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This thesis is the result of my own work and includes nothing which is the outcome of 

work done in collaboration except as specified in the text. It is not substantially the 

same as any work that has already been submitted before for any degree or other 

qualification except as declared in the preface and specified in the text. It does not 

exceed the prescribed 60,000-word limit for the Faculty of Physics & Chemistry 

Degree Committee. 
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Summary 

De novo molecule generation for drug design has seen a resurgence in recent years, 

mostly due to the rapid advances in machine learning (ML) algorithms that utilise deep 

neural networks, resulting in a plethora of ML-based generative models. However, 

there is often a large disparity in published evaluations and applications of such 

approaches compared to the practical needs of real drug design projects (for example, 

optimizing QED versus optimizing binding affinity commonly approximated by 

structure-based approaches). Moreover, the density of approaches and often lack of 

relevant, standardized objectives makes it difficult to truly discern “state-of-the-art”. 

The work in this thesis aims to address some of these issues and improve the 

applicability and evaluation of de novo molecule generation for practical drug design. 

The first research chapter will outline the design and use of an open-source python-

based software named MolScore. This configurable suite of scoring functions 

(including an interface to 5 docking algorithms and ~2,300 trained bioactivity models) 

can be used to design difficult yet relevant drug design objectives for standardized 

comparison, or practical usage with generative models. In addition, MolScore includes 

a graphical user interface to improve usability and a suite of common evaluation 

metrics to evaluate de novo generated molecules.   

Next, MolScore was implemented to compare the use of docking as a more difficult 

objective function for REINVENT (a generative model for goal-directed de novo 

molecule generation), as opposed to more commonly used predictive models of 

molecule bioactivity. This resulted in increased diversity of de novo molecules and 

improved coverage of known bioactive chemical space. However, the added 

computational expense required for generative model optimization is a practical 

disadvantage of docking as a scoring function.  

To address the computational expense of optimizing docking scores, a hybrid 

reinforcement learning algorithm (Augmented Hill-Climb) is proposed to improve the 

learning efficiency of language-based generative models. This significantly reduced 

the computational runtime while maintaining the chemical desirability of de novo 

molecules. Augmented Hill-Climb displayed superior efficiency against four other 

commonly used reinforcement learning algorithms, also displayed in an alternative 

model architecture. It was then benchmarked against 22 various generative models 
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showing the best sample efficiency when additionally constraining for chemical 

desirability.  

Overall, the work outlined in this thesis contributes to the field of computational drug 

design by providing software, algorithmic developments, and benchmark results for 

different de novo molecule generation approaches. 
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Chapter 1: Introduction 

1.1 Small molecule drug design 

Drug discovery is a time consuming and expensive process. It can take 10-15 years1,2 

and up to US$3 billion1 to discover new therapeutics able to be safely administered to 

humans for the prevention or treatment of disease. Small molecule drug design is still 

an integral component of the traditional drug discovery pipeline, as depicted in Figure 

1.1. In order for a small molecule to be a suitable drug candidate, it must possess 

many properties: 

On-target activity is required that should translate to clinical outcome, 

provided a correctly hypothesised target and mechanism of action. At a biophysical 

level this means a high binding affinity to the target with appropriate binding mode and 

kinetics. At a pharmacological level this means exerting the right downstream effects 

such as pathway perturbation. While at a clinical level this means a change in disease 

endpoint such as reduced tumour growth rates. In vivo efficacy is also highly 

conditional upon pharmacokinetics.  

Novelty is required from a legal standpoint to ensure that the molecule doesn’t 

infringe on any existing intellectual property to avoid lawsuits, as well as protect the 

designer’s intellectual property such that the high costs of drug discovery can be 

recouped. Moreover, any patent outlining intellectual property should be 

comprehensive enough to make it difficult for rival companies to make trivial changes 

that can then compete on the market. 

Synthetic feasibility is paramount to make and test a molecule. Ideally with a 

timeframe and difficulty compatible with the design stages. Moreover, a synthetic route 

must be scalable and sufficiently cost effective such that the compound can be 

supplied at reasonable quantity and cost and formulation for clinical phases and 

market distribution, if successful.  

Pharmacokinetics determine how the body processes the molecule and is 

typically broken into absorption, distribution, metabolism, and excretion (ADME) 

characteristics. Achieving the right balance of these characteristics ensures that a drug 

can be absorbed in enough quantity, can reach the tissue and target of interest, can 

be metabolised without adverse effects, and is excreted at an appropriate rate. 
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Therefore, efficacy is also highly dependent on drug pharmacokinetics such that high 

enough concentrations of a drug in the right tissue can reach a therapeutic effect, but 

low enough concentrations such that no adverse events occur. 

Selectivity must be achieved such that the molecule only has sufficient activity 

at the target of interest, and not any undesirable off targets. At best, off-target binding 

will decrease the free centration of the molecule decreasing availability to bind to the 

desired target. At worst, off-target binding will result in aberrant pharmacological 

effects resulting in adverse events or toxicity. 

Toxicity must be avoided upon administration of the molecule at a therapeutic 

dose by either the molecule itself or any of its metabolites. Toxicity can be caused by 

poor off-target binding, drug-drug interactions, or allergic reactions.  

The principal challenge of small molecule drug design is identifying a drug candidate 

that achieves all of the aforementioned properties to the best degree possible. This is 

a non-trivial Pareto optimization problem where optimization of one property will lead 

to a worsening of another. However, this optimization problem is made more complex 

by assay translation to clinical outcome. For example, biophysical binding affinity is 

not always predictive of binding affinity in cells, binding affinity is not always predictive 

of downstream perturbation, downstream perturbation in cells is not always predictive 

of phenotypic response in vivo, and phenotypic response in animal is not always 

predictive of phenotypic response in human. This iterative removal of assays from true 

endpoint (i.e., human response) also exists for other properties, such as 

pharmacokinetics, selectivity, and toxicity. However, this is necessary to keep the cost 

of discovery down, to better understand mechanism of action and to ethically reduce 

the number of animals and humans tested. 
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Figure 1.1: Schematic representation of the drug discovery pipeline. The central small molecule design 
aspects are enclosed within the red box. Other aspects also influence design such as any target 
requirements (for example, competitive inhibition at an enzyme active site versus allosteric modulation) 
or, pre-clinical/clinical discoveries (for example, poor bioavailability in vivo or resistance mutations in 
the human population) that can return the drug candidate into the design stages. 

After target validation, the molecule design process is typically broken into stages by 

first identifying a ‘hit’ molecule that possesses some activity–such as on-target binding 

affinity–in an in vitro assay, achieving this usually means that a target ligand is found. 

Then the chemical space surrounding the hit is explored by synthetic modifications 

usually to improve binding affinity i.e., improving ligand potency. Lastly, the final 

congeneric chemical series are identified, and drug candidates are chosen based on 

the most optimal profile of all properties required, tested on more expensive but 

predictive in vivo assays. This last stage ensures that a ligand has the best chance of 

translation into a drug.  

1.1.1 Hit discovery 

To first identify a ‘hit’ or series of ‘hit’ molecules, traditional practice is to conduct a 

high-throughput screen (HTS)3 where millions of pre-existing library compounds are 

screened to identify activity in a relevant biological assay, such as protein binding. The 

caveats of this broad, resource intensive approach are typically low hit rates around 

0.5-2%4,5, the need to filter out frequent hitters6 or pan-assay interfering compounds 

(PAINS)7, and to correct for systematic errors8. Moreover, although HTS compound 

libraries are in the millions of compounds5, they are still only a small fraction of possible 

‘drug like’ (by Lipinski’s definition9) chemical space which is likely to be at least 1033 

compounds (not including stereoisomers)10. Therefore, HTS can only evaluate tiny 

fractions of chemical space that have already been synthesized. 

In silico methods can be used to complement or replace HTS, referred to as virtual 

screening (VS). Such methods include estimation of molecule physicochemical 

properties, ligand-based similarity methods to compare molecules to a set of reference 

molecules, or structure-based methods to estimate on-target binding affinity. Any or 

all of these methods can help select compounds of greater interest in a compound 

library and avoid compounds predicted to be undesirable. This reduces resource 

requirement by experimentally screening smaller compound libraries and thus 

increasing the overall hit rate of HTS11, for example from 0.02% to 34.8%12. An added 

benefit of VS is the ability to screen and evaluate virtual compound libraries that are 
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synthesizable on-demand. These libraries increase in size dramatically, for example 

ENAMINE real space contains approximately 25 billion (based on synthesis success 

rate of 80%, accessed 10/03/2023), and GSK claims13 a proprietary library in the order 

1026. This, large library still represents a small fraction of estimated chemical space 

(GSK’s “XXL” is 0.00001% of the conservative 1033 estimate of drug like chemical 

space size).   

1.1.2 Hit-to-lead and lead optimization 

Once hit compounds are identified, the next challenge is to optimize their properties. 

Hit-to-lead stages generally focus on making structural changes to improve bioactivity, 

while lead optimization focuses on overall biological, practical, and legal profile as a 

drug candidate. However, both stages use the same iterative cycle of molecular 

optimization known as the design-make-test-analyse (DMTA) cycle, shown in Figure 

1.2. This four stage cycle is iterated many times during the course of a project, where 

each cycle can take 4-8 weeks or longer14,15, be repeated 100s to 1000s of times, and 

take 1-3 years to progress through hit discovery, hit-to-lead and lead optimization14,16. 

Design corresponds to the proposal of structural changes made to an existing 

compound that are predicted to improve its properties. 

Make corresponds to the synthesis, isolation, and purification of the new set of 

proposed compounds. 

Test corresponds to experimental screening of new compound properties. 

These are typically in vitro assays during hit-to-lead and could be bioactivity assays 

like on-target binding affinity, physicochemical assays like solubility, or 

pharmacokinetic properties like cell permeability. Meanwhile, during lead optimization 

these may include more resource intensive in vivo tests to measure e.g., 

bioavailability. 

Analyse corresponds to follow up analysis of the assay results, with a clear link 

to the ‘design’ stage both retrospectively (did the previous design result in the 

expected change) and prospectively (how do the results inform my next design 

hypothesis). 
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Figure 1.2: Schematic representation of the design-make-test-analyse cycle. Including approximate 
timeframes of each stage. 

In silico methods are routinely used to aid the DMTA cycle, in particular the design, 

make and analyse stages. Similar methods to VS can be used to aid design such as, 

ligand-based 2D/3D structural similarity and quantitative structure-activity models 

(QSAR), structure-based protein-ligand docking simulations, as well as more 

computationally expensive lower throughput molecular dynamics and free energy 

perturbation simulations. Computer-aided synthesis planning (CASP) programmes 

can be used to suggest synthetic routes influencing the ‘make’ strategy. Finally, data 

generated from the test stage can not only be used to inform human decision-making 

but also to update any project-specific predictive models. All of these approaches help 

to augment human-influenced design and decision-making for more strategic 

navigation of compound optimization and iteration of the DMTA cycle.  

1.2 De novo drug design 

1.2.1 An in silico design-make-test-analyse cycle 

De novo design is an in silico concept for the automatic design of new chemical 

structures. Therefore, de novo design can be used in-place of VS for hit discovery or 

can serve as an in silico DMTA cycle that acts as an inner iteration loop within the 

design stage of an experimental DMTA cycle outer loop (see Figure 1.3). In theory, 



Chapter 1  Introduction 

18 
 

moving outer iterations of the DMTA cycle to automated iterations of de novo design 

will help reach ideal solutions, faster and cheaper - reducing the time and resource 

requirement of hit discovery to lead optimization stages. In practice, recent de novo 

design publications have claimed to achieve the design of a drug candidate in just 21 

days17, a significant acceleration. However, this claim has not come without criticism 

on scientific impact and chemical novelty18,19, which is an important reminder that it is 

drug candidate quality that will make the biggest impact to drug discovery 

productivity20. Overall, due to the potential impact of effective de novo design, it is 

currently an extremely active area of research21.  

 

Figure 1.3: Schematic representation of the design-make-test-analyse cycle with in silico de novo drug 
design as an inner loop.  

Early de novo design algorithms date back to 198922, and have been an active area 

of research for three decades since. As described by Schneider et al.23, earlier 

algorithms could be broken down into three constituent parts: (1) how to build/generate 

a chemical structure, (2) how to evaluate/score molecule quality with respect to a 

desired endpoint, and (3) how to search/optimize chemical space efficiently. One early 

example, is the growing of structures by fragments conditional upon a receptor binding 

pocket, evaluating its steric constraints and hydrogen bonding sites and using a depth 

or breadth-first algorithm to traverse chemical space, as in Skeletons22,24. Many 

algorithmic variations exist but most comprise of the same three principles; for 
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example, common search algorithms include depth/breadth-first searches22,24, 

random searches25, Monte Carlo sampling26 or evolutionary algorithms27,28. However, 

a particular issue with these early, rule-based approaches is inefficient searching and 

limited sampling of combinatorial explosion associated with the size chemical space. 

More recently, there has been a relative resurgence in de novo design algorithms from 

ca. 2016/17 onwards29,30 with the application of deep generative models (discussed 

later in 1.2.2.4). Where deep refers to the use of deep neural networks and generative 

models refers to a class of generative ML models that infer new data instances based 

on learning a distribution of existing data instances (in probabilistic sense, 𝑃(𝑋′|𝑋)). 

In contrast to the previously mentioned rule-based (a.k.a. heuristic) algorithms that 

must select from a set of atom, fragment, or reaction combination rules to build 

molecules, deep generative models can use machine learning (ML) to implicitly learn 

how to build molecules based on inputting datasets of example molecules. The same 

three principles of build/generate, evaluate/score, and search/optimize remain. The 

difference is that molecule generation is typically done by sampling from a trained 

generative model, searching traverses the model’s latent space, and optimizing 

updates the model’s parameters. These principles are summarized in Figure 1.4. 

 

Figure 1.4: Illustration of the generative model principles. Dashed lines represent goal-directed 
generative models where molecules are generated, evaluated, and optimized in a continuous feedback 
loop. Molecules can be evaluated by a number of scoring functions. 

A key advantage of recent deep generative models for de novo design is that they are 

able to traverse larger chemical spaces far more efficiently than their rule-based 

counterparts. Rule-based counterparts must have a set of building rules specified, and 
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when using fragment or reaction rules this already restricts the chemical space to what 

molecules can be built with the specified rules. Furthermore, chemical space can only 

be traversed as fast as the minimal combination of rules required to build a molecule. 

On the other hand, deep generative models have no such restrictions as molecules 

are generated by simply sampling from the model (e.g., a forward pass of the network) 

which has learned a probability distribution over chemical space. This learned 

probability distribution also ensures that de novo molecules adhere to similar chemical 

space properties as input molecules31, which is not the case using traditional rule-

based approaches where chemical space constraints must be applied based on the 

rules specified. It has further been shown that training a deep generative model on 

one million compounds (~0.1% of GDB-1332, a chemical dataset of 975 million 

molecules) and sampling two billion can recover ~671 million dataset compounds 

(~70%), where ~78% of sampled de novo compounds are in GDB-13 and another 

~20% are dataset-like (including repeats)33. Based on the model sampling one billion 

unique dataset or dataset-like molecules, it can be concluded that this model has 

implicit access to a relevant chemical space ~1000-fold greater than it’s input training 

dataset – which can be further improved by data augmentation strategies34. This 

displays a clear advantage over VS in regard to the chemical space accessible. 

For the sake of clarity, I define the following referred to for the rest of this thesis, 

because terminology is often used interchangeably in the literature. Generative 

models refer to any de novo design algorithm, as opposed to an ML-based generative 

model in the statistical sense. Rule-based generative models refer to generative 

models that build molecules based on a set of specified rules. Distribution-based 

generative models refer to ML-based models that are trained on an input dataset of 

molecules to implicitly learn molecule building. Goal-directed generative models 

specify a generative model that is optimized to generate de novo molecules that 

maximize a particular objective. Furthermore, the term ‘deep’ can apply equally to any 

generative model, rule- or distribution-based, that integrates the use deep neural 

networks.  

1.2.2 Methods and approaches 

The research conducted as part of this thesis uses chemical language models as 

generative models for de novo drug design. Therefore, to embed chemical language 
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models in a broader context, I will introduce other common approaches but focus in 

more detail on chemical language models combined with reinforcement learning. 

1.2.2.1 Molecular building blocks 

For the purposes of de novo design algorithms, molecules can be broken down into 

different types of building blocks and represented in different ways. Figure 1.5 

illustrates building blocks and building rules used in de novo design to define how to 

build and generate whole molecules. The main approaches are to build molecules 

atom-by-atom, by combining fragments, or by combining reactants in a synthetically 

constrained manner.  

 

Figure 1.5: Schematic representation of different types of building blocks used in de novo design 
algorithms and building rules that they can adhere to. The simplest being correct valency.  

In the most basic sense, atoms can be combined such that a combination doesn’t 

break the rules of chemical valency for joining atoms. This enables full access to 

chemical space but makes it inefficient to traverse due to combinatorial explosion and 

can easily result in unstable or non-synthesizable molecules, due to a lack of any other 

a priori chemical knowledge.  

On the other hand, fragments can be extracted from databases and combined in new 

ways resulting in de novo molecules that contain known functional groups and 

substructures. Compared to atom-by-atom combination, less chemical space is 

accessible, but it is far more efficient to traverse that chemical space. Fragments can 

also be combined according to valency rules, and synthesizability is more likely, due 
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to the re-use of fragments existing in known structures. However, this is not 

guaranteed.  

Another approach to improve the likelihood of synthesizability and overall properties 

of de novo molecules is to additionally apply context rules35. This additional filter 

ensures atoms or fragments are only combined when appearing in similar contexts as 

they appear in chemical databases, where a context may be defined by the nearest 

surrounding one, two, or three additional atoms. This enforces more a priori chemical 

knowledge during the combination process.  

Lastly, sets of reactants and reactions can be used to constrain molecule building to 

known synthetic reaction resulting in forward synthetic routes as well as de novo 

molecules. This combines reactants with functional groups known to react together 

according to a set of reaction rules. This guarantees synthesizability of molecules 

given complete and accurate reaction rules, but even more severely restricts chemical 

space accessibility. Furthermore, reaction rules are not perfect and can sometimes fail 

to account for selectivity, competing reactivity or directing groups etc. 

These principles, although typically associated with rule-based methods, can equally 

apply to distribution-based models that, for example, learn a distribution over fragment 

space36. 

1.2.2.2 Molecular representations 

Molecules or their building blocks can furthermore be represented in different ways 

which then must be encoded such that their representation is machine interpretable 

for de novo design algorithms. Figure 1.6 illustrates some example representations 

and corresponding machine interpretable encodings, not including 4D representations 

which are beyond the scope of this work. 
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Figure 1.6: Example of different 1D, 2D and 3D representations and encodings to convert the 
representation into a machine interpretable format.  

Although molecules are inherently graph structures, molecular graphs can be also be 

represented by 1D strings such as SMILES37 or InChI38. However, not all 1D 

representations are interpretable, unique, or invertible (can be transformed back to a 

corresponding graph identically), which may be required for different use cases. To 

combat non-unique representations, canonicalized versions exist that always result in 

a unique string, which may then depend on a specific canonicalization algorithm used. 

Moreover, recent adaptions specifically created for use with machine learning have 

emerged such as DeepSMILES39, or new grammars altogether such as SELFIES40. 

Not all 1D representations need encoding, for example, non-invertible fingerprints that 

typically represent the presence of absence of certain atomic environments41, 

substructures42 or other molecular patterns43,44 are already in binary format ready for 

machine interpretation. Meanwhile, string-based representations need to be encoded. 

A classic example is one-hot encoding where an indexed vocabulary is defined based 

on each unique token 𝑡, which could be for example, a letter or word in the string. The 

encoded representation 𝑡𝑒𝑛𝑐 for a specified token in the vocabulary 𝑡 ∈ 𝑉 is a bit vector 

with one on bit at the index of the token in the vocabulary, where all other bits are off. 

This results in a sparse vector representation for each token of dimension equal to the 
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cardinality of the vocabulary 𝑡𝑒𝑛𝑐 ∈ ℤ2
|𝑉|

. An alternative, less sparse encoding uses an 

embedding function to map a vocabulary index into a dense vector of arbitrary 

dimensions 𝑡𝑒𝑛𝑐 ∈ ℝ
𝐷. A key advantage of using embedding functions is they are 

differentiable and learnable, such that similar representations can correspond to 

tokens with similar semantics, which is not the case for one-hot encoded vectors. 

A more intuitive representation of molecules can be defined as an undirected graph 

𝐺 = (𝒱, ℰ) with vertices 𝑣𝑖 ∈ 𝒱 representing atoms, and edges between vertices 𝑒𝑖,𝑗 ∈

ℰ representing bonds between atoms. Moreover, each vertex may have atomic 

features 𝑣𝑖
𝐹 ∈ ℝ, and each edge bond features 𝑒𝑖,𝑗

𝐹 ∈ ℝ. These features can be 

arranged into matrices as depicted in Figure 1.6, however, the connectivity between 

nodes still needs to be defined. For this, a symmetric adjacency matrix can be 

specified indicating which nodes are connected via an edge connection. These 

matrices can then be used as machine interpretable inputs for use deep learning 

models, such as graph convolution networks45 or message parsing neural networks46. 

More realistically, molecules exist in a particular conformation i.e., 3D orientation. 

Therefore, representing them in 3D embeds more information that may be particularly 

relevant for biological properties such as protein-ligand binding. Moreover, it captures 

a molecules stereo information inherently, which must be explicitly specified as a 

feature in 1D and 2D representations to capture. Encoding a molecules 3D 

representation can be done in several ways, for example, directly converting atomic 

location in 3D xyz coordinate space to a tensor of specified size and grid spacing 

(a.k.a. voxel), as illustrated in Figure 1.6. However, care must be taken when encoding 

3D information for example, voxels combined with convolution neural networks do not 

maintain permutation invariance between inputs, such that a translation, rotation, or 

reflection in input can result in a different function output47. Alternatively, the same 

graph encodings can be used as with 2D representations but, with additional features 

containing node coordinates, or containing edges between all atoms and respective 

features containing inter-atomic distances. Whichever representation is used, 

permutation equivariance and invariance must be considered, for example, 

specialized graph neural networks that operate on inter-atomic distances48.  
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1.2.2.3 Rule-based generative models 

Rule-based generative models determine how to combine molecular building blocks 

according to a set of rules, like those described previously in 1.2.2.1. It should be noted 

that molecular building blocks can be combined with respective rules either arbitrarily 

or exhaustively, which is a key approach taken to enumerating virtual compound 

libraries49,50. For de novo design however, building blocks and rules are combined in 

such a way to constrain molecule generation towards a particular objective, hence, the 

methods discussed here also fit into the category of goal-directed de novo design. 

Although rule-based de novo design explicitly specifies the process of building 

molecules, it is still necessary to define how to evaluate de novo molecules, and how 

to search chemical space. Early implementations searched chemical space with 

depth- or breadth-first searches. For example, GenStar51 which grew molecules atom-

by-atom using a depth-first search to continue molecule generation from one top 

scoring molecule only. However, atom-by-atom depth-first search typically results in 

shallow regions of local optima due to limited sampling of possible solutions. Other 

approaches, like RASSE52, use a breadth-first approach to evaluate more solutions at 

each stage of atom growing, and conducting atom-by-atom growth on the top 100 

solutions at each stage. However, this kind of search is much more computational 

expensive. Therefore, many early implementations are a combination of depth- and 

breadth-first search, for example SPROUT53. Alternatively, Monte Carlo (i.e., random) 

search can be used to select atom-by-atom molecular growth, relying on the 

evaluation method to filter out unfit building blocks and/or rules25. 

An efficient alternative to searching chemical space are evolutionary algorithms, most 

commonly genetic algorithms. This class of algorithms, inspired by Darwin’s theory of 

natural evolution, operate on populations of molecules that undergo modification to 

create ‘children’ that adopt characteristics from their ‘parents’, are evaluated by a 

scoring function, undergo selection, and successful ‘children’ are then added to the 

next population. A depiction of this iterative procedure is shown in Figure 1.7. Genetic 

algorithms can operate on multiple molecular representations. Although the building 

blocks and rules defined in 1.2.2.1 still apply, new operations to create offspring 

molecules can be defined. Common operations include growth, mutation (replacement 

of a building block by another) and crossover (linking of two structures together, 

possibly by a common substructure).  
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Figure 1.7: Schematic of the iterative cycle conducted by a genetic algorithm for de novo design. 

Many variations of genetic algorithms exist, which are still top performing generative 

models54,55. Jensen et al.56 proposed a genetic algorithm operating on graphs using 

fragment building blocks, which has performed 1st and 2nd on generative model 

benchmarks54,55 and shown the ability to optimize difficult scoring functions like 

docking scores57. Operating on 1D SMILES strings provides a greater challenge as 

mutations to SMILES strings can easily result in invalid SMILES. Nigam et al.58 

circumvented this by operating on 1D SELFIES strings (a recent, representation 

resulting in 100% valid representations40) enabling random mutation operations 

without the generation of invalid molecules. However, one universal challenge with 

genetic algorithms is lack of chemical constraint allowing exploitation of non-

comprehensive molecule fitness evaluation i.e., iterative optimization can lead to 

undesirable areas of chemical space and non-drug-like structures. Polishchuk35 

addressed this by enforcing context to genetic algorithm operations, by creating a 

lookup table of chemical contexts identified in a database of drug like molecules. Thus, 

avoiding the combination of fragments in contexts which haven’t been observed 

before. Moreover, reaction rules can be followed during modification resulting in 

molecules much more likely to be synthesizable. Spiegel et al.59 implemented mutation 
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operations that followed known reactions resulting in molecule building via known 

synthetic pathways.  

Learning how to combine building blocks by building rules can also be interpreted as 

a reinforcement learning (RL) problem (i.e., learning which actions to take during 

molecule building). Zhou et al.60 trained a neural network to predict the value of a 

particular action (e.g., atom/bond addition/removal) given a state (the current 

molecule) with respect to maximizing a numerical reward. Then using an ε-greedy 

approach, the molecule can be built by selecting actions most predicted to provide 

maximal reward, known as deep Q-networks. Alternatively, the replace of fragments 

with matched molecular pairs can be learned using actor-critic models to maximize a 

numerical reward61. A similar actor-critic model can also be used to learn which 

reactants and reaction rules to apply to generate de novo molecules62.  

Combinations of genetic algorithms with RL can also be used to increase the efficiency 

of convergence. For example, by integrating neural networks that select ‘parents’ in a 

seed population and which operations to conduct during generation of offspring, 

trained in an RL setting63. 

1.2.2.4 Distribution-based generative models 

The advancement in computational hardware, in particular graphics processing units, 

have facilitated the growth of deep neural networks (ANNs)64. This has led to 

breakthrough performance for ANNs in a number of domains: image recognition65, 

language processing66, game theory67, and drug discovery included68,69. Although 

many different types of neural networks exist, Figure 1.8 depicts the most universally 

used networks. Feed-forward neural networks (FFNNs) directly map an input to an 

output, recurrent neural networks (RNNs) map an input to an output while sharing 

information from one state to the next, convolutional neural networks (CNNs) perform 

convolution filters on higher dimensional grids such as images or voxels, and graph 

neural networks (GNNs) are a formal framework of FFNNs operating on graph 

structures. All of which rely on the same principles of (1) processing data through a 

series of highly parameterized non-linear functions, (2) calculating the error between 

the network output and expected output, (3) backpropagating the error to identify the 

gradients of the parameters with respect to the error and (4) modifying the parameters 
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in the direction associated with decreased error via a gradient optimization algorithm 

such as gradient descent. 

 

Figure 1.8: Different types of neural networks. From left to right: feed-forward neural networks, recurrent 
neural networks, convolutional neural networks, and graph neural networks. Reformatted figure based 
on Chuang et al.70 under a CC-BY-NC-ND license. 

All of the neural networks illustrated in Figure 1.8 have been used in a generative 

model capacity (𝑃(𝑥′|𝑥)) for de novo drug design. A high-level illustration of how any 

(or a combination of) of these networks can be implemented in generative models for 

de novo design is shown in Figure 1.9. 

  

Figure 1.9: Schematic representation of different basic generative model architectures for de novo 
design. From left to right: autoregressive models (for example, recurrent neural networks), variational 
autoencoders, generative adversarial networks. Autoregressive models predict the next step in 
molecule building given a partially complete molecule. Variational autoencoders use an encoder (E) to 
map molecules in a latent embedding, and a decoder (D) to map a latent embedding back to a molecule. 
Generative adversarial networks use a generator (G) to map a prior distribution (random noise) to a 
molecule, and a discriminator (D) to classify the predicted molecule as belong to the training dataset 
distribution or not. 

 Recurrent neural networks 

RNNs are a typical example of an AR generative model. AR models can typically be 

viewed as sequential models operating in the temporal domain i.e., given past events, 

predict a future event. RNNs are a special class of neural networks, that not only pass 

information from input to output, but also from past states to current states (as depicted 

in Figure 1.10). This introduces the concept of propagating information through time 

with recurrent forward passes. Therefore, RNNs naturally apply to AR generation due 

https://creativecommons.org/licenses/by-nc-nd/2.0/
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to the sharing of information through the temporal domain. In order to do this, RNNs 

have cells (as shown in Figure 1.10) that pass a hidden state ℎ from one state in time 

𝑡 to the next, performing one or more non-linear transformations on the input 𝑥, hidden 

state ℎ and weights 𝑤 and bias weights 𝑏, i.e., neural network operations. 

 

Figure 1.10: Illustration of the three main types of RNN cell used. Left: A vanilla RNN employing only a 
tanh activation function. Centre: A long-short term memory cell. Right: A gated recurrent unit.  

The first implementation was the Elman RNN71, also commonly referred to simply as 

RNNs. This RNN cell uses a tanh activation function on the input at a given time step 

𝑥𝑡 combined with the hidden state from a previous timestep ℎ𝑡−1 resulting a single 

hidden state ℎ𝑡 that is both the cell output and cell state to be used at the next 

timepoint. This results in the sharing of information between timepoints, however, a 

key problem faced by this method is exploding or vanishing errors when undergoing 

backpropagation through time72. 

ℎ𝑡 = tanh(𝑊𝑖ℎ𝑥𝑡 + 𝑏𝑖ℎ + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎℎ) 

Equation 1.1 

To combat these issues undergoing backpropagation through time, the long short-

term memory (LSTM) was proposed by Hochreiter et al.72. Firstly, LSTM cells contain 

two latent vectors shared between timepoints, conventional hidden state ℎ𝑡 as well as 

a cell memory 𝑐𝑡. This cell has much more explicit control over the flow of information 

through time, allowing the retention of both long-term and short-term information. The 

central contributions are commonly recognised as (1) a forget gate 𝑓𝑡 that controls the 

influence of cell memory parameters, (2) input gate 𝑖𝑡 and cell gate 𝑔𝑡 that controls 

how much and what influence the input 𝑥𝑡 has on the cell memory, and (3) the output 

gate that controls what contribution the updated cell memory and input have on the 

output hidden state ℎ𝑡. These mechanisms protect the cell memory from irrelevant 

inputs, as well as the output from irrelevant memory. This process is shown in Equation 
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1.2 where 𝜎 refers to the sigmoid activation function and ⊙ is the Hadamard product 

(i.e., pairwise multiplication). 

𝑓
𝑡
= σ(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓) 

𝑖𝑡 = σ(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖) 

𝑔
𝑡
= tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔) 

𝑜𝑡 = σ(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜) 

𝑐𝑡 = 𝑓
𝑡
⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔

𝑡
 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) 

Equation 1.2 

More recently, in the interest of compute efficiency, gated recurrent units (GRU) have 

been proposed in-place of LSTM cells73. GRUs contain similar mechanisms to control 

the flow of information between input, hidden state and output, but require fewer 

operations and only consist of a single hidden parameter shared between states, 

eliminating redundancy between ℎ𝑡 and 𝑐𝑡. The central mechanisms are (1) a reset 

gate 𝓇𝑡 that controls how much influence the hidden state has, (2) the update gate 𝓏𝑡 

that controls the extent of memory maintained, and (3) the new gate 𝓃𝑡 that adds new 

information from the current input. This process is shown in Equation 1.3 below. 

𝓇𝑡 = 𝜎(𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑟 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏ℎ𝑟) 

𝓏𝑡 = 𝜎(𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏ℎ𝑧) 

𝓃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝓇𝑡 ⊙ (𝑊ℎ𝑛ℎ𝑡−1 + 𝑏ℎ𝑛)) 
ℎ𝑡 = (1 − 𝓏𝑡)⊙ 𝑛𝑡 + 𝓏𝑡 ⊙ ℎ𝑡−1 

Equation 1.3 

The recurrent nature of RNNs lends itself to sequence prediction problems such as 

natural language, in particular for use in autoregressive sequence prediction as in this 

thesis. Figure 1.11 depicts a 2-layer deep RNN rolled out through time. At each 

timestep, a token is input, processed by the RNN, and a probability distribution over 

all tokens in a vocabulary is output. The final linear layer projects the output into the 

dimension of the vocabulary, and softmax layer ensures all values sum to one – 

forming a categorical probability distribution. At the next timestep, the probability 

distribution is processed by both the current input parameters and hidden parameters 

taken from the previous state. Once an RNN has been trained, this learned probability 

distribution can be sampled to predict the next token in a sequence, given previous 

tokens observed. Each token can be recurrently fed back into the network 

autoregressively finally resulting in full sequence generation. 
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Figure 1.11: Illustration of a 2-layer RNN rolled out through time. At each time step 𝑡 the network predicts 
the probability distribution of the next token in a sequence, given the current token. A final layer 
transforms the output into the dimension of the vocabulary, and softmax layer ensures all logits sum to 
one to form a probability distribution. Left: the network during training where the correct input token at 
each timestep is used explicitly (known as teacher forcing74), outputting a probability distribution. Right: 
the network during sample, where the next token is predicted by sampling from the learned probability 
distribution and then is fed back into the network. 

For the neural network to learn the categorical probability distribution over possible 

tokens, it is trained using maximum likelihood estimation to maximize the likelihood 

assigned to the correctly predicted token at each timestep. In practice, the equivalent 

negative log-likelihood (NLL) is used instead such that minimizing this value results in 

maximizing the likelihood. This avoids hardware precision problems when dealing with 

very small numbers that may arise from backpropagation through time. Given this can 

be viewed as a single-class classification problem, this is simply the negative of the 

log of the probability assigned to the correct token i.e., 𝑃(𝑥𝑡), and is also equivalent to 

the cross-entropy loss. To compute the NLL across a sequence, the NLL at each 

timestep is summed (see Equation 1.4). This NLL term can also be used as a 

representation of how likely a sequence is to be generated by random sampling of the 

model33. 

𝑁𝐿𝐿 = −∑𝑙𝑜𝑔𝑃(𝑥𝑡|𝑥𝑡−1, … , 𝑥0)

𝑇

𝑡

 

Equation 1.4 

When applied to SMILES-based de novo molecule generation, SMILES tokens can be 

one-hot encoded into a binary vector or embedded into a dense vector and input to 

the network. As there is no canonical way to start or end a SMILES string, a token for 
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the start and end of a sequence is inserted. Then, given a large corpus of SMILES, 

the network can be trained to predict the conditional probability of a SMILES token 

given previously observed tokens in the string. Once trained, the start token is 

inserted, and the next token is randomly sampled from the output probability 

distribution and fed back into the network. This process is repeated until an end token 

is sampled, resulting in the autoregressive generation of a SMILES string 

corresponding to a de novo molecule. 

Segler et al.29 were one of the first to demonstrate RNN’s powerful performance in AR 

de novo molecule generation by training an RNN on 1.4 million molecules from 

ChEMBL using one-hot encoded SMILES. This model generated de novo molecules 

that well capitulated the physicochemical properties of the ChEMBL molecules yet 

introduced novel R-group constituent patterns and novel scaffolds. Moreover, by using 

transfer learning to re-train the RNN on a smaller, more focussed dataset, de novo 

molecules could reconstruct up to 28% of known molecules in a held-out test set. 

Retrospectively evidencing the potential to discover new de novo molecules 

conditioned towards a particular endpoint. This transfer learning approach is also the 

most commonly method experimentally validated (see 1.2.3.7). Although over-training 

during transfer learning can equally lead to decreased novelty, not only from a 

chemical perspective (sufficiently novel to constitute a new molecule), but also a legal 

perspective (sufficiently novel to constitute a patentable area of chemical space)75. 

Other works including those by Olivecrona et al.76 and Popova et al.77 utilising RNNs 

trained on SMILES representations have further demonstrated their ability to generate 

valid and novel de novo molecules that contain similar topological patterns as present 

in the training dataset. In addition, RNNs trained on SMILES have shown excellent 

enrichment of databases33, augment-ability by randomization of SMILES inputs to 

negate unnecessary learning of canonicalization algorithms34, and ability to condition 

de novo molecule generation (i.e., learn a probability distribution given molecular 

properties as well as structure alone 𝑃(𝑥′|𝑥, 𝑦))78. RNNs have also consistently 

performed well relative to other generative models in benchmark studies such as 2nd 

in GuacaMol54, 1st in MOSES79, 1st in smina docking benchmark80,81 and 1st in sample 

efficiency55,82. This likely contributes to them being the most commonly implemented 

model in the literature83. Due to their performance, they are the generative model used 

throughout this thesis.  
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 Transformers 

In the wider ML field, attention based language models (a.k.a. transformers)84 have 

been at the forefront of breakthrough machine learning advances such as BERT85 and 

GPT86,87, however, they are explored to a lesser extent as de novo design 

algorithms88–90 compared to RNNs, but can also be used for AR sequence generation. 

Transformer models were developed by iterative advances in the use of RNNs for 

sequence to sequence (seq-to-seq) translation. The seq-to-seq problem is more 

difficult for RNNs, as there is not necessarily a semantic one-to-one mapping when 

translating between different sequences, let alone handling sequences of different 

lengths. Therefore, this was tackled by an RNN encoder-decoder approach, inputting 

the first sequence (seq1) into the encoder, passing the encoder hidden parameters or 

memory 𝑐 to the decoder, and then conducting autoregressive generation of the 

second sequence (seq2) with the decoder91; however, this led to difficulty retaining 

relevant information towards the end of the seq2, by which point the relevant seq1 

information may have been lost. Subsequently, a proposal was made to re-use 𝑐 at 

each timestep during seq2 generation73, thus helping to prevent forgetting the encoder 

memory throughout seq2 generation.  A natural progression of this is to instead enable 

the decoder to learn which tokens in seq1 are more important for each token during 

seq2 generation. This was implemented92 as a bidirectional RNN encoder (providing 

conditional information in both directions at a given timestep) where 𝑐 is passed to 

each timestep in seq2 as a weighted sum of the encoder hidden parameters ℎ𝑡 at each 

timestep 𝑐 = ∑ 𝛼𝑡ℎ𝑡
𝑇
𝑡 , with weights 𝛼𝑡. Where 𝛼𝑡 are learnable parameters 𝛼𝑡 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜎(ℎ𝑡, 𝑠𝑡−1)) based on ℎ𝑡 and the hidden parameters at each timestep in the 

decoder 𝑠𝑡−1. This “implements a mechanism of attention in the decoder”, whereby 

the decoder can “pay attention to” certain timesteps in the encoder more than others. 

This was soon expanded on by researchers at Google by making the network 8 hidden 

layers deep (where typically they are too difficult to train after 4) by adding residual 

connections between layers to combat exploding/vanishing gradients93. This overall 

concept then amalgamated into the attention mechanism employed in transformer 

seq-to-seq models84 commonly implemented in large language models today85,86. 
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Figure 1.12: Illustration of attention mechanisms in transformer-based autoregressive models based 
on84. Left: Scaled dot-product attention based on queries (Q), keys (K) and values (K), with optional 
masking. Centre: Linear projection of Q, K and V to form ℎ attention heads. Right: Transformer model 
for the purpose of autoregression only. Masking is used to force the model to learn sequence prediction 
autoregressively from left to right and learn the probability distribution over output tokens, as in RNNs.  

The attention mechanism shown in Equation 1.5 generalises the calculation of 

attention between queries (Q) or ‘what attention is being applied for’, keys (K) or ‘what 

can be paid attention’, and values (V) or ‘what is being paid attention’. The inputs are 

analogous to those described in the previous paragraph, where 𝑠𝑡−1 is the query and 

ℎ𝑡 is both the keys and values, except that this formalism is applied to the sequence 

as a whole and so operates on matrices. Queries and keys are combined to calculate 

the attention weights (analogous to 𝛼𝑡) which then multiply the values (analogous to 

∑ 𝛼𝑡ℎ𝑡
𝑇
𝑡 ), as shown in Equation 1.5. In contrast to the attention mechanism described 

in the previous paragraph, the dot product of Q and K are used to compute attention 

weights instead of a single layer neural network. This is more compute efficient but 

must be scaled based on the dimensionality of the keys (𝑑𝑘) to avoid small gradients 

in the softmax function84. Another difference is optional masking (setting softmax input 

values to −∞) to avoid attention being paid to them, this can be used to mimic the 

nature of RNNs that can’t observe tokens at future timesteps. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 
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Equation 1.5 

Multi-head attention is a repeating of the attention mechanism to ℎ projected 

subspaces of the queries, keys, and values, referred to as heads (see Equation 1.6). 

This allows to jointly attend between information in different subspaces that is inhibited 

when averaged. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2 , … , ℎ𝑒𝑎𝑑ℎ)𝑊
0 

𝑤ℎ𝑒𝑟𝑒ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) 

Equation 1.6 

Although designed for seq-to-seq translation with an encoder-decoder architecture, a 

single encoder can be used for autoregressive de novo sequence generation, as 

shown in Figure 1.12. In contrast to an RNN, a whole sequence is input that is 

embedded and combined with a positional encoding. This is then processed by 𝑁 

layers, where each layer consists of two sublayers: (1) multi-head attention followed 

by layer normalization94 with a residual connection95, and (2) a fully connected feed-

forward neural network followed by layer normalization with a residual connection. 

Finally, a linear layer followed by softmax is used to project the network values to 

predict the probability distribution over tokens in a vocabulary. A key difference 

between this architecture and RNNs is the input of a complete sequence, such that 

attention can be paid to all tokens in the sequence – making the prediction of the next 

token trivial by being able to look forward to the next token. To combat this, masking 

can be used during the attention mechanism to mask any future tokens from being 

observed. Thus, mimicking the prediction of tokens through time be unmasking the 

next token iteratively and predicting the probability of the next token at each pseudo-

timestep. 

This AR transformer architecture, with masking, can be trained identically as to RNNs 

by minimizing the NLL shown in Equation 1.4. De novo sequences can be sampled by 

identical random sampling of predicted categorical distributions over tokens 

repeatedly, each time inputting the predicted token and all previously observed tokens. 

Likewise, it can be applied to SMILES strings identically with the addition of a start and 

end token. As opposed to RNNs, the attention mechanism should enable better 

modelling of long-range dependencies contained in SMILES strings (as tokens distant 

in the SMILES string may correspond to atoms close in the graph). 
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Application of the transformer architecture for AR de novo molecule generation is less 

common than its RNN predecessor, but it is not unprecedented. Wang et al.96 reported 

marginal performance improvement over RNNs according to the MOSES benchmark 

suite when used for AR generation. Additionally, the authors compared target-specific 

conditioning of the transformer to target-specific fine-tuning of an RNN resulting in 

higher predicted activities of transformer-generated de novo molecules; with the 

caveat of different conditioning methods to bias molecule generation for the 

transformer and RNN confounding any robust interpretation. Moreover, Yang et al.97 

compared an AR transformer with an RNN in a similar fashion and found marginal 

improvements in SMILES validity from ~95% to ~98% and upon fine-tuning on a 

target-specific dataset or RL-based optimization, the transformer generated less 

topologically similar molecules to known target molecules. However, the RNN 

implemented in this work was unusually shallow, consisting of only one hidden layer 

with a dimensionality of 1,500 compared to three hidden layers of 512 as seen more 

commonly76. Lastly, Wang et al.98 found that to achieve the best property-conditioning 

in combination with RL-based optimization they had to distil the transformer to an RNN 

before conducting RL, and the result for optimization success was comparable to 

ordinary RNNs with RL99. The benefits of using the more theoretically advanced 

attention mechanisms in transformers thus appear predominantly in conditional de 

novo molecule generation, however, for unconditional AR generation and especially 

RL-based optimization there are no clear benefits based on current evidence put 

forward in their applications. This may explain why the application of transformers is 

more common in property-conditioned sequence to sequence translation tasks (as per 

transformers original application) such as, scaffold hopping100, scaffold 

decoration89,101 or substructure transformation88,102.  

 Graph-based autoregressive models  

AR de novo molecule generation is not exclusive to RNNs, as GNNs can also be used. 

For example, Mercado et al.103 deconstructed a training dataset into constituent 

building paths and trained a GNN to reconstruct molecules by predicting action 

probability distributions that can be sampled during de novo molecule generation. 

However, this didn’t particularly outperform RNNs with respect to reconstructing 

molecules, ring systems and functional groups in a reference dataset, except for those 
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present in low frequencies. This benefit also comes at the cost of increased 

computational expense at both training and sampling time104. 

 Variational autoencoders 

Variational autoencoders (VAEs) embed molecules into a latent space with an encoder 

𝑞𝜙(𝑧|𝑥), and then map a latent embedding back to a molecule with a decoder 𝑝𝜃(𝑥′|𝑧), 

whilst also constraining the latent space to adhere to a particular distribution (typically 

a Gaussian distribution). VAE’s are trained using maximum likelihood to increase the 

probability of molecule reconstruction by the decoder, as well as the to minimize the 

distance between the latent space distribution and a prior distribution using Kullback-

Liebler divergence (see Equation 1.7). Once trained, this allows sampling of new latent 

representations from the learned probability distribution in latent space, that can be 

decoded into de novo molecules. Several variations exist for example adversarial 

VAEs and supervised VAEs105.  

ℒ𝜃,𝜙 = 𝐸𝑧~𝑞𝜙(𝑧|𝑥)
[𝑙𝑜𝑔𝑝

𝜃
(𝑥)] − 𝐾𝐿(𝑞

𝜙
(𝑧|𝑥),𝑝(𝑧)) 

Equation 1.7 

One of, if not the first ML-based generative model was a VAE proposed by Gómez-

Bombarelli et al.30. Where the authors implemented an RNN encoder and decoder to 

map SMILES into a latent embedding and back to reconstructed SMILES again. 

Although the VAE performed similarly to rule-based methods with respect to 

reconstructing test set molecules, it was able to better constrain the property space to 

be more similar to the training dataset. Moreover, the distance in latent embedding 

corresponded to distance in chemical space, and when combined and jointly trained 

with a FFNN to predict molecular properties from their latent embeddings, the latent 

space is organized such that molecules with similar properties occupy similar regions 

of latent space too. However, there were some caveats to this approach, including low 

validity rates (~70% valid de novo molecules with 1,000 attempts per latent 

embedding), and undesirable non-drug-like substructures.  

To address low chemical validity, other implementations have integrated VAEs 

operating on graphs and an intermediary junction tree encoding-decoding to better 

ensure the validity of generated molecules, resulting in 100% validity and more stability 

with respect to idiosyncrasies of de novo structures106. New 100% validity guaranteed 



Chapter 1  Introduction 

38 
 

formal grammars have also been partially inspired by this problem, showing the 

circumvention of invalid de novo molecules in VAEs40.  

Lastly, VAEs can be combined with AR approaches, for example, Maziarz et al.107 

combined an encoder-decoder GNN with AR-style building block prediction: training a 

decoder to predict molecule building at different steps with a combination of the latent 

embedding and partially complete molecule. Performing well on benchmarks but 

crucially enabling scaffold constrained generation trivially. 

 Generative adversarial networks  

At a high level, generative adversarial networks (GANs) can be seen as switching the 

order of VAEs, where instead of first mapping molecules to a latent distribution 𝑞𝜙(𝑧|𝑥) 

GANs map a fixed prior distribution 𝑝(𝑧) to molecules 𝑝𝜃(𝑥′|𝑧). Where 𝑝(𝑧) is typically 

a Gaussian distribution of random noise. Learning how to generate molecules from 

noise is done by adding a discriminator that learns to classify whether the generated 

molecules belong to the training set distribution or not. Thus, the purpose of the 

generator is to fool the discriminator, and the purpose of the discriminator is to 

differentiate the generator, hence the adversarial terminology. This can be interpreted 

as a min max game as shown in Equation 1.8, where 𝐺 is the generator and 𝐷 is the 

discriminator. In practice, however, this is unstable due to small gradients during the 

initial stages of training, and so a more stable alternative referred to as Wasserstein 

GAN (WGAN) is used that frames the problem as minimizing the probability 

distributions between the generator and real distribution108.  

min
𝐺
max
𝐷
(𝐷, 𝐺) = 𝔼𝑥∈𝑝𝑑(𝑥)

[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧∈𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] 

Equation 1.8 

Guimaraes et al.109 introduced GANs for molecular de novo design by training a 

WGAN to generate SMILES by using an RNN generator and CNN discriminator. This 

displayed GANs ability to generate valid SMILES at a rate of above 90%. Moreover, 

this was combined with RL for molecular property optimization. Many other forms of 

GANs have since emerged, for example, utilising GNNs110, conditioned on gene 

expression profiles111, or to generate ligand pharmacophores using CNNs with voxels 

for downstream captioning112. However, GANs appear to be less commonly used than 

other distribution-based generative models83, possibly due to more complex training 

model requirements105. 
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1.2.2.5 Optimization algorithms for goal-directed design 

While it is useful to be able to implicitly learn how to generate de novo molecules from 

data via distribution-based generative models, it is ever more desirable to be able to 

bias molecule generation towards a particular endpoint. In order to achieve this, 

several optimization algorithms can be used in combination with a scoring function 

that scores de novo molecules in relation to a desirable property. Other methods can 

be used to bias molecule generation by directly using data available, for example, 

transfer learning (a.k.a. fine-tuning) by re-training a generative model on a smaller, 

more relevant dataset29; or conditioning by learning a joint probability distribution over 

training data and their respective properties and then ‘steering’ de novo molecule 

generation based on input desirable properties113. 

 Heuristic algorithms 

Heuristic algorithms can be used to search within the latent space learned by a 

generative model. Yang et al.114 used this approach by applying a Monte Carlo tree 

search (MCTS) over an RNN trained on SMILES. This is used to determine the 

sampling of tokens from the RNN, where the learned probability distribution by the 

RNN improves the relevance of the rollout procedure. This was shown to outperform 

the use of Bayesian optimization for the optimization of an arbitrary objective 

(penalized logP). Another approach taken by Xu et al.115 was to conduct a simple 

greedy search in the learned latent space of VAE. This was done by sampling the 

nearby latent space around a reference compound, assigning the respective decoded 

molecule with the best evaluated score as the new reference compound, and 

repeating. This approach managed to improve the docking score ~1.7-fold over the 

course of sampling ~20,000 molecules.  

A caveat of applying heuristic search algorithms to the learned latent space of 

generative models is the restricted search domain of the generative model. In other 

words, no generative model parameters are updated resulting in a fixed applicability 

domain of the generative model based on any initial training, therefore, it can be highly 

dependent on the breadth of chemical space the model is initially learned. 

 Evolutionary algorithms 

Evolutionary algorithms, in particular GAs are commonly combined with rule-based 

generative models to optimize towards a particular endpoint (see 1.2.2.3). However, 
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GAs can also be combined with distribution-based generative models. Ahn et al.116 

used a GA on top of RNN-generated de novo molecules to perform genetic operations 

identifying high-scoring molecules, then fine-tuning the RNN with newly identified high-

scoring molecules, all in an iterative loop. This outperformed 16 other benchmarked 

generative algorithms with respect to optimizing an arbitrary molecular property 

(penalized logP), including traditional rule-based GAs. Other evolutionary algorithms 

have also proven effective, such as particle swarm optimization (PSO). This was used 

by Winter et al.117 to search the latent space of a trained VAE by a swarm of particles 

that share knowledge on the potential surface of the search space (evaluated by the 

scoring function), and congregating in areas of desirable chemical space which can 

then be decoded to de novo molecules. Similar to heuristic algorithms, this search 

algorithm is constrained by the breadth of learned latent space. 

 Bayesian optimization 

Bayesian optimization is a statistically well-founded approach relying on Bayes 

theorem to inform the selection of new samples. This relies on a surrogate model to 

approximate the objective function (i.e., scoring function), and an acquisition function 

to decide how to sample new molecules. Gómez-Bombarelli et al.30 used this approach 

in combination with the property conditioned VAE. A Gaussian process (GP) was 

trained as a surrogate model to predict the properties of molecules in the latent space, 

then iterative sampling and re-training of the GP to maximize the predicted property 

was conducted. This resulted in traversal of the latent space to a more desirable region 

where more optimal de novo molecules could be decoded. Similar Bayesian 

optimization approaches are commonly combined with VAEs for goal-directed 

optimization106,118,119. 

Similar to heuristic algorithms, Bayesian optimization conducts a search in a defined 

chemical space, therefore, the same caveat applies regarding dependence on the 

learned latent space applicability domain. In addition, Bayesian optimization and more 

specifically typical surrogate models used (for example, GPs) are known to not scale 

efficiently to large amounts of data. Moreover, the use of a surrogate model to 

approximate objective functions with large inaccuracies can result in poor 

optimization80, and perform empirically worse than non-surrogate-based alternative 

optimization55 algorithms.  
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 Reinforcement learning 

Reinforcement learning (RL) introduces algorithms to optimize the sequence of actions 

taken by an agent to navigate a series of states in an environment to maximize a 

numerical reward also provided by the environment. More formally, this can be 

described as how to navigate a Markov Decision Process120. This is an episodic task 

where, given a state st ∈ S, an agent must decide an action 𝑎𝑡 ∈ 𝐴 to take at time step 

𝑡 based on interaction with the environment which informs the agent on the current 

state it’s in and its corresponding reward 𝑟𝑡 ∈ [0, 1]. Different RL strategies can then 

be used to describe how to navigate this landscape. These usually fall into one of two 

categories: value-based strategies that focus on estimating the value of an action 

given a particular a state (or value of being in a state) and selecting an action so as to 

maximize the final estimated return 𝑅𝑇 = ∑ 𝑟𝑡
𝑇
𝑡 , while policy-based RL focusses on 

identifying the best policy 𝜋 for selecting actions given a state 𝜋(𝑎𝑡|𝑠𝑡−1), without 

necessarily consulting a value function to estimate the absolute value of that 

state/action.  

In the context of chemical language models, the generative model is the agent, a state 

refers to the current complete or partially complete chemical representation, an action 

corresponds to selecting the next token, and lastly, a reward for the state by can 

calculated by an external scoring function. However, when considering many chemical 

language representations, like SMILES, a partially complete representation does not 

always correspond to a valid molecular graph. Therefore, a scoring function cannot 

always be used to assign a reward to 𝑟𝑡 to a given state 𝑠𝑡. This complicates the use 

of value-based RL strategies as state/action values cannot always be calculated. In 

contrast, policy-based RL strategies do not require a reward for each action/state and 

as such are more commonly used in this context54,76,77. Furthermore, as discussed by 

Olivecrona et al.76, an RNN is first trained on a large dataset of example molecules 

which effectively constitutes a prior policy for molecule generation, thus only small 

changes to the prior policy may be needed. 

A simple policy-based RL strategy is REINFORCE121, which has previously been used 

for de novo design77,122. This is an ‘all-actions’ policy-based method because the policy 

update only requires a sum over all action likelihoods (i.e., the policy) and the return 

for the whole episode. This can also be interpreted as a scaling of the policy by the 

return. To update the policy, the agent can be trained to minimize the loss function ℒ 
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(or cost function) shown in Equation 1.9. Where the agent policy is the same as the 

NLL seen in Equation 1.4 with the following differences in notation 𝑎𝑡 = 𝑥𝑡 and 𝑠𝑡−1 =

𝑥𝑡−1, … , 𝑥0. 

ℒ𝜃 = [−∑𝑙𝑜𝑔𝑃(𝑎𝑡|𝑠𝑡−1)

𝑇

𝑡

] 𝑅𝑇 

Equation 1.9 

REINVENT76,99, which is a popular strategy used in the literature, is a REINFORCE 

type strategy that explicitly regularizes policy updates by adding a prior policy to the 

loss function. Where the prior policy is the NLL calculated from a fixed copy of the 

language model (the prior) after training on a corpus of molecules. This regularization 

ensures that the agent (a copy of the language model that subsequently undergoes 

policy updates) maintains principles of the policy initially learnt by the prior i.e., how to 

generate valid de novo molecules corresponding to the training distribution. A 

combination of the prior policy 𝑙𝑜𝑔𝑃𝑝𝑟𝑖𝑜𝑟(𝐴) and return 𝑅𝑡, scaled by scaling coefficient 

sigma 𝜎, is then used to define an augmented likelihood. This augmented likelihood 

𝑙𝑜𝑔𝑃𝕌(𝐴) intuitively then acts as a ‘target policy’ for the agent, and the agent policy is 

updated according to the loss function shown in Equation 1.10, which is now defined 

as the distance between the agent policy and target policy. For brevity, notation is 

updated such that 𝑙𝑜𝑔𝑃(𝐴) = −∑ 𝑙𝑜𝑔𝑃(𝑎𝑡|𝑠𝑡−1)
𝑇
𝑡 . 

ℒ𝜃 = [𝑙𝑜𝑔𝑃𝕌(𝐴) − 𝑙𝑜𝑔𝑃𝑎𝑔𝑒𝑛𝑡(𝐴)]
2 

𝑤ℎ𝑒𝑟𝑒𝑙𝑜𝑔𝑃𝕌(𝐴) = 𝑙𝑜𝑔𝑃𝑝𝑟𝑖𝑜𝑟(𝐴) + 𝜎𝑅𝑇 

Equation 1.10 

More recently a strategy was proposed that offered modest performance improvement 

over REINVENT called ‘best agent reminder’ (BAR)123. Although this was implemented 

on a graph-based generative model, it can be equally applied to a chemical language 

model using the same principles. This strategy keeps track of the best agent by policy 

so far, updating it periodically. During policy update, a batch of molecules M (of size 

S) is sampled from both the current agent 𝑀𝑎𝑔𝑒𝑛𝑡 and best agent 𝑀𝑏𝑒𝑠𝑡, to serve as a 

reminder of high scoring molecules. Although the loss function is the same as Equation 

1.10 for the respective agents, the weighted average is taken across agents scaled by 

α, as shown in Equation 1.11. This effectively acts to minimize the agent policy 

difference to the ‘best agent optimal policy’ and the ‘prior optimal policy’, scaled by α.  
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ℒ𝜃 =
(1 − 𝛼)

𝑆
∑ [𝑙𝑜𝑔𝑃𝕌𝑝𝑟𝑖𝑜𝑟(𝐴) − 𝑙𝑜𝑔𝑃𝑎𝑔𝑒𝑛𝑡(𝐴)] 

2

𝑚∈𝑀𝑎𝑔𝑒𝑛𝑡

+
𝛼

𝑆
∑ [𝑙𝑜𝑔𝑃𝕌𝑏𝑒𝑠𝑡(𝐴) − 𝑙𝑜𝑔𝑃𝑎𝑔𝑒𝑛𝑡(𝐴)]

2

𝑚∈𝑀𝑏𝑒𝑠𝑡

 

Equation 1.11 

Hill-Climb (HC)122 can also be described as a heuristic optimization method or as an 

off-policy RL strategy and has been benchmarked by Brown et al.54 and Huang et al.124 

showing state-of-the-art or near state-of-the-art performance. In this context, HC can 

also be interpreted as a form of iterative fine-tuning or transfer learning. To update the 

agent policy, molecules are sampled from the agent and then evaluated to calculate 

the return for each molecule. The top 𝑘 ranked molecules by their return are then used 

to update the agent policy by minimizing their NLL as in Equation 1.4. This updates 

the policy to increase the likelihood of molecules that result in a higher return.  

As some RL strategies, for example REINFORCE and HC, are not explicitly 

regularized by a prior policy, cost terms can be added during policy updates to enforce 

a degree of prior policy regularization. This is important in practice to ensure policies 

found in the training distribution are maintained, but also to not catastrophically forget 

chemical language syntactics and semantics which will result in invalid structures. A 

common approach122,125 is the addition of the Kullback-Leibler (KL) divergence 

between the prior and agent policies scaled by a scaling coefficient λ, as shown in 

Equation 1.12. 

𝐶(𝐾𝐿) =  𝜆𝐾𝐿𝔼 [∑ 

𝑇

𝑡

∑ 𝑃𝑎𝑔𝑒𝑛𝑡(𝑎𝑖|𝑠𝑡−1)𝑙𝑜𝑔
𝑃𝑎𝑔𝑒𝑛𝑡(𝑎𝑖|𝑠𝑡−1)

𝑃𝑝𝑟𝑖𝑜𝑟(𝑎𝑖|𝑠𝑡−1)



𝑎𝑖∈𝐴

] 

Equation 1.12 

RL has equally been applied to VAEs126 and GANs110,127 to optimize de novo molecule 

generation. As opposed to heuristic algorithms and Bayesian optimization, RL directly 

adapts or updates generative model parameters – enabling it to, theoretically, learn 

new chemical distributions to optimize the objective. 

A particular challenge with RL is when the scoring function(s) provides sparse rewards 

and hence, limited signal for the agent (generative model) to learn from. This can be 

combatted with many tricks that can be used to improve the performance of RL such 

as experience replay128 or inception99. 
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1.2.2.6 Integrating structure-based principles into de novo design 

Structure-based drug design (SBDD) and ligand-based drug design (LBDD) principles 

are commonly used by in silico computational techniques to aid drug design. However, 

despite the fact that VS commonly uses SBDD principles when protein structures are 

available, the vast majority of generative models in the literature only use LBDD to 

guide de novo molecule generation. More and more generative models are starting to 

integrate SBDD principles typically used in VS to identify small molecules with 

potentially high on-target binding affinities, a much more relevant drug design 

challenge that can equally be used in additional contexts like first-in-class. 

 Why integrate structure-based design? 

SBDD concepts, can offer several advantages over LBDD concepts129. 

Retrospectively within a design campaign, the availability of at-least one co-

crystallized ligand-protein bound complex enables explicit rationalisation of the 

structure-activity relationship (SAR) for a particular chemotype, in doing so enabling 

the identification of favourable protein interactions. Prospectively, this allows rational 

design changes to maximize protein interactions without relying on knowledge of other 

ligands, therefore this can more easily lead to novel ligand chemistry or is applicable 

where ligand data is scarce130–132. In contrast, LBDDs inherent reliance on, and bias 

towards, known chemistry limits its ability to identify new chemistry. This translates to 

prediction unreliability in novel areas of chemical space when using QSAR models133. 

In combination with generative models, it has been shown that QSAR models can be 

exploited by optimization of specific model hyperparameters including data split and 

QSAR model seed134,135. 

On the other hand, SBDD also has its limitations, especially with regards to data 

availability and conditionality. Structural data can be difficult to acquire, and was 

historically intractable on larger proteins or membrane proteins such as G protein-

coupled receptors136. However, the availability of structural data is increasing year on 

year137 and technologies such as AlphaFold269 and related approaches138–140 are 

beginning to provide higher quality structure predictions. This is providing increasing 

promise for integration of predicted structures into SBDD approaches. Meanwhile, the 

use of docking as a traditional structure-based virtual screening approach itself is 

limited by poor correlation with small molecule binding affinity and variable 

performance on different protein systems141,142, and so this may be further 
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exacerbated by input of inaccurately predicted structures. With respect to distribution-

based generative models directly learning a distribution over structural data also, the 

available training data is much more sparse compared to its ligand counterpart. 

Generative models trained only on ligand data are able to utilize databases49 of up to 

1011, whereas the largest database of experimentally determined protein-ligand 

complexes has approximately 20,000 entries143. Moreover, structural data is 

conditional upon many more factors, for example, the bound receptor, experimental 

conditions, as well as the software and modeller responsible for fitting to the electron 

density. This makes training structure-based distribution models much more 

challenging. Lastly, a structure is still only a snapshot of a specific protein 

conformation144, which is influenced by the co-crystallized ligand (or absence thereof) 

and may not be the required stabilized conformation to obtain the desired downstream 

bioactivity. Hence, the effective use of SBDD approaches requires strong domain 

knowledge and specialist approaches to appropriately manage its limitations. 

 Approaches to integrate structure-based design 

Approaches to integrate protein structure with generative molecular design can be 

classified into four categories: distribution learning or goal-directed optimization and 

structure-explicit/implicit, shown below in Figure 1.13.
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Figure 1.13: Classification of approaches to integrate protein structure into generative molecular design. (Top left) Structure-explicit distribution learning whereby the generative 
model is trained on representations of the protein (for example, graph, voxel or point cloud) and ligand or bound complex to learn a distribution that can be used for de novo 
ligand generation. (Top right) Structure-implicit distribution learning whereby the generative model is trained on 3D bioactive conformations of bound ligands that infer some 
knowledge of protein structure. (Bottom left) Structure-explicit goal-directed optimization whereby a generative model learns to optimize for a structure-explicit scoring function 
and utilizes a representation of the protein or predicted complex to aid in doing so. (Bottom right) Structure-implicit goal-directed optimization whereby a generative model learns 
to optimize a structure-explicit scoring function by numerical score alone.
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Distribution learning generative models refer to distribution-based, where doing this in 

a structure-explicit way means that a representation of the protein structure is 

additionally fed into the generative model, such that it can learn a conditional 

distribution of small molecules based on protein structure context. Although this could 

also be done in a structure-implicit way without a protein structure representation (so 

long as the small molecule is represented in its bioactive conformation which depends 

on protein structure). Goal-directed optimization goal-directed generative models, 

where protein structure can be incorporated into the extrinsic scoring function, a key 

example being the docking score from molecular docking simulations. In the case of 

docking, I refer to this as structure-implicit if no representation of the protein structure 

is additionally fed into the generative model. However, a structure-explicit generative 

model can be achieved by feeding a representation of protein structure (for example, 

predicted binding pose and surrounding pocket) such that it additionally informs the 

generative model of future proposals as well as the returned property i.e., docking 

score. A generative model can theoretically incorporate structure data through both 

distribution learning and goal-directed optimization approaches which are not mutually 

exclusive, although this is not seen in practice yet.  

Initial structure-based de novo design with ML-based generative models in recent 

years belong to the group of structure-implicit goal-directed optimization, integrating 

structure information via the optimization of structure-explicit scoring functions 

(namely docking). This avoids the data limitations and complex representation 

requirement of protein structure information needed for distribution learning. Early 

work by Cieplinski et al.80 raised concerns of the potential difficulty of this task with two 

VAE-based generative models failing to minimize the docking score of de novo 

molecules beyond the top 10% of ZINC145 (a compound library used for virtual 

screening). However, this model relied on a surrogate, structure-implicit, model to 

predict the docking score of molecules given their latent representation (for 

optimization purposes). Crucially with this approach, surrogate model inaccuracy will 

compound with the already large inaccuracy observed in the respective docking 

algorithms, therefore, injecting noise into the scoring. Since this study, this concern 

has been addressed with the successful optimization of docking scores by a variety of 

generative models: to evaluate molecule fitness in the case of a genetic algorithm59, 

to guide the sampling of latent space as with a variational autoencoder115,126 or used 
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to update generative model parameters in a reinforcement learning setting146,147 

(including work as part of this thesis in Chapter 3). These successful approaches all 

used docking scores directly to inform or update the generative model without reliance 

on a surrogate model to predict docking scores. However, the use of docking 

algorithms requires a level of expertise and domain-specific knowledge that some 

researchers of generative models may not possess. Therefore, easy-to-use tools that 

are able to conduct docking in a more automated way are extremely valuable. As such, 

several tools have become available including DockStream148, TDC124, 

DOCKSTRING149 and MolScore (presented as part of this thesis in Chapter 2)150. 

For more recent distribution learning, structure-explicit approaches, the added 

complexity of incorporating and representing protein structure brings added 

challenges. Generative models operating in 3D space should be E(3) equivariant (to 

translation, rotation, and reflection), typically achieved by augmentation of the training 

data via random rotation and translation transformations151,152 or by using equivariant 

networks on point cloud representations with continuous convolution filters48 on 

interatomic distances153–155. However, because data augmentation is not an exact 

solution the model is still susceptible to sensitivity in input orientation. On the other 

hand, point cloud representations fail to model bond information, typically leading to 

post-hoc approximation of bond order: an approach that can lead to idiosyncratic bond 

orders or ligand strain151,154. This was significantly improved upon by Peng et al.156 by 

also explicitly modelling and predicting bond types in the vector neuron network 

generative model. In addition to the data being more sparse than the 2D counterpart, 

often the data is incomplete i.e., none, or just a portion of a co-crystallized ligand is 

modelled due to poor resolution which may go unnoticed by users, such as PDB codes 

1HYZ157 or 1PL0158, present in PDBbind143. Due to labelled data sparsity, augmenting 

training data with simulated data159 (docked ligand poses) is also common 

practice151,154,156,160. This introduces dependence on the method of data 

augmentation, such as the force-field or other bias induced by a docking algorithm159. 

Moreover, this method of augmentation was originally proposed to augment negative 

data necessary for discriminative tasks (e.g., pose prediction and binding affinity 

prediction), therefore, using it as an approach to infer positive data for generative 

modelling will significantly increase noise due to the inaccuracies of docking and must 

be used with caution. 
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There is still no evidence on the best approach given a particular context, as such a 

meaningful comparison between the approaches classified here is currently lacking. 

That would require the appropriate standardized evaluation of these approaches 

where currently no agreed dataset-task-metric exist. Ultimately, prospective validation 

by synthesis and experimental binding affinity assay is the best method to evaluate 

structure-based generative model proposals, however, only one Li et al. thus far have 

conducted prospective validation of a structure-based generative modelling 

approach161 (with one of nine structure-based proposals showing weak binding affinity 

to CDK4, see 1.2.3.7).  

1.2.3 Evaluating de novo design methods in the context of drug design 

1.2.3.1 Performance metrics 

To be able to compare and improve generative model algorithms for de novo design, 

their performance needs to measurable. Many performance metrics have been 

proposed in the literature that calculate a property based on de novo molecules 

generated from a respective model. Here, these are categorized into measuring 

intrinsic properties (i.e., without reference any external molecules) and extrinsic 

properties (i.e., in reference to external molecules, for example, any training data 

used), and summarized in Table 1.1 and Table 1.2.



Chapter 1  Introduction 

50 
 

Table 1.1: Performance metrics to measure intrinsic properties of de novo molecules and hence, generative model performance. Where 𝐺∗ is a multiset of generated de novo 

molecules including repeated elements, 𝐺 is a formal set of unique elements, and (∙)𝑣 denotes valid outputs only.  

Name Equation Description 

Validity54 
|𝐺𝑣

∗|

|𝐺∗|
 The fraction of outputs that correspond to a valid molecular graph. 

Uniqueness54 
|𝐺𝑣|

|𝐺𝑣
∗|

 The fraction of distinct valid molecules. 

Internal diversity (IntDivp)79,162 1 − √
∑ 𝑠𝑖𝑚(𝑚𝑖 , 𝑚𝑗)

𝑝
(𝑖,𝑗)∈𝐺𝑣×𝐺𝑣

|𝐺𝑣|
2

𝑝

 

 

The average of each molecule’s average pairwise Tanimoto distance to all other 
molecules in the set of valid, unique molecules. Where distance is 1 − 𝑠𝑖𝑚, and 
Tanimoto similarity 𝑠𝑖𝑚 is calculated on the molecules respective ECFP4 fingerprint 

representation. Two variations exist, IntDiv1 and IntDiv2 depending on 𝑝, where 

IntDiv2 (𝑝 = 2) takes the root of the average squared similarity. 

Sphere exclusion diversity (SEDiv@1k)147 
|𝑔𝑣,𝑑|

|𝑔𝑣|
 

The fraction of diverse molecules (∙)𝑑 in random sub-sample of 1,000 generated 
molecules 𝑔 ∈ 𝐺. Where diverse molecules are identified by the sphere exclusion 
algorithm163 with a Tanimoto distance cut-off of 0.65. This cut-off corresponds to 
80% probability of possessing similar bioactivity. 

GuacaMol Filters54 
|{𝑚 ∈ 𝐺𝑣|𝑓𝑖𝑙𝑡(𝑚)}|

|𝐺𝑣|
 

The fraction of molecules that pass a filter 𝑓𝑖𝑙𝑡 checking for the presence of 
substructures, where substructure are collated from public and in-house sources164. 

MOSES Filters (MCF & PAINS)79 
|{𝑚 ∈ 𝐺𝑣|𝑓𝑖𝑙𝑡(𝑚)}|

|𝐺𝑣|
 

The fraction of molecules that pass drug-like filters 𝑓𝑖𝑙𝑡. These are defined as not 
containing medicinal chemistry (MCF)79 and PAINS7 substructures, or 
physicochemical properties outside the following constraints: allowed atoms (C, N, 
S, O, F, Cl, Br, H), molecular weight between 250 and 350 Da, logP below or equal 
to 3.5 and rotatable bonds below or equal to 7. 
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Table 1.2: Performance metrics to measure extrinsic properties of de novo molecules and hence, generative model performance. Where 𝐺 is a set of valid, unique de novo 

molecules, 𝑅 is a set of unique reference molecules. 

Name Equation Description 

Novelty54 
|𝐺 − 𝑅|

|𝐺|
 

The fraction of unique valid molecules that are not present in a 
reference dataset. Typically, this refers to the training dataset used to 
train the generative model. 

FCD165 

𝐹𝐶𝐷(𝐺, 𝑅) = ||𝜇𝐺 − 𝜇𝑅||
2

+ 𝑇𝑟[∑𝐺 +∑𝑅 − 2(∑𝐺∑𝑅)
1/2] 

 

The Wassertstein-2 distance between the activation layers of the 
penultimate layers of ChemNet166 for the generated set and reference 
set. Where 𝜇 denotes the mean and ∑ the covariance of the 
respective activation layers. This is a proxy measure of the difference 
in chemical distributions and correlates with differences in drug-
likeness, logP, synthesizability, and mode collapse. 

Analogue similarity167 
|{𝑚𝑔 ∈ 𝐺|∃𝑚𝑟 ∈ 𝑅(𝑠𝑖𝑚(𝑚𝑔, 𝑚𝑟) ≥ 0.4)}|

|𝐺|
 

The fraction of generated molecules 𝑚𝑔 where there exists at-least 

one reference molecule 𝑚𝑟 that is an analogue. Where an analogue is 

defined as having a Tanimoto similarity 𝑠𝑖𝑚 of 0.4 or more based on 
ECFP4 fingerprints. 

Functional groups or ring systems covered104 
|𝐺𝑓𝑔 ∩ 𝑅𝑓𝑔|

|𝑅𝑓𝑔|
𝑜𝑟

|𝐺𝑟𝑠 ∩ 𝑅𝑟𝑠|

|𝑅𝑟𝑠|
 

The fraction of either unique functional groups generated 𝑓𝑔 or ring 
systems generated 𝑟𝑠 that are within the reference set, relative to the 
reference set. Where functional groups are identified as described by 
Ertl et al.168, and ring systems are identified by fusion of monocyclic 
rings if shared atoms exist. 

Functional groups and ring systems outside104 
|𝐺𝑓𝑔 − 𝑅𝑓𝑔|

|𝐺𝑓𝑔|
𝑜𝑟

|𝐺𝑟𝑠 − 𝑅𝑟𝑠|

|𝐺𝑟𝑠|
 

The fraction of either unique functional groups generated 𝑓𝑔 or ring 
systems generated 𝑟𝑠 that are within the reference set. Where 
functional groups are identified as described by Ertl et al.168, and ring 
systems are identified by fusion of monocyclic rings if shared atoms 
exist. 

Single nearest neighbour similarity (SNN)79 
1

|𝐺|
∑max

𝑗∈𝑅
(𝑠𝑖𝑚(𝑚𝑖 , 𝑚𝑗))

𝑖∈𝐺

 
The average maximum similarity of molecules in the generated set to 
molecules in the reference set. Similarity is calculated as the Tanimoto 
similarity 𝑠𝑖𝑚 based on ECFP4 fingerprints. 

Fragment (Frag) or scaffold (Scaff) similarity79 
�⃗�𝑓𝑟 ⋅ �⃗⃗�𝑓𝑟

||�⃗�𝑓𝑟||||�⃗⃗�𝑓𝑟||
𝑜𝑟

�⃗�𝑠𝑐 ⋅ �⃗⃗�𝑠𝑐

||�⃗�𝑠𝑐||||�⃗⃗�𝑠𝑐||
 

The cosine similarity between the identically ordered multiplicity of the 
generated and reference multiset of either fragments 𝑓𝑟or scaffolds 

𝑠𝑐, where (∙)⃗⃗⃗⃗⃗ denote the multiplicity or count vector. Fragments are 
identified by BRICS fragmentation169. Scaffolds are the Bemis-Murcko 
scaffolds170. 

Property similarity79 ∫|𝐹𝐺(𝑥) − 𝐹𝑅(𝑥)|𝑑𝑥


ℝ

 

The Wasserstein-1 distance between the respective property 𝑥 

distribution of the generated and reference molecules. Where 𝐹 is the 
inverse cumulative density function. Previously evaluated properties 
include logP171, SAscore172, QED173 and molecular weight. 
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Table 1.3: How simple performance metrics relate to practical relevance, and rule-based or distribution-based generative models. The introduction of distribution-based 
generative models brings more complex dependencies on data and algorithms. 

Property  Practical relevance Rule-based  Distribution-based  

Validity – molecules must 

adhere to chemical principles 

e.g., valency. 

Critical. Molecules should always be valid (unless there are 

systematic errors in building blocks and building 

rules). 

Dependent on molecular representation chosen, 

complexity of training data and complexity of 

model. 

Uniqueness – the rate at 

which molecules are 

duplicated by the model. 

Unnecessary if the single 

de novo molecule satisfies 

all desirable properties. 

Dependant on the search algorithm used.  Dependent on the search/optimization algorithm 

and applicability domain imposed by training data. 

Diversity – the scope of 

chemotypes generated relative 

to all chemical space. 

Unnecessary if de novo 

molecules occupy the most 

optimal chemical space. 

Dependant on the search algorithm and fidelity 

achievable by chemical building blocks (i.e., atoms, 

fragments, or reactants). 

Dependent on the search/optimization algorithm 

and applicability domain imposed by training data. 

May afford greater diversity where rules are 

difficult to explicitly define (e.g., natural products). 

Novelty – the presence of 

molecules in any training data 

used. 

Critical to fulfil the definition 

of de novo molecule 

generation. 

Only applicable to seeded models such as genetic 

algorithms.  

Dependent on all model aspects, training data 

used, molecular representation, architecture etc. 

Similarity – the similarity 

between generated molecules 

and any training data used. 

Unnecessary if de novo 

molecules satisfy all 

desirable properties. 

Only applicable to seeded models such as genetic 

algorithms.  

Dependent on all model aspects, training data 

used, molecular representation, architecture etc. 

Synthetic feasibility – the 

ability to synthesize a molecule 

in the lab with relative ease. 

Critical for experimental 

validation and practical 

application as a therapeutic.   

Rules can adhere to known chemical reactions and 

reaction centres, ensuring a degree of synthetic 

feasibility (usually to the detriment of diversity).   

Synthetic feasibility of molecules may be implicitly 

learned based on the training data; however, it 

usually cannot be guaranteed for novel molecules. 
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In the most basic sense, all generative models must perform well at the task of 

generating reasonable de novo molecules. This means they must firstly generate valid 

molecules that adhere to chemical principles such as valency. Secondly, generated 

molecules should be mostly unique (i.e., the model should not re-generate the same 

molecule over and over). This is irrelevant if the generated molecule is the ‘perfect 

solution’, however, this is unlikely and cannot be proved without testing all possible 

molecules. Thirdly, the generated molecules should be novel with respect to the 

training data used for distribution-based models – otherwise, a VS could be used 

instead. However, it is worth noting that the satisfaction of novelty does not guarantee 

the degree of similarity to any respective training data (where a high degree of 

similarity may be either desirable or undesirable based on different objectives). 

Fourthly, it is usually advantageous that generated molecules exhibit a high diversity 

and do not occupy a very narrow region of chemical space, unless this chemical space 

is the ‘most optimal’, which also cannot be easily proved. Lastly, generated molecules 

should be synthetically feasible i.e., be possible to synthesise in the lab, as molecules 

will always need to be experimentally tested and if successful, scaled up into 

production settings. How these principles relate to rule-based or distribution-based 

generative models is summarised in Table 1.3. 

In practice, metrics have also been shown to fail to sufficiently evaluate generative 

model performance. For example, Renz et al.134 show that a naïve model that samples 

from a training set and adds a carbon is competitive with ‘state-of-the-art’ methods 

according to the simplest metrics of validity, uniqueness and novelty (often the only 

metrics evaluated). Another difficult property to measure is diversity, which is 

challenging to combine into a single value in a robust, interpretable way. Internal 

diversity (described in Table 1.1) takes the average of averages, completely losing the 

information contained in the underlying distributions. Moreover, it has been known 

since 1999 that the Tanimoto distance of extended connectivity fingerprints (ECFP) is 

heavily confounded by the number of heavy atoms174, and it also possesses rather 

low resolution at the low-similarity range, due to the low number of shared bits present 

in this situation. Thus, it is conceivable that internal diversity may also correlate with 

the number of heavy atoms distribution of a generated set. Sphere exclusion diversity 

is proposed in an attempt to circumvent these issues and is presented as part of this 

thesis in Chapter 2. Although many initial performance metrics are flawed when used 
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individually, the combination of metrics provides a more robust overall picture of 

generative model performance. Furthermore, more recent improvements have been 

made in establishing more interpretable metrics, for example, Zhang et al.104 

compared generative models by their ability to produce specific functional groups and 

ring systems present in GDB-1332 (see Table 1.2). 

1.2.3.2 Benchmarks and benchmark objectives 

To be able to compare goal-directed generative models, their performance must be 

compared on a standardized benchmark objective or task. This enables fair 

comparison and helps to identify good or poor performance for particular objectives. 

While the gold standard of measuring model performance is to synthesize and 

experimentally test de novo molecules against the property for which a proxy was 

optimized (e.g., protein binding assay17,175 or in vitro pharmacokinetic assay), this is 

intractable considering the experimental resource requirement, number of new 

generative models that require evaluation, and number of de novo molecules 

proposed by each model (up to billions104).  

In silico benchmarks exist such as MOSES79, GuacaMol54, PMO55, smina-docking80, 

DOCKSTRING149 and TDC124. However, MOSES does not contain any objectives to 

benchmark goal-directed optimization.  

GuacaMol is seminal benchmark that contains a suite of 20 objectives for goal-directed 

optimization. Each of these objectives evaluates the similarity to a reference molecule 

or set of reference molecules. Four generative models were compared including 

Graph GA56, Graph MCTS56, SMILES GA176 and SMILES LSTM (with HC)122. Overall, 

Graph GA and SMILES LSTM achieved excellent performance, with only four tasks 

achieving a score below 0.8 (out of 1). Additionally considering the type of chemistry 

generated with GuacaMol filters (see Table 1.1), the SMILES LSTM was vastly 

superior, as comparatively half the Graph GA molecules passed filters.  However, this 

excellent performance also highlighted that the objectives were not difficult enough, 

especially considering leeway for more performant generative models. This was also 

mentioned by the authors. Furthermore, the tasks proposed are not very relevant to 

real drug design challenges, for example, binding affinity. A recent extension to this 

benchmark, PMO, additionally accounts for sample efficiency of objective 

optimization. A significant contribution of this benchmark was the implementation of 
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25 generative models, a much broader comparison than four. This work also 

reinforced the performance of SMILES-based language models as the best performing 

models.  

More recent, docking-based, benchmarks have also emerged including smina-

docking, DOCKSTRING and TDC. Using docking as a proxy for binding affinity is a 

more relevant objective to drug design. However, these docking benchmarks only 

consider 1-4 protein targets and do not appropriately prepare de novo molecules via 

stereoisomer enumeration, tautomer enumeration and protonation. Moreover, docking 

algorithms tend to over score large, greasy molecules which isn’t traditionally a 

problem as these are filtered out of VS compound libraries. Therefore, this objective 

is heavily confounded by a generative model’s ability to generate these compounds 

which is usually an undesirable characteristic – these objectives must be more 

carefully defined to avoid this behaviour. 

Beyond established benchmarks, other objectives have been proposed and used to 

compare generative model performance via the highest score achieved by de novo 

molecules. For example, penalized logP106 (logP penalized by SAscore and number 

of rings). Not only is the task practically irrelevant to the drug design process, but the 

evaluation only accounts for a model’s ability to optimize an arbitrary function. 

Therefore, this evaluation is only meaningful if the scoring function has been proven 

robust, accurate and validated in that area of chemical space (which is often not the 

case). 

1.2.3.3 De novo design objectives and their relevance to drug design 

Even if a generative model generates a diverse array of valid, novel, and synthetically 

feasible molecules; or the ability to recover or generate similar molecules to known 

drugs, does not guarantee that generated molecules are relevant to the objective of 

identifying drug candidates. For this, molecules must possess other necessary on-

target, pharmacokinetic, practical, and legal properties, as discussed in 1.1. Some of 

the properties required, how they might be approximated by scoring functions to guide 

goal-directed generative models, and their associated limitations is discussed in Table 

1.4.
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Table 1.4: Proxy functions, and pitfalls of such approaches, that can be used for goal-directed de novo design based on the properties required for molecules to be considered 
for lead optimization or drug candidate selection, as outlined in 1.1. 

Property  Proxy scoring function Pitfalls 

On-target activity – a molecule 

must exert the desired effect on a 

respective biological target. 

• 2D/3D similarity to known active 

molecules 

• QSAR models 

• Proteochemometric models 

• Docking simulations 

• Free energy perturbation (FEP) 

• Active ligands are not always known, restricting the application of similarity and 

QSAR/ML approaches to novel targets. 

• QSAR models and docking simulations predict on-target affinity which does not always 

translate to bioactivity (e.g., polypharmacology required, incorrect binding mode, sub-

optimal binding kinetics, metabolite activity etc.)20. 

• Similarity approaches (and the limited applicability domain of QSAR models) restrict 

novelty and diversity of de novo molecules75. 

• Different QSAR models with similar performance metrics behave differently in prospective 

use cases177.  

• Docking simulations can be inaccurate141,142 and highly target dependent178. 

• Molecular dynamics based simulations like FEP are too computationally expensive. 

Novelty (legal) – a molecule 

must not infringe on competing 

intellectual property.  

• Dissimilarity to patented molecules 

• Substructure filters 

• Patented molecules are typically enumerated Markush structures and are thus more 

difficult to explicitly define for similarity-based approaches – may result in missed 

similarities e.g. Walters et al.18. 

• Computationally expensive to exhaustively check similarity to all patented molecules. 

Synthetically feasible – a 

molecule must be possible to 

efficiently synthesized and ideally 

at scale.  

• Heuristics (e.g., SAscore172) 

• Machine learning models (e.g., 

RAScore179) 

• Computer-aided synthesis 

planning (CASP) 

• Single numerical values returned only increase the probability of possible available 

synthetic routes – i.e., synthesis is not guaranteed by finding a validated synthetic route 

they usually provide no interpretation of synthetic routes e.g., number of steps (although 

modelled in SCScore180), cost, availability of starting materials etc. 

• CASP models are too computationally expensive. 

Pharmacokinetics – a molecule 

must be able to reach the target/s 

• Heuristics (e.g., number of 

rotatable bonds, Crippen LogP171) 

• Heuristics are fast becoming outdated, with exceptions to popular rules such as beyond 

rule of five drugs181,182. 
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of interest (ideally via traditional 

administration routes e.g., oral).  

• QSAR/QSPR models • QSAR/QSPR models are typically trained on data labelled using in vitro assays or 

simplified cellular systems, failing to account for the complexity and heterogeneity of 

organs and tissues that are adaptive, unique to individuals, and dependant on the 

microbiome183. 

Suitable off-target profile – a 

molecule or its metabolites must 

not exert an effect on off-targets.  

• (Dis)similarity to active off-target 

molecules 

• QSAR models 

• Off-targets or respective ligand data is not always known a priori. 

• QSAR model accuracy contains a heavy bias towards targets that contain more data184. 

• Similarity to known off-target ligands is a very difficult optimization task (due to the similar 

nature of protein families and subtypes, ergo similar ligands) - e.g., 40% of 112,000 

kinase inhibitors exhibit multi-kinase activity185. 

• Aggregate similarity across many off-targets ligands will result in a difficult Pareto 

optimization problem (i.e., will not always achieve dissimilarity to all off-targets). 

Toxicity – a molecule or its 

metabolites must not induce any 

toxic side-effects. 

• Substructure filters  

• QSAR models  

• Toxicity data is expensive to acquire and thus typically comprises smaller datasets - e.g., 

one of the largest (Tox21) which contains annotations for ca. 10,000 compounds186. This 

makes it more difficult to apply modern  neural network models that rely on large 

quantities of data187.  

• Toxicity is also heavily dependent on dose188, increasing the prediction challenge for 

QSAR models. 

• Substructure filters can be effective but crude, for example, discarding substructures in 

which toxicity could be mitigated with design changes such as nearby sterically hindering 

groups to avoid site metabolism (e.g., reducing aldehyde oxidase metabolism189,190). 
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The scoring functions used to evaluate de novo molecules and hence guide goal-

directed generative models come with their own limitations, as discussed in Table 1.4. 

A common theme in scoring function pitfalls, that is also relevant outside their use in 

generative models, is the large disconnect between respective property endpoint and 

scoring function proxy (where a proxy is a function that should represent the endpoint 

property). For example, the biological gap from biological efficacy (e.g., reduced 

disease progression) to on-target activity (e.g., binding affinity and mode of action) to 

implemented proxy (e.g., a QSAR model that predicts the pIC50 of a single protein 

binding assay). Firstly, this measure is only a proxy for on-target activity due to the 

many complex dependencies not captured, such as, effect size (e.g., percent 

inhibition), mode of action (specific residue interactions that may be required to exert 

specific downstream effects), binding kinetics (e.g., desirable range can be influenced 

by protein turnover), as well as co-dependency on other properties such as 

bioavailability. Let alone, the biological gap from on-target activity to efficacy which 

depends on many more factors downstream of on-target activity and can even be 

highly dependent on individuals. The closest known attempt to moving closer towards 

phenotype and hence bridging this biological gap was implemented by Méndez-Lucio 

et al., where the generative model was trained to generate molecules conditioned on 

gene expression profiles (downstream of on-target activity) using generative 

adversarial networks111, as well as a similar approach using cell morphology191. 

Although these approaches somewhat close the biological gap, the information 

incorporated tends to be much noisier (and hence the signal is much more difficult to 

identify), introducing new confounding variables such as different cell lines. Moreover, 

there is often no clear mechanistic link to actual endpoints such as efficacy or toxicity. 

Ultimately, limited quantity and availability of data here is a significant limiting factor. 

Further limitations not discussed in Table 1.4 include the dependant behaviour of 

generative models when optimizing the values returned by specific scoring functions, 

which can exacerbate scoring function pitfalls. Recently Renz et al. observed the 

sensitivity of generative models towards generating molecules optimal specifically 

against a QSAR model data split or hyperparameter setting134, demonstrating the 

effect of limited QSAR model robustness and applicability domain on de novo 

molecule generation. This was further characterized by Langevin et al.135. As 

suggested by Olivecrona et al. “any predictive model to be used in conjunction with 
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the generative model should cover a broad chemical space within its domain of 

applicability, since it initially has to assess representative structures of the dataset 

used to build the Prior”76. In other words, at some point during training, the model is 

likely to evaluate molecules outside its domain of applicability resulting in aberrant 

predictions. This increases the importance of predictive model robustness and 

confidence prediction. Overall, the dependant relationship between generative model 

and scoring function seems to adhere to Goodharts’ law192: “When a measure 

becomes a target, it ceases to be a good measure”. 

1.2.3.4 Evaluation in the context of data availability and project priorities 

It is important to consider the context of prospective application when evaluating 

generative models, as they must be applicable to real-world drug design problems.  

Projects aimed to drug novel targets (a.k.a. first-in-class) will have no reported ligands 

to utilise for transfer learning or to train an ML-based scoring function. One way of 

approaching this is to use structure-based scoring functions if a protein structure is 

available. More and more generative models utilise 3D structure or docking-based 

scoring functions that can be applied in this scenario (see 1.2.2.6); however, so far 

only one has been experimentally validated.  

Another common prospective application may include design of better drugs than are 

currently available on the market (a.k.a. best-in-class), whereby known ligand data is 

more likely to be available for transfer learning or scoring function training. However, 

proposed molecules must be novel enough to not infringe on competing intellectual 

property – which may be difficult to attain if relying on known, potentially patented 

ligand data. Moreover, success will likely depend on an overall better profile 

considering all of the properties discussed in Table 1.4, where an optimal multi-

parameter profile is most advantageous. However, multi-parameter optimization 

(MPO/MOO) results in a Pareto optimization problem, where optimization of one 

property is to the detriment of another. The ability to optimize many desired properties 

simultaneously is one of difficulty and often neglected in generative model publications 

receiving relatively little attention61,102. 

Overall, model evaluation must focus more effort on the context of prospective 

application, so that evaluation is more interpretable when considering integration of de 
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novo design with generative models into real-world projects. For example, novelty with 

respect to existing reported ligands or existing literature is almost never considered. 

1.2.3.5 Evaluation in the context of traditional in silico methods 

Understanding how generative models compare to other traditional and non-AI 

methods like VS has not yet been seriously considered. Recently Steinmann et al.57 

used a genetic algorithm to find de novo molecules with good docking scores, 

comparatively their approach identified 1.9x more high scoring molecules than 

conventional VS; however, there approach required to dock 1.6x more molecules than 

the VS. Therefore, the convenience-enrichment trade-off likely falls in the favour of VS 

based on these results, as the screening library is commercially available without the 

need for synthesis. Furthermore, comparison to other techniques such as bio-isostere 

replacement based on medicinal chemistry precedent18,193 would further the 

interpretation of generative model performance. 

1.2.3.6 Evaluation of a hypothetical de novo design scenario to demonstrate 

evaluation challenges 

To illustrate the challenges of evaluating generative model performance in the context 

of drug design with the performance metrics and objectives available, a hypothetical 

de novo design scenario is discussed. Figure 1.14 illustrates a hypothetical chemical 

space occupied by either literature reported bioactive molecules, de novo molecules 

proposed by a generative model optimized to maximize a QSAR model prediction 

(trained on respective bioactive molecules), and a training dataset. The hypothetical 

aim is to identify new bioactive chemical series, akin to real world drug discovery. All 

de novo molecules are assumed valid and synthesizable. 
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Figure 1.14: Hypothetical evaluation of de novo molecule chemical space, optimized to maximize 
predicted binding affinity. Schematic of chemical space occupation by known bioactive molecules, de 
novo molecules, and training data. The training dataset for the generative model is shaded grey. Certain 
regions that de novo molecules occupy have been annotated to reflect considerations when evaluating 
model performance. 

Figure 1.14 highlights the difficulty comparing, for example, de novo molecules at 

Figure 1.14a and at Figure 1.14b. Where molecules at Figure 1.14a perform well 

considering close similarity to the training set, high predicted pIC50 and similarity to 

known bioactives (providing confidence in the QSAR predictions). However, the 

molecules may be too similar to known bioactives and therefore, not novel enough to 

be of use in practice (i.e., avoid competing intellectual property). Furthermore, these 

molecules could likely be found using traditional drug design approaches (e.g., 

decorating scaffolds and/or scaffold hopping), raising further concerns as to the real 

world benefits of generative models over traditional methods. This situation is similar 

to that reported by Zhavoronkov et al.17, where a de novo molecule was later found to 
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be very similar to a marketed drug (and similar to a molecule in the training set)18, it 

has further been speculated that if a similar discovery was made via more traditional 

techniques it would not even be novel enough to report18. If the molecules at Figure 

1.14b are now considered, the generative model would be considered poorly 

performing due to dissimilarity to the training set, even though molecules are predicted 

active and are novel enough with respect to known bioactives. It raises the question: 

if the molecules do satisfy optimized property requirements (i.e., predicted bioactive), 

does it matter that they are dissimilar to the training set? Secondly, now the molecules 

are in a new region of chemical space, how much can we trust the QSAR predictions? 

These are usually unanswered questions that are highly context dependent. By using 

the most common performance metrics, it would be a model that results in molecules 

at Figure 1.14c that would be considered ‘state-of-the-art’ due to a highly optimized 

predicted activity and similarity to the training set – with complete disregard to the 

applicability of such a QSAR model in that region of chemical space, or novelty with 

respect to known bioactives. This hypothetical scenario is designed to stress the 

importance of measuring performance with respect to external references which are 

more meaningful in practice, despite being difficult to measure. This also stresses the 

importance of understanding a scoring functions applicability domain in the context of 

evaluation.  

1.2.3.7 Prospective evaluation 

Compared to the number of recent ML-based generative model algorithms proposed, 

relatively few have undergone any kind of prospective evaluation by experimental 

testing of de novo molecules. Merk et al.194 used transfer learning with an LSTM model 

and tested four de novo molecules on RXR potency, two of which had double-digit 

micromolar activity. Zhavoronkov et al.17 used REINFORCE with a VAE model and 

tested six de novo molecules on DDR1 inhibition, three of which had sub-micromolar 

activity and one with micromolar activity. Li et al.161 used transfer learning with an 

LSTM model and tested 12 de novo molecules on PIM1 and CDK4 inhibition, one of 

which had sub-micromolar PIM1 activity and three of which had micromolar CDK4 

activity. Yang et al.195 used transfer learning with an LSTM model and tested one de 

novo molecule on p300/CBP HAT inhibition, which displayed nanomolar activity. 

Grisoni et al.175 used transfer learning with an LSTM model and tested 28 de novo 

molecules on LXRα/β activation, twelve of which had micromolar activity. Hua et al.196 
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used a GRU model to help build a combinatorial library which was subsequently 

virtually screened, they then tested 17 de novo molecules on MERTK inhibition, 10 of 

which had sub-micromolar activity and 5 of which had micromolar activity. Lastly, 

Moret et al.197 used transfer learning with an LSTM model to build a focussed VS and 

tested 16 commercially available de novo molecules on PI3Kγ binding (one of which 

exhibited sub-micromolar activity), two non-commercially available de novo molecules 

(both of which exhibited nanomolar activity), and four human-derived analogues (all of 

which exhibited sub-micromolar activity). 

However, only Grisoni et al.175 was evaluated objectively, with the exception of just 

6/51 not selected for synthesis due to price. All other prospective evaluations 

discussed above either had human influenced selection of de novo molecules for 

testing17,161,194–197 or underwent human-designed modifications of de novo 

molecules161,197. For example, Moret et al. tested the 12/1,121,735 de novo molecules 

that were commercially available, which is clearly an extremely small sample size 

relative to possible molecules. Even the 2/47 de novo molecules that were selected 

for testing by high bioactivity prediction were human selected, again providing a small 

sample size to represent objective model performance. Alternatively, Zhavoronkov et 

al.17 generated 30,000 de novo molecules that were expertly filtered and selected to 

just 40 compounds (6 of which were synthesized). This leads to difficult delineation 

between performance of the generative model or the proceeding VS and expert 

filtering. Although it is relevant how best to select from (potentially millions of) de novo 

molecules, this does confound objective evaluation of generative model performance. 

Clearly defining levels of automated chemical design198 should help to clarify human 

influence moving forward. 

1.3 Aims & Objectives 

The field of de novo design is rapidly undergoing advancement due to the introduction 

of distribution-based, generative ML models in recent years. Over the course of these 

doctoral studies more than 100 de novo drug design methods have been published, 

and the AI field has solved grand challenges such as predicting 3D protein structures 

to unprecedented accuracies69. However, many challenges still exist for generative 

models relating to their performance evaluation and application in drug design, 

especially in the larger context of real drug discovery scenarios. The aims of this thesis 
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were to investigate and improve the application of goal-directed generative models to 

drug design by additionally incorporating structure-based principles. 

1. The inconsistent comparisons in generative model performance by either 

optimizing different or arbitrary, irrelevant objectives makes it difficult to discern well 

performing generative models. In an attempt to help address this, Chapter 2 introduces 

MolScore; an open-source python software to facilitate the easy application of 

configurable, drug design relevant objectives for use with any generative model. In 

addition, this software compiles performance metrics proposed in the field, as well as 

two graphical user interfaces to improve user friendliness. It contains enough 

functionality to be utilized for real-world drug design projects in combination with 

generative models.  Ideally, this can be adopted by researchers in de novo design to 

provide a standardized framework for objective design and thus, provide more 

standardized comparison between generative model performance. 

2. To leverage the advantages of SBDD principles over LBDD and investigate the 

effect of alternative scoring functions, MolScore was used to configure a docking-

based or ML-based ligand classification scoring functions. These were combined with 

a published chemical language model, REINVENT76, that uses RL to optimize 

molecule generation to maximize an objective. Chapter 3 describes the results of this 

first comparison between SBDD and LBDD scoring functions for generative models, 

and how using SBDD via docking can improve the overall performance of the 

generative model, as well as increase the coverage of known bioactive chemical 

space.  

3. A major caveat of using molecular docking simulations as goal-directed scoring 

functions is large computational expense. Therefore, the next logical step is to choose 

to improve either the efficiency of de novo molecule optimization, or the efficiency of 

structure-based molecular evaluation. Chapter 4 outlines how that choice was 

addressed by introducing Augmented Hill-Climb as a hybrid RL algorithm to improve 

the efficiency of de novo molecule generation. This increased the speed of 

optimization ~45-fold and the optimization ability ~1.5-fold compared to the baseline 

REINVENT when optimizing the docking score of de novo molecules, but crucially 

maintained desirable distributions over the chemical space sampled.  
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Chapter 2: MolScore: A scoring and evaluation framework for de 

novo drug design 

2.1 Introduction 

Performance measurement for the comparison of generative models is important to 

be able to quantify the most impactful improvements for future research. Many 

performance measures and benchmarks have been proposed to measure generative 

model performance. However, these often fall short in the relation to their prospective 

use case requirements. Moreover, there is often a lack of consideration for the quality 

of chemistry generated82, many models are still applied to prospectively irrelevant 

objectives (such as rediscovery54 or penalized logP106), and scientific significance of 

proposed de novo designs is often overlooked18. This is understandable due to the 

sheer number of approaches not all models can be prospectively validated, that many 

new methods stem from the computer science and machine learning domain where 

drug design expertise may be lacking and therefore simple, easy-to-implement 

objectives are preferred, and finally that benchmarks are still needed to compare 

approaches. 

In addition to the benchmarks discussed in 1.2.3.2, there exists more general software 

for objective design for goal-directed generative models, without necessarily 

quantifying a performance outcome. REINVENT76,99,148, one of the seminal 

approaches, implements a suite of configurable scoring functions for use with its 

respective goal-directed generative model architecture. However, the design of the 

source code is deeply integrated with the REINVENT generative model and therefore 

it is not straightforward to be used interchangeably with other goal-directed generative 

models for standardized comparison. Another framework, the Therapeutic Data 

Commons (TDC) platform124, reimplements the GuacaMol suite (with some 

customizability, e.g., reference molecule) and provides several additional capabilities 

such as docking, three synthetic accessibility scores, three molecular descriptors and 

three pre-trained activity models. However, not all scoring functions are customizable 

and score transformation or aggregation (for use in a multi-parameter setting) must be 

manually coded – introducing a problem with respect to standardization and 

reproducibility across users.  
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MolScore introduced in this chapter aims to address some of these frustrations by 

providing an open-source suite of configurable objectives and evaluation metrics 

designed for use with any generative model. MolScore can be used to design multi-

parameter objectives for practical use in real-world drug design coupled with a 

generative model of choice. While MolScore is not in itself a benchmark suite, it can 

be used to share and run standardized objectives that may be proposed as challenging 

benchmark tasks for the field. In addition, MolScore contains two graphical user 

interfaces (GUIs) to aid user experience in both writing configuration files and 

analysing generated de novo molecules.  

A high-level comparison of MolScore compared to existing software/benchmarks 

solutions is shown in Table 2.1. MolScore can easily reimplement any of the 

GuacaMol54 benchmark objectives and contains all performance metrics proposed by 

MOSES. MolScore contains similar functionality to conduct docking via interaction with 

a variety of docking software but crucially also contains some appropriate ligand 

preparation protocols that handle stereoisomer numeration, tautomer enumeration 

and protonation states. In contrast to REINVENT, MolScore is designed to plug-and-

play with different generative models. Lastly, MolScore contains a greater number of 

scoring functions compared to TDC, with each one more configurable. Moreover, 

MolScore handles multi-parameter configuration via the configuration file thereby 

standardizing transformation and aggregation.
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Table 2.1: Comparison of MolScore to software and benchmarks for de novo molecule generation. 

 Fixed / 

configurable a 

Goal-directed 

objectives 

Evaluation  

metrics 

Generative model 

agnostic b 

Graphical user 

interface 

GuacaMol Fixed ✓ ✓ ✓  

MOSES Fixed  ✓ ✓  

PMO Fixed ✓  ✓  

Smina-docking Fixed ✓  ✓  

PyTDC Fixed ✓  ✓  

DOCKSTRING Fixed ✓  ✓  

REINVENT 

(+DockStream) 
Configurable ✓   ✓ 

MolScore Configurable ✓ ✓ ✓ ✓ 

a Configurable without having to write any code to design the objective. 

b Easily implementable for most generative models.
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2.2 Materials and methods 

MolScore is an open-source software written in Python 3, published under an MIT 

license and distributed via GitHub (https://github.com/MorganCThomas/MolScore). It 

depends on several packages such as RDKit199, PyTorch200, Streamlit, as well as 

integrating published works in the field such as RAscore179, AiZynthFinder201 and 

ChemProp202. MolScore is split into two sub-packages: 1) molscore for scoring de 

novo molecules proposed by a generative model, and 2) moleval for post-hoc 

evaluation using a suite of evaluation metrics. The structure of the sub-packages can 

be seen in Figure 2.1 and integration into goal-directed de novo molecule generation 

in Figure 2.2. The following sections provide details of each sub-package. 

 

 

Figure 2.1: Design of the molscore and moleval sub-packages. The main elements of molscore 
include the manager.py module that interacts with a generative model and manages all aspects scoring 

molecules according to the objective, the gui folder that contains the scripts to aid in the setting up of 

configuration files and monitoring/analysis of de novo molecule, the scoring_functions folder 

contains modules for individual scoring functions used, scaffold_memory contains code that defines 

the diversity filters, and utils modules that contain the code for the transformation and aggregation 

functions. The main elements of the moleval package are the metrics.py module that computes 

evaluation metrics and the statistics_by_n.py script that computes the evaluation metrics to a 

molscore output file every n-steps or n-samples. 
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Figure 2.2: Schematic representation of molscore (and moleval) Python packages and integration with 

a goal-directed generative model. molscore takes as input a configuration file describing the user-

defined objective, and iteratively scores de novo molecules during the course of an optimization run. 
moleval can then be used to compute a suite of performance metrics to evaluate the de novo molecules 

generation. 

2.2.1 molscore 

The first sub-package, molscore, handles how to score de novo molecules. It is a 

collection of scoring functions, diversity filters, transformation functions and 

aggregation functions that can be used interchangeably, all managed by a central 

module manager.py (see Figure 2.1). This module contains a python class called 

MolScore that is initialized with a configuration file defining how to score molecules. 

Once initialized, it takes as input a list of molecules (in SMILES representation) and 

returns a list of their respective scores as output, designed to be repeated in an 

iterative fashion (e.g., steps/epochs) over the course of a run. During each iteration, 

several intermediate steps are taken, as visualized in Figure 2.2. First, molecules are 

parsed to check for validity (by parsing with RDKit), their SMILES are canonicalized 

and intra-batch uniqueness is checked. Inter-batch molecule uniqueness is then cross-

referenced with previously generated molecules within the run and if the molecule was 

previously generated its previous score can be reused. This can save valuable time if 

long-running scoring functions are being used (for example, molecular docking) and if 

a generative model is susceptible to generating the same molecules multiple times. 

User-defined scoring function(s) are run only for valid and unique molecules with 

invalid molecules being assigned scores of 0 and duplicated molecules being assigned 

their score from a single unique representative. Scores returned by any scoring 

functions run are then transformed and aggregated according to the user definition 

and diversity filters applied to penalize the final score of non-diverse molecules, if 
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chosen. The final results are then added to the run record.  In addition, a CSV file is 

output for each iteration in the run, allowing a GUI to analyse intermediate results 

during the course of a run. Finally, when the run has concluded, a CSV file is written 

to the output directory with a full record of molecules generated and their respective 

scores. 

A broad array of functionality is available to define an objective, as outlined in Table 

2.2. In summary, the suite of scoring functions includes physicochemical descriptors, 

2D and 3D molecular similarity to reference molecules, substructure matching, use of 

Scikit-Learn203 prediction models including trained bioactivity models on approximately 

2,300 on ChEMBL31204 targets with PIDGINv5205, interfacing with five docking 

software coupled with four available ligand preparation protocols, and finally three 

synthetic accessibility measures.  Most scoring functions are parallelisable using 

Python’s built-in multiprocessing module, while longer running scoring functions 

such as docking and ligand preparation can be parallelised using Dask206 to allow 

parallelisation over a compute cluster.
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Table 2.2: Functionality available within the molscore sub-package. 1 

 

 

 License required References 

Scoring functions 

Descriptors 

RDKit Descriptors No  199 

Penalized logP No 106 

Maximum consecutive 

rotatable bonds 
No  

Similarity 

Isomer similarity No 54 

Fingerprint similarity No 54 

Molecular substructure match No 54,76 

Molecular substructure filters No 76 

ROCS Yes 207 

Open 3D Align No 208 

Applicability domain 

Maximum similarity No 209 

Feature range  No 209 

Physchem range No 209 

Predictive models 

Scikit-learn models No 203 

PIDGINv5 No 205,210 

ChemProp No 211 

Docking 

Glide Yes 212 

PLANTS Yes 213 

GOLD Yes 214 

OEDock Yes 215 
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Smina No 216 

Synthesizability 

SA score No 172 

RA Score No 179 

AiZynthFinder No 201 

Scoring function utilities 

Fingerprints 

ECFP (Morgan), Atom-pair, 

Topological-torsions, 

MACCSkeys, RDKit, Avalon, 

Pharm2D 

No 199 

Similarity measure 

Tanimoto, All bit, Asymmetric, 

Braun Blanquet, Cosine, 

McConnaughey, Dice, 

Kulczynski, Russel, On bit, 

Rogot Goldberg, Sokal 

No 199 

Molecule preparation 

pipelines 

GypsumDL No 217 

Ligprep Yes 218 

Epik Yes 219 

Moka Yes 220 

Diversity filters  

Unique No  

Occurrence No  

IdenticalMurckoScaffold No 167 

IdenticalTopologicalScaffold No 167 

CompoundSimilarity No 167 

ScaffoldSimilarityAtomPair No 167 

ScaffoldSimilarityECFP No  

Transformation functions  Normalize No  
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Linear threshold No 54 

Gaussian threshold No 54 

Step threshold No  

Aggregation functions 

 Weighted sum No  

Auto-weighted sum No 221 

Product No  

Weighted Product No  

Auto-weighted product No 221 

Geometric Mean No  

Arithmetic Mean No  

Pareto front No 221 

2 
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2.2.1.1 Scoring functions 

 Molecular descriptors 

This scoring function calculates a selected range of molecular descriptors 

available in RDKit222 including QED173, SAscore172, CLogP171, molecular weight, 

heavy atom count, heavy atom molecular weight, number of H-bond acceptors, 

Number of H-bond donors, number of heteroatoms, number of rotatable bonds, 

number of aromatic rings, number of aliphatic rings, number of rings, topological polar 

surface area (TPSA), formal charge, molecular formula and Bertz complexity 223. 

Another non-standard descriptor calculated that is commonly used as a proxy 

optimization objective is penalized logP106, where logP is penalized by the 

synthesizability as measured by the SAscore (𝑆𝐴(𝑚)) and the number of rings with six 

or more atoms (𝑐𝑦𝑐𝑙𝑒(𝑚)). In addition, the maximum number of consecutive rotatable 

bonds is calculated as a proxy to identify highly flexible molecules. This is calculated 

by first identifying rotatable bonds i.e., any two non-terminal atoms joined by a single 

bond where at least one atom isn’t within a ring using the SMARTS pattern [*!R!D1]-

[*!D1] (amides and esters are excluded by removing atoms matching 

[NX3][CX3](=[OX1]) and [OX2][CX3](=[OX1]) respectively). Single rotatable bonds 

between different rings are also identified by default, however, these will only ever 

constitute a maximum bond length of one. Once all rotatable bonds are identified, 

consecutive rotatable bonds are identified by linking atoms via RDKit. Note that 

branching is ignored. 

𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑𝑙𝑜𝑔𝑃(𝑚) = 𝑙𝑜𝑔𝑃(𝑚) − 𝑆𝐴(𝑚) − 𝑐𝑦𝑐𝑙𝑒(𝑚) 

 Molecular similarity 

Several scoring functions are available to score molecules based on molecular 

similarity to a reference molecule or a set of reference molecules.  

Isomer similarity as implemented in GuacaMol by Brown et al.54 calculates the 

isomer similarity to a user-specified reference molecule based on its molecular 

formula. More concretely, molecules are scored based on the geometric mean of the 

Gaussian transformed distance to each element, and the total number of elements. I 

refer the reader to Brown et al. for further details. 

Fingerprint similarity scores molecules based on their molecular similarity to a 

user-specified reference molecule or set of reference molecules based on their 
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respective fingerprints. Any fingerprint and similarity measure shown in Table 2.2 can 

be used. If multiple reference molecules are specified, molecules can either be scored 

based on their maximum or mean similarity. If a user-specified similarity threshold is 

provided, then molecules are scored based on the fraction of reference molecules with 

a similarity above that threshold. 

Molecular substructure match scores molecules based on whether they 

contain a user-specified substructure or set of substructures defined using SMARTS 

patterns. If multiple substructures are specified, molecules can either be assigned a 

score of 1 based on matching either any substructure or all substructures.  

Molecular substructure filters is the reverse of substructure match, assigning 

a score of 0 to molecules if they contain any user-specified substructures. Pre-set lists 

of SMARTS are provided including AZ76, PAINS7 and MCF79. 

ROCS scores molecules based on their 3D similarity to a user-specified 

reference 3D molecule as calculated using OpenEye’s ROCS software224. As scored 

molecules don’t contain 3D information, conformations are generated by OpenEye’s 

Omega225. 

Open 3D Align scores molecules on their 3D similarity to a user-specified 

reference molecule or set of reference molecules as calculated using Open3DAlign208 

as implemented in RDKit. Reference molecules are pre-processed such that if they do 

not contain a 3D conformation, conformations are generated using RDKit, and 

conformations are aligned to reference molecules that do have specified 

conformations – the conformation with the closest alignment to a reference molecule 

is selected. If no reference molecules contain conformations, conformations are 

generated for all molecules using RDKit and the first molecule undergoes a full 

pairwise alignment to all other reference molecule conformations – the conformation 

with the best average alignment to other reference molecules is selected and the 

remaining are aligned to that reference as before. Scored molecules also undergo 

conformation generated by RDKit and are then aligned to each reference molecule 

using Open3DAlign. The score can either be based on the maximum, minimum, mean 

or median similarity to reference molecules. Additionally, a pharmacophore fingerprint 

is generated based on the 3D conformation similar to Jung et al.226.  
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 Applicability domain 

Langevin et al.209 recently proposed applicability domain filters to help control the 

chemical space of generated molecules with respect to a reference set of molecules. 

Here I reimplement these as scoring functions to score molecules based on their 

applicability domain. 

Maximum similarity scores molecules based on their similarity to reference 

molecules. This can be directly re-implemented using the ‘fingerprint similarity’ scoring 

function previously described. 

Feature range assigns a score of one to molecules if all their features are within 

the range of the reference molecules and zero otherwise. Features are calculated as 

fingerprint bits, where any fingerprint in Table 1 can be used. For example, if a 

molecule contains a fingerprint bit not identified anywhere in the reference molecules 

it will be assigned a score of 0, alternatively, if it does not contain a fingerprint bit that 

is present in every reference molecule it will be assigned a score of 0.  

Physchem range assigns a score of one to molecules if all their physicochemical 

properties are within the range of reference molecules and zero otherwise. 

Physicochemical properties calculated include QED, number of H-bond donors, 

number of H-bond acceptors, number of rings, number of rotatable bonds, TPSA, logP, 

molar refractivity, molecular weight, fraction of SP3 carbons, heavy atom count, 

fraction of Bemis-Murcko scaffold heavy atoms, size of larger ring, size of smallest 

ring, total charge, number of positive charges, number of negative charges, and 

number of chiral centres.  

 Predictive models  

Scikit-learn models scores molecules based on loading a user-specified Scikit-

Learn203 predictive model. Either a classifier or regressor model can be used based 

on the assumption that the ‘predict_proba’ or ‘predict’ method is used respectively. 

Moreover, fingerprints specified in Table 1 can be used for featurization, if the training 

molecules were featurized differently, then a custom scoring function will need to be 

implemented to ensure molecules are featurized accordingly. 

PIDGINv5 scores molecules using any of 7,468 pre-trained random forest 

classifiers based on 2,734 ChEMBL protein targets if they have sufficient training data 

(more than 10 active molecules) at different activity thresholds (1,341 at 0.1 µM, 1,704 
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at 1 µM, 2,086 at 10 µM and 2,337 at 100 µM)205. All models were trained following a 

previously published approach210 on the latest version of data available in ChEMBL31 

and PubChem (data accessed December 2022). Prediction IncluDinG INactivity 

(PIDGIN) uses sphere excluded data from PubChem to augment inactive datasets for 

ChEMBL targets where few known inactives exist. Test results based on 5-fold 

stratified scaffold split are shown in Figure 2.3. I refer the reader to Mervin et al.210 for 

further methodological details that were followed in this latest version. 

ChemProp scores molecules based on loading a user-specified ChemProp211 

predictive model – a popular implementation of message-parsing neural networks for 

the prediction of molecular properties. 
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Figure 2.3: PIDGINv5 model performance based on protein classification and concentration. Average 
area under the precision-recall curve of PIDGINv5 model based on 5-fold stratified scaffold split, 
categorized by the concentration determining active/inactive cut-off during training (columns) and by 
ChEMBL target classification (rows).  
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 Ligand preparation 

Several ligand preparation protocols are available as prerequisites to docking scoring 

functions ensuring that molecules undergo appropriate stereoisomer enumeration, 

tautomer enumeration and protonation. Unless otherwise specified, all ligand 

preparation protocols are parallelizable using Dask206, such that multiple processes 

can be shared across a compute cluster.  

Gypsum-DL217 is an open-source, free to use ligand preparation protocol making 

use of RDKit to conduct desalting, stereoisomer and tautomer enumeration, and 3D 

embedding. Meanwhile, Dimorphite-DL227 is used to conduct protonation at a user-

specified pH. Here I use Gypsum-DL's multiprocessing parallelization protocol instead 

of Dask. 

LigPrep218 is part of the licensed Schrodinger software suite which must be 

installed on the operating system before hand with an appropriate license. LigPrep 

conducts molecule desalting, stereoisomer enumeration, tautomer enumeration, and 

3D embedding. Meanwhile, LigPrep uses Epik219 to conduct protonation at a user-

specified pH and pH tolerance. 

Epik is a streamlined protocol that uses RDKit for stereoisomer enumeration and 

3D embedding, bypasses LigPrep, and uses Epik directly for protonation. This enables 

the specification of only returning the most prominent protonatable state (as opposed 

to returning all possible protonation states as done by LigPrep). As Epik is part of the 

licensed Schrodinger software suite, this must be installed on the operating system 

before hand with an appropriate license. 

Moka is a protocol that uses the MoKa software220 (part of the licensed Molecular 

Discovery software suite) for ligand protonation returning molecules with protonation 

states with an abundance above 20% at a pH of 7.4. Following protonation, Corina228 

is used for embedding molecules into 3D space, adding implicit hydrogens and 

enumerating unspecified stereoisomers. As MoKa and Corina are licensed softwares, 

they must first be installed on the operating system with appropriate licenses.  

 Docking 

Molscore contains interfaces to several docking software available for users. Protein 

preparation is not handled automatically and is recommended to be conducted 

beforehand. In each case, the minimum docking score of any prepared molecule 
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variant (see ligand preparation above) is returned as the docking score. Unless 

otherwise specified, all docking protocols are parallelizable using Dask, such that 

multiple processes can be shared across a compute cluster. 

Glide212 is part of the licensed Schrodinger software suite which must be installed 

on the operating system before hand with an appropriate license. To run Glide, a 

template input file (this can be generated by configuring Glide in Maestro and then 

specifying ‘Write’ via dropdown options writing a file with the suffix ‘.in’) is required 

which specifies the path of the docking grid and any additional docking constraints to 

be run (any specified path to existing ligand files in the input file will be ignored). 

Therefore, a user must first generate a docking grid.  

PLANTS213 is a licensed docking software (free for Academics) which must be 

installed on the operating system before hand with an appropriate license. To run 

PLANTS, a receptor file and reference ligand file (to automatically identify the docking 

box) is required.  

GOLD214 is a licensed docking software that is part of the CCDC software suite 

which must be installed on the operating system before hand with an appropriate 

license. To run GOLD, a receptor file and reference ligand file (to automatically identify 

the docking box) is required. A default configuration file is used specifying docking 

parameters; however, a user-specified configuration file can be provided. 

OEDock is a licensed docking software that is part of the OpenEye software suite 

which is installed as a pre-requisite specified in the MolScore environment; however, 

an appropriate license is required. To run OEDock, a receptor file and reference ligand 

file is required. Conformations are generated by Omega and then either FRED229 or 

Hybrid230 docking algorithms can be utilised.  

Smina216 is a free open-source software that is installed as a pre-requisite 

specified in the MolScore environment. To run Smina, a receptor file and reference 

ligand file (to automatically identify the docking box) is required. 

 Synthesizability 

SAscore172 is a measure of synthesizability based on fragment presence in 

known molecules and an estimation of molecular complexity. It is available in the 

molecular descriptors scoring function as described previously.  
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RAscore179 is a predictive model trained to predict the outcome of the 

AiZynthFinder201 computer-aided synthesis planning software i.e., whether a synthetic 

route solution can be proposed. Therefore, molecules are correspondingly scored 

based on their predicted probability of there being an AiZynthFinder solution. The pre-

trained models shared by Thakkar et al. are available for the user to choose from (i.e., 

ChEMBL, GDB or GDBMedChem using either XGBoost or a deep neural network). 

Due to library incompatibilities and the specific version of XGBoost231 required, this 

scoring function is run as a subprocess within the corresponding conda environment 

proposed by the authors. Molscore will automatically look for the correctly named 

conda environment and if not installed, attempt to install it. 

AiZynthFinder201 is an open-source computer-aided synthesis planning model 

based on seminal work by Segler et al.232. This model attempts to identify synthetic 

route proposals for molecules and therefore molecules can be scored based on 

whether a route is solved (binary score), the top score (MCTS reward), the number of 

steps or the number of precursors. The original policies, templates and stocks shared 

by the authors are available, or user-specified policies, templates and stocks can be 

specified. Note that relative to other scoring functions available this is computationally 

expensive to run. Due library incompatibilities, this scoring function is run as a 

subprocess within the corresponding conda environment proposed by the authors. 

Molscore will automatically look for the correctly named conda environment and if not 

installed, attempt to install it. 

2.2.1.2 Transformation functions 

Transformation functions can be used to transform a molecule’s parameter (𝑥𝑖) 

returned from a scoring function to a value between zero and one (𝑥𝑖
′ ∈ (0, 1)), visual 

examples of the transformation functions are shown in Figure 2.4. 



Chapter 2  Molscore 

82 
 

 

Figure 2.4: Transformation function examples applied to returned parameters to map into the range 
zero to one. 

Normalize applies max-min normalization 𝑓𝑚𝑎𝑥𝑚𝑖𝑛(𝑥; 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛) to a respective 

parameter based on either the specified or observed maximum and minimum values 

for that parameter (if not specified, maximum and minimum values are updated during 

the course of optimization). If the objective is to minimize the respective parameter, 

then the maximum and minimum values are switched in the equation below. 

𝑥𝑖
′ = {

𝑥𝑖 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

, 𝑖𝑓𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑥𝑖 − 𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑎𝑥

, 𝑖𝑓𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
 

Equation 2.1 

Step threshold applies a step transformation to a respective parameter 

transforming it to either zero or one based on a specified threshold (𝑡), or if the 



Chapter 2  Molscore 

83 
 

objective is to obtain a value in a specific range, then two thresholds are used 

(𝑡𝑢𝑝𝑝𝑒𝑟, 𝑡𝑙𝑜𝑤𝑒𝑟). 

𝑥𝑖
′ =

{
 
 

 
 {
1, 𝑖𝑓𝑥𝑖 ≥ 𝑡
0, 𝑒𝑙𝑠𝑒

𝑖𝑓𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{
1, 𝑖𝑓𝑥𝑖 ≤ 𝑡
0, 𝑒𝑙𝑠𝑒

𝑖𝑓𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

{
1, 𝑖𝑓𝑡𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥𝑖 ≤ 𝑡𝑢𝑝𝑝𝑒𝑟
0, 𝑒𝑙𝑠𝑒

𝑖𝑓𝑟𝑎𝑛𝑔𝑒

 

Equation 2.2 

Linear threshold54 applies max-min normalization to a respective parameter if 

it is above/below a threshold (𝑡) plus/minus a buffer (𝑏) depending on whether to the 

objective is to maximize or minimize the parameter. If the objective is to obtain a value 

in a specific range, then two thresholds are used (𝑡𝑢𝑝𝑝𝑒𝑟 , 𝑡𝑙𝑜𝑤𝑒𝑟). 

𝑥𝑖
′ =

{
 
 
 
 
 

 
 
 
 
 
{

1, 𝑖𝑓𝑥𝑖 ≥ 𝑡
0, 𝑖𝑓𝑥𝑖 ≤ 𝑡 − 𝑏

𝑓𝑚𝑎𝑥𝑚𝑖𝑛(𝑥𝑖; 𝑡, 𝑡 − 𝑏), 𝑖𝑓𝑡 − 𝑏 < 𝑥𝑖 < 𝑡
𝑖𝑓𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{

1, 𝑖𝑓𝑥𝑖 ≤ 𝑡
0, 𝑖𝑓𝑥𝑖 ≥ 𝑡 + 𝑏

𝑓𝑚𝑎𝑥𝑚𝑖𝑛(𝑥𝑖; 𝑡, 𝑡 + 𝑏), 𝑖𝑓𝑡 + 𝑏 > 𝑥𝑖 > 𝑡
𝑖𝑓𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

{
 
 

 
 
1, 𝑖𝑓𝑡𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥𝑖 ≤ 𝑡𝑢𝑝𝑝𝑒𝑟

0, 𝑖𝑓𝑥𝑖 ≤ 𝑡𝑙𝑜𝑤𝑒𝑟 − 𝑏𝑜𝑟𝑥𝑖 ≥ 𝑡𝑢𝑝𝑝𝑒𝑟 + 𝑏

𝑓𝑚𝑎𝑥𝑚𝑖𝑛(𝑥𝑖; 𝑡𝑙𝑜𝑤𝑒𝑟, 𝑡𝑙𝑜𝑤𝑒𝑟 − 𝑏), 𝑖𝑓𝑡𝑙𝑜𝑤𝑒𝑟 − 𝑏 < 𝑥𝑖 < 𝑡𝑙𝑜𝑤𝑒𝑟
𝑓𝑚𝑎𝑥𝑚𝑖𝑛(𝑥𝑖; 𝑡𝑢𝑝𝑝𝑒𝑟, 𝑡𝑢𝑝𝑝𝑒𝑟 + 𝑏), 𝑖𝑓𝑡𝑢𝑝𝑝𝑒𝑟 + 𝑏 > 𝑥𝑖 > 𝑡𝑢𝑝𝑝𝑒𝑟

𝑖𝑓𝑟𝑎𝑛𝑔𝑒

 

Equation 2.3 

Gaussian threshold54 applies a Gaussian transformation to a respective 

parameter based on a specified mean (𝜇) and sigma (𝜎) value and can be used to 

maximize, minimize, or achieve a certain range for a specified parameter. 

𝑥𝑖
′ =

{
 
 
 

 
 
 {
1, 𝑖𝑓𝑥𝑖 ≥ 𝜇

𝑒
(
𝑥𝑖−𝜇
𝜎

)2

2 , 𝑒𝑙𝑠𝑒
𝑖𝑓𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{
1, 𝑖𝑓𝑥𝑖 ≤ 𝜇

𝑒
(
𝑥𝑖−𝜇
𝜎

)2

2 , 𝑒𝑙𝑠𝑒
𝑖𝑓𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑒
(
𝑥𝑖−𝜇
𝜎

)2

2 , 𝑖𝑓𝑟𝑎𝑛𝑔𝑒

 

Equation 2.4 
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2.2.1.3 Aggregation functions 

Aggregation functions define how multiple parameters (𝑥𝑖) for a respective molecule 

are combined into a final score (𝑆(𝑚)) or reward in range zero to one ((𝑆(𝑚) ∈ (0, 1)). 

Weighted sum combines 𝑛 parameters for a molecule by assigning a weight 

(𝑤𝑖) to each parameter (𝑥𝑖) and then summing the weighted parameters. Weights are 

normalized by the total number of parameters such that any positive value can be 

used as a weight (𝑤𝑖 ∈ ℝ+).  

𝑆(𝑚) =
∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖

∑ 𝑤𝑖
𝑛
𝑖

 

Equation 2.5 

Auto-weighted sum221 combines 𝑛 parameters for a molecule by automatically 

assigning a weight (𝑤𝑖) to each parameter (𝑥𝑖) and then summing the weighted 

parameters as above. Weights are automatically assigned based on the fraction of 

molecules scoring above a specified threshold (𝑡 = 0.5) within a batch of molecules 

where the number of molecules with parameter 𝑥𝑖 in a batch is defined as 𝐶(𝑥𝑖).  

𝑤𝑖 =
𝐶(𝑥𝑖 ≥ 𝑡)

𝐶(𝑥𝑖)
 

Equation 2.6 

Product combines 𝑛 parameters for a molecule by calculating the product of all 

parameters (𝑥𝑖). The resulting score is in the range zero to one (𝑆(𝑚) ∈ (0, 1)) because 

each parameter is in the range zero to one (𝑥𝑖 ∈ (0,1)) due to the transformation 

functions previously applied. 

𝑆(𝑚) =∏𝑥𝑖

𝑛

𝑖

 

Equation 2.7 

Weighted product combines 𝑛 parameters for a molecule by calculating the 

product of all parameters (𝑥𝑖) with an assigned weight (𝑤𝑖) normalized by the sum of 

the weights such that any positive value can be used as a weight (𝑤𝑖 ∈ ℝ+). 

𝑆(𝑚) = [∏𝑥𝑖
𝑤𝑖

𝑛

𝑖

]

1
∑ 𝑤𝑖
𝑛
𝑖
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Equation 2.8 

Auto-weighted product221 combines 𝑛 parameters for a molecule by 

automatically assigning a weight (𝑤𝑖) to each parameter (𝑥𝑖) and then calculating the 

weighted product as above. Weights are automatically assigned based on the fraction 

of molecules scoring above a specified threshold (𝑡 = 0.5) within a batch of molecules 

– as for the auto-weighted sum. 

Geometric mean combines 𝑛 parameters for a molecule by calculating the 

square root of the product of parameters (𝑥𝑖).  

𝑆(𝑚) = [∏𝑥𝑖

𝑛

𝑖

]

1
𝑛

 

Equation 2.9 

Arithmetic mean combines 𝑛 parameters for a molecule by calculating the 

average value of respective parameters (𝑥𝑖). 

𝑆(𝑚) =
1

𝑛
∑𝑥𝑖

𝑛

𝑖

 

Equation 2.10 

Pareto front221 scores molecules based on their pareto rank per batch of 

molecules. Molecules are first sorted into pareto fronts from dominated solutions to 

non-dominated solutions and then ranked based on intra-molecular distance within 

each pareto front based on Tanimoto distance of ECFP6 (2,048 bits), with most distant 

ranked first. Molecules are classed as 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 if all parameters (𝑥𝑖) are above a 

specified threshold (𝑡 = 0.5) i.e., ∀𝑖: 𝑥𝑖 ≥ 𝑡 and otherwise 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒. The score 

(𝑆(𝑚)) is then calculated based on a molecules index in the pareto rank (𝑘) and 

desirability relative to the ratio of 𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 and 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒 molecules within the 

batch. For further detail I refer the reader to Liu et al.221. 

𝑆(𝑚) =

{
 

 0.5 +
𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒
2𝑁𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒

, 𝑖𝑓𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒

𝑘

2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒
, 𝑖𝑓𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑎𝑏𝑙𝑒

 

Equation 2.11 



Chapter 2  Molscore 

86 
 

2.2.1.4 Diversity filters 

Diversity filters (DFs) serve as an additional filter to penalize molecules that are 

generated due to generative model exploitation. In each case, they decrease the 

molecules final score (𝑆(𝑚)) by a differing amount depending on how much the 

generated molecule is exploitative in nature. 

Unique is a DF that transforms a molecule’s score to zero if the molecule is non-

unique (i.e., has been previously generated by the generative model). 

𝐷𝐹(𝑆(𝑚)) = {
𝑆(𝑚), 𝑖𝑓𝑢𝑛𝑖𝑞𝑢𝑒
0, 𝑒𝑙𝑠𝑒

 

Equation 2.12 

Occurrence is a DF that linearly penalizes the score (𝑆(𝑚)) of non-unique 

molecules based on the number of previous occurrences, which acts as a more 

lenient version of the unique DF. The score is transformed according to the number 

of previous occurrences (𝑂𝑐𝑐) beyond an allowed tolerance (𝑇𝑜𝑙) until a hard 

threshold is reached, referred to as the buffer (𝐵𝑢𝑓𝑓). 

𝐷𝐹(𝑆(𝑚)) = 

{
 

 𝑆(𝑚) ×
𝑂𝑐𝑐 − (𝑇𝑜𝑙 + 𝐵𝑢𝑓𝑓)

𝑇𝑜𝑙 + 𝐵𝑢𝑓𝑓
, 𝑖𝑓𝑇𝑜𝑙 < 𝑂𝑐𝑐 < 𝐵𝑢𝑓𝑓

𝑆(𝑚), 𝑖𝑓𝑂𝑐𝑐 ≤ 𝑇𝑜𝑙
0, 𝑖𝑓𝑂𝑐𝑐 ≥ 𝐵𝑢𝑓𝑓

 

Equation 2.13 

The following DFs are from or adapted from Blaschke et al.167. Each DF creates a 

memory of generated molecules and clusters them into different bins. As the number 

of molecules in a bin increase beyond a particular threshold, new molecules belonging 

to that bin are penalized. Thus, penalizing over-exploited areas of chemical space. 

Each different DF below defines how the molecules are clustered, and each DF can 

be modified by the following hyperparameters:  

1) Binsize – the number of molecules in a bin (i.e., cluster) before penalization 

starts to occur. 

2) Minscore – the minimum score before passed to the diversity filter i.e., what 

threshold to consider molecules for DF penalization. 

3) Outputmode – how to penalize a molecule’s score out of the following three 

options. 
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a. Binary – penalize a molecule if the addition of a molecule results in a bin 

index (𝑘) that exceeds the allowed binsize, returning a score of zero. 

𝐷𝐹(𝑆(𝑚)) = {
1, 𝑖𝑓𝑘 ≤ 𝑏𝑖𝑛𝑠𝑖𝑧𝑒
0, 𝑒𝑙𝑠𝑒

 

b. Linear – penalize a molecule’s score according to the bin index (𝑘) and 

allowed binsize via a linear transformation function. 

𝐷𝐹(𝑆(𝑚)) = {

0, 𝑖𝑓𝑘 ≥ 𝑏𝑖𝑛𝑠𝑖𝑧𝑒

𝑆(𝑚) ×
𝑏𝑖𝑛𝑠𝑖𝑧𝑒 − 𝑘

𝑏𝑖𝑛𝑠𝑖𝑧𝑒
, 𝑒𝑙𝑠𝑒

 

c. Sigmoid – penalize a molecule’s score according to the bin index (𝑘) and 

allowed binsize via a sigmoid transformation function. 

𝐷𝐹(𝑆(𝑚)) =

{
 
 

 
 
0, 𝑖𝑓𝑘 ≥ 𝑏𝑖𝑛𝑠𝑖𝑧𝑒

𝑆(𝑚) × (1 −
1

1 + 𝑒
−(2(

𝑘
𝑏𝑖𝑛𝑠𝑖𝑧𝑒

)−1)

0.15

) , 𝑒𝑙𝑠𝑒
 

Identical Murcko assigns a molecule to a cluster if it contains the same Bemis-

Murcko scaffold as the cluster centroid. 

Identical Topological Scaffold assigns a molecule to a cluster if it contains the 

same generic scaffold i.e., the Bemis-Murcko scaffold but considering every atom as 

a carbon atom and every bond as a single bond. 

Compound Similarity assigns a molecule to a cluster if the Tanimoto similarity 

based on ECFP4 (2,048 bits) fingerprints is greater than or equal to 0.6 from the cluster 

centroid. 

Scaffold Similarity Atom Pair assigns a molecule to a cluster if the Tanimoto 

similarity based on Atom Pair fingerprints is greater than or equal to 0.6 from the 

cluster centroid. 

Scaffold Similarity ECFP assigns a molecule to a cluster if the Tanimoto 

similarity based on ECFP4 (1,024 bits) fingerprints of the corresponding molecule’s 

Bemis-Murcko scaffold is greater than or equal to 0.8 from the Bemis-Murcko scaffold 

of the cluster centroid. 
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2.2.2 moleval 

The moleval sub-package is largely an extension of the MOSES79 suite of evaluation 

metrics computed for de novo molecules given a set (or sets) of reference molecules. 

The main element of this sub-package is the GetMetrics class found in the 

metrics.py module. This is initialised by optionally specifying some reference 

datasets (for example, train and test sets used for the measurement of extrinsic 

properties), and it then takes as input a list of de novo molecules and outputs the 

respective calculated metrics. Additionally, the CSV output file written by molscore 

can be provided to the statistics_by_n.py script, which computes evaluation 

metrics and basic statistics (mean, median and standard deviation) per n molecules 

or n column values (e.g., per 100 steps). 

Table 2.3 highlights all the evaluation metrics available in moleval split into intrinsic 

properties (based solely on de novo molecules) and extrinsic properties (in reference 

to an external dataset). Some additional metrics not found in MOSES for intrinsic 

properties include sphere exclusion diversity (SEDiv)233, scaffold uniqueness, scaffold 

diversity, functional group and ring system diversity104 and a measure of purchasability 

in the ZINC20 in-stock catalogue using molbloom234,235. Additional metrics for extrinsic 

properties include analogue similarity167 and coverage, functional group and ring 

system similarity104 and average fraction of outlier bits (a.k.a. ‘Silliness’236) i.e., the 

average ratio of ECFP4 fingerprint bits not found in the reference dataset indicating. 
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Table 2.3: Evaluation metrics available in the moleval sub-package. No metrics require a license. 

  References 

Intrinsic properties 

Validity 54,79 

Uniqueness 54,79 

Scaffold uniqueness  

Internal diversity (1 & 2) 79,162 

Sphere exclusion diversity 147 

Scaffold diversity  

Functional group diversity 104 

Ring system diversity 104 

Filters (MCF & PAINS) 79 

Purchasability 234 

Extrinsic properties 

Novelty 54,79 

FCD 165 

Analogue similarity 167 

Analogue coverage  

Functional group similarity  

Ring system similarity  

Single nearest neighbour 

similarity 
79 

Fragment similarity 79 

Scaffold similarity 79 

Outlier bits (Silliness) 236 

Wasserstein distance (LogP, 

SA Score, NP score, QED, 

Weight) 

79 
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2.2.2.1 Performance metrics 

The following performance metrics are computed on generated de novo molecules, 

where 𝐺 is a formal set of valid, unique molecules. Extrinsic properties are calculated 

in reference to a reference set of molecules 𝑅. Unless otherwise specified, RDKit was 

used for implementation of molecular operations. All commonly implemented metrics 

in Table 1.1 and Table 1.2 are included with the exception of GuacaMol Filter, 

functional group metrics, and ring system metrics (which are adapted to similarity 

metric). New or adapted metrics are described below. 

Sphere exclusion diversity (SEDiv@1k) is a measure of the datasets 

diversity as approximated by the fraction of molecules required to explain the chemical 

space. More concretely, the sphere exclusion algorithm is applied to cluster molecules 

according to a distance cut-off of an ECFP4 (1,024 bit) Tanimoto distance of 0.65 

(where any more similar approximately corresponds to 80% probability of possessing 

similar bioactivity). This ensures that no two cluster centroids are more similar than 

the specified cut-off and therefore represent a set of diverse molecules 𝐺𝑑. To allow 

comparison between different sets of different size, this metric should be run on a 

random sample of 1,000 molecules from a generated set as a representative sample 

where 𝑔 ⊂ 𝐺𝑎𝑛𝑑|𝑔| = 1000. 

𝑆𝐸𝐷𝑖𝑣@1𝑘(𝐺) =
|𝑔𝑑|

|𝑔|
 

Equation 2.14 

Scaffold diversity (ScaffDiv) is the same as internal diversity (see Table 1.1) 

instead applied to the Bemis-Murcko scaffolds of molecules instead.  

Scaffold uniqueness (ScaffUniqueness) is the same Uniqueness (see Table 

1.1) except applied to the Bemis-Murcko scaffolds of molecules instead. 

Functional group diversity (FG) is the fraction of unique functionality groups 

𝑓𝑔 compared to all functional groups present in the set of generated molecules. Where 

functional groups are identified by as described by Ertl et al.168 and implemented in 

RDKit, also used in Zhang et al.104. Note that functional groups include both functional 

group atoms and their immediate connect unmarked carbon environment.  

𝐹𝐺(𝐺) = 
|𝐺𝑓𝑔|

|𝐺𝑓𝑔
∗ |
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Equation 2.15 

Ring system diversity (RS) is the fraction of unique ring systems 𝑟𝑠 compared 

to all ring systems present in the set of generated molecules. Where ring systems are 

identified using RDKit, also used in Zhang et al.104. 

𝑅𝑆(𝐺) = 
|𝐺𝑟𝑠|

|𝐺𝑟𝑠∗ |
 

Equation 2.16 

Purchasability (PurchasabilityZINC20) is the estimated fraction of molecules 

found contained in the ZINC20235 in-stock catalogue as identified via molbloom234. 

Analogue coverage (AnCov) is the fraction of the reference set of molecules 

with an identified analogue contained in the generated set. An analogue is defined as 

with analogue similarity. 

𝐴𝑛𝐶𝑜𝑣(𝐺, 𝑅) = 
|{𝑚𝑟 ∈ 𝑅|∃𝑚𝐺 ∈ 𝐺(𝑠𝑖𝑚(𝑚𝑔, 𝑚𝑟) ≥ 0.4)}|

|𝑅|
 

Equation 2.17 

Functional group similarity (FG) is the cosine similarity (implemented by 

scipy237) between the identically ordered count vectors of the functional groups (as 

described previously) in the generated set (�⃗�𝑓𝑔) and reference set (�⃗⃗�𝑓𝑔). 

𝐹𝐺(𝐺, 𝑅) =
�⃗�𝑓𝑔 ⋅ �⃗⃗�𝑓𝑔

||�⃗�𝑓𝑔||||�⃗⃗�𝑓𝑔||
 

Equation 2.18 

Ring system similarity (RS) is the cosine similarity (implemented by scipy) 

between the identically ordered count vectors of the ring systems (as described 

previously) in the generated set (�⃗�𝑟𝑠) and reference set (�⃗⃗�𝑟𝑠). 

𝑅𝑆(𝐺, 𝑅) =
�⃗�𝑟𝑠 ⋅ �⃗⃗�𝑟𝑠

||�⃗�𝑟𝑠||||�⃗⃗�𝑟𝑠||
 

Equation 2.19 

Outlier Bits (a.k.a Silliness) is the average fraction of ECFP4 bits in generated 

molecules not contained anywhere in a complete set of all reference dataset fingerprint 

bits 𝑅𝑏𝑖𝑡𝑠.  
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𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝐵𝑖𝑡𝑠(𝐺, 𝑅) =
1

|𝐺|
∑

#𝐸𝐶𝐹𝑃4(𝑚𝑖) ∉ 𝑅𝑏𝑖𝑡𝑠
#𝐸𝐶𝐹𝑃4(𝑚𝑗)

𝑖∈𝐺

 

Equation 2.20 

2.2.3 Implementation challenges 

A particular challenge when combining a variety of scoring functions and software from 

published methods is conflicting library dependencies. In addition, predictive models 

should use the same version of a respective library (e.g., Scikit-Learn) during 

prediction as was used during training where possible, as there may be subtle changes 

to the source code affecting the prediction.  In cases where published methods require 

specific library versions that conflict with the molscore Python environment or must 

be consistent with those used during training (currently, AiZynthFinder201 and 

RAscore179), scoring function scripts are run as a subprocess from their respective 

conda environment with the dependencies as specified by the authors. In order to 

improve user experience, molscore will check for these separate conda environments 

and if not present, attempt to create them automatically when the scoring function is 

used for the first time. However, there are several caveats to this approach, the first 

being the assumption of the use of conda for environment management, and the 

second being computational performance decrease. The performance decrease is 

because running a scoring function via a subprocess requires redundant loading of 

the relevant conda environment, redundant loading of scoring function parameters and 

I/O operations to send SMILES and receive respective scores via writing and reading 

to disk, each time. This sub-optimal process adds to the overall wall time when using 

molscore which is negligible in the case of long running scoring functions like 

AiZynthFinder201, but sub-optimal when using fast running scoring functions like 

RAscore179. In future versions of molscore, I will move to running methods with 

conflicting/specific library dependencies as local servers to avoid redundant 

operations and send/receive data in memory instead, which will improve 

computational performance and overall software stability. 

2.2.4 Implementing custom user scoring functions 

It is sometimes desirable for a user to implement their own scoring function. The 

simple, modular design enables easy implementation of a user-defined scoring 

functions in Python. The user must create a new module in the scoring_functions 
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directory and write a class for their function. The class must adhere to the following 4 

requirements: 1) The class should have a class attribute return_metrics listing the 

name of metrics returned. 2) The class must take a prefix parameter argument in 

__init__ which is inserted before any return metrics separated by an underscore, for 

example, ‘prefix_score1’. 3) The class __call__ method must accept a list of SMILES 

and return their respective scores as a list of dictionaries in the same order. 4) If a 

SMILES results in an invalid molecule, the score returned should be 0. Finally, the 

class must be added to the scoring_functions/__init__.py to enable its use. 

Note that if PyCharm style documentation and python typing is used, the user 

implemented scoring functions should automatically appear with correct descriptions 

and widgets in the configuration GUI.  

2.3 Results and discussion 

2.3.1 User interface 

After installation, MolScore can be implemented into a goal-directed generative model 

optimization scheme in just three lines of code. All that is needed as input is the name 

of the model, the configuration file that describes the objective (i.e., how to score 

molecules) and SMILES that require scoring.  

2.3.1.1 Generative model integration 

Three lines of python code are needed to integrate MolScore into an existing 

generative model scheme: 

1. from molscore.managar import MolScore 

2. ms = MolScore(model_name=’my_model’, 

task_config=’my_task.json’) 

3. ms.score(SMILES) 

Where SMILES is a list of SMILES, and where the last line is repeated as many times 

as necessary. An explicit step number can be provided during scoring, if not, it will 

iteratively count up from one. 

2.3.1.2 Writing a configuration file 

The configuration file that describes the objective and how to score molecules is a 

JSON formatted file read and parsed by the MolScore class (example shown in Figure 

2.5a). This consists of sections to specify logging parameters, scoring functions to run, 
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diversity filters to use, and scoring function metrics and how to aggregate them to 

score the final molecule. However, writing these manually configuration files manually 

is tedious and requires documentation of every possible option to specify which must 

be read and interpreted by the user without any syntax mistakes or typos. Therefore, 

a Streamlit app is provided to easily write configuration files interactively with 

descriptions (see Figure 2.5b). The app can be run via the streamlit run 

molscore/gui/config.py command that loads the GUI in a web browser. This 

facilitates configuration writing and automatically parses the options specified into the 

correctly formatted JSON configuration file. Moreover, docstrings and typing are 

interpreted to provide descriptions and automatic widgets, such that if a user 

implements a custom scoring function (as described in 2.2.4), it will be automatically 

parsed and available to specify in the GUI. 
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Figure 2.5: Molscore input GUI. (a) Example configuration file reimplementing the Albuterol Similarity 
GuacaMol task. (b) Streamlit app to aid the creation of new configuration files and avoid manual writing 
of JSON files. The app annotates options available to the user and automatically parses it into the 
required JSON format.
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2.3.1.3 Monitoring and analysing de novo molecules 

A Streamlit app to monitor de novo molecule generation in real-time or analyse results 

post-hoc is also provided (see Figure 2.6). This is useful to gain quick insights into 

generative model behaviour with respect to chemistry generated, without needing to 

wait until the end of optimization (especially in the case of computationally expensive 

scoring functions). This is run automatically during optimization if specified in the 

configuration file, alternatively, it can be run manually at any time via the streamlit 

run molscore/gui/monitor.py command. The app loads a graphical user interface 

in a web browser and contains functionality to check any variable scored including 

validity and uniqueness, select and visualise 2D molecular graphs, assess clusters 

identified by an appropriate diversity filter (if used), and export selected or top k 

molecules. In addition, if a scoring function is used that results in 3D coordinate files 

and PyMol238 is installed, PyMol will be loaded and selected molecules can be 

exported directly into PyMol. Lastly, other pre-existing molscore de novo molecule 

generation results can be loaded for quick comparison between runs. 
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Figure 2.6: Molscore Streamlit app that can be run during or after goal-directed generative model optimization. Here showing optimization of 5HT2A predicted 
probability of activity. (a) Main page used to plot training progress and select, visualize, and export molecules. (b) Multi-plot page to visualize many variables at 
the same time. (c) Scaffold memory analysis (if using an appropriate diversity filter) to visualize the clusters and respective scaffolds of chemotypes generated. 
(d) Parallel plots to assess multi-parameter optimal compounds, as well as the top k overall compound.
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2.3.2 Sphere exclusion to measure chemical diversity 

As suggested in 1.2.3.1, the internal diversity (IntDiv), a common metric of chemical 

diversity, can be difficult to interpret due to the double average losing the notion of the 

underlying distribution, as well as the well-known confounding effect of heavy atom 

count on Tanimoto similarity174. Therefore, I propose a new metric to measure the 

diversity of de novo compounds called sphere exclusion diversity (SEDiv). SEDiv is 

the fraction of diverse compounds selected using the sphere exclusion algorithm163 at 

a set Tanimoto threshold, as described in 1.1.1.1. Note that there is no underlying 

ground truth for the diversity of chemical dataset and so a metric should align with 

empirical observations, intuition and be useful in practice. 

To investigate differences between IntDiv and SEDiv further, I subset ChEMBL28239 

to only include molecules with 5-50 heavy atoms and randomly sampled 500 

molecules either side of a heavy atom threshold, for thresholds 10-45 in increments of 

1 (with 10 repeats per threshold) – to mimic datasets biased towards smaller or larger 

molecules approximated by the mean heavy atom count in each sample. It is 

interesting to note the drop off in the count of molecules with above ~33 heavy atoms, 

where chemistry likely drifts into more undesirable chemical space for molecules with 

drug-like properties (the primary focus of ChEMBL), and so less drug discovery 

research and data depositions are made here. There is a clear decrease in IntDiv with 

an increase in the mean number of heavy atoms in accordance with the hypothesized 

confounding effect174 (see Figure 2.7b). On the other hand, SEDiv (Figure 2.7c) shows 

a similar trend to the count of molecules per heavy atom bin (Figure 2.7a), where a 

higher molecule count should correspond to a higher likelihood of random samples 

being more diverse. Thus, the trend observed for SEDiv with heavy atom count aligns 

better with intuition.  
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Figure 2.7: Investigation of the dependence of internal diversity (IntDiv) on molecular size. Shown here 
is (a) the count of molecules in ChEMBL28 from 5-50 heavy atoms, (b) the relationship between the 
mean number of heavy atoms in different samples and their IntDiv@1k and (c) the relationship between 
the mean number of heavy atoms in different samples and their SEDiv@1k. Where “@1k” refers to a 
sample size of 1,000. Note that the range of heavy atoms in (b) and (c) is smaller than in (a) as it reflects 
the mean of the sample. Additionally, the distribution above (b) and (c) are uniform indicating uniform 
sampling of distributions with different numbers of mean heavy atoms.  

To investigate the difference between SEDiv and IntDiv further, I calculate these two 

metrics on random subsets of different libraries (Figure 2.8): enumerated virtual 

libraries of stable molecules up to 17 and 13 heavy atoms (GDB1749, GDB1332), 

characterised molecules with varying bioactivities (ChEMBL28239), a synthetically 

accessible diversity orientated virtual library (Enamine diverse240), synthetically 

accessible targeted virtual libraries (Enamine GPCR and Enamine Kinase241) and 

characterised molecules with activity (pChEMBL ≥ 5) against specific target classes 

(ChEMBL28 Family A GPCRs and ChEMBL28 Kinases) and single targets 

(ChEMBL28 HERG, ChEMBL28 EGFR and ChEMBL28 DRD2). All datasets were 

similarly processed to neutralize molecules and retain only those with a molecular 
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weight less than 500 Da, to ensure a similar ‘drug-like’ chemical space. Most notably, 

IntDiv measures GDB13 as more diverse than GDB17 – which contradicts chemical 

intuition, but further confers with hypothesized confounding effects174. Furthermore, 

IntDiv measures molecules active against hERG – a promiscuous target related to 

cardiotoxicity242 – as diverse as all molecules reported active against any kinases, any 

family A GPCRs and more diverse than a virtual library designed for diversity. 

Conversely, SEDiv measures GDB17 as more diverse than GDB13 (which is better 

distinguished at larger sample sizes, see Figure A.2) and hERG active molecules as 

more diverse than single targets (EGFR and DRD2) but not as diverse as all molecules 

active against any family A GPCR or kinase. Therefore, the proposed approach better 

aligns with chemical intuition regarding the chemical diversity of known libraries. 

Furthermore, this approach yields values in the full range of possible values 0-1 (unlike 

internal diversity which mostly lie in a range of ~0.7-0.9). SEDiv further has a direct 

interpretation as the fraction required to explain the chemical space; therefore, a 

comparative reference is not always necessary (unlike IntDiv). However, the values 

measured here provide some context for sample sizes of 1,000 random molecules, 

which I recommend for future use in comparing de novo molecule diversity.
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Figure 2.8: Measured diversity of different compound datasets. The measured SEDiv (a) and IntDiv (b) of a randomly sampled 1,000 (@1k) subset of a variety 
of virtual libraries and datasets of characterised molecules with activity against particular targets belonging to a target class, or single targets. IntDiv shows 
counterintuitive behaviour such as, measuring GDB13 as more diverse than GDB17 and hERG active molecules as diverse as molecules active against any 
family A GPCR, any kinase or a virtual library designed towards achieving diversity. Conversely, SEDiv measures diversity in line with chemical intuition.
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2.3.3 Molscore use case: Designing 5-HT2a ligands 

Here I demonstrate the application of molscore for the design of different, drug 

discovery relevant objectives, with a focus on the generation of de novo 5-HT2a (a.k.a. 

5HT2A) ligands as a case study. This is a drug discovery relevant therapeutic target 

indicated in psychosis and substance-abuse with numerous antagonistic drugs 

marketed for their use as atypical antipsychotics – with the most recent being 

Lumateperone243 approved in 2019 by the FDA. For the purpose of this demonstration, 

I use a SMILES-based recurrent neural network generative model trained on ChEMBL 

compounds in combination with Augmented Hill-Climb244 (introduced in Chapter 4) for 

molecular optimization.  

To start, with I use the functionality available in molscore to design the following first 

set of objectives: 

5HT2A – I use a pre-trained random forest classification model with the PIDGINv5 

scoring function to score molecules by their predicted probability of activity at a 1 

µM concentration by supplying the 5HT2A uniprot accession. 

5HT2A + Synth – To include a measure of synthesizability which is practically 

needed in any real-world drug discovery campaign, I additionally score molecules 

by running the RAscore179 pre-trained models and compute the arithmetic mean of 

this score together with the predicted probability of 5HT2A activity as before. 

5HT2A + BBB – Due to the therapeutic targets prevalence and disease relevance 

in the central nervous system, I run molecular descriptors and specify certain 

property ranges that increase the probably of blood brain barrier (BBB) permeability. 

The property ranges were influenced by Pajouhesh et al.245: topological polar 

surface area below 70, number of hydrogen bond donors below 2, logP between 2 

and 4, and molecular weight below 400 Da. Each molecules property value is 

transformed into the range 0-1 (see Figure A.1) and combined by arithmetic mean 

with the predicted probability of 5HT2A activity as before. 

5HT2A + BBB + Synth – This a combination of all three of the above objectives by 

arithmetic mean. 

Each objective was optimized by the generative model in combination with a diversity 

filter to penalize exploitation. As shown in Figure 2.9, each of these objectives can be 

improved during generative model optimization. For reference, 3,771 real compounds 

with bioactivity values against 5HT2A were extracted from ChEMBL31204 and their 
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respective scores based on the first set of objectives are also shown. Surprisingly, the 

most difficult objective appears to be simple optimization of the 5HT2A predicted 

probability of optimization; however, I suspect this is largely due to the effect of the 

diversity filter more heavily penalizing similar molecules for this relatively ‘easy’ task. 

This is corroborated by running the objective without a diversity filter (see Figure 2.10) 

which results in quick maximization of this objective, but exploitative mode collapse 

shortly following (which the use of a diversity filter circumvents). Overall, it appears 

these objectives are relatively easy to optimize numerically. 
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Figure 2.9: De novo optimization of the first set of objectives designed by molscore by number of 
optimization steps (left) with the equivalent score distribution for 3,771 real 5HT2A ligands (right). The 
dashed line represents the mean of the real ligand distribution and solid lines plus/minus one standard 
deviation from the mean. (a) The predicted probability of 5HT2A activity at a concentration of 1 µM. (b) 
The first objective (a) combined with predicted synthesizability by RAscore. (c) The first objective (a) 
combined with property ranges increasing the probability of BBB. (d) All three objectives (a-c) combined. 

.

 

Figure 2.10: De novo optimization of 5HT2A without any diversity filter. (a) Optimization of the 5HT2A 
predicted probability objective without running any diversity filters (DF), as well as (b) validity (c) 
uniqueness and (d) number of unique occurrences during optimization. Maximal optimization of 
predicted probability score is achieved quickly compared to known ligands and easily above the range 
of known 5HT2A ligands. However, a sharp drop in uniqueness is observed signalling mode collapse 
of the generative model without the use of a diversity filter to penalize exploitation. By looking at the 
number of occurrences (d) it can be seen that the generative model collapses into generating 
predominantly just two structures. 
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As with many drug discovery campaigns, a key challenge for 5HT2A ligands is 

minimizing off-target bioactivity and achieving pharmacological selectivity. In this case, 

particularly against dopaminergic receptors (especially DRD2 bound by typical 

antipsychotics) which leads to extrapyramidal symptoms as serious side-effects246,247. 

As a proxy for desirable selectivity profiles, I design a second set of objectives with 

molscore particularly utilising PIDGINv5 functionality (as with the first set of objectives 

a diversity filter is also used): 

5HT2A – As before, I use a pre-trained random forest classification model from 

PIDGINv5 to score molecules by their predicted probability of activity at a 1 µM 

concentration i.e., no selectivity proxy is used. 

5HT2A + Membrane Selectivity – As a proxy for a generic off-target assay, a 

random forest classification model at a 10 µM concentration for every Class A 

GPCR targets with sufficient bioactivity data in ChEMBL31 is run (266 out of a 

possible 312). The prediction is classified into active or inactive (as opposed to 

taking the predicted probability) for each receptor and the ratio of active predictions 

is returned as the score. This ratio is transformed so that low ratios have a high 

score, therefore minimizing this parameter. The arithmetic mean is taken in 

combination with the predicted probability of activity against 5HT2A. 

5HT2A + DRD2 Selectivity – The predicted probability of DRD2 bioactivity at a 

concentration of 10 µM is minimized in addition to maximizing the predicted 

probability of activity against 5HT2A. 

5HT2A + Dopamine Selectivity – The average predicted probability of bioactivity 

against each dopaminergic target at a concentration of 10 µM is minimized in 

addition to maximizing the predicted probability of activity against 5HT2A. 

5HT2A + Serotonin Selectivity – The average predicted probability of bioactivity 

against each serotonin target (excluding 5HT2A) at a concentration of 10 µM is 

minimized in addition to maximizing the predicted probability of activity against 

5HT2A. 

5HT2A + Dopamine & Serotonin Selectivity – The average predicted probability 

of bioactivity against each dopamine and serotonin target (excluding 5HT2A) at a 

concentration of 10 µM is minimized in addition to maximizing the predicted 

probability of activity against 5HT2A. 
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In contrast to the first set of objectives, this second set of objectives was more difficult 

for the generative model to optimize, as shown in Figure 2.11. The easiest objectives 

with respect to achieving similar scores to real 5HT2A ligands were membrane 

selectivity and DRD2 selectivity. The former likely due to the number of models run 

leading to low overall ratios of predicted off-targets. However, as more models are 

added, as in the dopamine and serotonin families, the objective becomes increasingly 

difficult to optimize to the standard of real 5HT2A ligands. With the final objective of 

dopamine and serotonin selectivity barely being improved throughout optimization. It 

is worth noting the caveat that real 5HT2A ligands are likely contained in the training 

data of the PIDGINv5 models used in these objectives, and so will receive inflated 

scores compared to ‘active’ unseen molecules (of which most de novo molecules are 

unseen). Although the accuracy of these models isn’t known prospectively, or the 

maximum score achievable, the scores on real 5HT2A ligands at least provide a 

minimal benchmark. Moreover, the models are able to at least distinguish 95 of 126 

5HT2A molecules selective over DRD2, despite the fact that 124 molecules have a 

DRD2 pChEMBL value of 5 or above and therefore, 93 correctly predicted selective 

molecules are actually false negative predictions with respect to the DRD2 model at 

10 µM threshold (see Figure 2.12), which is somewhat advantageous behaviour in this 

case for distinguishing selective compounds. For comparison to real 5HT2A ligands 

selective over DRD2, I extracted the de novo nearest neighbours to the five most 

selective 5HT2A ligands (see Figure 2.13). Analogues were found in the 0.3-0.6 

Tanimoto similarity range, although the identified analogues tend to be a ‘simpler’ 

version i.e., smaller with fewer heteroatoms and functional groups, indicating that 

either the objective or the generative model needs to more appropriately account for 

medicinal chemistry principles. However, the de novo compounds did possess similar 

predicted off-target profiles to the real 5HT2A ligands. Overall, this second set of 

objectives is a more challenging optimization problem. 
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Figure 2.11: De novo optimization of the second set of objectives designed by molscore by number of 
optimization steps (left) with the equivalent score distribution for 3,771 real 5HT2A ligands (right). The 
dashed line represents the mean of the real ligand distribution and solid lines plus/minus one standard 
deviation from the mean. (a) The predicted probability of 5HT2A activity at a concentration of 1 µM. (b) 
The first objective (a) combined with predicted membrane selectivity. (c) The first objective (a) combined 
with predicted DRD2 selectivity. (d) The first objective (a) combined with predicted dopamine selectivity. 
(e) The first objective (a) combined with predicted serotonin sub-type selectivity. (f) The first objective 
(a) combined with serotonin sub-type selectivity and dopamine selectivity. 

 

Figure 2.12: PIDGINv5 model performance on 5HT2A ligands selective over DRD2. Predicted 
probability of 5HT2A selective ligands (left) by 5HT2A classification model at 1 µM (all predicted active) 
and by DRD2 classification model at 10 µM (95 predicted inactive) and (right) their respective 
distribution of predicted probability. Selective ligands are defined as 5HT2A ligands extracted from 
ChEMBL31 with an average pChEMBL value for 5HT2A assays at least 6 and at least 2 greater than 
for DRD2 assays (i.e., 100-fold or greater). Dashed lines represent the optimal classification decision 
threshold for each respective model. 
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Figure 2.13: Example nearest neighbour de novo molecules to real 5HT2A ligands selective over DRD2. (a) The five most 5HT2A selective ligands with respect 
to DRD2 binding identified in ChEMBL31 that contain a DRD2 pChEMBL value above 4, respective pChEMBL values are shown. (b) Nearest neighbour de 
novo molecules to each molecule in (a), identified during the 5HT2A + DRD2 Selective task with respective Tanimoto similarity (Tc) and objective score. (c) 
Predicted probabilities of class A GPCR off-targets for real and de novo ligand counterparts using PIDGINv5. (d) Predicted class A GPCR targets mapped onto 
a GPCRome tree248  , shared predicted targets are shown in red, predicted only for the real ligand in blue, and predicted only for the de novo ligand in orange.
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2.3.4 Moleval use case: Evaluating fine-tuning epochs 

The suite of performance metrics does not necessarily need to be run on a molscore 

output. Instead, it can be used to assess arbitrary datasets for quick comparison to 

reference datasets. For example, evaluating progress during generative model fine-

tuning. In this case study, I use a SMILES-based RNN pre-trained on ChEMBL 

compounds and fine-tune it (via transfer learning) using a set of known A2A ligands to 

bias de novo molecule generation towards A2A-bioactive-like chemotypes. This just 

requires two lines of Python to instantiate the GetMetrics class specifying any 

reference datasets and calling calculate to calculate the metrics (in this case, 

repeated for sampled de novo molecules after each epoch of fine-tuning). 

Figure 2.14 shows the resulting changes in metric values during fine-tuning where 

Epoch-0 represents the generative model before fine-tuning began. It is quickly 

possible to assess that some intrinsic properties (Figure 2.14a) like novelty and 

diversity decrease with increasing fine-tuning epochs, while validity has an initial drop 

that is recovered with further fine-tuning epochs as it adjusts to new chemotypes. 

Meanwhile, similarity to the initial pre-training dataset (ChEMBL compounds) 

decreases as shown by an increase in Fréchet ChemNet Distance165 and decrease in 

analogue coverage (Figure 2.14b).  Note that metrics that measure the presence of 

only a single similar molecule, like analogue similarity and single nearest neighbour 

increase, as the initial ChEMBL training dataset will likely already contain A2A-like 

chemotypes. Conversely, similarity to the fine-tuning set of A2A ligands increases 

especially noticeable by analogue similarity and coverage (Figure 2.14c), while novelty 

also slowly decreases with respect to this fine-tuning set. This overview of property 

changes allows for interpretation on how many fine-tuning epochs are required. In this 

case, arguably, just one or two epochs are needed which quickly leads to an increased 

similarity to the fine-tuning set with marginal improvements with any further epochs; 

however, further epochs do lead to an undesirable decrease in novelty and diversity. 

The required balance will vary depending on user and use case, however, quickly 

assessing changes is always useful. 



Chapter 2  Molscore 

110 
 

 

Figure 2.14: Moleval metrics computed on different fine-tuning epochs. Epoch-0 represents the 

generative model before fine-tuning. Intrinsic properties (a) and extrinsic properties in reference to a 
test set (sample of the training set) (b) and the set of A2A ligands used for fine-tuning (c) are shown. 

2.3.5 Future developments 

Aside from optimal integration of methods with conflicting library dependencies, as 

discussed earlier, several other improvements for MolScore are planned for the future. 

More generally, adding further scoring functions and performance evaluation 

functionality, for example, structure interaction fingerprint rescoring for docked poses. 

Accepting molecules with 3D conformations as inputs, particularly for structure-based 

scoring functions such as docking and shape alignment. This will become more useful 

following the increase in 3D structure-based generative models249 and will mitigate the 
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need for ligand preparation protocols and conformational searches currently required 

for said scoring functions. Integrating dynamic configuration files that can be updated 

during the course of optimization for use in curriculum learning250 (ideally the files will 

be modifiable directly through the monitor GUI to help inform the change in objective). 

Lastly, although I have not specified benchmark tasks per se, integrating a benchmark 

mode may be desirable for a particular set of objective tasks. However, I leave this for 

future work and hope this flexible framework can be used to design challenging 

benchmark objectives shared by the community.  

2.4 Conclusion 

MolScore introduced in this chapter is an open-source Python framework for the 

flexible design of difficult, drug design relevant objectives for de novo molecule scoring 

and evaluation. This framework takes a more flexible approach to generative model 

benchmarking, acknowledging that benchmarks will never be relevant to all situations. 

Instead, users can make use of the functionality available, contribute custom scoring 

functions and share their proposed benchmark objectives in a standardized way. In 

addition, this framework contains two GUIs to facilitate ease of use and accessibility. 

I believe this framework combines the best elements of current benchmarks with 

additional flexibility, leading to an overall improved platform. I introduce new 

performance metrics such as SEDiv and justify its use instead of standard practice, as 

well as demonstrate the use of MolScore to design drug design relevant objectives 

and how it can be used to also evaluate de novo molecules (and therefore differences 

between generative model hyperparameters, architectures and objective functions). 
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Chapter 3: Comparison of structure- and ligand-based scoring 

functions for deep generative models: a GPCR case study 

3.1 Introduction 

Many recent generative models have utilized ligand-based scoring functions to guide 

molecule design, however, ligand-based scoring functions have inherent limitations 

(as also discussed in 1.2.3.3). Firstly, machine learning models are restricted by their 

applicability domain i.e. they perform well on ‘in-distribution’ data but struggle to 

extrapolate to ‘out-of-distribution’ data, which is often poorly accounted for in model 

validation251,252. Ultimately, resulting in observations as seen by Renz et al.134 where 

the ligand-based scoring functions biased generative models so much that de novo 

molecules were no longer predicted as active by control QSAR models, which were 

either initialized with a different seed or trained on a different data split. This is very 

likely a contributing factor to the lack of diversity and novelty seen in deep generative 

models18,75,167 and a serious drawback from both an intellectual property and discovery 

perspective. Moreover, the use of ligand-based scoring functions also requires large 

enough amounts of annotated ligand data to sufficiently train a machine learning 

model in the first instance, which typically restricts their use in real drug discovery 

scenarios such as first-in-class projects, as discussed in 1.2.3.4. On the other hand, 

the advantages of using structure-based principles as mentioned in 1.2.2.6 are lost 

with ligand-based scoring functions. 

This chapter is based on the hypothesis that structure-based scoring functions, as 

exemplified by molecular docking, may mitigate some of the limitations observed with 

ligand-based scoring functions. Molecular docking is a physics-based approach that 

uses the crystal structure (or in the absence of that a homology model) of a protein to 

estimate both the pose and free energy binding of a ligand212,214,253,254. Although the 

resulting free energy score is notoriously inaccurate141,142 and the performance of 

these scoring functions can be highly target-dependent178, molecular docking 

consistently results in the early enrichment of known active molecules in virtual 

libraries compared to random141 and is a generally-applied computational ligand 

design method in pharmaceutical research today. 



Chapter 3  Structure-based vs ligand-based design 

113 
 

The principal advantage of the physics-based nature of molecular docking is that it is 

not restricted to the chemical space of existing bioactive training data from the ligand 

side. Provided a scoring function achieves enrichment of bioactive compounds against 

a protein target (which can be established on existing datasets where data is available, 

but where otherwise estimates can be made based on the character of the binding 

pocket and protein type255,256), then the chemical space to be scored can be greatly 

expanded, beyond chemistry and chemotypes present in any ligand-based training 

dataset. As structural input, either experimentally resolved structures or homology 

models can be employed and given the increasing numbers of structures available 

(which increases by about10,000 per year137) and development of protein structure 

prediction technology257, this renders this approach applicable to an increasingly wide 

range of protein targets.  

The development of MolScore in Chapter 2 facilitates easy implementation of both 

ligand-based and structure-based scoring functions to be combined with a generative 

model. To investigate this difference between LBDD and SBDD, REINVENT76 was 

chosen as a demonstrative generative model, which is a SMILES-based RNN which 

has evidenced competitive performance with respect to the coverage of de novo 

chemical space104 and benchmark performances55,80. To understand the differences 

between ligand-based and structure-based scoring functions, REINVENT is either 

trained to maximize the probability of activity by a support vector machine (SVM) 

trained on known ligands, or to minimize the docking score calculated by Glide212 using 

a reference co-crystal structure. The resulting de novo molecules are then compared.  

Dopamine Receptor D2 (DRD2) was chosen as a case study. This receptor has a 

wealth of associated ligand bioactivity data available, and it has been commonly used 

in deep generative model publications before62,76,113,167,258, thereby allowing any 

further comparison to different methods. DRD2 has a publicly available X-ray crystal 

structure259 in complex with Risperidone, thereby allowing use of molecular docking 

without the requirement of generating a homology model. 

At the time of conducting this work, few previous studies existed which incorporated 

structural data into deep generative model scoring functions, compared to the ligand-

based counterpart. Firstly, Ghanakota et al.260 combined high throughput free energy 

perturbation (FEP) with REINVENT to identify potential CDK2 inhibitors. To achieve 
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this, they trained an AutoQSAR model 261 on a subset of 1,000 enumerated analogues 

of a potent inhibitor with the corresponding FEP predictions, which was subsequently 

used as the REINVENT scoring function. The authors observed 1.5-fold enrichment 

selecting compounds with activity below 10 nM, compared to selecting enumerated 

analogues using the AutoQSAR model alone. Secondly, Li et al.161 trained an RNN on 

known kinase CDK4 inhibitors and fine-tuned the network by training on a selection of 

generated molecules screened using docking. This was validated experimentally, with 

one out of nine tested molecules found to be active against the target (57.8% inhibition 

at 10 µM). Thirdly, Xu et al.115 similarly used molecular docking to guide ligand 

selection in the latent space of a variational autoencoder towards CDK2 predicted 

activity, resulting in the recovery of a known CDK2 inhibitor and several molecules 

containing substructures of known CDK2 inhibitors. Cieplinksi et al.80 evidenced that 

VAEs30,119 were unable to generate molecules with optimized Smina216 docking scores 

due to the inaccurate surrogate model prediction of said docking score, which is used 

to guide de novo sampling in the respective methods. Although, the authors propose 

a docking benchmark on which REINVENT outperforms the above methods and 

baselines of both random and known active molecules81. Lastly, Boitreaud et al.126 

recently used a novel sampling approach combined with a graph to SELFIES40 

variational autoencoder, where the authors demonstrated the ability to optimize the 

Vina254 docking score against Dopamine Receptor D3, while maintaining chemical 

diversity. 

Notable contrasts in this approach compared to the above approaches include: (1) 

Only structural data is required, enabling the search of a much larger chemical space 

compared to the use of ligand data as in161. (2) An RNN combined with RL is used as 

opposed to a VAE as in126. (3) Docking scores were used directly during the generative 

model optimization process, as opposed to predicting the outcome via a surrogate 

model as in80,260. (4) In this approach, the model parameters are updated such that 

new chemical distributions can be learned as opposed to sampling a fixed latent space 

as in115. 

3.2 Materials and methods 

Figure 3.1 depicts the approach taken for the comparison of a structure- and ligand-

based scoring functions in a deep generative model setting undertaken in this work. 
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First known DRD2 actives (according to the ExCAPE-DB262) were removed from the 

MOSES curated79 ZINC145 database of small drug-like molecules for use as training 

data. The REINVENT framework76 was used as a deep generative model. This 

framework consists of two RNNs – a Prior and an Agent (see 1.2.2.5). The Prior is 

trained to learn the conditional probability distribution of SMILES tokens in the training 

dataset and the Agent is then initialized as an exact copy of the Prior. The scoring 

functions used in this work utilized structural data from the PBD137 and the docking 

program Glide, or ligand data extracted from ExCAPE-DB262 to build an SVM-based 

bioactivity model76  to score molecules that have been generated de novo. The Agent 

then samples de novo SMILES strings which are subsequently evaluated by the 

scoring function, and the Agent is updated via reinforcement learning to optimize either 

the docking score or the predicted probability of activity. Finally, de novo molecules 

are evaluated with respect to several different quantitative, chemical and structural 

aspects. 

 

Figure 3.1: Schematic of the ligand-based versus structure-based comparison in this chapter including 
data sources (blue), scoring functions (orange), and the deep generative model framework 
REINVENT76 (grey) . Main steps are (1) removing known DRD2 active molecules from the ZINC training 
data; (2) Training the Prior model on drug-like molecules from ZINC; (3) Initializing the Agents as a copy 
of the Prior; (4) Preparing the scoring functions to evaluate de novo molecules; (5) Iteratively training 
both Agents via reinforcement learning; and (6) evaluating the structure- and ligand-based approach 
with respect to different quantitative, chemical and structural aspects of the generated molecules. 

3.2.1 Datasets 

The dataset used to train the Prior network was modified from the curation described 

by MOSES79, in which the authors extracted molecules as SMILES from the ZINC15 

database145. In short, molecules were selected to adhere to the following rules: 
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molecular weight between 250-350 Da; number of rotatable bonds not greater than 8; 

XlogP263 not greater than 3.5; no charged atoms; no atoms besides C, N, S, O, F, Cl, 

Br, H; no cycles larger than 8 members; custom medicinal chemistry filters264,265; and 

finally PAINS filters7 were applied. I deviate from this curation by first allowing charged 

atoms and then neutralizing protonatable groups. This was achieved by modifying the 

MOSES pipeline, implemented using RDKit199, to remove the filter that checks for 

formal charge on atoms and instead add/remove protons to neutralize atoms where 

possible266. As a result, the training split contains 2,454,087 molecules as opposed to 

1,584,664 described in the publication79. The authors rationalized the charge filter as 

such, “we removed charged molecules to avoid ambiguity with tautomer’s and pH 

conditions. Note that in the initial set of molecules, functional groups were present in 

both ionized and unionized forms.”. However, given the nature of AR molecule 

generation conditional upon the rest of the molecule using RNNs used in this work, 

this filter could remove relevant chemical structures in which the ‘functional group - 

whole structure’ conditional relationship may not be duplicated. In addition, only 

~6,500 charged variants are also present in the neutral form in the ZINC15 subset out 

of the ~870,000 removed due to the charge filter. This may further lead to a bias 

towards non-protonatable chemical structures which are crucial for aminergic 

receptors as used in this work, as aminergic receptors typically require an ionic 

interaction with a conserved aspartic acid residue in the orthosteric site (Ballesteros-

Weinstein: D3.32, GPCRdb: D3x32)267,268. To further require the RNN to explore novel 

chemical space, any canonical SMILES that matched the canonical SMILES of any 

known DRD2 active molecules extracted from the ExCAPE-DB262 were also removed 

(as canonicalized by RDKit199). This resulted in a training set of 2,454,048 canonical 

SMILES, I call MOSESn. 

In order to generate a set of bioactive compounds with known DRD2 activity, 

molecules from ExCAPE-DB262 were extracted. ExCAPE-DB is a curation of 

ChEMBL20204 and PubChem269 data that classifies molecules with a measured dose-

response value equal to or lower than 10 μM as active, and with higher than 10 μM (or 

those which were labelled inactive in the original sources) as inactive. This resulted in 

4,613 active and 343,028 inactive molecules against human DRD2. However, as it 

may be unreasonable to expect the generative model to generate molecules outside 

the property space on which it was trained, the same filtering as previously described 
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is applied to create another subset labelled ‘in’. In addition, for use as a reference 

baseline a random set of molecules with the same filters applied were extracted from 

ChEMBL26204. Resulting in the following subsets with size: Active (all), 4,613; Active 

(in), 396; Inactive (all), 10,000; Inactive (in), 10,000; Random 10,000. 

The DRD2 X-ray crystal structure 6CM4 bound to Risperidone from the PDB137 was 

used as the protein structure for docking. 

3.2.2 REINVENT 

The training data described in Datasets was subject to further filtering in accordance 

with the REINVENT pipeline76 to standardize SMILES input, tokenize SMILES 

symbols and construct a vocabulary for one-hot encoding. This filtering resulted in 

2,453,916 unique, non-isomeric (stereochemistry removed) SMILES that was 

subsequently used to train the Prior network for a total of 5 epochs with a batch size 

of 128 using the Adam optimizer 270 with a learning rate of 0.001. The Agent was then 

trained for 3,000 steps using a batch size of 64 and the Adam optimizer with a learning 

rate of 0.0005 and a value for the scalar coefficient (σ) of 60. These hyperparameters 

were used as recommended by the publication76 and not explored further. All neural 

network training was conducted on an NVIDIA RTX2080Ti GPU. 

3.2.3 Scoring functions 

A ligand-based scoring function was used as a baseline. An SVM model previously 

published by Olivecrona et al.76 trained on 7,218 active and 100,000 inactive DRD2 

molecules, which were also extracted from ExCAPE-DB262, is used. Note that this 

figure differs from the human DRD2 bioactives used for evaluation in this chapter. It is 

likely that the authors did not filter bioactive molecules by species (as it stands this 

would result in 7,919 active DRD2 molecules without further processing262), which 

however is particularly important in the current work due to the use of the human 

ortholog of DRD2 for docking, and hence particular attention is paid to this here. The 

resulting SVM predicts the uncalibrated probability of a molecule to be active against 

DRD2. 

The structure-based scoring function used protein-ligand docking. The DRD2 crystal 

structure was prepared using the Schrodinger Protein Preparation Wizard271 using 

default parameters i.e. hydrogens added, non-residue molecules protonated (e.g. 
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ligand, cofactors) at pH 7±2 using Epik219, hydrogen bond assignment optimized at 

pH 7 using PROPKA272 and the structure minimized using the OPLS3e force field273. 

Any waters, cofactors, or crystallisation artefacts (e.g., oleic acid) were removed from 

the structure. A grid was defined using the centroid of the co-crystallised ligand 

Risperidone as the centre. From the ligand side, before docking, molecules were 

prepared using LigPrep218,  enumerating unspecified stereocentres, tautomers and 

protonation states (using Epik219). Up to 8 variants were prepared per molecule based 

on a pH range of 7±1 and minimised using the OPLS3e force field. Each molecule and 

any respective variants were then docked using Glide standard precision (GlideScore-

SP212) with default settings, flexible ligand sampling, standard precision with Epik state 

penalties, post-docking minimization of five poses and final output of the single best 

scoring pose. Using between 36 and 50 CPUs, the wall time required for 3,000 

iterations was approximately 7 days, based on an average scoring time of 3 mins per 

64 molecules (including molecule preparation and up to 512 individual docking runs 

including respective variants). 

3.2.4 Retrospective validation of docking protocol and scoring functions 

In the REINVENT study, the authors evaluated the performance of the SVM model on 

an undisclosed held-out test set, resulting in an accuracy of 98%, precision of 97% 

and recall of 82%.  

To also evaluate the performance of the docking protocol, all 4,613 known DRD2 

active molecules and a random subset of 10,000 DRD2 inactive molecules were 

docked. The performance of classification into either active or inactive molecules at 

various docking score thresholds was then investigated (see Figure 3.2) according to 

classification accuracy, precision, and recall (which can be calculated as shown in 

Equation 3.1 based on the number of true positives 𝑇𝑃, true negatives 𝑇𝑁, false 

positives 𝐹𝑃 and false negatives 𝐹𝑁. A docking score of -7.5 resulted in highest overall 

accuracy of about 76%. By decreasing the threshold to -8.5 (i.e., a more stringent 

criterion for selecting active molecules), a higher precision of approximately 82% is 

achieved, although at lower accuracy of about 74% and lower recall of about 12%. 

However, the latter more stringent threshold might still be a more favourable one to 

use in practice, given that confidence in positive predictions of active compounds is 

often more relevant than missing some active compounds (of which there are many) 
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due to low recall. It should be remembered that the performance of the scoring function 

was not an objective in its own right (given that retrospective evaluations naturally 

favour ligand-based methods due to analogue bias in databases etc.274), but rather to 

ensure general suitability for the desired purpose of selecting active compounds in this 

step. 

 

Figure 3.2: Retrospective performance of the docking protocol as a classification problem. 
Retrospective performance of the Glide docking protocol on known human DRD2 active and inactive 
molecules extracted from ExCAPE-DB. The docking score is used as a decision threshold to predict 
molecules as active or inactive, and the accuracy, precision and recall are reported at a variety of 
docking score decision thresholds. It can be seen that a docking score threshold of -8.5 results in a 
precision of approximately 82%. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 3.1 

3.2.5 Clustering 

Molecular clustering was performed on molecules or their respective Bemis-Murcko 

scaffolds170 using the sphere exclusion algorithm163 as implemented by Roger Sayle275 

in RDKit199. The sphere radius was set at a Tanimoto distance of 0.65 and 0.2 for 

molecules or their respective scaffolds using Morgan fingerprints (radius=2, 

nBits=1024). These parameters were chosen based on the same used in the similarity 

analysis conducted by Sayle275. Once resulting sphere centroids had been picked, 

molecules were assigned to the nearest centroid to form a cluster.  
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3.2.6 Chemical space visualization 

In order to further understand the chemistry generated by both approaches (and their 

distribution across chemical space), Uniform Manifold Approximation and Projection 

(UMAP)276 was performed using both molecular fingerprint and property descriptors 

for representation, as well as calculating the normalized principal moments ratio 

(NPR)277. For the former, Morgan fingerprints (radius=2, nBits=1024, implemented 

using RDKit) of actives (either ‘in’ or ‘all’), Prior, Glide-Agent and SVM-Agent 

molecules were used as input features, and the UMAP was calculated using the 

Jaccard distance metric with a minimum distance 0. For property space, the CLogP, 

molecular weight, heavy atom count, # H-bond acceptors, # H-bond donors, # 

Heteroatoms, # rotatable bonds, # aromatic rings, # aliphatic rings, # rings, topological 

polar surface area, fraction of sp3 carbons, QED173 and SAscore172 were calculated 

using RDKit and scaled before input to UMAP using default parameters. Lastly, the 

NPR1 and NPR2 were calculated using RDKit after first generating 3D conformations 

using the ETKDG method278. 

3.2.7 Structure interaction fingerprints 

Structure Interaction Fingerprints (SIFts)279 were calculated on all resulting docked 

poses in order to understand ligand-protein interactions available to the generated 

ligands. This resulted in a 9-element bit vector for each protein residue, corresponding 

to non-exclusive residue interactions. For simplification, the non-exclusive 9-element 

bit vector (comprising the possible interactions any contact, backbone, sidechain, 

polar, hydrophobic, hydrogen bond acceptor, hydrogen bond donor, aromatic, 

charged) is converted to exclusive residue interactions in a hierarchical manner 

according to the following order: charged hydrogen bond donor/acceptor, hydrogen 

bond donor/acceptor, charged, aromatic, hydrophobic/polar. For example, a residue 

initially defined as having sidechain, polar, charged and hydrogen bond acceptor 

interactions would be converted to charged hydrogen bond acceptor, due to this 

interaction type taking precedent in the above order. This simplification was performed 

to allow for more interpretable (and less redundant) subsequent analysis of the 

interactions observed. 
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3.3 Results and discussion 

3.3.1 Optimization of SVM- and Glide-Agent-based scores by molecules 

generated de novo 

First, I investigated whether the Agents were able to optimize the respective properties 

evaluated by the two scoring functions i.e., predicted probability of DRD2 activity 

based on bioactivity data (‘SVM-Agent’) and DRD2 docking score (‘Glide-Agent’), the 

results of which are shown in Figure 3.3.  Both the SVM-Agent and Glide-Agent learn 

to generate molecules with optimized properties, albeit at different rates. Whilst the 

SVM-Agent converges to generating optimal molecules within just a few hundred 

steps, the Glide-Agent only begins to converge after about 2,000 training steps. 

Crucially, both Agents maintain high ratios of valid (> 0.9) and novel molecules per 

batch (> 0.9). However, from just 100 steps onwards, the SVM-Agent starts to 

generate fewer unique molecules than the Glide-Agent (Figure 3.3d). This suggests 

mode collapse, as the SVM-Agent has maximally optimized the scoring function and 

begins to re-sample molecules that it knows produce a high reward. This is further 

supported by a drop in the diversity of sampled molecules and their scaffolds (Figure 

3.3f-h). SEDiv indicates that after 200 steps the chemical space of SVM-Agent de novo 

molecules can be explained by less than 10% of the valid and unique molecules, while 

for the Glide-Agent this slowly drops to about 20%. In addition, the SVM-Agent shows 

an increased FCD165 to a held out test set with respect to the Glide-Agent (Figure 3.3i). 

This increase in FCD has shown to indicate a number of differences165 to the training 

data for example, ‘drug-likeness’ defined by QED173 or IntDiv162. In addition to 

performance metrics, and similar to Blaschke et al.167, the cumulative number of 

analogues generated de novo to known DRD2 active molecules was investigated (see 

Figure 3.4). This analysis shows that the SVM-Agent generates more analogues 

(~80,000) than the Glide-Agent (~25,000), however, when instead looking at the 

number of DRD2 active molecules with generated analogues, the Glide-Agent has 

analogues to more DRD2 actives (~1,800) than the SVM-Agent (~ 1,400). Thus, the 

SVM-Agent generates more analogues per known active, but the Glide-Agent 

generates analogues to a broader range of known actives. Together, these results 

indicate that the Glide-Agent maintains better performance throughout training, in 

particular with respect to the uniqueness and general diversity of the generated 

molecules. Also, the Glide-Agent generates analogues to more known DRD2 active 
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molecules, further evidencing increased diversity also with respect to known DRD2 

active molecules.  

 

Figure 3.3: Generative model performance during optimization for the Glide-Agent (green) and the 
SVM-Agent (red), calculated every 100 steps. Mean optimization of scores - docking score and 
predicted probability of activity - are shown in (a) and (b) respectively, as well as the 95% confidence 
interval. Additional metrics shown are (c) validity, (d) uniqueness, (e) novelty, (f) internal diversity, (g) 
scaffold diversity, (h) sphere exclusion diversity, (i) Fréchet ChemNet Distance, (j) single nearest 
neighbour similarity and (k) fragment similarity. As the most important observation, the SVM-Agent 
reaches very high scores much more quickly, which comes at the cost of a significant reduction in 
uniqueness and diversity, when compared to the Glide-Agent. For definitions and detailed discussion 
see main text. 
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Figure 3.4: De novo DRD2 analogues generated during optimization. (a) The cumulative number of 
molecular fingerprint analogues to known DRD2 active compounds and (b) the number of known DRD2 
active molecules with analogues generated during optimization. The SVM-Agent generates more 
analogues to known DRD2 active molecules, although, the Glide-Agent generates analogues to more 
known DRD2 active molecules. 

For any generative model, visual inspection of the generated molecules is crucial, both 

to see whether an approach tends to prefer different types of chemistry, and to identify 

any possibly idiosyncratic behaviour. In this regard, Figure 3.5 displays the centroid of 

the largest clusters generated during training, as well as the respective cluster size. 

This shows that the chemotypes evolve from the Prior differently depending on the 

scoring function. Overall, both Agents were able to optimize molecules towards their 

respective scoring functions (as shown quantitatively in Figure 3.3); however, the 

Glide-Agent does so with more diversity (Figure 3.3f-h) and with a more similar 

distribution to the training data (Figure 3.3i-k).
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Figure 3.5: Chemotype evolution during training, comparing the SVM-Agent and the Glide-Agent. Molecules were sampled during training at the start and after 
0, 1,000, 2,000 and 3,000 steps (at the end of training). Molecules in each batch were clustered and the centroids of the three largest clusters are shown here, 
alongside respective cluster size (CS). This visualizes the difference in topology and chemotype between the two approaches. 
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For further analysis, 10,000 molecules were sampled from the unoptimized Prior, the 

SVM-Agent (trained for 500 steps, before significant overfitting occurred), and the 

Glide-Agent (trained for 2,000 steps). MOSES performance metrics79 were calculated 

on the generated molecules as well as, scaffold diversity, scaffold uniqueness and 

SEDiv (see 2.2.2.1). Coinciding with the results observed in Figure 3, Table 3.1 to 

Table 3.3 show that the Glide-Agent outperforms the SVM-Agent in all metrics except 

novelty. Overall showing greater diversity of de novo molecules and similarity to the 

training data (whilst still optimizing the docking score).   

Table 3.1: Basic generative model metrics of the Prior, Glide-Agent (@2000 steps) and SVM-Agent 
(@500 steps). 

Model # Valid(↑) Unique (↑) # valid & unique (↑) Novelty (↑) Filters (↑) 

Random 10000 1.0 1.0 10000 0.720 0.938 

Train 10000 1.0 1.0 10000 0.0 0.999 

Prior 10000 0.988 1.0 9879 0.800 0.995 

SVM-Agent 9979 0.990 0.897 8865 0.995 0.964 

Glide-Agent 9993 0.990 0.953 9434 0.978 0.967 

 

Table 3.2: Diversity metrics of the Prior, Glide-Agent (@2000 steps) and SVM-Agent (@500 steps). 

Model IntDiv1 (↑) IntDiv2 (↑) SEDiv (↑) 
SEDiv

@1k (↑) 
ScaffDiv (↑) 

Scaff 

uniqueness (↑) 

Random 0.874 0.868 0.440 0.809 0.857 0.757 

Train 0.863 0.856 0.366 0.753 0.844 0.687 

Prior 0.863 0.857 0.386 0.756 0.844 0.699 

SVM-Agent 0.752 0.741 0.044 0.124 0.720 0.293 

Glide-Agent 0.831 0.821 0.123 0.337 0.797 0.381 

 

Table 3.3: Similarity metrics of the Prior, Glide-Agent (@2000 steps) and SVM-Agent (@500 steps) to 
training and held out test data. 

Model 
FCD (↓) SNN (↑) Frag (↑) Scaff (↑) 

Train Test TestSF Test TestSF Test TestSF Test TestSF 

Random 3.110 3.109 3.269 0.544 0.517 0.980 0.977 0.474 0.208 

Train 0.124 0.129 0.660 0.645 0.584 1.000 0.998 0.865 0.000 

Prior 0.133 0.138 0.643 0.614 0.565 1.000 0.998 0.850 0.076 

SVM-Agent 35.975 35.952 35.977 0.504 0.492 0.502 0.499 0.040 0.005 

Glide-Agent 16.462 16.445 17.533 0.528 0.502 0.840 0.828 0.252 0.075 
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Next, to better understand the extent to which the docking score could be optimized 

relative to known DRD2 active molecules, all de novo molecules were docked and 

their docking scores compared to the active, inactive and random reference dataset. 

The actives and inactives are further split into ‘all’ molecules extracted from ExCAPE-

DB and molecules ‘in’ a similar chemical space as imposed by the same filters applied 

to the training data. To compare distributions, an adjusted one-tail t-test was 

conducted to only detect significant improvement in docking score distributions. Figure 

3.6a shows the docking score distribution of the Glide-Agent de novo molecules (μ = 

-8.05, σ = 0.95) is significantly enriched (adjusted p < 0.05) over unoptimized Prior 

molecules (μ = -6.17, σ = 1.02) and importantly also over previously known DRD2 

active molecules (μ = -7.45, σ = 1.01)( adjusted p < 0.05), especially those after 

filtering to impose similar chemical space restrictions (μ = -6.96, σ = 0.74)( adjusted p 

< 0.05). In other words, the Glide-Agent de novo molecules are predicted to be often 

as active, and on average even more active, than known DRD2 active molecules 

according to the Glide docking protocol. If the precision for selecting active molecules 

for retrospective docking at a score threshold of -8.5 translates also prospectively to 

de novo generated molecules, 32.70% percent of the Glide-Agent de novo molecules 

are predicted to be active against DRD2 (that is with a dose-response value lower than 

10 µM), compared to 19.98% percent of SVM-Agent de novo molecules and 0.54% 

percent of Prior de novo molecules (which is relatively close to experimental hit rates 

that would be expected by chance alone, for example Xiao et al.280 had an 

experimental hit rate against DRD2 of ~0.6%). Interestingly, the SVM-Agent de novo 

molecules also exhibit a significant enrichment (adjusted p < 0.05) in docking score 

distribution (μ = -7.85, σ = 0.80) beyond known DRD2 active molecules, although to a 

lesser extent. This docking score distribution enrichment is hypothesized to be a factor 

of generating similar de novo chemistry to known DRD2 actives and hence, a docking 

score enrichment is observed. However, the improvement over known actives may 

also be due to an element of randomness, as Renz et al. observed different chemical 

space occupation for independent runs with similar models134. Furthermore, a previous 

run conducted resulted in a smaller enrichment for the SVM-Agent but an almost 

identical enrichment for the Glide-Agent (data not shown). The predicted probability of 

DRD2 activity according the SVM for all reference datasets (Figure 3.6b) shows that 

most known DRD2 actives and the SVM-Agent de novo molecules are predicted active 

with high probability (0.9-1.0). Unlike docking, which predicts SVM-Agent molecules 
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to be equally as, or more active than known DRD2 active molecules, the SVM does 

not predict many Glide-Agent molecules to be active (about 75% with a low predicted 

probability of 0-0.1). Due to the limitations of such machine learning models, this could 

be evidence of a limited applicability domain. This is supported by the greater SNN 

similarity of the SVM-Agent de novo molecules to DRD2 actives that were used to train 

the SVM model by Olivecrona et al.76 (see Figure 3.7). Overall, the docking score of 

de novo molecules can generally be optimized by this Glide-based agent, and this is 

true even beyond the scores of known active molecules. 

 

Figure 3.6: Score optimization compared to reference datasets. (a) Docking scores and (b) predicted 
probability of DRD2 activity of molecules generated de novo using the Prior, the SVM-Agent and the 
Glide-Agent, compared to the active, inactive, and random reference datasets. The more negative the 
docking score, the better it is predicted to bind. The Glide-Agent generated molecules have the best 
docking score distribution, more so than known DRD2 active molecules, whilst the SVM-Agent 
generated molecule distribution is more similar to known DRD2 active molecules. The SVM-Agent 
molecules and known DRD2 actives score most highly according to the SVM, comparatively, the Glide-
Agent molecules do not. 

 

Figure 3.7: Single nearest neighbour (SNN) similarity to DRD2 active molecules by SVM predicted 
activity. The SVM-Agent molecules have a greater mean SNN similarity to DRD2 active molecules 
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than the Glide-Agent molecules and predicted active molecules are more similar than predicted 
inactive. 

3.3.2 Overlap analysis of molecules generated de novo compared to known 

active and inactive molecules 

To assess recovery of known active molecules, I identified whether any of the 

canonical SMILES produced by either Agent matches those of known DRD2 active 

molecules. The number of recovered molecules across ten samples of 10,000 

molecules was converted into the probability of recovery (based on valid and unique 

molecules generated). It is worth noting that the Prior has an inherent bias towards 

generating inactive molecules over active molecules. The bias is quantified as the 

probability of generating a known active molecule over the probability of generating a 

known inactive molecule. This translates as the Prior being 0.002 times as likely to 

generate an active molecule compared to an inactive (which is partly also due to 

removing known DRD2 active molecules from the training data). When considering 

recovery of ‘all’ extracted DRD2 actives and inactives, both Agents are still biased 

towards generating inactive molecules; however, the SVM-Agent improved 95-fold 

towards generating active molecules over the Prior. This bias shift is predominantly 

attributable to the SVM-Agent’s ability to avoid recovering known inactive molecules 

(approximately half the probability than the Glide-Agent), whereas the probability of 

recovering known active molecules is more comparable between the Glide- and SVM-

Agents (63x10-6 vs 79x10-6, respectively). It is important to consider that Glide docking 

does not incorporate any prior knowledge of known DRD2 active and inactive 

molecules (unlike the SVM), and therefore the Glide-Agent is able to learn to recover 

known active molecules (and improve the Prior bias 40-fold) from the information of 

protein structure alone. Interestingly, of the single sample of 10,000 molecules 

investigated throughout this work, there are no recovered active molecules in common 

between the Agents, and just three in total (see Figure 3.8), further underlining their 

divergent behaviour. In summary, both Agents can similarly recover known DRD2 

active molecules, however, the SVM-Agent is more adept at not generating known 

inactives and thus provide different types of molecules generated de novo as a result.
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Table 3.4: Probability of recovering known DRD2 active and inactive molecules. The reported probability values are the mean (and standard deviation) across 
ten samples of 10,000 de novo molecules drawn from the model, and the bias towards generating active molecules over inactive molecules (and fold change 
from Prior) on the right. The Glide- and SVM-Agent have a similar probability of recovering known active molecules, therefore the SVM-Agent bias towards 
generating active molecules over inactivate molecules is mostly driven by the lower probability of generating inactive molecules. 

Origin of dataset Probability of generating 

active molecule (x10⁻⁶) 

Probability of generating 

inactive molecule (x10⁻⁶) 

Active bias (fold change 

from Prior) 

Active DRD2 chemical space relative to training data In All In All In All 

Prior 10 (30) 10 (30) 5055 (604) 5957 (495) 0.002 (1) 0.002 (1) 

Glide-Agent 11 (32) 63 (84) 422 (125) 917 (175) 0.025 (12.5) 0.069 (40.6) 

SVM-Agent 34 (72) 79 (72) 256 (124) 486 (168) 0.130 (64.9) 0.163 (95.7) 
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Figure 3.8: Overlap of de novo molecules to DRD2 active compounds. Each Agent only managed to recover one active molecules, and in total only shared 
three de novo molecules between them - exemplifying divergent behaviour. 
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3.3.3 Similarity analysis of molecules generated de novo to known active and 

inactive molecules 

The DRD2 analogue analysis conducted during training was repeated, investigating 

the number of analogues to known DRD2 active compounds as in Blaschke et al.167. 

Similar to the results observed during training, the SVM-Agent sample contains a 

higher fraction of molecules considered fingerprint analogues to DRD2 actives (both 

to actives ‘in’ a similar chemical space and ‘all’ extracted). Furthermore, both Agent 

samples contain a higher fraction of analogues to DRD2 actives than inactive 

molecules (which one would expect to be relatively high based on the chemical series 

nature of drug design). However, the Glide-Agent generates analogues to a higher 

fraction of DRD2 actives, indicating that the higher diversity observed (Table 3.2) is 

relevant with respect to active chemistry. In addition, the DRD2 actives with de novo 

analogues differed depending on the Prior or Agent (see Figure 3.9), evidencing 

complementary behaviour with respect to identifying similar molecules to known 

actives.
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Table 3.5: Fraction of molecules that are fingerprint analogues to DRD2 active molecules and respective fraction of DRD2 active molecules with analogues. 
The SVM-Agent generates more analogues to known actives, however, the Glide-Agent generates analogues to more known actives, demonstrating a greater 
coverage of known active space. 

Origin of dataset 
Fraction of de novo molecules with 

DRD2 active analogues 

Fraction of DRD2 actives with 

de novo analogues 

DRD2 chemical space relative to training data In All In All 

Inactive (in) 0.020 0.089 0.197 0.116 

Inactive (all) 0.025 0.102 0.242 0.116 

Train 0.020 0.071 0.225 0.109 

Random 0.024 0.075 0.313 0.120 

Prior 0.021 0.071 0.220 0.110 

Glide-Agent 0.051 0.124 0.268 0.105 

SVM-Agent 0.179 0.563 0.237 0.102 
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Figure 3.9: Overlap between Active (all) molecules with analogues generated by generative models. 
Centroids of the largest clusters are shown to represent the most common chemistry present in selected 
subsets. The DRD2 actives with analogues generated are different depending on the specific Agent. 
Suggesting these approaches are complementary to each other for discovering similar active 
molecules.  
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How similar the de novo generated molecules are to known DRD2 active molecules 

and/or each other is also of interest. Therefore, known DRD2 active molecules were 

clustered together with the Prior, Glide- and SVM-Agent de novo molecules. Each 

cluster was then analysed to identify to which dataset each of its members belonged 

(similar to Tomberg et al.281). Figure 3.10 shows the results of this analysis as a Venn 

diagram for both entire molecules (Figure 3.10a) and their respective Bemis-Murcko 

scaffolds (Figure 3.10b).  This analysis shows more clusters – 105 – are shared 

between known active DRD2 molecules and the Glide-Agent, compared to the overlap 

of known active DRD2 ligands with the SVM-Agent, where this number is 95. This is 

also observed when clusters are calculated based on scaffolds (49 vs 39 respectively). 

To qualitatively assess cluster behaviour, examples of clusters and structures are 

shown in Figure B.1 and Figure B.2. Overall, both the Glide-Agent and SVM-Agent 

share a relatively similar number of clusters (i.e.  ‘chemical space pockets’) with known 

DRD2 actives, but which precise clusters are shared differs largely between both 

Agents.  

 

Figure 3.10: Chemical space overlap between the Prior, SVM- and Glide-Agents with all DRD2 ligands 
extracted from ExCAPE-DB. Broader clusters (a) were defined by clustering molecules with a Morgan 
fingerprint Tanimoto similarity to a centroid of 0.35 or greater, while narrower clusters (b) were defined 
by clustering molecules on their Bemis-Murcko scaffold Morgan fingerprint Tanimoto similarity to a 
centroid of 0.8 or greater (examples shown in Figure B.1 and Figure B.2). Numbers specify the number 
of clusters with at least one member belonging to an annotated dataset. For example, there are 23 
clusters (a) where each cluster has at least one member belonging to DRD2 actives and Glide-Agent 
molecules. Both the Glide-Agent and SVM-Agent share clusters with known DRD2 active molecules. 
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3.3.4 Novelty of de novo molecules relative to known DRD2 active molecules 

Similarity comparisons of de novo molecules to known molecules with desirable 

properties can provide a measure of confidence that a model is in the correct chemical 

space. However, prospective use case ultimately requires structural novelty to known 

compounds with activity against the same biological target. Figure 3.11 shows that the 

Glide-Agent generated molecules that have enriched docking scores below the 

retrospective threshold of -8.5 also have lower SNN to known DRD2 active molecules 

than the SVM-Agent and Prior molecules. Therefore, the Glide-Agent molecules are 

also more novel with respect to known actives than the SVM-Agent molecules. This 

could prove very important in the early stages of hit discovery.  

 

Figure 3.11: Kernel density estimates of the bivariate distribution of docking score and single nearest 
neighbour similarity to known DRD2 active molecules. The Glide-Agent distribution contains a shoulder 
with lower (better) docking scores at lower similarity to known actives than the SVM-Agent and Prior de 
novo molecules.  

3.3.5 Differences in chemical substructural and physicochemical property 

space between Glide- and SVM-Agent generated molecules 

To further understand the chemical differences between the molecules generated by 

the Glide- and SVM-Agent Uniform Manifold Approximation and Projection (UMAP) 276 

was used to reduce the molecular fingerprint and physicochemical and property 

descriptor-based representations of chemical structures into two dimensions for 

visualization purposes. Furthermore, the 3D shape of molecules is investigated by the 
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normalized principal moments ratio (NPR)277. Figure 3.12 shows the two-dimensional 

embedded space of known DRD2 active molecules (filters applied to impose similar 

chemical space), as well as Prior, Glide- and SVM-Agent generated de novo 

molecules. When molecules are defined by their molecular fingerprints (Figure 3.12a), 

the Glide- and SVM-Agents occupy different regions of chemical space, of which 

neither have significant distribution overlap with known DRD2 active molecules. The 

SVM-Agent de novo molecules are more distinct from the Prior molecules, albeit still 

restricted by nature of the optimization function and inclusion of the Prior likelihood. In 

Figure 3.12b, where molecules are defined by physicochemical and property 

descriptors, the Prior and Glide-Agent de novo molecules occupy a complementary 

and more diverse area of property space than SVM-Agent molecules. Annotating 

molecular properties highlights that the clustering predominantly correlates with the 

number of H-bond donors and the number of aromatic/aliphatic rings (see Figure 

3.13). Figure 3.12c shows a smaller difference in the distribution of 3D shapes 

between the datasets, again the models show slight complementary behaviour where 

the Glide-Agent distribution stretches slightly more towards spherical shapes and 

SVM-Agent slightly more towards disk shapes, although this difference is minor. The 

observations seen here are similar when considering ‘all’ DRD2 actives extracted from 

ExCAPE-DB (see Figure B.3), however, the representation is compressed due to 

larger and more distinct molecules seen in the active set. This analysis further 

corroborates, in a visual manner, the chemical differences between the structure- and 

ligand-based approaches, and the additional physicochemical diversity obtained by 

the Glide-Agent, which is not biased towards the properties of known bioactive 

molecules. 
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Figure 3.12: Chemical space representation of (a) molecular fingerprints and (b) physicochemical 
descriptors and (c) 3D space via moments of inertia.  The plots show the calculated kernel density 
estimate with 100 randomly drawn samples overlayed. UMAP representation (a-b) was calculated for 
known active DRD2 ligands with filters applied to impose a similar chemical space, as well as the 
chemical structures associated with the Prior, Glide- and SVM-Agents. The Agents occupy 
complementary regions of topological space (a), physicochemical property space (b) and slightly 3D 
space (c) (where the Glide-Agent stretches slightly more towards spherical and the SVM-Agent slightly 
more towards disc shape).  
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Figure 3.13: UMAP representation of physicochemical space as shown in Figure 3.12 annotated by 
physicochemical property descriptors used to calculate the embedding. It can be seen that the 
properties that most correlate with the clustering are the number of H-bond donors and ring counts. 

3.3.6 Characterization of ligand chemistry obtained de novo chemistry  

In order to understand the occupation of chemical space of optimized Agents on a 

ligand structural level, the molecules in each dataset were clustered according to their 

Bemis-Murcko scaffolds170 which resulted in more stringent clusters more akin to 

chemical series. When filtering out clusters with less than 10 members (i.e., smaller 

‘virtual series’), the Glide-Agent set contained more clusters with better mean docking 

scores than all other datasets (see Figure 3.14). More specifically, the Glide-Agent set 

contains 30 such clusters with a mean docking score less than the previously defined 

threshold of -8.5, compared to just six clusters of DRD2 actives, 22 in SVM-Agent set 

and zero clusters in the Prior set. In this way, the Glide-agent was able to identify 

chemical series that dock consistently well; something that is less frequently observed 

for the SVM-Agent or even known actives, and non-existent for Prior de novo 



Chapter 3  Structure-based vs ligand-based design 

139 
 

molecules. This behaviour is analogous to the identification of bioactive chemical 

series in an experimental screening, where additional confidence is provided that the 

compounds identified are indeed true positive hits, as opposed to singletons, as false 

positives can occur due to experimental error (or, in the current case, idiosyncratic 

behaviour of the scoring function). Alternatively, it could be argued that the scoring 

function is not sensitive enough to identify subtle differences in ligand chemistry that 

result in inactivity, commonly referred to as activity cliffs i.e. strong nonadditivity in 

structure-activity relationships. However, one study investigated strong nonadditivity 

between matched molecular pair cycles with respective structural data282, and 

identified that in 10 out of 15 possible cases there was a structural explaination, such 

as, complete rearrangement of binding mode or substiuent interactions causing 

nonadditivity. Therefore, in theory scoring functions that take into account structural 

information may better account for nonadditivity than purely ligand-based ones. 

 

Figure 3.14: Size and docking score of molecular clusters. Distribution of molecular clusters (a) 
according to their cluster size and (b) docking score for those with a size greater than or equal to 10. 
Docking score reflects the mean docking score of all molecules in a cluster. The Glide-Agent contains 
more clusters of size 10 or more, with lower (better) mean docking scores. 

Figure 3.15 shows the cluster centroids of the two largest and the two best-scoring 

clusters from each respective dataset (minimum of 10 clusters). Typical known DRD2 

active molecules are ‘capped’ by mono- or bicyclic systems which are linked by an 

aliphatic chain that usually (but not exclusively) contains a piperidine/piperazine 

moiety. This chemotype is not well recapitulated by the Prior molecules as it is not 

optimized towards DRD2 bioactivity in any way. The Glide-Agent on the other hand 

learns to mostly cap the molecules with mono- or bicyclic systems, but  it does not 

generate the piperidine/piperazine moiety in the compounds shown here. Likewise, 
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the SVM-Agent also learns to cap the molecules in this manner, and the highest-

scoring cluster centroids also contain aliphatic chains with rings in the linker, although 

commonly pyrrolidine and diazepane, as opposed to piperidine or piperazine. At least 

one protonatable nitrogen is common across most structures (from either origin), 

mostly located in the aliphatic linker. Somewhat concerningly, some of the example 

structures shown in Figure 3.15 have the potential to be di-cationic. This can be 

undesirable from a drug discovery perspective due to low logD and thus, potential 

implications with high clearance and low permeability. Upon further investigation (see 

Figure B.4) the distribution of formal charge for the Glide-Agent closely resembles that 

of known DRD2 actives which was predominantly +1. In fact, the SVM-Agent is slightly 

shifted towards containing more di-cationic molecules (~30%), despite the SVM being 

trained on known DRD2 actives (<10% di-cationic). Furthermore, the Glide-Agent was 

able to improve the docking score distribution from the Prior for all formal charges (see 

Figure B.5). Overall, no evidence that di-cationic molecules were preferred by the 

Glide-Agent due to any biases in the scoring method was found.
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Figure 3.15: Most common and highest-scoring chemotypes of two most highly populated and the two highest-scoring clusters for each individual dataset, 
annotated  by cluster size (CS) and mean cluster docking score (DS). The Glide- and SVM-Agent generated molecules show similar mono- or bicyclic capping 
of molecules as known DRD2 active molecules. 
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One crucial requirement of de novo molecules for practical use is synthetic 

accessability. Here, both Prior and Agent generated molecules closely inherit the 

SAscore distribution of the ZINC training dataset (see Figure B.6) which is likely due 

to the inclusion of Prior likelihood in the optimization function76. Despite the fact that 

goal-directed optimization tasks have previously led to worse syntheizability283. 

Therefore, there is no need to add proxy functions such as SAscore or QED to the 

optimization function (unlike recent approaches57,284) due to stringent filtering of the 

training dataset, of which the model does not deviate too much. 

3.3.7 Understanding method behaviour at the ligand-protein interaction level 

In order to interpret the interactions formed by de novo ligands originating from the 

different methods also at the ligand-protein interaction level. The docked poses of the 

two highest-scoring and the two most common cluster centroids from Figure 3.15 were 

generated as shown in Figure 3.16. As expected, known DRD2 ligands form a 

hydrogen-bond interaction with D1143x32, a highly conserved residue in aminergic 

receptors that has been shown to be crucial for ligand binding267,268. This reproduction 

of charge interactions with D1143x32 can be observed in the highest-scoring molecules 

across all datasets, while in this instance, the Glide-Agent molecules show more 

distinct D1143x32 interaction types (e.g. also hydroxyl interactions, Figure 3.16) and 

vectors. 
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Figure 3.16: Docked pose of the cluster centroids of the two most common and highest-scoring chemotypes with DRD2. The highest-ranked ligand in both 
cases is displayed with sticks (green), and the second-highest ligand with lines (cyan). The Glide- and SVM-Agent examples both reproduce crucial D1143x32 
interactions.
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To understand the protein-ligand interactions present in the datasets on a broader 

scale, Structural Interaction Fingerprints (SIFts)279 were calculated. Figure 3.17 

summarises the changes in these interactions observed relative to the Prior (as a 

baseline) visually. All DRD2 binders extracted from ExCAPE-DB tend to form more 

interactions with residues located higher in the pocket (towards the extracellular 

surface). While the Glide-Agent molecules more often satisfy interactions deeper in 

the pocket and less often shallower ones (dissimilar to known DRD2 active molecules). 

Likewise, SVM-Agent molecules more often form interactions with residues deeper in 

the pocket. This is likely partially due to the restriction in molecular weight imposed by 

the ZINC subset used to train the Prior, which selects molecules with a molecular 

weight between 250 and 350 Daltons, subsequently biasing de novo molecule 

generation to a similar molecular weight range. Furthermore, when only considering 

actives with the same filters applied (i.e., molecular weight 250-350 Da) there are few 

residue interaction differences compared to Prior generated molecules. Surprisingly, 

the Glide-Agent de novo molecules have a lower molecular weight distribution (see 

Figure B.6), showing that in the current case smaller molecules are favourable for 

optimizing docking score, resulting in increased virtual ligand efficiency. This is in 

contrast to previous publications, which frequently found that larger molecules are 

favoured by many scoring functions285,286. Although there is no relative change in the 

sum of interactions satisfied with D1143x32 (despite its crucial role in ligand binding), 

the ratio of interaction type changes between datasets. The Glide-Agent de novo 

dataset has a higher fraction of charged hydrogen-bonding interactions (~0.75) than 

the Prior (~0.4), SVM-Agent (~0.6) and known DRD2 actives (~0.4-.5), where all other 

interactions are comprised of charged non-hydrogen-bonding interactions (see Figure 

3.18). In addition, charged hydrogen-bonding interactions were associated with a 

better docking score distribution than charged non-hydrogen-bonding interactions 

(see Figure 3.19), an association which is also experimentally confirmed with higher 

affinity287. In summary, Glide-Agent optimized de novo molecules satisfy more 

charged hydrogen-bonding interactions with D1143x32 and generate lower molecular 

weight molecules than known DRD2 active molecules and SVM-Agent de novo 

molecules.
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Figure 3.17: Change in the frequency of DRD2 residue interactions relative to Prior de novo molecules according to Structural Interaction Fingerprints 
(SIFTs). Green indicates a relative increase equal to or more than 10% than Prior molecules, while red indicates a decrease less than or equal to 10%.
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Figure 3.18: Fraction of SIFts satisfied by molecules analysed according to interaction type. The ratio 
of interaction types against D1143x32 switches for the Glide- and SVM-Agent de novo molecules, 
although more so for the Glide-Agent molecules. 
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Figure 3.19: Association of residue interactions with docking score. Kernel density estimates of all 
docking scores (grey, shaded) and docking scores only when respective interactions are satisfied 
(coloured, unshaded). Of note, the D1143x32 HB-Acceptor (Charged) interaction is associated with better 
docking scores than Charged Residue interaction. 
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3.4 Conclusion 

In this chapter, ligand-protein docking was integrated with an RNN-based generative 

molecular de novo design algorithm and compared to a ligand-based scoring function. 

On a benchmark dataset for the Dopamine D2 receptor this approach results in 

chemically sensible molecules, which can improve docking scores beyond that of 

known receptor ligands, while exhibiting increased physicochemical diversity 

compared to using the ligand-based scoring function. The work presented here 

demonstrates the use of deep generative models in settings also where no ligand data 

is available, or novelty is of particular interest (provided an x-ray crystal structure or a 

suitable homology model of the target is available). Moreover, this work only 

investigates the optimization of the Glide docking score and does not validate 

alternative structure-based scoring functions. While other scoring functions are 

expected to be equally optimizable, the resulting de novo chemistry may differ as a 

function of other forcefield implementations and/or scoring function definitions such as 

changes in interaction terms, for example. Overall, the ability to optimize docking score 

opens up the use of de novo design to more realistic drug discovery scenarios and 

takes advantage of the benefits of using structural knowledge.
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Chapter 4: Augmented Hill-Climb increases reinforcement learning 

efficiency for language-based de novo molecule generation 

4.1 Introduction 

The use of MolScore presented in Chapter 2 in combination with a SMILES-based 

RNN with RL (REINVENT76) in Chapter 3 contributes towards the growing body of 

evidence104,288,289 in the potential of RNNs for de novo drug design. Furthermore, they 

still match the state-of-the-art on several de novo molecule generation 

benchmarks54,79,80,124, as discussed in 1.2.3.2. In particular, RL can be applied in more 

relevant drug discovery scenarios which is limited by the accuracy and reliability of 

scoring functions used and their relevance to the respective objective134,135, as 

opposed to data availability in orthogonal fine-tuning approaches. Moreover, in 

Chapter 3 it was shown that RL can optimize for more complex scoring functions such 

as molecular docking, in contrast to some literature reports80. Several RL strategies 

have been combined with RNNs including Hill-Climb (HC)54,122, REINFORCE290 (used 

by Popova et al.77) and REINVENT76, as discussed in 1.2.2.5. Two of these RL 

strategies (REINVENT and HC) have been shown to rank top one or two in 

optimization tasks compared to other generative models54,80,124.  

Despite excellent performance on benchmarks, RNN de novo molecule optimization 

using RL can be very sample-inefficient often requiring 10s or 100s of thousands of 

molecules to optimize a task, as observed in Chapter 3. In other examples, 163,840 

molecules were sampled during HC optimization for GuacaMol benchmark tasks54 and 

192,000 molecules were sampled during REINVENT optimization of DRD2 predicted 

activity76 (although neither study specified at which point the task was ‘sufficiently’ 

optimized, which could have been before optimization finished). While low sample 

efficiency is not a problem for easily computed scoring functions such as property 

calculation, it significantly hinders the use of scoring functions requiring a significant 

amount of computation such as molecular docking and computer aided-synthesis 

planning. This is becoming increasingly important with recent growth in interest in 

using molecular docking scoring functions to guide de novo molecule 

generation57,58,115,126,146–148,291,292. As Chapter 3 showed that this approach can result 

in more diverse and novel compounds with a broader coverage of known active space 

than an equivalent QSAR model trained on known ligands147. Other studies have used 
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ML to build a surrogate model to predict docking scores or other physics-based scoring 

functions which is less computationally expensive80,260,293. However, the model of a 

model approach lessons the ability to extrapolate novel chemical space by imposing 

an extra applicability domain, and compounds prediction uncertainty on top of pre-

existing inaccuracies141,178. Therefore, it is attractive to improve the sample efficiency 

of RL optimization to enable routine use of such computationally expensive scoring 

functions directly. 

Previous work has explored RL strategies and parameters for RNNs de novo molecule 

generation to varying degrees. Niel et al.122 compared different RL strategies 

(including REINFORCE, HC and REINVENT) and optimized a selection of tasks. 

However, the difference in sample efficiency was not clear and their code was not 

published. A comparison of REINVENT versions 1.0 and 2.0 shows that the default 

sigma parameter value was increased. This effectively increases the reward 

contribution compared to the prior contribution and theoretically improves sample 

efficiency, although this was not discussed or investigated in the publication99. 

Fialková et al.294 investigated more significant modifications to the REINVENT loss 

function which did not result in any significant improvement. Meanwhile, Atance et 

al.123 modified the loss function by adding a best agent reminder (BAR) mechanism to 

the loss function resulting in “significantly improved learning” (although this was not 

further quantified by the authors and it pertained to use on a graph-based generation 

model). 

Here, with the aim to improve the sample efficiency of SMILES-based RNNs, a very 

simple change to the REINVENT strategy is made to ameliorate overpowered 

regularization by introducing elements of the HC strategy. I call this novel hybrid 

approach Augmented Hill-Climb (AHC) and investigate it’s use for RNN de novo 

molecule generation. I further compare AHC to previously mentioned RL strategies 

that are implemented in published studies. 

4.2 Materials and methods 

The evaluation of AHC and comparison to other RL strategies was built around four 

key experiments which are summarised in Figure 4.1 (the details of which follow in the 

remainder of the Methods): Experiment 1, comparison between AHC and REINVENT 

on the ability to minimize the docking score against the D2 receptor (DRD2) over a very 
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limited number RL updates. Experiment 2, comparison between AHC and REINVENT 

on the ability to minimize the docking score against four different receptors over an 

extended number of RL updates relative to Experiment 1. Experiment 3, investigation 

of diversity filters and their parameters for use in combination with AHC by optimizing 

toy tasks proposed by the GuacaMol benchmark suite54. Experiment 4, benchmark 

comparison between AHC and other RL strategies on six tasks of varying difficulty. 

Experiment 5, benchmark comparison between AHC and REINVENT on alternative 

language-based generative models (a transformer architecture and reinforcement 

learning stabilized transformer architecture) on the same benchmark tasks as 

Experiment 4. 

 

Figure 4.1: Schematic of the five experiments conducted in this chapter with the focus of each 
experiment in bold face. In each case the Prior and Agent refer to an RNN. 1) Comparison of AHC to 
REINVENT on a single docking task over 100 RL updates. 2) Comparison of AHC to REINVENT on 
four different docking tasks over 500 RL updates. 3) Diversity filter and parameter search for use in 
combination with AHC on three toy tasks proposed by GuacaMol benchmark suite. 4) Benchmark 
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comparison of AHC to other RL strategies across a six optimization tasks of varying difficulty. 5) 
Comparison of AHC to REINVENT on two different transformer architectures on six benchmark tasks. 

4.2.1 Training data 

RNNs were trained using either a modification of the MOSES dataset or the GuacaMol 

dataset. The MOSESn dataset of size 2,454,048 as prepared in 3.2.1. The GuacaMol 

train dataset54 (1,273,104 molecules) derived from ChEMBL24 containing real 

molecules both in the ‘drug-like’ domain and others such as peptides and natural 

products. The GuacaMol dataset applies the following filters during curation: salt 

removal; charge neutralization; molecules with SMILES strings shorter than 100 

characters; no atoms besides H, B, C, N, O, F, Si, P, S, Cl, Se, Br, and I. Therefore, 

the GuacaMol dataset results in a training set with a much broader variety of 

chemotypes than MOSESn.  

4.2.2 Recurrent neural network 

The RNN implemented in this work is the same as29,76,99,295. Specifically, three RNN 

configurations were used, either trained on MOSESn or GuacaMol train. The first RNN 

configuration consisted of an embedding layer of size 128 and three gated recurrent 

unit (GRU) layers of size 512 with no dropout – implemented using the code shared in 

the original work76. This implementation was only used with the original REINVENT 

RL strategy in experiment 2, as a comparison to older work. The second configuration 

consisted of an embedding layer of size 256 and three long short-term memory 

(LSTM) layers of size 512 with no dropout – consistent with the REINVENT 2.0 

implementation99. The third configuration consisted of three LSTM layers of size 512 

with a dropout rate of 0.2, consistent with the GuacaMol implementation54 as found on 

the corresponding GitHub repository296. The first and second configurations were 

trained on the MOSESn dataset for 5 epochs using a batch size of 128 with an ADAM 

optimizer and learning rate of 0.001, while the third configuration was trained on 

GuacaMol train for 10 epochs using a batch size of 512 with an ADAM optimizer and 

learning rate of 0.001. 

4.2.3 Transformer 

Two transformer encoder architectures were used in this work. The first is the original 

proposed Transformer (Tr) encoder84 as described in 1.2.2.4. The second is a Gated 

Transformer (GTrXL) encoder adapted from Parisotto et al.297 in an attempt to stabilize 
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the Transformer under RL conditions. Figure 4.2 shows that the key differences in this 

second architecture: 1) relocation of layer normalization before the respective sub-

layer (i.e., multi-head attention or feed-forward network), and 2) employment of an 

adapted GRU gating mechanism in place of the residual connection shown in Equation 

4.1. Notably the original adaption was applied to Transformer-XL298 which contains a 

memory mechanism to expand context for larger language tasks. This memory 

mechanism was omitted for simplicity and due to the shorter nature of SMILES strings 

which are typically 20-100 characters long compared to 103-104 in large language 

tasks. Therefore, this model is simply referred to as Gated Transformer (GTr). 

 

Figure 4.2: Comparison of the encoder-only Transformer architecture for AR sequence generation 
versus the Gated Transformer architecture proposed by Parisotto et al.297 to stabilise learning under RL 
conditions. 
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𝓇 = 𝜎(𝑊𝑟𝑦 + 𝑈𝑟𝑥) 
𝓏 = 𝜎(𝑊𝑧𝑦 + 𝑈𝑧𝑥 − 𝑏𝑔) 

ℎ̂ = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑦 + 𝑈𝑔(𝑟⊙ 𝑥)) 

𝑔(𝑥, 𝑦) = (1 − 𝓏)⊙ 𝑥 + 𝓏 ⊙ ℎ̂ 

Equation 4.1 

The hyperparameters were the same for both the architectures. More specifically, 

each consisted of 4 encoder layers with hidden dimension 512, each with 8 multi-

attention heads and finally a feed-forward network of hidden dimension 1,024. A 

dropout of 0.1 was used throughout. Each model was then trained on the GuacaMol 

training dataset for 5 epochs with a batch size of 128 and the ADAM optimizer with a 

learning rate of 0.001. 

4.2.4 Augmented Hill-Climb 

Here, Augmented Hill-Climb (AHC) is proposed which can be viewed as a hybrid 

strategy between HC122 and REINVENT76, as depicted in Figure 4.3. With AHC the 

loss is calculated as in REINVENT (by defining the augmented likelihood) but only on 

the top k molecules, ranked by reward as in HC. The rationale behind this strategy is 

based on practical limitations of the REINVENT loss function: when low scoring 

molecules (𝑅𝑇 → 0) are sampled the score contribution goes to zero and 𝑙𝑜𝑔𝑃𝕌(𝐴) ≈

𝑙𝑜𝑔𝑃𝑝𝑟𝑖𝑜𝑟(𝐴). In this situation the agent policy will, in-fact, trend back towards the prior 

policy which may negate useful learnings, as the loss function is effectively a distance 

(see Equation 1.10). Low scoring molecules will occur especially either early in the 

learning process or when a difficult or highly constrained scoring function is used. 

Therefore, the heavy regularization effect of low scoring molecules significantly 

contributes to slow learning in these situations. In turn, focussing learning only on the 

high scoring molecules (𝑅𝑇 → 1) will improve learning. It is worth noting that, high 

scoring molecules are still regularized by the prior policy, ensuring prior learnings are 

not ‘forgotten’. 
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Figure 4.3: Depiction of the REINVENT, Hill-Climb (HC) and Augmented Hill-Climb (AHC) optimization algorithms and subsequent loss functions ℒ as 

parameterized by network parameters θ. AHC is a hybrid algorithm that combines elements of REINVENT and HC. 
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4.2.5 Reinforcement learning 

Aside from Augmented Hill-Climb, all RL baselines used in this chapter are described 

in 1.2.2.5, further implementation hyperparameters are shown in Table 4.1. 

Table 4.1: Default hyperparameters used for reinforcement learning strategies benchmarked in this 
chapter. Additional configurations with regularization and disclosed in square brackets. Separated at 
the bottom are configurations used in the PMO benchmark. 

RL strategy Training steps Batch size 𝝈 𝒌 𝝀𝑲𝑳 𝒍𝒓 𝜶 

REINFORCE [+reg] 500 64 - - [10] 1×10-4 - 

REINVENT 500 64 60 - - 5×10-4 - 
REINVENT 2.0 250 128 120 - - 5×10-4 - 

BAR 500 64 60 - - 5×10-4  0.5 

Augmented Hill-Climb 500 64 60 50% - 5×10-4 - 
Hill-Climb [+reg] 32 1024 - 50% [10] 5×10-4 - 

Hill-Climb* [+reg] 500 64 - 50% [10] 5×10-4 - 

SMILES-AHC 40a 256 120 25% - 5×10-4 - 

SMILES-AHC* 40a 256 60 25% - 5×10-4 - 
a Optimization was capped at 10,000 molecules 

4.2.6 Diversity filters 

The DFs (see 2.2.1.4) and parameters used in this work (i.e., DF1, DF2 and DF3) are 

shown in Table 4.2. DFs parameters are further explored in Experiment 3. 

Table 4.2: Diversity filter configurations used in this chapter. 

 DF1 DF2 DF3 

Topology simplification BM scaffold BM scaffold BM scaffold 
Fingerprint type ECFP (Morgan) ECFP (Morgan) ECFP (Morgan) 
Fingerprint radius 2 2 2 
Fingerprint bits 1024 1024 1024 
Similarity metric Tanimoto Tanimoto Tanimoto 
Minimum score threshold 0.8 0.5 0.0 
Bin size 25 50 50 
Output mode Binary Linear Linear 

 

4.2.7 Scoring functions and benchmarking tasks 

Several scoring functions were used in this work to guide optimization and benchmark 

RL strategies. These are summarized in Table 4.3 and are described in more detail in 

the subsequent sections. All scoring functions were implemented using the MolScore 

platform150 as described in Chapter 2.  
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Table 4.3: Summary of all objectives / tasks used in this chapter, and for which experiment (see Figure 4.1). 

Experiment Aim Objective type Objective target Performance measure 

1 
Compare REINVENT and 

AHC for varying values of σ 
Docking DRD2 Docking score & uniqueness 

2 

Compare REINVENT and 

AHC against different target 

systems 

Docking DRD2 Docking score & uniqueness 

Docking OPRM1 Docking score & uniqueness 

Docking AGTR1 Docking score & uniqueness 

Docking OX1R Docking score & uniqueness 

3 

Investigate and identify 

optimal DF and respective 

parameters for use with AHC 

Similarity Aripiprazole Tanimoto similarity, uniqueness & wall time 

Isomer C11H24 Isomer score, uniqueness & wall time 

Similarity & PhysChem (MPO) Osimertinib MPO score, uniqueness & wall time 

4 

Benchmark AHC to other 

commonly used RL 

strategies 

PhysChem Heavy atoms # Heavy atoms, validity, uniqueness & wall time 

Similarity Risperidone Tanimoto similarity, validity, uniqueness & wall time 

Activity DRD2 Predicted activity, validity, uniqueness & wall time 

Docking DRD2 Docking score, validity, uniqueness & wall time 

Dual activity (MPO) DRD2 & DRD3 Average predicted activity, validity, uniqueness & wall time 

Selectivity (MPO) DRD2 > DRD3 Average predicted activity, validity, uniqueness & wall time 
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4.2.7.1 Target preparation and docking tasks 

Four different targets were used for molecular docking scoring functions to evaluate 

docking score optimization (Experiments 1, 2 and 4 in Figure 4.1).  The four targets 

and corresponding x-ray crystal structures used in the docking tasks were D2 (DRD2, 

PDB: 6CM4259), µ (OPRM1, PDB: 4DKL299), AT1 (AGTR1, PDB: 4YAY300) and OX1 

(OX1R, PDB: 6TO7301) receptors.  

All target crystal structures were first prepared using Schrodinger Protein Preparation 

Wizard302 using default parameters which included: addition of protein and ligand 

hydrogens (pH 7±2, Epik219), optimization of hydrogen bond networks (pH 7, 

PROPKA272), restrained minimization using the OPLS3e force field273, and waters 

except for OPRM1 (which performed better retrospectively with crystallographic 

waters, data not shown). A default grid was defined using the respective co-

crystallized ligands as the centre except for OX1R which had additional positional 

restraints defined based on consensus sub-pocket occupation by the following 

overlayed co-crystallized ligands, Suvorexant (PDB: 6TO7), Filorexant (PDB: 6TP6), 

Daridorexant (PDB: 6TP3), GSK1059865 (PDB: 6TOS), ACT462206 (PDB: 6TP4), 

Compound-16 (PDB: 6TQ4), Compound-14 (PDB: 6TQ6), EMPA (PDB: 6TOD) and 

Lemborexant (PDB: 6TOT)301.  

Docking was conducted using Glide-SP212 as described in 2.2.1.1 with default settings, 

except for OX1R where docked poses were only accepted if they satisfied four out of 

five grid constraints. The lowest (i.e., best) docking score achieved by any molecule 

variant was returned as the final docking score. Docking score was normalized 

between the values of 0 and 1 based on all previously observed docking scores.  

Retrospective performance was assessed by docking known active and inactive 

molecules extracted for each human target from the ExCAPE-DB262. When more than 

10,000 labelled molecules were present, a random subset of 10,000 molecules was 

taken. To better represent de novo molecules docked which adhere to property 

constraints imposed by MOSESn, molecules above 500 Da were filtered out, stereo 

information removed, and any resulting duplicates removed. The final number of 

downloaded and docked molecules is shown in Table C.1. Classification accuracy, 

precision and recall were assessed by varying docking score decision thresholds 

(Figure 4.4). In each case a threshold corresponding to ~80% precision was identified, 
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i.e., ~80% of molecules below this threshold are true actives retrospectively. The 

typical recall of true actives at this level was ~10-30%. 

 

Figure 4.4: Retrospective classification performance of docking protocol on the four targets investigated 
in this chapter. In each case, the accuracy, precision, and recall are traced with varying docking score 
decision thresholds. Thresholds corresponding to ~ 80% precision are annotated by black dashed lines. 

4.2.7.2 Diversity filter parameter optimization tasks 

To investigate the effect of DF and parameter choice, less computationally expensive 

scoring functions were required than docking. Therefore, three tasks from the 

GuacaMol benchmarking suite54 were chosen and re-implemented according to the 

original work: Aripiprazole similarity, C11H24 isomers and Osimertinib MPO. The goal 

of the Aripiprazole similarity task is to optimize similarity to Aripiprazole beyond a 

similarity threshold in order to generate as many similar enough compounds as 

possible. The goal of the C11H24 isomer task is to generate all 159 molecules with a 

molecular formula of C11H24, a task involving a more limited pool of molecules. The 

goal of the Osimertinib MPO task is to optimize similarity to Osimertinib to a certain 

extent (molecules are penalized if too close) and that both lipophilicity and polarity are 

within a suitable range. The performance of DF parameters was measured by the area 

under the training curve of three different endpoints: uniqueness (number of unique 

molecules generated, a proxy of chemical space explored and symptom of mode 

collapse), goal (the score returned by the scoring function/s) and run time (a practical 

measure to identify if some DFs are slower to compute). 

4.2.7.3 QSAR model training 

Active and inactive molecules against DRD2 and against DRD3 were extracted from 

the ExCAPE-DB262. This corresponded to 4,609 and 2,758 active molecules and 

343,026 and 402,524 inactive molecules respectively. A further unique subset was 

defined for each target by excluding molecules with measured activity against the 

other target to ensure no domain overlap between DRD2 and DRD3 models for the 

dual and selective tasks, resulting in in 2,282 and 373 active molecules and 5,161 and 
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64,717 inactive molecules for DRD2 and DRD3 respectively. To tackle data 

imbalance, a maximally diverse selection of 5,000 inactive molecules were selected 

for DRD2 and DRD3, respectively, via a MaxMin algorithm303 on ECFP4 fingerprints 

with 2,048 bits (default bit length,  as implemented in RDKit). Three random forest (RF) 

classification models were trained to predict probability of activity (with 100 estimators, 

max depth of 15 and minimum leaf sampled of 2), one on all DRD2 data with the 

diverse inactive subset and two on DRD2 and DRD3 unique data with diverse inactive 

subsets, all implemented in scikit-learn203. In each case, model performance was 

estimated by stratified, active cluster split (inactive molecules were split randomly due 

to being a maximally diverse selection) 5-fold cross-validation with GHOST decision 

threshold identification304 resulting in the performance shown in Figure 4.5.  

 

Figure 4.5: QSAR model performance of RF models trained on DRD2 and DRD3 active and inactive 
molecules, based on 5-fold stratified, clustered cross-validation with GHOST304 decision threshold 
identification. 

4.2.7.4 DRD2 benchmark tasks 

Six further tasks of varying practical difficulty were used to benchmark the different RL 

strategies at three levels of objective complexity: 

# Heavy atoms – This ‘easy’ task aims to maximize the number of heavy atoms 

in a molecule calculated by RDKit199. This is similar in concept to maximizing penalized 

LogP106 and QED173 which has been shown to be trivial by some generative 

models106,117,305. This predominantly probes the RL strategy’s ability to extrapolate 

beyond the training dataset (which contains molecules with a limited number of heavy 

atoms), rather than being a measure of good performance. However, this task is 

irrelevant to real drug discovery objectives. 



Chapter 4  Augmented Hill-Climb 

161 
 

Risperidone similarity – This ‘easy’ task aims to maximize the Tanimoto 

similarity to Risperidone (a DRD2 inverse agonist and co-crystallized ligand in PDB: 

6CM4) according to ECFP4 fingerprints with a bit length of 1,024, as used as default 

for similarity measurements in MOSES79 (implemented in RDKit). While this tests the 

ability to move to a precise region of chemical space, it is unlikely to be relevant as a 

real drug discovery objective due to lack of novelty. The ability of generative models 

to easily maximize such tasks has been shown in benchmark studies54. 

DRD2 activity – This ‘medium’ task aims to maximize the QSAR predicted 

probability of activity against DRD2 (Equation 4.2). This task is representative of a real 

objective during early-stage hit finding, providing that known ligand data is available. 

Maximization of these tasks are often achieved by generative models76,77,117 but it is a 

more scientifically complex objective than molecular similarity. 

𝐷𝑅𝐷2𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑅𝐹(𝐷𝑅𝐷2) 

Equation 4.2 

DRD2 docking score – This ‘medium’ task aims to minimize the Glide-SP 

docking score (predicted binding affinity) against DRD2. This task is representative of 

a real objective during early-stage hit finding, providing that a crystal structure or 

homology model is available. It was implemented as described above with the 

exception that molecules were instead prepared by enumerating up to 16 

stereoisomers using RDKit199 and then conducting protonation using Epik (pH 7.4) to 

only protonate the most abundant state per stereoisomer. This task has been 

successfully optimized by generative models in some cases57 but proven difficult in 

others80.  

DRD2-DRD3 dual – This ‘hard’ task aims to maximize the QSAR predicted 

probability of activity against both DRD2 and DRD3 (Equation 4.3). This task is 

representative of real drug discovery projects requiring polypharmacological activity, 

providing that ligand data for both is available. This constitutes a multi-objective 

optimization problem which has proven more difficult for generative models with an 

increasing number of constraints57,117,306.  

𝐷𝑅𝐷2 − 𝐷𝑅𝐷3𝑑𝑢𝑎𝑙 = 
𝑃𝑅𝐹(𝐷𝑅𝐷2𝑢𝑛𝑖𝑞𝑢𝑒) + 𝑃𝑅𝐹(𝐷𝑅𝐷3𝑢𝑛𝑖𝑞𝑢𝑒)

2
 

Equation 4.3 
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DRD2/DRD3 selective – This ‘hard’ task aims to maximize the QSAR predicted 

probability of selective activity against DRD2 over DRD3 (Equation 4.4). This is 

representative of real drug discovery projects that must avoid off-target effects for 

toxicity or efficacy reasons, providing that ligand data for both is available. Similar to 

dual inhibition, multi-objective optimization problems are more difficult for generative 

models to optimize against117,306. 

𝐷𝑅𝐷2 𝐷𝑅𝐷3⁄ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 
𝑃𝑅𝐹(𝐷𝑅𝐷2𝑢𝑛𝑖𝑞𝑢𝑒) + (1 − 𝑃𝑅𝐹(𝐷𝑅𝐷3𝑢𝑛𝑖𝑞𝑢𝑒)

2
 

Equation 4.4 

4.2.8 Practical molecular optimization benchmark measures 

For endpoint measurement in the practical molecular optimization benchmark,  AUC 

of the ten highest-ranking molecules generated during optimization is retained to 

account for sample efficiency (AUC Top-10)55. However, I additionally modify how 

these molecules are identified. 

AUC Top-10 (Filtered) To include a property constraint to the initial training 

data, this metric filters out molecules that have a molecular weight or LogP beyond 4 

standard deviations from the mean of pre-training dataset ZINC250k (𝜇 ± 4𝜎 

approximately contains 99.99% of a normal distribution). As a measure for topological 

idiosyncrasies, I additionally filter out molecules that contain more than 10% de novo 

(unobserved in ZINC250k) ECFP4 fingerprint features (implemented in RDKit). The 

10% threshold was chosen by inspecting molecules with varying fractions of de novo 

ECFP4 features and therefore there is scope for further justification of this threshold. 

These simple and lenient filters should be satisfied as a minimum requirement to 

ensure that the generative model does not drift beyond its applicability domain (if the 

model is distribution-based), or at-least maintains some similarity to the training 

dataset on the basis that the dataset contains practically relevant chemistry. 

AUC Top-10 (Diverse) Gao et al. rationalise the selection of the highest-

ranking ten molecules as "distinct molecular candidates to progress to later stages of 

development". I explicitly enforce this by selecting ten diverse molecules iteratively, 

where a molecule is only added to the selection if its Tanimoto similarity to any 

previously selected compounds is not higher than 0.35 (by ECFP4 fingerprints with 

1,024 fingerprints, implemented in RDKit). Anything more similar than threshold with 
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these fingerprint parameters broadly correlates to an 80-85% probability of belonging 

to the same bioactivity class307, but distinct candidates should ideally possess different 

profiles. 

AUC Top-10 (Combined) A combination of applying both property filters and 

diversity filters as described above. 

4.3 Results and discussion 

4.3.1 Optimization of DRD2 docking score by Augmented Hill-Climb compared 

to REINVENT 

Optimization ability and sample efficiency was assessed using the procedure 

described in Methods (Experiment 1, Figure 4.1). The REINVENT strategy and 

docking protocol was identical to Chapter 2. 

To increase optimization power, the easiest and most obvious change is to increase 

the score contribution to the augmented likelihood used by REINVENT by increasing 

the scalar value σ. The original work76 had a default value of 60, however, the 

subsequent update (REINVENT 2.099) increased this value to 120 - suggesting that 

sample efficiency was sub-optimal. Therefore, I first varied the value of σ between 30 

and 240 and updated an agent for 100 RL steps only (6,400 samples), to minimize 

computational expense. However, as shown in Figure 4.6a, this made little 

improvement in the optimization of DRD2 docking scores. The maximum docking 

score optimization achieved (best mean score relative prior mean score) was 128% 

with σ=60 or 127% with σ=240, concluding that changing σ values alone did not 

significantly improve optimization over limited RL updates.  

AHC was then implemented in an effort to improve sample efficiency, while also 

varying σ and using the same amount of RL updates (Figure 4.6a). This consistently 

led to improved optimization ability for every σ value compared to REINVENT, with a 

maximum of 205% optimization with σ=240. In total, this led to a 1.39-fold 

improvement in optimization ability compared to REINVENT averaged across all 

values of σ. Moreover, AHC required approximately 80 fewer steps to achieve the 

mean docking score achieved by REINVENT over 100 steps, evidencing a large 

improvement in sample efficiency. However, learning was stifled by a drop in 

uniqueness observed (Figure 4.6b) i.e., AHC was more prone to mode collapse.  
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To address the mode collapse, a diversity filter167 (DF1) was applied to both strategies 

to penalize exploitation and hence encourage exploration. DF1 penalizes the score of 

any of the top 20% of de novo molecules that were similar to previously generated 

molecules, a threshold chosen based on the nature of docking-based virtual screening 

where only the very top ranked molecules are considered. This stabilized learning and 

rescued the drop in uniqueness in most cases (Figure 4.6c,d). With DF1, AHC 

evidenced a σ-averaged 1.45-fold improvement compared to REINVENT (with a 

maximum optimization of 192% at σ=180 for AHC, compared to 119% at σ=180 for 

REINVENT). Similar to without the DF1, AHC still required 80-90 fewer RL steps to 

achieve a mean docking score achieved by REINVENT over 100 steps. 

Although increasing the σ value increases the score contribution, it also decreases 

the prior contribution and thus decreases regularization during optimization. As such, 

larger values of σ are expected to result in further extrapolation outside the domain of 

the training set and prior. Figure 4.6e-g show the properties of de novo molecules 

generated during optimization and the property space not occupied by molecules in 

the MOSESn dataset – serving as a proxy to assess extrapolation. AHC in 

combination with DF1 is more sensitive to changes in σ, where larger values of σ do 

result in extrapolation into property space that is absent in MOSESn, more so than 

REINVENT in combination with DF1. In practice, this extrapolation can be both 

favourable (by identifying novel chemical space) or unfavourable (by enabling 

exploitation of scoring function flaws, such as molecules with more heavy atoms 

providing better docking scores simply due to the additive nature of docking scoring 

functions285). In either case, it is advantageous to have greater control over this trade-

off, which is achieved as variations in σ show more impact for AHC over REINVENT. 

Importantly, AHC still improves 1.47-fold over REINVENT at σ=60, where both 

strategies are sufficiently regularized and maintain the property space as defined by 

MOSESn. 
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Figure 4.6: Comparison between REINVENT and Augmented Hill-Climb learning strategies to optimize DRD2 docking scores at varying levels of σ. (a) 
Augmented Hill-Climb is more efficient at optimizing docking score at all levels of σ but (b) undergoes increased mode collapse via a drop in uniqueness. (c) 
Docking score optimization can be stabilized and (d) mode collapse rescued by applying a diversity filter. (e-g) Augmented Hill-Climb in combination with DF1 
is more sensitive to changes in σ, this affects the extent to which de novo molecules occupy property space which is not present in the prior training set (grey 
shaded area) i.e., extrapolation.  



Chapter 4  Augmented Hill-Climb 

166 
 

Despite improvement in the optimization ability by AHC, it is irrelevant if the resulting 

de novo structures are invalid or implausible (e.g., incorrect valences, unstable or 

idiosyncratic functional groups or strained ring systems). The chemistry generated by 

RNNs has been evaluated previously29,34,79,104,165 and has usually been considered 

reasonable with respect to overall topology, fragments, substructures and property 

space. On the other hand, a comparison of chemistry between AHC and REINVENT 

is complicated by the scoring function and its suitability for an objective e.g., greater 

optimization may actually lead to unreasonable chemistry due to scoring function 

exploitation rather than as a function of the RL strategy. On the other hand, the 

REINVENT strategy has been shown to maintain similar chemistry to the prior 

RNN76,147,148,167. Therefore, some of the top molecules generated at different values 

of σ are visualized in Table 4.4. At lower values of σ (30-120) and with no regard for 

prior knowledge of DRD2 ligand topology, the molecules are mostly indistinguishable 

as to which RL strategy was used. With regard for DRD2, both strategies learn to 

generate benzyl/bicyclic moieties with a protonatable amine in close proximity. This 

chemotype is consistent with the co-crystallised inverse agonist risperidone259 and 

required interactions to D1143x32 for ligand activity268,287,308, where the cyclic moiety 

sits deep in the hydrophobic sub-pocket and the cationic amine forms a salt bridge 

with D1143x32. The only difference between the RL strategies appears to be the better 

docking scores achieved by AHC. However, as σ increases (180-240), de novo 

molecules are clearly much larger and therefore exploiting the additive nature of the 

docking scoring function285. This corroborates the observation of extrapolation into 

restricted property space seen in Figure 4.6e,g, an ability which enables this 

exploitation. In this scenario additional constraints are necessary, such as also 

defining a suitable molecular weight range as this knowledge is no longer imposed by 

the prior dataset. These results highlight the balance that is required in the trade-off 

between regularization and optimization, which is better achieved by AHC than 

REINVENT. 
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Table 4.4: Centroid of the top 5 largest clusters for the top 100 molecules generated by REINVENT and Augmented Hill-Climb (both with DF1) according to docking score 
against DRD2 receptor for varying values of sigma (σ). Cluster size (CS), centroid docking score (DS) and the average cluster docking score (AvDS) is annotated below. 

σ RL strategy Top 1 Top 2 Top 3 Top 4 Top 5 

30 REINVENT 

 

 
 

  

CS: 5 
DS: -9.13 

AvDS: -9.53 

CS: 4 
DS: -9.16 

AvDS: -9.26 

CS: 4 
DS: -9.28 

AvDS: -9.79 

CS: 3 
DS: -9.30 

AvDS: -9.41 

CS: 2 
DS: -9.10 

AvDS: -9.36 

       

30 AHC   
 

  

CS: 14 
DS: -10.36 

AvDS: -10.60 

CS: 7 
DS: -10.34 

AvDS: -10.57 

CS: 5 
DS: -10.32 

AvDS: -10.67 

CS: 4 
DS: -10.40 

AvDS: -10.50 

CS: 4 
DS: -10.48 

AvDS: -10.53 

       

60 REINVENT  
  

 
 

CS: 8 
DS: -9.10 

AvDS: -9.28 

CS: 3 
DS: -9.12 

AvDS: -9.37 

CS: 3 
DS: -9.42 

AvDS: -9.53 

CS: 2 
DS: -9.09 

AvDS: -9.50 

CS: 2 
DS: -9.12 

AvDS: -9.50 
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60 AHC   

 

 
 

CS: 19 
DS: -11.48 

AvDS: -11.64 

CS: 5 
DS: -11.43 

AvDS: -11.52 

CS: 3 
DS: -11.16 

AvDS: -11.25 

CS: 3 
DS: -11.28 

AvDS: -11.54 

CS: 3 
DS: -11.43 

AvDS: -11.45 

       

90 REINVENT      
CS: 4 

DS: -9.53 
AvDS: -9.78 

CS: 4 
DS: -9.56 

AvDS: -9.84 

CS: 3 
DS: -9.59 

AvDS: -9.78 

CS: 3 
DS: -9.66 

AvDS: -9.87 

CS: 2 
DS: -9.39 

AvDS: -9.54 

       

90 AHC  
 

   

CS: 10 
DS: -11.21 

AvDS: -11.38 

CS: 7 
DS: -11.23 

AvDS: -11.51 

CS: 7 
DS: -11.53 

AvDS: -11.91 

CS: 5 
DS: -11.24 

AvDS: -11.36 

CS: 4 
DS: -11.33 

AvDS: -11.38 

       

120 REINVENT   

 
  

CS: 5 
DS: -9.95 

AvDS: -9.84 

CS: 4 
DS: -9.30 

AvDS: -9.77 

CS: 2 
DS: -9.28 

AvDS: -9.40 

CS: 2 
DS: -9.30 

AvDS: -9.41 

CS: 2 
DS: -9.34 

AvDS: -9.42 
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120 AHC  

  

  

CS: 21 
DS: -9.28 

AvDS: -9.64 

CS: 9 
DS: -9.35 

AvDS: -9.91 

CS: 7 
DS: -9.28 

AvDS: -9.58 

CS: 6 
DS: -9.84 

AvDS: -10.16 

CS: 5 
DS: -9.28 

AvDS: -9.52 

       

180 REINVENT 
 

 

 

  

CS: 4 
DS: -9.19 

AvDS: -9.26 

CS: 4 
DS: -9.35 

AvDS: -9.57 

CS: 2 
DS: -9.10 

AvDS: -9.15 

CS: 2 
DS: -9.12 

AvDS: -9.25 

CS: 2 
DS: -9.16 

AvDS: -9.64 

       

180 AHC 

 
   

 
CS: 8 

DS: -12.80 
AvDS: -12.94 

CS: 7 
DS: -12.77 

AvDS: -12.83 

CS: 6 
DS: -12.58 

AvDS: -12.84 

CS: 5 
DS: -12.76 

AvDS: -13.03 

CS: 4 
DS: -12.60 

AvDS: -12.94 
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240 REINVENT 
 

   
 

CS: 3 
DS: -8.75 

AvDS: -8.81 

CS: 3 
DS: -9.04 

AvDS: -9.24 

CS: 2 
DS: -8.74 

AvDS: -8.56 

CS: 2 
DS: -8.77 

AvDS: -8.94 

CS: 2 
DS: -8.80 

AvDS: -8.96 

       

240 AHC 

 
 

   

CS: 28 
DS: -13.46 

AvDS: -13.77 

CS: 19 
DS: -13.85 

AvDS: -13.96 

CS: 5 
DS: -13.43 

AvDS: -13.92 

CS: 5 
DS: -13.75 

AvDS: -13.89 

CS: 4 
DS: -13.48 

AvDS: -13.69 
 



Chapter 4  Augmented Hill-Climb 

171 
 

4.3.2 Optimization of docking scores for multiple GPCR targets 

Aside from DRD2 in Chapter 3, other GPCR targets (DRD2, OPRM1, AGTR1 and 

OX1R) were investigated using REINVENT to optimize docking score over the course 

of 3,000 RL updates, the first 500 updates of which are shown in Figure 4.7. DRD2259 

contains a deep hydrophobic sub-pocket and requires a salt bridge interaction with 

D1143x32 for ligand activity. OPRM1299 similarly forms a salt bridge interaction via 

D1473x32 (a structurally conserved position in aminergic receptors268,308) but with a 

more open pocket than DRD2. AGTR1300 requires important salt bridge and hydrogen 

bond interactions to R1674x65 (e.g., via acidic tetrazole of co-crystallised ligand 

ZD7155) as well as hydrogen bonds to Y351x39 on the opposite side of the pocket. 

Meanwhile OX1R301 contains four well defined hydrophobic sub-pockets and 

sometimes a hydrogen bond to N3186x55 and water mediated hydrogen bond to 

H3447x38, ligands are found to adopt a horseshoe conformation via π-stacking to 

satisfy these sub-pockets as in the co-crystallised ligand suvorexant. The first two 

targets’ respective docking scores were able to be minimized similarly (Figure 4.7a,b), 

while the latter two targets’ respective docking scores were more challenging and 

showed little minimization (Figure 4.7c,d) (especially with respect to the distribution of 

docking scores for known actives). This suggests that the docking score optimization 

ability of REINVENT was system dependent or that the MOSESn dataset used for RNN 

pretraining did not contain chemistry amenable to minimize the docking score for these 

systems.  

Given the improved optimization power of AHC in combination with DF1 seen with 

fewer RL updates against DRD2, AHC in combination with DF1 was compared to 

these REINVENT results to see if improvement was consistent over 500 RL updates 

and for different GPCR targets (Experiment 2, Figure 4.1). For every target, AHC in 

combination with DF1 (Figure 4.7) resulted in faster and further minimization of the 

docking score. For reference, the 80% retrospective precision threshold was 

surpassed within 100 RL updates in all cases except for the particularly challenging 

OX1R. However, the docking score plateaus for AHC in combination with DF1 in later 

stages of training. This plateau signals mode collapse as uniqueness drops, similar to 

training without a DF as shown in Figure 4.6. Interestingly, a convergence of the 

normalized docking score towards the minimum score threshold of the DF occurs, and 

uniqueness then drops for all targets (Figure 4.8). It appears that the model learns to 
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generate molecules with a score just below the minimum score threshold to avoid DF 

penalization and is thus vulnerable to mode collapse as observed without the DF 

(Figure 4.6a,b).  

Therefore, a search of DFs and hyperparameters was needed to identify a more 

optimal configuration that would successfully and robustly rescue mode collapse 

(Experiment 3, Figure 4.1) (see next subsection). This led to the design of DF2 which 

differed from DF1 by having a lower minimum score threshold of 0.5 instead of 0.8, 

linear penalization output mode instead of binary, and larger bin size of 50 instead of 

25. Using DF2 the previous experiment (Experiment 2, Figure 4.1) was conducted on 

the four targets as before, shown in Figure 4.7. The change in DF stabilized learning 

over the full length of training while still resulting in similar optimization of docking 

score. Moreover, there was no convergence of normalized docking score to the 

minimum score threshold and thus uniqueness stayed relatively high (Figure 4.8b). To 

gain a quantitative understanding of improvement in sample efficiency, Table 4.5 

compares the number of steps (and samples) required by AHC in combination with 

DF2 and REINVENT to reach various thresholds during optimization. This shows that 

the largest improvement over REINVENT is made early, where AHC in combination 

with DF2 requires 19.8-fold fewer training steps until the mean surpasses 120% 

optimization, however, both strategies sample a single molecule with a docking score 

exceeding this threshold within the first batch. Meanwhile, AHC in combination with 

DF2 took 71.8-fold fewer samples than REINVENT until a molecule surpassed 160% 

optimization. At 180% and 200% optimization, REINVENT only sampled molecules 

surpassing the threshold for OX1R and thus fold-improvement could not be calculated, 

however a minimum estimate is shown based on the maximum number of training 

steps or samples generated. On average, AHC in combination with DF2 required 7.4-

fold fewer training steps and 45.5-fold fewer samples across all targets and all 

optimization thresholds.
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Figure 4.7: Improved learning efficiency of Augmented Hill-Climb against four targets: (a) DRD2, (b) OPRM1, (c) AGTR1 and (d) OX1R. (top left panel) 
Distribution of known active and inactive molecule docking scores. (top right panel) Optimization of de novo molecule docking score via RL. (bottom right panel) 
The top 500 REINVENT generated scaffolds with the corresponding time of generation by REINVENT or by Augmented Hill-Climb (in combination with DF2) if 
co-generated. Blue lines represent scaffolds generated by REINVENT first and green lines generated by Augmented Hill-Climb (in combination with DF2) first. 
Scaffolds with a difference in generation time of < 100 RL updates are more transparent. Augmented Hill-Climb in combination with DF2 shows improved 
learning efficiency compared to REINVENT and optimizes past a docking score threshold corresponding to a retrospective classification precision of 80% (black 
dashed line) in all cases. 
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Figure 4.8: Optimization of normalized docking score and uniqueness during optimization across targets. (a) With diversity filter 1 (DF1), docking score 
converges to the minimum score threshold (0.8) of the DF and model undergoes mode collapse seen by an associated drop in uniqueness. (b) With diversity 
filter 2 (DF2), no convergence is observed, and uniqueness maintains relatively high. This is due to a lower minimum score threshold (0.5) and softer penalization 
scheme.
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Table 4.5: Number of optimization steps taken before the mean docking score exceeds different internal and external thresholds (earliest sample exceeding threshold is shown 
in brackets). The final row lists the Augmented Hill-Climb in combination with DF2 fold improvement over REINVENT. Where a threshold was not reached within the maximum 
number of training steps (or samples) it has been annotated as being greater than 500 (or 32,000). 

  
Number of steps required for optimization beyond prior at a given 
threshold 

Number of steps required for optimization 
beyond external thresholds 

 Threshold 120% 140% 160% 180% 200% 
Inactive 
mean 

Active 
mean 

80% precision 
threshold 

DRD2 

REINVENT 
> 500 
(15) 

> 500 
(685) 

> 500 
(22,292) 

> 500 
(> 32,000) 

> 500 
(> 32,000) 

1 
(1) 

163 
(15) 

> 500 
(15) 

AHC+DF2 
19 
(2) 

6 
(49) 

105 
(1,248) 

> 500 
(3,009) 

> 500 
(23,150) 

2 
(2) 

19 
(2) 

48 
(2) 

OPRM1 

REINVENT 
133 
(7) 

> 500 
(868) 

> 500 
(7,663) 

> 500 
(> 32,000) 

> 500 
(> 32,000) 

4 
(2) 

80 
(4) 

> 500 
(7) 

AHC+DF2 
3 
(16) 

17 
(22) 

45 
(29) 

150 
(34) 

> 500 
(2,759) 

6 
(16) 

17 
(22) 

33 
(28) 

AGTR1 

REINVENT 
> 500 
(25) 

> 500 
(510) 

> 500 
(5,596) 

> 500 
(> 32,000) 

> 500 
(> 32,000) 

1 
(2) 

> 500 
(8) 

419 
(6) 

AHC+DF2 
62 
(27) 

318 
(869) 

396 
(3,404) 

> 500 
(5,207) 

> 500 
(27,979) 

2 
(1) 

62 
(27) 

46 
(2) 

OX1R 

REINVENT 
5 
(1) 

52 
(1) 

> 500 
(7) 

> 500 
(142) 

> 500 
(490) 

1 
(2) 

9 
(1) 

> 500 
(490) 

AHC+DF2 
9 
(1) 

15 
(2) 

31 
(2) 

87 
(31) 

382 
(557) 

2 
(1) 

14 
(2) 

494 
(557) 

Average fold improvement 
19.8 
(2.5) 

11.2 
(38.7) 

8.3 
(71.8) 

2.8 
(240.6) 

1.1 
(3.8) 

0.5 
(1.0) 

5.5 
(2.1) 

9.7 
(3.2) 
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To investigate if similar chemistry was generated by the RL strategies, the top 500 

scaffolds generated by REINVENT for each target are plotted, and at what stage they 

were first generated by either RL strategy, shown in Figure 4.7 (bottom panel of each 

sub-figure). This shows a general trend where AHC in combination with DF2 tends to 

generate scaffolds appearing in REINVENT at a later stage much sooner, and 

scaffolds appearing early in REINVENT much later. That is, AHC in combination with 

DF2 identifies chemistry where the mean docking score has improved more than 100 

steps sooner, while early chemistry typically achieved due to batch variance more than 

100 steps later – likely because of the DF encouraging exploration and re-visiting sub-

optimal chemistry.  

A visual comparison of the centroids of the top 100 compounds for each target for 

AHC in combination with DF2 and REINVENT is shown in Table 4.6. With disregard 

to prior knowledge of target ligands and suitability of the scoring function, the quality 

of chemistry generated is again indistinguishable between the two RL strategies. 

However, regarding co-crystal ligands and known important residue interactions, the 

scoring function is not always suitable as shown in the case of AGTR1. Here no acid 

moieties are generated for AGTR1 by either strategy which will be in part due to the 

docking algorithm targeting only the Y351x39 sub-pocket and out towards the 

extracellular surface (Figure 4.9) as opposed to the sub-pocket surrounding R1674x65 

as required for ligand activity300.  

In addition, Figure 4.10 shows that property space occupied by AHC de novo 

molecules is still maintained (mean remains within training set space) in all cases 

except for increasing molecular weight seen with OX1R. Here, the mean is slightly 

above 350 Da which is however consistent with OX1R antagonists301. In fact, in some 

cases (for OPRM1 in the case of molecular weight and number of rotatable bonds, 

and for OX1R in the case of the number of rotatable bonds) the property space shifts 

in the opposite direction to that which would be expected by an exploitation of the 

docking scoring function. Overall, de novo chemistry is still reasonable and sufficiently 

regularized by AHC in combination with DF2 and can even be more heavily regularized 

by reducing σ to 30, yet still outperform REINVENT at all σ values as seen in 

Experiment 1.
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Table 4.6: Centroid of the 5 largest clusters for the top 100 molecules according to docking score against DRD2, OPRM1, AGTR1 and OX1R receptors. Cluster size (CS), 
centroid docking score (DS) and the average cluster docking score (AvDS) is annotated below. In each case Augmented Hill-Climb generates clusters with lower (better) docking 
scores, while maintaining reasonable chemotypes that are indistinguishable to those generated by REINVENT. Note that protonation states, tautomers and stereoisomers are 
enumerated by the docking protocol (see Methods). 

Target RL strategy Top 1 Top 2 Top 3 Top 4 Top 5 

DRD2 REINVENT 
 

 

 
 

 
CS: 6 

DS: -9.89 
AvDS: -10.03 

CS: 4 
DS: -9.89 

AvDS: -10.22 

CS: 3 
DS: -9.84 

AvDS: -10.0 

CS: 3 
DS: -9.84 

AvDS: -9.88 

CS: 3 
DS: -9.85 

AvDS: -9.93 
       

DRD2 AHC+DF2 

 
 

   
CS: 8 

DS: -12.19 
AvDS: -12.31 

CS: 3 
DS: -11.69 

AvDS: -12.05 

CS: 3 
DS: -11.81 

AvDS: -12.09 

CS: 3 
DS: -11.83 

AvDS: -11.95 

CS: 3 
DS: -11.93 

AvDS: -12.12 
       

OPRM1 REINVENT  
  

  

CS: 16 
DS: -8.72 

AvDS: -8.90 

CS: 8 
DS: -8.79 

AvDS: -9.0 

CS: 3 
DS: -8.72 

AvDS: -8.82 

CS: 3 
DS: -8.74 

AvDS: -8.79 

CS: 3 
DS: -8.77 

AvDS: -8.80 
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OPRM1 AHC+DF2 
  

 
 

 
CS: 3 

DS: -9.47 
AvDS: -9.54 

CS: 3 
DS: -9.53 

AvDS: -9.65 

CS: 2 
DS: -9.49 

AvDS: -9.59 

CS: 2 
DS: -9.49 

AvDS: -9.58 

CS: 2 
DS: -9.49 

AvDS: -9.54 
       

AGTR1 REINVENT 
  

 
  

CS: 2 
DS: -8.73 

AvDS: -8.73 

CS: 2 
DS: -8.76 

AvDS: -8.87 

CS: 2 
DS: -8.76 

AvDS: -8.85 

CS: 2 
DS: -8.82 

AvDS: -8.90 

CS: 2 
DS: -8.90 

AvDS: -8.94 

       

AGTR1 AHC+DF2 

 
   

 
CS: 4 

DS: -11.72 
AvDS: -12.11 

CS: 4 
DS: -12.48 

AvDS: -12.55 

CS: 3 
DS: -11.87 

AvDS: -11.95 

CS: 3 
DS: -11.88 

AvDS: -12.01 

CS: 2 
DS: -11.72 

AvDS: -11.82 
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OX1R REINVENT  

 
 

  

CS: 2 
DS: -8.52 

AvDS: -8.52 

CS: 2 
DS: -8.57 

AvDS: -9.04 

CS: 2 
DS: -8.56 

AvDS: -8.57 

CS: 2 
DS: -8.60 

AvDS: -8.73 

CS: 2 
DS: -8.79 

AvDS: -8.80 

       

OX1R AHC+DF2 
 

   

 
CS: 10 

DS: -10.01 
AvDS: -10.24 

CS: 9 
DS: -9.85 

AvDS: -9.98 

CS: 5 
DS: -9.98 

AvDS: -10.05 

CS: 4 
DS: -9.92 

AvDS: -10.0 

CS: 3 
DS: -9.87 

AvDS: -10.0 
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Figure 4.9: Docked poses of the centroid molecules (cyan) shown in Table 4.6 generated by AHC + DF2 compared to the co-crystallized ligand (green) for each 
respective target. For (a) DRD2 and (b) OPRM1, RL and docking results in sensible pose generation satisfying crucial residue interactions with D1143x32. While 
for (c) AGTR1 poses occupy only one relevant sub-pocket compared to the co-crystal ligand and form no interactions with R1674x65. Only one pose for (d) OX1R 
mimics the horseshoe shape adopted by the co-crystal ligand, however, most form an interaction with N3186x55.  
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Figure 4.10: Property space comparison between REINVENT compared to Augmented Hill-Climb (in 
combination with DF2). Property space is according to molecular weight, LogP and the number of 
rotatable bonds for molecules optimized to minimize the docking score against the targets. The grey 
shading indicates property space not represented in the prior training set.  

4.3.3 Effect of Augmented Hill-Climb diversity filter hyperparameters on 

molecule generation 

Given the drop in uniqueness observed in Figure 4.8a, a hyperparameter search to 

identify optimal diversity filters and respective hyperparameters that best combat 

mode collapse was conducted (Experiment 3, Figure 4.1). DF configurations were 

tested on three representative objectives taken from the GuacaMol benchmark suite54 

with an RNN architecture, and training regime identical to that implemented in 

GuacaMol296, with the exception of using AHC for optimization. This resulted in 825 

individual runs across the three objective tasks that were assessed by computing the 

area under the curve during optimization for uniqueness, score/goal achieved as well 

as, taking the final run time. 

In all cases (Figure C.1 - Figure C.3), a higher minimum score threshold (> 0.5) lead 

to poorer performance. The higher the minimum score threshold, the fewer molecules 

the DF is applied to and therefore the closer AHC is to being run without a DF, 



Chapter 4  Augmented Hill-Climb 

182 
 

explaining the drop in uniqueness as observed previously. The specific 

implementation of scoring functions used has a duplicate lookup function that may 

result in longer run times if many duplicate molecules are observed, explaining the 

counter-intuitive increase in run time with less actual DF use (higher minimum score 

threshold).  

With respect to improving uniqueness – the main symptom of mode collapse - lower 

bin sizes, linear output mode and compound similarity/scaffold similarity (atom pair) 

DFs appear to perform best. Lower bin size corresponds to quicker penalization for 

certain chemotypes, although bin size effect is lesser for the Osimertinib MPO task. In 

the case of Osimertinib MPO (Figure C.3), simply penalizing non-unique molecules 

provides reasonable performance improvement from 0.19 AUC (no DF) to 0.87 AUC. 

Meanwhile linear output performs best when bin size is greater than 0 (note when bin 

size is 0 all output modes are effectively binary), suggesting that greater performance 

is achieved with a more gradual penalization gradient. Lastly, compound similarity and 

scaffold similarity (atom pair) DFs slightly outperform all others. These DFs are a softer 

measure of similarity than identical scaffolds or scaffold similarity (ECFP) (which has 

a higher minimum similarity threshold) resulting in more molecules being identified as 

similar and therefore penalized. Note that the minimum similarity threshold or 

fingerprint hyperparameters are left as default167. Preventing mode collapse and 

improving uniqueness typically requires stricter diversity filter parameters that penalize 

duplicated or similar molecules more easily, while a softer gradient of penalization is 

preferred.  

With respect to the objective score, there was less discrepancy between output modes 

and the bin size and observations effectively reversed. Higher bin sizes and the stricter 

measures of similarity (identical murcko scaffold and scaffold similarity (ECFP)) 

showed higher AUCs indicating better performance. These more lenient diversity filter 

hyperparameters likely enable AHC more time to associate chemotypes with high 

rewards resulting in increased objective scores.  

Overall, a trade-off is required in choosing DFs and hyperparameters for use in 

combination with AHC. DF penalization must be strict enough to reliably prevent mode 

collapse as observed by a drop in uniqueness, yet lenient enough to enable AHC to 

learn chemotype-reward associations. These observations led to the design of DF2 
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which is a compromise between preventing mode collapse and achieving high 

objective scores. 

4.3.4 Benchmarking Augmented Hill-Climb against other reinforcement learning 

strategies 

The performance of Augmented Hill-Climb was compared to other RL strategies 

commonly used for language-based RNN de novo molecule generation, namely, 

REINFORCE77, REINVENT76,99, BAR123 and Hill-Climb54, as well as in combination 

with KL regularization for non-regularized strategies (Experiment 4, Figure 4.1). In the 

interest of standardisation, the prior was trained on the GuacaMol train dataset. The 

RL strategies were applied to six tasks of varying practical difficulty (see 4.2.7.4). DF2 

was used in all cases except for the Risperidone similarity task which uses a lower 

minimum score threshold of 0 due to low similarity values observed (DF3, Table 4.2).  

The performance of task optimization is shown in Figure 4.11. AHC is the most efficient 

of all RL strategies at all tasks except for maximizing the number of heavy atoms. It is 

particularly better than the other RL strategies during early-stage optimization (e.g., 

Figure 4.11) and in more difficult objectives (e.g., Figure 4.11e,f). AHC even 

outperforms un-regularized RL strategies. Intriguingly, AHC seems to achieve 

maximization towards the end of training in the heavy atom task (seen to a lesser 

extent with REINVENT 2.0), suggesting it will eventually be able to extrapolate outside 

the training domain. As AHC uses a considerably smaller batch size than HC and 

therefore undergoes more frequent network updates, the same smaller batch size with 

HC was investigated, denoted as HC*. This smaller batch size did in-fact improve 

sample efficiency, similar to AHC, in early stages of training, but then quickly 

underwent mode collapse as evidenced by a drop in validity and uniqueness (Figure 

C.4 and Figure C.5). Moreover, KL regularization did not rescue mode collapse in any 

case, and sometimes worsened performance, suggesting it is not a sufficient 

regularization method in this context. Interestingly, re-implementation of BAR 

performed particularly poorly in most cases except for DRD2 activity (the case study 

in the original implementation309). The best agent memory in this method may actually 

inhibit learning without notable improvements in-between updating the ‘best agent’; in 

effect having two ‘regularizers’ inhibiting learning. As a result, decreasing the ‘best 

agent’ update frequency (from 5 as originally implemented) may improve performance. 
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Overall, AHC shows a sample efficiency well beyond other RL strategies for all tasks 

of practical importance (i.e., excluding the heavy atom task). 

The efficiency benefit of AHC is true also by wall time (Figure C.6). To put this practical 

benefit into greater context, Table 4.7 shows the CPU hours required to reach different 

optimization thresholds for the DRD2 docking score task. AHC is the only strategy able 

to optimize the mean docking score to 180% and 200% that of the initial prior mean 

docking score within the given time. Moreover, AHC also achieves lower optimization 

thresholds much quicker, for example, 140% in just 16 hours compared to 202 hours 

for REINVENT 2.0. This optimization task was parallelized over 10 CPUs and 

therefore actually corresponded to 1.6 hours and 20.2 hours respectively. Given 

access to just 10 CPUs, AHC is able to achieve 200% optimization from the prior in 

less than a day (21.6 hours). This enables optimization tasks to be run on single, local 

machines (e.g., 6-12 CPUs) on a far more reasonable time scale than previously 

possible, without the need for cloud computing. This provides opportunities for more 

than one expensive scoring function (e.g., docking into two receptors, or docking and 

computer-aided synthesis planning) to be used to evaluate molecule fitness on a more 

reasonable time scale.  

Figure C.7 to Figure C.12 show the centroids of the largest clusters for the top 100 

molecules generated during the six benchmark optimization tasks. Firstly, all 

strategies are more prone to generating unrealistic chemistry due to the broader 

training domain of the GuacaMol54 training set e.g., increasing molecular weight seen 

in the DRD2 docking score optimization task (Figure C.10). This is even observed for 

the more heavily regularized REINVENT strategy but is not present when using the 

MOSESn
 training set (Table 4.6). Moreover, KL regularization as proposed 

previously122,125 does not seem to improve chemistry generated by REINFORCE and 

HC and instead shows a tendency to increase molecular weight (Figure C.9). On the 

other hand, AHC results in chemistry similar to REINVENT and is typically more 

reasonable than REINVENT 2.0 (e.g., longer linker chains in Figure C.11), is less 

prone to idiosyncratic tendencies of HC (e.g., large molecules and long chains in 

Figure C.11), yet more sample efficient than either. Overall, AHC strikes the right 

balance in the trade-off between extrapolation and sample efficiency due to effective, 

tunable regularization that can maintain training set properties and therefore the 

generation of sensible and realistic molecules de novo. 
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Figure 4.11: Per-molecule optimization of different RL strategies against different objective tasks of varying difficulty: (a) number of heavy atoms, (b) Similarity 
to Risperidone (DRD2 inverse agonist), (c) predicted probability of DRD2 activity, (d) Glide-SP docking score against DRD2, (e) predicted probability of dual 
activity against DRD2 and (f) predicted probability of selective activity towards DRD2 over DRD3. In all cases, except the number of heavy atoms, AHC 
outperforms all other RL strategies with respect to objective optimization while maintaining validity and uniqueness. Only valid molecules are plotted, therefore 
gaps seen with HC* denote regions where no valid molecules were generated.  
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Table 4.7: CPU hours required for RL strategies to optimize the DRD2 docking score benchmark task to different thresholds. Time is representative of when 
the batch mean exceeds the respective internal / external threshold (time of the earliest sample exceeding threshold is shown in brackets). Run using an AMD 
Threadripper 1920x CPU and Nvidia GeForce RTX 2060 super GPU. Failing to reach a threshold is marked by a “-“. 

 CPU hours required for optimization 
beyond prior at a given threshold 

CPU hours required for optimization 
beyond external thresholds 

Threshold 120% 140% 160% 180% 200% 
Inactive 
mean 

Active 
mean 

80% precision 

REINFORCE 74 (0) 173 (0) - (20) - (34) - (96) 2 (0) 103 (0) 177 (0) 

REINFORCE + KL regularization 183 (0) - (0) - (33) - (74) - (216) 22 (0) 204 (0) - (0) 

REINVENT 79 (0) - (0) - (8) - (164) - (-) 4 (0) 93 (0) - (0) 

REINVENT 2.0 38 (0) 202 (0) - (16) - (53) - (92) 12 (0) 51 (0) 198 (0) 

BAR - (0) - (0) - (32) - (32) - (-) 4 (0) 0 (0) - (0) 

Hill-Climb 44 (0) 114 (0) 177 (0) 218 (24) - (85) 16 (0) 57 (0) 99 (0) 

Hill-Climb + KL regularization 45 (0) 106 (0) 157 (0) - (45) - (45) 8 (0) 58 (0) 99 (0) 

Hill-Climb* 11 (0) 31 (1) 52 (6) - (15) - (31) 2 (0) 11 (0) 24 (0) 

Hill-Climb* + KL regularization 14 (0) 28 (0) 74 (1) - (17) - (17) 6 (0) 17 (0) 31 (0) 

Augmented Hill-Climb 9 (0) 16 (0) 72 (0) 151 (14) 216 (15) 2 (0) 13 (0) 27 (0) 
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4.3.5 Applying Augmented Hill-Climb to transformer architectures 

RL algorithms (including AHC) should be model-agnostic and therefore applicable to 

other models used in a policy-based reinforcement learning setting. To test this and 

confirm whether AHC is still more sample efficient than the baseline REINVENT in this 

setting, both strategies were applied to a Transformer model (Tr) that uses state-of-

the-art attention mechanisms84 for AR sequence generation (Experiment 5, Figure 

4.1). To better understand any underlying difference in model behaviour, performance 

metrics were calculated, shown in Table 4.8 and Table 4.9.  Although the Tr model 

didn’t undergo extensive hyperparameter optimization, performance differences are 

marginal for both intrinsic properties and extrinsic properties in comparison to an RNN. 

Therefore, the underlying ability to learn a chemical distribution is comparable and 

suitable for further comparison of RL behaviour.  

RL was then conducted using the same approach as with the RNN on the same DRD2-

based benchmark applied previously, for both REINVENT and AHC in combination 

with DF3. Figure 4.12 shows that AHC still outperforms REINVENT with regards to 

sample efficiency and optimization power. However, as shown in Figure 4.12a-c,e the 

Tr model is much less stable under RL optimization compared to the RNN and more 

readily undergoes mode collapse i.e., it starts generating invalid or repeated 

molecules, as shown in Figure C.13 and Figure C.14. In fact, very few implementations 

of transformers exist within a RL setting97,310. Therefore a modified transformer 

architecture designed to stabilize model optimization during RL297 was also 

implemented. This gated transformer (GTr) architecture implements a GRU-like gate 

in-place of the residual connection and relocates layer normalization to input streams 

(notably this is not the only recent example of combining concepts from GRUs or 

LSTMs with transformer architectures311). As shown in Figure 4.12, this appeared to 

stabilize RL and again showed that AHC outperforms REINVENT with respect to 

sample efficiency, leaving only the heavy atom task still failing with AHC which is 

notably outside the applicability domain of the training dataset (and also devoid of any 

practical relevance). Examples of de novo chemistry generated by these models can 

be seen in Figure C.15 to Figure C.20. Overall, this shows that RL sample efficiency 

gains by AHC also generalize to other language models. 
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Table 4.8: Intrinsic properties of 10,000 sampled de novo molecules from the recurrent neural network (RNN), Transformer (Tr) and Gated Transformer (GTr) 
when trained on the GuacaMol training dataset. 

Model 
Valid 

(↑) 
Unique 

(↑) 
Novel 

(↑) 
SEDiv@1k 

(↑) 

Scaffold 
Unique 

(↑) 

FG 
(↑) 

RS 
(↑) 

MOSES 
Filters 

(↑) 
RNN 0.96 0.99 0.96 0.88 0.84 0.20 0.18 0.52 
Tr 0.96 1.00 0.97 0.85 0.86 0.18 0.17 0.52 
GTr 0.94 0.99 0.97 0.89 0.87 0.21 0.18 0.50 

 

Table 4.9: Extrinsic properties of 10,000 sampled de novo molecules from the recurrent neural network (RNN), Transformer (Tr) and Gated Transformer (GTr) 
when trained on the GuacaMol training dataset. These metrics measure the similarity of de novo molecules to the GuacaMol test dataset. 

Model 
Analogue 
Similarity 

(↑) 

Analogue 
Coverage 

(↑) 

SNN 
(↑) 

FG 
(↑) 

RS 
(↑) 

Frag 
(↑) 

Scaff 
(↑) 

logP 
(↓) 

NP 
(↓) 

SA 
(↓) 

QED 
(↓) 

Weight 
(↓) 

RNN 0.83 0.43 0.52 1.00 1.00 1.00 0.64 0.02 0.04 0.08 0.01 13.01 

Tr 0.82 0.40 0.51 1.00 1.00 1.00 0.59 0.07 0.08 0.04 0.01 2.90 

GTr 0.76 0.36 0.49 1.00 1.00 1.00 0.55 0.07 0.07 0.03 0.00 3.47 
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Figure 4.12: Per-molecule optimization by REINVENT and Augmented Hill-Climb RL strategies for the transformer (Tr) and gated transformer (GTr) architecture 
against the DRD2 benchmark objectives. Tr is more unstable during RL by REINVENT which is stabilized by the GTr. In all cases Augmented Hill-Climb 
outperforms REINVENT at objective optimization. Although these transformer models are more prone to mode collapse than an RNN as observed by a drop in 
validity and uniqueness as shown in Figure C.13 and Figure C.14. 
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4.3.6 Benchmarking Augmented Hill-Climb against other generative models 

Gao et al.55 recently proposed a practical molecular optimization (PMO) benchmark 

focussing on generative model sample efficiency. In this, they compared a wide range 

of 22 generative models (run with five replicates) on a selection of 23 commonly used 

objective tasks (QED173; predicted DRD276, GSK3β312 and JNK3312 activity; and 19 

from GuacaMol suite54). The authors apply a limit of maximizing the objective within a 

fixed budget (10,000 oracle evaluations) and measure performance by comparing the 

area under the curve (AUC) of the average top 10 molecules during optimization. They 

found that REINVENT76 was the most sample efficient across tasks, albeit using a σ 

value of 500, much higher than explored here. AHC has already demonstrated 

increased sample efficiency compared to REINVENT, suggesting potential state-of-

the-art performance relative to other generative models as well. However, this needed 

to be investigated further, especially with regards to the value of σ used and its 

consequences. 

Based on the observations in 4.3.1, the use of high σ values for REINVENT are 

particularly concerning regarding the extrapolation of chemistry outside of the training 

dataset chemical space. To investigate, the properties and structures of top ranking 

de novo molecules for a particularly well performing objective (JNK3β) are shown in 

Figure 4.13a. This shows that in 4/5 replicate runs, the top 10 molecules have 

molecular weight and LogP distributions far beyond the training dataset, and typically 

contained 0-10% ECFP4 bits unobserved in the training dataset. Moreover, visualizing 

the top 2 de novo molecules for each run highlights undesirability from a chemical 

perspective, with large molecules and many repeating substructures. Therefore, it is 

clear that in its current form the benchmark is limited to sample efficiency only, and 

the results should be interpreted with caution as they do not adequately account for 

any practical consideration of chemistry. Overall, it must reflect other desirable 

properties of de novo molecule generation to serve as a meaningful comparison 

between generative models. 
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Figure 4.13: Property distribution and example REINVENT de novo molecules from the JNK3β task in PMO benchmark. (a) Top molecules when by score alone. 

Left: Molecular weight, LogP and fraction of outlier bits of the top 10 de novo molecules relative to the ZINC250k training dataset for each replicate. Right: Top 
2 molecules are displayed from each replicate run. (b) The same is shown but when applying property filter and diversity filters to the top 10 molecules.  
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To better account for chemistry of de novo molecules, three new endpoint metrics to 

were implemented to re-evaluate generative model performance in this benchmark 

(see 4.2.8). The first metric, AUC Top-10 (Filtered), ensures the molecular weight and 

logP of the top ten molecules are within four standard deviations of the training dataset 

and contain less than 10% outlier bits. The second metric, AUC Top-10 (Diverse), 

ensures the top ten molecules are diverse with respect to each other. The final metric, 

AUC Top-10 (Combined), applies both of these constraints. These metrics are 

purposefully lenient due to subjectivity in defining sensible chemistry (which also 

depends on the training dataset used as reference), as well as the evaluation bias in 

favour distribution-based models, as rule-based models have no explicit chemical 

space constraints. However, these constraints could be made stricter, which is 

explored later.  

The extent to which de novo molecules violate these constraints is shown in Figure 

4.14. This shows that for most methods, <50% of de novo molecules pass the lenient 

molecular weight, logP and outlier bit constraint proposed here. The same is observed 

with respect to diversity, where most methods contain <50% molecules considered 

diverse as defined here, including REINVENT. It should be noted that very high 

diversity values are difficult to interpret alone, as de novo molecules with idiosyncratic 

structures artificially inflate diversity measures. Interpreting together with outlier 

ECFP4 bits will capture such a scenario or comparing in reference to the training 

dataset as a baseline (‘screening’). In this case, ~50% of molecules randomly 

screened from ZINC250k are considered diverse, and so values in this vicinity or 

slightly higher are desirable.  Applying the combination of these constraints to the 

endpoint metric i.e., top ten molecules, restricts selection to be more chemically 

reasonable, as shown in Figure 4.13b.  
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Figure 4.14: Percent of de novo molecules generated in the PMO benchmark that either (a) pass 
property constraint and outlier ECFP4 bit constraint or (b) are sufficiently diverse. Note that Screening 
and MolPAL are techniques that sample directly from the training dataset and do not generate de novo 
molecules. 

To test AHC, following the protocol of the PMO benchmark, an RNN was trained on 

the proposed training data (ZINC250k) and AHC hyperparameter optimization was run 

on the same two objective tasks used in PMO. Although Figure 4.15 shows the 

hyperparameters with the best overall average AUC on the two tasks is a batch size 

of 256, σ of 120 and k of 0.25, other combinations are almost as performant indicating 

some robustness to hyperparameter choice. This combination of hyperparameters 

was selected for benchmarking (SMILES-AHC), as well as the default σ value used in 

previous sections with which there is already some understanding of behaviour 

(SMILES-AHC*). These results are already in contrast to REINVENT where the 

highest tested value 500 for σ far outperformed any other hyperparameter 

combination55. Note no diversity filter is used with AHC to provide a standardized 

comparison despite it being shown to improve performance in 4.3.3.



Chapter 4  Augmented Hill-Climb 

194 
 

 

 

Figure 4.15: Hyperparameter optimization of Augmented Hill-Climb hyperparameters on the two test objectives Zaleplon MPO and Perindopril MPO in the PMO 
benchmark.
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AHC generated de novo molecules are within the top two generative models that 

adhere to training dataset constraints (see Figure 4.14a) and within the top 10 

generative models with respect to diversity (see Figure 4.14), albeit some of these 

may be artificially inflated as mentioned previously. However, in both cases AHC 

outperforms REINVENT, likely due to the incredibly high σ value used with 

REINVENT. Revisiting the original benchmark results by AUC Top-10, REINVENT76 

is ranked 1st, followed by Graph-GA56 and GP-BO149, shown in Figure 4.16a. 

Integrating SMILES-AHC into the PMO benchmark results in a ranking of 5th. However, 

accounting for chemistry with respect to the training dataset improves the ranking to 

2nd behind REINVENT, with Graph-GA dropping to 6th and GP-BO dropping to 4th. 

However, the best 10 de novo molecules that pass these chemistry filters span the 

first 290 compounds for AHC, compared to the first 2,723 compounds for REINVENT, 

on average. This means that many more de novo molecules are thrown out with 

REINVENT to identify the best 10, despite this REINVENT still ranks 1st
. Upon making 

these chemical filters stricter to the point of requiring the same molecular weight, logP 

and bit presence as the training dataset, REINVENT performance declines relatively 

more than AHC, resulting in AHC ranking 1st with the strictest chemical constraints, as 

shown in Figure C.21. Meanwhile, accounting for diversity results in an AHC ranking 

of 2nd behind Graph-GA, with REINVENT dropping to 4th and GP-BO dropping to 8th. 

Finally, when accounting for both chemical constraints, AHC ranks 1st, REINVENT 

drops to 4th, Graph-GA to 7th and GP-BO to 9th. More drastic changes can be observed, 

for example, STONED291 drops from 4th to 19th with the addition of chemical 

constraints proposed here. This highlights the potential for incredibly misleading 

interpretation of performance if chemistry is not considered. More generally, rule-

based methods particularly suffer as there is no chemical distribution learning or 

explicit regularization.  

Although AHC optimization and sample efficiency performance is strong on all tasks 

(see Figure 4.16), it appears to be markedly better at empirically more difficult 

objectives including isomer tasks, Zaleplon MPO and Sitagliptin MPO. These tasks 

may constitute low reward scenarios, which AHC empirically performs better in due to 

the hypothesized design. 
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Overall, when accounting for the type of chemistry generated de novo which is 

important for practical use cases, AHC achieves state-of-the-art performance 

compared to a variety of different generative model algorithms.  

 

Figure 4.16: Sample efficiency performance of PMO benchmark with additional metrics introduced here. 
(a) Rank performance ordered by AUC Top-10 Combined. (b) AUC Top-10 Combined performance per 
benchmark objective.   

4.4 Conclusion 

In this chapter, I propose a modification to the REINVENT76,99 RL framework for 

language-based de novo molecule generation that exhibits improved sample 

efficiency. This method, referred to as Augmented Hill-Climb, improves optimization 

ability ~1.5-fold over REINVENT for the task of optimizing DRD2 Glide-SP212 docking 

score. While more susceptible to mode collapse, this can be successfully ameliorated 

by application of an appropriate diversity filter. This new strategy can optimize the 

docking score for other systems beyond DRD2 including OPRM1, AGTR1 and OX1R 

where it improved sample efficiency ~45-fold on average. When compared to other 

common RL strategies used in language-based RNN de novo molecule 

generation54,77,122, it was found to outperform REINFORCE, REINVENT, BAR and Hill-

Climb with respect to optimization ability, sample efficiency, regularization and resulted 
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in chemically reasonable molecules. I hypothesize this is achieved by circumventing 

unwarranted regularization in REINVENT, but it can equally be viewed as applying 

essential regularization to the Hill-Climb algorithm. This algorithm can be successfully 

applied to transformer architectures showing that it generalizes across models. 

Furthermore, when compared to a broad variety of generative models, it achieves 

state-of-the-art sample efficiency when chemistry is accounted for in addition to 

sample efficiency.  The improvement in sample efficiency enabled by Augmented Hill-

Climb is especially useful when using computationally expensive scoring functions 

such as molecular docking or computer-aided synthesis planning tools. 

Alternative methods can be used to improve the sample efficiency of RL128. For 

example, experience replay can be used to remind the agent of ‘good’ molecules99,128, 

a margin guard313 can be employed to dynamically change σ during RL updates or 

curriculum learning can be used to accelerate learning by breaking the objective into 

a sequence of simpler tasks250. However, AHC is a more principled approach to 

improve sample efficiency and could even be used in combination with these ‘tricks’ 

to potentially further improve RL for de novo molecule optimization.  
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Conclusions 

The work presented in this thesis contributes an open-source Python software that is 

applied to evaluate: 1) integration of SBDD principles and 2) algorithmic changes to 

improve sample efficiency. Firstly, MolScore is a user friendly and configurable scoring 

function suite that includes, for example, interaction with five docking algorithms, pre-

trained QSAR models on ~2,700 ChEMBL protein targets, functionality for 

transformation and aggregation of multiple values, a range of performance metrics, 

and a graphical user interface. Secondly, MolScore is used to implement and compare 

the difference in de novo molecules proposed by REINVENT when using ligand-based 

QSAR models or structure-based docking algorithms as proxy scoring functions. This 

identified that a structure-based approach can lead to more diverse recovery of known 

chemotypes and an increased ability to learn crucial residue interactions, such as with 

D1143x32 in the D2 receptor orthosteric pocket. Lastly, I propose AHC as a hybrid 

policy-based RL algorithm to further improve the sample efficiency (~45-fold) and 

optimization ability (~1.5-fold) when learning to optimize the docking score against four 

different GPCR receptors. Meanwhile ensuring the quality of chemistry proposed 

remains unchanged compared to the baseline REINVENT. This enables SBDD 

scoring functions to be optimized on a more practical timescale. Moreover, the results 

presented highlight that there is still scope for improvement in early generation ML-

based generative models and that designing more complex generative models is not 

the only path to advance the field of molecular de novo design. 

Looking forward, a lot of progress is needed to apply generative model algorithms to 

successfully accelerate drug discovery, in regard to all aspects including evaluation 

and benchmarking, methods, and objectives. 

First of all, as exemplified in 4.3.6, many generative model benchmarks don’t 

adequately consider the chemistry of de novo molecules. This is critical to be useful in 

practice, but also admittedly non-trivial to measure. De novo chemistry can either be 

measured objectively by applying known rules such as avoiding PAINS filters, or it can 

be measured based on similarity to a trusted, drug-like dataset. The latter is far easier, 

albeit very subjective to the composition of a drug-like dataset. Moreover, this results 

in unfair evaluation for rule-based models that don’t learn this distribution or are not 

regularized by it. This could be resolved by adding physicochemical and similarity 
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properties as part of the objective209 with the caveat that multiple parameters are more 

difficult to optimize than one. Either way, I firmly believe that chemistry should be 

considered as part of the evaluation or benchmark metric. Otherwise, we may advance 

the field based on misleading results in the wrong direction, resulting in a state of 

practical uselessness. The field also needs to continue its trajectory away from drug 

design irrelevant objectives like Penalized LogP, and towards those used in practice 

like binding affinity prediction, as in this thesis. 

Aside from evaluating and benchmarking generative models against each other, the 

field sorely lacks a relative comparison to traditional approaches such as VS. Although 

generative models have the advantage of implicitly larger and quicker to search 

chemical spaces, VS libraries are growing rapidly and are usually make on demand 

thereby containing a degree of confidence in being able to test them in the real world. 

Moreover, techniques like ML-augmented VS314,315 are rapidly increasing their search 

efficiency by only screening the most promising areas of chemical space, or 

combinatorial screening approaches316,317 are being used based on available building 

blocks. Therefore, it would be of great value to identify the complementarity between 

these approaches and the situations in which it is better to apply one over the other. 

Generative models have by now proven the ability to be practically useful and learn 

sensible distributions over 2D chemical space, as well as optimization towards certain 

endpoints. The next logical step is to move towards 3D molecule generation with 

respect to protein binding, in which de novo design was mostly originally conducted 

decades ago. There is now an increasing trend towards using ML to build molecules 

in 3D by learning conditional distributions of chemical structures relative to protein 

binding pockets with 3D-based generative models249. However, these models must 

learn from far more limited data and also appropriately handle equivariance, moreover, 

no 3D structure-based generative model has yet shown the ability to additionally 

optimize an objective, nor been prospectively validated. 

As goal-directed generative models have proven the ability to maximize arbitrary 

numerical rewards, one of the keys limiting factors is now fast, accurate and robust 

scoring functions that avoid exploitation like shown by Renz et al.134 or shown by large 

greasy molecules to exploit docking scoring functions in 4.3.4. Current state-of-the-art 

methods to evaluate molecule binding like molecular dynamics and free energy 
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perturbation are too computationally expensive to be used as scoring functions for 

goal-directed generative models and are still not robust enough to be used in an 

automated way. Over time these will become more accessible with increased compute 

power and algorithmic efficiency. Improvement in either predictive accuracy of binding 

affinity or efficiency of current methods will further unlock the potential of goal-directed 

generative models. Overall, this statement is equally applicable to any in silico model 

of drug properties such as toxicity, pharmacology, and pharmacokinetics. Subsequent 

improvements in these aspects will directly relate to improvement in de novo molecule 

generation by negating the need to avoid current scoring function limitations.  
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Appendix A  

 

Figure A.1: Transformation functions mapping blood brain barrier molecular descriptors values into the 
range zero to one. From left to right: TPSA transformed by a Gaussian minimization function, # H-bond 
donors transformed by a linear threshold minimization function, LogP transformed by a linear threshold 
range function, and molecular weight transformed by a Gaussian minimization function. 

 

Figure A.2: The measured SEDiv (a) and IntDiv (b) of a randomly sampled 10,000 (@10k) subset of a 
variety of virtual libraries and datasets of characterised molecules with activity against particular targets 
belonging to a target class. IntDiv measures GDB13 as more diverse than GDB17, while SEDiv 
measures GDB17 as more diverse than GDB13 – in line with chemical intuition. 
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Appendix B 

 

Figure B.1: Example of molecule cluster when defined by whole molecule fingerprints. Molecules 
clustered using corresponding Morgan fingerprints and a set distance threshold of 0.65. Molecules are 
somewhat similar although the cluster contains different ring systems and linker lengths.   
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Figure B.2: Example of molecule cluster when defined by Bemis-Murcko scaffold fingerprints. Molecules 
clustered using corresponding Morgan fingerprints of respective Bemis-Murcko scaffolds with a set 
distance threshold of 0.2. Molecules are very similar; the linker differs in length by two carbons or less 
and one central ring is one carbon larger. 
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Figure B.3: Chemical space representation of (a) molecular fingerprints and (b) physicochemical 
descriptors and (c) 3D space via moments of inertia.  The plots show the calculated kernel density 
estimate with 100 randomly drawn samples overlayed. UMAP representation (a-b) was calculated for 
all active DRD2 ligands without filters applied, as well as the chemical structures associated with the 
Prior, Glide- and SVM-Agents. The Agents occupy complementary regions of topological space (a), 
physicochemical property space (b) and slightly 3D space (c). It can also be seen that the Glide-Agent 
better maintains the physicochemical diversity found in the Prior.  
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Figure B.4: Formal charge distribution of datasets according to the docking protocol (i.e., protonations 
states possible at pH 7±1 with the best docking score). The charge distribution observed by the Prior 
is shifted by the Glide-Agent to closer recapitulate the distribution found in actives (all extracted from 
ExCAPE-DB), in fact more so than the SVM-Agent which contains more di-cationic molecules. This 
suggests that the docking scoring function does not over estimate charge contributions.  
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Figure B.5: Docking score distribution of molecules in each dataset split by filtering certain formal charge 
values. The Glide-Agent provides the most or equal enrichment at all formal charge states.  
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Figure B.6: Kernel density estimates of de novo molecule physicochemical properties. Including 
SAscore, QED, number of aliphatic hydroxyl groups (fr_Al_OH) and number of tertiary, secondary and 
primary amines (fr_NH0, fr_NH1, fr_NH2). Of note, the Glide-Agent molecular weight distribution 
diverges away from the Prior and DRD2 active molecules. 
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Appendix C 

Table C.1: Number of molecules downloaded from ExCAPE-DB and those docked against targets used 
for evaluating Augmented Hill-Climb to assess retrospective performance. 

 ExCAPE-DB Docked 
 Active Inactive Active Inactive 

DRD2 4613 343076 3734 9538 
OPRM1 3128 2786 3125 2573 
AGTR1 671 558 270 516 
OX1R 681 322795 564 9860 
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Figure C.1: AHC optimization of Aripiprazole similarity task with different diversity filters and their 
parameters. Three endpoints are measured: (a) unique area under the curve (AUC), (b) goal AUC (c) 
and run time.  
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Figure C.2: AHC optimization of C11H24 isomers task with different diversity filters and their parameters. 
Three endpoints are measured: (a) unique area under the curve (AUC), (b) goal AUC (c) and run time. 
Note: scaffold-based diversity filters aren’t shown as C11H24 isomers cannot form rings and satisfy the 
molecular formula and so no scaffolds will be detected. 
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Figure C.3: AHC optimization of Osimertinib MPO task with different diversity filters and their 
parameters. Three endpoints are measured: (a) unique area under the curve (AUC), (b) goal AUC (c) 
and run time.  
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Figure C.4: Validity for objective optimization using different RL strategies. HC* suffers from a drop in 
validity.  

 

Figure C.5: Uniqueness for objective optimization using different RL strategies. HC* suffers from a drop 
in uniqueness.  

 

Figure C.6: Wall time for objective optimization using different RL strategies. Run using an AMD 
Threadripper 1920x CPU and Nvidia GeForce RTX 2060 super GPU. The docking tasks were 
parallelized over 10 CPU cores while all other tasks used only 1 CPU core. 
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Figure C.7: Centroid of the top 5 largest clusters for the top 100 molecules in the heavy atom task for 
different RL strategies. Cluster size (CS), centroid score (S) and the average cluster score (AvS) is 
annotated below. Long chains can be seen due to the nature of the task increasing the number of heavy 
atoms. 
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Figure C.8: Centroid of the top 5 largest clusters for the top 100 molecules in the Risperidone similarity 
task for different RL strategies. Cluster size (CS), centroid score (S) and the average cluster score 
(AvS) is annotated below. 
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Figure C.9: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2 activity task for 
different RL strategies. Cluster size (CS), centroid score (S) and the average cluster score (AvS) is 
annotated below. 
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Figure C.10: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2 docking score 
task for different RL strategies. Cluster size (CS), centroid score (S) and the average cluster score 
(AvS) is annotated below. 
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Figure C.11: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2-DRD3 QSAR 
dual predicted probability of activity task for different RL strategies. Cluster size (CS), centroid score 
(S) and the average cluster score (AvS) is annotated below. Note where AHC generates cationic 
species due to imperfections in the neutralization of training data resulting in charge symbols in the 
RNN vocabulary. 
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Figure C.12: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2/DRD3 QSAR 
predicted probability of selective activity task for different RL strategies. Cluster size (CS), centroid 
score (S) and the average cluster score (AvS) is annotated below. 
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Figure C.13: Validity for objective optimization using REINVENT and Augmented Hill-Climb with a 
transformer or gated transformer model.   

 

Figure C.14: Uniqueness for objective optimization using REINVENT and Augmented Hill-Climb with a 
transformer or gated transformer model. Transformer model is more prone to undergoing a drop in 
uniqueness.  
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Figure C.15: Centroid of the top 5 largest clusters for the top 100 molecules in the heavy atom task for 
transformer models. Cluster size (CS), centroid score (S) and the average cluster score (AvS) is 
annotated below. 
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Figure C.16: Centroid of the top 5 largest clusters for the top 100 molecules in the Risperidone similarity 
task for transformer models. Cluster size (CS), centroid score (S) and the average cluster score (AvS) 
is annotated below. 
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Figure C.17: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2 activity task 
for transformer models. Cluster size (CS), centroid score (S) and the average cluster score (AvS) is 
annotated below. 
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Figure C.18: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2 docking score 
task for transformer models. Cluster size (CS), centroid score (S) and the average cluster score (AvS) 
is annotated below. 
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Figure C.19: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2-DRD3 QSAR 
dual predicted probability of activity task for transformer models. Cluster size (CS), centroid score (S) 
and the average cluster score (AvS) is annotated below. 
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Figure C.20: Centroid of the top 5 largest clusters for the top 100 molecules in the DRD2/DRD3 QSAR 
predicted probability of selective activity task for different transformer models. Cluster size (CS), 
centroid score (S) and the average cluster score (AvS) is annotated below. 
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Figure C.21: Performance of generative models on PMO benchmark at different levels of chemical 
constraints relative to the training dataset ZINC250k. 
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