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Abstract

The main goal of this thesis is to investigate the frequentist asymptotic proper-

ties of nonparametric Bayesian procedures in inverse problems and the Gaus-

sian white noise model. In the first part, we study the frequentist posterior

contraction rate of nonparametric Bayesian procedures in linear inverse prob-

lems in both the mildly and severely ill-posed cases. This rate provides a

quantitative measure of the quality of statistical estimation of the procedure.

A theorem is proved in a general Hilbert space setting under approximation-

theoretic assumptions on the prior. The result is applied to non-conjugate

priors, notably sieve and wavelet series priors, as well as in the conjugate set-

ting. In the mildly ill-posed setting, minimax optimal rates are obtained, with

sieve priors being rate adaptive over Sobolev classes. In the severely ill-posed

setting, oversmoothing the prior yields minimax rates. Previously established

results in the conjugate setting are obtained using this method. Examples of

applications include deconvolution, recovering the initial condition in the heat

equation and the Radon transform.

In the second part of this thesis, we investigate Bernstein–von Mises type re-

sults for adaptive nonparametric Bayesian procedures in both the Gaussian

white noise model and the mildly ill-posed inverse setting. The Bernstein–von

Mises theorem details the asymptotic behaviour of the posterior distribution

and provides a frequentist justification for the Bayesian approach to uncer-

tainty quantification. We establish weak Bernstein–von Mises theorems in

both a Hilbert space and multiscale setting, which have applications in L2 and

L∞ respectively. This provides a theoretical justification for plug-in proce-

dures, for example the use of certain credible sets for sufficiently smooth linear

functionals. We use this general approach to construct optimal frequentist

confidence sets using a Bayesian approach. We also provide simulations to

numerically illustrate our approach and obtain a visual representation of the

different geometries involved.
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Chapter 1

Introduction

The principle goal of statistics is to make inference based on observed data, that is to

translate observations into conclusions. Collecting data is an uncertain process, with

possible errors arising from measurement imperfections or natural variations within a

population under study. A statistical procedure must therefore take into account these

observational imperfections by factoring in the notion of randomness. A key question is

therefore how best to account for this randomness, before making conclusions from the

data.

To perform inference, it is necessary to reformulate a statistical problem in an ap-

propriate language. Mathematics provides just such a language, being both convenient

and powerful. A model is a mathematical approximation of some phenomenon of interest.

Once a model has been established, a rigorous study can be applied to the problem based

on the rules of mathematics. A model can rarely fully capture all the fine detail of a prob-

lem, but it can be invaluable for capturing key features and making predictions. We do

not concern ourselves with the question of selecting an appropriate model here, focusing

purely on the stage from which a model has been selected.

More formally, a model P is a collection of candidate probability distributions for the

underlying distribution. This can range from the space of all probability distributions to

much smaller classes, based on a-priori knowledge of the specific statistical problem at

hand. In the frequentist paradigm, an observation Y , taking values in some measurable

space Y, is assumed to be generated from some fixed true probability distribution P0

belonging to a model P. The statistician then seeks to make inference about (some feature

of) P0 based on Y .

Rather than dealing purely in abstract models, it can be fruitful to introduce an

indexing of the model that carries a more interpretable meaning. We parametrize a model

by considering a parameter space F together with some map taking an element f ∈ F
to an element of P, which be denote Pf . It is natural to consider maps f 7→ Pf that are
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Introduction

bijections, which we henceforth assume. We can therefore rewrite

P = {Pf : f ∈ F}.

In this case, the notion of true distribution therefore corresponds to some true parameter

f0 ∈ F . Perhaps the simplest example of this is the normal distribution on R, which can

be characterized by its mean µ and its variance σ2, so that f = (µ, σ2) and Pf = N(µ, σ2).

It is possible to parametrize a model by itself, that is F = P, which is often the case

when P is infinite-dimensional. Indeed, situations where F is infinite-dimensional are the

principle focus of this thesis. It is of significant interest to consider the case of model

misspecification when the truth f0 does not lie in the targeted parameter space. This is

an interesting question, but one that we do not address here, where we always assume

that the model is well-specified, that is P0 ∈ P (for some results of a similar flavour to

those of this thesis in the misspecified case see [50, 51]).

The complexity and features of the model can therefore be efficiently characterized

by the parameter space F . We call a model parametric when the parameter space F is

a subset of a finite-dimensional space, for example Rk or Zk for some k ≥ 1. In slightly

misleading terminology, we call a model nonparametric if the parameter space F is infinite-

dimensional, for example the space of all probability distributions that admit a density

function. Parametric models are usually simpler to use and compute, and work well in

many instances. However, they impose a high level of rigidity that can yield poor results if

the true distribution does not fit the strong constraints imposed by the parametric model.

On the other hand, nonparametric models allow a much richer class of target densities and

can flexibly model a wider variety of phenomena. Whilst more difficult to compute, recent

computational advances mean that nonparametric models are increasingly finding use in

practice. This extra generality means that the mathematics underpinning such models is

usually more involved than in the finite-dimensional case, and we seek to shed light on

some approaches here.

Within this thesis we focus on the Bayesian approach to statistical inference. This

is a flexible modelling framework that possesses a conceptual simplicity that renders it

easily adaptable to a wide variety of problems. The Bayesian paradigm can be extended

to a philosophical perspective, namely subjective Bayes, and this is a subject of much

discussion. However, our goals are more pragmatic and we therefore concern ourselves

with its mathematical theory rather than its philosophical underpinnings. In particular,

we take a dual approach here in that we seek to study the Bayesian approach as a statistical

estimation procedure from a frequentist perspective.

We shall investigate a number of frequentist properties of Bayesian nonparametric pro-

cedures in order to assess their quality for statistical estimation when applied to data. This

is a central question for a number of reasons. Given the myriad of statistical procedures
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1.1. Bayesian statistics from a frequentist perspective

available, it is important for a user to be able to compare procedures to select the most

appropriate one for the problem at hand. Moreover, once a procedure has been selected,

it is important to have some measure of the quality of the answers it provides.

Our focus in this thesis will be on asymptotic, or large sample, performance of esti-

mators. Consider data Y = Y (n), where the index n denotes the sample size or quality

of the observation. We are interested in the case where n → ∞, that is we can take n

”sufficiently large” for our analysis. Such analyses are useful since they can be used to

approximate statistical procedures as well as study their quality. Moreover, asymptotic

study often provides a first step in the theoretical study of statistical estimators, often

providing insights into their finite-sample performance. We therefore seek a quantitative

understanding of the asymptotic properties of Bayesian nonparametric procedures.

1.1 Bayesian statistics from a frequentist perspective

In this section, we introduce the Bayesian approach to statistics and its study from a

frequentist point of view, in particular with regards to asymptotic results. We assume

that the reader is relatively well versed in the frequentist theory of statistics, providing

only a very brief review of certain key notions used in this thesis. We take a rather abstract

approach to introducing Bayesian statistics and then later specialize to the setting of the

white-noise model and linear inverse problems for more detailed results.

1.1.1 Frequentist measures of estimation quality

We very quickly recall some frequentist notions of quality of statistical estimation. We

define the minimax risk or rate over a class F for some loss function L : F × F → [0,∞]

by

rn,F = inf
f̂n

sup
f∈F

EfL(f̂n(Y (n), f)), (1.1.1)

where Ef denotes the expectation with respect to Pf and the infimum is taken over all

estimators of f , that is measurable functions f̂n : Y → F . An estimator f̂n is called a

minimax estimator if its risk attains the minimax bound rn,F . In a slight abuse of notation,

an estimator is often called minimax if it attains the rate (in terms of n) implied by the

minimax risk even though it does achieve the optimal constant in (1.1.1). In particular

in the Bayesian nonparametrics literature, estimators are often deemed minimax if they

attain the correct polynomial rate whilst ignoring logarithmic factors. We shall use the

notion of minimax rate to measure the convergence rate of Bayesian methods to the true

parameter f0 under the law Pf0 it generates. For more details see Lehmann and Casella

[63].

A more sophisticated measure is the notion of coverage probability. In particular we

seek to quantify the error in our estimation procedure by constructing a (data-driven)
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set Cn ⊂ F such that the true f0 lies in Cn with a prescribed probability. This provides

a range of estimates whilst making a quantitative statement about the reliability of the

set Cn via the coverage probability. For γ ∈ (0, 1), a set Cn = Cn(Y (n)) is said to be a

confidence set with confidence level 1− γ if

inf
f∈F

Pf (f ∈ Cn) ≥ 1− γ.

The above statement is a finite-sample statement and can therefore be difficult to obtain

in practice. A weaker notion is that of an (honest) asymptotic confidence set, where we

require the statement only to hold as the data size or quality tends to infinity:

lim inf
n→∞

inf
f∈F

Pf (f ∈ Cn) ≥ 1− γ. (1.1.2)

The above definitions are overly conservative in that they require only a lower bound on

the coverage probability. It is of great theoretical interest to construct confidence sets

that are exact, that is there is an equality in (1.1.2). We note that the above definitions

require uniformity in the parameter space F . It is a much simpler exercise to construct

sets that satisfy (1.1.2) pointwise (i.e. without the infimum over F). However in this case,

the sample size for which sufficiently high probability is achieved depends strongly on the

unknown parameter f0. Thus from a practical point of view, such pointwise asymptotic

statements are of little value.

1.1.2 Prior and posterior distributions

For a statistical model P, let F denote its parameter space, which we assume to be a

Polish space with associated σ-algebra Σ. Suppose that we observe data Y ≡ Y (n) taking

values in a Polish space Y with associated σ-algebra T . In contrast to the frequentist

approach, the Bayesian considers the parameter f to be a random variable taking value

in F . More formally, we should denote this measurable map by f̃ to differentiate it from

an element of F . However, in a slight abuse of notation, we simply denote this map by f

since it is usually clear from the context whether this refers to a fixed value or a random

variable. The Bayesian therefore considers (Y, f) as a joint random variable taking values

in the space Y × F and supposes that there exists a probability measure

Π : Σ× T → [0, 1], (1.1.3)

which is not necessarily a product measure. As a result, there may be a (possibly complex)

dependence structure between Y and f . This forms the underlying probabilistic model for

the Bayesian.

By conditioning on the parameter f̃ = f , for some f ∈ F , we therefore obtain the

law of the observed data under this model. In particular, by consider the conditional

14



1.1. Bayesian statistics from a frequentist perspective

distributions Pf = Π(· | f̃ = f), we define a model P = {Pf : f ∈ F}. We define the prior

distribution to be the marginal distribution

Π(·) = Π(Y × ·) : T → [0, 1].

In this framework, specifying the prior and the model P = {Pf : f ∈ F} completely

characterizes the Bayesian probability measure Π. Unlike the frequentist, assuming the

existence of a joint distribution Π allows one to condition on the data to obtain the

posterior distribution

Πf |Y : Σ× T → [0, 1].

Assume now that the model P = {Pf : f ∈ F} is dominated by a σ-finite measure µ. The

posterior distribution can then be expressed in terms of the densities pf =
dPf
dµ : Y → [0,∞)

via Bayes rule,

Π(B | Y ) =

∫
B pf (Y )dΠ(f)∫
P pf (Y )dΠ(f)

, B ∈ T . (1.1.4)

From a mathematical perspective, Bayes rule provides a simple and powerful method to

evaluate the posterior distribution. Computing it in practice is the subject of significant

study and is discussed in Section 1.1.6.

Up until this point we have made no assumptions on the joint density Π, which we now

seek to place in a frequentist context. In particular, given a (parametrized) frequentist

model P = {Pf : f ∈ F}, we can define a Bayesian joint probability distribution Π

on Y × F by specifying a prior distribution on the parameter space F and using the

model to provide the marginal distributions. In this context, the prior distribution is then

introduced by the statistician to extend the frequentist model to one of the form (1.1.3)

rather than as a marginal distribution of some underlying joint distribution. In this way it

is possible to separate the prior distribution from the data generating model. Using Bayes

rule (1.1.4), it is then possible to condition on the data to define the posterior distribution

and thus obtain a sequence of data-driven random probability measures which can be used

as generalized frequentist estimators.

This additional conditioning is key to the Bayesian approach and within this frame-

work, the posterior provides the natural way to incorporate data. The conceptual simplic-

ity of this approach is that any desired inferential information, such as point estimators,

measures of risk or predictions, can be extracted from a single object, the posterior dis-

tribution. From a theoretical (rather than computational) point of view, the inference

procedure is fully automated once a prior has been specified.

The principle conceptual difficulty for the Bayesian lies in specifying the prior. This

can reflect prior knowledge or beliefs, which may or may not be justified, or may be

designed to be efficient for the problem at hand. The prior represents to what extent

we believe in the different possibilities represented by the parameter space F , with larger
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probabilities corresponding to higher a-priori plausibility. Prior selection is the equivalent

of the frequentist problem of selecting tuning parameters, and in much the same way the

quality of statistical performance can rely heavily on this choice. Recently, much focus

has been given to the development of nonparametric procedures, where the support of

Π is infinite-dimensional. As discussed below, nonparametric procedures are especially

sensitive to prior selection due to the absence of a Bernstein–von Mises theorem.

1.1.3 Posterior consistency and contraction

A basic quality that is desirable for a statistical procedure is consistency. In frequentist

statistics, an estimator f̂n of f is called consistent if it converges to f0 (in probability) under

the true distribution Pf0 of the data. The Bayesian analogue is to consider consistency of

the posterior distribution.

Definition 1 (Posterior consistency). We say the posterior distribution Πn(· | Y (n)) is

consistent at f0 if for every neighbourhood W of f0

Πn(W c | Y (n))→Pf0 0 as n→∞.

When considering a metric space (F , d), one can restrict toWδ = {f ∈ F : d(f, f0) ≤ δ}
for all δ > 0 to obtain a more familiar expression for consistency. However, the above

definition also allows one to consider the notion of weak consistency, where one takes W

to be a weak neighbourhood of f0.

Posterior consistency says that the posterior distribution will eventually concentrate

around the true parameter f0. In other words, consistency says that the data will even-

tually overwhelm the (possibly incorrect) prior beliefs of a statistician, as represented by

the prior distribution. However, it says nothing about the quality of estimation of the

procedure, only that the posterior will correctly identify the truth eventually. In paramet-

ric models, posterior consistency follows under mild conditions due to the Bernstein–von

Mises theorem.

However in infinite-dimensions, posterior consistency can fail even for seemingly simple

priors. There exist priors whose influence is so strong that even an infinite amount of data

can not override an incorrect positioning of the prior. A classical example is given in

Freedman [34], who constructs a prior that puts positive mass on every neighbourhood of

the true distribution and yet whose posterior converges to the wrong distribution. Not

only is the Bayesian wrong, but he is eventually certain of his incorrect answer. This issue

is discussed at length in Diaconis and Freedman [30], who further show that this behaviour

is not isolated or limited to pathological functions. In a topological sense, almost every

pair (f0,Π) of truth and prior is inconsistent.

While the situation is indeed more complicated in infinite-dimensions, there exist pos-

itive general theorems for establishing posterior consistency. Doob’s consistency theorem
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1.1. Bayesian statistics from a frequentist perspective

[31] states a given prior is consistent at every point f apart from possibly some null set of

the prior. While this provides a Bayesian justification, it gives no intuition as to the null

set involved and so we can not be sure if a given f0 falls into this set. In particular, in

infinite-dimensional cases this null set can actually be extremely large [30].

Theorem 1.1.1 (Doob’s consistency theorem). Suppose that both the parameter space F
and the sample space Y are Polish spaces endowed with their Borel σ-algebras and that the

map F → P given by f 7→ Pf is bijective. Then the sequence of posterior distributions is

consistent Π-almost surely.

Schwartz [75] provides a more satisfactory answer from a frequentist point of view,

permitting one to establish consistency at any given f0 in the model.

Theorem 1.1.2 (Schwartz’s consistency theorem). Let P be a model with a metric d,

dominated by some σ-finite measure µ and assume that P0 ∈ P. Let Π be a prior on P
and assume that the following hold:

(i) For every ε > 0,

Π

(
P ∈ P : −P0 log

p

p0
≤ ε
)
> 0,

(ii) for every ε > 0, there exist a sequence of tests φn such that

P0φn → 0, sup
P:d(P,P0)>ε

P(1− φn)→ 0.

Then for any ε > 0, as n→∞,

Π(d(P,P0) ≥ ε | Y (n))→ 0 P0 − a.s.

A related notion is contraction, which quantifies the rate at which the posterior dis-

tribution converges to the truth and thus provides a quantitative measure of posterior

accuracy. Rather than considering a fixed ball of radius ε > 0, we now let the radius

depend on n and seek the smallest εn such that a consistency-type statement holds. This

yields the following definition.

Definition 2 (Posterior rate of contraction). We say that the posterior distribution Πn(· |
Y (n)) contracts around the point f0 with rate εn ↓ 0 if

Πn(f : d(f, f0) ≥Mnεn | Y (n))→ 0

in Pf0-probability, for every sequence Mn →∞.

We note that posterior contraction trivially implies posterior consistency. The posterior

contraction rate provides an upper bound for the speed in the sense that any sequence ε′n
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Introduction

that tends to zero more slowly is also a rate of contraction. Usually, the aim is to establish

a fastest rate of contraction, which depends on the statistical model P and metric d, and

in particular whether it matches the minimax rate of estimation.

The posterior distribution yields a point estimator that converges to the true parameter

f0 at a rate equal to the rate of contraction. The minimax rate of estimation consequently

provides a fundamental lower bound for the posterior contraction rate.

Proposition 1.1.3. Suppose that the posterior distribution contracts to the true parameter

f0 at rate εn with respect to the metric d on F . Define f̂n to be the centre of a smallest

d-ball that contains posterior mass at least 1/2. Then for any η > 0, there exists M > 0

such that

Pf0
(
d(f̂n, f0) > Mεn

)
≤ η.

In finite-dimensions, contraction at the optimal 1/
√
n rate follows from the Bernstein–

von Mises theorem. In infinite (and finite) dimensions, Ghosal et al. [36] provide a

contraction analogue to Schwartz’s result that deals with any given f0 in the model.

This theorem requires that the prior puts sufficient mass on shrinking Kullback-Leibler

neighbourhoods around the true parameter. This general result relies on the possibility of

testing for the truth against an alternative which consists of the complement of a shrinking

ball around it. In particular, the authors require an exponentially decreasing type-II

error. The existence of such tests is a highly non-trivial matter and depends strongly on

the metric under consideration. Define the Hellinger distrance between two probability

measures P and Q that are absolutely continuous with respect to a third measure µ by

h(P,Q)2 =
1

2

∫ (√
dP
dµ
−

√
dQ
dµ

)2

dµ.

In the Hellinger distance, it can be shown [60] that tests with the required error bounds

exist as long as the sets being tested are convex. The required tests can then be constructed

by piecing together such smaller tests and using a union bound, as long as the number

of smaller tests is not too large. This size can be measured via the metric entropy of

the parameter space under consideration, which is essentially the complement of a ball

about the truth. The metric entropy N(F , d, ε) is the smallest number of ε-balls in the

metric d required to cover the set F . Much of the general theory of contraction therefore

involves verifying the (non-trivial) conditions of Theorem 1.1.4 and has been restricted to

the Hellinger distance. We note that if the densities in the model are uniformly bounded,

then contraction in the Hellinger distance immediately implies contraction in L2. We state

the following result in the case of i.i.d. density estimation.

Theorem 1.1.4 (Ghosal et al.). Suppose that Y1, ..., Yn are i.i.d. observations arising

from a distribution P0 admitting a Lebesgue density p0. Let Π be a prior on some set P of
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1.1. Bayesian statistics from a frequentist perspective

probability distributions admitting Lebesgue densities (with distribution P having density

p). Denote by Pn0 the n-fold product measure for P0. Suppose that for some sequence

εn → 0 with nε2
n →∞, there exists some constant C > 0 and sets Pn ⊂ P such that

(i) logN(Pn, h, εn) ≤ nε2
n,

(ii) Π(P\Pn) ≤ exp(−(C + 4)nε2
n),

(iii) Π(P ∈ P : −P0(log p
p0

) ≤ ε2
n,P0(log p

p0
)2 ≤ ε2

n) ≥ exp(−Cnε2
n).

Then for a sufficiently large constant M > 0, we have

Π(P ∈ P : h(P,P0) ≥Mεn | Y1, ..., Yn)→ 0

in Pn0 -probability.

It is worth noting that this general testing approach often results in a logarithmic

gap with the sharpest contraction rate. This result has been extended to the non-i.i.d.

setting in Ghosal and van der Vaart [37], where different tests are constructed in several

settings. In the white noise model, likelihood ratios are employed, while alternative tests

satisfying the required conditions are also constructed based on the results of Birgé [9, 10]

in the case of Markov processes and stationary Gaussian time series. The case of Gaussian

process priors is treated in detail in van der Vaart and van Zanten [82] in several settings,

such as density estimation, classification and regression. Theorem 2.1 of [82] shows that

conditions analogous to those in Theorem 1.1.4 are implied by a single condition on the

concentration function of the Gaussian process (see (2.5.6) for the exact definition). The

latter results will be important in Chapter 2.

Extending this approach to other distances necessitates alternative constructions of the

required tests. In the Lp spaces, Giné and Nickl [41] use the concentration properties of

linear centered kernel-type density estimators, derived using empirical process techniques.

This replaces the metric entropy condition in Theorem 1.1.4 with an approximation the-

oretic condition that the sets Pn are contained in

{f ∈ F : ||KJn(f)− f ||p ≤ C(K)ε̃n},

where KJ is a suitable projection operator and ε̃n is the rate of contraction (no longer equal

to the εn in Theorem 1.1.4). In particular, such linear type estimators can be analyzed in

a number of settings and in Chapter 2 we study them in the case of linear inverse problems

to obtain an equivalent contraction theorem.

Nonparametric priors typically involve the use of tuning or hyper parameters, whose

choice influences the accuracy of the posterior. Procedures that automatically select these

parameters in a data-driven manner and achieve optimal performance over multiple pa-

rameter classes are termed adaptive. Since many qualitative properties of the parameter of
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interest are usually unknown, such as its smoothness or regularity, it is of both theoretical

and practical importance to study such procedures.

1.1.4 Credibility

The Bayesian analogue of a frequentist confidence set is a credible set. We say that

Cn = Cn(Y (n)) is a credible set for f with credibility 1− γ if

Π(f ∈ Cn(Y (n)) | Y (n)) ≥ 1− γ. (1.1.5)

From the point of view of posterior-based inference, this is the natural notion of uncertainty

quantification. There are of course a wide variety of possible choices of the set Cn that

satisfy (1.1.5). It therefore makes sense to select a set that has minimal size in some sense,

which can be defined via some geometric notion, in particular by considering a minimal

ball in some metric. This topic is investigated in detail in Chapter 3.

The use of credible sets rather than confidence sets can be considered an advantage

of the Bayesian approach since Bayesian credible sets can be computed by simulation,

whereas in many situations it can be difficult to construct frequentist confidence sets. In

particular, the Bayesian generates a number of posterior draws and then keeps a prescribed

fraction, discarding the remainder according to some rule. This rule often has a geometric

interpretation, such as minimizing some metric, but this is not strictly necessary. From

an applied perspective, the practitioner ultimately seeks a practical and effective rule

for sorting through posterior draws and such geometric interpretations can be viewed

as somewhat artificial in applications. A key question is whether such a method has a

theoretical justification and if credible sets are also frequentist confidence sets.

A frequentist theoretical justification for posterior based inference using any (Borel)

credible set in finite dimensions is provided by the Bernstein–von Mises theorem (discussed

in more detail in Section 1.1.5). In infinite dimensions, such a result does not hold in full

generality and the situation is far more subtle. In nonparametric situations there has been

as of yet relatively little study into the frequentist coverage of Bayesian credible sets. Early

negative results came to alarming conclusions: Cox [27] considered the case of fixed design

regression with a Gaussian prior and showed that for almost every parameter from the

prior, the coverage of the `2-credible ball is 0. However there have recently been positive

results in the case of Gaussian white noise [53, 61, 79], circumventing the need for a BvM

by explicitly studying the coverage properties of certain specific credible sets. This will

one of the subjects of study of Chapter 3

1.1.5 Bernstein–von Mises theorems

For parametric models, the asymptotic behaviour of the posterior distribution can be de-

scribed in detail via the Bernstein–von Mises theorem. This remarkable result establishes
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conditions on the prior under which the posterior is approximately a normal distribution

centered at an efficient estimator of the true parameter, such as the maximum likelihood

estimator, with covariance equal to the Cramér-Rao bound. Surprisingly, this deep result

holds under very mild conditions, requiring only that the prior charges a neighbourhood

of the true parameter. We explain the principle ideas in the classical setting of density

estimation with i.i.d observations so that Y (n) = (Y1, ..., Yn) and Pn denotes the n-fold

product measure.

The first results concerning the normal limiting behaviour of a posterior distribution

date back to Laplace [58], with later results from Bernstein [5] and von Mises [86]. The

result was formalized by Doob [31] and then put into the framework of modern statistics

by Le Cam [60]. We follow here the approach presented in van der Vaart [81].

A model P is locally asymptotically normal (LAN) if for every sequence (hn) in Rm

with hn → h,

log
dPn

f0+hn/
√
n

dPnf0
= hTn∆n,f0 −

1

2
hTn If0hn + oPnf0

(1),

where the derivative is the Radon-Nikodym derivative, If0 is the Fisher information matrix

at f0 and

∆n,f0 =
1√
n

˙̀
n,f0(Y (n))

with `n,f0 denoting the log-likelihood function of the model. Since Pf0 ˙̀
n,f0 = 0 and

−Pf0 ῭
n,f0 = Pf0 ˙̀2

n,f0
= nIf0 , we have by the central limit theorem that ∆n,f0 is asymp-

totically normal with mean zero and variance If0 . The LAN condition means that a local

expansion of the log-likelihood is of the same form as in the standard Gaussian shift ex-

periment. As a result, this gives the shape of the limiting distribution (and hence of the

posterior distribution). We consider a version adapted from Theorem 10.1 of [81].

Theorem 1.1.5 (parametric Bernstein–von Mises). Suppose that the model P = (Pf :

f ∈ F) is locally asymptotically normal at f0, where F ⊂ Rm is open, m ≥ 1. Suppose

moreover that the Fisher information matrix If0 is non-singular and that for every ε > 0,

there exists a sequence of tests φn such that

Pnf0φn → 0, sup
||f−f0||≥ε

Pnf (1− φn)→ 0. (1.1.6)

Furthermore, let the prior measure be absolutely continuous in a neighbourhood of f0 with

a continuous positive density at f0. Then the corresponding posterior distributions satisfy

sup
B∈T

∣∣∣Πn(
√
n(f − f0) ∈ B | Y (n))−N

(
∆n,f0 , I

−1
f0

)
(B)

∣∣∣→Pf0 0 as n→∞, (1.1.7)

where the supremum is over all measurable subsets of F .
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Note that if for g ∈ Rm we define the mapping τg : Rm → Rm by

τg : f 7→
√
n(f − g),

then we can then rewrite assertion (1.1.7) using the total variation norm as∣∣∣∣∣∣Π(· | Y (n)) ◦ τ−1
f0
−N(∆n,f0 , I

−1
f0

)
∣∣∣∣∣∣
TV
→Pf0 0. (1.1.8)

Since the Gaussian measure depends only on the model P and not the prior, this signifies

that the effect of the prior distribution is asymptotically negligible. The testing condition

(1.1.6) is similar to that required in Theorem 1.1.2 for contraction and in fact exists under

the conditions of Theorem 1.1.5, as shown by Lemma 10.3 of [81].

Lemma 1.1.6. Under the conditions of Theorem 1.1.5, there exists for every Mn → ∞
a sequence of tests φn and a constant c > 0 such that, for every sufficiently large n and

every ||f − f0|| ≥Mn/
√
n,

Pnf0φn → 0, Pnf (1− φn) ≤ e−cn(||f−f0||2∧1).

The BvM theorem therefore holds in great generality and justifies the use of posterior-

based inference as an efficient frequentist procedure. From a practical perspective, the

importance of this result lies in the uniformity achieved over all Borel sets in (1.1.7). This

establishes the asymptotic equivalence of credible sets and confidence sets and so justifies

the Bayesian approach to uncertainty quantification.

In infinite-dimensions, the situation is more subtle and far less clear. In particular,

the full Bernstein–von Mises theorem does not generalize to the nonparametric setting.

Several counterexamples of such a result have been studied involving Gaussian priors,

notably by Cox [27] and Freedman [33] - see also the related contributions [47, 61]. In

particular, Freedman considers the Gaussian white noise model in `2 with a conjugate

Gaussian prior. He shows that the frequentist variance of the `2 square norm functional

Tn = ||f − f̂ ||22, where f̂ denotes the posterior mean, is asymptotically smaller than its

Bayesian variance. As a consequence, `2-credible balls {f : ||f − f̂ ||22 ≤ R2} will not have

the correct frequentist coverage probabilities.

However, there has been recent progress in investigating Bernstein-von Mises phenom-

ena in the full nonparametric setting. Castillo and Nickl [21, 22] consider the formulation

(1.1.8) of the BvM but weaken the notion of convergence, replacing convergence in total

variation by weak convergence metrized using the bounded Lipschitz metric βS (see Chap-

ter 3 for full definitions). In particular, rather than the classical Lp spaces, they consider

weaker topologies which admit 1/
√
n-consistent estimators and where Gaussian limits are

possible.

We say a family of measurable real-valued functions U defined on a separable metric
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space (S, d) is a µ-uniformity class for weak convergence if for any sequence µn of Borel

probability measures on S converging weakly to µ, we have, as n→∞,

sup
u∈U

∣∣∣∣∫
S
u(s)(dµn − dµ)(s)

∣∣∣∣→ 0.

In particular, taking U = {1A : A ∈ A} allows one to establish uniform statements over

a class A of sets. For A ⊂ S define the δ-enlargement Aδ = {x ∈ S : d(x,A) < δ} and

δ-boundary ∂δA = {x ∈ S : d(x,A) < δ, d(x,Ac) < δ}. Restricting to the case of indicator

functions, Billingsley and Topsøe [8] show that a family of subsets A is a µ-uniformly class

if and only if

lim
δ→0

sup
A∈A

µ(∂δA) = 0 (1.1.9)

(they also establish a similar characterization for functions using moduli of continuity).

While using a weak convergence approach loses the uniformity over all Borel sets in (1.1.7),

Castillo and Nickl [21, 22] nonetheless establish uniformity statements over certain classes

of sets whose geometry is amenable to a Gaussian limit in the sense of (1.1.9). Such results

are relevant in Chapter 3.

1.1.6 Computational aspects

While posterior inference is conceptually simple, computing (attributes of) the posterior

distribution is central to its practical applicability. In many cases, conjugate models

are sufficient and so the posterior can be computed explicitly. However, non-conjugate

models are often used in practice and the issue of their computation can be dealt with

using Markov chain Monte Carlo (MCMC) techniques.

MCMC methods sample from a probability distribution by constructing a Markov

chain with equilibrium distribution equal to the target distribution. Using such a chain,

one can sample a draw from an approximation to the posterior without having to invoke

an explicit form for it. Repeated sampling can then be used to approximate any desired

feature of the posterior, such as the posterior mean or a credible set. Commonly used

methods include the Metropolis-Hastings algorithm, which allows one to draw from a

probability distribution if one can compute its density function up to its normalizing

constant. This is an attractive feature, since calculating the normalizing constant can be

difficult in practice. Gibbs sampling exploits the fact that for multivariate distributions

it is often easier to sample from the conditional distributions than the joint distribution

(which may not be known). The Gibbs sampling algorithm generates an instance for

each coordinate of the variable from the target distribution, conditional on the current

values of the other variables. This yields a Markov chain whose equilibrium distribution is

the desired target. Other variations and methods include Metropolis-within-Gibbs, slice

sampling, approximate Bayesian computation and expectation propagation.
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1.2 Inverse problems

Nonparametric inverse problem arise in many fields, such as medical imaging (X-ray to-

mography), astronomy (blurred images of the Hubble Space Telescope), geophysics (re-

flection seismology), genomics (gene expressions) and mathematical finance (volatility cal-

ibration) to name but a few. They arise when the parameter of interest is not directly

observable, but rather some transformation of it, possibly with the addition of noise. In

many instances this transformation is not (continuously) invertible and we say the problem

is ill-posed. Such ill-posedness prevents a naive inversion of the observation and usually

requires some form of regularization to make sensible inference. In the Bayesian frame-

work, such regularization can be provided by the choice of the prior distribution, which

introduces the necessary extra information.

In this thesis we consider a particular class of inverse problems that covers a diverse

number of examples, namely linear inverse problems under Gaussian noise. This is related

to the infinite-dimensional normal mean model and is an idealized version of many models,

such as density estimation or fixed design regression.

1.2.1 General formulation of linear inverse problems

In this thesis, we consider the problem of estimating an unknown parameter f from an

observation Y generated from the model

Y ≡ Y (n) = Af +
1√
n
Z. (1.2.1)

Here we assume that f is an element of a separable Hilbert space H1, A : H1 → H2

is a known, injective, continuous linear operator into another Hilbert space H2 and Z

is a Gaussian white noise. Many specific examples of regression fall under this general

framework, such as deconvolution, recovery of the initial condition of the heat equation

and the Radon transform (see Section 1.2.2 for details).

The Gaussian white noise Z in (1.2.1) is the iso-normal or iso-Gaussian process for H2.

Since Z is not realisable as a Gaussian random element of H2, we interpret the model in

process form (as in [11]), that is we consider Z = (Zh : h ∈ H2) as a mean-zero Gaussian

process with covariance

EZhZh′ = 〈h, h′〉2.

In this form, (1.2.1) is interpreted as observing the Gaussian process Y = (Yh : h ∈ H2),

where

Yh = 〈Af, h〉2 +
Zh√
n
.

It is statistically equivalent to observe the subprocess (Yhk : k ∈ N), for any orthonormal

basis {hk}k∈N of H2. This corresponds to observing the sequence (Yhk), where Yhk are
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distributed as N(〈Af, hk〉2, n−1) independently.

In inverse problems it is natural to consider bases {ek} of H1 that diagonalize A, thus

making the problem more tractable by decoupling (1.2.1) into a sequence of independent

signal plus noise problems. Denote by A∗ the adjoint of the operator A. If A is a compact

operator, then we can use the singular value decomposition (SVD) to obtain such a basis.

Applying the spectral theorem to the compact self-adjoint operator A∗A : H1 → H1, we

know that A∗A has a discrete spectrum consisting of positive eigenvalues {ρ2
k}k∈N (possibly

together with 0) and a corresponding orthonormal basis {ek} of H1 of eigenfunctions (see

e.g. [74]). We then have a conjugate orthonormal basis {gk} of the range of A in H2 defined

by the equality Aek = ρkgk. Letting fk := 〈f, ek〉1, the action of A on f has a simple form

when considered in this basis: Af = A (
∑

k fkek) =
∑

k ρkfkgk. Writing Yk := Ygk , (1.2.1)

is statistically equivalent to observing the sequence (Yk) of independent observations,

where Yk has distribution N(ρkfk, n
−1). The task of estimating f thus reduces to that of

estimating the sequence {fk} from the sequence of independent observations (Yk).

In any case, we shall assume the existence of such an orthonormal basis {ek} of eigen-

vectors of A∗A, though we do not necessarily assume that A is compact. The principle

additional case we include is the white noise model, when A is the identity operator. If

ρk → 0, the problem is ill-posed since the noise to signal ratio of the components tends to

infinity as k →∞. Recovering f from Y is then an inverse problem. The severity of this

ill-posedness can be characterized by the rate of decay of ρk → 0; the faster this rate, the

more difficult the estimation problem.

We shall classify the problem using the following classes that are standard in the

statistical literature. We say that the problem is mildly ill-posed with regularity p if

C1(1 + k2)−p/2 ≤ |ρk| ≤ C2(1 + k2)−p/2 as k →∞

for some constants C1, C2 > 0 and p ≥ 0. We say that the problem is severely ill-posed

with regularity γ if

C1(1 + k2)−p0/2e−c0k
γ ≤ |ρk| ≤ C2(1 + k2)−p1/2e−c0k

γ
as k →∞

for some constants C1, C2, γ > 0 and p0, p1 ∈ R. The polynomial terms p0 and p1 are

included to add flexibility, but do not characterize the problem since they are dominated

by the exponential terms.

1.2.2 Examples

Note that if H1 = H2 = L2([0, 1]) then we can rewrite (1.2.1) in the more classical white

noise form

dY (t) = (Af)(t)dt+ n−1/2dW (t),
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where W is a standard Brownian motion on [0, 1]. In particular, taking A to be the identity

operator, we recover the classical white noise model in L2([0, 1]), which is asymptotically

equivalent to fixed design nonparametric regression with Gaussian errors [15] in the sense

of Le Cam [60]. Our results apply to the following situations amongst others (see [26] for

a general overview of inverse problems).

Deconvolution

A common problem in signal and image processing is periodic deconvolution (see e.g.

[48]). Consider the 1-dimensional case on the torus T = [0, 1) and, assuming that f is a

1-periodic function, define

Af(t) =

∫ t

0
f ∗ µ(s)ds, t ∈ [0, 1], (1.2.2)

for some known finite signed measure µ, where f ∗ µ stands for convolution on T and

where addition is defined modulo 1. This fits into the above framework since ||f ∗ µ||L2 ≤
||f ||L2 ||µ||TV by the Minkowski integral inequality and where ||·||TV denotes the total

variation norm for measures. For such a µ, we can therefore consider A as a map from

L2([0, 1]) to H1([0, 1]). We observe Y arising from the model dYt = f ∗µ(t)dt+n−1/2dWt,

where W is a standard Brownian motion on [0, 1]. The SVD basis is the Fourier basis

ek(x) = e2πikx, k ∈ Z, with associated eigenvalues given by the Fourier coefficients of

µ, namely ρk = µ̂k =
∫ 1

0 ek(x)dµ(x). The problem can be either mildly (e.g. [48]) or

severely ill-posed depending on the choice of measure µ. Note that the Dirac measure

δ0 is admissible under this model and corresponds to the direct observation case. This

situation can be generalized to higher dimensions.

Heat equation

Consider the periodic boundary problem for the 1-dimensional heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = f(x), u(0, t) = u(1, t) = 0,

where u : [0, 1]×[0, T ]→ R and the initial condition f ∈ L2([0, 1]) satisfies f(0) = f(1) = 0.

The task is to recover the initial condition f from a noisy observation of u at time T . The

solution to this problem is given by

u(x, T ) =
√

2
∞∑
k=1

fke
−π2k2T sin(kπx),

where fk = 〈f, ek〉L2 with ek(x) =
√

2 sin(kπx). Thus we can express u(·, T ) = Af with

ρk = e−π
2k2T . Recovering f from an observation u(·, T ) corrupted by a white noise of
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intensity n−1/2 thus leads to a severely ill-posed inverse problem with γ = 2. This problem

has been studied in the Bayesian context under conjugate Gaussian priors in Knapik et

al. [54] and Agapiou et al. [3].

Radon transform

Another example is given by the Radon transform, which is used in computerized tomog-

raphy (see [49] for more details). Let D = {x ∈ R2 : ||x|| ≤ 1} and suppose that f : D → R
is some function in L2(D) (with Lebesgue measure) that we wish to estimate based on

observations of the integrals of f along all lines intersecting D. Parametrize the lines by

the length s ∈ [0, 1] of their perpendicular from the origin and the angle ϕ ∈ [0, 2π) of the

perpendicular to the x-axis. The Radon transform is defined as

Af(s, ϕ) =
π

2
√

1− s2

∫ √1−s2

−
√

1−s2
f(s cosϕ− t sinϕ, s sinϕ+ t cosϕ)dt,

where (s, ϕ) ∈ S = [0, 1] × [0, 2π). The Radon transform can be considered as a map

A : L2(D)→ L2(S, µ), where dµ(s, ϕ) = 2π−1
√

1− s2 ds dϕ and consequently fits into the

framework of (1.2.1). Considered as such, A is a bijective and bounded operator with SVD

that can be computed using Zernike polynomials, leading to a mildly ill-posed problem

with p = 1/2 (see [49] for more details).
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Chapter 2

Rates of contraction for

non-conjugate priors

In this chapter, we study posterior contraction in linear inverse problems using an abstract

testing approach based on approximation-theoretic assumptions on the prior. This chapter

is structured as follows: Section 2.1 details the problem and mathematical preliminaries,

Section 2.2 contains the general contraction theorem, Section 2.3 contains applications of

this result to concrete priors, Sections 2.4 and 2.5 contain proofs of Sections 2.2 and 2.3

respectively and Section 2.6 describes possible extensions of using this approach.

2.1 Introduction

2.1.1 Outline

In this chapter, we consider the problem of using Bayesian methods to estimate an un-

known parameter f from an observation Y generated from the model

Y ≡ Y (n) = Af +
1√
n
Z. (2.1.1)

Here we assume that f is an element of a separable Hilbert space H1, A : H1 → H2

is a known, injective, continuous linear operator into another Hilbert space H2 and Z

is a Gaussian white noise. Many specific examples of regression fall under this general

framework, such as deconvolution, recovery of the initial condition of the heat equation

and the Radon transform (see Section 1.2.2 for details).

We wish to study the asymptotic behaviour of the posterior distribution under the

frequentist assumption that the data Y is generated from the model (2.1.1) for some true

parameter f0. We shall measure this behaviour by considering if and at what rate the

posterior contracts to the true f0 as n → ∞ as defined in Definition 2. This question

has been the object of much study in recent years (see e.g. [36, 41, 46, 76, 82] for some
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examples), but the situation of inverse problems has only recently been considered and

then only in the conjugate setting [2, 53, 54], where explicit posterior expressions are

available. We shall use a novel approach to study possibly non-conjugate priors; we also

recover some of the results from [53, 54].

While it is of considerable theoretical interest to understand the behaviour of Bayesian

procedures in the non-conjugate setting, there are also strong practical reasons to do so.

Although non-conjugate priors are more involved from a computational perspective, they

are increasingly finding use due to their greater modelling flexibility and interpretabil-

ity [45]. In many domains, interpretability is a very desirable quality in a model since

practitioners usually prefer transparent models to black-box ones. Interpretable models

provide meaningful information, particularly when only a few key factors are used. For

example, such a concern motivated the use of nonparametric priors in gene expression

modelling [55]. Meanwhile, advances in Markov chain sampling methods have meant that

such procedures are increasingly tractable in practice (e.g. [66] or Section 1.1.6). For

example, in the case of sieved priors discussed below we have that, conditional on the

random truncation level M , the problem reduces to the case of a finite-dimensional model

with Gaussian noise. When the prior product marginals are non-Gaussian, it is therefore

possible to sample from the conditional posterior distribution using a finite dimensional

MCMC scheme.

Our method of proof follows the testing approach introduced in [36] and thus does not

rely on explicit computation of the posterior. A key ingredient to using this approach is

the construction of suitable tests for the problem

H0 : f = f0 HA : f ∈ {f : ||f − f0||H1
≥ ξn} (2.1.2)

with exponentially decaying type-II errors for some sequence ξn → 0. We follow the

approach of [41] of using the concentration properties of appropriate centred linear es-

timators to construct suitable plug-in tests. If the operator A in (2.1.1) is compact, it

effectively ”smooths” f and so makes it more difficult to distinguish between the alterna-

tives H0 and HA based on the observation Y . To deal with this, we use general analogues

of the Fourier techniques used in constructing linear estimators in the case of density

deconvolution [64]. Due to the inverse nature of the problem, it is natural to construct

such estimators using a diagonalizing basis for A. Moreover, since our approach requires

good approximation properties within the support of the prior, we consider priors that are

naturally characterized by (small modifications of) such a basis.

A key requirement of this testing approach is that the prior distribution assigns suf-

ficient mass to a neighbourhood of the true parameter f0. In this framework, this corre-

sponds to establishing lower bounds for the probability that Af is contained in small-ball

centred at Af0 (the ”small-ball problem”) under the prior. The inverse nature of the
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problem turns out to be of assistance with this condition, since A shrinks f towards the

origin. In effect, A changes the geometry of the problem by converting an H2-ball into a

larger H1-ellipsoid, whose precise size increases with the level of ill-posedness. We shall

rely on this notion in our proofs and expand upon the details below.

We apply our general result to prove contraction rates in a number of situations com-

monly arising in Bayesian inference, some adaptive and some not. For instance, in the

case of sieve priors with random truncation, we show that under weak conditions in the

mildly ill-posed setting, the procedure is fully rate adaptive (up to logarithmic factors)

over Sobolev classes as in the direct case [4]. In the mildly ill-posed setting, similar adap-

tation results are obtained in the recent work of [52] using direct methods in the case

of a hierarchical, conditionally Gaussian prior and an empirical Bayes approach. In the

severely ill-posed case, our results suggest that one should calibrate the prior according

to the operator A at hand. In this case, oversmoothing the prior by a suitable factor is

sufficient to obtain a minimax rate of contraction. This is not surprising since centred

linear estimators in the severely ill-posed case are often adaptive (see [64] for results on

density estimation) and our tests are built around such estimators. In this setting, unless

the prior satisfies an analytic smoothness condition, the bias of the linear estimator dom-

inates its variance [17, 64] and consequently the minimum of the prior smoothness and

the unknown true smoothness determines the rate. Since we construct our tests using a

bias-variance decomposition of a linear estimator, it seems reasonable that our rate will

reflect this.

When considering the specific example of deconvolution, we also consider a wavelet

series prior on [0, 1]. While it is canonical to work in the diagonalizing basis of A, in this

case the Fourier basis, our results allow some flexibility in considering different yet closely

related bases; in particular, this allows us to consider priors constructed using band-limited

wavelets. This turns out to have useful consequences since we can use the functional

characterization properties of wavelets to conveniently model Hölder smoothness using

uniform random variables. An alternative approach is to consider correctly scaled random

Gaussian series [77].

Unless otherwise stated, 〈·, ·〉i and ||·||i denote the inner product and norm of the

Hilbert space Hi, i = 1, 2. For x, y ∈ R we use the notation x . y to denote that x ≤ Ky
for some universal constant K. For sequences {an} and {bn} we write an ' bn to mean

that there exist constants C1, C2 > 0 such that C1an ≤ bn ≤ C2an for all n ≥ 1. We may

also sometimes use the same letter to denote a constant that varies from line to line.

2.1.2 Linear inverse problems

The Gaussian white noise Z in (2.1.1) is the iso-normal or iso-Gaussian process for H2.

Since Z is not realisable as a Gaussian random element of H2, we interpret the model in

process form (as in [11]), that is we consider Z = (Zh : h ∈ H2) as a mean-zero Gaussian
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process with covariance EZhZh′ = 〈h, h′〉2. In this form, (2.1.1) is interpreted as observing

the Gaussian process Y = (Yh : h ∈ H2), where

Yh = 〈Af, h〉2 +
Zh√
n
.

It is statistically equivalent to observe the subprocess (Yhk : k ∈ N), for any orthonormal

basis {hk}k∈N of H2. This corresponds to observing the sequence (Yhk), where Yhk are

distributed as N(〈Af, hk〉2, n−1) independently.

In this chapter, we henceforth assume the existence of an orthonormal basis {ek} of

H1 consisting of eigenvectors of A∗A, such as the SVD when A is compact. Define the

conjugate orthonormal basis {gk} of the range of A in H2 by the equality Aek = ρkgk for

some constants {ρk}. For further details see Section 1.2.1. Letting fk := 〈f, ek〉1, the action

of A on f has a simple form when considered in this basis: Af = A (
∑

k fkek) =
∑

k ρkfkgk.

Writing Yk := Ygk , (2.1.1) is statistically equivalent to observing the sequence (Yk) of

independent observations, where Yk has distribution N(ρkfk, n
−1). The task of estimating

f thus reduces to that of estimating the sequence {fk} from the sequence of independent

observations (Yk).

Whilst priors based on a decomposition of f in the {ek} basis are frequently natural, it

is often of interest to consider slightly more general types of bases. We therefore consider

any basis whose elements consist of finite linear combinations of the {ek}.

Condition 1. Suppose that {φk} is an orthonormal basis for H1 such that for each k, the

set {l : |〈φk, el〉1| 6= 0} is finite.

This seemingly small extension actually has large implications for the possible choice of

priors. For example, if the SVD is the Fourier basis (e.g. deconvolution - see Section 1.2.2

for more details), then Condition 1 corresponds to a band-limited basis. Band-limited

wavelets have been used in the deconvolution setting (e.g. [48, 69]), and this allows us

to use the superior characterization properties of wavelets to create priors that model

Hölder smoothness conditions rather than Sobolev smoothness conditions, which we do

using periodized Meyer wavelets in Section 2.3.3.

In any case, we shall assume the existence of such an orthonormal basis {ek} of eigen-

vectors of A∗A, though we do not necessarily assume that A is compact. The principle

additional case we include is the white noise model, when A is the identity operator. If

ρk → 0, the problem is ill-posed since the noise to signal ratio of the components tends to

infinity as k →∞. Recovering f from Y is then an ill-posed inverse problem. The severity

of this ill-posedness can be characterized by the rate of decay of ρk → 0; the faster this

rate, the more difficult the estimation problem. We shall classify the problem using the

following classes that are standard in the statistical literature.
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Condition (M). We say that the problem is mildly ill-posed with regularity p if

C1(1 + k2)−p/2 ≤ |ρk| ≤ C2(1 + k2)−p/2 as k →∞

for some constants C1, C2 > 0 and p ≥ 0.

Condition (S). We say that the problem is severely ill-posed with regularity γ if

C1(1 + k2)−p0/2e−c0k
γ ≤ |ρk| ≤ C2(1 + k2)−p1/2e−c0k

γ
as k →∞

for some constants C1, C2, γ > 0 and p0, p1 ∈ R.

The polynomial terms in Condition (S) are included to add flexibility, but do not charac-

terize the problem since they are dominated by the exponential terms.

2.1.3 The posterior distribution and other preliminaries

In the non-conjugate situation, it is in general not possible to obtain a closed form expres-

sion for the posterior distribution. For f ∈ H1, let Pf denote the law of the model (2.1.1)

so that Y is an iso-Gaussian process with drift Af under Pf . Using the sequence space

model, Pf is statistically equivalent to

∞⊗
k=1

N
(
ρkfk, n

−1
)
.

Kakutani’s product martingale theorem (c.f. Theorem 2.7 of [28]) shows that for any

f ∈ H1, this measure is equivalent to
⊗∞

k=1N(0, n−1) with affinity exp
(
−n

8

∑
k ρ

2
kf

2
k

)
> 0.

The family of distributions (Pf : f ∈ H1) is therefore dominated by the law P0 (denoting

here the law of a pure white noise rather than the ”true” law Pf0) with density

dPf
dP0

= exp

(
√
n

∞∑
k=1

ρkfkZk −
n

2

∞∑
k=1

ρ2
kf

2
k

)
, (2.1.3)

where Zk = Zgk . If Z were realizable as a Gaussian element in H2, then this expression

would reduce to exp
(√

n〈Af,Z〉2 − n
2 ||Af ||

2
2

)
. As it is, (2.1.3) makes sense whenever the

drift component Af lies in the Cameron-Martin space of Z, that is ||Af ||2 < ∞. Since

under P0, Zk =
√
nYk, we can express the posterior distribution via Bayes’ formula:

Π(B|Y ) =

∫
B e

n
∑
k ρkfkYk−

n
2
||Af ||22dΠ(f)∫

P e
n
∑
k ρkfkYk−

n
2
||Af ||22dΠ(f)

, B ∈ B, (2.1.4)

where P is the support of the prior Π. Obtaining an expression of this form for the

posterior makes it possible to use the approach of Theorem 2.1 of [36], a fact that we shall

use implicitly in the proof of Theorem 2.2.1.
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We shall classify the smoothness of functions via the Sobolev scales with respect to

the basis {ek}. For s ≥ 0 define

Hs(H1) :=

{
f ∈ H1 : ||f ||2Hs(H1) :=

∞∑
k=1

f2
k (1 + k2)s <∞

}
,

where fk = 〈f, ek〉1. We shall generally omit reference to the underlying space H1 when

there is no confusion possible. For s > 0 we define the dual space

H−s(H1) := (Hs(H1))∗.

It can be shown (Proposition 9.16 in [32]) that the operator norm on (Hs(H1))∗ is equiv-

alent to the ||·||H−s(H1)-norm defined above (extended to negative indices), so that H−s

consists exactly of the linear functionals L acting on Hs for which ||L||H−s is finite. In

particular, since every f ∈ H1 yields the continuous linear functional g 7→ 〈g, f〉1 on Hs,

we can consider H1 as a subspace of H−s(H1).

Note that this concept of smoothness is intrinsically linked to the operator A through

the choice of the basis {ek}. To be precise, the space Hs should be indexed by both H1 and

A, since it quantifies smoothness with respect to the operator A, but we omit this explicit

link to simplify notation. For β > 0, it is known [26] that the minimax rate of estimation

over any fixed ball of Hβ is n−β/(2p+2β+1) under Condition (M) and (log n)−β/γ under

Condition (S). Minimax rates are attained by a number of methods, such as generalized

Tikhonov regularization amongst others [11, 26]. In general, we shall use p and γ to

refer to parameters quantifying the ill-posedness of the problem (2.1.1), β to refer to the

smoothness of the true function f0 and α to quantify the prior smoothness.

A key ingredient in proving contraction rates is establishing lower bounds for the small-

ball probability of Af about Af0 (see (2.2.5) below). As mentioned above, if A is compact

then it changes the geometry of the problem by converting it into a small-ellipsoid problem

in H1. Under Condition (M),

||Af ||22 =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=1

ρkfkek

∣∣∣∣∣
∣∣∣∣∣
2

2

=
∞∑
k=1

ρ2
kf

2
k ≤ C2

∞∑
k=1

f2
k (1 + k2)−p = C2 ||f ||2H−p ,

so that we are actually considering the small-ball probability of f under the weaker negative

Sobolev norm H−p, since the dimensions of the ellipsoid correspond to the singular values

of A. To establish (2.2.5) in the mildly ill-posed case, it is therefore sufficient to prove

Πn(f ∈ P : C2 ||f − f0||H−p ≤ εn) ≥ e−Cnε2n . (2.1.5)

In fact, the greater the ill-posedness of (2.1.1), the greater the prior mass assigned to

an H2-neighbourhood of Af0, and consequently the ”nicer” the geometry of the problem.
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As a concrete example, if {ek} is the Fourier basis acting on the torus T = [0, 1), then

the singular values {ρk} act as Fourier multipliers and we recover the usual definition of

(negative) Sobolev smoothness via Fourier series on T. Using the same notion, Condition

(S) induces an even weaker norm with exponential weighting.

2.2 General contraction results

To prove posterior contraction in a number of settings, we prove a general result along the

lines of Theorems 2 and 3 of [41] adapted to inverse problems. We quantify the effects of

the operator A through a sequence of factors {δk}. Consider the set of indices

Ak = {l : |〈φm, el〉1| 6= 0 for some 1 ≤ m ≤ k} (2.2.1)

and define

δk = inf
i∈Ak
|ρi|, (2.2.2)

that is we take the smallest ρi such that one of the first k basis elements φ1, ..., φk has a

non-zero component in the ei direction. By Condition 1 and since A is injective, we know

that for any k ∈ N, Ak is finite and consequently δk > 0 and the {δk} form a decreasing

sequence. Note that if we are working directly in the spectral basis {ek} with the singular

values {ρk} arranged in decreasing order, we simply recover δk = ρk.

Theorem 2.2.1. Consider the white noise model (2.1.1) and let {φk} be an orthonormal

basis of H1 satisfying Condition 1. Let P ⊂ H1 and let Πn denote a sequence of priors

defined on a σ-algebra of P. Let εn, ξn → 0 be sequences of positive numbers and kn →∞
be a sequence of positive integers such that

√
nεn →∞ as n→∞,

kn ≤ cnε2
n and

εn
δkn
≤ C1ξn (2.2.3)

for some c, C1 > 0 and all n ≥ 1, and where δk is defined by (2.2.2) with respect to {φk}.
Denote by Pm the projection operator onto the linear span of {φk : 1 ≤ k ≤ m} and let Pn
be a sequence of subsets of

{f ∈ P : ||Pkn(f)− f ||1 ≤ C2ξn}

for some C2 > 0. Moreover, assume that there exists C > 0 such that, for sufficiently large

n,

Πn(Pcn) ≤ e−(C+4)nε2n , (2.2.4)

Πn(f ∈ P : ||Af −Af0||2 ≤ εn) ≥ e−Cnε2n . (2.2.5)
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Suppose that Y has law Pf0, where f0 ∈ H1 is such that ||Pkn(f0)− f0||1 = O(ξn). Then

there exists a constant M <∞ such that

Πn(f ∈ P : ||f − f0||1 ≥Mξn|Y )→ 0

as n→∞ in Pf0-probability.

In an analogy to the frequentist approach, the quantity εn/δkn in (2.2.3) represents the

variance term of the centred linear estimator used to test (2.1.2), while ξn represents its

bias. In the mildly ill-posed setting of Condition (M), the optimal outcome is to balance

these terms so that (2.2.3) is an equality (up to constants). Taking kn ' nε2
n gives the

optimal result using this method, yielding rate ξn ' npε2p+1
n .

In the severely ill-posed setting of Condition (S) it is known (see [17] for the case of

density deconvolution) that the bias strictly dominates the variance as long as the true

function is ”rougher” than the operator A. By this we mean that if f0 strictly falls within

some Sobolev class, or satisfies some weaker analytic condition than Condition (S), then ξn

will be of strictly larger order than εn/δkn so that (2.2.3) will be a strict inequality (which

must be verified in practice) and we take kn = o(nε2
n) as n→∞. Since our method relies

on the approximation properties of the prior, the prior bias is equally important as the

true bias in determining the contraction rate in this case.

2.3 Main results

We analyse the contraction properties of a number of priors in the inverse problem setting

under the assumption that Y has law Pf0 for some unknown f0 ∈ H1.

2.3.1 Sieve priors

Consider a sieve prior in the orthonormal basis {ek} that diagonalizes the operator A∗A.

We take

f =

M∑
k=1

fkek, (2.3.1)

where M has probability mass function h on N with distribution function H. We take

the {fk} to be independent (real or complex as required) random variables with density

τ−1
k q(τ−1

k ·), for some sequence {τk} to be specified below, and for q some fixed density.

The prior can thus be expressed as

Π =

∞∑
m=1

h(m)Πm,
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where Πm(x1, ..., xm) =
∏m
k=1

1
τk
q
(
xk
τk

)
. Priors of this form have been studied (e.g. [76,

87]) and, under suitable conditions on h and Πm, are adaptive over Sobolev smoothness

classes in the non ill-posed case [4, 46]. Upon suitable calibration of the prior with respect

to A, this adaptation property extends to the ill-posed case when considered over the

classes Hβ(H1) for β > 0. We firstly make the following assumption on q.

Condition 2. The density q : R(or C)→ [0,∞) satisfies

De−d|x|
w ≤ q(x)

for all x ∈ R (or C) and some constants D, d > 0 and w ≥ 0.

Condition 2 is very mild and requires only that q is supported on the whole of R
(or C) and does not decay faster than any exponentiated polynomial; this includes many

standard densities, such as the Gaussian, Laplace, Cauchy and Student’s t-distributions.

Our first result shows that if the true parameter is actually of the form (2.3.1), then in

the mildly ill-posed case we recover a
√
n-rate up to a logarithmic factor.

Proposition 2.3.1. Suppose that A satisfies Condition (M) with regularity p and that

the true function f0 is a finite series in the {ek}-basis. Let 0 < h(m) ≤ Be−bm for some

constants B, b > 0 and all m ∈ N and suppose that the density q satisfies Condition 2 for

some w ≥ 1. Then for a sufficiently large constant C > 0,

Π

(
f ∈ H1 : ||f − f0||1 > C

(log n)p+1/2

√
n

∣∣∣∣∣Y
)
→ 0

in Pf0-probability as n→∞.

When the true regression function is not exactly of this form, we naturally expect a

nonparametric rate of convergence. The next result deals with the case where we consider

a general function lying in some Sobolev class Hβ, β > 0. We introduce a parameter

β0 ≤ β that represents a known a-priori lower bound on the unknown smoothness and

allows use of a more tightly concentrated prior. Note that the choice β0 = 0 is valid in

the following theorem and so a non-trivial lower bound is not necessarily assumed.

Proposition 2.3.2. Suppose that the true function f0 is in Hβ(H1) for some β > 0 and

that A satisfies Condition (M) with regularity p. Consider the prior Π described above

with B1e
−b1m ≤ h(m) ≤ B2e

−b2m for all m ∈ N, for some constants B1, B2, b1, b2 > 0,

and with density q satisfying Condition 2 for some w ≥ 1. Suppose moreover that the

scale parameters satisfy B3(1 + k2)−β0/2(log k)−1/w ≤ τk ≤ B4(1 + k2)(p+1)/2 for some

B3, B4 > 0 and β0 ≤ β. Then for a sufficiently large constant C > 0,

Π

(
f ∈ H1 : ||f − f0||1 > C

(log n)η

nβ/(2p+2β+1)

∣∣∣∣Y )→ 0
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in Pf0-probability as n→∞, where η = (2p+1)(p+β)
2p+2β+1 .

We firstly note that this prior gives a fully adaptive convergence rate over all the

Sobolev classes Hβ up to a logarithmic factor, with this rate being uniform over f0 in

balls in Hβ. Expressed in classical regularization terminology, we have that the rate does

not saturate as the truth becomes smoother.

It is worth commenting on the bounds needed on {τk}, both of which are used to

establish the small-ball condition (2.2.5), and which depend on the operator A and the

lower bound β0. Note that the choices τk ≡ τ for all k, corresponding to the {fk} being

i.i.d., or decaying coefficients τk � (log k)−1/w both satisfy the conditions of Proposition

2.3.2 and require no assumptions on the unknown smoothness. The requirements on

{τk} are therefore no real imposition, merely adding flexibility when calibrating the prior,

and the resulting procedure is truly rate adaptive. The lower bound reflects that the

prior cannot (up to a logarithmic factor) pick coefficients that decay faster than those

of f0. If a non-trivial lower bound β0 > 0 is a-priori known, then smoothing the prior

to incorporate this information would yield a more concentrated prior, thereby reducing

the size of credible sets whilst not affecting the rate. The upper bound is extremely mild

and actually allows the size of the components to increase with k. It ensures that the

moments of (Af)k (assuming they exist) are O(1) as k →∞, so that the prior component

moments cannot grow faster than the operator A can regularize them, thus allowing the

use of larger variances than would be possible in the direct case (p = 0). The conditions

on h require it to be of exponential type and are needed both to control the prior mass

for the bias condition (2.2.4) and to establish the small-ball condition (2.2.5). They are

of the same form as in the direct case (c.f. Condition A5 of [4]).

When working in the severely ill-posed case, we must calibrate our prior to the degree

of ill-posedness (i.e. the parameter γ). When the true parameter is a finite series in the

{ek} basis, we again recover a
√
n-rate up to some strictly subpolynomial factor that grows

more quickly than the logarithmic factor arising in the mildly ill-posed case in Proposition

2.3.1.

Proposition 2.3.3. Suppose that A satisfies Condition (S) and that the true function f0

is a finite series in the {ek}-basis. Suppose that q satisfies Condition 2 for some w ≥ 1,

let h(m) > 0 for all m ∈ N and suppose that 1−H(m) ≤ B exp(−bmγ+1) as m→∞ for

some constants B, b > 0. Then for a sufficiently large constant C > 0,

Π

(
f ∈ H1 : ||f − f0||1 > C

wn√
n

∣∣∣∣Y )→ 0

in Pf0-probability as n → ∞, where wn = (log n)
2p0+γ+1
2(γ+1) exp (c(log n)

γ
γ+1 ) grows more

slowly than any power of n.

Since the bias strictly dominates the variance in the severely ill-posed case, the bias
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resolution level kn grows more slowly than the balancing term nε2
n in (2.2.3) (which is a

strict inequality). This reduces the size of the approximating sets Pn in Theorem 2.2.1, so

that we need a sharper control on the tail of the distribution H of M to establish the bias

condition (2.2.4). Since we take kn ' (log n)1/γ to account the second part of (2.2.3), we

must calibrate H according to the ill-posedness of the problem; indeed the more difficult

the problem (larger γ) the thinner tails we require.

From a frequentist perspective, it is entirely reasonable to calibrate the prior according

to the inverse problem, since the operator A is assumed known. While from a pure

Bayesian perspective this may seem unduly restrictive, the dependence of the prior on the

ill-posedness factor γ seems reasonable in this instance, given that the prior already makes

implicit use of knowledge of the operator A through the choice of a diagonalizing basis. To

the best of our knowledge, the Bayesian procedures thus far analysed from a frequentist

perspective in both the mildly and severely ill-posed settings [52, 53, 54] all make strong

use of knowledge of A through the choice of diagonalizing basis.

In the general case where f0 ∈ Hβ, the dominating behaviour of the bias means we

need a more careful control of the approximation error. We therefore assume that the

density q is a standard Gaussian distribution. Note that α in the following proposition

corresponds to the Sobolev smoothness of a prior element.

Proposition 2.3.4. Suppose that the true function f0 is in Hβ(H1) for some β > 0 and

that A satisfies Condition (S). Suppose that the prior Π satisfies h(m) ≥ B1e
−bmγ+1

for all

m ≥ 1 and that 1−H(m) ≤ B2 exp(−bmγ+1) as m→∞ for some constants B1, B2, b > 0.

Suppose moreover that the density q is standard Gaussian and that the scale parameters

satisfy τk = (1 + k2)−α/2−1/4 for some α > γ/2. Then for a sufficiently large constant

C > 0,

Π

(
f ∈ H1 : ||f − f0||1 > C (log n)

− (α−γ/2)∧β
γ

∣∣∣∣Y )→ 0

in Pf0-probability as n→∞.

Note that the two conditions on H are mutually satisfiable and that the exponential

tails used in Propositions 2.3.1 and 2.3.2 satisfy this tail condition corresponding to γ = 0.

The upper bound for 1 − H is again needed to control the approximating sets Pn as in

Proposition 2.3.3, while the lower bound on h is need to ensure the prior puts sufficient

mass at the truth to verify (2.2.5). In the severely ill-posed case, oversmoothing the prior

by a factor of γ/2 yields the minimax rate of convergence. This factor increases with

the ill-posedness of the problem and arises from the lower bounds used for the small-ball

probability of Af . The lack of adaptation in this case results from the combination of the

constraints (2.2.3) and (2.2.4), which are more stringent in the dominating bias case.
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2.3.2 Gaussian priors

Consider now the conjugate situation where we take Π to be a Gaussian measure on H1.

The conjugate situation provides a canonical example in that the posterior distribution

can be computed explicitly in this situation, and so provides a useful reference point for

the accuracy of our approach. Recall that a Gaussian distribution has support equal to the

closure of its reproducing kernel Hilbert space (RKHS) H (see [83] for more details); since

the posterior has the same support, consistency is only achievable when Af0 is contained

in this set.

A Gaussian distribution N(ν,Λ) on H1 is characterized by a mean element ν ∈ H1 and

a covariance operator Λ : H1 → H1, which is a positive semi-definite, self-adjoint and trace

class linear operator. A random element G in H1 has N(ν,Λ) distribution if and only if

the stochastic process (〈G, h〉1 : h ∈ H1) is a Gaussian process with

E〈G, h〉1 = 〈ν, h〉1, cov(〈G, h〉1, 〈G, h′〉1) = 〈h,Λh′〉1.

We now take the prior to be a mean-zero Gaussian distribution so that f ∼ Π = N(0,Λ).

We shall make the following assumption as in [53, 54].

Condition 3. Suppose that the operators A∗A and Λ have the same set of eigenvectors

{ek} with eigenvalues {ρ2
k} and {τ2

k} respectively, with τ2
k = (1+k2)−α−1/2 and ρk satisfying

either Condition (M) or (S) as specified.

The parameter α represents the smoothness of the prior in that f ∈ Hs(H1) for all s < α

almost surely. In particular, E ||f ||2Hs =
∑∞

k=1(1 + k2)s−α−1/2 < ∞ if and only if s < α.

The mildly ill-posed case is dealt with in [53] using the conjugacy of the prior and we

recover the same rates using our testing approach combined with the results of [82]. We

firstly obtain the results of Theorem 4.1 of [53] in the case where the prior has no additional

scaling (which could be treated similarly).

Proposition 2.3.5. Suppose that A satisfies Condition (M), that f0 ∈ Hβ(H1) for some

β > 0, and assign f the Gaussian prior distribution N(0,Λ), where Λ satisfies Condition

3. Then for a sufficiently large constant C > 0,

Π
(
f ∈ H1 : ||f − f0||1 > Cn

− α∧β
2p+2α+1

∣∣∣Y )→ 0

in Pf0-probability as n→∞.

We therefore obtain the minimax rate of convergence only when the prior smoothness

matches the true unknown smoothness. While this prior is not adaptive, it is reassuring

that if the true smoothness is known then the optimal rate of convergence is attainable.

Given that this result is obtained using the testing approach introduced in [36], it should

be possible to apply the ideas of [84] in using a Gaussian random field with inverse Gamma
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bandwidth to construct an adaptive Gaussian prior. However, we do not pursue such an

argument here since it is beyond the scope of the present thesis. Consider now the severely

ill-posed analogue.

Proposition 2.3.6. Suppose that A satisfies Condition (S), that f0 ∈ Hβ(H1) for some

β > 0, and assign f the Gaussian prior distribution N(0,Λ), where Λ satisfies Condition

3 for some α > γ/2. Then for a sufficiently large constant C > 0,

Π

(
f ∈ H1 : ||f − f0||1 > C (log n)

− (α−γ/2)∧β
γ

∣∣∣∣Y )→ 0

in Pf0-probability as n→∞.

A gap arises in our rates when the prior undersmooths (i.e. β+ γ/2 < α), since in the

case of the heat equation (γ = 2), [54] obtain rate (log n)−
α∧β
2 . This gap appears to arise

in Lemma 2.5.2 from our bound for the covering number of the unit ball of the RKHS of

Af , which is used to lower bound the small-ball probability of Af using the techniques

of [57]. It may be possible to obtain a sharper result through a more careful study of the

small ball probability, but at present this lower bound seems difficult to improve and so

this gap may be an artefact of our proof.

2.3.3 Uniform wavelet series

The approach used in this section can be generalized to any band-limited orthonormal basis

for a general inverse problem in the sense of Condition 1. However, for ease of exposition,

we restrict ourselves to the specific case of periodic deconvolution using wavelets. There-

fore, consider the case of deconvolution under the standard white noise model on [0, 1]

described in Section 1.2.2 so that A is given by (1.2.2) with SVD given by the Fourier

basis. Suppose that we have an a-priori belief that the true function f0 satisfies some

Hölder smoothness condition rather than a Sobolev condition. We shall expand upon the

uniform wavelet series introduced in [41] by creating a hierarchical prior that uniformly

distributes the wavelet coefficients on a Hölder ball of random radius.

Let (Φ,Ψ) denote the Meyer scaling and wavelet function (see [65] for more details).

As usual, define the dilated and translated wavelet at resolution level j and scale position

k/2j by Φjk(x) = 2j/2Φ(2jx − k), Ψjk(x) = 2j/2Ψ(2jx − k) for j, k ∈ Z. The system of

wavelet functions provides a multiresolution analysis of L2(R). By periodizing the wavelet

functions

φjk(x) =
∑
m∈Z

Φjk(x+m), ψjk(x) =
∑
m∈Z

Ψjk(x+m),

we obtain a natural multiresolution analysis for periodic functions in L2([0, 1]). We thus
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have the following expansion for any periodic function f ∈ L2([0, 1]):

f =
2j0−1∑
k=0

pj0kφj0k +
∞∑
l=j0

2l−1∑
k=0

γlkψlk,

where the wavelet coefficients are given by pjk = 〈f, φjk〉L2 and γlk = 〈f, ψlk〉L2 .

Meyer wavelets are band limited: in particular the Fourier transform FR[Ψ](w) =∫
R Ψ(x)e−2πiwxdx over R satisfies supp(F [Ψ]) ⊂ {w : |w| ∈ [1/3, 4/3]}. This implies that

the periodized wavelets are themselves band-limited with supp(FT[ψ]) ⊂ Z ∩ {w : |w| ∈
[1/3, 4/3]} (c.f. Theorem 8.31 in [32]), where FT[ψ](m) =

∫ 1
0 ψ(x)e−2πimxdx denotes the

mth Fourier coefficient of ψ. In particular, each wavelet function has finite Fourier series

and so the periodized Meyer wavelet basis satisfies Condition 1. As mentioned in the in-

troduction, band-limited wavelets have been employed to great effect in the deconvolution

problem by a number of authors (see for example [48, 69] for references).

A convenient notion of smoothness is given by the Besov scale of function spaces.

Definition 3. Let φ, ψ denote the periodized Meyer wavelets described above, and ᾱj0k(f) =∫ 1
0 φj0kf and β̄lk(f) =

∫ 1
0 ψlkf denote the wavelet coefficients of f ∈ Lp([0, 1]). The Besov

space Bs
pq([0, 1]) is defined as the set of functions {f ∈ Lp([0, 1]) : ||f ||s,p,q <∞} where

||f ||s,p,q = ||ᾱj0(·)||p +

 ∞∑
l=j0

(
2l(s+1/2−1/p)||β̄l(·)(f)||p

)q1/q

with the obvious modification in the case q =∞.

We note some standard embeddings and identifications. For Cs([0, 1]) the Hölder(-

Zygmund when s ∈ N) spaces, we have Bs
∞∞([0, 1]) = Cs([0, 1]), while Bs

22([0, 1]) =

Hs
2([0, 1]) where Hs

2([0, 1]) are the standard L2-Sobolev spaces.

In [41], it is assumed that a quantitative upper bound is known on the Cα-norm of

the unknown function. We shall relax this to the case where it is simply known that

||f0||Cα <∞. A natural way to circumvent this problem is to treat the unknown radius B

of our Hölder ball as a hyperparameter and assign to it a prior distribution, thus creating

a hierarchical model. Assign to B a probability distribution H, which for simplicity we

restrict to the natural numbers N, with probability mass function h. Given B, we then

consider the periodic function

Uα(x) = uφ(x) +

∞∑
l=0

2l−1∑
k=0

2−l(α+1/2)ulkψlk(x),

where u, uk ∼ U(−B,B) are i.i.d.. We then have that Uα ∈ Cα([0, 1]) = Bα
∞∞([0, 1])

almost surely and in particular ||Uα||Bα∞∞ ≤ B. Denote the law of Uα given B by Πα,B so
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that our full prior can be expressed as

Πα,H =

∞∑
r=1

h(r)Πα,r,

giving a sieve-type prior. We consider only the mildly ill-posed case.

Proposition 2.3.7. Suppose that A is of the form (1.2.2) and satisfies Condition (M)

and that f0 is periodic and in Cβ([0, 1]) for some β > 0. Suppose that the distribution H

satisfies h(r) ≥ e−Dr
ν

for all r ∈ N and 1−H(r) . e−Dr
v

as r → ∞ for some constants

D > 0 and 1/α < ν ≤ ∞. Then there exists a finite constant C such that

Πα,H (f ∈ P : ||f − f0||L2 ≥ Cξn|Y )→ 0

in Pf0-probability as n→∞, where

ξn =

 n
− α−1/ν

2p+2(α−1/ν)+1 if α < β + 1
ν

n
− β

2p+2β+1 (log n)η if α = β + 1
ν

,

where η = (2p+1)(p+β)
2p+2β+1 . If H satisfies the sharper tail condition 1 − H(r) . exp

(
−eDrν

)
as r →∞ for some constants D > 0 and ν > 0, then the rate improves to

ξn = n
− α

2p+2α+1 (log n)η
′

for all α ≤ β, where η′ = (2p+1)((p+α)∨(1/ν))
2p+2α+1 .

As well as the prior smoothness, the thickness of the tail of H, as measured by ν, affects

the rate. When α < β + 1
ν , we attain the optimal rate of convergence for a (α − 1/ν)-

smooth function, that is we lose 1/ν degrees of smoothness. This is entirely due to the

bias constraint (2.2.4): the bias of a typical element arising from Πα,B is proportional

to B, and the approximation errors therefore grow on average with the thickness of the

tail of H. This penalty disappears (or is relegated to logarithmic terms) if we take H

to have compact support (ν = ∞) or a double exponential tail. We note that the above

framework includes the case where we take B deterministic, corresponding to H = δB

with ν =∞. We obtain the minimax rate of convergence, up to logarithmic terms, only if

the prior smoothness matches the underlying smoothness of f0 up to the correction term
1
ν . Finally, note that if we take ν =∞ and the prior oversmooths the true parameter f0,

then we do not have posterior consistency since f0 does not lie in the support of Πα,H .

The assumptions on H mirror those sometimes placed on the prior distribution of the

scale parameter in a Dirichlet mixtures of normal distributions [38]. Our results therefore

mirror those in Theorem 1 of [38] in that we lose a factor in our rates due to the hierarchical

prior needing to be able to approximate the true parameter f0. We finally note that a sharp
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rate is also only attained in that situation when the hyperprior on the scale parameter has

compact support.

2.4 Proof of Theorem 2.2.1

A key step in the proof of Theorem 2.2.1 is the construction of nonparametric tests for

suitably separated alternatives in H1. The tests are constructed based on the norm of

a simple plug-in estimator of f0, which is then split using a standard bias-variance de-

composition. We require an exponential bound on the type-II error of our test and can

attain this using Borell’s inequality [13]. We can construct a suitable linear estimator for

f0 using band-limited (in the sense of the {ek}-basis) elements in a similar fashion to the

deconvolution density estimators based on Fourier techniques studied in [48] and [69].

Suppose that {φk} is an orthonormal basis of H1 satisfying Condition 1. Writing

φk,i = 〈φk, ei〉1 and using that {gk} is the conjugate basis to {ek} for A,

〈f, φk〉1 = 〈f,
∑
i

φk,iρ
−1
i A∗gi〉1 = 〈Af,

∑
i

φk,iρ
−1
i gi〉2 =: 〈Af, φ̃k〉2,

where

φ̃k =
∑
i

ρ−1
i φk,igi.

Recall that by Condition 1, only finitely many of the φk,i are non-zero. In particular,

note that if φk = ek, then we simply have φ̃k = ρ−1
k gk. In this way, we derive a (not

necessarily orthonormal) basis of the range of A that is conjugate to {φk}. We can therefore

express the coordinates of f in the {φk} basis of H1 in terms of the action of {φ̃k} on Af .

Considering this action, define

ỹk := Yφ̃k = 〈f, φk〉1 +
1√
n
Z̃k,

where Z̃k = Zφ̃k are (not necessarily independent) mean-zero Gaussian random variables

with covariance EZ̃kZ̃l = 〈φ̃k, φ̃l〉2. Thus the sequence {ỹk} provides an unbiased estimator

of the coefficients of the true regression function f in the basis {φk}. The sequence (Z̃k)

is independent if and only if {φ̃k} forms an orthogonal sequence, which is the case when

φk = ek. This suggests a natural linear estimator of f :

fn =

kn∑
k=1

ỹkφk,

where the resolution level kn is to be specified. Recall that we write Pk for the orthogonal

projection operator onto the linear span of {φl : 1 ≤ l ≤ k}. The estimator fn then
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decomposes immediately into its bias and variance parts

fn = Pkn(f) +
1√
n

kn∑
k=1

Z̃kφk.

We now construct an exponential inequality for the fluctuations of the random part of

fn, that is the centred term fn − Efn, following the method presented in Section 3.1 of

[41]. By the Hahn-Banach theorem and the separability of H1, there exists a countable

and dense subset B0 of the unit ball of H′1 = H1 such that

||f ||1 = sup
h∈B0

|〈h, f〉1| .

The norm of the variance part of our estimator can thus be written

||fn − Efn||1 = sup
h∈B0

1√
n

∣∣∣∣∣
kn∑
k=1

Z̃k〈h, φk〉1

∣∣∣∣∣ =: sup
h∈B0

|G(h)|,

where G = (G(h) : h ∈ B0) is a centred Gaussian process indexed by a countable set.

Applying the version of Borell’s inequality for the supremum of Gaussian processes ([62],

page 134) gives

e−x
2/2σ2 ≥ P

(
sup
h∈B0

|G(h)| − E sup
h∈B0

|G(h)| ≥ x
)

= P (||fn − Efn||1 − E ||fn − Efn||1 ≥ x) ,

(2.4.1)

where σ2 = suph∈B0
EG(h)2 is the weak variance of G. By Jensen’s inequality, the expec-

tation can be controlled as

E ||fn − Efn||1 ≤
1√
n

(
kn∑
k=1

EZ̃2
k

)1/2

=
1√
n

(
kn∑
k=1

||φ̃k||22

)1/2

.

Recall the definitions (2.2.1) and (2.2.2) of the sets Ak and quantities δk. Since the {δk}
form a decreasing sequence

||φ̃k||22 =
∑
i∈Ak

ρ−2
i φ2

k,i ≤
1

δ2
k

∑
i∈Ak

φ2
k,i ≤

1

δ2
kn

,

so that

E ||fn − Efn||1 ≤
√
kn

δkn
√
n
.
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Considering the weak variance σ2, we have that for h ∈ B0,

nEG(h)2 =

kn∑
k=1

kn∑
l=1

〈h, φk〉1〈h, φl〉1EZ̃kZ̃l

=

kn∑
k=1

kn∑
l=1

〈h, φk〉1〈h, φl〉1〈φ̃k, φ̃l〉2 =

∣∣∣∣∣
∣∣∣∣∣
kn∑
k=1

〈h, φk〉1φ̃k

∣∣∣∣∣
∣∣∣∣∣
2

2

.

While the basis {φ̃k} is in general not orthogonal, it is sufficient that each finite sequence

forms a Riesz sequence (whose constants vary with the number of terms). Since the Ak’s

form an increasing sequence of sets and using the definition of φ̃k,∣∣∣∣∣
∣∣∣∣∣
kn∑
k=1

〈h, φk〉1φ̃k

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣∣
∣∣∣∣∣∣
kn∑
k=1

〈h, φk〉1
∑
i∈Ak

ρ−1
i φk,igi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

=
∑
i∈Akn

(
kn∑
k=1

〈h, φk〉1ρ−1
i 〈φk, ei〉1

)2

≤ 1

δ2
kn

∞∑
i=1

∣∣∣∣∣
〈

kn∑
k=1

〈h, φk〉1φk, ei

〉
1

∣∣∣∣∣
2

=
1

δ2
kn

∣∣∣∣∣
∣∣∣∣∣
kn∑
k=1

〈h, φk〉φk

∣∣∣∣∣
∣∣∣∣∣
2

1

≤ 1

δ2
kn

||h||21 .

Combining these yields

σ2 ≤ 1

nδ2
kn

sup
h∈B0

||h||21 ≤
1

nδ2
kn

.

Substituting these bounds into Borell’s inequality gives

P
(
||fn − Efn||1 ≥ x+

√
kn

δkn
√
n

)
≤ exp

(
−1

2
nδ2

knx
2

)
,

which, upon letting x =
√

2Lεn
δkn

for some constant L, gives

P

(
||fn − Efn||1 ≥

1

δkn

(
√

2Lεn +

√
kn
n

))
≤ e−Lnε2n .

Since kn ≤ cnε2
n for some constant c > 0, we have that for all n ≥ 1,

P
(
||fn − Efn||1 ≥M

εn
δkn

)
≤ e−Lnε2n (2.4.2)

for some constant M = M(L, c) large enough.
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Proof of Theorem 2.2.1. By Theorem 2.5.3, it is sufficient to construct tests (indicator

functions) φn = φn(Y ; f0) such that

Ef0φn → 0, sup
f∈Pn:||f−f0||1≥Mξn

Ef (1− φn) ≤ e−(C+4)nε2n , (2.4.3)

where the constant C > 0 matches that in (2.2.5). Recall that we are testing the hypotheses

(2.1.2).

We can now consider the plug-in test φn(Y ) = 1 {||fn − f0||1 ≥M0ξn}, where the

constant M0 is to be selected below. Recall that we have assumed that the contraction

rate ξn satisfies εn
δkn
≤ cξn for some c > 0 and all n ≥ 1. The type-I error satisfies

Ef0φn = Pf0(||fn − f0||1 ≥M0ξn)

≤ Pf0(||fn − Ef0fn||1 ≥M0ξn − ||Ef0fn − f0||1).

By hypothesis, the bias of f0 satisfies ||Pkn(f0)− f0||1 ≤ Dξn for some D > 0. Letting

L1 > 0 be some constant, we can take M0 sufficiently large so that applying (2.4.2) gives

Ef0φn ≤ Pf0
(
||fn − Ef0fn||1 ≥ (M0 −D)ξn

)
≤ e−L1nε2n → 0

as n→∞.

Now consider f ∈ Pn such that ||f − f0||1 ≥ Mξn. Letting L2 > 0 be some constant,

we can pick M sufficiently large so that applying the triangle inequality and (2.4.2),

Ef (1− φn) = Pf (||fn − f0||1 ≤M0ξn)

≤ Pf (||f0 − f ||1 − ||f − Efn||1 − ||Efn − fn||1 ≤M0ξn)

≤ Pf ((M − C −M0)ξn ≤ ||Efn − fn||1) ≤ e−L2nε2n ,

since by assumption supf∈Pn ||f − Efn||1 ≤ C2ξn. This verifies (2.4.3).

2.5 Other proofs

Before proceeding, we recall some facts that will be used when applying Theorem 2.2.1 to

the examples presented in Section 2.3. Recall that both the sieve and Gaussian priors of

Sections 2.3.1 and 2.3.2 are defined directly in the spectral basis {ek}. For simplicity, we

assume below that the singular values {ρk} are arranged in decreasing order so that the

ill-posedness factor (2.2.2) takes the simple form δk = ρk.

Establishing contraction results in these cases therefore reduces to verifying the con-

ditions of Theorem 2.2.1: the bias conditions on the prior (2.2.4) and true parameter f0,

the small-ball condition (2.2.5) and balancing the rate (2.2.3). Recall also that in the

mildly ill-posed case (Condition (M) with regularity p), it is optimal to balance the terms
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in (2.2.3) so that we take resolution level kn ' nε2
n yielding contraction rate ξn ' npε2p+1

n .

In the severely ill-posed case, (2.2.3) is generally a strict inequality, which must be verified

in practice.

2.5.1 Proofs of Section 2.3.1 (Sieve priors)

Proof of Proposition 2.3.1. By hypothesis, the true regression function takes the form

f0 =
∑m0

k=1 f0,kek for some m0 ∈ N. We first verify the small-ball condition (2.2.5).

Let f be a finite series generated from Π, conditionally on M = m0. As noted in Section

2.1.2, since A satisfies Condition (M), it is sufficient to prove (2.1.5) to establish (2.2.5).

Therefore,

P (||f − f0||H−p ≤ εn) = P

(
m0∑
k=1

|fk − f0,k|2(1 + k2)−p ≤ ε2
n

)

≥ P
(
|fk − f0,k|2(1 + k2)−p ≤ ε2

n

m0
, for k = 1, ...,m0

)
=

m0∏
k=1

P

(
|fk − f0,k| ≤

εn(1 + k2)p/2
√
m0

) (2.5.1)

by the independence of the fk’s.

Note that if q satisfies Condition 2 with 0 ≤ w < 1, then it also satisfies the same

condition with w = 1 and possible different constants D′, d′ > 0 instead of D, d > 0.

In what follows, we therefore take w ≥ 1. Now if X is complex-valued with density

q : C→ [0,∞) satisfying Condition 2, then for all z ∈ C and t > 0,

P (|X − z| ≤ t) ≥
∫ t

0

∫ 2π

0
De−d|z+re

iθ|wdr dθ

≥ 2πD

∫ t

0
e−d(|z|+r)wdr ≥ 2πDte−d(|z|+t)w .

(2.5.2)

If X is real-valued, then the same estimate holds without the π term; we shall therefore

stick to the real-valued case, but note that everything below holds also in the complex

case with slightly different constants.

Let αn,k = εn(1+k2)p/2√
m0

and note that for fixed k, αn,k → 0 as n → ∞ since εn → 0.

Thus there exists E > 0 such that αn,k ≤ E for all 1 ≤ k ≤ m0 and n ≥ 1. Using (2.5.2),
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we lower bound the right-hand side of (2.5.1) by

m0∏
k=1

2D
αn,k
τk

e−dτ
−w
k (|f0,k|+αn,k)w

≥ C1 exp

(
m0∑
k=1

log

(
αn,k
τk

)
− d

m0∑
k=1

τ−wk 2w−1
(
|f0,k|w + αwn,k

))

≥ C2 exp

(
m0 log εn +

m0∑
k=1

log
(1 + k2)p/2

τk

)
≥ C3e

C4 log εn ,

where we have used that (a+ b)w ≤ 2w−1(aw + bw) for a, b ≥ 0 and w ≥ 1. Now since m0

is fixed and h(m0) > 0 by assumption,

Π(f ∈ P : ||Af −Af0||2 ≤ εn) ≥ h(m0)C3e
C4 log εn ≥ eC5 log εn

for some constant C5 > 0. The choice εn =
(

logn
n

)1/2
then satisfies (2.2.5).

Consider now the bias constraint (2.2.4). Take kn to be an integer satisfying L1nε
2
n ≤

kn ≤ L2nε
2
n for some constants L1, L2, and let Pn = {f ∈ H1 : f =

∑kn
k=1 fkek}. By the

assumptions on h, we have Π(Pcn) ≤ Ce−bkn ≤ e−Lnε
2
n , where L is a constant that can

be made arbitrarily large by choosing L1 sufficiently large. Now for all f ∈ Pn, we have

the trivial bias result ||f − Pkn(f)||1 = 0, so that choosing L large enough to match the

constant used to establish (2.2.5) above, we verify (2.2.4). Finally, for the true function

f0 the bias condition follows immediately since ||f0 − Pknf0||1 = 0 for kn ≥ m0. Applying

Theorem 2.2.1 with

ξn =
εn
δkn
≤ Cεnkpn = C ′npε2p+1

n = C ′
(log n)p+1/2

√
n

completes the proof.

Proof of Proposition 2.3.2. By the triangle inequality

||f − f0||H−p ≤ ||f − Pjn(f0)||H−p + ||Pjn(f0)− f0||H−p ,

where jn is to be selected below. Since f0 ∈ Hβ,

||Pjn(f0)− f0||2H−p =

∞∑
k=jn+1

|f0,k|2(1 + k2)−p ≤ Cj−2(p+β)
n ||f0||2Hβ .
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Taking jn ' ε
− 1
p+β

n gives

P (||f − f0||H−p ≤ εn) ≥ P
(
||Pjn(f0)− f ||H−p ≤ c

′εn
)

for some c′ > 0. Let αn,k = εn(1+k2)p/2√
jn

, and suppose that f is a finite series in the {ek}
basis of degree jn. Then using (2.5.2) as in the proof of Proposition 2.3.1,

P
(
||f − Pjn(f0)||H−p ≤ εn

)
≥

jn∏
k=1

D′αn,kτ
−1
k e−dτ

−w
k (|f0,k|+αn,k)w

≥ exp

(
jn logC1 +

jn∑
k=1

log

(
αn,k
τk

)

−C2

jn∑
k=1

τ−wk
(
|f0,k|w + αwn,k

))
.

(2.5.3)

By the hypotheses on {τk},

jn∑
k=1

log
(
τ−1
k (1 + k2)p/2

)
≥ −E1jn log jn,

for some E1 > 0. Since f0 ∈ Hβ, we have |f0,k| ≤ (1 + k2)−β/2 ||f0||Hβ ≤ C(f0)k−β for all

k ≥ 1. Moreover, for k ≤ jn, note that

αn,k ' j−p−β−1/2
n (1 + k2)p/2 ≤ E2j

−β−1/2
n ,

for some E2 > 0. Substituting these bounds into (2.5.3) and using that τk ≥ B3(1 +

k2)−β0/2(log k)−1/w yields the lower bound

exp

(
C3jn log εn − C4jn log jn +

jn∑
k=1

log

(
(1 + k2)p/2

τk

)

−C5

jn∑
k=1

τ−wk (k−βw + j−(β+1/2)w
n )

)

≥ exp

(
−C6jn log jn − E1jn log jn − C7

jn∑
k=1

log k

)
≥ exp (−C8jn log jn) ,

where we have also used that log εn ' − log jn. In conclusion, using the lower bound on

h, we have shown that

P(||f − f0||H−p ≤ εn) ≥ h(jn)e−C9jn log jn ≥ e−C10ε
−1/(p+β)
n log 1

εn .

50



2.5. Other proofs

Condition (2.2.5) is then satisfied by the choice εn =
(

logn
n

) p+β
2p+2β+1

.

Again take Pn = {f =
∑kn

k=1 fkek}, where kn is an integer satisfying L1nε
2
n ≤ kn ≤

L2nε
2
n. Proceeding as above, we get ||f − Pkn(f)||1 = 0 for all f ∈ Pn and Π(Pcn) ≤ e−Lnε2n

for a suitable constant L, thereby verifying (2.2.4). This yields contraction rate

ξn =
εn
δkn
≤ Cεn(nε2

n)p = C(log n)
(2p+1)(p+β)
2p+2β+1 n

− β
2p+2β+1 .

Finally, for the true regression element f0,

||f0 − Pkn(f0)||1 ≤ Ck
−β
n ||f0||Hβ ' (nε2

n)−β = (log n)
− 2β(p+β)

2p+2β+1n
− β

2p+2β+1 ≤ ξn

as required. Applying Theorem 2.2.1 completes the proof.

Proof of Proposition 2.3.3. By exactly the same reasoning as in the proof of Proposition

2.3.1, (2.2.5) is satisfied with εn =
√

(log n)/n. Take kn to be an integer satisfying

(L1 log n)1/(γ+1) ≤ kn ≤ (L2 log n)1/(γ+1) for some constants L1 and L2. Again taking

Pn =
{
f =

∑kn
k=1 fkek

}
yields Π(Pcn) . e−bk

γ+1
n ≤ e−Lnε

2
n for some constant L that can

be made arbitrarily large by increasing L1. This verifies (2.2.4) and the bias condition on

f0 follows exactly as above. Since the bias in both cases is equal to 0 for sufficiently large

n, we can apply Theorem 2.2.1 with contraction rate

ξn =
εn
δkn
≤ Cεn(1 + k2

n)p0/2ec0k
γ
n ≤ C ′ (log n)

1
2

+
p0
γ+1 ec0(L2 logn)γ/(γ+1)

√
n

=
wn√
n
.

Proof of Proposition 2.3.4. The proof is similar to that of Proposition 2.3.2, though we

must notably keep more careful track of the constants involved due to the exponentiation

resulting from the severe ill-posedness. If A satisfies Condition (S), consider the norm

induced analogously to the Sobolev norm H−p in the mildly ill-posed case:

||f ||2A :=
∞∑
k=1

|fk|2(1 + k2)−p1e−2c0kγ .

Taking j
−(p1+β)
n e−c0(jn+1)γ ' εn and using the same truncation argument as in the proof

of Proposition 2.3.2 gives ||Pjn(f0)− f0||A ≤ cεn for some constant c > 0. Thus for f

a finite series of degree jn in the {ek} basis (and using that q standard normal satisfies

Condition 2 for w = 2), we can lower bound the probability P
(
||Pjn(f0)− f ||A ≤ cε

)
by

exp

(
jn logC1 +

jn∑
k=1

log

(
α̃n,k
τk

)
− C2

jn∑
k=1

τ−2
k

(
|f0,k|2 + α̃2

n,k

))
, (2.5.4)
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where α̃n,k = j
−1/2
n εn(1 + k2)p1/2ec0k

γ ≤ Cj
−β−1/2
n ec0(kγ−(jn+1)γ) ≤ Cj

−β−1/2
n for k ≤ jn

and by the definition of jn. Now since τk = (1 + k2)−
α
2
− 1

4 and f0 ∈ Hβ, we have that

jn∑
k=1

log(τ−1
k α̃n,k) ≥ jn log εn −

1

2
jn log jn ≥ E1j

γ+1
n ,

j∑
k=1

τ−2
k |f0,k|2 =

j∑
k=1

k2α+1−2βk2β|f0,k|2 ≤ j(2α−2β+1)∨0 ||f0||2Hβ ,

jn∑
k=1

τ−2
k α̃2

n,k ≤ Cj−2(β+1/2)
n

jn∑
k=1

k2(α+1/2) ≤ E2j
1+2(α−β)
n

for some constants E1, E2 > 0. Substituting these into (2.5.4) gives the lower bound

exp
(
−C3j

1+θ
n

)
, where θ = max (γ, 2(α− β)). In conclusion, the small ball probability

satisfies

P (||Af −Af0||2 ≤ εn) ≥ h(jn)e−C3j
1+θ
n ≥ B1e

−C4j
1+θ
n ≥ e−C5

(
log 1

εn

) 1+θ
γ

,

so that (2.2.5) is satisfied by the choice εn = (log n)
1+θ
2γ n−1/2.

Take kn to be an integer satisfying (a1 log n)1/γ ≤ kn ≤ (a2 log n)1/γ for some constants

a1 and a2. For this choice of kn, (2.2.3) is verified for the choice ξn = (log n)
−α−θ/2

γ :

εn
δkn
≤ Dεn(1 + k2

n)p0/2ec0k
γ
n ≤ D′(log n)

2p0+γ+1
2γ e(c0a2−1/2) logn = o (ξn)

as long as we take c0a2 < 1/2. Recall that for f ∈ supp(Πm) we have Karhunen-Loève

expansion f =
∑m

k=1 τkζkek, where {ζk} are i.i.d. standard normal random variables.

Thus for any such f , we can bound the bias by ||Pkn(f)− f ||21 ≤
∑∞

k=kn+1 τ
2
k ζ

2
k . We verify

(2.2.4) by applying Borell’s inequality in a similar fashion to that used in the proof of

Theorem 2.2.1. Using the same notation, write ||Pkn(f)− f ||1 = suph∈B0
Gn(h), where

B0 is a weak*-dense subset of {h ∈ H1 : ||h||1 ≤ 1} and Gn is the Gaussian processes

Gn(h) = 〈h, Pkn(f)− f〉1 =
∞∑

k=kn+1

τkζk〈h, ek〉1.

We can control the bias and weak variance terms as follows. Using that
∑∞

k=kn+1 k
−w ≤

k1−w
n /(w−1) for w > 1 and applying Jensen’s inequality to the bias gives E ||Pkn(f)− f ||1 ≤√∑∞

k=kn+1 τ
2
k ≤ k

−α
n . For the variance, note that for any h ∈ B0,

EGn(h)2 =

∞∑
k=kn+1

τ2
k |〈h, ek〉1|2 ≤ τ2

kn+1 ||h||
2
1 ≤ τ

2
kn ' k

−2α−1
n .
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Using these bounds, apply Borell’s inequality for the supremum of a Gaussian process as

in (2.4.1) with x =
√

2Lnε2
nk
−2α−1
n to obtain

P
(
||Pkn(f)− f ||1 ≥ L

′
(
k−αn +

√
nε2

nk
−α−1/2
n

))
≤ e−Lnε2n , (2.5.5)

where L′ is some constant that increases with L. Substituting in our choices of εn and kn

yields that for n ≥ N ,

P
(
||Pkn(f)− f ||1 ≥M(N,L)(log n)

− 2α−θ
2γ

)
≤ e−Lnε2n ,

where the constant M increases with L. Let Pn = {f ∈ H1 : ||Pkn(f)− f ||1 ≤ Mξn}
for a sufficiently large constant M , so that Π(Pcn) ≤ e−Lnε

2
n for ξn = (log n)

−α−θ/2
γ . This

is satisfied by our above choice of εn and so, choosing L sufficiently large to match the

constant obtained in the small-ball probability above, this verifies (2.2.4). Lastly, as

f0 ∈ Hβ, then ||Pkn(f0)− f0||1 ≤ Ck−βn = O(ξn) exactly as above. Apply Theorem 2.2.1

to finish.

2.5.2 Proofs of Section 2.3.2 (Gaussian priors)

The small-ball asymptotics of a Gaussian measure in a Hilbert space have been exactly

characterized by Sytaya [78] and using the techniques of large deviations in [29]. However,

while exact, the asymptotic expression is rather complicated and relies on the solution

of an implicit equation that does not yield an explicit rate in terms of the radius of the

shrinking ball. We therefore obtain suitable lower bounds using either direct lower bound

methods [44] or the link with the metric entropy of the unit ball of the RKHS [57] (both

of which yield the same result).

As mentioned above, a Gaussian distribution has support equal to the closure of its

RKHS H and so posterior consistency is only achievable when Af0 is contained in this set.

Since f is a Gaussian random variable in a Hilbert space with Karhunen-Loève expansion

f =d
∑

k τkζkek, where the {ζk} are i.i.d. standard normal random variables, we can easily

characterize its RKHS in terms of ellipsoids (see [83] for more details). Letting Hf denote

the RKHS of f , we have that if a =
∑

k akek, then

a ∈ Hf ⇔ ||a||2Hf :=
∞∑
k=1

a2
k

τ2
k

<∞.

The RKHS norm therefore consists of a weighted `2-norm, weighting the eigenvectors of

Λ with the inverse of its eigenvalues. Recall that the concentration function of a Gaussian

random variable W in a Banach space (B, ||·||) with RKHS H is defined as

φw0(ε) := inf
h∈H:||h−w0||<ε

||h||2H − logP(||W || < ε). (2.5.6)
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By Theorem 2.1 of [82], choosing εn to satisfy φw0(εn) ≤ nε2
n is sufficient to obtain the

lower bound P(||W − w0|| ≤ 2εn) ≥ e−nε2n , and consequently establish (2.2.5).

We firstly establish upper bounds for the concentration function φAf0 of the Gaussian

random variable Af . When the prior oversmooths the true parameter, the approximation

error in φAf0(ε) dominates as ε→ 0, whereas when it undersmooths the centred small ball

probability dominates. This is quantified by the following lemma.

Lemma 2.5.1. Suppose that f ∼ N(0,Λ), where Λ satisfies Condition 3, and let f0 ∈
Hβ(H1) for some β > 0. Then Af is Gaussian random variable in the Hilbert space H2.

If A satisfies Condition (M), then Af has RKHS equal to Hp+α+1/2(H2) (where Hs(H2)

is the Sobolev scale with respect to {gk}) and the concentration function of Af satisfies

φAf0(ε) ≤ C

{
ε
− 2α−2β+1

p+β if β ≤ α
ε
− 1
p+α if β ≥ α

as ε→ 0 for some C = C(p, α, f0). If A satisfies Condition (S) then Af has RKHS equal

to

HAf =

{
b =

∞∑
k=1

bkgk ∈ H2 : ||b||2HAf =
∞∑
k=1

b2k(1 + k2)p0+α+1/2e2c0kγ <∞

}
and the concentration function of Af satisfies

φAf0(ε) ≤ C

{ (
log 1

ε

) 2α−2β+1
γ if β + γ

2 ≤ α(
log 1

ε

)1+1/γ
if β + γ

2 ≥ α

as ε→ 0 for some C = C(p0, γ, α, f0).

Proof. It is obvious that Af is a Gaussian element in H2 with Af ∼ N(0, AΛA∗). By

Condition 3, AΛA∗ has eigenvectors {gk} with corresponding eigenvalues {τ2
kρ

2
k}. Consider

firstly the case where A satisfies Condition (M). Using the above remark about Gaussian

measures in Hilbert spaces, we have that for any b =
∑∞

k=1 bkgk ∈ H2,

||b||2HAf =

∞∑
k=1

b2k
τ2
kρ

2
k

'
∞∑
k=1

b2k(1 + k2)p+α+1/2 = ||b||2Hp+α+1/2(H2) ,

so that HAf = Hp+α+1/2(H2).

Letting f0 =
∑∞

k=1 f0,kek, define hj =
∑j

k=1 ρkf0,kgk to be the projection of Af0 onto

its first j coordinates in the conjugate basis {gk}. Then

||hj −Af0||22 =

∞∑
k=j+1

ρ2
k|f0,k|2 ≤ C

∞∑
k=j+1

(1 + k2)−p|f0,k|2 ≤ C(f0, A)j−2p−2β,
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since f0 ∈ Hβ. Taking j ' ε−1/(p+β) gives ||hj −Af0||2 ≤ ε and

||hj ||2HAf ≤
j∑

k=1

τ−2
k f2

0,k ≤ C ′(f0, A)j(2α−2β+1)∨0 ' ε−
2α−2β+1
p+β

∧0
,

thereby giving a bound on the first term of φAf0 . For the second term we use the explicit

lower bound (4.5.2) from Example 4.5 in [44]:

P (||Af ||2 < ε) = P

( ∞∑
k=1

(1 + k2)−p−α−1/2ζ2
k < ε2

)
≥ Bερ(3−w) exp

(
−w(1 + ρ)ρε−2ρ

)
,

where ζk are i.i.d. standard normals, B > 0 is a constant, w = p + α + 1/2 and ρ =

(2w − 1)−1 = (2p+ 2α)−1. Using these values gives

φ0(ε) ≤ − logB − ρ(3− w) log ε+ w(1 + ρ)ρε−2ρ ≤ Cε−1/(p+α)

as ε → 0 for some constant C = C(p, α,B). Comparing these two rates, we see that

the approximation term dominates when β ≤ α while the centred small-ball term term

dominates when β ≥ α, thus giving the desired form for φAf0(ε).

In the case of Condition (S), substituting in the lower bounds for the eigenvalues {ρk}
gives the specified HAf . If we repeat the approximation argument above, taking hj with

j ' (log 1
ε )1/γ , then ||hj −Af0||2 ≤ ε and

||hj ||2HAf ≤
j∑

k=1

|f0,k|2(1 + k2)α+1/2 ≤ Cj(2α−2β+1)∨0 '
(

log
1

ε

) (2α−2β+1)∨0
γ

.

The centred small-ball probability can be dealt with using results on Gaussian processes

that link this quantity to the metric entropy of the unit ball of the RKHS [57]. Applying

Theorem 2 of [57] and using Lemma 2.5.2 below, we get φ0(ε) .
(
log 1

ε

)1+1/γ
. It is also

possible to derive this result using a careful rearrangement of the lower bounds proved in

[44]. Balancing these terms we have that this quantity dominates when α ≤ β + γ
2 and

the approximation term dominates otherwise, hence the result.

Lemma 2.5.2. Consider the RKHS HAf of Af under Condition (S) as described in

Lemma 2.5.1, and let KAf denote the unit ball of HAf . Then the covering number

N(KAf , ||·||H2
, ε) of KAf with the usual Hilbert space distance satisfies

logN(KAf , ||·||H2
, ε) .

(
log

1

ε

)1+1/γ

.

Using this result and Theorem 2 of [57], we obtain the bound − logP(||Af ||2 < ε) ≤
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C
(
log 1

ε

)1+1/γ
. This matches the bounds obtained in [20] when considering the general

setting of heat kernels (γ = 2) on manifolds.

Proof. Writing b =
∑∞

k=1 bkgk, we know that for any b ∈ KAf we have |bk| ≤ C(1 +

k2)−p0−α−1/2e−c0k
γ ≤ Ce−c0kγ , so that KAf is contained in the infinite rectangle

∞∏
k=1

[
−Ce−c0kγ , Ce−c0kγ

]
.

Taking J = D(log 1
ε )

1/γ for a suitable constant D, we that for k ≥ J , the width of the

above intervals is smaller that ε/2. Thus any point in the infinite rectangle is within ε/2 of

the finite dimensional cube X =
∏J
k=1

[
−Ce−c0kγ , Ce−c0kγ

]
and so it suffices to construct

an ε/2 cover for this latter set. By considering a J-dimensional cube, we see that it is

enough to cover this set by a considering a regular lattice with distance ε/(2
√
J) between

adjacent vertices. Therefore

N
(
X, ||·||eucl ,

ε

2

)
≤

J∏
k=1

2Ce−c0k
γ

ε/(2
√
J)

=

(
C ′
√
J

ε

)J
e−c0

∑J
k=1 k

γ
.

Now by a simple integral comparison test,
∑J

k=1 k
γ ≥ Jγ+1/(γ+ 1), so that the logarithm

of the right-hand side is bounded above by

C ′′J

(
log J + log

1

ε

)
− c0

Jγ+1

γ + 1
≤ C ′′′

(
log

1

ε

)1+1/γ

.

Proof of Proposition 2.3.5. Let us verify the small ball Condition (2.2.5). Let HAf denote

the RKHS of Af and φAf0 denote the concentration function of Af at Af0. Since Af is a

Gaussian random element in H2, we have by Theorem 2.1 of [82] that if Af0 is contained

in the H2-closure of HAf and εn satisfies φAf0(εn) ≤ nε2
n, then P (||Af −Af0||2 < 2εn) ≥

e−nε
2
n . By Lemma 2.5.1, the choice εn = n

− p+β∧α
2p+2α+1 satisfies this condition in both the

cases β ≥ α and β ≤ α, thereby verifying (2.2.5).

Recall that we have Karhunen-Loève expansion f =
∑∞

k=1 τkζkek, where {ζk} are i.i.d.

standard normal random variables. Proceeding as in the proof of Proposition 2.3.4 and

taking kn ' nε2
n in (2.5.5), we obtain that for n ≥ N ,

P
(
||Pkn(f)− f ||1 ≥M(L,N)(nε2

n)−α
)
≤ e−Lnε2n ,

where the constant M increases with L. Let Pn = {f ∈ H1 : ||Pkn(f)− f ||1 ≤ Mξn} for

a sufficiently large constant M , so that Π(Pcn) ≤ e−Lnε
2
n as long as (nε2

n)−α ≤ Cξn for

some C > 0. This is satisfied by our above choice of εn and so, choosing L sufficiently
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large to match the constant obtained in the small-ball probability above, this verifies

(2.2.4). Finally, since f0 ∈ Hβ, we again recover that ||Pkn(f0)− f0||1 ≤ Ck−βn ||f0||Hβ '
(nε2

n)−β, which is smaller than ξn = εn(nε2
n)p for our choice of εn. Applying Theorem

2.2.1 completes the proof.

Proof of Proposition 2.3.6. Consider firstly the case where β+ γ
2 ≤ α. As above, (2.2.5) is

verified if φAf0(εn) ≤ nε2
n. By Lemma 2.5.1, the choice εn = (log n)

α−β+1/2
γ n−1/2 satisfies

this condition. Now let kn be an integer satisfying (L1 log n)1/γ ≤ kn ≤ (L2 log n)1/γ for

some constants L1, L2, and which therefore satisfies kn ≤ cnε2
n for some constant c and

the above choice of εn. The quantity in the left-hand side of (2.2.3) then satisfies

εn
δkn
≤ Cεn(1 + k2

n)p0/2ec0k
γ
n ≤ C ′(log n)ηnL2c0−1/2 = o

(
(log n)−β/γ

)
as n → ∞ provided that L2c0 < 1/2. To verify (2.2.4), substitute our choices of εn and

kn into (2.5.5) to get

e−Lnε
2
n ≥ P

(
||Pkn(f)− f ||1 ≥ C(log n)

−α
γ + C ′(log n)

−β
γ

)
.

Since α ≥ β + γ
2 the second term is asymptotically larger, so that taking L sufficiently

large, we obtain the required exponential inequality (2.2.4) with rate (log n)−β/γ . Since

f0 ∈ Hβ, we have that exactly as above ||Pkn(f0)− f0||1 ≤ Ck
−β
n ≤ C ′(log n)−β/γ , so that

we can apply Theorem 2.2.1.

Consider now the case where β+γ
2 ≥ α. Arguing as above, the choice εn = (log n)

γ+1
2γ n−1/2

satisfies the small-ball condition (2.2.5) and for the bias we recover the exponential in-

equality

e−Lnε
2
n ≥ P

(
||Pkn(f)− f ||1 ≥ C(log n)

− (α−γ/2)
γ

)
.

By our choice of α, the above rate is larger than the bias of f0 and so yields the contraction

rate.

2.5.3 Proofs of Section 2.3.3 (Uniform wavelet series)

Since we are working the deconvolution setting described in Section 1.2.2 we firstly note

that the Sobolev scale with respect to the Fourier basis corresponds to the classical no-

tion of Sobolev smoothness on T, so that Hs(H1) = Hs([0, 1]). As mentioned above,

periodized Meyer wavelets are band limited and so satisfy Condition 1 which is needed

for Theorem 2.2.1. Moreover, since supp(FT[ψ]) ⊂ [−a, a] for some a > 0, we have by

the standard properties of the Fourier transform that the dilated and translated wavelets

satisfy supp(FT[ψjk]) ⊂ [−2ja, 2ja]. Recalling definition (2.2.2), we therefore have that
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under Condition (M),

δ2j = inf
m∈Z:|m|≤2ja

|FT[µ](m)| ≤ C(1 + 22j)−p/2.

Since the ill-posedness affects the rate ξn through (2.2.3), we see that using the periodized

Meyer wavelet basis rather than the SVD (Fourier basis) only affects the constants and

does not negatively affect the rate. In this section note that ||·||2 refers to the L2([0, 1])-

norm rather than the H2-norm.

Proof of Proposition 2.3.7. We firstly verify the small-ball condition (2.2.5). Consider

the case where α ≤ β. Using the wavelet characterization of the periodic Besov space

Bs
22([0, 1]) = Hs([0, 1]) for s ∈ R gives

||h||2Hs =

|ᾱ(h)|+

( ∞∑
l=0

(
2ls
∣∣∣∣β̄l·(h)

∣∣∣∣
`2

)2
)1/2


2

≤ 4 max

|ᾱ(h)|2,
∞∑
l=0

22ls
2l−1∑
k=0

β̄lk(h)2

 .

(2.5.7)

Let ᾱ, β̄lk denote the wavelet coefficients of f0 and note that if ||f0||Cβ ≤ B then |ᾱ| ≤ B
and |β̄lk| ≤ B2−l(β+1/2) for all l, k. By (2.5.7), we lower bound P(||f0 − Uα||H−p ≤ εn) by

P

max

|ᾱ− u|2,
∞∑
l=0

2−2lp
2l−1∑
k=0

|β̄lk − 2−l(α+1/2)ulk|2
 ≤ c1ε

2
n


= P

(
|ᾱ− u|2 ≤ c1ε

2
n

)
P

 ∞∑
l=0

2−2lp
2l−1∑
k=0

|β̄lk − 2−l(α+1/2)ulk|2 ≤ c1ε
2
n

 (2.5.8)

using the independence of u and the ulk’s. The first probability satisfies

P (|ᾱ− u| ≤
√
c1εn) ≥

(√
c1εn
2B

)
= ec2+log(εn/B) ≥ ec3 log(εn/B)

for some constant c3 = c3(Φ,Ψ). Let blk = 2l(β+1/2)β̄lk and pick J = J(n) as defined
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below. The second probability in (2.5.8) becomes

P

 ∞∑
l=0

2−l(2p+2β+1)
2l−1∑
k=0

|blk − 2−l(α−β)ulk|2 ≤ c1ε
2
n


≥ P

( ∞∑
l=0

2−2l(p+β) sup
0≤k<2l

|blk − 2−l(α−β)ulk|2 ≤ c1ε
2
n

)

≥ P

(
J∑
l=0

2−2l(p+β) sup
0≤k<2l

|blk − 2−l(α−β)ulk|2 + CB2
∞∑

l=J+1

2−2l(p+α) ≤ c1ε
2
n

)
.

Pick the truncation level J = J(n) so that B22−2J(p+α) ' ε2
n, that is 2J ' (εn/B)−1/(p+α).

Note that since |blk| ≤ B and α ≤ β, we can lower bound the individual probabilities via

P
(
|blk − 2−l(α−β)ulk| ≤ cεn

)
≥
( cεn

2l(β−α)+1B

)
> 0.

Then, choosing the constants defining J(n) appropriately, we have

P

(
J∑
l=0

2−2l(p+β) sup
0≤k<2l

|blk − 2−l(α−β)ulk|2 ≤ c1ε
2
n − c(p, α)B22−2J(p+α)

)

≥ P

(
max

0≤l≤J
sup

0≤k<2l
|blk − 2−l(α−β)ulk| ≤ c4εn

)

=

J∏
l=0

2l−1∏
k=0

P
(
|blk − 2−l(α−β)ulk| ≤ c4εn

)
≥

J∏
l=0

2l−1∏
k=0

( c4εn

2l(β−α)+1B

)
≥ exp

(
c5 log(εn/B)

J∑
l=0

2l − c6

J∑
l=0

l2l

)
≥ ec7(εn/B)−1/(p+α) log(εn/B),

for n ≥ N(p, α,B, ψ) and we have used that J ' − log(εn/B) in the last line. Using

(2.5.8) and that h(B0) > 0 for some B0 ≥ ||f0||Cβ , we have that for n ≥ N(p, α,B0, ψ),

P(||f0 − Uα||H−p ≤ εn) ≥ h(B0)ec3 log(εn/B0)ec7(εn/B0)−1/(p+α) log(εn/B0)

≥ ec8ε
−1/(p+α)
n log εn ,

(2.5.9)

so that (2.2.5) is satisfied by the choice εn '
(

logn
n

) p+α
2p+2α+1

.

Consider now the case β < α ≤ β + 1
ν , where we can establish (2.2.5) in a similar

fashion by using an approximation argument. Recall that f0 ∈ Cβ([0, 1]) and let hr be the

best H−p-approximation of f0 such that ||h||Cα ≤ r. Write hr = θ0φ+
∑∞

l=0

∑2l−1
k=0 θlkψlk,

where |θ| ≤ r and |θlk| ≤ r2−l(α+1/2), and recall that the wavelet coefficients of f0 satisfy

|β̄lk| ≤ B02−l(β+1/2) for B0 ≥ ||f0||Cβ . Let lr be the smallest integer such that 2lr(α−β) >
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r/B0, so that in particular θlk = β̄lk for all l < lr. Then

||f0 − hr||2H−p ≤
∞∑
l=lr

2−2l(p+β)
(
B0 − r2−l(α−β)

)2
≤ CB2

02−2lr(p+β),

so that ||f0 − hr||H−p ≤ C(f0)r
− p+β
α−β by the definition of lr. Pick rn to be the smallest

integer such that r
− p+β
α−β

n ≤ εn
2C , so that by the triangle inequality, P (||f0 − Uα||H−p ≤ εn) ≥

P (||hrn − Uα||H−p ≤ cεn) for some 1/2 ≤ c < 1. Since ||hrn ||Cα ≤ rn, we use (2.5.9) to

obtain

P (||f0 − Uα||H−p ≤ εn) ≥ h(rn) exp

(
c1

(
εn
rn

)− 1
p+α

log
εn
rn

)
.

Since α ≤ β + 1
ν , h(r) ≥ e−Dr

ν
for all r ∈ N, and rn ≥ c2ε

−α−β
p+β

n for some c2 > 0 and

sufficiently large n, we obtain the lower bound exp

(
−d2ε

− 1
p+β

n log 1
εn

)
. Bounding this

from below by e−Cnε
2
n yields the choice εn =

(
logn
n

) p+β
2p+2β+1

.

Consider now the bias condition (2.2.4) and, using the notation of wavelets, take

kn = 2Jn ' nε2
n. Let Br = supp(Πα,r) denote the Cα([0, 1])-ball of radius r. Let rn

be an integer satisfying (L1nε
2
n)1/ν ≤ rn ≤ (L2nε

2
n)1/ν for some constants L1, L2 and

take Pn = Brn . Then Π(Pcn) = 1 − H(rn) . e−Dr
ν
n ≤ e−Lnε

2
n , where L is a constant

that can be made sufficiently large by increasing L1. Now for all functions f ∈ Br,
supk |β̄lk(f)| ≤ r2−l(α+1/2) for all l ≥ 0. Consequently,

||KJn(f)− f ||22 =
∞∑
l=Jn

2l−1∑
k=0

|β̄lk(f)|2 ≤
∞∑
l=Jn

2l−1∑
k=0

r22−l(2α+1) ≤ Cr22−2αJn ,

so that for all f ∈ Pn,

||KJn(f)− f ||2 ≤ C
′(nε2

n)1/ν−α ≤ C ′′ξn = C ′′′εn(nε2
n)p,

which is verified with the choice εn = n
− p+α−1/ν

2p+2α−2/ν+1 . Comparing this rate to the rates

obtained when verifying (2.2.5) we obtain the minimal choices εn = n
− p+α−1/ν

2p+2α−2/ν+1 when

α < β+ 1
ν and εn = (log n/n)

p+β
2p+2β+1 when α = β+ 1

ν . For the true function f0 ∈ Cβ([0, 1]),

using a standard approximation bound gives ||KJn(f0)− f0||2 ≤ C(f0)2−βJn ' (nε2
n)−β =

O(ξn) for all the above choices of εn. In both cases, apply Theorem 2.2.1 to obtain rate

ξn = εn(nε2
n)p.

Consider now the stronger tail condition 1−H(r) . exp
(
−eDrν

)
as r →∞ for some

ν > 0. When α ≤ β, (2.2.5) is satisfied as above by the choice ε '
(

logn
n

) p+α
p+2α+1

. Letting

rn be an integer satisfying (log(L1nε
2
n))1/ν ≤ rn ≤ (log(L2nε

2
n))1/ν for some constants L1,

L2 and taking Pn as above we obtain Π(Pcn) . exp
(
−eDrνn

)
≤ e−Lnε

2
n for some constant
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L that can be made arbitrarily large by increasing L1. Using the above bias calculations,

||KJn(f)− f ||2 ≤ Crn2−αJn ≤ C ′rn(nε2
n)−α and so setting this equal to ξn = npε2p+1

n

yields that (2.2.4) is satisfied by the choice εn = (log n)
1/v

2p+2α+1n
− p+α

2p+2α+1 . Substituting

this expression into that of ξn gives the desired contraction rate.

2.5.4 Abstract contraction results

Following the proof of Theorem 2.1 in [36] with the formula (2.1.4) for the posterior

distribution in the inverse setting, we recover an analogous theorem for the sampling

model (2.1.1). We include the details for completeness.

Theorem 2.5.3. Let εn → 0 be a sequence such that
√
nεn → ∞ as n → ∞. Suppose

that the sequence of priors (Πn) satisfies for some C > 0

Πn(f ∈ P : ||Af −Af0||2H2
≤ 2ε2

n) ≥ e−Cnε2n .

Suppose moreover that there exists a sequence Pn ⊂ P such that Πn(Pcn) ≤ e−(C+4)nε2n and

for which there exist tests φn = φn(Y (n)) such that

Ef0φ→ 0, sup
f∈Pn:||f−f0||H1

≥Mξn

Ef (1− φn) ≤ Le−(C+4)nε2n . (2.5.10)

Then the posterior distribution Πn(·|Y ) contracts about f0 at rate ξn in ||·||H1
, where M

is a fixed constant.

In this section, we denote by Pf the law of the model (2.1.1) when the operator A

equals the identity (as opposed to Pf in the rest of Chapter 2, which implicitly considers

general A). Let wf =
dPf
dP0

denote the density of Ph with respect to the law P0 of the pure

white noise process. We can write the log-likelihood ratio as

log
wh

wh0
(Y ) =

√
n
∑
k

(hk − h0,k)Zk −
n

2

(
||h||2H2

− ||h0||2H2

)
.

Under Ph0 , the above expression can be rewritten as

log
wh

wh0
(Y ) =

√
n
∑
k

(hk − h0,k)(
√
nh0,k + Z̃k)−

n

2

(
||h||2H2

− ||h0||2H2

)
=
√
n
∑
k

(hk − h0,k)Z̃k −
n

2
||h− h0||2H2

,

(2.5.11)

where the (Z̃k) are i.i.d. standard normal random variables under Ph0 . In particular,

taking an expectation under Ph0 of this likelihood ratio yields

Eh0 log
wh

wh0
(Y ) = −n

2
||h− h0||2H2

. (2.5.12)
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Proof of Theorem 2.5.3. By assumption on the tests

Ef0
[
Πn(f ∈ P : ||f − f0||H1

≥Mξn|Y )φn
]
≤ Ef0φn → 0.

Thus we need only consider the remaining event (1− φn), that is

Πn(f ∈ P : ||f − f0||H1
≥Mξn|Y )(1− φn) =

∫
{||f−f0||H1

≥Mξn}
wAf

wAf0
(Y )dΠn(f)(1− φn)∫

P
wAf

wAf0
(Y )dΠn(f)

.

By Lemma 2.5.4 we have that for all c > 0 and probability measures ν with support in

Bn = {f ∈ P : ||Af −Af0||2H2
≤ 2ε2

n}

one has

Pnf0

(∫
B

wAf

wAf0
(Y )dν(f) ≤ e−(c+1)nε2

)
≤ 2

c2nε2
.

Let c = 1 and ν =
Πn|Bn
Πn(Bn) and consider the events

An =

{∫
Bn

wAf

wAf0
(Y )dΠn(f) ≥ Πn(Bn)e−2nε2n ≥ e−(C+2)nε2n

}
.

By Lemma 2.5.4, Pf0Acn ≤ 2
c2nε2n

and so Pf0(An)→ 1 as n→∞. Thus

Pf0

∫{||f−f0||H1
≥Mξn}

wAf

wAf0
(Y )dΠn(f)(1− φn)∫

P
wAf

wAf0
(Y )dΠn(f)

> ε


≤ Pf0(Acn) + Pf0

(
(1− φn)e(C+2)nε2n

∫
{||f−f0||H1

≥Mξn}

wAf

wAf0
(Y )dΠn(f) ≥ ε

)
.

Since wAf and wAf0 are densities (Radon-Nikodym derivatives),

Ef0
[
wAf

wAf0
(Y )

]
= 1 and Ef0

[
wAf

wAf0
(Y )(1− φn)

]
= Ef [(1− φn)] .

Consequently, we have

Ef0

[
(1− φn)

∫
{||f−f0||H1

≥Mξn}

wAf

wAf0
(Y )dΠn(f)

]

≤
∫
Pcn

Ef0
[
wAf

wAf0
(Y )

]
dΠn(f) + sup

f∈Pn:||f−f0||H1
≥Mξn

Ef0
[
(1− φn)

wAf

wAf0
(Y )

]
= Πn(Pcn) + sup

f∈Pn:||f−f0||H1
≥Mξn

Ef (1− φn).
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Combined with Markov’s inequality and (2.5.10), we have the result.

Lemma 2.5.4. Let ε > 0 and ν be a probability measure with support on the set

B = {f ∈ P : ||h− h0||H2
≤ 2ε2}.

Then for every c > 0

Ph0
(∫

B

wh

wh0
(Y )dν(h) ≤ e−(c+1)nε2

)
≤ 2

c2nε2
.

Proof. By Jensen’s inequality we have

log

(∫
wh

wh0
(Y )dν(h)

)
≥
∫

log

(
wh

wh0
(Y )

)
dν(h).

We can then bound the probability in question by

Ph0
(∫

B

wh

wh0
(Y )dν(h) ≤ e−(c+1)nε2

)
≤ Ph0

(∫
log

(
wh

wh0
(Y )

)
dν(h) ≤ −(c+ 1)nε2

)
= Ph0

(∫
log

wh

wh0
(Y )dν(h)− Eg0

∫
log

wh

wh0
(Y )dν(h)

≤ −n(c+ 1)ε2 − Eh0
∫

log
wh

wh0
(Y )dν(h)

)
.

(2.5.13)

Using Fubini’s theorem, the definition of B and the expression (2.5.12) for Eh0 wh

wh0
(Y ) we

have

−Eh0
∫

log
wh

wh0
(Y )dν(h) =

∫
−Eh0 log

wh

wh0
(Y )dν(h) =

∫
n

2
||h− h0||2H2

dν(h) ≤ nε2.
(2.5.14)

Moreover, taking the variance with respect to Y and using (2.5.11)

varh0

(∫
log

wh

wh0
(Y )dν(h)

)
= varh0

(∫ √
n
∑
k

(hk − h0,k)Z̃kdν(h)

)

≤ nEh0

(∫ ∑
k

(hk − h0,k)Z̃kdν(h)

)2

≤ n
∫

Eh0

(∑
k

(hk − h0,k)Z̃k

)2

dν(h)

= n

∫
||h− h0||2H2

dν(h) ≤ 2nε2.

Applying the bound (2.5.14) to (2.5.13) and then applying Chebychev’s inequality with

63



Contraction rates

the previous display yields

Ph0
(∫

log
wh

wh0
(Y )dν(h)− Eh0

∫
log

wh

wh0
(Y )dν(h) ≤ −ncε2

)
≤ 1

c2n2ε4
varh0

(∫
log

wh

wh0
(Y )dν(h)

)
≤ 2

c2nε2
.

2.6 Possible extensions

The testing approach based on the concentration properties of estimators that is intro-

duced in this chapter could possibly be extended in a number of directions. A natural

question is to what degree Condition 1 can be relaxed with the goal of analzing priors

not based around the SVD of A. The following extension we discuss was suggested by

Madhuresh Roy. The required exponential inequalities for the tests can be obtained for

any basis {φk} of H1 that lies in the ”Cameron-Martin” space of the eigenpair {ρi, ei},
that is for which

||φk||2ρ :=
∞∑
i=1

ρ−2
i |〈φk, ei〉|

2 <∞ k = 1, 2, ... (2.6.1)

In particular, note that Condition 1 implies (2.6.1). Under Condition 1 the sum in (2.6.1) is

finite, which allows one to conveniently separate the ill-posedness in the rate by extracting

the factor 1/δk = 1/(infi∈Ak |ρi|) (see (2.2.1) and (2.2.2)) from the sum. Under (2.6.1),

the exponential inequality (2.4.2) is replaced by

P (||fn − Efn||1 ≥Mεnσkn) ≤ e−Lnε2n ,

where σ2
r =

∑r
k=1 ||φk||

2
ρ, yielding that the rate ξn must satisfy εnσkn ≤ Cξn, where as

usual kn is the degree of the linear estimator. A contraction rate can be computed by

studying the size of the quantities σkn instead of δkn .

Such an approach can be applied to other statistical settings, such as nonparametric

regression and deconvolution density estimation, where exponential inequalities are already

known for linear estimators. However, in spite of there being conceptually little difference,

this latter setting involves significant technical hurdles due to the additional structural

constraints involved in modelling densities. In particular, the more complicated prior

models require significant work to establish the required small-ball estimates.

There is also the possibility of extending this approach to non-linear inverse problems

by constructing analogous tests based on frequentist estimators (or otherwise). In par-

ticular, it may be possible to use the more developed frequentist theory for non-linear
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inverse problems to extend this study to the Bayesian framework. This will be the object

of future study.
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Chapter 3

Bernstein–von Mises theorems for

adaptive Bayesian nonparametric

procedures

In this chapter, we investigate Bernstein–von Mises theorems for adaptive nonparametric

procedures in linear inverse problems. We use this general approach to construct optimal

frequentist confidence sets based on the posterior distribution and illustrate this method

via a numerical study. This chapter is structured as follows: Section 3.1 outlines the

general approach, Section 3.2 introduces the required mathematical material, Section 3.3

contains the Bernstein–von Mises results, Section 3.4 contains the results on confidence

sets, Section 3.5 provides a numerical study and Sections 3.6 and 3.7 contain proofs.

3.1 Introduction

A key aspect of statistical inference is uncertainty quantification and the Bayesian ap-

proach to this problem is to use the posterior distribution to generate a credible set, that

is a region of prescribed posterior probability (often 95%). This can be considered an

advantage of the Bayesian approach since Bayesian credible sets can be computed by

simulation. The Bayesian generates a number of posterior draws and then keeps a pre-

scribed fraction, discarding the remainder which are considered ”extreme” in some sense.

From a frequentist perspective, key questions are whether such a method has a theoreti-

cal justification and what is an effective rule for determining which draws to discard. A

natural approach is to characterize such draws using a geometric notion, in particular by

considering a minimal ball in some metric.

In finite dimensions, the Euclidean distance has a clear interpretation as the natural

measure of size. However in infinite dimensions such a notion is less clear-cut: the L2

metric is the natural generalization of the Euclidean norm, but lacks a clear visual inter-

67



Adaptive nonparametric BvMs

pretation, while L∞ can be easily visualized but is more difficult to treat mathematically.

From the Bayesian perspective of simulating credible sets, the practitioner ultimately seeks

a practical and effective rule for sorting through posterior draws and such geometric in-

terpretations can be viewed as somewhat artificial impositions. The aim of this article

is therefore to study possible geometric choices of credible sets that behave well from a

frequentist asymptotic perspective.

We study the behaviour of the posterior distribution Π(· | Y (n)) when Y (n) is drawn

from the probability distribution Pf0 for some non-random true f0 ∈ F as the data size

or quality n→∞. From such a viewpoint, the theoretical justification for posterior based

inference using any (Borel) credible set in finite dimensions is provided by the Bernstein–

von Mises (BvM) theorem (see [60, 81]). This deep result establishes mild conditions on

the prior under which the posterior is approximately a normal distribution centered at an

efficient estimator of the true parameter. It thus provides a powerful tool to study the

asymptotic behaviour of Bayesian procedures and justifies the use of Bayesian simulations

for uncertainty quantification.

A BvM in infinite-dimensions fails to hold in even very simple cases. Freedman [33]

showed that in the basic conjugate `2 sequence space setting with both Gaussian priors

and data, the BvM does not hold for `2-balls centered at the posterior mean – see also

the related contributions [27, 47, 61]. The resulting message is that despite their intuitive

interpretation, credible sets based on posterior draws using an `2-based selection procedure

do not behave as in classical parametric models. Recently, Castillo and Nickl [21, 22] have

established fully infinite-dimensional BvMs by considering weaker topologies than the

classical Lp spaces. Their focus lies on considering spaces which admit 1/
√
n-consistent

estimators and where Gaussian limits are possible, unlike Lp-type loss. In particular, for

the posterior to have a weak limit requires tightness of the limit distribution, taken to be

the `2-Gaussian white noise process, which can only occur in strictly weaker topologies

than Lp (see (3.2.4) below). Credible regions selected using these different geometries are

shown to behave well, generating asymptotically exact frequentist confidence sets. In this

paper, we explore this approach in practice via both theoretical results for adaptive priors,

as well as numerical simulations.

Before going into more abstract detail, it is useful to consider an example from [22] to

numerically illustrate this approach in practice. Suppose that we observe Y1, ..., Yn i.i.d.

samples from an unknown density f0 on [0, 1]. We take a simple histogram prior Π,

f = 2Ln
2Ln−1∑
k=0

hk1ILnk
, ILn0 = [0, 2−Ln ], Ik,Ln = (k2−Ln , (k + 1)2−Ln ], k ≥ 1,

where the hk are drawn from a D(1, ..., 1)-Dirichlet distribution on the unit simplex in

R2L . Here we ignore adaptation issues and select L = Ln based on the smoothness of the

68



3.1. Introduction

true function. Consider the standard Haar wavelets

ψ−1,0 = 1[0,1], ψlk = 2l/2
(

1( k
2l
,
k+1/2

2l

] − 1( k+1/2

2l
, k+1

2l

]) ,
where l ∈ {−1, 0, 1, ...} and k = 0, ..., 2l − 1. Letting wl = l1/2+ε for ε > 0 small, consider

the multiscale credible ball

Cn =

{
f : max

k,l≤Ln
w−1
l |〈f − f̂n, ψlk〉| ≤ Rnn

−1/2

}
, (3.1.1)

where f̂n denotes the posterior mean and Rn = R(Y1, ..., Yn) is chosen such that Π(Cn |
Y1, ..., Yn) = 0.95. By Proposition 1 of [22], Pf0(f0 ∈ Cn) → 0.95 as n → ∞, whereas

no such result is available for the L∞-credible ball. Due to the conjugacy of the Dirich-

let distribution with multinomial sampling, the posterior distribution can be computed

straightforwardly and Rn can be easily obtained by simulation.

For convenience we take f0 to be a Laplace distribution with location parameter 1/2

and scale parameter 5 that is truncated to [0, 1], that is f0(x) ∝ e−5|x−1/2|1[0,1](x) with

f0 ∈ Hs
2([0, 1)) for s < 3/2. In Figure 3.1, we plotted the true density (solid black) and

the posterior mean (red) in the cases n = 1000, 2000, 5000, 10000. We generated 100,000

posterior draws and plotted the 95% closest to the posterior mean in the M(w) sense

(grey) to simulate Cn. We also used the posterior draws to generate a 95% credible band

in L∞ by estimating Qn satisfying Π(f : ||f − f̂n||∞ ≤ Qn | Y ) = 0.95 and then plotting

f̂n ±Qn (dashed black).

We see that the L∞ diameter of Cn is strictly greater than that of the L∞-credible

band, with this difference particularly marked at the peak of the density. However, the

diameter of Cn is spatially heterogeneous and has greatest width at the peak, whilst

having smaller width around points where the true density is more regular. In all cases,

Cn contains the true f0, whereas the L∞ confidence band has more difficulty capturing

the peak.

The main message of this numerical example is that simulating the credible set Cn,

which uses a slightly different geometry, yields a set that does not look particularly strange

in practice and in fact resembles an L∞ credible band. Both approaches are methodolog-

ically similar, the only difference being the rule for discarding posterior draws. From a

theoretical point of view, the difference between the two sets is far more significant, with

Cn yielding exact coverage statements at the expense of unbounded L∞ diameter. It is

however possible to improve upon the naive implementation of such sets to also obtain the

optimal L∞ diameter (see Proposition 1 of [22] and related results below). Modifying the

geometry in such a way to obtain an exact coverage statement therefore comes at little

additional cost from a practitioner’s perspective.

Nonparametric priors typically involve the use of tuning or hyper parameters, and it
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Figure 3.1: Credible sets based on the Dirichlet prior with the true density function (solid
black), the posterior mean (red), a 95% credible band in L∞ (dashed black) and the set Cn
given in (3.1.1) (grey). We have n = 1000, 2000, 5000 and 10000 respectively.

is a key challenge to study procedures that select these parameters automatically in a

data-driven manner. This approach avoids the need to make unreasonably strong prior

assumptions on the qualitative properties of the unknown parameter of interest, since

incorrect calibration of the prior can lead to suboptimal performance (see e.g. [53]). It

therefore makes sense to use an automatic procedure, unless a practitioner is particularly

confident that their prior correctly captures the fine details of the unknown parameter,

such as its level of smoothness or regularity. Adaptive procedures are in fact widely

used in practice, with hyper parameters commonly selected using a hyperprior or an

empirical Bayes method. In the case of Gaussian white noise, a number of Bayesian

procedures have been shown to be rate adaptive over common smoothness classes. Most

such frequentist analyses restrict attention to obtaining contraction rates and do not study

coverage properties of credible sets. The focus of this paper is therefore to investigate

nonparametric BvMs for adaptive priors, with the goal of studying the coverage properties

of credible sets.

In the case of Gaussian white noise, there has been recent work [53, 61] circumvent-

ing the need for a BvM by explicitly studying the coverage properties of certain specific

credible sets. Of particular relevance is a nice recent paper by Szabó et al. [79], where the

authors use an empirical Bayes approach combined with scaling up the radius of `2-balls to

obtain adaptive confidence sets under a so-called polished tail condition. Their more hands

on approach relies on explicit prior computations and provides an alternative to the more
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general abstract point of view taken here. One of our principle goals is exact coverage

statements and this seems more difficult to obtain using such an explicit approach. Since

adaptive confidence sets do not exist in full generality, we also require self-similarity con-

ditions on the true parameter to exclude certain ”difficult” functions [40],[42],[16]. Such

conditions ensure that functions look equally smooth at all resolution levels and allow

consistent estimation of the unknown regularity, something that is not possible in general.

In the absence of such a condition a function may ”mislead” an adaptive procedure into

thinking a function is overly smooth, leading to a serious failure in the statistical proce-

dure. For example, in Theorem 3.1 of [79] the authors construct a Bayesian credible set

that has zero coverage asymptotically. We shall consider the procedure of [79] in Section

3.3.1 and obtain exact coverage statements under the self-similarity condition introduced

there.

Another key motivation in studying BvMs is to establish the plug-in property of Bickel

and Ritov [7]. In high dimensions, the problem of estimating functionals of the unknown

parameter is involved and the nonparametric BvM allows for the simultaneous estimation

of a large class of such functionals at 1/
√
n-rate. In this case, the results of Castillo and

Nickl [21] describe the behaviour of the induced posterior for sufficiently regular (both

linear and non-linear) functionals. In particular, this justifies the use of the induced

posterior as an efficient procedure with correct uncertainty quantification.

We note other work dealing with BvM results in the nonparametric setting. Leahu [61]

has expanded upon the problem of Freedman [33] to study the impact of prior smoothness

on the existence of BvM theorems in the conjugate Gaussian sequence space model. Bickel

and Kleijn [6], Castillo [18] and Castillo and Rousseau [23] provide sufficient conditions

for semiparametric BvMs, while Rivoirard and Rousseau [73] consider linear functionals

of probability densities. For the case of finite-dimensional posteriors with increasing di-

mension, see Ghosal [35] and Bontemps [12] for the case of regression or Boucheron and

Gassiat [14] for discrete probability distributions. Much of the approach taken here can

equally be applied to other statistical settings such as sparsity, but we restrict to the

nonparametric regime for ease of exposition.

3.2 Statistical setting

3.2.1 Function spaces and the white noise model

We use the usual notation Lp = Lp([0, 1]) for p-times Lebesgue integrable functions and

denote by `p the usual sequence spaces. We consider the canonical white noise model,

which is equivalent to the fixed design Gaussian regression model with known variance.
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For f ∈ L2 = L2([0, 1]), consider observing the trajectory

dY
(n)
t = (Af)(t)dt+

1√
n
dZt, t ∈ [0, 1], (3.2.1)

where dZ is a standard white noise and A : L2([0, 1]) 7→ L2([0, 1]) is a known, injective and

continuous linear operator. By considering the action of the orthonormal basis {eλ}λ∈Λ

on (3.2.1), it is statistically equivalent to consider the Gaussian sequence space model

Y
(n)
λ ≡ Yλ = ρλfλ +

1√
n
Zλ, λ ∈ Λ, (3.2.2)

where the (Zλ)λ∈Λ are i.i.d. standard normal random variables, the unknown parameter

of interest f = (fλ)λ∈Λ is assumed to be in `2 (i.e. square summable) and {ρk} are known

constants. We denote by Pf0 or P0 the law of Y arising from (3.2.2) under the true function

f0. In the following, Λ will cover two principal cases: a Fourier-type basis and a wavelet

basis. In the `2-setting, (3.2.2) can be interpreted purely in sequence form with Λ = N
and we do not need to associate to it a time index t ∈ [0, 1] as in (3.2.1). We consider the

moderately ill-posed case where

C1k
−p ≤ |ρk| ≤ C2k

−p, k = 1, 2, ...,

for some C1, C2 > 0 and p ≥ 0. The parameter p determines the level of ill-posedness of

the problem and quantifies the observed signal to noise ratio. In the case where we do

generate the model (3.2.2) by considering the action of an L2([0, 1])-basis {eλ}, we have

that f̃(t) =
∑

λ∈Λ ρλfλeλ(t) in (3.2.1). For a more general overview of inverse problems

see Section 1.2 or Cavalier [26].

In our setting, the `2-Sobolev spaces {Hs
2}s∈R are insufficient to sharply characterize

the law of the limiting distribution of the posterior (see discussion after Theorems 3.3.1

and 3.3.2). We therefore consider Sobolev spaces at the logarithmic level. For s, δ ≥ 0,

define

Hs,δ ≡ Hs,δ
2 :=

{
f ∈ `2 : ||f ||2s,2,δ :=

∞∑
k=1

k2s(log k)−2δ|fk|2 <∞

}
.

From this we recover the usual definition of the Sobolev spaces Hs ≡ Hs
2 = Hs,0

2 and by

duality we define for s > 0, H−s2 := (Hs
2)∗. Note that these spaces equal the classical peri-

odic Sobolev spaces if we restrict to the square integrable periodic function f ∈ L2
per([0, 1))

and consider fk = 〈f, ek〉2, where (ek(·) = e2πik· : k ∈ Z) is the classical Fourier basis.

By standard Hilbert space duality arguments, we can consider `2 as a subspace of H−s2

and can similarly define the logarithmic spaces for s < 0 and δ ≥ 0 using the above series

definition, yielding spaces satisfying the continuous embeddings Hr
2 ⊂ Hr,δ

2 ⊂ Hs
2 for all
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s < r. In the `2-setting we shall classify smoothness via the Sobolev hyper rectangles

Q(β,R) =

{
f ∈ `2 : sup

k≥1
k2β+1f2

k ≤ R

}

for β ≥ 0, where β = 0 corresponds to the `2-hyper rectangle.

In L∞ we consider a multiscale approach so that Λ = {(j, k) : j ≥ 0, k = 0, ..., 2j − 1}.
In particular, we consider an S-regular (S ≥ 0) wavelet basis of L2([0, 1]):

{ψlk : l ≥ J0 − 1, k = 0, ..., 2l − 1}, J0 ∈ N.

For notational simplicity, denote the scaling function φ by the first wavelet ψ(J0−1)0. We

consider either periodized wavelets or boundary corrected wavelets (see e.g. [65] for more

details). Moreover, in certain applications we require in addition that the wavelets satisfy

a localization property

c(φ) = sup
x∈[0,1]

∑
k

|φ(x− k)| <∞, c(ψ) = sup
x∈[0,1]

∑
k

|ψ(x− k)| <∞. (3.2.3)

This property is satisfied by a number of wavelets, for example Meyer wavelets. The

sequence model (3.2.2) therefore corresponds to estimating the wavelet coefficients flk =

〈f, ψlk〉, for all (l, k) ∈ Λ, since any function f ∈ L2 generates such a wavelet sequence.

Conversely, any such sequence (flk) generates the wavelet series of a function (or distri-

bution if the sequence is not in `2)
∑

(l,k) flkψlk. In the multiscale setting, we shall not

consider the ill-posed case, that is we assume that ρλ = ρlk ≡ 1 for all λ = (l, k) ∈ Λ.

This is mainly due to technical considerations since our method of proof only extends in a

straightforward manner to operators that are diagonalized by a wavelet basis. Since this

is not the case for the majority of inverse problems of interest, we omit this generalization.

In the L∞([0, 1])-setting we consider multiscale spaces: for a monotone increasing

sequence w = (wl)l≥1 with wl ≥ 1, define

M =M(w) =

{
x = (xlk) : ||x||M(w) := sup

l≥0

1

wl
max
k
|xlk| <∞

}

(for further references to multiscale statistics see [22]). A separable closed subspace is

obtained by considering the restriction

M0 =M0(w) =

{
x ∈M(w) : lim

l→∞

1

wl
max
k
|xlk| = 0

}
,

that is those (weighted) sequences inM(w) that converge to 0. Note thatM contains the

space `2, since ||x||M ≤ ||x||`2 as wl ≥ 1. In this setting, we consider norm-balls in the
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Besov spaces Bβ
∞,∞([0, 1]),

H(β,R) = {f = (flk)(l,k)∈Λ : |flk| ≤ R2−l(β+1/2), ∀(l, k) ∈ Λ}.

We recall that Bβ
∞,∞([0, 1]) = Cβ([0, 1]), the classical Hölder (-Zygmund in the case β ∈ N)

spaces. For more details on these embeddings and identifications see [65]. Whether an `2-

white noise defines a tight random element of M0(w) depends on the weighting sequence

(wl).

Definition 4. We call a sequence {wl}l≥1 admissible if wl/
√
l↗∞ as l→∞.

Let Z = {Zλ = 〈Z, eλ〉 : λ ∈ Λ}, where Zλ ∼ N(0, 1) i.i.d., denote the Gaussian white

noise in (3.2.2). We have from [21, 22] that for δ > 1/2 and wl =
√
l ,

E ||Z||−1/2,2,δ <∞, E ||Z||M(w) <∞. (3.2.4)

Moreover, for δ > 1/2 and (wl) an admissible sequence, Z defines a tight Gaussian Borel

probability measure on H
−1/2,δ
2 and M0(w) respectively.

To establish weak convergence of the posterior distribution, we require tightness of the

limit distribution by Prokhorov’s theorem. Since the law of Z is tight in these spaces, we

can consider (3.2.1) as a Gaussian shift model. Denoting by Z the centered Gaussian Borel

random variable in either H
−1/2,δ
2 or M0(w) with covariance equal to the (`2-)identity,

(3.2.1) can be rewritten as

Y(n) = f +
1√
n
Z, (3.2.5)

where the above inequality is in the H
−1/2,δ
2 - or M0(w)-sense. By (3.2.4) and since

√
n(Y(n) − f) = Z in H

−1/2,δ
2 or M0(w),

it immediately follows that Y(n) is an efficient estimator for f in either norm.

Among the two classes {Hs,δ
2 }s∈R,δ≥0 and {M0(w)}w of spaces considered, one can

show that s = −1/2, δ > 1/2 and admissibility of w determine the minimal spaces

where the law of the `2-white noise Z is tight (see [21, 22] for further discussion). We

therefore focus attention on these spaces since they provide the threshold for which a weak

convergence approach can work. For convenience, we denote H ≡ H(δ) ≡ H−p−1/2,δ
2 . We

further denote the law of Z in H or M0(w) by N as appropriate.

3.2.2 Weak Bernstein–von Mises phenomena

To use the notion of weak convergence in defining a nonparametric BvM we need to metrize

the weak convergence of probability distributions. For µ and ν probability measures on a
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metric space (S, d), we define the bounded Lipschitz metric by

βS(µ, ν) = sup
u:||u||BL≤1

∣∣∣∣∫
S
u(s)(dµ(s)− dν(s))

∣∣∣∣ , (3.2.6)

||u||BL = sup
s∈S
|u(s)|+ sup

s,t∈S:s 6=t

|u(s)− u(t)|
d(s, t)

.

Thus for random variables taking values in (S, d), Xn →d X if and only if βS(L(Xn),L(X))→
0, where L(X) denotes the law of X. In particular, we shall consider the choices S =

H(δ) = H
−p−1/2,δ
2 or S = H−p−s for s > 1/2 in `2 and S = M0(w) for {wl}l≥1 an

admissible sequence in L∞.

Due to the continuous embeddings `2 ⊂ H and `2 ⊂ M0(w), any Borel probability

measure on `2 yields a tight Borel probability measure on H andM0(w). Consider a prior

Π on `2 and let Πn = Π(· | Y (n)) denote the posterior distribution based on data (3.2.2).

For z ∈ S (where here we require in addition that S is a vector space), consider the map

τz : S → S given by

τz : f 7→
√
n(f − z).

Let Πn ◦ τ−1
Y(n) denote the image measure of the posterior distribution (considered as a

measure on H or M0(w)) under the map τY(n) . Thus for any Borel set B arising from

these topologies,

Πn ◦ τ−1
Y(n)(B) = Π(

√
n(f − Y(n)) ∈ B | Y ),

so that we can more intuitively write Πn◦τ−1
Y(n) = L(

√
n(f−Y(n)) | Y (n)), where L(f | Y (n))

denotes the law of f under the posterior. Recalling that we denote by N the law of the

white noise Z in (3.2.2) as an element of S, we define the notion of nonparametric BvM.

Definition 5. Consider data generated from (3.2.2) under a fixed function f0 and denote

by Pf0 the distribution of Y (n). We say that a prior Π satisfies a weak Bernstein-von

Mises phenomenon in S if, as n→∞,

βS(Πn ◦ τ−1
Y(n) ,N ) = βS(L(

√
n(f − Y(n)) | Y (n)),N )→Pf0 0.

Here S is taken to be one of H(δ) for δ > 1/2, H−p−s for s > 1/2 or M0(w) for (wl)l≥1

an admissible sequence.

The left-hand side consists of the rescaled posterior distribution centered at Y, an

efficient estimator of f0 in S. The weak BvM says that the (scaled and centered) posterior

distribution asymptotically looks like an infinite-dimensional Gaussian distribution in some

’weak’ sense, quantified by the bounded Lipschitz metric (3.2.6). The lack of a BvM in

total variation prevents the user from deducing that Πn ◦ τ−1
Y and N are asymptotically

close, uniformly over all `2-Borel sets (see e.g. Theorem 2 of [61]). On the other hand,
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weak convergence in S implies that these two probability measures are approximately

equal on certain classes of sets, whose boundaries behave smoothly with respect to the

measure N (for more discussion see Sections 1.1 and 4.1 of [21]). This allows a uniform

control over certain geometric classes of subsets and allows the user to perform useful

inference in certain cases discussed below. We also note that by Proposition 4 of [22], a

BvM in M0(w) implies one in H(δ), where the parameter δ depends on the growth of

the sequence (wl). Neither notion is strictly more general since the limiting case wl =
√
l

yields the condition δ > 1 by that Proposition, rather than the threshold δ > 1/2.

It is interesting to note that following this approach requires the geometry of the

credible sets to depend explicitly on the level of ill-posedness p of the problem (since we

consider an H
−p−1/2,δ
2 -ball). In the moderately ill-posed setting, only linear functionals

whose representors are in H
p+1/2
2 are estimable at a 1/

√
n-rate (see e.g. [53]). In view of

this, we see that these spaces are sharp within the classes {Hs
2}s∈R since a weak BvM in

a stronger topology would entail the uniform estimation of less regular functionals at a

1/
√
n-rate.

The study of adaptive BvM results naturally leads to the topic of adaptive frequentist

confidence sets. It is known that confidence sets with radius of optimal order over a

class of submodels nested by regularity that also possess honest (i.e. uniform in the

parameter f0) coverage do not exist in full generality (see [42, 68] for recent references).

We therefore require additional assumptions on the parameters to be estimated and so

consider self-similar functions, whose regularity is similar at both small and large scales.

Such conditions have been considered in Giné and Nickl [40], Hoffmann and Nickl [42] and

Bull [16] and ensure that we remove those functions whose norms (measuring smoothness)

are difficult to estimate and which statistically look smoother than they actually are. The

smoothness of such parameters can be accurately estimated and this information can in

turn be used to construct adaptive confidence sets, which we do in a Bayesian way. We

firstly consider the `2-type self-similarly assumption found in Szabó et al. [79].

Definition 6. Fix integer N0 ≥ 2 and parameters τ ≥ 0, ρ > 1. We say that a function

f ∈ Q(β,R) is self-similar if

dρNe∑
k=N

f2
k ≥ εNRN−2β for all N ≥ N0,

for some sequence {εN} ∈ (0, 1) with εN ≥ (logN)−τ . We denote the class of self-similar

elements of Q(β,R) by QSS(β,R, ε).

The parameters εj are permitted to depend on the resolution level j merely to weaken

the condition slightly, since logarithmic (or smaller) deviations from the polynomial lower

bound have little effect. This condition can be shown to be necessary for the likelihood

based procedures considered here, though it is possible to do better using a strictly fre-
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quentist approach [68] - see also [67] for further discussion. In L∞ we consider Condition

3 of Giné and Nickl [40], which can only be slightly relaxed [16].

Definition 7. Fix positive integer j0. We say that a function f ∈ H(β,R) is self-similar

if there exists a constant ε > 0 such that

||Kj(f)− f ||∞ ≥ ε2
−jβ for all j ≥ j0.

We denote the class of self-similar elements of H(β,R) by HSS(β,R, ε).

In particular, since f ∈ H(β,R), we have that ||Kj(f)− f ||∞ � 2−jβ for all j ≥ j0.

What we really require is that there is at least one significant coefficient at the level

(n/ log n)1/(2β+1) that the posterior distribution can detect. However, this level depends

also on unknown constants in practice (see proof of Proposition 3.4.3) and so we require

a statement for all (sufficiently large) resolution levels as in Definition 7. See Giné and

Nickl [40] and also Bull [16] for further discussion about this condition. These conditions

conveniently allow concise and efficient proofs of BvM phenomena, but can possibly be

relaxed.

3.3 Bernstein–von Mises Results

3.3.1 Empirical and hierarchical Bayes in `2

We continue the frequentist analysis of the adaptive priors studied in [52, 79, 80] in `2.

For α > 0 define the product prior on the `2-coordinates by the product measure

Πα =
∞⊗
k=1

N(0, k−2α−1), (3.3.1)

so that the coordinates are independent. A draw from this distribution will almost surely

(under the prior) be in all Sobolev spaces Hα′
2 for α′ < α. We use the notational convention

of [79] in that the first coordinate of f0 is assumed to be 0, since for k = 1, the prior does

not depend on the smoothness parameter α. Otherwise, this results in some (minor)

technical nuisance in establishing a parametric BvM for the projections of the hierarchical

prior. As mentioned in [79], this can be circumvented by trivially changing the prior

variances to (k + 1)−2α−1 in (3.3.1), but setting f0,1 = 0 is notationally simpler.

If f0 ∈ Hβ and α = β, it has been shown [53] that the posterior contracts at the

minimax rate of convergence, while if α 6= β, then strictly suboptimal rates are achieved.

Since the true smoothness β is generally unknown, two data-driven procedures have been

considered in [52]. The empirical Bayes procedure consists of selecting the smoothness
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parameter by using a likelihood-based approach. Namely, we consider the estimate

α̂n = argmax
α∈[0,logn/vn]

`n(α), (3.3.2)

where vn →∞ is any sequence such that vn = O(log n) as n→∞ and

`n(α) = −1

2

∞∑
k=1

(
log

(
1 +

n

k2α+1ρ−2
k

)
− n2

k2α+1ρ−2
k + n

Y 2
k

)

is the marginal log-likelihood for α in the joint model (f, Y ) in the Bayesian setting

(relative to the infinite product measure ⊗∞k=1N(0, 1)). The case vn � log n corresponds

to prior knowledge of an upper bound on the smoothness, whereas taking vn = o(log n)

allows the method to eventually cover the entire range of Sobolev scales. The introduction

of vn is needed to establish a parametric BvM for the finite dimensional projections of the

empirical Bayes procedure (see Theorem 3.6.2). The posterior distribution is then defined

via the plug-in procedure

Πα̂n(· | Y ) = Πα(· | Y ) |α=α̂n
.

If there exist multiple maxima to (3.3.2), then any of them can be selected.

A fully Bayesian approach is to put a hyperprior on the parameter α. This yields the

hierarchical prior distribution

Π =

∫ ∞
0

λ(α)Παdα,

where λ is a positive Lebesgue density on (0,∞) satisfying the following assumption (As-

sumption 2.4 of [52]).

Condition 4. Assume that for every c1 > 0 there exists c2 ≥ 0, c3 ∈ R, with c3 > 1 if

c2 = 0 and c4 > 0 such that

c−1
4 α−c3 exp (−c2α) ≤ λ(α) ≤ c4α

−c3 exp (−c2α)

for α ≥ c1.

The exponential, gamma and inverse gamma distributions satisfy Condition 4 for ex-

ample. Knapik et al. [52] showed that both of these procedures contract to the true

parameter adaptively at the (almost) minimax rate, uniformly over Sobolev balls of fixed

radius, and the result follows similarly for Sobolev hyper rectangles. In general, it is

impossible to estimate the smoothness β of f0 from the data Y . However, if the true

parameter is self-similar in the sense of Definition 6, β can be estimated by either α̂n or

the posterior median of λ(· | Y ) at rate OP0(1/ log n) (see Lemmas 3.6.7 and 3.6.8 below).

Both procedures satisfy a weak BvM in the sense of Definition 5.
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Theorem 3.3.1. Consider the empirical Bayes procedure described above. For every

β,R > 0 and s > 1/2, we have

sup
f0∈Q(β,R)

βH−p−s(Πα̂n ◦ τ−1
Y ,N )→P0 0

as n→∞. Moreover, for δ > 2 we have the (slightly) stronger convergence

sup
f0∈QSS(β,R,ε)

βH(δ)(Πα̂n ◦ τ−1
Y ,N )→P0 0

as n→∞.

Theorem 3.3.2. Consider the hierarchical Bayes procedure described above, where the

prior density λ satisfies Condition 4. For every β,R > 0 and s > 1/2, we have

sup
f0∈Q(β,R)

βH−p−s(Πn ◦ τ−1
Y ,N )→P0 0

as n→∞. Moreover, for δ > 2 we have the (slightly) stronger convergence

sup
f0∈QSS(β,R,ε)

βH(δ)(Πn ◦ τ−1
Y ,N )→P0 0

as n→∞.

The requirement of self-similarity for a weak BvM inH(δ) could conceivably be relaxed,

but such an assumption is natural since it is anyway needed for the construction of adaptive

confidence sets in Section 3.4.1. Weakening the Sobolev exponent −1/2 by an arbitrary

amount renders this assumption unnecessary, but results in a polynomial suboptimality

in the diameter of confidence sets derived using this method. It is not clear whether this

is a fundamental limit or a technical artefact of the proof.

Whilst minimax optimality is clearly desirable from a theoretical frequentist perspec-

tive, it may be too stringent a goal in our context. Using a purely Bayesian point of view,

we derive an analogous result to Doob’s almost sure consistency result (Theorem 1.1.1).

Specifically, a weak BvM holds in H(δ) for δ > 2 for prior draws, almost surely under

both the empirical Bayes and hierarchical priors. For this, it is sufficient to show that

prior draws are self-similar almost surely.

Proposition 3.3.3. Let f ∼ Πα, where Πα is the conditional prior distribution given in

(3.3.1). Then, Πα-almost surely, f is self-similar in the sense of Definition 6 and hence

satisfies a weak BvM in H(δ) for δ > 2. Consequently, if f ∼ Π is drawn from the full

hierarchical prior distribution, then f satisfies a weak BvM in H(δ) for δ > 2, Π-almost

surely.

In particular, f satisfies Definition 6 with smoothness α and parameters τ = 0, ρ > 1

and εN = ε(α, ρ,R) > 0 sufficiently small and random N0 sufficiently large, Πα-almost
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surely. As a simple corollary to Theorems 3.3.1 and 3.3.2, we have that the rescaled pos-

teriors merge weakly (with respect to weak convergence on H(δ)) in the sense of Diaconis

and Freedman [30]. By Proposition 2.1 of [70], we immediately have that the unscaled

posteriors merge weakly with respect to the `2-topology since they are both consistent.

However, in the case of bounded Lipschitz functions (rather than the full case of continuous

and bounded functions), we can improve this result to obtain a rate of convergence.

Corollary 3.3.4. For every β,R > 0, s > 1/2 and δ > 2, we have

sup
f0∈Q(β,R)

βH−p−s(Πn ◦ τ−1
Y ,Πα̂n ◦ τ−1

Y )→P0 0

sup
f0∈QSS(β,R,ε)

βH(δ)(Πn ◦ τ−1
Y ,Πα̂n ◦ τ−1

Y )→P0 0

as n→∞. In particular, for S = H−p−s or H(δ) as above,

sup
u:||u||BL≤L

∣∣∣∣∫
S
u d(Πn −Πα̂n)

∣∣∣∣ = OP0

(
L√
n

)
.

This yields a rate of convergence when dealing with functionals that are sufficiently

smooth, i.e. those which are continuous with respect to the S-topology. Since convergence

rates are a property of the metric rather than the underlying topology and weak conver-

gence is generally a purely topological phenomenon, these rates can not be extended to the

full space of continuous and bounded functionals. In particular, since testing a measure

against the unit ball of continuous and bounded functions yields the total variation norm,

if we could uniformly extend to such functionals then we would obtain strong merging of

the measures in the sense of total variation.

3.3.2 Slab and spike prior in L∞

Consider the slab and spike prior, whose frequentist contraction rate has been analyzed

in Castillo and van der Vaart [25], Hoffmann et al. [43] and Castillo et al. [24]. The

assumptions in [43] ensure that prior draws are very sparse and only very few coefficients

are fitted. We therefore modify the prior slightly so that the prior automatically fits

the first few coefficients of the signal without any thresholding. This ensures that the

posterior will have a rough approximation of the signal before fitting wavelet coefficients

more sparsely at higher resolution levels. This makes sense from a practical point of view

by preventing overly sparse models and is in fact necessary from a theoretical perspective

(see Proposition 3.3.7).

Let Jn = blog n/ log 2c be such that n/2 < 2Jn ≤ n and define some strictly increasing

sequence j0 = j0(n) → ∞ such that j0(n) < Jn. For the low resolutions j ≤ j0 we fit a

simple product prior where we draw the flk’s independent from a bounded density g such

80



3.3. Bernstein–von Mises Results

that

g(x) > 0, ∀x ∈ R.

For the middle resolution levels j0 < j ≤ Jn, the flk’s are drawn independently from the

mixture

Πj(dx) = (1− wjn)δ0(dx) + wjng(x)dx, n−K ≤ wj,n ≤ 2−j(1+τ),

for some K > 0 and τ > 1/2. All coefficients at levels j > Jn are set to 0. Since this is

a product prior, it is possible to sample from the posterior distribution using an MCMC

scheme on each component separately. We have a weak BvM in the multiscale space

M0(w), where the rate at which the admissible sequence (wl) diverges depends on the

how many coefficients we automatically fit in the prior via the sequence j0(n).

Theorem 3.3.5. Consider the slab and spike prior defined above with lower threshold

given by the strictly increasing sequence j0(n)→∞. The posterior distribution satisfies a

weak BvM in M0(w) in the sense of Definition 5, that is

sup
f0∈H(β,R)

βM0(w)(Πn ◦ τ−1
Y ,N )→P0 0

as n→∞, for any admissible sequence (wl) satisfying wj0(n)/
√

log n↗∞.

Note that in the limiting case wl =
√
l, we recover j0(n) ' log n, so that the prior

automatically fits the same fixed fraction of the full coefficients for all n. Since we consider

only admissible sequences, we have that compared to the full scale 2Jn ' n of coefficients,

the fraction of coefficients that the prior fits automatically is asymptotically vanishing. An

alternative way to consider this result is in reverse: based on a desired rate in applications,

we prescribe an admissible sequence wl =
√
lul, where ul is some divergent sequence, and

then pick j0(n) appropriately. Since the rate j0(n) is obtained via an implicit relation, we

include a specific case here for clarity.

Corollary 3.3.6. Consider the slab and spike prior defined above with lower threshold

j0 = j0(n) ' (log n)
1

2ε+1 ,

for some ε > 0. Then it satisfies a weak BvM in M0(w) in the sense of Definition 5, that

is,

sup
f0∈H(β,R)

βM0(w)(Πn ◦ τ−1
Y ,N )→P0 0

as n → ∞ for the admissible sequence wl = l1/2+εul, where ul is any (arbitrarily slowly)

diverging sequence.

Note that for ε > 0, 2j0(n) = 2c(logn)1/(2ε+1)
grows more slowly than any power of n.
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While the requirement to fit the first few coefficients of the prior is very mild and of

practical use in nonparametrics, it is naturally of interest to study the behaviour of the

posterior distribution with full thresholding, that is when j0(n) ≡ 0, which we denote by

Π′. In general however, the full posterior contracts to the truth at a rate strictly slower

than 1/
√
n in M(w), so that a

√
n-rescaling of the posterior can not converge weakly to

a limit. This holds even for self-similar functions, which can be see from the proof of the

following proposition.

Proposition 3.3.7. Let (wl) be any admissible sequence. Then for any β > 0 and R > 0,

there exists f0 ∈ H(β,R) such that along some subsequence (nm),

E0Π′(||f − Y||M(w) ≥Mnmnm
−1/2 | Y (nm))→ 1

for all Mn →∞ sufficiently slowly. Consequently, for such an f0, a weak BvM in M0(w)

in the sense of Definition 5 can not hold.

On the level of a
√
n-rescaling as in Definition 5, the rescaled posterior distribution

asymptotically puts vanishingly small probability mass on any givenM(w)-ball infinitely

often and there is therefore no hope that it can look like the required mixture of Gaussian

distribution and Dirac mass at zero. This occurs because the posterior selects non-zero

coordinates by thresholding at the level
√

log n/n rather than the required 1/
√
n (Lemma

1 of [43]). The weighting sequence (wl) acts to regularize the extra
√

log n factor at high

frequencies, but it remains present at low frequencies. This is the reason that the weighting

sequence (wl) depends explicitly on the tresholding factor
√

log n in Theorem 3.3.5.

It seems that using such an adaptive scheme on low frequencies of the signal causes

the weak BvM to fail. This prior closely resembles the frequentist practice of wavelet

thresholding, where such a phenomenon has also been observed. For example, Giné and

Nickl [39] require similar (though stronger) assumptions on the number of coefficients

that need to be fitted automatically to obtain a central limit theorem for the distribution

function of the hard thesholding wavelet estimator in density estimation (Theorem 8 of

[39]).

3.4 Applications

3.4.1 Adaptive credible sets

We propose credible sets from the hierarchical or empirical Bayes procedures, which we

show are adaptive frequentist confidence sets for self-similar parameters. We consider the

natural Bayesian approach of using the quantiles of the posterior distribution to obtain

a credible set of prescribed posterior probability. By considering sets whose geometry is

amenable to the space H(δ), the weak BvM implies that such credible sets are asymptot-

ically confidence sets.
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For a given significance level 0 < γ < 1, consider the credible set

Cn =
{
f : ||f − Y ||H ≤ Rn/

√
n
}
, (3.4.1)

where Rn = Rn(Y, γ) is chosen such that Πα̂n(Cn|Y ) = 1− γ or Π(Cn|Y ) = 1− γ. Since

the empirical and hierarchical Bayes procedures both satisfy a weak BvM, we have from

Theorem 1 of [21] that in both cases

Pf0(f0 ∈ Cn)→ 1− γ and Rn = Op(1)

as n→∞, so that Cn is asymptotically an exact frequentist confidence set (of unbounded

`2-diameter). We control the diameter of the set using either the estimator α̂n or the

posterior median as a smoothness estimate, and then use the standard frequentist approach

of undersmoothing. In the first case, consider

C̃n =
{
f : ||f ||Hα̂n−εn ≤Mn, ||f − Y ||H ≤ Rn/

√
n
}
, (3.4.2)

where Mn →∞ grows more slowly than any polynomial in n, Rn is chosen as in Cn and

0 < εn < α̂n (chosen possibly data dependently) is such that εn → 0 and εn = O(1/ log n).

Geometrically, C̃n is the intersection of two `2-ellipsoids, Cn and an H α̂n−εn-norm ball.

For a typical element f in C̃n, the size of the low frequency coordinates of f are determined

by Cn, while the smoothness condition in C̃n acts to regularize the elements of Cn (which

are typically not in `2) by shrinking the higher frequencies.

Proposition 3.4.1. For any f0 ∈ QSS(β,R, ε), where R ≥ 1 and β ∈ (0, βmax], the

confidence set C̃n given in (3.4.2) satisfies

Pf0(f0 ∈ C̃n)→ 1− γ and Π(C̃n|Y ) = 1− γ + oP0(1)

as n→∞. If Mn →∞ grows more slowly than any power of log n (e.g. Mn � log log n),

then the `2-diameter of C̃n satisfies

|C̃n|2 = OP0

(
n
− β

2β+2p+1 (log n)
2δβ

2β+2p+1M
2p+1

2β+2p+1
n

)
.

If Mn � (log n)ζ for some ζ > 0, then the `2-diameter of C̃n increases to

|C̃n|2 = OP0

(
n
− β

2β+2p+1 (log n)
2δβ+ζ(2p+1)

2β+2p+1

)
.

The above result is uniform over QSS(β,R, ε) as can be seen from the proof. The extra

power of Mn in the diameter is similar to the penalties that commonly arise in frequentist

procedures due to undersmoothing (see for example [40]) and in particular, Mn can be
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taken to increase arbitrarily slowly. On the other hand, the logarithmic correction in the

definition of H(δ) that is required for a weak BvM imposes a strict suboptimality on the

diameter of C̃n. Since the function x 7→ x/(x+ c) is strictly increasing for any c > 0, this

suboptimality is of order (log n)2δ, uniformly over β ≥ 0. This is the price required for

using a plug-in approach in H(δ). The extra undersmoothing due to εn is necessary to

obtain the posterior credibility statement, but εn can be set to 0 if the frequentist coverage

statement of Proposition 3.4.1 is sufficient.

Replacing the estimate α̂n with the median αMn of the marginal posterior distribution

λn(·|Y ) yields a fully Bayesian analogue. To obtain the necessary undersmoothing over a

target range (0, βmax], we consider the shifted estimator β̂n = α̂n − (C + 1)/ log n, where

C = C(R, βmax, ε, ρ) = max0<β≤βmax C(R, β, ε, ρ) is the constant appearing in Lemma

3.6.8 (which can be explicitly computed). Consider

C̃ ′n =
{
f : ||f ||

Hβ̂n ≤Mn, ||f − Y ||H ≤ Rn/
√
n
}
, (3.4.3)

where Mn → ∞ grows more slowly than any polynomial in n and Rn is chosen as in

Cn. Taking Cn arising from the hierarchical Bayesian procedure, C̃ ′n is therefore a fully

Bayesian object. Using the same approach as above, we have an analogue of Proposition

3.4.1.

Proposition 3.4.2. For any f0 ∈ QSS(β,R, ε), where R ≥ 1 and β ∈ (0, βmax], the

confidence set C̃ ′n given in (3.4.3) satisfies

Pf0(f0 ∈ C̃ ′n)→ 1− γ, and Π(C̃ ′n|Y ) = 1− γ + oP0(1)

as n→∞. If Mn →∞ grows more slowly than any power of log n (e.g. Mn � log log n),

then the `2-diameter of C̃ ′n satisfies

|C̃ ′n|2 = OP0

(
n
− β

2β+2p+1 (log n)
2δβ

2β+2p+1M
2p+1

2β+2p+1
n

)
.

If Mn � (log n)ζ for some ζ > 0, then the `2-diameter of C̃ ′n increases to

|C̃ ′n|2 = OP0

(
n
− β

2β+2p+1 (log n)
2δβ+ζ(2p+1)

2β+2p+1

)
.

3.4.2 Adaptive confidence bands

We provide a fully Bayesian construction of adaptive confidence bands using the slab and

spike prior. The posterior median f̃ = (f̃n,lk)(l,k)∈Λ (defined coordinate-wise) takes the

form of a thresholding estimator (c.f. [1]), which we use to identify significant coefficients.

This has the advantage of both simplicity and interpretability and also provides a natural

Bayesian approach for this coefficient selection. Such an approach was used by Kueh [56]
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to construct an asymptotically honest adaptive frequentist confidence set on the sphere

using needlets. In that article, the coefficients are selected based on the empirical wavelet

coefficients with the thresholds selected conservatively using Bernstein’s inequality. In

contrast, we use a Bayesian approach to automatically select the thresholding quantile

constants that then yields exact coverage statements.

Let BM(w)(g,R) = {f : ||f − g||M(w) ≤ R} denote the ball of radius R and centre g in

the spaceM(w). We firstly select the radiusRn = Rn(Y, γ) such that Π(BM(w)(Y,Rn/
√
n)|Y ) =

1−γ, that is theM(w)-ball centered at Y with posterior credibility 1−γ. We then define

the data driven width of our confidence band

σn,γ = σn,γ(Y ) = sup
x∈[0,1]

Jn∑
l=0

vn√
n

2l−1∑
k=0

1{f̃lk 6=0}|ψlk(x)|, (3.4.4)

where (vn) is any sequence such that vn →∞. If ones wishes to scale different frequencies

by varying amounts, one can replace (vn) by (vn,l)n,l≥0 (possibly random), where vn,ln →
∞ for any subsequence ln →∞. For example, a posterior choice based on the multiscale

approach might be vn,l = Rn(Y, γ)wl, since Rn = OP0(1) [22]. Under a local self-similarity

type condition as in Kueh [56], one could possibly remove the supremum in (3.4.4) to

obtain a spatially adaptive procedure. However, we restrict attention to more global self-

similarity conditions here for simplicity Since we consider wavelets satisfying (3.2.3), we

immediately have

σn,γ ≤
vn√
n

sup
x∈[0,1]

Jn∑
l=0

2l−1∑
k=0

|ψlk(x)| ≤ C(ψ)
vn√
n

Jn∑
l=0

2l/2 ≤ C ′vn <∞ a.s.,

for all n and γ ∈ (0, 1). Letting πmed denote the projection onto the non-zero coordinates

of the posterior median, we consider the set

Dn = {f : ||f − Y ||M(w) ≤ Rn/
√
n, ||f − πmed(Y )||∞ ≤ σn,γ(Y )}. (3.4.5)

This involves a two-stage procedure: we firstly calculate the required M(w)-radius Rn

and then use the posterior median to select the coefficients deemed significant.

Proposition 3.4.3. Let f0 ∈ HSS(β,R, ε), where R ≥ 1 and β ∈ [βmin, βmax] for 0 <

βmin ≤ βmax <∞. Consider the slab and spike prior defined above with threshold j0(n)→
∞ and let (wl) be any admissible sequence that satisfies wj0(n)/

√
log n ↗ ∞. Then the

confidence set Dn given in (3.4.5), using the choice (wl) and σn,γ(Y ) defined in (3.4.4)

for vn →∞, satisfies

Pf0(f0 ∈ Dn)→ 1− γ
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as n→∞. Moreover, the L∞-diameter of Dn satisfies

|Dn|∞ = OP0

((
log n

n

) β
2β+1

vn

)
.

Under self-similarity, Dn has radius equal to the minimax rate in L∞ up to some

factor vn that can be taken to diverge arbitrarily slowly, again mirroring a frequentist

undersmoothing penalty. The choice of the posterior median is for simplicity and can

be replaced by any other suitable thresholding procedure, for example directly using the

posterior mixing probabilities between the atom at zero and the continuous density com-

ponent:

σ̃n,γ(Y ) = sup
x∈[0,1]

Jn∑
l=0

∑
k

vn√
n

1{Π(flk = 0 | Y ) ≤ 1/2} |ψlk(x)| .

An alternative to a fully Bayesian procedure would be to consider an empirical Bayes

approach such as in Section 3.3.1. For example, one could use a Lepski type bandwidth

choice (e.g. [40]) to estimate the truncation level Jn(β), and hence the true smoothness

β (again under Definition 7), thereby allowing an optimal truncation similar to that in

(3.4.4).

3.5 Simulation examples

We now apply our approach in a numerical example. Since the key idea is to briefly

illustrate this geometric approach rather than perform an extensive simulation study, we

restrict to the conditionally conjugate case for simplicity. Following on from the example

of the M(w)-based credible set (3.1.1), we now consider the space H
−1/2,δ
2 .

Consider the Fourier sine basis

ek(x) =
√

2 sin(kπx), k = 1, 2, ...,

and define the true function f0,k = 〈f0, ek〉2 = k−3/2 sin(k) so that the true smoothness is

β = 1. We consider realisations of the data (3.2.2) at levels n = 500, 1000 and 2000 and use

the empirical Bayes posterior distribution. We plotted the true f0 (black), the posterior

mean (red) and an approximation to the credible sets (grey). To simulate `2 credible

balls, we sampled 2000 curves from the posterior distribution and kept the 95% closest

in the `2 sense to the posterior mean and plotted them (grey). While the true `2-ball is

unbounded in L∞, this gives some visual idea of the posterior spread. We performed the

same approach to obtain the full H(δ)-credible set Cn given in (3.4.1) and then plotted the

full adaptive confidence set C̃n given in (3.4.2) with Mn = log log n and εn = 1/ log n. We

also present the approximate credibility of C̃n by considering the fraction of the simulated

curves from the posterior that satisfy the extra constraint of C̃n that ||f ||Hα̂n−εn ≤ Mn.
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Figure 3.2: Empirical Bayes credible sets for the Fourier sine basis with the true curve
(black) and the empirical Bayes posterior mean (red). The left panels contain the `2
credible ball and the right panels contain the set C̃n given in (3.4.2). From top to bottom,
n = 500, 1000, 2000, with the right-hand side having credibility 73%, 95%, 95% respectively.

This is given in Figure 3.2.

For a given set of 2000 posterior draws, we also computed the credibility of C̃n at a

chosen significance level and the credibility of the posterior draws jointly discarded by

both methods. We repeated this 10 times and the average values are presented in Figure

3.3.

The posterior distribution appears to have some difficulty visually capturing the result-

ing function at its peak. In fact the credible sets do ”cover the true function”, but do so in

an `2 rather than an L∞-sense. Indeed, any `2-type confidence ball will be unresponsive

to highly localized pointwise features since they occur on a set of small Lebesgue measure

(as in this case). Similar reasoning also explains the poor performance of the posterior

mean at this point. The posterior mean estimates the Fourier coefficients of f0 and hence

estimates the true function via its Fourier series. The discrepancy at this point is thus
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n=1000 n=2000

Chosen significance 95 90 85 80 95 90 85 80

Cred. of C̃n 92.92 87.15 81.45 76.40 93.63 89.29 84.49 78.49
Cred. of joint rejections 0.28 1.26 2.90 4.73 0.30 1.06 2.31 4.23

Figure 3.3: Table showing the average credibility of C̃n and the average credibility of the
posterior draws that are jointly discarded by both methods (all as percentages).

due to the poor pointwise convergence properties of Fourier series.

In Figure 3.2 we see very little difference visually between the `2 and H(δ)-credible

balls. However, the number of posterior draws that are jointly discarded by both methods

is low (the last line in Figure 3.3) and so the two approaches do actually use different

rejection criteria in practice. For example, for n = 2000 and significance level 95%, only 6

(= 0.30× 2000/100) of the 2000 curves were jointly rejected by both methods on average,

indicating almost completely different selection outcomes. The visual similarity in Figure

3.2 is therefore a result of the posterior draws themselves looking similar, rather than the

methods performing identically.

We note that the credibility of C̃n is strictly less than the `2 credible ball due to the

additional smoothness constraint in C̃n, but that this difference is small by n = 2000.

The posterior distribution already strongly regularizes the high frequencies so that the

posterior draws are very regular with high probability. This can be quantitatively seen by

the rapidly decaying variance term of the posterior distribution (3.6.10). This is indeed

the case in the simulation, where the credibility gap is small, thereby demonstrating that

most of the posterior draws already satisfy the smoothness constraint in C̃n.

Finally, we repeat the same simulation using the same true function f0,k = k−3/2 sin(k),

but with basis equal to the singular value decomposition (SVD) of the Volterra operator

(c.f. [53]):

ek(x) =
√

2 cos((k − 1/2)πx), k = 1, 2, ...

and plot this in Figure 3.4 for n = 1000. Unlike Figure 3.2, the resulting function has no

”spike” and so both credible sets have no trouble capturing the true function.

3.6 Proofs

3.6.1 Proofs of weak BvM results in `2 (Theorems 3.3.1 and 3.3.2)

To prove a weak BvM we need to show that the posterior contracts at rate 1/
√
n to the

truth in the relevant space and that the finite-dimensional projections of the rescaled pos-

terior converge weakly to those of the normal law N , which are simply standard Gaussian

random variables. The latter condition is implied by a classical parametric BvM in total

variation.
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3.6. Proofs

Figure 3.4: Empirical Bayes credible sets for the Volterra SVD basis with the true curve
(black) and the empirical Bayes posterior mean (red). The left panels contain the `2
credible ball and the right panels contain the set C̃n given in (3.4.2). From top to bottom,
n = 500, 1000, 2000, with the right-hand side having credibility 86%, 94%, 95% respectively.
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Theorem 3.6.1. For every β,R > 0 and Mn →∞, we have

sup
f0∈Q(β,R)

E0Πα̂n(f : ||f − f0||S ≥MnLnn
−1/2|Y )→ 0,

where S = H(δ) or H−p−s for s > 1/2. If S = H(δ) then Ln = (log n)3/2(log log n)1/2; if

in addition f0 ∈ Q(β,R, ε), then the rate improves to Ln = 1 for δ ≥ 2. If S = H−p−s for

s > 1/2, then Ln = 1.

Proof. This contraction result is proved in the same manner as Theorem 2.3 in [52], with

suitable modifications for the different norms used. The proof is presented in Section 3.7

for completeness.

A classical parametric BvM for the projections of the empirical Bayes posterior, whose

proof we delay to Section 3.6.3, can be obtained by modifying the classical arguments of

Le Cam [60].

Theorem 3.6.2. The finite dimensional projections of the empirical Bayes procedure sat-

isfy a parametric BvM, that is for every finite dimensional subspace V ⊂ `2,

sup
f0∈Q(β,R)

||Πα̂n(·|Y ) ◦ T−1
Y −NV (0, I)||TV →P0 0,

where πV denotes the projection onto V and Tz : f 7→
√
nπV (f − z).

Proof of Theorem 3.3.1. Fix η > 0, let S denote H−p−s or H(δ) as appropriate and set

Π̃α̂n = Πα̂n ◦τ−1
Y . By the triangle inequality, uniformly over the relevant class of functions,

βS(Π̃α̂n ,N ) ≤ βS(Π̃α̂n , Π̃α̂n ◦ π−1
j ) + βS(Π̃α̂n ◦ π−1

j ,N ◦ π−1
j ) + βS(N ◦ π−1

j ,N ),

for some j > 0. Using the contraction result of Theorem 3.6.1 and following the argument

of Theorem 8 of [21], we deduce that the first term is smaller that η/3 for sufficiently

large j (in the case of H(δ) the result holds for all δ > 2 - we recall from the proof of

that theorem that if the required contraction is established in H(δ′), then the required

tightness argument holds in H(δ) for any δ > δ′). A similar result holds for the third

term. For the middle term, note that the total variation distrance dominates the bounded

Lipschitz metric. For fixed j, we therefore have that for n large enough,

βS(Π̃α̂n ◦ π−1
j ,N ◦ π−1

j ) ≤ ||Πα̂n(·|Y ) ◦ T−1
Y −NV (0, I)||TV ≤ η/3,

using Theorem 3.6.2 with V = span{ek : 1 ≤ k ≤ j}. This completes the proof.

A similar situation holds true for the fully Bayesian approach.
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Theorem 3.6.3. Suppose that the prior density λ satisfies Condition 4. Then for every

β,R > 0 and Mn →∞, we have

sup
f0∈Q(β,R)

E0Π
(
f : ||f − f0||S ≥MnLnn

−1/2|Y
)
→ 0,

where S = H(δ) or H−p−s for s > 1/2. If S = H(δ) then Ln = (logn)3/2(log log n)1/2; if

in addition f0 ∈ QSS(β,R, ε), then the rate improves to Ln = 1 for δ ≥ 2. If S = H−p−s

for s > 1/2, then Ln = 1.

Proof. This contraction result is proved in the same manner as Theorem 2.5 in [52], with

suitable modifications arising as in the proof of Theorem 3.6.1.

Theorem 3.6.4. Let V ⊂ `2 be a finite dimensional subspace such that πV (f0) 6= 0,

where πV denotes the projection onto V . Then the finite dimensional projection of the

hierarchical Bayesian procedure satisfies a parametric BvM, that is

sup
f0∈Q(β,R),
πV (f0)6=0

||Πn ◦ T−1
Y −NV (0, I)||TV →P0 0,

where Tz : f 7→
√
nπV (f − z).

Proof of Theorem 3.3.2. The proof is exactly the same as that of Theorem 3.3.1, using

Theorems 3.6.3 and 3.6.4 instead of Theorems 3.6.1 and 3.6.4.

3.6.2 Proof of weak BvM result in L∞ (Theorem 3.3.5)

Following Theorem 2 of [43], define the sets

Jn(γ) =
{

(j, k) ∈ Λ : |f0,jk| > γ
√

log n/n
}

for γ > 0. In what follows, we denote by S the support of the prior draw, that is the set

of non-zero coefficients of f = (fjk)(j,k)∈Λ drawn from the prior. We require the following

contraction result.

Theorem 3.6.5. Consider the slab and spike prior defined in Section 3.3.2 with lower

threshold given by the strictly increasing sequence j0(n)→∞. Then for every 0 < βmin ≤
βmax, R > 0 and Mn →∞, we have

sup
f0∈H(β,R)

E0Π(f : ||f − f0||M(w) ≥Mnn
−1/2 | Y )→ 0

uniformly over β ∈ [βmin, βmax], where (wl) is any admissible sequence satisfying wj0(n) ≥
c
√

log n for some c > 0.
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Proof of Theorem 3.6.5. Fix η > 0. Consider the event

An = {Sc∩Jn(γ) = ∅}∩{S∩J cn(γ) = ∅}∩{ max
(j,k)∈Jn(γ)

|f0,jk−fjk| ≤ γ
√

(log n)/n}. (3.6.1)

By Theorem 2 of [43], there exist constants 0 < γ < γ < ∞ (independent of β and R)

such that

sup
f0∈∪β∈[βmin,βmax]H(β,R)

E0Π(Acn | Y ) . n−B, (3.6.2)

for some B = B(βmin, βmax, R) > 0 (this follows since the probabilities of the complements

of each of the events constituting An satisfy the above bound individually). We then have

the following decomposition for some D = D(η) > 0 large enough to be specified later,

E0Π
(
||f − f0||M ≥Mnn

−1/2 | Y
)

≤ E0Π
(
{||f − f0||M ≥Mnn

−1/2} ∩ {||πj0(f − f0)||M ≤ Dn
−1/2} ∩An | Y

)
+ E0Π

(
{||f − f0||M ≥Mnn

−1/2} ∩ {||πj0(f − f0)||M > Dn−1/2} ∩An | Y
)

+ E0Π(Acn | Y ).

(3.6.3)

Firstly note that the first term on the right-hand side of (3.6.3) is bounded by

E0

(
{||(I − πj0)(f − f0)||M ≥ (Mn −D)n−1/2} ∩An | Y

)
, (3.6.4)

where I is the identity operator. Combining this with (3.6.2), we can upper bound the

right hand side of (3.6.3) by

E0Π({||(I − πj0)(f − f0)||M ≥ M̃nn
−1/2} ∩An | Y )

+ E0Π(||πj0(f − f0)||M > Dn−1/2 | Y ) + o(1),
(3.6.5)

where M̃n = Mn − D → ∞ as n → ∞. We bound the two remaining terms in (3.6.5)

separately.

For the first term in (3.6.5), we can proceed as in the proof of Theorem 2 of [43].

By the definition of the Hölder ball H(β,R), there exists Jn(β) such that 2Jn(β) ≤
k(n/ log n)1/(2β+1) for some constant k > 0 such that Jn(γ) ⊂ {(j, k) : j ≤ Jn(β), k =

0, ..., 2j − 1} and

sup
f0∈H(β,R)

sup
l>Jn(β)

w−1
l max

k
|f0,lk| ≤

R2−Jn(β)(β+1/2)√
Jn(β)

≤ C(β,R)
1√
n
.
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Consider now the frequencies j0 ≤ l ≤ Jn(β). On the event An, we have that

sup
j0≤l≤Jn(β)

1

wl
max
k
|flk − f0,lk| ≤

1

wj0
γ

√
log n

n
≤ γ

c

1√
n
,

since wj0(n) ≥ c
√

log n by hypothesis. We thus have that on the eventAn, ||(I − πj0)(f − f0)||M =

O(n−1/2) for any f0 ∈ H(β,R), which proves that the first term in (3.6.5) is 0 for n suffi-

ciently large.

Consider now the second term in (3.6.5). We shall use the approach of [19] using the

moment generating function to control the low frequency terms. Recall that on these

coordinates we have the simple product prior Π(dx1, ..., dxj0) =
∏j0
k=1 g(xi)dxi. One can

prove as in Lemma 1 of [19] that we have the subgaussian bound

E0EΠ(et
√
n(flk−Ylk) | Y ) ≤ Cet2/2

for some C > 0. Denote by Pr the law with expectation E0EΠ, where EΠ denotes the

expectation under the posterior measure. By a standard application of Markov’s inequality

we have the subgaussian bound

Pr(
√
n|flk − Ylk| > v) ≤ C ′e−Cv2

for all v > 0 and universal constants C,C ′ > 0. We then follow the proof of Theorem 2 of

[22], which we include here for completeness. For some fixed constant M > 0, using the

above bound yields

E0EΠ

(
sup
j≤j0

l−1/2 max
k

√
n|flk − Ylk| | Y

)
≤M +

∫ ∞
M

Pr

(
sup
l≤j0

l−1/2 max
k

√
n|flk − Ylk| > u

)
du

≤M +
∑

(l,k):l≤j0

∫ ∞
M

Pr
(√

n|flk − Ylk| >
√
lu
)
du

≤M + C ′
∑
l≤j0

2l
∫ ∞
M

e−Clu
2
du

≤M + C ′
∑
1≤j0

2le−ClM
2 ≤ C ′′.

By Markov’s inequality and then the triangle inequality, the second term in (3.6.5) is then

bounded by

√
n

D
E0EΠ

(
||πj0(f − f0)||M | Y

)
≤
√
n

D
E0EΠ

(
||πj0(Y− f0)||M | Y

)
+
C ′′

D

≤ E0||Z||M
D

+
C ′′

D
.

(3.6.6)
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By Proposition 2 of [22] and the fact that (wl) is an admissible sequence, the first term in

(3.6.6) is also bounded by C/D for some C > 0. Taking D = D(η) > 0 sufficiently large,

(3.6.6) can be then made smaller than η/2.

Proof of Theorem 3.3.5. Fix η > 0 and denote Π̃n = Πn ◦ τ−1
Y . By the triangle inequality,

uniformly over the relevant class of functions,

βM0(Π̃n,N ) ≤ βM0(Π̃n, Π̃n ◦ π−1
j ) + βM0(Π̃n ◦ π−1

j ,N ◦ π−1
j ) + βM0(N ◦ π−1

j ,N ),

for fixed j > 0. Since we have a 1/
√
n-contraction rate in M for the posterior from

Theorem 3.6.5, we can make the first term smaller than η/3 by taking j sufficiently large,

again using the arguments of Theorem 8 of [21]. We recall from the proof of that theorem

that if the required contraction is established in M(w) for an admissible sequence (wl),

then the required tightness argument holds in M0(w) for any admissible (wl) such that

wl/wl ↗∞. A similar result holds for the third term.

For the middle term, note that j0(n) ≥ j for n large enough. For such n, the projected

prior onto the first j coordinates is a simple product prior which satisfies the usual con-

ditions of the parametric BvM, namely it is has a density that is positive and continuous

at the true (projected) paramter, and hence converges to 0 in total variation (see Chapter

10 of [81] for more details). Since the total variation distance dominates the bounded

Lipschitz metric, this completes the proof.

3.6.3 Proofs of finite dimensional BvM results (Theorems 3.6.2 and

3.6.4)

We recall some definitions from Knapik et al. [52]. Let hn : (0,∞)→ [0,∞) be

hn(α) =
1 + 2α+ 2p

n1/(2α+2p+1) log n

∞∑
k=1

n2k2α+1f2
0,k log k

(k2α+1ρ−2
k + n)2

and for 0 < l < L define the bounds

αn = inf{α > 0 : hn(α) > l} ∧
√

log n,

αn = inf{α > 0 : hn(α) > L(log n)2}.

We recall (a slight modification of) Theorem 2.2 from [52]:

Theorem 3.6.6 (Knapik et al.). For every R > 0 the constants l and L can be chosen

such that

inf
f0∈Q(β,R)

P0

(
argmaxα≥0`n(α) ∈ [αn, αn]

)
→ 1,

where `n(α) denotes the log-likelihood for α.
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The proof of Theorem 3.6.2 modifies the classical approach of Le Cam [60] by showing

that the projections of the conditional posteriors Πα(· | Y ) satisfy a BvM uniformly over

the typical range of the estimator α̂n.

Proof of Theorem 3.6.2. For f0 ∈ Q(β,R), fix ε > 0, define In := [αn, αn] and consider

the event An = {α̂n ∈ In}. By Theorem 3.6.6,

P0

(
||Πα̂n(·|Y ) ◦ T−1

Y −N(0, IJ)||TV > ε
)
≤ P0

(
sup
α∈In
||Πα(·|Y ) ◦ T−1

Y −N(0, IJ)||TV > ε

)
+o(1),

uniformly over f0 ∈ Q(β,R) as n→∞. It is therefore sufficient to show that the first term

on the right-hand side converges to 0, that is to establish the parametric BvM uniformly

over the set of posteriors {Πα(· | Y ) : α ∈ In}
For integer J ≥ 1, let VJ = span{ek : 1 ≤ k ≤ J} be a finite-dimensional subspace

of `2 and let πJ : `2 → RJ denote the projection onto RJ . Fix the smallest J such that

V ⊂ VJ and without loss of generality it is sufficient to prove the result with VJ instead of

V . We shall firstly establish this result conditional on an arbitrary compact set K ⊂ RJ

and then use an approximation argument to extend this to the full space. Abbreviate the

conditional posterior distributions of the scaled and centered parameter
√
nπJ(f − f0) by

Π̃α,n = Πα(· | Y ) ◦ T−1
f0

and let Φn denote the normal distribution N(∆n,f0 , IJ), where

∆n,f0 =
√
nπJ(Y − f0). For an arbitrary probability measure µ and a compact subset K

such that µ(K) > 0, define the conditional version µK of µ by µK(B) = µ(B ∩K)/µ(K).

Let K ⊂ RJ be a compact subset. Let φn : K → R denote the Lebesgue density

of Φn, π̃α,n : K → R the Lebesgue density of (rescaled and centered) prior Πα ◦ T−1
f0

and sn : K → R the likelihood ratio sn(h) = pf0+n−1/2h/pf0(Y ) = exp(hT∆n,f0 − 1
2h

Th).

Consider the (random) functions ψα,n : K ×K → R defined by

ψα,n(g, h) =

(
1− φn(h)sn(g)π̃α,n(g)

φn(g)sn(h)π̃α,n(h)

)
+

.

Since we are exactly in a Gaussian shift experiment, we have that for any two sequences

(gn), (hn) in K,

log
φn(hn)sn(gn)π̃α,n(gn)

φn(gn)sn(hn)π̃α,n(hn)
= log

π̃α,n(gn)

π̃α,n(hn)
.

Recall that by definition, the estimator α̂n is constrained to the interval [0, log n/vn],

where vn → ∞ is such that vn = o(log n). Since Π̃α = ⊗Jk=1N(−
√
nf0,k, nk

−2α−1) and
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K ⊂ BM (0) for some M > 0 (since K is compact), we can bound the above quotient by

∣∣∣∣log
π̃α,n(gn)

π̃α,n(hn)

∣∣∣∣ =

∣∣∣∣∣− 1

2n

J∑
k=1

k2α+1(g2
n,k − h2

n,k)−
1√
n

J∑
k=1

k2α+1f0,k(gn,k − hn,k)

∣∣∣∣∣
≤ J2α+1M2

n
+

2J2α+1M ||πJ(f0)||RJ√
n

≤ C(M,R) exp

((
2 log J

vn
− 1

2

)
log n

)
→ 0

as n→∞. In particular, the bound holds uniformly over α ∈ In. Since the functions ψα,n

are continuous on the compact set K ×K, we have that

sup
α∈In

sup
g,h∈K

ψα,n(g, h)→ 0 (3.6.7)

as n→∞ uniformly over f0 ∈ Q(β,R), where the convergence is deterministic (unlike in

[51]) since we are exactly in a Gaussian shift experiment.

Consider now K compact containing a neighbourhood of 0 (so that Φn(K) > 0) and

let Ξn = {Π̃α,n(K) > 0 for all α ∈ In}∗, where the ∗ signifies the inner measurable cover

set in case the event is not measurable. Moreover, for given η > 0, we have by (3.6.7) that

supα∈In supg,h∈K ψα,n(g, h) ≤ η for all n ≥ N = N(η, β,R) a non-random integer. Since

the total variation distance between two arbitrary probability measures P and Q can be

expressed in the form ||P −Q||TV = 2
∫

(1− p/q)+dQ, we have for n ≥ N ,

1

2
E0 sup

α∈In
||Π̃K

α,n − ΦK
n ||TV 1Ξn = E0 sup

α∈In

∫ (
1− dΦK

n

dΠ̃K
α,n

)
+

dΠ̃K
α,n1Ξn

= E0 sup
α∈In

∫
K

(
1−

∫
K

sn(g)π̃α,n(h)φn(h)

sn(h)π̃α,n(g)φn(g)
dΦK

n (g)

)
+

dΠ̃K
α,n(h)1Ξn .

(3.6.8)

Applying Jensen’s inequality to the convex function x 7→ (1− x)+ for the ΦK
n -expectation

yields that (3.6.8) is bounded by

En0 sup
α∈In

∫
K×K

ψα,n(g, h)dΦK
n (g)dΠ̃K

α,n(h)1Ξn ≤ ηEn0 sup
α∈In

∫
K×K

dΦK
n (g)dΠ̃K

α,n(h) = η

for n ≥ N . We thus have that for any K compact containing a neighbourhood of 0,

En0 supα∈In ||Π̃
K
α,n − ΦK

n ||TV 1Ξn → 0.

Let Km = BMm(0) denote a sequence of balls in RJ centered at 0 with radii Mm →∞.

Since the convergence above holds for all m ≥ 1, we can use a diagonal argument to extract

a subsequence (mn) such that the above convergence can still be obtained going through

the sequence (Kmn) simultaneously. We firstly note that by the proof of Theorem 3.6.1
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(see Section 3.7 for more details), we have for s > 1/2,

n

M2
n

sup
f0∈Q(β,R)

En0 sup
α∈In

∫
||f − f0||2H−p−s Πα(df |Y )→ 0 (3.6.9)

for any Mn → ∞. Consider the events Ξn = {Π̃α,n(Kmn) > 0 for all α ∈ In}∗, which

we check satisfy Pn0 (Ξn) → 1 as n → ∞. Fix 0 < r < 1 and s > 1/2 and define

Rn = MmnJ
−p−s →∞. Applying Markov’s inequality twice yields that

Pn0 (Ξcn) = Pn0 (Π̃α,n(Kmn) = 0 for some α ∈ In)

= Pn0 (Πα(f :
√
n ||πJ(f − f0)||2 ≤Mmn | Y ) = 0 for some α ∈ In)

≤ Pn0 (Πα(f : ||f − f0||H−p−s ≤MmnJ
−p−sn−1/2 | Y ) = 0 for some α ∈ In)

≤ Pn0
(

sup
α∈In

Πα(f : ||f − f0||H−p−s ≥ Rnn
−1/2 | Y ) ≥ 1− r

)
≤ 1

1− r
En0 sup

α∈In
Πα(f : ||f − f0||H−p−s ≥ Rnn

−1/2 | Y )

≤ n

(1− r)R2
n

En0 sup
α∈In

∫
||f − f0||2H−p−s Πα(df |Y )→ 0,

where the last term converges to 0 uniformly over f0 ∈ Q(β,R) by (3.6.9).

As a result, we have that there exists a sequence of balls (Kmn) with radii Mmn →∞
such that E0 supα∈In ||Π̃

Kmn
α,n − Φ

Kmn
n ||TV 1Ξn → 0, where the conditional probabilities are

well-defined on events Ξn with Pn0 (Ξn) → 1. Note that for any set K and measure Π the

total variation distance satisfies ||Π − ΠK ||TV ≤ 2Π(Kc). Since Lemma 5.2 of [51] yields

that Φ(Kc
mn)→Pnf0 0, we have that combined with the above

E0 sup
α∈In
||Π̃α,n − Φn||TV ≤ E0 sup

α∈In
||Π̃α,n − Π̃Kmn

α,n ||TV + E0 sup
α∈In
||Π̃Kmn

α,n − ΦKmn
n ||TV

+ E0||ΦKmn
n − Φn||TV

≤ 2E0 sup
α∈In

Π̃α,n(Kc
mn) + o(1).

Since ||πJ(f − f0)||RJ ≤ Jp+s||f − f0||H−p−s , we have by (3.6.9) that

E0 sup
α∈In

Π̃α,n(Kc
mn) ≤ E0 sup

α∈In
Πα(f : ||f − f0||H−p−s ≥MmnJ

−p−sn−1/2|Y ) = o(1),

which completes the proof.

Proof of Theorem 3.6.4. Recall that we assume that f0,1 = 0 (otherwise as indicated

above, the following arguments still hold true under a slight modification to the prior).

Let VJ be as in the proof of Theorem 3.6.2. Since the hierarchical prior is conditionally a

product prior, we have that the distribution Π ◦π−1
V is absolutely continuous with respect
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to J-dimensional Lebesgue measure with density function

pJ(x1, ..., xJ) = (2π)−J/2
∫ ∞

0
(J !)α+1/2e−22αx21−

1
2

∑J
k=2 k

2α+1x2kλ(α)dα.

The integral is finite on RJ\{0}, so that the above expression is well-defined except on a

set of J-dimensional Lebesgue measure 0. The density pJ is positive on RJ and continuous

by a dominated convergence argument.

For f0 such that πV (f0) 6= 0, we verify the conditions of Theorem 2.1 of [51], which

we note can be made uniform over Q(β,R) by carefully keeping track of the constants in

the proof. As shown above, the prior Π ◦ π−1
V has a Lebesgue density that is continuous

and positive at πV (f0). Since we are in a Gaussian white noise model, the model trivially

satisfies the stochastic local asymptotic normality condition (2.1) of [51] at any point

πV (f) ∈ RJ , with random vectors ∆n,f =
√
nπV (Y − f), non-singular matrix Vf ≡ IJ and

norming rate δn = n−1/2. For any Mn →∞,

E0Πn(f : ||πV (f − f0)|| ≥Mnn
−1/2|Y ) ≤ E0Πn(f : ||f − f0||H−p−s ≥MnJ

−p−sn−1/2|Y )→ 0,

by Theorem 3.6.3. By Theorem 2.1 of [51], we thus have that for Tz : f 7→
√
nπV (f − z),∣∣∣∣∣∣Πn ◦ T−1

f0
−N(∆n,f0 , V

−1
f0

)
∣∣∣∣∣∣
TV

= ||Πn ◦ T−1
Y −N(0, IJ)||TV → 0

as n→∞ in P0-probability.

3.6.4 Other proofs

`2 confidence sets

Self-similarity ensures that we can estimate the unknown smoothness β of the signal f0 at

the rate OP0(1/ log n) using the estimator α̂n; this is necessary in order for the radius of

any confidence set to adapt to the unknown smoothness. The behaviour of α̂n is contained

in Lemma 3.11 of [79], which is summarized below for convenience.

Lemma 3.6.7 (Szabó et al.). For any 0 < β ≤ A − 1 and R ≥ 1, there exist constants

K1 and K2 such that P0(β −K1/ log n ≤ α̂n ≤ β + K2/ log n) → 1 uniformly over f0 ∈
QSS(β,R, ε).

As mentioned in the discussion following the lemma in [79], the constant K2 is negative

for large enough R so that the estimate α̂n undersmooths the true β. We recall that the

posterior distribution corresponding to the prior Πα in (3.3.1) is given by

Πα(· | Y ) =

∞⊗
k=1

N

(
nρ−1

k

k2αρ−2
k +1 + n

Yk,
ρ−2
k

k2α+1ρ−2
k + n

)
. (3.6.10)
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Proof of Proposition 3.4.1. By (3.6.10), we see that for f ∼ Πα(· | Y ), we have EΠ[||f ||2
Hα′ |

Y ] <∞ if and only if α′ < α, from which we deduce that Πα̂n(||f ||Hα̂n−εn ≤Mn | Y )→P0 1

since Mn →∞. Since Rn is selected such that Πα̂n(Cn | Y ) = 1− γ, the claim about the

posterior credibility of C̃n follows.

For the coverage, we have by Lemma 3.6.7 that for sufficiently large n, α̂n ≤ β and

consequently ||f0||Hα̂n−εn ≤Mn eventually under P0, uniformly over f0 ∈ QSS(β,R). For

n large enough, we therefore have that P0(f0 ∈ C̃n) = P0(||f0 − Y ||H ≤ Rn/
√
n) and the

proof of coverage then follows by Theorem 1 of [21] since H(δ)-balls form a uniformity

class for the measure N .

Consider firstly Mn growing more slowly than any power of log n. Let f1, f2 ∈ C̃n and

set g = f1 − f2. Picking Jn ∼ [nM2
n/(log n)2δ]1/(1+2α̂n−2εn+2p) yields

||g||22 =

∞∑
k=1

|gk|2 =

Jn∑
k=1

k2p+1k−2p−1(log k)2δ−2δ|gk|2 +

∞∑
k=Jn+1

k2(α̂n−εn)−2(α̂n−εn)|gk|2

≤ J2p+1
n (log Jn)2δ ||g||2H(δ) + J−2(α̂n−εn)

n ||g||2Hα̂n−εn

= OP0

(
J2p+1
n (log Jn)2δn−1 + J−2(α̂n−εn)

n M2
n

)
= OP0

(
n
− 2(α̂n−εn)

1+2α̂n−2εn+2p (log n)
4δ(α̂n−εn)

1+2α̂n−2εn+2pM
2(2p+1)

1+2α̂n−2εn+2p
n

)
,

where the constants do not depend on g. Since |α̂n − β| = OP0(1/ log n) by Lemma 3.6.7

and εn = O(1/ log n) by assumption, some straightforward computations yield that ||g||22 =

OP0(n−2β/(2β+2p+1)(log n)4δβ/(2β+2p+1)M
(4p+2)/(2β+2p+1)
n ) as n → ∞. If Mn � (log n)ζ ,

then the diameter result follows exactly as above taking Jn ∼ n1/(2α̂n+2p+1)(log n)−2(δ−ζ)/(2α̂n+2p+1).

We have an analogous approach in the fully Bayesian case.

Lemma 3.6.8. The posterior median αMn of the marginal posterior distribution λn(·|Y )

satisfies

inf
f0∈Q(β,R)

P0

(
αMn ∈ [αn, αn]

)
→ 1

as n → ∞, where αn and αn are defined in Section 3.6.3 above. Moreover, for C =

C(β,R, ε, ρ),

inf
f0∈QSS(β,R,ε)

P0

(∣∣αMn − β∣∣ ≤ C/ log n
)
→ 1.

Proof. The proof follows directly from the proof of Theorem 2.5 of [52].

Proof of Proposition 3.4.2. Using Lemma 3.6.8, the proof follows in the same was as that

of Proposition 3.4.1.
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L∞ confidence bands

To prove Proposition 3.4.3 we need to understand the behaviour of the posterior median

under the law P0, which is the content of the next lemma.

Lemma 3.6.9. Let f̃ = f̃n denote the posterior median (defined coordinate-wise) of the

slab and spike prior. Then the event

Bn = {f̃lk = 0 ∀(l, k) ∈ J cn(γ)} ∩ {f̃lk 6= 0 ∀(l, k) ∈ Jn(γ′)}

∩ {
√
n|Ylk − f0,lk| ≤ (8l log 2 + a log n)1/2 ∀l ≤ Jn,∀k = 0, ..., 2l − 1}

(3.6.11)

satisfies inff0∈H(β,R) P0(Bn) → 1 as n → ∞, for some constants 0 < γ < γ′ < ∞ and

a > 0.

Proof. We show that the P0-probability of each of these events individually tends to 1.

For the first event

{f̃lk = 0 ∀(l, k) ∈ J cn(γ)} ⊇ {Π(flk = 0 | Y ) ≥ 1/2 ∀(l, k) ∈ J cn(γ)}

⊇ {Π(flk = 0 ∀(l, k) ∈ J cn(γ)) ≥ 1/2}

= {Π(S ∩ J cn(γ) = ∅) ≥ 1/2}.

By Lemma 1 of [43] the P0-probability of this last event tends to 1 for some γ > 0 as

n→∞.

Consider the third event,

Ωn = {
√
n|Ylk − f0,lk| ≤ (8l log 2 + a log n)1/2 ∀l ≤ Jn, ∀k = 0, ..., 2l − 1},

where a > 32 log 2 is a constant. Using the standard inequality
√
x+ y ≤

√
x +
√
y and

that l ≤ Jn ≤ log n,

(
√

8l log 2 + a log n−
√

8l log 2)2 = 16l log 2 + a log n− 2
√

64l2(log 2)2 + 8al log 2 log n

≥ 16l log 2 + a log n− 16 log l(log 2)− 2
√

8a log 2 log n

= a′ log n,

where a′ > 0 by the choice of a. Using the Borell-Sudakov-Tsirelson inequality [62] and
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that E0 max1≤i≤n |Zi| ≤
√

8 log n for (Zi) i.i.d. standard normal random variables yields

P0(Ωc
n) ≤

Jn∑
l=1

P0

(
max
k
|Zlk| ≥

√
2l log 2 +

1

2
log n

)

≤
Jn∑
l=1

P0

(
max
k
|Zlk| − E0 max

k
|Zlk| ≥

√
2l log 2 +

1

2
log n−

√
8l log 2

)

≤ 2

Jn∑
l=1

exp

(
−1

2

(√
8l log 2 + a log n−

√
8l log 2

))
≤ 2Jn exp

(
−a
′

2
log n

)
≤ 2n−a

′/2 log n→ 0.

as required. We shall lastly show that

Ωn ⊂ {f̃lk 6= 0 ∀(l, k) ∈ Jn(γ′)}, (3.6.12)

which then completes the proof.

Consider firstly the case f0,lk ∈ Jn(γ′) with f0,lk > 0. Write

Π(flk ≤ 0 | Y ) = Π(flk = 0 | Y ) + Π(flk < 0 | Y ). (3.6.13)

By the proof of Lemma 1 of [43], we have that on the event Ωn and for sufficiently large γ′,

the first posterior probability in (3.6.13) is bounded above by a multiple of nK+1/2−(γ′)2/8.

Again on the event Ωn, we use (42) of [43] to bound the second term via

Π(flk < 0 | Y ) =
wjn

∫ 0
−∞ e

−n
2

(x−Ylk)2g(x)dx

wjn
∫∞
−∞ e

−n
2

(x−Ylk)2g(x)dx+ (1− wj,n)

≤
||g||∞

∫ −√nYlk
−∞ e−

1
2
v2dv

a(π/n)1/2
= C
√
nΦ̄(
√
nYlk),

(3.6.14)

where Φ̄ = 1− Φ with Φ the distribution function of a standard normal variable. On Ωn,

we have for l ≤ Jn,

Ylk = (Ylk − f0,lk) + f0,lk ≥ −

√
2Jn log 2 + 1

2 log n

n
+ γ′

√
log n

n
≥ δ
√

log n

n

for some δ = δ(γ′) > 0 that can be made arbitrarily large by taking γ′ large enough. Thus

applying the standard tail bounds for Φ̄ we have that the right-hand side of (3.6.14) is

bounded above by a multiple of

√
nΦ̄(δ

√
log n) ≤

√
n

δ
√

2π log n
e−

1
2
δ2 logn = C(δ)

n
1
2
− 1

2
δ2

√
log n

.

101



Adaptive nonparametric BvMs

Combining the above results, we have that for sufficiently large γ′ (and hence δ), (3.6.13)

is bounded above by a constant times n−B for some B > 0, uniformly over the positive

coefficients in Jn(γ′). In particular, the posterior median satisfies f̃lk > 0 for all (l, k) ∈
Jn(γ′) with flk > 0 and n large enough. The case f0,lk < 0 is dealt with in exactly the

same way, thereby proving (3.6.12).

Proof of Proposition 3.4.3. By Lemma 3.6.9, it suffices to prove all the results on the

event Bn defined in (3.6.11). We firstly establish the diameter of the confidence set.

Taking f1, f2 ∈ Dn and setting 2Jn(β) ' (n/ log n)1/(2β+1), we have on Bn,

||f1 − f2||∞ ≤ ||f1 − πmed(Y )||∞ + ||f2 − πmed(Y )||∞

≤ 2 sup
x∈[0,1]

Jn(β)∑
l=0

2l−1∑
k=0

vn√
n
|ψlk(x)|

≤ C(ψ)
vn√
n

Jn(β)∑
l=0

2l/2 ≤ C ′ 2
Jn(β)/2vn√

n
= OP0

((
log n

n

) β
2β+1

vn

)
.

We now need to establish asymptotic coverage. Split f0 = πJn(γ)(f0) + πJ cn(γ)(f0).

Since πJ cn(γ) ◦ πmed(Y ) = 0 on Bn, we can write

||f0 − πmed(Y )||∞ ≤ ||πmed(f0 − Y )||∞ + ||(id− πmed) ◦ πJn(γ)(f0)||∞ + ||πJ cn(γ)(f0)||∞.
(3.6.15)

For the third term in (3.6.15), note that since f0 ∈ H(β, L),

||πJ cn(γ)(f0)||∞ ≤
∞∑
l=0

2l/2 max
k:(l,k)∈J cn(γ)

|〈f0, ψlk〉|

≤
Jn(β)∑
l=0

2l/2γ

√
log n

n
+

∑
l>Jn(β)

2−lβ ≤ C(β, L)

(
log n

n

) β
2β+1

.

(3.6.16)

For the second term in (3.6.15), we note that any indices remaining satisfy (l, k) ∈ J cn(γ′)

and so by the same reasoning as above, this term is also O((log n/n)β/(2β+1)).

It is shown in the proof of Proposition 3 of [42] that self-similarity in the sense of

Definition 7 implies the existence of infinitely many coefficients of significant size in the

following sense. Firstly observe that for f0 ∈ HSS(β,R, ε) and any j ≥ j0,

||ψ||∞
∑
l≥j

2l/2 sup
k
|〈f0, ψlk〉| ≥ ||Kj(f)− f ||∞ ≥ ε2

−jβ.

Let N be a fixed integer and let j ≥ j0. Lower bounding the maximum by the average
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over the range [j, j +N − 1] yields

sup
(l,k):l≥j

|〈f0, ψlk〉| ≥
1

N

j+N−1∑
l=j

sup
k
|〈f0, ψlk〉|

≥ 2−(j+N)/2

N

 ∞∑
l=j

2l/2 sup
k
|〈f0, ψlk〉| −

∞∑
l=j+N

2l/2 sup
k
|〈f0, ψlk〉|


≥ 2−(j+N)/2

N

(
ε

||ψ||∞
2−jβ − R

1− 2−β
2−(j+N)β

)
≥ 2−(j+N)/2

2N ||ψ||∞
ε2−jβ ≥ d(ε,R, β, ψ)2−j(β+1/2)

for some d(ε,R, β, ψ) > 0 if N is chosen sufficiently large (but finite), depending only on

ε,R, β, ψ. Let J̃n(β) be such that ε
2(n/ log n)1/(2β+1) ≤ 2J̃n(β) ≤ ε(n/ log n)1/(2β+1), where

ε = ε(b, R, β, ψ) > 0 is small enough so that d/εβ+1/2 > γ′. Using this yields

sup
(l,k):l≥J̃n(β)

|〈f0, ψlk〉| ≥
d(b, R, β, ψ)

εβ+1/2

√
log n

n
> γ′

√
log n

n
.

We therefore have that on the event Bn, there exists (l′, k′) with l′ ≥ J̃n(β) such that

f̃l′k′ 6= 0 and a non-zero coefficient therefore appears in the definition (3.4.4) of σn,γ . We

can thus lower bound

σn,γ ≥
vn√
n

sup
x∈[0,1]

|ψl′k′(x)| ≥ c(ψ)
vn2J̃n(β)/2

√
n

= c′vn

(
log n

n

) β
2β+1

. (3.6.17)

Now, since vn → ∞ as n → ∞, we have from (3.6.16) and the remark after it that for

sufficiently large n (depending on β and R), the first two terms in (3.6.15) satisfy

||(id− πmed) ◦ πJn(γ)(f0)||∞ + ||πJ cn(γ)(f0)||∞ ≤ C
(

log n

n

) β
2β+1

≤ σn,γ/2.

For the first term in (3.6.15) we recall that on Bn, the posterior median only picks up

coefficients (l, k) with l ≤ Jn(β) ≤ Jn. Therefore on this event,

||πmed(f0 − Y )||∞ ≤ sup
x∈[0,1]

∑
(l,k)∈med

|f0,lk − Ylk||ψlk(x)|

≤ C(ψ)

√
log n

n

∑
(l,k):l≤Jn(β)

2l/2 ≤ C ′
(

log n

n

) 1
2β+1

.

Using the lower bound (3.6.17), we deduce that on Bn, ||πmed(f0 − Y )||∞ ≤ σn,γ(Y )/2 for

n large enough, uniformly over f0 ∈ HSS(β,R). Combining all of the above yields that
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Bn ⊂ {||f0 − πmed(Y )||∞ ≤ σn,γ}. We therefore conclude that

P0(f0 ∈ Dn) = P0({||f0 − Y ||M(w) ≤ Rn/
√
n} ∩ {||f0 − πmed(Y )||∞ ≤ σn,γ} ∩Bn) + o(1)

= P0({||f0 − Y ||M(w) ≤ Rn/
√
n} ∩Bn) + o(1)

= 1− γ + o(1),

where we have used that P0(Bn) → 1 and that P0(||f0 − Y ||M(w) ≤ Rn/
√
n) → 1 − γ by

Theorem 5 of [22].

Remaining proofs

Proof of Proposition 3.3.3. Fix ρ > 1, let ε = ε(α, ρ,R) < (1−ρ−2α)/(2αR) be sufficiently

small so that ε ∈ (0, 1) and consider the events Aα,N = {
∑dρNe

k=N f2
k < εRN−2α}. By a

simple integral comparison we have that
∑dρNe

k=N k−2α−1 ≥ (2α)−1N−2α(1− ρ−2α), so that

under the conditional prior,

Πα(Aα,N ) = P

dρNe∑
k=N

k−2α−1g2
k < εRN−2α


≤ P

dρNe∑
k=N

k−2α−1(g2
k − 1) < εRN−2α − 1

2α
N−2α(1− ρ−2α)


≤ P

dρNe∑
k=N

k−2α−1(g2
k − 1) < −ε′N−2α

 ,

where the gk’s are i.i.d. standard normal random variables and ε′ > 0 (by the choice of

ε). By (4.2) of Lemma 1 of [59] we have the exponential inequality

P

dρNe∑
k=N

k−2α−1(g2
k − 1) ≤ −2

dρNe∑
k=N

k−4α−2

1/2

√
x

 ≤ e−x.
For N ≥ 2, again by an integral comparison we have that

∑dρNe
k=N k−4α−2 ≤ C(α)N−4α−1.

Using this and letting x = MN , the exponential inequality becomes

P

dρNe∑
k=N

k−2α−1(g2
k − 1) ≤ −C ′(α)

√
MN−2α

 ≤ e−MN .

Taking M sufficiently small so that C ′(α)
√
M < ε′, we obtain that Πα(Aα,N ) ≤ e−MN .

Since this sequence is summable in N , the result follows from the first Borel-Cantelli

Lemma.
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Proof of Proposition 3.3.7. Under the law P0,
√
nE0||Y− f0||M(w) = E0||Z||M(w) <∞ by

Proposition 2 of [22]. By the triangle inequality it therefore suffices to show the conclusion

of Proposition 3.3.7 with Y replaced by f0. Rewrite the multiscale indices Λ = {(l, k) :

l ≥ 0, k = 0, ..., 2l − 1} in increasing lexicographic order, so that Λ = {(lm, km) : m ∈ N},
where

lm = i, if 2i ≤ m < 2i+1, i = 0, 1, 2, ...,

km = m− 2i, if 2 ≤ m < 2i+1, i = 0, 1, 2, ...

Consider a strictly increasing subsequence (nm)m≥1 of N such that (log nm)/w2
lm
→ ∞

(such a subsequence can be constructed for any admissible (wl) since wl ↗∞). Define a

function f0 ∈ `2 via its wavelet coefficients

〈f0, ψlmkm〉 = r
√

log nm/nm,

where r ≤ γ for γ the value given in the proof of Theorem 3.6.5. Since

2lm(β+1/2)|〈f0, ψlmkm〉| ≤ rmβ+1/2

√
log nm
nm

,

we can ensure f0 is in any given Hölder ball H(β,R) by letting r be sufficiently small

and taking the subsequence nm to grow fast enough. Let An denote the event defined in

(3.6.1). We have that on An, the posterior distribution Π′(· | Y (nm)) assigns the (lm, km)

coordinate to the Dirac mass component of the distribution. Consequently, by the choice

of (nm),

E0Π′( ||f − f0||M ≤Mnmnm
−1/2 | Y (nm))

= E0Π′({||f − f0||M ≤Mnmnm
−1/2} ∩Anm | Y (nm)) + o(1)

≤ E0Π′({|flmkm − f0,lmkm | ≤Mnmwlmnm
−1/2} ∩Anm | Y (nm)) + o(1)

= E0Π′({r
√

log nm/nm ≤Mnmwlmn
−1/2
m } ∩Anm | Y (nm)) + o(1)

≤ E0Π′(r
√

log nm/wlm ≤Mnm | Y (nm)) + o(1)

= o(1)

for any sequence Mn such that Mnm = o(w−1
lm

√
log nm) as m→∞.

3.7 Proof of Theorem 3.6.1

This is proved in exactly the same manner as Theorem 2.3 from [52] and is included only

for completeness. Throughout this section we assume that ρk = k−p to simply notation.

Recall also that hn is the function defined in Section 3.6.3. By Markov’s inequality and
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Theorem 3.6.6,

sup
f0∈Q(β,R)

E0Πα̂n(||f − f0||H(δ) ≥MnLnn
−1/2|Y ) ≤ n

M2
nL

2
n

sup
f0∈B(β,R)

E0 sup
αn<α<αn∧logn

Rn(α)+o(1),

(3.7.1)

where

Rn(α) =

∫
||f − f0||2H(δ) Πα(df |Y )

is the posterior risk. Letting f̂α,k = nkp(k2α+2p+1 + n)−1Yk and using the explicit form

(3.6.10) for the posterior distribution yields

Rn(α) =

∫ ∞∑
k=1

k−2p−1(log k)−2δ|fk − f0,k|2dΠα(df |Y )

=

∞∑
k=1

k−2p−1(log k)−2δ

(
(f̂α,k − f0,k)

2 +
k2p

k2α+2p+1 + n

)
.

Using the triangle inequality, we can then split

E0 sup
αn≤α≤αn∧logn

Rn(α) ≤ E0 sup
αn≤α≤αn∧logn

∣∣∣∣∣
∞∑
k=1

(f̂α,k − f0,k)
2

k2p+1(log k)2δ
− E0

∞∑
k=1

(f̂α,k − f0,k)
2

k2p+1(log k)2δ

∣∣∣∣∣
+ sup
αn≤α≤αn∧logn

E0

∞∑
k=1

(f̂α,k − f0,k)
2

k2p+1(log k)2δ

+ sup
αn≤α≤αn∧logn

∞∑
k=1

1

k(log k)2δ(k2α+2p+1 + n)
.

(3.7.2)

Bound for the expected posterior risk

Using the definition of f̂α,k and a bias-variance expansion, the second term of (3.7.2)

equals

sup
αn≤α≤αn∧logn

{ ∞∑
k=1

k4α+4p+2f2
0,k

k2p+1(log k)2δ(k2α+2p+1 + n)2
+ n

∞∑
k=1

1

k(log k)2δ(k2α+2p+1 + n)2

}
.

(3.7.3)

Now the second term in (3.7.3) is smaller than the third term in (3.7.2), which is itself

smaller than Cn−1, where C = C(δ) =
∑∞

k=1 k
−1(log k)−2δ is finite for δ > 1/2.

For the first term in (3.7.3), consider the sets

Pn = {f0 ∈ Q(β,R) : f0,k 6= 0 for some k ≥ 2}

Qn = {f0 ∈ Q(β,R) : f0,k = 0 for all k ≥ 2}
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and note that by Lemma 2.1(iv) of [52], we have αn < log n if f0 ∈ Pn. If f0 ∈ Qn,

then we trivially have that the first term in (3.7.3) is bounded by f2
0,1/(1 + n)2 ≤ R/n2.

If f0 ∈ Pn, we have α ∈ [αn, αn] and we split up the sum into three parts. Firstly, for

tn = n1/(2β+2p+1),

∑
k≥tn

k4α+2p+1f2
0,k

(log k)2δ(k2α+2p+1 + n)2
≤
∑
k≥tn

R

k2β+2p+2(log k)2δ
≤ C(δ)Rn−1,

since δ > 1/2. Letting sn(α) = n1/(2α+2p+1), we have

∑
1≤k≤sn

k4α+2p+1f2
0,k

(log k)2δ(k2α+2p+1 + n)2
≤ R

n2
+

1

1 + 2α+ 2p
hn(α)n

−2+ 1
2α+2p+1 log n max

2≤k≤sn

k2α+2p

(log k)2δ+1
.

(3.7.4)

Now in the case of general f0, we have max2≤k≤sn k
2α+2p/(log k)2δ+1 ≤ max2≤k≤sn k

2α+2p =

n(2α+2p)/(2α+2p+1). Since α ≤ αn we have that hn(α) ≤ L(log n)2 and so the right-hand

side of (3.7.4) is bounded by n−1(log n)3.

Now suppose that f0 ∈ QSS(β,R). Basic calculus shows that the function x 7→
x2α+2p(log x)−2δ−1 on (0,∞) has a single minimum at e(2δ+1)/(2α+2p) and is monotonic

on either side of it. When restricted to the interval [2, sn], the function thus attains its

maximum value at either 2 or sn. By Lemma 3.6.7, αn ≤ β + C0 = C, so that

max
2≤k≤sn

k2α+2p

(log k)2δ+1
= max

{
22α+2p

(log 2)2δ+1
, C ′

n
2α+2p

2α+2p+1

(log n)
2α+2p

2α+2p+1
+2δ+1

}
≤ C ′′max

{
1,

n
2α+2p

2α+2p+1

(log n)2δ+1

}
.

Again using that hn(α) ≤ L(log n)2 yields that the right-hand side of (3.7.4) is bounded

by a constant times

max

{
n
−2+ 1

2α+2p+1 (log n)3,
1

n(log n)2δ−2

}
= O(n−1)

for all α > αn and δ ≥ 1. Now since x 7→ x/(c + x) is increasing for every c > 0, we

have that the sum in (3.7.4) is maximized by the choice α = αn and thus we can take

sn = sn(αn) since the right-hand side is independent of α.

Let J = J(n) be the smallest integer such that αn ∧ (log n)/(1 + 1/ log n)J ≤ β, which

is bounded above by a multiple of (log n)(log log n) for all β > 0. Partition the summation

range using the following numbers

bj = 1 + 2
αn

(1 + 1/ log n)j
+ 2p, j = 0, ..., J,
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which form a decreasing sequence. We then have

n1/(2β+1)∑
k=2∨sn

k4α+2p+1f2
0,k

(log k)2δ(k2α+2p+1 + n)2
≤

J−1∑
j=0

n1/bj+1∑
k=n1/bj

f2
0,k

k2p+1(log k)2δ
≤ 4

J−1∑
j=0

n1/bj+1∑
k=n1/bj

nkbj−2pf2
0,k

k(log k)2δ(kbj+1 + n)2
.

Note that the right-hand side is independent of α and that since (bj−bj+1) log n = bj+1−1,

we have that kbj−bj+1 ≤ n1/ logn = e for n1/bj ≤ k ≤ n1/bj+1 . Consequently, the above is

bounded by a multiple of

1

n

J−1∑
j=0

n1/bj+1∑
k=n1/bj

n2kbj+1−2pf2
0,k(log k)kbj−bj+1

k(log k)2δ+1(kbj+1 + n)2

.
log n

n

J−1∑
j=0

n1/bj+1

bj+1
hn

(
bj+1

2
− 1

2
− p
)

max
n1/bj≤k≤n1/bj+1

1

k(log k)2δ+1

.
L(log n)2−2δ

n

J−1∑
j=0

n1/bj+1−1/bj
b2δ+1
j

bj+1
,

(3.7.5)

since by the definition of αn and bj , we have that hn((bj+1 − 1)/2) ≤ L(log n)2. Since

bj > 1,

n1/bj+1−1/bj = exp

(
(bj − bj+1) log n

bjbj+1

)
= exp

(
bj+1 − 1

bjbj+1

)
≤ exp

(
1

bj

)
≤ e.

If f0 ∈ Q(β,R), note that b0 . log n and bj/bj+1 ≤ C(1+1/ log n) ≤ C ′. The above sum is

therefore bounded by Le(log n)2n−1J(n) . (log n)3(log log n)n−1 = L2
nn
−1. If in addition

f0 ∈ QSS(β,R), then αn ≤ β + K2/(log n) for n sufficiently large by Lemma 3.6.7. We

can thus bound (3.7.5) by a multiple of

n−1(log n)2−2δ
J−1∑
j=0

b2δj ≤ n−1(log n)4−2δJ(n)(1 + 2αn)2δ ≤ Cn−1

for δ ≥ 2.

Bounds for the centered posterior risk

We now turn our attention to the first term in (3.7.2), which can be controlled using

empirical process techniques. Note that after expanding out the terms, this sum is equal
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to

E0 sup
α∈[αn,αn∧logn]

∣∣∣∣∣
∞∑
k=1

n(Z2
k − 1)

k(log k)2δ(k2α+2p+1 + n)2
−
∞∑
k=1

2
√
nk2α+pf0,kZk

(log k)2δ(k2α+2p+1 + n)2

∣∣∣∣∣
=: sup

α∈[αn,αn∧logn]

∣∣∣∣V(α)

n
− 2W(α)√

n

∣∣∣∣ ,
(3.7.6)

where the Zk are i.i.d. standard normals. The two terms can be controlled separately. By

Corollary 2.2.5 of [85],

E0 sup
α∈[αn,αn∧logn)

|V(α)| . sup
α∈[αn∞)

√
var0V(α) +

∫ Tn

0

√
N([αn, αn ∧ log n), dn, ε)dε,

where d2
n(α1, α2) = var0(V(α1)−V(α2)) and Tn is the dn-diameter of [αn, αn∧ log n). Now

var0V(α) = 2n4
∞∑
k=1

1

k2(log k)4δ(k2α+2p+1 + n)4
≤
∞∑
k=1

2

k2
<∞.

In particular, this implies that Tn ≤ C, for some C independent of n and α̂n. Note that

for 0 < α1 < α2

var0(V(α1)− V(α2)) =
∞∑
k=2

n4

k2(log k)4δ

(
1

(k2α1+2p+1 + n)2
− 1

(k2α2+2p+1 + n)2

)2

var(Z2
k)

≤ 2n4
∞∑
k=2

1

k2(log k)4δ(k2α1+2p+1 + n)4
. n4

∞∑
k=2

k−8α1−6 . n42−8α1 .

So for ε > 0, we can cover [K log(n/ε),∞) by a single ε-ball (by letting α2 →∞), for some

K > 0. By an analogue of Lemma 6.1 in [52], we have the bound dn(α1, α2) ≤ C(δ)|α1 −
α2|n

− 4p+1
4α2+4p+2 for δ > 3/4. Combining these facts yields that N([αn, αn ∧ log n), dn, ε) ≤

C(δ)n
− 4p+1

4αn+4p+2 ε−1 log(n/ε). We therefore have

E0 sup
α∈[αn,αn∧logn)

|V(α)| ≤ C + C(δ)n
− 4p+1

8αn+8p+4

∫ C

0
ε−1/2

√
log(n/ε)dε. (3.7.7)

Using the substitution y2 = log(n/ε), integrating by parts and then applying the standard

tail bound for Gaussian integrals yields∫ C

0
ε−1/2

√
log(n/ε)dε = 2

√
n

∫ ∞
√

log(n/C)
y2e−

1
2
y2dy = 2

√
C log(n/C) + 2

√
n

∫ ∞
√

log(n/C)
e−

1
2
y2dy

≤ 2
√
C log(n/C) + 2

√
C(log(n/C))−1/2

≤ C ′′
√

log n.
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Using this and that αn ≤ β, (3.7.7) is bounded above by some constant. In conclusion,

the first term on the right-hand side of (3.7.6) is O(n−1).

We perform a similar calculation on W. Consider now α ∈ [αn, αn] and note that

var0

(
W(α)√

n

)
=
∞∑
k=1

nk4α+2pf2
0,k

(log k)4δ(k2α+2p+1 + n)4
.

Splitting the above sum as above and using the definition of hn(α) we have

∑
k≤n1/(2α+2p+1)

nk4α+2pf2
0,k

(log k)4δ(k2α+2p+1 + n)4

≤
f2

0,k

n3
+ hn(α)n

−1+ 1
2α+2p+1 log n max

2≤k≤n1/(2α+2p+1)

k2α+2p−1

(k2α+2p+1 + n)2(log k)4δ+1
.

If 2α+ 2p− 1 > 0, then the second term above is bounded by a multiple of

n
−1+ 1

2α+2p+1 (log n)3n
−2+ 2α+2p−1

2α+2p+1 = n
−2− 1

2α+2p+1 (log n)3 = O(n−2)

for all α > 0. If 2α+ 2p− 1 ≤ 0, then the sum is similarly O(n−2). For the upper part of

the sum, recalling that α ∈ [αn, αn ∧ log n],

∑
k>n1/(2α+2p+1)

nk4α+2pf2
0,k

(log k)4δ(k2α+2p+1 + n)4
≤ 1

n

∑
k>n1/(2α+2p+1)

n2k2α+1f2
0,k log k

(k2α+2p+1 + n)2

1

n
2− 2α+2p−1

2α+2p+1 (log k)4δ+1

≤ n−2−1/(2α+2p+1)hn(α)(log n)−4δ(1 + 2α+ 2p)4δ

≤ CLn−2− 1
2α+2p+1 (log n)3−4δ ≤ C ′n−2.

In conclusion, we have that supα∈[αn,αn∧logn)

√
var0n−1/2W(α) ≤ n−1.

By following the proof of Lemma 6.1 in [52], we similarly recover that in our case the

intrinsic covariance metric satisfies d̃2
n(α1, α2)2 = var0(n−1/2(W(α1) −W(α2)) . (α1 −

α2)2n−2. Using the same reasoning as above, we have that N([αn, αn ∧ log n], d̃n, ε) ≤
Kn−1 log(n/ε)/ε so that

E0 sup
α∈[αn,αn∧logn]

∣∣∣∣W(α)√
n

∣∣∣∣ . n−1 + n−1/2

∫ C

0
ε−1/2

√
log(n/ε)dε . n−1.

We thus have that (3.7.6) is O(n−1) and consequently so is (3.7.2), thereby completing

the proof.

We note that f0 being self-similar was only required to establish that the first term

in (3.7.3) was O(n−1). In the case H−p−s, s > 1/2, following the steps above with this

weaker norm yields the required bound.
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[79] Szabó, B. T., van der Vaart, A. W., and van Zanten, J. H. Frequentist

coverage of adaptive nonparametric Bayesian credible sets. Ann. Statist. (2014), To

appear. (Cited on pages 20, 70, 71, 76, 77, and 98.)
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