
1 

 

Classification: Biological Sciences; Neuroscience 

Title: Adolescence is associated with genomically patterned consolidation of the hubs of the 

human brain connectome  

Authors: Kirstie J Whitaker*
a
, Petra E Vértes*

a
, Rafael Romero-Garcia

a
, František Váša

a
, 

Michael Moutoussis
b
, Gita Prabhu

b
,
 
Nikolaus Weiskopf

b
, Martina F Callaghan

b
, Konrad S 

Wagstyl
a
, Timothy Rittman

c
, Roger Tait

a
, Cinly Ooi

a
, John Suckling

a
, Becky Inkster

a
, Peter 

Fonagy
d
, Raymond J Dolan

b,e
, Peter B Jones

a,f
, Ian M Goodyer

a,f
, the NSPN Consortium

†
, 

Edward T Bullmore
a,f,g,h

. 

*These authors contributed equally to this work.
 

†
Full member list available in Supplementary Information. 

Affiliations: 
a
Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK. 

b
Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College 

London, London, WC1N 3BG, UK. 
c
Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 3EB, UK. 

d
Research Department of Clinical, Educational and Health Psychology, University College 

London, London, WC1E 6BT, UK. 
e
Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, WC1B 

5EH, UK. 
f
Cambridgeshire and Peterborough NHS Foundation Trust, Huntingdon, PE29 3RJ, UK. 

g
MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of 

Cambridge, Cambridge, CB2 3EB, UK. 
h
Academic Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.

 

Correspondence to: Kirstie Whitaker PhD, University of Cambridge, Brain Mapping Unit, 

Department of Psychiatry, Sir William Hardy Building, Downing Street, Cambridge CB2 3EB, 

UK. Email: kw401@cam.ac.uk. 

Keywords: 

Graph theory, partial least squares, microarray, myelinogenesis, magnetization transfer 

 

  



2 

 

Abstract 

How does human brain structure mature during adolescence? We used MRI to measure cortical 

thickness and intra-cortical myelination in 297 population volunteers aged 14-24 years. We 

found, and replicated, that association cortical areas were thicker and less myelinated than 

primary cortical areas at 14 years. However, association cortex had faster rates of shrinkage and 

myelination over the course of adolescence. Age-related increases in cortical myelination were 

maximised approximately at the internal layer of projection neurons. Adolescent cortical 

myelination and shrinkage were coupled and specifically associated with a dorso-ventrally 

patterned gene expression profile enriched for synaptic, oligodendroglial and schizophrenia-

related genes. Topologically efficient and biologically expensive hubs of the brain anatomical 

network had greater rates of shrinkage/myelination, and were associated with over-expression of 

the same transcriptional profile as cortical consolidation. We conclude that normative human 

brain maturation involves a genetically patterned process of consolidating anatomical network 

hubs. We argue that developmental variation of this consolidation process may be relevant both 

to normal cognitive and behavioural changes, and to the high incidence of schizophrenia, during 

human brain adolescence. 
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Significance Statement 

Adolescence is a period of human brain growth and of high incidence of mental health disorders. 

Here we show, consistently in two MRI cohorts, that human brain changes in adolescence were 

concentrated on the more densely connected hubs of the connectome – i.e., association cortical 

regions that mediated efficient connectivity throughout the human brain structural network. Hubs 

were less myelinated at 14 years, but had faster rates of myelination and cortical shrinkage in the 

14–24 year period. This topologically focused process of cortical consolidation was associated 

with expression of genes enriched for normal synaptic and myelin-related processes, and for risk 

of schizophrenia. Consolidation of anatomical network hubs could be important for normal and 

clinically disordered adolescent brain development.   
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Main Text 

/body 

Adolescence is associated with major behavioral, social and sexual changes, as well as increased 

risk for many psychiatric disorders (1). However, human brain maturation during adolescence is 

not yet so well understood. Historically pioneering studies used histological techniques to 

demonstrate that distinct areas of cortex were differentially myelinated in post mortem 

examination of perinatal tissue, suggesting “myelinogenesis” as an important process in human 

brain development (2, 3). Magnetic resonance imaging (MRI) can measure human brain 

development more comprehensively, and over a wider age range, than is possible for post 

mortem anatomists. The thickness of human cortex can be reliably and replicably measured by 

MRI (4) and longitudinal studies have shown that cortical thickness (CT, mm) monotonically 

shrinks over the course of post-natal development with variable shrinkage rates estimated for 

different age ranges (5–11; for review see 12). CT typically shrinks from about 3.5 mm at age 13 

years (9) to about 2.2 mm at age 75 (10, 11). Rates of cortical shrinkage are faster during 

adolescence (approximately -0.05 mm/year) than in later adulthood or earlier childhood (9). 

What does this MRI phenomenon of cortical shrinkage represent at a cellular level? There are 

broadly two tenable models: pruning and myelination. Basic physical principles of MRI predict 

that shorter T1 relaxation times reflect either a reduction in the fraction of “watery” cytoplasmic 

material, like cell bodies, synapses or extra-cellular fluid; or an increase in the fraction of “fatty” 

myelinated material, like axons. Pruning models propose that cortical shrinkage in adolescence 

represents loss or remodeling of synapses, dendrites, or cell bodies (13). Myelination models 

propose that the cortex appears to shrink due to an increasing proportion of myelinated axons, 

without necessarily implying any loss or change of neuronal material (5). 

In the macaque monkey, although the main phase of synaptic pruning and neuronal loss occurs 

earlier in development (14, 15), there is evidence for further synaptic remodeling during 

adolescence (16, 17). In rodents, there is histological evidence for increasing intra-cortical 

myelination during adolescence, especially at the deeper cytoarchitectonic layers of cortex (V 

and VI; 18, 19). At a cellular level, this likely reflects a developmentally late myelination of 

efferent axonal segments immediately distal to the axonal hillock of pyramidal cells (20). MRI 
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sequences have been recently developed for myelin mapping in humans (21). These techniques 

include magnetisation transfer (MT) which has been validated as an MRI marker of myelination 

by post mortem imaging and histological studies of multiple sclerosis, a demyelinating disorder 

(22); see Methods for details. It has been shown that primary sensory and motor areas of cortex 

are more heavily myelinated than association cortical areas; that most cortical areas show 

progressive increases in myelination over the course of normative development into middle age; 

and that myelination is concentrated in deeper layers of cortex (21, 23, 24). Association cortical 

areas have been identified among the highly connected “hubs” of structural brain networks (25), 

suggesting that differential rates of intracortical myelination might be related to differences 

between regions in their topological roles as part of the connectome. Developmental changes in 

structural and functional MRI network topology have been reported (for review see 26) but not 

previously related to measures of cortical shrinkage or myelination. Recently, several studies 

have linked brain regional gene expression to axonal connectivity in the mouse (27, 28) and to 

functional MRI networks in humans (29, 30), but there have been no previous efforts to 

investigate genetic mechanisms of adolescent myelination of human cortex.  

In this context, we aimed to test three hypotheses: i) that adolescent cortical shrinkage was 

coupled to intra-cortical myelination; ii) that adolescent cortical shrinkage/myelination, a.k.a. 

consolidation, was concentrated anatomically on association cortex and topologically on the 

most strongly connected regions (hubs) of the human brain anatomical network; and iii) that 

adolescent consolidation of these connectome hubs was associated with a specific gene 

expression profile, enriched for neuronal and oligodendroglial function; and enriched for risk of 

schizophrenia, a neurodevelopmental disorder with its highest incidence in young adults. 

We used quantitative multi-parameter mapping (MPM; 31, 32) to test these hypotheses on MRI 

data acquired from a sample of 297 healthy young people sampled from primary health care 

registers, stratified by age, and balanced for sex in the adolescent age range 14-24 years, with 

approximately 60 participants in each of 5 age-defined strata: 14-15 years inclusive, 16-17 years, 

18-19 years, 20-21 years, and 22-24 years (see Methods and Table S1). From the MRI data, we 

measured cortical thickness (CT, mm) and magnetisation transfer (MT, percentage units [PU]) at 

each of 308 cortical regions for all participants. We used linear models to estimate baseline CT 

and MT at 14 years, and age-related rates of change in the period 14-24 years (ΔCT, ΔMT), from 
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data on participants of all ages at each regional node. We explored the relationships between 

these local cortical MRI markers and a few, key metrics of complex network topology that have 

been widely used in prior neuroimaging and other neuroscience studies (for review see 33). We 

focused on the degree and closeness of each node - as measures of nodal “hubness” - and the 

community structure of the network - defined as a set of sparsely inter-connected modules; see 

Methods and Supplementary Information (SI) for details of topological connectome analysis. 

We investigated the relationships between gene transcriptional profiles and co-localised MRI 

(CT, MT) and network topological phenotypes by multivariate analysis of MRI data on 297 

adolescents and whole-genome gene expression maps of 6 adult human brains (post mortem) 

provided by the Allen Institute for Brain Science (AIBS; 34); see Methods and SI for details.  

For robustness and generalizability, we first analyzed data from a discovery cohort (N=100; 

balanced for age and sex as per the sample design) and then replicated all the key findings in a 

validation cohort (N=197). Non-identifiable data and all analysis code are available at the NSPN 

Cortical Myelination figshare repository (see SI for details). 

Results 

Cortical thickness and shrinkage 

Cortical thickness at 14 years of age ranged between 1.93 and 3.8 mm across different cortical 

areas. Baseline CT was thinnest in primary somatosensory and visual cortices (Fig. 1a; 35). In 

the adolescent period from 14-24 years, there was evidence for significant cortical shrinkage (r
2
 

= 0.10, P = .006, estimated global rate of shrinkage, ΔCT = -0.011 mm/year; Fig. 1b). Although 

289 of the 308 nodes exhibited cortical shrinkage (ΔCT < 0), only 79 nodes showed shrinkage 

that was statistically significant at P < .05 after FDR correction for multiple comparisons (Fig. 

1c). The regions with the greatest rates of shrinkage were located in association cortex. 

Intra-cortical magnetisation transfer and myelination 

By combining data from neighbouring voxels in each regional node, we could estimate regional 

MT for each depth at sub-millimetre resolution (4), corresponding approximately to different 

layers of cortex (Fig. 2a). MT was estimated at ten fractional depths of the cortical ribbon from 

the pial surface (0% depth) to the grey/white matter boundary (100% depth), and at two 
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infracortical locations 0.4mm and 0.8mm below the grey/white matter boundary. At each cortical 

depth, we estimated baseline MT (at age 14) and adolescent change in MT (over the age range 

14-24 years). In all regions, as expected, baseline MT increased monotonically as a function of 

increasing depth from the pial surface, reflecting greater density of myelinated fibres in deeper 

cortical layers (Fig. 2b; Movie S1). However, there was marked regional variability (Fig. 1c): 

areas of primary sensory cortex had greater MT at age 14 than association cortical areas.  

Rates of adolescent change in MT, ΔMT, were greatest when measured at 70% of the depth of 

cortex (Fig. 2d; Movie S2), i.e., ~1.9 mm below the pial surface and ~0.8 mm above the 

boundary with white matter (across all cortical regions: r
2
 = 0.17, P < .001, ΔMT = 4.98x10

-3
 

year
-1

; Fig. 1d). 70% cortical depth corresponds approximately to the level of lamina V and VI, 

comprising the internal layer of pyramidal or projection neurons (Fig. 2c). There was marked 

regional variability in the rates of myelination: regions with the greatest rates of myelination 

were located in association cortices (Fig. 1g). 

In light of these complementary anatomical and developmental profiles of CT and MT, it is not 

surprising that there was a strong negative correlation between baseline cortical thickness and 

magnetisation transfer (r
2
 = 0.43, P < .001, β = -0.120 PU/mm; Fig. 1f) and a strong negative 

correlation between rates of cortical shrinkage and intra-cortical myelination (r
2
 = 0.22, P < .001, 

β = -0.126 PU/mm; Fig. 1h). Adolescent cortical shrinkage was significantly but not entirely 

mediated by age-dependent changes in MT (Fig. S1E), indicating that myelination is necessary 

but not sufficient to account for cortical shrinkage.  

Internal replication  

All of the results reported so far were based on analysis of the discovery cohort (N=100; 20 in 

each of 5 age bins; 50 female); and all were closely replicated in the validation cohort (N=197; 

~40 in each of 5 age bins; 98 female; Figs. S1 and S2). As the validation cohort had twice as 

many participants, it conferred greater statistical power to test hypotheses. We henceforth focus 

on the most precise estimates of CT and MT (at 70% cortical depth) estimated from the total 

sample (N=297; 60 per age bin, 30 female), although all further analyses were also reproduced 

separately for the discovery and validation cohorts (Figs. S3 and S4). 
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Genomic patterning of adolescent cortical consolidation 

To elucidate the molecular mechanisms of local change in CT and MT, we explored the 

association between these MRI markers and regional gene expression profiles from human adult 

brain microarray datasets provided by AIBS (34). For example, baseline MT was correlated with 

regional expression of the gene for myelin basic protein (MBP) across cortex (Fig. 2e) 

confirming that the MT signal is indicative of myelin content (22). The association was strongest 

at 70% cortical depth (r
2
 = 0.21, P < .001; β = 0.0723; Fig. S3A).  

To explore analogous associations between all 4 cortical MRI metrics, and all 20,737 genes 

measured in the AIBS microarrays, at each of 308 regions, we used the multivariate, dimension-

reducing technique of partial least squares (PLS; 36). This analysis defined a few PLS 

components which were the linear combinations of the weighted gene expression scores 

(predictor variables) that were most strongly correlated with one or more of the MRI markers 

(response variables; CT, MT, ΔCT and ΔMT).   

The top two PLS components explained 28% of the variance in the MRI response variables 

(permutation test, P < .001). The first PLS component (PLS1; Fig. 3a) represented a significant 

association between a rostro-caudally patterned gene expression profile and baseline measures of 

CT and MT at 14 years (Fig. 3b-c; Fig. S5). The second, independent, PLS component (PLS2; 

Fig. 3d) represented a significant association between a dorso-ventrally patterned gene 

expression profile and measures of adolescent cortical shrinkage and myelination (Fig. 3e-f). See 

Supplementary File 1 (WhitakerVertes_PLSEnrichmentGeneList.xlsx) for a full list of 

significantly over- or under-expressed genes represented by the first two PLS components. 

Focusing on the gene expression profile defined by the second PLS component, because it was 

specifically associated with adolescent cortical shrinkage and intra-cortical myelination, we 

found that this transcriptional signature was significantly enriched in genes relating to synaptic 

transmission (P < .001), regulation of glutamatergic signaling (P < .001), and potassium ion 

channels (P < .001; Fig. 3g; 37). We also found that the transcriptional profile associated with 

association cortical consolidation was significantly enriched for an oligodendroglial gene set (P 

< .001; Fig. S3F; 38), as well as for a set of genes robustly associated with risk for 

schizophrenia, a neurodevelopmental disorder (P < .001; Fig. S3G; 39). 
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Adolescent cortical consolidation and the connectome 

We used the measurements of cortical thickness on the total sample to estimate the mean 

structural covariance matrix, representing the pair-wise correlation of cortical thickness between 

each possible pair of 308 regions. This matrix was thresholded to construct a binary graph or 

structural covariance network which had a complex topology, consistent with many prior reports 

of human anatomical connectomes (Fig. S6; 40). 

Globally, the network was small-world with hubs (indicated by a fat-tailed degree distribution), a 

modular community structure, and a rich club or core of densely inter-connected high degree 

nodes or hubs, which were located primarily in frontal and parietal association cortices (Fig. 4a, 

Fig. S6). At a nodal level of analysis, high degree hub nodes also had high closeness centrality, 

indicating short path length of connections to other nodes in the network (Fig. 4b), as well as 

long physical distance of connections. Cortical shrinkage was faster for topologically central 

hubs with long distance connections  (Fig. 4c; degree: r
2
 = 0.14, P < .001, β = -1.48x10

-3
mm

-1
; 

closeness: r
2
 = 0.18, P < .001, β = -4.91 mm

-1
; distance: r

2
 = 0.09, P < .001, β = -0.81x10

-3
),. 

Intra-cortical myelination rates were also faster for long-distance hubs (Fig. 4d; degree: r
2
 = 

0.07, P < .001, β = 3.81x10
3
 PU

-1
; closeness: r

2
 = 0.13, P < .001, β = 14.8 PU

-1
; distance: r

2
 = 

0.21, P < .001, β = 4.42x10
3
 mm/PU). 

We found that degree, closeness and connection distance were also positively correlated with the 

pattern of gene expression associated with adolescent change in cortical structure (PLS2; Fig. 4e; 

degree: r
2
 = 0.21, P < .001, β = 178; closeness: r

2
 = 0.26, P < .001, β = 572x10

-3
; distance: r

2
 = 

0.15, P < .001, β = 100mm). In contrast, these metrics were not so strongly correlated with the 

pattern of gene expression associated with cortical structure at 14 years (PLS1, degree: r
2
 < 0.01, 

P = .904, β = -2.36; closeness: r
2
 < 0.01, P = .892, β = 9.39x10

-3
;
 
distance: r

2
 = 0.02, P = .02, β = 

-35.2mm). 

Discussion 

We have shown that adolescent cortical shrinkage is related to changes in intra-cortical 

magnetisation transfer in humans. This observation supports myelination models of shrinkage, 

and more generally confirms association cortical myelinogenesis as a key neurodevelopmental 
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process in adolescence. Our baseline MT-based myelination maps (Figs. 1 and 2) show a high 

degree of correspondence with previous myelin maps based on alternative MRI parameters, such 

as the ratio of T2- and T1-weighted signals (T1w/T2w; 23, 24, 41, 42). In both MT and 

T1w/T2w maps, the highest levels of myelination are located in areas of primary isocortex 

comprising many large pyramidal cells which are the principal targets and sources of axonal 

projections. However, arguably the strongest evidence that MT is representative of myelination 

in these data is that MT was highly correlated with regional expression of the gene for myelin 

basic protein, MBP, and the set of genes most strongly correlated with adolescent change in MT 

was significantly enriched for oligodendroglia-related genes. 

We interpret our findings as indicating that adolescent cortical myelination was greatest in 

association areas, which were least myelinated at age 14 years. It is plausible, though not directly 

demonstrated by these data, that specialized motor and sensory cortex may show faster rates of 

intracortical MT change compared to association cortex at earlier stages of development. This 

would be compatible with the idea, dating back to Flechsig (2), that association cortical areas are 

the focus of a relatively late wave of myelinogenesis. The intra-cortical location of strongest 

maturational changes in MT, corresponding approximately to the boundary between layer V 

(internal pyramid) and layer VI, further suggests that adolescent intracortical myelination may be 

concentrated on the proximal segments of efferent projections from pyramidal neurons (20).  

Although intra-cortical myelination was greatest in areas that showed fastest rates of cortical 

shrinkage, it did not entirely explain age-related changes in cortical thickness. Likewise, 

although the gene expression profile associated with adolescent change was enriched for genes 

related to oligodendroglial function, it was also significantly enriched for neuronal genes, 

especially those implicated in remodeling of synapses or transport of glutamate-containing 

vesicles. Thus it seems plausible that genetically programmed processes of synaptic remodeling 

act together with locally coupled processes of intra-cortical myelination to consolidate synaptic 

and axonal connectivity of association cortical areas in adolescence.  The set of gene 

transcription markers most strongly associated with this late maturational process (43) was 

enriched for genes known to confer risk for schizophrenia (39), generating the hypothesis that 

deviation from the normative developmental trajectory of cortical hub consolidation could be an 
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intermediate phenotype underlying the high incidence of the clinical phenotype of schizophrenia 

in young people.  

However, we note some important caveats that mandate further critical testing of these results 

and their hypothetical implications. First, the gene expression profiles used in this analysis were 

measured in 6 post-mortem adult brains (mean age = 43 years). Brain regional gene expression is 

known to change over the two decades approximately intervening between the oldest subject in 

the MRI dataset and the youngest subject in the genomic dataset (10). Any such age-related 

changes in gene expression will have confounded our analysis of the association between 

imaging and genomic variables. We might expect this age disparity to reduce the statistical 

power to detect true MRI/genomic associations, rather than to inflate the probability of false 

positive associations. Nonetheless, the genomic analysis of developmental MRI phenotypes 

would certainly be stronger in future if it was informed by age-matched regional gene expression 

profiles (such data are not currently available). Second, the MRI changes we have interpreted 

developmentally are estimated from cross-sectional data. A longitudinal design incorporating 

multiple repeated MRI scans over time would provide a more secure basis for estimation of age-

related changes attributable to the developmental maturation of individual brains. Third, we have 

not presented any evidence that people at risk for schizophrenia do indeed demonstrate abnormal 

cortical hub consolidation, although we note there is prior evidence for abnormal cortical 

thickness, magnetization transfer and cortical shrinkage in patients with schizophrenia (44–46). 

Future longitudinal studies of network development (and ideally also gene expression) in young 

people genetically or environmentally at risk for schizophrenia will be required to test the 

pathogenic role of hub consolidation definitively.  

It is well known that brain networks generally have complex topological properties, including 

hubs, modules and rich clubs (40, 47). We replicated these findings by graph theoretical analysis 

of structural covariance networks (derived from the CT measurements), showing that 

topologically central nodes had higher rates of adolescent shrinkage and myelination, and higher 

levels of gene expression associated with cortical consolidation. In a sense this is not surprising, 

given our earlier results showing that the coupled changes in CT and MT were greatest in 

association cortex, and prior studies showing that network hubs of the structural brain 

connectome are disproportionately located in association cortex (40). It suggests that adolescent 
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cortical consolidation is topologically targeted to optimize the performance of network hubs. For 

example, synaptic remodeling and intracortical myelination of cortical hubs might be expected to 

minimize the conduction time for axonal propagation of electrical signals or to enhance the 

synchronization of oscillations across anatomically distributed cortical areas (48). These 

physiological implications of connectome hub consolidation would hypothetically favour more 

integrative functional network topology and dynamics, which are known to be important for 

later-maturing, “higher order” cognitive functions (49).  

We predict that age-related cortical consolidation of human cortical network hubs will prove to 

be relevant to the normal acquisition of cognitive and behavioural skills during the adolescent 

transition from childhood to adulthood, and may also prove to be implicated in the clinical 

emergence of neurodevelopmental and psychiatric disorders such as schizophrenia in young 

people (1, 3).  
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Methods  

Design 

2135 healthy young people in the age range 14-24 years were recruited from schools, colleges, 

NHS primary care services and direct advertisement in north London and Cambridgeshire. This 

primary cohort was stratified into 5 contiguous age-related strata, balanced for sex and ethnicity: 

14-15 years inclusive, 16-17 years, 18-19 years, 20-21 years, and 22-24 years. To populate the 

(secondary) MRI cohort, 300 participants were sub-sampled from the primary cohort (conserving 

sex and ethnicity balance) with N=60 in each of the 5 age strata. See SI for additional detail and 

exclusion criteria. 

Participants provided informed written consent for each aspect of the study and parental consent 

was obtained for those aged 14-15 years. The study was ethically approved by the National 

Research Ethics Service and was conducted in accordance with NHS research governance 

standards. 

MRI data acquisition 

All scans were acquired using the multiparameter mapping (MPM) sequence (32) implemented 

on three identical 3T whole body MRI systems (Magnetom TIM Trio, Siemens Healthcare, 

Erlangen, Germany; VB17 software version), two located in Cambridge and one in London, 

operating with the standard 32-channel radio-frequency (RF) receive head coil and RF body coil 

for transmission. Between-site reliability and tolerability of all MRI procedures was satisfactorily 

assessed by a pilot study of 5 healthy volunteers each scanned (for approximately 25 mins) at 

each site (32). The between-site bias was less than 3%, and the between-site coefficient of 

variation was less than 8%, for both R1 and MT parameters (32). R1 and MT were quantified in 

Matlab (The MathWorks Inc., Natick, MA, USA) using SPM8 (www.fil.ion.ucl.ac.uk/spm) and 

custom tools; see SI for details. 

Cortical surface reconstruction and quality control 

The cortical surface for each participant was reconstructed from their R1 image by the following 

steps: skull stripping (51), segmentation of cortical grey and white matter (52), separation of the 

http://www.fil.ion.ucl.ac.uk/spm
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two hemispheres and subcortical structures (52–54); and finally construction of smooth 

representation of the grey/white interface and the pial surface (52). We used FreeSurfer v5.3.0 

software to implement these processes (http://surfer.nrm.mgh.harvard.edu). After quality control, 

three participants had to be excluded from the analyses due to movement artefacts which 

prevented accurate surface reconstructions. 

Estimation of regional cortical thickness and MT 

We used a backtracking algorithm (55), to parcellate the Freesurfer average (fsaverage) brain 

surface into anatomically defined regions with approximately equal area (500 mm
2
). The 

algorithm divided the 66 regions defined by sulco-gyral criteria in the Desikan-Killiany atlas 

(56) into 308 contiguous parcels across both hemispheres in a standard space (Fig. S2A). This 

parcellation template was then transformed to the native space of each participant’s image to 

minimize geometric deformation of the MRI data prior to estimation of cortical thickness of each 

region using the mris_anatomical_stats command in FreeSurfer. 

To localize cortical myelination at a spatial resolution corresponding approximately to the scale 

of the six lamina of neocortex, at each regional node, we estimated MT at each of 11 equidistant 

points on the normal line from the grey/white matter boundary (fractional cortical depth = 100%) 

to the pial surface (fractional cortical depth = 0%) using the mri_vol2surf command in 

FreeSurfer. By measuring MT at depths defined in proportion to cortical thickness, we aimed to 

adjust the measurements for variation in absolute cortical thickness between different regions 

and as a function of age. We additionally estimated MT at two locations, consistently defined as 

0.4 mm and 0.8 mm below the GM/WM boundary, to sample the dense myelination of central 

white matter as a point of comparison for intracortical MT (Fig. 2 and SI for detail).   

Gene expression dataset 

Microarray data for 5 male and 1 female donors with mean age 42.5 years (H0351.1009, 

H0351.1016, H0351.1015, H0351.2002, H0351.1012, H0351.2001) were available from the 

Allen Institute for Brain Science (AIBS; 27; http://human.brain-map.org). We matched the 

centroids of the regions of the MRI parcellation to the closest regional gene expression profile. 

Microarray data were averaged across all samples from all donors in the matching anatomical 

http://surfer.nrm.mgh.harvard.edu/
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region across both hemispheres. The data were also averaged across probes corresponding to the 

same gene, excluding probes that were not matched to gene symbols in the AIBS data. Two MRI 

regions were excluded as both the mean and the range of gene expression values in these regions 

were outliers compared to the other cortical regions of interest. The final output was a matrix of 

Z-scored expression values for each of 20,737 genes estimated in 306 MRI regions (see SI for 

further details on genetic data acquisition and analysis). 

Structural covariance and network analyses 

The structural covariance matrix comprised the pair-wise correlations of cortical thickness for all 

possible pairs of regions in the parcellation template. Binary graphs were constructed using 

NetworkX (57) to be node-connected with a connection density of 10% (40). From this graphical 

model of the connectome, we estimated two measures of topological centrality at each node: 

degree and closeness. These are representative of the more general concept of nodal centrality 

and they are strongly correlated: hub nodes were defined by high degree and/or high closeness. 

We also estimated the connection distance as the mean of the Euclidean distance of all the non-

zero edges at each node. On average over all nodes, we estimated clustering and global 

efficiency (58), and combined these measures of network segregation and integration, 

respectively, to estimate the small-worldness of the global network (59). The community 

structure of the graph was “nearly decomposed” by maximization of modularity (60) into a set of 

sparsely inter-connected modules or sub-graphs. The core/periphery structure of the graph was 

defined as a small rich club or core of highly inter-connected hubs, embedded in a larger set of 

more peripheral nodes. See SI for additional detail on these metrics and Fornito et al (33) for 

background on graph theoretical methods for brain network analysis.  

Statistical analyses 

At each regional node, we fitted a simple linear regression model across all participants to 

estimate the gradient (ΔCT, ΔMT) and intercept or baseline (CT, MT) for each MRI 

measurement. For MT, the same model was fitted separately at each depth level between the pial 

surface and 0.8 mm below the GM/WM boundary. The null hypothesis of zero age-related 

change in CT or MT was tested globally on average over all regions and at each region 
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individually, controlling the false discovery rate (FDR) at 5% to correct for multiple comparisons 

entailed by regional analysis. 

Partial least squares regression (PLS) on the gene expression matrix was used to identify the 

linear combinations of genes that best predicted the response variables (CT, MT, ∆CT, ∆MT). 

The statistical significance of the goodness-of-fit of the first two PLS components was tested 

with two-tailed α = 0.05 by 1000 permutations of the response variables. The error in estimation 

of the weight of each gene on each PLS components was assessed by bootstrapping and the ratio 

of the weight of each gene to its bootstrap standard error was used to rank the genes according to 

their contribution to each PLS component. We used Gene Ontology (GO) enrichment analysis 

tools to identify and summarise annotations corresponding to biological processes that were 

significantly over-represented (FDR = 5%) in the most positively and negatively weighted genes 

on each PLS component (Gorilla: http://cbl-gorilla.cs.technion.ac.il, version 28 Nov 2015; and 

ReVigo: http://revigo.irb.hr) - see SI for additional details on enrichment analyses. 

We predicted hypothetically that the transcriptional profile strongly associated with adolescent 

cortical consolidation (PLS2) should be enriched for genes associated with oligodendroglia (38), 

or risk for schizophrenia (39). We tested for significant enrichment by a permutation test of the 

normalized bootstrap weight of each gene in PLS1 and PLS2, summed over all genes in the set.  

References 

1.  Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during 

adolescence? Nat Rev Neurosci 9(12):947–57. 

2.  Flechsig P (1901) Developmental (myelogenetic) localisation of the cerebral cortex in the 

human subject. Lancet 158(4077):1027–1030. 

3.  Miller DJ, et al. (2012) Prolonged myelination in human neocortical evolution. Proc Natl 

Acad Sci 109(41):16480–16485. 

4.  Rosas HD, et al. (2002) Regional and progressive thinning of the cortical ribbon in 

Huntington’s disease. Neurology 58(5):695–701. 

5.  Sowell ER, et al. (2004) Longitudinal mapping of cortical thickness and brain growth in 

normal children. J Neurosci 24(38):8223–8231. 



17 

 

6.  Gogtay N, et al. (2004) Dynamic mapping of human cortical development during 

childhood through early adulthood. Proc Natl Acad Sci U S A 101(21):8174–9. 

7.  Raznahan A, et al. (2011) How does your cortex grow? J Neurosci 31(19):7174–7177. 

8.  Wierenga LM, Langen M, Oranje B, Durston S (2014) Unique developmental trajectories 

of cortical thickness and surface area. Neuroimage 87:120–126. 

9.  Zhou D, Lebel C, Treit S, Evans A, Beaulieu C (2015) Accelerated longitudinal cortical 

thinning in adolescence. Neuroimage 104:138–45. 

10.  Salat DH, et al. (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–

730. 

11.  Storsve AB, et al. (2014) Differential Longitudinal Changes in Cortical Thickness, 

Surface Area and Volume across the Adult Life Span: Regions of Accelerating and 

Decelerating Change. J Neurosci 34(25):8488–98. 

12.  Khundrakpam BS, Lewis JD, Zhao L, Chouinard-Decorte F, Evans AC (2016) Brain 

connectivity in normally developing children and adolescents. Neuroimage 134:192–203. 

13.  Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human 

cerebral cortex. J Comp Neurol 387(2):167–78. 

14.  Bourgeois JP, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex 

of rhesus monkeys. Cereb Cortex. doi:10.1093/cercor/4.1.78. 

15.  Finlay BL, Slattery M (1983) Local differences in the amount of early cell death in 

neocortex predict adult local specializations. Science (80- ) 219(4590):1349–1351. 

16.  Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent 

overproduction of synapses in diverse regions of the primate cerebral cortex. Science (80- 

) 232(4747):232–5. 

17.  Bourgeois JP, Rakic P (1993) Changes of synaptic density in the primary visual cortex of 

the macaque monkey from fetal to adult stage. J Neurosci 13(7):2801–20. 

18.  Mengler L, et al. (2014) Brain maturation of the adolescent rat cortex and striatum: 

changes in volume and myelination. Neuroimage 84:35–44. 

19.  Hammelrath L, et al. (2015) Morphological maturation of the mouse brain: An in vivo 

MRI and histology investigation. Neuroimage. doi:10.1016/j.neuroimage.2015.10.009. 



18 

 

20.  Tomassy GS, et al. (2014) Distinct profiles of myelin distribution along single axons of 

pyramidal neurons in the neocortex. Science (80- ) 344(6181):319–24. 

21.  Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC (2014) Trends and 

properties of human cerebral cortex: correlations with cortical myelin content. 

Neuroimage 93 Pt 2:165–75. 

22.  Schmierer K, et al. (2007) Quantitative magnetization transfer imaging in postmortem 

multiple sclerosis brain. J Magn Reson Imaging 26(1):41–51. 

23.  Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM (2013) Intracortical 

myelin links with performance variability across the human lifespan: results from T1- and 

T2-weighted MRI myelin mapping and diffusion tensor imaging. J Neurosci 

33(47):18618–30. 

24.  Shafee R, Buckner RL, Fischl B (2015) Gray matter myelination of 1555 human brains 

using partial volume corrected MRI images. Neuroimage 105:473–85. 

25.  Sporns O, Honey CJ, Kötter R (2007) Identification and Classification of Hubs in Brain 

Networks. PLoS One 2(10):e1049. 

26.  Vértes PE, Bullmore ET (2015) Annual Research Review: Growth connectomics - the 

organization and reorganization of brain networks during normal and abnormal 

development. J Child Psychol Psychiatry 56(3):299–320. 

27.  Rubinov M, Ypma RJF, Watson C, Bullmore ET (2015) Wiring cost and topological 

participation of the mouse brain connectome. Proc Natl Acad Sci 112(32):201420315. 

28.  Fulcher BD, Fornito A (2016) A transcriptional signature of hub connectivity in the mouse 

connectome. Proc Natl Acad Sci U S A 113(5):1435–40. 

29.  Richiardi J, et al. (2015) Correlated gene expression supports synchronous activity in 

brain networks. Science 348(6240):1241–4. 

30.  Vértes PE, et al. Gene transcription profiles associated with intra-modular and inter-

modular hubs in human fMRI networks. Philos Trans B. 

31.  Weiskopf N, et al. (2011) Unified segmentation based correction of R1 brain maps for RF 

transmit field inhomogeneities (UNICORT). Neuroimage 54(3):2116–24. 

32.  Weiskopf N, et al. (2013) Quantitative multi-parameter mapping of R1, PD(*), MT, and 

R2(*) at 3T: a multi-center validation. Front Neurosci 7(June):95. 



19 

 

33.  Fornito A, Zalesky A, Bullmore ET (2016) Fundamentals of Brain Network Analysis 

(Academic Press, San Diego, CA). 

34.  Hawrylycz MJ, et al. (2012) An anatomically comprehensive atlas of the adult human 

brain transcriptome. Nature 489(7416):391–399. 

35.  Wagstyl K, Ronan L, Goodyer IM, Fletcher PC (2015) Cortical thickness gradients in 

structural hierarchies. Neuroimage 111:241–250. 

36.  Abdi H (2010) Partial least squares regression and projection on latent structure regression 

(PLS Regression). Wiley Interdiscip Rev Comput Stat 2(1):97–106. 

37.  Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery 

and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 

10(1):48. 

38.  Cahoy JD, et al. (2008) A transcriptome database for astrocytes, neurons, and 

oligodendrocytes: a new resource for understanding brain development and function. J 

Neurosci 28(1):264–78. 

39.  Ripke S, et al. (2014) Biological insights from 108 schizophrenia-associated genetic loci. 

Nature 511(7510):421–427. 

40.  Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between 

human brain regions. Nat Rev Neurosci 14(5):322–36. 

41.  Glasser MF, Van Essen DC (2011) Mapping Human Cortical Areas In Vivo Based on 

Myelin Content as Revealed by T1- and T2-Weighted MRI. J Neurosci 31(32):11597–

11616. 

42.  Eickhoff S, et al. (2005) High-resolution MRI reflects myeloarchitecture and 

cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24(3):206–15. 

43.  Fjell AM, et al. (2015) Development and aging of cortical thickness correspond to genetic 

organization patterns. Proc Natl Acad Sci 112(50):201508831. 

44.  Alexander-Bloch AF, et al. (2014) Abnormal Cortical Growth in Schizophrenia Targets 

Normative Modules of Synchronized Development. Biol Psychiatry 76(6):438–446. 

45.  Giedd JN (2009) Adolescent brain development and the risk of psychiatric disorders. 

Encycl Neurosci:125–130. 

46.  Foong J, et al. (2001) Neuropathological abnormalities in schizophrenia: evidence from 



20 

 

magnetization transfer imaging. Brain 124(Pt 5):882–92. 

47.  Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of 

structural and functional systems. Nat Rev Neurosci 10(3):186–198. 

48.  Salami M, Itami C, Tsumoto T, Kimura F (2003) Change of conduction velocity by 

regional myelination yields constant latency irrespective of distance between thalamus and 

cortex. Proc Natl Acad Sci U S A 100(10):6174–9. 

49.  Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: 

neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536. 

51.  Ségonne F, et al. (2004) A hybrid approach to the skull stripping problem in MRI. 

Neuroimage 22(3):1060–75. 

52.  Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation 

and surface reconstruction. Neuroimage 9(2):179–94. 

53.  Fischl B, et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical 

structures in the human brain. Neuron 33(3):341–55. 

54.  Fischl B, et al. (2004) Sequence-independent segmentation of magnetic resonance images. 

Neuroimage 23 Suppl 1:S69–84. 

55.  Romero-Garcia R, Atienza M, Clemmensen LH, Cantero JL (2012) Effects of network 

resolution on topological properties of human neocortex. Neuroimage 59(4):3522–32. 

56.  Desikan RS, et al. (2006) An automated labeling system for subdividing the human 

cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–

80. 

57.  Hagberg A, Swart P, Chult D (2008) Exploring network structure, dynamics, and function 

using NetworkX. (SciPy):11–15. 

58.  Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 

87(19):198701. 

59.  Humphries MD, Gurney K (2008) Network “small-world-ness”: A quantitative method 

for determining canonical network equivalence. PLoS One 3(4). 

doi:10.1371/journal.pone.0002051. 

60.  Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of 

communities in large networks. J Stat Mech Theory Exp 2008(10):P10008. 



21 

 

61.  Harris PA, et al. (2009) Research electronic data capture (REDCap)--a metadata-driven 

methodology and workflow process for providing translational research informatics 

support. J Biomed Inform 42(2):377–81. 

  



22 

 

Acknowledgements 

This study was supported by the Neuroscience in Psychiatry Network, a strategic award by the 

Wellcome Trust to the University of Cambridge and University College London. Additional 

support was provided by the NIHR Cambridge Biomedical Research Centre and the 

MRC/Wellcome Trust Behavioural & Clinical Neuroscience Institute. PEV is supported by the 

MRC (MR/K020706/1). We used the Darwin Supercomputer of the University of Cambridge 

High Performance Computing Service provided by Dell Inc. using Strategic Research 

Infrastructure Funding from the Higher Education Funding Council for England and funding 

from the Science and Technology Facilities Council. Study data were collected and managed 

using REDCap electronic data capture tools (61) hosted at the University of Cambridge. We 

thank the Allen Institute for Brain Science; Website: © 2015 Allen Institute for Brain Science. 

Allen Human Brain Atlas [Internet]. Available from: http://human.brain-map.org. We also thank 

Dr Amy Orsborn for her graphic design of Fig 1c; and Dr Fred Dick for helpful discussions of 

MRI analyses. E.T.B. is employed half-time by the University of Cambridge and half-time by 

GlaxoSmithKline; he holds stock in GlaxoSmithKline. 

  



23 

 

Figure Legends 

Fig. 1: Cortical thickness (CT) and magnetisation transfer (MT) maps. At 14 years, primary 

somatosensory and visual cortex had thinner cortex (a) and greater MT (c) than association 

cortical areas. Baseline CT (mm) and MT (PU) were negatively correlated, confirming that 

thinner cortex was more myelinated at 14 years (f). Globally, over all 308 regions, CT decreased 

linearly with increasing age in the range 14 to 24 years (b) although there were regional 

differences in the rate of cortical shrinkage (ΔCT), with significantly non-zero rates of shrinkage 

(permutation test, FDR = 0.05) located mainly in association cortex (e). Globally, MT increased 

linearly with increasing age in the range 14 to 24 years (d) although there were regional 

differences in the rate of cortical myelination (ΔMT), with significantly non-zero rates of 

myelination (permutation test, FDR = 0.05) located mainly in association cortex (g). Rates of 

change in thickness and MT were negatively correlated confirming that more rapidly shrinking 

areas of cortex had faster rates of myelination (h). 
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Fig. 2: Magnetisation transfer mapping of intra-cortical myelination. The schematic (a) 

highlights estimation of MT on a contour (orange line) located at 70% of the cortical depth from 

the pial surface; and on another contour (green line) located 1 mm below the boundary between 

grey matter and white matter (yellow line). These and other distances can be located 

approximately in the context of cytoarchitectonic lamina of human neocortex (c). Baseline MT 

increases monotonically with distance from the pial surface (b) but the age-related increase in 

MT (ΔMT) was greatest at 70% cortical depth (d). The correlation between baseline MT and 

myelin basic protein (MBP) gene expression was also strongest at 70% cortical depth (e). Boxes 

represent the median and interquartile range over all 308 regions at each depth.  
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Fig. 3: Distinct gene expression profiles were specifically associated with cortical thickness 

and magnetisation transfer at 14 years, or with adolescent processes of cortical 

consolidation. The first partial least squares component (PLS1) identified a profile of genes that 

were over-expressed in occipital and somatosensory cortex (a), negatively correlated with 

baseline CT (b), and positively correlated with baseline MT (c). The second PLS component 

(PLS2) identified a profile of genes that were over-expressed in prefrontal cortex (d), negatively 

correlated with adolescent cortical shrinkage (ΔCT; e), and positively correlated with adolescent 

intra-cortical myelination (ΔMT; f). PLS2 was enriched for genes functionally related to synaptic 

transmission, glutamatergic signaling, and potassium ion channels, colour-coded by P value for 

significant enrichment, in the gene ontology of biological processes (g). 
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Fig. 4: Hubs of the connectome were located in regions with faster rates of cortical 

consolidation and were associated with the same gene expression profile as consolidation. 

The structural covariance network comprised hubs with high degree centrality (a) and high 

closeness centrality (b) that were concentrated anatomically in association cortical areas; in both 

panels a and b nodes are colored and sized by the corresponding centrality metric and square 

nodes represent members of the rich club. Both degree (red) and closeness centrality (green) 

were negatively correlated with cortical shrinkage (ΔCT; c), and positively correlated with 

adolescent increase in myelination (ΔMT; d). The gene expression profile associated with 

adolescent cortical consolidation (PLS2 from Fig. 3) was also significantly associated with 

degree and closeness centrality (e). 

 

  


