

ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature

Callum Court Molecular Engineering, University of Cambridge Supervisor: Dr Jacqueline Cole

Overview

- Introduction
- Previous work
- Challenges
- Overview of the ChemDataExtractor toolkit
- Applications

Introduction

- Approximately 20,000 new compounds and properties published in 10,000 biomedical chemistry journals in 2013 alone¹
- Ideally we would compile all available scientific data into a database of material properties
- Too much data to extract manually

Introduction

- Scientific results are typically presented in papers, patents, these etc
- Containing unstructured and semi-structured data in the form of text, tables, captions and figures not readily interpretable by machines
- Modern Machine Learning and Natural Language Processing (NLP) techniques provide us with the means for automated information extraction

Previous work

- Large scale data-mining for materials discovery:
 - The Materials Genome Initiative²
 - The Harvard Clean Energy Project³
 - The Materials Project⁴
- Text mining tools for the Chemistry domain:
 - ChemicalTagger⁵
 - ChemEx Project⁶

Previous work

- Previous methods tend to focus on on predicting chemical properties confined to a particular field of research (photovoltaics, batteries etc.)
- All would be well complemented by a generic method for generating databases of materials properties in a domain-independent way

Challenges

- Although the scientific literature is relatively formulaic and structured, text-mining the scientific literature is very difficult
 - Each sub-domain of science has its own specific terminology and abbreviations
 - These conventions can vary between papers (and perhaps between sections)
 - Each sentence/paragraph cannot be processed individually as information is spread out through multiple sections

ChemDataExtractor (CDE)

- A comprehensive toolkit for the automated extraction of chemical information from scientific documents.
- Full extraction of melting points, glass transitions, UV-Vis absorption spectra and more
- Full source code and documentation available under MIT license at www.chemdataextractor.org

ChemDataExtractor (CDE)

Document processing

- This stage converts differing file types into a single consistent structure consisting of abstracts, paragraphs, figures, captions and tables
- Enables all subsequent stages to perform in the same way regardless of initial document type

Natural language processing

- The key stage of the CDE pipeline where relationships and information are extracted from the text of the document
 - Tokenization
 - Part-of-speech tagging
 - Entity recognition
 - Opening Phrase parsing
 - Information extraction

Natural language processing

Table parsing

- Tables are an ideal source for retrieving structured data
- This stage treats tables as highly condensed forms of text
- Specialised rules are used to parse table headers and columns in the same way as normal text

Interdependency resolution

- Finally, all information from the natural language processor and table processor can be brought together
- This stage resolves the interdependencies between different sections and compiles all information into a set of structured records
- These records can be easily compiled into a database

Performance

	Precision	Recall	F-Score
Chemical identifier records	94.1%	92.7%	93.4%
Spectrum records	88.3%	85.4%	86.8%
Chemical property records	93.5%	89.6%	91.5%

- Evaluation performed on a set of 50 chemistry articles sourced from the Royal Society of Chemistry, American Chemical Society and Elsevier
- Precision: The fraction of retrieved records that are correct.
- Recall: The fraction of correct records that are retrieved.
- F-score: The harmonic mean of Precision and Recall

Applications

- Autogenerated databases of material properties can have great utility in materials science:
 - Materials or drug discovery
 - Property prediction
 - Compound identification
 - Research design

Current work

- Currently work is being undertaken to enhance the capability of CDE to extract properties associated with the physics corpora
- In particular, the extraction of magnetic properties with the aim of creating large auto-generated databases of magnetic properties

The Snowball algorithm

- The rule-based approach to phrase parsing is highly inefficient
- The Snowball algorithm⁷ is a semi-supervised machine learning approach to probabilistic phrase parsing
- Initial results demonstrate a large increase in precision and F-score for CDE when a Snowball step is included into the pipeline

Summary

- ChemDataExtractor provides a complete pipeline for automatically extracting chemical data from the scientific literature in a domain independent way
- The overall system presents a high F-score of over 90% when applied to the chemistry literature
- Further enhancements to the system may be able to push this score even higher and make the system more suited for use in the physics domain
- This has great potential for use in materials science research

References

- [1] Rmy D Hoffmann, Arnaud Gohier, and Pavel Pospisil. Data mining in drug discovery. Wiley-VCH, 2013. Chap. 5.
- [2] National Science and Technology Council (US). Materials genome initiative for global competitiveness. Executive Office
 of the President, National Science and Technology Council, 2011.
- [3] Roberto Olivares-Amaya et al. "Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics". Energy & Environmental Science 4.12 (2011).
- [4] Anubhav Jain et al. "Commentary: The Materials Project: A materials genome approach to accelerating materials innovation". APL Materials 1.1 (2013).
- [5] Lezan Hawizy et al. "Chemical Tagger: A tool for semantic text-mining in chemistry". Journal of cheminformatics 3.1 (2011).
- [6] Atima Tharatipyakul et al. "ChemEx: information extraction system for chemical data curation". BMC bioinformatics 13.17 (2012).
- [7] Eugene Agichtein and Luis Gravano. "Snowball: Extracting relations from large plain-text collections". Proceedings of the fifth ACM conference on Digital libraries. ACM. 2000.