske resonances in YBCO grain boundary Josephson junctions of
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various widths on STO bicrystal substrates has been made by Navacerrada et al[126]. For the

50nm thick films which were studied, a linear dispersion with no branches was observed at

20K. The lowest frequency resonance was at 0.17mV, well into the low frequency branch of

the dispersion relation in Fig. 6.5.  This is in clear disagreement with the dispersion relation

with two branches which was measured both at 15K and 25K. There is, however, a possible

explanation for this apparent discrepancy. It has already been shown that the capacitance per

unit area of the grain boundary varies with its resistance area product (see Fig. 3.14 for

subros). Fig. 6.6 shows that for the junctions measured here the resistance area product is

effectively constant at 4.2K, and therefore the capacitance per unit area of the grain boundary

is effectively constant. This was a tacit assumption made in the fitting of the dispersion

relation to (4.20).  It is also assumed that the resistance area product does not vary significantly

with temperature. The capacitance per unit area versus resistance area product at 20K for the

junctions of Navacerrada et al is plotted in Fig 6.10, and there is a considerably larger spread

in resistance area product for the junctions of Navaccerada et al, which would correspond to a

wide variation in capacitance per unit area of the grain boundary. In particular, the longer

junctions that might otherwise be in the low frequency branch of the dispersion relation have a

very low grain boundary capacitance per unit area. Therefore, any branches in the Navacerrada

dispersion relation are probably obscured by variations in the grain boundary capacitance per

unit area.
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Figure 6.10. Capacitance per unit area versus resistance area product for the Navacerrada et
al[126] junctions at 20K and for the junctions in this study at 4.2K.
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6.5.3 Other possible causes of the step in the dispersion relation

It could be envisaged that the step in the dispersion relation in Fig. 6.5 was a consequence of

the non-linear dynamics of the long Josephson junctions. However, as mentioned in section

1.4.2 a recent theoretical study of Fiske and flux flow resonances has found that the Fiske

resonant voltages are unchanged and given by (6.1) whether the junction is in the long or short

limit[17]. Also, at 4.2K the shortest junction was in the long junction limit, with l/λJ=4 (the

Josephson penetration depth λJ is given by (1.30)). The Josephson penetration depth of the

junctions was found to be independent of the junction length and equal to 480±50nm

The dispersion relation measured is that plotted in Fig. 1.11 from the sine-Gordon equation for

the Josephson junction (1.32). Another possibility is that the two branches were caused by the

plasma cut off frequency. The phase velocity of the two branches in Fig 6.5 is 1.6x106ms-1

below ωTO and 3.3x106ms-1 above. The plasma frequency ωp defined in (1.34) is given by

cJ/λJ, so below ωTO it was greater than 5.5THz and above ωTO it was greater than 11THz. The

dispersion relation measured in Fig. 6.5 has no cut off frequency and is therefore that of

Swihart modes propagating in the junction.

The fit to the dispersion relation ignored any frequency dependence of the capacitance of the

grain boundaries in both the STO substrate and the YBCO. It has recently been proposed that

the grain boundary in YBCO be modelled as a back to back Schottky barrier in a manner

analogous to grain boundaries in semiconductors(see [127] and Chapter 9). Grain boundaries

in silicon have a high capacitance at low frequencies because the built in voltage oscillates out

of phase with the applied bias[128]. Grain boundaries in STO exhibit a similar high

capacitance at low frequencies[129]. The built in voltage is due to trapped charge at the grain

boundary. The capacitance is reduced at high frequencies because the relaxation time of the

trapping and emission of charges at the boundary becomes too long to respond to the time

dependence of the applied bias. The required relaxation time of the trapped charges from the

dispersion relation in Fig. 6.5 would be 1/ωTO=6.9x10-12s. The relaxation time for silicon

however, is ~10-3s, much larger than 1/ωTO. Measurements of the 1/f noise in YBCO grain

boundaries indicate that the relaxation time is also ~10-3s[130]. Frequency dependence of the

grain boundary capacitance can therefore be ruled out as a cause of the step in the dispersion
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relation in Fig. 6.5.

6.6 Conclusion

A series of junctions of various lengths on a bicrystal STO substrate was investigated. At

temperatures up to 25K, two branches were observed in the Fiske resonance dispersion

relation, with the low frequency branch corresponding to a larger capacitance per unit length.

This was attributed to the frequency dependence of the dielectric properties of the STO

substrate with frequency, and in particular the drop in dielectric constant at the transverse soft

optic phonon frequency. By fitting the dispersion relation to that expected for a transmission

line with two dielectrics in parallel, the dielectric constant of the STO was found to be 750 at

4.2K with a transverse soft optic phonon frequency  of 145GHz. These values are lower than

those found in the literature, and this is probably because of multiple structural domains in the

STO below 105K and the non-linear fields in the STO resulting from the co-planar geometry

used. For YBCO grain boundary junctions on bicrystal STO, parasitic capacitance from the

substrate is only a significant contribution to the total junction capacitance below the

transverse soft optic phonon frequency.
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Chapter 7: Thin film strontium titanate characterisation with

Josephson junctions coupled to external resonators

7.1 Introduction

As described in Chapter 6, the strontium titanate (STO) soft optic phonon was observed in the

Fiske resonance dispersion relation of Josephson junctions on an STO bicrystal. Following this

observation, it was decided to investigate the properties of thin film STO in the same

frequency range using Josephson junctions coupled to external resonators. It was believed that

high frequency measurements of the STO dielectric properties could bring insight into the

differences in behaviour between thin film and bulk STO. In this chapter the theory relating to

measurements of dielectric properties using Josephson junction driven resonators is discussed.

Next, measurements of the dielectric constant of thin film STO are reported in the frequency

range up to 1THz for a variety of geometries of resonator and a spread of film thicknesses.

Tuning of the dielectric constant in this frequency range is also reported.

7.2 Josephson junctions coupled to external resonators

Previous research on Josephson junctions coupled to external resonators has focused  primarily

on the application of tunable microwave oscillators made from an array of junctions, phase

locked with the aid of the transmission line[131]. The initial studies of high Tc grain boundary

junctions coupled to external resonators were carried out by Edstam[132], with the aim of

developing phase locked arrays of junctions[133]. The dielectric properties of silica have been

determined at microwave frequencies using the technique[134].  In this section, first the theory

relating to junctions shunted with general load impedances is discussed, followed by low and

high Tc junctions coupled to external resonators. The theory has also been treated by

Likharev[6].

7.2.1 Theory

As discussed in section 1.4.4, an external resonator causes a dip or peak to appear in the

junction IV characteristic at the resonant frequency of the cavity. At this frequency a certain

amount of microwave power is coupled out of the junction. For a lossless, one dimensional,

transmission line coupled to an ideal (zero capacitance) resistively shunted Josephson junction,
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dc block

RnCj ZL

Figure 7.1 A Josephson junction shunted in parallel by a general load impedance.

the voltage Vn of the nth order resonance in the IV characteristic is given by,

V
n

l L C
n = Φ0

2 ’ ’
 (7.1)

where l  is the length of the resonator and L’  and C’ are the inductance and capacitance per

unit length of the resonator respectively.

Following Edstam et al[113,132,135], to properly describe the shape of the resonant structure

in the IV curve the losses in the resonator must be taken into account, as well as the impedance

matching between the junction and the resonator. The circuit shown in Fig. 7.1 is considered,

which consists of a Josephson junction shunted in parallel by a resistor Rn, capacitor Cj and a

general load impedance ZL. The supercurrent Is0 generated by the oscillating voltages in the

resistor is given by (7.2), from the RSJ model (see section 1.3.2).
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n n
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2

2

2= + −
�
��

�
�� (7.2)

The Josephson junction is a dc to ac power converter and at a given voltage the microwave

power generated is given by Is0(V)V. For an infinite ZL, this power is absorbed in the resistor

giving (7.3). As discussed in section 1.3.2.1, the amplitude of the first harmonic of the

Josephson oscillations is IcRn.

I
R I V Vc

n s

2

02
= ( ) (7.3)

For a finite ZL, however, microwave power is absorbed in the ZL-Rn combination leading to a

reduction ∆Is in the voltage dependent supercurrent. This gives (7.4) for the power balance
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condition.
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Combining (7.3) and (7.4) gives (7.5) for ∆Is.
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The argument leading to (7.5) can be repeated to give (7.6) to include the junction capacitance

Cj.
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The expressions (7.5) and (7.6) are valid for voltages above IcRn where the Josephson

oscillations are monochromatic. Below Vc=IcRn (7.6) must be modified to take into account the

amplitude of the higher harmonics of the Josephson oscillations (see Fig. 1.3) to give

(7.7)[132],[6] where v=V/Vc. The relation (7.7) is valid if ZL>Rn(Vc/V)3.
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(7.7)

The equations (7.5) and (7.6) are valid for small resistances and low or moderate capacitances,

or when ωRnCj<1. This situation is usually the case for high Tc Josephson junctions which

generally have small resistances and capacitances. When ωRnCj>>1, inductive loads which

increase the effective impedance must be considered, since the large capacitance shorts out any

microwave power generated by the junction. This is normally the case for low Tc tunnel

junctions.
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Figure 7.2. The IV curves (from (7.2) and (7.5)) and reduced voltage dependent supercurrent
(from (7.5)) for a junction shunted by a series, lumped LC combination[132].

The effect of shunting a resistively shunted junction with a load impedance consisting of a

lumped inductance L and capacitance C in series is shown in Fig. 7.2, for the case where

Rn<<(L/C)1/2. At resonance, the series LC combination impedance becomes real and finite

(zero for a lossless components) and shorts the junction resistance to produce a dip in the IV

curve, where the voltage dependent supercurrent has been completely suppressed such that

∆Is/Is0=1. As (L/C)1/2 approaches Rn, the width of the resonance increases. At other

frequencies, the impedance of the resonator is large compared to the junction resistance so it

has little effect on the junction IV curve. The resonance shown in Fig. 7.2 is known as a series

resonance.

A more realistic case is that of a junction at the centre of an open ended transmission line of

length l which has a load impedance of the form (7.8). An open ended transmission line has

ZL=Z0coth(γl)[118]. The shunt impedance seen by the junction shown in Fig. 7.5 is that of two

open ended transmission lines of length l/2 in series.

Z Z
l

L = �
��

�
��2

20 coth
γ

(7.8)
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Figure 7.3 The normalised voltage dependent supercurrent and dV/dI versus voltage for a
junction (Ic=100µA, Rn=1.46Ω) shunted with an open ended, low loss, transmission line with ZL

given by (7.8) and l=120µm. The series and parallel resonances are indicated by lines.

In (7.8), Z0 is the characteristic impedance of the line, see (1.39), and γ is the propagation

constant of the line, see(1.38). The normalised voltage dependent supercurrent and versus

voltage (equivalent to frequency via the ac Josephson relation (1.9) from (7.6) is shown in Fig.

7.3. Also shown in Fig. 7.3 is the dynamic resistance dV/dI, which can be recovered with (7.2)

followed by numerical differentiation.

The maxima in ∆Is/Is0 in Fig 7.3 correspond to series resonances where the resonator has small,

finite impedance so some microwave power is dissipated in the resonator and the voltage

dependant supercurrent is suppressed. The minima are parallel resonances where the resonator

has a large impedance, so most of the microwave power is dissipated in the resistor and the

voltage dependent supercurrent is not affected. An alternative, equivalent, viewpoint of series

and parallel resonances is to consider whether or not there is a node or antinode at the junction

in the spatial distribution of current in the resonator. For an antinode, or a series resonance,

microwave power can be coupled out and the junction can drive the resonator. However, for a

node, there is no current variation at the junction, which cannot then drive the resonator, giving
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Figure 7.4 Normalised voltage dependent supercurrent for a junction coupled to the same
transmission line as in Figure 7.3, for various junction capacitances and  realistic transmission
line losses.

rise to a parallel resonance. In the dV/dI curve, the series and parallel resonances are

approximately halfway between the maxima and minima.

Fig 7.4 shows that the effect of increasing junction capacitance is to lower the resonant

frequencies[113,132,136].

7.2.2 Low Tc junctions

Coupling of a Josephson junction to an external resonator was first achieved by Dayem and

Grimes[30], who placed a superconducting point contact Josephson junction in a microwave

cavity. Voltage steps were observed, at frequencies corresponding to the resonant frequencies

of the microwave cavity. Subsequent studies have used microstrip transmission lines of the

general geometry shown in Fig. 7.5, for a high Tc grain boundary junction, but with a low Tc

tunnel junction replacing the grain boundary junction for the low Tc  case. Olsson[134] used

such a geometry with a Nb tunnel junction to determine the dielectric constant of SiO at

frequencies between 13 and 103GHz with parallel type resonances. Bi et al[137] determined

the surface resistances of Au, Nb, and Cu at frequencies up to 400GHz using series resonances

and resistively shunted tunnel junctions. The surface resistances obtained were higher than

expected for optimised thin films due to the lithography and patterning of the films necessary

to manufacture the resonator.

Larsen et al[136] have carried out a more fundamental study of the physics of the interaction
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between the junction and the resonator. As well as the parallel resonances corresponding to the

fundamental frequencies of the resonator, sub-harmonic steps were also observed. These were

believed to be generated by higher harmonics of the Josephson current, the amplitudes of

which are shown in Fig. 1.3. The resonant voltages were at ~0.2mV, much less than the

junction IcRn product of 3.3mV. The junctions were also in the limit where ωRnCj>>1 (ωRn-

Cj=73). Larsen et al also found that the junction impedance determined from fitting to the

shape of the resonance was considerably higher than that determined from a zero-bias

conductance measurement, and were unable to explain this discrepancy.

7.2.3 High Tc bicrystal junctions

As mentioned above, the previous work on high Tc junctions coupled to external resonators has

been carried out by Edstam[132]. YBCO grain boundary Josephson junctions on YSZ

bicrystal substrates were used, with a SiO dielectric and either a Pb or Au top electrode, with

the geometry shown in Fig. 7.5. The initial work[110] studied first order resonances only. It

was demonstrated that the resonances were neither Fiske resonances (see section 1.4.2.1,

section 5.5.1.2, Chapter 6) nor flux flow resonances. This was achieved by varying the length

of the resonator and observing the decrease of resonance voltage with increasing resonator

length, see (7.1).

The IV characteristics of the bicrystal junctions used by Edstam were quantitatively RSJ like.

Therefore, it was straightforward to subtract the background voltage dependent supercurrent Is0

from the measured IV curves to obtain the frequency spectra of the change in voltage

dependent supercurrent due to the resonator. The resonant voltages were greater than the

junction IcRn product, and so could then be fitted to (7.5) using the impedance of an open

ended transmission line as the load impedance, with the surface resistance of the YBCO as a

parameter. Extremely good fits to (7.5) were obtained, and the YBCO surface resistance was

determined between 50GHz and 1THz[113]. Edstam’s thesis[132] also contains good fits to

(7.7) for junctions with resonant voltages below the  IcRn  product.
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Figure 7.5. A grain boundary high Tc  Josephson junction, shunted with an external transmission
line.

Subsequent work focused on the determination of the YBCO surface resistance in the

frequency range up to 1THz[113]. The YBCO penetration depth was measured at microwave

frequencies[111]. The junction was coupled to a variety of both lumped and distributed

resonator geometries[135]. In the latter case the theoretical spectrum of the normalised voltage

dependent supercurrent fitted for the particular shunt impedance fitted well to the measured

spectrum for all the geometries tested.

7.3 Mask design and films measured

The resonator designs tested are shown in Fig.7.6. All resonators had a cross section of the

form in Fig. 7.6a, with a YBCO bottom electrode, various thicknesses of STO dielectric, and a

gold top electrode. For the two dimensional resonators, electrode lengths a ranged from 25 to

175µm in 25µm increments. For the one dimensional resonators (1D_res), a ranged from

60µm to 160µm in 20µm increments. The junction width was kept at 2µm in all cases. The

width w of the one dimensional resonator was defined by the gold top electrode and was equal

to 4µm. For the two dimensional resonators, a=w. The contact pad next to the 3tdev resonators

enabled the STO to be voltage biased with the YBCO as ground to test for tunability of the

permittivity.

The wavelength λ1D at resonance of the 1 dimensional resonator is given by (7.9), where n is a

positive integer.

λ1 2D a n= (7.9)

The wavelength λ2D  for the 2 dimensional resonators is given by (7.10), where both n and m

are positive integers.
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From (7.9) and (7.10) it can be seen that the wavelength of the first order resonance is equal to

twice the resonator length for both the 1 and 2 dimensional resonators.

Au

SrTiO 3 substrate

YBa 2Cu3O7
SrTiO 3

Figure 7.6a. The resonator cross section (not to scale).

grain boundary

w

a
YBa2Cu3O7Au

Figure 7.6b. Plan view of the xros two dimensional resonators (not to scale).

YBa2Cu3O7

Au contact pad
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Figure 7.6c. Plan view of the 3tdev two dimensional resonators (not to scale).
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Figure 7.6d. Plan view of the linear one dimensional resonators (not to scale).

The capacitance per unit length of the resonators is given by (7.11).

C
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The inductance per unit length of the one and two dimensional resonators is given by

(7.12)[11].
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Here, d is the thickness of the STO dielectric, δs  is the skin depth of the gold (see section

1.4.5) and h is the thickness of the YBCO. The final term in (7.12) describes the magnetic field

penetration into the superconductor when h~λL. The use of (7.11) and (7.12) for the

capacitance and inductance per unit length ignores fringing fields at the edges of the resonator.

The surface resistance of the gold Rs,Au’ is given by (7.13).

Rs Au
s

, = 1

σδ
(7.13)

σ is the gold conductivity, which is 4.2x107 Ω-1m-1 at 4.2K. The gold surface resistance is

proportional to the square root of the frequency. In the two fluid model, the YBCO surface

resistance Rs,YBCO’  is given by (7.14) (see section 1.4.5).

R ks YBCO, .= 4 2
2ω (7.14)

The contributions add such that the resistance per unit length R’ is given by (7.15).

R
R R

w
s Au s YBCO’ , ,=

+
(7.15)
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The conductance per unit length G’ of the transmission line is calculated from the dielectric

loss tangent and (1.53).

The thicknesses of the films used are given in Table 4.1. The  xros24d and 1D_res films were

deposited at the same time on a single 10x10mm bicrystal substrate, which was then cut in half

and patterned. This ensured exactly the same film parameters for the two different resonator

geometries.

7.4 Measurements of the dielectric properties of STO using Josephson junction

driven resonators

7.4.1 A 50nm STO film with two different resonator geometries

Fig. 7.7 shows a plot of the IV characteristic of the xros24d 50µm resonator before and after

the deposition of the gold top electrode. The resonances, indicated by arrows, appear only after

the gold deposition, indicating that they are due to coupling of the junction to the external

transmission line, and that they are neither Fiske resonances or flux flow resonances in the

junction which would have been observed in the IV characteristic prior to gold deposition.

This point is emphasized further by Fig. 7.7, which shows the differential resistance (dV/dI)

versus voltage for the 125µm device on xros24d measured before and after gold deposition.

The first peak is due to noise rounding of the critical current step, and the subsequent peaks are
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Figure 7.7. The dynamic resistance (dV/dI) versus voltage at 4.2K for the 125µm resonator on
xros24d with and without a gold top electrode. The location of the first order (parallel) resonance
is indicated.
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the resonances in the IV curve, which again appear only after gold deposition. The resonant

voltages also remained the same under an applied magnetic field, and decreased with

increasing resonator length according to (7.1).

The dynamic resistance of the 160µm resonator on 1D_res at 40K with and without a small

applied magnetic field is shown in Fig. 7.8. The resonant voltage was assumed to be halfway

between the maxima and minima in the dV/dI curve. The IV characteristic is also shown, to

indicate the corresponding position of the resonance on the IV curve. In some cases it was

necessary to apply a magnetic field to observe the lower order resonances, as otherwise they

were obscured by the switching from the zero voltage state. At high temperatures lower order

resonances are obscured by the noise rounding in the IV curve.

It is crucial to correctly determine the orders of the resonances in order to be able to calculate

εRTF for the films. As an example, equations (7.1), (7.9), (7.11) and (7.12) can be used to

calculate εRTF  from the 0.24mV resonance in Fig. 7.8. If the resonance is first order then

εRTF=7.3 and if it is second order then εRTF=30.0, using the parameters given in Table 7.1.
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Figure 7.8 The dynamic resistance (dV/dI) and current versus voltage for the 160µm resonator
on 1D_res at 40K, both with and with out an applied magnetic field. The first four resonances are
indicated by lines.
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Table 7.1 Parameters used for determination of εRTF and fitting of dynamic resistance versus
voltage.

σ (40K) (Ω-

1m-1)
RS,YBCO[138]
(at 18.9GHZ,
40K) (mΩ)

Tan δ [119] λL(40K) (nm)
[22]

Ic (40K),
in field
(µA)

Rn (40K)
(Ω)

Cj

(4.2K)
(pF)

4.07x107 0.5 0.06 143 451 1.62 0.09

Therefore, to distinguish whether the 0.24mV resonance was first or second order, the

normalised voltage dependent supercurrent was simulated with (7.7). Substituting this result

into (7.2) and differentiating numerically yields the dV/dI versus V curve. The junction was

shunted with the load impedance for an open ended transmission line given by (7.8), again

using the parameters from Table 7.1. The result of this curve fitting is shown in Fig 7.9 for the

two different values of εRTF. For εRTF=7.3 the criterion ZL>Rn(Vc/V) is satisfied for

V>0.37mV, and for εRTF=30.0 it is satisfied for V>0.48mV. The best fit is clearly obtained for

εRTF=30, and reasonable agreement with the fit is obtained even for ZL<Rn(Vc/V), so the

0.24mV resonance is second order.

The first peak in the measured dV/dI in Fig. 7.9 is due to noise rounding of the critical current

step and not the external resonator. The discrepancy between the experimental and the fitted

dV/dI at high voltages is probably due to deviations of the junction behviour from the RSJ

model.
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Figure 7.9 The dV/dI versus V curve of the 160µm resonator at 40K in a small magnetic field,
with fits from (7.7) for two different values of εRTF (Ic=452µA, Rn=1.62Ω, Cj=0.17pF). The
resonances are indicated by lines.
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Figure 7.10 The 1D_res dispersion relation at 4.2K, and a fit to the dispersion relation from
(1.38).

Once the orders of the resonances have been determined for one length of transmission line,

the resonance orders for the lines of different length can be deduced from (7.1).

At 40K, it was possible to achieve reasonable fits to the measured dV/dI versus voltage curves

for all the linear resonators measured with εRTF determined from one of the resonances and the

parameters in Table 7.1. At lower temperatures where the junction IcRn products were larger,

the criterion ZL>Rn(Vc/V) is satisfied only for voltages larger than most of the lower order

resonances (e.g. 1.06mV for the 140µm resonator at 4.2K), and furthermore the junctions were

more hysteretic, so the fits were not as good.

The dispersion relation for the linear resonators at 4.2K is shown in Fig. 7.10 It is seen to be

linear over the entire frequency range observed, from 100GHz to 900GHz. The dispersion

relation varied linearly with frequency over the entire temperature range measured, from 4.2K

up to 75K above which temperatures resonances were no longer visible in the IV curves of any

of the junctions. A fit to the dispersion relation using εRTF=35 (from averaging the dielectric

constants calculated from each resonance) was obtained from the imaginary part of the

complex propagation constant γ given by (1.38), and is also plotted in Fig. 7.10. The fit takes

into account frequency dependence of the dispersion relation arising from the gold skin depth

and the surface resistance of the gold and the YBCO. However, it can be seen that the

dispersion relation still varies linearly with frequency in the range observed. The YBCO

surface resistance at 4.2K was 0.1mΩ at 18.9GHz[138]. The shift to lower voltages of the
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higher order resonances is probably due to discrepancies between the actual YBCO  surface

resistance and that of the parameter used.

The position of each resonance can now be used to calculate a value for εRTF with the

parameters in Table 7.1 and the two fluid model temperature dependence of the penetration

depth. For a given resonator length at a given temperature, εRTF for each order of resonance

was averaged, and is plotted versus temperature in Fig. 7.11.

For the xros24d square resonators, the resonances are not at half integer wavelengths, see

(7.10). Hence, (7.8) for the load impedance is no longer valid and fits to the dV/dI versus V

curve such as that in Fig 7.9 were not obtainable. Also, exact determination of the wavelength

from (7.10) for the higher order resonances was not possible, as the resonator was not a perfect

square. However, the first order resonance, shown in Fig. 7.7 for the 125µm resonator at 4.2K

with n=1 and m=1 in (7.10), has the same wavelength and therefore the same resonance

voltage as the equivalent linear resonator. The dielectric constant calculated from the position

of this resonance is plotted versus temperature in Fig. 7.11. The resonator length was assumed

to be a plus 10µm, the length of the tapered section of junction track. This resonance has a

current antinode in the centre of the square, with current nodes round the resonator edges and

therefore at the junction. The length chosen gave best agreement with the dielectric constant

from the linear resonators. No error bars are plotted for the two dimensional resonators, as only

one resonance was used to determine this dielectric constant. With the exception of the 60µm

resonator, the dielectric constants calculated from the linear resonators agree much better with

each other than those from the two dimensional resonators, because it was possible to evaluate

εRTF  over the entire dispersion relation rather than from only the first order resonance.

The agreement between the dielectric constants calculated from the two different resonator

geometries indicates that fringing fields at the edges of the resonators were not significant in

the determination of the field distribution. This is assumed implicitly in the use of a distributed

circuit model for a transmission line.
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Figure 7.11. The dielectric constant of the 50nm STO film versus temperature from the positions
of the 1D_res resonances (blue) and the xros24d first order resonances (red).

7.4.2 Further STO film thicknesses

The two further STO film thicknesses (100nm and 200nm) investigated were patterned with

two dimensional square resonators. Dynamic resistance curves were measured for all the

junctions over the temperature range for which resonances were visible. The dynamic

resistance of the 50µm resonator on 3tdev at 4.2K is shown in Fig 7.12. Resonances are visible

up to 0.91mV or 440GHz.
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Figure 7.12. The dynamic resistance of the 50µm resonator on 3tdev, in a small magnetic field at
4.2K. (200nm STO)
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Figure 7.13. The variation of dielectric constant with temperature for the STO film thicknesses
measured. The symbol shape indicates resonator size, and the 50nm thick films are red, the
100nm blue, and the 200nm black.

However, at 4.2K, only the 25, 50 and 75µm resonators on the 100 and 200nm films displayed

definite first order resonances. The dispersion relation for these resonances could be

extrapolated to predict the first order resonant voltages for the longer resonators. However, the

predicted voltages were so low as to be obscured by the switching from the zero voltage state

at low temperatures. As the wavelength of the higher order resonances was not clear, a

dispersion relation with as many points as that in Fig 7.10 could not be plotted. The dispersion

relation for the first order resonances observed was linear at all temperatures.

The dielectric constant calculated from the first order resonant voltages from the 2 dimensional

resonators is plotted in Fig. 7.13. It can be seen εRTF from the 25µm resonators on the 100nm

and 200nm films does not agree well with that from the larger resonators. The dynamic

resistance at the resonance on the 25µm resonators changed rapidly for a small change in

current. Its shape and position was therefore difficult to determine.

7.4.3 Tuning of the STO dielectric constant

The 3tdev resonators were patterned to allow the 200nm STO dielectric film to be voltage

biased, as shown in Fig. 7.14 and Fig 7.6.
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Figure 7.14. Voltage biasing of the STO dielectric on 3tdev.

Figure 7.15 shows the IV curve for the 50µm resonator at 30K for  a series of different

dielectric voltage biases. The resonant voltages can be seen to increase with increasing voltage

bias. Since no magnetic field was applied in this measurement, the resonances can be neither

Fiske resonances nor flux flow resonances. Furthermore, the critical current branch must be at

0V, which provides an absolute reference indicating that changing voltage offsets (from e.g.,

thermocouple e.m.f’s) were not responsible for the change in position of the resonant voltages.

The change in critical current from 176µA at 0V to 174µA at 1.8V is within experimental

error (see Fig 5.18(a), showing the width of a distribution of repeated measurements of the

critical current). Therefore, the increase in the resonant voltage with increasing dielectric

voltage bias is believed to be due to tuning of the dielectric constant of the STO dielectric.

Fig 7.16 shows dV/dI versus V curves at 30K for the 50µm junction at various dielectric

voltage biases. For these measurements, a small magnetic field was applied so that the critical

current was suppressed and the junction followed the return branch of the IV characteristic

shown in Fig. 7.15. The first order resonant frequency at 116GHz can be tuned to 90GHz at a

dielectric voltage bias of -2V, and 140GHz at +2V.

100

120

140

160

180

0 0.16 0.32 0.48

-1.6V
0V
1.8V

C
ur

re
nt

 (µ
A

)

Voltage (mV)

Figure 7.15. The IV curves for the 3tdev 50µm resonator at 30K for various dielectric voltage
biases.
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Figure 7.16 Dynamic resistance curves at various dielectric voltage biases for the 50µm resonator
at 30K.

It is evident that the higher order resonant frequencies also tune with dielectric voltage bias.

Above a dielectric voltage bias of  ±2V, there was a significant leakage current (>5µA)

through the dielectric which was apparent through asymmetry in the positive and negative

value of the critical current. The measurement of the dielectric voltage bias above ±2V was

therefore unreliable, and also current injection into Josephson junctions can give rise to flux

flow resonances which  change position with injection current[139].

Tuning of the resonant frequency with dielectric voltage bias was observed between 4.2K and

60K for the 50µm junction, and also at temperatures where the 25µm, 75µm, 100µm and

125µm resonators were tested. The first order resonant frequency of the 25µm resonator could

be tuned between 237GHz and 284GHz for dielectric voltage biases of  -1.6V and +2V, and

the second order resonant frequency between 297GHz and 317GHz.

The dependence of εRTF on electric field and dielectric bias voltage at various temperatures is

shown in Fig. 7.17. No hysteresis of εRTF(E) was observed when the dielectric voltage bias was

swept up and down between ±2V. No maximum was observed in εRTF(E), due to the

limitations imposed on the maximum possible dielectric voltage bias by the leakage current.
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Figure 7.17 The tuning of εRTF with electric field (dielectric bias voltage) at temperatures from
4.2K to 60K, and a linear fit to εRTF

-1 versus (E+1x107)2/3 at 30K.

The shift in the maximum of  εRTF(E) away from 0V is believed to be due to the formation of a

Schottky barrier between the Au top electrode and the STO, as discussed in section 3.4.3.

Assuming that the maximum in εRTF(E) occurs at –1x107 Vm-1 (2V), the data shown in Fig

7.17 could be fitted to either (3.5) or (3.6). For STO films with gold electrodes, 2V is a typical

value for the shift in maximum of εRTF(E) [83]. It was found that a linear fit was obtained when

εRTF
-1 was plotted versus E2/3 rather than E2, so the behaviour of εRTF(E) is in the high field

limit. There was too much scatter in the values of A2 obtained to ascertain its temperature

dependence.  However,  the  maximum and  minimum values obtained  agreed  with   previous

Table 7.2 Measurements of A2 from at various temperatures for both thin film and bulk STO.

Temperature
(K)

A2(T) Vm5 (As)-3 Reference

10K 4.6x109 (minimum) This work ~100GHz

30K 1.7x1010

(maximum)
This work ~100GHz

4.2K 8x109 Bulk STO, Christen et al[83]

90K 4x109 Bulk STO, Christen et al[83]

295K 1.2x1010 92nm STO, Abe and Komatsu[88]
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measurements of both bulk and thin film STO (see Table 7.2), and as discussed in section 3.4.2

and from (3.12) only modification of A1(T) is required to model the size effect[87].

7.5 Discussion

7.5.1 Frequency dependence of εRTF

The fits obtained to the dynamic resistance of the junctions shunted with a linear resonator

with a 50nm STO film required a frequency independent dielectric constant (see Fig. 7.9). The

linear dispersion relation obtained between frequencies of 100GHz and 900GHz also showed

that the dielectric constant was independent of frequency. This should be contrasted with the

dispersion relation for the Fiske resonances, shown in Fig. 6.5 and Fig. 6.9, which required the

dielectric constant of the single crystal STO to be strongly frequency dependent in the same

frequency range. Therefore, for the 50nm STO film, the transverse soft optic phonon has

hardened to a frequency well above 900GHz at 4.2K. This confirms the prediction of Zhou and

Newns[74] that the soft optic phonon hardens in incipient ferroelectric thin films (see section

3.4.3). The absence of the soft optic phonon in the 50nm STO film is consistent with the far

infra red ellipsometry experiments of Sirenko et al[140]. These experiments showed that the

soft optic phonon hardened to 1.9THz at 4.2K in a 2µm thick STO film.

For the 100nm and 200nm STO films, resonances were observed up 340GHz and 440GHz

respectively. Waves are not expected to propagate in STO just above the soft optic phonon

frequency where the dielectric constant is negative, so these frequencies represent lower limits

for the soft optic phonon frequencies in these films.

It can also be seen from Fig. 7.18 that for large YBCO surface resistances the resonant

frequencies are lowered, particularly for higher order resonances. This effect is believed to be

one of the causes of the discrepancy at high voltages between the fit to the dispersion relation

for the linear resonators and the measured data, shown in Fig 7.10. This effect is also one of

the causes of the spread in the values of the dielectric constant determined from each

resonance in the dispersion relation from the linear resonators. For example, whilst the

dielectric constant calculated from the second order resonance in the 160µm resonator at 40K

was 30, and this gave a reasonable fit to the dynamic resistance curve, that calculated from
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averaging all the resonances from all the resonator lengths in the dispersion relation was 34±4.

The errors on the measurement of the dielectric constant, for example 35±2 for the 160µm

linear resonator at 4.2K, i.e. 6%, are too large to draw any conclusions about Curie-von

Schweidler frequency dependence of the dielectric constant, which as discussed in section

3.4.4 leads only to a 7% decrease in the dielectric constant between 1mHz ad 20GHz. No

Maxwell Wagner relaxation of the capacitance was observed for the linear resonators on the

50nm STO films between 100GHz and 900GHz. However, Hwang et al[89] do not rule out a

Maxwell Wagner step at higher frequencies. The absence of a Maxwell Wagner step is

therefore inconclusive as to whether or not the film is fully or partially depleted.

7.5.2 The magnitude of εRTF

There is too much scatter in the values of the dielectric constant obtained in Fig 7.13 to draw

any quantitative conclusions about the size effect. However, it is clear that the 50nm STO film

had a lower dielectric constant than the 100nm and 200nm films, indicating that the size effect

was present, in agreement with the 490nm film thickness from the Zhou and Newns theory

below which the size effect becomes significant (see section 3.4.3). The films measured had

gold top electrodes. Therefore, the decrease of dielectric constant with film thickness observed
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Figure 7.18. Dynamic resistance versus voltage curves  for various YBCO surface resistances
(values given at 18.9GHz) and STO loss tangents. The junction parameters are those from the
160µm linear resonator at 40K shown in Fig 7.9 (Ic=452µA, Rn=1.62Ω, Cj=0.17pF).
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is consistent with the Vendik et al[86] prediction and the Hwang et al[89] experiment that the

size effect occurs only in films with metallic electrodes.

For the 100nm and 200nm films, there is a possible increase of the dielectric constant with

temperature, but the resonances were not observed to high enough temperatures to determine

whether or not there was a peak..

The experiments on tuning of the dielectric constant showed that the values in Fig 7.13 were

not the maximum of the dielectric constant, due to the effect of the Schottky barrier at the

Au/STO interface.  The maximum measured εRTF was 326 at 10K for the 50µm resonator with

a –2V dielectric voltage bias and a 200nm STO film. The agreement of the values of γ(T)

obtained with those from both thin film and bulk STO show that the Ginzburg-Landau-

Devonshire theory for ferroelectrics described in section 3.2.2. is obeyed by the 200nm film.

The magnitude of the dielectric constant measured agreed reasonably well with values reported

in the literature, although the dielectric constant for the 50nm film was low. Table 7.3 gives a

comparison.

Similar structures to that used in 3tdev have been used to observe electric field effects on the

Josephson junction critical current[141,142]. However, for the 3tdev devices no significant

dependence of the junction critical current or the junction return current on the dielectric

voltage bias was found.

Table 7.3 The dielectric constant of thin film STO.

εRTF Temperature
(K)

Thickness
(nm)

Frequency Reference

35±2 4.2 50 100-900GHz 160µm linear resonator, this
work

326 10 200 95GHz, -2V
bias

50µm square resonator, this
work

1400 4.2 1000 1.5GHz Dalberth et al[119]

120 4.2 100 10kHz Christen et al[83]

280 295 92 100kHz Abe and Komatsu[88]
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It was not possible to determine the loss tangent of the STO film from the fits to the dynamic

resistance versus voltage curves. This would have required the variation of two independent

parameters which have the same effect on the dynamic resistance versus voltage curves, as

shown in Fig. 7.18. An estimate of the loss tangent would have been possible had a

independent measurement of the surface resistance of the YBCO films used been available.

The YBCO was the dominant cause of resonator losses.

7.6 Conclusion

The dielectric constant of thin film STO has been measured at frequencies from 50GHz to

900GHz at temperatures from 4.2K to 77K, using a Josephson junction coupled to an external

resonator. Reasonable agreement was obtained between the measured dynamic resistance

versus voltage curve and that predicted from a junction shunted with a load impedance of an

open ended transmission line resonator. For linear resonators, the dielectric constant of a 50nm

STO film was found to be independent of frequency between 100GHz and 900GHz, and a

typical value was 34±2 at 40K, calculated from each resonant voltage in the dispersion

relation. This value was found to agree with that determined for another area of the 50nm film

using a square resonator.

The frequency independence of the dielectric constant of the 50nm STO film indicated that the

soft optic phonon had hardened, in agreement with theoretical predictions of an intrinsic dead

layer in thin STO[74] films and recent infra red ellipsometry experiments[140].

The size effect was observed for the series of film thicknesses measured.

The dielectric constant of a 200nm STO film was found to be tunable at with a ±2V applied

voltage bias between 246 and 111, at a frequency of around 100GHz. Reasonable agreement

was found between the third order GLD parameter γ  and that measured in previous

experiments on both thin film and bulk STO.
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Chapter 8: Capacitance as a probe of high angle YBa2Cu3O7-δ grain

boundary current transport

8.1 Introduction

From the point of view of applications the most disappointing aspect of the high Tc

superconductors is the low critical current of bulk, polycrystalline samples. Soon after the

discovery of the high Tc compounds it was experimentally proven that the limiting factor was

the low critical current at the grain boundary[39]. More recently, progress has been made in

enhancing the critical currents of grain boundaries by doping their electrodes[143,144]

[145,146]. Most recently the critical current of the grain boundary itself has been enhanced

selectively by preferential doping[147]. This is expected to have significant technological

implications for the manufacture of high Tc cables.

However, a detailed physical understanding of the current transport in these grain boundaries

is still lacking[145]. Various models have been proposed to explain grain boundary current

transport in the high Tc superconductors[31,99,127]. Typically, the models are then invoked to

explain scaling laws between the junction IcRn product and the critical current density[31], or

between the junction critical current density and its resistance area product[148-150]. Scaling

of junction capacitance per unit area with resistance area product has been observed

previously[98], but has since been rarely commented upon. The capacitance has the possibility

of being a useful probe of grain boundary current transport, as it is directly related to properties

such as the width of the insulating barrier layer.

In this chapter, the models of grain boundary current transport in the high Tc superconductors

are reviewed. The experimental data supporting each one is discussed. Then, scaling

relationships are presented between the critical current density, resistance area product and

capacitance per unit area measured for the doping enhanced junctions and from those in earlier

chapters. Finally, each model is tested for its applicability to the measured experimental data.

8.2 Models of grain boundary current transport

There are two common features of all the models of grain boundary current transport. It is

assumed that the high angle grain boundaries contain a narrow, insulating region along the



Chapter 8: Capacitance as a probe of high angle YBa2Cu3O7-δ grain boundary current transport

149

grain boundary. The presence of Fiske resonances and the large resistivites of the high angle

grain boundaries provides supporting evidence for such an insulating layer. The supercurrent is

assumed to cross this region by direct tunneling.

8.2.1 The intrinsically shunted junction model

The intrinsically shunted junction model proposed by Halbritter[151] assumed that there were

two channels for quaisparticle current transport across the (YBCO) grain boundary, via direct

or resonant tunneling. It was argued that the grain boundary consisted of a disordered,

insulating region with a high density of localised states. This was a reasonable assumption

since it was known that YBCO did not have a metallic phase and that oxygen disorder or

depletion rendered YBCO insulating. The measured grain boundary resistivities were also

typical of those of semiconductors. The carrier density in the cuprates (~1021 cm-3[50]) is close

to the metal insulator transition in 2 dimensions. The supercurrent transport was assumed to be

dominated by direct tunneling across the barrier, since a Cooper pair cannot occupy a single

localised state. The critical current density Jc of the barrier is therefore given by (8.1).

J tc J∝ −exp( )2κ (8.1)

In (8.1), tJ is the thickness of the barrier, Rn is its normal state resistance, A is the geometrical

area of the junction (i.e. film thickness times junction width) and κ is a decay length given by,

κ φ= �
�

�
�

2
2

1 2m

h

/

(8.2)

where m is the effective mass of the charge carriers and φ is the height of the potential barrier.

It was proposed that the quasiparticle current density JN was dominated by resonant tunneling

across the barrier, via a localised state at tJ/2, and given by (8.3).

J
R A

tN
n

J∝ ∝ −1
exp( )κ (8.3)
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Figure 8.1 The scaling of IcRn product with Jc  for YBCO grain boundary junctions with
misorientation angles from 15° to 45° from Gross and Mayer[49,51,152]. The line is a fit to
IcRn∝Jc

0.6.

Combining (8.1) and (8.3) yields (8.4) for the scaling of the IcRn product with the critical

current density or resistance area product.

I R J R Ac n c
n

∝ ∝ �� ��1 2 1/ (8.4)

The scaling of IcRn  with Jc measured by Gross et al[49,51,152] for YBCO grain boundary

junctions grown on STO bicrystals with misorientations from 15° to 45° is shown in Fig. 8.1.

It was found that IcRn∝Jc
0.6 in reasonable agreement with (8.4). Furthermore, for 90° basal

faced tilt boundary junctions grown on MgO bicrystals Russek et al[153] found that

IcRn∝(1/RnA)0.85, also in reasonable agreement with the intrinsically shunted junction model

prediction (8.4). The expressions (8.1) to (8.4) are justified in more detail by

Halbritter[151,154]. Gross et al[31] have also showed that the scaling (8.4) was a universal

property of all YBCO and BSCCO step edge and bicrystal junctions manufactured up to 1997.

The scaling of IcRn product with Jc
0.6 indicated that resonant tunneling dominated the

quasiparticle transport across the grain boundary for the Gross and Mayer junctions, and that

the intrinsically shunted junction model applied. However, the quasiparticle transport across

the grain boundary could also be via direct tunneling, or via a combination of the two. In the

case where the quasiparticle transport is dominated by direct tunneling, Jc∝(RnA)-1 and IcRn is a

constant. This is the behaviour observed in conventional low Tc SIS tunnel junctions where the
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IcRn product is determined by the magnitude of the superconducting gap. Enpuku et al[148]

fitted such a two channel quasiparticle transport mechanism to scaling of Jc  with RnA for their

24° to 36° misoriented YBCO bicrystal grain boundary junctions. It was found that at 77K

direct tunneling dominated the quasiparticle transport mechanism.

If the grain boundary capacitance C=ε0εRA/tJ, the intrinsically shunted junction model predicts

(8.5) and (8.6) for the scaling of critical current density and resistance area product with

capacitance per unit area.

J
A

Cc
R∝ −��

�
�exp

2 0κε ε
(8.5)

1 0

R A

A

Cn

R∝ −��
�
�exp

κε ε
(8.6)

In (8.5) and (8.6), εR is the dielectric constant of the barrier layer of the grain boundary.

Localised states in the barrier layer at the grain boundary would also give rise to a distribution

of trapping times for carriers at the junctions. This leads to fluctuations of the grain boundary

resistance and hence the critical current. The localised states are therefore a cause of the 1/f

noise observed in the voltage noise power spectrum of SQUID’s made from grain boundary

junctions[155]. The lifetime of the localised states is too long to affect the grain boundary

capacitance at the Josephson frequency.

8.2.2 The filamentary model

The filamentary model of current transport across the grain boundary was first suggested by

Russek et al[153]. Subsequently, it has been developed further by Moeckly et al[98,99] and by

Sydow et al[149,150].The model proposes that the grain boundary junction consists of two

regions.

i) A thin, insulating barrier layer associated with the grain boundary itself.

ii) Regions of inhomogeneously oxygenated YBCO on either side of the barrier.
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Figure 8.2 A schematic of the filamentary model of current transport across the grain
boundary[99].

Superconducting filaments in the second region make contact to one another across the barrier

layer. The grain boundary junction thus consists of an array of superconducting contacts. The

junction critical current scales with the number of filaments. Resistive shunting arises from

resonant or direct tunneling through the barrier layer. This occurs in areas where the filaments

are separated by a sufficiently small distance such that the tunneling rate across the barrier is

significant. Capacitive shunting of the junction comes about as the oxygen deficient areas of

the second region act as an insulating dielectric. The model is shown schematically in Fig. 8.2,

with the various RCSJ circuit elements in their correct positions.

 As the number of filaments increases, so the critical current increases. The resistance

decreases with the number of filaments. If a fraction y of the total junction area contains

overlapping filaments, then Jc= yJc0, RnA=Rn0’ /y and Cs=yC0, where Jc0, Rn0’  and C0 are the

critical current density, resistance area product and capacitance per unit area of a single

filament. Eliminating y gives

J J R
R Ac

c n

n
= 0 0’ (8.7)

J
J

C
Cc

c

s
s= 0

0

(8.8)

C R C
R As

n s

n
= 0 0’ (8.9)
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Figure 8.3 The scaling of capacitance per unit area with resistance are product for 90° basal
faced tilt grain boundary junctions reported by Moeckly and Buhrman[98,99].

where Cs is the capacitance per unit area of the grain boundary. These expressions can be

simply deduced by considering the consequences of increasing the number of filaments in

contact across the grain boundary.

Moeckly and Buhrman[98,99] reported correlation of the capacitance per unit area with the

resistance area product of their 90° basal faced tilt grain boundary junctions, as shown in Fig.

8.3.

The strongest evidence for the influence of oxygen disordered regions in the current transport

across the grain boundary comes from oxygen annealing experiments. Sydow et al[149,150]

studied the effects of repeated anneals at 500°C in ozone of bicrystal YBCO grain boundary

junctions with a 24° misorientation. The anneals increased Ic and decreased Rn whilst the IcRn

product remained constant. Only by annealing in an inert gas was it possible to reproduce

scaling IcRn∝Jc
0.6

  as observed by Gross et al, shown in Fig. 8.1. It was established that there

were two regions in the IcRn versus Jc plot. For Jc<104 A cm-2, IcRn∝Jc
0.6

 , but for Jc>104 A

cm-2, IcRn is constant and on the order of 1mV. This behaviour is shown in Fig. 8.4. The result

was reproduced using electromigration instead of annealing.
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Figure 8.4 The saturation of IcRn product with Jc after annealing in ozone, from Sydow et al[150].

The IcRn saturation was believed to be the limiting effect of the insulating barrier layer. The

ozone anneals increase the oxygenation of the second region containing the superconducting

filaments and so increases the number of filaments. This increases Ic and reduces Rn, but the

IcRn product is an intrinsic property of the barrier layer and so remains constant. The IcRn∝Jc
0.6

scaling is observed when none of the YBCO adjacent to the barrier layer is fully oxygenated.

The volume of oxygen deficient YBCO spreads outwardly from the barrier layer in a non-

uniform manner. In this scaling region, very few or no superconducting filaments are in close

contact across the grain boundary.

It should be noted that the junctions for which scaling of capacitance per unit area with

resistance area product was observed in Fig. 8.3 fell into the saturated IcRn product region of

Fig. 8.4. The relationships (8.7)-(8.9) are valid only when the IcRn products of the grain

boundary junctions are saturated.

The dependence of the critical current density with position along the junction can be

recovered by taking the inverse Fourier transform of the Fraunhofer pattern for the variation of

critical current with applied magnetic field. For a grain boundary junction,  the critical current

density has been found to be inhomogeneous on a length scale of ~0.2µm[156]. It was found

that for certain 5µm  wide 24° YBCO grain boundary junctions the current was found to flow

only in a 2µm wide area of the grain boundary. The critical current density has been shown to

be inhomogeneous on the order of nanometres by measuring its correlation function[157].

These results also support the filamentary model of current transport across the grain
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boundary.

8.2.3 Band bending

The band bending model of current transport across high angle grain boundaries in the high Tc

superconductors was proposed by Mannhart and Hilgenkamp[127]. They were motivated by

the success of a band bending model derived by Gurevich and Pashitskii[43] in explaining the

dependence of critical current on grain boundary misorientation angle for low angle grain

boundaries.

Mannhart and Hilgenkamp[127] also reviewed limitations of the intrinsically shunted junction

and filamentary models. It was claimed by Mannhart and Hilgenkamp that there was no clear

evidence for the existence of localised states with the required density, or that the

quasiparticles could undergo a resonant tunneling conduction process via a single localised

state. It was also stated there was no compelling evidence that there were layers at the grain

boundary which had sufficient oxygen depletion to transform the cuprates into their insulating

phases.

Models based upon oxygen deficiency also could not explain the universality of the scaling

behaviour of the current transport properties of the cuprates. For example, YBCO and BSCCO

grain boundaries were both shown to obey IcRn∝Jc
0.6, by Gross et al[31]. However, when

pressure is applied parallel to the a-axis of the unit cell of single crystal YBCO, Tc falls, but

when the pressure is applied parallel to the b-axis Tc rises by approximately the same

amount[43]. YBCO has anisotropic in plane presssure derivatives. In contrast, BSCCO has

isotropic in plane pressure dervatives. The cuprates differ also in their dependence of Tc on

oyxygen concentration, so why should the scaling behaviour of grain boundary current

transport be a universal property?

A model was therefore proposed based upon the structural properties of the grain boundary

rather than upon oxygen inhomogeneities. It was assumed that an insulating region could be

formed within the conducting phase at the grain boundary in an analogous manner to the

behaviour of silicon grain boundaries. The grain boundary is modelled as two back to back

Schottky barriers. This model is well established for grain boundaries in semiconductors[158].

At the centre there is the insulating dislocation array.
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Here, the periodicity of the crystal lattice is interrupted and the chemical bonds are re-arranged

and charge trapping sites are formed. This gives rise to a difference in the work function from

that of the bulk material. Away from this region depletion layers are formed where the charge

carrier density is reduced from that of the bulk material on the scale of the depletion length lTF.

Therefore bending of the electronic band structure occurs at the grain boundary, as shown in

Fig. 8.5. The depletion length is given by (8.10),

l
V

enTF
R bi= �

�
�
�

2 0
1 2ε ε /

(8.10)

where εR  is the YBCO dielectric constant, Vbi is the height of the potential barrier at the

interface and is also known as the built in voltage, e is the electronic charge and n is the charge

carrier density. The built in voltage depends on the carrier concentration and the density of

trapping sites at the grain boundary. Using εR≈10, n≈4.5x1021cm-3 and Vbi=0.1V it is found that

lTF≈0.16nm.

The depletion length is therefore on the same length scale as the coherence length in the a-b

plane of the YBCO. The order parameter in the cuprates is very sensitive to changes in the

carrier density, so the depletion regions at the grain boundary will influence its

superconducting properties. The carrier density is close to the two dimensional metal insulator

lTF lTFdGB

EV

EF

EC

eVbi

Figure 8.5 Bending of the electronic band structure at the grain boundary[143]. EC, EF and EV

represent the energies of the conduction band, the Fermi level and the valence band respectively.
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transition, so it is possible that in the depletion regions the YBCO can be driven into its

antiferromagnetic insulating phase.

The model is consistent with electric field experiments where a voltage bias was applied to a

gate dielectric above the junction. The electric field caused a small decrease in the junction

critical current[141]. However, a quantitative prediction of the magnitude of the decrease in

the critical current with electric field has not been made from the band bending model. The

electric field effect on the grain boundary critical current has also been attributed to the

piezoelectric effect in the dielectric (STO). It was proposed that the piezoelectric distortion of

the STO crystal lattice changed the width of the grain boundary[142].

Mannhart and Hilgenkamp[127] estimated the capacitance per unit area of the grain boundary

from the band bending model. The electronic width tJ was assumed to be

t d lJ GB TF= + 2 (8.11)

where dGB is the structural width of the grain boundary equal to 0.4nm from STEM

measurements[45]. If the depleted layer is assumed to be insulating throughout its entire length

and assuming εR=10, this gives 0.12pF µm-2 in reasonable agreement with previous

measurements (see Fig 4.15). The resistance area product of the grain boundary was estimated

with the Wentzel-Kramers-Brillouin (WKB) approximation to give (8.12) for the resistance of

a reactangular potential barrier of height φ=eVbi.

R A
ht t

e tn
J

J

=
+

4 2

1 2

2

2

π κ
κ

exp( )

( )
(8.12)

Using 0.1V for Vbi and an effective mass of 4.5 times the electronic mass for the charge

carriers gives 0.29nm-1 for the decay length with (8.2). The electronic width of the grain

boundary tJ is 0.72nm from (8.9) and (8.10), giving 4Ωµm2 for the resistance area product,

again in reasonable agreement with the measured values.

The transport mechanism across the grain boundary is tunneling in the band bending model.

Therefore, the IcRn product should be constant and Jc∝(RnA)-1. If  the electrons carrying the

supercurrent travel across the insulating region by direct tunelling then (8.5) holds for the

variation of critical current density with capacitance per unit area for a given carrier
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concentration. However, its key success lies in the qualitative explanation it provides for

doping experiments on grain boundary critical currents.

Studies of the normal state and superconducting properties of Ca-doped YBCO thin films,

Y1-xCaxBa2Cu3O7-δ, were carried out by Kucera and Bravman[159]. It was demonstrated that

Ca-doping reduced Tc  to 73.9K for x=0.3, the solubility limit of Ca in YBCO. Assuming that

the holes from the Ca are transferred directly to the CuO planes, the overdoping for x=0.3

should be 0.15 holes per CuO plane greater than the equilibrium value of 0.16 holes per CuO

plane for x=0. The overdoping for x=0.3 was found to be 0.015 holes per CuO plane greater

than the equilibrium value, based on conductivity and thermopower measurements. This lack

of overdoping was caused by the compensation of the Ca doping by oxygen vacancies. An

empirical formula was deduced relating the maximum critical temperature Tcmax to that at hole

concentration nCuO per copper oxide plane Tc(nCuO).

T n

T
nc CuO

CuO

( )
. ( . )

cmax

= − −1 82 6 016 2 (8.13)

In (8.13), Tcmax is the maximum critical temperature of a film with a given calcium

concentration at optimal oxygen doping.

Schmehl et al[144] studied the effect of Ca-doping on the grain boundary current transport

properties. It was thought that Ca-doping could modify the charge carrier density and the built

in voltage at the grain boundary thus changing its effective electronic width. The critical

current density at 4.2K was found to increase with x up to x=0.3. At x=0.3, the critical current

density was more than an order of magnitude larger than the x=0 value. There was a

corresponding decrease in the the resistance area product which at x=0.3 was an order of

magnitude less than the value at x=0. A reduction in Tc with increasing x was also found,

corresponding to the overdoping of the charge carriers. Using (8.10) it was determined that

there was a 5% change in lTF from the increase in hole concentration at x=0.3, which was not

sufficient to explain the order of magnitude increase in the critical current density (see (8.3)). It

was speculated that the increase in the critical current density was due to an alteration of Vbi

caused by Ca ions embedded at the grain boundary. The critical current increase with x can

therefore be qualitatively explained within a band bending model.

However, Ca doping could modify the film microstructure in such a way as to reduce the
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structural width of the grain boundary dGB. A reduction of the grain size was observed with

increasing x.

A detrimental effect of the Ca-doping was the reduction in the Tc of the Ca-doped films,

accompanied by a reduction in the critical current density of the grains themselves at high

temperatures (77K). Hammerl et al[147] sought to address this problem by growing

multilayers consisting of Ca-doped and undoped films. The Ca was expected to diffuse

preferentially along the grain boundary during film growth. The grain boundary in the undoped

film would become doped with Ca, raising its critical current. This was found to be the case,

and doped / undoped multilayers were found to have grain boundary critical current densities

at 77K approaching those found in undoped grain boundaries at 4.2K.

8.3 Results

8.3.1 Introduction

A large volume of capacitance, resisitance and critical current data was available from the

‘control’ measurements of the junctions coupled to external capacitors and resonators

described in Chapters 5 to 7. Ca-doped YBCO films on 24° STO bicrystals were obtained

from the Augsburg group with x=0, 0.1, 0.2 and 0.3. These films were patterned into 2 to 5µm

wide junctions and measured by James Ransley[160].

The critical and return current of each junction was obtained visually from its IV curve, using

the current where the measured voltage became significantly greater than the noise voltage.

The capacitance was obtained using Zappe’s approximation (see section 1.3.2.2). The

resistance was obtained by fitting a straight line to the IV curve at biases greater than 5 times

the critical current. Junction widths were determined in a calibrated optical microscope, within

a 10% error.

8.3.2 Calcium doped grain boundaries

The IV characteristics of the Ca doped grain boundary junctions were RCSJ like. Fraunhofer

modulation of the critical current with an applied magnetic field was observed. For each x

value, at least one grain boundary junction had an IV curve with βc>1. The hysteretic portion

of the IV curve of the 3µm wide junction for the x=0.2 film is shown in Fig. 8.6.
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Figure 8.6 The hysteretic portion of the IV curve at 4.2K of the nominally 3µm wide junction for
the x=0.2 calcium doped film. (Ic=4467µA, Rn=0.37Ω and C=0.46pF)

The variation of film critical temperature, critical current density, resistance area product and

capacitance per unit area with calcium concentration x is shown in Figs. 8.7 to 8.10

respectively. The dependence of Tc on x  is similar to that measured by Kucera and

Bravman[Kucera, 1995 #26] for films with “optimal” oxygen doping, with the x=0.2 film

having the lowest Tc.
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Figure 8.7 Film Tc versus calcium concentration x.
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Figure 8.8 Junction critical current density at 4.2K versus calcium concentration for various
junction widths.

The critical current density increases with calcium concentration, with the exception of the

x=0.2 film. No increase of the critical current density with calcium concentration is observed

for the 2µm wide junctions. A possible explanation for this is oxygen diffusion out of the grain

boundary during film patterning. This would be a more significant effect for the narrowest

junction. The trend is the same as that observed by Schmehl et al[144]. However, the critical

current densities of the x=0 junctions are higher  (~1x1010Am-2 compared to ~2x109Am-2) and

those of the x=0.3 junctions are lower (~2x1010Am-2 compared to a maximum of

~6x1010Am-2) than the  junctions of Schmehl et al.  The films  in  this  study were patterned by
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Figure 8.9 Junction resistance area product at 4.2K versus calcium concentration for various
junction widths
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Figure 8.10 Junction capacitance per unit area at 4.2K versus calcium concentration for various
junction widths.

Ar+ ion milling rather than wet etching in acid. It is possible that sample heating in a vacuum

during ion milling leads to oxygen depletion of the grain boundary. This may reduce the

critical current of the junctions with a higher calcium concentration.

The resistance area product of the junctions decreases with calcium concentration as observed

by Schmehl et al[144]. The x=0 junctions in this study had a lower resistance area product and

the x=0.3 junctions had a higher resistance area product than the Schmehl et al junctions. The

x=0.2 concentration fits onto the trend and there is no dependence of resistance area product

on junction width.

The capacitance per unit area of the grain boundary increases with calcium concentration as

shown in Fig. 8.10. The band bending model prediction for the capacitance per unit area of the

grain boundary can be derived from C/A=ε0εR/tJ and (8.10) and (8.11), giving (8.14) for the

inverse capacitance per unit area.

A

C

d V

en
GB

R

bi

R

= +
�
��

�
��ε ε ε ε0 0

1 2

2 (8.14)

It can be seen from (8.14) that there are 4 possible parameters determining the capacitance per

unit area which could vary with calcium concentration. These are the structural width of the

grain boundary dGB, the dielectric constant εR of the Y1-xCaxBa2Cu3O7-δ, the density of charge

trapping sites at the  grain boundary and the carrier  concentration n. The dielectric constant  is
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Table 8.1. The effective electronic width of the x=0.3 grain boundary

εR 5 20 30 100

t (nm) 0.03 0.11 0.16 0.52

assumed to be the same in the disordered region of the grain boundary as in the remainder of

the film. A lower limit of 0.1nm is available for dGB from STEM imaging of the grain

boundary[45]. The dielectric constant must therefore be at least 20, otherwise the  effective

electronic width of the x=0.3 grain boundary calculated from its specific capacitance of 1.67pF

µm-2 becomes smaller than its structural width, as shown in Table 8.1.

The voltage at which the x=0.2 and 0.3 junctions switched back to the zero voltage state was

less than 0.3mV. This is the voltage equivalent to the soft optic phonon frequency below

which the STO substrate makes a significant contribution to the junction capacitance per unit

area (see Chapter 6). It is therefore possible that for the x=0.2 and 0.3 junctions parasitic

capacitance from the STO substrate makes a significant contribution to the total capacitance.

The capacitances per unit area of the x=0.2 and 0.3 junctions (see Fig 8.10) are comparable to

those of the junctions where the STO contributed to the capacitance per unit area (see Fig. 6.6).

However, it is clear from Fig. 8.9, Fig 8.10 and Fig. 8.14 that the capacitance per unit area of

the doped grain boundaries scales with their resistance area product. The substrate would give

a constant contribution to the capacitance per unit are regardless of the doping of the grain

boundary, so the capacitance would not be expected to scale with the resistance.

8.3.3 IcRn product versus critical current density

The junction IcRn product at 4.2K for the grain boundaries measured is plotted versus the

critical current density in Fig. 8.11, together with the Hilgenkamp and Mannhart data[42]. The

24° grain boundaries have a saturated IcRn product. This behaviour is characteristic of the

filamentary model when there are filaments in direct contact across the insulating, structurally

disordered barrier layer. Improving the oxygenation of the region in contact with the barrier

layer increases the critical current and reduces the resistance leaving the IcRn product constant.

The absence of scaling of the IcRn  product with Jc indicates that direct tunneling of the

quasiparticles across the barrier layer is the dominant transport mechanism where the

superconducting filaments are in contact.
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Figure 8.11. The scaling of IcRn product with critical current density at 4.2K. The grain
boundaries have 24° misorientation unless indicated. The Augsburg doped films are in referred
to by their calcium concentration is given. The Hilgenkamp and Mannhart data is also plotted,
and indicated with an H in the legend[42].

There is some decrease of the IcRn product with Jc  for the 36° grain boundaries. In the context

of the filamentary model this could be caused by an absence of superconducting filaments

across the grain boundary. However, the width of the disordered region of the grain boundary

increases with misorientation angle[45], and this could also cause the reduction in the IcRn

product. The d-wave order parameter suppression of the critical current also increases with

grain boundary misorientation angle[47,148]. There is not enough variation in the IcRn product

to determine whether the scaling is real or part of the intrinsic scatter in the data.

It can also be seen from Fig. 8.11 that for a given critical current density the junctions in the

films grown in the off axis pulsed laser deposition system in Cambridge had a larger IcRn

product than those grown in the on axis system in Strathclyde.

8.3.4 Critical current, reistance and capacitance scaling relationships

The resistance of the junctions was found to be temperature independent. The critical currents

decreased linearly with temperature. The variation of junction capacitance with temperature is

discussed in Chapter 5. The capacitance was temperature independent for junctions where the

grain boundary capacitance was the dominant contribution to the total capacitance. None of the

undoped junctions returned to the zero voltage state at voltages less than 0.3mV. Therefore, the

STO substrate could not increase the capacitance determined from the hysteresis in the IV
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curves for any of the undoped junctions.

The scaling of critical current density with resistance area product at 4.2K for the 24°

misorientated grain boundary junctions is shown in Fig 8.12.

The data fit to the power law Jc∝(RnA)-0.87, plotted in Fig. 8.12. The combination of the

saturated (constant) IcRn product and the similarity of the fitted power law to (8.7) point

towards the filamentary model of current transport across the grain boundary, with direct

tunelling of the Cooper pairs and the quasiparticles across some fraction of the grain boundary

area. The power law is inconsistent with the intrinsically shunted junction model expression

(8.4) which predicts Jc∝(RnA)-2.

The critical current density was also found to scale approximately inversely with the resistance

area product at 60K, indicating no substantial change in the quasiparticle transport mechanism

with temperature.

The critical current density is plotted versus the capacitance per unit area of the grain boundary

at 4.2K in Fig 8.13. The critical current density is approximately linearly proportional to the

capacitance per unit area in agreement with the prediction (8.8) of the filamentary model of

current transport.

In order to test whether a tunneling transport mechanism across the grain boundary could be

responsible for the scaling in Fig. 8.13, the barrier height φ can be estimated by fitting (8.5) to

109

1010

0.1 1 10

J
c
α(R

n
A)-0.87

0
0.1
0.2
0.3
Cambridge
Strathclyde

C
ri

ti
ca

l c
ur

re
nt

 d
en

si
ty

 (
A

 m
-2

)

Resistance area product (Ω µm2)

Figure 8.12. Critical current density versus resistance area product at 4.2K for the 24°
misoriented grain boundary junctions.
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the data. The variation of critical current with capacitance in (8.5) is that predicted by both the

intrinsically shunted junction model and the band bending model of grain boundary current

transport. The effective mass of the charge carriers was assumed to be 4.5 times the electron

mass. If εR=30, then φ=1meV, and εR=5 gives φ=34meV. These barrier heights are both

comparable to kBT =6meV at 77K, and would imply that the resistance area product should be

temperature dependent. An independent estimate of φ can be determined from the angular

dependence of Jc measured by Hilgenkamp and Mannhart[42], along with the structural width

of grain boundaries with different misorientations measured with TEM by Browning et al[45].

The plot of Jc versus θ  in Fig 2.6 can be converted to Jc  versus dGB and fitted to (8.3) if t≈dGB

(0.1< dGB<0.8nm for 15°<θ<45°). This gives 0.25<φ<0.37eV, much larger than φ from the

critical current versus capacitance data. It is also clear from the tunneling fits from (8.5) shown

in Fig. 8.13 that the critcal current density does not vary exponentially with the capacitance per

unit area (regardless of the value of the barrier height) as predicted by a tunneling model.

Therefore, current transport by tunneling across the entire geometric area of the grain

boundary is an unrealistic explanation for the critical current with capacitance scaling

observed.

The grain boundary capacitance per unit area varies approximately inversely with the

resistance area product, as shown in Fig. 8.14, again following the prediction of the

filamentary model. Tunneling  of the  quasiparticles  across  the  entire  geometric area  of  the
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Figure 8.14. Capacitance per unit area versus resistance area product of the 24° grain boundary
junctions at 4.2K, together with fits from (8.6) for φ=0.25eV and φ=1meV.

grain boundary can again be ruled out with a numerical argument. The variation in the

capacitance per unit area indicates that the barrier thickness has changed by an order of

magnitude. An order of magnitude change in thickness should bring about a change in the

resistance area product by at least 3 orders of magnitude if (8.1) or (8.12) were being obeyed.

The resistance area products observed changed by less than 2 orders of magnitude. Whether or

not the barrier height is realistic, the capacitance per unit area does not vary exponentially with

the resistance area product as predicted by a tunneling model such as (8.6).

The scaling of grain boundary capacitance with resistance area product is common to all grain

boundaries in the cuprate superconductors on substrates with a wide range of dielectric

permittivities, as shown in Fig. 8.15. The increase in capacitance at low frequencies caused by

the SrTiO3 substrate described in Chapter 6 falls within the scatter in this graph.

8.4 Further Discussion

8.4.1 The scatter in grain boundary parameters

The critical current density, resistance area product and capacitance per unit area of the grain

boundaries varied over at least one order of magnitude for a single mis-orientation angle.

There are various possible causes of this scatter. Microstructural defects in STO bicyrstals

have  been   correlated   with   changes   in   grain   boundary   critical   current   density     and
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Figure 8.15. The global scaling of capacitance per unit area with resistance area product (at 4.2K)
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LaAlO3 (step edge)[164], LSCO on SrTiO3[165].

resistance[166]. The defect distribution along the SrTiO3 bicrystal line was found to be

inhomogeneous on a scale of ~1µm. Defects were found to lead to meandering ofthe YBCO

grain boundary by up to 0.8µm from the bicrystal line. The electrical characteristics of these

junctions showed no critical current and strong temperature dependence of the resistance,

which was not observed for any junctions in this study. Junctions with a moderate defect

density in the SrTiO3 showed Ic=2µA at 63K compared to Ic=380µA at 77K for defect free

junctions. Some of the junctions in this study did not show a critical current at 77K (e.g.

xros24a, 3tdev). Therefore it is possible that defects in the SrTiO3 bicrystal led to some of the

scatter observed.

The film growth of YBCO takes place through the nucleation of 3 dimensional islands. These

islands will not follow the grain boundary line exactly, but instead will meander or facet

leading to changes in the grain misorientation angle from that of the substrate. This therefore

leads to some scatter in the grain boundary critical current[45].

Annealing experiments such as those carried out by Sydow et al[150] show the importance of

oxygenation in controlling the properties of the grain boundary. Differences in the oxygen

content of the grain boundaries could contribute to the scatter observed in the critical currents,
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resistances and capacitances.

It is also clear from Fig 8.12 and Fig 8.14 that there were systematic differences in the junction

properties depending on the geometry of the pulsed laser ablation system used to deposit the

films. In general the grain boundaries in the off axis films deposited in Cambridge had a lower

critical current and capacitance and a higher resistance than those films deposited by on axis

laser ablation.

8.4.2 The evidence for filaments

It is clear from the saturation of the IcRn product (Fig 8.11), the linear increase of critical

current with capacitance(Fig 8.13) and the power law decrease of capacitance with resistance

(Fig 8.14) that a filamentary model is required to explain grain boundary current transport.

However, there is little evidence from microscopy of the grain boundaries that such filaments

exist. A combination of grain boundary faceting and d-wave pairing has been shown to lead to

an inhomogenous critical current density across the grain boundary[47] (see also section

2.4.1). There is also evidence for inhomogenous critical current density across the grain

boundary from deviations from the Fraunhofer modulations of the critical current with a

magnetic field[156]. So, there is evidence for superconducting filaments, or supercurrent

transport across only a part of the geometric area of the grain boundary. However, d-wave

pairing cannot directly influence the normal state resistance of the grain boundary.

Different types of facet are associated with different structural widths of the grain

boundary[45]. It is possible that the high angle facets correlate with regions of large structural

width of the grain boundary and low angle facets correspond to regions of small structural

width of the grain boundary. The high angle facets would then have a large resistance, a small

capacitance and possibly reversal of the direction of flow of the supercurrent. The low angle

facets would have a small resistance, a large capacitance and a high critical current density.

This would enable scaling of the critical current with the capacitance and the resistance due to

the variation in structural width of the grain boundary at different facets.

8.4.3 The evidence against filaments

The filamentary model is also unable to provide a satisfactory explanation for the global

scaling of capacitance with resistance for grain boundaries in the cuprates shown in Fig. 8.15.
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The model postulates that the variations in capacitance and resistance are due to variations in

the oxygen distribution at the grain boundary. However, as discussed in section 8.2.3 the

pressure derivative of the critical temperature differs for YBCO and BSCCO, so why so

should the oxygen kinetics be the same?

It can be seen from Fig. 8.11 that the critical current density varies over nearly two orders of

magnitude for those grain boundaries with a 24° misorientation angle. Within the context of

the filamentary model, this would require the effective area of oxygenated YBCO in contact

with the barrier layer at the grain boundary to vary between ~1% and 100% of the total area of

the grain boundary. It is not clear how diffusion of oxygen could result in the highly non

uniform oxygen distribution required for e.g. 90% effective area in contact. Furthermore, it is

not clear why saturation of the critical current density is not observed at a point where nearly

100% of the barrier layer is in contact with fully oxygenated YBCO.

8.4.4 Variable barrier thickness

The models described in section 8.2 assumed an insulating region at the centre of the grain

boundary with a constant barrier thickness. Linear scaling of the capacitance per unit area with

the critical current density has been observed for low Tc SIS tunnel junctions, which would be

expected to have an exponential dependence analagous to (8.5)[167]. The linear scaling was

attributed to variations in the thickness of the barrier layer.  A fraction x of the barrier area was

assumed to have thickness tJ and a fraction (1-x) thickness 2tJ. The total capacitance per unit

area is given by (6.14) assuming that the contributtions add in parallel. The capacitance per

unit area of a layer of thickness tJ  is Cs0.

C
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C x
s

R s= + = +ε ε0 01

2

1

2

( ) ( )
(6.14)

The critical current density and resistance area product are assumed to be dominated by

transport across regions of thickness tJ. This gives (6.15) and (6.16) for the scaling of

capacitance with critical current density and resistance area product Rn’ , where J c0  and Rn0’

are the critical current density and resistance area product of regions of thickness tJ.
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Variations in the grain boundary thickness could arise from the faceting of the grain

boundary[45]. The data in Fig. 8.13 gives Cs0=0.08pFµm-2 and Jc0=6.3x108 Am-2, and that in

Fig. 8.14 gives Cs0=0.052pFµm-2 and Rn0’=4.65Ωµm2. These values represent maxima for the

capacitance and the critical current density and a minimum for the resistance area product. The

range over which the capacitance, critical current and resistance area product vary is much

larger than these limits. A larger variation of the thickness, such as t and 10t, could explain the

larger maxima of the critical current density and the capacitance per unit area  This gives

Cs0=0.4pFµm-2 and Jc0=5.7x109 Am-2, large enough to cover the undoped films. Other

mechanisms, such as a change in the barrier height due to a change in the density of trapping

states at the boundary could further increase the critical current density of the doped films.

8.5 Conclusion

The critical current density and capacitance per unit area of 24° grain boundaries in YBCO

have been shown to increase with calcium doping. The resistance area product was shown to

decrease. The scaling of the critical currrent with resistance and capacitance, and of

capacitance with resistance of the grain boundaries demonstrates that current transport does

not occur over the entire geometric area of the grain boundaries. A tunneling model alone was

shown to give an unrealistic barrier height when applied to the critical current versus

capacitance data. Therefore a filamentary model is required to explain grain boundary current

transport, but there are severe drawbacks to a model based on oxygen deficiency at the grain

boundary alone.

It is clear that capacitance is an important probe of grain boundary current transport, as it is

directly related to the thickness of the insulating barrier layer at the grain boundary.
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Chapter 9: Conclusion

The first aim of this thesis was to manufacture hysteretic grain boundary YBa2Cu3O7-δ

Josephson junctions at temperatures higher than 50K. The junctions were shunted with a

multilayer YBa2Cu3O7-δ/SrTiO3/Au parallel plate capacitor. The highest temperature at which

hysteresis was achieved was 72.3K with a McCumber parameter of 1.01, for a junction with a

critical current of 450µA and a resistance of 0.56Ω at this temperature. The shunt capacitor

consisted of two 150µm2 square capacitors in series, with a 50nm SrTiO3 dielectric. However,

the hysteresis measured was much less than that predicted from a calculation of the lumped

parallel plate capacitance. This was attributed to two causes; the wavelength of the Josephson

oscillations was comparable to the size of the shunt capacitor itself, so the junction sees the

capacitor as a distributed impedance and thermal noise suppression of the hysteresis. For the

150µm2 capacitor at 72.3K the wavelength of the Josephson oscillations was 58µm. A

measurement of the critical current distribution showed that the critical current at 30K was

suppressed from 88µA to 73µA. The McCumber parametes achieved were comparable to

others reported in similar structures[100]  and the causes of the smaller than expected

McCumber parameter were analysed. Simulations showed that it would be possible to make a

relaxation oscillation SQUID from a device with a McCumber parameter of 1.01.

It was found during the investigation of Josephson junctions coupled to external capacitors that

further work was needed to establish why the SrTiO3 substrate, with its high dielectric constant

of 24000 at 4.2K, did not influence the capacitance of the grain boundary junctions grown on

it. Therefore, a series of grain boundary YBa2Cu3O7-δ  junctions of different lengths was

patterned onto a SrTiO3 bicrystal. The measured Fiske resonance dispersion relation had two

branches, one with a high capacitance at low frequencies and a low capacitance branch at high

frequencies. This behaviour was caused by the frequency depedence of the dielectric constant

of the bulk SrTiO3 in the region of the transverse soft optic phonon. The bulk SrTiO3 dielectric

constant decreases at frequencies greater than that of the transverse soft optic phonon. From

the measured dispersion relation the bulk dielectric constant of the SrTiO3 was found to be 750

at 4.2K and the soft optic phonon frequency was 145GHz. These values are both lower than

previous measurements of the SrTiO3 dielectric constant of 24000 at 4.2K and 390GHz for the

frequency of the transverse soft optic phonon. This discrepancy was attributed to the formation

of multiple structural domains in the strontium titanate. This result provides an explanation for
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the absence of a contribution to the junction capacitance from the SrTiO3 substrate observed

by Tarte et al[57,59]. In this case, the junctions all had Fiske resonances above the frequency

of the soft optic phonon in SrTiO3 at 4.2K and thus the substrate could not add to the junction

capacitance. The improved understanding of the influence of the SrTiO3 substrate on the

jucntion capacitance enabled the use of the grain boundary capacitance as a probe of the

current transport across the grain boundary. Furthermore, the experiment provides a direct

measurement of the dielectric properties of bulk SrTiO3 in this frequency and temperature

range, allowing a contrast with the subsequent measurements on thin film SrTiO3.

The dielectric constant of a series of thicknesses of thin film SrTiO3 was measured using

Josephson junctions coupled to external resonators. Diffierent resonator geometries gave the

same dielectric constant for a given SrTiO3 film thickness. In contrast to the behaviour of bulk

SrTiO3, the dielectric constant of a 50nm SrTiO3 film was found to be frequency independent

between 100GHz and 900GHz. The soft optic phonon had hardened to a frequency greater

than 900GHz. This is consistent with recent theoretical predictions of the existence of an

intrinsic dead layer between an incipient ferroelectric film and a metal electrode[74] and the

subsequent hardening of the soft optic phonon[140]. The films exhibited the size effect, with

their dielectric constant being dependent on the film thickness. The 200nm SrTiO3 film had a

dielectric constant of 200 for a 50µm resonator and the 50nm film 34±4. The dielectric

constant of the 200nm film was found to be tunable with an electric field between 245 and 112

at 116GHz, consistent with the Ginzburg-Landau-Devonshire theory of ferroelectrics. The

technique has been demonstrated in investigations of fundamental dielectric properties of

ferroelectrics in the frequency range from 100GHz to 900GHz and the temperature range from

4.2K to 70K. The experiment could be adapted straightforwardly to measure other perovskite

ferroelectrics with a lattice parameter compatible with YBa2Cu3O7-δ . The method is also

useful for routine on chip dielectric characterisation in structures similar to final device

designs.

For the junctions on 24° bicrystals, the capacitance per unit area of the grain boundary was

found to scale linearly with its critical current density and was inversesly proportional to its

resistance area product. Models based on current transport across the grain boundary by

tunneling such as the band bending model[127] or resonant tunneling[31] alone cannot be

invoked as an explanation for this scaling. A model in which current does not flow over the
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entire geometric area of the grain boundary is required. Such a model could be based on

optimally oxygen doped YBa2Cu3O7-δ filaments in contact across the boundary[149], or by a

model where the structural width varies along the length of the grain boundary. The grain

boundary capacitance was shown to be extremely valuable as a probe of grain boundary

current transport, as it is directly related to the structural width of the grain boundary.
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