Probing the anomalous compressibility of silica glass using grid computing

Andrew M. Walker

awal05@esc.cam.ac.uk

Irreversible density change with pressure above ~25GPa

Si increases co-ordination 10-25GPa (amorphousamorphous phase transition)

Low temperature anelasticity

Negative thermal expansion below room temperature

Compressibility increases with pressure to ~2GPa Irreversible density change with pressure above ~25GPa

Si increases co-ordination 10-25GPa (amorphousamorphous phase transition)

Low temperature anelasticity

Negative thermal expansion below room temperature

Compressibility increases with pressure to ~2GPa

Compressibility maximum

- Density is not quite linear: the gradient is larger in the middle of the plot than at either end.
- Bulk modulus has minimum around 2 GPa: compressibility = 1/B has maximum

Tsiok et al. (1998) PRL **80** pp. 999-1002

Working hypothesis

- We expect materials to get harder under higher pressure because atoms are squashed together
- So we expect silica to be softer at lower pressures, but why will it become harder at even lower pressure?
- Point 1: in the limit of negative pressure we stretch the Si–O bonds, which costs energy
- Point 2: in between the stretched and squashed limits we believe silica glass has a lot of flexibility

Approach

- Perform molecular dynamics calculations over a range of pressures
- Examine structure and dynamics for evidence of network softening
- Use three networks with perfect connectivity (no defects) and two potential models

Wooten et al. (1985) PRL **54**, pp. 1392-1395

Method

- Molecular dynamics simulation with DL_POLY_3 (CML output) from -5 to 5 GPa, 0.1 GPa pressure increments
- 100 ps simulations per pressure. NPT for the first 50 ps, NVE for the second 50ps taking a snapshot of the structure every ps
- Two potential models, based on QM calculations
- Analyse configurations in terms of motion and deformation of polyhedera (GASP)
- Use distributed grid for computations and data handling
 Tsuneyuki et al. (1988) PRL 61 pp. 896-872 van Beest et al. (1990) PRL 64 pp. 1955-1958

My_condor_submit

Executable = pathToExe =	gulp /home/awal05.eminerals/Gulp
preferredGridI Sdir = Sget = Sput =	<pre>List = NGS, CamGrid, NWGrid /home/awal05.eminerals/silica * *</pre>
AgentXdefault RDesc =	<pre>= output.xml Test Sanders-Catlow potential</pre>
GetEnvMetadata = true	
debug = true	
Queue	

Grid computing

Automatic metadata capture

As part of the post.pl process, data is extracted from the XML output files

```
<?xml version="1.0" encoding="UTF-8"?>
<cml xmlns="http://www.xml-cml.org/schema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dc="http://purl.org/dc/elements/1.1/title">
<metadataList>
<metadata name="dc:identifier" content="DL POLY version 3.06 / March</pre>
2006"/>
</metadataList>
<parameterList>
 <parameter title="CPU count" name="CPU count">
 <scalar dataType="xsd:integer" units="dl polyUnits:CPUs">1
 </scalar>
 </parameter>
</parameterList>
<metadata name="systemName"
content="DL POLY : Glass 512 tetrahedra
"/>
<parameterList title="control parameters">
<parameter title="simulation temperature" name="simulation</pre>
temperature"
  dictRef="dl poly:temperature">
  <scalar dataType="xsd:double" units="dl polyUnits:K">5.0000E+01
 </scalar>
```


This data is added to information about the job and inserted into our metadata database and linked to the data files

Viewing results

Pressure-dependence of volume

Compressibility

Pair distribution function

- Si–O and O–O distances do not vary much away from extremes
- Si–Si distance nearly follows sample size
- Evidence for buckling of network

Measuring network flexibility

Vibration distributed into translation and rotation of tetrahedra and stretching and bending of bonds.

Implemented using geometrical algebra in the GASP code

Wells et al. (2002) J Phys: Con Mat **14** pp.4567-4584

Network flexibility

Network flexibility

Network flexibility

Conclusions

- The compressibility anomaly in silica glass appears to be caused by changes in the flexibility of the tetrahedral framework
- A phase transition is not required
- The mechanism does not require an amorphous state - could it be important for crystals?
- Currently investigating the anomalous thermal expansion

Walker et al. (2007) J. Phys: Con. Mat. **19** art. no. 275210 Dove et. al. (2006) Mol. Simul. **32** pp. 949-952

Acknowledgments

- People: Martin Dove, Lucy Sullivan, Kostya Tracheno, Richard Bruin, Rik Tyer, Toby White, Ilian Todorov and Stephen Wells
- Funds: NERC
- Computers: CamGrid, NGS & NWGrid