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Abstract: Using human genomics to decipher biological mechanisms 

governing reproductive ageing and fertility in women 

Stasa Stankovic 

 
Women are born with a non-renewable ovarian reserve, which is depleted throughout 

reproductive life. When this reserve is exhausted, they experience menopause and cease ovulating. 

Importantly, menopause timing is highly variable and can impact health outcomes in later life. One in 100 

women experience menopause before the age of 40. As natural fertility begins to decline 10 years prior to 

menopause, the age of menopause impacts reproductive options for many women, leading to increased 

demand for fertility treatments, which have low success rate. This is especially important as more women 

delay childbearing. Endocrine and imaging tests used in the clinical setting only record changes in ovarian 

function that have already taken place, thus disabling early prediction and timely identification of women 

with reduced reproductive lifespan. Human genetic studies have attempted to overcome this problem by 

identifying genetic markers associated with menopause timing and thus providing substantial insight into 

the biological mechanisms governing ovarian ageing. However, previous approaches have been largely 

restricted to assessing common genetic variation, leaving many aspects of the trait biology unexplored. 

This dissertation describes five distinct projects that advance our understanding of the genetic 

determinants of female reproductive ageing by employing state-of-art genomic and proteomic 

technologies with robust functional models.  

Chapter 3 uses whole exome sequence data to identify rare protein-coding variants associated with 

menopause timing in ~120K women in the UK Biobank (UKBB), and implicates five novel ANM genes 

with effect sizes up to ~5 times larger than previously discovered for common variants. Notably, 

heterozygous loss of ZNF518A shortens reproductive lifespan by delaying puberty timing in girls and 

reducing ANM by nearly 6 years in carriers, an effect larger than any variation currently tested in clinical 

genetics for premature ovarian ageing. Furthermore, I provide evidence that ZNF518A is a master 

transcriptional regulator of ovarian development and establishment of the ovarian reserve in foetal life, 

thus highlighting novel mechanisms involved in ANM aetiology. I also identify a new cancer 

predisposition gene, SAMHD1, which has a comparable effect size in women and men to well-established 

genes such as CHEK2, further reinforcing the link between cancer and reproductive ageing. Finally, I 

show that mothers with genetic susceptibility to earlier ovarian ageing have a higher rate of de novo 

mutations in their offspring. This provides direct evidence that female germline mutation rate is heritable 

and highlights a mechanism for maternal effects on offspring health. Chapter 4 extends the exome 

sequence analysis to an extreme form of early menopause, i.e. POI, which is often considered a 

monogenic disorder, with pathogenic mutations reported in ~100 genes. However, such reports are based 
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on small numbers of individuals without independent replication, or/and no functional validation. I 

systematically evaluate the penetrance of these reported genes in ~120K UKBB women, 2,231 of whom 

reported ANM before age 40. In this largest study of POI to date, I find limited evidence to support any 

previously reported autosomal dominant gene. For nearly all these genes I could rule out even modest 

penetrance, with 97.8% of all identified protein truncating variants found in reproductively healthy 

women with ANM over 40. In addition, I demonstrate novel haploinsufficiency effects in studied POI 

genes, including TWNK and SOHLH2. Collectively my results suggest that most POI cases are likely 

oligogenic or polygenic in nature, which has major implications for future clinical genetic testing and 

counselling. Chapter 5 presents the first proteogenomic study for the ANM targeting 4,775 distinct 

proteins measured from plasma samples of 10,713 European ancestry individuals in the Fenland study. 

Although this analysis did not identify robust protein candidates associated with ANM, it demonstrates 

the potential of such approaches to discover new biomarkers. Chapter 6 presents the largest genomic 

meta-analysis for age at menarche on ~566,000 women of European ancestry and 696 genomic loci that 

contribute to regulation of menarche timing. I use this data to explore biological mechanisms and overlap 

between genetic architectures of reproductive health outcomes. I provide the first evidence on the 

enrichment of DDR mechanisms for menarche timing, indicating the involvement of DDR in regulation 

of both extremes of reproductive lifespan, i.e. menarche and menopause. In addition, I report first gene 

candidates that I speculate may act via oocyte-specific mechanisms to modify reproductive longevity. I 

also highlight DDR and other novel mechanisms, including ribosome biogenesis, which impact multiple 

reproductive health outcomes, such as polycystic ovarian syndrome (PCOS), twinning and number of 

children (NEB). Finally, I demonstrate the first population genomic evidence on the role of DDR related 

mechanisms in various anthropometric, metabolic and reproductive health outcomes, indicating that DDR 

could act as a marker of health outcomes beyond cancer. Combining human genomic evidence with 

cutting edge CRISPR technology and the In vitro gametogenesis system, in Chapter 7 I investigate the 

role of PARP-1 in proliferation of primordial germ cells during the establishment of the ovarian reserve. I 

demonstrate suggestive evidence on the role of PARP-1 in decreasing ANM in women and, paradoxically, 

that deletion of PARP-1 increases the efficiency of primordial germ cell production in vitro. I speculate 

that, despite the initial increase in primordial germ cells in the PARP-1 knockout, the quality of these cells 

could be compromised, thus ultimately limiting the functional ovarian pool. Collectively, these findings 

provide significant insights into the biological processes of reproductive ageing in women and have the 

potential to guide future experimental work aimed towards identification of new therapies for enhancing 

reproductive function and preserving fertility in women, as well as designing intervention strategies to 

prevent or diminish menopause-related health outcomes. 
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CHAPTER 1: Introduction  

Overview of scientific and clinical advances in 

reproductive ageing 
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Summary 
 

This thesis studies reproductive ageing as a common theme. The Introductory chapter provides an overview 

of the current scientific and clinical knowledge on reproductive ageing and fertility, specifically focusing 

on the epidemiological perspective, genetic architecture and underlying biological mechanisms governing 

ovarian function and its relationship to the overall health status in women. In addition, it touches on the 

clinical perspective to define current challenges for accurate prediction and diagnosis of reproductive health 

outcomes. Finally, it highlights unexplored questions, gaps in knowledge and opportunities that this thesis 

aims to address to advance our understanding of reproductive ageing and fertility in women. 
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1.1 Ovarian ageing and fertility: an understudied phenomenon of 

the neglected organ 

 

 Female reproductive health encompasses a diverse range of traits and health outcomes, including 

diseases of the reproductive organs and tissues, pregnancy-related outcomes, sexually transmitted 

infections (STIs) and violence against women. Aspects of reproductive health and fertility are likely to be 

geographically patterned and population specific, having critical implications for clinical outcomes and 

individual wellbeing1. However, an interesting pattern could be observed in the case of reproductive 

longevity. Improvements in healthcare, hygiene and the availability of food have significantly contributed 

to increased human life expectancy over the past 2 centuries, shifting it from 45 to 85 years 2. On the 

contrary, the length of the female reproductive lifespan has remained relatively constant around the age of 

51, when menopause occurs due to the depletion of functional follicles in the ovaries3,4. Menopause is 

generally defined as the last menstrual period followed by 12 months of amenorrhea, and has a profound 

impact on fertility and health outcomes in later life. Interestingly, menopause is a process almost unique 

to humans, with only a few other species found to have post-reproductive lifespans, including gall-

forming social aphids, killer whales and short-finned pilot whales5. Evolutionary theory suggests that 

decline in reproductive ability before the end of life would be selected against and so there should be 

evolutionary advantages to menopause6. Gain in fitness for post-reproductive women is believed to be the 

result of the reduction of mortality risk from pregnancy in later life, thus investing in their children 

(‘mother hypothesis’), grandchildren (‘grandmother hypothesis’) and reducing reproductive overlap 

between generations (‘reproductive conflict’)6,7. For the most part of human history, cultures had no word 

to describe menopause, and it was merely recognised as a transition to the status of ‘elder grandmother’. 

It was around the 1700s that people began to see menopause as a harmful condition due to its link to 

upsetting symptoms that rendered women weak and vulnerable, as well as its association to average life 

expectancy in women at the time. During the 19th and 20th centuries the male dominant medical 

community considered menopause a taboo. Sigmund Freud wrote that “It is a well-known fact … that 

after women have lost their genital function their character often undergoes a peculiar alteration” and 

they become “quarrelsome, vexatious and overbearing”. Psychiatrist David Rueben weighed in…”Once 

the ovaries stop, the very essence of being a woman stops…she is no longer a functional woman.”8. This 

attitude towards female reproductive health significantly impacted our understanding of biology that 

underlies reproductive longevity and timing of menopause. Consequently, women’s health therapeutics to 

preserve fertility and prevent associated health outcomes have not seen major advancement in decades. 

Due to the increased life expectancy, women are now spending a large proportion of their lives in ill 
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health and disability, thus highlighting further the need to understand the process of reproductive ageing 

better. 

 

Female reproductive longevity varies substantially between women in the general population (Figure 

1.1)9. Women are born with a non-renewable ovarian reserve10. Follicles, consisting of oocytes and 

surrounding granulosa cells, are formed in utero and maintained as resting primordial follicles arrested in 

the first meiotic division (M1) in the cortex, constituting the ovarian reserve (Figure 1.2A). 

Approximately 7 million oocytes are derived from primordial germ cells by 6 months post conception11. 

The oocytes may stay in this 'resting phase’ for many decades to resume meiosis only just before being 

released at ovulation. During this protracted period, the oocytes are vulnerable as they may be subjected 

to various endogenous and exogenous insults that cause DNA damage, and thus are highly dependent on 

efficient DNA damage response and repair (DDR) mechanisms to maintain germ cells’ genomic integrity 

and prevent DNA from possible damage12,13. Primordial follicles are activated from the ovarian reserve at 

a rate of several hundred per month in childhood, peaking at around 900 per month at approximately 15 

years of age14. The number of oocytes in the reserve significantly drops to about 400,000 (~5%) at 

puberty due to the elimination of abnormal, damaged or excess cells at every stage of oogenesis11,15–18. 

This follicle loss mainly happens via atresia prompted by apoptosis of the primary oocyte through 

mechanisms specific to the ovary, in addition to conventional apoptotic pathways19–22. Autophagy and 

necroptosis may also contribute to atresia19. 

 

 

Figure 1.1: Number of ovarian follicles declines during a woman’s lifetime. This schematic figure depicts (A) the 

appearance of a young and old ovary with the oocyte reserve and (B) ovarian germ cell numbers throughout key life 

stages. The histogram indicates the normal population distribution of age at natural menopause. Besides DDR 

mechanisms that have a role to preserve the oocyte pool, other mechanisms might contribute to the rate of oocyte 

depletion, including the rate of follicular recruitment, for example, by follicle stimulating hormone (FSH).  
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Following recruitment, follicles grow by mitotic division of granulosa cells and expansion of oocyte 

volume for almost six months until meiosis is reinitiated at ovulation triggered by pituitary 

gonadotropins23. Folliculogenesis occurs in waves, with the whole process taking about 120 days, and so 

the ovary contains follicles at all stages of development. Waves of atresia accompany developmental 

transitions and growing follicles are continuously induced to undergo cell death such that, typically, only 

a single follicle matures to ovulate each month20. Unlike atresia, only a small proportion of oocytes are 

lost through ovulation (Figure 1.2B)24. Only oocytes that are fertilised will complete meiosis II and the 

remainder degenerate (Figure 1.2). As ovarian reserve declines, the rate of follicle recruitment decreases, 

but the preovulatory follicles continue to produce substantial amounts of oestrogen, while other important 

hormones such as anti-Müllerian hormone (AMH) and inhibin-B decline, leading to upregulation of the 

hypothalamus–pituitary gonadal axis, i.e. increase in levels of gonadotropin releasing hormone (GnRH), 

follicle-stimulating hormone (FSH) and luteinizing hormone (LH)25. This gradual decline in the ovarian 

follicle pool is associated with irregular menstruation in the years prior to menopause, a period called 

perimenopause, and finally, follicle exhaustion and menopause when follicle numbers have dropped 

below 100023,26–28. Therefore, the high variability in menopausal timing observed in women can be due to 

differences in the size of the ovarian reserve at birth, but also due to the differences in the rate of follicle 

loss. 
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Figure 1.2: Oogenesis and ovarian cycle. (A) The process of oogenesis creates oocytes by meiosis. Ovarian 

follicles are produced as a result of mitosis of germ cells and their differentiation to oogonia, which then enter 

meiosis to form primary oocytes. A significant proportion of oocytes go through atresia during meiosis I, where 
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DDR genes play an important role to protect from and repair introduced DNA damage. Specifically, the DDR genes 

are crucial during recombination that occurs at the time of homologous chromosome pairing. (B) The figure 

demonstrates different stages of the ovarian cycle, including the ovulation and cell death of damaged follicles. 

Image is adapted from Meiosis, Genomics Education29. 

 

Alongside a quantitative decline in the oocyte number, there is also a qualitative decline in oocyte quality, 

primarily attributed to a loss of genetic integrity and increase in aneuploidy amongst ageing oocytes. 

Previous research has suggested that the oocytes created first are the first to be ovulated, and that they have 

more recombination events and a lower risk of non-disjunction - ‘the production line hypothesis’30. 

However, subsequent studies found there is no difference in recombination rates in oocytes from older 

women compared with those from younger women31 or in the number of recombination events in oocytes 

entering meiosis early in foetal life compared to those created later32. Other explanations for aneuploidy 

relate to the extended period of time for which oocytes are arrested in prophase I. These include loss of 

cohesion between sister chromatids, age-dependant decay of components of the cell machinery required for 

meiosis and influence of environmental exposures 32,33.  

 

Although both oocyte quantity and quality decline with increasing age, it is unclear whether they are 

controlled by the same mechanisms and whether they decline in parallel. 

1.2 Reproductive longevity in ageing populations  

 

Natural fertility is believed to be closely associated with menopause timing and to start significantly 

declining around 10 years before menopause in most of the cases24,34. On average, menopause occurs at 

around the age of 5135. Notably, epidemiological studies have shown that menopause timing varies across 

ethnic groups, suggesting that different modifiers might exist in different ethnic backgrounds. More 

specifically, African and African-American women have earlier, while Japanese later average menopause 

timing, as compared to women of European descent183,557. In addition to the ethnic variation, average age 

at natural menopause may also vary across time periods, with a secular trend towards later menopause 

being observed in multiple studied cohorts562,563,564. For example, a study in more than 300,000 

Norwegian women found that mean age at menopause increased from 50.31 years among women born 

during 1936–1939 to 52.73 years among women born during 1960–1964562. Such an increase could be a 

result of lifestyle changes. Growth restriction during foetal life may possibly impair ovarian development, 

and poor nutritional status during early life could increase the rate of follicle atresia and thereby decrease 

age at menopause565.Therefore, the increase in birthweight across birth cohorts due to improved childhood 

nutrition and health could possibly explain part of the increase in age at menopause566. On the other hand 
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this secular trend seems paradoxical because several adult determinants, such as smoking, sedentarity, and 

nulliparity, associated with early menopause are on the rise in Europe.  

 

Epidemiologically 10% of women undergo early menopause (EM), defined as menopause before the age 

of 46, while premature ovarian insufficiency (POI), defined as the extreme form of EM under age of 40, 

affects 1 in 100 (1%) women36,37. This means that women with EM will start experiencing accelerated 

decline in fertility around the age of 3011. The effect of EM on infertility, which now affects ~15% of 

couples in the United Kingdom (UK), and childlessness (~20%), is becoming increasingly relevant due to 

the secular trend of delaying parenthood to later maternal age at childbirth, especially in Western 

populations 38–42. These trends have resulted in increased demand for fertility treatments, such as in vitro 

fertilisation (IVF) and cryopreservation, to prolong reproductive longevity 43–46. However, often these 

treatments are unaffordable, invasive and with limited success 34,47,48. For example, there is a ~6.5% 

chance of achieving a pregnancy with each mature oocyte thawed, but this decreases dramatically in 

women of advanced maternal age4 3,45,46,49,50. Even with fertility preservation treatments, the live-birth rate 

in women >40 years is only 3.2% per treatment cycle, and this is accompanied by additional increased 

risks of miscarriage and adverse foetal and maternal outcomes, including pregnancy-related maternal 

complications such as pre-eclampsia and gestational diabetes32,33,51. The core problem lies in the current 

clinical practice treating rather than preventing symptoms, and this becomes crucial as oocyte death is 

irreversible thus requiring early prevention strategies44. New methods for preserving natural fertility 

and/or enhancing the success of IVF would be particularly welcome.  

 

Additionally, identification of women with reduced reproductive lifespan cannot be accurately achieved 

by any endocrine or imaging tests that are in clinical practice, most often including antral follicle count 

(AFC) on ultrasound, and levels of AMH and FSH 52–55. These tests only record changes in ovarian 

function that have already taken place, disabling the long-term prediction of reproductive expectations 

54,56–58. Preferably, we would like a test that can accurately predict the age at which a woman will become 

menopausal, which would open up the opportunity for any young woman to be tested for reproductive 

expectations and counselled on the availability of elective fertility preservation. It is likely that we will 

arrive at that position by combining endocrine, imaging and, especially, genetic information present from 

birth, which requires thorough assessment of the regulators and physiological mechanisms involved in 

reproductive ageing 43,45,46,49,50. 

The aetiology behind reproductive ageing appears to be complex, being influenced by a combination of 

environmental, social and genetic factors. The environmental determinants have been increasingly well 



 

32 

characterised in recent years, with factors such as oral contraceptive use, parity, smoking, and alcohol 

consumption receiving much attention 59,60. However, biological pathways underlying ovarian ageing are 

not yet fully characterised. Despite the great number of genes implicated in reproductive physiology by 

the study of animal models, only a subset of these genes is associated with human reproductive longevity 

and infertility. Human genetic studies have attempted to overcome this problem by identifying genetic 

markers associated with menopause timing and thus providing substantial insight into the functional 

mechanisms governing ovarian ageing. The identification of these genes was largely achieved through 

targeted DNA sequencing in individuals with rare disorders of reproductive timing and, more recently, by 

large-scale array genotyping of single nucleotide polymorphisms (SNPs) in population-based samples61.  

1.3 Human genome: science behind inheritance, genetic variation 

and causal estimation 

 

The identification and understanding of genetic factors and the ways they influence an individual’s 

susceptibility for a certain trait lie in the centre of human genetics. Sequencing of the reference genome, 

accomplished by the Human Genome Project (HGP) in 2003, marked a turning point in gene-mapping 

research revolutionising the way we study health outcomes.  

 

In case of complex diseases, genes containing a genetic variation that increases phenotype predisposition 

are referred to as “susceptibility genes” (Figure 1.3A)62. They do not directly cause disease, but rather 

influence disease risk. In combination with the environment, this multifactorial genetic architecture 

suggests an additive effect of multiple genes and mostly common frequency alleles on the phenotype62. 

For complex disorders, instead of mapping disease genes by tracing transmission in families, the HGP 

enabled the creation of high-density polymorphism maps initiated by The International HapMap 

Consortium63–65. This expedited population-based association testing at variant sites throughout the 

genome, which revealed part of the story behind the role of inheritance and genetic variation in disease 

aetiology63,64,66. These advances gave an insight into the specific patterns of associations among alleles 

present across the genome, known as linkage disequilibrium (LD) blocks. LD blocks are formed due to a 

non-random association of alleles at two or more loci resulting from different historical evolutionary 

forces, including recombination rate, natural selection, mutations etc. (Figure 1.3 B,C)67.  

 



 

33 

 
Figure 1.3: Mechanisms behind inheritance of complex diseases. (A) Inheritance of complex disorders: in 

complex disorders, several alleles in a number of genes result in a genetic predisposition to a clinical phenotype. 

Genes containing variation related to complex traits are thus referred to as “susceptibility genes”, and variants are 

neither sufficient nor necessary to explain the disease phenotype. Environment and life-style factors are contributors 

to the pathogenesis of these disorders. (B) Exchanges of information between chromosomes during homologous 

recombination resulting in chromosomes inherited together by offspring being different from those parental 

chromosomes. Recombination indicates that variants located physically close on chromosomes are more likely to be 

inherited together. (C) Genetic mapping using linkage: Alleles of genes which are physically closer to gene 3 are 

more likely to be inherited with gene 3; this is defined as a greater degree of linkage. Similarly, proximal alleles are 

also more likely to be inherited together. Gene 1 and Gene 3 are not linked, but by chance they will still be inherited 

together 50% of the time, the same as if they were on separate chromosomes. Image adapted from Peltonen et al68 

and Genetic linkage69. 
 

These LD patterns between SNPs were then used to enable genotyping arrays to tag the majority of 

common variants by selecting and analysing only a part of the total number of SNPs for association with 

the phenotype70. Genotypic data can be phased and untyped genotypes imputed using information from 

matched reference populations from repositories such as 1000 Genomes Project or TopMed71,72. Together, 

these achievements paved the way towards the first genome-wide association studies (GWAS), a 

transformative step for the study of complex disorders (Figure 1.4) 73,74. 
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Figure 1.4: Schematic representation of a GWAS study and post-GWAS analyses: (A, B) Data can be collected 

from study cohorts or available genetic and phenotypic information can be used from biobanks or repositories. In a 

case-control GWAS, a large cohort of diseased individuals (cases) and controls is genotyped for hundreds of 

thousands of SNPs spread throughout the genome. (C) The ancestry of individuals in the cohort of interest is 

determined through principal components analyses. (D) Genotypic data can be phased, and untyped genotypes 

imputed using information from matched reference populations from repositories such as 1000 Genomes Project or 

TopMed. (E) An associated region will often contain dozens of correlated SNPs in high LD with very similar 

association signals that, together, can span numerous genes. (F, G) GWAS analysis can be performed as part of the 

meta-analysis to boost the power, and should be replicated in an independent sample. (H) To narrow the multiple 

correlated signals down to a single or very few causal variants, researchers perform functional follow-up applying 
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various post-GWAS strategies. This can include gene prioritisation and pathway enrichment analysis. Figure 

adapted from Uffelmann et al (2021)75. 

 

By combining data from multiple large-scale population sources, such as UK Biobank (UKBB) and 

23andMe, recent GWAS obtained sample sizes that provide statistical power to identify associations of 

small effect with great precision at large numbers of genetic loci. 

1.4 Insights into common genetic variation underlying ovarian 

ageing and menopause timing  

 

The variation in timing of menopause reflects a complex mix of genetic and environmental factors that 

population-based studies have begun to unravel. The contribution of the genetic component derived from 

twin and family studies is believed to range from 44% to 65%, involving hundreds of rare, low frequency 

and common variants 76–81. The number of GWASs on age at natural menopause (ANM) have been 

growing in size over time, leading to the discovery of ~300 common genetic variants responsible for 

menopausal timing in ~200,000 women of European ancestry (Figure 1.5)76,82–86. These reported variants 

cumulatively explain 10-12% of the variance in ANM and 31-38% of the overall estimated SNP 

heritability, with individual SNPs having an effect to shift menopause timing from ~3.5 weeks to ~1.5 

years. In addition to common and low-frequency coding variants with <5% minor allele frequency 

(MAF), relatively large effect sizes have been identified in two genes, BRCA2 and CHEK2, by analysing 

exome sequence data in 45,351 women in UKBB. In aggregate and compared to non-carriers, women 

carrying loss-of-function (LOF) variants in BRCA2 and CHEK2 reported ANM 1.54 years earlier (95% 

CI 0.73–2.34, P=6.8*10−5) and 3.49 years later (95% CI 2.36–4.63, P=1*10−13), respectively82. 
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Figure 1.5: Manhattan plot of age at natural menopause GWAS signals in the ReproGen consortium. The genetic 

variants coloured in purple represent the loci identified in previous GWASs, while the ones in blue are the variants 

discovered in the latest ANM meta-analysis in 201,323 women from the ReproGen consortium. Plotted variants have 

P < 0.01 with P < 1×10−300 truncated. Inset, effect sizes and MAFs of the loci, with CHEK2, BRCA1 and BRCA2 LoF 

variants are highlighted. Figure is obtained from Ruth et al (2021)82. 

 

However, besides explaining only a fraction of heritability87, these common genetic variants are limited in 

their ability to identify causal genes because the majority of associated common haplotypes contain non-

coding variants. This hinders the translation of GWAS findings into mechanistic understanding and 

effective therapeutic solutions, which further highlights the need of exploring the sources of 

‘undiscovered heritability’ in rare, high impact variants via whole exome sequencing (WES)88. To address 

this gap in knowledge, Chapter 3 of my thesis will aim to assess how much these rare protein coding 

variants can further our understanding of the ANM genetic architecture, and whether the mechanisms 

they reveal can be used to pave the path towards more targeted biomarker identification for prediction and 

treatment development.  

 

Even though it has been widely believed that extreme forms of early menopause (POI) are the result of rare 

monogenic alleles, previous research demonstrated that identified common alleles also influence these 

clinical extremes82. More specifically, women in the top 1% of polygenic susceptibility had a six-fold 

increased risk of POI, which is equivalent to those carrying monogenic FMR1 premutations, a screened 
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monogenic cause (Figure 1.6)82,89. Importantly, this highlighted a shared genetic aetiology between normal 

ANM, EM and POI, which is at least partly explained by the additive effects of the same polygenic 

variants76,90. Insight into these genetic risk factors started paving the path towards the opportunity for 

prediction of individuals with early menopause and POI. Current predictive power using GWAS discovered 

variants is at 64% and 65% chance to distinguish EM and POI from the rest of the population. Even though 

the genetic risk alone would be a weak predictor, despite its overall low discriminative ability, extremes of 

the polygenic score were able to identify some individuals at high risk of POI82. However, this is yet not 

sufficient to be used as part of the clinical practice. As we identify a greater proportion of genetics governing 

reproductive ageing, not only in Europeans but also other ancestries, predictive models will improve.  

Finally, this novel insight into the shared genetic architecture between common and rare variants underlying 

POI, suggests that it would be important to evaluate and better understand the penetrance of ~100 genes 

that are part of gene panels currently used in clinical and non-clinical environments to identify and diagnose 

POI. Chapter 4 of this thesis will use the WES data in UKBB to address this question. 

 

Figure 1.6: Polygenic prediction of age at menopause. (A) Mean PGS (scaled to have mean = 0, s.d. = 1) for a given 

ANM. Higher PGS indicates later ANM. (B) Association of each centile of PGS compared with the 50th centile with 

premature ovarian insufficiency. Error bars indicate 95% CI. Figure is obtained from Ruth et al (2021)82. 
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The majority of discovered ANM loci implicated genes that regulate DDR at different stages of the ovarian 

cycle, highlighting the particular sensitivity of oocytes to DNA damage due to the prolonged state of cell 

cycle arrest across the life-course (Figure 1.7A,B) 91–93. This involves various DDR mechanisms, such as 

homologous recombination, base excision, mismatch, nucleotide excision repair, apoptosis etc. that act 

across the life-course to shape the ovarian reserve and its rate of depletion91,93–98 (Figure 1.7C). Besides 

DDR, other biological processes are implicated in ovarian ageing including control of cell cycle, embryonic 

development, metabolism, gene expression, hormone signalling, immune function, meiosis, protein 

synthesis and gonad development (Figure 1.7) 82. 
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Figure 1.7: Overview of the ovarian reserve and follicular activity across lifespan with underlying mechanisms that 

regulate reproductive ageing. (A) Key processes involved in follicular activity from foetal development to menopause 

showing the numbers of oocytes at each stage (B) Summary of key biological pathways involved in follicular activity 

and their relationship to stage of reproductive life (C) Genes involved in downstream DNA damage response and 

repair pathways with those within 300 kb of an ANM signal shown in blue. Figure is adapted from Ruth et al (2021)82.  
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These most likely causal genes are suggested on the basis of their relationship with the strongest 

association signal in a region, including their physical proximity, association with expression levels of the 

gene and/or biological plausibility. Therefore, many of the genes identified by GWAS remain to be 

confirmed as functionally important by in vitro studies. These findings are critical as improved 

knowledge of the underlying mechanisms may also allow their manipulation in humans, more specifically 

halting or temporising the process of oocyte wastage. Using state-of-the art CRISPR technologies, 

previous work demonstrated that experimental manipulation of DDR pathways highlighted by human 

genetics increases fertility and extends reproductive life in mice. This was achieved either by altering the 

initial size of the ovarian reserve or its decline in checkpoint kinases, Chek1 and Chek2 transgenic mice 

(Figure 1.8 A)82.  

 

 

 
 

Figure 1.8: Genetic manipulation of checkpoint kinases extends reproductive lifespan in mice by limiting the 

destruction of egg cells or upregulating the DNA-repair process. (A) Schematic representation of the experimental 

strategy and reproductive outcome in Chek2-/- and sChek1 mice. (B) Numbers of follicles in young and aged 

Chek2−/− (C) and sChek1 female mice. (D) Response to gonadotrophin stimulation of 13.5-month-old Chek2−/− and 

11- to 13-month-old sChek1 females assessed by the number of MII oocytes retrieved. Figure is adapted from Ruth 

et al (2021)82. 
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Inactivating Chek2, which normally has a crucial role in destruction of eggs compromised by DNA 

damage, slowed the depletion of the ovarian reserve by disrupting apoptosis, which happened without a 

significant initial increase in the ovarian reserve at birth (Figure 1.8 B) 82,99–104. In addition, the transgenic 

Chek2 mice, when around the age equivalent of menopause in human, had increased ovarian response to 

hormones used to stimulate the release of immature eggs for IVF procedures82. This was the first evidence 

of a potential therapeutic target for enhancing ovarian stimulation in women undergoing IVF treatment 

through short-term apoptotic inhibition. Unlike Chek2, Chek1 is needed for embryo development and 

helps DNA repair; its inactivation specifically in oocytes leads to female infertility, while the full gene 

knockout is embryonically lethal100,105–108. By contrast, introducing an extra copy of Chek1 resulted in 

increased ovarian reserve at birth compared to litter-mate controls leading to prolonged genomic integrity, 

enhanced follicular activity and delayed reproductive senescence. This was likely a consequence of 

upregulation of replication-associated DNA repair processes during mitosis/meiosis, and demonstrates 

that this repair might be limiting for establishing and maintaining the ovarian reserve (Figure 1.8C)82. 

Together, these data demonstrated for the first time ever that modulation of key DDR genes can extend 

reproductive lifespan by ~25% in vivo, and increase fertility potential thus leading to the generation of 

healthy pups that are fertile over several generations (Figure 1.8D)82. However, a large proportion of 

gene candidates remain to be functionally validated to better understand the mechanism they operate via 

to regulate ovarian ageing and modulate the timing of menopause; a question that would need to be 

answered to initiate the translation of the genomic findings for clinical purposes109. One such candidate, 

PARP-1, I study using human genomics and functional evaluation in Chapter 7. I particularly focus on 

PARP-1 due to recent evidence in the literature that reported the impact of Olaparib drug, a PARP-1 

inhibitor, on the reduction of the ovarian reserve110.  

 

Besides genomic data that are extensively described in Chapter 1 and further studied in my thesis, the 

human serum proteome represents a valuable resource of potential biomarkers for polygenic disorders as 

it enables direct assessment of changes in protein levels111. Importantly, most pharmaceutical drugs also 

target proteins, further increasing their actionability. Therefore, studying human proteome could help us 

identify novel determinants of reproductive ageing and Chapter 5 will use the largest proteomic data up 

to date to address this question. 

 

Finally, the recent study involving single nuclei multi-omic analysis of young and reproductively aged 

ovaries provided high resolution characterisation of the transcriptional regulatory landscape at the single 

cell level112. They demonstrated that ageing significantly remodels the cellular architecture of the human 
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ovary, and introduces coordinated transcriptomic changes thus causing alterations in gene regulatory 

networks and cellular communications among oocytes and somatic cell types. This suggests that regulation 

of transcription also contributes to an age related loss of follicular function, tissue fibrosis and epithelial 

hyperplasia.  

1.5 Reproductive ageing and related health outcomes 

 

Normal variation in reproductive lifespan is causally associated with the risk of a wide range of disease 

outcomes in women113. The most robust evidence on the association with later life diseases was obtained 

from randomised controlled trials (RCTs) and causal inference analysis via Mendelian Randomisation 

(MR) frameworks (Figure 1.9). MR relies on random assortment of alleles during gamete production and 

fertilisation, and uses that as a basis of so-called ‘naturally randomised trial’114. The evidence derived 

using MR indicated that earlier menopause timing deteriorated bone health, including bone mineral 

density and fracture, and increased the risk of type 2 diabetes (T2D)82. This is in line with evidence from 

RCTs on oestrogen therapy and bone health115–118. Consistent with previous research, each one-year 

genetically mediated delay in ANM increased the relative risks of several hormone-sensitive cancers by 

up to 5%82. This life stage in women is linked to one of the major hormonal changes, characterised by a 

decline in oestrogen and progesterone levels and to a lesser degree, testosterone. Notably, the association 

with cancer outcomes appeared not to be driven by DDR mechanisms, but rather hormonal regulation, 

including lifetime exposure to oestrogen. This explains the protective effect given that the enrichment of 

DDR genes is associated with both menopause and cancer. In agreement with the trial data in younger 

women taking hormone replacement therapy (HRT) and opposite to evidence from observational studies, 

our causal inference analysis suggested no increased risk of cardiovascular disease119–121, lipid levels, 

Alzheimer’s disease, body mass or longevity122–130. Finally, previous observational studies demonstrated 

conflicting evidence on the association between earlier menopause timing and increased risk of dementia, 

Parkinson’s disease and depression that suggest that menopause itself may be a dynamic neurological 

transition. 

 

Unlike observational studies that report conflicting evidence on the relationship between age at menarche 

and menopause, causal inference analysis indicated that genetically mediated age at menarche was 

associated with a decrease in ANM of about 8 weeks per year of earlier menarche82,568. However, the 

regulatory mechanisms clearly differed between the two traits overall. Unlike ANM that is mainly driven 

by DDR mechanisms, age at menarche was enriched in genes expressed in the hypothalamus and pituitary 

gland131. Results from GWAS studies demonstrated how more robust statistical tools and increases in 
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sample size over time have improved the power to identify more genetic determinants of reproductive 

traits. Based on this, we were interested to further study the relationship between ANM and menarche 

timing, and Chapter 6 will specifically address this question utilising the largest ANM and menarche 

GWASs up to date as well as novel techniques for gene prioritisation.  

 

Both causal inference analysis and observational studies evaluated putative modifiable determinants of 

ANM and reported that increase in alcohol consumption and tobacco smoking were associated with 

earlier ANM82. Besides smoking132,133 and alcohol consumption132,134,135, a number of other 

epidemiological risk factors has been found as associated with ANM. This includes socio-economic 

status136,137, diet132,138,139, exercise132,134,138,140, and exposure to environmental toxins137,141,142. Expanding 

our data both in terms of size and ethnic heterogeneity will allow us to draw better powered conclusions 

on the association between ANM and later-life health outcomes, as well as give us an insight into how we 

can utilise the knowledge on the epidemiological risk factors to design effective public health intervention 

strategies. 

 
Figure 1.9: Earlier menopause timing and associated health outcomes from Mendelian Randomisation study.  
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One interpretation of these findings is that premature or early menopause is the first step in a chain of 

causality leading to tissue or organ dysfunctions and lesions via hormonal mechanisms143. Alternative yet 

complementary hypothesis suggests that premature menopause is the result of an accelerated aging 

process determined by genetic or non-genetic causes and involving all tissues and organs throughout the 

body, including the ovaries. Both hypotheses point towards 5 times faster ageing of ovaries than any other 

organ in the human body, speculating that this ‘neglected’ organ could be serving as a ‘biological marker’ 

of overall health in women 144–146.  

 

The number of menopausal women worldwide is estimated to reach 1.1 billion by 2025, while there are 

1.9 million pre-menopausal women diagnosed with cancer and thus at risk from chemotherapy-induced 

ovarian failure (CIOF) and infertility. These numbers are hard to ignore given the strong link between 

reproductive longevity and related health outcomes. Current research sheds light on underlying biological 

mechanisms and interesting interplay between DDR and hormonal regulation, further highlighting the 

need for better understanding of the regulators and physiological mechanisms involved in reproductive 

ageing. 

 

Collectively, the current state of reproductive ageing research provides strong insights into the biological 

processes of reproductive ageing in women, how they can be manipulated to extend reproductive life, and 

what the consequences of this might be at a population level. These findings have the potential to guide 

future experimental work aimed towards identification of new therapies for enhancing reproductive 

function and preserving fertility in women, as well as designing intervention strategies to prevent or 

diminish menopause-related health outcomes. 
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1.6 Areas of opportunities and Aims 

This thesis aims to advance the understanding of reproductive longevity by combining clinical and 

biomarker data from large-scale population studies within a multi-omic approach together with the robust 

functional models to identify novel genetic determinants and mechanisms underlying ovarian ageing in 

women.  

In summary and as previously discussed, I describe five distinct projects to address the following 

questions: 

Chapter 3: What is the role of rare damaging genetic variation in the timing of menopause? 

Chapter 4: Are reported monogenic causes of primary ovarian insufficiency valid? 

Chapter 5: How does ovarian ageing impact the proteomic profile in women? 

Chapter 6: Is there a shared genetic architecture between the beginning and end of female reproductive 

lifespan? 

Chapter 7: What is the role of PARP-1 in gametogenesis and ovarian function? 

 

A better understanding of how and when molecular processes influence the establishment and decline of 

the ovarian reserve will inform future strategies for treating infertility and preserving fertility. Ultimately 

addressing these aims will help women make more informed reproductive choices, reduce the number of 

women undergoing invasive, painful and expensive IVF treatment, and enable timely management of 

menopause-related conditions. Addressing the issue of infertility is also of huge socio-economic 

importance. Many countries are already seeing fertility rates below replacement levels, meaning falling 

populations will soon become the norm. A global decline in population will have inevitable consequences 

on the economy, leading to high unemployment, ageing populations and thus a rising tax burden. Finding 

practical, accessible and non-invasive approaches to overcoming infertility brought about by advanced 

maternal age or certain medical conditions can provide personalised reproductive approaches and maintain 

economic growth. 
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CHAPTER 2  

Methods used to analyse human genomic and proteomic 

data 
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Summary 
 

Chapter 2 describes the common methods and datasets used across different chapters of this thesis to analyse 

human genomic and proteomic data coming from large-scale population studies. It gives a methodological 

overview of the steps undertaken, as well as the rationale behind choosing specific bioinformatic tools to 

answer biological questions of interest.  
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2.1 UK Biobank: a resource for deciphering the genetic architecture 

of reproductive ageing 

2.1.1 About the UKBB study 

The UKBB study is a large prospective cohort of ~500,000 individuals, out of which 245,820 are 

female participants, living in the United Kingdom, aged between 40 and 69 at baseline, and registered 

with an National Health Service (NHS) general practice (GP) service147,148. A total of 503,325 participants 

were recruited in the period between 2006 and 2010 and attended one of 22 assessment centres across the 

UK for baseline data collection. The data included information on individual’s genotypes and phenotypes 

with the aim to enable identification of genetic and non-genetic determinants of various health outcomes 

(Figure 2.1)147,149. Data collection and processing are extensively described elsewhere147,148, while 

sections 2.1.1.1 and 2.1.1.2 give a high-level overview of the process. 

 

Figure 2.1: UK Biobank - a large-scale prospective epidemiological resource. A large number of health outcomes 

and genotype data have been recorded to study relationships between individuals’ genetic profiles and their 

susceptibility to those outcomes. The figure is adapted from Bycroft et al (2018)147. 
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2.1.1.1 Baseline and follow-up assessments 

 

All participants attended an initial 2 to 3-hour research assessment, which included an online touchscreen 

questionnaire, a face-to-face interview and a collection of physical measurements and biological samples 

(blood, saliva, urine) (Figure 2.1)148,149. The information collected via questionnaire and interview 

included data on current and past health outcomes, both of an individual and family history, lifestyle 

exposures, psychological well-being, cognitive function and socioeconomic factors149. In addition to data 

collected during the assessment centre visits, the study was linked to NHS electronic health records, death 

and cancer registry that provided information on incident and prevalent healthcare events. Collected 

phenotype data also included information on reproductive function, including age at menopause and 

menarche, sex hormones levels, malignant neoplasms of reproductive organs and many others - health 

outcomes which are in focus of this thesis. Details on individual measurements relevant to specific studies 

in this thesis are described in the corresponding chapter. 

 

2.1.1.2 Analysis of common genetic variants: Genotyping and Imputation 

 

Genetic data were obtained from a subset of the cohort (N = 49,950) using the UKBB Lung Exome 

Variant Evaluation (UK BiLEVE) study array at 807,411 probes150, while the rest of the cohort (N = 

438,427) was genotyped at 825,927 probes using the UKBB Axiom array from Affymetrix. The two 

arrays share 95% of their probes, yet the Axiom array was designed to assay more variants, in particular 

insertions and deletions147. The selection of probes aimed to assay both common and low frequency 

variants, as well as variants previously suggested to be important in other phenotypes, such as cancer, 

autoimmune disease or blood phenotypes147. Blood samples were collected from participants during their 

assessment centre visit and then shipped to Affymetrix for genotyping. Sample retrieval and DNA 

extraction are described in more detail in Welsh et al, 2017151. Heterogeneous ancestry characterises the 

UKBB cohort - of genotyped individuals 94% reported their ancestry as ‘White’ with the remaining 6% 

as Asian, Black, Chinese, mixed or unknown ancestry.  

 

The quality control (QC) was performed on the probe/marker- and sample-based level. The exclusion 

criteria for poor quality markers involved missing rate, heterozygosity adjusted for population ancestry 

effects, and non-XX and XY sex chromosome karyotypes (samples with mismatch between self-reported 

and genotypic sex or with potential aneuploidy in sex chromosomes). As part of the UKBB QC, SNPs 
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that had a missing rate >5% and MAF <1% were excluded. Finally, genotype information was available 

on 488,377 participants at 805,426 biallelic SNPs and insertions/deletions (indels).  

 

The Haplotype Reference Consortium (HRC) reference panel was used for the imputation of 

haplotypes152, with separate imputation done by IMPUTE4 software using the combined UK10K and 

1000 Genomes phase 3 reference panels71,153. Last two panels were selected as they contain a high 

percentage of European ancestry individuals and a small subset of individuals with diverse ancestry, thus 

having a similar ancestry distribution to the UKBB cohort. The final dataset included 93,095,623 

autosomal genetic variants and 3,963,705 X chromosome variants in 487,442 individuals. European 

ancestry individuals were identified by projecting samples on the two major principal components (PCs) 

from the 1000 Genomes cohort71 and selecting samples which fall in the European cluster (CEU) 

identified by sequencing of European ancestry individuals by the 1000 Genomes project. This analysis 

resulted in identification of 463,844 European ancestry individuals147. 

2.2 Identifying gene variant associations with complex diseases 

2.2.1 Genome-wide association study (GWAS) 

 

As introduced in Section 1.3, GWAS systematically assesses the association between genetic variants and 

phenotype of interest across the genome with an aim to identify genetic alterations that determine or 

modify the susceptibility of that trait at the genome-wide significance level of P < 5*10-8 75. For this 

thesis, GWAS analysis was used to test for association of genetic variants in UKBB cohort with various 

reproductive and metabolic health outcomes using linear mixed models, BOLT-LMM. Depending on the 

specific case and as described in following chapters, association analysis was performed in sex-combined 

and/or sex-stratified samples. The trait specific summary statistic results obtained via BOLT-LMM are 

described in following chapters. It is important to note that GWAS results for these traits were already 

generated by other members of our research group. Next sections will describe a standard GWAS 

procedure conducted for all traits of interest. 

2.2.1.1 Linear Mixed Models: BOLT-LMM 

 

The BOLT-LMM algorithm uses linear mixed models (LMM) to examine the association between the 

genetic variants and traits of interest154. BOLT-LMM represents the method of choice due to its ability to 

account for population stratification and cryptic relatedness, which tend to inflate false positive or 

negative results. More specifically, in case of population stratification the correlated ancestry within a 
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stratum of population may have common environmental or genetic exposures. This limits our 

understanding if the variant is associated with an outcome because of a genetically mediated mechanism, 

or because an allele of that variant happens to be common in a stratum of the population where the 

presence of the measured phenotypic outcome is common by chance. In addition to population 

stratification, closely related individuals in the sample population, ‘cryptic relatedness’ can lead to similar 

inflation155. 

 

An increase in statistical power observed in linear mixed models is achieved by jointly modelling all 

genotyped markers. To further optimise power, in addition to the infinitesimal model used by standard 

mixed models, BOLT-LMM computes the non-infinitesimal model. These two models differ based on the 

Gaussian distribution assumption, where unlike the infinitesimal model that assumes that all variants are 

causal with small effect sizes (‘additive per allele effects’), the non-infinitesimal one models SNP effects 

with non-Gaussian prior distributions, thus allowing better accommodation of the SNPs with small and 

large effects154. In reality, traits usually have a few associated variants with large effect sizes compared to 

many associations with smaller effect sizes. Therefore empirically, effect sizes are not Gaussian 

distributed. In this thesis, we mostly used the non-infinitesimal model, unless stated otherwise.  

 

We made the genetic discoveries using BOLT-LMM (v2.3.4), following next steps: 

 

          (1a) estimation of variance parameters 

          (1b) computation of infinitesimal mixed-model association statistics (BOLT-LMM inf) 

          (2a) estimation of Gaussian mixture-model parameters 

          (2b) computation of Gaussian mixture model association statistics (BOLT-LMM) 

2.2.1.2 Signal selection 

 

The LD between variants makes it challenging to understand how many independent association signals 

are present in a locus. To address this, we first implemented a distance-based clumping method that 

allows the selection of the genetic variant most strongly associated with the phenotype within a 1-Mb 

genomic region. To select statistically significant signals we apply the genome-wide significance P-value 

threshold of 5*10-8, MAF > 0.1% and an imputation quality score > 0.5. Signals with the lowest P-value, 

which were not correlated with other signals in each LD block (r2<0.05) were defined as the lead SNPs. 

The lead SNPs are assumed to explain the maximum amount of trait variation tagged by that region, as 

the other signals in a region would show the association by being in LD with that leading SNP. However, 

the total phenotypic variation explained by that LD block might be underestimated due to the potential 



 

52 

existence of multiple independent signals that contribute to the overall heritability. To identify 

independent secondary association signals within each LD block, we introduced approximate conditional 

analysis implemented in genome-wide complex trait analysis (GCTA)156. GCTA relies on a reference 

dataset that estimates LD between variants and selects additional signals significantly associated with the 

phenotype, conditioning on the effect of the primary signal at that locus. Secondary signals had to meet 

the following criteria: (1) P ≤ 5×10-8 in both pre- and post-conditional analyses, (2) uncorrelated with 

another signal (r2 < 0.05) and (3) its beta estimate changed by < 20% between pre- and post-conditional 

models157. However, it is important to know that conditional analysis cannot determine which variants are 

casual for the association signal. Causality can only be truly determined with a downstream follow up 

experiment. The problem of causality could also be addressed via genomic technologies that study the 

role of rare, protein coding variants with larger impact on the trait of interest, such as whole exome 

sequencing (WES), which is discussed in future chapters.  

2.2.2 ReproGen consortium genome-wide association meta-analysis 

 

When considering common variant GWAS, most of this thesis will implement the ANM signals obtained 

from the currently largest ANM GWAS conducted in the ReproGen consortium and reported in Ruth et 

al, 202182. The ReproGen consortium is an international collaboration of investigators interested in the 

genetics of reproductive ageing. Detailed description of this ANM GWAS study can be found in Ruth et 

al, 202182, while the following section will give a brief overview of the methodology applied. 

2.2.2.1 Phenotype definition 

The ANM was derived from self-reported questionnaire data by each study in the ReproGen consortium 

as described in Ruth et al, 202182. The ANM was defined as the age at last naturally occurring menstrual 

period followed by at least 12 consecutive months of amenorrhea. Women with menopause caused by 

hysterectomy, bilateral ovariectomy, radiation or chemotherapy, and those using HRT before menopause 

were excluded from the study. All participants provided written informed consent and the study protocol 

was approved by the institutional review board at each parent institution. 

2.2.2.2 Genome-wide association study meta-analysis 

A genome-wide meta-analysis for ANM was performed on summary statistics in women of European 

ancestry from analyses in three strata. These included:  
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(1) Meta-analysis of 1000 Genomes imputed studies  

(2) Meta-analysis of samples from the Breast Cancer Association Consortium  
                  (BCAC: http://bcac.ccge.medschl.cam.ac.uk)  

 

(3) UKBB GWAS 

Meta-analysis of 1000 Genomes imputed studies was carried out including SNPs with imputation 

quality ≥ 0.4 and MAF ≥ 0.001. GWAS was performed in each individual study using a two-tailed 

additive linear regression model adjusted for genetic principal components/relationship matrix depending 

on the software used, without GC correction. Variants present in at least half of datasets for either the 

autosomes or for chromosome X were taken forward to the overall meta-analysis, resulting in ∼10.9 

million variants. 

GWAS summary statistics for the BCAC data were provided as four datasets, containing breast cancer 

cases and controls, with each genotyped on the iCOGs and OncoArray genotyping arrays. Summary 

statistics from the four BCAC datasets were meta-analysed, including variants with imputation quality 

≥0.4 and MA F≥ 0.001. Variants in two or more of the four datasets were taken forward to the overall 

meta-analysis, resulting in ∼14.5 million variants. 

GWAS in UKBB was carried out by applying a linear mixed model in BOLT-LMM, as described in 

Section 2.2.1.1, to adjust for population structure and relatedness, study centre and data release. UKBB 

summary statistics taken forward to the overall meta-analyses were for ∼16.6 million variants with 

imputation quality ≥0.5 and MAF≥0.001. Genome-wide significance was set at P ≤ 5*10-8 and signal 

selection was performed using distance-based clumping and approximate conditional analysis, as 

described in Section 2.2.1.2.  

Variants which were present in at least two of the three strata were included in the final ReproGen meta-

analysis. Genome-wide array data, imputed to ∼13.1 million genetic variants with MAF ≥0.1%, were 

available to 201,323 women of European ancestry. All meta-analyses were performed using inverse-

variance transformation models in METAL 

(https://genome.sph.umich.edu/wiki/METAL_Documentation) without GC correction. In total 38,707 

genetic variants were associated with ANM at genome-wide significance (P ≤ 5*10-8), which were 

ultimately resolved to 290 statistically independent signals. 

 

 

http://bcac.ccge.medschl.cam.ac.uk/
https://genome.sph.umich.edu/wiki/METAL_Documentation
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2.2.3 Studying rare genetic variation using WES data in UKBB 

 

Human genetic studies that relied on GWAS array genotyping have identified genetic markers associated 

with menopause timing and thus provided substantial insight into the biological mechanisms governing 

ovarian ageing. However, these approaches have largely been restricted to assessing common genetic 

variation which brings previously described challenges related to the identification of responsible genes 

and biological pathways involved in regulation of the trait of interest. WES provides the opportunity to 

directly assess protein-altering variants, genetic variations with large and thus more readily interpretable 

functional consequences, which provide an insight into the biological mechanisms and thus potential 

therapeutic applications.  

 

Therefore, in addition to GWAS, we utilised WES158 to explore protein-altering variants and their 

consequences in 454,787 participants in the UKBB study147,159. The study identified 12 million coding 

variants, including around 1 million loss-of-function (LoF) and around 1.8 million deleterious missense 

variants, across the coding regions of 18,893 genes, of which 99.6% were rare variants (MAF < 1% across 

all ancestries). The roles of these genetic alterations were then explored in different reproductive, 

metabolic phenotypes and cancer. 

2.2.3.1 UKBB sample preparation and sequencing  

 

The exome sequencing of DNA samples from the UKBB study was performed by Regeneron Genetics 

Centre 160. The detailed description of the procedure can be found elsewhere 159,160. In brief, genomic 

DNA samples were transferred to the Regeneron Genetics Centre from the UKBB before sample 

preparation. The samples were sequenced using 75-base-pair paired-end reads with two 10-base-pair 

index reads on the Illumina NovaSeq 6000 platform using S2 (first 50,000 samples) or S4 (all other 

samples) flow cells.  

Sample read mapping and variant calling, aggregation and quality control were performed using the SPB 

protocol described elsewhere160. WES reads were mapped with Burrows-Wheeler Aligner Maximum 

Entropy Method (BWA MEM) to the human genome build 38 (hg38) reference genome. No-call 

genotypes were defined as SNV genotypes with read depth (DP) < 7 and indel genotypes with DP < 10. 

Variants that met the following criteria were kept for further analysis: (1) at least one homozygous variant 

carrier; or (2) at least one heterozygous variant carrier with an allele balance (AB) greater than the cut-off 

(AB ≥ 0.15 for SNVs and AB ≥ 0.20 for indels). The samples were further excluded if they showed: (1) 

disagreement between genetically determined and reported sex, (2) high rates of heterozygosity or 
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contamination, (3) low sequence coverage (less than 80% of targeted bases achieving 20× coverage) or 

genetically identified sample duplicates, and (4) WES variants discordant with GWAS array genotypes, 

resulting in the exclusion of 1,105 individuals. Finally, 454,787 samples were used to compile a pVCF for 

downstream analysis, using the GLnexus joint genotyping tool. 

2.2.3.2 Data Processing and Quality Control 

To conduct rare variant burden analyses, we obtained data on WES for 454,787 individuals from the 

UKBB study, as described above159. Participants were excluded based on excess heterozygosity, 

autosomal variant missingness on genotyping arrays ≥ 5%, or inclusion in the subset of phased samples as 

defined in Bycroft et al147. Analysis was restricted to participants with European genetic ancestry, leaving 

a total of 421,065 individuals. Variant QC and annotation were performed using the UKBB Research 

Analysis Platform (RAP; https://ukbiobank.dnanexus.com/), a cloud-based central data repository for 

UKBB WES and phenotypic data. Besides the QC described briefly in Section 2.2.3.1 and in detail by 

Backman et al.159, we performed additional steps using custom applets designed for the RAP. Firstly, we 

processed provided population-level VCF files by splitting and left-correcting multi-allelic variants into 

separate alleles using ‘bcftools norm’161. Secondly, we performed genotype-level filtering applying 

‘bcftools filter’ separately for Single Nucleotide Variants (SNVs) and Insertions/Deletions (InDels) using 

a missingness-based approach. We set to missing (i.e. ./.) all SNV genotypes with depth < 7 and genotype 

quality < 20 or InDel genotypes with a depth < 10 and genotype quality < 20. Next, we applied a binomial 

test to assess an expected alternate allele contribution of 50% for heterozygous SNVs; we set to missing 

all SNV genotypes with a binomial test P value ≤ 1x10-3. Following genotype-level filtering we 

recalculated the proportion of individuals with a missing genotype for each variant and filtered all 

variants with a missingness value > 50%.  

 

The variant annotation was performed using the ENSEMBL Variant Effect Predictor (VEP) v104 (Figure 

2.2)162 with the ‘--everything’ flag and plugins for Combined Annotation Dependent Depletion 

(CADD)163 and Loss-of-Function Transcript Effect Estimator (LOFTEE)164 enabled. For each variant we 

prioritised the highest impact individual consequence as defined by VEP and one ENSEMBL transcript as 

determined by whether or not the annotated transcript was protein-coding, MANE select v0.97, or the 

VEP canonical transcript.  

 

https://ukbiobank.dnanexus.com/landing
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Figure 2.2: Functional consequences of various types of genetic variants. The diagram illustrates the set of 

functional consequence terms given by the Ensembl Variant Effect Predictor (VEP) tool. A splice donor is a splice 

variant that changes the invariable 2-base region at the 5’ end of an intron. A splice acceptor is a splice variant that 

changes the invariable 2-base region at the 3’ end of an intron. A splice region is a sequence variant in which a 

change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the 

intron, but not at the donor/acceptor splice sites 

 

Following annotation, variants were categorised based on their predicted impact on the annotated 

transcript. Protein Truncating Variants (PTVs) were defined as all variants annotated as stop gained, 

frameshift, splice acceptor, and splice donor. Missense variant consequences are identical to those defined 

by VEP. Only autosomal or chrX variants within ENSEMBL protein-coding transcripts and within 

transcripts included on the UKBB exome-sequencing assay159 were retained for subsequent burden 

testing. 

2.2.3.3 Exome-wide association analyses in UKBB 

 

In order to perform rare variant gene burden tests, we used a custom implementation of BOLT-LMM 

v2.3.6154 for the RAP. Two primary inputs are required by BOLT-LMM: 1) a set of genotypes with minor 

allele count (MAC) > 100 derived from genotyping arrays to construct a null linear mixed effects model 

and 2) a larger set of variants collapsed on ENSEMBL transcript to perform association tests. For the 

former, we queried genotyping data available on the RAP and restricted to an identical set of individuals 

included for rare variant association tests. For the latter, and as BOLT-LMM expects imputed genotyping 

data as input rather than per-gene carrier status, we created dummy genotype files where each variant 

represents one gene and individuals with a qualifying variant within that gene are coded as heterozygous, 

regardless of the number of variants that individual has in that gene.  

 



 

57 

To test a range of variant annotation categories with MAF < 0.1%, we created dummy genotype files for 

high confidence (HC) PTVs as defined by LOFTEE, all missense variants, missense variants with CADD 

≥ 25, and damaging variants that included both high confidence PTVs and missense variants with CADD 

≥ 25. For each phenotype tested, BOLT-LMM was then run with default parameters other than the 

inclusion of the ‘lmmInfOnly’ flag. To derive association statistics for individual markers, we also 

provided all 26,657,229 individual markers regardless of filtering status as input to BOLT-LMM. All 

tested phenotypes were run as continuous traits corrected by age, age2, sex, the first ten genetic PCs as 

calculated in Bycroft et al147 and study participant exome sequence batch as a categorical covariate (either 

50k, 200k, or 450k).  

 

To generate accurate odds ratio (OR) and standard error (SE) estimates for binary traits, we also 

implemented a generalised linear model using the ‘statsmodels’165 for Python in a three step process. 

First, a null model was run with the phenotype as a continuous trait, corrected for control covariates as 

described above. Second, we regressed carrier status for individual genes on the residuals of the null 

model to obtain a preliminary P value. Thirdly, all genes were again tested using a full model to obtain 

odds ratios and standard errors with the family set to ‘binomial’. Generalised linear models used identical 

input to BOLT-LMM converted to a sparse matrix.  

 

For phenotype definitions and additional details, please refer to specific Chapters. 

2.3 Exploring causal estimation through Mendelian Randomisation 

analyses  

2.3.1. Using genetic variants in causal estimation 

 

In order to study patterns of health and disease at the population level, science has implemented 

different epidemiological study frameworks. Although being recognized as a gold standard methodology, 

RCTs are characterised by certain limitation factors that restrict their broad application for testing 

scientific hypotheses, including cost, time-consumption and ethics166. Observational studies have been 

used to establish correlations between numerous exposures and complex diseases in the past, however 

causality associations drawn from these studies often faced different challenges, including unmeasured 

confounding and reverse causation that questioned their reliability167. To address reverse causation and 

confounding, Katan proposed the Mendelian Randomisation (MR) method, also called ‘naturally 

randomised trial’168–170. MR relies on random assortment of alleles during gamete production and 
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fertilisation, as described in Mendel’s second law. This natural, non-modifiable genetic variation across 

individuals mimics the rationale behind RCT (Figure 2.3) and it is now widely used in genetic 

epidemiology for inferring causality of an exposure on complex disease outcomes. Previous research on 

the genetic architecture of complex diseases has revealed that multiple genes and common frequency 

alleles of small effects act through an additive effect in combination with the environmental factors to 

define a certain trait. Even though they explain only part of heritability of a certain trait, using multiple 

variants as genetic instruments will maximise our potential and power to assess causal inference between 

the exposure and outcome.  

 

 

 
Figure 2.3: Comparison between Mendelian Randomisation study and Randomised controlled trial. This diagram 

compares and contrasts the methodological rationale behind MR and RCTs. Unlike RCTs, MR is based on 

randomization that is dependent on the random allocation of alleles at birth. MR causal inference implies that a 

change in the exposure caused by genetic variation has the same effect on the outcome as a change in that exposure 

caused by environmental factors. 

 

 

This thesis applied various MR frameworks to address bidirectional causal estimation between 

reproductive ageing, early-life exposures and later life health outcomes, as described in following 

chapters. 
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2.3.2 Instrumental variable selection 

 

MR analysis was applied with an aim to investigate the likelihood of a causal effect of the exposure of 

interest, i.e. a risk factor, on the outcome of interest. MR uses genetic variants, which are significantly 

associated with an exposure, as instrumental variables (IVs) to test this causality across the population 

sample. It measures the effect of these variants in both exposure and outcome. For a genetic variant to be 

a reliable instrument, following assumptions have to be met (Figure 2.4)168:  

(1) Relevance assumption: genetic instrument must be associated with the exposure of interest  

(2) Independence assumption: genetic instrument must not be associated with any other 

competing risk factor that is a confounder 

(3) Exclusivity assumption: genetic instrument must not be associated with the outcome, except 

via the causal pathway through the exposure of interest  

 

Assumption (1) can be tested with a standard GWAS analysis which determines significance of 

association between a genetic variant and phenotype. 

 

 

Figure 2.4: Schematic representation of Mendelian Randomisation theory. Genetic variants which are associated 

with the exposure may serve as instrumental variables to assess the causal inference between the exposure and the 

outcome of interest (blue line), assuming that MR assumptions are met (pink dashed lines). The tested association 

between the exposure and the outcome may be confounded by unmeasured factors (grey line). 

 

 

Potential for bias in MR could arise in case IVs are measured in the outcome sample that is the same as 

discovery one. This thesis addressed causal estimation using an agnostic polygenic two-sample MR 

approach, where the association between IVs and exposure was estimated in one dataset, and IVs and 
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outcome in a second, independent dataset171. In cases where a particular signal was not present in the 

outcome GWAS, we searched for proxies in the UKBB white European dataset that are in LD with the 

target SNP within the LD window of 1 Mb and r2 > 0.5. The proxy with the highest r2 value was chosen 

as an alternative genetic instrument. 

2.3.3 Variant harmonisation 

 

In order to ensure that genetic associations are expressed per additional copy of the same allele, the effect 

allele and the effect allele frequency were compared between the exposure and outcome dataset for each 

SNP and aligned according to exposure-increasing beta value. In case of palindromic SNPs, where the 

allele frequency was close to 50% and thus it was not possible to verify the allele orientation, the variant 

was dropped out.  

2.3.4 MR frameworks 

2.3.4.1 Primary analysis 

MR analysis was conducted using the inverse-variance weighted (IVW) model as the primary model due 

to the highest statistical power172. IVW calculates the association estimate between the exposure and the 

outcome through weighted regression of the effect of genetic variants on the outcome with the effect of 

the same variance on the exposure173. In formula A, βl is the effect estimated using genetic variant l. The 

calculation will take into account estimates of πl, the estimated effect of genetic variant l on the exposure 

with variance σ2
x,l, and Γl, the estimated effect of genetic variant l on the outcome with variance σ2

y,l. 

These individual ratios are weighted by their associated uncertainty in formula B. The IVW estimator 

(βIVW) was then computed as (formula B): 

                             (A)                                                  (B) 

 

 

Even though it has the greatest statistical power when the aforementioned assumptions are satisfied, 0% 

breakdown level implies that the estimates of causal effect will become biased even if one genetic variant 

does not satisfy the assumptions due to method’s lack of power to correct for heterogeneity in outcome 

risk estimates between individual variants 174. The bias most commonly arises due to the presence of 
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horizontal pleiotropy, where the genetic variant used as an instrument does not influence the outcome 

exclusively through the exposure of interest (Figure 2.4)172,174. The only exception where the bias is 

absent is when the pleiotropy is balanced, i.e. the overall sum of the pleiotropic effects across the genetic 

variants is summed to zero (Figure 2.5). 

 

Figure 2.5: Pleiotropy types in Mendelian Randomisation. Diagram demonstrates different types of pleiotropy in 

Mendelian randomization (MR), where G is a genetic variant or set of genetic variants associated with the exposure, 

E is the exposure of interest, O is the outcome of interest, C is an unmeasured confounder and P is another (potentially 

unmeasured) phenotype that is also associated with the genetic variants. (A) Horizontal pleiotropy with bias occurs 

when a IVs or ‘G’ are associated with multiple health outcomes that lie on different biological pathways, thus violating 

assumption 3; (B) Horizontal pleiotropy with no bias occurs when the genetic variants are not associated with other 

phenotypes on the pathway to the outcome; (C) Vertical pleiotropy happens when another phenotypes lies on the 

genetic variant–exposure–outcome pathway, yet it does not bias the MR result for the trait of interest.  

2.3.4.2 Sensitivity analysis 

Various methods have been designed to test the robustness of MR associations and account for violations 

of the MR assumptions175,176. One such example is MR Egger used to identify and correct for unbalanced 

heterogeneity, i.e. ‘horizontal pleiotropy’177. As we are modelling complex biological systems, variants are 

generally pleiotropic, meaning they influence multiple traits and phenotypes. The MR Egger approach 

allows the genetic variants to have pleiotropic effects, as long as they are independent of the variant-

exposure association and do not alter the magnitude of association with the outcome, so-called ‘balanced 

pleiotropy178. In the formula below, βXl represents the estimated effect on the exposure, βYl is estimated 

effect on the outcome, γE is the estimated causal effect of the exposure on the outcome and γ0 represents the 

intercept parameter: 

βYl = γ0 + γEβXl 

The MR Egger intercept, with P < 0.05, was used as an indicator of the overall pleiotropic effect across 

instrumental variables177. However, allowing the intercept term results in MR Egger being less powered in 
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causal estimation than IVW as the outlying and influential data points have strong effect on the precision 

of the effect estimate.  

In addition, we applied weighted median (WM) and penalised weighted median (PWM) models to correct 

for balanced heterogeneity179. If at least half of the variants are valid IVs in WM, an unbiased causal 

estimation robust to outliers will be generated by calculating the median value from a distribution of ratio 

estimates from all IVs180. In case of heterogeneity of causal ratios, PWM reduces the effect of outlying 

variants by downweighting the outlying IVs based on Cochrane’s Q statistics179.   

In an ideal, ‘no-pleiotropy’ scenario each SNP would influence the outcome proportional to its impact on 

the exposure, generating equal proportional factor across all instrumental variables. Genetic variants that 

satisfy this assumption will have homogenous causal ratio estimates, and variants with outlying effects 

would suggest the potential impact of horizontal pleiotropy. Therefore, in this thesis additional variants 

were excluded if they were recognized as outliers by the MR Radial method based on Rucker’s Q 

statistics181.  

The overall MR result was considered as significant (P < 0.05) based on the consistency of all estimated 

effects across different primary and sensitivity models applied. 
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CHAPTER 3  

Rare damaging variants in ZNF518A reduce menopause 

timing in carriers by six years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

64 

Summary 
 

Genome-wide association studies have identified many common polymorphisms that modify the timing 

of menopause in women and shed light towards underlying biological mechanisms. However, GWAS is 

limited in the ability to identify causal genes because the majority of associated common haplotypes 

contain no coding variants, and the closest gene to a noncoding variant is not reliably the causal gene in 

the absence of functional evidence. In this Chapter, we use whole exome sequence data to study rare 

protein-coding variants associated with menopause timing in ~120K women in the UKBB, and implicate 

5 novel genes with effect sizes up to ~5 times larger than previously discovered in analyses of common 

variants. Notably, we found that heterozygous loss of ZNF518A reduces menopause timing by nearly 6 

years in carriers, an effect larger than most of the genetic variation currently tested in clinical genetics for 

premature ovarian ageing. Furthermore, we provided evidence that ZNF518A is a master transcriptional 

regulator of ovarian development and establishment of the ovarian reserve in foetal life. My results 

highlight novel mechanisms involved in age at natural menopause aetiology, identify further links 

between ovarian ageing and cancer susceptibility and demonstrate that genetic susceptibility to earlier 

ovarian ageing in women increases de novo mutation rate in their offspring, providing direct example of a 

mechanism for the maternal genome influencing child health. 

 

Contributions and Collaborations 
 

Dr Eugene Gardner created a pipeline on the UKBB DNAnexus RAP to process, annotate UKBB WES 

data and perform variant QC. This pipeline is now used by multiple groups at the MRC Epidemiology 

Unit when analysing UKBB WES data. Dr Katherine Kentistou prepared the ANM phenotypes. Dr Felix 

Day and I prepared various cancer phenotypes, Dr Day prepared age at menarche and sex hormones 

phenotypes, while Yajie Zhao prepared the telomere length phenotype. Both Dr Gardner and I conducted 

gene burden and variant-level association testing using BOLT-LMM using MAF < 0.1%, while I 

additionally conducted it for MAF < 1%. All data analysis and interpretation were done by me.  I ran 

logistic regression analysis under the guidance and supervision of Dr Gardner. Gene expression analysis 

was run by Ajuna Azad, interpreted by Ajuna Azad and me, all under the supervision of Prof Eva 

Hoffmann. Functional enrichment tests for ZNF518A were run by me using fGWAS and SLDP, while 

functional analysis of ZNF518A binding sites were mainly done by Dr Nick Owens with my input on 

some analysis. De novo mutation rate analyses in Genomics England data were run by Dr Qin Qin Huang 

supervised by Prof Hilary Martin and Prof Matthew Hurles, while I conducted Mendelian Randomisation 

analysis. Prof John Perry, Prof Ken Ong, Prof Anna Murray, Prof Eva Hoffmann, Prof Hilary Martin and 
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Prof Matthew Hurles provided valuable advice on the analyses and writing of the manuscript, currently 

under review at Nature.  
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3.1 Exploring ‘hidden heritability’ of reproductive longevity using 

whole exome sequencing 

 

The variation in timing of menopause reflects a complex mix of genetic and environmental 

factors that population-based studies have begun to unravel. As described in Chapter 1, GWASs have 

successfully identified ~300 distinct common genomic loci associated with the timing of menopause82. 

These reported variants cumulatively explain 10%-12% of the variance in ANM and 31-38% of the 

overall estimated SNP heritability82,109. The majority of these loci implicated genes that regulate DDR, 

highlighting the particular sensitivity of oocytes to DNA damage due to the prolonged state of cell cycle 

arrest across the life-course76,78,83,84,91,182–184.  

 

Besides explaining only a fraction of heritability87, these common genetic variants are limited in their 

ability to identify relevant genes because the majority of associated common haplotypes contain non-

coding variants. Even though they are thought to play a role in gene expression regulation, it is unclear 

what genes these variants regulate, which further complicates the identification of causal 

mechanisms87,185–187. In addition, the correlation between multiple variants in a locus due to LD would 

make it challenging to distinguish the causal variants responsible for the association with the trait of 

interest187. This limitation is compounded by the difficulty to experimentally test large numbers of genes 

or variants using high throughput methods sensitive enough to detect small molecular effects. 

Consequently, this has hindered the translation of GWAS findings into effective mechanistic 

understanding and therapeutic solutions. However, part of the undiscovered heritability spans from rare, 

low frequency variants with higher impact88. GWASs are typically underpowered when applied to low-

frequency or rare variants, unless sample sizes or effects are very large. These genetic alterations can be 

captured by evaluating aggregate association over multiple variants in a genomic region, so-called ‘gene 

burden’, using WES data that comprises of protein-coding genes88,188–190. Sequencing offers a significant 

advantage over array-based methods, with the potential to detect and genotype all variants present in a 

sample, not only those present on an array or imputation reference panel. 

Genetic studies for ANM to date have largely focused on assessing common genetic variation, with little 

insight into the role of rarer, protein-coding variants. Initial WES analyses on 132,370 women in UKBB 

identified gene-based associations with ANM for CHEK2, DCLRE1A, HELB, TOP3A, BRCA2 and 

CLPB82,191. In this Chapter, we aimed to explore the role of rare damaging variants in ovarian function 

and reproductive lifespan with much greater power than previously possible. Through a combination of 

enhanced phenotype curation, better powered statistical tests and assessment of different types of variant 

classes at lower allele frequency thresholds, we identified five novel genes harbouring rare variants of 
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large effect that have not previously been implicated in ovarian ageing. Furthermore, these observations 

were extended to show that women at increased genetic risk of earlier menopause have higher rates of de 

novo mutations in their offspring. These findings have the potential to contribute towards unlocking the 

opportunity for novel methods of prediction of the reproductive lifespan and fertility preservation.  

3.2 Methods 

3.2.1 Exome-wide association analyses in UKBB 

 

The rare variant burden analyses of WES data from the UKBB study was performed following the 

methodology described in Section 2.2.3. 

 

To test a range of variant annotation categories for MAF < 0.1%, we created dummy genotype files for 

HC PTVs as defined by LOFTEE, missense variants with CADD ≥ 25, and damaging variants that 

included both HC PTVs and missense variants with CADD ≥ 25. For the phenotype definitions used in 

this study, please refer to the below section on ‘Phenotype derivation’. The tested phenotypes were run 

as continuous traits corrected by age, age2, sex, the first ten genetic PCs as calculated in Bycroft et al147 

and study participant ES batch as a categorical covariate (either 50k, 200k, or 450k). For discovery 

analysis in the primary trait of interest, ANM, we analysed 17,475 protein-coding genes with the 

minimum of 10 rare allele carriers in at least one of the masks tested using BOLT-LMM (Figure 3.3). To 

reduce the number of false positive results the significant gene-level associations for ANM were 

identified applying Bonferroni correction for the number of masks with MAC≥10 (N=46,251 masks) in 

17,475 protein-coding genes (P: 0.05/46,251 = 1.08*10-6) (Figure 3.3). Furthermore, in order to compare 

and explain potential differences between our WES results and the previously published ones159,191, we 

ran the above described approach using MAF < 1%, a cutoff applied by other studies (Appendix Table 

3.2). In addition, for some genes we also run Cox proportional hazard model using R package ‘survival’ 

(https://github.com/therneau/survival). 

3.2.2 Phenotype derivation 

 

ANM phenotype was derived for individuals within UKBB, who were deemed to have undergone natural 

menopause, i.e. not affected by surgical or pharmaceutical interventions, as follows:  

Firstly, European female participants (n=245,820) who indicated during any of the attended visits having 

had a hysterectomy were collated (fields 3591 and 2724) and their reported hysterectomy ages were 
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extracted (field 2824) and the median age was kept (n=47,218 and 46,260 with reported ages). The same 

procedure was followed for participants indicating having undergone a bilateral oophorectomy (surgery 

field 2834 and age field 3882, n=20,495 and 20,001 with reported ages).  

For individuals having indicated the use of HRT (field 2814), HRT start and end ages were collated (fields 

3536 and 3546, accordingly) across the different attended visits (n=98,104). In cases where the reported 

chronological HRT age at later attended visits was greater than that at previous visits, the later instances 

were prioritised, i.e. as they would potentially indicate an updated use of HRT. In cases where different 

HRT ages were reported, but not in chronologically increasing order, the median age was kept.  

Menopausal status was determined using data across instances (field 2724) and prioritising the latest 

reported data, to account for changes in menopause status. For participants indicating having undergone 

menopause, their reported ANM were collated (field 3581) using the same procedure as for HRT ages 

(n=158,264). 

 

Exclusions were then applied to this ANM variable, as follows: 

 

● Participants reporting hysterectomy and/or oophorectomy, but not the age at which this happened 

(n=958 and 494, respectively) 

● Participants reporting multiple hysterectomy and/or oophorectomy ages, which were more than 10 

years apart (n=38 and 23, respectively) 

● Participants reporting multiple HRT start and/or end ages, which were not in chronologically 

ascending order and were more than 10 years apart (n=124 and 137, respectively) 

● Participants reporting multiple ages at menopause, which were not in chronologically ascending 

order and were more than 10 years apart (n=73) and participants who reported both having and not 

having been through menopause and no other interventions (n=98) 

● Participants having undergone a hysterectomy/oophorectomy before or during the year they report 

undergoing menopause 

● Participants starting HRT prior to undergoing menopause and participants reporting HRT use, with 

no accompanying dates 

 

The resulting trait was representative of an age at natural menopause (ANM, n=115,051). Two ANM traits 

were derived for downstream analyses: the primary trait was winsorised by coding all values of ANM 

younger than 34, as 34, (n=115,051 total, reduced to 106,973 after covariate-resulting exclusions); and a 

sensitivity trait was derived by only including participants reporting ANM between 40 and 60, inclusive 

(n=104,506) (Figure 3.1, Appendix Table 3.1). 
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All manipulations were conducted in R (v4.1.2) on the UKB RAP (https://ukbiobank.dnanexus.com/). 

 

 
Figure 3.1: Age at menopause distribution in the UKBB study in two traits of interest. (A) Age at menopause 

windsored at 34 was used as the primary phenotype, while (B) age at menopause 40-60 was used in the sensitivity 

analysis.  

 

3.2.3 Phenome-wide association analysis 

 

In order to test the association of ANM identified genes in other phenotypes, we processed additional 

reproductive ageing-related phenotypes, including age at menarche, various cancer types, telomere length 

(TL) and circulating sex hormone concentrations (Appendix Table 3.8). All tested phenotypes were run 

as either continuous (age at menarche, TL and sex hormones) or binary traits (cancer) corrected for age, 

age2, sex, the first ten genetic principal components as calculated in Bycroft et al147, and study participant 

ES batch as a categorical covariate (either 50k, 200k, or 450k). Phenotype definitions and processes are 

described in Appendix Table 3.6. Only the first instance (initial visit) was used for generating all 

phenotype definitions unless specifically noted in Appendix Table 3.6. In case of cancer-specific 

analysis data from cancer registries, death records, hospital admissions and self-reported were harmonised 

to International Classification of Disease (ICD10) coding. If a participant had a code for any of the 

cancers recorded in ICD10 (C00-C97) then they were counted as a case for this phenotype. Minimal 

filtering was performed on the data, with the only exclusions being those cases where a diagnosis of sex-

specific cancer was discordant with the sex data contained in UKBB record 31. The association burden 

test for quantitative traits was done using BOLT-LMM, while a generalised linear model using the 

https://ukbiobank.dnanexus.com/
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statsmodels package165 for python was applied in a three step process to analysed the binary traits, as 

described in Section 2.2.3 (Appendix Table 3.7). 

3.2.4 Cancer PheWAS Associations 

 

To test for an association between the genes we identified as associated with menopause timing (Figure 

3.3) and 90 individual cancers as included in cancer registries, death records, hospital admissions and 

self-reported data provided by UKBB (e.g. breast, prostate, etc.) we used a logistic regression model with 

identical covariates as used during gene burden testing (N = 2430 tests) (Appendix Table 3.8). As 

standard logistic regression can lead to inflated P value estimates in cases of severe case/control 

imbalance192, we also performed a logistic regression with penalised likelihood estimation as described by 

Firth193 (Figure 3.5). Models were run as discussed in Kosmidis et al.194 using the ‘brglm2’ package 

implemented in R. brglm2 was run via the ‘glm’ function with default parameters other than “family” set 

to “binomial”, “method” set to “brglmFit”, and “type” set to "AS_mean".  

3.2.5 Common variant GWAS lookups 

Genes within 500kb upstream and downstream of the 290 lead SNPs from the latest GWAS of ANM82 

were extracted for comparison to the exome-wide analysis. There were a total of 2149 genes within the 

GWAS regions. Burden tests of these genes with a Bonferroni corrected P value of <2.3*10-5
 (0.05/2149) 

were highlighted.  

3.2.6 Analysis of GWAS and WES genes expression profiles in human female 

germ cells at various stages of development 

We studied the mRNA abundance of WES genes during various stages of human female germ cell 

development using single-cell RNA sequencing data. We used the processed single cell RNA 

resequencing datasets from two published studies. This included single-cell RNA sequencing data from 

foetal primordial germ cells of human female embryos (Accession code: GSE86146)195, and from oocyte 

and granulosa cell fractions during various stages of follicle development (Accession code: 

GSE107746)196. A pseudo score of 1 was added to all values before log transformation of the dataset. The 

samples from foetal germ cells (FGCs) were categorised into sub-clusters as defined in the original study. 

The study by Li et al195 had identified 17 clusters by performing a t-distributed stochastic neighbour 

embedding (t-SNE) analysis and using expression profiles of known marker genes for various stages of 

foetal germ cell development. In our analysis we included four clusters of female foetal germ cells 
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(Mitotic, Retinoic Acid (RA) responsive, Meiotic, Oogenesis) and four clusters containing somatic cells 

in the foetal gonads (Endothelial, Early_Granulosa, Mural_Granulosa, Late_Granulosa). Software 

packages for R - tidyverse (https://www.tidyverse.org/), pheatmap, (https://CRAN.R-

project.org/package=pheatmap), reshape2 (https://github.com/hadley/reshape), were used in processing 

and visualising the data. 

3.2.7 Functional enrichment tests for ZNF518A transcription factor binding 

sites using fGWAS and SLDP 

 

fGWAS (v.0.3.6), a hierarchical model for joint analysis of GWAS and genomic annotations, was used to 

test the functional enrichment of ANM GWAS hits in ZNF518A transcription factor binding sites197. The 

fGWAS input file contained the ANM GWAS summary statistics derived from the ReproGen study82 

annotated for ZNF518A binding sites. The ZNF518A annotation file was derived from the ENCODE 

ChIP-seq data from human HEK293 cell line [ENCSR159GFL]198, where the optimal independent 

discovery rate peak calling against hg19 [ENCFF415VBF] was used. The ANM GWAS hits were 

annotated for the presence/absence of the ZNF518A transcription factor binding sites in a binary way (0, 

1), with ‘1’ if the SNP falls within the transcription factor binding site and ‘0’ otherwise. The fGWAS 

tool available from https://github.com/joepickrell/fgwas and was run in annotation mode “-w” for the 

described ZNF518A annotation. Detailed description of fGWAS methodology is available in Pickrell et 

al, 2014197. In short, the genome is split into independent blocks, which are allowed to contain either a 

single polymorphism that causally influences the trait or none. fGWAS then models the prior probability 

that any given block contains an association and the conditional prior probability that any given SNP in 

the block is the causal one, with probabilities allowed to vary according to functional annotations. The 

priors are then estimated using an empirical Bayes approach. The fGWAS output contained the maximum 

likelihood parameter estimates for each parameter in the model, in this case ZNF518A, with the lower and 

upper bound of the 95% confidence interval (CI) on the parameter. The P value was calculated from 

fGWAS lower and upper CI (stated on the page 84) in 3 following steps: (1) Standard error (SE) 

calculation: SE = (Upper CI − Lower CI)/(2*1.96); (2) Test statistics calculation: Z=Estimate / SE; and 

(3) P value calculation: P = exp(−0.717*Z − 0.416*Z2)567. 

 

Signed LD profile (SLDP) regression was applied to explore the directional effect of a signed functional 

annotation, ZNF518A, on a heritable trait like ANM using GWAS summary statistics. More specifically, 

we tested whether alleles that are predicted to increase the binding of the transcription factor ZNF518A 

have a genome-wide tendency to increase or decrease ANM. The SLDP tool was installed from 
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https://github.com/yakirr/sldp, with the comprehensive methodological steps described in Reshef et al, 

2018199. For the analysis to be conducted, SLDP required GWAS summary statistics for ANM, signed LD 

profiles for ZNF518A binding, signed background model and reference panel in a SLDP compatible 

format. For the reference we used a 1000 Genomes Phase 3 European reference panel in plink format, 

which contained approximately 10M SNPs and 500 people and was available for download at the refpanel 

page. The ANM GWAS summary statistics, available from our latest Reprogen study, was pre-processed 

using the ‘preprocesspheno’ tool from the SLDP package. To conduct this step, we also obtained the list 

of regression SNPs along with the LD scores for the reference panel from the refpanel page. The pre-

processing step included filtering down to SNPs that are also present in the reference panel, harmonising 

alleles to the reference, and multiplying the summary statistics by the SLDP regression weights. In 

addition, we applied the ‘preprocessrefpanel’ tool to compute truncated singular value decomposition 

(SVD) for each LD block in the reference panel. These SVDs were later used to weight the SLDP 

regression. The ZNF518A annotation file was obtained from the ENCODE CHIP-seq analysis, as 

described above, and preprocessed using the ‘preprocessannot’ tool that turns signed functional 

annotations into signed LD profiles. Prior to running SLDP, we also obtained the signed background LD 

profiles that enabled us to control for systematic signed effects of minor alleles, which could arise from 

either population stratification or negative selection. SLDP was then run on our data using the ‘sldp’ 

function.  

 

To explore the relevance of ZNF518A for ANM in comparison to other transcription regulators, we tested 

whether genome-wide sequence changes introduced by SNP alleles identified in ANM GWAS increase or 

decrease binding of additional 382 transcription factors (TFs). The pre-processed annotation files for 382 

TFs derived from ENCODE CHIP-seq experiments, were available for download at the annotation data 

page. The results are presented in Figure 3.7. 

3.2.8 Functional analysis of ZNF518A binding sites 

 

ZNF518A peaks were derived from unique genomic regions in ENCODE accession ENCFF415VBF 

described above. Quantification of ChIP-seq signal by aligning paired-end replicates (ENCFF174HBR, 

ENCFF574GQY, ENCFF808AJP, ENCFF453FDD) to the hg19 genome with Bowtie2 v2.3.5.1200 with 

options “-I 0 -X 1000 –no-discordant –no-mixed”, reads were filtered for those with MAPQ > 30 with 

samtools v1.10. Assessment of H3K27ac201 and chromatin accessibility by ATAC-seq202 in day 4 human 

primordial germ cell like cells (hPGCLCs) at ZNF518A peaks was performed. For H3K27ac single end 

reads from accessions GSM4257216, GSM4257217,GSM4257218 were obtained and aligned with 

https://github.com/yakirr/sldp
https://alkesgroup.broadinstitute.org/SLDP/refpanel/
https://alkesgroup.broadinstitute.org/SLDP/refpanel/
https://alkesgroup.broadinstitute.org/SLDP/annots/basset/
https://alkesgroup.broadinstitute.org/SLDP/annots/basset/
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Bowtie2 v2.3.5.1 with default settings and MAPQ > 30 reads retained as above. For ATAC-seq paired-

end reads were obtained from accessions GSM3406938, GSM3406939 and mapped and filtered as 

ZNF518A reads above. 

Quantification of ChIP-seq and ATAC-seq signals for peak heights, heatmaps was performed with 

https://github.com/owensnick/GenomeFragments.jl. Peak to transcription start site (TSS) distances were 

calculated against Gencode v36 release liftover to hg19 using GenomicFeatures.jl and 

https://github.com/owensnick/ProximityEnrichment.jl. We consider four categories of peaks: TSS 

intersecting, TSS proximal (TSS < 2000kb, outside gene body), Gene body intersecting, Intergenic and 

Distal (TSS > 5kb). 

To perform de novo motif discovery we used Homer v4.11.1203 using findMotifsGenome.pl with options 

“hg19 -size 200”. We ran this on all ZNF518A peaks, distal peaks and those intersecting TSS, we 

recovered a motif matching JASPAR204 unvalidated motif UN0199.1 in all peak sets apart from those 

intersecting TSS. We then used https://github.com/exeter-tfs/MotifScanner.jl to quantify the occurrence 

of all instances of motif UN0199.1 in ZNF518A peaks. 

We downloaded the 18-state ChromHMM205 models for all 833 biosamples in Epimap206 from 

http://compbio.mit.edu/epimap/. We calculated the intersection between each state in each biosample and 

either all ZNF518A peaks or distal ZNF518A peaks using GenomicFeatures.jl. We calculated ORs from 

contingency tables using the approximation of bedtools207 and Giggle208, by estimating total genomic 

intervals as hg19 genome size divided by the sum of the mean ZNF518A peak size and the chromatin state 

interval size. The results are presented in Figure 3.7. 

3.2.9 De novo mutation rate analyses 

 

We calculated GWAS-based PGSs in participants from the rare disease programme of the 100,000 

Genome Project (100kGP) v14. There were 77,901 individuals in the Aggregated Variant Calls (aggV2) 

after excluding participants whose genetically inferred sex was inconsistent with their phenotypic sex. We 

restricted the PGS analysis to individuals of European ancestry, which was predicted by the Genomics 

England Bioinformatics team using a random forest model based on genetic PCs generated by projecting 

aggV2 data onto the 1000 Genomes phase 3 PC loadings. We removed one sample in each pair of related 

probands with kinship coefficient > 1/(2^4.5), i.e. up to and including third degree relationships. Probands 

with the highest number of relatives were removed first. Similarly, we retained unrelated mothers and 

fathers of these unrelated probands. It left us with 8,089 mother-offspring duos and 8,029 father-offspring 

duos. 
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We used the lead variants (or proxies, as described below) for genome-wide significant GWAS loci 

previously reported for age at ANM82 to calculate PGS in the parents. In 100kGP, we removed variants 

with MAF <0.5% or missing rate >5% from the aggV2 variants prepared by the Genomics England 

bioinformatics team. For lead variants that did not exist in 100kGP, we used the most significant proxy 

variants with LD r2 >0.5 if available in 100kGP. This resulted in a PGS constructed from 287 of the 290 

previously reported GWAS loci. We included 20 genetic PCs that were calculated within the European 

subset from the PGS and scaled the residuals to have mean = 0 and standard deviation = 1. Higher PGS 

indicates later age at menopause. 

 

De novo mutations (DNMs) were called in 10,478 parent offspring trios by the Genomics England 

Bioinformatics team. The detailed analysis pipeline is documented at: https://research-

help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset. Extensive QC and 

filtering were applied by Kaplanis et al. (2021) as described209. De novo SNVs (dnSNVs) were phased 

using a read-based approach based on heterozygous variants near the DNM that were able to be phased to 

a parent. About one third of the dnSNVs were phased, of which three quarters were paternally phased 

(Figure 3.13). 

 

In association models, we accounted for parental age, the primary determinant of the number of DNMs, 

and various data quality metrics as described in Kaplanis et al (2021)209:  

● Mean coverage for the child, mother and father (child_mean_RD, mother_mean_RD, 

father_mean_RD) 

● Proportion of aligned reads for the child, mother and father (child_prop_aligned, 

mother_prop_aligned, father_prop_aligned) 

● Number of SNVs called for child, mother and father (child_SNVs, mother_SNVs, father_SNVs) 

●  Median variant allele fraction of DNMs called in child (median_VAF) 

● Median ‘Bayes Factor’ as outputted by Platypus for DNMs called in the child. This is a metric of 

DNM quality (median_BF). 

 

 

 

 

 

https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
https://research-help.genomicsengland.co.uk/display/GERE/De+novo+variant+research+dataset
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We first tested the association between parental PGSs and total dnSNV count in the offspring in a Poisson 

regression: 

 

𝑑𝑛𝑆𝑁𝑉𝑠 𝑡𝑜𝑡𝑎𝑙 = 𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 +  
𝛽3𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 + 𝛽4𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽6𝑚𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽7𝑓𝑎𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽8𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽9𝑚𝑜𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽10𝑓𝑎𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽11𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽12𝑚𝑜𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 𝛽13𝑓𝑎𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽14𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽15𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
 

We also fitted Poisson regression models to test the association between the PGS of one of the parents 

and the dnSNVs in the offspring that were phased to the relevant parent. 

The paternal model included paternal PGS, age, and data quality metrics that are related to the proband 

and the father: 

 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑓𝑎𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑓𝑎𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑓𝑎𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
 

Similarly, the maternal model was as follows: 

 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑚𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑚𝑜𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑚𝑜𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
 

Finally, as a sanity check, we assessed the association between the maternal PGS and paternally phased 

dnSNVs, and vice versa: 

 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑓𝑎𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑓𝑎𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑓𝑎𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
 

𝑑𝑛𝑆𝑁𝑉𝑠_𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛽0 + 𝛽1𝑝𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑃𝐺𝑆 + 𝛽2𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙_𝑎𝑔𝑒 +  
𝛽3𝑐ℎ𝑖𝑙𝑑_𝑚𝑒𝑎𝑛_𝑅𝐷 + 𝛽4𝑚𝑜𝑡ℎ𝑒𝑟_𝑚𝑒𝑎𝑛_𝑅𝐷 + 

𝛽5𝑐ℎ𝑖𝑙𝑑_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 𝛽6𝑚𝑜𝑡ℎ𝑒𝑟_𝑝𝑟𝑜𝑝_𝑎𝑙𝑖𝑔𝑛𝑒𝑑 + 

𝛽7𝑐ℎ𝑖𝑙𝑑_𝑠𝑛𝑣𝑠 + 𝛽8𝑚𝑜𝑡ℎ𝑒𝑟_𝑠𝑛𝑣𝑠 + 

𝛽9𝑚𝑒𝑑𝑖𝑎𝑛_𝑉𝐴𝐹 + 𝛽10𝑚𝑒𝑑𝑖𝑎𝑛_𝐵𝐹 
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3.2.10 Mendelian Randomisation 

MR analysis was applied to examine the likely causal effect of ANM (expressed as a PGS) on the risk of 

de novo mutation rates in the offspring. The analysis was conducted following the methodology described 

in Section 2.3.1. Genotypes at all variants were aligned to designate the ANM PGS-increasing alleles as 

the effect alleles as described above and this was used as a genetic instrument of interest. The effect sizes 

of genetic instruments (genotypes in the mother) on maternally phased dnSNVs in the offspring estimated 

in 8,089 duos were obtained from Genomics England. 

The results were considered as significant based on the P value significance consistency across different 

primary and sensitivity models applied, which are in details described in Section 2.3.1. The results are 

available in Tables 3.2 and 3.3. Finally, in order to calculate the effect of ANM on offspring de novo 

mutation rate when comparing women with ANM at two extremes of the ANM distribution curve, we 

multiplied the effect obtained by MR IVW, i.e. a de novo count beta per 1 year change in ANM, by 20, an 

arbitrary number that compares women with ANM 20 years apart.  

 

3.3 Results 

3.3.1 Exome-wide gene burden associations with ANM 

To assess the impact of rare damaging variants on ANM, we analysed WES data available in 106,973 

post-menopausal UKBB female participants of European genetic-ancestry158. Individual gene burden 

association tests were conducted by collapsing genetic variants according to their predicted functional 

categories. We defined three categories of rare exome variants with MAF < 0.1%: HC PTVs, missense 

variants with CADD score ≥ 25, and ‘damaging’ variants (defined as combination of HC-PTVs and 

missense variants with CADD ≥ 25). We analysed 17,475 protein-coding genes with the minimum of 10 

rare allele carriers in at least one of the three masks tested. The primary burden association analysis was 

conducted using linear mixed models BOLT-LMM154. The low exome-wide inflation scores (e.g. PTV 

λ=1.047) and the absence of significant association with the synonymous variant burden for any gene 

indicate good calibration of our statistical tests (Figure 3.2).  
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Figure 3.2: Exome-wide association results for synonymous variants. Plotted are per-gene burden results for 

synonymous variants. The red line indicates the exome-wide significant P value after Bonferroni correction of 

1.08*10-6. Lack of association was expected for this ‘negative control’ analysis. 

 

We identified rare variation in nine genes associated with ANM at corrected exome-wide significance 

(P<1.08*10-6, Figures 3.3 and 3.4). Three of these genes have been previously reported in a previous 

analysis of the same UKBB WES sample191 - we confirm the associations of CHEK2 (beta=1.57 years, 

95% CI: 1.23-1.92, P=1.60*10-21, N=578 damaging allele carriers) and HELB (beta=1.84, 95% CI: 1.08-

2.60, P=4.20*10-7, N=120 HC-PTV carriers) with later ANM and a previously borderline association of 

HROB with earlier ANM (beta= -2.89 years, 95% CI: 1.86-3.92, P=1.90*10-8, N=65 HC-PTV carriers). 

In addition, our previous ANM GWAS analyses82 identified an individual with low-frequency PTV 

variant in BRCA2, which we now extend to demonstrate that in aggregate BRCA2 HC-PTV carriers 

exhibit 1.18 years earlier ANM (beta= -1.18, 95% CI: 0.72-1.65, P=2.60*10-7, N=323). Rare variants in 

the remaining five genes – ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1 have not been previously 

implicated in ovarian ageing. Effect sizes of these associations range from 5.61 years earlier ANM for 

HC-PTV carriers in ZNF518A, to 1.35 years later ANM for women carrying damaging alleles in 

SAMHD1. This contrasts with a maximum effect size of 1.06 years (median 0.12 years) for common 

variants (MAF>1%) identified by previous ANM GWAS82. 
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Figure 3.3: Exome-wide associations with age at natural menopause. (A) Manhattan plot showing gene burden 

test results for age at natural menopause. Genes passing exome-wide significance (P<1.08x10-6) are indicated, with 

point shape showing the variant class tested. (B-D) QQ plots for (B) high confidence PTVs (C) CADD ≥ 25 missense 

variants (D) damaging variants.  
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Figure 3.4: Forest plot for gene burden associations with age at natural menopause. Exome-wide significant (P < 

1.08*10-6) genes are displayed. Points and bars indicate beta and 95% CI for specific variant categories, MAC and 

P values derived from BOLT-LMM. 

 

In order to depict the variants that contribute to the gene-level burden score, we plotted lolliplot plots 

demonstrating variant level associations and indicating the direction of the effect, strength of association 

with ANM, as well as the number of allele carriers (Figure 3.5 and 3.6). This suggests that, consistent 

with expectation, the significant burden level results for the newly identified genes are driven by multiple 

variants contributing towards the overall signal, some of which had variants with more dominant effect on 

that signal. 
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Figure 3.5: Variant level associations for age at natural menopause decreasing WES genes. Lolliplot plots show 

the variants clustered for the best performing functional mask per gene from gene burden tests for ANM using 

BOLT-LMM. These include: (A) BRCA2 HC PTV mask; (B) ETAA1, HC PTV mask; (C) HROB, HC PTV mask; (D) 

PALB2, HC PTV mask; (E) PNPLA8, HC PTV mask; and (F) ZNF518A, HC PTV mask. The lines pointing upwards 

represent the variants positively associated with ANM, while the downwards ones show the negatively associated 

variants. The size of the point indicates the allele count.  
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Figure 3.6: Variant level associations for age at natural menopause increasing WES genes. Lolliplot plots show 

the variants clustered for the best performing functional mask in a gene that went into the gene burden test for ANM 

using BOLT-LMM. These include: (A) CHECK2, damaging mask; (B) HELB, HC PTV mask; and (C) SAMHD1, 

damaging mask. The lines pointing upwards represent the variants positively associated with ANM, while the 

downwards ones show the negatively associated variants. The size of the point indicates the allele count.  

 

We next sought to understand why previous analyses of the same UKBB WES data missed the 

associations we report here, and conversely why we did not identify associations with other previously 

reported genes. Of the seven genes identified by Ward et al.191, three were also identified by our study 

(CHEK2, HELB and HROB), three were recovered when we increased our burden test MAF threshold 

from 0.1% to 1% (DCLRE1A, RAD54L, TOP3A), and an additional gene fell just below our P value 

threshold when considering variants with <1% MAF (CLPB; P =1.2*10-5). Importantly, our results 

provide more robust evidence (P = 1.9*10-8) for the previously described suggestive HROB association (P 

= 2.9*10-6) and we identified six genes, which were not captured by Ward et al.: ZNF518A, BRCA2, 

ETAA1, PALB2, PNPLA8 and SAMHD1 (Appendix Table 3.2). We investigated potential study design 

differences that could account for variation in the findings as the same data was used in both studies. 

3.3.1.1 Associations not captured in current analysis 

First we investigated potential analytical parameters that could account for differences in the findings. 

Associations with DCLRE1A, RAD54L, TOP3A and CLPB were not identified in our study, because we 

restricted our analysis to variants with a MAF <0.1%, rather than <1%. We re-analysed our data with a 

burden test MAF threshold of <1% and three of the four associations were replicated: DCLRE1A (P MAF 
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1%= 3.8*10-8, N: 1056), RAD54L (P MAF 1%= 6.4*10-7, N: 1892) and TOP3A (P MAF 1%= 1.5*10-7, N: 2001). 

RAD54L and TOP3A were genes highlighted by GWAS and the exome association in TOP3A was driven 

by a single, relatively common variant (rs34001746, MAF=0.7%, P=1.63*10-10). This variant was in LD 

with the previously reported lead GWAS SNP (rs569145577, r2=0.92), with little evidence for association 

after its exclusion (P=0.50 for all other missense and PTVs). CLPB just missed our P-value threshold, but 

again a single variant (rs150343959, P=8.22*10-6) was largely driving the association signal - when 

excluded in leave-one-out analysis, the CLPB burden association dropped (P=1.19*10-2). By including 

relatively common variants in gene burden masks, single variants can dominate the general functional 

effect being tested, which could be contributed to by LD with non-exomic functional variants. Therefore 

in order to be able to make a stronger link between genetic variants and individual genes, we chose to 

restrict our analysis to rarer variants with MAF <0.1%. 

3.3.1.2 Associations not captured by Ward et al 

Differences in MAF thresholds did not explain why our study identified an additional six genes (BRCA2, 

ETAA1, PALB2, PNPLA8, SAMHD1 and ZNF518A) compared with Ward et al191. We therefore tested 

differences in the phenotype preparation, tools and variant masks used to test the associations. Four of our 

six additional gene burden associations (BRCA2, PALB2, PNPLA8, and SAMHD1) were relatively near 

the borderline of the significance threshold in our analyses in the BOLT-LMM pipeline.  

We included a ~20% larger sample size (106,973 post-menopausal women) in comparison to Ward et al. 

(78,311 unrelated post-menopausal women), which would have resulted in more statistical power in our 

analyses (Appendix Table 3.2). This was particularly important for BRCA2, ETAA1 and PALB2 - Ward 

et al. included 63 (19.5%) fewer BRCA2 and 46 (21.7%) fewer PALB2 carriers of rare damaging variants 

(Appendix Table 3.2) and identified the ANM association in these genes only at the borderline of 

exome-wide significance, P=1.55*10-6 and P=7.47*10-5, respectively. Similarly for SAMHD1, Ward et al. 

captured 57 (24.3%) fewer carriers in their linear regression model compared with our main analysis, 

which resulted in association P values of 6.38*10-4 in the linear regression model and P=8.02*10-6 in the 

time to event analysis. Reasons for the smaller sample size in the previous study included: Ward et al. 

used only unrelated individuals in their primary analyses, whereas we used linear mixed models and were 

therefore able to include an additional ~19,000 related individuals. Secondly, Ward et al. excluded ~2,300 

women with ANM <40 and >60 years, while we used the full (winsorised) natural menopause 

distribution. Finally, we took into account four instances where questions regarding ANM were asked, 

whereas Ward et al. used data from the baseline visit in their main analysis, resulting in an additional 

~7,400 women. 
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As sensitivity analyses and to better replicate the methods of Ward et al., for four of the genes (CHEK2, 

DCLRE1A, ZNF518A and PNPLA8) we compared results from linear regression in unrelated individuals 

using MAF<1% with those from a time-to-event Cox proportional hazards model (Appendix Table 3.2). 

Association statistics from the Cox model (CHEK2: P=2.4*10-39, DCLRE1A: 6*10-8, ZNF518A: 1.4*10-9, 

PNPLA8: 5.7*10-10) were comparable to those from linear regression models based on the full range of 

ANM (CHEK2: P=3.1*10-46, DCLRE1A: 2.5*10-8, ZNF518A: 1.2*10-9, PNPLA8: 1.9*10-9). 

Finally, differences in variant annotation may also explain some inconsistencies between studies. 

ZNF518A was not reported by Ward et al., which may be because all variants are in the last and only 

coding exon of the gene, and in some annotations such variants would inappropriately be excluded from 

being considered as LoF. We note that another single coding exon gene (NFIL3) was not included by 

Ward et al., but was in our analysis. 

Detailed comparisons between our study and Ward et al. are available in Appendix Table 3.2. 

3.3.2 Exploring common variant associations at identified ANM genes 

To explore the overlap between common and rare variant association signals for ANM, we integrated our 

exome-wide results with data generated from the largest reported common variant GWAS of ANM82. 

Five of our nine identified WES genes (CHEK2, BRCA2, ETAA1, HELB and ZNF518A) mapped within 

500kb of a common GWAS signal. Notably, we previously reported a common, predicted benign, 

missense variant (rs35777125-G439R, MAF=11%) in ETAA1 associated with 0.26 years earlier ANM. In 

contrast, our WES analysis identified that rare HC-PTV carriers show a nearly 10-fold earlier ANM 

(beta= -2.28 years, 95% CI: 1.39-3.17, P=5.30*10-8, N=87). Furthermore, three independent non-coding 

common GWAS signals ~150kb apart (MAF: 2.8-47.5%, beta: -0.28-0.28 years per minor allele) were 

reported proximal to ZNF518A, whereas our gene burden testing  finds that rare HC-PTV carriers show 

nearly 20-fold earlier ANM than common variant carriers (beta= -5.61 years, 95% CI: 4.04-7.18, 

P=2.10*10-12, N=28). 

In addition there were two genes within 500kb of GWAS loci (BRCA1 and SLCO4A1) that were 

associated with ANM by gene burden testing at P <1.7*10-5 (Bonferroni correction for the 2910 genes 

included). Effect sizes for the common variant association ranged from 0.07-0.24 years per allele at these 

loci, whereas gene burden tests for rarer variants revealed much larger effect sizes: for BRCA1, 2.1 years 

earlier for PTVs (P=2.4*10-6) and for SLCO4A1, 1.13 years earlier ANM for damaging variants 

(P=1.1*10-5), with non-overlapping 95% confidence intervals between common and rare variant 

associations for BRCA1. 
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3.3.3 Common ANM associated variants are enriched in ZNF518A binding 

sites 

Heterozygous loss of function of ZNF518A had the largest effect on ANM of the genes we identified by 

WES. ZNF518A is poorly characterised C2H2 zinc finger transcription factor, which has been shown to 

physically associate with PRC2 and G9A-GLP repressive complexes along with its paralog ZNF518B, 

suggesting a potential role in transcriptional repression210. ZNF518A localises robustly to 18,706 sites in 

the genome, based on ChIP-seq data available from ENCODE211,212 and binds primarily to gene 

promoters, with 33.5% (6,263) of ZNF518A binding sites within 2kb of a transcription start site (TSS) 

(Figure 3.7 A-C). Common variants associated with ANM82 were enriched in the transcriptional targets 

of ZNF518A (estimate: 2.016 [95% CI: 0.745-2.797], P=1.32*10-4) using fGWAS197. Note that the 

estimates derived from fGWAS do not indicate the directionality of the effect. We further tested 

functional enrichment using SLDP regression199. This confirmed the enrichment of ZNF518A binding 

sites near to loci associated with ANM and showed that its transcriptional repression is associated with 

earlier ANM (P=0.02), consistent with results of our rare variant burden tests. Separating ZNF518A sites 

by those proximal (< 2Kb) and distal (>5kb) from a TSS, demonstrated this association was due to 

ZNF518A binding at regulatory regions distal to the TSS (proximal TSS P=0.3, distal ZNF518A 

P=0.002). Notably, these regulatory ZNF518A bound loci produce the largest association amongst an 

SLDP catalogue of 382 transcription factors and regulators (Figure 3.7 D). These results suggest a 

different functional role for ZNF518A at TSS and more distal regulatory regions. In order to explore this 

further we assessed the sequence determinants of ZNF518A binding. De novo motif discovery identified 

an AT-rich motif enriched at distal regulatory ZNF518A binding sites, but not at TSS bound by ZNF518A. 

This AT-rich motif was centrally enriched within ZNF518A ChIP-seq peaks, and matched an unvalidated 

motif present in the JASPAR transcription factor motif database204 (Figure 3.7 E). We found the number 

of perfect instances of this AT-rich motif to be strongly associated with ZNF518A occupancy as assessed 

by ZNF518A ChIP-seq signal at distal regions but not at TSS (Figure 3.7 F, G). At distal regions, the 

maximal association between peaks greater than the median height was found at least seven motif 

instances (Hypergeometric right tail P < 10-389, OR=7.41). These data suggest that ZNF518A is recruited 

by DNA sequence at distal sites, but at TSS may be recruited to gene promoters by interaction with 

another DNA binding factor. 
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Figure 3.7: Functional analysis of ZNF518A bound loci. (A) Histogram of log10-scale distances between 

ZNF518A and nearest gene transcription start site (TSS). (B) Proportion of ZNF18A peaks falling proximal to TSS 

(TSS < 2kb), within gene bodies and in intergenic regions. (C) Boxplots showing total normalised reads per million 

(RPM) for every peak for categories TSS < 2kb, gene body and intergenic - ZNF518A peaks have greater signal at 

proximal to TSS. (D) SLDP association between ANM GWAS variants and ZNF518A peaks, stratified by all peaks, 

proximal (< 2kb) from a TSS, and distal (> 5kb) from a TSS. The association between ANM variants and ZNF518A 

peaks appears due to distal ZNF518A peaks (either gene body or intergenic, > 5kb TSS) and not proximal TSS 

binding. (E) De novo motif discovery recovers unvalidated JASPAR motif for ZNF518A UN0199.1. Homer 

enrichment statistics: all sites P= 10-6451 motif in 31.2% of targets (1.15% background); distal sites P= 10-4590 motif 

in 47.3% of targets (1.81 % background). (F) Proportion of maximal scoring instances of UN0199.1 (sequences that 

exactly match motif consensus) by ZNF518A peak category. Many distal peaks contain multiple perfect instances of 

the motif. (G) Boxplots, violin plots and dot plots depicting the relationship between ZNF518A ChIP-seq peak height 

and number of maximal scoring motifs present in peak. A strong relationship between peak height and number of 

motif instances can be observed. (H) Heatmaps depicting ZNF518A ChIP-seq, H3K27ac ChIP-seq in hPGCLCs, 

and chromatin accessibility by ATAC-seq in hPGCLCs. Signal shown over all ZNF518A peaks in RPM +/- 1kb of 

ZNF518A peak summit. ZNF518A bound promoters (TSS < 2kb) are accessible and are marked with H3K27ac, 
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distal regions either in gene bodies or intergenic regions show no H3K27ac or chromatin accessibility, suggestive 

that ZNF518A represses these regulatory regions. (I,J) Association shown in odds ratios of ChromHMM states over 

833 tissues/cell types from Epimap, boxplots with outliers shown, each boxplot summarises the distribution of 

associations over all tissues/cell types for a given chromatin state. (I) All ZNF518A peaks; (J) ZNF518A peaks 

distal from TSS. 
 

We next used publically available data on in vitro differentiated human primordial germ like-cells201,202 to 

assess the chromatin state at ZNF518A bound loci, directly comparing distal regions with TSS. ZNF518A 

bound TSS showed chromatin accessibility202 and were marked with H3K27ac201. In contrast, distal 

regions lacked H3K27ac and showed minimal chromatin accessibility (Figure 3.7 H). Extending this 

comparison to the Epimap chromatin states206, we find that overall ZNF518A bound loci are enriched in 

active TSS and that distal ZNF518A regions are variously enriched in active and repressed chromatin 

(Figure 3.7 I,J). Consistent with previous data which has found ZNF518A in repressive complexes, these 

data suggest that ZNF518A is recruited by DNA sequence to distal regulatory regions where it acts to 

repress local chromatin.  

While ZNF518A is known to have diverse tissue expression including the ovary, we found that it was 

highly expressed in foetal germ cells at both the mitotic and meiotic stages (Figures 3.8 and 3.9). The 

eight other WES genes identified in this study were expressed at varying levels in foetal gonadal cells, 

oocytes and granulosa cells across different developmental stages. 
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Figure 3.8: Expression levels of genes across various stages of female germ cell development. In the X-axis, genes 

are ranked according to their average expression at each stage (Y-axis) (A) in human foetal primordial germ cells 

and (B) in granulosa cells in adult follicles. Genes identified as novel ANM genes in WES analysis are coloured in 

green and all other genes in the genome are in grey. ZNF518A is depicted in orange for the ease of comparison with 

other genes. 
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Figure 3.9: mRNA expression of WES genes during foetal stages and folliculogenesis. Box and whisker plots of 

mRNA expression of the WES genes at different stages of germ cell development. The plots represent the 

interquartile range of TPM values, the line at the centre of the box representing the median, error bars indicate the 

95% confidence interval and outliers shown as dots. (A) The sub-clusters from single foetal cells from week 5 to 26 

post-fertilisation are on the X-axis with the average TPM expression values log2(TPM+1) on the Y-axis. (B) 

Different stages of folliculogenesis in oocytes and granulosa cells are represented on the X-axis with their average 

expression values log2(FPKM+1) on the Y-axis. 
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3.3.4 Identified genes influence other aspects of health and disease 

Deciphering the genetic control of menopause is important for understanding the relationship between 

menopause and associated disease risk. Our genetic studies have previously shown that the genetic 

mechanisms regulating the end of reproductive life are largely distinct from those determining its 

beginning131. However, it is noteworthy that the largest reported GWAS for age at menarche identified a 

common variant signal at the ZNF518A locus for later puberty timing in girls (rs1172955, beta= 0.04 

years, 95% CI: 0.03-0.05, P=6.6*10-12), which appears nominally associated with earlier ANM (beta=-

0.04, 95% CI: 0.01-0.06, P=6.6*10-3)131. To extend this observation, we found that our identified 

ZNF518A PTVs were also associated with later age at menarche (0.56 years, 95% CI: 0.14- 0.98, 

P=9.2*10-3). Furthermore, using fGWAS and SLDP, we discovered that, similar to ANM, common 

variants that influence puberty in girls were enriched in transcriptional targets of ZNF518A. These data 

suggest that loss of ZNF518A shortens reproductive lifespan, by delaying puberty and reducing age at 

menopause. 

We next explored the impact of ANM-associated genes on cancer outcomes and found a novel association 

of SAMHD1 damaging variants and HC-PTVs with ‘All cancer’ in both males (OR=2.12, 95% CI: 1.72-

2.62, P=4.7*10-13) and females (OR=1.61, 95% CI: 1.31-1.96, P=4*10- 6; Figure 3.10, Appendix Table 

3.4). In addition, we replicated previously reported associations with PTVs in BRCA2, CHEK2 and 

PALB2 and cancer outcomes in males and females82,86. 
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Figure 3.10: Forest plot for age at natural menopause WES genes with significant gene burden associations for 

cancer phenotypes. Exome-wide significant (P < 1.08*10-6) genes are displayed, showing sex-stratified and 

combined results. Hormone sensitive cancers were only tested in males and females separately (Methods). The 

presented masks were selected based on the most significant association per gene and cancer type. Points and bars 

indicate OR and 95% CI for specific genes and their variant categories in cancer. Filled symbols indicate a result 

passing a Bonferroni-corrected significance threshold of P < 1.08*10-6. 

 

SAMHD1 associations with cancer appear to be driven by increased risk for multiple site-specific cancers, 

notably prostate cancer in males and mesothelioma in both males and females, as well as suggestive 

evidence for higher susceptibility of breast cancer in females (Figure 3.11, Appendix Table 3.6). 

Although the numbers of mutation carriers with each site-specific cancer was small, most of these 

findings persisted using logistic regression with penalised likelihood estimation, which is robust to 

extreme case/control imbalance193. 
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Figure 3.11: Genetic susceptibility to earlier ovarian ageing and increased risk for diverse cancer types. Plot 

showing the association between loss of ANM genes identified in this study and risk of 90 site specific cancers 

among UKBB participants. Summary statistics for cancer associations were obtained using a logistic regression 

with penalised likelihood estimation that controls for case/control imbalance (Methods)193. Associations highlighted 

in text passed exome-wide significance (P < 1.08*10-6). The y-axis is capped at -log10(P) = 30 for visualisation 

purposes; un-capped summary statistics can be found in Appendix Table 3.6. F: females, M: males, C: sex-

combined. 1°: primary cancer, 2°: secondary cancer. 

 

Cancer risk-increasing alleles in SAMHD1 were associated with later ANM, which is similar to the 

pattern demonstrated previously for CHEK2. This finding is consistent with a mechanism of disrupted 

DNA damage sensing and apoptosis, resulting in slowed depletion of the ovarian reserve82. This is in 

contrast to BRCA2 and PALB2, where cancer risk-increasing LoF alleles inhibit DNA repair and lead to 

earlier ANM. In addition, we provide robust evidence for a previously described rare variant association 

for SAMHD1 with telomere length (TL)213, highlighting that rare damaging variants cause longer TL 

(P=1.4*10-59) (Figure 3.12, Appendix Table 3.4). This further supports its role in tumorigenesis as 

genetic variants associated with longer TL are considered to be risk factors for various cancer types214. 

Furthermore, a woman’s reproductive life span has previously been shown to positively correlate with 

TL, a known biomarker for biological ageing 215,216. 
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Figure 3.12: Age at natural menopause gene burden associations with reproductive ageing-related traits of 

interest in females only. The coefficients and 95% CIs were female-specific and plotted for the quantitative traits 

only. The association was tested using BOLT-LMM.   

 

3.3.5 Genetic susceptibility to ANM in mothers influences de novo mutation 

rate in offspring 

Of the nine genes we identified by WES as associated with ANM, seven are involved in DDR, further 

supporting the role of this mechanism in ovarian ageing. For genes that inhibit DNA double-strand break 

(DSB) repair, the hypothesis is that they cause premature depletion of the ovarian reserve due to a failure 

to repair oocytes with DNA damage. This is evidenced by the reported increased numbers of DNA DSBs 

in the oocytes of Brca1-deficient mice and of women with BRCA1 mutations who underwent elective 

oophorectomy93. Our current study adds further support, with heterozygous BRCA1 and BRCA2 LoF 

alleles causing 2.1 and 1.18 years earlier ANM, respectively.  



 

93 

We sought to build on these observations by testing the hypothesis that inter-individual variation in these 

DDR processes would influence the mutation rate in germ cells and hence in the offspring. More 

specifically, we hypothesised that genetic susceptibility to earlier ovarian ageing would be associated with 

a higher de novo mutation (DNM) rate in the offspring. To test this, we analysed 8,089 whole-genome 

sequenced parent-offspring trios recruited in the rare disease programme of the 100,000 Genome Project 

(100kGP, Figure 3.13, Table 3.1). 

 
 

Figure 3.13: Distribution of de novo single nucleotide variants (dnSNVs). The histogram shows the number of (A) 

total dnSNVs, (B) paternally derived dnSNVs and (C) maternally derived dnSNVs in unrelated probands with 

European ancestry from the 100,000 Genomes Project. 
 

We calculated a polygenic score (PGS) for ANM in the parents based on our previously identified 290 

common variants82 and tested this against the phased DNM rate in the offspring, adjusted for age. We 

found that maternal genetic susceptibility to earlier ANM was associated with an increased rate of 

maternally-derived DNMs in the offspring (rate ratio = 1.02 per SD of PGS, P=6.8*10-4, N=8,089 duos 

with European ancestry; Table 3.1). 
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Table 3.1: The association between parental polygenic scores for age at natural menopause and de novo 

mutations in offspring. We tested the association between parental PGS and total dnSNVs as well as phased 

dnSNVs in a Poisson regression. Details of the association models and covariates are in the Methods. Note that the 

values are aligned to ANM-increasing PGS.  

 

De novo 

mutations 

 

PGS 

Sample 

size 

 

Beta 

 

SE 

Rate 

ratio 

Lower CI 

Rate ratio 

Upper 

CI Rate 

ratio 

 

P 

total dnSNVs mother 7672 -0.0010 0.0014 0.999 0.996 1.002 4.83*10-1 

total dnSNVs father 7672 -0.0007 0.0014 0.999 0.996 1.002 6.17*10-1 

maternal dnSNVs mother 8089 -0.0183 0.0054 0.982 0.972 0.992 6.81*10-4 

paternal dnSNVs father 8029 -0.0019 0.0029 0.998 0.992 1.004 5.08*10-1 

maternal dnSNVs father 8029 0.0032 0.0054 1.003 0.993 1.014 5.48*10-1 

paternal dnSNVs mother 8089 -0.0025 0.0029 0.997 0.992 1.003 3.78*10-1 

 

We confirmed this finding in sensitivity analyses using the same data, in a two-sample MR framework 

that can better model the dose-response relationship of these variants (Figure 3.14, Table 3.2 and 3.3). 

These results were highly concordant, with all models showing a significant result and no heterogeneity 

(Pmin=6.3*10-5). In contrast, the paternal PGS was not associated with paternally-derived DNMs 

(P=0.51, N=8,029) nor was the maternal PGS associated with paternally-derived DNMs (P=0.55) (Table 

3.1). 
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Figure 3.14: Mendelian Randomisation of the effect of age at natural menopause PGS on de novo mutations. (A) 
Scatter plot showing the results for primary and sensitivity MR analysis. (B) Funnel plot to test directional 

pleiotropy 

 

Table 3.2: Primary Mendelian Randomisation analysis of genetically-mediated age at natural menopause in the 

mother and the rate of de novo mutations in offspring. Note that the values are aligned to ANM-increasing alleles. 

The total number of genetic instruments used per analysis is presented by N SNPs. IVW: Inverse Variance Weighted 

method, Coch Qp: Cochran’s q test P value. 

Model Exposure Outcome N SNPs Beta 

IVW 

SE 

IVW 

P IVW Coch

Qp 

I2 

Pre-Radial filtering AAM dnSNVs 287 -0.056 0.018 1.73*10-3 0.551 0 

Post-Radial filtering AAM dnSNVs 272 -0.074 0.018 6.34*10-5 1.000 0 
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Table 3.3: Secondary Mendelian Randomisation analysis of genetically-mediated age at natural menopause in 

the mother and the rate of de novo mutations in offspring. Note that the values are aligned to ANM-increasing 

alleles. The total number of genetic instruments used per analysis is presented by N SNPs. EI: Egger intercept, 

WM: weighted median, PWM: penalised weighted median. 

 Egger  WM PWM 

Radial  Beta SE  P  EI SE EI P EI Beta SE  P  Beta  SE  P  

Pre -0.083 0.034 1.45*10-2 0.005 0.005 3.49*10-1 -0.057 0.031 6.65*10-2 -0.062 0.030 4.06*10-2 

Post -0.100 0.034 3.60*10-3 0.005 0.004 2.87*10-1 -0.071 0.031 2.43*10-2 -0.071 0.031 2.22*10-2 

 

 

3.4 Discussion 

3.4.1 Large effect sizes of rare variants 

Previous GWASs have revealed a limited fraction of heritability behind reproductive ageing. 

They initiated to pave the path towards better understanding of how and when molecular processes 

influence the establishment and decline of the ovarian reserve. To overcome the challenges related to 

identification of causal mechanisms and relevant genes in GWAS, we explored the impact of rare protein-

coding genetic alternations on menopausal timing by studying exome sequence data in UKBB. Our study 

extends the number of genes implicated in ovarian ageing - effect sizes ranged from 5.61 years earlier 

ANM for HC-PTV carriers in ZNF518A, to 1.35 years later ANM for women carrying damaging alleles in 

SAMHD1 compared to a maximum effect size of 1.06 years (median 0.12 years) reported for common 

variants (MAF>1%)82. Several of these effect estimates were comparable to those conferred by FMR1 

premutations, which are currently used as part of the only routinely applied clinical genetics test for 

POI217. A damaging variant in at least one of our identified nine ANM genes was carried by 1,703 women 

in UKBB (1.6%), with around 0.7% of women carrying genomic variants that reduce reproductive 

lifespan by over a year.  

3.4.2 New biological mechanisms 

Novel biological mechanisms of ovarian ageing were revealed by finding associations with two non-DDR 

genes, ZNF518A and PNPLA8. ZNF518A belongs to the zinc finger protein family and is likely a 

transcriptional regulator for a large number of genes210. Both common and rare genetic variation in this 

gene indicate that female carriers have shorter reproductive lifespan due to delayed puberty timing and 

earlier menopause82,183,218, highlighting a mechanism for shared aetiology between these traits197,199,212. 
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Previous epidemiological and GWASs have identified a modest shared genetic aetiology behind the 

timing of puberty and menopause, mainly spanning from the discovery of genes involved in regulation of 

the hypothalamic-pituitary-gonadal axis and sex hormones77,86,131. The shared association at the ZNF518A 

loci points to a potentially novel mechanism involved in regulation of the beginning and end of 

reproductive longevity. Enrichment of GWAS signals at ZNF518A binding sites suggests that ZNF518A 

regulates the genes involved in reproductive longevity by repression of elements distal to transcription 

start sites.  

We identified a second novel non-DDR gene (PNPLA8) associated with ANM, where rare damaging 

mutations lead to more than 3 years earlier menopause. PNPLA8 is a calcium-independent 

phospholipase219,220 and a recessive cause of neurodegenerative mitochondrial disease and mitochondrial 

myopathy221–223 an association with reproductive phenotypes has not been described previously. Notably, 

other genes in the same phospholipase family, PLA2G4A and PLA2G6, are mainly described for 

reproductive system specific defects in animal models, including reduced reproductive ability in females 

and impaired fertilisation ability in male mice, indicating a critical role of this biological mechanism in 

functional regulation of both oocytes and spermatozoa224,225. 

3.4.3 DDR genes newly implicated in ANM 

Seven of the nine ANM genes identified in this study have known roles in DDR, and three of these 

(PALB2, ETAA1 and HROB) are linked to ANM for the first time here, shedding further light on the 

mechanisms involved. We identified PTVs in PALB2 associated with a 1.39 years earlier ANM. PALB2 is 

involved in BRCA2 localization and stability, mediating double-strand break repair via homologous 

recombination. Complete loss of PALB2 is embryonic lethal226 and compound heterozygous mutations 

result in Fanconi anaemia and predispose to childhood malignancies227. ETAA1 accumulates at DNA 

damage sites in response to replication stress228–231 and is involved in regulation of DNA damage 

checkpoint231,232. Finally, HROB encodes a DNA repair protein that takes part of homologous 

recombination by recruiting the MCM8-MCM9 helicase to sites of DNA damage to promote DNA 

synthesis233,234. Homozygous LoF of HROB is associated with POI235 and infertility in both sexes in 

mouse models233. Variants in both MCM8 and MCM9 are associated with reproductive ageing in 

humans236–238, with MCM8 missense variants being associated with ANM from GWAS, and non-sense 

variants in MCM9 being implicated in POI239, which additionally supports the role of this biological 

mechanism in reproductive longevity.  
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3.4.4 Two new DDR genes extend reproductive lifespan 

 

Robust prioritisation of likely causative genes and mechanisms facilitates downstream analyses and 

identification of potential therapeutic targets. Deleterious variants in three genes (CHEK2, HELB and 

SAMHD1) were associated with an increase in ANM and therefore represent potential therapeutic targets 

for enhancing ovarian stimulation in women undergoing IVF treatment through short-term apoptotic 

inhibition. HELB was previously identified by GWAS82,86, but this is the first evidence that LoF of HELB 

can extend reproductive lifespan, with an effect size of 1.8 years (95% CI: 1.08-2.60, P=4.2*10-7). HELB 

is a DNA helicase essential for DNA replication and inhibits homologous repair of double strand breaks 

by preventing end resection240–242. Loss of HELB results in PARP inhibitor resistance in BRCA1-deficient 

cells suggesting loss of HELB could improve double-strand break repair and thus affect oocyte 

quantity86,242.  

While mutation in SAMHD1 is a common somatic event in a variety of cancers243–247, it has not been 

described as a germline risk factor previously.  

Recessive inheritance of SAMHD1 missense and PTV variants have been associated with Aicardi–

Goutieres syndrome, a congenital autoimmune disease248. Our identified damaging variants in SAMHD1 

increased risk of ‘All cancer’ in males and females, as well as in sex-specific cancers, highlighting 

SAMHD1 as a novel risk factor for prostate cancer in males and hormone-sensitive cancers in females. Of 

additional site-specific cancers we tested, suggestive association was identified with mesothelioma, a rare 

cancer generally caused by exposure to asbestos and affecting the lining of the lungs. Here, SAMHD1 

damaging allele carriers exhibited a seven-fold increased risk relative to non-carriers. Only a single 

genetic risk factor discovered to date is considered to be a reliable candidate for early prediction - BAP1, 

a BRCA1 associated protein involved in regulation of transcription, cell cycle, response to DNA damage 

and chromatin dynamics249. Besides BAP1, additional high-risk genetic factors that are being studied for 

mesothelioma all include genes belonging to DNA repair or Fanconi anaemia pathways250. This further 

supports the discovery of SAMHD1 that could potentially contribute towards screening of people at risk 

for mesothelioma and thus early diagnosis and treatment, which should be evaluated by future studies.  

SAMHD1 has a role in preventing the accumulation of excess deoxynucleotide triphosphates (dNTPs), 

particularly in non-dividing cells251. A regulated dNTP pool is important for the fidelity of DNA repair, 

thus highlighting additional roles of this gene in facilitation of DNA end resection during DNA 

replication and repair252–255. SAMHD1 was specifically described to be involved in homologous 

recombination-mediated double-strand break repair and DNA end joining256. SAMHD1 deficiency leads 
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to resistance to apoptosis257,258, suggesting that delayed ANM might originate from slowed depletion of 

ovarian reserve due to disrupted apoptosis, analogous to the mechanism for CHEK2 that has been 

reported previously (Figure 3.14). 

 

Figure 3.15: Downregulated SAMHD1 or mutated SAMHD1 are involved in cancerogenesis. SAMHD1 depletes 

dNTPs to a low level in normal nondividing cells, which induces cell cycle arrest and promotes apoptosis. 

Downregulated SAMHD1 or mutated SAMHD1 results in high dNTPs levels in cells. In this environment, DNA 

synthesis is strengthened, cell cycle progression is out of control, and cells are proliferated, thus leading to 

cancerogenesis. 

 

Alteration in the size of dNTP pools due to defective SAMHD1 function was reported to have a specific 

influence on TL homeostasis, which was confirmed in our and previous WES analysis259. Furthermore, 

shorter leukocyte TL has been previously associated with earlier reproductive ageing, including shorter 

reproductive lifespan and occult ovarian insufficiency 260,261 or poorer IVF outcomes261, with both TL and 

ANM being viewed as ‘proxies’ for biological ageing146. 
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3.4.5 Genetic susceptibility to earlier ovarian ageing increases de novo 

mutation rate in offspring 

Previous studies have demonstrated that parental age is strongly associated with the number of de novo 

mutations in offspring262, with the majority of these mutations arising from the high rate of 

spermatogonial stem cell divisions that underlie spermatogenesis throughout adult life of males263. Our 

current study provides the first direct evidence that maternal mutation rate is heritable, with women at 

higher genetic risk of earlier menopause transmitting an increased rate of de novo mutations to offspring. 

This could have direct implications for the health of future generations given the widely reported link 

between de novo mutations and increased risk of psychiatric disease and developmental disorders264–267. 

We speculate that if genetic susceptibility to earlier menopause influences de novo mutation rate, it is 

possible that non-genetic risk factors for earlier ANM, such as smoking and alcohol intake, would likely 

have the same effect268. Our observations make conceptual sense given that menopause timing appears to 

be primarily driven by the genetic integrity of oocytes and their ability to sustain, detect, repair and 

respond to acquired DNA damage82. These observations also build on earlier work in mice and humans 

that BRCA1/2 deficiency increases the rate of double strand breaks in oocytes and reduces ovarian reserve 

93,269,270. 

An important limitation of our study, shared by many other similar large-scale exome sequencing studies, 

is that we were unable to replicate our findings in an independent cohort. Instead, we aimed to accumulate 

additional evidence where possible to support our observations and evaluate the biological plausibility of 

our findings. For example, the identified rare LoF alleles in ZNF518A have the largest effect on ovarian 

ageing reported to date, which is supported by high expression in foetal germ cells, genome-wide 

significant common variants at the same locus, and the observation that ZNF518A binding sites genome- 

wide are significantly enriched for common variant ANM association(s). In addition, participants 

undergoing radiation or chemotherapy before undergoing menopause were not excluded from our 

analysis. Chemotherapy-induced menopause could be decreasing the power of our conclusions, however 

we excluded participants who had hysterectomy and oophorectomy so we accounted for the great 

proportion of these individuals. For all identified genes further experimental studies will ultimately be 

required to fully understand the biological mechanisms governing the observed effects on ovarian ageing. 
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CHAPTER 4 

 

Monogenic causes of Premature Ovarian Insufficiency are 

likely rare and mostly recessive 
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Summary 
 

The identification of genetic risk factors and underlying mechanisms especially becomes important when 

we talk about more clinically relevant cases, such as the ones with extreme early menopause timing, i.e. 

POI. POI impacts 1% of the female population and is a leading cause of infertility. It is often considered 

to be a monogenic disorder, with pathogenic mutations in ~100 genes described in the literature. 

However, as the evidence on the reported genes is often based on observations from one or small number 

of individuals without conclusive replication in an independent cohort, or/and the causative impact of the 

variants has not been proven functionally, the validity of these genes being causative is questionable. We 

sought to systematically evaluate the penetrance of these genes using exome sequence data in 104,733 

women from the UKBB, 2,569 of whom had menopause under the age of 40. Our results from the largest 

POI study up to date demonstrate limited evidence to support any previously published autosomal 

dominant gene, with 97.8% of all identified PTVs found in reproductively healthy women with 

menopause over 40. Assuming 100% penetrance, we estimated that 1.6 million genes would be required 

to carry a homozygous or compound heterozygous LoF knockout in order to reach the observed 1% 

frequency of POI in the population. If all 20,000 genes in the genome carried such a knockout, this would 

still only result in a population frequency of 0.012%. Although we were unable to fully assess autosomal 

recessive effects, we found evidence of novel haploinsufficiency effects on menopausal timing in the 

normal range in several of these genes, including TWNK (1.39 years earlier menopause, P=8.5*10-6) and 

SOHLH2 (3.26 years earlier, P=1.6*10-4). 

This Chapter indicates that autosomal dominant mutations in genes currently described in the literature or 

evaluated in clinical diagnostic panels are not common causes of POI, suggesting that the majority of POI 

cases are likely oligogenic or polygenic in nature. These findings have strong implications for clinicians 

diagnosing causes of POI, where described genes should be interpreted with caution to avoid 

misdiagnosis as it seems that they do not have plausible clinical significance.  

 

 

Contributions and Collaborations 

 

I performed the literature review and the manual curation of POI genes, together with the review of GeL 

Panel App POI gene panel under the supervision of Prof Anna Murray. Dr Eugene Gardner created a 

pipeline on the UKBB DNAnexus Research Analysis Platform (RAP) to process, annotate UKBB WES 

data and perform variant quality control. Dr Katherine Kentistou prepared the age at natural menopause 

phenotypes. Both Dr Gardner and I conducted gene burden and variant-level association testing using 

BOLT-LMM using MAF < 0.1%, while I additionally conducted it for MAF < 1%. All data analysis and 
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interpretation were done by me. I performed the constraint analysis of pathogenicity. In collaboration with 

Dr Gardner, Dr Alexander Mörseburg prepared the pipeline for the gene-set burden analysis on the RAP, 

while I conducted all the analysis. I performed so-called ‘misdiagnosis analysis’, while Dr Katherine Ruth 

calculated the expected frequency of having a gene with homozygous or compound heterozygous LoF 

knockout. Prof John Perry and Prof Anna Murray provided valuable advice on the analyses and writing of 

the manuscript, which is submitted at Nature Medicine.  
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4.1 Complex aetiology of extreme forms of menopause timing  

 

Premature ovarian insufficiency (POI) is the loss of ovarian activity and permanent cessation of 

menstruation occurring before the age of 40271. It represents a major cause of female infertility, affecting 

1 in 100 women37,272,273. POI can be caused by initially reduced ovarian reserve at the time of birth, 

accelerated loss of follicles, an inability of the remaining follicles to respond to ovulatory signals, or 

combination of all274. POI patients show a wide range of clinical phenotypes. Some are diagnosed with 

primary amenorrhea, usually identified at young age in individuals with delayed puberty and absence of 

menses. Others are presenting with a more common version, secondary amenorrhea, characterised by 

normal pubertal development and irregular menstrual cycle followed by amenorrhea271. POI can also 

occur in the syndromic form, in which it accompanies other phenotypic features, such as Turner’s 

syndrome. Genetic causes of POI have been reported in 1-10% of cases while other causes include 

autoimmune and iatrogenic275–279. However, 50-90% of cases are idiopathic and likely involve a 

substantial genetic contribution92. Approximately 10-30% of idiopathic cases are familial, with more than 

one family member affected. Furthermore, heritability estimates of menopausal age between mother-

daughter pairs range from 44% to 65%76,82 and there is a six times increased risk of early menopause in 

daughters of affected mothers280,281. With current endocrine tests available in clinical practice, which only 

record changes in ovarian function that have already taken place thus limiting long term POI prediction, it 

is critical to better understand the genetics behind POI aetiology to enable early prediction and accurate 

diagnosis. A genetic diagnosis can provide important information to families about risks of POI in other 

family members, as well as provide understanding of the aetiology of the condition. 

 

Over 100 single gene causes have been reported as being involved in POI pathogenesis. They cover a 

spectrum of biological processes including DNA repair, cell cycle and death, hormonal regulation and 

metabolism. Part of the genetic origin is explained through the existence of monogenic forms, with genes 

having an autosomal dominant (AD) inheritance (e.g. BNC1, FANCA and NOBOX). Other genes are 

described as being inherited in an autosomal recessive (AR) manner, requiring both copies of the gene to 

be disrupted in order to cause the phenotype (eg. HFM1, LARS2 and MCM8). In addition to the autosomal 

genes, X chromosome abnormalities have long been known to play an essential role in the maintenance of 

ovarian development and function, representing about 13% of POI cases282. More recently, GWASs have 

identified ~300 common genetic variants associated with timing of menopause in the broader population. 

There is growing evidence that some POI cases may be polygenic in nature274,282, where women inherit 

large numbers of common alleles associated with earlier menopause that, alongside other risk factors, 

push them into the pathological end of the phenotypic distribution. 
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With decreasing cost and improved analysis pipelines, WES is increasingly being used in the clinical 

setting as a powerful prediction and diagnostic tool for disorders of sex development, which encompasses 

POI283–287. However, the evidence on the reported POI genes is often based on small numbers of families 

or individuals without conclusive replication in an independent cohort, and with variable functional 

validation. Consequently, the importance of these genes being causative of POI pathogenesis is 

questionable283. In order to support more frequent clinical and non-clinical genetic testing, we need to 

ensure that we are examining valid candidates, i.e. that databases and literature are not populated by false 

positives but only well-validated, clearly pathogenic variants. This is especially important if interpreting 

the consequence of variants in one of these genes in the absence of family or functional evidence of 

pathogenicity.  

 

To address this issue, we aimed to assess the penetrance of variants in known POI genes in the general 

population using UKBB study. We focused on the POI genes that are part of Genomics England (GeL) 

gene panel for POI, an expert reviewed and publicly available virtual panel database, additionally 

supplemented with manually curated literature-reported POI genes. Our results indicate that AD causes of 

POI are rare, and haploinsufficiency of recessive genes does not cause POI or early menopause. The 

reported individual AD variants were also detected in our control group with ANM above 40 years, thus 

introducing a high misdiagnosis rate of 98.4% if used in the clinical setting. We conclude that menopause 

under 40 years is likely to be a multifactorial trait in most cases and we highlight five novel genes 

associated with the reduction in ANM of between 1.5 and 5 years. Accurate estimates of the penetrance of 

genetic variants could significantly increase patient compliance with appropriate intervention strategies 

and fertility guidance, preventing misdiagnosis. 
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4.2 Methodology 

4.2.1 Identification of POI gene candidates 

 

In order to identify relevant gene candidates considered to be involved in POI aetiology, we initially 

focused on the POI gene panel available through GeL Panel App, publicly available virtual panel database 

(https://panelapp.genomicsengland.co.uk/panels/155/). This panel was selected as the ‘gold standard’ 

resource as it is the most thoroughly curated one, reviewed by 12 professional clinical geneticists. We 

considered the following evidence as part of our gene evaluation: 

(1) Selection and categorisation: inheritance and phenotype, and (2) Number of reviews and gene ranking 

based on their traffic light system. This includes “RED” genes that do not have enough evidence for the 

association with the disease and should not be used for genome interpretation, “AMBER” genes with 

moderate evidence that should not be yet used for the interpretation, and “GREEN” genes with high level 

of evidence, which demonstrates confidence that this gene should be used for genome interpretation 

(Appendix Table 4.1). In total, we identified 67 genes: 28 green, 23 amber and 16 red.  

 

This list was additionally supplemented with manually curated literature-reported POI genes, not 

provided as part of the GeL POI panel. We refer to these genes as “BLACK” to fit the traffic light 

categorisation. The search was performed using PubMed and Google Scholar, focusing on original 

articles published up to June 2022. The key word combinations included ‘premature ovarian failure’, 

‘primary ovarian insufficiency’, ‘premature ovarian insufficiency’, ‘early menopause’, ‘premature 

menopause’, ‘POI’, ‘POF’, ‘infertility’, ‘hypergonadotropic hypogonadism’, ‘ovarian dysgenesis’,  

‘genetic variants’, ‘sequencing’, and ‘primary amenorrhea’. Studies were also identified by a manual 

search of original publications described in review articles. Where appropriate, reference lists of 

identified articles were also searched for further relevant papers. Identified articles were restricted to 

English language full-text papers. 

 

Studies were included according to following criteria: (1) the phenotype of interest was described as POI, 

primary or secondary amenorrhea, (2) one or more affected individuals for particular causal variant were 

identified, (3) focus was on either autosomal or X chromosome, (4) genetic variants were discovered by 

traditional family segregation studies, consanguineous pedigree analysis, unrelated cohort studies on 

WES/targeted NGS data, and/or (5) variant discovery was supported by validation in animal models 

and/or cell based assays. We excluded studies that: (1) described hypothalamic pituitary adrenal axis 

(HPA) and/or puberty related phenotypes, (2) genes that were discovered via GWAS due to the lack of 

https://panelapp.genomicsengland.co.uk/panels/155/
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statistical power as a result of small sample sizes and the challenge to locate causative genes, and finally 

(3) genes that were discovered through array analysis due to the high inconsistency of the results coming 

from varied resolution of arrays across studies and thus uncommon replications. We recorded and 

analysed genes described for either non-syndromic or syndromic POI, however the main focus of our 

paper was on genes associated with non-syndromic POI. We also considered papers that exclusively 

reported the role of candidate genes in animal models, yet these were only used as supporting evidence 

when assessing the functional evaluation of the gene and to guide our conclusions. Besides the causal 

genes, we recorded specific genetic variants reported as associated with the phenotype. Following 

information, available in the literature, were considered when assessing the evidence on the overall gene 

causality: 

(1) Inheritance: AD, AR or X-linked, (2) Individuals’ phenotype, (3) Sample size: number of the genetic 

variant carriers, cases versus controls, if reported, (4) Study type: WES, NGS, Sanger sequencing, or 

pedigree analysis, (5) POI classification: syndromic/nonsyndromic, (6) Male phenotype, if existent, and 

(7) Functional evidence: mouse model and/or cell-based assays, if existent. Using this manual curation 

approach, we identified 38 additional genes. 

 

Overall, we identified 105 unique POI genes that we classified according to their mode of inheritance 

(Appendix Table 4.1, Figure 4.1). Genes were considered as inherited through the AD pattern if the 

reported variants in the heterozygous state were sufficient to cause POI, leading to 39 genes in total 

(Figure 4.1A). Of those, 7 were reported to act through the LoF mechanism only, while in 32 genes both 

LoF and missense genetic alterations caused the phenotype. If variants in both copies of the gene were 

necessary for the phenotype development the gene was classified as recessive (N=57). For two genes both 

dominant and recessive causes were identified, while 7 genes had an X-linked inheritance pattern.  

4.2.2 UKBB Data Processing and Quality Control 

 

The UKBB data processing and QC were performed as described in Chapter 2, Section 2.2.3. 

4.2.3 Phenotype derivation 

 

The ANM phenotype preparation is extensively described in Chapter 3, Section 3.2.2. This winsorized 

phenotype, so-called ‘ANM 34’ (N=106,973), where everyone reporting ANM younger than 34 was 

coded with ANM of 34, was treated in the discovery analysis as the primary one.  

In addition, we prepared the binary POI phenotype. Here, the individuals reporting ANM lower than 40 

years old were treated as potential POI cases (N=2,569, mean ANM in cases of 35.65 ± 0.03 years). 
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However, due to the high case-control imbalance in the POI phenotype, the ANM34 one was used for the 

primary, while the secondary association analysis was conducted on the POI phenotype. All 

manipulations were performed in R (v4.1.2) on the UKBB RAP (https://ukbiobank.dnanexus.com/). 

4.2.4 Exome-wide association analyses in the UKBB 

 

Rare variant burden tests were performed using a custom implementation of BOLT-LMM v2.3.6154 for 

the RAP, as described in Chapter 2, Section 2.2.3. In order to examine a range of variant annotation 

categories for MAF < 0.1%, we created dummy genotype files for HC PTVs as defined by LOFTEE, 

missense variants with CADD ≥ 25, and damaging variants that included both HC PTVs and missense 

variants with CADD ≥ 25. BOLT-LMM was then run with default parameters as previously described. As 

BOLT-LMM association test statistic is a more powerful method for quantitative traits, yet less powered 

for unbalanced case-control traits like POI288, we used ‘ANM34’ phenotype to derive and analyse primary 

burden test statistics. ‘ANM 34’ phenotype was run as a continuous trait corrected by age, age2, sex, the 

first ten genetic PCs as calculated in Bycroft et al.147 and study participant exome sequencing batch as a 

categorical covariate (either 50k, 200k, or 450k). The same methodology was applied when performing 

the secondary analysis on the POI phenotype.  

 

To assess whether reported heterozygous monogenic causes of POI have full penetrance as previously 

suggested, we specifically looked at the menopausal age of all women who carry HC PTVs, as these 

variants are considered to have the highest impact on protein function (Figure 4.2, Appendix Table 4.2). 

Using the derived POI phenotype, we obtained the binary POI status of individuals (‘0’: ANM > 40 years 

and ‘1’: ANM < 40 years), and calculated the number of carriers, i.e. number of cases and controls, per 

variant. In addition, we used quantitative ‘ANM34’ phenotype to derive the menopausal age range, i.e. 

minimum, average and maximum ANM across all carriers of HC PTVs. The ANM age range was also 

calculated at the gene level, collapsing all HC PTVs per gene and identifying the lowest, average and 

highest ANM reported (Figure 4.2). We report the ANM age range and burden level results for the HC 

PTV mask in the Appendix Table 4.2.  

 

Finally, to test the association of less penetrant mutations with the phenotype, we considered variants with 

both missense and LoF consequences, incorporating them in 3 previously described masks: HC PTV, 

damaging and missense variants with CADD ≥ 25. The significant gene-level associations for ANM were 

identified by applying Bonferroni correction for the number of masks in 105 genes of interest (correction 

term: 3 masks * 105 genes; P: 0.05/315 = 1.6*10-4) (Figure 4.3, Appendix Table 4.3). 

https://ukbiobank.dnanexus.com/
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4.2.5 Constraint metric of pathogenicity 

 

In addition, we recorded the Genome Aggregation Database (gnomAD) v2.1.1 predicted constraint metric 

of pathogenicity to identify genes that are subject to strong selection against PTV variation164. The metric 

encompassed observed and expected variant counts per gene, observed/expected ratio (O/E) and 

probability of loss of function intolerance (pLI) (Appendix Table 4.1). In short, observed count 

represents the number of unique SNPs in each gene (MAF < 0.1%), while expected count relies on a 

depth-corrected probability prediction model that takes into account sequence context, coverage and 

methylation to predict expected variant count. The O/E is a continuous measurement that takes into 

account gene and sample size and measures how tolerant a gene is to a certain class of variation. Low O/E 

value indicates that the gene is under stronger selection for that class of variation. Finally, the pLI score 

reflects the constraint or intolerance of a given gene to a PTV variation, with a score closer to 1 indicating 

that the gene cannot tolerate PTV variation.  

4.2.6 Identified AD genes as a fictive ‘POI Gene panel’ 

4.2.6.1 Gene-set burden analysis 

 

We ran gene-set burden tests by collapsing the genes of interest and their variants into one unit for 

analysis. The gene-set burden tests were performed by extending an association testing workflow of 

applets designed for the UKBB RAP for single genes to gene-sets. The RAP association workflow is 

described in detail in Chapter 2, Section 2.2.3 and Gardner et al, 2022289. In total, we conducted four 

gene-set burden tests, collapsing variants and genes into following categories: (1) AD genes (N=39), (2) 

AR genes (N=57), (3) genes with both AD and AR inheritance (N=2), and (4) all 105 genes. 

 

Briefly, for each of the gene-sets we included variants that fulfil the following criteria: a) MAF < 0.1% 

and b) HC PTVs as predicted by the LOFTEE tool164. For each gene-set we ran two related approaches. 

First, we implemented a generalised linear model (GLM) using the Python package ‘statsmodels’165. For 

the GLM, the number of variant alleles across the gene-set was summed up into a single score under a 

simple additive model. This score was used as a predictor of the ANM phenotype in a three-step 

regression. 

 

Second, we ran the STAAR method, implemented in R package “STAAR”290. 

This method corrects for population stratification by including a genetic relatedness matrix (GRM) in the 

test framework. The GRM used by us was based on pre-computed autosomal kinship coefficients from 
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Bycroft et al147. For each STAAR test the genotype information was represented by a single n*p matrix 

where n was the sample size and p the number of included genetic variants across all genes of interest. 

For all association tests we corrected for age, age2, the first ten genetic PCs provided by Bycroft et al147 

and study participants WES batch as a categorical covariate. 

4.2.6.2 ‘Misdiagnosis’ analysis 

 

We then wanted to investigate how many women of 2,569 POI cases in UKBB are carriers versus non-

carriers of HC PTVs in AD genes of interest. We calculated the percentage of carriers and non-carriers 

and used it as a suggestive metric of the number of individuals that would be misdiagnosed if using 

reported AD genes as the clinical diagnostic panel. 

4.2.6.3 Estimating of frequency of homozygous or compound heterozygous LoF individuals 

in the population 

 

We estimated the frequency of homozygous or compound heterozygous LOF individuals for each gene as 

F^2, where F is the frequency of individuals with any HC LOF allele with MAF<0.1% in a gene as 

estimated from the primary analysis. To find the total frequency of individuals with homozygous or 

compound heterozygous LOF knockouts, we then summed F^2 for the 105 POI genes reported in the 

literature. 
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4.3 Results 

4.3.1 Heterozygous loss-of-function is not a common cause of POI 

 

The GeL POI Panel App includes 67 validated genes rated as either ‘GREEN’ (high level of 

evidence for disease association), ‘AMBER’ (moderate evidence) or ‘RED’ (not enough evidence). We 

also identified a further 38 genes from the literature with good evidence of being causal for POI that we 

refer to as ‘BLACK’ in this case. This gave a total of 105 genes, which we classified according to the 

reported mode of inheritance (Figure 4.1, Appendix Table 4.1). 

 

 
B 

 
Figure 4.1: Mode of inheritance for POI genes. (A) The schematic describes the autosomal dominant and recessive 

inheritance pattern. Genes were considered as inherited through an autosomal dominant (AD) pattern if the 

reported variants in the heterozygous state were sufficient to cause POI. If variants in both copies of the gene were 

necessary for the phenotype development the gene was classified as recessive. For some genes we found both AD 
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and AR mode of inheritance. (B) The inheritance classification and number of POI genes per category. LoF: loss-

of-function.  

 

 

We used WES data to identify genetic variants in these 105 POI genes, available in 106,973 post-

menopausal UKBB female participants of European genetic-ancestry158, of which 2,569 reported ANM 

below the age of 40 and were thus considered as POI cases. We initially tested heterozygous loss of the 

41 genes with a reported dominant mode of inheritance, by combining all LOFTEE164 predicted HC-PTVs 

with MAF < 0.1% in each gene, and assessing their association with menopause timing per gene. This 

enabled us to explore the most damaging genetic changes, which introduce perturbations that should yield 

a severe functional defect. We used the ‘ANM 34’ phenotype for this primary association test based on 

the insights on shared genetic susceptibility between POI and ANM, and thus the opportunity for more 

robust identification and validation of genetic mechanisms involved in POI76,82. This is especially critical 

as the high case-control imbalance that characterises the binary POI phenotype limits us to derive well 

powered conclusions. There were 43 of 2,569 women with menopause under 40 years who carried a HC-

PTV in at least one of the 41 genes, but these same variants were also detected in 1,823 (ANM range= 40-

63, mean=50.4, SD= 3.9) controls (ANM >40 or still menstruating after 40). For all 41 genes, HC-PTVs 

were identified in both the case and the control group, with mean ANM for heterozygous LoF carriers in 

each gene between 45 and 56 years (Figure 4.2, Appendix Table 4.2). For three (BMPR1A, FOXL2 and 

NR5A1) of the 41 genes we did not identify any women carrying HC-PTVs in our study, thus we were not 

able to assess their association with menopause timing. Similar results were observed when we 

considered only missense variants with CADD ≥ 25. Finally, we performed the secondary analysis in the 

POI phenotype and found consistent results as with the primary analysis. Overall, we could not find 

evidence that any of the assessed AD genes was completely, or even partially penetrant to cause POI. 

 

The high intolerance towards protein truncating variation, so-called constraint, has previously been linked 

to reduced reproductive success291. Our results demonstrate that a significant proportion of AD genes 

(28/41, 68.3%) have limited evidence on being under strong selective constraint (pLI ≤ 0.9) as assessed 

by gnomAD, which further supports that these genes might not play an important role for reproductive 

success (Appendix Table 4.1). 
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Figure 4.2: Range of age at natural menopause in carriers of HC-PTVs in genes reported to have an autosomal 

dominant pattern of inheritance. 17 genes were identified as ‘monoallelic’ in GeL Panel App and are coloured 

according to the strength of evidence categories: “GREEN”, “AMBER” and “RED”. In addition 24 genes, here 

named as ‘BLACK’, were reported in the literature to be a likely monogenic cause of POI in the heterozygous state, 

but were not included on the Panel App. The numbers in brackets in the right corner reported as part of each panel 

represent [N POI cases/N controls] of women carrying HC PTVs in each gene. 

 

 

Next we tested individual variants that have been reported previously to be pathogenic for POI in the 41 

AD genes (Appendix Table 4.4). Of the 179 variants in the literature, 160 were present in post-

menopausal women in the UKBB, all in the heterozygous state. For the 31 variants detected in women 
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with ANM < 40 years, all except one (p.Arg943His in POLG) were also present in controls, while the 

remaining variants were only found in controls. A single predicted deleterious missense variant 

c.2828G>A (p.Arg943His) in the POLG gene was found in a woman who had menopause at 34 years 

(beta: 16.8 years earlier ANM, 95% CI: 8.5-25.1, P=1.1*10-5), but not in the control group. Our results 

indicate that previously reported AD POI genes are generally not pathogenic in the heterozygous state and 

that AD causes of POI are rare in the population.  

 

It is important to note that most of these AD genes are part of the diagnostic gene panels, which are 

increasingly being used within the clinical setting to assess and detect the genetic cause of POI. We thus 

imitated a scenario where we predict the rate of potential genetic misdiagnoses of POI using the reported 

AD genes as a diagnostic gene panel. We examined our cohort of POI cases (N=2,569) and calculated the 

proportion of women who presented with or without variants in AD POI genes. Only 1.6% of women 

were carrying the protein truncating variants in these genes, indicating that 98.4% of women would have 

no diagnosis while 1.6% would receive an incorrect genetic diagnosis if using these genes as part of the 

POI panel. Finally, to further explore previous observation, we evaluated whether this 1.6% of women 

had any difference in menopause age relative to the 98.4%. We created gene-set burden scores consisting 

of all HC-PTVs in sets of AD POI genes, to assess whether collapsing all LoF variants into one score 

would identify an association with the phenotype. This included a score for: (1) AD genes (N of 

genes=39), (2) AR genes (N=57), (3) genes with both AD and AR inheritance (N=2), and (4) all 105 POI 

genes. All scores showed no association with the ANM phenotype, in both GLM and STAAR Omnibus 

statistical models (Table 4.1). 

 

Table 4.1: POI gene-set burden scores.  
 

POI gene-set  

category 

N  

carriers 

N  

variants 

GLM 

Effect 

GLM 

SE 

GLM  

P 

STAAR 

Omnibus P 

[1] AD genes 1744 499 -0.036 0.103 7.25*10-1 7.15*10-1 

[2] AR genes 6288 1768 -0.065 0.054 2.26*10-1 9.40*10-1 

[3] AD / AR genes 102 47 0.247 0.432 5.67*10-1 2.28*10-1 

[4] All genes  8120 2357 -0.053 0.047 2.63*10-1 1.63*10-1 
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4.3.2 No evidence of haploinsufficiency of recessive genes as a cause of POI 
 

Of the 105 monogenic POI genes we selected to test in our study, 57 were reported to cause POI through 

a recessive mechanism only and a further 7 were X-linked. We were unable to evaluate compound 

heterozygotes, but did identify 2 women with homozygous HC-PTV (9:135697628:C:T, hg38) in 

SOHLH1 gene with normal ANM, defined as controls. No individuals with ANM < 40 were identified for 

this variant [N carriers: 34, ANM range (min - mean - max): 42 - 50.3 - 59]. Our results suggest that 

homozygous variants in SOHLH1 recessively inherited gene are not true causes of POI.  

We hypothesised that there may be a heterozygous effect for carriers of deleterious variants in these 

recessive genes. There was no association with menopause in the normal range for heterozygous variants 

in 62 of the 64 genes (P > 0.05). In two genes we did identify an evidence for a heterozygous effect in 

HC-PTVs on menopause timing, BRCA2 and HROB, which have both recently been reported as genetic 

determinants of ANM191. This evidence extends on our previous GWAS analyses of age at natural 

menopause82, which identified an individual low-frequency PTV variant in BRCA2. There was however 

no evidence that haploinsufficiency of these recessive genes is sufficient to cause POI (BRCA2 effect: 

1.18 years earlier ANM [95% CI: 0.72-1.65] with P=2.6*10-7, and HROB effect: 2.89 earlier ANM [95% 

CI: 1.86-3.92] with P=1.9*10-8 ) (Figure 4.3).  

 

The expected frequency of having a gene with a homozygous or compound heterozygous LoF knockout 

would be 6*10-9 individuals (median frequency in gnomAD)292. Assuming 100% penetrance, 1.6 million 

genes would be required to carry such a knockout in order to reach the observed 1% frequency of POI in 

the population. If all 20,000 genes in the genome carried such a knockout, this would still only result in a 

population frequency of 0.012%. 

 

Finally, the expected frequency of individuals who would be homozygous or compound heterozygous for 

a HC LoF variant in any of the 105 POI genes was 0.003%, thus we would expect about 3 to 4 such 

individuals in our study cohort. 

 

4.3.3 Three new genes associated with variation in menopause timing in the 

normal range 

 

To further assess the impact of rare damaging variants in other POI genes on menopausal timing in the 

normal range, we conducted individual gene burden association tests by collapsing genetic variants with 

MAF < 0.1% into three functional categories. These included: HC-PTVs (previously described), missense 
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variants with CADD score ≥ 25, and ‘damaging’ variants, defined as combination of HC-PTVs and 

missense variants with CADD ≥ 25. Besides previously described BRCA2 and HROB, we identified rare 

variation in three genes associated with earlier menopausal timing after multiple test correction (P 

(0.05/315 masks) ≤1.6*10-4, Figure 4.3, Appendix Table 4.3). The novel associations were detected for 

damaging variants in TWNK, a mitochondrial helicase involved in mitochondrial mtDNA replication and 

repair (beta= -1.39, 95% CI:0.78-2.00, P=8.5*10-6 for 185 damaging TWNK carriers)293,294, NR5A1, a key 

gene for gonadal function (beta= -1.75, 95% CI: 1.02-2.47, P=2*10-6 for 131 NR5A1 carriers)295, and 

SOHLH2, a transcription factor involved in both male and female germ cell development and 

differentiation (beta= -3.26, 95% CI: 1.56-4.96, P=1.6*10-4 for 24 SOHLH2 carriers)296,297. It is 

interesting to note that we did not identify any carrier of HC-PTVs in NR5A1, additionally supporting the 

evidence of this gene being under extreme constraint for this type of genetic alteration in population 

(Appendix Table 4.1).  

 

 
Figure 4.3: Forest plot for significant gene burden associations with age at natural menopause. Exome-wide 

significant (P ≤ 1.6*10-4) genes are displayed. Points and error bars indicate beta and 95% CI for the indicated 

variant category. The gene burden association test was performed using BOLT-LMM. 
 

These findings have strong implications for clinicians diagnosing causes of POI, where described genes 

should be interpreted with caution to avoid misdiagnosis as they do not have plausible clinical 

significance. 



 

117 

4.4 Discussion 

Many genes have emerged as monogenic causes of POI, but a majority has been identified as causative in 

small numbers of families or individuals, with variable functional validation. Our study is the first to 

demonstrate that AD mutations in genes currently described in the literature or evaluated in clinical 

diagnostic panels are not common, highly penetrant causes of menopause under 40 years. We tested 105 

genes in total. This includes 68 genes with a pathogenicity rating for POI reviewed in the GeL open 

access PanelAPP resource298, as well as additional 37 manually curated genes reported in the literature. Of 

these, 41 are reported to be inherited in an AD fashion, i.e. heterozygous variants are sufficient to cause 

the phenotype. In order to assess the most damaging genetic changes in these genes that are expected to 

introduce perturbations with severe functional defects, we initially focused on LoF variants identified via 

robust and sensitive LOFTEE predictor, the mechanism implied by most studies164. For each gene the 

mean menopause age for carriers of LoF variants in UKBB was over 40, with the distribution of 

menopause age broadly mirroring that of non-carriers. We were also able to test the effect of 160 of 179 

individual variants that have previously been reported to be likely causal variants for POI in the 

heterozygous state. For each variant there was at least one woman who had gone through menopause over 

40 years or was still menstruating over 40. For 17 of these there was an allele frequency > 0.1% in 

controls. The presence of genetic variants at relatively high frequency in controls is a strong indicator that 

the variant is not causal and should always be carefully considered when assessing likely pathogenicity 

within the clinical and non-clinical setting. We also found no evidence that haploinsufficiency of AR 

genes causes POI. Of the genes we tested, 55 had a purely recessive inheritance mechanism reported and 

for these genes we would not necessarily expect to see an effect of heterozygous variants. There are 

examples of genes where a haploinsufficiency effect is seen for recessive genes299, but this does not seem 

to be the case for POI.  

The evidence to support causality of genes and variants in the literature is variable. Guidelines are 

available for genomic variant interpretation300. However, many publications are historical and published 

before the guidelines, thus making it difficult for non-genomics specialists to interpret the findings. 

Databases of clinically relevant variants in disease causing genes, such as ClinVar and Decipher, are also 

available to aid clinical interpretation, and panels of monogenic POI genes have been proposed. For 

example, four AD POI genes are rated as ‘GREEN’ on the GeL PanelApp, and we found heterozygous 

LoF variants in two of them, NOBOX and POLG. We did not find any LoF variants in FOXL2 and 

NR5A1, which could be explained by high constraint pLI scores of 0.88 and 0.99, respectively. The 

relevance of LoF in FOXL2 and NR5A1 thus remains to be elucidated in larger datasets in future. LoF 
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variants in the other two green PanelAPP genes, NOBOX and POLG, were much more common in 

women with menopause over 40 years than those with ANM under 40.  

Most women with isolated POI only have karyotype and Fragile X (FMR1) testing with potential pelvic 

ultrasonography 89,301. This screening might be helpful for the identification of POI aetiology, however it 

is well established that most of the cases ultimately remain without clarified aetiology 302. Given that POI 

is accompanied by a high rate of infertility, identifying the causal gene in nonsyndromic POI families has 

proven difficult as the majority of these cases have small or no family histories 285,303. WES approaches 

have also been increasingly used to identify causal genes and variants, but often relying on candidate 

genes to narrow down the likely variants 184,285, providing circular evidence of causality. Therefore, the 

robust assessment of the penetrance of gene candidates becomes even more critical with higher 

accessibility of the genomic data and thus more frequent individual diagnostic endeavours in the absence 

of family history information 283,304. Current commercial POI gene panels mostly rely on NGS and claim 

to make a directed and accurate differential diagnosis of infertility, ultimately leading to a better 

management of the patient. Using web search, we identified ~10 companies offering gene panel testing 

for POI, including Igenomix ‘Premature Ovarian Insufficiency Precision Panel’. In order to forecast the 

outcome of the scenario where these gene panels are utilised for diagnostics in the clinical setting, we 

predicted the rate of potential genetic misdiagnoses of POI using the reported AD genes (N=41) as a 

diagnostic gene panel within the cohort of POI cases (N=2,569). Only 1.6% of women were carrying the 

protein truncating variants in these genes, indicating that 98.4% of women would have no diagnosis while 

1.6% would receive an incorrect genetic diagnosis if using these genes as part of the POI panel. Most 

often, post-diagnostic procedure would lead to the risk assessment and genetic counselling of 

asymptomatic family members, thus introducing additional emotional burden. Providing accurate 

diagnosis would significantly increase patient compliance and enable female carriers to undertake 

appropriate intervention and plan their conception before ovarian failure occurs. This possibility is 

becoming more and more important as women tend to conceive more frequently in their 30s and 40s 

when the risk of POI is between 1-2%. POI not only interferes with a woman’s reproductive potential, but 

it is also associated with an increased risk of osteoporosis and cardiovascular disease. Accurate and timely 

diagnosis of POI would allow clinicians to prescribe HRT early on to prevent problems associated with 

oestrogen, thus optimising bone, cardiovascular and overall health.  

Although heterozygous variants were not fully penetrant causes of POI, our study suggests that a higher 

burden of rare coding variants in five of the POI genes can substantially reduce average menopause age. 

Two of these genes have already been identified by WES analysis in Chapter 3, BRCA2 and HROB. 

Three other genes have not been described previously as associated with menopause timing in the general 
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population: NR5A1, SOHLH2 and TWNK. The effect ranged from 5.13 years earlier ANM for carriers of 

rare LoF variants in SOHLH2 to 1.54 years earlier ANM for damaging variants in TWNK. NR5A1295,305 

and SOHLH2 are both on PanelApp, rated green and amber respectively and both have a dominant 

mechanism. Previous studies have suggested that NR5A1 could have an oligogenic mode of inheritance, 

in which multiple variants individually contribute to the phenotype306–309. NR5A1 encodes an orphan 

nuclear receptor that regulates transcription of an array of genes involved in reproduction, steroidogenesis 

and male sexual differentiation. The conditional knockout of NR5A1 in mouse granulosa cells causes 

infertility, as a result of hypoplastic ovaries and a reduced number of oocytes310. Mutations in this gene 

were associated with the wide spectrum of reproductive phenotypes due to altered folliculogenesis, 

including gonadal dysgenesis with PA or SA, as well as other disorders of sex development295,305. These 

studies confirm that haploinsufficiency seems not to explain the highly variable phenotype306. This is 

because subjects harbouring identical NR5A1 disease-causing variants may present with completely 

different phenotypes, as in the case of  heterozygous NR5A1 p.Arg255Leu/Cys variant that was detected 

in a 46,XX female with adrenal failure, but intact ovarian function311 and a 46,XX female with normal 

adrenal function but POF305.  

SOHLH2 is a transcription factor acting as master regulator of oocyte-specific genes critical for early 

follicle growth and differentiation, including NOBOX, FIGLA, BMP-15, and GDF-9, and expressed 

exclusively in primordial follicles up until the primary follicle stage. Sohlh1/2-/- deficient mice present 

with infertility and atrophied ovaries characterised by accelerated follicle loss due to defective primordial-

to-primary follicle transition 296,312,313. Finally, TWNK, mitochondrial helicase involved in replication and 

repair of mtDNA, causes syndromic POI (Perrault syndrome) and presents in association with other 

neurologic findings314. The reproductive phenotype is specific to women - in cases where male siblings 

carry the exact same variant as the affected female sibling no reproductive abnormalities are detected314.  

Rare variants in these genes therefore predispose women to earlier menopause and are likely to add to the 

genetic burden that predisposes to POI.  Previous GWAS studies have suggested that polygenic risk has 

an effect on risk of POI, ie. women with POI have a higher burden of common genetic variants associated 

with menopause timing than those with average menopause age82. While POI can have a monogenic 

origin where the mechanism is predominantly recessive LoF, many POI cases may in fact be caused by a 

higher than average load of common and rare genetic variants that each influence menopause timing by a 

few months or years, but in combination can result in menopause before 40 years leading to a diagnosis of 

POI. This suggests highly oligogenic or polygenic POI nature.  

 

Our study reveals how despite functional evidence in some of these genes, their clinical significance should 

be interpreted with caution as they are not always fully penetrant and not sufficient to cause POI in isolation. 
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Functional models for POI, including cell lines and animal models, are currently limited and future studies 

that aim to investigate novel genetic causes of POI should focus on approaches that can more specifically 

mimic human biology and physiology. Patient-specific induced pluripotent stem cells (iPSCs) lines might 

offer an individually targeted genetic model for identification, manipulation and better understanding of 

reproductive biological pathways. 

The frequency of some POI variants is extremely low, compatible with the incidence of POI. It could be 

that some monogenic AD causes of POI are much rarer in the population than the PTVs that we are 

testing here, thus larger scale studies are necessary to address this limitation. One of the main advantages 

of our study is the ability to evaluate the joint effect of damaging mutations at the gene level via burden 

testing in a large number of participants. Although an important limitation is the fact that we have not 

assessed a clinically-defined cohort of POI cases, the power of our approach is that we can demonstrate 

these genes are false positives by examining them in a large number of healthy non-POI women, i.e. 

controls. Clinically defined POI cohort would only be critical if this study was aiming to identify novel 

POI effects. Notably, the UKBB study is known to be biased towards healthier participants and thus 

highly penetrant monogenic disease-causing variants may be under-represented, yet it is difficult to 

imagine how having POI would influence participation in the study. In addition, one could argue that 

some women report an incorrect ANM due to misremembering, however we took into account four 

instances where questions regarding ANM were asked thus ensuring consistency in the reported ANM. 

Secondly, we were only able to only assess the penetrance of heterozygous variants and not homozygous 

or compound heterozygous carriers. We have also not considered complex structural variants or 

cytogenetic abnormalities, so we make no statement on the penetrance of those. For five genes we did not 

identify any heterozygous LOF variants so were unable to assess these, although we can rule them out as 

common causes of POI given they were not present in over 2000 cases. Given our observed results for 

genes with a dominant mode of inheritance, we advise caution in interpreting reported recessive effects, 

although we predict this will be by far the most common cause of monogenic POI. Third, we 

predominantly focussed on predicted LOF alleles as that is the mechanism implied or demonstrated in 

most studies. It is however possible that some of the literature reported missense variants may act in a 

gain of function or dominant negative manner such that they have more severe effects than protein 

truncated variants. Whilst potentially true of a small number, this is unlikely to be widespread given no 

highly penetrant effects were seen in the individual literature reported missense variants we were able to 

assess, or in the burden tests we performed that were restricted to damaging missense variants predicted 

by CADD. 
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Finally, our study is specific to individuals of European ancestry, thus we cannot comment on how 

replicable these results are in other ancestries, although while specific variants are likely to vary between 

populations315, we focused on testing the loss of function mechanism, which should be widely applicable. 

The dependence of ovarian function on complex gene networks probably explains the poor correlation 

between the genotype and phenotype. The origin of POI development may not be due to a single mutation 

in a candidate gene, but an interaction of low frequency polymorphisms or mutations in different genes in 

the same woman. This suggests that less penetrant mutations may be more frequent in POI individuals as 

a genetic cause, which aligns with few previous studies that hypothesised an oligogenic aetiology for this 

disorder316,317. Using panels of genes to find causative genetic variants for un-related idiopathic POI might 

not be a very fruitful endeavour and is unlikely to be cost-effective. Monogenic causes of POI are more 

likely to be recessive and therefore much rarer in the POI population given 1% of women in the 

population have it. 
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CHAPTER 5 

Human proteomic analysis of menopause timing  
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Summary 
 

Chapter 5 describes the first proteo-genomic study performed on ANM phenotype to identify protein 

candidates that could serve as biomarkers of ovarian ageing in women. The analysis was performed on 

genome-proteome-wide association data on 4,775 protein targets (4,979 human somamers, SomaLogic) 

available in the Fenland study on 10,713 participants and data on ANM for ~200,000 women from the 

ReproGen study. We do not identify any robust protein candidate whose levels are altered due to ovarian 

ageing. However, we demonstrate the potential of such analysis, and propose that future attempts should 

focus on the studies with larger sample size, once available. 
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5.1 From genome to menopause timing via proteome 

 

 Most genetic-related research on reproductive ageing has focused on the assessment of common 

and rare genetic variation and their contribution in regulation of the menopause timing in women82,189,318. 

As previously discussed, one of the major challenges that human genomics faces represents identification 

of the causal genes and understanding of the mechanisms by which mutations and trait-susceptibility 

alleles act to modify the phenotype185. As a consequence, this limits efficient translation of genomic 

findings for the development of prediction and treatment strategies. To address these challenges, scientists 

are implementing robust functional techniques, including tissue-specific gene expression data and 

CRISPR screens, which can be applied on a variety of in vitro and in vivo biological models, to 

functionally characterise identified loci and assign causal genes319–323. However, these cellular and animal 

models might not fully replicate complex human reproductive biology and regulatory processes that are 

required for DNA to RNA transcription and RNA to protein translation, thus leading to low correlation 

between transcripts and proteins. In addition, functionally testing large numbers of GWAS candidates in 

animal models is not cost- and time-efficient and it is ethically questionable. Alternative methods for gene 

prioritisation are particularly welcome. This chapter explores the proteogenomic approach that focuses on 

the essential functional units of the human body, the proteins, which are the central layer of information 

transfer from genome to the phenome 324,325. This approach offers an opportunity for identification of gene 

and protein targets that can improve our understanding of novel mechanisms underlying reproductive 

ageing. Studying the human proteome has many benefits - firstly, proteins represent the largest class of 

drug targets, indicating that prioritisation and translation of protein candidates from ‘bench to bedside’ 

seem to be fruitful and effective324–326. Secondly, proteins are measured from readily available biofluids, 

such as blood. Therefore, they represent an attractive biomarker for prediction of menopause timing due 

to the straightforward implementation within the clinical setting as their measurements are anyway done 

as part of the regular checkups 327,328. Implementing the knowledge from proteogenomic studies could 

help us address one of the main challenges related to reproductive ageing, i.e. the lack of long-term 

biomarkers of ovarian reserve. Identification of women with reduced reproductive lifespan cannot be 

accurately achieved by any endocrine or imaging tests that are in clinical practice, such as AFC on 

ultrasound, and levels of AMH and FSH52–55. These tests only record changes in ovarian function that 

have already taken place, disabling the long-term prediction of reproductive expectations54,56–58. 

Identifying novel protein biomarkers might help us more accurately predict the age at which a woman 

will become menopausal, which would open up the opportunity for any young woman to be tested for 

reproductive expectations and counseled on the availability of elective fertility preservation.  
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Although major technological advances have enabled studying human proteome at the large scale, most 

of the studies still focus on bespoke panels329–331 and proteomic platforms324–326,332, thus leaving the gap in 

knowledge about the genetic architecture and relevance of most proteins for human health. To address 

this gap and provide insights into the biology of various human diseases, Pietzner et al (2021) started 

paving the path towards the creation of first genome-wide proteogenomic maps by undertaking at the time 

the largest genome-proteome-wide association study that included 4,775 protein targets in the Fenland 

cohort of ~10,700 European descent individuals (mean age 48.6 years, 53.3% women)111,333. They 

identified 10,674 genetic associations (P < 1.004 × 10–11) for 3,892 plasma proteins and created a cis-

anchored gene-protein-disease map of 1,859 connections that points towards strong cross-disease 

biological convergence. However, the relevance of human proteome in reproductive ageing remains 

unexplored.  

 

 

 

Figure 5.1: Graphic representation of the study design to construct a proteo-genomic map of human health in 

Fenland study. The image is obtained from Pietzner et al (2021)111. 
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We rely on above described broad-capture proteomic approach to explore the existence of potential causal 

genes and genetic signals that alter protein abundance, and which also influence the timing of menopause 

in women. More specifically, this study aimed to understand whether ovarian ageing impacts the 

proteomic profile in women, and get a potential mechanistic insight into the type of pathways that are 

being perturbed due to menopause onset, which ultimately lead to the change in protein levels. Our study 

is the first to explore the association between ovarian ageing and human proteome - this and future 

proteomic studies will hopefully pave the path towards detection of novel protein biomarkers of 

reproductive ageing and enable early prediction of ANM. 

5.2 Methods 

5.2.1 ReproGen consortium data on age at natural menopause 

 

The ReproGen consortium summary statistics on common genetic variants associated with ANM82 were 

used to examine the association between ANM and protein levels. The phenotype preparation and 

genome-wide association meta-analysis are described in Chapter 2, Section 2.2.2. 

Of 290 independent ANM signals identified in Ruth et al (2021)82, 276 genetic variants (or proxies) were 

identified in the Fenland genomic-proteomics summary statistics described below. In cases where a 

particular target signal was not present in the outcome GWAS, we searched the UKBB white European 

dataset for proxies (within 1 Mb and r2 > 0.5) and chose the variant with the highest r2 value. Genotypes 

at all variants were aligned to designate the ANM-increasing alleles as the effect alleles. 

5.2.2 Genetic and proteomic data from the Fenland study 

5.2.2.1 Study design and recruitment of participants 

 

The Fenland study represents a population-based cohort consisting of 12,435 participants, predominantly 

of White British ancestry, born between 1950 and 1975333. The participants were recruited from general 

practice surgeries in the Cambridgeshire region in the UK, after which they underwent detailed 

phenotyping at a baseline visit between 2005 and 2015 at one of three MRC Epidemiology Unit testing 

centres. Individuals with clinically diagnosed diabetes mellitus, inability to walk unaided, terminal illness, 

clinically diagnosed psychotic disorder, pregnancy, or lactation were excluded from the study. The study 

was approved by the Cambridge Local Research Ethics Committee (NRES Committee - East of England 

Cambridge Central, ref. 04/Q0108/19) and all participants provided written informed consent. Participants 

in the study were on average 48.6 years old (SD: 7.5 years) and 53.4% of them were female. While at 
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testing centres, they completed questionnaires on lifestyle and general health, and had clinical, 

anthropometric and physical health measurements taken. Finally, blood and urine samples were collected 

from each participant for further metabolic assessment and genotyping.   

5.2.2.2 Proteomic measurements  

 

Proteomic profiling of fasting EDTA plasma samples from 12,084 Fenland Study participants, collected 

at the baseline visit, was performed by SomaLogic Inc. (Boulder, US) using an aptamer-based technology 

(SomaScan v4 assay). A detailed description of this process can be found elsewhere111. Briefly, the 

SomaScan assay utilises a library of short single-stranded DNA molecules, which are chemically 

modified to specifically bind to protein targets. DNA microarrays are used to determine the relative 

amount of aptamer binding to protein targets. All quality control steps undertaken during this process are 

described in Pietzner et al (2021)111. Samples were removed if they were deemed by SomaLogic to have 

failed or did not meet the acceptance criteria of 0.25-4 for all scaling factors. In addition to passing 

SomaLogic QC, only human protein targets were taken forward for subsequent analysis (4,979 out of 

5,284 aptamers). Aptamers’ target annotation and mapping to UniProt accession numbers together with 

the Entrez gene identifiers were provided by SomaLogic.  

Rank-based inverse normal transformations were applied to aptamer abundances. Additional details are 

available in Pietzner et al (2021)111. 

5.2.2.3 Genotyping and imputation 

 

Fenland participants were genotyped using one of three genotyping arrays: the Affymetrix UKBB Axiom 

array (OMICS, N=8994), Illumina Infinium Core Exome 24v1 (Core-Exome, N=1060) and Affymetrix 

SNP5.0 (GWAS, N=1402). More details on this process can be found in Pietzner et al (2021)111. 

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1) panel using IMPUTE4, and 

the Core-Exome subset and the X-chromosome (for all subsets) were imputed to HRC.r1.1 using the 

Sanger imputation server. Sanger imputation server was also used to impute all three array subsets to the 

UK10K+1000G phase3 panel to obtain additional variants that do not exist in the HRC reference panel.  

5.2.2.4 Sex-combined GWAS and meta-analysis 

 

A total of 10,713 Fenland participants had both phenotypes and genetic data for the analysis 

(OMICS=8,355, Core-Exome=1,026, GWAS=1,332), after excluding ancestry outliers and related 

individuals. Within each genotyping subset, aptamer abundances were transformed to follow a normal 
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distribution using the rank-based inverse normal transformation. Transformed aptamer abundances were 

then adjusted for age, sex, sample collection site and 10 principal components in STATA v14 and the 

residuals were used as input for the genetic association analyses. GWAS was performed under an additive 

model using BGENIE (v1.3)334. Results for the three genotyping arrays were combined in a fixed-effects 

meta-analysis in METAL. Following the meta-analysis, 17,652,797 genetic variants present in the largest 

subset of the Fenland data (Fenland-OMICS) were taken forward for further analysis. For each protein 

target, a multiple test corrected genome-wide significance threshold of 1.004*10−11 was used. For more 

details on signal selection refer to Pietzner et al (2021)111. The pQTLs were classified as cis-acting 

instruments if the variant was within 500kb of the body of the protein encoding gene. 

For each identified pQTL we first obtained all SNPs in at least moderate LD (R2>0.1) using PLINK 

(version 2.0), and queried comprehensive annotations using the VEP software (version 98.3)162, applying 

the pick option as described in Pietzner et al (2021)111. 

5.2.2.5 Sex-stratified GWAS 

 

The statistical normalization procedure for aptamer abundances was updated by SomaLogic after the sex-

combined GWAS was run. This had little effect on GWAS results, however, a small number of 

individuals flagged as QC exclusions by the new normalisation were not flagged by the previous 

normalisation, and vice versa. The sex-stratified GWAS therefore includes the 8,348 individuals in the 

Fenland-OMICS subset that were included by both the original and updated normalization procedures. 

 

Measurements for 4,979 aptamers targeting 4,775 human protein targets were inverse rank normalized 

and transformed abundances were adjusted for age, sample collection site and 10 PCs in R v3.6 and the 

residuals were subsetted for each sex to be used as input for the sex-stratified genetic association 

analyses. A sex-stratified GWAS was conducted using fastGWA335 software through GCTA version 

1.93.2. A sparse GRM was created through GCTA version 1.93.2 using the default settings with the 

binary files for autosomes for the Fenland-OMICS subset. Linear regression analysis was performed 

through fastGWA for the abundance of each aptamer separately in each sex (N female=4,403, N 

male=3,945). fastGWA also applied further QC where variants with genotype missingness < 0.05 and 

MAF < 0.0001 were also filtered out in each sex. Results for the sex-stratified GWAS were meta-

analysed in a fixed-effects meta-analysis in METAL to assess the heterogeneity between sexes.  
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5.2.2.6 Meta-analysis data 

 

In addition to primary analysis conducted in the Fenland study, we replicated the results meta-analysing  

Fenland data with proteomic data available in the deCODE study (N individuals=46,075). The detailed 

description of deCODE human proteomic data is available in Ferkingstad et al (2021)336. The total sample 

sizes included in the analyses were:  deCODE (N=35,362), Fenland-OMICS (N=8,355), Fenland-GWAS 

(N=1,332) and Fenland-Core Exome (N=1,026). The meta-analysis was run using METAL with a random 

effect model. The replication data were used for the Mendelian Randomisation (MR) analysis of the effect 

of ANM on RACGAP1 abundance (Appendix Table 5.6). A total of 270 ANM variants (or their proxies) 

were identified in the meta-analysis dataset. For more details on the MR frameworks, refer to Section 

5.2.5. 

5.2.3 Genetic risk score for the age at natural menopause 

 

Effect estimates from ReproGen ANM GWAS meta-analysis were used to construct a genetic risk score 

(GRS) for ANM using 276 ANM signals. The GRS was calculated using PLINK v1.90b4.4 in the OMICS 

subset of Fenland data. Genotypes at all variants were aligned to designate the ANM-increasing alleles as 

the effect alleles.  

5.2.4 Statistical analyses 

Linear regression analyses, using the lm function in R, were used to model the effect of menopause on 

measured abundance of the 4,979 protein targets in the 8,355 individuals (4,406 women, 3,949 men) in 

the Fenland-OMICS subset passing the QC. In addition to protein data and covariate information on the 

test site, 10PCs, age and sex of participants, we obtained the data on the menopause status, which was 

determined based on self-reported cessation of menstrual periods and was recorded for 3,792 women 

included in this analysis, of whom 1,992 were pre-menopause and 1,800 were post-menopause. 

Menopause status acts here as a non-genetic factor - it represents the binary trait (yes/no for menopause 

status) that does not only incorporate the effect of ovarian ageing on the onset of menopause, but it could 

be seen as unifying factor of all symptoms and outcomes that are associated with this transition, including 

the effect of overall ageing, hormonal status etc. 
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Five different models were tested:  

(1) using the GRS for menopause adjusted for age, sex, test site, and 10 principal components of genetic 

variation: protein ~ GRS + age + sex + testSite + 10PCs;  

(2) a sex-stratified version of (1);  

(3) additionally adjusting of (1) for menopause status, in women only: protein ~ GRS + age + sex + 

testSite + 10PCs + menoStatus;  

(4) the effect of menopause status in women on protein levels, adjusted for age and test site: protein ~ 

menoStatus + age + testSite 

(5) In order to examine the effect of ageing on protein levels, independent of menopause, we modelled the 

association between age and protein levels, adjusting only for sex and test site: protein ~ age + sex + 

testSite 

We used these models to narrow down the selection of proteins that we will study in detail in next stages. 

To identify significant associations in each model we applied a Bonferroni-corrected P-value threshold (P 

< 0.05/4979 = 1.004*10-5) (Appendix Table 5.1). 

We finally performed additional linear regression model by taking into account menopause-status 

stratification, i.e. assessing the effects on pre- and post-menopausal women independently. This analysis 

was run on linear regression models (2) and (5), which were described above (Appendix Table 5.2). 

5.2.5 Mendelian Randomisation 

Bidirectional MR analysis was conducted to examine the likelihood of a causal effect of ANM on the 

proteomic profile, as well as the causal effect of the protein levels on ANM. The MR analysis was treated 

as the secondary analysis. Various MR approaches that were applied here are described in detail in 

Chapter 2, Section 2.3. There is a potential for bias in MR analysis where IVs and outcomes are drawn 

from the same sample. We conducted a two-sample MR analysis using data from two independent 

studies, ANM data from the ReproGen study82 and proteomics data available in the Fenland study111, 

which enabled us to avoid participant overlap.  

The MR analysis was conducted in two stages. Stage 1 was conducted in the largest sample size 

available, i.e. sex-combined data, with the purpose of narrowing down the number of protein candidates 
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of interest, i.e. protein prioritization. Stage 2 was performed to further decipher the effect of ANM in the 

sex-stratified data and to control for the effect of cis-acting loci. 

5.2.5.1 Protein prioritisation 

 

In Stage 1 we assessed the causal inference of ANM on the levels of all 4,979 protein targets in the sex-

combined framework, and identified the ones positively associated for further analysis. We used 276 

ANM genome-wide significant signals as exposure IVs. Sex-combined data on 4,979 protein targets from 

all three genotyping subsets of the Fenland study (OMICS=8,355, core-exome=1,026, GWAS=1,332) 

was used as the outcome. Genotypes at all variants were aligned to designate the ANM-increasing alleles 

as the effect alleles. We applied the Bonferroni (P: 0.05/4979=1.004*10-5) correction to identify 

significant protein associations from both GRS and MR analyses described in Section 5.2.4 and Section 

5.2.5. In total, we identified significant associations between the ANM and the levels of 196 protein 

targets, which were considered for further analysis (Section 5.2.5.2). 

5.2.5.2 Additional MR analysis for the detection of robust protein candidates for ANM 

 

Stage 2 of MR was conducted in order to assess the causal inference of ANM on 196 selected proteins in 

the sex-stratified framework. We used 276 ANM genome-wide significant signals as exposure IVs, and 

sex-stratified data on 196 protein targets as the outcome data, coming from 4406 female and 3949 male 

Fenland participants from the OMICS subset. All primary and sensitivity analysis described in Chapter 

2, Section 2.3 were conducted. In order to examine the degree of effect of the cis loci on the observed 

association, we additionally applied a 10mb window filter to exclude the cis loci, and repeated all MR 

analysis following the described methodology. 

 

For the analysis of the identified protein candidate, RACGAP1 (check the Results section), we also 

performed additional MR for ANM to RACGAP1 levels but this time excluding SNPs that fall within the 

HLA region (N=6). This exclusion left us with 270 independent ANM signals as instrumental variables 

(Appendix Table 5.5). Described methodology was conducted for both the primary and replication 

(meta) analysis (Appendix Table 5.6). 

 

Stage 2 also included the bidirectional MR approach, where we additionally assessed the causal inference 

of 196 pQTLs on the menopause timing (Appendix Table 5.1). We used the pQTL signals identified in 

the Fenland GWAS (Section 5.2.2.4) for each of the 196 proteins of interest as genetic instruments. The 

analysis was conducted in both sex-stratified and sex-combined framework, applying all primary and 
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sensitivity MR models. The sex-stratified data were available for 3945 male and 4403 female participants 

in the OMICS subset of Fenland study, while the sex-combined model included 10,713 participants from 

all three chips (OMICS=8350, core-exome=1026, GWAS=1332). The reverse MR analysis, protein 

abundance to ANM, was conducted using two different IVs: the first set of analysis was performed using 

cis pQTL variants as the genetic instrument, while the second part of the analysis included only primary 

signals of both cis and trans origin. In cases where only one SNP was available as pQTL, the Wald ratio 

was calculated instead of default MR primary and sensitivity analysis. In addition to the MR analysis, we 

performed the lookup of all pQTLs in the ANM dataset, where alleles were harmonised in the protein 

level increasing direction (Appendix Table 5.3).  

 

5.2.6 Categorisation 

 

In order to understand the nature of the effect of ANM genetic variants, we categorized the results into 3 

different groups according to: (a) the origin of the overall observed significance in the MR result, i.e. 

whether the effect is driven by the cis or trans-acting loci, (b) the significance of the effect of age and (c) 

menopause status. Those 3 categories were:  

 

1) Strong cis effect → the association is driven primarily by the inclusion of cis-acting loci. For the 

proteins that fall into this category the MR result that includes cis-acting loci is significant while 

it becomes non-significant after the exclusion of those loci. The cis-acting loci are defined in the 

Section 5.2.5.2. 

2) Many trans effects, P GRS in females is significant 

a) P GRS in females remains significant after controlling for MenoStatus and association 

with age is significant → the association is driven by both genetic (GRS) and non-genetic 

(menopause status) factors, yet most likely mediated by ageing process that associates 

with menopause onset in women 

b) P GRS in females is significant but becomes non-significant after controlling for 

MenoStatus and association with age → the genetic association (GRS) could be entirely 

explained by the menopause status (non-genetic) and association with age 

3) P GRS in females is non-significant 

a) only menopause status and association with age are significant  

b) menopause status is significant, while association with age is non-significant 
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5.3 Results 

5.3.1 Genetic associations for protein targets and menopause timing  

 

To study the impact of ovarian ageing on the proteomic profile in women, we used a genome-proteome-

wide association data on 4,775 protein targets (4,979 human somamers, SomaLogic) available in the 

Fenland study on 10,713 participants111 and data on ANM for ~200,000 women from the ReproGen 

study82. We performed the analysis in two stages. Stage 1 was conducted with the purpose of narrowing 

down the number of potential protein candidates that associate with the ANM by considering the 

significant result in any of the described analyses, MR or GRS linear regression. Stage 2 was performed 

to further decipher the effect of ANM by studying in more details the factors driving the observed 

associations, such as effect of cis-acting loci and menopause status, and taking into account the 

consistency of the results across different primary and secondary analysis with a final aim to select robust 

ANM-associated protein candidates of interest (Figure 5.2). 

 

 

Figure 5.2: A flow chart summarising the study strategy. 
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To perform Stage 1, we combined all evidence obtained from linear regression analysis in both sex-

combined and stratified data with the results from the MR analysis in the largest sample size available, i.e. 

the sex-combined data. The linear regression analysis assessed the effect of ANM GRS on 4,979 protein 

targets, also taking into account the effect of age and menopause status. Two-sample MR analysis used 

276 ANM ReproGen signals (or their proxies) as an exposure and sex-combined data on 4,979 proteins in 

meta-analysis of all three Fenland chips as outcomes (N individuals - OMICS: 8,355, core-exome: 1,026 

and GWAS: 1,332) (Methods, Section 5.2.2.4). To prioritise potential protein candidates that associate 

with ANM, we applied a multiple test correction (P: 0.05/4,979 = 1.004*10-5) on both types of analyses, 

and identified 196 out of 4,979 protein associations that passed this significance threshold in any analysis, 

either linear regression or MR (Appendix Table 5.1). These 196 protein candidates were taken forward 

for further examination. 

5.3.2 Proteogenomic analysis did not identify robust protein markers of 

ovarian ageing 

 

Stage 2 specifically focused on the 196 selected protein candidates from Stage 1.  

Firstly, to boost the evidence obtained from the secondary MR analysis and get a better insight into the 

nature of association between the ANM and protein abundances, we ran additional bi-directional MR 

models on sex-stratified data. This included two models with ANM signals as instrumental variables 

(IVs) and 196 proteins as outcomes (‘Forward MR’: from ANM to proteins) (Figure 5.2). Unlike the first 

model that used all 276 ANM signals on sex-stratified data, the second model excluded the ANM variants 

that were located within the 10mb window around the protein of interest with an aim to determine 

whether the observed associations were driven by the cis-acting signals. The protein associations tested 

using the MR frameworks that became non-significant after the exclusion of the cis-acting signals were 

defined as non-robust candidates. Finally, using the identified protein pQTLs, as described in Section 

5.2.2.4 and Koprulu, M. et al (2022)337, we tested the effect of these 196 protein levels on ANM as the 

outcome (‘Reverse MR’: from proteins to ANM) via MR or pQTL look-ups in cases where only a single 

pQTL per protein was identified (Appendix Table 5.1 and Appendix Table 5.3).  

 

We also ran additional linear regression models, stratifying the analysis based on menopause status, i.e. in 

pre- (N=1,992) and post-menopausal women (N=1,800) separately (Appendix Table 5.2). Menopause 

status serves as a non-genetic factor, which not only incorporates the effect of ovarian ageing on the onset 

of menopause, but it could be seen as unifying factor of all symptoms and outcomes that are associated 
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with this transition, including an effect of overall ageing, changes in the hormonal status etc. Therefore, 

the significance in the result within the pre-menopausal group would suggest that the ANM-protein 

association is driven by genetic factors underlying the process of ovarian ageing rather than menopause 

status itself.  

 

In order to identify protein candidates as robust biomarkers of ovarian ageing, we looked for statistical 

consistency across the above described evidence and further explored their biological rationale. We 

observed 3 patterns and thus classified all candidate proteins (except for RACGAP1, see below) into the 

following categories: 

 

1) ANM variants with a strong cis effect on protein abundance (N = 3 proteins): The effect of ANM 

on the protein is driven by ANM cis-acting variants, i.e. in or near to the protein-encoding gene. 

This category was identified based on the MR result that became non-significant after the 

exclusion of the cis-acting loci. Notably, all 3 proteins in this category were located within a 

highly pleiotropic HLA region and thus these findings are difficult to interpret.   

 

2) Multiple ANM variants with trans effects on protein abundance (N = 101 proteins). Here, we 

identified 2 subcategories with associations either persisting or attenuating after controlling for 

menopause status. Despite these differences, all proteins in this category were strongly associated 

with age (Appendix Table 5.1). This indicates that the ANM GRS association may be 

confounded by age and other related factors. Some of these proteins are potential markers of 

menopause status - however, their levels seem not to be solely altered by the change in ovarian 

function but also other ageing processes, which drive the ANM GRS association.  

 

3) Associated with menopause status but not with ANM GRS (either before or after controlling for 

menopause status) (N = 91 proteins). These proteins are likely influenced by mechanisms linked 

to menopause status. They showed reported biological functional links to health outcomes 

associated with ANM, including bone health, e.g. MRC2338 and BMP1, and brain function, e.g. 

NTN4339 and LSAMP340 involved in neurite growth, migration and axon targeting. 

 

The proteins classified into these 3 categories could not be considered as robust candidates for specific 

markers of ovarian ageing (prior to menopause).  
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5.3.3 The effect of ANM on RACGAP1 abundance 

 

Only a single protein, RACGAP1, was outside the above 3 categories. We observed an inverse association 

between the ANM GRS and RACGAP1 abundance (P=1.38*10-5), which strengthened (P=2.97*10-6) after 

controlling for menopause status and age (Table 5.1). In addition, RACGAP1 was the only associated 

protein in both pre- and post-menopausal women, separatately. More specifically, RACGAP1 was 

associated with ANM GRS in pre-menopausal women (P=4.83*10-5) after the multiple test correction (P: 

0.05/196 = 2.6*10-4) and showed only nominally significant association with post-menopause status 

(P=1.11*10-2) (Appendix Table 5.2). This suggests a strong genetic involvement of the ovarian ageing 

impact on RACGAP1 abundance (Appendix Table 5.2). Notably, the effect of ANM on RACGAP1 levels 

seemed not to be driven by age per se, as there was little or no association with age in pre-menopausal 

(P=4.16*10-2) or post-menopausal women (P=1.78*10-1) (Appendix Table 5.2). Interestingly, we also 

observed a significant association between ANM GRS and RACGAP1 abundance in men (P=4*10-5), 

which may indicated a wider relevance of this protein for health and disease and further supported the fact 

that the effect we observed in women was not menopause status driven (Table 5.1). 
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Table 5.1: Linear regression analysis for effect of ANM GRS on RACGAP1 abundance, with covariates. C: sex-

combined, F: females, M: males. 

 

Model Beta GRS SE GRS P GRS P Age P 

MenoStatus 

Protein ~ GRS C + age + 10PCs 

+ Test site 

-0.045 0.007 1.77*10-9 2.80*10-2 - 

Protein ~ GRS F + age + 10PCs + 

Test site 

-0.044 0.010 1.38*10-5 9.62*10-1 - 

Protein ~ GRS M + age + 10PCs 

+ Test site 

-0.045 0.011 4*10-5 2.30*10-3 - 

Protein ~ GRS F + age + 10PCs + 

Test site + menopause status 

-0.052 0.011 2.97*10-6 5.38*10-3 7.01*10-4 

Protein ~ age + Test site + 

menoStatus 

Beta 

PostMeno: -

0.126 

SE 

PostMeno: 

0.045 

- 1.32*10-2 5.22*10-3 

Protein ~ age + sex + Test site Beta Age: 

0.003 

SE Age: 

0.001 

- 2.64*10-2 - 

Pre-ANM GRS F 
Protein ~ GRS + age + 10PCs + 

Test site  

-0.063 0.015 4.83*10-5 2.16*10-2 - 

Post-ANM GRS F 

Protein ~ GRS + age + 10PCs + 

Test site  

-0.041 0.016 1.11*10-2 1.37*10-1 - 

Pre-ANM Age 

Protein ~ age + Test site  

Beta Age: 

0.008 

SE Age: 

0.004 

- 4.16*10-2 - 

Post-ANM Age 

Protein~age + Test site 

Beta Age: 

0.006 

SE Age: 

0.005 

- 1.78*10-1 - 

 

Finally, the linear regression results were supported by the MR analysis which suggested a causal effect 

of later ANM on lower RACGAP1 abundance (Post Radial IVW: P=2.22*10-2). Sensitivity models were 

inconsistent (MR Egger: P=1.93*10-2; MR WM: P=1.45*10-1, MR PWM: P=1.44*10-1) (Table 5.2, 

Figure 5.3 A, B), however the findings were directionally consistent and significant after the exclusion of 

the cis-acting signals (Table 5.2, Figure 5.3 C, D), and in both pre- and post-Radial models that aimed to 

detect and remove the outliers. 
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Figure 5.3: Mendelian Randomisation analysis of the effect of ANM on RACGAP1 abundance. Figures (A) and 

(C) present the dosage plots when using all ANM instrumental variables (N IVs: 276) (A) and after excluding the 

cis-acting signals. Figures (C) and (D) show the funnel plots as the measure of heterogeneity in described analysis. 

IVW: inverse variance weighted, WM: weighted median, PWM: penalised weighted median. 
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Table 5.2: Mendelian randomisation models of the effect of ANM on RACGAP1 abundance. ‘No HLA’ indicates 

models that excluded SNPs in the HLA region (N=6). ‘Lead HLA’ indicates that all SNPs in the HLA region were 

excluded except the leading, i.e. top scoring one (N=5). This was done to test whether this single most significant 

HLA variant drives the overall significant MR result. For more detailed MR results refer to Appendix Table 5.1. 

 

 

MR model N 

SNPs 

Beta 

IVW 

SE 

IVW 

P IVW P Egger P WM P PWM 

ANM > P   

Pre Radial 

276 -0.049 0.018 7.31*10-3 1.91*10-3 1.42*10-1 1.27*10-1 

ANM > P  

Post Radial 

250 -0.026 0.011 2.22*10-2 1.93*10-2 1.45*10-1 1.44*10-1 

ANM > P  

CIS exluded 

Pre Radial 

273 -0.049 0.018 7.49*10-3 1.56*10-3 1.41*10-1 1.13*10-1 

ANM > P  

CIS exluded 

Post Radial 

248 -0.027 0.011 1.89*10-2 1.99*10-2 1.29*10-1 1.34*10-1 

ANM > P  

no HLA  

Pre Radial 

270 -0.009 0.011 4.22*10-1 1.78*10-2 1.69*10-1 1.74*10-1 

ANM > P  

no HLA  

Post Radial 

250 -0.007 0.012 5.38*10-1 4.10*10-1 4.68*10-1 4.98*10-1 

ANM > P  

lead HLA  

Pre Radial 

271 -0.021 0.014 1.32*10-1 4.23*10-3 9.54*10-2 1.01*10-1 

ANM > P  

lead HLA  

Post Radial 

249 -0.023 0.011 3.64*10-2 2.71*10-2 9.30*10-2 9.43*10-2 

 

 

We explored the biological function of the 6 individual RACGAP1-associated ANM signals that based on 

dosage and funnel plots seemed to significantly contribute to the effect we observe (Appendix Table 

5.4). All of these signals were located in the HLA region, a well-described region for high pleiotropy and 

thus challenging for robust biological interpretations. Therefore, to test whether the association between 

ANM and RACGAP1 is driven by signals in the HLA region, we performed two additional MR analysis: 

fully excluding HLA SNPs (N=6) (Figure 5.4 A, B), and excluding all but the top scoring HLA SNP 

(N=5) (Figure 5.4 C,D). When excluding all HLA SNPs, the ANM-RACGAP1 association became non-
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significant (P IVW post-Radial=5.38*10-1), and when keeping the single top scoring HLA SNP, a 

nominal association remained between ANM and RACGAP1 abundance (P IVW post-Radial=3.64*10-2) 

(Table 5.2). These results indicate that the effect of later ANM on lower RACGAP1 is driven by the 

highly pleiotropic HLA region, and thus might not be a biologically robust observation. 

 

 

 
 

Figure 5.4: Mendelian Randomisation on the effect of ANM on RACGAP1 abundance after excluding the HLA 

region. Figures present the dosage plots when excluding all SNPs in the HLA region (A) and when excluding all but 

keeping the top scoring HLA SNP (C). Figures (C) and (D) show the funnel plots as the measure of heterogeneity in 

described analysis. IVW: inverse variance weighted, WM: weighted median, PWM: penalised weighted median. 
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In order to better estimate the effect of ANM variants on RACGAP1 abundance, we conducted a meta-

analysis of a substantially larger sample, the Fenland and deCODE studies (total N=46,075). No 

association was seen with or without inclusion of SNPs in the HLA region (Figure 5.5, Table 5.3). These 

results indicate that larger sample sizes might enable future more robust analyses of protein abundance 

and ovarian function.  
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Figure 5.5: Mendelian Randomisation on the effect of ANM on RACGAP1 abundance in the meta-analysis. 
Figures present the dosage plots when including all ANM IVs (A) and when excluding all ANM IVs in the HLA 

region (C). Figures (C) and (D) show the funnel plots as the measure of heterogeneity in described analysis. IVW: 

inverse variance weighted, WM: weighted median, PWM: penalised weighted median. 
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Table 5.3: Summary of the Mendelian Randomisation on the effect of ANM on RACGAP1 abundance in the 

meta-analysis. The results with the label ‘HLA excluded’ represent the MR analysis where the SNPs within the HLA 

region (N=6) were removed. For more detailed MR results refer to Appendix Table 5.6. 
 

MR model N 

SNPs 

Beta 

IVW 

SE 

IVW 

P IVW P Egger P WM P PWM 

ANM > P   

Pre Radial 

270 -0.027 0.014 5.38*10-2 1.98*10-1 6.66*10-1 5.26*10-1 

ANM > P  

Post Radial 

233 -0.008 0.004 5.39*10-2 3.44*10-1 6.30*10-1 6.34*10-1 

ANM > P  

HLA excluded 

Pre Radial 

264 0.003 0.004 3.45*10-1 6.41*10-1 8.58*10-1 8.58*10-1 

ANM > P  

HLA excluded 

Post Radial 

242 0.003 0.003 4.27*10-1 3.15*10-1 8.64*10-1 8.63*10-1 

 

 

5.4 Discussion 

 

High-throughput proteomic profiling has the potential to accelerate our understanding of human biology 

and disease, including reproductive ageing. This Chapter represents the first proteogenomic study 

performed on ANM, aimed to examine the potential impact of ovarian ageing on the proteomic profile in 

women. Using linear regression analysis on the individual level data and two-sample MR on the summary 

statistic data, we examined the association between ANM and 4,979 protein targets available in the 

Fenland cohort of ~10,700 European descent individuals (53.3% women). We firstly identified 196 

unique protein targets that were significantly associated with menopause timing in either of the analysis, 

and further explored those in additional regression and MR models that tried to decipher potential 

mechanisms driving the observed associations. For example, this included modelling the linear regression 

with age and menopause status to understand whether the effect we observe is solely due to changes in 

ovarian function or it is mediated by other factors that associate with menopause timing. Our analysis 

identified a potential protein candidate, RACGAP1, which demonstrated a strong genetic association with 

ANM. More specifically, we showed that later ANM was associated with lower levels of RACGAP1 in 

the analysis of both individual- and summary-level data. Biologically, RACGAP1 does indeed represent 

an attractive protein target due to its involvement in the cell cycle cytokinesis and cell growth, 

mechanisms that were already recognised as critical for menopause timing82,341. In addition, RACGAP1 is 
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involved in spermatogenesis and regulation of sulfate transport in male germ cells, and deletion of 

RACGAP1 in the germ cells causes male sterility in the mouse model, thus indicating its importance for 

the reproductive function in both males too342.  

 

However, through a thorough examination of the ANM genetic variants we concluded that the significant 

association we observed with RACGAP1 is highly driven by genetic variants located within the HLA 

region. These variants are highly pleiotropic and are associated with numerous complex human diseases, 

thus their biological interpretation is not yet straightforward343. Even though this analysis did not bring 

fruitful results, it shows the potential of human proteomic data for the identification of new biomarkers of 

ovarian ageing and gives a solid basis for the future studies that should further explore the association 

between human proteome and reproductive longevity. The success of future studies will highly depend on 

the sample size - our meta-analysis on RACGAP1 clearly demonstrates how an increase in sample size 

enables more robust conclusions. To address this, my future analysis will use the proteomic data on 

~55,000 individuals in UKBB that will become available to our group in late 2022344. Besides the limited 

sample size, this study has additional limitations, including its predominant European ancestral 

composition. This limits us to capture the full genetic and phenotypic diversity, therefore future studies 

should try to be more inclusive and integrate the proteogenomic data from under-represented 

populations345. In addition, future attempts should also incorporate the exome sequencing information, 

which will enable a multi-dimensional perspective on reproductive health and ageing. Finally, next steps 

in my proteogenomic research will also try to address whether potential protein candidates that are 

affected by ovarian ageing have any impact on the susceptibility to later life diseases that associate with 

menopause timing, as well as investigate whether other reproductive health outcomes, such as menarche 

timing, have an effect on the same protein targets as ANM. 
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CHAPTER 6 

DNA damage repair and insights into shared aetiology 

between menarche and menopause 
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Summary 

 

While the heritable determinants of many common reproductive traits have been studied, little effort has 

focused on understanding the degree of shared genetic architecture underlying different reproductive 

traits. Here, I describe an enlarged GWAS meta-analysis of age at menarche in ~566,000 women in the 

ReproGen consortium, which I used to study the shared genetic architecture and biological mechanisms 

between menopause and menarche timing, as well other reproductive health outcomes. This work 

provides the first evidence on the involvement of DDR in regulating the beginning of the reproductive 

lifespan, i.e. menarche timing, and the first gene candidates that we believe act via oocyte-specific 

mechanism to modify age at menarche. This indicates the relevance of maintaining genomic stability not 

only for the establishment and maintenance of the ovarian reserve, but also for the initiation of 

reproductive biological activity. This finding led us to think about DDR as a broader marker of health and 

disease - we provide the first human genomic evidence on the involvement of DDR genes across multiple 

health outcomes, demonstrating their impacts across anthropometric, metabolic and reproductive traits. 

 

 

Contributions and Collaborations 
 

Dr Felix Day performed the age at menarche GWAS meta-analysis and replication. Dr Katherine 

Kentistou created a G2G pipeline for gene prioritisation. The ‘G2G’ pipeline was run by Dr Kentistou, 

while some parts of the pipeline, specifically colocalization, MAGMA and gene expression analysis were 

also run by me. I performed the functional annotation of identified genes via thorough literature review 

and gene-set and pathway analysis. ‘Expert curated DDR 1’ gene list was curated by Professor Steve 

Jackson’s group, while ‘Expert curated DDR 2’ was curated through collaboration of internal (Professor 

John Perry) and external experts (Professor Eva Hoffmann and Professor Anna Murray). I performed 

GTEx tissue expression analysis, as well as gene-level and gene-set MAGMA analysis. The methodology 

behind ‘cMAGMA’ was created by Professor John Perry. I performed all the lookup and colocalization 

analysis between the genetic variants across multiple health outcomes, as well as gene-set enrichment 

analysis using gProfiler and functional enrichment tests using fGWAS and SLDP. Professor John Perry 

and Professor Ken Ong provided valuable advice on the analyses and writing of the manuscript.  
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6.1 Insights into shared aetiology between reproductive traits 

 

Female reproductive health represents an important aspect of overall wellbeing, with increasing 

evidence highlighting its implications for the risk of later life health outcomes and ageing130,346–348. For 

many of the reproductive traits which have been studied in-depth the aetiology appears to be complex and 

varies considerably in the population 347,349. While much progress has been made towards elucidating the 

genetic factors that contribute to the variation in these traits individually, not many efforts have been 

focused on understanding the degree of shared genetic architecture. Investigating the links and common 

biological mechanisms between various reproductive traits can have important benefits350–352. Firstly, it 

gives us an insight into whether and how genetic factors influence reproductive health as a whole. 

Secondly, it is particularly important for interventions and drug discovery to develop treatments that more 

specifically target the outcome of interest while reducing the possibility of any unwanted secondary 

effects. 

 

The first menstrual period, menarche, and onset of menopause are key milestones of female reproductive 

ageing30. They represent the start and end of reproductive capacity and define the length of a woman's 

reproductive lifespan351,353. Menarche occurs with maturation of the reproductive endocrine system, 

usually between the age of 10 and 15, denoting sexual maturity for women354. It is a highly polygenic 

trait, with both rare and common variants contributing to the phenotype77,131,355. The timings of both 

menarche and menopause vary widely between individuals347,351. The distribution spans from extreme 

forms that include the absence of puberty and hypogonadotropic hypogonadism, early menopause and 

POI, to normal ranges that were previously described, and also conditions of late puberty timing347. With 

considerable secular change in which age at puberty declines and age at first pregnancy increases, the 

mechanisms that regulate both ends of reproductive lifespan became increasingly relevant to population 

health347,356. Understanding whether there is a relationship between age at menarche and menopause, as 

well as the magnitude, direction and factors influencing this relationship might lead to preventive 

strategies for infertility, associated chronic disease and improvements in quality of life. 

 

Over the past decade, there was an expansion of GWASs that revealed the complex genetic architectures 

of menarche and menopause, and aimed at deciphering the association between these two ends of 

reproductive lifespan (Figure 6.1)347,351,353. 
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Figure 6.1: The number of identified loci in GWAS for age at menarche and menopause. The results are plotted 

as a function of the date of publication and demonstrate the progress in GWAS with enlarged sample sizes and 

improved genotyping arrays that contributed towards increased power to identify higher numbers of menarche and 

menopause genetic determinants347. 

 

Early studies reported inconclusive evidence on the genetic overlap between identified loci for the timing 

of menarche and menopause348,357–360. However, more recent, better powered GWASs have estimated a 

modest shared genetic aetiology (genome-wide genetic correlation: rg = 0.14; P = 0.003)86, with estimates 

being supported by new epidemiological evidence linking these two traits60,83131. Specifically, causal 

inference analysis indicated that (genetically mediated) a year earlier age at menarche decreased ANM by 

about 8 weeks82. Significant enrichment (P=0.01) in overlapping signals was found in/near genes that 

regulate the hypothalamic-pituitary reproductive axis (CHD7, FGFR1, SOX10, KISS1 and TAC3), which 

were also reportedly mutated in hypogonadotropic hypogonadism131. This finding suggested that the same 

mechanisms may regulate both extremes of reproductive ageing and it initiated discussion around the use 

of reproductive longevity as a ‘proxy’ of the general health status86,351. However, even with the presence 

of modest shared genetic aetiology, the regulatory mechanisms clearly differed between the two traits 

overall. Age at menarche was enriched in genes expressed in the hypothalamus and pituitary gland, thus 
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highlighting the importance of the central nervous system as the key regulator131. On the contrary, 

menopause gene candidates were mainly expressed in the ovary and other reproductive tissues, and 

implicated DDR processes that maintain genome stability and hence preserve the ovarian primordial 

follicle pool82. 

 

Results from GWAS studies (Figure 6.1) demonstrated how increases in sample size over time and more 

robust statistical tools have improved the power to identify more genetic determinants of reproductive 

traits347,351. These latest insights on the genetics of menarche and menopause were derived from the 

GWASs conducted on women that are part of the ReproGen consortium82,131. The menopause GWAS that 

identified ~300 genetic variants is described in detail in Chapter 1 and 282. Menarche GWAS was 

conducted in ~370,000 women of European ancestry and detected 389 genetic factors regulating puberty 

timing. These signals explained ~7.4% of the population variance in age at menarche, corresponding to 

∼25% of the estimated heritability131. Estimates of heritability suggest that 50–70% of variance in age at 

menarche is due to genetic risk factors131. This suggests that many genetic variants contributing to its 

variation have yet to be identified, some of which might also be responsible for regulation of the other 

end of reproductive lifespan, i.e. menopause timing. This unrevealed heritability prompted a number of 

research questions regarding the existence of other potential biological processes that contribute to the 

wide population variance in reproductive timing, and whether and how these processes are linked to the 

susceptibility of non-reproductive health outcomes.  

 

To address these questions, we conducted the largest menarche GWAS to date in ~566,000 women from 

ReproGen consortium and identified 696 independent loci, increasing the total number of menarche 

associated loci by ~2 fold. A primary challenge in obtaining biological insights from GWAS arises from 

the inability to directly implicate causal genes and the mechanisms involved. Deciphering how associated 

variants modulate the outcome risk and severity, and how they impact cellular phenotypes provides a 

mechanistic insight essential for effective predictive and therapeutic solutions361. To improve the 

approach of identifying the causal genes and addressing the mechanistic interpretation of our findings, we 

specifically developed ‘GWAS2Gene’ (G2G), a novel tool that takes advantage of a variety of data 

sources to provide a solution for gene prioritisation and functional interpretation.  

In this Chapter, we combined these novel GWAS findings with developed tools to further investigate the 

shared aetiology with menopause and other reproductive traits. We provided the first evidence on the 

involvement of DDR mechanism in regulating the timing of both ends reproductive lifespan, menarche 

and menopause. This is the first time where the maintenance of the genomic stability was demonstrated to 

be critical not only for the establishment and maintenance of the ovarian reserve, but also for the initiation 
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of reproductive activity. Finally, this prompted us to explore the role of DDR as a broader marker of 

health and disease, and led to the novel human genomic evidence on the involvement of DDR in 

regulating metabolic and anthropometric traits, such as body mass index (BMI) and height, and 

suggestive evidence for T2D.  

 

Understanding the functional consequences of genetic association for the same signals in different traits 

will provide important insights into the similarities and differences in gene regulation underlying risk for 

various health outcomes.  

 

6.2 Methods 

6.2.1 Genome-wide association study for age at menarche 

The genetic variants from each individual study coming from ReproGen and BCAC Consortia were tested 

for the association with age at menarche using an additive linear regression model. Age was included as a 

covariate, as were any study-specific variables. Insertion and deletion polymorphisms were coded as “I” 

and “D” to allow harmonisation across all studies. Genetic variants and individuals were filtered based on 

study-specific quality control metrics. Association statistics for each SNP were then uploaded by study 

analysts for central processing. Study-level result files were assessed following a standardised quality 

control pipeline362. The results for each variant were meta-analysed using an inverse-variance-weighted 

model implemented in METAL363 using a two-stage process. First, for each individual file each of the 

composite final strata were combined and then filtered such that only variants that appeared in over half 

of these studies were taken forward. Second, aggregated ReproGen consortium and BCAC results were 

combined with data from the UK Biobank147 and 23andMe studies. Variants were only included in the 

results file if they had combined MAF > 0.1%. 

Significant associated loci (P ≤ 5*10-8) were initially selected using distance-based (1Mb windows) 

clumping, as explained in Chapter 2, Section 2.2.1. Then, independent signals were identified using 

approximate conditional analysis in GCTA156 with an LD reference panel from the UKBB study. The 

methodology behind the approximate conditional analysis is described in detail in Chapter 2, Section 

2.2.1. Primary and secondary signals were then checked for LD in 10Mb windows in plink 

(v1.90b6.18)364. Only secondary signals that were uncorrelated with previously identified primary signals 

(r2 < 0.05) were included in the final list. Finally, data was merged with the allele information from 
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UKBB to provide the full genomic sequence for those alleles that had been designated either “I” or “D”. 

In total, we identified 696 independent genomic signals that regulate menarche timing. 

6.2.2 Variance explained 

The variance explained by each of the identified variants under the additive model was calculated using 

the formula 2 f (1 − f)β2
a, where f denotes the MAF of the variant and βa is the effect. Variance explained 

across multiple variants was calculated by summing these individual variances for all uncorrelated 

variants. Finally, the percentage of the heritability explained by our top hits was calculated based on the 

chip heritability for age at menarche obtained from UKBB131. 

6.2.3 Replication  

Replication of identified signals was performed in the independent sample in the deCODE study of 

39,360 Icelandic women. Given the smaller sample size of the replication cohort, alongside the specific 

SNP replication, we also performed a global replication test, based on a Binomial sign test. 

6.2.4 ‘GWAS2Gene’ (G2G) pipeline for functional annotation and gene 

prioritisation 

 

The primary challenge in obtaining biological insights from GWAS arises from the inability to directly 

implicate causal genes and the mechanisms involved. Previous studies showed that the closest gene of a 

given leading signal is often the causal one185,365,366, yet it is an imperfect predictor of causality. To 

prioritise the target genes of identified causal variants our group developed an approach that integrates 

evidence from multiple individual data sources, which, when combined, provide a more powered source 

of information on functional links between associated variants and candidate genes. We named this tool 

‘GWAS2Gene’ (G2G).  

Leveraging LD information on the sentinel variants within each of 696 signals, we ascertained whether 

signals could be linked to known enhancers and regulatory elements for, or coding variants within, each 

of their proximal genes. This would help us assess whether the leading signals directly impact the 

transcription and/or translation of the target genes. For each GWAS signal we calculated windows of high 

LD (r2>0.8), generating a list of proxies with the main signal. These were matched to locations of known 

enhancers using activity-by-contact (ABC) enhancer maps367, generated across 131 human cell types and 

tissues. We then use these data to score individual genes if the leading signal or its proxy fall within one 

of these identified enhancer regions. If there were coding variants among the list of proxy signals, they 
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were annotated using SIFT368 and PolyPhen369. We also used gene expression data, in the form of 

expression quantitative trait loci (eQTL) and protein QTL (pQTL) from Fenland study111, in tissues 

specifically enriched in our GWAS, to match the pattern of association we see towards variation in 

menarche and variation in gene expression. The tissue enrichment analysis was performed via LDSC-

SEG370 and Cell type-specific analysis [https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses]. 

The tissues with P < 0.05 were highlighted, alongside the data from GTEx tissue fixed-effects meta-

analysis (v7)371, eQTLGen372 and Brain-eMeta373.  

We then applied the SMR & HEIDI approach (version 0.68) that uses summary-level data from GWAS 

and eQTL studies to test if a transcript and phenotype are associated due to the shared causal variant, i.e. 

coincidental overlap of signals due to extended patterns of LD374. We used FDR-corrected P-SMR <0.05 

and P-HEIDI >0.001. We supported this analysis by conducting colocalization using Bayes factors 

(Coloc-ABF) with the R package ‘coloc’ (Version: 5.1.0)375 to assess whether two association signals 

were consistent with a shared causal variant. Coloc uses a user-set prior for the chance of association 

between a SNP and the phenotype and the variance for this effect size. It relies on a null hypothesis and 

four alternative hypothesis as described below: 

Null Hypothesis: No associated genetic variants with either trait. 

Model 1: The locus contains one genetic variant which influences the first phenotype.  

Model 2: The locus contains one genetic variant which influences the second phenotype.  

Model 3: The locus contains two separate genetic variants which influence the first and second phenotype 

respectively. 

Model 4: The locus contains one genetic variant which influences both phenotypes. 

 

SNPs that follow model 4, i.e. where the posterior probability that both traits are associated and share a 

single causal variant is >= 0.75, were defined as co-localised causal variants. 

At the gene-level association, we applied the Polygenic Priority Score (PoPs) method376, which uses bulk 

human and mouse data with information on scRNA, gene pathways and protein interactions and 

prioritises genes proximal to GWAS signals based on these biological annotations. In addition to PoPs, 

we integrated the evidence from gene-level MAGMA analysis based on the protein coding variants377.  

Finally, signals were paired to the closest genes based on the 1Mb window of the genes’ start or end sites 

(i.e. 500kb up- and downstream of each signal) using National Center for Biotechnology Information 

(NCBI) RefSeq gene map for GRCh37 as a reference for the gene location 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/). The gene for intragenic signals was 

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
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automatically assigned as the closest. We overlaid all this information to calculate aggregate scores for 

every gene in the genome, based on these six layers of evidence:  

1. The closest gene evidence carried 1.5 points.  

2. From the eQTL colocalization analysis, evidence found for either SMR or coloc carried 1 point, 

while if the evidence was present for both analyses we assigned 1.5 points in total. We added 1 

extra point if the eQTL causal variant and GWAS signal had r2<0.05.  

3. The same rules for eQTLs were applied for pQTL colocalization.  

4. For coding variants, variants from MAGMA analysis and variants in LD were scored together 

because of the related input. The variants with FDR-corrected MAGMA P value <5% carried 0.5 

points. In addition, if the variant was annotated as deleterious or damaging it obtained 1 point, 

while benign or tolerated coding variants got 0.5 points.  

5. The evidence from ABC enhancers carried 1 point  

6. The evidence from PoPs carried 1.5 points.  

The score was summed for gene-signal pairs across 6 described analyses. Genes with 0 points were 

removed. The remaining gene-signal scores were adjusted for signal LD window size (r2 >0.5). For genes 

with more than one signal we kept the highest scoring signal and added an additional point to the final 

score, ultimately obtaining the so-called ‘unique gene score’, which was adjusted for the gene length. 

Finally, we calculated the genome-wide rank per gene and summarised the number of evidence sources 

supporting each gene (maximum 6). For downstream interpretation, we focused on scored genes (N=509) 

that have >=3 evidence sources. The outcome of this pipeline can be found in the Appendix Table 6.1. 

6.2.5 Functional annotation of G2G genes 

 

Functional annotation of menarche genes highlighted via G2G analysis was performed using integrative 

databases that provide comprehensive functional and molecular information on all annotated human 

genes. These included Gene Cards and Open Targets Genetics. In addition, the information on specific 

genetic disorders related to 509 AAM genes of interest was obtained from the Online Mendelian 

Inheritance in Man (OMIM) database, an online catalogue of human genes and genetic disorders. Due to 

the specific focus on the potential role of the DDR mechanism in regulation of menarche timing, which 

will become relevant in later sections of this Chapter, we built comprehensive evidence that integrates 5 

different sources, listing genes with known involvement in DDR. These included expert curated DDR 

gene lists: (1) ‘Broad DDR’, the gene list curated in the laboratory of Professor Stephen Jackson and (2) 

‘Expert curated DDR 2’, the DDR gene list curated for our previous study82 through collaboration of 
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internal (Professor John Perry) and external experts (Professor Eva Hoffmann and Professor Anna 

Murray). ‘Broad DDR’ covered a few angles of DDR biology: DNA repair genes, broader DNA damage 

response genes (damage-induced chromatin remodelling, transcription regulation and cell cycle 

checkpoint induction) and general maintenance of genome stability, such as genes involved in DNA 

replication. In addition, we obtained the DDR-related gene sets from various online enrichment analysis 

tools, including REACTOME (DNA Repair: R-HSA-73894) and Gene Ontology (DNA Repair: 

GO:0006281 and Cellular response to DNA damage stimulus: GO:0006974) (Appendix Table 6.5). 

6.2.6 The Genotype Tissue Expression (GTEx) 

We used GTEX, a publicly available resource of tissue-specific gene expression, to lookup the tissue 

expression of 509 AAM genes highlighted by G2G analysis (Appendix Table 6.6)378. 

6.2.7 Exploring biological mechanisms underlying menarche timing using 

MAGMA 

 
The causative genetic factors usually have small effect sizes in complex diseases, thus their detection by 

single-variant statistical analyses is challenging. To increase the statistical power of the hypothesis-free 

GWAS and reduce the burden of multiple testing, it is better to consolidate the effects of multiple variants 

by providing functional annotations. To address this, we applied a pathway analysis, MAGMA, a gene 

and gene-set analysis of GWAS genotype data377. This enabled us to analyse multiple genetic markers 

simultaneously to determine their joint effect, detect potential risk genes and better explain mechanisms 

underlying health outcomes of interest. We used age at menarche GWAS meta-analysis summary 

statistics, described in Section 6.2.1, as an input file. 

MAGMA consists of three steps: (1) an annotation step to map SNPs onto genes; (2) a gene analysis step 

to compute gene p-values; and (3) a gene-level analysis step, i.e. gene-set analysis.  

6.2.7.1 Annotation 

 

SNP to gene annotation was performed as part of the pre-processing step using Variant Effect Predictor 

(VEP)162. As the gene names were under the Ensembl stable ID setting, we further converted the gene IDs 

to Entrez accession numbers using g:Convert (https://biit.cs.ut.ee/gprofiler_beta/convert ), a format 

required by MAGMA. The gene location file was downloaded from the MAGMA website for genome 

build 37 (https://ctg.cncr.nl/software/magma). The annotation output file consisted of each row 

corresponding to a gene, containing the gene ID, a specification of the gene’s location, and a list SNPs 

https://ctg.cncr.nl/software/magma
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mapped to that gene. This default version of the MAGMA input file contained all genetic variants across 

the genome available in the summary statistic of the phenotype of interest. We named the default 

MAGMA version as ‘Unrestricted MAGMA’.  

 

Additionally, we proposed a new approach, namely ‘coding MAGMA (cMAGMA)’ for gene-wise 

annotation of protein coding, predicted deleterious variants from GWAS summary statistics. The same 

methodology, as described above, was used in case of cMAGMA with an exception of the variant file 

provided, which in this case contained only predicted deleterious variants as defined per VEP. The results 

from the cMAGMA model were used as the primary ones. 

To account for LD between SNPs we used 1,000 Genomes European reference genome, available for 

download from MAGMA website: https://ctg.cncr.nl/software/magma. The 1000 Genomes reference data 

file was created from the Phase 3, with SNP locations in reference to human genome build 37. The two 

main requirements for the reference data were followed: (1) the existence of a strong overlap between the 

reference data and the input file, since only SNPs that occurred in both files were used in the analysis; and 

that 2) the general ancestry of the reference data matched the input file data. 

The input data coming from GWAS summary statistics have undergone appropriate quality control and 

filtering prior to running the MAGMA, including imputation quality.  

6.2.7.2 MAGMA gene-level analysis 

  

MAGMA gene-level analysis tested the joint association of all markers in the gene with the phenotype of 

interest using a SNP-wise gene model that computed gene test statistics combining SNP P-values through 

multiple regression. The computed gene level metrics quantified the degree of association each gene has 

with menarche timing. In addition, the correlations between neighbouring genes were estimated as a 

prerequisite for gene set analysis, required to compensate for the dependencies between genes.  

Computed SNP P-values, sample size and reference data were provided to run: (1) ‘cMAGMA’ analysis, 

which focused solely on coding variants, and (2) ‘Unrestricted’ analysis, which focused on all GWAS 

variants. The P and Z value statistics were computed to see if tested genes are significantly associated 

with menarche timing. 

6.2.7.3 MAGMA gene-set analysis 

 

The gene-set analysis was performed with an aim to explore the involvement of specific biological 

pathways in menarche aetiology. In this analysis individual genes were aggregated to groups of genes 

sharing certain biological, functional or other characteristics based on the ‘Canonical pathways’. These 
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contained the evidence from Kyoto Encyclopaedia of Genes and Genomes (KEGG), Reactome, Gene 

Ontologies (GO), BioCarta and Pathway Interaction Database (PID). Then, competitive gene-set analysis 

using regression models was performed to test whether the genes in a specific gene-set are more strongly 

associated with the trait of interest than other genes, suggesting enrichment. By default, the gene set 

variable is conditioned on the gene size, gene density, the relative level of LD between SNPs in that gene 

and the inverse of the MAC to correct for potential power loss in very low MAC SNPs, as well the log 

value of these three variables. The association that a gene has with the phenotype was quantified as a Z-

score, a probit transformation of the gene P-value computed during the gene analysis step (𝑍𝑔 = Φ(1 − 

𝑃𝑔), mapping low P-values onto high positive Z-scores (𝑍𝑔 = 0 corresponds to 𝑃𝑔 = 0.5). We applied the 

Bonferroni correction (P: 0.05/2233 = 2.24*10-5) to highlight the pathways that were significantly 

associated with the age at menarche. 

6.2.8 Lookups of age at menarche signals in other reproductive health 

outcomes 

 

To explore the potential shared genetic architecture between age at menarche and menopause, we 

performed a lookup of 696 menarche lead signals in the ReproGen menopause summary statistics 

available for ~250,000 women of European descent82. The data were harmonised in the direction of the 

age at menarche increasing allele. The P value significance and direction of the effect were compared 

between two traits of interest. The signals were highlighted if they passed a Bonferroni corrected 

(P≤0.05/696=7.2*10-5) or genome-wide significant P value (P ≤ 5*10-8).  

The same approach was taken in the opposite direction, i.e. to assess the genetic overlap of 290 

menopause signals, identified in our most recent ReproGen GWAS82, in age at menarche summary 

statistics. The signals were highlighted if they passed a Bonferroni corrected (P≤0.05/290=1.7*10-4) or 

genome-wide significant P value (P ≤ 5*10-8). 

We were also interested to examine the effect of 696 menarche lead signals in the largest available 

summary statistics of other reproductive traits, including polycystic ovarian syndrome (PCOS)379, NEB380 

and twinning381. We examined the consistency in the direction of associations between individual signals, 

as well as their statistical significance. If a particular menarche signal was not present in other datasets, 

we searched the UKBB white European dataset for proxies. The criteria applied for the proxy selection 

included the proxy distance that falls within 1 Mb window and the r2 > 0.5 with the main signal. The 

proxy with the highest r2 value was selected as the proxy of choice.  
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Finally, in order to test whether 696 menarche signals also associate with BMI, we performed a variant 

lookup using sex-combined BMI data available in the UKBB. We applied both Bonferroni correction 

(P≤0.05/696=7.2*10-5) and genome-wide significance threshold (P≤5*10-8) to identify significant 

associations. 

6.2.9 Understanding genetic associations using colocalization 

 

The lookups described in the Section 6.2.8 were supported by the evidence from the colocalization 

analysis, which was used to determine if age at menarche and menopause genetic association in the same 

locus is being mediated by the same underlying causal variant. The methodological rationale behind 

colocalization using the coloc package was previously described in the Section 6.2.4. It is important to 

note that colocalization analysis cannot determine causal relationships between the phenotypes being 

studied, and neither can it determine the direction of causality between the two phenotypes.   

6.2.10 Functional enrichment tests for ZNF483 transcription factor binding 

sites using fGWAS and SLDP 

We implemented fGWAS (v.0.3.6), a hierarchical model for joint analysis of GWAS and genomic 

annotations, to test the functional enrichment of age at menarche GWAS hits in ZNF483 transcription 

factor binding sites197. The fGWAS input file contained the menarche GWAS summary statistics, 

described in Section 6.2.1, annotated for ZNF483 binding sites. The ZNF483 annotation file was derived 

from the ENCODE ChIP-seq data from human HepG2 cell line [ENCSR436PIH] with available start and 

end transcription binding sites across the genome (GRCh38). As the genomic location of transcription 

binding sites was in GRCh38 format, we converted it to hg19 assembly using NCBI remapping tool 

(https://www.ncbi.nlm.nih.gov/genome/tools/remap). Menarche GWAS hits were annotated for the 

presence/absence of the ZNF483 transcription factor binding sites in a binary way (0, 1), with ‘1’ if the 

SNP falls within the transcription factor binding site and ‘0’ otherwise. fGWAS was run using the 

fGWAS tool available at https://github.com/joepickrell/fgwas. Detailed description of fGWAS 

methodology is available in Pickrell et al, 2014197 and Chapter 3, Section 3.2.7. The fGWAS output 

contained the maximum likelihood parameter estimates for each parameter in the model, in this case 

ZNF483, with the lower and upper bound of the 95% confidence interval on the parameter.  

SLDP regression was applied to explore the directional effect of a signed functional annotation, ZNF483, 

on age at menarche using GWAS summary statistics. More specifically, we tested whether alleles that are 

predicted to increase the binding of the transcription factor ZNF483 have a genome-wide tendency to 

https://www.encodeproject.org/experiments/ENCSR436PIH/
https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://github.com/joepickrell/fgwas
https://github.com/joepickrell/fgwas
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increase or decrease puberty timing in girls. The SLDP tool was installed from 

https://github.com/yakirr/sldp, with the comprehensive methodological steps described in Reshef et al, 

2018199 and Chapter 3, Section 3.2.7. For the analysis to be conducted, SLDP required age at menarche 

GWAS summary statistics, signed LD profiles for ZNF483 binding, signed background model and 

reference panel in a SLDP compatible format. The ZNF483 annotation file, obtained from the ENCODE 

CHIP-seq analysis as described above, was preprocessed using the ‘preprocessannot’ tool that turns 

signed functional annotations into signed LD profiles. SLDP was run on our data using the ‘sldp’ 

function.  

6.2.11 Exploring the role of DDR, cell cycle and death across multiple health 

outcomes using MAGMA 

 
A wide range of phenotypes was tested within the MAGMA gene and pathway analysis, covering 

reproductive, cardiovascular, metabolic, and neurodevelopmental health outcomes. The analysis was run 

on 35 health outcomes in total. Age at natural menopause, loss of chromosome Y (LOY) and cancer 

phenotypes were selected as positive controls due to the previously described role of DDR, cell cycle and 

death in their aetiology. Since raw genotype data were not available for some traits, we focused on SNP-

wise gene analysis model that required summary statistics data.  Most of the health outcomes of interest 

were available in the UKBB study. GWASs of mentioned phenotypes were conducted using linear mixed 

models, implemented in BOLT-LMM v2.3.4 and described in Chapter 2, Section 2.2154. The regression 

models included age and genotyping array as covariates, unless stated otherwise. For the phenotypes that 

were not available in UKBB, we searched for the largest, publicly available GWAS summary statistics. 

For more details on these datasets, including the studies they were obtained from, please refer to the 

Appendix Table 6.7 and original publications.  

 

MAGMA was run following three steps as previously described: (1) an annotation step to map SNPs onto 

genes; (2) a gene analysis step to compute gene p-values; and (3) a gene-level analysis step, i.e. gene-set 

analysis. We performed both cMAGMA and unrestricted default version, however in the main text we 

only describe the results from cMAGMA analysis. To account for LD between SNPs we used UKBB 

reference genome and we replicate the analysis using 1,000 Genomes European reference genome, 

available for download from MAGMA website: https://ctg.cncr.nl/software/magma.  

 

Being specifically interested in the role of DDR and cell cycle mechanisms in the phenotypes of interest, 

we focused on the following biological pathway sources:  

https://github.com/yakirr/sldp
https://github.com/yakirr/sldp
https://github.com/yakirr/sldp
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(1) Gene Ontologies (GO) that describe gene properties from a hierarchical class structure of three main 

aspects: molecular functions, biological processes, and cellular components. GO annotation was 

downloaded from the Gene Ontology website (http://geneontology.org/docs/download-go-annotations/). 

Our main focus were biological processes, including GO5:DNA_Repair (GO:0006281), GO5:Cell_cycle 

(GO:0007049), and GO5:Cellular_response_to_DNA_damage_stimulus (GO:0006974). The selection of 

the named GO terms from the GO ancestor tree was based on the most comprehensive description of the 

pathways of interest that incorporated multiple ‘child terms’, which more specifically describe the 

mechanisms involved. 

(2) Expert-curated pathway ‘Broad DDR’: In addition to the publicly available categories, we also 

obtained a customised pathway ‘Broad DDR’, specifically curated by the DDR experts from the 

Jackson’s laboratory, University of Cambridge. The content of this pathway is described in detail in the 

Section 6.2.5 (Appendix Table 6.5). In order to detect reliable gene candidates across phenotypes of 

interest, we checked for the consistency between the genes identified using GO terms DNA Repair and 

‘Broad DDR’ pathways. 

 

We applied the false discovery rate (FDR) threshold to highlight the pathways that were significantly 

associated with tested health outcomes, and calculated ‘score’ per outcome that reflected the number of 

times a certain pathway was significant (Appendix Table 6.8).  

 

In order to understand which genes from our pathways of interest play a significant role across selected 

health outcomes, we extracted MAGMA gene level statistics for each gene in each pathway, and 

highlighted the ones significantly associated with the traits based on the Bonferroni corrected P value. A 

final score was computed according to the number of traits a particular gene was significant for.  

 

 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/biological-phenomena-and-functions-concerning-the-entire-organism
http://geneontology.org/docs/download-go-annotations/
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6.3 Results 

6.3.1 GWAS discovery and replication of common genetic variants regulating 

menarche timing 

We performed an expanded GWAS meta-analysis for age at menarche, combining 73 studies with GWAS 

data imputed to either the Haplotype Reference Consortium (HRC) or 1000 Genomes imputation panels, 

comprising ~566,000 women of European ancestry. This specifically included data from the ReproGen 

and BCAC consortiums, combined with the UKBB and 23andMe studies. We detected 655 loci, defined 

as a 1 Mb window containing variants associated with age at menarche at P ≤ 5.0×10-8. Following 

approximate conditional analyses using GCTA, we identified 696 independent signals associated with age 

at menarche (Appendix Table 6.2). We sought independent replication in the deCODE study (N=39,360 

Icelandic women). Of our 696 independent signals, 687 (99%) were present in deCODE of which 616 

(90%) showed directionally concordant associations with AAM (PBinomial = 1.3×10-109), while 281 signals 

were at P<0.05. In deCODE, these signals explained 9.1% of the population variance in menarche timing. 

In the Danish Blood Donors Study (N= 35,467 Danish women), the variance explained, estimated from 

summary statistics, in menarche timing increased from 11% by the previously reported 389 signals to 

14% by the current 696 signals, corresponding to ∼29% of the estimated heritability. 

6.3.2 DNA damage response is a novel regulatory mechanism of menarche 

timing 

To implicate potential biological pathways that regulate menarche timing, we applied the MAGMA gene 

and gene-set analysis approach to our genome-wide common variant associations with age at menarche. 

We adapted the default MAGMA approach to strengthen the level of inference by considering only 

coding variants, and termed this ‘coding MAGMA’ (cMAGMA). Three canonical pathways were 

enriched for coding variant associations with menarche timing at the multiple test corrected P ≤ 2.2×10-5. 

The significant pathways included: ‘DNA repair’ (P=6.4×10-6), ‘Acute myeloid leukemia’ (P=6.4×10-6), 

and ‘DNA damage reversal’ (P=9.8×10-6) (Figure 6.2). This is the first evidence linking DDR pathways 

to puberty timing regulation. 
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Figure 6.2: Top 10 enriched pathways for age at menarche identified using cMAGMA. The red vertical dotted 

line represents Bonferroni P value threshold (0.05/2233=2.24×10-5). 

 

Other specific DDR-related pathways were enriched at nominal significance: ‘PTEN regulation’ 

(P=7.9×10-5)382, ‘DNA damage bypass’ (P=1.2×10-3), ‘Sumoylation of DDR proteins’ (P=1.8×10-3), 

‘Cellular senescence’ (P=6.6×10-3), ‘DNA damage telomere stress induced senescence’ (P=1.2×10-2), and 

‘DNA double strand break repair’ (P=1.4×10-2). Beyond DDR, the well-established central regulator of 

reproductive hormone axis activity, ‘GnRH signalling pathway’, was at the borderline multiple test 

correction significance (P=8.8×10-5).  

 

6.3.3 Identification of high confidence menarche genes using G2G 

To implicate the genes that regulate menarche timing from genome-wide common variant associations, 

we developed an analytical framework, G2G, which integrates genomic and functional evidence across 6 

sources (Appendix Table 6.1).  
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Figure 6.3: Age at menarche gene prioritisation using G2G. (A) Miami plot showing signals from the GWAS meta-

analysis for age at menarche (lower) with genome-wide G2G scores (upper). (B) The 50 highest scoring genes 

implicated by the G2G pipeline are indicated, demonstrating the evidence for 6 different predictors used for gene 

prioritisation.  
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We identified 509 high-confidence age at menarche genes, proximal to a GWAS signal and implicated by 

at least three concordant predictors (Appendix Table 6.1). We manually curated these 509 top scoring 

menarche genes using Gene Cards, Open Targets Genetics, and PubMed to get an insight into their 

biological function. In addition, we combined evidence from the expert curated DDR gene sets and DDR-

related gene sets from various online enrichment analysis tools to explore the potential role of individual 

menarche genes in the DDR mechanism.  

Top G2G scoring menarche genes included established components of the hypothalamic-pituitary axis 

that regulates sex hormone secretion and gametogenesis383: LHB, FSHB, TACR3 and GNRH1, as well as 

genes that encode gonadal secreted hormones or peripheral sex hormone metabolism: INHBB384, FST 385 

and POR386. In addition, we detected well-known genes that are reported as disrupted in monogenic 

disorders of reproduction. This included CADM1387, SEMA3G388, SRA1389 and TYRO3390–392 responsible 

for Congenital Hypogonadotropic Hypogonadism (CHH), MKRN3 393,394 detected in Central Precocious 

Puberty (CPP), LEPR395–398 in severe obesity with delayed puberty, as well as THRB 399 in thyroid 

hormone resistance. 

6.3.4 Common menarche associated variants are enriched in ZNF483 binding 

sites 

Among the potential novel regulators of the reproductive hormone axis, we highlighted ZNF483, which 

also came to the attention of our group due to the significant association of ZNF483 damaging variants 

with age at menarche (1.31 years later menarche, P=4.90*10-11, N female carriers: 59) in UKBB whole 

exome sequence analysis (unpublished work by PhD student Lena Kaisinger). Several other members of 

the zinc finger superfamily have previously been linked to menarche timing using GWAS data400–402 as 

well as animal models403, which suggests that ZNFs may be transcriptional regulators involved in the 

process of epigenetic regulation of puberty timing. ZNF483 is involved in transcriptional regulation, 

regulation of neuronal differentiation via interaction with MeCP2404, and maintenance of the self-renewal 

of human pluripotent stem cells405. In ZNF483 ChIP-seq data available from the ENCODE project and 

using fGWAS197, we found that common variants associated with menarche timing were enriched in the 

transcriptional targets of ZNF483 (P=1.2*10-6). This included binding site co-localisation with 4 

previously reported menarche GWAS loci – rs1131017 (RPS26), rs192330071 (PRSS57), rs2659005 

(SLC38A10) and rs3813321 (EGR1 – which roles in DDR are starting to be revealed406. We extended this 

result by testing functional enrichment using SLDP regression199. This demonstrated that ZNF483 bound 

loci are significantly associated with earlier menarche timing (Z=-4.1, P=4.1*10-5). This is directionally 
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concordant with the results of rare damaging ZNF483 variants, and together indicate that ‘more’ ZNF483 

binding promotes earlier age at menarche.  

6.3.5 DDR genes with novel evidence on the involvement in the initiation of 

reproductive activity 

We also highlight notable examples of G2G top scoring menarche genes that are implicated in DDR 

processes. We identified 44 genes with 2 or more evidence sources as being involved in DDR 

mechanisms and 37 genes with suggestive evidence on DDR, i.e. a single evidence obtained via manual 

curation of the literature. The highest scoring gene in menarche G2G analysis, YWHAB, encodes an 

adapter protein with roles in metabolism, protein trafficking, DDR, apoptosis and cell cycle regulation407. 

Another interesting example involves a transcription factor, FOXO3, which plays an important role in the 

cell cycle, DDR, apoptosis, autophagy and energy metabolism408–411. Recent studies have shown that 

FOXO3 is involved in the physiological regulation of follicular development and pathological progression 

of related ovarian diseases412. Other examples with evidence on the involvement of DDR include: UBE2B 

(ubiquitination and post-replicative DNA damage repair)413, ALKBH3 (single-stranded DNA repair)414, 

ASCC3 (3'-5' DNA helicase involved in repair of alkylated DNA)415, TLR4 (regulation of apoptosis, 

innate immune system and mediation of the effects of palmitate on GnRH neurons)416,417, and TP53BP1 

(involved in response to DNA damage, telomere dynamics and class-switch recombination during 

antibody genesis; expressed in GnRH positive neuron cells)418,419. 

6.3.6 The effect of BMI on the association between DDR and menarche timing 

The role of adiposity in regulating menarche timing is supported by epidemiological and genetic studies. 

These reported a strong genetic correlation between puberty timing and body mass index (BMI) and that 

many genes involved in the regulation of fat mass are also associated with timing of menarche420,421. To 

explore whether observed menarche associations are potentially mediated by BMI, we looked them up in 

the UKBB BMI sex-combined dataset (Appendix Table 6.2). Specifically, we were interested if 

observed DDR effects are specific to menarche or might influence menarche by changing BMI. We found 

that 158 out of 696 genetic variants were influenced by BMI at the Bonferroni corrected P value (P ≤ 

7.18*10-5), 93 of which were at the genome-wide significance level (P ≤ 5x10-8). Notable examples 

include genes that are well described for their association with BMI and obesity. This includes 

SEC16B422, ACP1423, and ADCY3 that causes monogenic form of severe obesity424,425, which all lead to 

earlier puberty timing in girls and raise the susceptibility for higher BMI and obesity. Of those 158 

genetic variants that influence both age at menarche and BMI, only 17 encoded genes that are involved in 
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DDR mechanism, 7 of which influenced BMI at the genome-wide significance P value (P=5*10-8). Those 

included MAPK3 (activated by LH in ovarian granulosa cells and also involved in DDR, cell cycle, 

apoptosis, initiation and regulation of meiosis, mitosis, and postmitotic functions), TRA2B (involved in 

splicing regulation in oogenesis and regulation of DDR)426,427, FOXO3, RAD52, MUS81 (HR repair)428, 

GADD45G (candidate gene for male infertility and 46,XY sex reversal in humans) and SPI1. All of these 

BMI-associated menarche genes were expressed in ovarian, adipose and brain tissues, besides SPI1, 

which showed very low expression in ovaries and brain yet high in adipose tissue. The remaining 

menarche loci that tagged DDR genes showed no association with BMI in females, suggesting a direct 

influence of DDR on menarche.  

Some notable examples include DDR genes (or genes with suggestive DDR function) that were lowly 

expressed in the brain but highly expressed in ovarian tissue, potentially indicating an ovary specific 

mechanism for regulation of menarche timing (Figure 6.4, Appendix Table 6.6). 

These include DDIT4 (regulates cell growth, proliferation and survival via inhibition of the activity of 

mTORC1)429, MSH6 (mismatch repair gene involved in reproductive ageing and menopause timing)184, 

GLI2 (zinc-finger transcription factor involved in the Sonic Hedgehog pathway)430–432 and DET1 

(component of the ubiquitination machinery that mediates the destabilization of key regulators of cell 

differentiation and proliferation). The underlying variants were not associated with BMI and these genes 

did not show shared genetic architecture with BMI.  
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Figure 6.4: GTEx tissue expression of age at menarche genes of interest. The tissue expression of DDIT4, MSH6, 

GLI2 and DET1. Ovarian tissue is coloured in pale pink while brain tissue is in yellow.  
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6.3.7 Shared genetic architecture between menarche and menopause timing 

The role of DDR is well established in menopause timing. Following our novel evidence on the 

enrichment of DDR mechanisms in the regulation of menarche timing, we hypothesised that DDR-related 

menarche genes might additionally be associated with menopause timing, thus impacting both beginning 

and end of reproductive longevity. We performed a lookup and colocalization analysis of the 696 lead 

menarche variants in the largest menopause GWAS on ~250,000 women of European ancestry 

(Appendix Table 6.2). Of the 696 menarche variants, 13 were also genome-wide significant for ANM 

(P=5*10-8) and a further 10 passed the multiple test correction threshold (P ≤ 0.05/696=7.2*10-5). Of 

these 23 common signals, 7 colocalized with and passed genome-wide significance for menopause timing 

(P=5*10-8), 5 colocalized and passed the multiple test correction threshold (P ≤ 0.05/696=7.2*10-5), and 

an additional 2 variants colocalized and were at the borderline of multiple test corrected significance 

(Figure 6.5A). Of these 14 variants that regulate both ends of the reproductive lifespan, 11 showed the 

same direction of effect (i.e shifted reproductive lifespan), and the other 3 had directionally-opposing 

effects on menarche and ANM, hence extending/shortening reproductive lifespan. 

 

Figure 6.5: Shared genetic loci underlying aetiology of age at menarche and natural menopause. (A) The shared 

genetic loci from the lookup and colocalazation analysis on 696 menarche signals in the menopause GWAS. (B) The 

shared genetic loci from the lookup and colocalazation analysis on 290 menopause signals in the menarche GWAS. 

The red vertical dotted line represents the Bonferroni corrected significance threshold. Red dots next to the gene 

name indicate that the gene belongs to the DDR pathway. 
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Notably, four of the colocalised signals mapped to genes that belong to DDR mechanisms, including 

BIRC6, MSH6, RAD52 and UPF3A. All DDR genes besides UPF3A influenced both ends of reproductive 

lifespan in the same direction, thus shifting the reproductive ‘window’. Conversely, UPF3A led to later 

menarche timing and earlier age at natural menopause, thus extending/shortening the length of 

reproductive lifespan. One of the shared variants (rs3136249; age at menarche P=7.4 ×10-17 and ANM 

P=2.2 ×10-36) is intronic in MSH6, a DNA mismatch repair gene, which is mutated in the cancer 

predisposing Lynch syndrome and previously described to influence ANM by acting on the ovarian 

reserve184. Additionally, we found that the variant was not associated with puberty timing in boys 

(P=0.053) (Appendix Table 6.2) and that MSH6 expression was the highest in peripheral reproductive 

tissues, such as ovary and uterus (Figure 6.4). This suggests that the DDR mechanism we observe in 

puberty timing for MSH6 is potentially the same one that acts via ovarian reserve to modify the timing of 

menopause. Mice conditionally lacking UPF3A were reported to display defects in embryogenesis and 

gametogenesis433, while BIRC6 expression was reported to be essential for embryo survival during 

preimplantation development434. 

Of these four colocalised signals, only RAD52 was also associated with BMI (P=4.8*10-22). Rad52 

knockout mice are characterised by defective repair of meiotic recombination and subsequent apoptosis of 

foetal oocytes resulting in decreased primordial follicles from birth and infertility435.  

Besides DDR, other biological pathways involved in the regulation of both menarche and menopause 

timing belonged to hormonal regulation and development of the hypothalamic-pituitary-adrenal-gonadal 

axis, regulation of the cell cycle and transcription, and immune response.  

A notable gene that demonstrated the highest expression in the ovarian tissue and very low or almost 

absent in other tissues was GREB1 (Figure 6.6). The shared genetic signal showed no association with 

BMI (P=3.3*10-1) and a nominal association with puberty timing in boys (voice breaking) (P=7.5*10-3). 

We therefore speculate that this gene might act via ovary-specific mechanism to modify menarche and 

menopause timing. GREB1 functions as a coactivator of oestrogen receptor alpha (ERα) and it represents 

the first inducible O-GlcNAc glycotransferase in the cytoplasm to be identified in mammals. Mice 

lacking Greb1 exhibit growth and fertility defects reminiscent of phenotypes in ERα-null mice436,437. 
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Figure 6.6: GTEx tissue expression of GREB1. 

 

To further explore this shared genetic architecture between menarche and menopause timing, we 

performed as similar approach, but using the 290 reported lead ANM variants82 and conducting their 

lookup and colocalization in the menarche meta-analysis GWAS, described in Section 6.2.1 (Appendix 

Table 6.3). Of the 290 ANM variants, 9 were genome-wide significant (P≤5*10-8) and 23 passed the 

multiple test correction threshold (P≤0.05/290=1.7*10-4) for age at menarche. Of these 32 common 

signals, 5 colocalized with and passed genome-wide significance for age at menarche (P≤5*10-8), 9 

colocalized and passed the multiple test correction threshold (P≤0.05/290=1.7*10-4), and 2 colocalized 

and reached borderline multiple test corrected significance (total colocalized signals: 16, of which 5 were 

also identified by the above approach: MPPED2, MSH6, BIRC6, INHBB and ANAPC4) (Figure 6.5). Of 

these 16 variants that regulate both ends of the reproductive lifespan, 12 showed the same direction of 

effect on ANM and menarche timing, and the other 4 had directionally-opposing effects on menarche and 

ANM, hence extending/shortening reproductive lifespan. Most of the shared signals, which were not 

highlighted above, belonged to DDR and/or cell cycle mechanisms.  

6.3.8 Shared genetic architecture with other reproductive health outcomes 

After observing the shared genetic architecture between menarche and menopause timing, we were 

interested to further explore whether a similar pattern could be identified with other reproductive traits, 

including polycystic ovarian syndrome (PCOS), number of children and twinning. To do so, we performed 

a lookup of menarche 696 SNPs in mentioned traits, and identified 17 variants that were associated with 2 

or more reproductive health outcomes (Appendix Table 6.4).  
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MPPED2, metallophosphoesterase highly expressed in the foetal brain and involved in the development 

of the nervous system438, was the gene mapped to the variant with the highest number of associations with 

reproductive traits. These include menarche (P=9.4*10-25), PCOS (P=6*10-11), menopause (P=1.8*10-27), 

and twinning (P=4.9*10-21). All traits had the same direction of the effect besides twinning, where the age 

at menarche and menopause increasing variant conferred a smaller chance of having twins. MPPED2 was 

also associated with the menstrual cycle length and cell proliferation439,440. Notably, MPPED2 is located 

near the FSHB gene on the 11p13 chromosomal region, a well described risk factor for multiple 

reproductive trait outcomes, which could be mediating the association we observe at MPPED2. The 

GWAS signal at FSHB has been previously reported to influence menopause timing, PCOS and dizygotic 

twinning441. 

Additional shared signal tagged WDR43 gene, known for its roles in ribosome biogenesis, was associated 

with later menarche (P=5.2*10-10) and earlier ANM (P=4.6*10-7), thus shortening reproductive lifespan. 

The same allele was also associated with higher number of children (P=1*10-5). The dynamic regulation 

of ribosome biogenesis and global protein synthesis represents a relatively new and underexplored theme 

in the context of germ cell development, so future research should aim to decipher its importance for 

reproductive ageing.  

Finally, a shared signal at rs4871939, which is correlated with a deleterious variant in GNRH1, had an 

effect on shifting overall reproductive window by having positive associations with both age at menarche 

(P=1*10-13) and ANM (P=7.2*10-7), while reducing chances for dizygotic twinning (P=6.7*10-10). Loss-

of-function mutations in GNRH1 gene have been identified as rare genetic causes of normosmic 

Idiopathic hypogonadotropic hypogonadism (IHH), having an impact on the development and migration 

of GnRH neurons, the regulation of GnRH synthesis, secretion and action or gonadotropin cascades442,443.  

6.3.9 DDR regulates the aetiology of broad spectrum of health outcomes 

Having observed novel evidence on the enrichment of DDR mechanisms for the regulation of menarche 

timing, we aimed to explore the implication of DDR for susceptibility of other 35 health outcomes, 

ranging from metabolic, cardiovascular, neurodevelopmental and reproductive origin (Appendix Table 

6.7). To increase the statistical power of the hypothesis-free GWAS and reduce the burden of multiple 

testing, we applied MAGMA, a gene and gene-set analysis of GWAS genotype data, which determines 

the joint effect of multiple genetic markers. We specifically focused on the evaluation of the DNA repair, 

cellular response to DNA damage stimulus and cell cycle biological pathways due to their well-described 

role in the maintenance of genomic stability. We tested the enrichment of these pathways using the 
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default version of MAGMA, which combines association statistics across all types of genetic variants 

(‘unrestricted’), as well as ‘cMAGMA’, a new adapted approach developed to strengthen the level of 

inference by considering only coding variants. The results from cMAGMA were considered as the 

primary ones. Menopause, LOY and cancer phenotypes were selected as positive controls due to 

previously described role of DDR in their aetiology (Figure 6.7). Our analysis sheds light on the 

enrichment of pathways of interest in a number of novel health outcomes (Appendix Table 6.8). .  

Firstly, we confirmed the previously reported enrichment of DDR pathways in age at menarche using 

alternative DDR gene-sets and data - menarche GWAS associations from UKBB study were associated 

with ‘Gene Ontology DNA Repair’ (P=4.4×10-4) and an expert-customised DDR gene-set, named here as 

‘Broad DDR’ (P=1.0×10-3). The enrichment of cell cycle (P=3.3×10-4) and cellular response to DNA 

damage (P=2.0×10-3) further highlighted the importance of genetic stability in regulation of menarche 

timing. Unlike menarche, it is interesting to note DDR was not associated with age at voice breaking 

(P=1.5×10-1), a proxy of the puberty timing in boys, thus suggesting that these biological pathways could 

be acting via female-specific, and possibly ovary-specific mechanism.  

We also observed enrichment of genetic associations for BMI and all three pathways of interest (DNA 

repair P: 4.0×10-3, Cell cycle regulation P: 1.5×10-2, Response to DNA damage P: 3.1×10-3). This is in 

line with previous research that suggested impaired DNA repair as a potential underlying molecular 

mechanism of increased BMI444,445, adipocyte metabolism and senescence446,447. Disruption of DDR has 

also been previously associated with cell growth abnormalities and severe intrauterine growth retardation, 

ultimately leading to rare phenotypes such as dwarfism, as in Seckel syndrome patients448. We also 

observed enrichment of genetic associations for adult height and DNA repair (P=5.4*10-4), cell cycle (P= 

5.7*10-7) and response to DNA damage (P=5.1*10-5) pathways. Finally, telomere length genetic 

associations were enriched for DNA repair (P=1.3*10-4) and cell cycle (P=3.5*10-3) , which were 

previously suggested in the literature in relation to ageing and longevity449. 

The enrichment of the cell cycle mechanism was observed in additional cardio-metabolic traits, including 

birthweight (P=9*10-4), T2D (P=8.8*10-7), waist hip ratio (WHR) adjusted for BMI (P=1.5*10-4), 

diastolic (DBP) (P=5.2*10-3), systolic blood pressure (SBP) (P=7.1*10-5), and resting heart rate (RHR) 

(P=2.8*10-4), as well as reproductive (uterine fibroids P=5.6*10-5) and bone health (bone mineral density 

BMD P=8.3*10-6).  
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These results demonstrate how the same DDR-related stimulus can yield markedly different responses in 

different cells and tissues. This opens up opportunities for better understanding and managing human 

health and disease where DDR could act as a potential marker of overall wellbeing. 

 

Figure 6.7: The enrichment of DDR-related and cell cycle mechanisms in 35 health outcomes. The red dot 

indicates the significant results after the FDR correction. Menopause, LOY and cancer phenotypes were treated as 

positive controls here.  
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Finally, we investigated the significantly associated genes from DDR-related pathways that are shared 

across multiple traits (Appendix Tables 6.9 - 6.12), by conducting MAGMA gene-levels analysis on 

predicted deleterious variants. The genes were scored according to the number of traits they were 

associated with. The gene associated with the highest number of health outcomes was MAPT, which 

encodes for Tau, a protein involved in the promotion of microtubule assembly and stability.  Mutations in 

MAPT lead to frontotemporal dementia with Parkinsonism, where abnormal phosphorylation and folding 

cause Tau detachment from microtubules, Tau accumulation, and neuronal dysfunction450. Here we 

confirmed its genetic association with Parkinson’s disease and found significant associations with 10 

more health outcomes, including: schizophrenia, bone mineral density (BMD), breast and ovarian cancer, 

height, menarche, NEB, systolic blood pressure (SBP), voice breaking and WHR. The emerging function 

of Tau in DNA stability offers an alternative role of Tau in neurodegeneration and, importantly and 

insufficiently investigated, also in the DDR.  

Another notable example is PML, which was genetically associated with six health outcomes: BMI, 

height, lung function, menarche, resting heart rate (RHR), and WHR, indicating that this gene is critical 

for both reproductive and metabolic health (Appendix Tables 6.9 - 6.12). PML regulates transcription, 

apoptosis, senescence, and DDR - it negatively affects the phosphoinositide 3-kinase (PI3K) pathway by 

inhibiting MTOR and activating PTEN, and positively regulates p53/TP53. It is a well-known tumour 

suppressor, regulated by oestrogen receptor beta (ERβ) signalling. The PML-ERβ network acts as a 

therapeutic axis by suppressing cellular survival and promoting cellular apoptosis in breast carcinoma451. 

Another example is RTEL1, a DNA helicase required for proper telomere replication and stability. 

Biallelic RTEL1 mutations generate a large clinical spectrum ranging from classical Hoyeraal-

Hreidarsson syndrome, a rare and severe telomere biology disorder characterised by intrauterine growth 

retardation, bone marrow failure, microcephaly and/or cerebellar hypoplasia, and immunodeficiency, to 

isolated aplastic anaemia452. Here we confirm the association with telomere length and provide evidence 

that RTEL1 is also involved in susceptibility of Crohn’s disease and regulation of high-density lipoprotein 

(HDL), low-density lipoprotein (LDL), diastolic blood pressure (DBP) and SBP. Significant associations 

identified for MSH5 (with 6 health outcomes) and BAG6 (with 11 health outcomes) could be biased by 

the location of these genes within the highly polymorphic human major histocompatibility complex 

(MHC). 
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6.4 Discussion 

 In a substantially enlarged genomic meta-analysis using data on ~566,000 women of European 

ancestry, we have identified 696 independent, genome-wide significant signals for age at menarche, 

increasing the total number of associated loci by two-fold. In aggregate these signals explained ~14% of 

the population variance in menarche timing, corresponding to ∼29% of the estimated heritability. 

To identify mechanisms responsible for menarche timing, we implemented a genome-wide MAGMA 

pathway analysis approach and provided the first evidence on the enrichment of DDR mechanisms in the 

regulation of age at menarche. While the role of DDR has not been previously demonstrated as important 

for menarche timing, these pathways have been clearly highlighted by previous GWASs for age at natural 

menopause - indeed almost ⅔ of GWAS ANM signals can be mapped to DDR-related genes82. It has been 

believed that the overall enrichment in pathways regulating these two extremes of reproductive lifespan 

clearly differs. Menarche timing has thought to be driven by loci located in/near genes that regulate the 

hypothalamic-pituitary reproductive axis, with menopause being mainly determined by the genomic 

stability of oocytes and hence the size of the ovarian pool. However, it seems that the role of DDR 

extends further from just the determinant of the onset of menopause within the reproductive axis, with 

evidence of its involvement in regulation of both beginning and end of reproductive lifespan. 

We then aimed to understand what specific genes might be involved in the regulation of this wide 

spectrum of reproductive longevity. A primary challenge in obtaining biological insights from GWASs 

arises from the inability to directly implicate causal genes and the mechanisms involved from association 

data453. Deciphering how associated variants modulate disease risk and severity, and how they impact 

cellular phenotypes provides a mechanistic insight essential for effective predictive and therapeutic 

solutions. This is especially critical when translating GWAS findings into the functional experimental 

setting for validation in cellular and animal models. These approaches are rapidly expanding in scale and 

scope. However, there are substantial limitations to the scale and cost of genome perturbation and cellular 

phenotyping, the availability of good animal model systems as well as the ethicality for using those to 

investigate hundreds to thousands of genetic variants discovered through GWAS185. Numerous strategies, 

including statistical methods and genomic functional annotations185,453, have been extensively applied to 

prioritise causal variants and their target genes. Accelerating these efforts could be achieved through an 

integration of evidence from multiple individual data sources, which, when combined, could potentially 

provide a better powered source of information on functional links between associated variants and 

candidate genes. Here, I applied a novel tool developed in our group, G2G, which takes advantage of a 

variety of such data, encompassing information on coding variants, the nearest gene, expression and 
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protein quantitative trait loci, and provides a solution for the gene prioritisation. Using this approach, we 

prioritised 509 genes from the 696 menarche genomic loci. As the top scoring novel menarche gene we 

identified YWHAB, a DDR gene that was previously associated with multiple cancer outcomes, such as 

melanoma, cervical, prostate and lung cancer, as well as with recurrent fertilization failure454, idiopathic 

pulmonary arterial hypertension455, and postmenopausal osteoporosis456. Other top scoring genes were 

involved in hormonal regulation, such as LH and FSH, which secretion represents the hallmark of sexual 

maturity and functioning457,458. Besides hormonal regulation, we also identified genes involved in 

metabolism, immunity, ribosomal biogenesis, growth hormone axis and notably DDR. Some of these 

DDR-related genes, including MSH6, DDIT4, GLI2 and DET1, had the highest or exclusive expression in 

the ovaries, thus providing the first suggestive evidence on DDR regulating menarche timing via the 

effect on ovaries - an effect which is potentially independent of hypothalamic axis. We speculate that the 

body has a sense of the level of depletion of oocytes prior to puberty, and perhaps starts the reproductive 

window earlier on the basis that it will end earlier. A notable example includes FOXO3, which was 

identified to act as a master regulator and suppressor of primordial follicle activation, controlled via PI3K 

signalling pathway, the first such factor to be defined459. It seems, surprisingly, that the only essential role 

of a negative regulator of PI3K, Pten, within the oocyte is to regulate Foxo3459, suggesting the high 

importance of this gene. In Foxo3 knockout mice, primordial follicles are assembled normally408 but then 

immediately undergo global activation, resulting in a distinctive syndrome of ovarian hyperplasia, follicle 

depletion before puberty, premature ovarian failure, and infertility411. Moniruzzaman et al (2010)460 

suggested that the mechanism regulating the activation of primordial oocytes is different in the pre-

pubertal stage compared to infancy and observed a differential expression of FOXO3 in infancy and pre-

puberty. In infant pigs FOXO3 was detected in 42±7% primordial oocytes, while almost all (94±2%) 

primordial oocyte nuclei were FOXO3 positive during the pre-pubertal stage460. Primordial oocytes in 

prepubertal pigs took much longer time to initiate growth than did those in infants, suggesting a 

mechanism that aims to preserve the oocyte pool as much as possible before the start of reproductive 

activity via inhibition of the primordial oocyte activation. The observed differential expression and the 

role of this DDR gene in regulating menarche timing might be the first concrete evidence of the 

importance of the genomic stability of oocytes not only for the reproductive longevity, i.e. menopause 

timing, but also for the initiation of the reproductive activity. We speculate that FOXO3 senses the 

depletion and thus might serve as a mechanism that sends signals to the ovaries when the size of the pool 

is reducing significantly, thus initiating puberty earlier to ensure long-term fertility before the pool is fully 

depleted. Finally, the mouse studies demonstrated that overexpression of constitutively active FOXO3 can 

increase ovarian reproductive capacity by 31-49% via the increase in follicle numbers461. Importantly, due 

to the significant association of FOXO3 with BMI that we identified in this Chapter, it would be 
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necessary to better understand mechanisms that FOXO3 is using to modify the susceptibility to mentioned 

phenotypes and decipher if its function in menarche and menopause timing takes place via ovary-specific 

mechanism or it is mediated by BMI. 

Although heritable determinants of many common reproductive traits have been studied, not many efforts 

have been focused on understanding the degree of shared genetic architecture underlying reproductive 

health. The knowledge on shared biological mechanisms between various reproductive traits could have 

important benefits, especially related to development of public health interventions and/or fertility 

treatments and preservation. Here, we implemented the largest GWAS studies for age at menarche, 

menopause, PCOS, NEB and twinning to explore common regulatory mechanisms. Some of these shared 

loci were located in/near the genes involved in DDR, supporting our previous observations and further 

extending it to other reproductive health outcomes. In addition to DDR, we highlight ribosome 

biogenesis, which represents a relatively new and underexplored mechanism in the context of 

reproductive ageing. Emerging evidence points towards the global regulation of mRNA translation as an 

important mechanism for germ cell development, infertility and reproductive ageing. For example, 

ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, 

oocytes need to produce and store a sufficient number of ribosomes to support the development of the 

early embryo until the initiation of zygotic transcription. In addition, specific translation initiation and 

elongation factors are also enriched and regulated in the germline462. These findings highlight the 

importance of gaining further insights into how ribosomes and the translation machinery work together 

during the development and ageing of the oocyte. 

Having observed novel evidence on the enrichment of DDR mechanisms for the regulation of menarche 

timing, we explored the implication of DDR and related mechanisms for susceptibility of other 35 health 

outcomes, ranging from metabolic, cardiovascular, neurodevelopmental and reproductive origin. 

Maintenance of genome stability is essential to healthy human physiology, with unrepaired cellular DNA 

damage being implicated in the aetiology and progression of different types of human pathologies463,464. 

Much of the current research in DDR is devoted towards understanding the mechanisms and its biological 

implications in cancerogenesis, immunodeficiencies, longevity and rare hereditary diseases with severe 

developmental problems464–466. However, not many efforts have been focused on deciphering the role of 

DDR across the wide spectrum of human phenotypes. In addition to reproductive ageing that was 

previously discussed, research conducted in our group suggests that loss of chromosome Y (LOY), the 

most frequent age-related somatic change in leukocytes associated with various later life diseases, 

represents a powerful marker of DDR467. However, the plethora of DNA damage, response and repair 

processes, along with their profound and complex interactions across a broad spectrum of prevalent 
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human health outcomes, have not yet been fully elucidated. In addition, there is a lack of understanding 

whether disturbed DDR capacity associated with reproductive ageing and LOY is oocyte and leukocyte-

specific, or if it is present in other cell types and tissues as a potential marker of broader genomic 

instability and disease susceptibility. Here, we provided the first population genomic insights into the role 

of DDR-related mechanisms in various anthropometric, metabolic and reproductive health outcomes. 

Notable examples include BMI, T2D, and height associations. Previous functional studies suggested that 

DDR is involved in regulation of metabolic homeostasis. DNA damage could impair metabolic organ 

functions by causing cell death or senescence. Accumulation of senescent cells could impair tissue 

regeneration and homeostasis, leading to metabolic dysfunction. In addition, accumulation of senescent 

cells in the tissues leads to chronic inflammation mediated by various proinflammatory cytokines and 

chemokines, accelerating disease progression468–470. There is accumulating evidence that impaired DNA 

repair and accumulative DNA damage together with chronic inflammation associated with senescence 

have a pivotal role in the progression of age-related diseases such as diabetes and cardiovascular 

disease471–473. 

 

T2D is a complex metabolic disease characterised by an insulin resistance, i.e. deficient insulin secretion 

by pancreatic β-cells474. The adult β-cells maintain their numbers through self-replication, a low 

frequency process in these cells475. As a consequence β-cells become more vulnerable to a variety of 

stressors, such as DNA damage, oxidative stress and glucolipotoxicity, which leads to a reduction in β-

cell mass and impaired cell function476–479. Genome-wide association studies, which contributed to the 

identification of more than 500 T2D-associated genetic variants, allowed insight into the genetic 

architecture of this disease, and highlighted the importance of DDR mechanisms480. More specifically, 

recent findings from our group gave evidence on the association between LOY and T2D. Shared risk loci 

in these two traits were involved in cell cycle regulation and DNA repair. They tagged genes that encode 

cyclins and cyclin-dependent kinases, known to be involved in pancreatic β cell growth and maturation 

(such as CCND2, CDKN1B), and genes regulating apoptosis (TP53INP1)481. This suggests that altered 

cell cycle regulation and genomic instability, which lead to increased clonal mosaicism, likely modify risk 

of T2D through higher cell death, i.e. reduced number of pancreatic β cells. Preliminary genetic findings 

are also supported by evidence from in vivo experiments in NHEJ-p53R172P mutant mouse model 

characterised by deficient non-homologous end-joining (NHEJ), which result in DNA double-strand 

breaks (DSB), and p53 deficiency. Combined DSBs with an absence of p53-dependent apoptosis activate 

p53-dependent senescence, causing a diminished cell self-replication, decrease in pancreatic islet mass, 

and severe diabetes482.  
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Similar findings are observed in case of obesity where DNA damage contributes to adipose tissue 

inflammation444. Recent studies shed light on the impact of adipose tissue depot-specific regulation of DDR 

genes linking DNA methylation to lipid metabolism and fat distribution445. The mechanisms that cause 

senescence in adipose depots and the roles of senescent cells in obesity are unclear. Lee et al (2022) made 

first steps toward deciphering these mechanisms by analysing transcriptomes of adipocytes from mice fed 

either a normal chow or a high-fat diet, and of senescence models. The authors identified that sterol 

regulatory element-binding proteins (SREBPs) protect adipocytes from genome instability and senescence, 

which contribute to inflammation and insulin resistance in obesity. SREBPs are master regulators of 

cholesterol and fatty acid metabolism and promote the activity of the DNA repair enzyme PARP1. Specific 

phenotypic analyses showed that, without SREBP1c, adipocytes accumulate DNA lesions and are prone to 

senescence, which contributes to white adipose tissue inflammation in obesity, while the elimination of 

senescent cells in SREBP1c-null mice improved insulin resistance446. Finally, previous research suggested 

that a common molecular feature shared by the prenatal growth retardation phenotypes is that they are 

caused by mutations in genes that are necessary for an appropriate response to DSBs during the S phase of 

the cell cycle - here, our evidence suggest that DDR also regulates the normal variation in height448.  

Confirmation of these findings requires a significant amount of future work, however they give the first 

indication of DDR acting as a marker of broader health outcomes. If this is true, the effect of DDR on 

ovarian ageing and reproductive longevity could really act as a proxy of overall wellbeing of a woman. 

Future studies should systematically explore the potential influence of identified DDR genes and 

associated variants on different health outcomes. This specifically involves assessing the direction of the 

effect on different traits and identifying biomarkers that could serve as basis for the development of 

potential intervention and treatment strategies.  In summary, our findings highlight a novel evidence on 

the role of DDR mechanisms in regulating both menarche and menopause timing, and provide an insight 

into DDR as potential marker of health and disease.  
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CHAPTER 7  

Novel functional insights into the role of PARP1 in 

gametogenesis and reproductive ageing 
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Summary 
 

The thesis aims to further explore the relevance of DDR mechanisms in reproductive ageing, taking a 

gene-centric approach in this Chapter. Previous studies in mice demonstrated that inhibition of PARP-1 is 

associated with the reduction of ovarian reserve, highlighting PARP-1 codon 762 variant (V762A) that is 

well-known to reduce the PARP-1 catalytic activity by 30-40% and is present in about 5-30% of the 

general population. In addition, human genomic evidence demonstrated the protective role of this variant 

against LOY in men, suggesting its importance also for human health and disease and making this gene 

an attractive candidate for further exploration. Our human genomic meta-analysis of ReproGen 

Consortium and 23andMe data provide the first indicative evidence on association between a PARP-1 

V762A variant  and reduced age of natural menopause (beta: -0.06 years per allele [0.04-0.09], P=5.3*10-

8) in women. As the concept of PARP-1 inhibition represents the basis of the treatment of breast and 

ovarian cancer patients, better understanding of its impact on reproductive longevity is crucial. 

Combining human genomic evidence with cutting edge CRISPR technology and the in vitro 

gametogenesis (IVG) system, we investigated the role of PARP-1 in ovarian function, more specifically in 

proliferation of primordial germ cells during the establishment of the ovarian reserve. We demonstrate for 

the first time that deletion of PARP-1 increases the efficiency of primordial germ cell production in vitro 

via upregulation of Oct4, which could be driving their self-renewal. We speculate that, even though there 

is an initial increase in primordial germ cells, the quality of these cells could be compromised. This could 

expose them to substantial ‘clearance’ via cell death mechanisms at later stages of gametogenesis, 

ultimately leading to the creation of smaller ovarian reserve.  

 

 

Contributions and Collaborations 
 

I performed the computational analysis of the PARP-1 V762A variant in the ReproGen consortium and 

23andMe study. When it comes to the functional work, BVSCH18 mouse embryonic stem cell line 

bearing the Blimp1-mVenus & Stella-ECFP (BVSC) reporter construct was generated by Mitinori Saitou, 

and was gifted to the Hoffmann lab by Bernard De-Massey. Hannah R. Schorle generated the PARP-1 

knockout cell line. I performed the cell culture establishment, discovery and the first replicate analysis of 

the wild type and PARP-1 KO differentiation, from mESCs to PGCLCs, using In vitro gametogenesis 

system. I conducted PGCLC purification and FACS sorting. Both Dr Halliwell and I conducted RNA 

extraction, reverse transcription and RT-qPCR independently. However, the reported results for the qPCR 

section in this Chapter come from the experiment where I conducted differentiation, purification and 

FACS sorting, while Dr Halliwell conducted qPCR analysis. 



 

181 

This project was supervised by Professor Eva Hoffmann and Professor John Perry. My day-to-day 

laboratory work was supervised by Dr Jason A. Halliwell and Amy V. Kaucher. Professor Perry, Dr 

Halliwell and Ms Schorle provided valuable advice on the analyses and writing. 
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7.1 Introduction 

 

The past decade has seen a great progress in identification of genetic determinants of reproductive 

longevity and timing of menopause through human genomics. The GWAS approach has shed light 

towards biological mechanisms that act across stages of gametogenesis to determine an individual's 

reproductive lifespan481. However, the functional role of unique genes and underlying molecular 

mechanisms through which they operate remain to be elucidated. This becomes critical as early detection 

of these pathological changes and their thorough functional understanding allow us to pave the path 

towards prevention and delivery of therapeutic solutions. Similar issues could be observed in case of 

variants and genes that were initially discovered in cell and animal models, which lack confirmatory 

evidence on their role in human health and disease. Combining an ‘omic’ approach with functional 

models therefore represents unique way towards deciphering the genetics underlying phenotypes of 

interest and enables us to deliver robust findings by addressing potential differences in physiology 

between functional models and humans. 

 

Being driven by the functional evidence from the literature, this Chapter aims to follow a gene-centric 

approach to study the role of Poly(ADP-Ribose) Polymerase 1 (PARP-1) in gamete formation and ovarian 

function. PARP-1 is known to facilitate the maintenance of genomic integrity. This involves roles in DNA 

replication and repair, transcription control, chromatin organisation, as well as cell proliferation and death 

(Figure 7.1)483–487. PARP-1 catalytic activity remains at low basal levels until it is strongly stimulated as a 

response to single- or double-strand breaks, thereby recruiting the repair machinery. When DNA damage 

is extensive, activation of PARP-1 can lead to either necrotic or apoptotic cell death484,488–495.  

 
Figure 7.1: Schematic representation of various roles of PARP-1.  
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Previous clinical and epidemiological studies have shown large inter-individual differences in PARP-1 

activity within both healthy and cancer patient cohorts, yet the potential genetic mechanisms that modify 

this activity are still not completely understood496. Most of the SNPs discovered so far in the PARP-1 

region are rarely found in the general population, having an allele frequency less than 1%497,498. On the 

contrary, missense variant rs1136410 introduces an amino acid change V762A in the catalytic domain 

and is present in about 5-40% of the general population. It is the rarest in African/Americans (~4.9%), 

more common in Europeans (~23%) and Asians (~20.7%), and present in almost half of the 

Latino/Admixed American cohort (~42%)164,489.  

 

Existing evidence from various case-control studies point to the association between the minor allele 

(A>G: G PARP-1-Ala) and the reduction in the catalytic activity of PARP-1489. More specifically, in vitro 

experiments on purified PARP-1 enzyme showed that rs1136410 minor allele reduced PARP-1 activity by 

30-40% in comparison to PARP-1-Val496, the effect which was consistent both in the presence or absence 

of PARP inhibitor, 3-AB489. The reduced catalytic activity was explained through an increase in PARP-1-

Ala polymorphism kinetic activity (Km), which was 1.2 fold higher compared to the Km of PARP-1-

Val489. PARP-1 V762A genetic alteration may confer protection against coronary artery disease (CAD) 

with up to 84% decreased CAD risk499, yet the evidence on the association with cancer phenotypes have 

been largely contradictory, suggesting high variability across different ethnicities. The association with 

higher susceptibility of cancer risk has been observed for prostate, oesophageal, lung, thyroid, brain and 

cervical cancer496,500–507. The suppression of PARP activity can also have a profound effect on 

chemotherapy-induced toxicity, as well as the efficacy of chemotherapy, and this has been a base for the 

development of Olaparib, a first-in-class oral PARP inhibitor used to treat patients with breast and ovarian 

cancer caused by BRCA mutations. Olaparib inhibits PARP-1/2 enzymatic activity and traps PARP1 on 

DNA at single-strand breaks. This leads to the replication-induced DNA damage that requires BRCA1/2-

dependent homologous recombination repair, which is deficient in these patients, and ultimately cell 

death508–511. However, cancer therapy can cause off-target effects, including ovarian damage accompanied 

by accelerated loss of follicles. This may result in impaired fertility leading to premature ovarian failure 

in girls and premenopausal women. Indeed, recent studies based on the mouse model have indicated a 

potential role of PARP-1 in late gametogenesis. More specifically, it has been shown that Olaparib 

destroys a significant proportion (36%) of the immature eggs that are contained within primordial follicles 

but not other follicle classes, suggesting an impact of the inhibition on the ovarian reserve rather than 

growing oocytes (Figure 7.2 A,B)110. There is a contradictory evidence that demonstrates that Olaparib 

does not only reduce the ovarian reserve but additionally affects the growing follicles, including total 
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primordial, primary, early secondary and late secondary follicles, augmenting the number of atretic 

follicles (Figure 7.2 C,D)512. 

Finally, besides the experimental evidence in the mouse model on the importance of the V762A PARP-1, 

our recent study demonstrated the first human genomic evidence on the protective role of this variant 

against LOY in men481, suggesting its importance also for human health and disease. 

 

 

 
 

Figure 7.2: PAPR-1 inhibitor Olaparib depletes the primordial and growing follicle pool in mice. Panel (A) and 

(B) belong to Winship et al (2020) study110 and show that Olaparib treatment significantly decreases only the 

primordial oocyte pool (A), but not the primary, secondary and antral follicles (A and B). Panel (C) and (D) belong 

to Nakamura et al (2020) study512 and demonstrate the in vitro follicle dynamics with or without Olaparib treatment, 

including the quantification data on total, primordial, primary, secondary and atretic follicles. The data were 
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obtained from three ovaries per each group. Panel (C) represents the number of follicles, while distribution of 

follicles (%) is shown in panel (D). 

 

 

Despite the evidence obtained from animal models on PARP-1 inhibition being toxic to ovaries, there is 

no preclinical or clinical information regarding potential impact on female fertility. It may be many years 

before clinical data on fertility outcomes for women treated with PARP inhibitors become available. This 

highlights the importance and urge for using robust human genomics data and conducting rigorous 

research on animal and cell models to understand potential reproductive outcomes. Importantly, better 

understanding of PARP-1 mechanism in ovarian function does not only relate to the inhibition induced by 

external cancer therapeutics, but also to the germline mutations that naturally decrease PARP-1 activity 

and potentially affect female fertility, as in the case of V762A. Available evidence points towards 

inefficient DDR mechanism as a potential cause of follicle depletion due to the fact that PARP-1 is 

required by the base excision repair (BER) for the primordial germ cell (PGC) survival and proliferation 

(Figure 7.3 A). PGCs undergo significant global demethylation (Figure 7.3 B), also orchestrated by the 

BER pathway, to erase parental imprints ensuring faithful transmission of the genome between 

generations, which additionally highlights the importance of DDR in PGCs513–519. Therefore, we 

hypothesise that this inefficient repair of DNA damage due to PARP-1 inhibition drives damaged PGCs 

into apoptosis, ultimately diminishing the ovarian reserve (Figure 7.3 A)94. 
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Figure 7.3: Base Excision Repair and germ cell reprogramming and survival. The figure summarises scientific 

hypotheses that will be explored in this Chapter. Experiments related to panel (A) will aim to decipher the process 

of PGC proliferation affected by the inefficient PARP1-1 function, while panel (B) will investigate the role of PARP-

1 in global demethylation. In germline, a progressive dilution of DNA methylation can be observed at around 

embryonic day 7.5 (E7.5) during PGC specification, while at the PGC expansion (from E9.5) a global methylation 

takes place, reaching the lowest DNA methylation levels at E13.5 through the germ-line cycle. Panel (B) is adapted 

from Kurimoto and Saitou (2018)520. 

 

The female germ line undergoes a unique sequence of differentiation processes during gametogenesis that 

we can replicate in vitro to reconstitute potent mature oocytes from pluripotent stem cells517,521. This state-

of-the-art technology, named In Vitro Gametogenesis (IVG), successfully mimics the whole 

gametogenesis cycle. This cycle could be divided into four stages in vitro: (1) formation and migration of 

PGCs, (2) in vitro differentiation (IVDi), (3) in vitro growth and (4) in vitro maturation (IVM), in which 

oogenesis would proceed to primary oocytes in the secondary follicle, fully grown germinal vesicle 

oocytes and metaphase II (MII) oocytes, respectively (Figure 7.4)521,522. The experiments described in 

this Chapter are restricted to only stage (1). Due to the scarcity of the reproductive tissue that challenged 
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our functional understanding, this culture system provides a unique platform for studying PARP-1 and 

mechanisms that govern gametogenesis and ovarian function523–525. 

 

 

Figure 7.4: A schematic showing the reconstitution of the entire female germ line in vitro. In the mammalian 

embryo pluripotency is established from the epiblast in the inner cell mass (ICM) of the preimplantation blastocyst. 

Eggs originate from primordial germ cells (PGCs), which are specified at around embryonic day 6.5 in mice526. 

PGCs then migrate into the gonads, enter meiosis in female embryos527 and therefore become primary oocytes. 

Following puberty, primary oocytes begin to grow to mature oocytes that are fully ready for fertilisation. This 

Figure depicts the equivalent of this process in vitro, consisting of 4 stages as described above: PGC formation and 

migration, IVDi, IVG and IVM. This thesis will only address the first stage where mouse embryonic stem cells 

(mESCs) are first differentiated into epiblast-like cells (EpiLCs), and then induced to form primordial germ-like 

cells (PGCLCs). 

 

Using the largest, population-scale human genomic data, this Chapter will for the first time ever explore 

the evidence on the role of PARP-1 V762A missense variant in reproductive ageing and menopause 

timing in women. Human genomic work will be followed up by thorough functional analysis that will 

specifically model and investigate the role of PARP-1 during early stages of the establishment of ovarian 

reserve, i.e. at the PGC level. Using CRISPR technology to generate a Parp-1 knock-out in conjunction 
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with the IVG culture system, I will explore the efficiency of PGC proliferation during ovarian reserve 

establishment in the absence of PARP-1. 

7.2 Methods 

7.2.1 Human genomic evidence on the role of PARP-1 in ovarian ageing 

 

In order to investigate the role of the PARP-1 V762A missense variant 1:226555302:A:G 

(rs1136410) in ovarian function in humans, we utilised large-scale population human genomic data that 

were available through the ReproGen Consortium and 23andMe Inc. study. Details of the individual 

studies are provided below. 

 

The ReproGen GWAS on ANM in ~200,000 women of European ancestry is described in detail in 

Chapter 2, Section 2.2.2. 

 

The 23andMe study: The data were collected as part of the customer base of 23andMe Inc. (Mountain 

View, CA, USA), a personal genomics company, which provides direct-to-consumer genetic testing. All 

participants provided informed consent and answered online surveys following 23andMe’s human 

subjects protocol, which was reviewed and approved by the external AAHRPP-accredited IRB, Ethical & 

Independent Review Services (E&I Review), a private institutional review board 

(http://www.eandireview.com). Direct-to-consumer process involves participants providing saliva 

samples, which are then processed by the 23andMe research team. Derived genetic reports are made 

available to consumers informing them on their personal ancestry and health profile. The DNA processing 

was performed by the National Genetics Institute (NGI), a Clinical Laboratory Improvement 

Amendments (CLIA)-licensed clinical laboratory and a subsidiary of Laboratory Corporation of America. 

The methodology behind the DNA extraction and genotyping has been previously described in detail528.  

The variant-level data for the 23andMe dataset is disclosed in this Chapter. Individual-level data are not 

publicly available because of participants’ confidentiality, and in accordance with the IRB-approved 

protocol. To record women’s age at menopause multiple surveys were conducted and responses were 

used to estimate ANM:  

 

● “About how old were you when you had your last menstrual period? (under 30/ 30-34/ 45-49 / 

40-44 / 55+ / 50-54 / 35-39 / declined / not sure)”  

● “How old were you when you had your last menstrual period?” 

http://www.eandireview.com/
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As menopause age was ascertained in 4-year bins, the effect estimates were appropriately rescaled to be 

on the same 1-year as our ReproGen discovery analyses described in Chapter 2. We applied a linear 

model (Gaussian) to perform the genetic association analyses, and controlled for age (in years), the top 

five genetic principal components and genotyping platform. The information on ANM was obtained on 

294,828 women of European ancestry.  

 

We then meta-analysed two studies using METAL 

(https://genome.sph.umich.edu/wiki/METAL_Documentation). The variant lookups were performed 

based on the chr, variant position and minor and major alleles to extract the variant association summary 

statistics with the ANM phenotype. 

7.2.2 Using IVG to study ovarian function in PARP-1 mutants 

7.2.2.1 Animals and derivation of ESCs 

 

To conduct In Vitro Gametogenesis (IVG) experiments we obtained the mouse embryonic stem cells 

(mESCs) from Hikabe et al521. The protocol for the mESCs derivation and animals used is described in 

detail elsewhere521. In short, the BVSCH18 ESC line bearing the Blimp1-mVenus & Stella-ECFP (BVSC) 

reporter construct was established from the blastocysts collected from independent pairs of 129+Ter/svj 

(agouti) females and C57BL/6 BVSC males529. The mESCs used in this study were derived from the 

female mouse to specifically study female germ cell development. The reporter Blimp1 was used as a 

marker of a PGC, and Stella as a PGC and germline marker. The maintenance of the mESC line was done 

under 2i condition, prepared in batches of 50 mL and stored at 4°C: 5uL PD0325901 (10 mM in 1 mL 

DMS), 500uL L-Glutamine, 0.63uL Monothioglycerol, 50uL LIF and 50uL CHIR99021 [3mM] were 

added to a 50mL aliquot of SFES basal media containing Neurobasal, DMEM F12, N-2 supplement, B27, 

7.55% BSA and Penicillin-streptomycin solution530.  

7.2.2.2 Generation of the PARP1 knockout 

 

PARP1 knockout (KO) cell lines were generated using CRISPR-Cas9 gene editing (Figure 7.5). 

Predesigned guides were bought from IDTDNA, targeting exon 3 and exon 4 (Table 7.1). Cells were 

transfected with the Cas9 and guide complex using the Neon Transfection Kit as described in: IDTDNA 

Perform gene knockout in your research531 and Alt-R CRISPR-Cas9 System532. 

 

https://genome.sph.umich.edu/wiki/METAL_Documentation
https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/application-guide/perform-gene-knockout-with-the-alt-r-crispr-cas-system-reference-guide.pdf?promo_name=Reference%20Protocol&promo_id=1d&promo_creative=Gene%20Knockout%20with%20Alt-R&promo_position=Get%20Started%20Box
https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/application-guide/perform-gene-knockout-with-the-alt-r-crispr-cas-system-reference-guide.pdf?promo_name=Reference%20Protocol&promo_id=1d&promo_creative=Gene%20Knockout%20with%20Alt-R&promo_position=Get%20Started%20Box
https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/protocol/alt-r-crispr-cas9-user-guide-ribonucleoprotein-electroporation-neon-transfection-system0601611532796e2eaa53ff00001c1b3c.pdf?sfvrsn=6c43407_28
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Figure 7.5: Gene knockout workflow. The figure is obtained from IDTDNA Perform gene knockout in your 

research 531. 

 

 

Table 7.1: Guides used to target PARP-1.  

 

Guides  Sequence 

Guide 1 CGGAGTACGCCAAGTCCAAC 

Guide 3 CCGGCAGCCTGATGTTGAGG 

 

7.2.2.3 PCR and Sanger sequencing 

 

The individual clones were picked for genotype analysis by polymerase chain reaction (PCR) and Sanger 

sequencing. DNA was isolated using the DNeasy Blood and Tissue Kit (QIAGEN). The real time-qPCR 

was carried out in triplicate on a CFX96 machine (Bio-Rad) using the SYBR Green Mix, with the 

following conditions: initial denaturation at 95 °C for 10 min, then 40 cycles of 95 °C for 10 s, 60 °C for 

10 s and 72 °C for 20 s. The primers are listed in Table 7.2. 

 

 

 

 

 

https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/application-guide/perform-gene-knockout-with-the-alt-r-crispr-cas-system-reference-guide.pdf?promo_name=Reference%20Protocol&promo_id=1d&promo_creative=Gene%20Knockout%20with%20Alt-R&promo_position=Get%20Started%20Box
https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/application-guide/perform-gene-knockout-with-the-alt-r-crispr-cas-system-reference-guide.pdf?promo_name=Reference%20Protocol&promo_id=1d&promo_creative=Gene%20Knockout%20with%20Alt-R&promo_position=Get%20Started%20Box
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Table 7.2: PCR primers. The table shows the forward and reverse sequence of PCR primers with the primer melting 

temperature (Tm) stated.  

Exon Primer Sequence TM 

3 Forward 
CATTATCTAGGTCCCGTTCCTTATT 

 

 

64 

3 Reverse 
GCTCTCGTGTTTCTCTCAGTT 

4 Forward 
CTAGGCTGTGCAGTGGAAATTA 

 

 

65 
4 Reverse 

GCTCTTTCTTGGGAGGTAGTAG 

 

After amplifying exon 3 and 4 using the primer sequences above, the PCR products were purified using 

the Qiagen PCR purification kit (28104) and sent to Macrogen for Sanger sequencing to confirm the 

precise mutant sequence of each allele. The forward primers were used as sequencing primers. 

7.2.2.4 Western blot analysis 

 

After confirming mutation at the genome level, western blot was used to analyse gene KO at the protein 

level. To perform protein extraction, cells were lysed by RIPA (Sigma Aldrich) with 10x Phosphastop 

and Proteinase Inhibitor (500 000 cells in 100µl Cell lysis buffer). After that, 4x sample buffer (1800 µl 

LDS + 200µl DTT) was added to the sample and further incubated at 95℃ for 5 minutes. Sodium 

dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) Precast Gel (Invitrogen) was used for 

electrophoresis. PARP-1 antibody (ab191217, rabbit, Invitrogen) was used to detect the presence of 

PARP-1 protein. The antibody was diluted in Primary Antibody Dilution Buffer (Sigma Aldrich) at a 

density of 2 μg/mL, and incubated with the sample overnight at 4℃. After washing with TBST three 

times, samples were incubated with a Secondary antibody (Goat anti-rabbit), which was diluted in 

Secondary Antibody Dilution Buffer (Sigma Aldrich) at a ratio of 1:1000, at room temperature for 1 h. 
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7.2.3 Primordial Germ Cell-like Cell (PGCLC) differentiation from mESC 

PGCLCs were differentiated from mESCs as previously stated521,530. A brief methodology description is 

available in the following sections.  

 

Figure 7.6: Overview of the In vitro gametogenesis protocol. A schematic representation of the protocol to 

generate PGCLCs from mSECs. mESCs are induced into EpiLCs (Steps 2: 2 days) and then into mPGCLCs (Step 3: 

6 days), which are sorted using FACS to isolate BV+ cell population.  

7.2.4 The cell culture establishment and mESC maintenance  

The following steps were undertaken to establish and maintain the cell line. The growing surface of a T25 

flask was prepared for the cell culture by coating it with 0.01% Poly-L-Orthinine solution, required to 

enhance cell attachment and adhesion. After the flasks were aspirated and washed with PBS, the growing 

surface was coated with laminin (150 ng/mL), an extracellular matrix multi-domain trimeric glycoprotein 

that supports cell adhesion, proliferation and differentiation. The cells were resuspended in 1 mL 2i 

maintenance media described above, and passaged onto the laminin coated culture plate when reaching 

the confluence similar to the one shown in Figure 7.7. The cell culture incubation was performed at 37°C 

in the 5% CO2 incubator, and the media was being changed daily following the protocol described below. 

At the pictured confluence, cells were usually split at a ratio of 1:100, however the split ratio was adjusted 

to account for any differences in observed confluence.  

To maintain the mESC lines, the 2i media was aspirated, the surface of the flask was coated with TryplE 

and incubated for 4 minutes at room temperature to detach the cells. The cells were washed with TryplE 

wash medium (DMEM F12 with 75.5% BSA) and transferred to the Falcon tube and centrifuged at 300 
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xg for 3 minutes. After aspirating the supernatant, the cells were resuspended in 1 mL 2i maintenance 

medium and following a 1:100 ratio the cell solution was split to each new flask. The cytokine leukaemia 

inhibitory factor (LIF), which activates STAT3 signalling that is central to ESC renewal, and 

CHIR99021, which enhances survival at low density, restores viability and allows efficient expansion of 

undifferentiated ESCs, were key for successful maintenance of the mESC cell line.  

 
Figure 7.7: BVSCH18 cell line culture. (A) mESC culture on the day of the passage that should be split at the ratio 

of 1:100. (B) The representative image of EpiLCs on day 2, just before PGCLC induction. Both images were 

captured at 4X magnification. The images were taken by J.A. Halliwell. 

 

7.2.5 EpiLC differentiation 

 

The EpiLC induction was performed as stated in Hikabe et al (2016)521. Briefly, mESCs cultured in 

2i/LIF were dissociated as described in the previous section and 1x105 cells were seeded onto fibronectin 

(16.7 mg/ml) coated plates with EpiLC differentiation medium (N2B27, 1% KnockOut Serum 

Replacement (KSR), bFGF (10 ng/ml), Activin A (50 ng/ml)). The cells were incubated at 37°C for 42 

hours and the media was changed every day. The density of EpiLCs was monitored as it was crucial for 

efficient differentiation of PGCLCs. The desirable density is depicted in the above Figure 7.7. 

7.2.6 PGCLC differentiation 

 

EpiLC were gently dissociated using TryplE for 2 minutes, which was then blocked using TryplE wash 

medium. The total cell solution was transferred to a Falcon tube, centrifuged at 300 xg for 3 minutes and 

resuspended in 1 mL of GK15 (GMEM, 15% KSR, 1% NEAA, 1% 100 mM sodium pyruvate, 0.1mM 2-

mercaptoethanol, 1% penicillin/streptomycin and 1x 2mM L-glutamine). The cells were counted using a 
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hemocytometer and diluted in PGCLC induction medium, GK15 supplemented with cytokines: BMP4 

(50 ug per mL of 4mM HCl 0.1% BSA solution), LIF (1000 U/ml), SCF (50ug per mL of PBS 0.1% BSA 

solution), BMP8a (50 ug per mL of 4mM HCl 0.1% BSA solution) and EGF (500 ug per mL of PBS 

0.1% BSA solution) to a concentration of 1.5x104 cells per mL. It is important to note that PGCLC 

differentiation is performed in aggregates. We plated 100 uL of the EpiLC cell solution into each well of 

a ultra low-cell binding U-bottom 96-well Lipidcure-coated plate, which was incubated for 6 days at 37°C 

to reach the greatest yield of PGCLCs. The cells were observed under the microscope on each day around 

the same time to monitor their development. After 6 days, PGCLCs were collected for FACS analysis. 

7.2.7 PGCLC purification on H18 cells 

 

To prepare PGCLCs for FACS sorting, cultured cells were collected from the plate, washed with PBS and 

dissociated in TryplE for 6 minutes at 37°C. TryplE was neutralised using MEF medium (DMEM, 10% 

FBS, 2mM L-Glutamine and 1% Penicillin-streptomycin solution), and dissociated cells were passed 

through 70 µM strainer to remove large clumps of cells. The cells were counted using the automatic cell 

counter, centrifuged at 300 xg for 5 minutes and resuspended in FACS buffer (0.1% BSA in PBS) before 

being taken to FACS sorting. 

7.2.8 Fluorescence activated cell sorting (FACS) 

 

The characterisation and analysis of different cell populations were based on the cell’s size, granularity 

and fluorescence. These were detected by FACS (Figure 7.8)533. H18 Blimp1-mVenus  PGCLC (BV+ 

cells) were sorted from the rest of the sample using a SONY SH800Z cell sorter. The sort was performed 

on WT and KO cells separately, yet following the same parameters. The cell suspension was run through 

the cytometer where the cells were gated using forward (FSC-A) and back scatter (BSC-A) to remove the 

debris, while doublet or multiplet cell exclusion was performed based on FSC-A and FSC-W. The  BV+ 

fluorescent cells were recognised by the laser beam as explained in Figure 7.8 using Venus (yellow 

channel) and phycoerythrin (PE) (orange channel) fluorochromes, and sorted into a FACS buffer. For 

each sort the maximum number of cells was collected, while for flow analysis at least 10,000 cell data 

points were captured to achieve a representative sample. 

Finally, it is important to note that due to the limited timeframe, no statistical methods were used to 

predetermine sample size required to draw statistically significant conclusions. However, the protocol was 

independently performed by two scientists (S. Stankovic and J. A. Halliwell) in two different cell clones, 

replicating the final observations. 



 

195 

 
 

Figure 7.8: A schematic representation of the methodology behind FACS. Cells that generate the negative charge 

while passing through the electric field are defined as fluorescent, while the ones with the positive charge do not 

fluoresce. Based on the charge they carry, the cells will be removed from the electric field and collected in the 

homogenous solutions, including fluorescent cells, non-fluorescent cells and waste. The output of the fluorescent 

signal is received in the form of histogram, recorded on the computer connected to the Influx sorter, reporting the 

percentage of the cell population of interest. 

 

7.2.9 RNA extraction, reverse transcription, and quantitative real-time 

polymerase chain reaction (qPCR) 

 

In order to assess in what way inactivation of PARP-1 affects the expression of other genes with an 

important role in maintenance of pluripotency and self-renewal, we specifically focused on transcription 

factors: Sox2, Oct4, Nanog, Stella and Blimp1. We focused on three scenarios: the gene expression in (1) 

control wild type (WT) PGCLCs, (2) PARP-1 KO PGCLCs, as well as (3) control WT PGCLCs 

incubated for 24 hours in 3 μM of mitogen-activated protein kinase (MEK) inhibitor (PD0325901) that 
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inhibits FGF/ERK pathway, thus decreasing Parp-1 enzymatic activity and Parp1-Sox2 interactions and 

promoting self-renewal of cells534.  

 

Cells were rinsed twice with PBS. Total RNA was extracted and purified using RNeasy Plus kits 

(QIAGEN) from each biological sample according to the manufacturer’s instructions. cDNA synthesis 

was performed with 1 μg of total RNA using oligo (dT) primers and reverse transcribed using Superscript 

III (Invitrogen) and diluted ten-fold. Real time PCR analysis of the pluripotency markers was carried out 

with SYBR Green Supermix (Bio-Rad) and gene specific primers (sequences available upon request) 

using the MJ Research Opticon 2 Real-Time System. Thermocycler program consisted of an initial hot 

start cycle at 95 °C for 3 min, followed by 32 cycles at 95 °C for 10 sec and 59 °C for 30 sec.  The 

analysis was performed in triplicate. Mouse glyceraldehyde-3-phosphate dehydrogenase (GADPH) was 

used for normalisation of the qRT-PCR results. Results were then log transformed and the fold (relative) 

expression to the WT control was calculated using the 2−ΔΔCT method535. 

7.3 Results 

7.3.1 Common PARP-1 V762A variant leads to earlier ANM in women 

 

Driven by the evidence from studies in the mouse model on the role of PARP-1 inhibition in 

gametogenesis and ovarian function, we investigated the role of the most common PARP-1 genetic 

alteration, V762A. This variant represents an interesting candidate as it reduces PARP-1 activity up to 

40% in carriers, thus acting as partial PARP-1 inhibitor496. To assess its impact we focused on the ANM 

phenotype, which informs on the genetic regulation of menopause timing and acts as a proxy for extreme 

cases of early menopause, such as POI. GWAS array data on variants with MAF ≥ 0.1%, were available 

for 201,323 women of European ancestry from ReproGen Consortium and 294,828 women from 

23andMe study. The genetic association analysis was performed using a linear model in each strata and 

then combined by meta-analysis. We specifically investigated PARP-1 V762A and identified suggestive 

human genomic evidence on the role of the V762A  minor allele, which reduces PARP-1 function, in 

decreasing menopausal age in women when analysing the two strata independently, ReproGen (Beta: -

0.075 years per allele [95% CI: 0.04-0.11], P=4.6*10-6) and 23andMe (Beta: -0.05 years per allele [95% 

CI: 0.02-0.08], P=1.77*10-3). We replicate these findings by meta-analysing the data and confirm a 

significant association with earlier ANM (Beta: -0.06 years per allele [95% CI: 0.04-0.09], P=5.3*10-8). 
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Having demonstrated the impact of PARP-1 inhibition on reproductive longevity, we aimed to explore the 

biological mechanisms that underlie the effect of PARP-1 on gametogenesis and ovarian function using 

CRISPR technology in conjunction with the IVG culture system. 

7.3.2 Generation of the PARP-1 knockout mESC 

 

In the mammalian embryo, pluripotency is established from the epiblast in the inner cell mass (ICM) of 

the preimplantation blastocyst. We relied on this pluripotent feature to establish a mESC line, and monitor 

its potency to differentiate into PGC, the founding germ cell population, using the IVG system. We 

specifically used the BVSCH18 ESC line, which bears the BVSC reporter construct, to study female germ 

cell development in vitro536. This reported construct enabled us to trace the differentiation of PGCLCs - 

early PGC specifications are Blimp1-positive while lineage restricted germ cells, i.e. migrating PGCs, are 

Blimp1- and Stella-positive523,537–539. 

 
Figure 7.9: Germ cell specification. (A) The representative sample of BVSCH18 ESC line in the cell culture 

containing 2i medium. (B) The role of Blimp1 in lineage restricted germ cell specification. Blimp1 is necessary for 

successful repression of the somatic mesodermal program, re-acquisition of pluripotent potential, and genome-wide 

epigenetic reprogramming. Figure is adapted from Saitou et al (2016)540.  
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In order to explore the role of PARP-1 in establishing ovarian reserve and controlling sequential cell fate 

decisions during germ cell-specific differentiation, we generated the PARP-1 knockout mESCs by 

disrupting exons 3 and 4 using CRISPR/Cas9 targeting. Potential candidates of mutant cell clones were 

confirmed by Sanger sequencing and Western Blot, thus enabling us to monitor the role of PARP-1 in 

ovarian function and development (Figure 7.10). The clones used for the discovery analysis carried a 3 

base (AGG) deletion in exon 4. 

 

 

 

 

Figure 7.10: Evidence on the successful PARP-1 knockout in mESCs. Panels (A) and (B) show results from 

Sanger sequencing. (C) Western blot and evaluation of the PARP-1 expression. B = blank, WT = wild type, Clones: 

14 and 20. Clone 20 with AGG deletion in exon 4 was used in the discovery analysis, while clone 14 with C deletion 

was used in an independent replication by J.A.Halliwell. 

 

 

Off-target mutations from the CRISPR could cause unusual behaviour in a single clone541. By using two 

clones with AGG deletion in exon 4, we can be fairly certain that potential off target mutations are not 

responsible for the phenotype we observe. Furthermore, the KO in the third clonal line is slightly 

different, i.e. carrying a C deletion, which adds weight to our findings as 2 independent mutation induced 

KOs presented the same phenotype. Finally, to avoid bias the experiments were performed independently 

by two scientists, S. Stankovic and J.A. Halliwell.  
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Using the IVG model, we embarked on investigation of the efficacy of WT and PARP-1 KO mESCs in 

(1) the transition to the germline competent state (EpiLC) and (2) specification and differentiation 

potential of the PGC lineage, thus elucidating the impact of PARP-1 on the very beginning of the 

establishment of ovarian reserve. We observed no growth or morphological differences between the WT 

and PARP-1 mESCs. 

7.3.3 Differentiation of mESCs into PGCLCs 

 

The postimplantation epiblast has a unique cell context with the capability of evoking PGC fate, in 

contrast to ESCs, which do not have this capacity and rather promote self-renewal. Therefore, to be able 

to reconstitute PGC specification in vitro, it is necessary to construct an epiblast-like state with PGC 

competence in ESCs. We induced the transient differentiation of naive mESCs under a defined set of 

conditions, including cytokines basic fibroblast growth factor (bFGF) and activin A, which were 

necessary for successful epiblast induction. Under these culture conditions, the mESCs exhibited a rapid 

change in cell morphology during the 2-days long induction. This involved the transition of round into 

flat colonies, assuming a more epithelium-like structure and demonstrating a successful transition in 

EpiLC state (Figure 7.11). PARP-1 KOs exhibited indistinguishable morphology under the microscope 

from matched WT EpiLCs derived following the same methodology (Figure 7.11).  
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Figure 7.11: Induction of mESCs into EpiLCs. The representative figure demonstrates EpiLCs on day 2 just before 

the PGCLC induction, including the WT in (A) and PARP-1 KO in (B). The images were taken under the 

microscope using 4x and 20x magnification (for zoomed-in sample). Scale bars are 100 µm. 

 

We next examined whether both WT and PARP-1 KO EpiLCs have the potential to be induced into 

PGCLCs. The PGCLC differentiation was performed in aggregates. Over the course of 6 days, we 

successfully stimulated EpiLCs by BMP4 and WNT signalling to form PGCLCs, the founding germ cell 

population540,542,543. This induction results in Blimp1/Prdm1 mediated transcriptional regulation of epiblast 

cells which promotes the expression of PGC-specific genes, such as Stella, and represses the expression 

of somatic cell genes such as members of the Hox gene family526,544. Even though it has been shown that 

BVSC-positive foci appeared from day 4 to day 6 of culture under full induction conditions, previous 

experiments in the same laboratory (by J.A. Halliwell) demonstrated that the highest PGCLC yield is at 

day 6. These specified PGCLC are equivalent to migratory PGCs in vivo (E8.5-E10.5), and have the 

potential to develop to mature functional gametes. The morphology of the WT and PARP-1 KO cells was 

monitored across the 6 day differentiation course. No major differences were observed in the size of the 

cell aggregates, yet we could not observe the morphology of cells at the single level (Figure 7.12). 
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Figure 7.12: PGCLC induction over the course of 6 days. Each image shows a representative sample of PGCLC 

aggregate. The same plate well was imaged during 6 days for both WT and the PARP-1 KO. The magnification used 

was 10x. Scale bars are 100 µm. 

 

BV-positive (BV+) PGCLCs are induced in many but not in all EpiLCs. The non-PGC population 

includes undefined somatic cell lineages and an undifferentiated ESC-like cell lineage. Therefore, in order 

to explore the dynamics of PGCLC induction and proliferation in the WT and PARP-1 KO BV+ 

PGCLCs, we sorted our samples into BV+ and BV- cells. This was done using FACS to isolate the BV+ 

population of interest, with fluorescence indicative of successful transition to PGCLC state. Acquisition 

of PGCLC fate indicated by BV+ cells was markedly increased in PARP-1 KO, which is more than 

double in comparison to the WT PGCLCs (Figure 7.13). The average percentage of BV+ cells across 

three PARP-1 KO clones was 30.77%, whereas that of WT cells was 10.68% (Figures 7.13 - 7.15). This 

result revealed a drastic increase in the proliferation rate in the KO PGCLCs, with a 3.37 times (absolute 

difference 20.09%) higher number of BV+ cells on average, which is opposite to what we hypothesised 

regarding an expected decrease in the number of BV+ cells.  
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Figure 7.13: FACS workflow for isolation of BV+ PGCLCs in the replicate 1 of clone 20. The figure represents 

FACS gatings for sorting PGCLCs. Panel (A) is for the WT and panel (B) is for the PARP-1 KO. The cell debris and 

doublet cells were sorted using an appropriate gating of the forward scatter (FSC) and the back scatter (BSC) as 

shown in the top and bottom two panels, while cells with autofluorescence were sorted by Venus-A and the PE-A 

channels as shown in the third panel. A and W indicate area and width, respectively. The results are shown for the 

replicate 1 of the clone 20 with AGG deletion in exon 4. There was a 3.9 times (absolute difference 19.62%) higher 

number of PGCLCs in the KO compared to the WT.  
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We obtained consistent results in the replication analysis of clone 20 (absolute difference between the WT 

and KO 25.58%) (Figure 7.14), as well as in the replication using clone 14 with a C deletion in exon 3 

(absolute difference 15.08%) (Figure 7.15). 

 
Figure 7.14: FACS workflow for isolation of BV+ PGCLCs in the replicate 2 of clone 20. The figure represents 

FACS gatings for sorting PGCLCs. Panel (A) is for the WT and panel (B) is for the PARP-1 KO. The cell debris and 

doublet cells were sorted by an appropriate gating of the forward scatter (FSC) and the back scatter (BSC) as 

shown in the top and bottom two panels, while cells with autofluorescence were sorted by Venus-A and the PE-A 

channels as shown in the third panel. A and W indicate area and width, respectively. The results are shown for the 
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replicate 2 of clone 20. There is a 4.3 times (absolute difference 25.58%) higher number of PGCLCs in the KO 

compared to the WT. 

 

 

 
Figure 7.15: FACS workflow for isolation of BV+ PGCLCs in the replicate 1 of clone 14. The figure represents 

the ultimate FACS gating for isolating PGCLCs. BV+ cells with autofluorescence were sorted by Venus-A and the 

PE-A channels. A indicates area. There is a 1.9 times (absolute difference 15.08%) higher number of PGCLCs in 

the KO compared to the WT. 
 

The results suggested that the effect of PARP-1 on ovarian function starts early, at the very beginning of 

the establishment of ovarian reserve, having a dramatic influence on limiting PGCLC development and 

proliferation. 

7.3.4 Elevated levels of Oct4 drive PGCLC self-renewal 

 

To further assess the functional relevance of PARP-1 in PGCLCs, we performed a gene expression 

analysis focusing on the transcription factors involved in the maintenance of pluripotency and self-

renewal, including Sox2, Oct4, Nanog, Stella and Blimp1. All genes showed a significant increase in 

relative expression in PARP-1 KOs, the most significant one being Oct4 with a 2.9 fold increase (Figure 

7.16A). Oct4, Sox2 and Nanog are highly expressed in pluripotent cells and become silenced upon 

differentiation. Significant increase in the relative expression in PARP-1 KO cells suggests accelerated 

self-renewal potential in these cells. The high expression was also observed in Stella and Blimp1, 

providing a confirmation that these cells are indeed at the PGCLC state and that PARP-1 deletion 

increases the efficiency of their production in vitro.  

Previous experiments by Lai et al. (2012)534 have demonstrated that suppression of the fibroblast growth 

factor (FGF)/extracellular signal-regulated kinase (ERK) signalling sustains ESCs in the ground, self-
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renewal state by mediating Parp1-Sox2 interactions and Parp1 enzymatic activity (Figure 7.16B). Using 

mitogen-activated protein kinase (MEK) inhibitor (PD0325901) of the FGF/ERK pathway, we 

demonstrate directionally consistent results with the ones observed in the PARP-1 KO cells. This 

demonstrates that Parp1 plays important roles in the control of genes regulated by Oct-Sox enhancers and 

involved in maintenance of self-renewal and pluripotency. 
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Figure 7.16: Controlled primordial germ cell expansion via regulation of self-renewal and pluripotency 

transcription factors. (A) qPCR relative expression of Oct4, Nanog, Sox2, Blimp1 and Stella genes in Parp1 KO 

and  WT MEKi treated cells. MEK inhibition represses FGF/ERK pathway activity. (B) The mechanism behind the 

role of Parp1 in the control of genes regulated by Oct-Sox enhancers. FGF/ERK signalling induces Parp1 

enzymatic activity (auto-PARylation) and Sox2-Parp1 interaction. Via this interaction, functional Parp1 suppresses 

Sox2 activity at Oct-Sox target genes thus stimulating cell differentiation. On the contrary, inhibition of ERK 

signalling or Parp1 deletion enables binding of Sox2 to Oct-Sox enhancers, leading to increased levels of Oct4 and 

thus enhances self-renewal of cells. Figure, part B, is adapted from Lai et al. (2012)534.  
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7.4 Discussion 

 

A significant progress has been made in the past decade towards identification of novel gene candidates 

regulating ovarian ageing. Most of the genes in which the knowledge about the functional mechanism has 

advanced, act during later stages of gametogenesis, such as in the case of CHEK2481. Our knowledge 

remains obscure when it comes to the genes involved in establishing the ovarian pool. Combining the 

evidence from human genomics with the robust functional tools, this study aimed to elucidate potential 

mechanisms behind the role of PARP-1 in ovarian ageing and the creation of the germ cell line. 

 

Using genome-wide association data derived from UKBB and 23andMe cohorts, we provided suggestive 

human evidence on the role of common PARP-1 V762A variant as a risk factor for earlier ANM in 

women. This is in line with previous evidence that experimentally showed reduction of PARP-1 catalytic 

activity by 30-40%  due to the minor allele (the alanine substitution) of a missense variant (V762A)496 and 

its association with the reduction of ovarian reserve 110,512. In addition, this variant has been previously 

shown as important for other health outcomes in human genomic data by being protective for LOY in 

men481. 

Considering the effects of PARP-1 inhibition on reproductive function is especially important as Olaparib, 

a PARP inhibitor, is already used in clinics to treat breast and ovarian cancer. These types of cancer often 

occur in reproductively active women, so better understanding of the consequences on ovarian function 

could allow more aggressive fertility preservation or personalised treatment approach. Serum AMH 

concentrations and menstrual cycling are used clinically as surrogate indicators of ovarian damage in 

response to cancer therapies 545,546. However, AMH is primarily secreted from granulosa cells of growing 

follicles and not the primordial germ cells546. If PARP-1 inhibition affects the ovarian reserve and thus 

primordial follicles, we would not be able to quantify changes to the ovarian function in the clinical 

setting, and thus would be exposing reproductive active women to misdiagnosis and risk of premature 

menopause.  

 

Following up the evidence from human genomics, we investigated the functional mechanism through 

which PARP-1 acts to shape the ovarian reserve. Using CRISPR/Cas9 in combination with the IVG 

system as an in vitro model of ovarian establishment, we traced the pathway from pluripotency to germ 

cell fate in the BVSCH18 mESC line. We demonstrated that deletion of Parp-1 in mESCs leads to an 

increased efficiency of PGCLC differentiation with an average absolute difference of ~20% compared to 

the WT. Consequently, this leads to the creation of a larger ovarian reserve at the very beginning of the 

germ line formation. This contrasts with our initial hypothesis that predicted a greater germ cell loss in the 
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Parp-1 KO due to the faulty DDR mechanism and thus higher cell death rate. Instead, we speculate that 

PARP-1 activation in PGCs is likely to be independent of DDR. Previous research indicated the non-

catalytic role of PARP-1 in the regulation of pluripotency transcription factor, SOX2534. In response to 

FGF/ERK signalling, PARP-1 acts as an inhibitor by restricting Sox2 binding to Oct4/Sox2 enhancers and 

thus balancing ESC pluripotency and differentiation. Given Oct4’s importance in promoting self-

renewal547, elevated expression in the PGCLC state in PARP-1 KO cells, as observed in our study, could 

promote the efficiency of PGCLC production534. These results suggest a significant role of PARP-

1/MEK/ERK in governing reproductive lifespan in women.  

 

Even though we observe an increased efficiency of PGCLC induction in the PARP-1 KO compared to 

WT cells, this does not tell us anything about the cell quality. We speculate that this early acceleration of 

proliferation might expose the cells to various insults, which would most likely be eliminated through 

apoptosis at later stages when the effect of DDR is manifested. This would then ultimately lead to greater 

ovarian reserve depletion. If the loss of function increases the PGC pool size, this could alter the size of 

the territory occupied by the PGCs and perhaps also the density of these cells at this stage. Previous 

research demonstrates that signals diffuse across these cellular structures making a signalling gradient 

548,549, which is key to the eventual transformation of these cells into oocytes. If the size of this cell 

population and their density is altered then it would make sense that this signalling will be impeded, thus 

lowering the overall ovarian pool. Significant questions remain about the temporality, source of damage 

and nature of repair transactions that are active in the germline. 

 

This study has opened up a ‘black box’ behind the role of PARP-1 in gametogenesis and ovarian ageing. 

Extensive future research is needed to understand its precise mechanism. This includes better 

understanding of the involvement of the PARP-1/ERK mechanisms on the regulation of pluripotency and 

self-renewal balance of PGCLCs, as well as the oocyte quality by assessing the levels of DNA damage 

via immunofluorescence. In addition, looking at the Chip-Seq and RNA-Seq analysis for the overview of 

the global chromatin and transcriptomic landscape could advance our understanding of epigenetic 

reprogramming in these cells. Reprogramming during gametogenesis ensures genetic totipotency in 

normal development and is essential for the imprinting mechanism that regulates the differential 

expression of paternally and maternally derived genes 516,550. 

This study only explored the most detrimental effect of PARP-1 through its deletion. Future research 

should specifically address the disease model of the V762A mutation. In addition, further advances in 

human IVG will create possibilities to replicate these experiments and thus provide a more applicable 

model, addressing potential differences in reproductive physiology between mouse and human551. The 
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effect of Olaparib was not explored as it is not a PARP-1 specific inhibitor, but it also affects the activity 

of PARP-2552. To address the concerns coming from the clinical setting, it would be crucial to consider 

the effect of both of these genes in combination. If a drug is detrimental to growing follicles, ovulation 

and fertility might be temporarily impacted, but more eggs can be activated from the immature primordial 

reserve and ovulation will resume as normal. In contrast, if the primordial follicles are affected, this 

would lead to infertility and early menopause. 

 

One of the limitations of this study is that it recapitulates a quite short window of gametogenesis. There 

thus remains a long period of time, perhaps over a month, which must be reconstituted to produce mature 

oocytes in culture to assess other factors and stages of gametogenesis that could be affected by this 

genetic alterations in PARP-1. This is especially interesting from the point of non- versus DDR-dependent 

mechanisms. 

 

Some studies suggest that the PARP-1 V762A polymorphism is involved in spermatogenesis 

impairments, increasing the risk of oligospermia in men496,553–555, thus highlighting the importance of 

understanding this mechanism in relation to male fertility.  

 

Finally, our experimental strategy outlines a principle for using CRISPR screens to deconvolve the 

genetic basis of successive cell fate decisions. We complement it with the IVG platform that showed 

successful reconstitution of the entire process of oogenesis from mouse pluripotent stem cells and the 

capability to develop viable and fertile offsprings from in vitro generate MII oocytes via in vitro 

fertilisation521. We demonstrate here the use of this powerful functional tool that will enable analysis to 

not only further our basic mechanistic understanding of the process of ovarian ageing, but also to 

diagnose and model infertility, explore new remedies and improve assisted reproductive technologies556. 

 

 

 

 
 

 

 

 

 

 
 



 

210 

 

 

 

 

 

 

CHAPTER 8  

Conclusions and Future prospects 
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8.1 Summary of my research 

This dissertation described five distinct projects in which state-of-art genomic technologies with robust 

functional models were employed to identify genetic determinants of female reproductive ageing, 

focusing on aspects of the trait biology that have been poorly studied thus far. In this section I discuss 

how effective these studies have been, how these results have improved our knowledge and what 

opportunities and questions they raise to direct future research.  

Chapter 3 presents a comprehensive WES analysis to study rare protein-coding variants associated with 

menopause timing in ~120K women in the UKBB. I describe significant advances in our understanding of 

the biology of human female reproductive ageing by identifying novel associations for five genes where 

heterozygous LoF has an effect on menopause timing substantially larger than previously reported by 

GWAS. Notably, I find that heterozygous loss of ZNF518A reduces menopause timing by nearly 6 years 

in carriers, an effect larger than anything currently tested in clinical genetics for premature ovarian 

ageing. Furthermore, I provide the first evidence of ZNF518A acting as a master transcriptional regulator 

of ovarian development and establishment of the ovarian reserve in foetal life. I also identify a new cancer 

predisposition gene, SAMHD1, which has a comparable effect size in women and men to well-established 

genes such as CHEK2, further reinforcing the link between cancer and reproductive ageing. Finally, I 

show that mothers with earlier ovarian ageing have a higher rate of de novo mutations in their offspring. 

This provides direct evidence that female mutation rate is heritable and highlights a mechanism for 

maternal effects on offspring health. Our study offers a robust start for future research, especially related 

to the discovery of potential candidates for the treatment development. Unlike GWAS, WES focuses on 

the coding part of the genome assessing the most damaging genetic changes, which introduce 

perturbations that should yield a severe functional defect. Consequently, this enables more 

straightforward translation of our findings into the clinical or drug discovery settings.  

Chapter 4 expands the WES analysis to study the genetic architecture of extreme cases of early 

menopause, i.e. POI. Many genes have emerged as monogenic causes of POI, but a majority have been 

identified as causative in small numbers of families or individuals, with variable functional validation. 

This study is the first to demonstrate that autosomal dominant mutations in genes currently described in 

the literature or evaluated in clinical diagnostic panels are not common, highly penetrant causes of 

menopause under 40 years. I suggest that the origin of POI development may not be due to a single 

mutation in a candidate gene, but an interaction of low frequency polymorphisms or mutations in different 

genes in the same woman, indicating oligo- or polygenic aetiology for this disorder. This has an important 

impact on WES approaches that are increasingly being used within the clinical setting to make diagnostic 
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decisions. I indicate that using panels of genes to find causative genetic variants for un-related idiopathic 

POI is not a very fruitful endeavour and is unlikely to be cost-effective. Monogenic causes of POI are 

more likely to be recessive - this introduces disturbing changes that will require strong collaboration 

between the scientific and clinical world, and points towards detailed robust future research to further 

decipher genetic architecture of this condition.  

Chapter 5 presents the first proteogenomic study for the age at menopause targeting 4,775 distinct 

proteins measured from plasma samples of 10,713 European descent individuals who were participants in 

the Fenland study. Even though this analysis did not bring fruitful and robust findings in terms of the 

protein candidates associated with menopause timing, it clearly demonstrates the potential of this type of 

analysis for the discovery of proteomic markers of reproductive ageing. Future enlarged population 

studies should further explore the association between the protein levels and menopause status. 

Chapter 6 presents the largest genomic meta-analysis for age at menarche on ~566,000 women of 

European ancestry and 696 genomic loci that contribute to regulation of menarche timing. Using these 

data, I demonstrate the continued value of large genomic studies and how improvements in their size can 

greatly increase the number of genetic signals identified. I use this enlarged genomic dataset to get an 

insight into the biological mechanisms involved as well as potential shared genetic architecture between 

menarche and other reproductive health outcomes. Here, I provide the first ever evidence on the 

enrichment of DDR mechanisms for menarche timing, suggesting the involvement of DDR in regulation 

of both ends of the reproductive lifespan, i.e. menarche and menopause. In addition, I also point to some 

DDR gene candidates that could exclusively act in oocytes to modify the beginning of reproductive 

activity - this is the first evidence on the ovary specific mechanism, as it has been widely believed that 

menarche timing is being driven by mechanisms that act via hypothalamic-pituitary axis. I also highlight 

other novel mechanisms that impact both menarche and menopause timing, such as ribosome biogenesis, 

and suggest that future research should decipher this unexplored mechanism and its involvement in 

reproductive health. Finally, I demonstrate first human genomic evidence on the role of DDR and its 

related mechanisms in various anthropometric, metabolic and reproductive health outcomes. I show how 

different types of variation affecting the same gene can result in different phenotypes. These findings 

provide the first indication of DDR acting as a marker of broader health outcomes, and pave the path 

towards development of intervention strategies that could impact the outcome of multiple traits 

simultaneously. This study has just opened the ‘black box’ regarding the involvement of DDR in health 

and disease - future research should be directed towards better understanding of the relationship between 

menarche and menopause, and interventions that could be applied in early life and puberty to impact the 

reproductive longevity. 
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Finally, Chapter 7, follows a gene-centric approach to study the role of PARP-1 in gametogenesis and 

reproductive ageing. I apply a unique methodology by combining human genomic evidence with cutting 

edge CRISPR technology and the IVG system to investigate the role of PARP-1 in proliferation of 

primordial germ cells during the establishment of the ovarian reserve. The findings demonstrate for the 

first time that deletion of PARP-1 increases the efficiency of primordial germ cell production in vitro via 

upregulation of Oct4, which could be driving their self-renewal. I speculate that, even though there is an 

initial increase in primordial germ cells, the quality of these cells could be compromised. This could 

expose them to substantial ‘clearance’ via cell death mechanisms at later stages of gametogenesis, 

ultimately leading to the creation of smaller ovarian reserve. This would be in line with the first human 

genomic evidence that I provide on the role of PARP-1 inhibition on earlier menopause timing in women. 

These findings present an important basis for future research that relates to better mechanistic 

understanding of PARP-1, its effective translation into potential target for drug discovery as well as the 

effect of PARP-1 inhibitors on ovarian ageing and fertility.  

Several themes have emerged from presented studies as relevant and unexplored, yet critical for future 

advances in biological and mechanistic knowledge behind reproductive ageing. In the following pages, I 

will discuss the types of studies that are necessary to shape reproductive ageing research over the coming 

years and comment on how they will provide important clues in the road towards more personalised 

treatment of reproductive health outcomes. 

8.2 Diverse ethnic origin 

Although this work made significant progress in understanding the genetic architecture underlying 

reproductive ageing, one important limiting factor is that our insights have been restricted to women of 

European descent. One of the main reasons causing this is the lack of available large-scale studies in non-

Europeans. Notably, epidemiological studies have shown that menopause timing varies across ethnic 

groups, suggesting that different modifiers might exist in different ethnic backgrounds. More specifically, 

African and African-American women have earlier, while Japanese later average menopause timing, as 

compared to women of European descent183,557. In addition, our previous study in the Japanese cohort, 

considerably smaller than the European one (43,861 and ~200,000 respectively), demonstrated the 

benefits of conducting multi-ethnic studies by identifying 8 new loci implicating novel genes and 

pathways involved in human reproductive ageing183. Due to potential distinct reproductive profiles and 

thus different risk for important health outcomes it is important to be inclusive when deciphering the 

genetic architecture of this universal reproductive event. Focusing only on studies in Europeans restricts 

the generalizability and translation of the findings to other ethnicities, and potentially limits the detection 



 

214 

of key genes and pathways that are poorly represented in the European population, thus urging for more 

inclusive research to enable effective and tailored prediction and prevention strategies. To unlock the true 

potential of this work, understanding how trajectories of growth and development relate to fertility and 

later disease risk in all ethnicities is an important question, as it may allow more informed reproductive 

choices for women and increased understanding of aetiology of accompanied health outcomes. In 

addition, the multi-ancestry analysis could also increase the power to fine map the causal variants due to 

the reduced linkage disequilibrium windows. Furthermore, better understanding of the process that 

determines ovarian development and function may well lead to new methods of contraception, assisted 

fertility and fertility preservation. Accruing large GWAS sample sizes for age at menopause is far more 

difficult than many other complex traits as the phenotype can by definition only be measured in older 

women. However, through academic and industrial collaboration, our future work will try to address this 

question - the proposed study aims to provide insights into the genomic architecture of reproductive 

ageing in less-well-studied populations, boosting their representation on global reference panels and 

improving our understanding of their population genetics characteristics to enable powerful study design 

as well as effective prediction and interventions. Diseases that are influenced by the timing of menopause, 

including cancer, cardiovascular diseases and T2D, are highly prevalent in underrepresented populations. 

Importantly, in some of these ethnic groups, such as African one, cardiovascular disease and cancer kill 

twice as many women aged 60 and above in low- and middle-income countries compared with high-

income countries, predisposing women to a higher risk of poor health due to limited access to screening, 

late diagnosis and inadequate access to effective treatment561. Therefore, better definition of genetic 

architecture of reproductive ageing as well as of the complex interplay between genetic and 

environmental factors in a population-specific context is necessary, given an already demonstrated 

association between these traits and menopause timing. Our findings could provide insight into the 

mechanisms governing ovarian ageing, when they act across the life-course, and how they might be 

targeted by therapeutic approaches to extend fertility and prevent disease in women of diverse ethnic 

origins. 

8.3 Investigating human metabolome and its relevance for 

reproductive ageing  

Rare and common sequence variation across the genome identified up to date demonstrated a significant 

contribution to the regulation of the menopause timing.  However, the translation of many established and 

emerging genome-to-phenome links is limited due to the challenges of assigning the causal gene driving 

the identified associations. This presents a major limitation for experimental follow-up, mechanistic 
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understanding, and use of the emerging genomic evidence in drug development. Chapter 5 demonstrated 

how the assessment of human proteome has the potential to contribute to better understanding of 

regulation of reproductive ageing and identification of novel biomarkers. In addition to proteome, 

circulating levels of small molecules or metabolites and the impact of genetic differences in metabolism 

on human health represent an unexplored area. Future studies should focus on better understanding of the 

relationship of metabolites levels and menopausal timing as well as their utilisation as potential 

biomarkers of reproductive ageing. Metabolites are attractive biomarkers as they are widely measured in 

clinical medicine for diagnosis, prognosis or treatment response for other health outcomes. Previous 

studies have demonstrated that blood levels of metabolites are highly heritable, therefore representing an 

opportunity to integrate genetic association for metabolites and assess how genetics influences their levels 

and whether these changes modify the susceptibility to earlier vs later menopause timing. This study will 

be conducted within meta-analysis of genetic effects on levels of 174 blood metabolites measured in 

large-scale population-based studies on the Biocrates (AbsoluteIDQ™ p180, Fenland Study), Nightingale 

(1H-NMR, Interval Study) or Metabolon (Discovery HD4™, EPIC-Norfolk and Interval Studies) 

platforms. 

8.4 From variant discovery to disease mechanisms  

Previously described and future studies that encompass both common and rare genetic determinants of 

reproductive ageing will yield numerous candidate-disease causing mutations that have the potential to 

pave the path towards novel prediction and treatment strategies, as well as personalised medicine 

opportunities. Although variant discovery represents an important breakthrough towards this vision, it is 

only the first step. Understanding the biological mechanisms by which mutations and disease- 

susceptibility alleles contribute to observed outcomes is certainly a greater challenge and requires intense 

functional research that relies on robust and high-throughput models. Emerging genome-editing tools, 

including the CRISPR-Cas9 system, enable highly specific genome modifications at single-nucleotide 

resolution, thus significantly contributing towards better understanding of variant effects, gene function 

and disease mechanisms319. Notably, these editing tools can be used in a variety of in vitro and in vivo 

biological models, including induced pluripotent stem cells (iPSC), enabling a broad spectrum of 

experimental strategies to decipher the underlying biological mechanisms320,321. Most importantly these 

approaches are relatively quick and allow simultaneous assessment of multiple genetic mutations. 

Chapter 7 already demonstrated the usefulness of this approach in studying the effect of a specific gene 

of interest and suggest that discussed IVG model in combination with CRISPR knockouts should be 

widely applied to investigate the functional effects of mutations, place putative disease-associated genes 

into a biological context, and to elucidate the mechanistic basis of reproductive ageing. In addition, the 
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simultaneous study of patient-specific iPSC lines with different risk-variants can aid in our understanding 

of how various disease-associated loci interact to produce a phenotype. Finally, investigating the 

functional relevance of non-coding variants that overlap with known (or putative) regulatory elements and 

epigenetic marks is also becoming feasible with the availability of novel Cas9-based techniques. These 

epigenome-editing proteins can therefore be targeted to candidate regulatory elements in order to modify 

local chromatin structure and determine the role of these elements in influencing gene expression and 

pathological mechanisms of disease. 

8.5 Non-genetic risk factors and menopause timing 

Previous studies have suggested a wide-range of non-genetic risk factors and their association with 

menopause timing. These non-genetic causes of menopause account for the remaining population 

variation in menopause age. As previously discussed, odds of early menopause were shown to be 

increased by smoking, alcohol consumption, having decreased levels of education and being nulliparous. 

Future studies should focus on assessing the ways in which genetic risk factors interact with non-genetic 

risk factors to modify the menopause timing - i.e. studying ‘nature versus nurture’ effect. In addition, in 

the wider context of female reproduction, we also have limited understanding of the role of genetics in 

determining sex hormone levels, which are vital for the normal function of the female reproductive cycle 

and which change markedly around menopause. 

 

In order to understand the complex diseases that arise in later life researchers have been looking for 

answers in early life exposures. This association of early life determinants with the risk of adult complex 

diseases was captured by the Developmental Origins of Health and Disease (DOHaD) model558. DOHaD 

suggests that adaptations made by a developing foetus in utero, as a response to adverse environmental 

factors, together with postnatal exposures during early childhood and puberty do indeed have long lasting 

impact on health and modify the susceptibility of diseases559. Previous research in mice indeed 

demonstrated that a maternal obesogenic diet during pregnancy decreases the ovarian reserve in 

offspring350,560 and that DDR mechanisms that act in utero to influence reproductive lifespan might be 

modified by maternal exposure82. Further deciphering the ways in which external factors regulate 

reproductive longevity is also critical for the development of public health interventions. By combining 

the results of these complementary areas of research, we should be able to develop a more complete 

understanding of female reproductive ageing. 
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8.6 Concluding remarks 

Human genomics has made a remarkable impact on our knowledge of the genetic determinants of 

reproductive ageing. NGS is now significantly altering our ability to conduct gene-mapping studies and is 

yielding unprecedented biological insights that are truly driving a revolution in women’s health and 

healthcare more broadly. Utilisation of NGS within the clinical setting is becoming increasingly attractive 

due to the lower cost and more robust bioinformatic approaches for the interpretation of identified genetic 

variants. Consequently, NGS might perhaps soon be the universal diagnostic and public health tool, 

allowing us to more rapidly diagnose disease and predict its onset. Our analyses contributed to the 

knowledge of the genetic architecture of reproductive ageing and the biological processes that underpin it, 

while future suggested studies are necessary to drive translation of these findings forward. Finally, we 

aim to utilise the knowledge obtained from this work to help achieve three main goals:  

(1) To identify putative therapeutic targets for preserving and enhancing fertility. Our recent work 

demonstrates our ability to identify causal genes and experimentally characterise them in ovarian models. 

(2) To identify causal, modifiable, risk factors for premature ovarian ageing using human genetic 

approaches. 

(3) Developing tests (based on genetics and other traits) to predict which women are most at risk of 

infertility due to premature ovarian ageing. 
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Appendix 

All Appendix files can be found as an electronic version with detailed description available at: 

https://universityofcambridgecloud-

my.sharepoint.com/personal/ss2472_cam_ac_uk/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fss2472

%5Fcam%5Fac%5Fuk%2FDocuments%2FStasa%20Stankovic%20PhD%20Appendix%20Tables 
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