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Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities,
we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical
optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with
that of an underlying static lattice, leading to a dynamical version of the Aubry-André model
which can cause localization of single-particle wavefunctions. We show that atomic wavepackets
in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between
super-diffusive and sub-diffusive regimes. This anomalous diffusion arises from an interplay between
Anderson localization and quantum fluctuations of the cavity field.

One of the most interesting directions of research in
coherent quantum systems concerns the collective dy-
namics of coupled atom-photon ensembles. Such situ-
ations arise for cold atomic gases in optical cavities[1] or
waveguides[2, 3], where strong coupling between atom-
ic motion and a photon field can be achieved. Coupling
cold atoms even to a single cavity mode can dramatically
change the steady state of the atomic gas[4–25]and lead
to interesting nonequilibrium dynamics[26–36].

A transversely pumped Bose-Einstein condensate in a
single-mode cavity can undergo a phase transition into a
self-organized “superradiant” state, in which the cavity
mode becomes highly occupied and generates a cavity-
induced superlattice potential on the atoms. For current
experiments[8, 9] this dynamical cavity-induced super-
lattice is commensurate with an underlying static op-
tical lattice, therefore giving rise to a supersolid phase
with extended Bloch waves. However, one can readily
envisage situations in which the cavity-induced superlat-
tice is incommensurate with the underlying static lattice.
This leads to the interesting possibility that the cavity-
induced superlattice leads to localization of the single-
particle states. Indeed, several theoretical works have
studied the steady state of cold atoms in such settings
[54–56], and have found a self-organized localization-
delocalization transition within a mean-field approxima-
tion.

In this paper, we show that the motion of atoms in
a cavity-induced incommensurate lattice is qualitatively
affected by the quantum fluctuations of the cavity field,
leading to long-time behaviour that is not captured by
mean-field theories. Specifically, we show that the atomic
motion exhibits anomalous diffusion, in which the width
of the wavepacket σ grows with time as σ ∼ tγ with
0 < γ < 1. Anomalous diffusion exists widely in both
classical and quantum systems. In classical random walk-
s, anomalous diffusion is mostly associated with the fail-
ure of the central limit theorem and the presence of long-
tailed distributions[39–41]. On the other hand, in closed
quantum systems, anomalous diffusion is typically con-
nected to the multifractal nature of eigenstates[44, 45].
Nonlinearity associated with many-body interactions can

also weakly destroy Anderson localization and lead to
anomalous diffusion[48–52]. In our model, anomalous d-
iffusion arises in a very distinct way: via the coupling of
a quantum particle to a single quantum oscillator (the
cavity mode) subjected to simple Markovian damping.
We show that the dynamics of the resulting open quan-
tum system can be viewed as a form of Lévy walk with
rests[46, 47]. This explanation relies both on quantum
fluctuations of the cavity field and on Anderson local-
ization in the incommensurate potential, so is an inher-
ently quantum phenomenon. Owing to the central role
played by the cavity mode, we predict that evidence of
this anomalous transport can be found in long-tailed dis-
tributions of photon correlations in the cavity field.

Model. We consider spinless atoms trapped by an opti-
cal lattice in a high-Q cavity (Fig. 1), both aligned along
the x-direction. Two counterpropagating pump lasers
are shone on the atom cloud from the z-direction. De-
noting the cavity field operator by â, the net potential
on the atoms is V = A0 cos2(kox) + B0â

†â cos2(kcx +
φ) + C0(â + â†) cos(kpz) cos(kcx + φ) + V⊥ (y, z). Here
A0 is proportional to the optical lattice intensity, B0 is
the cavity-atom coupling strength (φ controls the rela-
tive positions of the optical lattice and the cavity mode),
and C0 is the pump-cavity coupling proportional to the
amplitude of the pump laser. We consider the transverse
confinement to be sufficiently large that the transverse
motion is frozen out. For deep enough lattices, we ob-
tain a one dimensional tight-binding model as[9, 53]

H = ∆â†â− J
L∑
j=1

(
ĉ†j+1ĉj + h.c.

)

+λ
(
â+ â†

) L∑
j=1

uj ĉ
†
j ĉj + Uâ†â

L∑
j=1

u2
j ĉ
†
j ĉj , (1)

where ĉ
(†)
j are the atomic field operators on lattice site

j; ∆ = ωc − ωp is the detuning of the cavity mode;
uj = cos(2πβj+φ), β = kc/2ko; U and λ are the projec-
tions of B0 and C0 onto the Wannier functions. We have
ignored interactions between atoms, as can be realized by
a Feshbach resonance for bosons or for spinless fermions
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FIG. 1: Schematic diagram of the experimental setup. Atoms
in a optical lattice and a standing wave cavity is driven by a
transverse laser. The frequency ωp of the pump laser is far
detuned from the atomic transition line but close to the cavity
mode frequency ωc.

with contact interactions. Due to the leaking of photons
from the cavity, the system should be described by the
quantum master equation

∂tρ = −i [H, ρ] + κ
(
2âρâ† − â†âρ− ρâ†â

)
, (2)

where 2κ is the loss rate of the cavity photons.
If the cavity were directly driven by another pump

laser, such that the cavity field is a coherent state â→ α,
then the particles would experience a static effective po-

tential Veff(α) =
∑L
j=1

[
2λRe(α)uj + U |α|2 u2

j

]
ĉ†j ĉj . In

the case where β is a irrational number and U = 0, this
reproduces the celebrated Aubry-André model, which ex-
hibits a delocalization-localization transition for all the
eigenstates[57]. Even when U 6= 0, this transition stil-
l survives, but now with mobility edges in the energy
spectrum[58]. We are interested in cases without this
direct drive, in which the cavity has its own quantum
dynamics and the atoms feel a dynamical potential.

Mean field steady state. From Eq. (2), one finds that
the mean cavity field α(t) = 〈â(t)〉 evolves as

i∂tα = (∆− iκ+ UR)α+ λΘ, (3)

where Θ =
∑
j uj

〈
ĉ†j ĉj

〉
, and R =

∑
j u

2
j

〈
ĉ†j ĉj

〉
. We

seek a steady state in which ∂tα = 0 and find α =

− λΘ
∆−iκ+UR . The expectation value

〈
ĉ†j ĉj

〉
can be ob-

tained from the ground state of the mean field Hamilto-

nian HMF (α) = −J
∑L
j=1

(
ĉ†j+1ĉj + h.c.

)
+ Veff(α).

We consider one atom in the cavity, and numerically
obtain the steady state phase diagram, see Fig. 2. To de-
scribe the localization of the particle, we calculate the
inverse participation ratio in real space of the atomic

wavefunction, p =
∑L
j=1

∣∣∣〈ĉ†j ĉj〉∣∣∣2. One notes that high-

ly localized density gives p ∼ 1; while an extended wave
function has p ∼ 1/L.

In the weak pumping regime, the system is in the “nor-
mal” phase, which has no superradiance, α = 0, and the
effective potential vanishes, Veff (α) = 0. So the atomic
states are delocalized. When U is large, as the pumping
strength increases, the system undergoes a second order
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FIG. 2: (a) Phase diagram of mean field steady state. (b1),
(b2) Second order phase transition along the line B in (a).
(b1) Mean cavity field α. (b2) Inverse partition ratio in real
space p. (c1), (c2) First order phase transition along the
line C in (a). Here L = 201, β =

(√
5− 1

)
/2, φ = π/2,

∆/J = 1, and κ/J = 1.2. The square dots, pi (i = 1, · · · 5),
represent the pumping strengths λ/J = 1.5, 2.5, 3.5, 4.5, 5.5,
respectively, and U/J = 3.

phase transition from the “normal” phase to a “delo-
calized superradiant” phase, see Fig. 2(b). As a result
the effective potential Veff (α) is non-zero, and the atom-
ic density is modulated but still delocalized. For larger
pumping strength, the system undergoes a transition in-
to a “localized superradiant” phase. In this phase, the
effective potential becomes so large that the atomic wave
function is localized. In the small U regime, these two
transitions merge into one first order transition, where
the cavity field and the effective potential suddenly jump
to large values [Fig. 2(c)]. Note that these conclusions are
also valid for the N boson system, with the same phase
diagram unchanged provided we keep ∆/J , κ/J invariant
and scale λ/J → λ/(JN), U/J → U/(JN). The appear-
ance of a localized superradiant phase is consistent with
a previous study[56].

Wavepacket spreading. For a single atom, there will
be no sharp superradiant phase transition, as the mean
photon occupation will grow continuously with pump
strength. However, there will still be a localization-
delocalization transition at the mean-field level. It is
natural to ask how this is affected by cavity fluctuations.
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FIG. 3: (a1), (a2) Time evolution of wavepacket width σ(t)
and phonon number np(t) from the mean field dynamics. The
dashed line is a guide for a ballistic (γ = 1) or a saturated
(γ = 0) behaviour. (b1), (b2) Dissipationless nonequilibrium
dynamics. (c1), (c2) Dynamics in the large dissipation limit.
The dashed line is a guide for diffusion γ = 1/2. Here β =(√

5− 1
)
/2, φ = π/2, ∆/J = 1, κ/J = 1.2, and U = 0.

To investigate this issue, we have studied how an atomic
wavepacket spreads, which would be completely different
for localized and delocalized regimes. We set the initial s-
tate to be the atom located in the centre of the lattice and
the cavity empty. We then consider turning on the pump
laser, and calculate the time evolution of the wavepacket

width σ(t) =

√
〈X2〉 − 〈X〉2, where X =

∑
j jĉ
†
j ĉj is the

centre-of-mass of the wavepacket. We find, quite gen-
erally, that the width grows as a power-law, σ(t) ∼ tγ

at long times. However, the nature of this growth is a
surprisingly subtle issue: its qualitative form requires an
accurate description of the quantum fluctuations of the
driven-damped cavity field. We illustrate this by first p-
resenting results of mean field dynamics and two limiting
cases of the cavity damping (for these cases we set U = 0
for simplicity).

Mean field dynamics. At the mean field level, the cav-
ity field evolves as Eq. (3); while the evolution of atom-
ic wavefunction is governed by the mean field Hamil-
tonian HMF(α). We numerically solve these two cou-
pled nonlinear equations, obtaining the photon number
np(t) = |α(t)|2 and the wave packet width σ(t), see
Fig. 3(a1)(a2). The photon number first rises from ze-
ro to a nonzero value in a short time, and then slow-
ly approaches a steady state value. For small pumping
strengths, the wave packet spreads ballistically, γ = 1.
While for large pumping strength, the width saturates at

long times, indicating localized behaviour, γ = 0.
Dissipationless limit. We then consider the dissipation-

less limit, κ = 0. The system is then closed and the dy-
namics is given by unitary evolution under the Hamilto-
nian (1). We numerically simulate the unitary evolution
process. The results are shown in Fig. 3(b1)(b2). Note
that, except for larger photon number fluctuations, the
behaviour of the wavepacket spreading is similar to the
mean field results. These qualitative forms of dynamics
(both mean field and dissipationless limit) are consisten-
t with the steady states phase diagram: the delocalized
phase exhibits ballistic transport, while transport is ab-
sent in the localized phase.

Large dissipation limit. We now consider the opposite
limit, in which the dissipation κ is so large that the life-
time of the cavity is negligible. In this case, the cavity
field will adiabatically follow the distribution of the atom
density, with â ≈ − λ

∆−iκK̂, where K̂ =
∑
j uj ĉ

†
j ĉj . S-

ince the cavity field is fixed by the atomic density, one
can substitute this formula into the Hamiltonian (1) and
the quantum master equation (2) to obtain the effective
master equation for the atoms as ∂tρa = −i [Heff , ρa] +

κ′
(

2K̂ρaK̂ − K̂2ρa − ρaK̂
2
)

. Here ρa is the reduced

density matrix of the atoms, and the effective Hamiltoni-

an is Heff = −J
∑L
j=1

(
ĉ†j+1ĉj + h.c.

)
+ V ′

∑L
j=1 u

2
j ĉ
†
j ĉj ,

with V ′ = − 2λ2∆
∆2+κ2 and κ′ = λ2κ

∆2+κ2 . This effective model
describes an atom hopping in a quasi-periodic lattice with
a global noise, which is imposed by the damped cavity
field. We have numerically solved this effective quantum
master equation. The temporal dynamics of the width
of the atomic wavepacket is shown in Fig. 3(c1)(c2). We
find that, in this large dissipation limit, the wavepack-
et always spreads diffusively σ ∼ t1/2, both where the
mean-field solution shows delocalized [Fig. 3(c1)] and lo-
calized [Fig. 3(c2)] behaviours. Thus, this global noise
destroys the coherence and makes the atom diffuse like a
classical Brownian particle at long times.

Quantum trajectory method. After considering mean
field dynamics and these two limiting cases, we now in-
vestigate the generic situation, in which the cavity dissi-
pation is finite. We employ the so-called quantum tra-
jectory method[60], which is a stochastic way to simulate
the quantum master equation by averaging over many
quantum trajectories.

We have used this method to simulate the wavepacket
spreading for different pumping strengths. The results
are plotted in Fig. 4. In Fig. 4(a), one can see a typical
dynamics of the system. Similar to the dissipationless
limit, the photon number rises to a nonzero value in a
short time scale. After that, the cavity field enters into a
quasi-steady state, in which the photon number has small
fluctuations around its mean. Note that the fluctuation
amplitude is much smaller than that in the dissipationless
limit [Fig. 3(b2)], as the existence of the cavity dissipa-
tion suppresses these fluctuations. At short times, the
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FIG. 4: (a) Wavepacket width and photon number evolution
from the exact quantum trajectory method. The parameters
are given by the point p4 in Fig. 2(a). (b) Evolution of the
wave packet width. Dashed lines are the results of fitting to
σ = atγ , and the corresponding numbers are the exponents.
The two solid lines represent the ballistic, γ = 1, and diffusive,
γ = 1/2, cases. (c) The exponent γ crosses over from super-
diffusion to sub-diffusion with increasing pump strength. [The
parameters of pi can be found in Fig. 2(a).] For comparison,
the solid line is the mean field result showing a transition
from ballistic transport γ = 1 to localization γ = 0, while the
dashed line marks the diffusive value, γ = 1/2.

width of the wavepacket grows quickly from zero, since
the cavity field has not yet built up a large effective po-
tential. However, at long times, after the cavity field has
reached its quasi-steady state, we find that the wavepack-
et spreads according to anomalous diffusion, σ ∼ tγ , with
0 < γ < 1. We find that the exponent γ depends on the
pumping strength and other parameters. As shown in
Fig. 4(b), when the pumping strength is small, γ is rel-
atively large, corresponding to super-diffusion, γ > 1/2.
When the pumping strength is large, γ becomes rela-
tively small, crossing over to the sub-diffusion regime,
γ < 1/2 [see Fig. 4(c)]. This behaviour is very differ-
ent from the dissipationless and large dissipation limits
as well as mean field dynamics. This indicates that the
observed anomalous diffusion is a result of both the dissi-
pation and the cavity dynamics. At the mean-field level,
the atomic wave function has a delocalization-localization
transition in the steady state, with a sharp change from
γ = 1 (ballistic) to γ = 0 (localized), see Fig 4(c). Our
results show that a full account of cavity fluctuations
and dissipation removes any sharp transition, leaving a
crossover characterised by a continuously varying anoma-
lous diffusion exponent. With increasing dissipation we
find that this exponent approaches 1/2, consistent with

t (units of J-1) t (units of J-1)

FIG. 5: Individual quantum trajectories of the stochastic evo-
lution in: (a) the super-diffusive regime; and (b) the sub-
diffusive regime. The solid line is the wavepacket width, and
the dashed line is the photon number [multiplied by 20 in (a)].
Here β =

(√
5− 1

)
/2, φ = π/2, ∆/J = 1, κ/J = 1.2, and

U = 0.

the adiabatic elimination result.

How can we understand this anomalous diffusion?
We plot the evolution of the photon number and the
wavepacket width for a single quantum trajectory in
Fig. 5. Comparing the photon number and the width,
one finds that when the photon number is large the width
almost does not grow: at these times, the effective po-
tential induced by the cavity is very strong, such that the
wave packet is localized and cannot spread freely. When
the cavity field fluctuates to a small value, it reduces
the effective potential: at these times, the wavepack-
et can spread ballistically until the revival of the pho-
ton number. With the help of this picture, we can map
the particle hopping into a Lévy walk with rests[46, 47].
When the cavity field is lower than a threshold, the par-
ticle moves ballistically at a certain maximal velocity set
by the bandwidth. When the cavity field exceeds the
threshold, due to the Anderson localization the motion
is switched off, and the particle is at rest. The time inter-
val of the “on” and “off”, i.e. moving time and waiting
time are random variables, since the cavity is affected by
the noise from the environment. Crucially, we find that,
in the large pumping regime, the distribution of waiting
times has a broad tail, leading to sub-diffusive behaviour.
While in the small pumping regime, the broad tail of the
moving time distribution dominates, and gives superdif-
fusion. By increasing the pump strength, one increases
the mean cavity field and decreases the switching thresh-
old. This gradually tunes the distribution of waiting time
and the moving time, resulting in a crossover from sub-
diffusion to super-diffusion.

Final remarks. Anomalous diffusion is predicted in
other quantum systems with specific forms of coloured
noise[61–65]. In our model anomalous diffusion aris-
es naturally in a very simple experimental setting with
generic form of damping. The wavepacket spreading
could be detected by situ imaging. In addition, the
anomalous properties could also be detected from the
photons leaking from the cavity[28] for which we predict
long-tailed distributions of lower and higher cavity oc-
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cupations. It will be interesting to consider situations
in higher dimensions, or for larger particle densities in
which cavity-mediated interactions will also play a role.
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