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Abstract 

Computational methods such as machine learning hold the promise to reduce the costs and the 

failure rates of conventional drug discovery pipelines. This issue is pressing for 

neurodegenerative diseases, where the development of disease-modifying drugs has been 

particularly challenging. The high attrition rate of neurodegenerative drug discovery is 

especially acute for Parkinson’s disease, where no disease-modifying drugs have yet been 

approved. Numerous clinical trials targeting α-synuclein aggregation, a process implicated in 

Parkinson’s disease and other synucleinopathies, have failed, at least in part due to the 

challenges in identifying potent compounds in preclinical investigations. In Chapter 2, I 

describe machine learning approaches to identify small molecule inhibitors of α-synuclein 

aggregation to address this problem. Because the proliferation of α-synuclein aggregates takes 

place through autocatalytic secondary nucleation from fibril surfaces, we aim to identify 

compounds that bind the catalytic sites on the surface of the mature fibrillar aggregates (the 

end point polymers of the aggregation process). This prevents the formation of the toxic 

intermediate aggregate species, termed misfolded oligomers. Fibrils assume different structural 

polymorphs depending on the synucleinopathy, likely due to the different locations of the 

nervous system that these diseases occur within. Each tissue has an associated set of specific 

conditions which likely shape the final structure of the aggregates. Targeting these pathogenic 

polymorphs may help ameliorate disease progression more effectively than prior efforts. To 

achieve this goal, I use structure-based machine learning in an iterative manner to first identify 

and then progressively optimise secondary nucleation inhibitors. Training data for aggregation 

inhibition were obtained by an assay specifically isolating secondary nucleation, the major 

mechanism of toxic oligomer production. My results demonstrate that this approach leads to 

the facile identification of compounds which are two orders of magnitude more potent than 

previously reported ones.  

 

This initial work formed the basis of subsequent efforts to both expand the chemical space 

explored, and explore it more effectively, through application of generative modelling linked 

with reinforcement learning. I also increased the molecular parameters considered during the 

process of inhibitor optimisation in Chapter 3, accounting for aspects of pharmacokinetics as 

well as potency. This work addressed a number of shortcomings in the initial approach 

including restricted chemical space and a focus on potency alone. The initial method was 
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reminiscent of the early stages of drug development, where large compound libraries are 

typically screened to identify compounds of promising potency against the chosen targets. 

Often, however, these compounds have a poor drug metabolism and pharmacokinetics 

(DMPK) profile, which are negative features that may be difficult to eliminate. To address this, 

the updated machine learning approach combines generative modelling and reinforcement 

learning to identify small molecules that perturb the kinetics of aggregation, thus reducing the 

production of oligomeric species, while also having high predicted blood brain barrier 

penetrance. This approach resulted in the identification of small molecules with good 

pharmacokinetic properties and potency against secondary nucleation.  

 

Misfolded protein oligomers generated via secondary nucleation are clearly of central 

importance in both the diagnosis and treatment of Alzheimer’s and Parkinson’s diseases. All 

the methods described here are designed to counter their formation, yet accurate high-

throughput methods to detect and quantify oligomer populations are still needed. Invariably 

bulk aggregation is the metric that is tracked, and the oligomer population is then inferred. In 

Chapter 4 I present a novel single-molecule approach to detection and quantification of 

oligomeric species. The approach is based on the use of solid state nanopores and multiplexed 

DNA barcoding to identify and characterise oligomers from multiple samples. I study α-

synuclein oligomers in the presence of several small molecule inhibitors of α-synuclein 

aggregation, as an illustration of the potential applicability of this method to assist the 

development of diagnostic and therapeutic methods for Parkinson’s disease. 

 

Finally, having created these pipelines for the development of α-synuclein aggregation 

inhibitors, I then sought to expand into other protein misfolding areas to demonstrate their 

generalisability as described in Chapter 5. The aggregation of tau into amyloid fibrils is 

associated with Alzheimer’s disease and related tauopathies. Similarly to synucleinopathies, 

different tauopathies are characterised by the formation of distinct tau fibril polymorphs. Brain 

homogenates were used to seed the generation of tau fibrils. The aim here was to create fibrils 

that replicate the polymorph formed in Alzheimer’s disease, thus mirroring the pathological 

aggregation mechanisms as closely as possible. Fibrils recovered from these efforts were 

capable of converting recombinant 0N3R tau into an Alzheimer’s fibril polymorph in a kinetic 

assay, as verified through cryo-EM structural analysis. Using this kinetic assay, I illustrate the 

iterative machine learning drug discovery method for tau aggregation in Alzheimer’s disease. 
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1. Introduction 

“It seems that when you have cancer you are a brave battler against the disease, but when you 
have Alzheimer's you are an old fart. That's how people see you. It makes you feel quite alone.” 
– Sir Terry Pratchett  
 

1.1. Motivation: The perception of neurodegenerative disease  

 

Sir Terry Pratchett was an author of wonderful books who sadly succumbed to Alzheimer’s 

disease in 2015, but not before supplying commentary on the disease with his usual mix of 

irreverence and insight. It is indeed curious that of 2 disease classes predominantly affecting 

the elderly, neurodegeneration is viewed so differently to cancer. Due to the array of tools now 

available to treat cancer, it is often viewed as a fight to be won, whereas neurodegeneration is 

still considered almost an inevitability of aging. Dementia especially is often looked upon as 

senility rather than a disease to be treated1,2. The reasons for this are likely due to the 

neurodegenerative onset occurring later in life on average than cancer, but also due to the very 

different treatment outcomes3,4. Although there remain many cancers that elude treatment, 

indeed it is possible for cancers to obtain resistance to treatment, prognoses are nonetheless 

significantly more optimistic on average than they have been in the past5,6. I emphasise that 

‘more optimistic’ does not mean to imply that cancer is in any way a solved problem. It is a 

blight on a huge number of lives, which current treatments have alleviated in some cases but 

by no means all of them. The prognosis for neurodegeneration, however, remains largely 

unchanged from when the first example of it, Alzheimer’s disease, was first described over a 

century ago7.  
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This creates a circular problem. Neurodegeneration is perceived less as a treatable disease than 

as a product of aging and receives less attention, and so progress towards treatments of 

neurodegeneration is slow, further entrenching this perception. We have to make an effort to 

change this perception. The speed at which we find ways to effectively treat neurodegeneration 

will depend on our determination to discover them. This change will hopefully come about as 

therapies that have a meaningful impact on disease progression finally make their way into the 

clinic. After years of costly failures, a handful of drugs have been approved for Alzheimer’s 

disease, though it is true that in some cases these treatments are contentious. Alzheimer’s 

disease is a competitor for the field of scientific research that sparks the most controversy and 

academic debate. These nascent therapies are the only examples of disease modifying treatment 

methods that have produced tangible benefits for patients thus far. Their mechanism is the 

removal amyloid plaques formed in the neurons of patients with Alzheimer’s disease8,9. This 

approach is based on the amyloid hypothesis of Alzheimer’s disease, whereby select proteins 

aberrantly misfold and aggregate into misfolded oligomers and amyloid fibrils10. Amyloid 

fibrils are highly ordered fibrous protein aggregates with a cross-β sheet structure11. Aggregates 

accumulate and damage cellular organelles, eventually spreading throughout the brain of the 

suffering patient. Evidence for this theory is most strongly supported by the fact that familial 

mutations in the genes encoding these amyloidogenic proteins, or the proteins that interact with 

them, lead to accelerated onset of disease12. Other theories of how the disease progresses began 

to gain traction following repeated failures of drugs targeting amyloid, but with the successes 

of the latest clinical trials, the amyloid hypothesis retains its position as the predominant 

theory13. 

 

This does not mean that combating amyloid is the only possible treatment route, simply that is 

a promising one at present that could be augmented with other approaches in future. Protein 

misfolding and aggregate accumulation are common features of neurodegeneration, but 

phenotypes vary massively from patient to patient14. It seems likely that the various theories 

for how neurodegeneration begins are labouring a similar point, which is that stresses on the 

cell’s maintenance pathways leads to loss of protein homeostasis and aggregate accrual15. 

These stresses can come from multiple sources. Aging is by far the most common factor, but 

the stresses that an individual experiences while they age are unique to the individual, and so 

the maintenance pathways which are most impaired varies accordingly16,17. Therefore, multiple 

treatment or preventative methods may ameliorate neurodegeneration, and what works best is 

likely to be patient specific. Early diagnosis is essential to keep as many of these options open 
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as possible and have the best possible prognosis. Great strides have been made in the area as 

well as in treatment. Methods of diagnosis vary from detecting low levels of the protein 

aggregates themselves in the cerebrospinal fluid (CSF), or biomarkers of neuronal death such 

as neurofilament light chain in the blood stream, or even machine learning of smart watch body 

data18-20. However, these methods are not yet widely used, and patients are generally diagnosed 

once the symptoms appear, when the disease has significantly progressed. This means there is 

significant accrual of protein aggregates, which are clearly capable of causing toxicity21. 

Inhibition of further aggregate formation and removal of aggregates therefore offers a route to 

combating the majority of cases.  

 

This research space remains a place of vocal disagreement, but discussion propels 

development, whereas its lack often gives rise to stagnation. Significant advancements in our 

understanding are published at increasing frequency, from discoveries of the exact mechanism 

of neuronal death in Alzheimer’s disease to high resolution determination of pathological 

structures in the brains of suffering patients21-23. Failures are of course still likely but can be 

overcome. For example, many have argued that the first example of an anti-amyloid drug to be 

FDA approved, aducanumab, did not show significant evidence of disease modification, 

especially given contradictory results of 2 parallel trials24. Aducanumab was in any case 

effectively rendered defunct shortly after its approval. Medicare, the US federal agency which 

funds treatments for those over 65, restricted funding for this drug to limited circumstances 

such as clinical trials due to inconclusive clinical benefit, thus contradicting the FDA’s 

stance25. This decision was made in part due to the conflicting data offered in support of 

aducanumab but also due to the exorbitant price tag, eventually halved in an effort to save the 

drug, of $56,000 per year. Nonetheless, whatever its clinical efficacy, what aducanumab did 

achieve is outlining the roadmap (in part by showing what not to do) that such drugs should 

take to clinical trials, approval, and distribution, as well as galvanising other companies to push 

their drug programs to completion. Subsequent drug candidates targeting amyloid have fared 

better than aducanumab as a result. Donanemab, the best drug candidate in this class at the time 

of writing, slowed clinical decline by 35% in its phase III trial for example, exhibiting a 

tangible benefit to patients as well as the reduction in amyloid plaques which was observed for 

aducanumab26. Lecanemab has also shown greater efficacy and lower inflammatory response 

compared to aducanumab9.  
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These trials continue to illustrate the unique challenges of modelling complex diseases that 

progress over decades, where our current treatments produce relatively mild effects. Not least 

of these is deciding who to enrol, as progressed cases may respond poorly to a treatment aimed 

at saving neurons that have already been destroyed. Drug candidates tested against such 

patients show poor responses, which results in clinical failure of therapies that might otherwise 

have provided a benefit. This problem goes hand in hand with the need for better diagnostics, 

which will have a key role to play in future trials. There are other roadblocks for 

neurodegenerative disease research, the most intractable of which are the lengthy duration of 

disease, and the fact that we do not yet fully understand the steps that lead to disease, and so 

struggle to model it in a manner that is reliably predictive over a reasonable timescale. Our 

understanding lags behind that of other disease areas partially because the attitudes described 

previously are reflected in the investment directed at this area. For every 1 researcher working 

on dementia there are 4 working on cancer and, despite dementia becoming an issue of similar 

scale to cancer, its research is chronically underfunded globally by comparison27. Investment 

in neurodegeneration is a far riskier prospect, with the cost of development of an Alzheimer’s 

disease drug estimated to be over 8 times that of a cancer drug on average28. Some also believe 

it to be premature to be considering therapeutic strategies given our current knowledge of 

disease progression29. Nonetheless the scale of the problem is growing and requires rapid 

solutions. It is time to turn neurodegeneration into a fight to be won. 

 

The scale of that fight is daunting. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are 

estimated to affect approximately 50 million and 10 million individuals, respectively, 

worldwide27. Alzheimer’s Disease International states that the number of people living with 

dementia is expected to double in the next 2 decades. Dementia patients take up 1 in 4 of NHS 

hospital beds in the UK30, reflective of the need for round the clock care for each person living 

with this disease, often required for many years. Due to the escalating severity of the issue, we 

cannot delay therapeutic research but instead attempt to develop treatments in parallel with 

developing our understanding. Initially, this may result in mildly efficacious treatments, but 

such offsets are crucial to prevent this problem rapidly becoming an overwhelming one as we 

seek better alternatives. This makes drug discovery significantly more challenging and prone 

to attrition, but it is a necessity in order to supply improvements to patient quality of life, and 

relieve the disease burden on medical services and society as soon as possible.  
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I entered this field due to what I’ve seen of these diseases, my mother having worked in an 

end-of-life care hospice. I was struck then by how little could be done to help people with these 

diseases. To be able to see treatments reach patients a decade on from that point is hugely 

gratifying and gives me great hope for the future. There are many more challenges to come, 

but they can be overcome, and I am proud to have been able to make my own small contribution 

towards achieving that.  

 

In Chapter 2 I describe a pipeline to computationally enhance methods of screening for 

aggregation inhibitors and use state of the art experimental approaches to uncover their 

inhibitory mechanisms. I use the protein a-synuclein as my test case. The computational 

architecture is then updated and improved in Chapter 3. In Chapter 4 I focus again on the 

experimental part of the pipeline, with a novel DNA nanostructure based nanopore detection 

method for protein oligomers. Finally, I show an example of generalising this method into other 

protein misfolding areas in Chapter 5 and consider future directions in Chapter 6. The rest of 

this chapter will give a brief description of protein misfolding mechanisms and methods of 

combating them.  

 

1.2. Protein misfolding mechanisms in neurodegenerative disease 

 

This PhD targets the intrinsically disordered proteins (IDPs) that are implicated as a 

pathological agent in neurological disease10. IDPs lack stable tertiary structure and as a result 

are prone to misfolding and aggregation when the cellular homeostasis system fails15,31,32. An 

IDP possesses solvent exposed hydrophobic areas that allow it to aggregate when its behaviour 

is not suitably controlled33. The misfolded oligomers and higher order fibrils generated during 

the aggregation process adopt a b-sheet conformation with one or more b-strands exposed to 

the solvent34,35. These exposed b-strands act as elongation sites for subsequent extension of 

existing aggregates, while catalytic sites on the surface of the aggregates act as nucleation sites 

for the creation of new oligomers36. During this process some aggregate species interfere with 

cellular functions, resulting in cell death21.  

 

These aggregate species are also likely to form because many IDPs may be present in the cell 

at supersaturated concentrations, making them prone to aggregation, and driving the 

interconversion between functional states and aberrant self-assembled multimerised states32,37. 
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Under normal conditions, the protein homeostasis systems, including molecular chaperones 

and the ubiquitin-proteasome and endosomal-lysosomal degradation pathways38,39, ensure the 

correct folding and complexing of proteins and removal of aggregates15,40. As the body ages 

and experiences stresses however, this metastable proteome becomes increasingly unstable, 

concomitant with these maintenance pathways becoming less efficacious17,31. This leads to 

uncontrolled protein aggregation and the accumulation of misfolded oligomers, eventually 

converting to highly ordered polymeric fibrils41-43. This behaviour has been shown to be 

common across many IDPs, and is implicated in numerous disease areas from AD, PD, amyloid 

lateral sclerosis (ALS), and Pick’s disease to type 2 diabetes43.  

 

In the case of AD the metastable proteins are the truncated peptides of amyloid precursor 

protein (APP), which are known as Amyloid ß (Aß). These peptides aggregate to form amyloid 

plaques in the extracellular space of patient neurons44. Tau, a microtubule binding protein, is 

also found in aggregated form in neurofibrillary tangles within patient neurons45. Whether 

targeting amyloid is the best route to treatment of Alzheimer’s disease remains to be seen, but 

the more positive recent clinical data provides support to the theory that aberrant protein 

misfolding and subsequent amyloid formation is indeed one of the pathological steps in disease 

progression. Given the observation of misfolded protein aggregates in many other 

neurodegenerative diseases, often exacerbated by mutations in these proteins, there is support 

for the idea of this being a relatively conserved mechanism across many neurodegenerative 

diseases. This comes with the caveat that the toxic misfolded species and aggregation 

mechanism may differ10. Recent research has suggested that the most damaging aggregate 

species are often those that are smaller, less ordered and more mobile, termed misfolded 

oligomers21,46-48. They have greater ability to interact with cellular organelles and membranes 

than the larger, higher order fibrillar species, damaging them in the process. However, fibrils 

are able to template aggregation from their surfaces through a process termed secondary 

nucleation. Secondary nucleation is considered to be the main generator of these oligomers, 

and so if secondary nucleation cannot be prevented completely the eventual removal of fibrils 

is also important49. This removal can be achieved by the cell’s degradation pathways, if given 

enough breathing room by an aggregation inhibitor. 

 

The aggregation of a-synuclein (aS) in particular is thought to be responsible for the 

neurodegeneration observed in PD, in which the pathological accumulation of misfolded 
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protein results in neuronal toxicity. There is some evidence of initial aggregation in the gut 

before eventually spread to the central nervous system and the substantia nigra region of the 

brain, at which point the patient’s first motor impairments become evident50. The link between 

αS aggregation and PD is supported by genetic evidence and by observations of the 

accumulation of αS in hallmark inclusions known as Lewy bodies within the diseased neurons 

of PD patients10,51,52. A primary aim of current research into treatment of this disease is 

therefore the inhibition of αS aggregate formation.  
 

The disordered and heterogeneous structure of aS may be an important part of its functioning 

under normal conditions as it is involved in synaptic vesicle transport, assisting docking of 

 

Figure 1.1. αS aggregation in Parkinson’s disease and its inhibition by therapeutics. The age-related 

progressive impairment of the protein homeostasis system leads to the aberrant misfolding and aggregation of αS 

into toxic oligomeric species, which eventually convert to amyloid fibrils. The term ‘amyloid’ was coined to 

describe iodine-stained deposits in patient liver samples, that were initially thought to be carbohydrate based, 

before their high nitrogen content was discovered, revealing them to be proteinaceous53. The word is used to 

describe the fibrillar state of any aggregated protein. These αS fibrils are observed as the primary constituent of 

Lewy bodies, a hallmark structure observed in neurons of patients suffering from the disease. Fibrils can act as a 

catalyst for further oligomer formation via secondary processes such as secondary nucleation from catalytic sites 

on the fibril surface and fragmentation of the fibrils into smaller species. Secondary processes are the key 

generator of oligomeric species. These microscopic aggregation processes may occur in the context of 

macroscopic processes such as liquid liquid phase separation. This could hyper concentrate αS within the 

cytoplasm and organelles of the cell. This concentrated environment may drive aggregation processes for what is 

otherwise a relatively aggregation resistant protein54.  

 

these vesicles with the synaptic membrane. When bound to lipid bilayers, aS becomes enriched 

in amphipathic α-helical structure and promotes vesicle clustering, potentially via a double 

anchor mechanism55. Once aberrant aggregation begins however, one potential mechanism of 



Introduction 

8 

 

cellular toxicity is the perturbation of the neuronal organelle membranes such as those of the 

mitochondria by insertion of oligomeric forms of the protein into the phospholipid 

bilayer21,46,47. Efforts to prevent or slow this behaviour using therapeutics focus on inhibiting 

various steps in the aggregation process to reduce the proliferation of these toxic aggregates as 

much as possible56. The pathological relevance of these processes has led to major investment 

into identifying antibodies and small molecules that can inhibit those aggregation mechanisms 

associated with neurotoxicity57-60 

 

1.3. Approaches to drug discovery for neurodegeneration 

 

It is therefore particularly important to target αS aggregation by specifically preventing 

secondary aggregation processes61. In order to reduce the number of oligomers produced in an 

aggregation reaction, one approach is to target the highly ordered fibrillar aggregates, 

specifically the catalytic surfaces that allow oligomer formation62. Computational methods can 

contribute to these endeavours. In the following chapter, I will address the first question when 

beginning to look for molecular inhibitors of aggregation, which is how to identify the most 

promising area of the chemical space to search in, and then I will move on to enhancing the 

potency of the identified structures with machine learning.  

 

I focus on efforts to slow down secondary nucleation by targeting fibril aggregation templating 

sites with small molecules, with the eventual hope that such an approach could be used in 

conjunction with current antibody-based treatments that are able to clear the fibrils formed 

from various misfolded proteins in their respective diseases. Targeting secondary nucleation in 

this manner has been achieved previously63, but here we augment it with the use of 

computational methods such as structure-based docking to target disease specific fibril 

polymorphs64 and machine learning in order to enhance the quality of molecular matter 

obtained in a shorter timeframe65. We begin with α-synuclein in Parkinson’s disease as our first 

test case. As therapies are beginning to be delivered for AD66, the race is on to achieve the 

same outcome for PD patients67-69. 
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2. Targeting Parkinson’s disease with 

iterative learning 

“The whole of life is just like watching a film. Only it’s as though you always get in ten minutes 
after the big picture has started, and no-one will tell you the plot, so you have to work it out all 

yourself from the clues.” – Sir Terry Pratchett 
 

2.1. Computational approaches to drug discovery for Parkinson’s disease 

 

The above view of life could be reasonably well applied to our current understanding of 

Parkinson’s disease. We have clues about the end point of the disease, genetic evidence for the 

causes, and a good idea of how the suspected players behave in various model systems, but 

how well this relates to what happens in a human patient is still opaque. What we do know for 

certain is as follows. PD is the most common neurodegenerative movement disorder, affecting 

2–3% of the population over 65 years of age52,70-73. Mutations in the α-synuclein (αS) protein 

often lead to drastically accelerated onset of disease74. αS is a 14.46 kDa protein made of 140 

amino acids. It assumes a mostly random coil structure when monomeric, excepting it’s N 

terminus (residues 1-60) which has alpha-helical propensity, especially when interacting with 

lipid membranes50. Many of the PD promoting mutations (A30P, E46K, A53T) are located in 

this region, suggesting that interference in this interaction could be important to disease. This 

interaction is also thought to be important in the protein’s function which is mediating vesicle 

transport in the neurons75. The mid-section of the protein (residues 61-95) consists of a non-

amyloid component (NAC) region which is largely hydrophobic and aggregation prone. The C 

terminus (residues 96-140) is negatively charged giving the protein a low pI. The aggregation 
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of αS has been associated with the initial neurodegenerative processes underlying the disease, 

in which the pathological accumulation of misfolded proteins results in neuronal 

toxicity51,70,71,73.  

 

Computational methods could be expected to reduce the time and cost of traditional drug 

discovery pipelines targeted at these processes76-78. Machine learning is rapidly emerging as a 

powerful drug discovery strategy79. To explore the potential of this strategy in drug discovery 

programs for Parkinson’s disease and other synucleinopathies, I describe here a machine 

learning approach to explore the chemical space to identify compounds that inhibit the 

aggregation of αS. My starting point is an approach that combines docking simulations with in 

vitro screening, which was recently employed to identify a set of compounds that bind to the 

fibril structures of αS, and prevent the autocatalytic proliferation of αS fibrils as a result64. 

Here, I used this initial set of compounds as input for a structure-based machine learning 

approach to identify chemical matter that is both efficacious and represents a significant 

departure from the parent structures, providing compounds that conventional similarity 

searches would have failed to efficiently identify.   

 

This approach is based on the lessons learned, using chemical kinetics, about the importance 

of secondary nucleation in αS aggregation62,74,80. Because of the autocatalytic nature of this 

process, structure-based methods could be expected to effectively target the catalytic sites on 

the surface of αS aggregates64. As I show here, the implementation of this idea within an 

iterative machine learning procedure leads to the identification and optimisation of compounds 

with high hit/lead rates and great potency. 

 

2.2. Results of structure based iterative active learning  

 

2.2.1. Components of the machine learning method. 

 

The machine learning approach used here consists of 3 main components81: (1) the 

experimental data, i.e. a readout of the potency of the compounds in an aggregation assay, (2) 

the variational autoencoder required to represent the compounds as latent vectors, and (3) a 

model for training and prediction using these vectors and the assay readouts.  
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For component 1, we used a chemical kinetics assay43,57,82 that provided both the initial data 

for the model training and the data that were iteratively fed back into the model at each cycle 

of testing and prediction. This assay identifies the top compounds that inhibit the surface-

catalysed secondary nucleation step in the aggregation of αS. 

 

For component 2, we used a junction tree variational autoencoder83, pre-trained on a set of 

250,000 molecules84 enabling accurate representation of a diverse population of molecular 

structures. Using this approach, simplified molecular-input line-entry system85 (SMILES) 

strings representing each molecular structure were standardised using MolVS86 and converted 

into latent vector representations.  

 

For component 3, we used a random forest regressor (RFR)87 with a Gaussian process regressor 

(GPR)88 fitted to the residuals of the RFR, with both regressors using the latent vectors as 

training features. The residuals are the errors of the regressor, thus the second regressor is 

trying to correct for the errors of the first. I have gone into more depth on the technical 

implementation of the algorithms in the appendix and referenced each algorithm with an article 

explaining its function in detail. In this chapter we are approaching the relation of latent vector 

representation of the molecular to structures to an assay readout (quantitative structure-activity 

relationship, QSAR) as a regression problem. The RFR provided the highest performance 

compared to other combinations of multi-layer perceptrons89 (MLPs), GPRs and linear 

regressors (LRs) in terms of R2 score, mean absolute error (MAE) and root mean square error 

(RMSE). Performance and parameters are shown in the appendix (Figure A.1 and Table A.1). 

Combining the RFR and GPR provided only a marginal improvement in the metrics of the RFR 

alone, but crucially enabled leveraging of the associated uncertainty measure of the GPR when 

ranking molecules during acquirement prioritisation81. A Gaussian process makes a prediction 

based on the average of many Gaussian distributions fitted to a data set, while the standard 

deviation of these distributions supplies the uncertainty, a value for how confident the regressor 

is in its prediction. Tuning the weighting applied to this uncertainty measure allowed a ranking 

based on both the predicted potency of the molecules and the uncertainty of that prediction. 

Component 3 was then trained on the 161 initial experimental data points (see Section 2.2.2). 

The best molecules predicted by the model were then tested in the same assay and the results 

fed back into the model in an iterative fashion (~55-65 new molecules tested at each iteration). 

The molecules used at each stage of the project are illustrated in Figure A.2, together with the 

structures of the most potent molecules. 
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2.2.2. Initial set of small molecules. 

 

The initial set of molecules was identified via docking simulations to αS fibrils carried out 

previously64 (see Appendix A.i for a detailed explanation of the implementation), which were 

expanded upon via similarity searches around molecules that performed well in the chemical 

kinetics assay to identify further candidates. The docking screening was carried out using the 

consensus strong binders predicted by AutoDock Vina90 and Openeye’s FRED91-93 software.  

 

2 million molecules with good central nervous system multiparameter optimisation (CNS 

MPO)94,95 properties were previously docked using AutoDock Vina to target the selected 

binding pocket64 (Figure 2.1). CNS MPO is an aggregated metric of molecular properties that 

predicts likelihood of a molecule passing the blood brain barrier. In that study, the binding site 

encompassing residues His50−Lys58 and Thr72−Val77 was selected due to its propensity to 

form a pocket according to the Fpocket software92 (Figure 2.1A), and its mid to low solubility 

according to CamSol96 (Figure 2.1B). Additionally, His50 is predicted to be protonated below 

the pH value (5.8) at which αS secondary nucleation more readily occurs97, which may be 

significant for initial interactions. To increase the confidence of the calculations, the top-

scoring 100,000 small molecules were selected and docked against the same αS binding site, 

Figure 2.1. Volume and solubility based binding site prediction on polymorph 6CU798. (A) Cavity based binding 

site prediction based on Fpocket92. (B) Solubility based binding site prediction based on CamSol96. The black box 

outlines the region encompassing key residues His50 and Glu57 where both cavity propensity is high and 

solubility is medium-low. Docking simulations and initial pocket searching were carried out by Z. Faidon 

Brotzakis. 
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using FRED91. The top-scoring, common 10,000 compounds in both docking protocols were 

selected and clustered using Tanimoto clustering99 with a similarity cut off of 0.75, leading to 

a list of 79 centroids (representative molecules from each cluster). The Tanimoto similarity is 

a metric that compares Morgan fingerprint100 representations (radius = 2, nbits = 2048) of 2 

different molecules. These fingerprints are an older method to represent chemical structures 

numerically. A value of 1 for the Tanimoto similarity implies complete 2D homology between 

2 structures while values closer to 0 imply little to no structural similarity.  68 compounds were 

available of the 79 leads identified in the in silico structure-based docking study. The first 

round of in vitro experiments were carried out with this set. 

Figure 2.2. Illustration of the docking strategy for identification of leads at the start of the pipeline. 2 million 

compounds with good predicted blood brain barrier penetrance were computationally docked to a suspected 

oligomerisation site on the fibril surface. 68 of the corresponding centroids of each cluster were then obtained and 

experimentally tested. From 68 molecules predicted to have good binding via docking simulations, we initially 

identified 4 active molecules (the ‘docking set’) by experimental testing64. These 4 molecules increase the t1/2 of 

αS aggregation.  
 

Subsequent experiments to test these predicted binders in aggregation assays identified 4 active 

compounds64 labelled molecule 48, 52, 68 and 69, referred to as the ‘docking set’, (Figure 2.2). 

We then began the process of lead generation and optimisation. Here, using the Tanimoto 

similarity metric between the molecules, 2 similarity searches were then carried out using these 

4 structures as starting points (Figure 2.3). Different Tanimoto similarity thresholds were used 

to specify molecule subsets for testing, from initial analogue searches to the creation of a library 

to screen from. As such a similarity value >0.5 was used for closely related analogues, >0.4 for 

loosely related analogues and >0.3 for a library to screen from (‘evaluation set’). While this 
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use of a structurally related screening library constrains the model’s ability to generalise, the 

lack of diversity in terms of hits also makes it unlikely for the model to perform well in 

chemical space significantly divergent from this region. We are thus carrying out an 

exploitation strategy here. We remove the need for a curated screening library in subsequent 

work by utilising generative modelling and reinforcement learning101, allowing for both 

exploitation and exploration strategies.  

Figure 2.3. Illustration of successive search strategies around the hits identified by the docking. We initially 

performed a close Tanimoto similarity search around the 4 parent compounds in chemical space, represented here 

in two dimensions via UMAP102. UMAP is a dimensionality reduction technique, which is applied here to the 

latent vectors describing the molecular structures. We selected molecules with Tanimoto similarity cut off >0.5 

(the ‘close similarity docking set’) followed by a loose similarity search with Tanimoto similarity cut off >0.4 

(the ‘loose similarity docking set’). The described machine learning method was then applied using the observed 

data to predict leads from a compound library derived from the ZINC database with Tanimoto similarity >0.3 to 

the parent structures (the ‘evaluation set’). 

 

A selection of closely related molecules (Tanimoto similarity > 0.5) to the parent compounds 

(referred to as the ‘close similarity docking set’, Figure 2.3 and Figure A.2B) was tested in 

the aggregation assay. Potent lead selection was made according to a cut off corresponding to 

a normalised half-time of the aggregation (t1/2) of 2 times that of the negative control63. The 

‘optimization rate’ was defined as the percentage of molecules in a set that passed this 

threshold. This yielded 5 new leads from 25 new molecules (Figure A.2B), 1 derived from 

molecule 48, 3 from molecule 52 and 1 from molecule 69. This step was then followed by a 

larger selection of compounds with a looser cut-off of structural similarity (Tanimoto similarity 

>0.4) to the parent compounds (referred to as the ‘loose similarity docking set’, Figure 2.3). 

Although new leads featured amongst this set, the optimisation rate was low (4%), and both 
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molecules 48 and 52, which had initially appeared the most promising of the parent structures, 

yielded poor results. From the 29 molecules related to molecule 48 in the loose similarity 

docking set, none were potent, while from the 24 molecules related to molecule 52, only 2 were 

potent. The functional range of molecules 48 and 52 appeared narrowly limited around the 

chemical space of the parent structures. Molecule 69 yielded 1 potent lead from the 16 related 

molecules. Overall, the optimisation rate from the loose similarity docking set was less than a 

quarter of that of the close similarity docking set and involved testing 3 times as many 

compounds. A fall in optimisation rate was expected as the similarity search has no intuition 

about QSAR, it simply identifies structures with similarity to the active scaffold, whether those 

similarities are relevant or not. It is however surprising that the drop off was so rapid, as 

conventional structure-activity relationship techniques would suggest there should be some 

activity within such close proximity to the active scaffold. This behaviour is termed an ‘activity 

cliff’, and it hampers exploration around an active scaffold103. 

 

These results suggest that it would be challenging to further explore the chemical space using 

conventional structure-activity relationship techniques without significant attrition, since the 

optimisation rate dramatically worsened as the similarity constraint to the parent hits was 

slightly loosened. To overcome this problem, the compounds resulting from these experiments 

were then used as input for a machine learning method for an iterative exploration of the  

Figure 2.4. Illustration of an iterative active learning approach to inhibitor optimisation. Successive 

iterations of prediction and experimental testing yielded higher optimisation rates, and molecules with higher 

potency on average than those identified in the previous similarity searches. Validation experiments were also 

carried out on the leads identified.  
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chemical space (Figure 2.4). The similarity searches removed the most obvious targets of the 

machine learning approach, but also increased the size of the data set available for training. 

The training set, however, remained small by typical machine learning standards, consisting of 

161 molecules. Since training sets of this size are common in early-stage research, a further 

aim of the work done in this chapter was to demonstrate that machine learning can be used 

effectively even in such data sparse scenarios. 

 

2.2.3. Iterative application of the machine learning approach. 

 

One of the issues with applying machine learning to a data sparse scenario is that predictions 

are likely to be overconfident. While this problem can be addressed to an extent by utilising 

Gaussian processes, a complementary strategy is to restrict the search area to a region of 

chemical space that is more likely to yield successful results. To this end, a structural similarity 

search of the 4 hit molecules in the docking set was carried out on the ‘clean’ and ‘in stock’ 

subset of the ZINC database, comprising ~6 million molecules. Any molecules showing a 

Tanimoto similarity value of >0.3 to any of the 4 structures of interest was included. This low 

threshold for Tanimoto similarity was intended to narrow the search space but without being 

overly restrictive of the available chemical landscape, yielding a data set of ~9000 compounds 

which comprised the prospective ‘evaluation set’. The distribution of this evaluation set in 

terms of the predicting binding energies is shown in Figure A.3A. 

 

Different machine learning models were initially trialled against the docking scores calculated 

for the evaluation set as a test of the project feasibility, and these models were then tuned on 

the much smaller aggregation data set. The best performing set up, the RFR-GPR stacked 

model, was then trained on the whole aggregation data set and used to predict the top set of 

molecules (see Machine Learning Implementation in the Appendix, and Figures A.1, A.4 and 

A.5). For this work, the t1/2 of a light seeding assay isolating secondary nucleation as the 

aggregation mechanism was used as the metric of potency to be used in machine learning, 

because of its robustness. For comparison, the amplification rate is more susceptible to small 

fluctuations in the slope of the aggregation fluorescence trace64 (Figure A.6). Example traces 

from this assay are shown in Figure 2.5A, the t1/2 being the time point at which the fluorescence 

reaches 50% of its maximal signal. The threshold for potency was again a t1/2 2-fold greater 

than that of the negative control under standard assay conditions (see methods Section 2.5.5). 
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The algorithm was run repeatedly from different random starting states and those molecules 

that appeared in the top 100 ranked molecules more than 50% of the time (64 molecules) were 

chosen for purchase (first iteration). In this first iteration, there was an inherent bias towards 

the structure of molecule 69 in the data set given the relative population sizes (Figure A.2A), 

but with the caveat that many of these structures were only loosely related to the parent 

(Tanimoto similarity < 0.4). Many of the potent lead molecules came from this group, 

suggesting chemical departures from the parent structure. 

 

The dynamic range within the aggregation data set in terms of potency was large, in that a 

majority of the molecules had no effect on aggregation, while the initial docking hits and their 

close derivatives exhibited a relative t1/2 of up to 4-5 times that of the negative control (limited 

by the length of the experimental run) at 25 µM. Molecules then found via machine learning 

produced a relative t1/2 of ~4-5 at up to 8 fold lower concentration (3.12 µM, 0.3:1 

molecule:protein) than that carried out in the initial screening (25 µM, 2.5:1 molecule:protein). 

This compares favourably with previous molecular matter tested in a less aggressive seeded 

aggregation assay such as the flavone derivatives, apigenin, baicalein, scutellarein, and morin 

which achieved relative t1/2 of 1-2 at a stoichiometry of 0.5:1 molecule:protein in a separate 

study57. Anle-138b is another example of a well-characterised small molecule inhibitor, which 

will be used as a benchmark for αS aggregation inhibition throughout this thesis, and which 

was also taken into clinical trials60. The relative t1/2 of Anle-138b is 1.22 (Figure 2.5A) at a 

ratio of 2.5:1 molecule:protein in the assay used in this work, which is significantly lower than 

any of the molecules discovered using the strategy employed here. 

 

After the first iteration, the compound data were pooled together to extend the training set and 

a further 2 iterations were carried out, adding the resultant data to the training set at each 

iteration. This was followed by a fourth and final iteration trained on low dose (3.12 µM) data 

of all the previously obtained molecules. Example kinetic traces for a molecule from the fourth 

iteration are shown in Figure 2.5A. The molecules are labelled according to iteration number 

and identifier within that iteration. For example, I4.05 is the fifth potent lead (05) within 

iteration 4 (I4). The dose-dependent potency in the aggregation assay was investigated 

(Figures 2.5A and A.7) with all leads exhibiting substoichiometric potency. For comparison 

Anle-138b is also shown. Figure 2.5B shows an approximate overall rate of aggregation at 

different concentrations of I4.05, Anle-138b and the parent molecule. This approximate rate 

was taken as 1/t1/2, and fitted to a Hill slope104. A kinetic inhibitory constant (KIC50) was then 
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derived. This is the concentration of molecule at which the t1/2 is increased by 50% with respect 

to the control, as defined previously63. The KIC50 values for the leads were in the range of 0.5-

5 µM, which compare favourably with the parent of the lead molecules (molecule 69) and 

Anle-138b which have KIC50 values of 18.2 µM and 36.4 µM (extrapolated) respectively. I4.05 

had a KIC50 value of 0.52 µM with 95% confidence limits of 0.45 µM and 0.59 µM.  

 

Figure 2.5. Performance comparison of a molecule from the final iteration of active learning (I4.05) vs an 

αS aggregation inhibitor currently in clinical trials (Anle-138b). (A) Kinetic traces of a 10 µM solution of αS 

with 25 nM seeds at pH 4.8, 37 °C in the presence of molecule or 1% DMSO in triplicate, with error bars denoting 

SD. During the initial screening, except for iteration 4, all molecules were screened at 2.5 molar equivalents (25 

µM), and leads were then taken for further validation at lower concentrations: 0.4 µM (blue), 0.8 µM (teal), 1.6 

µM (orange) with Anle-138b at 25 µM for comparison (red circles). The 1% DMSO negative control is shown in 

purple. Molecule I4.05 is shown as an example. The endpoints are normalised to the αS monomer concentration 

at the end of the experiment, which was detected via the Pierce™ BCA Protein Assay at t = 125 h. Furthermore, 

the same experiments were carried out using AlexaFluor™ 488 labelled αS yielding similar levels of inhibition 

as the ThT curves. (B) Approximate rate of reaction (taken as 1/t1/2, normalised between 0 and 100) in the presence 

of 3 different molecules, Anle-138b (purple), parent structure 69 (lilac) and I4.05 (blue). The KIC50 of I4.05 is 

indicated by the intersection of the fit and the horizontal dotted line. (C) High seeded experiments (5 µM seeds, 

all other conditions match A) were also carried out to observe any effects on the elongation rate and enable 

oligomer flux calculations using the secondary nucleation rate derived from A. (D) Oligomer flux calculations for 

I4.05 vs the competitor Anle-138b using the rates derived from both A and C.  



Targeting Parkinson’s disease with iterative learning 

19 

 

Figure 2.6. Results of the iterations of the machine learning drug discovery approach. (A) Normalised t1/2 

for the leads at 25 µM from the different stages: loose search, iteration 1, iteration 2 and iteration 3 (error bars 

denote SEM). The horizontal dotted line indicates the boundary for classification as a potent lead, which was 

normalised t1/2 = 2. For the loose search, 69 molecules were tested, while for iterations 1, 2 and 3, the number of 

molecules tested was 64, 64 and 56 respectively. Note that the most potent molecules exhibited complete 

inhibition of aggregation over the timescale observed, so the normalised t1/2 is presented as the whole duration of 

the experiment. (B) Flow of potent leads (+) and negatives (-) in the project starting from the close search (CS), 

moving to the loose search (LS) and then iterations 1, 2, and 3 (I1, I2, I3). Each branch is labelled with the 

molecule source (e.g. p48). Attrition reached its highest point at the loose search before gradually improving with 

each subsequent iteration. 
 

The elongation rate was largely unaffected in the presence of molecules at any concentration 

(Figure 2.5C). This was expected given the designed mechanism of action of the small 

molecule. It was also reassuring, since compounds that inhibit elongation may increase the 

population of oligomers63, which are considered the most damaging of the aggregate species 

in vivo46,47. Then, using the amplification and elongation rates derived from Figure 2.5A, C, 

the oligomer population over time was calculated57 (see methods Section 2.5.7-2.5.8). These 

calculations are shown in Figure 2.5D for I4.05 and Figure A.7 for the rest of the leads. All 

leads demonstrated a dose-dependent delay and reduction of the oligomer peak. Across all 

metrics, I4.05 performed significantly better than Anle-138b and the parent molecule at 
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substoichiometric ratios, as do all of the leads obtained in previous iterations (Figures A.7 and 

A.8).  

 

The aggregation data from the first 3 iterations are also shown in Figure 2.6A. The flow of 

molecules derived from each parent in terms of positives and negatives over the course of the 

project is illustrated in Figure 2.6B. Of the 64 molecules from iteration 1, 8 were potent, 

representing an optimisation rate of 12.5%, the second iteration showed a further increase, with 

11 potent molecules, representing a 17.2% optimisation rate and the third iteration, with 12 

potent molecules, had an optimisation rate of 21.4%. These optimisation rates represent an 

order of magnitude improvement over previously reported high throughput screening (HTS) 

assays (<1%)105 and, remarkably, an overall 40% improvement over the combined similarity 

search optimisation rates, which removed the most likely potent compounds. The potency of 

the machine learning leads was significantly higher on average than those identified by the 

similarity searches (Figure 2.7A), without compromising the CNS MPO scores (Figure 2.7B). 

The accumulated training data from all stages of the project for all molecules in terms of half 

time distribution is shown in Figure A.3B and A.3C.  

 

Given that αS aggregation and toxicity has also been linked to membrane interactions21,46 a 

parallel investigation was carried out with a lipid induced aggregation assay (Figure A.9) 

which was used as a validation of the molecules rather than for machine learning optimisation. 

The tested lead molecules also showed strong efficacy in this assay. A further test of these 

molecules in a spontaneous αS aggregation assay, without induction via pre-seeding or 

shaking, also exhibited strong potency106.  
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Figure 2.7. Average t1/2 of aggregation and CNS-MPO scores for the top 20 molecules at each stage. (A) The 

stages are the initial docking simulation (68 molecules tested), loose search (69 molecules tested), close search 

(25 molecules tested), iteration 1 (64 molecules tested), iteration 2 (64 molecules tested) and iteration 3 (56 

molecules tested). Molecules were tested at a concentration of 25 µM during screening. Molecules that completely 

prevented aggregation were assigned a t1/2 value equal to the length of the experiment. (B) A common cut off for 

CNS-MPO score is 4, as indicated by the horizontal dotted line.  

 

2.2.4. Analysis of the chemical space explored by machine learning.  

 

The chemical space explored by the machine learning approach was inspected via 

dimensionality reduction techniques, including PCA, t-SNE107 and UMAP102 to investigate 

how the model was prioritising molecules (Figure A.10 and Figure 2.8). These methods all 

attempt to reduce dimensionality of the data either for clustering or visualisation purposes 

(reducing to two dimensions), while retaining as much information about the data distribution 

as possible. In this case they are used to visualise the chemical space as represented by the 

junction tree variational autoencoder latent vectors of the molecules. The relative positioning 

of the training points and the parents within the chemical space is shown in Figure 2.8A. The 

stacked RFR-GPR model assigned low uncertainty to areas of the chemical space proximal to 

the observed data, and the corresponding acquirement priority mirrored this when trained on 

the aggregation data (Figure 2.8B-D). This figure also illustrates how the uncertainty 

weighting could be altered during the ranking, depending on how conservative a prediction 
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was required. A drawback to a high uncertainty penalty was that the model remained in the 

chemical space it was confident in, while a lower uncertainty penalty ensured reasonable 

confidence of potent molecule acquirement while still exploring the chemical space. 
 

 

Figure 2.8. UMAP visualisation of the compound feature space using uncertainty. (A) The visualisation 

indicates the molecules in the chemical space that have been tested over the course of the project (blue circles) 

starting from the 4 initial docking molecules (red circles) in the docking set, and the relative positioning of the 

parent structures in this space. (B) GPR assigned lower uncertainty (blue) to regions of the chemical space near 

to the observed data and high uncertainty (red) to areas which were further away. (C) Acquirement ranking with 

a low uncertainty penalty. The lower uncertainty compounds were prioritised (dark blue) during acquirement 

ranking. (D) Acquirement ranking with a high uncertainty penalty.  

 

The changes in similarity of the leads to the parent structures are shown in Figure A.11. The 

similarity of the molecules to their parent structure dropped for all structures at successive 

stages of the investigation, reaching its lowest point at the iterations of the machine learning 

approach. The more potent leads mostly retained the central ring and benzene substituent of 

molecule 69 albeit with the addition of polar groups to the benzene ring, but featured significant 

alterations to the rest of the scaffold. For example, from iteration 1, I1.01 replaced the fused 

ring substructure of molecule 69 with a single substituted benzene ring, while I1.02 replaced it 
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with a substituted furan ring, and subsequent iterations saw more complexity introduced. These 

changes were reflected in the Tanimoto similarity values, which were at the lower end of what 

was permitted in the evaluation set, 0.3 being the cut off. It was evident from this result that 

parts of the substructure were important to retain for potency, which the model did effectively 

while also identifying alterations in the rest of the scaffold that enhanced the potency 

considerably beyond that of the parent.  

 

The observation that the QSAR model converges on the structures from two areas of the UMAP 

space related to structure 69 was encouraging in that it suggested the models were learning 

useful information and not selecting at random. While we have not tested a random set of 

molecules due to prohibitive resource cost, we do note that if a random selection of molecules 

were taken from the accumulated training data from all stages of the project, its optimisation 

rate (11%) would be lower than that of iterations 1, 2 and 3 on average. Though performance 

improves with additional data the QSAR performance in terms of R2 remains modest (Figure 

A.1), but this is in part due to sparsity of training data. We would anticipate improvement if 

this approach could be implemented at medium scale with correspondingly more complex 

QSAR models, and we have an indication of this from trials of the model set up against the 

docking scores of the evaluation set, where performance in terms of R2 score is 3 fold higher 

for a slightly larger data set.  
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Figure 2.9. Clustering molecules based on SHAP dimensions and latent vectors. Three SHAP clusters were 

selected which show clear separation via UMAP. The colouring on the UMAP plot is based on the latent space 

clusters (a-g) and the shape of the marker is based on the SHAP value clustering (α, β, γ). Examining the plot 

shows that there is no separation between latent clusters c and g, which are grouped together in SHAP cluster γ. 

Although molecules which belonged to latent clusters a, b, and f were mostly grouped together by SHAP 

clustering, latent cluster e was grouped together with latent cluster d. Examination of the top dimensions of each 

SHAP cluster revealed that dimension 24 at least partly encodes for the key sub-structure of clusters a, b, e and f 

(3,5-pyrazolidinedione, highlighted in dark red), while dimension 26 at least partly encodes for the key sub-

structure of cluster d (the oxygen-rich chromenone fused ring system, highlighted in dark green), and dimensions 

15, 17, 12 at least partly encode for the key sub-structure of clusters c and g (carboxylic acid bearing aromatic 

group). Computational work was carried out by Alice Aubert under my supervision. 

 

Next, an investigation was carried out to identify what structural information the latent vectors 

were encoding. Variational autoencoders are generally not built to ensure that their latent space 

dimensions are human interpretable, making this a challenge. The decoding of a variational 

autoencoder is also not deterministic, preventing facile analysis of the feature space based on 

single perturbation approaches of the input features and observing changes to decoded 

structures. Instead, hierarchical clustering was carried out on the latent vectors, followed by 

Shapley Additive explanation (SHAP)108 clustering for comparison (Figure 2.9). While the 
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former differentiated groups based on large changes in any dimension, clustering based on 

SHAP dimensions ensured that clusters were created based only on features relevant to the 

prediction problem at hand. Latent space dimensions that have a large range of values had a 

large effect on the latent space clustering, regardless of whether these dimensions were 

important predictors of molecular potency. Using SHAP values, on the other hand, meant that 

latent space dimensions which had little effect on the model prediction were mapped to values 

close to zero, and therefore had a much smaller influence on the clustering. This resulted in 

clusters which were relevant to the prediction task. This strategy was suggested by the authors 

of SHAP and was recently used in the context of identifying subgroups of Covid-19 

symptoms109. 

 

In Figure 2.9 I show a UMAP representation of the tested molecules, with the latent vector 

clustering indicated by colour and the SHAP clustering indicated by shape. From the UMAP 

representation, it is notable that the SHAP clustering identified clusters more effectively than 

the hierarchical clustering. The SHAP values for each feature show the importance of that 

feature in the interpretation of potency, and this in turn could be used to identify which 

substructures within the molecules are relevant for potency by observing the structures that 

recurred in each cluster. For example, Figure 2.9 shows the top dimensions of each SHAP 

cluster, revealing that dimension 24 at least partly encoded for the key sub-structure 3,5-

pyrazolidinedione, which was present in every molecule in cluster α and a significant 

proportion of cluster ß, while dimension 26 at least partly encoded for the key sub-structure of 

cluster d, a chromenone fused ring system which was present in every other molecule in the 

cluster. This confirmed the hypothesis previously put forward by Jin et al.83 that in a junction 

tree variational autoencoder, the latent space encoding preserved the key features of each 

molecule. Molecules which were clustered together shared many molecular substructures in 

common. 
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Figure 2.10. Molecule binding to αS fibrils. (A) A schematic representation of small molecule binding to the 

target binding pocket on the αS fibril, preventing secondary nucleation in the process. (B) SPR response curves 

for different concentrations of I4.05 at pH 4.8 and pH 8 binding to αS fibrils generated by a seeded assay, with 

the corresponding molecular structure shown. Raw data (points) and the corresponding fits (solid lines) for each 

molecule concentration are shown: 1.1 nM (black), 3.3 nM (purple), 11 nM (blue), 33 nM (teal), 111 nM (orange), 

333 nM (red), 500 nM (magenta) and 1.1 μM (purple). Concentrations were repeated in duplicate in a pyramidal 

arrangement. The αS fibrils were immobilised at a concentration of 2000 pg / mm2 on a CM5 Cytivia chip. The 

fits correspond to a 1:1 kinetic binding model, which yielded a KD of 68 nM (ka = 1.936 ± 0.007 105 M-1s-1, kd = 

1.315 ± 0.003 10-2 s-1) at pH 4.8 and 13 nM at pH 8 (ka = 5.879 ± 0.024 105 M-1s-1, kd = 0.781 ± 0.002 10-2 s-1). 

(C) SPR response curves for different concentrations of Anle-138b at pH 4.8 and pH 8 binding to αS fibrils 

generated by a seeded assay, with the corresponding molecular structure shown. Raw data (points) for each 

molecule concentration are shown: 1.1 μM (purple), 3.3 μM (light orange), 5 μM (light red). Accurate fits at pH 

4.8 could not be obtained given the low dose response, but at pH 8 a 1:1 kinetic binding model yielded an 

approximate KD of 8.1 μM (ka = 0.0359 ± 0.0005 105  M-1s-1, kd = 2.90 ± 0.02 10-2 s-1). (D) Seeded kinetics (40 

nM seed) and SPR response curves for 2 μM Aß42 in the presence of 1% DMSO or different concentrations of 

I4.05 (colour scheme as above). I4.05 is unable to effectively inhibit Aß42 secondary nucleation or bind to Aß42 
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fibrils (approximate KD = 2.5 μM). The Aß42 fibrils were immobilised at a concentration of 2000 pg / mm2 on a 

CM5 Cytivia chip. 
 

2.3. Validation of lead molecules identified 

 

2.3.1. Measurement of binding affinity.  

 

A series of validation experiments were carried out on the most potent leads from the machine 

learning iterations. We first tested the binding to fibrils using surface plasmon resonance (SPR, 

see methods Section 2.5.12) under different buffer conditions. The results for molecule I4.05 

vs Anle-138b are shown in Figure 2.10. The proposed mechanism of action is the binding of 

molecules to the fibrils thereby blocking nucleation sites for further aggregation. Support for 

this mechanism of action comes from the observations that the molecules function at 

significantly substoichiometric ratios, discounting monomer interactions, and also show 

negligible effect on elongation. The lack of effect on elongation suggests binding of the 

molecules to the fibril surface rather than to the fibril ends. Covalent interactions can also be 

discounted, as no mass change is observed of the αS monomer by mass spectrometry. The large 

effect observed in an assay that isolates secondary nucleation as the dominant mechanism 

implies that the molecules are specifically affecting this step, and the substoichiometry implies 

that the molecules must be interacting with the fibrils which are present in nM monomer 

equivalents at the start of the aggregation.  

 

Proof of binding and evidence for this potential mechanism are shown by SPR in Figure 2.10. 

Figure 2.10A shows a schematic representation of molecule binding to the binding pocket 

targeted during the initial docking simulation. Figure 2.10B shows SPR response curves for a 

concentration range between 0.3 nM and 1.1 µM of I4.05, while Figure 2.10C shows the same 

experiment utilising Anle-138b from 1.1 µM to 5 µM. The binding was tested under the 

conditions of the light seeded assay, pH 4.8, and also at pH 8, allowing direct comparison to 

the seeding assay conditions of Aß42, which were tested as a control in Figure 2.10D. αS is 

highly charged at neutral pH and has a PI of 4.7110. It therefore requires a pH in this region to 

render the protein uncharged in order to aggregate on an experimentally accessible timescale 

under quiescent conditions, whereas Aß42 is highly aggregation prone and requires high pH to 

prevent it aggregating too rapidly for detection63. At both pH values, I4.05 exhibited binding 
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to αS fibrils, with kinetic fits giving KD values of 68 nM at the lower pH and 13 nM at the 

higher pH. The data for Anle-138b showed no response for pH 4.8 and so no KD could be 

obtained, while at pH 8 an approximate KD of 8.1 µM was obtained. It is evident that the 2 

orders of magnitude improvement in KIC50 of I4.05 compared to Anle-138b was matched by 

a similar degree of improvement in terms of binding efficacy. Figure 2.10D shows that I4.05 

has no effect on the seeded aggregation of Aß42, nor does it bind effectively to Aß42 fibrils, 

which suggests that this molecule is not a promiscuous aggregation inhibitor between different 

amyloidogenic proteins.  

 

Figure 2.11. RT-QuIC brain seeding assay. (A) Schematic representation of the RT-QuIC assay, aggregates 

derived from the brain tissue of patients suffering with dementia with Lewy bodies (DLB) were used to induce 

αS aggregation. Samples from brains of patients with corticobasal degeneration (CBD) were used as a negative 

control. (B) Kinetic traces of a 7 µM solution of αS in the presence of CBD seeds (pH 8, 42°C, shaking at 400 

rpm with 1 min intervals, in quadruplicate, error bars denote SD). CBD samples were 1% DMSO (blue), 7 µM 

Anle-138b (teal), parent (orange), I1.01 (purple), I3.02 (red), I3.08 (turquoise) and I4.05 (light blue). Anle-138b, 

in teal, induces aggregation under this condition. (C) Kinetic traces of a 7 µM solution of αS in the presence of 

DLB seeds. The DLB samples were 1% DMSO (purple), 3.5 µM molecule (blue), 7 µM molecule (teal) and 25 

µM molecule (orange). Anle-138b again appears to accelerate rather than inhibit aggregation. Experimental work 

was carried out by Parvez Alam. 
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2.3.2. Inhibition of aggregation using brain-derived seeds.  

 

While this result was encouraging, with the recent determination of the pathological αS fibril 

structure, it became clear that the recombinant in vitro fibril structure I had employed for 

computational and experimental work was different to that found in the brains of Parkinson’s 

disease patients23. To test whether these molecules might work against patient-derived fibrils, 

these molecules were tested in a real-time quaking-induced conversion (RT-QuIC)111 assay 

(Figure 2.11) that employs brain samples from patients suffering with Dementia with Lewy 

Bodies (DLB) to seed aggregation of αS. The dominant fibril structure identified in DLB was 

found to match the dominant structure observed in Parkinson’s disease23. DLB is characterised 

by cognitive impairments such as hallucinations and dementia early in disease progression as 

well as motor impairment. Patients exhibit more aggressive spread and distribution of 

aggregates throughout neurons of the cerebral cortex when compared to those suffering from 

Parkinson’s disease, which tends to only exhibit spread beyond the regions of the brain 

controlling motor functions in the later disease stages50.  

 

The RT-QuIC assay was initially introduced as a diagnostic assay112,113, showing distinct 

aggregation curves in the presence of brain material derived from different pathologies114. In 

this case, I use it to test the ability for these molecules to slow the aggregation of αS induced 

by DLB brain material. As a negative control, samples from patients with a tauopathy 

(corticobasal degeneration, CBD) were also used, as these did not induce αS aggregation as 

only tau seeds were present rather than αS seeds (Figure 2.11A, B). CBD is a condition 

characterised by both cognitive and sensory loss as well as motor impairment (such as rigidity, 

which may be more pronounced on one side of the body), where aggregated tau is observed in 

the cortex of patient brains and elsewhere, with locations varying from patient to patient115. 

Tau is a family of closely related microtubule binding proteins (55-62 kDa). Mutations that 

induce tauopathies affect the alternative splicing of the protein, disrupt its interactions with 

microtubules, or increase its aggregation propensity. Alternative splicing of the MAPT gene 

leads to 6 tau isoforms of differing aggregation propensity, which differ by the number of N 

terminal inserts (0N, 1N or 2N), and microtubule binding repeats (3R, 4R). Tau aggregates in 

CBD are largely comprised of 4R tau, which differentiates this condition from other 

tauopathies, especially given 4R tau binds more strongly to microtubules and is less 

aggregation prone. Hyperphosphorylation of tau is also thought to be key to aggregation45. The 

conditions of this experiment were different to those initially screened, as this assay was carried 
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out at pH 8 and utilised shaking to induce aggregation. This is a more challenging paradigm 

for the molecules to function in as multiple aggregation processes occur in tandem97. In 

addition to secondary nucleation from the fibril surfaces, fragmentation of the fibrils induced 

via shaking results in more fibril ends for elongation, which in turn provides more fibril surface 

for secondary nucleation.  

Figure 2.12. (A) Folds of the prevalent fibril polymorph in diseased brain material identified via cryo-EM in 

Parkinson’s disease and dementia with Lewy bodies (8A9L), MSA type I and MSA type II. A common motif of 

4 lysines enclosing an aromatic side chain (tyrosine in the Lewy fold and histidine in the MSA fold and 6CU7 

fold) is observed in the polymorphs, with unidentified electron density in the pocket in each case (adapted from 

Yang, Y. et al.23). (B) Comparison of the cryo-EM structures of the 6CU7 (recombinant, initially targeted) and 

8A9L (brain derived) with the homologous binding site indicated. (C) Structural overlap of the 6CU7 and 8A9L 

fibril structures, with the binding site in 6CU7 aligned with the similar binding site in 8A9L at the top of the 

diagram. The structures are coloured according to the CamSol residue solubility score96. (D) Schematics of the 

molecules bound in their lowest energy state within the 8A9L predicted binding site.  
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Despite these challenges, and the different fibril structure present, the molecules still function 

well in inhibiting aggregation, and still at substoichiometric ratios (Figure 2.11C). There is 

again a clear improvement for the leads over Anle-138b, which in fact appears to accelerate 

aggregation in this example, and the parent molecule, although the ranking of the leads in terms 

of efficacy is altered compared to the screening assay. To understand these results, we note that 

there is a similarity in the binding pockets in the structures 6CU7 (recombinant) and 8A9L 

(brain derived) (Figure 2.12). We currently do not know whether or not this similarity is 

serendipitous, but binding pockets with similar features can also be observed via cryo-EM in 

the MSA-I and MSA-II fibril folds as well as the Lewy fold, with an unresolved species bound 

within the pocket23. Multiple system atrophy (MSA) is another synucleinopathy that differs 

from PD as aggregation is most pronounced within the oligodendrocytes in the former and the 

neurons in the latter. This difference in cellular environment likely gives rise to the altered 

morphology of the aggregates.  
 

To account for differences in brain samples and also investigate potential efficacy against MSA 

derived brain material, we tested a single concentration of the same selection of molecules 

against 3 neuropathologically confirmed MSA brain samples (Figure 2.13A, C) and 2 further 

DLB brain samples (Figure 2.13A, D). As a further negative control, a sample with no seed 

was tested, to determine the degree of spontaneous nucleation in the absence of brain material 

(Figure 2.13B). Aggregation in the negative control is effectively inhibited by all the ML 

molecules, given αS is likely to assume the 6CU7 polymorph in this condition, and not by 

Anle-138b which accelerates aggregation. It is possible that Anle-138b was not fully 

solubilised under this condition given the heat, shaking and the relatively high concentration 

of Anle-138b used relative to its reported solubility60, which may have given rise to this effect. 

It should also be noted that the CBD samples are the better negative control for RT-QuIC, as 

all brain samples contain traces of cell matrix components that may sequester αS and reduce 

its aggregation. The unseeded sample begins aggregation at ~40-50 h whereas CBD samples 

do not exhibit significant aggregation over a span of 80 h (Figure 2.14). Fibrils present in DLB 

and MSA samples are able to counteract this effect. For the DLB and MSA samples broadly 

similar trends were observed to those shown in Figure 2.11. The ML molecules did appear 

more efficacious against MSA samples (Figure 2.13C), perhaps because the MSA pocket more 

closely matches that of the targeted 6CU7 polymorph (4 flanking lysines around a histidine 

residue) compared to the 8A9L polymorph found in PD and DLB (4 flanking lysines  
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Figure 2.13. RT-QuIC brain seeding assay. (A) Schematic representation of the RT-QuIC assay, aggregates 

derived from the brain tissue of patients suffering with multiple system atrophy (MSA) or dementia with Lewy 

bodies (DLB) were used to induce αS aggregation. (B) Kinetic traces of a 7 µM solution of αS in the absence of 

brain material (pH 8, 42°C, shaking at 400 rpm with 1 min intervals, in triplicate, error bars denote SD). Unseeded 

samples were 1% DMSO (grey), 7 µM Anle-138b (teal), parent (blue), I1.01 (red), I3.02 (lilac), I3.08 (turquoise) 

and I4.05 (light blue). Anle-138b, in teal, induces aggregation under this condition. (C) Kinetic traces of a 7 µM 

solution of αS in the presence of MSA brain material. The MSA samples were 1% DMSO (light orange), 7 µM 

Anle-138b (teal), parent (blue), I1.01 (red), I3.02 (lilac), I3.08 (turquoise) and I4.05 (light blue). Anle-138b had 

no effect in samples 1 and 2 but appears to accelerate aggregation in sample 3. (D) Kinetic traces of a 7 µM 

solution of αS in the presence of DLB brain material. The DLB samples were 1% DMSO (purple), 7 µM Anle-

138b (teal), parent (blue), I1.01 (red), I3.02 (lilac), I3.08 (turquoise) and I4.05 (light blue). Samples have been 

separated into different graphs for clarity. The DMSO and Anle-138b traces are shown on each graph, with 2 

molecules from the docking or ML shown for comparison: Parent and I1.01 (top), I1.02 and I3.02 (middle), I3.08 

and I4.05 (bottom). Anle-138b exerts a consistent mild inhibition for these two brain samples. Experimental work 

carried out by Parvez Alam. 
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Figure 2.14. Kinetic trace of a 7 µM solution of αS in the presence of CBD brain material and 1% DMSO over a 

longer time course. No significant aggregation was observed over 80 h. Experimental work carried out by Parvez 

Alam. 

 

around a tyrosine residue) as shown in Figure 2.12. The behaviour of Anle-138b was variable 

as, where the ML derived molecules inhibited aggregation to some extent across all examples, 

Anle-138b either had no effect (unseeded and MSA samples 1 and 2) or induced (CBD sample, 

MSA sample 3 and DLB sample 1) or mildly inhibited aggregation (DLB samples 2 and 3). 

No aggregation was observed in the CBD samples over the time scale observed except for 

Anle-138b, which accelerated aggregation under this condition. 

 

2.3.3. Oligomer quantification by micro free-flow electrophoresis.  

 

Having observed that molecule I3.02 was the most broadly effective in the RT-QuIC assay, an 

investigation was carried out to directly measure the oligomeric species formed during the 

reaction. This was achieved using microfluidic free-flow electrophoresis (µFFE)116, a 

technique optimised using similar conditions to that used in the RT-QuIC assay, albeit at 

significantly higher αS concentration (100 µM). The results of this are shown in Figure 2.15. 

Aggregation time courses were tracked using AlexaFluor™ 488 labelled N122C rather than 

ThT. Figure 2.15 shows a schematic of the approach, where samples were extracted from an 

aggregation time course, centrifuged to remove insoluble aggregates, and finally submitted to 

µFFE. The degree of deflection and the photon count of each particle are proportional to the 

size and charge of the biomolecule. The former allows the separation of monomers from 

oligomers and the latter gives a measure of the number and size of the oligomers at a particular 

time point in the presence of different inhibitors. Oligomer electrophoretic mobility (µo) for an 

oligomer comprised of nm monomer units is proportional to oligomer charge (qo) and inversely 

proportional to oligomer hydrodynamic radius (ro) and so can be described by116 
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where v is a scaling exponent linking qo with nm. Approximating the oligomers as spherical 

species yields116 
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where the oligomer electrophoretic mobility is defined only in terms of the monomer number 

(nm) and hydrodynamic radius (rm), and the scaling exponent v* = v - 1/3. Samples were 

extracted at the t1/2 of the negative control (1% DMSO) and the results are shown in Figure 

2.15. Anle-138b dosing resulted in a smaller population of large aggregates, as may be 

expected from the slight acceleration in the aggregation observed in the fluorescence values, 

while I3.02 reduced both the size and the number of oligomers present in comparison to the 

DMSO control.  
 

2.4. Discussion 

 

In this chapter, we develop a machine learning approach to drug discovery for protein 

aggregation diseases that could improve both the optimisation rate of the in vitro assays 

employed and provide novel chemical matter more efficiently than conventional approaches. 

As of the first iterations, the optimisation rate of the approach using initial hit compounds 

identified via docking simulations was an over 20-fold improvement over typical HTS hit rates 

(~0-1%)117. These structures also represent discoveries that could not have been obtained by 

staying close in chemical space to the parent structure, as would have been dictated by 

similarity search approaches. There were ~4000 molecules in the test set that had Tanimoto 

similarity values in the same range as these leads, and all of these would potentially have had 

to be screened to locate these leads using similarity searches alone. This was demonstrated by 

the looser similarity search approach which exhibited a comparatively poor optimisation rate 

(4%) despite more conservative structural alterations to the parent hits. The machine learning 

method was therefore able to supply a degree of novelty as well as an improved optimisation 

rate.  
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Figure 2.15. Quantification of αS oligomers using micro free-flow electrophoresis (μFFE). (Top right) αS 

labelled with AlexaFluor™ 488 (100 µM, pH 7.4, 37°C, cycles of 5 min shaking at 200 rpm and 1 min rest, in 

quadruplicate, error bars denote SD) was supplemented with 0.5 µM seed and 1% DMSO (purple) or 50 µM Anle-

138b (teal) or I3.02 (blue) in 1% DMSO. Anle-138b slightly accelerates aggregation under these conditions, where 

fragmentation mechanisms may again play a role due to shaking, while I3.02 slows it down. Samples were 

extracted at 9 h from the time course of aggregation and centrifuged to remove fibrils from the mixture, leaving 

only αS monomers and soluble oligomeric species for analysis via μFFE. (Bottom left) Schematic representation 

of the μFFE approach, showing the AlexaFluor™ 488-labeled αS oligomeric mixture undergoing μFFE. The 

direction of fluid flow is shown by arrows. The differential deflection of the electric field allows the monomer 

population to be separated from the oligomer population during analysis (Middle and bottom right). Analysis of 

the aggregate populations detected in each sample. The number of photons emitted, proportional to particle 

number and size, is plotted on the y axis of the bar plot for each sample. The average number of photons emitted 

per particle is indicated in the inset. Experimental work carried out by Ewa Andrzejewska and I. 

 

A limitation of this approach is the requirement to select molecules from a pre-existing library. 

To resolve this limitation generative modelling combined with reinforcement learning is 

applied in the next chapter to remove the need for a library to screen from101,118. A second 

limitation is the focus on one assay metric of interest as a learning parameter. Addressing this 

limitation will involve future work on multi-parameter optimisation, which is a challenging 
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area in rapid development119-122. Another topic of great interest in drug discovery approaches 

based on machine learning besides potency prediction is the prediction of pharmacokinetics 

and toxicity123,124. It could be possible to achieve this multi-parameter optimisation utilising 

multiple models in parallel and then employing a joint ranking metric, or architectures that 

screen for individual metrics in series, although this has primarily been demonstrated with 

predicted chemical properties such as clogP and quantitative estimate of drug likeness (QED) 

rather than experimental results119-121. The clogP is a calculated measure of the lipophilicity of 

the molecule while QED is a metric that aggregates how similar in molecular properties a 

particular example is to successful drugs. While CNS MPO was not optimised in this chapter 

it was monitored. The molecules in this work were derived from a set that passed CNS MPO 

criteria in the initial docking simulation, and so the CNS MPO score of the whole aggregation 

inhibitor set is relatively favourable with most lead molecules exceeding the common cut off 

value of 494 (Figure 2.7B). I explicitly attempt to optimise both CNS MPO and potency in the 

next chapter. 

 

It would have been preferable to begin this approach using seeds derived from relevant 

pathological brain material, but this was not possible, as neither structures nor samples for these 

were available at the start of this study. Nonetheless, we have demonstrated that these 

molecules still function against disease relevant inducers, likely because of the degree of 

commonality between the binding sites of the fibril polymorphs. The complete loss of function 

against another aggregation prone protein, Aß42, does however suggest specific functionality 

against αS.  

 

The identification of inhibitors of αS aggregation based on chemical kinetics approaches has 

advanced to the point that specific steps in the aggregation process, including primary 

nucleation and secondary nucleation, can be targeted in a reproducible way43,57,82. The 

mechanism targeted in this work is the surface-catalysed secondary nucleation step, which is 

responsible for the autocatalytic proliferation of αS fibrils. In a recent initial report, initial hit 

molecules identified via docking simulations were shown to bind competitively with αS 

monomers along specific sites on the surface of αS fibrils64,80,125. Specific rate measures and 

other aggregation metrics were derived from these experiments allowing quantitative and 

reliable comparisons between molecules in terms of SAR and offering metrics to optimise 

structures of interest57,63. This has been augmented with tests against diseased brain material 

and detailed, experimental fibril binding and oligomer flux analyses. 
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The results that I have presented illustrate a drug discovery approach that involves an iterative 

structure-based machine learning strategy to generate potent protein aggregation inhibitors. 

The resulting leads offered a significant improvement in potency over the parent and clinical 

molecules and represented a major structural departure from them. I anticipate that using 

machine learning approaches of the type described here could be of significant benefit to 

researchers working in the field of protein misfolding diseases, and indeed early-stage drug 

discovery research in general.  

 

2.5. Materials and methods 

 

2.5.1. Compounds and chemicals 

 

Compounds were purchased from MolPort (Riga, Latvia) or Mcule (Budapest, Hungary) and 

prepared in DMSO to a stock of 5 mM. All chemicals used were purchased at the highest purity 

available.  

 

2.5.2. Recombinant αS expression  

 

Recombinant αS was purified based on previously described methods74,97,126. The plasmid pT7-

7 encoding human αS was transformed into BL21 (DE3) competent cells. Following 

transformation, the competent cells were grown in 6L 2xYT media in the presence of ampicillin 

(100 µg/mL). Cells were induced with IPTG, grown overnight at 28 oC and then harvested by 

centrifugation in a Beckman Avanti JXN-26 centrifuge with a JLA-8.1000 rotor at 5000 rpm 

(Beckman Coulter, Fullerton, CA). The cell pellet was resuspended in 10 mM Tris, pH 8.0, 1 

mM EDTA, 1 mM PMSF and lysed by sonication. The cell suspension was boiled for 20 min 

at 85 °C and centrifuged at 18,000 rpm with a JA-25.5 rotor (Beckman Coulter). Streptomycin 

sulfate was added to the supernatant to a final concentration of 10 mg/mL and the mixture was 

stirred for 15 min at 4 oC. After centrifugation at 18,000 rpm, the supernatant was taken with 

an addition of 0.36 g/mL ammonium sulfate. The solution was stirred for 30 min at 4 oC and 

centrifuged again at 18,000 rpm. The pellet was resuspended in 25 mM Tris, pH 7.7, and the 

suspension was dialysed overnight in the same buffer. Ion-exchange chromatography was then 

performed using a Q Sepharose HP column of buffer A (25 mM Tris, pH 7.7) and buffer B (25 
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mM Tris, pH 7.7, 1.5 M NaCl). The fractions containing αS were loaded onto a HiLoad 26/600 

Superdex 75 pg Size Exclusion Chromatography column, and the protein (≈ 60 ml @ 200 µM) 

was eluted into the required buffer. The protein concentration was determined 

spectrophotometrically using ε280 = 5600 M−1 cm−1. The cysteine-containing variant (N122C) 

of αS was purified by the same protocol, with the addition of 3 mM DTT to all buffers.  

 

2.5.3. Labelling of αS  

 

αS protein was fluorophore-labelled to enable visualisation by fluorescence microscopy. In 

order to remove DTT, cysteine variants of αS were buffer exchanged into PBS or sodium 

phosphate buffer by use of P10 desalting columns packed with Sephadex G25 matrix (GE 

Healthcare). The protein was then incubated with an excess of AlexaFluor™ 488 dye with 

maleimide moieties (Thermofisher Scientific) (overnight, 4 °C on a rolling system) at a molar 

ratio of 1:1.5 (protein-to-dye). The labelling mixture was loaded onto a Superdex 200 16/600 

(GE Healthcare) and eluted in PBS buffer at 20 °C, to separate the labelled protein from free 

dye. The concentration of the labelled protein was estimated by the absorbance of the 

fluorophores, assuming a 1:1 labelling stoichiometry (AlexaFluor™ 488: 72000 M-1 cm-1 at 

495 nm).  

 

2.5.4. αS seed fibril preparation 

 

αS fibril seeds were produced as described previously74,97. Samples of αS (700 µM) were 

incubated in 20 mM phosphate buffer (pH 6.5) for 72 h at 40 °C and stirred at 1,500 rpm with 

a Teflon bar on an RCT Basic Heat Plate (IKA, Staufen, Germany). Fibrils were then diluted 

to 200 µM, aliquoted and flash frozen in liquid N2, and finally stored at -80 oC. For the use of 

kinetic experiments, the 200 µM fibril stock was thawed, and sonicated for 15 s using a tip 

sonicator (Bandelin, Sonopuls HD 2070, Berlin, Germany), using 10% maximum power and a 

50% cycle. 

 

2.5.5. Measurement of αS aggregation kinetics  

 

αS was injected into a Superdex 75 10/300 GL column (GE Healthcare) at a flow rate of 0.5 

mL/min and eluted in 20 mM sodium phosphate buffer (pH 4.8) supplemented with 1 mM 
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EDTA. The obtained monomer was diluted in buffer to a desired concentration and 

supplemented with 50 µM ThT and preformed αS fibril seeds. The molecules (or DMSO alone) 

were then added at the desired concentration to a final DMSO concentration of 1% (v/v). 

Samples were prepared in low-binding Eppendorf tubes, and then pipetted into a 96-well half-

area, black/clear flat bottom polystyrene NBS microplate (Corning 3881), 150 µL per well. 

The assay was then initiated by placing the microplate at 37 oC under quiescent conditions in 

a plate reader (FLUOstar Omega, BMG Labtech, Aylesbury, UK). The ThT fluorescence was 

measured through the bottom of the plate with a 440 nm excitation filter and a 480 nm emission 

filter. After centrifugation at 5000 rpm to remove aggregates the monomer concentration was 

measured via the Pierce™ BCA Protein Assay Kit according to the manufacturer’s protocol.  

 

For the lipid induced assay, small unilamellar vesicles (SUVs) containing 1,2-dimyristoyl-sn-

glycero-3-phospho-L-serine (DMPS), Avanti Polar Lipids Inc., Alabaster, AL, USA), were 

prepared from chloroform solutions of the lipids as described previously126. Briefly, the lipid 

mixture was evaporated under a stream of nitrogen gas and then dried thoroughly under 

vacuum to yield a thin lipid film. The dried thin film was re-hydrated by adding aqueous buffer 

(20 mM sodium phosphate, pH 6.5, 1 mM EDTA) at a concentration of 1 mM and heating to 

40 oC for 2 h while stirring at 1,500 rpm with a Teflon bar on an RCT Basic Heat Plate (IKA, 

Staufen, Germany). SUVs were obtained using several cycles of freeze-thawing followed by 

extrusion through membranes with 200 nm diameter pores (Avanti Polar Lipids, Inc). αS was 

prepared as above. Kinetic conditions were 20 µM αS, 100 µM DMPS, 50 µM ThT, 30 oC, all 

other conditions remained the same as above.  

 

Transmission electron microscopy (TEM) imaging of the fibrils produced at the end of the light 

seeded aggregation reaction (Figure A.12), was used to verify fibrils were produced 

 

2.5.6. Determination of the αS elongation rate constant 

 

In the presence of high concentrations of seeds (» µM), the aggregation of αS is dominated by 

the elongation of the added seeds74,97. Under these conditions where other microscopic 

processes are negligible, the aggregation kinetics for αS can be described by57,64,74 

 
𝑑𝑀(𝑡)
𝑑𝑡 /

&'(
= 2𝑘)𝑃(0)𝑚(0) 



Targeting Parkinson’s disease with iterative learning 

40 

 

 

where M(t) is the fibril mass concentration at time t, P(0) is the initial number of fibrils, m(0) 

is the initial monomer concentration, and k+ is the rate of fibril elongation. In this case, by 

fitting a line to the early time points of the aggregation reaction as observed by ThT kinetics, 

2k+P(0)m(0) can be calculated for αS in the absence and presence of the compounds. 

Subsequently, the elongation rate in the presence of compounds is expressed as a normalised 

reduction as compared to the elongation rate in the absence of compounds (1% DMSO). 

 

2.5.7. Determination of the αS amplification rate constant  

 

In the presence of low concentrations of seeds (~ nM), the fibril mass fraction, M(t), over time 

was described using a generalised logistic function to the normalised aggregation data57,127 
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where mtot denotes the total concentration of αS monomers. The parameters a and c are defined 

as 

 

𝑎 =
𝜆,

2𝜅, 

𝑐 = =
2

𝑛,(𝑛, + 1)
 

 

The parameters 𝜆 and 𝜅 represent combinations for the effective rate constants for primary and 

secondary nucleation, respectively, and are defined as127 

 

𝜆 = >2𝑘)𝑘-𝑚&!&
-"  

and 

𝜅 = >2𝑘)𝑘,𝑚&!&
-#)$ , 
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where kn and k2 denote the rate constants for primary and secondary nucleation, respectively, 

and nc and n2 denote the reaction orders of primary and secondary nucleation, respectively. In 

this case, nc was fixed at 0.3 for the fitting of all data (corresponding to a reaction order of n2 

= 4), and k2, the amplification rate, is expressed as a normalised reduction for αS in the presence 

of the compounds as compared to in its absence (1% DMSO). 

 

2.5.8. Determination of the αS oligomer flux over time 

 

The theoretical prediction of the reactive flux towards oligomers over time was calculated 

as57,127 
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where r+ = 2k+m(0) is the apparent elongation rate constant extracted as described earlier, and 

m(0) refers to the total concentration of monomers at the start of the reaction.  

 

2.5.9. Recombinant Aß42 expression 

 

The recombinant Aß42 peptide (MDAEFRHDSGY EVHHQKLVFF AEDVGSNKGA 

IIGLMVGGVV IA), here called Aß42, was expressed in the E. coli BL21 Gold (DE3) strain 

(Stratagene, CA, U.S.A.) and purified as described previously. Briefly, the purification 

procedure involved sonication of E. coli cells, dissolution of inclusion bodies in 8 M urea, and 

ion exchange in batch mode on diethylaminoethyl cellulose resin followed by lyophylisation. 

The lyophilised fractions were further purified using Superdex 75 HR 26/60 column (GE 

Healthcare, Buckinghamshire, U.K.) and eluates were analysed using SDS-PAGE for the 

presence of the desired peptide product. The fractions containing the recombinant peptide were 

combined, frozen using liquid nitrogen, and lyophilised again. 

 

2.5.10. Aß42 aggregation kinetics and fibril preparation 

 

Solutions of monomeric Aß42 were prepared by dissolving the lyophilised Aß42 peptide in 6 

M guanidinium hydrocholoride (GuHCl). Monomeric forms were purified from potential 
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oligomeric species and salt using a Superdex 75 10/300 GL column (GE Healthcare) at a 

flowrate of 0.5 mL/min, and were eluted in 20 mM sodium phosphate buffer, pH 8 

supplemented with 200 µM EDTA and 0.02% NaN3. The centre of the peak was collected and 

the peptide concentration was determined from the absorbance of the integrated peak area using 

ε280 = 1490 l mol-1 cm-1. The obtained monomer was diluted with buffer to the desired 

concentration and supplemented with 20 µM thioflavin T (ThT) from a 2 mM stock. Each 

sample was then pipetted into multiple wells of a 96- well half-area, low-binding, clear bottom 

and PEG coated plate (Corning 3881), 80 µL per well, in the absence and the presence of 

different molar-equivalents of small molecules (1% DMSO). Assays were initiated by placing 

the 96-well plate at 37 ºC under quiescent conditions in a plate reader (Fluostar Omega, 

Fluostar Optima or Fluostar Galaxy, BMGLabtech, Offenburg, Germany). The ThT 

fluorescence was measured through the bottom of the plate using a 440 nm excitation filter and 

a 480 nm emission filter. Fibrils were extracted directly from wells and used on the day for 

SPR experiments. 

 

2.5.11. Machine learning implementation and code availability 

 

Code Availability: 

Full code can be found on the GitHub repository: https://github.com/rohorne07/Iterate 

 

Junction tree neural network variational autoencoder. The autoencoder83 was pretrained on 

a library of 250,000 compounds84, and was implemented as described previously83 using a pip 

installable version (https://github.com/LiamWilbraham/jtnnencoder). Any molecules that 

contained substructures the autoencoder could not represent (i.e. that fell outside the 

substructure vocabulary of the pretrained model) were excluded. 

 

Prediction module. All coding was carried out in Python 3. Scikit-learn128 implementations of 

the Gaussian process regressor (GPR), random forest regressor (RFR), linear regressor (LR) 

and multi-layer perceptron (MLP) methods were tested in various combinations, and the results 

are shown in the supplementary section. For data handling, calculations and graph visualisation 

the following software and packages were used: pandas129, seaborn130, matplotlib131, numpy132, 

scipy133, umap-learn102, Multicore-TSNE107 and GraphPad Prism 9.1.2. Cross validation and 
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benchmarking were also carried out for each model using scikit-learn built in functions and is 

described in the results section.  

 

SHAP and latent space clustering. To compute the SHAP values, we used the SHAP python 

library108. The pretrained random-forest model was loaded, and a SHAP explainer object was 

created and provided with the latent representation for the top 100 highest predicted molecules. 

This allowed for the identification of dimensions important to the prediction of high potency 

molecules. The full testing set derived from the ZINC data set was also used in order to 

differentiate between dimensions important to distinguish high potency molecules from low 

potency molecules versus dimensions important to distinguish high potency molecules 

between themselves. This resulted in a global interpretation of the model, encompassing all 

data points passed to the explainer object. The resultant plots were generated using SHAP built-

in plot functions. The sklearn library hierarchical clustering method was used to cluster latent 

vectors for comparison, with initial cluster number set to 7134. 

 

2.5.12. Surface plasmon resonance 

 

All work was carried out using Biacore T200 at 25 °C. CM5 chips were activated by flowing 

0.01 M NHS, 0.4 M EDC at a flow rate of 10 µL / min for 7 minutes over 2 lanes. Preformed 

αS or Aß42 fibrils (derived from the endpoints of low seeded aggregation reactions) at a 

concentration of 1 µM in sodium acetate (10 mM, pH 4.0) were injected onto a single lane in 

60s bursts at 5 µL / min until a response of 2000 units was reached. Both lanes were then 

deactivated using a 7-minute injection of ethanolamine (1 M, pH 8.5) at 10 µL / min, and the 

reference lane signal was subtracted from the active lane. Different small molecule 

concentrations were then flowed over both lanes in a pyramidal arrangement in duplicate with 

blank subtraction (association time = 3 minutes, dissociation time = 10 minutes). The running 

buffer was sodium phosphate (20 mM, 1 mM EDTA, variable pH) with 1% DMSO. Fitting 

was carried out on Biacore T200 Evaluation Software, version 3.2, using a 1:1 binding model 

with the refractive index (RI) set to a constant value of 0 response units (RU).  

 

2.5.13. Preparation of human brain tissue homogenates 
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Deidentified postmortem human brain specimens used in the RT-QuIC assay are referenced in 

Table S2. These specimens were obtained from the NIH Brain & Tissue repository-California, 

Human Brain & Spinal Fluid Resource Centre, VA West Los Angeles Medical Center, Los 

Angeles, California which is supported in part by National Institutes of Health and the US 

department of Veterans Affairs. Assay samples were prepared as 10% (wt/vol) brain 

homogenates in ice-cold phosphate-buffered saline (PBS) (pH 7.0) using 1 mm zirconia beads 

(BioSpec, cat#11079110z) in a Bead Mill 24 (Fisher Scientific). Subsequent dilutions of each 

brain homogenate (10-1 to 10-5) for testing in the RT-QuIC assay were prepared in 1X PBS (pH 

7.0). 

 

2.5.14. αS RT-QuIC protocol 

 

RT-QuIC assay for DLB samples were performed using the recombinant αS K23Q substrate 

purified using a 2-step chromatography protocol described previously (PMID: 29422107). For 

testing MSA samples, wild type αS (WT) recombinant substrate was purified using anion-

exchange and size exclusion chromatography as described previously with minor 

modifications (PMID: 15939304). The WT protein expressing pET21a-αS plasmid was a gift 

from Michael J Fox Foundation MJFF (Addgene plasmid # 51486 ; 

http://n2t.net/addgene:51486 ; RRID:Addgene_51486).  RT-QuIC assay was performed using 

black, clear bottom 96-well plates (Nalgene Nunc International) preloaded with 6 silica beads 

(1 mm diameter, OPS Diagnostics). Seeding was induced by addition of 2 µL of 10-4 (with 

respect to solid brain tissue) dilutions of DLB, MSA, or CBD (control) brain homogenates in 

quadruplicate wells containing 98 µL of the reaction buffer (40 mM phosphate buffer; pH 8.0 

and 170 mM NaCl) supplemented with 6 µM (0.1 mg/ml) αS K23Q substrate (prefiltered 

through 100 kDa MWCO filter, Pall Corporation, Catalogue# OD100C34) and 10 µM ThT. 

After seeding, reaction plates were covered with a sealer film (Nalgene Nunc International) 

and incubated at 42 °C in a fluorescence plate reader (BMG FLUOstar Omega) with 1 min 

shake-rest cycles (400 rpm double orbital) for 50-90 h as indicated in the figures. ThT 

fluorescence (λexcitation; 450 +/− 10 nm and λemission; 480 +/− 10 nm) was measured at 45 min 

intervals).   

 

2.5.15. Microfluidic free-flow electrophoresis 
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Microfluidic device fabrication. Devices were designed using AutoCAD software (Autodesk) 

and photolithographic masks printed on acetate transparencies (Micro Lithography Services). 

Polydimethylsiloxane (PDMS) devices were produced on SU-8 moulds fabricated via 

photolithographic processes as described elsewhere135,136 with UV exposure performed with 

custom-built LED-based apparatus137. Following development of the moulds, feature heights 

were verified by profilometer (Dektak, Bruker) and PDMS (Dow Corning, primer and base 

mixed in 1:10 ratio) applied and degassed before baking at 65 °C for 1.5 h. Devices were cut 

from the moulds and holes for tubing connection (0.75 mm) and electrode insertion (1.5 mm) 

were created with biopsy punches, the devices were cleaned by application of Scotch tape and 

sonication in IPA (5 min). After oven drying, devices were bonded to glass slides using an 

oxygen plasma. Before use, devices were rendered hydrophilic via prolonged exposure to 

oxygen plasma138. 

 

µFFE device operation. Liquid-electrode microchip free-flow electrophoresis (µFFE) devices 

were operated as described previously139. Briefly, fluids were introduced to the device by PTFE 

tubing, 0.012"ID x 0.030"OD (Cole-Parmer) from glass syringes (Gas Tight, Hamilton) driven 

by syringe pumps (Cetoni neMESYS). µFFE experiments were conducted with auxiliary 

buffer, electrolyte, monomer reference and sample flow rates of 1000, 200, 140 and 10 µL h-1, 

respectively, for 15X reduction in buffer salt concentration for samples in PBS buffer.  

 

Potentials were applied by a programmable benchtop power supply (Elektro-Automatik EA-

PS 9500-06) via bent syringe tips inserted into the electrolyte outlets. Experiments were 

performed on a custom-built single-molecule confocal fluorescence spectroscopy setup 

equipped with a 488 nm wavelength laser beam (Cobolt 06-MLD 488 nm 200 mW diode laser, 

Cobolt). Photons were detected using a time-correlated single photon counting (TCSPC) 

module (TimeHarp 260 PICO, PicoQuant) with a time resolution of 25 ps. 

 

Aggregation kinetics and sample extraction. AlexaFluor™ 488-labelled αS (100 µM) was 

supplemented with seed (0.5 µM) under shaking (200 rpm) at 37 °C, PBS pH 7.4 and either 

1% DMSO or 50 µM molecule in 1% DMSO.  Samples were extracted at the t1/2 of the DMSO 

sample (9 hours). Fibrils were removed by centrifugation (21,130 rcf, 10 min, 25 °C) and the 

supernatant was then subjected to µFFE. For AlexaFluor™ 488-labelled oligomeric mixtures, 

auxiliary buffer comprised of 15X diluted PBS buffer, supplemented with 0.05% v/v Tween-

20.  
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Using a custom-written script, single-molecule events were recorded as discrete events using 

a Lee filter of 4 from the acquired photon stream as fluorescence bursts with 0.05 µs of the 

maximum inter-photon time and containing 30 photons minimum. Using these parameters, the 

single-molecule bursts and their intensities were reported as a function of device position, 

which could be later converted to an apparent electrophoretic mobility. Oligomer bursts were 

distinctly characterised by a higher photon intensity detected per molecule and a higher 

electrophoretic mobility than monomeric protein. 

 

2.5.16. Mass spectrometry 

 

10 µM of preformed αS was incubated with 25 µM of molecule in 20 mM sodium phosphate 

buffer (pH 4.8) supplemented with 1 mM EDTA overnight under quiescent conditions at room 

temperature. The supernatant was removed for analysis using a Waters Xevo G2-S QTOF 

spectrometer (Waters Corporation, MA, USA).  

 

2.5.17. Transmission electron microscopy 

 

10 µM αS samples were prepared and aggregated as described in the kinetic assay, without the 

addition of ThT. Samples were collected from the microplate at the end of the reaction (150 

hours) into low-binding Eppendorf tubes. They were then prepared on 300-mesh copper grid 

containing a continuous carbon support film (EM Resolutions Ltd.) and stained with 2% uranyl 

acetate (wt/vol) for 40s. The samples were imaged at 200kV on a Thermo Scientific (FEI) 

Talos F200X G2 S/TEM (Yusuf Hamied Department of Chemistry Electron Microscopy 

Facility). TEM images were acquired using a Ceta 16M CMOS camera. 

 

2.6. Contributions 

 

This chapter is substantially derived from the preprint doi: 10.1101/2021.11.10.468009 

(accepted at Nat. Chem. Bio.). Michele Vendruscolo (M. V.) and I conceived the project, 

performed experiments, analysed data, and wrote the article. Specific contributions outside of 

this include the docking, performed by Z. Faidon Brotzakis, the RT-QuIC experiments 

performed by Parvez Alam and Ankit Srivastava, and the µFFE which was performed by Ewa 
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Andrzejewska and I. SHAP analysis was performed by Alice Aubert under my supervision as 

part of a summer student project. Rebecca C. Gregory produced the αS and Aß42. 
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3. Exploration and exploitation 

approaches based on generative 

learning 

“The nice thing about artificial intelligence is that at least it's better than artificial stupidity.” 
– Sir Terry Pratchett 
 

3.1. Generative modelling to expand the available chemical space  

 

In recent years, deep learning has emerged as a powerful tool for cheminformatics140. With this 

capability, molecular generative models have emerged as promising tools for de novo 

molecular design. It has been shown in Chapter 2 that computational methods can offer more 

efficient routes to αS aggregation inhibitors than traditional screening approaches64,65. A 

limitation of that approach was the use of pre-existing libraries to screen from, which biased 

the model and limited the search space. A further limitation was focussing only on the molecule 

potency during the machine learning task.

 

The work in this chapter remedies these shortcomings through the application of generative 

modelling approaches and multiparameter optimisation in two separate pipelines, one focussed 

on exploration (identifying novel and effective molecular structures) and the other on 

exploitation (achieving higher potency from known chemical space). The former employs an 

architecture derived from the GraphINVENT141 framework for multiparameter generative 

modelling while the latter consists of a chemical language model (CLM) optimised for low 
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data regimes142. The GraphINVENT computational pipeline was developed as part of Mhd 

Hussein Murtada’s Master’s degree project under my supervision, while the CLM 

computational pipeline was developed as part of Donghui Huo’s visiting studentship, also 

under my supervision. These pipelines are shown schematically in Figure 3.1. 

 

Both pipelines feature a generative model linked to a QSAR filter. QSAR models are 

incorporated into generative pipelines to enable learning of the underlying relationship between 

the molecular structure and activity in silico143. Consequently, a smaller number of candidate 

molecules need to be tested in vitro. However, many constraints are involved in QSAR model 

training, such as the high dimensionality and sparsity of molecular fingerprints, in addition to 

the high correlation of the chemical descriptors. This makes ensemble learning models, 

especially Random Forest models (RFs), the most convenient and robust models for this 

task144. Moreover, one great advantage of RFs is interpretability, meaning they can be 

beneficial in identifying the common features of molecules with high activity levels against the 

target. As before, the QSAR models in this chapter predict whether a molecule can delay αS 

secondary nucleation. The experimental aggregation inhibition data set produced in Chapter 

265 was small (453 molecules) and imbalanced, and so efforts were made to train several QSAR 

models to obtain acceptable accuracy. 

 

In the initial phase of the exploration pipeline, a graph-based generative model was trained to 

generate drug-like molecules that could penetrate the blood-brain barrier (BBB) and reach the 

central nervous system (CNS). Then, the generative model was fine-tuned using reinforcement 

learning to generate the molecules with other desired properties including potency. For that, a 

scoring function was defined based on two complementary QSAR molecular activity classifiers 

trained on experimental aggregation data. RFs make predictions by combining the results of a 

set of individual decision trees that train simultaneously on subsets of the data set145, therefore 

the number of predictors and their correlations do not create problems for RFs. These models 

were used in the reward function of a reinforcement learning model to generate new molecules 

with the desired activity. Using this architecture, small molecules were generated that were 

predicted to penetrate the BBB, and potentially delay αS aggregation.  
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Figure 3.1. Schematic of the workflows for the exploration and exploitation pipelines. An exploration 

pipeline was initially pursued to complement the exploitation approach in Chapter 2. This has greater capacity 

to scaffold hop than the previous work and prioritises CNS MPO as well as potency. We then pursue a new 

exploitation pipeline to upgrade the method used in Chapter 2 and replace the in silico library screening with 

generative modelling. 
 

Most of the molecules, while synthetically accessible, were novel structures that were 

unavailable from screening libraries without custom synthesis at high expense (Figure 3.2). 

Experimental testing of these molecules was not possible for this reason, but the molecules 

showed strong overlap in the chemical space with the active leads found previously. As a 

further test an available molecule was tested from the generative model training set, which had 

been used in transfer learning to allow the model to create valid molecular structures. This 

molecule was predicted by the QSAR filters to have strong CNS properties and good anti-

aggregation score. This molecule exhibited mild inhibition in the same range as existing 

clinical aggregation inhibitor Anle-138b60. 
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Figure 3.2. Examples of the generated molecules, which were novel and so could not be obtained without custom 

synthesis. 
 

As an exploitation strategy had already been completed previously65, in this chapter more focus 

is placed on the exploration approach introduced above. However, a weakness of the previous 

exploitation method was the use of a restricted area of the chemical space as it involved 

screening through a library of available compounds with a degree of similarity to the initial 

hits. I sought to remedy this limitation via the use of a generative chemical language model142 

(CLM), designed to function in the low data regime of this project and trained on the same 

aggregation set as used in the exploration pipeline. This approach employed: (i) transfer 

learning, (ii) temperature sampling, and (iii) data augmentation to enable the model to ably 

construct valid molecules with applications to the area of interest, despite very few data points. 

For transfer learning the model was pretrained on a synthetic compound space of bioactive 

molecules (ChEMBL24) to enable it to construct valid molecules with an increased likelihood 

of bioactivity. The model also used a library of natural products (MEGx collection, Analyticon 

Discovery GmbH) as a target space to optimise towards, thus indirectly optimising the 

pharmacokinetics of the resultant compounds via incorporation of features of a bioactive 

library. Rather than using a parameter such as CNS MPO as for the exploration pipeline, the 

aim was to imbue the generated molecules with features from a target set. Temperature 

sampling and data augmentation via shuffling of SMILES strings ensured the model achieved 

high uniqueness, validity, and novelty. As with the exploration pipeline the resultant molecules 

were screened for potency yielding a lead that rivalled the best molecules from the previous 

exploitation model in terms of potency. This molecule far outstripped the lead found via the 

GraphINVENT approach in terms of potency, a demonstration of the greater challenge 
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presented by explorative scaffold hopping compared to exploitation of known chemical space. 

The weaker lead could nonetheless be optimised via the exploitative approach described here, 

in a synergistic strategy combining the exploration and exploitation pipelines in series.  

 

3.2. Exploration Pipeline Results 

 

3.2.1. Creation of a library of small molecules with good CNS penetrance 

 

To compile the training data set, the CNS drug libraries of small molecules provided by 

ChemDiv146,147 were curated. In addition to these libraries, the molecules provided by the 

B3DB148 data set were added. This is a benchmarking data set of BBB molecules compiled 

from 50 published resources and removed duplicates, creating a data set of 37,895 molecules. 

The data set was further filtered and assessed by a BBB permeability binary classifier149, pre-

trained on experimental brain permeability data, a CNS MPO score predictor150, and a CNS 

MPO score calculator94,95.  

 

The CNS MPO scores are a commonly used metric for BBB penetrance in drug discovery and 

medicinal chemistry94,95. However, it is not possible to obtain the CNS MPO score of a 

molecule without using a machine learning predictor if pKa is included in the MPO, given that 

the pKa value cannot be calculated from the structure of a molecule, unlike other properties151. 

This makes the CNS MPO score prediction a regression task that highly depends on the 

precision of the pKa prediction. Therefore, in this project, multiple CNS MPO predictors were 

used to filter the initial library. A BBB permeability binary classifier (DeePred-BBB149, using 

PaDEL152 molecular descriptors as input features) and a CNS MPO score calculator not 

incorporating pKa prediction (GuacaMol150) were used alongside another CNS MPO calculator 

that did incorporate pKa prediction94. The first classified a molecule as penetrant or not using 

a database of experimentally tested molecules. This model had a high precision and AUC score 

(0.98 and 0.99, respectively) and good generalisability in the original work. AUC is ‘area under 

the curve’ for a receiver operating characteristic (ROC) curve of false positive rate on the x 

axis vs true positive rate on the y-axis plotted at different classification thresholds. It varies 

between 0 and 1, 1 implying a perfect true positive rate with no false positives at any 

classification threshold, while 0.5 would be the result for random selection. The second filter, 

which did not utilise pKa, calculated a probability between 0 and 1 for relevant molecular 
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properties of the molecule used in the CNS MPO score (molecules that achieved a probability 

>0.9 on average passed the filter). The third filter scored 6 calculated or predicted molecular 

properties (including pKa) between 0 and 1, and any molecule achieving a summed score of 

>4 was considered to pass94. The third filter was used in the previous chapter. These thresholds 

matched those used by the creators of these tools. Eventually, after filtering, the data set only 

contained the molecules that were classified to be BBB permeable by all 3 filters, removing 

2260 molecules from the initial CNS ChemDiv data set. The distribution of CNS MPO scores 

calculated via GuacaMol for the filtered set and the structures of representative molecules 

within that set are shown in Figure 3.3, alongside structures with a range of lower CNS MPO 

values for comparison. This filtered data set became the training set for subsequent generative 

modelling. 

 

3.2.2. Generative modelling 

 

The GraphINVENT architecture was employed to generate molecules with desired properties. 

To convert the SMILES strings of the filtered CNS data set to graphs each SMILES string was 

turned into a node feature matrix, an adjacency tensor, and a vector r that resembles a step-by-

step decoding route for the molecule i.e. steps to build the molecule starting from an empty 

graph. To obtain the vector r, the first step was the fragmentation of the molecular graph in a 

stepwise fashion using an algorithm developed in GraphINVENT. On each iteration, one 

edge/node was removed from the molecular graph G, and an action probability distribution 

(APD) was calculated for the new graph Gn−1 until an empty graph was reached. Eventually, 

by aggregating APDs for all subgraphs Gn, Gn−1, Gn−2, . . ., we obtain the vector r 

 

 𝑟 = ((𝐺(, 𝐴𝑃𝐷(), (𝐺$, 𝐴𝑃𝐷$), … , (𝐺. , 𝐴𝑃𝐷.))	 (3.1) 
 

The removal order of nodes and edges of the graph is determined by a breadth-first search 

(BFS) traversal153. 
 

We trained models to generate BBB-penetrant molecules and monitored the performance of 

the model in this respect. Therefore, three more evaluation metrics were added to 

GraphINVENT, using the 3 filters mentioned earlier: (1) the fraction of BBB permeable 

molecules, (2) the average calculated CNS MPO score, and (3) the average predicted CNS 

MPO score. These metrics were calculated for the novel molecules set generated by the model 
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while training every 2 epochs. To calculate the BBB permeable molecule fractions, the 

chemical descriptors of the generated molecules were computed using PaDEL software.  

Figure 3.3. Creation of a library of small molecules with good CNS penetrance. (A) Calculated CNS MPO 

scores (GuacaMol) for the library subset of 35,636 molecules after filtration through the 3 different scoring 

methods (see text). (B) Randomly selected molecules spanning a range of lower CNS MPO values. (C) 

Representative molecules from the filtered set are shown. This data set was then used as the training set for 

molecule generation. Computational work was carried out by Mhd Hussein Murtada under my supervision. 
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Table 3.1. Metrics of molecules generated by MNN and GGNN at their best performing epoch for 2 different 

learning rates. The BBB fraction is the fraction of molecules classified as brain penetrant by DeePred-BBB. 

Computational work was carried out by Mhd Hussein Murtada under my supervision. 

 

The two top performing models from the GraphINVENT package were selected, the gated 

graph neural network (GGNN) and the message neural network (MNN) and trained them with 

learning rates of 1×10-4 and 1×10-5 (4 training tasks in total). For each task, the data set was 

split into 80% training and 20% validation and trained the model for 100 epochs. Each time a 

data set passes through the model during training, and the model updates its parameters 

accordingly, is defined as an epoch. The MNN was found to run more efficiently given its less 

complex message passing and aggregation functions. 

 

The training was done in mini batches of 50 molecules, with a block size of 1000 molecules. 

The loss function is the Kullback–Leibler154 divergence which is generally used to measure the 

difference between probability distributions. In our case, the probability distributions to be 

compared are the target APD (P) and the predicted APD (Q) as 

 
𝐷/0(𝑃 ∥ 𝑄) = 	−O𝑃(𝑥)log T

𝑄(𝑥)
𝑃(𝑥)U

1'2

 (3.2) 

An Adam optimiser was used with weight decay (L2 regulariser)155. Adam is the most 

ubiquitous method of efficient stochastic optimisation for learning of parameters during model 

training. The model was used to generate a batch of 100 new molecules every 2 epochs. These 

molecules were evaluated using the original GraphINVENT scoring metrics (Table 3.1) and 

the BBB permeability and CNS MPO metrics (Tables 3.1 and 3.2, respectively) implemented 

above. The goal was to determine the best combination of model architectures and learning 

rates, in addition to the epoch number in which the model performed best.  
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Figure 3.4. Metrics of generated small molecules during training with the GraphINVENT Gated Graph 

Neural Network (GGNN) and Message Neural Network (MNN) using 2 different learning rates. (A) Fraction 

of chemically valid molecules at each epoch. (B) Fraction of molecules passing the DeePred-BBB permeability 

classifier at each epoch. (C) Average calculated CNS MPO score using the GuacaMol implementation at each 

epoch. (D) Average predicted CNS MPO scores obtained using the method outlined in reference 95 at each epoch 

(black line indicates average of the original filtered training set).  

Table 3.2. CNS MPO average score comparison at the same epochs as in Table 1. The calculated CNS MPO 

score ranges between 0 and 1, 1 implying very high probability of BBB penetrance, while the predicted CNS 

MPO score ranges between 0 and 6. Computational work was carried out by Mhd Hussein Murtada under my 

supervision. 
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We observed that the MNN (1×10-4) model outperformed the other three conditions in all 

metrics (Tables 3.1 and 3.2 and Figure 3.4). All generated molecules were valid, unique, and 

BBB permeable. Moreover, the average predicted and calculated CNS MPO scores of its 

generated molecules were the closest to the score averages of the training data. Hence, this 

model was selected to be fine-tuned via reinforcement learning. 

 

3.2.3. Reinforcement learning SMILES embedding based reward function 

 

Having created a generator of BBB penetrant molecules, the focus moved to tailoring these 

molecules for potency against αS aggregation. Limitations were the size of the data set 

available for this task, consisting of 453 molecules, and the unbalanced nature of the data set 

(appendix Figure B.1), making the development of a high performing model challenging. In 

this initial proof-of-principle study, transfer learning was employed to at least in part remedy 

the data set size limitation. As a further measure, data were oversampled to ensure data set 

balance. The applied oversampling was a simple data augmentation by random duplication of 

the active molecules. Data were scaled afterward and split into training and testing sets (80%-

20%). The metric of potency was the same as used in Chapter 2, the normalised half time (t1/2) 

of aggregation, i.e. the time point at which 50% of the monomeric protein had converted to 

fibrillar aggregate, divided by the same 50% time point for the negative control. None of the 

active molecules in the aggregation data set were present in the generative model training set, 

as the aim was to identify novel structures.  

Table 3.3. Metrics for SMILES embedding based model performance on aggregation data. Computational work 

was carried out by Mhd Hussein Murtada under my supervision. 
 

For transfer learning a pretrained mol2vec156 skip-gram model trained on a diversified set of 

19.9 million molecules was used, so that the QSAR model would not have to learn molecular 

representations from scratch. The first hidden layer of the network was a frozen embedding 

layer initialised with the weights of the mol2vec model (these were preserved throughout 

training). The output of this layer was a 2D embedding vector generated based on the weights 
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from the base model. The next three layers were convolutional layers with a kernel size of 10 

and a rectified linear unit (ReLU) activation function157. Between these layers, max pooling 

and dropout layers were added to reduce overfitting and minimise the feature space, followed 

by a long short-term memory (LSTM)158 layer that greatly improved the performance, given 

its ability to identify trends in the data. Lastly, two dense layers with a softmax activation were 

added to normalise the prediction. For hyperparameters, Adam was used as an optimiser with 

learning rate = 1×10-4, and the training loss was set to binary cross entropy. Table 3.3 and 

Figure B.2 show the metrics for the performance of this model. 

 

We observed that the model could generalise reasonably well on the test data set. However, 

although an AUC score of 0.9 seemed appealing, there were many false positives in the 

predictions. This would be a critical issue when using this model as a reward function for 

reinforcement learning. The solution was to train another QSAR model that predicted 

molecular activity. The final reward function for reinforcement learning would then be based 

on the consensus of both models to increase the certainty of the prediction. 

  

3.2.4. Reinforcement learning molecular descriptors-based reward function 

 

Chemical descriptors were used as predictors instead of SMILES string embeddings in the 

second QSAR model. The idea behind this approach was that chemical descriptors are 

generally better able to quantify molecular properties than SMILES153 and would reduce the 

classification problem and make it more explainable. Instead of learning molecular 

embeddings, the model would be learning measurable properties that could be compared 

among the molecules and associated with the output variable.  

 

The chemical descriptors used as predictors were calculated by PaDEL software. They were 

the 2D and 3D physicochemical properties of the molecules, such as molecular weight, ring 

count and the moment of inertia (1875 descriptors in total). This meant there were more 

predictors than samples in the data set, meaning the model would be unable to generalise and 

elevating the risk that the model would learn the noise (irrelevant features) in the data. The 

solution was to apply feature selection with genetic algorithms, which use the principles of 

natural selection to identify molecular features that are most relevant to the prediction 

task159,160. Genetic algorithms are powerful in high-dimensional data sets with more features 
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than samples because they can handle complex, non-linear relationships between variables, 

whereas simple linear models such as Lasso rely on linear relationships161. Genetic algorithms 

also do not assume any distribution for the data or the errors and they can be more effective in 

finding an optimal set of features as they use a heuristic search method to explore the feature 

space. One additional advantage of this approach was that it helped to identify the common 

chemical properties among the active molecules.  

 

Hence, a genetic algorithm was applied to find the best-performing subset of features when 

training a RF model. The features considered for selection were the most important ones 

identified by the trained RF model, given its ability to rank features based on the impurity (Gini 

impurity) of its underlying decision trees87. Feature importance values were calculated as the 

average of the impurity decrease accumulation within each decision tree of the model. A 

genetic algorithm mimics the process of natural selection to identify the subset of the most 

important features that maximise the model performance. First, an initial population of 

individuals was generated where each individual was a subset of features. The subsets were 

then scored by an RF model that predicted the target variable of interest, the anti-aggregation 

activity. Subsets with the highest scores were chosen to move to the next generation. 

Crossovers and mutations were applied so some features would switch places among the 

winner subsets while others would be added or removed randomly based on a mutation rate. 

Simple data cleaning and augmentation were applied before training the model and running the 

genetic algorithm to ensure data set balance.  

 

A random grid search (with 3-fold cross-validation) was initially run for ten iterations to find 

the optimal hyperparameters for the RF model to ensure the best performance. After 

identification of the most important features, of which topological polar surface area was the 

most prominent, the genetic algorithm was run to select the subset of features that maximised 

the classification performance. Figure 3.5 shows the ROC curve for this model and the features 

that were most strongly associated with the activity of the molecule according to the RFs. The 

hyperparameters used for RF and the genetic algorithm are shown in Tables B.1 and B.2.  
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Figure 3.5. Metrics and important features in the descriptor-based RF QSAR model. (A) ROC AUC curve 

of the model with cross validation shown (AUC = 0.85). (B) Feature importance values derived from the RF 

QSAR model identify topological polar surface area as a key determinant. Computational work was carried out 

by Mhd Hussein Murtada under my supervision. 

 

The metrics for this model vs the SMILES embedding based model are shown in Table 3.4. 

The descriptor-based model performance was an improvement, and it was better able to 

generalise than all previously trained models. The predictions had no false positives, and the 

model accuracy and average AUC scores were 0.98 and 0.85, respectively. A considerable 

improvement in the metric macro averages was observed for the descriptor-based model 

compared to the SMILES-based model which meant higher classification scores for the 

positive class and fewer false negatives. On the other hand, there was not a large difference in 

the weighted average metrics, given that both models could classify inactive molecules 

efficiently. Hence, both models were used in the reinforcement learning reward function, but 

the descriptor-based classifier was given a higher weight which was chosen based on the 

reinforcement learning performance.  

 

Table 3.4. Comparison table for macro average metrics of the SMILES based model vs descriptor-based model, 

with weighted average shown in brackets. Computational work was carried out by Mhd Hussein Murtada under 

my supervision. 
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3.2.5. Final exploration model 

 

A generative model was trained to produce BBB-permeable molecules and 2 QSAR classifiers 

were defined to filter the generated molecules based on anti-aggregation potency. The overall 

model architecture was then fine-tuned using reinforcement learning, an extension of the 

GraphINVENT package. The agents learn how to optimise the APDs of the generative model 

in order to maximise the QSAR reward functions. The loss function used for training was the 

best agent reminder loss (BAR)162 which was responsible for the memory-awareness property 

of the model. This memorised the best agent with the highest score while training and was 

useful for reminding the new agents of the steps explored by previous agents to generate highly 

scoring molecules. 

 

The fine-tuning process started by defining the prior and best agents and initializing them as 

the best performing MNN generative model outlined above. Then the following steps were 

repeated until the model converged to novel molecules with the highest scores: 

• Generate a set of molecules using both priors (the current and the best). 

• Score the molecules using the QSAR model.  

• Compute the probabilities that the prior generative model and the current agent will 

assign the same actions carried out by the current agent to build a molecule.  

• Compute the probabilities that the current and best agent will assign the same actions 

done by the best agent to build a molecule.  

• Calculate the BAR loss and update the model weights to minimise it.  

 

The prior generative model was the best performing MNN model outlined above, the 

hyperparameters were set as recommended in the initial paper and the learning rate was set to 

1×10-4. The best agent was updated every two epochs. The weights that were found to 

maximise the model performance after several training runs were 0.78 and 0.22 for the 

descriptor-based and SMILES-based models, respectively. The agents dealt with the score as 

a continuous value, meaning that the best agent was updated when the generated molecules 

gained a higher score than the last best score without any minimum thresholds for accepting 

the score.  
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After fine-tuning the model for 1000 epochs, it generated a set of novel small molecules that 

were predicted to be BBB permeable, druglike (high QED), and potentially able to delay the 

aggregation of αS. Most molecules had a CNS MPO score higher than the threshold (0.9) as 

calculated by GuacaMol, which meant that they had a high probability of being able to cross 

the BBB. 

  

3.2.6. Investigation of generated molecules 

 

While most of the molecules generated (Figure 3.2, Figure B.3) were not obtainable without 

custom synthesis, they showed an overlap (according to tSNE107) in the chemical space with 

the active molecules in the chemical inhibitor data set (Figure 3.6A). As a test of whether the 

QSAR reward functions worked appropriately, I ordered a compound (lornoxicam) within the 

original training set with high predicted anti-aggregation score to test experimentally in the 

aggregation assay used to generate the aggregation inhibition data set65. This was the same 

chemical kinetics assay used for initial screening in Chapter 243,57,82, which identifies the top 

compounds that significantly inhibit the surface-catalysed secondary nucleation step in the 

aggregation of αS. While this assay does not directly recapitulate the disease process, nor give 

a direct measure of oligomers, molecules previously screened through this assay showed both 

a prevention of aggregation seeded by diseased brain samples and also showed significant 

oligomer reduction, and so the assay acts as a useful screening proxy to filter potential 

molecules before these challenging experiments are required for validation. The potency of 

lornoxicam was mild in comparison to leads found previously, but was nonetheless observable 

and comparable to prior clinical anti-aggregation compound Anle-138b (Figure 3.7). Since the 

original inhibitor training set only contained 4-6 distinctly different active structures, I 

anticipate that the performance of the model could improve as more varied training data were 

added. 
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Figure 3.6. Chemical landscape of the exploration and exploitation strategies. (A) Comparison of the 

chemical space spanned by the chemical inhibitor training set and the newly generated compounds during the 

exploration strategy. t-SNE representation of the landscape of the chemical inhibitor training set with the original 

active (red) and non-active (grey) compounds, and the newly generated compounds (blue). (B) UMAP 

representation of the CLM molecule generation process. With successive iterations the generated molecules take 

on features similar to the target set (previously identified aggregation inhibitors) while incorporating features of 

a target space (natural product library). Computational work was carried out by Donghui Huo under my 

supervision. 

 

3.3. Exploitation Pipeline Results 

 

The exploitation pipeline employed the chemical language model (CLM) as previously 

described142, using the bioactive library as a source space and the natural products library and 

the aggregation inhibitors as the target space and target set respectively. Over successive 

epochs, the generated molecules assume more of the features of the target space and target set, 

with a greater weighting assigned to the latter. Applied to the aggregation data set, a high 

number of training epochs were employed to ensure the resultant molecules did not deviate 

heavily from our selection of lead molecules, to increase the likelihood of potency. Initially, 

different selections of compounds were trialled from the aggregation data set, but we found 

that using <30 epochs and including milder potency structures as the ‘target set’ for the model 

led to a significant diversity of structures, few of which would be likely to achieve potency. 

This architecture could also be used in a less directed explorative approach by reducing the 

number of epochs and increasing the diversity of the target space, with the limitation that 

different parameters such as potency and CNS MPO could not be explicitly optimised for and 

weighted, as in the GraphINVENT pipeline. 
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We used 50 training epochs and only the top 20 lead structures as the target set to ensure 

generated molecules were close in the chemical space to the most potent structures. A UMAP 

representation of this process is displayed in Figure 3.6B, which shows molecule generation 

in the proximity to the area of interest around the top 20 leads. Due to lack of availability of 

the generated compounds, a similarity search was carried out for the first 500 generated 

compounds at epoch 50, which were subsequently rescreened through the QSAR model used 

in Chapter 1. 20 molecules were tested yielding 5 new leads, 1 of which (labelled CLM.1) 

showed a greater level of novelty compared to previously identified structures and which 

exhibited high potency (Figure 3.7). In this case a lead was classified as any molecule with a 

normalised half time of 1.5 or more. Historically, 1.5 was the cut-off that was used for 

aggregation inhibitors63. This was raised to 2 in Chapter 2 to reduce the leads to be considered 

to a practical number. However, excluding CLM.1, milder potency was observed on average 

in this prototype pipeline (Figure B.4). The KIC50 value of CLM.1 (0.42 µM) was nonetheless 

on par with the best lead identified previously, I4.05 (0.52 µM), both of which compare very 

favourably with the parent hit (molecule 69) and Anle-138b which have KIC50 values of 18.2 

µM and 36.4 µM (extrapolated) respectively. The structures of the leads derived from the CLM 

strategy, and their respective normalised half times are shown in Figure B.4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exploration and exploitation approaches based on generative learning 

65 

 

Figure 3.7. Experimental validation of compounds generated via the exploration and exploitation 

approaches presented in this work. (A) Schematic of the aggregation process. The dominant mechanism in 

oligomer formation is the nucleation of aggregates from the surfaces of existing ones (secondary nucleation). 

Small molecules can block this process through a proposed mechanism65 of blocking fibril nucleation sites 

(lornoxicam is shown as an example). (B) Kinetic trace of a 10 µM solution of αS with 25 nM seeds at pH 4.8, 

37°C in the presence of lornoxicam at 25 µM (lilac) and 50 µM (light blue) or in the presence of 1% DMSO (dark 

purple). Anle-138b (red) at 25 µM is shown as a control. (C) Kinetic trace of a 10 µM solution of αS with 25 nM 

seeds at pH 4.8, 37°C in the presence of CLM.1 at 0.4 µM (blue), 1.6 µM (teal) and 3.12 µM (orange), or in the 

presence of 1% DMSO (dark purple). Anle-138b (red) at 25 µM is shown as a control. The endpoints are 

normalised to the αS monomer concentration at the end of the experiment, which was detected via the Pierce™ 

BCA Protein Assay at t = 50 h. (D) Approximate rate of reaction (taken as 1/t1/2, and normalised between 0 and 

100) in the presence of 3 different molecules, Anle-138b (purple), the parent structure of CLM.1 (lilac) and CLM.1 

(blue). The KIC50 values of CLM.1 (0.42 μM) and its parent structure (18.2 µM) are indicated by the intersection 

of the fit and the horizontal dotted line. 

 

3.4. Discussion 

 

The objective of the machine learning approaches presented here was to demonstrate that small 

molecules balancing drug likeness, BBB penetrance and aggregation inhibition could be 

predicted, providing useful tools for therapeutic efforts against synucleinopathies. The results 
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illustrate the potential of generative machine learning methods to provide novel starting 

compounds with higher likelihood of efficacy against αS aggregation than conventional 

approaches. More generally, utilising exploitation and exploration pipelines in series is an 

effective strategy that can be applied to research projects requiring improvements in 

performance of small molecules and biomolecules in any assay of interest, while retaining 

molecular properties integral to good target engagement. Key to success in this approach is 

tailoring the architecture of the pipeline and the models within it for best performance, with 

greater emphasis placed on essential metrics. The pipelines that have been developed are 

concerned with the two main issues confronting research programs aimed at synucleinopathies: 

target engagement (blood brain barrier permeability) and potency (toxic oligomer reduction). 

The molecule tested for the exploration pipeline proved to be a mild inhibitor, but nonetheless 

marks a potential starting point for elaboration. Indeed, as shown in Chapter 2, the potency of 

an initial hit compound can be improved upon many fold if an exploitation strategy is 

pursued65. The exploitation strategy yielded a compound which made smaller departures from 

the previous lead compounds and yielded high potency, while addressing the restricted nature 

of the chemical space search approach previously employed. As such this methodology 

provides a strong complement to the previous work, and I anticipate that this will benefit 

researchers working in the field of protein misfolding diseases and drug discovery research in 

general.  

 

3.5. Materials and methods 

 

Full code can be found on the GitHub Repository: 

https://github.com/husseinmur/GraphINVENT-CNS 

 

3.5.1. Compounds and chemicals 

 

Compounds were purchased from MolPort (Riga, Latvia) or Mcule (Budapest, Hungary) and 

prepared in DMSO to a stock of 5 mM. All chemicals used were purchased at the highest purity 

available.  

 

3.5.2. Recombinant αS expression  
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See Section 2.5.2. 

 

3.5.3. Seed fibril preparation 

 

See Section 2.5.4. 

 

3.5.4. Measurement of aggregation kinetics  

 

See Section 2.5.5. 

 

3.5.5. Code availability 

 

GitHub Repository: https://github.com/husseinmur/GraphINVENT-CNS. 

 

3.6. Contributions 

 

This chapter is substantially derived from J. Chem. Theory Comput. paper doi: 

10.1021/acs.jctc.2c01303. Michele Vendruscolo (M. V.) and I conceived the project and wrote 

the article. The exploration and exploitation computational projects were executed by Mhd 

Hussein Murtada and Donghui Huo respectively, under my supervision as part of their master’s 

degree/visiting student projects. I performed the laboratory experiments and analysis. Rebecca 

C. Gregory produced the αS.  
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4. Developing nanopore based oligomer 

detection methods 

“One of the universal rules of happiness is: always be wary of any helpful item that weighs less 
than its operating manual.” – Sir Terry Pratchett 

 

4.1. Oligomer detection: challenges and solutions 

 

The presence of protein oligomers is clearly associated with the onset and progression of 

several neurodegenerative disorders. Therapeutic efforts directed at this area have resulted in 

few approved drugs163, however, in part because they are based on readouts related to fibrillar 

aggregates, which are the endpoint of the aggregation process. These highly ordered structures 

are thought to be largely inert in terms of neuronal toxicity, although they can catalyse the 

formation of further oligomers via secondary nucleation57-60,62,164. They are however large, 

intracellular, space occupying lesions, capable of disrupting cellular trafficking and transport 

and trapping important chaperones and enzymes50. To date, most investigations into the 

aggregation process rely on detection of fibrils using amyloid binding dyes, such as thioflavin 

T (ThT), that fluoresce strongly upon binding to fibrils. This approach, however, does not 

provide a direct measure of the oligomers present, the population of which vary according to 

the mechanism of aggregation36,56. 
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Figure 4.1. Schematic illustration of the process of αS oligomer formation in Parkinson’s disease, and of its 

inhibition by compounds that can block secondary nucleation65. (A) Fibrils can catalyse oligomer formation 

via secondary processes such as secondary nucleation from catalytic sites on the fibril surface and fragmentation 

of the fibrils into smaller species. (B) A structure-based iterative machine learning strategy comprised of docking 

simulations followed by cycles of active machine learning was employed in Chapter 2 to identify secondary 

nucleation inhibitors65. I3.08 from that work is used as a tool compound here.  
 

The indirect nature of this measurement can cause problems, as it often means the exact 

inhibitory mechanism must be confirmed through further assays. This adds costs in terms of 

resources and time. For example, as has been argued, a promising therapeutic strategy is the 

blocking of secondary nucleation, which is a key accelerator of oligomer production (Figure 

4.1A, 4.1B)63,165. However, if fibril elongation were to be inhibited, this would slow the 

formation of endpoint fibril but increase the population of oligomers by shifting the 

aggregation pathway more strongly towards secondary nucleation (Figure 4.1A, Figure 

4.2A)56. The molecule would nonetheless appear promising until tested in an elongation assay. 

The need to remove these false positives is a drain on any screening strategy. 

 

Previous work has shown methods of isolating specific mechanisms of aggregation and their 

respective rates experimentally, and subsequently inferring the oligomer populations at a given 

time via fitting to an analytical model of the aggregation process36,57. Theoretical predictions 

were previously experimentally validated by taking samples during the aggregation process, 

tracked via ThT, and separating by size exclusion chromatography (SEC) before measuring the 

monomer equivalent oligomer concentration in each lyophilised sample via mass spectrometry 

(MS) or enzyme linked immunosorbent assays (ELISA)36,166. While this is a valid strategy, it 

is hampered by extremely low throughput and technical challenges in the implementation. 

Therefore, there remains a need to experimentally probe the oligomer population in a non-
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disruptive and higher throughput manner to determine the size distributions of the oligomer 

population over time at single particle resolution167. 

Figure 4.2. Schematic illustration of the method reported here to measure the efficacy of oligomer 

inhibitors, which is based on DNA nanostructure tagging of oligomers followed by detection in solid state 

nanopores. (A) Oligomer inhibitors have different efficacies, which have previously been challenging to establish 

given how difficult oligomers are to measure. (B) Previous approaches to oligomer measurement in nanopores 

have attempted to measure protein levels in the absence of any tagging methods, which is a difficult task prone to 

error given how challenging individual oligomer translocations are to reliably differentiate from each other and 

from monomer. Monomer (i) and heavily oligomerised (ii) samples are shown as examples in an uncoated pore 

with a diameter ~15 nm. Oligomers cannot be readily probed at a single molecule level via this approach, meaning 

that only bulk levels can be measured. (C) A novel oligomer measurement approach employing unique DNA 

nanostructure barcoding of each particle in a sample enables both single-molecule resolution of oligomers and 

multiplexing of samples, delivering improved metrics of inhibitor efficacy and increased throughput. (i) 

Monomeric protein with an attached barcode exhibits no adjacent spike, as the nanopore diameter has been 

tailored so that monomers do not generate a signal.  (ii) A lightly oligomerised sample exhibits a clear spike in 

association with the unique barcode. The barcoded protein can enter the pore in either orientation (barcode first 

or protein first). Nanopore experiments were carried out by Sarah E. Sandler. 
 

Thus far, single-molecule techniques have shown promising results in characterising oligomer 

distributions167. For example, confocal two-colour coincidence detection (TCCD)168, 
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fluorescence correlation spectroscopy (FCS) measurements169, single molecule total internal 

reflection fluorescence (TIRF) imaging170, single-molecule spectrally-resolved points 

accumulation for imaging in nanoscale topography (sPAINT)171, atomic force microscopy 

(AFM)172, and micro free flow electrophoresis (µFFE)116 have all allowed study of oligomer 

distributions under near physiological conditions. Additionally, it has been shown that using 

µFFE one can ascertain oligomer populations in the presence of specific secondary nucleation 

inhibitors65,116. An overview of these methods is shown in appendix Figure C.1. One major 

limitation of these approaches is that, while they are generally more efficient than the SEC/MS 

approach, the throughput at which inhibitors can be tested remains low.  

 

A promising alternative towards achieving high-throughput is nanopore sensing, a single-

molecule technique which relies on applying an electric field to drive molecules through a 

nanosize opening, allowing the measurement of changes in ionic currents relating to the size, 

shape, and charge of the molecule entering, or translocating, through the pore173. Broadly 

speaking, there are two types of nanopores, biological, based on pore-like proteins embedded 

in membranes, and solid-state, which are fabricated by creating nanosized openings in a 

material. Platforms containing biological nanopores are commercially available from Oxford 

Nanopore Technology. However, due to size, these are mostly restricted to DNA sequencing174 

or rely on protease cleavage of samples before nanopore measurements175. Recently, the ability 

to discriminate between αS variants has been accomplished using biological nanopores176. 

Using solid-state nanopores eliminates the need for fragmentation and allows the size of the 

nanopore to be directly tuned and optimised for detection of the analyte of interest. 

Auspiciously for potential high throughput applications, it has recently been demonstrated that 

solid-state nanopores could be manufactured at scale174.  

 

Previously, solid-state nanopores have proven to be a useful tool for the detection of proteins177, 

as well as a way to study their conformations and interactions178. One of the major challenges 

associated with studying proteins in solid-state nanopores, however, is the rapid speed at which 

they translocate. This challenge can be overcome with approaches such as employing bilayer-

coated solid-state nanopores179, or by increasing the current bandwidth which increases the 

time resolution of the measurement180. In one case, αS oligomerisation was even studied in 

solid-state nanopores using a Tween-20 coating181. While these approaches are effective for 

studying single proteins, they are not easily adapted for multiplexed sensing. Current 

approaches are all based on observing single monomer or oligomer events, which can result in 
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ambiguous signals. Discerning individual particle translocations can be challenging and is 

often based on observed differences in noise profiles (Figure 4.2B). Additionally, these 

methods are low throughput as multiplexing is not possible. 

 

Since it has been demonstrated that the combination of solid-state nanopores and digitally-

encoded DNA nanostructures allows for highly multiplexed detection of single 

molecules182,183, in this work, DNA nanostructures are used to study the effect of small 

molecule inhibitors of αS secondary nucleation in a multiplexed assay. The advantage of this 

approach is that every oligomer in a particular sample has a distinctive ‘barcode’, which clearly 

identifies each individual particle, and allows aggregates from different inhibitor screens to be 

mixed together and tested simultaneously (Figure 4.2C). This enables investigation of 

oligomer populations in more granular detail at higher throughput than was previously 

possible.  

 

The small molecule inhibitors tested in this work were derived from the project described in 

Chapter 264,65. In brief, inhibitors were initially identified via in silico docking to a putative 

catalytic site that promoted oligomer formation on the surface of αS fibrils followed by 

optimisation in aggregation assays via active machine learning64,65,101. Application of nanopore 

detection to quantitative protein oligomer analysis therefore offers another useful application 

of this technique, with the potential of high throughput analysis of a challenging target and an 

associated benefit to therapeutic programmes targeting these misfolded protein aggregates.  

 

4.2. Results 

 

4.2.1. DNA nanostructure design for the capture of αS oligomer capture 

 

A DNA nanostructure was designed that could couple to azide-tagged αS aggregates and 

uniquely identify them (see methods Section 4.4.6 and Figure 4.3). Sarah E. Sandler designed 

and assembled the DNA nanostructure and carried out nanopore measurements. Using a single-

stranded DNA (ssDNA) backbone as a scaffold, complementary staple DNA oligonucleotides 

were combined with additional oligonucleotides for detection and digitisation in a one-pot 

reaction and annealed. DNA dumbbells allow digitisation of the structure. Their presence 

creates a structured spike in the nanostructure, while their absence leaves a flat spacer region, 
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corresponding to either a ‘1’ or ‘0’. In the proof of concept presented here, only five 

spike/spacer regions were used, allowing for 25 (32) combinations of barcodes. This design 

was based on previous work and was optimised to create clearly distinguishable spikes in 

nanopores of ~15 nm diameter182. However, this has the potential to be expanded with further 

optimisation, and it has previously been shown that it is possible to fit 56 bits onto a single 

DNA carrier, allowing for a library of 256 (>1016) molecules184. Another section of the 

nanostructure contained two DNA strands, one 21 base pair (bp) sequence labelled with a 

dibenzocyclooctyne (DBCO) tag and one which had partial complementarity to both the 

barcoded scaffold and the sequence containing the DBCO, connecting the DBCO tagged region 

to the rest of the nanostructure (Figure 4.3A). 

 

The DBCO-labelled nanostructure was then combined with azide-tagged N122C αS samples 

for click coupling and subsequent detection (Figure 4.3B). The azide-tagged N122C αS 

monomer was prepared via reaction of the reduced cysteine thiol with the iodoacetamide 

moiety of iodoacetamide-PEG3-azide. This reaction was monitored until completion via LCMS 

(Figure C.2). The monomer was isolated via SEC before use in aggregation experiments and 

subsequent coupling to the DNA tags.  

 

4.2.2. Detection of stabilised oligomers via DNA nanostructures and nanopores 

 

I chose to first test the ability of the nanopores to act as a device to detect oligomers using a 

stabilised oligomeric species. Stabilised αS oligomers have been extensively characterised 

previously185,186. They are typically obtained using methods such as hyper-concentration and 

lyophilisation, and as such have limited physiological relevance. However, they do offer a  

useful test case for oligomer detection methods due to their greater stability, higher 

concentration and larger size186. Stabilised oligomers were used to optimise coupling times to 

the DBCO-tagged DNA barcodes and also to test whether an appreciable difference could be 

observed in monomeric and oligomeric samples in the nanopore. Successful click coupling of 

the samples was confirmed via PAGE (Figure C.3, Table C.1), where monomer-bound DNA 

was observable. 
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Figure 4.3. Design of a DBCO-DNA nanostructure for the capture of azide-labelled αS aggregates. (A) 

Schematic of the DNA nanostructure containing the DNA barcode region and a DBCO-tagged dsDNA overhang 

for click coupling to azide-tagged N122C-αS. DNA barcodes allow for a digital readout of the single-molecule 

translocations using DNA dumbbells to create distinct 1 or 0 bits. (B) N122C-αS is tagged with iodoacetamide-

PEG3-azide and then incubated with the DBCO-tagged nanostructure, allowing facile click coupling of the two 

components.  
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Figure 4.4. Detection of stabilised oligomers using nanopores. (A) Nanopore schematic representing the 

nanostructures with and without oligomers bound. (B) Current trace of nanopore with no protein bound (left) and 

with an oligomer bound (right). (C) Percentage of events with a spike adjacent to the bar code for control sample 

without protein added (N=48), monomer sample (N=154) and oligomer sample (N=248). The samples with just 

monomer and stabilised oligomer act as controls and show the percentage of false positives in the sample without 

protein. Given that is challenging to completely prevent oligomer formation in a monomeric sample the slightly 

higher number of peaks observed in the monomeric sample is to be expected. (D) Normalised event duration 

(normalised to pore baseline current) for samples with barcode only or with barcode and an adjacent protein spike. 

Nanopore experiments were carried out by Sarah E. Sandler. 
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Samples of the coupled DNA-protein assemblies were pushed through a nanopore using an 

electric current as a driving force (Figure 4.4A). The negatively charged nanostructure aided 

insertion into the pore when a current was applied. In this case, since the protein was also 

negatively charged at the pH used (7.4), the translocation was sped up. As the structures 

translocated through the nanopores, they created unique signals (Figure 4.4B). Monomer 

samples were compared against stabilised oligomer samples. Because the molecular weight of 

monomeric αS is ~14 kDa, and as can be seen from the low percentage of additional spikes on 

the nanostructure from the monomer sample in Figure 4.4C, we can assume it is too small to 

be observed via the 15 nm nanopore. In this experiment, the samples containing no protein, 

only monomer, or stabilised oligomers were initially tested in different pores as a control to 

rule out any inter-sample interactions. The lack of events observed in the monomeric sample 

allows us to clearly distinguish the samples with and without oligomers by their current traces, 

and removes the monomers as a source of additional signal as their signal is too low to be 

detected in a nanopore of this diameter. This demonstrates how the customisable dimensions 

of solid state nanopores can be utilised to focus on the subsample of interest. A significant 

difference in the percentage of events with proteins attached to the DNA barcodes was 

observed between the oligomeric and monomeric samples, demonstrating the potential utility 

of the approach for determining oligomer levels in a sample (Figure 4.4C).  

 

It should be noted that the oligomeric samples also contained a significant proportion of 

monomer, which is otherwise challenging to separate entirely from the oligomer sample. Of 

the observed events in the oligomer sample, ~22.2% had a protein oligomer spike attached to 

the DNA nanostructure. The rest of the events exhibited no spike due to being bound to 

monomeric protein, which makes up the majority of the sample. The ability to measure with 

this background present is essential given the additional time cost and potential bias introduced 

by a need to separate oligomeric species from the bulk monomer. These events can be separated 

both by observing the nanopore signal generated, where little to no protein spike signifies either 

an uncoupled DNA nanostructure, or a nanostructure coupled to only monomer, as well as by 

using parameters such as event duration (Figure 4.4D). Because the protein is negatively 

charged, the event duration decreases in samples with bound proteins. These samples were 

measured in different pores at different times, to ensure no cross-sample contamination and 

reliable controls, so the duration must also be normalised to the baseline current (I0). A 

normalisation was carried out as explained in the methods (Equation 4.2).   
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Figure 4.5. Preparation of an αS aggregation time-course in the absence and presence of inhibitor 

molecules, and extraction of oligomers. (A, B) Kinetic traces are shown of a 10 µM solution of azide-tagged 

N122C-αS supplemented with 100 nM pre-formed seeds (pH 7.4, 37 °C, shaking at 200 rpm, error bars denote 

SD) in the presence of 1% DMSO (purple), 25 µM Anle-138b (blue) or I3.08 (orange). The raw fluorescence (A) 

and normalised fluorescence (B) are shown. The endpoints were normalised to the αS monomer concentration at 

the end of the experiment, which was detected via the Pierce™ BCA Protein Assay at t = 100 h. The Anle-138b 

sample could not be suitably normalised due to the noise of the sample. (C) Samples were extracted at 32 h from 

the time course of aggregation and centrifuged to remove fibrils from the mixture, leaving only αS monomers and 

oligomeric species for analysis. These samples were then incubated with a unique DBCO-tagged DNA barcode 

overnight before analysis via solid state nanopore detection. 
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4.2.3. Effect of inhibitor molecules on αS oligomer production 

 

Having optimised the conditions, I then moved on to more challenging “on time-course” 

samples. I carried out an aggregation beginning from monomer, under conditions designed to 

promote secondary nucleation57,187. This assay has been fully characterised for AlexaFluor-488 

tagged N122C vs WT in previous works, and azide tagging did not substantially alter this 

behaviour116,187,188. Oligomer populations in this scenario are significantly lower in 

concentration compared to the stabilised oligomer case, and they are transient. On time-course 

samples of αS are stable for an unknown period, generally considered to be no more than ~36 

h post extraction, compared to αS stabilised oligomers which persist for up to a week after 

production if left at room temperature186,187. 

 

The on time-course experiment was designed to better mimic the processes and species that 

may occur in vivo. In order to induce αS aggregation via secondary nucleation in vitro at neutral 

pH, a small amount of pre-formed seed was added (100 nM monomer equivalents, 1%) in the 

presence or absence of aggregation inhibitors of interest (Figure 4.5A, B). The aggregation 

process was followed using ThT fluorescence. The 3 samples of interest were a control 

containing only 1% DMSO, another control containing Anle-138b in 1% DMSO, and a small 

molecule identified previously via structure-based machine learning methods, I3.08, also in 

1% DMSO. DMSO was used to dissolve the molecules before adding to the aqueous protein 

sample.  

 

In Chapter 2 I showed that I3.08 binds to the fibrils, not the monomer or oligomers, and in so 

doing blocks autocatalytic aggregate formation65. Since fibrils are removed prior to nanopore 

measurement by centrifugation only the oligomer and monomer population remain. The 

molecular mechanism of Anle-138b has not been published, and is presumably not known in 

detail. However, the work presented in Chapter 1 indicates it may operate by a similar 

mechanism only in a milder manner. The aggregation was accelerated via shaking, which was 

necessary to complete the aggregation under cellular buffer conditions in an experimentally 

accessible time frame. As stated in Chapter 2 this creates a more challenging paradigm for the 

inhibitors to function in given the increased aggregation resulting from mechanically induced 

fragmentation as well as secondary nucleation. Nonetheless, a significant inhibition of fibril 

accumulation was still observed for inhibitor I3.08, although not for the control inhibitor Anle-
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138b. Samples were then taken mid-way through the time course to determine whether a 

reduction in oligomeric species was also observed. 

Figure 4.6. DBCO reaction over time, as observed via PAGE. In this example the 21 base pair DNA sequence 

alone, with DBCO attached, was reacted with the azide tagged on time course samples from an aggregation 

reaction (one monomeric sample and one sample extracted from the half time of aggregation, termed the oligomer 

sample). From the lightest (bottom) to the heaviest (top) bands there is: single stranded DNA, double stranded 

DNA, an impurity product of DNA synthesis, and protein tagged with DNA. The protein-DNA band is only 

observable for the overnight incubation. There is little observable difference in the oligomer lane vs the monomer 

lane for the overnight incubation, implying that only monomer is observable. This is to be expected, due to the 

tiny concentration of oligomer present, exacerbated by oligomer dissociation on the gel, and demonstrates the 

need for single molecule resolution. Gel was run by Sara Rocchetti.  

 

Samples were extracted at 32 h into the aggregation time course and centrifuged to remove 

fibrils before click reaction of the azide-tagged αS with unique DBCO-tagged DNA barcodes 

overnight at a ratio of 1:1 (DBCO-DNA : initial monomer concentration) (Figure 4.5C). Each 

sample was labelled with a different DNA barcode; DMSO (11111), Anle-138b (11101) and 

I3.08 (11011). The aggregation reaction was diluted 2500-fold for this coupling, effectively 

quenching further aggregation. In the absence of conditions favouring phase separation189, αS 

does not continue to aggregate under experimentally accessible timescales at concentrations 
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below 5 µM regardless of the conditions62,97,126. DNA-DBCO/N122C-azide reaction required 

at least >3 h incubation time for the reaction to proceed significantly (Figure 4.6). This is 

typical of reported strain promoted azide-alkyne click chemistry (SPAAC)190,191. The rate was 

tested by sampling 1, 3 and 12 h incubation times. No observable shift in PAGE was visible 

for 1 or 3 h, but an observable shift was visible for the sample incubated for 12 h overnight. 

These results demonstrate that we can multiplex the samples without concern for significant 

further coupling reactions from any residual unreacted azide/DBCO species during the 

nanopore measurement. Concerns over possible interchange of monomers in the sample 

between oligomers of different samples were addressed by the dilution at this stage, with the 

expectation that interactions become essentially unfeasible. Additional repeats were done using 

duplexed DMSO and I3.08 samples (Figure C.4). Similar results for samples tested in duplex 

and triplex support this assumption. No separation of aggregate mixtures is carried out, other 

than fibril removal, as this would drastically reduce throughput. Azide-tagged monomeric 

samples were obtained via SEC and incubated in a 1:1 ratio with DBCO tagged DNA barcodes. 

Oligomeric samples resulting from aggregation reactions of azide-tagged monomer were 

similarly incubated with a 1:1 monomer equivalent ratio of DBCO tagged DNA barcodes after 

fibril removal. 

 

4.2.4. Multiplexed digital nanopore read-out of the effect of inhibitor molecules 

 

Using the method described above, the samples were then run through the nanopore. Analysis 

of both the number of events containing a discernible DNA barcode and an attached protein 

spike, and the area of the protein spike, showed a change in oligomer distribution compared to 

the DMSO control (Figure 4.7A, B, C). The DNA barcode is the observable quantity, and so 

a ratio of the barcode with bound oligomer vs unbound was calculated via Equation 4.1. The 

nanopores were fabricated to be 12-15 nm, such that monomeric proteins would not be 

observable, while oligomeric species would be observable. The DMSO barcode was 29.8% 

bound to protein oligomers, the Anle-138b sample was 41.8% bound and the I3.08 sample was 

14.4% bound (Figure 4.7B). The size distribution of the oligomers broadly matched this trend, 

showing decreasing oligomer mass from the DMSO sample to the Anle-138b sample, which 

contained a large number of small oligomers as explained below, and lastly the I3.08 sample 

(Figure 4.7C). This was calculated using Equation 4.3. As the samples were run 

simultaneously in the same pore, no normalisation was required. These results show that 
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compound I3.08 reduced oligomer production relative to the untreated control, and that it was 

a better inhibitor of oligomer production than Anle-138b.  

 

Interestingly, first I3.08 and DMSO were tested in duplex and a similar baseline level noise 

(~6 pA) was maintained throughout the measurement. With the addition of Anle-138b in triplex 

with the other samples, the noise level increased (Figure C.5). This is consistent with the 

kinetic data (Figure 4.5A). The Anle-138b sample exhibits a noisy kinetic trace, consistent 

with increased formation of particulates, and has a correspondingly greater oligomer 

population. The increase in nanopore noise is most likely due to the larger oligomers present 

rapidly translocating through the pore at the beginning of the measurement. After 3 min, most 

of the larger oligomers have translocated through the pore which leads to the baseline current 

and noise resuming back to normal. This is also consistent with the number of events measured 

for Anle-138b (N=43), where fewer discernible events with Anle-138b barcode 11101, as 

compared to DMSO barcode 11111 (N=114) and I3.08 barcode 11011 (N=90) were observed 

despite all samples being added at equal concentration.  

 

4.2.5. Comparison with a micro free flow electrophoresis (µFFE) method 

 

For comparison, a state-of-the-art technique in protein oligomer detection is micro free flow 

electrophoresis (µFFE), which allows full characterisation of the oligomer distribution in 

physiological conditions, and was applied in Chapter 2 to ascertain oligomer populations in 

the presence of a closely structurally related inhibitor to the one used here65,116. The µFFE 

requires insoluble fibrils to be removed via centrifugation, but no further separation is required, 

as the technique separates the monomeric fraction from the oligomeric fraction in situ using an 

electric field across the particle stream that deflects particles based on their electrophoretic 

mobility. The only disadvantage is relatively low throughput. In Chapter 2, molecule I3.02 

induced a 37% delay in half time of aggregation compared to the negative 1% DMSO control. 

As a result, there was a 75% reduction in the mass of oligomers present at the half time of the 

negative control. The aggregation kinetics were carried out under similar conditions as used 

here, the primary difference in that work being the higher concentration of αS monomer and 

the molecule (100 µM αS, 50 µM molecule). In this work, molecule I3.08 induced a 57% delay 

in relative half time and, as measured by nanopore detection, the drop in oligomer events 

observed was 48% and the drop in oligomer mass was 22% compared to the negative DMSO 
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control. Anle-138b was shown to have lower effectiveness in terms of oligomer number 

reduction and oligomer mass reduction via both techniques, and so the ranking of effectiveness 

between nanopore detection and µFFE is in agreement. 

Figure 4.7. Schematic of the multiplexing pipeline and comparison of two different inhibitor molecules 

effects against on time-course samples. (A) Samples are tagged with a unique DNA barcode that allows 

identification in a multiplexed mixture, increasing the throughput. The events observed as the oligomers 

translocate through the nanopore can then be analysed to give an oligomer number per tag, and a relative area 

under the curve of each tag, proportional to oligomer size. (B) The fraction of events with an oligomer bound to 

the DNA barcode; DMSO (purple) (N=114±7), Anle-138b (blue) (N=43±16) and I3.08 (orange) (N=90±4). The 

standard deviation comes from repeats where the samples were combined, diluted in measurement buffer and 

measured for ~1 h. (C) Area of the current drop of the protein spike caused by bound oligomer in the DMSO 

(purple), Anle-138b (blue) and I3.08 (orange) samples. A larger area implies larger species are bound to the 

barcode on average. Nanopore experiments were carried out by Sarah E. Sandler. 
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The strategy here was to create a novel screening approach for aggregation inhibitors, not to 

fully characterise the aggregation time course, though this would represent a valid application 

of the technology. This has however been done multiple times previously57,187,188 while 

oligomer inhibitory screening assays are scarcer, due to difficulty in applying existing 

methodologies with low throughput. The comparison between µFFE, one of the methods used 

to carry out a full time course characterisation116,188 and then to characterise inhibitor potency65, 

versus the nanopore method shown here, demonstrates that both are effective at ranking 

molecules in terms of inhibitory potency.  

 

4.3. Discussion 

 

I have reported a nanopore detection method for protein oligomer detection and analysis, with 

a detection limit on par with current state of the art techniques, but with significantly greater 

potential for throughput. To illustrate the method, I applied it to detect the inhibition of αS 

oligomer production by small molecules in clinical and academic development. This result was 

obtained with the additional benefit of multiplex capability and higher throughput.  

 

While the nanopore system has many advantages, there are also some drawbacks. A drawback 

of the large dilution step required for measurement in the nanopore is the possibility that some 

of the oligomers may dissociate during the DBCO coupling step (12 h) due to the large dilution 

(2500-fold). This is a feature of most single-molecule techniques which require low 

concentrations in order to have clear signal to noise ratio. However, αS is a useful test case in 

this scenario given that its kinetics are relatively slow and its oligomers are stable116,192 over 

the time scales investigated, so the measured sample is a reasonable reflection of the population 

present at the extraction stage. In further developments, a cross-linking step could be 

introduced to ensure that the protein sample extracted exactly matches the one measured. This 

carries the risk of cross-linking separate oligomers (potentially mitigated by appropriate 

dilution) and adds further processing steps, issues which I sought to avoid in the interests of 

throughput and preventing biasing of the oligomer population. Alternatively, if the dissociation 

rate in a particular case was a cause for concern, a more reactive click pair could be employed 

than the one used here, or the coupling could be carried out at higher concentration (followed 

by dilution immediately prior to measurement) to obtain coupling over a shorter time scale and 
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slow dissociation. A restraint on the click coupling reaction is that the sample conditions cannot 

be altered in terms of pH or temperature, as this would affect the oligomer distribution. 

 

An additional concern with the nanopore measurement is the high salt concentration required 

for measurement, which may perturb the aggregate distribution. However, the click chemistry 

reaction was performed in PBS, and the samples were only mixed in the detection buffer 

directly before measurement. The ratio of protein bound to unbound DNA nanostructures also 

did not change over the time of the observation (Figure C.6), suggesting this is not a major 

issue. Again, cross-linking could remove this problem if necessary. In the interests of 

throughput, however, and for cases where there is a clinical trial benchmark, all that would be 

required is a relative measurement to compare the effect of different inhibitors. As the samples 

are measured under the same conditions, a ranking of effectiveness can still be obtained. For 

protein systems that aggregate very rapidly, the concern is more that the monomers and 

oligomers may further aggregate during the click reaction rather than dissociate. I anticipate 

that for almost all proteins the significant dilution should quench aggregation to a rate that is 

negligible over the time span of the coupling reaction. Finally, using nanopores as a tool to 

measure oligomers does have a fundamental size limit, in that particles larger than the diameter 

of the pore and smaller than the resolution limit will not be detected. However, with a degree 

of prior knowledge, the nanopore diameter can be appropriately tailored to the size distribution 

of interest, allowing sampling of a representative portion of the population.  

 

The results that I have presented illustrate an approach for investigating protein assemblies that 

are both transient and at very low concentration. I have applied this method to the scenario of 

early drug discovery for Parkinson’s disease and synucleinopathies in general, where αS 

oligomers are considered to be key to pathology. I also show comparable performance to 

existing single-molecule techniques, but with greater potential for throughput due to the ability 

to multiplex and upscale. With the introduction of artificial amino acids bearing azides into in 

vivo models of disease193, this also represents a potential approach for directly quantifying 

oligomer populations in such models, utilising the biorthogonality of the click reaction 

employed here. I anticipate that this approach could be of significant benefit to researchers 

working in the field of protein misfolding diseases and protein multimerisation, and in early-

stage drug discovery research in general.  
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4.4. Materials and methods 

 

4.4.1. Compounds and chemicals 

 

Compounds were purchased from MolPort (Riga, Latvia) or Mcule (Budapest, Hungary) and 

prepared in DMSO to a stock of 5 mM. All chemicals used were purchased at the highest purity 

available.  

 

4.4.2. Recombinant αS expression  

 

See Section 2.5.2. The cysteine-containing variant (N122C) of αS was purified by the same 

protocol, with the addition of 3 mM DTT to all buffers.  

 

4.4.3. Azide labelling of αS  

 

αS N122C protein was azide-labelled to enable click coupling to DNA tags. N122C (200 µM, 

PBS, pH 7.4)  was incubated with TCEP-HCl (5 eq)  for 1 h at RT. The reduced N122C was 

then desalted with a 5 mL HiTrap desalting column, (Cytiva, 29-0486-84), and eluted in PBS, 

pH 7.4, 10 mM EDTA and kept on ice. The extend of the reduction was then established via 

Ellman’s method, and a sample was taken for LCMS analysis. The protein was then incubated 

with iodoacetamide-PEG3-azide (10 eq) for 3 h at RT, and samples were taken subjected to 

QTOF MS/MS analysis with a VION mass spectrometer to ascertain the progress of the 

reaction (Figure C.1). Deconvolution was conducted in UNIFI software. Upon reaction 

completion the reaction mixture was separated on a Superdex 75 10/300 GL column (GE 

Healthcare) at a flow rate of 0.5 mL/min and eluted in PBS buffer to isolate the monomeric 

fraction and buffer exchange into PBS. The protein concentration was determined 

spectrophotometrically using ε280 = 5600 M−1 cm−1.  

 

4.4.4. αS seed fibril preparation 

 

See Section 2.5.4. 
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4.4.5. αS stabilised oligomer preparation and subsequent click coupling 

 

αS stabilised oligomers were produced as described previously186. Monomeric αS was dialysed 

into distilled water overnight at 4 °C, using 3.5 kDa MWCO dialysis membranes. 6 mg of the 

dialyzed protein was aliquoted into 15 mL tubes, flash frozen in liquid nitrogen, and lyophilised 

for ca. 48 h at room temperature. To prepare the oligomeric samples, the 6 mg of protein was 

resuspended in a total of 500 µL PBS to obtain a final protein concentration of ca. 800 µM. 

The solution was centrifuged if necessary (1 min, 1000 g) to get rid of bubbles formed during 

the resuspension process. The protein solution was filtered through a 0.22 µm syringe filter 

and incubated in 1.5 mL tubes at 37 °C for 20–24 h under quiescent conditions. The resultant 

protein solution was ultracentrifuged (1 h, 288,000 g) to remove any fibrillar species that may 

have formed during the incubation period, and the supernatant was removed and retained. Each 

aliquot of supernatant was passed through four 0.5 mL 100 kDa centrifugation filters 

sequentially (2 min, 9300 g), in order to remove excess monomeric protein as well as the low 

levels of very small oligomers. To estimate the total mass concentration of the final oligomeric 

solution (i.e., total concentration in monomer equivalents), the absorbance was measured at 

275 nm, using a molar extinction coefficient of 5600 M-1 cm-1. This preparation results in an 

overall oligomeric yield of ca. 1%. Samples were then diluted to a final concentration of 88 

nM monomer equivalents in PBS and incubated overnight with a final concentration 4 nM of 

DBCO tagged DNA nanostructure. The reason this excess was used was to attempt to ensure 

1 DBCO tag per oligomer and prevent over tagging (each stabilised oligomer has a reported 

average monomer count of 22186). Subsequent on time course experiments were carried out 

with 1:1 labelling of the DBCO:monomer given the large excess of monomer:oligomer 

expected in these samples. 

 

4.4.6. DBCO DNA nanostructures 

 

DNA constructs with different barcoded regions plus a DBCO labelled overhang sequence 

were created. Each DNA construct was synthesised from pairing a linearised 7.2 kbp single-

stranded (ss) M13mp18 DNA with 40 nucleotide staples complementary to the backbone in 

order to create a full linearised dsDNA. The backbone and staples are annealed for 45 minutes 

in a thermocycler. Using a 100 kDa Amicon filter, the sample is then filtered and stored in 10 

mM Tris 0.5 mM MgCl2 pH 8. The concentration is then measured in a nanodrop 
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spectrophotometer with typical yield ranging from 75-95%. The barcoded region design 

follows a previous work with dumbbells optimised for read out in 15 nm nanopores182.  Each 

‘1’ bit is made of eleven simple dumbbell hairpin motifs to create the structural spikes which 

act as a barcode on the DNA nanostructure. This can be optimised to have fewer dumbbells 

per spike if needed. The exact sequences with their numbers are shown in Table C.2 in the 

Supplementary Information following a previous work182. The overhang was created by 

replacing oligo No. 142 with 61 bp segment containing 40 bp to match the scaffold and a 21 

bp oligo complimentary to another DNA sequence containing a DBCO label. The 21 bp 

dsDNA overhang is not large enough to generate a current blockade (an observable signal in 

the nanopore) which has been confirmed by observation. These sequences can be found in the 

Supplementary Information Table C.3.   

 

4.4.7. Aggregation kinetics and subsequent click coupling 

 

Azide-labelled αS N122C (10 µM) was supplemented with seed (100 nM) under shaking (200 

rpm) at 37 °C, PBS pH 7.4 and either 1% DMSO or 25 µM molecule in 1% DMSO.  Samples 

were extracted at the t1/2 of the DMSO sample (30 hours). Fibrils were removed by 

centrifugation (21,130 rcf, 10 min, 25 °C). Samples were then diluted to 4 nM monomer 

equivalents in PBS and incubated overnight with 1 eq (relative to initial monomer 

concentration) of DBCO tagged DNA nanostructure.  

 

4.4.8. Nanopore fabrication and measurement  

 

The nanopores are made of commercially available quartz capillaries (0.2 mm ID/0.5 mm OD 

Sutter Instruments, CA, USA). A laser-assisted pipette puller (P-2000, Sutter Instrument, CA, 

USA) is used to create nanopores with diameters of 10-15 nm. 16 conical nanopores are then 

placed in a custom templated PDMS chip containing a communal cis reservoir and individual 

trans reservoirs. In order to generate the current, silver/silver-chloride (Ag/AgCl) electrodes 

are connected to the cis and trans reservoirs in the PDMS chip. In the baseline buffer solution 

for the stabilised oligomers (4 M LiCl, 1X TE, pH 8.0) and the on pathway samples (2 M LiCl, 

1X TE, pH 8.0), a current-voltage curve is taken in order to estimate the nanopore size. Only 

one nanopore is measured at a time due to the electronics, thus the trans reservoir contains the 

electrode with a 500 mV bias voltage and the central cis reservoir which contains the sample 
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is grounded. The measurement is then run for 1-2 hours until 1500-3000 events are gathered. 

Typically, of these events, 30% are unfolded and are then analysed. 

 

Current signals are collected using an Axopatch 200B patch-clamp amplifier (Molecular 

Devices, CA, USA). The set-up is operated in whole-cell mode with the internal filter set to 

100 kHz. An 8-pole analogue low-pass Bessel filter (900CT, Frequency Devices, IL, USA) 

with a cutoff frequency of 50 kHz is used to reduce noise. The applied voltage is controlled 

through an I/O analogue-to-digital converter (DAQ-cards, PCIe-6251, National Instruments, 

TX, US).  A LabView program records the current signal at a bandwidth of 1 MHz. 

 

4.4.9. Nanopore data analysis 

 

The experimental data files are stored as technical data management streaming (TDMS) files 

from the Labview program recording the raw traces. First, a translocation finder python script 

is used which identifies the events from the raw traces using user-defined thresholds (minimum 

0.3 ms duration, minimum 0.1 nA current drop) and stores them in an hdf5 file. This can be 

found at https://gitlab.com/keyserlab/nanopyre. Next, the hdf5 file is loaded into the GUI 

categoriser python script, found here: https://gitlab.com/keyserlab/nanopycker. Using this, the 

events are printed and the user can manually sort the events time efficiently into different 

categories and later print events from the hdf5 file that are assigned to a specific category. In 

this case the categories were barcode without protein and barcode with protein. The percentage 

of events with oligomer bound is then calculated using  

 

 %	𝑂𝑙𝑖𝑔𝑜𝑚𝑒𝑟	𝐵𝑜𝑢𝑛𝑑	𝐸𝑣𝑒𝑛𝑡𝑠	1 =
𝑁1	45!&67-

𝑁1		45!&67- + 𝑁1	-!	45!&67-
× 100	 (4.1) 

 

Where 𝑥 is the barcode. This is used in Figure 4.4C and Figure 4.7B. The duration of the 

events in Figure 4.4D is calculated using  

 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 	
B

𝑥5789& − 𝑥:6;&
𝑠𝑎𝑚𝑝𝑙𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	[𝐻𝑧]C

𝐼(
 

(4.2) 

 

https://gitlab.com/keyserlab/nanopyre
https://gitlab.com/keyserlab/nanopycker
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Where 𝑥5789& is the position of the end of the event and  𝑥:6;& is the position of the end of the 

event. The sampling frequency is 1,000,000 Hz. 𝐼( is the baseline current because different 

pores were used for the different measurements with different baselines.  

 

The GUI categoriser is used again on the events with protein to calculate the ECD of the protein 

spike using  

 

𝑔(𝑥) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎 × 𝑥 + 𝑓(𝑎) − 𝑎 ×
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎  

 

𝐴𝑟𝑒𝑎 =O
1
2

<=$

>

× (𝑥-)$ − 𝑥-) × lm𝑔(𝑥-)$) − 𝑓(𝑥-)$)n + m𝑔(𝑥-) − 𝑓(𝑥-)no										(4.3) 

Where 𝑓(𝑥) is the current at point 𝑥, 𝑎 and 𝑏 are the left and right bounds of the region of 

interest and 𝑔(𝑥) is the equation of the line connecting 𝑎 and 𝑏.  

 

4.4.10. Mass spectrometry 

 

10 µM of preformed αS was incubated with 25 µM of molecule in 20 mM sodium phosphate 

buffer (pH 4.8) supplemented with 1 mM EDTA overnight under quiescent conditions at room 

temperature. The supernatant was removed for analysis using a Waters Xevo G2-S QTOF 

spectrometer (Waters Corporation, MA, USA).  

 

4.5. Contributions 

 

This chapter is substantially derived from the preprint doi: 10.1101/2023.08.09.552642 

(accepted at J. Am. Chem. Soc.). Sarah E. Sandler (S. E. S.) and I conceived the project and 

wrote the article. I performed azide labelling, analysis and aggregation kinetics. S. E. S. and I 

performed azide-DBCO coupling reactions, and S. E. S. performed nanopore experiments. Sara 

Rocchetti performed gel analysis. Rebecca C. Gregory produced the N122C αS.  
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5. Generalising to other misfolded 

proteins 

 
“There isn’t one kind of dementia. There aren’t a dozen kinds. There are hundreds of thousands. 
Each person who lives with one of these diseases will be affected in uniquely destructive ways.” 
– Sir Terry Pratchett 
 

5.1. New targets: Aß-42, IAPP and tau 

 

Having spent the vast majority of my PhD focussed on αS I hoped to demonstrate the 

generalisability of the developed pipelines and apply them to other misfolding protein related 

conditions. This work is still ongoing and will hopefully continue with other PhDs. A cross 

section of these projects is described in this chapter, which have reached varying degrees of 

progression.  
 

5.2. Targeting secondary nucleation in Aß-42 and IAPP 

 

5.2.1. Aß42 

 

Amyloid ß (Aß) was initially the aggregating peptide implicated as the most damaging agent 

in Alzheimer’s disease (AD) due to genetic evidence and observation of amyloid plaques in 

patient brains, which form in the extracellular space between neurons. These plaques consist 

largely of Aß peptides 40-42 amino acids in length. These truncated peptides are derived from 
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amyloid precursor protein (APP), a transmembrane protein of unknown function with a single 

membrane-spanning domain. 2 secretases, ß and g, are responsible for cleaving the extracellular 

domain of APP to create the N terminal and C terminal of Aß peptides. Mutations accelerating 

Alzheimer’s are found to increase expression of APP and so Aß production, increase the 

aggregation propensity of Aß, or increase the ratio of the more aggregation prone Aß42 peptide 

to the less aggregation prone Aß40 peptide44. Pathology is however now thought to be better 

correlated with tau aggregate distribution, in the ‘trigger and bullet’ hypothesis194. Tau 

undergoes aggregation to form neurofibrillary tangles within neurons, which are another 

hallmark of AD. These aggregates are formed of a mix of 3R and 4R tau45. Aß42 aggregation 

may trigger tau aggregation before being enhanced itself by tau aggregation in a positive 

feedback loop. By this logic targeting Aß42 too late in the disease may prove futile once tau 

aggregation becomes dominant. Removing Aß42 plaques has however shown benefit to 

patients as previously described. As such it seems that some of the burden on neurons in AD 

can be alleviated by removal of misfolded Aß42 aggregates, but that tau targeting drugs may 

be more effective.  

 

Efforts were made to carry out a similar docking approach as previously described against 

Aß42 fibril structure 2MXU195. A selection of molecules were tested against 2 different sites, 

only 1 of which produced an effective inhibitor. This hit was obtained after screening ~120 

molecules for the unsuccessful first site and ~50 molecules for the second site. Aß42 is a more 

aggressive aggregator than αS, capable of auto aggregating via primary nucleation in the 

absence of seed even at high pH where the protein is charged and so monomers should repel 

one another (pI = 5.31)196. Preventing its aggregation is therefore more challenging. I found 

that the inhibitor in question had few available derivatives from vendors and thus could not be 

easily elaborated via iterative learning in an academic context. The docking is limited here by 

the amount of chemical matter that can be docked (~2 million compounds). If a larger cross 

section of chemical space could be screened it would be possible to obtain more promising 

starting points. 

 

This is something that is currently being addressed with methods such as deep docking, where 

the underlying calculations of the docking simulation are learned by a neural network197. Deep 

docking greatly increases the rate of the docking process and so increases the number of 

molecules that can be screened from 2 million to several hundred million in a similar time 
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frame. The PhD project of Michaela Brezinova has been focussed on optimising this 

computational approach. This promises to address the weak point of the pipeline established 

here, which is whether the initial docking produces good leads. If the correct pocket is selected, 

then there is a higher likelihood of obtaining a larger number of varied hits. If the wrong pocket 

has been selected this should become obvious more rapidly than previously, as it is easier to 

distinguish a successful deep docking from a failed one due to the greater discrepancy in hit 

rates. Initial experimental work suggests that this has succeeded, but further validation is 

required.  

 

5.2.2. IAPP 

 

Islet amyloid precursor protein (IAPP) is similarly implicated in diabetes mellitus198,199. 

Misfolded aggregates attack cell membranes, destroying the islet cells that produce insulin. 

How this event occurs initially is unknown but targeting it may alleviate symptoms. IAPP is 

rather similar to Aß42 in that it can auto-aggregate without an inducer, and also aggregates via 

secondary nucleation200. An initial effort to carry out docking against IAPP fibril structure 

6Y1A201 was also carried out, but again I could obtain relatively few molecules (~25), and only 

1 showed efficacy. Again, this molecule proved challenging to explore around with iterative 

learning as derivatives were not available. This will hopefully also be addressed via the deep 

docking approach outlined above. 

 

5.2.3. Summary 

 

The effectiveness of this technique relies on knowledge of which binding pockets are most 

likely to yield effective inhibitors and, for use in academic contexts, good availability of 

derivatives. These factors held the approach back when targeting Aß42 and IAPP, though it 

may be possible to overcome these issues using new computational techniques such as deep 

docking. These factors were not as much of an issue for subsequent investigations into tau in 

the following sections, where the strategy could be employed in a similar way as implemented 

for αS. 
 

5.3. Targeting pathogenic tau protein aggregation 
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Tau is perhaps a better target than Aß when seeking to combat AD, but its great heterogeneity 

in terms of isoforms and aggregate structures makes it a challenging target. A fundamental 

property of amyloid aggregates is their ability to promote the formation of new 

aggregates164,202. This autocatalytic process may contribute to the proliferation and spreading 

of the aggregates across the brain in the spatio-temporal patterns first described by Braak for 

AD194,203,204. Because this process is dependent on the presence of amyloid fibrils, their 

structures are likely to determine its efficiency33. This situation creates a significant challenge 

for drug discovery since, at the time of this work, over 20 different polymorph structures have 

been solved for tau fibrils from brain extracts by cryo-electron microscopy (cryo-EM)205,206. It 

is therefore important to develop in vitro assays of tau aggregation that generate disease-

specific fibril polymorphs. This is a difficult problem because, depending on the conditions 

(pH, salt, temperature, cofactors) and the size and sequence of the protein isoform, in vitro 

studies might lead to different fibril structures from the polymorphs found in brain extracts and 

thus may not be disease relevant206,207.  

 

To reproduce in vitro the structures found in vivo, one can use brain-derived seeds to prompt 

recombinant monomeric tau to adopt disease-specific polymorphs205-207. This type of approach 

relies on the fact that the free energy barriers for growth are typically lower than those for 

nucleation, and it is therefore possible to propagate a conformer through seeding even under 

conditions where another more stable conformer may arise from primary nucleation. This was 

recently attempted to obtain αS fibrils with the morphology observed in MSA208. However, 

although individual filament halves of a mature fibril were faithfully propagated, the 

corresponding counter-filament in some cases adopted a novel structure not observed in 

reconstructions of MSA fibrils from patient brain extracts by cryo-EM209.  

 

An alternative method is to identify solution conditions for in vitro aggregation assays that lead 

to the recreation of the amyloid fibril polymorphs observed in disease. Significant progress has 

been recently made with tau under shaking conditions206. For the application of this approach 

to drug discovery, however, the in vitro assay should ideally also be consistent with the 

conditions in vivo, in order to identify candidate inhibitors with a mechanism of action 

expected to be clinically relevant.  

 

Here I report a framework for addressing this problem. The three main components of this 

framework are: (1) a faithful propagation of strain-specific fibril polymorphs, as verified by 
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cryo-EM, (2) a careful kinetic analysis in quiescent reaction conditions whereby individual 

microscopic processes might be specifically targeted pharmacologically, using the seeds from 

(1) to induce aggregation and (3) the computational pipeline that has been described in 

Chapter 2 to first identify and then elaborate hits. The first component is based on the brain-

derived assays described above, while the second component is based on a chemical kinetics 

approach to study filament assembly82. The experimental assays for components (1) and (2) 

were established by Michael A. Metrick II and Alessia Santambrogio. Using this chemical 

kinetics formalism, several microscopic mechanisms were identified that underlie the 

propagation of amyloid fibrils in these conditions including secondary processes and 

elongation210,211. Preliminary data suggests that in (2) a similar fold is obtained when compared 

with the 503L polymorph that is dominant in AD patient brains (appendix Figure D.1A)207. 

The polymorph formed in (2), shown in Figure D.1B, has also been shown to be on the kinetic 

pathway to the final 503L polymorph by recently published work212.  

 

By using this approach, we describe the propagation of tau aggregates derived from AD brains. 

We then identify tau aggregation inhibitors targeted against aggregation via secondary 

processes, through in silico docking to binding sites on the surface of the cryo-EM structure of 

tau fibrils adopting an AD fold. These molecules are subsequently enhanced for tau anti-

aggregation activity through the application of the iterative machine learning pipeline65. 

 
Figure 5.1. Volume and solubility based binding site prediction. (A) Cavity based binding site prediction based 

on Fpocket213. (B) Solubility based binding site prediction based on CamSol96. The black box outlines residues 

313-315 where both solubility is low and cavity propensity is high. Docking simulations and initial pocket 

searching were carried out by Z. Faidon Brotzakis. 

 

5.4. Results 

 

5.4.1. Identification of a potential catalytic pocket on the tau fibril surface 

 

A B

Figure SX : Binding site prediction and camsol score
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Having developed a working model of the AD-derived aggregation cascade, we investigated 

the effects of small molecule inhibitors on the microscopic processes of the cascade. 

Aggregation kinetic experiments were conducted at 5 µM K12 (a C-terminally truncated 

recombinant 3-repeat fragment of tau substrate, with Cys mutated to Ser114) monomer 

concentration in the presence of 50 nM (monomer equivalents) first generation fibrils of K12 

produced with brain-derived seeds, and with addition of 20 µM compound. A selection of small 

molecules was identified via docking simulations to tau fibrils, followed by experimental 

testing in the chemical kinetics assay described above (2) to identify potential inhibitors of 

aggregation. The hypothesis is again that molecules that can bind to the fibril structures could 

modulate secondary aggregation processes, involving formation of new misfolded aggregates 

from existing ones64. Potential binding sites on the 5O3L fibril cryo-EM structure207 were again 

identified via the Fpocket and CamSol methods (see methods Section 5.5.4 and Figure 5.1). 

The predicted binding affinity of a subset of the ZINC database passing CNS MPO criteria94,95 

to the chosen binding site was calculated using AutoDock Vina and the FRED (OpenEye 

Scientific Software), and the best predicted binders were obtained for experimental testing. A 

schematic of this approach is shown in Figure 5.2A.  
 

Whether the targeted binding site is indeed the binding site of the molecules has yet to be 

experimentally validated. This area was targeted in part due to its reported involvement in 

triggering further amyloidogenesis214, as well as identification via Fpocket and CamSol, yet 

the area appears comparatively featureless. There was less prior knowledge to work with here 

than for the αS project, and Fpocket provided a larger number of potential pockets to select 

from (Figure 5.1 vs Figure 2.1). The pocket identification software is robust but not infallible 

and would benefit from a similar update as has been implemented for the docking via deep 

learning. That the docking hit rate was higher than expected does suggest that the docking site 

was chosen effectively, but this requires validation.  
 

5.4.2. Experimental screening and initial ML optimisation 
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Figure 5.2. Kinetic analysis of a tau aggregation inhibitor (I.21) identified through iterative machine 

learning. (A) Schematic of the proposed binding mechanism, showing a K12 fibril cross section and the targeted 

binding site. The binding pose of I1.21 in this pocket as predicted by AutoDock Vina is also shown. This binding 

is thought to be responsible for the modulation of secondary pathways. (B) Kinetic traces for 50 nM seed, 5 μM 

monomer K12 aggregation reactions in the presence of 1% DMSO (purple points), and I1.21 identified via 

machine learning at different concentrations (coloured points). Fits of a multistep secondary nucleation model are 

also shown (solid lines), which describe the aggregation behaviour reasonably well. A fragmentation model also 

provides a similar degree of fitting. The elongation rate (k+) for these models was derived from (C) showing 

kinetic traces for 2.5 μM seed, 5 μM monomer AD aggregate K12 reactions in the presence of 1% DMSO (purple 

points), and I1.21 (coloured points). The presence of molecule was not found to significantly alter elongation 

kinetics, so can be assumed to be mostly specific for inhibition of secondary processes. (D) Approximate rate of 

reaction (taken as 1/t1/2, normalised between 0 and 100) in the presence of 2 different molecules, the original 

docking hit d0 (grey), and I1.21 derived from it (light blue). The KIC50 of I1.21 (2.6 μM) is indicated by the 

intersection of the fit and the horizontal dotted line. (E) Change in fluorescence polarisation (in mP units) of 10 

µM I1.21 with increasing concentrations of K12 fibrils (concentrations given in monomer equivalents). Error bars 

indicate the SD. The solid line is a fit to the points using a one-step binding curve, estimating a KD of 1.58 ± 0.15 

μM (SD) for I1.21. Kinetic aggregation experiments were run by Alessia Santambrogio. 
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Figure 5.3. Kinetic analysis of a tau aggregation inhibitor (I.51) identified through iterative machine 

learning. (A) Kinetic traces for 50 nM seed, 5 μM monomer AD aggregate K12 reactions in the presence of 1% 

DMSO (purple points), and I1.51 identified via ML at different concentrations (coloured points). The molecular 

structure of I1.51 is shown. Fits of a multistep secondary nucleation model are also shown (solid lines). The 

elongation rate (k+) for these models was derived from (B) showing kinetic traces for 2.5 μM seed, 5 μM monomer 

K12 aggregation reactions in the presence of 1% DMSO (purple points), and I1.51 (coloured points). The presence 

of molecule was not found to significantly alter elongation kinetics, so can be assumed to be specific for secondary 

processes. (C) Approximate rate of reaction (taken as 1/t1/2, normalised between 0 and 100) in the presence of 2 

different molecules, the original docking hit d0 (grey), and I1.51 derived from it (light blue). The KIC50 of I1.51 

(7.4 μM) is indicated by the intersection of the fit and the horizontal dotted line. (D) Change in fluorescence 

polarisation (in mP units) of 10 µM I1.51 with increasing concentrations of K12 fibrils (concentrations given in 

monomer equivalents). Error bars indicate the SD. The solid line is a fit to the points using a one-step binding 

curve, estimating a KD of 0.74 μM ± 281 nM (SD) for I1.51 Kinetic aggregation experiments were run by Alessia 

Santambrogio. 
 

The metric of potency in the aggregation assays was the normalised half time (t1/2). A hit was 

defined as any molecule yielding a normalised half time 1.5 times greater or more than the 

negative control. The same threshold was used for subsequent potent lead generation. Of 102 

predicted binders tested 10 were hits (9.8% hit rate). Two of these were taken forward for 

further elaboration (labelled d0 and d1) via a machine learning pipeline65. Of 32 molecules 

tested in a first iteration of the pipeline 6 molecules were leads (18.8% optimisation rate), 
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labelled I1.21, I1.51, I1.114, I1.115, I1.116 and I1.121. The labelling system for the molecules 

obtained via ML is the same as that used in prior chapters.  

 

In this case the first iteration was carried out alongside a parallel iteration of tau aggregation 

inhibitors directed at a different aggregation assay, established by the Linse group and carried 

out by Dillon Rinauro, which did not utilise diseased brain derived seeds and will be mentioned 

briefly here211. More emphasis is placed on the first introduced project, given the importance 

of working with polymorphs relevant to disease, and all the figures in this chapter relate to the 

pathological fibril project. Nonetheless the availability of more closely related hit derivatives 

for the latter project was significantly greater. As a result, optimisation rates were higher, 

reaching 54% at the first iteration (33% with a relative half time cut off >2) and 62% at the 

second iteration (44% with a relative half time cut off >2). This demonstrates how the success 

of this approach in the absence of custom synthesis can be shaped by derivative availability. 

Interestingly, in this scenario the best leads against the former assay differed from the best 

leads against the pathological fibril assay, suggesting a degree of specificity for the molecules 

against the 2 different tau polymorphs present in these assays. 

 

Returning to the diseased brain derived fibril project, further experiments were carried out to 

validate the mechanism of inhibition as had been done for aS in Chapter 2, albeit at an earlier 

phase of the iterative cycles. By modifying the input seed:monomer concentration ratio, 

experiments could be tailored to observe perturbations in secondary processes and 

heterologous nucleation (low seed experiments, Figure 5.2B) or elongation rates (high seed 

experiments, Figure 5.2C). Three compounds were chosen for detailed analysis, I1.21 (Figure 

5.2), I1.51 (Figure 5.3) and I1.114 (Figure 5.4). All 3 exhibited significant dose-dependent 

inhibition of aggregation in the low seeded experiments, while exhibiting relatively little effect 

on elongation. This behaviour implies a degree of specificity for the inhibition of secondary 

aggregation processes. Given that secondary processes are considered to be the dominant 

mechanism in the production of oligomers associated with disease pathology, such behaviour 

would be desirable in potential therapeutics. All 3 molecules also exhibited significant 

improvements in potency over their parent compound as shown by the rate plots and 

corresponding KIC50 values63 (Figures 5.2D and 5.3C, 5.4C). Finally, binding affinities of the 

molecules to first generation brain-derived fibrils were obtained via fluorescence polarisation 

experiments to validate targeting of the higher order aggregates (Figure 5.2E, Figure 5.3D, 
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5.4D) leading to subsequent attenuation of fibril catalysed aggregation. A degree of specificity 

is implied by the fact that no effect is observed on the aggregation of Aß42 (Figure 5.5). 

Figure 5.4. Kinetic analysis of a tau aggregation inhibitor (I.114) identified through iterative machine 

learning. (A) As above but for I.114. The molecular structure of I1.114 is shown (B) As above but for I.114. (C) 

Approximate rate of reaction (taken as 1/t1/2, normalised between 0 and 100) in the presence of 2 different 

molecules, the original docking hit d0 (grey), and I1.114 derived from it (light blue). The KIC50 of I1.114 (7.0 

μM) is indicated by the intersection of the fit and the horizontal dotted line. (D) Change in fluorescence 

polarisation (in mP units) of 10 µM I1.114 with increasing concentrations of K12 fibrils (concentrations given in 

monomer equivalents). Error bars indicate the SD. The solid line is a fit to the points using a one-step binding 

curve, estimating a KD of 12.5 μM ± 9.6 μM (SD) for I1.114. Kinetic aggregation experiments were run by Alessia 

Santambrogio. 
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Figure 5.5. Kinetic traces for Aß42. Aß42 (40 nM seed, 2 μM monomer) was aggregated in the presence of 1% 

DMSO (purple and blue points), and molecules at 2.5 μM (teal), 5 μM (orange), 10 μM (red), and 20 μM (lilac). 

(A) Adapalene, a positive control with previously reported anti-aggregation potency215. (B) I1.21 (C) I1.51 (D) 

I1.114. 

 

5.5. Discussion 

 

Tau aggregation is a major target for disease-modifying AD therapies216. Since tau is known 

to self-assemble into a range of distinct amyloid fibril polymorphs underlying diverse 

neurodegenerative diseases205-207, the study of aggregation in vitro should be concerned with 

the specific structure of the products of the process and the specific mechanism of aggregation. 

I have reported an approach to achieve this goal, using brain-derived fibrils as seeds in 

aggregation assays that can faithfully propagate their polymorphs, in the correct conditions. 

The results indicate that brain-seeded quiescent aggregation assays can provide insights into 

how tau strains might be targeted with small molecules. This was illustrated with an AD-

derived polymorph. It may be possible to achieve strain-specific inhibition of aggregation 

processes with molecules obtained via this structure-based iterative machine learning method, 

which could be validated via testing against other tauopathies.  
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5.6. Materials and methods 

 

5.6.1. Protein purification 

 

K12 sequence: 

MGSSHHHHHHSSGLVPRGSHMQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQIV

YKPVDLSKVTSKAGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGG

GNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVS 

0N3R tau sequence:  

SSHHHHHHSSGLVPRGSHMAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQE

GDTDAGLKAEEAGIGDTPSLEDEAAGHVTQARMVSKSKDGTGSDDKKAKGADGKT

KIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGS

RSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENL

KHQPGGGKVQIVYKPVLSKVTSKAGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKI

GSLDNITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLSNV

SSTGSIDMVDSPQLATLADEVSASLAKQGL 

K12 and 0N3R tau were purified as described previously114. Briefly, sequences for K12 and 

0N3R tau with cysteine to serine mutations were cloned into PET-28a vectors and transformed 

into BL21(DE3) E. coli. Cells were grown and protein expression induced using an overnight 

autoinduction method described previously217. Crude lysate was prepared as described 

previously with the addition of a boiling step prior to application to carboxylmethyl fast flow 

(CMFF) capture. K12 or 0N3R was eluted from CMFF resin over a 20 column volumes (CV) 

linear gradient from 100 – 500 mM NaCl. Pooled CMFF eluate was added to Sepharose High 

Performance (SPHP) resin and eluted over 40 CV linear gradient from 100 – 600 mM NaCl. 

SPHP fractions were pooled, precipitated in acetone, and dissolved in 8M GuHCl prior to size-

exclusion chromatography (SEC) separation on  a 26 x 600 mm Superdex 75 column 

equilibrated in 20 mM sodium phosphate, pH 7.4. Proteins were lyophilised and frozen at -80 

°C until use.  

 

5.6.2. First-generation seed amplification 

 



Generalising to other misfolded proteins 

102 

 

Generation of AD-derived and PiD-derived K12 seeds was conducted as described previously 

with several modifications. Heparin was avoided in this study despite being previously 

published due to failure to recapitulate the correct polymorph218. NaF was replaced with 250 

mM Na3Citrate. Brain homogenates utilised in this study include sporadic AD (sAD) 2 and 

PiD 5 listed in the supplement of reference 114. First-generation reactions were seeded with 

1x10-5 concentration of brain homogenates in the presence of 10 µM K12, 10 µM ThT, 250 

mM Na3citrate, 40 mM HEPES, pH 7.4. Reactions were subjected to rounds of 60 s shaking 

(500 rpm, orbital) and 60 s rest with periodic ThT readings every 15 min at 37 °C in a 384-

well Nunc microplate (non-treated polymer base #242764) in a BMG FluoStar lite with 

aluminium sealing cover to prevent evaporation. Fibrils were harvested by scraping and 

pooling reaction contents once ThT fluorescence reached plateau > 20 h. 

 

5.6.3. Second-generation 0N3R fibril amplification 

 

 0.3 µM of first-generation (brain homogenate seeded) K12 fibrils were added to monomeric 

recombinant 0N3R tau. The second-generation reaction buffer included 250 mM Na3citrate, 40 

mM HEPES, pH 7.4 with or without ThT depending on use for cryo-EM analysis. Reactions 

were again incubated in BMG FluoStar lite at 37 °C with rounds of shaking (500 rpm orbital, 

60 s) and rounds of rest (60 s) with periodic ThT reads every 15 min. Fibrils were recovered 

for biophysical characterisation (GuHCl sensitivity, ATR-FTIR, protease resistant core sizing 

by MS) or structural analysis (cryo-EM) by gently aspirating the reaction solution to avoid 

fragmentation or clumping of fibrils; reactions were collected after reaching the ThT 

fluorescence plateau at > 80 h reaction time. 

 

5.6.4. Computational docking, iterative ML methods and code availability 

 

First, we selected a binding site on the tau fibrils. To achieve this goal, we analysed a structure 

of a tau fibril (PDB ID: 503l)207 using Fpocket213, which identifies potential binding pockets 

based on volume criteria. We identified a pocket on the fibril surface (encompassing residues 

Asp314-Leu315), which had high surface exposure, necessary for secondary nucleation and 

high hydrophobicity, as identified by CamSol96 (Figure A.2), allowing the pocket to participate 

in aggregation. For the selection of screening compounds, we used the ZINC library, which 

contains a set of over 230 million purchasable compounds for screening219. To prioritise the 
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chemical space of small molecules considered in the docking calculations, central nervous 

system multiparameter optimisation (CNS MPO) criteria220 were applied, effectively reducing 

the space to ∼2 million compounds. In particular, CNS MPO has been shown to correlate with 

key in vitro attributes of drug discovery, and thus using this filter potentially enables the 

identification of compounds with better physicochemical and pharmacokinetic properties 

pertaining to brain penetration, where tau is localised. We further subjected these compounds 

to docking calculation against the binding site identified above using AutoDock Vina221. To 

increase the confidence of the calculations, the top-scoring 10000 small molecules were 

selected and docked against the same tau binding site, using FRED (OpenEye Scientific 

Software). The top-scoring, common 1000 compounds in both docking protocols were selected 

and clustered using Tanimoto clustering, leading to a list of 130. Molecules were then obtained 

and tested experimentally in aggregation and binding experiments, before application of the 

iterative machine learning procedure as outlined in the online repository 

https://github.com/rohorne07/Iterate.  

 

5.6.5. Preparation of the compounds 

 

The centroids from the above 130 clusters were selected for experimental validation. 

Compounds were purchased from MolPort (Riga, Latvia), and in the cases for which centroids 

were not available for purchase, the compounds in the clusters with the closest chemical 

structures were used as the representative compounds instead. In the end, a total of 102 

compounds were purchased (centroids and alternative compounds in 28 clusters were all not 

available for purchase) and then prepared in DMSO to a stock of 5 mM. Stocks were diluted 

in DMSO to 100-fold above the final desired final concentration, before addition to aggregation 

reactions at 100-fold dilution (1% DMSO). All chemicals used were purchased at the highest 

purity available (>90% in purity).  

 

5.6.6. Fluorescence polarisation 

 

10 µM of each molecule was incubated with increasing concentrations of K12 fibrils in the 

same buffer as used for kinetic experiments, supplemented with 1% DMSO. After incubation, 

the samples were pipetted into a 96-well half-area, black/clear flat bottom polystyrene 

nonbinding surface (NBS) microplate (Corning 3881). The fluorescence polarisation of the 

https://github.com/rohorne07/Iterate


Generalising to other misfolded proteins 

104 

 

molecule was monitored using a plate reader (CLARIOstar, BMG Labtech, Aylesbury, UK) 

under quiescent conditions at room temperature, using a 360 nm excitation filter and a 520 nm 

emission filter. 

 

5.6.7. Recombinant Aß42 expression 

 

The recombinant Aß42 peptide (MDAEFRHDSGY EVHHQKLVFF AEDVGSNKGA 

IIGLMVGGVV IA), here called Aß42, was expressed in the E. coli BL21 Gold (DE3) strain 

(Stratagene, CA, U.S.A.) and purified as described previously. Briefly, the purification 

procedure involved sonication of E. coli cells, dissolution of inclusion bodies in 8 M urea, and 

ion exchange in batch mode on diethylaminoethyl cellulose resin followed by lyophylisation. 

The lyophilised fractions were further purified using Superdex 75 HR 26/60 column (GE 

Healthcare, Buckinghamshire, U.K.) and eluates were analysed using SDS-PAGE for the 

presence of the desired peptide product. The fractions containing the recombinant peptide were 

combined, frozen using liquid nitrogen, and lyophilised again. 

 

5.6.8. Aß42 aggregation kinetics 

 

Solutions of monomeric Aß42 were prepared by dissolving the lyophilised Aß42 peptide in 6 

M guanidinium hydrocholoride (GuHCl). Monomeric forms were purified from potential 

oligomeric species and salt using a Superdex 75 10/300 GL column (GE Healthcare) at a 

flowrate of 0.5 mL/min, and were eluted in 20 mM sodium phosphate 200 µM EDTA, 0.02% 

NaN3, pH 8. The centre of the peak was collected and the peptide concentration was determined 

from the absorbance of the integrated peak area using ε280 = 1490 l mol-1 cm-1. The obtained 

monomer was diluted with buffer to the desired concentration and supplemented with 20 µM 

thioflavin T (ThT) from a 2 mM stock. Each sample was then pipetted into multiple wells of a 

96- well half-area, low-binding, clear bottom and PEG coated plate (Corning 3881), 80 µL per 

well, in the absence and the presence of different molar-equivalents of small molecules in 1% 

DMSO or 1% DMSO alone as a negative control. Assays were initiated by placing the 96-well 

plate at 37 ºC under quiescent conditions in a plate reader (Fluostar Omega, Fluostar Optima 

or Fluostar Galaxy, BMGLabtech, Offenburg, Germany). The ThT fluorescence was measured 

through the bottom of the plate using a 440 nm excitation filter and a 480 nm emission filter. 
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5.7. Contributions 

 

This chapter is substantially derived from a submission to Nat. Chem. Bio. Michael A. Metrick 

II, Alessia Santambrogio (A. S.), Michele Vendruscolo and I conceived the project and wrote 

the article. Tau variant synthesis and kinetics experiments were done by A. S. and initial 

docking work was carried out by Z. Faidon Brotzakis. I carried out the rest of the computational 

work, analysis, Aß42 kinetics and fibril binding experiments. Rebecca C. Gregory produced 

the Aß42. 
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6. Future directions 

 

“You cannot plan the future. Only presumptuous fools plan. The wise man steers.” 
– Sir Terry Pratchett 

 

6.1. Impact and developments 

 

The future of therapeutics for neurodegeneration appears likely to consist of antibodies 

targeting amyloid in some manner in the near term and may be augmented with approaches 

such as those employed here in the mid-term. Looking any further beyond that is challenging 

however, and the methods used then will likely be determined by what progress can be made 

in understanding the steps in disease pathology. Given the rising star of CRISPR-Cas based 

systems, some limited genetic interventions to bolster the body’s natural homeostasis systems 

may become available, given how effective such genetic interventions have already been 

shown to be in addressing other disease areas and preventing protein aggregation in simple 

model organisms16,222. Such treatments would face the same sorts of BBB penetrance and 

inflammatory roadblocks as current antibody treatments do, though their effect would 

presumably be significantly greater and inflammatory responses could be reduced by moving 

away from viral capsid delivery systems223. However this remains only a possibility on the 

horizon at present, and likely an extremely expensive one224. 

 

The work here was heavily geared towards optimising a single approach to tackling this disease 

class that could provide benefits to patients in the short term at lower expense than current 

methods. Hopefully this will contribute to the development of diagnostics and therapeutics that 
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can enable early detection and delay onset of disease, and in so doing give patients more quality 

years of life. As outlined in the following sections the work described has influenced various 

projects in academia and industry. There is of course significantly more work to be done before 

any of this becomes something that can provide tangible benefits to patients. Nonetheless, it 

hopefully represents a step on the long road to combating this formerly intractable set of 

conditions. 

 

6.1.1. Iterative Learning 

 

The iterative learning project has begun a more concerted effort within the Vendruscolo 

research group to applying machine learning to the problem of preventing protein misfolding. 

In many cases this work has outgrown what has been shown here. This includes the application 

of novel and improved ML architectures, ‘deep docking’ to accelerate physics based docking 

approaches with ML197, selective docking to minimise off target binding, and development of 

learnable pharmacophore models. One particularly promising use case is based on AlphaFold, 

which produces contact maps that can be used to develop ligand binding models based on graph 

transformers225,226.  

 

A crucial missing piece of the work outlined in this thesis is the lack of comprehensive in vivo 

evidence of effectiveness, which is being addressed in collaboration with the Biomedical 

Research Foundation of the Academy of Athens who will be testing a number of the αS 

aggregation inhibitors in mouse models. Additionally, the Biomedical Sciences Research 

Centre in Vari will be testing a number of the tau aggregation inhibitors in Drosophila models. 

A very recent result came from a collaboration with the Aigbirhio group (Wolfson Brain 

Imaging Centre, Cambridge) involving the use of I3.08 and I4.05 as potential positron emission 

tomography (PET) tracers for αS fibrils in biological samples. An effective PET tracer binds 

to its target, in this case αS aggregates, allowing high resolution imaging in patients227. The 

Aigbirhio group began trialling the molecules’ suitability for this purpose using fluorescence-

based methods in mouse tissue expressing human A53T αS, a mutation known to accelerate 

PD. This shows promising colocalisation between the intrinsic fluorescence of I3.08 and I4.05, 

when bound to fibrils, and a GFP labelled anti-αS pSer129 antibody (Figure 6.1). The 

Aigbirhio group reported that this experiment needs optimisation as they believe the secondary 

anti-mouse antibody is staining structures which are not aggregate-like. This means it may be 
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binding off targets as well as the anti-αS primary antibody (bound to αS fibrils). The antibody 

staining will therefore require tuning, or else replacement of the secondary antibody with a 

more specific one. As the pSer129 primary antibody is somewhat specific for phosphorylated 

αS it may also be missing aggregates which are not phosphorylated. This experiment therefore 

gives a rough indication that the molecules are functioning as hoped in tissue, which will 

require further validation. The Aigbirhio group are hopeful about the potential of these 

molecules as tracers, but experiments measuring blood brain barrier penetrance will be the 

deciding factor on how far they progress.  

Figure 6.1. Preliminary data showing staining of mouse brain expressing human A53T αS. The secondary 

antibody is overstaining in this example and requires optimisation or replacement. Intrinsic fluorescence of 

(A) I4.05 and (B) I3.08 upon fibril binding (yellow, first column), and a GFP labelled pSer129 anti-αS antibody 

(red, second column) are shown. Colocalisation of each molecule and the GFP labelled antibody is shown in the 

third column. I4.05 has qualitatively greater coverage than I3.08, matching their relative binding efficacies. The 

scale bar is 45 µm. Carried out by Yanyan Zhao.  
 

From these experiments I will discover how well the in vitro assays can predict efficacy in 

vivo, a notorious difficulty for most drug and diagnostic programs but especially for those 

targeting protein misfolding228. While the optimisation methods work in principle, a predictive 

assay is key, and that is something that ML is not yet able to help us identify given the paucity 

of publicly available data on this topic. Relating in vitro assay results to efficacy in animal 

models, and then relating animal model results to human patients, is a uniquely challenging 

task in the field of neurodegeneration. Indeed, relating effectiveness in animal models to human 

patients has proved problematic for trials such as those involved in aducanumab’s development 

due to animal models displaying very different responses to gene mutations and 
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overexpressions than human patients appear to229. Utilising these relatively poor models means 

the difficulties of designing experiments with good predictive power for outcomes in human 

patients remain considerable, but these models are nonetheless essential. As our understanding 

develops, improved models of disease will be invaluable in improving treatments. 

 

6.1.2. Exploration and exploitation via generative modelling 

 

The generative models employed here were state of the art at the time of writing, but represent 

two computational approaches out of many. Alternatives include diffusional modelling, 

currently the most novel technique for molecule generation. This approach can create novel 

ligands within their binding pockets, simultaneously generating the pocket if desired230. This 

approach has yielded some promising results against αS already within the Vendruscolo group, 

something that will hopefully be expanded to other protein misfolding systems.  

 

Generative modelling in combination with effective QSAR models are likely key to vastly 

reducing the resource cost of high throughput screens by carrying out the majority of the work 

in silico. A pitfall of the approaches used here is that the QSAR models were not trained on 

enough data to give a very accurate prediction of efficacy, especially in areas of the chemical 

outside the main chemotypes in the training data. While this level of accuracy was still effective 

for in silico library screening, this made effective molecule generation challenging, given that 

any poor structural predictions by the QSAR models would be amplified by rounds of 

reinforcement learning in the case of the GraphINVENT model. Nonetheless, we were able to 

generate molecules in the same region of the chemical space as the more potent leads, and the 

QSAR models identified one effective molecule from among the set of available training 

compounds for the generative model. As such some useful information was learned. This 

approach would be more powerful with the larger training sets, showing the need for greater 

data sharing in academia and industry, or at least better curation of data within organisations 

for use with these methods.  

 

6.1.3. Developing oligomer detection methods 

 

Nanopore detection methods provide ways of testing the effectiveness of therapies against the 

key pathogenic agent in protein aggregation, the smaller oligomers. If this approach could be 
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upscaled in the manner it has been for nanopore DNA sequencing, this could provide a high 

throughout oligomer detection method, something sorely lacking from the field currently. It 

should be noted that high throughout nanopore methods currently rely on protein nanopores 

embedded in membranes which cannot be tuned in terms of size the way solid state nanopores 

can be231. Solid state nanopores, though tuneable, have not yet been upscaled although this may 

become feasible in the future232. Similarly, there is potential to engineer protein pores to create 

larger pore diameters and tune diameter by design. Solid state nanopores are currently at the 

forefront of state of the art research into protein sequencing, which has some bearing on the 

task of oligomer detection233,234. Each nanopore type therefore has its strengths. Weaknesses 

may be addressed by future advances, so it remains to be seen which of the two types come to 

dominate over the other in the area of protein characterisation. The requirement for DNA tags 

currently restricts this approach to in vitro experiments and model organisms where artificial 

amino acids can be introduced. This would already be a significant boost to early-stage 

research, which currently rely on proxy measurements followed by laborious validation assays 

to measure actual oligomer populations in the presence of a small number of lead candidate 

inhibitors.  

 

6.1.4. A common mechanism? 

 

Expanding this approach into other disease areas carries the assumption that similar 

mechanisms are occurring in other diseases featuring misfolded aggregating proteins. This 

assumption is contentious, but reasonably well established for many conditions such as tau in 

AD, the other main case study besides αS described here. Efforts are being made to target 

similar scenarios elsewhere, using the same strategy of blocking production of toxic aggregates 

and removing inert aggregates as burdens on cellular function. IAPP aggregates were 

tentatively addressed here, as a likely pathogenic agent in beta islet cell death. Similarly, other 

proteins susceptible to aggregation such as FUS, TDP-43, medin, and others could be addressed 

in this way. Time will tell whether the approach of blocking oligomer formation and removal 

of aggregates will be useful only in specific scenarios, or in a more general sense. 

 

It seems most likely at present that misfolding diseases are caused by failures in the protein 

homeostasis systems as the body ages. Stresses from sources such as reactive oxygen species 

and inflammation accumulate, impairing these systems, which partially explains the sporadic 
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and varied phenotypes of disease as each case is therefore unique and largely determined by 

environmental factors, albeit with influence from genetics. Addressing the disease at its 

‘source’ may involve repairing a system consisting of many modules, each of which could be 

functioning at a different level for each patient. This may require tailored interventions, a 

treatment paradigm termed ‘personalised medicine’235. However, identification of particular 

nodes of vulnerability and strengthening them may be key to providing a permanent solution 

in a more pan-patient manner. Such interventions would however require better knowledge of 

the systems in question which are extremely complex, and could potentially require genetic 

treatments which are currently out of clinical reach but may prove pivotal in the coming 

decades.  

 

6.2. A more general outlook 

 

While the field of machine learning certainly moves the fastest, experimental developments in 

the area of protein misfolding are also appearing at a high rate. The most interesting recent 

development is the discovery that tau protein fibrils may convert between different structural 

polymorphs as the aggregation proceeds212. If this occurs in patient brains this adds an 

additional layer of complexity to the problem of targeting fibrils. Rather than a static target 

there is an ensemble of sequentially formed structures. Whether other misfolding proteins also 

follow this behaviour remains to be seen and is the subject of current work. If this behaviour is 

indeed common, it may be a better approach to target structures earlier in this polymorph 

maturation cascade or develop inhibitors that can promiscuously target any of the on-pathway 

polymorphs, rather than the dominant final species, as I have done in this work for αS and tau.  

 

More generally this demonstrates the need to update our assumptions about the mechanisms of 

protein misfolding as soon as this information becomes available and to alter our approaches 

accordingly. This makes neurodegeneration a challenging moving target, where assays may be 

rendered obsolete as new information becomes available, and shows the importance of 

avoiding sunken cost fallacies that waste resources and time. This issue arises from the effort 

to prevent a disease without full understanding of it, entailing inevitable, but necessary attrition. 

For example, it was previously considered of minimal importance to replicate the exact 

structures formed within patient brains. As long as the protein aggregated, and fibrils were 

formed the assay was considered a viable model of the aggregation. This was in part due to the 
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inability to ascertain the fibril structure with good accuracy, something that has been addressed 

with the development of cryo-EM techniques for this task. With high trial attrition over the 

past few decades, increasing emphasis has been placed on directly recapitulating the disease 

process and the associated structures that are formed. Whether it is possible to achieve this, in 

vitro, in a way that can be converted to a high throughput assay is not known. The assay 

reported for tau was the only condition found in that study capable of eventually recapitulating 

the dominant tau fibril polymorph observed in the latter stages of Alzheimer’s disease. It uses 

an extremely high protein concentration of tau (6 mg/ml), rendering it effectively useless for 

screening unless tau production could be vastly upscaled. As is always the case, some degree 

of compromise between accurate modelling and practicality must be made, but not in such a 

way that the correlation between the assay and disease is reduced to an insignificant level. It 

may be possible to recreate high local concentration conditions via LLPS, although this 

introduces further complications due to the need for crowding agents which add questions 

about physiological relevance. Alternatively, a less resource costly assay could be developed 

that recreates an important polymorph intermediate on the maturation pathway, which exhibits 

benefits in animal models when targeted. Such compromises are especially necessary in 

neurodegeneration research, where the cost of replicating disease conditions faithfully often 

renders drug screening impractical. This also means alleviating the experimental resources 

required with computational techniques is especially important in this field. 

 

Providing therapies at the correct point in time is also a key issue, and what has not been 

touched upon as much in this thesis is diagnostics. To counter the diseases effectively we need 

to detect them prior to symptoms appearing, at which point irreversible neuronal death has 

already occurred. Current diagnostics vary greatly in their methods and have differing 

predictive abilities given the sporadic nature of most neurodegenerative disease cases. These 

include the RT-QuIC assay already mentioned, which has had some success diagnosing 

Alzheimer’s disease and Parkinson’s disease via detection of aggregates in the CSF. This is 

not an especially easy test to distribute widely as CSF extraction generally requires a day in 

the hospital. Other methods include machine learning medical smart watch data, which in one 

trial led to accurate predictions of Parkinson’s disease 7 years in advance of symptoms 

appearing. Furthermore, blood measurements of biomarkers such as TNFα and neurofilament 

light chain, which are released into the extracellular space by dying neurons, can provide 

evidence of neuronal damage, though not of its cause236.  
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The progress described may seem rather small compared to that in other disease areas, but set 

against a backdrop of decades without a single positive clinical trial it is a significant 

improvement. As such it is an exciting time for neurodegenerative research, after decades of 

bleak attrition it seems headway is finally being made in supplying both diagnostics and 

treatments. Some may argue that the goal posts have simply been moved, and that the FDA has 

become increasingly lenient to companies attempting to deliver treatments against 

neurodegeneration237. This does however miss the point that until relatively recently there was 

little consensus on how exactly to even quantify an effective drug in this area. Most diseases 

develop over comparatively short spans of time and treatment outcomes are clearer cut. 

Neurodegeneration is an entirely different paradigm that requires altered expectations of 

outcomes. While it is of course unacceptable to deliver drugs without significant efficacy, it is 

important to acknowledge that we will likely only observe small perturbations in a clinical trial 

spanning a couple of years when trying to treat a disease spanning decades, especially given 

the extreme heterogeneity of pathologies observed. Relatively small perturbations delivered 

early on could have a significant effect over time, and encouraging pharmaceutical companies 

to keep working on these diseases is essential if any progress is to be made. The growing 

understanding of regulatory bodies that this disease area is uniquely challenging and requires 

a different approach to other diseases is both welcome and essential to further progress in this 

area. This project has aimed to demonstrate the development and application of tools to 

accelerate the speed with which we can make this progress, through both computational and 

experimental techniques. 

 

6.3. Materials and methods 

 

6.3.1. Staining of A53T expressing mouse brain tissue 

 

Brain tissue slides were washed in cold acetone and then twice again in buffer (10mM PBS, 

0.1% Triton X100). The slides were then blocked with 5% w/v (BSA) in buffer (10mM PBS, 

0.1% Triton X100) for 1 h at RT. The excess BSA solution was removed and the primary 

antibody (pSer129, 1 mL, 1:1000 fold diluted) was added to each tissue slice. The slides were 

incubated overnight at 4°C. Slides were washed twice in buffer (10mM PBS, 0.1% Triton 

X100). Secondary antibody (Alexafluor555/647 donkey anti-rabbit, 1:1000 fold diluted) was 

added as well as each molecule at 20 uM in 1% DMSO. The slides were then incubated at RT 
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in a foil-covered tray for 1 h. Slides were washed twice in buffer (10mM PBS, 0.1% Triton 

X100). Counterstaining with DAPI (Sigma-Aldrich, MBD0015; 1:1000 fold diluted) was 

carried out for 15 minutes. 1-2 drops (depending on how much of the slide is covered by brain 

slices) of FluorSave (or a mountant with DAPI) were then added before addition of a coverslip 

and curing overnight at 4°C. Samples were imaged with a Leica CTR 6000.  
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Appendix 

A. Targeting Parkinson’s disease with iterative learning 

 

i. Docking and Machine Learning Implementation 

 

A full description of the initial docking approaches can be found in the previous work64, using 

AutoDock Vina90 and FRED91 docking software, but is also explained in overview here. As 

described in the main text, the binding site encompassing residues His50−Lys58 and 

Thr72−Val77 on PDB 6CU798 was selected due to its propensity to form a pocket according to 

Fpocket92 software and its simultaneous mid to low solubility according to CamSol96 (Figure 

2.2). Additionally, a key histidine residue in this site was predicted to protonate below the pH 

value where αS more readily aggregates (pH 5.8).  A binding box was selected that had size 12 

Å by 12 Å by 9 Å centred at 10.00 Å, 9.89 Å, 11.52 Å on the 6CU7 PDB, encompassing the 

site of interest. The target protein was left rigid, while the ligand was flexible, able to translate 

and rotate (including rotation of internal bonds). We prepared (added hydrogens) the target 

protein using Autodock tools. To increase the accuracy of the docking energy estimate, the 

exhaustiveness was increased compared to the default value of 8, to 20. 5 poses were output, 

and the best pose binding energy was selected as the binding energy label for that ligand. The 

choice of rigid target was made in order to decrease the computational cost of the high 

throughput screen of the 2 million compounds in phase 1.  

 

Inspired by the increasing usage of consensus scoring, i.e combining multiple docking energy 

estimates by different docking programs, we performed docking of the 100,000 best binding 

molecules from AutoDock Vina, using FRED in phase 2. For each of the top 100,000 best 
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AutoDock Vina ligands, we combine the ligand with the target into a single .pdb file, and from 

that supply the information of the ligand to Openye’s Spruce module to prepare an .oedu file 

that contains the grid position of the binding site. Then, the compound is bound to the target 

site and a single best pose and binding energy is output, that constitutes the FRED binding 

energy label for this compound. The top 10,000 are then clustered to obtain 79 representative 

centroids for testing. The pipeline is modular, and it is possible to incorporate any type of 

docking software the user might choose. In this study we have used AutoDock Vina, which is 

a publicly available software that is efficient at scale, and FRED. AutoDock Vina is relatively 

computationally efficient at scale, and we chose to use FRED since the top scoring pose 

prediction of FRED has been shown238 to be able predict within 2Å of the native pose in 70% 

of examples tested. However, alternative open-source or free for academic use docking 

software such as rDock, LeDock and others can be used instead of FRED, with relatively little 

difference in performance as shown previously239. The performance of AutoDock Vina is 

comparable with other open-source software. 

 

The code for testing the ML models on aggregation or docking data are available at 

https://github.com/rohorne07/Iterate. We initially tested the machine learning strategy on 

docking data (best R2 ~0.6-0.7) before moving to experimental aggregation data (best R2 ~0.2-

0.3) to get an impression of the feasibility of the project, given the larger data sets available for 

the docking scores (Figure A.4 and Figure A.5). The docking scores were calculated for the 

‘evaluation set’, the in silico library that was used for iterative experimental screening in the 

main text. Both AutoDock Vina and FRED simulations were carried out on the evaluation set, 

giving binding scores for each molecule against the αS 6CU7 fibril structure pocket. The 

compound encoder was implemented as in Hie et al.81  to obtain representations of all the 

molecules. The next sections briefly summarise the functioning and output of the prediction 

module. 

 

Prediction module. The prediction module consisted of a shallow model designed to be 

appropriate for small data sets and easily applicable on standard hardware available for most 

laboratory workers over a short timescale. As a first line test Gaussian process regression 

(GPR) was employed alone, following Hie et al.81 with training and testing carried out with 

cross validation on 4000 molecules from within the evaluation set.  The metric used to evaluate 

performance in this case was the R2 score or coefficient of determination. This score measures 

the goodness of fit between a set of predictions and the ground truth values. This score ranges 

https://github.com/rohorne07/Iterate
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from 1, in a perfect fit, to arbitrarily negative values as a fit becomes worse, and is 0 when the 

predictions are equivalent to the expectation of the ground truth values of the training set240. 

This was compared with a naïve Bayes, which failed to score above 0 for any training set size 

on both docking and aggregation data. 

 

The GPR kernel was initially the same as that utilised by Hie et al.81 , i.e. a combination of a 

constant kernel and a radial basis function (RBF). Using these initial settings, R2 scores of ~0.2 

were obtained for the docking data. Hyperparameter optimisation yielded only marginal 

improvements in this performance. A selection of other kernels was tested, and all models were 

optimised via hyperparameter tuning before implementation, but most did not offer an 

improvement in performance. The Matérn kernel, a generalisation of the RBF with an extra 

parameter controlling the smoothness of the function, did however show a marginal 

improvement. These flexible functions are the most likely to be able to fit shallow energy 

minima problems such as those encountered here. The R2 scores were still low, especially for 

smaller training sets as would be available from experiment, but represented a viable starting 

point. 

 

At this point a 2-layer model was applied. This reflected the strategy used by Hie et al. 81 in 

fitting a Gaussian process regressor (GPR) to the residuals of another model, in that case a 

multi-layer perceptron (MLP). An MLP did not show a dramatic improvement over the GPR 

alone both in that work or when tested with the docking scores here, however a random forest 

regressor (RFR) with stacked GPR did show a further improvement both in terms of the R2 

(~0.6-0.7) and the quality of the molecule sets predicted during the simulation, as can be seen 

in Figure A.5. 

 

This set up gave improved results in both R2 and hit rate, while retaining an easy to implement 

and efficient model. The average Pearson’s coefficient of correlation ranged between 0.25 and 

0.3 for both the coupled (GPR+RFR) and uncoupled models (RFR alone), which while modest 

matched the values obtained by Hie et al. during their testing. RFR was more demanding 

computationally, but given the small size of the experimental training sets in this scenario this 

was not a hindrance.  

 

A simulation was created to mimic how the experimental cycle of testing might work using the 

docking scores as a surrogate for aggregation data. In the simulation, a random subset of 100 
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molecules was selected and the model trained on these molecules and their binding scores. The 

resultant model was then used to predict binding scores for the remaining molecules and rank 

them using a combination of the predicted value and the associated uncertainty value. The top 

100 were then selected and their binding scores added to the training set as would occur in the 

experimental scenario, and this process was repeated 10 times. The ideal scenario would be 

that molecule sets with improved mean binding energy relative to the mean of the test set would 

be selected, and that selections would improve as the training set expanded, and this is what is 

shown in Figure A.4 (though improvement is not drastic as further data is added, possibly due 

to the relative ease with which strong dockers are selected). 

 

Different uncertainty penalties were tested during this process. We found that a low uncertainty 

penalty produced better results by removing the most overconfident predictions without 

placing too many limitations on the model. At the early stages most predictions with low 

uncertainty were those with predicted binding scores close to the mean of the training set. An 

excessive uncertainty penalty during these stages would cause the model to only predict 

molecules that it was confident in, which were also likely to be mild.  

 

The same process was utilised using different parts of the molecular feature set (the latent 

vector consists of a tree vector representation of clusters within a molecule, plus a graph 

representation of the molecule), and it was found that GPR performance metrics were better 

when using the molecular graph alone compared with using the entire representation. In 

general, it is to be expected that fitting fewer features to a predicted value is easier for a 

regressor to achieve and so higher scores are obtained. However, a better average R2 score 

across the data set does not necessarily lead to a better result in terms of the actual molecules 

picked, and we found using the full representation led to more hits being identified (Figure 

A.4).   

 

A snapshot of the results of this testing is shown in Figures A.4 and A.5. Figure A.4 

demonstrates 2 points: the performance was slightly improved using the Matérn kernel in place 

of the RBF kernel both in terms of overall hit selection and performance improvement with 

increasing training set size, and the full-length molecular representation gave a significant 

boost in terms of number of hits selected vs the truncated representation, despite lower R2 

scores. These results also provided some evidence that Gaussian process learning might work 

reasonably effectively even in this data sparse scenario albeit at a modest level. It was expected 
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that fitting experimental data would prove more challenging, however, and so a boost in 

performance was sought for that would not compromise the simplicity of the model, through 

use of the coupled RFR-GPR model. Correlation values of 0.6-0.7 were obtained using this set 

up on docking energies and a large portion of the data set (4000 molecules), and this fell to 

between 0.2 and 0.3 for the aggregation data (Figure A.1), which while low was encouraging 

given the much smaller data set and noisier data. 

 

Table A.1. Parameters used in QSAR model optimisation. (A) Models such as LR and MLP were trialled with 

their default parameters either alone or in conjunction with a GP, but showed poor performance so were not further 

investigated. (B) GP and RF models were the best performing and so were subjected to hyperparameter 

optimisation via grid search cross validation using the R2 score as the optimisation metric. The best performing 

parameters are shown. The performance of these models is shown in Figure A.1.  
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Table A.2. Clinical and neuropathological characteristics of synucleinopathy and non-synucleinopathy brain 

tissue samples used in the study.  
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Figure A.1. MAE, RMSE and R2 for different models trained on the latent features of the variational 
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autoencoder and the aggregation data. The y-axis reports the respective scoring metric, and the x-axis the 

number of molecules included in the training set, of a total sample of 360 molecules. In each case, the performance 

of the model in isolation is shown in the left column, while the performance of the model when used in tandem 

with the GPR fitted to the residuals of the first model is shown in the right column. The labels are as follows: LR 

= linear regressor, GP = Gaussian process, MLP = multilayer perceptron, RFR = random forest regressor. Model 

parameters were chosen using a grid search of possible parameters while cross validating on 5 stratified K folds 

of the aggregation data, and selecting the parameters that gave the best performance in terms of R2 score. The 

parameters for the models shown here are displayed in Table A.1.  
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Figure A.2. Summary of the molecules described in this work. (A) Number of molecules derived from 1 of 

the 4 docking hits (48, 52, 68, 69) within the evaluation set (see Figure 1). There were more structures derived 

from molecules 69 and 48 compared with molecules 68 and 52. (B) Normalised half time of aggregation (t1/2) for 
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the 25 molecules in the close similarity docking set (25 µM), i.e. those closely related (Tanimoto similarity > 0.5) 

to the 4 molecules in the docking set (labelled as 48.0, 52.0, 68.0 and 69.0 on the x-axis). Leads were defined as 

molecules that more than double t1/2, as indicated by the horizontal line that marks 2 times the half time (y-axis) 

in the absence of the molecules. Some derivatives of molecules 48, 52 and 69 showed good potency, in particular 

48.3, 52.1 and 69.2, but these effects were outstripped by future leads such as I4.05 which yielded the same effects 

at 50 fold lower concentration. (C) Flow chart of leads (+) and negatives (-) in the project starting from the close 

search (CS), moving to the loose search (LS) then iterations 1, 2, 3 and 4 (I1, I2, I3, I4). Each branch is labelled 

with the molecule source (e.g. parent 48 = p48) whether it was a lead or a negative, and the number of molecules 

in the branch. Attrition reached its highest point at the loose search before gradually improving with each 

subsequent iteration. Iteration 4 is included but not directly comparable as a model was trained on the lower dose 

inhibition for this step. (D) Structures of the most potent leads at each stage, which flatlined aggregation at 25 

µM, all of which were derived from p69. The structures gradually converged as the core pyrazolidine-3,5-dione 

structure and RHS aromatic ring were largely retained (with some exceptions for ring expanded derivatives in 

iteration 3) with addition of electron withdrawing groups to the benzene ring. The LHS was altered more 

significantly, replacing the parent bicyclic system with substituted furans, which were further elaborated in 

iteration 4 with an additional benzoic acid group.  
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Figure A.3. Distributions of the data sets used. (A) AutoDock Vina binding energies (kcal mol-1) for the 

evaluation set (~9000 molecules). The values are narrowly distributed between -6 and -10 kcal mol-1 as the data 

set consists of 4 key structures predicted to have good binding. Normalised half times of aggregation at (B) 3.12 

µM and (C) 25 µM for the whole training set (~400 molecules), including docking molecules and initial similarity 

searches and after all iterations had been added. The high dose was used for training in iterations 1-3 and the low 

dose for iteration 4. 
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Figure A.4. A simulation of the experimental scenario using docking energies as a proxy for aggregation 

experiments. (A) Starting from a single random sample, the GP with RBF kernel was tested. AutoDock Vina 

binding energies in kcal mol-1 are plotted against iteration number. Each boxplot visualises the distribution of 

binding scores for the top 100 molecules predicted by the algorithm at each iteration. The dotted line indicates the 

mean binding energy of the test set. (B) Same process as in panel A, but employing the GP with a Matérn Kernel. 

(C) Aggregated average number of hits out of the top 100 predicted molecules from 10 different random starts of 

the process shown in panels A and B for the RBF kernel (Kernel 1, in blue) and the Matérn kernel (Kernel 2, in 

green). A hit was taken as a molecule falling in the lower quartile of the test set distribution (<-9 kcal/mol). Results 

were obtained using the half-length representation of the molecules. (D) Same process as described in panel C, 

but employing the full-length molecule representation.  
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Figure A.5. Performance of the RFR method coupled to the Matérn kernel compared to the Matérn kernel 

alone. (A) R2 score with increasing training set size (up to 4000) for both models, using the full-length 

representation. On the left is the GP with Matérn kernel alone, and on the right is the GP with Matérn kernel + 

RFR. Cross validation with 10 random shuffle splits and 20% of the data randomly selected as a validation set. 

(B) Aggregated average hit data from 10 different random starts of the experimental simulation for the iterative 

approach, starting from 100 randomly selected molecules and successively adding the actual docking data of the 

predicted top 100 hits to the training set with each iteration. GP with Matérn kernel alone (Kernel 2 = Matérn) vs 

GP with Matérn kernel + RFR. (C) Average Pearson’s correlation coefficient (pcorr) between the predicted 

binding score values and the real scores at each iteration.  
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Figure A.6. Amplification rate and half time of aggregation of αS in the presence of the 4 molecules in the 

docking set. (A) Relative rate of fibril amplification of αS in the presence of the 4 docking molecules (labelled 

as 48, 52, 68 and 69) in the docking set; the kinetic traces are normalised to the DMSO control. (B) Half times of 

aggregation derived from the same experiment. (C) Relative rate of fibril elongation normalised to the DMSO 

control. The amplification rate (A) and half time of aggregation (B) were tested in the machine learning method 

as parameters to describe the potency of a molecule. The amplification rate tends to be more affected by 

perturbations to the early slope of the exponential phase can have large effects on the derived rate value. The half 

time, although a simpler measure, is more robust and so was chosen for the machine learning approach. Data 

obtained from reference64.  
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Figure A.7. Aggregation curves (top) and oligomer flux simulations (bottom) for the most potent 

compounds from all of the iterations. The kinetic traces show a 10 µM solution of αS in the presence of 25 nM 

seeds at pH 4.8, 37 oC in the presence of molecules at 3.12 µM (blue), 6.25 µM (teal), 12.5 µM (orange) and 25 

µM (red) versus 1% DMSO alone (dark purple), with endpoints normalised to the αS monomer concentration 

detected via the Pierce™ BCA Protein Assay at the end of the experiment. Oligomer simulations were carried out 

only for the lower 2 concentrations, as full aggregation curves were only consistently obtained for all molecules 

in the secondary nucleation assay at these concentrations.  
 

 

 

 

 

 

 

 

 

 



Appendix 

135 

 

 



Appendix 

136 

 

Figure A.8. Concentration dependence of the reaction rate and corresponding 50% kinetic inhibitory 

concentration (KIC50) values for the most potent compounds. The approximate normalised rate of reaction 

(taken as 1/t1/2) is shown on the left for each molecule at each concentration for which a half time could be 

obtained. For molecules that completely inhibited the aggregation process on the timescale of the experiment, the 

t1/2 in the presence of the highest concentration of molecule (25 µM) was taken to be the length of the experiment. 

The approximate rates are fitted using an [Inhibitor] vs. normalised response Hill slope. The KIC50 values are 

shown on the right with the 95% confidence interval.  
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Figure A.9. Lipid induced aggregation curves in the presence of the early leads from the project. The kinetic 

traces show a 20 µM solution of αS in the presence of 100 µM DMPS vesicles (monomer equivalent) at pH 6.5, 

30 oC in the presence of molecules at 6.25 µM (blue), 12.5 µM (teal), 25 µM (orange) and Anle-138b at 25 µM 

(red circles) versus 1% DMSO alone (dark purple), with endpoints normalised to the αS monomer concentration 

detected via the Pierce™ BCA Protein Assay at the end of the experiment.  
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Figure A.10. PCA, t-SNE and UMAP visualisations of the compound feature space using uncertainty. (A) 

From top to bottom: PCA, t-SNE and UMAP visualisations of the compound space indicating which areas of the 

chemical space have been explored (orange crosses) and which have not (blue circles). (B) GPR assigned lower 

uncertainty (blue) to regions of the chemical space near to the observed data and high uncertainty (red) to areas 

which were further away. (C) The lower uncertainty compounds were prioritised (dark blue) during acquirement 

ranking. 
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Figure A.11. Analysis of the structural changes in the compound optimisation. (A) UMAP visualisation of 

the compound space indicating how the positioning of each new molecule subset (orange crosses) changed at each 

stage of the project as well as how the chemical landscape was split between the parent molecules (different 

colours) The locations of the parent molecules are also indicated in the ‘Docking’ pane (red circles). (B) Average 

Tanimoto similarity of the lead molecules to their respective parents at each stage of the project. At iterations 1, 

2 and 3 all of the leads were derived from molecule 69, albeit with lower similarity than any of the previous stages. 

Molecule 68 failed to produce any leads. 
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Figure A.12. Transmission electron microscopy images of the fibrils at the end of the secondary nucleation 

assay. Two representative images are shown, the scale bar is 100 nm. 
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B. Exploration and exploitation approaches based on generative 

learning 

 

 

Number of estimators 1800 

Minimum samples split 5 

Minimum samples at a leaf node 1 

Maximum depth 70 

Bootstrap False 
Table B.1. RF parameters used during genetic algorithm selection 

 

Maximum number of features in subset 5 

No. of individuals is starting population 100 

Probability of crossover 0.5 

Probability of mutation 0.2 

Number of generations 50 
Table B.2. Genetic algorithm parameters. Computational work was carried out by Mhd Hussein Murtada under 

my supervision. 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

142 

 

Figure B.1. Distribution of normalised aggregation half times in the αS aggregation inhibitor data set. The data 

set of known aggregation inhibitors was unbalanced towards having many more inactive than active compounds. 
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Figure B.2. ROC AUC curve for the SMILES embedding model initially appeared promising with an AUC of 

0.9. Computational work was carried out by Mhd Hussein Murtada under my supervision. 
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Figure B.3. Structures generated by the final pipeline and their respective calculated CNS MPO scores. 

Computational work was carried out by Mhd Hussein Murtada under my supervision. 
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Figure B.4. Aggregation data from the new leads generated via the exploitation pipeline. (A) Normalised half 

times for a 10 µM solution of αS with 25 nM seeds at pH 4.8, 37°C in the presence of CLM generated molecules 

at 3.12 µM. The horizontal dotted line indicates the normalised half time of a 1% DMSO negative control. Anle-

138b at 25 µM is also shown for comparison. (B) Structures of the CLM generated molecules.  
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C. Developing nanopore oligomer detection methods 

 

i. PAGE gel 

 

Polyacrylamide gels (10% v/v, with 0.5X, pH 8, Tris-Borate-EDTA and 11 mM MgCl2) were 

hand-cast on a PAGE loading gel setup. Details on the PAGE gels recipes can be found in 

Table C.1. Once all the gel mixture additions (Table C.1) were mixed together, 1% (w/v) APS 

and 0.07% (w/v) TEMED were added and the mixture was immediately vortexed and poured 

in between two PAGE glass slides using a Pasteur pipette. The gel comb was promptly inserted 

and the gel was left to polymerise for at least 45 minutes and a maximum of 1 hour. Gels were 

run for 120 minutes at 100 V in a running buffer containing 0.5x TBE and 11 mM MgCl2. 

DNA was stained using GelRed® (Biotium) for 15 minutes under constant shaking. Imaging 

was performed using a  Gel-DocIt imaging system by UPV using Visionworks software under 

UV excitation light and exposure times varying from 5 to 10 seconds. To check for the binding 

of the copper-free click chemistry reaction between DBCO-DNA and azide-labelled αS and 

secondarily to optimise the reaction conditions, DBCO-DNA was incubated in a 1:1 ratio 

(monomer : DBCO) for 1h, 3h, and overnight (Figure 4.6). 

Gel mixture addition Amount 

[mL] 

Final concentration 

Acrylamide/bis-acrylamide, 30 % solution 5 10 % 

10x Tris-Borate-EDTA (TBE) 0.75 0.5x 

0.5 M MgCl2 0.33 11 mM MgCl2 

MilliQ water 8.92  

Total volume 15  

   

Polymerisation initiators   

10 % (w/v) ammonium persulfate (APS) 0.15 0.1 % 

N,N,N’,N’-Tetramethylethylendiamine 

(TEMED) 

0.01 0.07 % 

Table C.1: Recipe for a 10% PAGE gel. 
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Figure C.1. Methods to characterise oligomers include (A) confocal two-colour coincidence detection (TCCD)168, 

(B) fluorescence correlation spectroscopy (FCS) measurements169, (C) single molecule total internal reflection 

fluorescence (TIRF) imaging170, (D) single-molecule spectrally-resolved points accumulation for imaging in 

nanoscale topography (sPAINT)171, (E) atomic force microscopy (AFM)172, and (F) micro free flow 

electrophoresis (µFFE)116. (G) Size exclusion chromatography followed by mass spectrometry or enzyme linked 

immunosorbent assays (SEC/MS or ELISA) provide a bulk method to probing oligomer levels36. (H) 

Additionally, biological nanopores241 have shown to be useful for characterizing protein sizes, as well as lipid 

bilayer-coated179 and chemically-coated tween-20 nanopores181. 
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Figure C.2. LC-MS data for the reaction progress of the azide linking step to N122C-αS. (A) PBS buffer 

control. (B) N122C (1 µM, PBS buffer) after reduction with TCEP to remove dimers, showing a single peak at 

14448 Da. (C) Reduced N122C (1 µM, PBS) after a 2 h incubation with iodoacetamide-PEG3-azide. The labelled 

peak, at 14707 Da, is prominent but residual unlabelled N122C remains. (D) After 3 h almost all of the monomer 

has been labelled. 
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Figure C.3. Monomer-bound DNA observed using PAGE. Column 1 shows 21 bp dsDNA and Column 2 shows 

a mixture of 21 bp dsDNA mixed with a partially converted oligomer and monomer sample. The monomer is 14 

kDa (10 kDa ~ 270 bp), which matches the strongly stained band when added to the 21 bp DNA. The DNA 

retained in the well may be due to aggregates formed in the sample that cannot enter the gel. Gel was run by Sara 

Rocchetti. 
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Figure C.4. Comparison of Duplex and Triplex measurements. The samples that were measured in duplex show 

similar % of nanostructure with protein bound highlighting that monomer interchange is unlikely. The fraction of 

events with an oligomer bound to the DNA barcode; triplexed DMSO (purple) (N= 114, SD=6.62), duplexed 

DMSO light purple (N=54), triplexed I3.08 (orange) (N=90, SD=4.07), duplexed I3.08 (light orange) (N=39). 

Nanopore experiments were carried out by Sarah E. Sandler. 
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Figure C.5. Nanopore traces with and without presence of Anle-138b. (A) Raw current of the nanopore trace with 

Anle-138b shows that upon mixture and measurement in the nanopore after 1 sec, a lot of noise is created. After 

3 min (trace below) the noise level resumes back to normal. The vertical lines represent kick outs to remove 

protein from clogging the pore. (B) Raw current trace without Anle-138b shows similar noise and baseline both 

upon mixture and measurement in the pore and after 3 min of measurement. Nanopore experiments were carried 

out by Sarah E. Sandler. 
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Figure C.6. Cumulative percentage of events with clear barcode and protein bound as measured in 4 M LiCl. The 

number of events with the protein bound remains the same for the stabilised oligomer over the course of the 1 h 

measurement time. N=250 because the original trace was filtered to remove folded or knotted events with 

unreadable barcodes. The error fluctuation represents 1σ deviation. This becomes smaller as the number of events 

increases. The increase in number of events corresponds to measurement time. Nanopore experiments were 

carried out by Sarah E. Sandler. 
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The following replacements are made to create the “1” bits in the barcode portion of the 

nanostructure as previously shown and used in Figure 4.2182. All design work was done by 

Sarah E. Sandler. 

 

First bit 

Replace oligos 26,27,28,29,30,31 and 32 

CTGAAAGCGTAAGAATACGTGGCACAGACAATATTTTTGAATGGCT 

ACATCACTTGTCCTCTTTTGAGGAACAAGTTTTCTTGTCCTGAGTAGA 

AGAACTCAAATCCTCTTTTGAGGAACAAGTTTTCTTGTCTATCGGCCT 

TGCTGGTAATTCCTCTTTTGAGGAACAAGTTTTCTTGTATCCAGAACA 

ATATTACCGCTCCTCTTTTGAGGAACAAGTTTTCTTGTCAGCCATTGC 

AACAGGAAAATCCTCTTTTGAGGAACAAGTTTTCTTGTACGCTCATGG 

AAATACCTACTCCTCTTTTGAGGAACAAGTTTTCTTGTATTTTGACGC 

TCAATCGTCTTCCTCTTTTGAGGAACAAGTTTTCTTGTGAAATGGATT 

ATTTACATTGTCCTCTTTTGAGGAACAAGTTTTCTTGTGCAGATTCAC 

CAGTCACACGTCCTCTTTTGAGGAACAAGTTTTCTTGTACCAGTAATA 

AAAGGGACATTCCTCTTTTGAGGAACAAGTTTTCTTGTTCTGGCCAAC 

AGAGATAGAATCCTCTTTTGAGGAACAAGTTTTCTTGTCCCTTCTGAC 

 

Second bit 

Replace oligos 40,41,42,43,44,45 and 46 

AATATAATCCTGATTGTTTGGATTATACTTCTGAATAATGGAAGGG 

CACTAACAACTCCTCTTTTGAGGAACAAGTTTTCTTGTTAATAGATTA 

GAGCCGTCAATCCTCTTTTGAGGAACAAGTTTTCTTGTTAGATAATAC 

ATTTGAGGATTCCTCTTTTGAGGAACAAGTTTTCTTGTTTAGAAGTAT 

TAGACTTTACTCCTCTTTTGAGGAACAAGTTTTCTTGTAAACAATTCG 

ACAACTCGTATCCTCTTTTGAGGAACAAGTTTTCTTGTTTAAATCCTT 

TGCCCGAACGTCCTCTTTTGAGGAACAAGTTTTCTTGTTTATTAATTT 

TAAAAGTTTGTCCTCTTTTGAGGAACAAGTTTTCTTGTAGTAACATTA 

TCATTTTGCGTCCTCTTTTGAGGAACAAGTTTTCTTGTGAACAAAGAA 

ACCACCAGAATCCTCTTTTGAGGAACAAGTTTTCTTGTGGAGCGGAAT 

TATCATCATATCCTCTTTTGAGGAACAAGTTTTCTTGTTTCCTGATTA 

TCAGATGATGTCCTCTTTTGAGGAACAAGTTTTCTTGTGCAATTCATC 
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Third bit 

Replace oligos 54,55,56,57,58,59 and 60 

TGTAAATGCTGATGCAAATCCAATCGCAAGACAAAGAACGCGAGAA 

TACCTTTTTTTCCTCTTTTGAGGAACAAGTTTTCTTGTAATGGAAACA 

GTACATAAATTCCTCTTTTGAGGAACAAGTTTTCTTGTCAATATATGT 

GAGTGAATAATCCTCTTTTGAGGAACAAGTTTTCTTGTCCTTGCTTCT 

GTAAATCGTCTCCTCTTTTGAGGAACAAGTTTTCTTGTGCTATTAATT 

AATTTTCCCTTCCTCTTTTGAGGAACAAGTTTTCTTGTTAGAATCCTT 

GAAAACATAGTCCTCTTTTGAGGAACAAGTTTTCTTGTCGATAGCTTA 

GATTAAGACGTCCTCTTTTGAGGAACAAGTTTTCTTGTCTGAGAAGAG 

TCAATAGTGATCCTCTTTTGAGGAACAAGTTTTCTTGTATTTATCAAA 

ATCATAGGTCTCCTCTTTTGAGGAACAAGTTTTCTTGTTGAGAGACTA 

CCTTTTTAACTCCTCTTTTGAGGAACAAGTTTTCTTGTCTCCGGCTTA 

GGTTGGGTTATCCTCTTTTGAGGAACAAGTTTTCTTGTTATAACTATA 

 

Fourth bit 

Replace oligos 68,69,70,71,72,73 and 74 

TCATCGAGAACAAGCAAGCCGTTTTTATTTTCATCGTAGGAATCAT 

AGAATATAAATCCTCTTTTGAGGAACAAGTTTTCTTGTGTACCGACAA 

AAGGTAAAGTTCCTCTTTTGAGGAACAAGTTTTCTTGTAATTCTGTCC 

AGACGACGACTCCTCTTTTGAGGAACAAGTTTTCTTGTAATAAACAAC 

ATGTTCAGCTTCCTCTTTTGAGGAACAAGTTTTCTTGTAATGCAGAAC 

GCGCCTGTTTTCCTCTTTTGAGGAACAAGTTTTCTTGTATCAACAATA 

GATAAGTCCTTCCTCTTTTGAGGAACAAGTTTTCTTGTGAACAAGAAA 

AATAATATCCTCCTCTTTTGAGGAACAAGTTTTCTTGTCATCCTAATT 

TACGAGCATGTCCTCTTTTGAGGAACAAGTTTTCTTGTTAGAAACCAA 

TCAATAATCGTCCTCTTTTGAGGAACAAGTTTTCTTGTGCTGTCTTTC 

CTTATCATTCTCCTCTTTTGAGGAACAAGTTTTCTTGTCAAGAACGGG 

TATTAAACCATCCTCTTTTGAGGAACAAGTTTTCTTGTAGTACCGCAC 

 

Fifth bit 

Replace oligos 82,83,84,85,86,87 and 88 
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AGATAGCCGAACAAAGTTACCAGAAGGAAACCGAGGAAACGCAATA 

AAAAATGAAATCCTCTTTTGAGGAACAAGTTTTCTTGTATAGCAGCCT 

TTACAGAGAGTCCTCTTTTGAGGAACAAGTTTTCTTGTAATAACATAA 

AAACAGGGAATCCTCTTTTGAGGAACAAGTTTTCTTGTGCGCATTAGA 

CGGGAGAATTTCCTCTTTTGAGGAACAAGTTTTCTTGTAACTGAACAC 

CCTGAACAAATCCTCTTTTGAGGAACAAGTTTTCTTGTGTCAGAGGGT 

AATTGAGCGCTCCTCTTTTGAGGAACAAGTTTTCTTGTTAATATCAGA 

GAGATAACCCTCCTCTTTTGAGGAACAAGTTTTCTTGTACAAGAATTG 

AGTTAAGCCCTCCTCTTTTGAGGAACAAGTTTTCTTGTAATAATAAGA 

GCAAGAAACATCCTCTTTTGAGGAACAAGTTTTCTTGTATGAAATAGC 

AATAGCTATCTCCTCTTTTGAGGAACAAGTTTTCTTGTTTACCGAAGC 

CCTTTTTAAGTCCTCTTTTGAGGAACAAGTTTTCTTGTAAAAGTAAGC 

 

Table C.2. DNA Dumbbell Bits 

 

 

142 GATGGTTTAATTTCAACTTTAATCATTGTGAATTACCT 

143 

actgactgactgactgactgaTTTATGCGATTTTAAGAACTGGCTCATTATACCAGT

CAGG 

DBCO tcagtcagtcagtcagtcagt*DBCO* 

 

Table C.3. DNA overhang sequences 
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D. Generalising to other misfolded proteins 

Figure D.1. Reported cryo-EM reconstruction of AD derived tau fibrils207 vs second-generation in vitro 

0N3R tau fibrils generated using AD fibrils. (A) Z-axis cross-sections of AD derived fibrils after complete 3D 

refinement. (B) Preliminary z-axis cross-sections of second-generation in vitro 0N3R tau fibrils after first stage 

3D refinement. Scale bar is 50 Å. Cryo-EM was carried out by Alessia Santambrogio and Thomas Löhr.  
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Figure D.2. KIC50 values vs KD values for the 3 ML derived molecules that were fully characterised. Kinetics 

were run by Alessia Santambrogio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

158 

 

 

 

 

Bibliography

 

1. O'Baugh, J., Wilkes, L.M., Luke, S. & George, A. ‘Being positive’: perceptions of 

patients with cancer and their nurses. Journal of Advanced Nursing 44, 262-270 (2003). 

2. Gove, D., Downs, M., Vernooij-Dassen, M. & Small, N. Stigma and GPs’ perceptions 

of dementia. Aging & mental health 20, 391-400 (2016). 

3. De Magalhães, J.P. How ageing processes influence cancer. Nature Reviews Cancer 

13, 357-365 (2013). 

4. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nature Reviews 

Neurology 15, 565-581 (2019). 

5. Sundquist, M., Brudin, L. & Tejler, G. Improved survival in metastatic breast cancer 

1985–2016. The Breast 31, 46-50 (2017). 

6. Baguley, B.C. Multiple drug resistance mechanisms in cancer. Molecular 

biotechnology 46, 308-316 (2010). 

7. Small, D.H. & Cappai, R. Alois Alzheimer and Alzheimer's disease: a centennial 

perspective. Journal of neurochemistry 99, 708-710 (2006). 

8. Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s 

disease. Nature 537, 50-56 (2016). 

9. van Dyck, C.H. et al. Lecanemab in early Alzheimer’s disease. New England Journal 

of Medicine (2022). 

10. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. 

Annu Rev Biochem 75, 333-66 (2006). 

11. Ow, S.Y. & Dunstan, D.E. A brief overview of amyloids and Alzheimer's disease. 

Protein Science 23, 1315-1331 (2014). 



Bibliography 

 

159 

 

12. Haass, C. et al. The Swedish mutation causes early-onset Alzheimer's disease by β-

secretase cleavage within the secretory pathway. Nature medicine 1, 1291-1296 (1995). 

13. Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. Journal of 

cellular and molecular medicine 14, 457-487 (2010). 

14. Devi, G. & Scheltens, P. Heterogeneity of Alzheimer’s disease: consequence for drug 

trials? Alzheimer's research & therapy 10, 1-3 (2018). 

15. Kundra, R., Ciryam, P., Morimoto, R.I., Dobson, C.M. & Vendruscolo, M. Protein 

homeostasis of a metastable subproteome associated with Alzheimer’s disease. 

Proceedings of the National Academy of Sciences 114, E5703-E5711 (2017). 

16. Morley, J.F., Brignull, H.R., Weyers, J.J. & Morimoto, R.I. The threshold for 

polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and 

influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy 

of Sciences 99, 10417-10422 (2002). 

17. Labbadia, J. & Morimoto, R.I. The biology of proteostasis in aging and disease. Annual 

review of biochemistry 84, 435-464 (2015). 

18. Groveman, B.R. et al. Rapid and ultra-sensitive quantitation of disease-associated α-

synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol 

Commun 6, 7 (2018). 

19. Schalkamp, A.-K., Peall, K.J., Harrison, N.A. & Sandor, C. Wearable movement-

tracking data identify Parkinson’s disease years before clinical diagnosis. Nature 

Medicine 29, 2048-2056 (2023). 

20. Gaetani, L. et al. Neurofilament light chain as a biomarker in neurological disorders. 

Journal of Neurology, Neurosurgery & Psychiatry 90, 870-881 (2019). 

21. Choi, M.L. et al. Pathological structural conversion of α-synuclein at the mitochondria 

induces neuronal toxicity. Nature neuroscience, 1-15 (2022). 

22. Balusu, S. et al. MEG3 activates necroptosis in human neuron xenografts modeling 

Alzheimer’s disease. Science 381, 1176-1182 (2023). 

23. Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy 

pathology. Nature 610, 791-795 (2022). 

24. Knopman, D.S., Jones, D.T. & Greicius, M.D. Failure to demonstrate efficacy of 

aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, 

December 2019. Alzheimer's & Dementia 17, 696-701 (2021). 



Bibliography 

 

160 

 

25. Brockmann, R., Nixon, J., Love, B.L. & Yunusa, I. Impacts of FDA approval and 

Medicare restriction on antiamyloid therapies for Alzheimer's disease: patient 

outcomes, healthcare costs, and drug development. The Lancet Regional Health–

Americas 20(2023). 

26. Sims, J.R. et al. Donanemab in early symptomatic Alzheimer disease: the 

TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA (2023). 

27. Global status report on the public health response to dementia. World Health 

Organisation (2021). 

28. Cummings, J., Reiber, C. & Kumar, P. The price of progress: Funding and financing 

Alzheimer's disease drug development. Alzheimer's & Dementia: Translational 

Research & Clinical Interventions 4, 330-343 (2018). 

29. Ke, P.C. et al. Half a century of amyloids: past, present and future. Chemical Society 

Reviews 49, 5473-5509 (2020). 

30. National audit of dementia care in general hospitals 2018–2019. Round four audit 

report. (Royal College of Psychiatrists London, 2019). 

31. Freer, R. et al. A protein homeostasis signature in healthy brains recapitulates tissue 

vulnerability to Alzheimer’s disease. Science advances 2, e1600947 (2016). 

32. Ciryam, P., Tartaglia, G.G., Morimoto, R.I., Dobson, C.M. & Vendruscolo, M. 

Widespread aggregation and neurodegenerative diseases are associated with 

supersaturated proteins. Cell reports 5, 781-790 (2013). 

33. Thacker, D. et al. The role of fibril structure and surface hydrophobicity in secondary 

nucleation of amyloid fibrils. Proceedings of the National Academy of Sciences 117, 

25272-25283 (2020). 

34. Cerf, E. et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β

-peptide. Biochemical Journal 421, 415-423 (2009). 

35. Celej, M.S. et al. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive 

antiparallel β-sheet structure. Biochemical journal 443, 719-726 (2012). 

36. Michaels, T.C.T. et al. Dynamics of oligomer populations formed during the 

aggregation of Alzheimer's Abeta42 peptide. Nat Chem 12, 445-451 (2020). 

37. Vecchi, G. et al. Proteome-wide observation of the phenomenon of life on the edge of 

solubility. Proceedings of the National Academy of Sciences 117, 1015-1020 (2020). 

38. Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease 

intervention. science 319, 916-919 (2008). 



Bibliography 

 

161 

 

39. Hipp, M.S., Kasturi, P. & Hartl, F.U. The proteostasis network and its decline in ageing. 

Nature reviews Molecular cell biology 20, 421-435 (2019). 

40. Arosio, P. et al. Kinetic analysis reveals the diversity of microscopic mechanisms 

through which molecular chaperones suppress amyloid formation. Nature 

communications 7, 10948 (2016). 

41. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from 

the Alzheimer's amyloid β-peptide. Nature reviews Molecular cell biology 8, 101-112 

(2007). 

42. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer's 

disease: an emperor in need of clothes. Nature neuroscience 15, 349-357 (2012). 

43. Knowles, T.P., Vendruscolo, M. & Dobson, C.M. The amyloid state and its association 

with protein misfolding diseases. Nat Rev Mol Cell Biol 15, 384-96 (2014). 

44. Goedert, M. & Spillantini, M.G. A century of Alzheimer's disease. science 314, 777-

781 (2006). 

45. Spillantini, M.G. & Goedert, M. Tau pathology and neurodegeneration. The Lancet 

Neurology 12, 609-622 (2013). 

46. Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by alpha-

synuclein oligomers. Science 358, 1440-1443 (2017). 

47. Lashuel, H.A., Overk, C.R., Oueslati, A. & Masliah, E. The many faces of alpha-

synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14, 38-

48 (2013). 

48. Campioni, S. et al. A causative link between the structure of aberrant protein oligomers 

and their toxicity. Nature chemical biology 6, 140-147 (2010). 

49. Vendruscolo, M. Thermodynamic and kinetic approaches for drug discovery to target 

protein misfolding and aggregation. Expert Opinion on Drug Discovery, 1-11 (2023). 

50. Goedert, M., Spillantini, M.G., Del Tredici, K. & Braak, H. 100 years of Lewy 

pathology. Nature Reviews Neurology 9, 13-24 (2013). 

51. Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. & Goedert, M. alpha-

Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and 

dementia with lewy bodies. Proc Natl Acad Sci U S A 95, 6469-73 (1998). 

52. Savica, R., Boeve, B.F. & Mielke, M.M. When Do alpha-Synucleinopathies Start? An 

Epidemiological Timeline: A Review. JAMA Neurol 75, 503-509 (2018). 



Bibliography 

 

162 

 

53. Rambaran, R.N. & Serpell, L.C. Amyloid fibrils: abnormal protein assembly. Prion 2, 

112-117 (2008). 

54. Ray, S. et al. α-Synuclein aggregation nucleates through liquid–liquid phase 

separation. Nature chemistry 12, 705-716 (2020). 

55. Jacobs, T.M. & Kuhlman, B. Using anchoring motifs for the computational design of 

protein–protein interactions. Biochemical Society Transactions 41, 1141-1145 (2013). 

56. Michaels, T.C., Dear, A.J., Cohen, S.I., Vendruscolo, M. & Knowles, T.P. Kinetic 

profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. 

The Journal of Chemical Physics 156, 164904 (2022). 

57. Staats, R. et al. Screening of small molecules using the inhibition of oligomer formation 

in α-synuclein aggregation as a selection parameter. Communications Chemistry 3, 

191 (2020). 

58. Price, D.L. et al. The small molecule alpha-synuclein misfolding inhibitor, NPT200-

11, produces multiple benefits in an animal model of Parkinson's disease. Sci Rep 8, 

16165 (2018). 

59. Pujols, J., Pena-Diaz, S., Pallares, I. & Ventura, S. Chemical Chaperones as Novel 

Drugs for Parkinson's Disease. Trends Mol Med 26, 408-421 (2020). 

60. Wagner, J. et al. Anle138b: a novel oligomer modulator for disease-modifying therapy 

of neurodegenerative diseases such as prion and Parkinson's disease. Acta Neuropathol 

125, 795-813 (2013). 

61. Emin, D. et al. Small soluble α-synuclein aggregates are the toxic species in 

Parkinson’s disease. Nature Communications 13, 1-15 (2022). 

62. Gaspar, R. et al. Secondary nucleation of monomers on fibril surface dominates α-

synuclein aggregation and provides autocatalytic amyloid amplification. Quarterly 

reviews of biophysics 50, E6 (2017). 

63. Chia, S. et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc 

Natl Acad Sci U S A 115, 10245-10250 (2018). 

64. Chia, S. et al. Structure-Based Discovery of Small-Molecule Inhibitors of the 

Autocatalytic Proliferation of alpha-Synuclein Aggregates. Mol Pharm 20, 183–193 

(2022). 

65. Horne, R.I. et al. Discovery of Potent Inhibitors of α-Synuclein Aggregation Using 

Structure-Based Iterative Learning. bioRxiv, 2021.11. 10.468009 (2021). 

66. van Dyck, C.H. et al. Lecanemab in Early Alzheimer's Disease. N Engl J Med (2022). 



Bibliography 

 

163 

 

67. McFarthing, K. et al. Parkinson's Disease Drug Therapies in the Clinical Trial Pipeline: 

2022 Update. J Parkinsons Dis 12, 1073-1082 (2022). 

68. Oertel, W. & Schulz, J.B. Current and experimental treatments of Parkinson disease: A 

guide for neuroscientists. J Neurochem 139 Suppl 1, 325-337 (2016). 

69. Tolosa, E., Garrido, A., Scholz, S.W. & Poewe, W. Challenges in the diagnosis of 

Parkinson's disease. Lancet Neurol 20, 385-397 (2021). 

70. Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis 

Primers 7, 47 (2021). 

71. Balestrino, R. & Schapira, A.H.V. Parkinson disease. Eur J Neurol 27, 27-42 (2020). 

72. Collaborators, G.B.D.P.s.D. Global, regional, and national burden of Parkinson's 

disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. 

Lancet Neurol 17, 939-953 (2018). 

73. Poewe, W. Parkinson disease Primer - a true team effort. Nat Rev Dis Primers 6, 31 

(2020). 

74. Flagmeier, P. et al. Mutations associated with familial Parkinson's disease alter the 

initiation and amplification steps of alpha-synuclein aggregation. Proc Natl Acad Sci 

U S A 113, 10328-33 (2016). 

75. Man, W.K. et al. The docking of synaptic vesicles on the presynaptic membrane 

induced by alpha-synuclein is modulated by lipid composition. Nature 

Communications 12(2021). 

76. Panteleev, J., Gao, H. & Jia, L. Recent applications of machine learning in medicinal 

chemistry. Bioorg Med Chem Lett 28, 2807-2815 (2018). 

77. Vamathevan, J. et al. Applications of machine learning in drug discovery and 

development. Nat Rev Drug Discov 18, 463-477 (2019). 

78. Meng, X.Y., Zhang, H.X., Mezei, M. & Cui, M. Molecular docking: a powerful 

approach for structure-based drug discovery. Curr Comput Aided Drug Des 7, 146-57 

(2011). 

79. Myszczynska, M.A. et al. Applications of machine learning to diagnosis and treatment 

of neurodegenerative diseases. Nat Rev Neurol 16, 440-456 (2020). 

80. Brown, J.W. et al. β-Synuclein suppresses both the initiation and amplification steps 

of α-synuclein aggregation via competitive binding to surfaces. Scientific reports 6, 1-

10 (2016). 



Bibliography 

 

164 

 

81. Hie, B., Bryson, B.D. & Berger, B. Leveraging Uncertainty in Machine Learning 

Accelerates Biological Discovery and Design. Cell Syst 11, 461-477 e9 (2020). 

82. Knowles, T.P. et al. An analytical solution to the kinetics of breakable filament 

assembly. Science 326, 1533-7 (2009). 

83. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular 

graph generation. in International conference on machine learning 2323-2332 (PMLR, 

2018). 

84. Kusner, M.J., Paige, B. & Hernández-Lobato, J.M. Grammar variational autoencoder. 

in International conference on machine learning 1945-1954 (PMLR, 2017). 

85. Weininger, D. SMILES, a chemical language and information system. 1. Introduction 

to methodology and encoding rules. Journal of chemical information and computer 

sciences 28, 31-36 (1988). 

86. Bento, A.P. et al. An open source chemical structure curation pipeline using RDKit. 

Journal of Cheminformatics 12, 1-16 (2020). 

87. Breiman, L. Random forests. Machine learning 45, 5-32 (2001). 

88. Rasmussen, C.E. & Williams, C. Gaussian processes for machine learning, vol. 1. (MIT 

press Cambridge MA, 2006). 

89. Svozil, D., Kvasnicka, V. & Pospichal, J. Introduction to multi-layer feed-forward 

neural networks. Chemometrics and intelligent laboratory systems 39, 43-62 (1997). 

90. Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking 

with a new scoring function, efficient optimization, and multithreading. J Comput 

Chem 31, 455-61 (2010). 

91. McGann, M. FRED pose prediction and virtual screening accuracy. Journal of chemical 

information and modeling 51, 578-596 (2011). 

92. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for 

ligand pocket detection. BMC Bioinformatics 10, 168 (2009). 

93. Kelley, B.P., Brown, S.P., Warren, G.L. & Muchmore, S.W. POSIT: Flexible Shape-

Guided Docking For Pose Prediction. J Chem Inf Model 55, 1771-80 (2015). 

94. Wager, T.T., Hou, X., Verhoest, P.R. & Villalobos, A. Central Nervous System 

Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chem 

Neurosci 7, 767-75 (2016). 

95. Wager, T.T., Hou, X., Verhoest, P.R. & Villalobos, A. Moving beyond rules: the 

development of a central nervous system multiparameter optimization (CNS MPO) 



Bibliography 

 

165 

 

approach to enable alignment of druglike properties. ACS chemical neuroscience 1, 

435-449 (2010). 

96. Sormanni, P., Aprile, F.A. & Vendruscolo, M. The CamSol method of rational design 

of protein mutants with enhanced solubility. Journal of molecular biology 427, 478-

490 (2015). 

97. Buell, A.K. et al. Solution conditions determine the relative importance of nucleation 

and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci U S A 111, 

7671-6 (2014). 

98. Li, B. et al. Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a 

common structural kernel. Nature communications 9, 1-10 (2018). 

99. Butina, D. Unsupervised Data Base Clustering Based on Daylight's Fingerprint and 

Tanimoto Similarity: A Fast and Automated Way To Cluster Small and Large Data 

Sets. Journal of Chemical Information and Computer Sciences 39, 747-750 (1999). 

100. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. Journal of chemical 

information and modeling 50, 742-754 (2010). 

101. Horne, R.I. et al. Exploration and Exploitation Approaches Based on Generative 

Machine Learning to Identify Potent Small Molecule Inhibitors of α-Synuclein 

Secondary Nucleation. Journal of Chemical Theory and Computation 19, 4701–4710 

(2023). 

102. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and 

projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018). 

103. Stumpfe, D., Hu, H. & Bajorath, J.r. Evolving concept of activity cliffs. ACS omega 4, 

14360-14368 (2019). 

104. Hill, A.V. The possible effects of the aggregation of the molecules of hemoglobin on 

its dissociation curves. j. physiol. 40, iv-vii (1910). 

105. Kurnik, M. et al. Potent α-synuclein aggregation inhibitors, identified by high-

throughput screening, mainly target the monomeric state. Cell chemical biology 25, 

1389-1402. e9 (2018). 

106. Horne, R.I. et al. Secondary Processes Dominate the Quiescent, Spontaneous 

Aggregation of α-Synuclein at Physiological pH with Sodium Salts. ACS Chemical 

Neuroscience 14, 3125-3131 (2023). 

107. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. The Journal of 

Machine Learning Research 15, 3221-3245 (2014). 



Bibliography 

 

166 

 

108. Lundberg, S.M. & Lee, S.-I. A unified approach to interpreting model predictions. 

Advances in neural information processing systems 30(2017). 

109. Cooper, A., Doyle, O. & Bourke, A. Supervised Clustering for Subgroup Discovery: 

An Application to COVID-19 Symptomatology. in Joint European Conference on 

Machine Learning and Knowledge Discovery in Databases 408-422 (Springer, 2021). 

110. Furukawa, K. et al. Isoelectric point-amyloid formation of α-synuclein extends the 

generality of the solubility and supersaturation-limited mechanism. Current Research 

in Structural Biology 2, 35-44 (2020). 

111. Atarashi, R. et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-

time quaking-induced conversion. Nature medicine 17, 175-178 (2011). 

112. Atarashi, R. et al. Ultrasensitive human prion detection in cerebrospinal fluid by real-

time quaking-induced conversion. Nat Med 17, 175-8 (2011). 

113. Wilham, J.M. et al. Rapid end-point quantitation of prion seeding activity with 

sensitivity comparable to bioassays. PLoS Pathog 6, e1001217 (2010). 

114. Metrick, M.A., 2nd et al. A single ultrasensitive assay for detection and discrimination 

of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol Commun 8, 22 

(2020). 

115. Grazia Spillantini, M. et al. A novel tau mutation (N296N) in familial dementia with 

swollen achromatic neurons and corticobasal inclusion bodies. Annals of neurology 48, 

939-943 (2000). 

116. Arter, W.E. et al. Rapid Structural, Kinetic, and Immunochemical Analysis of Alpha-

Synuclein Oligomers in Solution. Nano Lett 20, 8163-8169 (2020). 

117. Zhu, T. et al. Hit identification and optimization in virtual screening: Practical 

recommendations based on a critical literature analysis: Miniperspective. Journal of 

medicinal chemistry 56, 6560-6572 (2013). 

118. Blaschke, T. et al. REINVENT 2.0: an AI tool for de novo drug design. Journal of 

chemical information and modeling 60, 5918-5922 (2020). 

119. Maziarka, Ł. et al. Mol-CycleGAN: a generative model for molecular optimization. 

Journal of Cheminformatics 12, 1-18 (2020). 

120. You, J., Liu, B., Ying, Z., Pande, V. & Leskovec, J. Graph convolutional policy 

network for goal-directed molecular graph generation. Advances in neural information 

processing systems 31(2018). 



Bibliography 

 

167 

 

121. Zhou, Z., Kearnes, S., Li, L., Zare, R.N. & Riley, P. Optimization of Molecules via 

Deep Reinforcement Learning. Sci Rep 9, 10752 (2019). 

122. Chandra, R., Horne, R.I. & Vendruscolo, M. Bayesian Optimization in the Latent Space 

of a Variational Autoencoder for the Generation of Selective FLT3 Inhibitors. Journal 

of Chemical Theory and Computation 20, 469-476 (2023). 

123. Allen, C.H. et al. Improving the prediction of organism-level toxicity through 

integration of chemical, protein target and cytotoxicity qHTS data. Toxicology research 

5, 883-894 (2016). 

124. Horne, R.I. et al. Using Generative Modeling to Endow with Potency Initially Inert 

Compounds with Good Bioavailability and Low Toxicity. Journal of Chemical 

Information and Modeling (2024). 

125. Perni, M. et al. Multistep Inhibition of alpha-Synuclein Aggregation and Toxicity in 

Vitro and in Vivo by Trodusquemine. ACS Chem Biol 13, 2308-2319 (2018). 

126. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating 

primary nucleation. Nature chemical biology 11, 229-234 (2015). 

127. Michaels, T.C., Cohen, S.I., Vendruscolo, M., Dobson, C.M. & Knowles, T.P. 

Hamiltonian Dynamics of Protein Filament Formation. Phys Rev Lett 116, 038101 

(2016). 

128. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine 

Learning research 12, 2825-2830 (2011). 

129. McKinney, W. Data structures for statistical computing in python. in Proceedings of 

the 9th Python in Science Conference Vol. 445 51-56 (Austin, TX, 2010). 

130. Waskom, M.L. Seaborn: statistical data visualization. Journal of Open Source Software 

6, 3021 (2021). 

131. Hunter, J.D. Matplotlib: A 2D graphics environment. Computing in science & 

engineering 9, 90-95 (2007). 

132. Harris, C.R. et al. Array programming with NumPy. Nature 585, 357-362 (2020). 

133. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in 

Python. Nature methods 17, 261-272 (2020). 

134. Kramer, O. Machine learning for evolution strategies, (Springer, 2016). 

135. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. 

Nature protocols 8, 870-891 (2013). 



Bibliography 

 

168 

 

136. McDonald, J.C. et al. Fabrication of microfluidic systems in poly (dimethylsiloxane). 

ELECTROPHORESIS: An International Journal 21, 27-40 (2000). 

137. Challa, P.K., Kartanas, T., Charmet, J. & Knowles, T.P. Microfluidic devices fabricated 

using fast wafer-scale LED-lithography patterning. Biomicrofluidics 11, 014113 

(2017). 

138. Tan, S.H., Nguyen, N.-T., Chua, Y.C. & Kang, T.G. Oxygen plasma treatment for 

reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. 

Biomicrofluidics 4, 032204 (2010). 

139. Saar, K.L. et al. On-chip label-free protein analysis with downstream electrodes for 

direct removal of electrolysis products. Lab on a Chip 18, 162-170 (2018). 

140. Mahul-Mellier, A.-L. et al. The process of Lewy body formation, rather than simply α

-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proceedings 

of the National Academy of Sciences 117, 4971-4982 (2020). 

141. Mercado, R. et al. Graph networks for molecular design. Machine Learning: Science 

and Technology 2, 025023 (2021). 

142. Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular 

design in low data regimes. Nature Machine Intelligence 2, 171-180 (2020). 

143. Neves, B.J. et al. QSAR-based virtual screening: advances and applications in drug 

discovery. Frontiers in pharmacology 9, 1275 (2018). 

144. Kwon, S., Bae, H., Jo, J. & Yoon, S. Comprehensive ensemble in QSAR prediction for 

drug discovery. BMC bioinformatics 20, 1-12 (2019). 

145. Schonlau, M. & Zou, R.Y. The random forest algorithm for statistical learning. The 

Stata Journal 20, 3-29 (2020). 

146. ChemDiv CNS BBB Library. (2022). 

147. ChemDiv CNS MPO Library. (2022). 

148. Meng, F., Xi, Y., Huang, J. & Ayers, P.W. A curated diverse molecular database of 

blood-brain barrier permeability with chemical descriptors. Sci Data 8, 289 (2021). 

149. Kumar, R. et al. DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model 

With Improved Accuracy. Frontiers in Neuroscience 16(2022). 

150. Brown, N., Fiscato, M., Segler, M.H. & Vaucher, A.C. GuacaMol: benchmarking 

models for de novo molecular design. Journal of chemical information and modeling 

59, 1096-1108 (2019). 



Bibliography 

 

169 

 

151. Mansouri, K. et al. Open-source QSAR models for pKa prediction using multiple 

machine learning approaches. Journal of cheminformatics 11, 1-20 (2019). 

152. Yap, C.W. PaDEL‐descriptor: An open source software to calculate molecular 

descriptors and fingerprints. Journal of computational chemistry 32, 1466-1474 (2011). 

153. Yasui, Y. & Fujisawa, K. Fast and scalable NUMA-based thread parallel breadth-first 

search. in 2015 International Conference on High Performance Computing & 

Simulation (HPCS) 377-385 (IEEE, 2015). 

154. Joyce, J.M. Kullback-leibler divergence. in International encyclopedia of statistical 

science 720-722 (Springer, 2011). 

155. Kingma, D.P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980 (2014). 

156. Jaeger, S., Fulle, S. & Turk, S. Mol2vec: unsupervised machine learning approach with 

chemical intuition. Journal of chemical information and modeling 58, 27-35 (2018). 

157. Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biological 

cybernetics 20, 121-136 (1975). 

158. Van Houdt, G., Mosquera, C. & Nápoles, G. A review on the long short-term memory 

model. Artificial Intelligence Review 53, 5929-5955 (2020). 

159. Holland, J.H. Genetic algorithms. Scientific american 267, 66-73 (1992). 

160. Alam, T., Qamar, S., Dixit, A. & Benaida, M. Genetic algorithm: Reviews, 

implementations, and applications. arXiv preprint arXiv:2007.12673 (2020). 

161. Szenkovits, A. et al. Feature selection with a genetic algorithm for classification of 

brain imaging data. Advances in feature selection for data and pattern recognition, 185-

202 (2018). 

162. Gow, S., Niranjan, M., Kanza, S. & Frey, J. A Review of Reinforcement Learning in 

Chemistry. Digital Discovery (2022). 

163. McFarthing, K. et al. Parkinson’s disease drug therapies in the clinical trial pipeline: 

2022 update. Journal of Parkinson's Disease, 1-10 (2022). 

164. Cohen, S.I. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary 

nucleation mechanism. Proceedings of the National Academy of Sciences 110, 9758-

9763 (2013). 

165. Linse, S. et al. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ 

antibodies. Nature Structural & Molecular Biology 27, 1125-1133 (2020). 



Bibliography 

 

170 

 

166. Aprile, F.A. et al. Rational design of a conformation-specific antibody for the 

quantification of Aβ oligomers. Proceedings of the National Academy of Sciences 117, 

13509-13518 (2020). 

167. Kulenkampff, K., Wolf Perez, A.-M., Sormanni, P., Habchi, J. & Vendruscolo, M. 

Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer 

and Parkinson diseases. Nature Reviews Chemistry 5, 277-294 (2021). 

168. Orte, A. et al. Direct characterization of amyloidogenic oligomers by single-molecule 

fluorescence. Proceedings of the National Academy of Sciences 105, 14424-14429 

(2008). 

169. Sahoo, B., Drombosky, K.W. & Wetzel, R. Fluorescence Correlation Spectroscopy: A 

Tool to Study Protein Oligomerization and Aggregation In Vitro and In Vivo. in Protein 

Amyloid Aggregation: Methods and Protocols (ed. Eliezer, D.) 67-87 (Springer New 

York, New York, NY, 2016). 

170. Dresser, L. et al. Amyloid-β oligomerization monitored by single-molecule stepwise 

photobleaching. Methods 193, 80-95 (2021). 

171. Lee, J.E. et al. Mapping Surface Hydrophobicity of α-Synuclein Oligomers at the 

Nanoscale. Nano Lett 18, 7494-7501 (2018). 

172. Ruggeri, F.S. et al. Identification and nanomechanical characterization of the 

fundamental single-strand protofilaments of amyloid α-synuclein fibrils. Proceedings 

of the National Academy of Sciences 115, 7230-7235 (2018). 

173. Chen, K., Bell, N.A.W., Kong, J., Tian, Y. & Keyser, U.F. Direction- and Salt-

Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores. 

Biophysical Journal 112, 674-682 (2017). 

174. Liu, H., Zhou, Q., Wang, W., Fang, F. & Zhang, J. Solid‐State Nanopore Array: 

Manufacturing and Applications. Small 19, 2205680 (2023). 

175. Afshar Bakshloo, M. et al. Nanopore-Based Protein Identification. Journal of the 

American Chemical Society 144, 2716-2725 (2022). 

176. Afshar Bakshloo, M. et al. Discrimination between Alpha-Synuclein Protein Variants 

with a Single Nanometer-Scale Pore. ACS Chemical Neuroscience 14, 2517-2526 

(2023). 

177. Kowalczyk, S.W., Hall, A.R. & Dekker, C. Detection of Local Protein Structures along 

DNA Using Solid-State Nanopores. Nano Letters 10, 324-328 (2010). 



Bibliography 

 

171 

 

178. Zeng, X. et al. Nanopore technology for the application of protein detection. 

Nanomaterials 11, 1942 (2021). 

179. Yusko, E.C. et al. Real-time shape approximation and fingerprinting of single proteins 

using a nanopore. Nature Nanotechnology 12, 360-367 (2017). 

180. Larkin, J., Henley, R.Y., Muthukumar, M., Rosenstein, Jacob K. & Wanunu, M. High-

Bandwidth Protein Analysis Using Solid-State Nanopores. Biophysical Journal 106, 

696-704 (2014). 

181. Hu, R. et al. Intrinsic and membrane-facilitated α-synuclein oligomerization revealed 

by label-free detection through solid-state nanopores. Scientific reports 6, 20776 

(2016). 

182. Bell, N.A. & Keyser, U.F. Digitally encoded DNA nanostructures for multiplexed, 

single-molecule protein sensing with nanopores. Nature nanotechnology 11, 645-651 

(2016). 

183. Sandler, S.E. et al. Sensing the DNA-mismatch tolerance of catalytically inactive Cas9 

via barcoded DNA nanostructures in solid-state nanopores. Nat Biomed Eng (2023). 

184. Chen, K. et al. Digital Data Storage Using DNA Nanostructures and Solid-State 

Nanopores. Nano Letters 19, 1210-1215 (2019). 

185. Chen, S.W. et al. Structural characterization of toxic oligomers that are kinetically 

trapped during α-synuclein fibril formation. Proceedings of the National Academy of 

Sciences 112, E1994-E2003 (2015). 

186. Chen, S.W. & Cremades, N. Preparation of α-synuclein amyloid assemblies for 

toxicity experiments. Amyloid Proteins: Methods and Protocols, 45-60 (2018). 

187. Xu, C.K. et al. α-Synuclein oligomers form by secondary nucleation. bioRxiv (2023). 

188. Krainer, G. et al. Direct digital sensing of protein biomarkers in solution. Nature 

Communications 14, 653 (2023). 

189. Dada, S.T. et al. Spontaneous nucleation and fast aggregate-dependent proliferation of 

α-synuclein aggregates within liquid condensates at neutral pH. Proceedings of the 

National Academy of Sciences 120, e2208792120 (2023). 

190. Patterson, J.T. et al. Chemically generated IgG2 bispecific antibodies through disulfide 

bridging. Bioorganic & Medicinal Chemistry Letters 27, 3647-3652 (2017). 

191. Gong, H. et al. Simple method to prepare oligonucleotide-conjugated antibodies and its 

application in multiplex protein detection in single cells. Bioconjugate chemistry 27, 

217-225 (2016). 



Bibliography 

 

172 

 

192. Dear, A.J. et al. Kinetic diversity of amyloid oligomers. Proceedings of the National 

Academy of Sciences 117, 12087-12094 (2020). 

193. Neumann, H., Wang, K., Davis, L., Garcia-Alai, M. & Chin, J.W. Encoding multiple 

unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464, 

441-444 (2010). 

194. Hampel, H. et al. The amyloid-β pathway in Alzheimer’s disease. Molecular 

psychiatry 26, 5481-5503 (2021). 

195. Xiao, Y. et al. Aβ (1–42) fibril structure illuminates self-recognition and replication 

of amyloid in Alzheimer's disease. Nature structural & molecular biology 22, 499-505 

(2015). 

196. Jiang, D., Rauda, I., Han, S., Chen, S. & Zhou, F. Aggregation pathways of the amyloid 

β (1–42) peptide depend on its colloidal stability and ordered β-sheet stacking. 

Langmuir 28, 12711-12721 (2012). 

197. Gentile, F. et al. Deep docking: a deep learning platform for augmentation of structure 

based drug discovery. ACS central science 6, 939-949 (2020). 

198. Janson, J. et al. Spontaneous diabetes mellitus in transgenic mice expressing human 

islet amyloid polypeptide. Proceedings of the National Academy of Sciences 93, 7283-

7288 (1996). 

199. Permert, J. et al. Islet amyloid polypeptide in patients with pancreatic cancer and 

diabetes. New England Journal of Medicine 330, 313-318 (1994). 

200. Rodriguez Camargo, D.C. et al. Surface-catalyzed secondary nucleation dominates the 

generation of toxic IAPP aggregates. Frontiers in Molecular Biosciences 8, 1037 

(2021). 

201. Röder, C. et al. Cryo-EM structure of islet amyloid polypeptide fibrils reveals 

similarities with amyloid-β fibrils. Nature structural & molecular biology 27, 660-

667 (2020). 

202. Jack Jr, C.R. et al. NIA-AA research framework: toward a biological definition of 

Alzheimer's disease. Alzheimer's & Dementia 14, 535-562 (2018). 

203. Braak, H. & Braak, E. Staging of Alzheimer's disease-related neurofibrillary changes. 

Neurobiology of aging 16, 271-278 (1995). 

204. Brettschneider, J., Tredici, K.D., Lee, V.M.-Y. & Trojanowski, J.Q. Spreading of 

pathology in neurodegenerative diseases: a focus on human studies. Nature Reviews 

Neuroscience 16, 109-120 (2015). 



Bibliography 

 

173 

 

205. Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359-363 (2021). 

206. Lövestam, S. et al. Assembly of recombinant tau into filaments identical to those of 

Alzheimer’s disease and chronic traumatic encephalopathy. Elife 11, e76494 (2022). 

207. Fitzpatrick, A.W. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. 

Nature 547, 185-190 (2017). 

208. Lövestam, S. et al. Seeded assembly in vitro does not replicate the structures of α‐

synuclein filaments from multiple system atrophy. FEBS open bio 11, 999-1013 (2021). 

209. Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system 

atrophy. Nature 585, 464-469 (2020). 

210. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of 

kinetic models. Nature protocols 11, 252-272 (2016). 

211. Rodriguez Camargo, D.C. et al. Proliferation of tau 304–380 fragment aggregates 

through autocatalytic secondary nucleation. ACS Chemical Neuroscience 12, 4406-

4415 (2021). 

212. Lövestam, S. et al. Disease-specific tau filaments assemble via polymorphic 

intermediates. bioRxiv, 2023.07. 24.550295 (2023). 

213. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for 

ligand pocket detection. BMC bioinformatics 10, 1-11 (2009). 

214. Nizynski, B., Dzwolak, W. & Nieznanski, K. Amyloidogenesis of Tau protein. Protein 

Science 26, 2126-2150 (2017). 

215. Habchi, J. et al. Systematic development of small molecules to inhibit specific 

microscopic steps of Aβ42 aggregation in Alzheimer’s disease. Proceedings of the 

National Academy of Sciences 114, E200-E208 (2017). 

216. Cummings, J. et al. Alzheimer's disease drug development pipeline: 2022. Alzheimer's 

& Dementia: Translational Research & Clinical Interventions 8, e12295 (2022). 

217. Studier, F.W. Protein production by auto-induction in high-density shaking cultures. 

Protein expression and purification 41, 207-234 (2005). 

218. Zhang, W. et al. Heparin-induced tau filaments are polymorphic and differ from those 

in Alzheimer’s and Pick’s diseases. Elife 8, e43584 (2019). 

219. Irwin, J.J. & Shoichet, B.K. ZINC− a free database of commercially available 

compounds for virtual screening. Journal of chemical information and modeling 45, 

177-182 (2005). 



Bibliography 

 

174 

 

220. Wager, T.T., Hou, X., Verhoest, P.R. & Villalobos, A. Central nervous system 

multiparameter optimization desirability: application in drug discovery. ACS chemical 

neuroscience 7, 767-775 (2016). 

221. Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking 

with a new scoring function, efficient optimization, and multithreading. Journal of 

computational chemistry 31, 455-461 (2010). 

222. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-

thalassemia. New England Journal of Medicine 384, 252-260 (2021). 

223. Ramamoorth, M. & Narvekar, A. Non viral vectors in gene therapy-an overview. 

Journal of clinical and diagnostic research: JCDR 9, GE01 (2015). 

224. Carr, D.R. & Bradshaw, S.E. Gene therapies: the challenge of super-high-cost 

treatments and how to pay for them. Regenerative medicine 11, 381-393 (2016). 

225. Brotzakis, Z.F., Zhang, S. & Vendruscolo, M. AlphaFold Prediction of Structural 

Ensembles of Disordered Proteins. bioRxiv, 2023.01. 19.524720 (2023). 

226. Vaswani, A. et al. Attention is all you need. Advances in neural information processing 

systems 30(2017). 

227. Xiang, J. et al. Development of an α-synuclein positron emission tomography tracer 

for imaging synucleinopathies. Cell 186, 3350-3367. e19 (2023). 

228. McGonigle, P. Animal models of CNS disorders. Biochemical pharmacology 87, 140-

149 (2014). 

229. Koprich, J.B., Kalia, L.V. & Brotchie, J.M. Animal models of α-synucleinopathy for 

Parkinson disease drug development. Nature Reviews Neuroscience 18, 515-529 

(2017). 

230. Schneuing, A. et al. Structure-based drug design with equivariant diffusion models. 

arXiv preprint arXiv:2210.13695 (2022). 

231. Howorka, S. Building membrane nanopores. Nature nanotechnology 12, 619-630 

(2017). 

232. Goto, Y., Akahori, R., Yanagi, I. & Takeda, K.-i. Solid-state nanopores towards single-

molecule DNA sequencing. Journal of human genetics 65, 69-77 (2020). 

233. Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein 

sequencing. Nature nanotechnology 13, 786-796 (2018). 

234. Alfaro, J.A. et al. The emerging landscape of single-molecule protein sequencing 

technologies. Nature methods 18, 604-617 (2021). 



Bibliography 

 

175 

 

235. Vicente, A.M., Ballensiefen, W. & Jönsson, J.-I. How personalised medicine will 

transform healthcare by 2030: the ICPerMed vision. Journal of Translational Medicine 

18, 1-4 (2020). 

236. Bermejo, P. et al. Differences of peripheral inflammatory markers between mild 

cognitive impairment and Alzheimer's disease. Immunology letters 117, 198-202 

(2008). 

237. Grill, J.D. & Karlawish, J. Implications of FDA approval of a first disease-modifying 

therapy for a neurodegenerative disease on the design of subsequent clinical trials. 

Neurology 97, 496-500 (2021). 

238. McGann, M. FRED and HYBRID docking performance on standardized datasets. 

Journal of computer-aided molecular design 26, 897-906 (2012). 

239. Wang, Z. et al. Comprehensive evaluation of ten docking programs on a diverse set of 

protein–ligand complexes: the prediction accuracy of sampling power and scoring 

power. Physical Chemistry Chemical Physics 18, 12964-12975 (2016). 

240. Robinson, C. & Dilkina, B. A machine learning approach to modeling human 

migration. in Proceedings of the 1st ACM SIGCAS Conference on Computing and 

Sustainable Societies 1-8 (2018). 

241. Straathof, S. et al. Protein Sizing with 15 nm Conical Biological Nanopore YaxAB. 

ACS Nano 17, 13685-13699 (2023). 

 


