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This volume aims to present a wide range of 
perspectives on early Egyptian goldwork, integrating 
the complementary yet distinct approaches of archaeol-
ogy, materials science, jewellery and Egyptology. On 
one level, our primary task has been to present new 
analytical data on the manufacturing technology and 
elemental composition of dozens of artefacts preserved 
at six European museums. At the same time, we have 
sought to anchor and contextualize this new informa-
tion based on current research from three perspectives: 
an introduction to the fundamental geochemistry and 
material properties of gold, a reanalysis of historical 
sources and of goldwork manufacturing-techniques, 
and a guide to the key analytical techniques employed. 
In this way, we wish to ensure that the volume is 
accessible to specialists and students from different 
backgrounds. We anticipate that this body of material 
will provide a rich source of information for further 
interrogation and discussion in the future, and our 
concluding chapter offers a first synthesis of some 
key points emerging from this new research. There 
we focus particularly on the findings that seem to 
us most significant, alongside open questions and 
suggestions for future work. In so doing, we explic-
itly highlight some of the many strands beyond the 
scope of the work presented here, hoping that they 
may provide pointers for others. We emphasize that 
the volume is addressed not only to those interested 
in the archaeology of Egypt in the timespan covered, 
but equally to scholars researching past technologies 
and archaeological goldwork elsewhere, who may 
find technical observations of broader scope that could 
prompt cross-cultural comparisons.

In spite of the substantial amount of data com-
piled here for the first time, it is important to remind 
ourselves of some potential biases that are inherent 
to this work and may thus skew our interpretations. 
The most important of these concerns the selection of 

objects. This project starts and, in many ways, remains 
throughout its course with the exceptional group of 
gold jewellery buried in Qurna, on the west bank 
of Thebes in Upper Egypt, with a woman and child 
whose names are unknown to us, at some point in the 
17th or 16th century bc. Today the Qurna group is the 
most important Egyptian assemblage in the National 
Museum of Scotland, Edinburgh. In 2008, curator Bill 
Manley with materials scientists Jim Tate, Lore Troalen 
and Maria Filomena Guerra launched a programme 
of new analyses of the goldwork from the group. 
Already in this first investigation, the scope extended 
to comparison with jewellery from the preceding and 
following centuries (Tate et al. 2009; Troalen et al. 
2009). With funding obtained from the CNRS, Guerra 
could then expand the range of collections involved 
in collaboration with Thilo Rehren at UCL, to include 
the UCL Petrie Museum of Egyptian Archaeology and 
the UCL Institute of Archaeology with its laboratory 
facilities, as well as the National Museums of Scotland 
and the British Museum as project partners (CNRS pro-
ject PICS 5995 EBAJ-Au). On the initiative of Jim Tate, 
contact had been established already with colleagues 
Matthew Ponting and Ian Shaw at the University of 
Liverpool. As a result, the Garstang Museum is also 
participant in the wider project, together with the 
Manchester Museum, through the support of curator 
Campbell Price, and the Louvre Museum, through 
the support of curator Hélène Guichard and the late 
Sandrine Pagès-Camagna, material scientist at C2RMF 
(Centre de Recherche et de Restauration des Musées de 
France). We wish to emphasize here the fundamental 
role of Sandrine Pagès-Camagna in crucial stages of the 
project; without her participation the project could not 
have achieved a significant part of its aims – notably 
comparison between the Qurna group and the nearest 
securely dated examples of royal goldwork from the 
reigns of kings Kamose and Ahmose. 

Editorial foreword
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Other institutions participated with the provi-
sion of access to particularly specialized equipment: 
AGLAE facilities at C2RMF, Bundesanstalt für Mate-
rialforschung und –prüfung, and LIBPhys at NOVA 
University of Lisbon

With this new support, the research agenda was 
able to grow organically, adapting to fresh questions 
emerging from preliminary results, while contingent on 
the artefacts present in museums that were accessible 
to the project. Indeed, the history of the collections has 
been a significant factor, both enabling and constrain-
ing our research. The Louvre collections contain a 
range of jewellery from early excavations in Thebes, 
including representative material from the late second 
millennium bc settlement Deir al-Madina, and major 
works from 16th century royal burials uncovered 
during fieldwork directed by Auguste Mariette. The 
British Museum and the other participating museums 
in England and Scotland also preserve a mixture of 
material from documented excavations and earlier 
undocumented collecting practice. Here colonial his-
tory frames the kinds of material available. During 
and after the full British military occupation of Egypt 
(1882–1922), the Antiquities Service of Egypt under 
French Directors permitted officially recognized insti-
tutions to excavate in Egypt and, in return for the 
enrichment of the Egyptian Museum Cairo, to take a 
share of finds from excavations. Following division 
of finds in Egypt, excavation funding bodies based 
at Liverpool (since 1903) and London (since 1882) 
distributed finds to dozens of sponsoring museums 
(Stevenson 2019). The university museums in Liver-
pool and London were among the major recipients 

of these finds, and also hold substantial excavation 
archives. The Qurna group itself and several other 
sets of jewellery analysed during the project are unu-
sual examples of this pattern of dispersal, where the 
vast majority of items distributed belonged to the 
types of objects found in large numbers in fieldwork. 
The project was therefore able to investigate objects 
from a wide social spectrum, from palace production 
(Qurna group, Haraga fish and cylinder, items of 
kings Ahmose and Kamose from Thebes) to finds in 
cemeteries of regional rural towns and villages (Qau, 
Badari, Matmar). At the same time, in expanding the 
chronological scope of analyses forwards to the New 
Kingdom and back to the late prehistory of Egypt, the 
participating museums could not cover every social 
group for every period. Most notably, and perhaps 
surprisingly for those outside the museum circle, these 
collections hold none of the major goldwork from 
the age of the great pyramids, the mid-third millen-
nium bc. At that period, the concentration of power at 
Memphis around kingship separates the royal court 
from the regions, and this is reflected in the tombs of 
the period and in the distribution of finds. Gold and 
gilt ornaments are more prominent in burials at the 
Memphite cemeteries: Giza and Saqqara. The single 
outstanding assemblage of Egyptian goldwork from the 
mid-third millennium bc is the unparalleled burial of 
material related to Hetepheres, mother of king Khufu; 
the finds are on display in the Egyptian Museum Cairo. 
Egyptologists from Cairo, Vienna, Boston, Hildesheim 
and Leipzig directed excavations at Giza; their muse-
ums received a share in finds (Manuelian 1999). The 
museums in our project, from Paris to Edinburgh, 

Table 0.1. Numbers of artefacts (museum inventory numbers) analysed by site and period.

Dyn 1-2 First IP Middle Kingdom Second IP(-Dyn18) New Kingdom ? Total

Memphis 2 2

Riqqa 4 7 11

Haraga 13 + 1? 14

Lahun 5 5

Ghurab 1 1

Sidmant 1 1 2

Amarna 8 8

Qau area 15 5 20

Abydos 4 2 + 2? 2 3 13

Naqada 2 2

Thebes 2 2 + 7? 4 15

*Qurna 12 12

Buhen 1 1

? 1 5 2 22 30

TOTAL 4 16 36 30 45 3 136
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are not on that distribution map. With this and other 
lesser gaps, our sample, however extensive, cannot 
and does not claim to be random or representative of 
an underlying population of ‘Egyptian goldwork’. On 
our chronological range from fourth to second millen-
nia bc, there are peaks and troughs in the frequency of 
artefacts, and we encourage the reader to keep these in 
mind graphically, in order to assess our interpretations 
in context and to develop their own further research 
agendas (see Table 0.1).

Another delimiting factor in the selection of 
objects derives from our focus on technique, direct-
ing our attention predominantly to jewellery, rather 
than other gold elements such as the prominent use of 
sheets for gilding larger substrates of wood or plaster. 
Gold foils were included for comparative purposes, 
particularly in the investigation of composition, but to 
a lesser extent. Furthermore, within the rich repertoire 
of Egyptian gold jewellery, we took a particular interest 
in select assemblages, starting with the Qurna group 
itself, and within these certain specific features, such 
as the small beads found in the child’s coffin and the 
adult’s girdle. While these are fascinating manifesta-
tions of both technology and consumption, they are 
not necessarily representative of a broader corpus. 
We would also emphasize that we sought primarily 
artefacts with well-recorded archaeological contexts, as 
these evidently allow for more robust inferences, and 
provide the most secure foundations on which to build 
further research. Where the museums could provide 
access to material not from documented excavations, 
but acquired before 1970, we have included certain 
items if they helped to complete gaps in understanding, 
as a secondary circle of supplementary information. In 
each such case we have done our utmost to investigate 
their authenticity and source, but undeniably any 
interpretation based on an unprovenanced object will 
have to remain tentative. Indeed, one of our analyti-
cal investigations demonstrated the risks in building 
historical conclusions on material without documented 

excavation context; a gold shell inscribed with the name 
of king Taa, who reigned close in time to the Qurna 
group, presents disconcerting features more consistent 
with modern rather than with ancient manufacture.

A final and equally important constraint con-
cerns the background and expertise of the editors and 
contributors to this volume. While together we span 
interdisciplinary breadth, and have found synergies in 
our research, inevitably there remain areas beyond our 
interests and access, and indeed beyond the time scope 
of the project. For example, our data may be used as 
a starting point to address issues of provenance, but 
targeted consideration of the extraction methods and 
possible geological sources of gold is not addressed 
in detail in this volume. Instead, much more empha-
sis has been placed on issues of technology, and the 
application of the results to a concluding interpretation 
of the Qurna group. We look forward to seeing how 
others may take up such topics, and feel sure that the 
woman and child of Qurna will continue to pose new 
questions.

Finally, for the opportunity to share our discus-
sions and findings with a wider research audience, we 
would like to express our gratitude to the McDonald 
Institute for Archaeological Research for including 
this volume in its series.
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its alloys. Based on the earliest gold objects excavated in 
Egypt and by considering metallurgical practices and min-
eral resources in Egypt and adjacent regions, this chapter 
discusses some particular alloys as well as some of the most 
frequent jewellery-making techniques employed in Egypt.

With gold occurring as a native metal, its first use doubt-
less arose by chance. Since its discovery, skilled workers 
have produced gold items by exploiting different sources of 
gold, and by experimenting and developing a wide variety 
of techniques to use the metal and modify the properties of 

Chapter 1

Gold, an exceptional material

Maria F. Guerra

Why gold?

Gold is a rare resource compared to the world pro-
duction and reserves of other minerals (Nishiyama & 
Adachi 1995). In 2019, 3,300 tons of gold were produced 
in the world, 130 tons of new and old scrap was recy-
cled, and the reserves were estimated to 50,000 tons 
(U.S.G.S. 2020).

Indeed, about 99 wt% of the Earth’s crust is 
formed of nine elements only. Among them is oxygen, 
with a crustal abundance of more than 45 wt%, and 
iron, one of the metals used in the past, with a crustal 
abundance of about 6 wt% (Skinner 1979; Rankin 2011). 
All the other elements together make up the remain-
ing 1 wt% of the Earth’s crust, including gold with a 
crustal abundance of only 0.004 ppm (i.e. 0.0000004 
wt%). Similarly, silver and copper have low crustal 
abundances of, respectively, 0.008 ppm and 68 ppm 
(Skinner 1979; Rankin 2011). 

The chemical symbol of gold is Au, from its Latin 
name aurum. This transition metal, with atomic number 
79, has a melting point of 1064.43 °C and high density, 
19.32 g.cm−3 at 20 °C (Renner et al. 2012). Because of its 
electronic structure, gold has high resistance to corro-
sion (Rapson 1996; Blaber et al. 2010). By alloying gold 
with other metals – in the case of ancient goldwork, 
typically silver and copper – gold-base alloys can be 
obtained with different chemical properties. Contrary 
to pure gold, these alloys corrode in the presence of 
gaseous pollutants (Rapson 1996; Corti 2014; Tissot et 
al. 2019). For example, the reddish coloured spots at 

the surfaces of certain Egyptian objects (Lucas 1948; 
Tissot et al. 2015 and section 6.8) are usually due to 
tarnishing, i.e. development of sulphides under certain 
environmental conditions. 

Resistance to corrosion has always given a spe-
cial role to gold, but even though this characteristic is 
necessary for some goals, it does not entirely justify 
the prestige of this metal among all the others. In fact, 
other mechanical and physical properties of gold also 
play an important role on its widespread use and 
appreciation. Among the physical properties, the high 
thermal and electrical conductivity of gold and its high 
coefficient of expansion can be mentioned. The first 
has to be considered when soldering gold parts, and 
the second one when casting gold alloys. However, 
in the case of jewellery and other prestigious objects, 
special attention has to be given to the optical proper-
ties of gold, because they influence our perception of 
the objects.

Gold has high reflectivity and can be given a 
different colour by alloying with various metals. 
By adding copper and silver to gold, it is possible 
to obtain alloys ranging from yellowish to whitish-
greenish and reddish. It is also possible to increase 
the reflectivity of the gold alloys by addition of silver, 
because this metal has higher reflectivity than gold 
(Roberts & Clarke 1979; Loebich 1972). Several other 
properties change significantly when gold is alloyed 
with variable amounts of silver and copper. Figure 1.1 
shows the ternary gold-silver-copper diagram with a 
representation of the relation between composition 
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of thin gold layers on organic and inorganic substrates, 
was widely used in the past (Oddy 1981). In Ancient 
Egypt, where gilding and plating1 were regularly 
used (James 1972; Nicholson 1979), the technique is 
represented in tomb scenes (Scheel 1986) such as in 
the Middle Kingdom rock-cut tomb-chapel of Baqet 
III at Beni Hassan (Newberry 1893b, 47, pl. 4), shown 
in Figure 1.2.

Since the discovery of gold as a new and fasci-
nating material, certainly by chance, highly skilled 
gold workers experimented and developed a wide 
variety of techniques to produce jewellery, coins and 
other types of items, by exploiting the many different 
forms, colours and lustres that gold may take. The 
particular chemical, physical and mechanical proper-
ties of gold enabled the creation of a wide variety of 
objects produced over time to accomplish many dif-
ferent functions. Historically a symbol of power and 
wealth, a standard of value, a means of exchange and 
an expression of faith, gold has more recently incor-
porated less ‘emblematic’ forms but important roles 
in other domains such as electronics and medicine. 

Exploiting gold sources

A wide number of gold deposit types, formed at differ-
ent geological times and containing different amounts 
of gold, occur unevenly distributed throughout the 
world (Frimmel 2008; Foster 1993). Metals occur in 
rocks, commonly as compounds, in so-called primary 
deposits. In these deposits, several elements combined 
form sulfides, oxides, carbonates, sulfates, silicates, 
and so on (Crockett 1993; Paterson 1990). However, 
some elements, the so-called native ones, can occur 
uncombined. Gold is one of them and, in this case, the 
most common deposits are the lode ones, essentially 
gold veins in quartz, or reef gold. 

Among the world gold deposits are those named 
secondary, where gold occurrence results from chemi-
cal and physical processes affecting primary deposits. 
These deposits are formed by weathering, desegrega-
tion and leaching of the host rocks where native gold 
is contained. Subsequently, by transportation and 
concentration of the resulting gold-bearing debris (with 
high specific gravity), placer deposits are formed. These 

and colour of the alloys, as well as some isotherms 
indicating their melting temperatures (based on Rapson 
1990; McDonald & Sistare 1978). The melting point of 
the gold alloy depends on the amounts and melting 
points of the alloying elements (961 °C for silver and 
1083 °C for copper), and has a major role in skilled 
soldering processes. 

The mechanical properties rule the transforma-
tion of gold into, for example, very small and thin 
components like foils, wires and granules. Those prop-
erties, which are among others malleability, ductility, 
elasticity, hardness and tensile strength (Grimwade 
2009), play a major role when producing an object by 
gilding. This technique, consisting on the application 

Figure 1.1. Projection on the room temperature plane of 
the Au-Ag-Cu ternary phase diagram of some isotherms 
on the liquidus surface, as well as the relation between 
composition and colour of the alloy. For a given gold 
concentration (carats), the colour changes with the 
varying concentrations of copper and silver. The two blue 
lines show the different colours and nuances attained 
by alloys of 18 and 15 carats (containing respectively 
75 wt% and 62.5 wt% gold) depending on the amounts 
of silver and copper added. Drawing A. Mattei based on 
Rapson (1990) and McDonald & Sistare (1978).

Figure 1.2. Scene from tomb 15 at Beni Hassan containing the burial of Baqt III and representing a workshop scene 
where different types of objects are plated and gilt (detail from Newberry 1893b, pl. 4).
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commonly present in reef and placer gold in amounts 
under 1 wt%. An average value of 0.17 wt% Cu was 
obtained for 500 placer gold grains from Northern Ire-
land by Moles et al. (2013). The presence of auricupride 
and cupriferous gold could be identified only in a few 

deposits are of different types, as shown in Figure 1.3 
(based on Moen 1979), and to which can be added other 
types (Arndt et al. 2015; Botros 2004; Stanaway 2012). 
However, they can roughly be separated in eluvial, 
when adjacent to the primary deposits (concentration 
by gravity), and alluvial, when formed by the action 
of moving water and concentration by gravity (Boyle 
1979, 1987). 

Table 1.1 (from Boyle 1979) summarizes the major 
gold-bearing minerals that can occur in nature; there, it 
can be observed that native gold is in fact a gold-base 
alloy, as it typically occurs together with other metals. 
The most common natural alloying element of native 
gold is silver, present in amounts usually ranging from 
5 wt% to 15 wt%, the so-called argentian gold, but 
attaining sometimes higher amounts (Jones & Fleischer 
1969; Boyle 1979, 1987). When silver reaches about 
20 wt%, the alloy is commonly named electrum.2 Occur-
rence of gold containing about 40 wt% is observed in 
some mining regions of the world, such as in the rich 
mining regions of the Southern Apuseni Mountains 
(Romania), in particular in the Roșia Montană-Bucium 
district (Pop et al. 2011; Popescu et al. 2013).3 Evidence 
of ancient exploitation of these mines was reported by 
several authors (Cauuet et al. 2003; Cauuet & Tamas 
2012). Occurrences of gold containing more than about 
40 wt% silver, known as aurian silver, are rare, even 
though küstelite containing until about 80 wt% silver 
was found in a few deposits in association with native 
silver, argentite, and silver sulfosalts (Jones & Fleischer 
1969; Petrovskaya 1979), like in Russia (Kravtsova et 
al. 2015; Zhuravkova et al. 2017). 

Occurrences of native gold containing high cop-
per contents are also rather infrequent; copper is 

Table 1.1. List of gold minerals as provided by Boyle (1979).

Gold (Au)

Argentian gold (Au,Ag)

Cuprian gold (Au,Cu)

Palladian gold (Au,Pd)

Rhodian gold (Au,Rh)

Iridic gold (Au,Ir)

Platinum gold (Au,Pt)

Bismuthian gold (Au,Bi)

Gold amalgam Au, Hg, ?

Maldonite Au, Bi

Auricupride AuCu

Palladium cuproauride (Cu,Pd), Au

Uytenbogaardtite Ag, AuS2

Calaverite AuTe

Krennerite (Au,Ag)Te2

Montbrayite (Au,Sb)2Te3

Petzite Ag2AuTe2

Muthmannite (Ag,Au)Te

Sylvanite (Au,Ag)Te4

Kostovite AuCuTe4

Nagayagite Pb3Au(Te,Sb)4S5-8

Aurostibite AuSb2

Fishesserite Ag2AuSe2

Figure 1.3. Formation of gold 
placer deposits, representing the 
main types: alluvial or stream 
deposits, eluvial deposits, bench 
or terrace deposits and residual 
deposits. Drawing A. Mattei 
based on Moen (1979).
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tin oxide mineral (SnO2) that occurs quite frequently in 
eluvial and alluvial deposits, including in the African 
continent (Falcon 1982; Kinnaird et al. 2016). Among 
the heavy native metals that concentrate in placer 
deposits can be found platinum. With a density of 
21.4 g.cm−3, platinum belongs to the platinum-group 
elements (PGE). The six PGE, platinum (Pt), palladium 
(Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and 
osmium (Os), have equivalent chemical and physical 
properties. They occur frequently in magmatic ore 
deposits but, like gold, they also occur associated in 
alluvial deposits (Weiser 2002; Cabri et al. 1996), often 
in grains and rarely in nuggets6 (Peterson 1994). They 
commonly occur in the African continent in deposits 
situated in Zimbabwe and South Africa (Zientek et 
al. 2010; Thormann et al. 2017; Oberthür 2018). These 
minerals occur irregularly in Egypt (Helmy et al. 
1995; Elhaddad 1996; Ahmed 2007), concentrated in 
the Eastern Desert and north of Sudan (Bouabdellah 
& Slack 2016), in Ethiopia (Molly 1959; Ottemann & 
Augustithis 1967) and Tanzania (Evans et al. 2012). 
The PGE grains are recovered with gold, but due to 
their density, they are not eliminated and thus remain 
in the pan.

In mining sites where not enough water is accessi-
ble, gold can be recovered from gold-bearing sediments 
collected to be washed in basins or to be transported to 
other sites where they can more easily be processed.7 
Transportation of high amounts of heavy gold-bearing 
sediments for processing is however not an easy task. 
Another option is concentration using a technique 

placer deposits, for example in the Urals (Zaykov et al. 
2017) and in British Columbia (Knight & Leicht 2001).

Placer deposits account for more than two-thirds4 
of the total world gold supply (Yeend & Shawe 1989). 
In these deposits, gold is concentrated in the form of 
grains of different shapes and dimensions, from dust 
to nuggets – the latter being visible in water streams.5 
The variety of the gold grains in alluvial deposits 
depends, among others, on the distance of transport to 
the primary source, the type of source mineralization, 
and on fluid dynamics in the water stream (Chapman et 
al. 2002; Townley et al. 2003; William-Jones et al. 2009).

Since the beginning of the use of metals, gold 
from placer deposits has played an important role 
in the economic world systems, because it is more 
abundant and easier to recover than when present 
in lodes. In placers, it is possible to recover the gold 
grains by simple hand washing. The process of pan-
ning gold separates the light minerals from the heavy 
and dense ones, where gold grains are contained. The 
rotary motion induced to the pan (corresponding to 
spinning the recovered materials in a truncated coni-
cal basin, Fig. 1.4) separates the minerals by density, 
allowing the less dense to be washed out. Gold grains 
and other heavier minerals remain in the central con-
cavity of the pan.

In fact, gold grains are typically recovered 
together with so-called ‘black sands’, consisting of 
other heavy minerals such as iron and titanium oxides 
(for example ilmenite and magnetite). Another mineral 
sometimes associated with placer gold is cassiterite, a 

Figure 1.4. On the left, gold panning in Lusitania as represented in book VIII of De Re Metallica by Georgius 
Agricola. On the right, a modern pan containing gold nuggets. 
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the washing process, panning can be replaced by 
sluicing, another less manual technique that has been 
proved to be widely used in the past, including in 
Egypt.14 It consists of flowing a water stream in a sluice 
(a platform placed in slope) to concentrate the gold by 
gravity (Silva 1986). All the above processes need large 
quantities of water, except if the gold is concentrated 
using dry-washing. However, the productivity of dry-
washing might be low, when considerable amounts 
of gold dust are blown with the sands.15

When gold became a social necessity, large sup-
plies of raw material were regularly required, and both 
placer and mined gold were certainly exploited. The 
intense search for mining regions is well represented 
by the most ancient record of gold quarrying areas in 
the Eastern Desert, made under the reign of Ramses IV. 
This papyrus, in the collection of the Egyptian Museum 
of Turin (papyrus 1879,1969,1899), contains notes indi-
cating possible exploitation of both gold and electrum 
(Harrell & Brown 1992) in an area that corresponds 
today to Bir Umm Fawakhir and Wadi al-Sidd, at 
about 4 km from Wadi Hammamat (Meyer et al. 2003). 
Interestingly, by the end of the 1940s gold containing 
20 wt% silver was exploited by the Egyptian Mining 
Company at Wadi al-Sidd in quartz veins located 
where the ‘mountain of gold and silver’ is represented 
in the Turin papyrus (Goyon 1949). The composi-
tion provided for the exploited gold grains matches 
A. Murr’s unpublished data provided by Klemm & 
Klemm (2013) on the composition of native gold from 
several Egyptian and Nubian primary deposits. It was 
shown that the silver contents vary roughly from 10 to 
30 wt% in Egypt and mainly from 5 to 20 wt% in Nubia 
(Klemm & Klemm 2013, 42). Additional data published 
for gold grains in minerals collected in Eastern Desert 
mines tend to confirm these high Ag contents in gold. 

named dry-washing.8 Widely employed during the 
California gold rush, initially by the Mexicans (Young 
1965; Taylor Hansen 2007, 2008; Limbaugh & Fuller 
2004), winnowing9 is well described by W.R. Ryan 
who travelled in California in the 19th century.10 It 
involves shaking the auriferous sediments in a textile, 
throwing them in the air and blowing during descent 
to eliminate the light materials and only recover the 
heavy ones. 

Because gold is visible in placer deposits, these 
are supposed to be the earliest sources exploited by 
humans. In Egypt, several representations and inscrip-
tions are related to the exploitation of placer deposits, 
but also of reef gold11 (see Chapter 2). As gold veins in 
quartz are also visible to the naked eye, the exploita-
tion of lode deposits has to be considered among the 
earliest sources of gold. Klemm & Klemm (2013) and 
Klemm et al. (2001) suggested a very early exploitation 
of mined gold,12 with improvement of the tools used at 
the beginning of the Old Kingdom,13 and the increase 
in the New Kingdom of evidence on auriferous quartz 
exploitation perhaps related to access, for example, to 
the rich Wadi al-Allaqi gold deposits (see Chapter 2). 

Auriferous quartz veins were found in the past 
certainly when searching for reliable and richer sources 
of gold; this stage corresponds to the beginning of gold 
prospection. The exploitation of gold in quartz veins 
does not need complex technologies, but it requires 
a large skilled workforce for crushing, grinding and 
washing. In fact, concentration can start by simple rock 
crushing with a hammer, a long and hard work; the 
crushed rock has to be ground, but this operation may 
be simplified by milling. Gold is then concentrated, an 
easy but time-consuming task when hand washing is 
used. By repetition of the separation and concentration 
processes, the gangue is removed. In order to improve 

Figure 1.5. Diagram showing 
the amounts of silver contained 
in gold grains from several mines 
situated in the Egyptian Eastern 
Desert (data from Osman et al. 
1997, 2000; Zoheir 2004, 2011, 
2012; Harraz 2002; Helmy et al. 
2004; Shalaby et al. 2004; Zoheir 
& Akawy 2010; Zoheir & Lehmann 
2011; Darwish 2012; Emam 2013; 
Helmy & Zoheir 2015; Abdel-
Karim & El-Shafei 2018). 
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before the beginning of agriculture in Eastern Medi-
terranean and Near East (Bar-Yosef 2013), as well as 
in the African continent (Zilhão 2007). It is interesting 
to notice that in the Near East, during the transition 
to agriculture, many green minerals were already 
transformed into beads and amulets, like apatite, 
amazonite and serpentinite, and including copper-
bearing minerals, such as malachite, chrysocolla 
and turquoise (Bar-Yosef & Porat 2008). The use as 
raw materials of copper-bearing minerals and other 
metallic ores (Weeks 2012) which could be worked 
using a mechanical chaîne opératoire,19 explains their 
exploitation before the development of metallurgi-
cal copper melting and smelting.20 This sequence is 
documented, for example, in the Iranian plateau. In 
the Anarak region, malachite was mined from the 9th 
millennium bc onwards, but copper only started to be 
worked in the 7th millennium bc (Roberts et al. 2009).

It is challenging to suggest precise dates for the 
beginning of metallurgy. Obtaining small objects by 
cold-hammering native metals seems feasible without 
too many difficulties and it leaves little archaeo-
logical evidence. This operation requires the use of 
a mechanical chaîne opératoire, which, as mentioned, 
was developed quite early for other materials. The 
major technical challenges are associated to actions 
requiring high temperatures and temperature control, 
for example when annealing, used to soften the metal 
after hammering, or when melting metals, knowing 
that alloying results in specific melting points. These 
problems have to be considered for the earliest produc-
tions in both gold and copper. In the case of copper, 
the chief change corresponds however to the transition 
between melting and smelting, because in addition to 
temperature control, it is necessary to use reduction 
and oxidation processes and to know that copper can 
be extracted from particular ores (Muhly 2006; Mille 
& Carozza 2009; Roberts 2014; Stöllner 2014).

Therefore, the technical sequence of metallurgi-
cal innovation is typically the following (Montero 
2014; Craddock 1995): pre-metallurgy, when the use 
of native metals was achieved by first cold working, 
secondly annealing and at last melting, followed by 
metallurgy when mineral reduction was accomplished. 
In spite of such metallurgical challenges, in Eurasia the 
earliest evidence for the exploitation of copper ores 
and naturally occurring copper are (presently) dated 
to the 11th–9th millennium bc (Nezafati et al. 2008). 
Based on archaeological finds it was also possible to 
say that annealing of copper was already carried out 
in eastern Turkey in the 9th millennium bc, and copper 
smelting in Serbia in the 6th millennium bc (Roberts 
2009; Roberts et al. 2009; Maddin et al. 1999; Radivo-
jevic et al. 2010). The number of objects dated to the 

This range is well represented by gold grains from the 
Umm al Tuyor mine (Zoheir 2004) with Ag contents 
varying from about 5 to 20 wt%. However, both Ag-
rich electrum and high purity gold grains have been 
identified for example at Wadi Hammad (Osman et al. 
2000), where gold of two fineness populations coexist, 
one with almost 50 wt% Ag and another one of high 
purity. The results published for these grains expand 
the possible range of silver contents in Egyptian gold. 
Published data for the gold grains from several gold 
mines exploited in Egypt are plotted in Figure 1.5. 
The silver contents are shown to fall generally under 
30 wt% and most typically under 20 wt%. One of the 
two gold nuggets found in one of the earliest burials 
excavated at Elkab by Quibell (1898, 7)16 is in the col-
lection of the Ashmolean Museum (E.455) and was 
analysed by Stos-Fertner & Gale (1979), showing this 
expected composition: 84.8 wt% Au, 15.3 wt% Ag and 
<0.1 wt% Cu.17 The gold content found for this nugget 
is lower than the value found by Gänsicke & Newman 
(2000) for one nugget in a pendant from tomb Beg. W. 
859 at Meroë,18 dated to the Napatan Period, in the 
collection of the Museum of Fine Arts in Boston (MFA 
23.311), which contains 91.2 wt% Au and 8.5 wt% Ag. 

Towards a gold metallurgy?

Necessity is not the mother of invention - only 
of improvement. A man desperately in search 
of a weapon or food is in no mood for discovery: 
he can only exploit what is already known to 
exist. Discovery requires aesthetically motivated 
curiosity, not logic, for new things can acquire 
validity only by interaction in an environment 
that has yet to be. Their origin is unpredictable. 
A new thing of any kind whatsoever begins as 
a local anomaly, a region of misfit within the 
preexisting structure (Smith 1977, 114).

A good number of archaeological finds across the 
world provide evidence of early exploitation of gold 
and reveal that its transformation into objects varies 
over time and from one location to another. However, 
much remains to be investigated with regard to the 
beginnings of the use of gold and the development of 
gold metallurgy. 

With gold occurring as a native metal, it is not 
surprising that someone could have found one day a 
nugget by chance. Because of the high lustre and yel-
low colour of gold, the earliest objects might have had 
an exclusively aesthetic function. It is easy to imagine 
gold nuggets perforated and strung with beads made 
from other colourful materials. The production of col-
ourful beads using different raw materials emerged 
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body by using a hard soldering process24 (Duval et al. 
1987; Eluère 1998). The use of hard soldering processes 
was identified in other gold objects dated to the 3rd 
millennium onwards (Roberts 1973). Examples of the 
metallurgical complexity attained for productions in 
gold and silver in the first half of the 4th millennium bc 
can be found in northern Caucasus, among the grave 
goods of tombs associated to the Maikop culture. These 
tombs, recently radiocarbon dated (Korenevskij 2012), 
yielded a large number of gold objects of different 
types and dimensions, made using several techniques 
(Korenevskij 2012; Hansen 2014).

It is interesting to consider the earliest gold finds 
in the Southern Levant. This is a group of eight rings in 
gold and electrum found together with heavy copper 
objects in the Chalcolithic burial cave of Nahal Qanah 
in Israel (Gopher et al. 1990). These rings, made by 
pouring the metal into open ring-shaped moulds of 
different dimensions, are reminiscent of those often 
represented among the tributes in Egyptian tomb 
scenes. The technique employed is not surprising, 
because the many heavy copper objects contained 
in the hoard of Nahal Mishmar, dated to the 2nd 
half of the 5th millennium bc, are cast too (Shalev & 
Northover 1993; Moorey 1988; Gilead & Gošić 2014). 
Casting was in use early in Southern Levant (Rowan & 
Golden 2009; Golden 2014). A cast awl recently found 
at Tel Tsaf dates the emergence of copper metallurgy 
in that area to late 6th-early 5th millennium bc (Gar-
finkel et al. 2014).

Grave goods in the Southern Levant are regularly 
related to Egypt25 (Rowan 2013; Mączyńska 2013; 
Braun 2013), it is worth noting that the rings in gold 
and electrum from Nahal Qanah are dated to the 2nd 
half of the 5th millennium bc and are therefore older 
than the earliest gold artefacts in Egypt. Even though, 
Egyptian tombs dated to the Badarian period (end 
5th millennium bc) contained copper objects, such as 
the copper beads and pin from tombs 5413 and 5111 
excavated at Badari (Brunton & Caton-Thomson 1928), 
the oldest gold objects found in Egypt appear in a 
period when gold was already in use in surrounding 
areas of influence.

The oldest known Egyptian gold objects were 
excavated in Predynastic sites (see Chapter 2). It is 
only during the Naqada period (4000–3000 bc), when 
the first signs of mummification could be identified, 
that burials started to contain gold objects (Grajetzki 
2014). Some tombs seem particularly rich. One of 
these, excavated at Hierakonpolis (T11) and dated to 
Naqada III, in spite of having been looted still con-
tained fly-shaped and shell-shaped amulets in lapis 
lazuli, blades in obsidian and crystal, and beads in 
silver, gold, garnet, turquoise and carnelian (Adams 

earliest periods is quite small, even if in Turkey forty 
objects made of native copper were found at Çayönü 
Tepesi (Maddin et al. 1991) and sixty-five beads of 
native copper and malachite were excavated at Aşıklı 
Höyük (Yelözer 2018). The number of excavated cop-
per objects only increases from the 7th millennium bc 
onwards (Yalçin 2017), which should correspond to 
certain technological developments in metallurgical 
processing. In fact, among those objects, one copper 
amulet dated to the 6th millennium bc from Mehrgarh 
in Pakistan revealed the very early use of lost-wax 
casting (Moulhérat et al. 2002; Thoury et al. 2016).

The timelines for the use of copper and gold seem 
to be quite different. In fact, the earliest gold objects 
found so far in the Mediterranean area were excavated 
in Bulgarian sites, dating roughly from the mid-5th 
millennium bc (Higham et al. 2007, 2018; Boyadzhiev 
& Aslanis 2016) and a few in Romania (Radivojević & 
Roberts 2021). While at Durankulak21 only 16 of the 235 
excavated tombs contained gold ornaments, basically 
gold beads (Todorova 2003; Avramova 1991), and only 
one perforated gold disc was recently excavated at 
Tell Yunatsite,22 the 1972–1991 excavations of almost 
300 burials at Varna revealed about 3 000 gold objects 
(Ivanov 1982). The richest graves at this site include 
tomb 1, containing 215 gold objects, tomb 4 containing 
320, tomb 36 containing 854 and tomb 43 containing 
1001 (Ivanov 1982). In addition to gold objects of dif-
ferent sizes and types, sometimes quite heavy (Kostov 
2017), and to grave goods in other materials expected 
for the period of inhumation (flint, obsidian, shell, 
etc.), the graves also contained heavy copper tools and 
weapons (Slavchev 2010; Hansen 2013; Chapman et 
al. 2006; Krauß et al. 2017). 

Only a few gold objects dated from late 5th to mid-
4th millennium bc, and likely associated with Varna 
(Alram-Stern 2012; Maxwell et al. 2018), have been 
found in adjacent areas such as Greece and the Aegean 
Sea.23 For example, two ring pendants, two holed bands, 
one disc and one ring were found at Aravissos and 
one gold ring was found at Sitagroi (Macedonia); one 
perforated gold disc was found at Ftelia (Mykonos), 
one perforated band in the Zas cave (Naxos) and one 
bead at Strofilas (Andros) (Zachos 1999; Maxwell et al. 
2018; Todorova & Vajsov 2001; Televantou 2008). These 
objects are made by hammering gold into sheet, cutting 
to the shape and perforating for application. Complex 
mountings make an appearance later, based on the 
archaeological finds during the 4th millennium bc. 
The gold dog-shaped pendant dated to the Late Uruk 
period, found by R. de Mecquenem during the 1939 
excavations of the acropolis at Susa, evidences the tech-
nologies available for gold. The pendant was lost-wax 
cast and the suspension ring was joined to the dog’s 
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of a mechanical chaîne opératoire limits the function of 
the objects obtained. Therefore, those metals should 
have become interesting raw materials only when, at 
least, melting became available. 

Possibly a similar melting process was initially 
employed for both metals, because copper and gold 
have comparable melting points. However, the prop-
erties of these metals are quite different. It is possible 
that copper accomplished a true utilitarian role – fab-
rication of tools and weapons, for example – whilst 
gold retained an aesthetic one. Therefore, the insistent 
demand for copper objects necessary for everyday life 
could have accelerated the development of copper 
metallurgy, and could have occupied the most skilled 
artisans. In fact, the development of metallurgy has 
to rely on copper not on gold, because gold does not 
require the development of smelting. At least in some 
places, copper might have somehow relegated gold 
to a less important position in a conceivable ‘techno-
logical scale’, limiting the search for the metal, or the 
type of productions using the metal, and delaying the 
development of a gold metallurgy. 

From grain to object

The presence of gold flakes and of quartz and feldspar 
inclusions identified in early Bulgarian and Greek 
gold objects (Eluère & Raub 1991a,b; Maniatis et al. 
2000) seems to show that, even if during a short time, 
placer gold was ‘unskilfully’ worked at the beginning 
of its use by processing gold nuggets. However, the 
aesthetic repertoire accessible is quite limited when 
simply cold-hammering native gold into foils and 
cutting these into a desired shape for decoration. 
Objects obtained this way would quickly have become 
aesthetically unsatisfactory. 

The production of objects in gold requires several 
steps that can be separated into three main phases asso-
ciated to different crafts: (1) prospecting and mining 
of alluvial and reef gold followed by transportation 
to centralized sites; (2) metallurgical processing of 
gold grains and production of ingots; (3) production 
of objects (forming, mounting, decorating, finishing). 
These phases are briefly discussed below.

Gold alloys: accidental or controlled
The first phase of an object manufacture consists of two 
separate parts. The first, prospecting for gold, involves 
expeditions and evaluation of possible deposits for 
exploitation. The second one, mining, consists of 
the separation and concentration of placer gold and 
releasing the reef gold from the quartz rocks followed 
by separation and concentration of the gold grains 
(Cauuet et al. 2018 describes the processing steps in 

2002). In Egypt, gold is found among the grave goods 
from Naqada II onwards (Midant-Reynes 2000). One 
example is the diadem from tomb 1730 excavated at 
Abydos, in Upper Egypt, discussed in section 7.2.2. 
So far, only one exceptional group of eighteen gold 
and silver beads and one silver pendant is dated to 
Naqada I. In the collection of Musée d’Art et d’Histoire 
in Brussels (E.02931, E.02971 and E.02972), they were 
found in tombs H17 and H41 excavated at Mahasna 
(Ayrton & Loat 1911, pls. 13-3, 16-3; Baumgartel 1960; 
Eyckerman & Hendrickx 2011). It is noticeable that 
although no evidence on silver exploitation in Egypt 
is known, several small silver objects were excavated 
in early tombs (Baumgartel 1960), such as the hollow 
silver beads and jar cap from tomb 1257 at Naqada 
(Petrie & Quibell 1895) and the beads and pendant 
from the mentioned tombs at Mahasna. The analysis 
of the beads and the pendant from tomb H41 and 
two beads from tomb H17 (Hauptman & von Bohlen 
2011) has shown that three of them contain more than 
20 wt% gold and a fourth more than 30 wt%.26

The number of gold objects increases in Early 
Dynastic tombs. Some of them delivering quite impres-
sive objects. We can mention Khasekhemwy’s sceptre, 
rings and vessel with lid (MFA 01.7285, 01.7351, 
01.7287), the decorative strips from tomb 3504 at 
Saqqara, Menes’ gold bar (OI-UC E5934) inscribed 
with the name of Aha and the four bracelets (Cairo 
JE 35054) from the tomb of Djer (Emery 1954; Petrie 
1901,1902). However, none of these objects are as 
sumptuous or delicate as those found inside the tomb 
of Hetepheres (Dunham 1958; Reisner 1955), dated 
to the 4th Dynasty. The tomb goods include gold 
drinking cups, a gold razor, a gilded carrying chair, 
etc. The most remarkable item is the gilded wooden 
box containing silver bracelets inlaid with butterflies. 
These bracelets, restored by W. A. Stewart (Reisner 
1929), were originally 20.

Thus, overall, existing archaeological evidence 
for the area considered here shows that the use of cop-
per precedes that of gold. The development of gold 
metallurgy obviously requires access to ‘visible’ gold, 
which constrains the number of locations favourable to 
that development. When both metals coexist, knowing 
that both occur in native forms, there is no particular 
explanation for processing one but not the other. We 
can however speculate on some motives. The different 
crustal abundances of copper and gold make higher 
the probability of finding copper than gold. Even if 
both were simultaneously found, when copper is more 
abundant than gold, the quantities available may 
change the development of experiments carried out 
to transform the metals into objects. Certainly, both 
metals were quickly hammered into foils, but the use 
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only an unprovenanced one (UC899) may have been 
used for precious metals, whereas all the others have 
remains from copper processing (Davey 1985). 

It is difficult to make inferences about the early 
history of certain metallurgical steps such as gold 
alloying and refining, even if attempts at adjusting 
the natural composition of gold alloys are expected to 
take place early. Alloying gold with different amounts 
of copper and, perhaps, in some cases, with silver, 
would have been necessary to produce gold-base 
alloys of different colours and properties, as dis-
cussed in Chapter 5. In addition, since gold naturally 
contains variable amounts of silver and copper and 
is recovered together with other minerals, it is likely 
that gold refining techniques were developed quite 
early. Refining, however, requires the development of 
two sets of technology: cupellation, which separates 
gold from ‘base metals’ such as copper, and parting, 
which separates gold from silver (typically by cemen-
tation, initially using the salt process). Cupellation 
consists of melting lead with the natural gold alloys 
under oxidizing conditions. All base metals form 
oxides and are collected by the litharge (lead oxide), 
whereas the noble silver and gold are separated as 
a solid mass (Bayley 2008). Another metallurgical 
process is however necessary to separate silver from 
gold. Parting was accomplished initially by adding 
to gold a cement, which contained a salt as an active 
constituent. When heating the closed crucible for a 
long time, silver was transformed into silver chloride, 
a compound that was easily removed from the gold 
(Bayley 1990). 

In spite of the described metallurgical steps, 
some elements or compounds are not easily elimi-
nated providing clues on the type of gold employed, 
namely placer or reef gold. As mentioned, cassiterite 
and PGE are panned with gold from placer deposits. 
Both can hardly be eliminated during gold process-
ing. In fact, even though tin has a low melting point, 
pure tin dioxide melts at about 1630°C, and the PGE 
have melting points ranging from 1554°C to 3050°C,32 
that is, much higher than the melting point of gold. 
The presence of tin in gold alloys can thus be related 
to the exploitation of placer deposits, except in a 
few cases where tin presence may derive from the 
remelting of alloys containing this element (Guerra 
2014). Concerning PGE inclusions, their presence 
was identified at the surface of many ancient gold 
objects, including Egyptian ones (for example Ogden 
1972; Meeks & Tite 1980; Troalen et al. 2014; Guerra 
& Pagès-Camagna 2019), and this presence was asso-
ciated to the exploitation of ancient placer deposits. 
However, while the presence of PGE inclusions in gold 
objects indicates the use of placer gold – entirely or 

Celtic gold mines, on the basis of the archaeological 
remains and experimentation). To accomplish this 
are necessary miners and administrative staff, who 
controlled the work done by the miners and the quan-
tities of produced gold. Gold is then transported to 
centralized sites, either under the form of grains, in 
bags, or as ingots (in Egyptian tomb scenes the trib-
ute payments are represented by both bags and ring 
ingots). When transportation of ingots is preferred 
to gold grains, perhaps because in this case counting 
replaces weighing,27 the gold grains have to be melted 
in situ, before transportation, an action that involves 
metalworkers and administrative control. Like in 
military logistics, the mining sites have to be protected 
and staff to move the gold, which includes safeguard-
ing, supplying, supporting, etc., is also necessary.28 
The tomb scenes and the inscriptions referring to the 
exploitation of gold in Egyptian mining regions are 
discussed in Chapter 2.

The second phase is the work of metallurgists. 
This phase was not entirely accomplished in an initial 
period, when gold was used as recovered or found. 
By melting the gold nuggets, flakes and dust it is pos-
sible to obtain a mass of gold that can be formed by 
hammering, but it is necessary to be technologically 
able to reach the melting point of gold. When still inac-
cessible, a mass of gold could have been obtained by 
sintering29 gold dust at about 600°–650°C (Raub 1995). 
Sintering (powder metallurgy) is a thermal process that 
consists of the agglomeration of particles (powders) 
by diffusion bonding and inter-granular grain growth 
to obtain a solid structure. When put in a crucible 
and taken to a temperature under the melting point, 
the particles develop necks at the areas of contact,30 
according to several parameters such as the particles 
size, the temperatures attained, the heating time, etc. 
(German 2014). 

Where copper metallurgy was known, gold 
melting should have been quickly attained. It is 
possible that, at least during the earliest periods, 
copper and gold were under the responsibility of 
the same metalworkers, processed using the same 
crucibles and furnaces. The work of gold is in fact 
only evidenced in tomb scenes dated to the Middle 
Kingdom onwards. Technological improvements 
are visible in New Kingdom scenes such as the 
replacement of blowpipes by bellows to facilitate the 
high temperature required in furnaces.31 Different 
authors (Garenne-Marot 1985; Davey 2012) discuss 
this replacement, the furnace types and the crucible 
shapes, but they focus on melting, smelting and cast-
ing of copper. This may be explained by the lack of 
vestiges from gold processing. For example, among 
the crucibles in the collection of the Petrie Museum, 
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a mould. On the left, two men are hammering the 
metal into sheets. The use of annealing is indicated by 
‘Boil that. It is hard’, ‘There is no hollow if it is boiled 
perfectly’. This scene represents the thermomechanical 
process of alternate cold-hammering and annealing 
(heating), in sequences that have to be suitable for the 
alloys. Annealing, usually associated to quenching 
(rapid cooling), softens the metal that has become 
brittle when cold-hammered. By releasing the inter-
nal stress induced by plastic deformation, the metal 
recovers ductility making repeated cold-hammering 
possible without cracking and fracture (Maryon 1971; 
Fischer-Bühner 2010). Softening temperatures of met-
als are very variable and depend on application time.35 
In the case of metals like copper, hammering and 
annealing are also used to increase hardness.36 High 
hardness must be attained when producing tools and 
weapons (Odler 2016; Stocks 2016).

An object or a part of an object can be shaped 
either by plastic deformation or by casting. It is pos-
sible to obtain gold sheets, solid forms, and hollow 
containers such as bowls and basins using plastic 
deformation. If beating gold into foils is an unvarying 
and repetitive work, hollowing by raising, spinning, 
sinking, etc. gold sheets, as well as transforming an 
ingot into a solid object are the work of skilled gold-
smiths. These goldsmiths must have knowledge on 
how to use different hammers and anvils and how 
to anneal and quench. On the contrary, artisans who 
dedicate their entire time to beating gold into foils do 
not need knowledge of the other complex techniques 
necessary to make a diversity of objects in gold. 

Gold is such a malleable and ductile material 
that it can be reduced to a foil of 50 nm in thickness 
(Nutting & Nuttall 1977). Today, gold leaves are 
regularly obtained by reduction of gold sheets in a 
rolling mill to about 25 µm thickness; the resulting 
leaves are then cut into small squares, piled up with 
goldbeater’s skins, and reduced by beating to 1.6 μm 
thick; a second operation of cutting, piling up and 

partially when reuse by melting is practiced – their 
absence does not indicate the use of reef gold. In fact, 
the presence of PGE in alluvial deposits depends on 
mineral occurrences in the mining area. 

The goldsmith’s craft
The third and last phase of goldworking is the work 
of goldsmiths. It consists of manufacturing an object 
using either natural or artificial gold-base alloys and 
potentially employing a large variety of techniques 
(Untracht 2011). These techniques have been discussed 
by many authors for particular regions and periods 
(Ogden 1982; Higgins 1980; Nicolini 1990; Maryon 
1971; Maxwell-Hyslop 1971), including ancient Egypt 
(Williams 1924; Vernier 1907; Andrews 1990; Wilkinson 
1971; Aldred 1971; Ogden 1990, 2000; Scheel 1989). 

The production of a gold object by a goldsmith 
may involve a variable number of techniques that 
correspond to distinct steps of production. Briefly 
discussed below, they can be summarized as follows: 
shaping to the form, assembling the parts, decorating 
and finishing. 

Shaping to the form
In Egypt, the work of metals is already represented in 
tomb scenes dated to the Old Kingdom,33 for example 
at Deir al-Gebrawi (tombs of Djau and of Rahem-Isi, 
Davies 1902 vol 2, 10, pl. 10; 24, pl. 19). These scenes 
represent metalworkers hammering and melting met-
als, using open furnaces and blowpipes to increase 
the fire temperature. It is interesting to consider in 
Figure 1.6 the detail of a scene related to the work of 
copper, from the 5th Dynasty tomb of Wepemnefret 
at Giza34 (discussed in Chapter 2, the scene is shown 
in Fig. 2.16). S. Hassan (1936, 192–3, fig. 219) describes 
four metalworkers smelting the metal; above them is 
inscribed ‘Make great haste. Place it to its sole (bot-
tom of the oven)’, which corresponds to blowing to 
increase the temperature and achieve melting/smelt-
ing. Another metalworker is pouring the metal into 

Figure 1.6. Detail of a scene from the Old Kingdom tomb of Wepemnefert at Giza showing several metallurgical 
processes, including hammering and possibly annealing. Drawing M.F. Guerra based on Hassan (1936, fig. 219). 
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Assembling, decorating and finishing
Goldsmiths with expertise on either plastic deformation 
or casting might also need to be skilled in assembling 
the parts that constitute an object, and on decoration 
and finishing techniques. The order of the decora-
tion and assemblage operations depends on the type 
of object and on the goldsmith’s choice. Decoration 
may be achieved either by addition of materials or by 
modifying the gold surface. It is possible to modify 
the surface texture or to draw a motif using several 
techniques that employ different tools. Typical among 
them is engraving, which consists on incising motifs by 
removing material on the obverse side.38 Other com-
mon techniques are stamping, chasing and repoussé, 
which are used to form reliefs by plastic deformation. 
When chasing and stamping, the force is applied on the 
obverse side; repoussé or embossing involves working 
from the reverse. Stamping is a less time-consuming 
process when repeated motifs are applied. 

Several materials can be applied on gold sub-
strates to obtain polychrome effects or to modify the 
perception of the surface texture. Because gold objects 
are parts of our imaginary, they have to offer a certain 
visual perception (see Chapter 5). The added materials 
include gemstones, glass and vitreous materials like 
enamel, natural materials like bone and ivory, and 
metals. Metallic components are used either to obtain 
a polychrome effect, for example whitish and yellow-
ish areas, or to form monochromatic patterns by using 
small gold components, chiefly wires and granules. 

Gold wires of 15 µm are regularly produced 
nowadays (Mukoyama 2010), which is far from the 
about 120 µm thick wires made by the Etruscan and 
considered to be the thinnest wires made in the past 
(Guerra 2006, 2007). Wires can be hollow or solid and 
they may be formed by hammering, drawing, and 
twisting (Oddy 1977, 2004; Nestler & Formigli 1994; 
Nicolini 1990; Thouvenin 1971). They can be bent to 
different shapes, twisted together to form threads, 
modified by chasing, etc. (Ogden 2004; Nicolini 1990; 
Guerra 2008). Their surface morphology depends 
on the shaping process: facetted when hammered, 
scratched when drawn, with longitudinal seams when 
strip-drawn and with helicoidal seams when strip-
twisted (Oddy 1977, 2004). Further discussion on wire 
production is presented in Chapter 4.

Granulation was already in use in the 3rd millen-
nium bc (Wolters 1981, 1982), but the exact techniques 
employed in the past are not fully understood (further 
discussion is presented in Chapter 8). Spherical gran-
ules are nowadays industrially produced in various 
metals and alloys by solidification at high cooling rates 
of molten metals using techniques based on fragmenta-
tion and impact (Neikov 2019), but the production of 

hammering results in 0.10 µm thick leaves (Ashby & 
Jones 2013). Ancient foils are however thicker. Those 
employed in Egypt range from 1 µm to 10 µm thick 
(Hatchfield & Newman 1991). Two gilded papyri in 
the collection of the British Museum, New Kingdom 
papyrus 9040 produced for Neferrenpet, the ‘chief of 
the makers of thin gold’ (see Chapter 2), and papyrus 
10472, dated to the 20th Dynasty and produced for 
Anhay, Chantress of Amun, were decorated with 6 μm 
and 9 μm thick gold leaves, respectively (James 1965, 
1972). In the collection of the Louvre Museum, one 
unprovenanced gilder book (N 3041) contains eight 
5 μm thick gold leaves (Darque-Ceretti & Aucouturier 
2012), and the small gold leaf fragments (E 33058) found 
at Elephantine in a tomb dated to the Late Period are 
as thin as 1.2 μm (Darque-Ceretti et al. 2011).

Transforming a gold mass into an object by plastic 
deformation is however a time-consuming process, in 
particular when several components with the same 
shape are necessary. This work can be accomplished by 
casting, which is the second major shaping technique. 
Casting involves pouring molten metal into a mould. 
This thermal process requires the use of other tools, 
equipment and knowledge. The metal can be poured 
into moulds made in one or two (bivalve) pieces in 
stone, clay and sand. This technique is easily employed 
to obtain small solid forms such as finger-rings. A few 
stone moulds kept in different collections demonstrate 
that Mycenaean gold signet rings were made this way 
(Konstantinidi-Syvridi & Kontaki 2009) as well as 
jewellery from Enkomi and Tell Akko among others 
(Golani 2019). Despite the regular representation in the 
Egyptian tomb scenes of metal pouring, it is difficult 
to understand whether this action corresponds to the 
shaping of an ingot or an object.37

To allow more creative possibilities when cast-
ing, it is necessary to use the lost-wax process, a 
technique that certainly became popular very rapidly. 
One Babylonian text dated to the 2nd millennium bc 
attests to its regular use by describing that wax was 
given to a metalworker to make a bronze key (Hunt 
1980). When producing an object by lost-wax casting, 
a model made in wax is covered with clay, except for 
a small hole through which the melted wax can run 
out when heated (lost-wax) leaving a hollow shape 
inside the mould. Molten metal is then poured into 
the cavity left by the wax. After solidification of the 
metal, the mould is broken to release the object (Noble 
1975). A solid cast requires too much metal and metal 
shrinkage when cooling may cause problems. The 
use of a central core made from sand or clay reduces 
the required metal mass. As the mould is broken, the 
object obtained by lost-wax casting is unique and this 
technique is therefore unsuitable for mass production.
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molten, the solder penetrates by capillary flow the 
space between the parts to be joined and spreads by 
dissolution, allowing the parts to hold together after 
re-solidification of the joint. Fluxes are regularly used 
in this process to avoid re-oxidation of the surfaces 
during soldering. Because of the high temperatures 
attained when soldering parts in gold, the process is 
named brazing or hard soldering. Soft solders are used 
when joining metals at temperatures below 450°C. 

Hard soldering the multiple tiny parts that con-
stitute a gold object is a process that can only be 
accomplished by a highly skilled goldsmith. To achieve 
the mounting of complex objects it is often necessary 
to use several base-alloys and solder alloys with differ-
ent melting points and thus of different compositions. 
The analysis carried out by Roberts (1973, 119) of a 
New Kingdom sequin in the collection of the British 
Museum revealed the use of alloys with quite small 
melting point differences. 

When soldering complex objects, the tempera-
tures attained for each action of soldering in parts 
already soldered must be situated below their melting 
points. Otherwise, soldering new parts would unsolder 
parts already soldered. Nevertheless, the choice of the 
solder composition has to consider other properties of 
the alloy, including its colour. To obtain an impercep-
tible joining the colours of both the base-alloy and the 
solder have to be similar. Another property that has 

gold granules is still a manual process. Small pieces 
of regular sizes cut out of a thin gold sheet are placed 
in a charcoal block containing hemispherical cavities; 
the block is heated with a torch or in a kiln to melt the 
metal. Due to surface tension (to attain the minimum 
ratio surface area-to-volume) the liquid metal takes a 
spherical shape. 

Wires and granules are then joined to the base 
plate. It has been suggested by several authors that 
granules were soldered to the metal base employ-
ing an organic glue and copper compounds, such as 
malachite and azurite. This process is called colloidal 
soldering or diffusion bonding (Wolters 1982; Parrini 
et al. 1982): the copper compounds are reduced to 
metallic state by action of the carbon in the organic 
compounds, which results in the formation of metallic 
copper which acts as a filler. 

Many other joining processes may be employed 
to assemble gold parts (Maryon 1941; Tylecote 1978; 
Grimwade 2009; Jacobson & Humpston 2010; Roberts 
1973). They use either a mechanical or a thermal pro-
cess. The mechanical joining is obtained by fastening 
the two parts with wires, attaching them with rivets, 
by folding the sheets edges, etc. Thermal joining is 
obtained either by soldering or by welding. 

Welding is a heating-melting-solidification pro-
cess that consists of heating the joint of the two parts 
to a temperature above the melting point; the molten 
metals fuse together during re-solidification creating 
a homogeneously recrystallized interface. Presently, 
laser heating is quite frequently used in jewellery to 
obtain very thin joints without the use of a filler (Miller 
et al. 2007; Grimwade 2009). In fact, fusion welding 
may use a filler to ease the joining, but it may be carried 
out without a filler. When no filler is used, the process 
is called autogenous welding (a process suggested to 
have been used in past, for example Loepp & Mass 
2017). Another technique is diffusion welding, often 
employed to join parts made from different metals, 
for example when gilding copper. In this solid-state 
process (no liquid phase is formed), coalescence is 
obtained by pressure alone or by pressure and heat. 
In the case of copper gilding, high pressure is applied 
on a gold sheet placed over a copper substrate. This 
assemblage may also be submitted to high temperature, 
below the melting point, because when the tempera-
ture is raised the migration rate of the atoms across 
the planes (diffusion) increases.

The second joining possibility is soldering, which 
is also a heating-melting-solidification process. The 
key difference with welding is that soldering is based 
on the melting of a filler alloy, or solder. In the case of 
gold jewellery, the solder is usually a gold alloy with a 
lower melting point than the pieces to be joined. When 

Figure 1.7. Representation of some solder alloys in the 
Au-Ag-Cu ternary phase diagram. The solders with 
distinct silver-to-copper ratios provided for 9, 18 and 22 
carat base alloys by Jacobson & Humpston (2010) have 
different colours and melting points. Drawing A. Mattei 
based on Rapson (1990) and McDonald & Sistare (1978).
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Romanian gold and silver mining regions of the Southern 
Apuseni Mountains gold contains silver amounts reach-
ing sometimes 42 wt%. The analysis of gold grains from 
Ada Tepe in Bulgaria where a gold mine was exploited 
during the Bronze Age (Popov & Nikov 2018) has shown 
two electrum mineralizations, one characterized by 
70.83 wt% Au, 29.17 wt% Ag and the other by 74.03 wt% 
Au, 24.73 wt% Ag, 1.24 wt% Cu (Marinova 2012). Gold 
grains from the Armenian regions of Sotk and Fioletovo 
may also contain silver amounts reaching about 45 wt% 
(Wolf et al. 2013). In Egypt, analysis by Osman et al. 
(2000) of gold grains from the Eastern Desert mines of 
Wadi Hammad has shown the presence of high silver 
amounts, reaching about 44 wt%. 

4. At present, about 40% of the world gold production 
comes from quartz-pebble conglomerate deposits, such 
as those of the Witwatersrand Basin in South Africa, 
which are paleoplacer deposits that suffered modifica-
tions after initial sedimentation (Boyle 1979; Taylor & 
Anderson 2010).

5. In general, the gold particle sizes in alluvial deposits 
range from 100 µm to 5 mm (Mitchell et al. 1997). Very 
big nuggets were also reported. Among the biggest ones 
is the Welcome Stranger found in 1869 in Australia and 
weighing about 72 kg (see Dwyer 2002).

6. Harris & Cabri 1991 have provided a classification for 
the PGE alloys based on their composition.

7. In the north of Ethiopia, peasants migrate during the 
dry season to regions where gold-bearing rivers exist 
in order to collect in small plastic bags soil sediments 
containing gold dust to be washed for gold (Smidt & 
Gebremichael 2012).

8. Dry-washers are employed in desert regions where little 
water is available (Silva 1986, 10–12).

9. Winnowing is among the techniques employed in Egypt 
to process cereals, to separate the grains from the straw 
using fans (Murray 2000), which is represented in tombs 
(Samuel 1993).

10. ‘There was no water near, although I noticed several 
holes, which had evidently been sunk in quest of it. 
These men were actively pursuing a process that is 
termed “dry-washing”. One was shovelling up the sand 
into a large cloth, stretched out upon the ground, and 
which, when it was tolerably well covered, he took up 
by the corners, and shook until the pebbles and larger 
particles of stone and dirt came to the surface. These 
he brushed away carefully with his hand, repeating 
the process of shaking and clearing- until the residue 
was sufficiently fine for the next operation. This was 
performed by the other men, who, depositing block of 
wood, which they held in their hands, dexterously cast 
the contents up before them, about four feet into the air, 
catching the sand again very cleverly, and blowing at it 
as it descended. This process being repeated, the sand 
gradually disappeared; and from two to three ounces 
of pure gold remained at the bottom of the bow’ (Ryan 
1850, 13–14).

11. For example, Sahathor, ‘assistant treasurer’ under 
Amenemhat II, in his expedition to Sinai and Nubia 
refers to gold panning: ‘I visited the Mine-land (Sinai) as 

to be considered is fluidity. In the case of gold ternary 
alloys, fluidity decreases with decreasing silver-to-
copper ratios (Jacobson & Humpston 2010). Figure 1.7 
shows the ternary colour gold-silver-copper diagram 
from Figure 1.1 where are represented the colours 
and the melting points of solders with distinct silver-
to-copper ratios suggested for 18 and 22 carat base 
alloys (see table 8.5 in Jacobson & Humpston 2010).

After assembling and decorating the object, this 
can be finished by using mechanical and chemical 
processes. Therefore, finishing it is the final stage of 
the object fabrication that involves surface treatments 
improving the quality of the manufacture process and 
changing our visual perception of the object. Chemical 
processes are employed to remove soldering residues 
by pickling or to colour the surfaces by patination 
(Pacini 2009; Hughes 1993; Ogden 1993). The aim of 
the mechanical processes (flattening, smoothing and 
removing) is either to decrease the surface roughness, 
by polishing39 and burnishing, or to modify the surface 
texture by planishing. Planishing is a plastic deforma-
tion process that consist on flattening by hammering 
the entire surface to make invisible any mark from 
the previous work. Burnishing is also a mechanical 
deformation process achieved by friction with a hard 
surface. Polishing is a process of removal by abrasion 
that consists on removing scratches using abrasives 
with variable particle sizes (Faccenda & Corti 1999). 
The decrease of surface roughness results in an increase 
of the reflection of light and therefore an increase of 
surface reflectivity. 

Notes

1. Gilding is the application of a thin gold layer, for example 
a gold leaf or gold powder, on the surface of another 
material. We consider gold plating as the application of 
thicker coatings, employing techniques that include the 
use of electron-currents.

2. In his Natural History (book 33, 26) Pliny the Elder 
refers to electrum, a natural or an artificial alloy of gold 
containing one-fifths of silver (Rackham 1961, 63). In 
the middle 6th century, Isidore of Seville (Etymologies, 
book 6, 26) gives the meanings of electrum: ‘Electrum is 
so named because it reflects in the sun’s ray more clearly 
than silver or gold […] is more refined than all the other 
metals. […] There are three kinds. […]’. He defines the 
first, amber, as ‘liquid electrum’, the second, found 
naturally, as ‘metallic electrum’, and the third ‘made 
from three parts of gold and one part silver’, specifying 
that ‘there is no difference between natural electrum 
and manufactured’ (Barney et al. 2006, 332). See also 
discussion provided by Schliemann (1885, 569–70) on 
electrum excavated at Troy. 

3. Transylvanian gold samples were analysed by Pop et 
al. (2011) and Popescu et al. (2013), showing that in 



16

Chapter 1

as the one among 21.12107 (from Begarawiyeh, Meroe, 
SCXXV, debris of grave), 23-M-409 (from Meroe, Beg. 
West 695), 18-2-294L (from Nuri, Pyramid 59, Room A). 
One gold nugget pierced for hangeing and inscribed 
with hieroglyphs was found inside tomb 2 at el-Kurru 
(Dunham 1950, 16, pl. 52A and B).

19. The concept of chaîne opératoire was developed in the 
1950s by A. Leroi-Gourhan (1964) to define sequences 
of actions, using tools, materials, gestures, etc., which 
are necessary to accomplish the transformation of a 
material into a finished object (Audouze & Karlin 2017). 

20. Smelting consists of a chemical process conducive to 
obtaining a metal from an ore (metallic compound) 
contrary to melting that is a physical phase transition 
from solid into liquid. 

21. The many graves excavated at Durankulak only deliv-
ered a few gold objects, such as the 5 ring beads from 
tomb 447, the 3 specimens from tomb 732, the necklace 
of gold and chalcedony beads from tomb 211, and the 
gold amulet from tomb 694 (Slavchev 2010; Bayley 2000; 
Whittle 1996; Kostov 2010).

22. The bead was found during the archaeological excava-
tions leaded at tell Yunatsite in South-Central Bulgaria by 
Y. Boyadzhiev and can be seen at: https://balkanheritage.
org/tell-yunatsite-excavation-project/ 

23. Among the earliest silver objects are the beads and pen-
dants from the Alepotrypa cave in the gulf of Diros in 
Greece dated to the 4th millennium bc and the pendant 
from Amnissos in Crete (Kouka 2008; Muhly 1983, 2006)

24. This dog-shaped pendant in gold is in the collection of 
the Louvre Museum (Sb 5692) where can also be found 
one in silver roughly half size (Sb 14495). The gold dog is 
made from an alloy containing 9–10 wt% Ag and 1–2 wt% 
Cu. The suspension ring was joint to the animals’s body 
using a gold solder containing 15–20 wt% Ag and 5–6 
wt% Cu (Duval et al. 1987; Eluère 1998). One bracelet 
from the same site, but dated to the 3rd millennium bc, 
was also analysed showing that the solder was richer 
in copper (Duval et al. 1989). 

25. Recent archaeological finds at Khirbet al-Batrawy sug-
gest exchange of goods between Pharaonic Egypt and 
Jordan during the 3rd millennium bc using a Copper 
Route crossing central Sinai (Nigro 2014).

26. The analysis was carried out by TXRF, a technique used 
for the non-destructive characterization of near-surface 
layers (Wobrauschek 2007; Klockenkämper & von Bohlen 
2015). Hauptman & von Bohlen (2011) used a very small 
surface sample (some nanograms) obtained by lightly 
rubbing the objects with a cotton swab, but mention that 
the beads are of ‘surprisingly dark colour and have a 
dull metallic lustre’. This indicates that the analytical 
results provide the composition not of the alloys, but 
of the corrosion products that had developed on the 
surface of the objects. As the amounts of silver increase 
in the corroded areas of gold alloys (further discussion 
is provided in Chapter 6.8 of this volume), the gold 
beads may contain higher amounts of gold than those 
provided by TXRF. 

27. This is equivalent to the use in transactions of coins 
made based on a uniform standard of value. Therefore, 

a youth, and I forced the (Nubian) chiefs to wash gold’ 
(Breasted 1906a, 274). At Wadi Mia, in the Red Sea hills 
at the foot of Gebel al Atawi, an inscription indicates the 
exploitation of reef gold: ‘the mayor and overseer of the 
priests of Nekhbet Renny, on the occasion of coming in 
order to quarry stone and bring gold’ (inscription SL12 
in Rothe et al. 2008, 231).

12. Other more recent publications also give details on the 
gold deposits in Egypt, e.g. El-Wekeil & Gaafar 2014; 
Botros 2002, 2004, 2015; Osman 2014.

13. Some tools could have served for the exploitation of 
copper that also occurs in the gold mines. In fact, in the 
Eastern Desert gold in quartz veins is often accompanied 
by abundant pyrite and arsenopyrite (Khalil et al. 2016; 
Osman 2014). For example, the gold-copper quartz vein 
deposits at Umm Balad (Abd El Monsef et al. 2018) were 
exploited at different periods for both copper and gold 
(Castel et al. 1998). The same situation is observed at 
al-Urf (Tawab 1990).

14. Sluice boxes in wood were found in Bronze Age sites, 
such as in the Troiboden mining area in the Mitterberg 
(Stöllner et al. 2012). Those found in New Kingdom sites 
in Egypt were made using stones consolidated with clay 
(Klemm & Klemm 2013). Vercoutter (1959) describes 
washing tables in Nubia dated to periods that are more 
recent. 

15. A few authors suggested the use of this technique for 
gold concentration in the Egyptian desert (Lepsius 1877; 
Neesse 2014), because in some tomb scenes related to the 
work of gold two man are holding a curved form (under 
which was sometimes placed a cup) recalling the hiero-
glyph for gold. However, in other tomb scenes, a broad 
collar represents this form indicating jewellery-making.

16. The two gold nuggets, weighing 28 g, were found in one 
small partially robbed stairway tomb by Quibell (1898, 7) 
with a single thick gold hoop bracelet and components of 
a string: barrel-shaped carnelian beads, small gold beads 
and a gold spacer with five holes. The second nugget, 
the bracelet and the beads joined the Cairo Museum 
collection in 1897 (entries 31769-72, as reported in the 
Bulletin de l’Institut d’Égypte 8, 1898, 289–90). 

17. Unfortunately, gold nuggets are rarely found in excava-
tions. Garstang (1912, 49–50) reports two pottery vases 
found under the foundations of a wall at Meroë (site 294, 
Napatan Period), one containing gold dust and nuggets 
and the other ‘filled with gold dust and nuggets, broken 
glass and beads, together with three inscribed jewels of 
gold in the form of a pyramid, a scarab, a flat scarab-
seal and three gold money-rings’. Garstang ordered in 
London to Hunt & Roskell Ltd. reproductions of the 
spacer beads, perhaps using part of the dust and nuggets, 
which are today in several museums (Bleiberg 2015). In 
the Brooklyn Museum, the two reproductions (63.35.1-2) 
and one original (49.29) were analysed by XRF but only 
qualitatively (Bleiberg 2015, 47). The World Museum 
at Liverpool has part of the gold dust and nuggets 
(49.47.1000b) and one of the gold hoops described as 
‘money rings’ (49.47.1000a).

18. Others from Nubia pierced for hanging are also in the 
collection of the Museum of Fine Arts in Boston, such 
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they could be counted instead of weighed. However, 
counting needs the definition of a ‘weight standard’.

28. Several inscriptions refer to administrative staff, like 
scribes who counted the gold and overseers of gold-
workers who controlled the production (Rothe et al. 
2008), and one inscription dated to Seti I refers to ‘the 
chief archer of the caravaneers of the gold-washing’ 
(Breasted 1906b, 86).

29. Sintering, or powder metallurgy, was employed by 
the Tumaco-La Tolita culture that developed between 
Ecuador and Colombia. They produced remarkable 
jewellery in gold and in platinum (Meeks et al. 2002; 
Bouchard & Guerra 2009; Scott & Bray 1980), a metal 
with a high melting point, 1772°C, by sintering the two 
metals at about 1100°C (Handwerker et al. 1991; Scott 
2011) or even less, until 800°C (Bustamante Salazar et 
al. 2006; Noguez et al. 2013).

30. The presence of sintered gold grains plastically deformed 
was identified in Early Bronze Age gold objects excavated 
in Bulgaria (Tsintsov et al. 2009).

31. See Fig 17, Chapter 2 and the scenes in the rock-cut 
tomb-chapels of Puyemra (Davies 1923, 70–2, pl. 23, vol 
2) and of Rekhmira (Davies 1943; Wainwright 1944) at 
Thebes. The recently excavated tomb M.I.D.A.N.05 at 
Dra Abu al-Naga also has a metallurgical scene (Marini 
2014).

32. The melting points of the elements of the group are the 
following: palladium (Pd) 1554°C, platinum (Pt) 1768°C, 
rhodium (Rh) 1963°C, iridium (Ir) 2446°C, ruthenium 
(Ru) 2333°C, and osmium (Os) 3033°C.

33. Other early representation can be seen in the tombs of 
queen Meresankh III at Giza (Dunham & Simpson 1974, 
pl. 3b), of Mereruka at Saqqara (Duell 1938, pl. 30), and 
of Pepyankh at Meir (Blackman & Apted 1953, 25, pl. 17).

34. Equivalent scenes can be seen in the tomb of Ti at 
Saqqara (Weinstein 1974; Montet 1925, 284–5) and the 
Middle Kingdom rock-cut tomb of Khety at Beni Hassan 
(Newberry 1893a, pl. 14, 58).

35. Lowry & Parker (1915) provide data for pure copper, 
silver and gold.

36. In the case of gold alloys, the increase of hardness is 
used nowadays to obtain high-carat gold jewellery (see 
for example Toit et al. 2002). 

37. One scene in the tomb of Rekhmira is shown in Chapter 
2 (Fig. 2.17a). The moulds in this tomb and in Puyemra’s 
tombs have the same shape; see discussion by P. Montet 
(1925, 277) on the hieroglyph he attributed to ‘ingot’ in 
goldsmithing representations.

38. Metal inlay is also obtained by removing gold. The space 
left at the surface is filled with another metal. 

39. Electrochemical polishing is employed to make a selec-
tive removal of surface metal.
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