
On fundamental computational barriers

in the mathematics of information

Alexander James Bastounis

Churchill College, Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy

June, 2018

Declaration

This dissertation is the result of my own work and includes nothing which is the out-

come of work done in collaboration except as declared in the Preface and specified in

the text. It is not substantially the same as any that I have submitted, or, is being

concurrently submitted for a degree or diploma or other qualification at the University

of Cambridge or any other University or similar institution except as declared in the

Preface and specified in the text. I further state that no substantial part of my disser-

tation has already been submitted, or, is being concurrently submitted for any such

degree, diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the

text.

1

Acknowledgements

I think every PhD student knows before starting that writing a PhD thesis is going to

be difficult. What they may not (and certainly I did not) appreciate is the scale of the

difficulty that they are likely to struggle against whilst writing a thesis. I believe that

a PhD student needs a couple of things to have a chance - firstly, they need supportive

friends and family who will be patient when things don’t go well and secondly they

need an advisor who can help suggest interesting problems that are tractable in the

duration of the thesis. I was extremely lucky - I had both.

I had my family - of course, without my parents Janice and Basil Bastounis this

thesis would not have been possible (I wouldn’t be born) but my parents provided so

much more than that. Now that I have sadly left childhood the scale of the sacrifices

they have made to provide me with the best opportunities in life is apparent to me.

The support, advice and kindness they offered me was invaluable and I am eternally

grateful to them. I am also lucky enough to have an intelligent and funny brother

Nicholas who never stopped making me laugh and encouraging me even when things

looked very tough.

I had my school teachers, particularly those who taught me A-level maths and

computer science and encouraged me to go to university and study my passions. I

had my school friends, who would always make it a pleasure to visit my home town

of Beckenham and who reassured me with their kind words that I had the capacity to

finish. Going for a casual drink with them is something that I hope I get to do for a

very long time.

I had my friends from Warwick both in and outside of the maths department -

even though they are now distributed in a variety of places across the world I was able

to stay in touch with many of them and I still value the chances I get to spend time

with them. In particular, I should mention (soon to be) Dr Matthew Lee at Imperial

College London for going through some of the basics of machine learning with me.

In addition to things that I had before I started, there were new people that I met

who have since become lifelong friends. My colleagues from the CCA were never shy to

help me when I felt that I was struggling and I definitely enjoyed working with many

of them directly in the first year of the CDT program. I met an enormous number of

very likeable and interesting people during my time at Churchill College and will leave

with many great memories that I will take with me for the rest of my life. I would like

to specifically mention Dr Steve Marsh and Dr Clara Tang for helping me get through

this particularly strenuous hurdle of writing the thesis, a process that I have found to

be especially testing and which I suspect I would not have completed without them.

2

3

I would also like to specifically mention Dr Florian Theil who taught me at Warwick

University. He encouraged me from day one to go further with mathematics and

advised me in making the transition between school mathematics and the beginning of

graduate studies. Academia is a small world and I hope that one day our paths shall

cross again.

I would like to thank my thesis examiners for their helpful suggestions in improving

this thesis. I feel that their contributions have undoubtedly improved the exposition

since the initial submission.

Finally, and most importantly, I would like to thank my supervisor Dr Anders

Hansen. Anders was excellent at suggesting seemingly small problems that would be-

come far larger results with hard work. His enthusiasm for mathematics was contagious

- even when things weren’t working I would usually come out of conversations feeling a

renewed passion and a determination to attack the problem that I was facing in a new

way. He put in an enormous amount of time and effort at almost any hour of the day

to discuss whatever results I had been able to produce and to help me place them into

a wider context. I can only hope this thesis is something that reflects the investment

he put into me - certainly, without him there, I suspect I would have left the program

long ago.

Even though I have mentioned only a few people specifically by name, it should

be clear that there are an enormous number of people who helped make this possible.

They know who they are, and should this thesis pass I will certainly celebrate with

each of them.

Abstract

This thesis is about computational theory in the setting of the mathematics of infor-

mation. The first goal is to demonstrate that many commonly considered problems

in optimisation theory cannot be solved with an algorithm if the input data is only

known up to an arbitrarily small error (modelling the fact that most real numbers are

not expressible to infinite precision with a floating point based computational device).

This includes computing the minimisers to basis pursuit, linear programming, lasso

and image deblurring as well as finding an optimal neural network given training data.

These results are somewhat paradoxical given the success that existing algorithms ex-

hibit when tackling these problems with real world datasets and a substantial portion

of this thesis is dedicated to explaining the apparent disparity, particularly in the con-

text of compressed sensing. To do so requires the introduction of a variety of new

concepts, including that of a breakdown epsilon, which may have broader applicability

to computational problems outside of the ones central to this thesis. We conclude with

a discussion on future research directions opened up by this work.

4

Contents

1 Introduction 8

1.1 Outline of the thesis . 10

1.2 On novelty . 11

1.3 Condition . 12

1.4 Linear programming . 13

1.5 Compressed sensing . 15

1.6 Statistical estimation . 17

1.7 Neural networks . 18

1.7.1 Perceptrons . 18

1.7.2 Feed forward neural networks . 19

1.7.3 Training a neural network . 21

1.8 Image processing . 22

1.8.1 Total variation inverse problems 22

1.8.2 Image deblurring . 23

2 Computational frameworks and the SCI hierarchy 24

2.1 A new model for computation . 24

2.2 Turing machines . 25

2.3 BSS machines . 26

2.4 General algorithms and the SCI hierarchy 27

2.5 LPO and LLPO - basic non-computable problems 31

2.6 Inexact input and breakdown epsilons 33

2.7 Randomised general algorithms . 36

2.7.1 Solving LPO with relaxed conditions 37

2.8 Probabilistic breakdown epsilons . 38

2.9 A key result . 40

2.9.1 A comparison to existing work 41

2.10 Optimisation as a computational problem 43

2.11 Conditioning . 46

3 Compressed sensing: the RIP and NSP in levels 49

3.1 The absence of the uniform recovery and the flip test 51

3.1.1 The flip test . 51

3.1.2 Weighted sparsity . 55

5

CONTENTS 6

3.2 An extended theory for compressed sensing 57

3.2.1 A level based alternative to sparsity: (s,M)-sparsity 58

3.2.2 Matrices with a small RIPL constant 63

3.3 Main results . 65

3.4 Proofs . 71

3.4.1 Proof of Theorem 3.3.8 . 71

3.4.2 Proof of Theorem 3.3.4 . 73

3.4.3 Proof of Theorem 3.3.5 and 3.3.6 78

3.4.4 Proof of Theorem 3.3.7 . 80

3.4.5 Proofs of Theorem 3.3.9 . 82

4 Computational barriers in information theory 84

4.1 Linear programming and linear systems 84

4.2 Compressed sensing . 86

4.2.1 Basis pursuit . 86

4.2.2 Basis pursuit denoising . 90

4.3 Statistical estimation . 93

4.4 Neural networks - the paradoxes of deep learning 96

4.5 Image processing . 100

5 Proofs 102

5.1 Proof of Proposition 2.8.4 . 102

5.2 Proof of Theorem 2.9.1 . 103

5.3 A key proposition on two minimisers . 110

5.4 Proof of Theorem 4.1.1 . 114

5.5 Proof of Theorems 4.1.3, 4.2.1, 4.2.13 . 117

5.6 Proof of Theorem 4.2.7 and Theorem 4.2.16 121

5.7 Proof of Theorem 4.2.2 . 126

5.8 Proof of Theorem 4.2.3 and Theorem 4.2.14 131

5.9 Proof of Theorem 4.2.11 . 131

5.10 Proof of Theorem 4.2.12 . 132

5.11 Proof of Theorem 4.2.15 and Theorem 4.3.5 133

5.12 Proof of Theorem 4.3.1 . 141

5.13 Proof of Theorem 4.3.2 . 145

5.14 Proof of Theorem 4.3.4 . 145

5.15 Proof of Theorem 4.3.7 . 147

5.16 Proof of Theorem 4.4.1 . 152

5.17 Proof of Theorem 4.4.2 . 156

5.18 Proof of Theorem 4.4.3 . 156

5.19 Proof of Theorem 4.5.1 and Theorem 4.5.2 157

6 Conclusions and future work 162

6.1 General open questions . 164

6.2 Specific open questions . 165

CONTENTS 7

Bibliography 167

A Appendix 177

A.1 BPDN stopping criteria . 177

A.2 Lasso stopping criteria . 180

Chapter 1

Introduction

It is impossible to overstate the importance of data processing techniques in the modern

world. To give a few key examples, linear programming allows us to optimise a desired

quantity given certain constraints; compressed sensing has changed the effectiveness

and speed of various scanning devices; statistical estimation allows us to find relevant

features of large datasets; image processing has improved the quality of imaging de-

vices from smartphone cameras to special effects used in films, and machine learning

continues to find new uses everyday, ranging through topics as vast as self-driving cars

to automated music production. The underlying method used in each of these fields is

to solve (using a computational device) a specific mathematical problem dependent on

the dataset and the application under consideration. Because of the now ubiquitous

nature of these problems and their use in potentially life threatening situations, it is

crucial to understand when this approach will see success and conversely, when it will

fail.

The bulk of this thesis is dedicated to providing results on this question from a

computational standpoint. Namely, we consider the existence of algorithms to solve

the mathematical problem associated to each of the techniques listed above. Simi-

lar questions on the limitations of computation have been considered by a variety of

authors. In particular, Hilbert’s question [70] on the existence of algorithms for deci-

sion problems led to Turing’s work [120], widely considered to be a key paper in the

development of modern computer science. A different example taken from scientific

computing (and thus more closely related to the work in this thesis) is Smale’s question

on the existence of purely iterative generally convergent algorithms for polynomial root

finding. This was answered in the negative by McMullen [90,91]. In related work that

highlights the subtlety of such issues, Doyle and McMullen showed a positive result

that the quintic could be solved by purely iterative generally convergent algorithms by

using several limits [51].

With the strength of the observed results when the techniques of the opening

paragraph are applied to realistic datasets, it would be natural to conjecture that

algorithms will exist to solve these problems. Specifically, we ask for an algorithm

that computes in finite time the solution to any of these problems up to a prescribed

output accuracy. To model the idea that computers cannot store all real numbers

8

CHAPTER 1. INTRODUCTION 9

without infinite memory, we assume that the algorithm cannot access the exact input

dataset. Instead, it can ask for arbitrarily precise approximations to the dataset, where

the precision used is determined at runtime.

Somewhat surprisingly, we show that there is no such algorithm for any of the

problems listed above. This begs the following natural question:

Q1: Why are these problems mathematically impossible and yet, in many circum-

stances, solved on a day to day basis by data scientists?

As an initial answer to this question, one might suggest the following:

A1: The class of inputs for which the algorithm must give an answer with error smaller

than the prescribed output accuracy is too large to represent realistic datasets.

This opens up the following question, central to the thesis

Q2: Which criteria on the input datasets allow us to create algorithms that can solve

the problem to any given prescribed output accuracy?

It transpires that this question is very subtle. Insisting that inputs are well con-

ditioned can have various effects on the computability of the problem. As a brief

demonstration of this phenomena, one of the results of this thesis is that there are

input sets which are very poorly conditioned yet computable. In some sense, the ex-

ample we provide is not pathological in the sense that the inputs with high condition

number are in fact very natural for the problem under consideration.

Actually, whilst it will be possible to create algorithms for some of the problems

above for realistic datasets, for some of the problems above even with restrictions it

will remain impossible. We thus provide the following answer:

A2: Even if it is impossible to create algorithms to solve some of the above problems

to a given arbitrary prescribed accuracy ε when sensible restrictions are placed

on the inputs, it will be possible to create algorithms that can solve the problems

to a tolerable output accuracy.

For example, we may not be able to create an algorithm that can solve the problem

with thirty decimal places, but it may be possible to solve the problem with an answer

that is correct in its first fifteen decimal places. To quantify exactly what is meant

by ‘tolerable’, we introduce the new concept of a breakdown epsilon. Essentially, the

breakdown epsilon represents the best obtainable precision for a given class of inputs.

A small non-zero breakdown epsilon can therefore indicate that although a problem

is non-computable in the sense that it cannot be computed to arbitrary accuracy, we

can still obtain a tolerable approximation to the true solution.

As a final major point of discussion, let us assume that we pay a time penalty to get

more accuracy on the input set. For example, if the true input contains π or
√

2 then

computing a better approximation to the true input requires time. We will find that

in some circumstances and with some restrictions on the input set, it will be possible

CHAPTER 1. INTRODUCTION 10

to create an algorithm that can compute the solution to any desired output accuracy.

Even so, it may be the case that there is a collection of valid inputs and a fixed output

accuracy for which the algorithm will require increasingly accurate measurements to

compute the approximate solutions. In this case, we are in a situation where we are

guaranteed that the algorithm will eventually terminate but we have no idea when

this will occur. In particular, there will be inputs that take longer than fifty billion

years to process. Since this is obviously undesirable, we shall also try to find criteria

that guarantee that the required input accuracy is bounded uniformly across all valid

inputs.

The main theme of this thesis is to examine various criteria that lead to either

existence or non-existence results of algorithms that either solve the problems exactly

or give answers that have a small breakdown epsilon. There are of course a myriad of

different conditions that could be considered when attempting to answer these ques-

tions. Ideally, we want to work with realistic criteria that are observed with the types

of dataset that are used in the real world. However, finding such criteria is in itself a

very large and difficult problem (this is particularly the case for deep learning [46,52])

and it is out of the scope of this thesis to show results for every possible sensible criteria

for each problem. We thus choose compressed sensing as a case study to examine in

detail. In this field, we highlight some issues with existing approaches and introduce

a collection of new criteria with which we prove positive results from the perspectives

of both computation and recovery.

In summary, once we have established the basic non-computability results and

generated a sensible input set criteria for compressed sensing algorithms, our task will

be to examine the following questions:

Q3: For any ε > 0, is there an algorithm that executes in finite time and computes an

approximate solution no further than ε away from a true solution? The algorithm

can choose the input accuracy ε̂ to be as small as desired (as a function of ε and

the input) to produce the output.

Q4: Can we get a positive answer to the previous question if, for a given ε > 0, ε̂ is

uniformly bounded across all possible inputs?

Q5: Suppose that the answer to the two previous questions is negative. Can we

replace the requirement that the algorithm has to exist for each ε > 0 with one

that insists that the algorithm must only work for a ‘small’ ε > 0 and get a

positive answer?

1.1 Outline of the thesis

This thesis is split into six chapters. In the remainder of this one, we will precisely

define linear programming, compressed sensing (basis pursuit and basis pursuit denois-

ing), statistical estimation (lasso), neural networks and image processing. In Chapter

2, we will define various models of computation (in particular, the Turing machine

and BSS models) and generalise them to the concept of a general algorithm. We shall

CHAPTER 1. INTRODUCTION 11

add additional generality that allows for random algorithms by defining a probablistic

general algorithm. Afterwards, we discuss the idea of breakdown epsilons that allow us

to further understand the degree of non-computability that a mathematical problem

may have. We then state a key and novel result (proven in Chapter 5) that will prove

crucial throughout the remainder of the thesis. Chapter 2 concludes with a discussion

on the various forms of condition number and their definitions when adapted to the

problems defined in this introduction.

Chapter 3 introduces some new criteria that can be applied to the compressed

sensing problem. Specifically, we shall introduce the new concept of the RIP and

nullspace properties in levels and justify them as better explanations for the observed

success of the methods of compressed sensing. These concepts will also be used later

as criteria for computability.

Chapter 4 contains the main results of the thesis. Firstly, we discuss the negative

results in the settings mentioned above. This will open up a (large) number of new

questions about the computability of the mathematics of information. We shall provide

partial answers to these questions for compressed sensing and statistical estimation.

Here, we will make use of the results of Chapter 3 to provide guarantees using the

nullspace property in levels. The result of this analysis is that we give an explanation

not only for why the method of using basis pursuit works well, but also for why

algorithms are able to execute the method despite the non-computability results.

In the context of neural networks Chapter 4 also provides a collection of results to

supplement the non-computability result for training a neural network. These results

have a somewhat perplexing interpretation. Roughly speaking, there are uncountably

many problems for which training the neural network (assuming that there is an oracle

which can do so) will lead to a neural network that is in some sense unstable. However

there will always exist a stable neural network that can solve the problem. The results

of this section also open up questions on the very notion of success for a neural network

as well as casting doubts on the technique of cross validation. Significantly more detail

and precise formulations of the results for neural networks are given in Section 4.4.

Although the proofs of Chapter 3 are provided within that chapter (and thus the

methodological issues for compressed sensing are mostly self contained in Chapter 3),

we provide the proofs for the computational results in Chapter 5. This includes all the

proofs from Chapter 4 as well as the key result stated in Chapter 2.

Finally, we conclude the thesis in Chapter 6. A brief summary of the entire thesis

is provided, along with a discussion on a wide variety of possible future directions and

open questions that arise from this thesis.

1.2 On novelty

In this thesis, unless otherwise stated a theorem, lemma, proposition or corollary is

original work. In particular, all the non-computability results, the positive results

for basis pursuit and lasso, the results on neural networks (with the exception of the

universal approximation theorem stated in the introduction) and all the results on the

RIP in levels and nullspace property in levels in Chapter 3 are new to this thesis. Note

CHAPTER 1. INTRODUCTION 12

however that there is some discussion in [24] on how imprecise initial data can affect

the output of linear programming.

Additionally, this thesis introduces several new concepts. The various breakdown

epsilons defined in Sections 2.6 and 2.8 are important new concepts first defined here.

The idea of a randomised general algorithm used to demonstrate non-computability

defined in Section 2.7 is also new to this thesis. The RIP and nullspace properties in

levels defined in Chapter 3 and used to explain the methodological and algorithmic

success of compressed sensing are novel definitions.

In general, everything that comes after (but not including) Section 2.6 as well as

the breakdown epsilons defined in Section 2.6 is novel work unless otherwise stated

with the exception of the well known definitions of condition numbers restated in 2.11.

The introduction is novel in exposition only and the ideas of an SCI hierarchy [13],

inexact input (and specifically ∆1 information) [13], a Turing machine [120] and a BSS

machine [17] are well known to the community.

It should however be noted that the majority of Chapter 3 has appeared in my

own work published in SIIMS [9]. This work, which was written with some guidance

from Anders Hansen, was recently featured on the front cover of SIAM News [10].

Furthermore, the results on non-computability and the corresponding definitions are

the result of a close collaboration between myself and Anders Hansen with additional

insight provided by Verner Vlacic.

1.3 Condition

We begin this section with an example. We solve the following problem using MATLAB

R2016b [88] (an example of a linear programming problem, see Section 1.4):

arg min
x∈RN

cTx such that Ax = y, x ≥ 0

with

A =

(
1 ε

1 0

)
, y =

(
1 + ε

1.

)

It is easy to see that the correct solution to this problem is the vector (1, 1)T . The

matlab code for ε = 10−16 is as follows:

1 Large = 1e16; Epsilon = 1/Large;

2 y = [(Epsilon +1) 1].';

3 A = [1 Epsilon; 1 0];

4 c = [1 1];

5 options = optimoptions('linprog ','Algorithm ','dual -simplex '

);

6 options.MaxIterations = 1e100;

7 options.OptimalityTolerance = 1e-10;

8 AlglinprogAns = linprog(c,[],[],A,y,[0 0],[], options)

With those commands, MATLAB prints the following output messages:

CHAPTER 1. INTRODUCTION 13

Optimal solution found.

AlglinprogAns =

1.0000

0

In mathematical notation, MATLAB produces the vector (1, 0)T as a solution. Impor-

tantly, this vector is not optimal - in fact, it isn’t even feasible. It is easy to see that

the true solution to this linear programming problem is instead x̂, where x̂ = (1, 1)T .

Actually, x̂ is the unique solution to Ax = y. If we enter the matlab command A\y
(which solves for x the linear systems problem Ax = y), we get the following output.

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.000000e-16.

ans =

1

0

Once again, MATLAB is unable to solve the problem and returns the incorrect

vector (1, 0)T . However, here we observe a subtle but important difference: there is a

warning printed by MATLAB about condition. Essentially, MATLAB has informed us

that it is unable to solve the problem because the input set is somehow badly suited to

the algorithm being used. In the linear programming case no such warning is printed. It

transpires that the condition of linear programming is a far more complicated problem

than that of linear systems. The importance of condition is highlighted by the recent

book by Bürgisser and Cucker [24], who argue that condition is very important for

understanding when algorithms will work and when they will fail. We shall adopt this

philosophy in this thesis, giving a detailed analysis on how a variety of different notions

of condition affect the computability of a problem.

Remark 1.3.1. Note that although the algorithm chosen for linear programming is

the ‘dual-simplex’ algorithm, it is possible to use the same set of commands (with

potentially different values of the variable ‘Large’) to get a similar result for the other

algorithms supported by MATLAB R2016b.

Remark 1.3.2. The tolerance parameter 10−10 is the minimal permitted tolerance

for the dual-simplex algorithm.

1.4 Linear programming

In many scenarios, we might seek to maximise/minimise some parameter (e.g. profit

for a goods manufacturing facility) but we might be constrained by some linear factors

CHAPTER 1. INTRODUCTION 14

(e.g. stock available to use in constructing goods). A highly celebrated technique for

solving such issues is linear programming. This is the collection of problems that can

be represented in the following way

arg max
x∈RN

cTx subject to Ax = y, x ≥ 0

with c ∈ RN , A ∈ Rm×N and y ∈ Rm and the inequality x ≥ 0 is evaluated element-

wise. For example, if the goods manufactured are chemicals, x might be a vector that

represents the (non-negative) amount of each chemical that will be manufactured, c

might represent the profit that is obtained by selling each chemical and the restriction

that Ax = y is set so that there is a limited amount of each element with which to

manufacture new chemicals. It is important to note the following:

� The equality constraint can be replaced by an inequality constraint i.e. Ax ≤ y

where the relation ≤ is defined element-wise.

� Sometimes a different problem is considered, also termed ‘linear programming’.

This is the following:

max
x∈RN

cTx subject to Ax = y, x ≥ 0

Here, we are not interested in the value of x that maximises the relation but

the value of the objective function cTx at such a maximum (this is exactly the

difference between argmax and max). Although there may be circumstances

where this is useful, it is often crucial to know x itself (for example, in the above

example of a chemical production plant it is far more important to know how to

obtain the best possible profit than simply knowing what the maximal profit is).

� It is not guaranteed that such a problem has a solution. Since this is uninteresting

from the perspective of knowing whether or not we can solve linear programming

on a computer, we focus mainly on the case where the problems are indeed

feasible.

� At this point there may be some confusion: there is a well known algorithm for

computing the minimisers of a linear program, namely the simplex algorithm [43].

However, the simplex algorithm works on exact information. This may not be

possible if it is impossible to obtain exact information on c, A or b or if any of

these parameters are somehow noisy. Our work will focus on this case.

� Sometimes the problem is done over something other than the real numbers like

the integers or rational numbers. This however brings about its own difficulties

- if the problem is done over the integers then we are left with integer program-

ming which is a famous NP-complete problem [75]. If the problem is done over

the rational numbers then using floating point arithmetic can lead to similar

imprecision issues.

As a passing remark let us briefly consider the additional problem of semidefi-

nite programming, which has received attention from a number of mathematicians

CHAPTER 1. INTRODUCTION 15

[55,56,122]. We note that as linear programming is a special case of semidefinite pro-

gramming, any non-computability result on linear programming immediately implies

a corresponding non-computability result for semidefinite programming.

1.5 Compressed sensing

We shall begin by discussing the general ideas of compressed sensing [18, 29, 32, 41,

47, 50, 53, 58, 60, 60, 69, 105] as it is used in linear inverse problems. Consider the

problem of recovering information x ∈ Cn from a scanning device, represented by an

invertible matrix M ∈ Cn×n, given observed measurements b := Mx. In general, we

require knowledge of every element of b to be able to accurately recover x without

additional structure. Indeed, let Ω = {α1, α2, . . . , αm} with 1 ≤ α1 < α2 < α3 < · · · <
αm ≤ n and define the projection map PΩ : Cn → Cm so that PΩ(x1, x2, . . . , xn) :=

(xα1 , xα2 , . . . , xαm). If m is strictly less than n then for a given y there are at least

two distinct vectors x1 ∈ Cn and x2 ∈ Cn with PΩb = PΩMx1 = PΩMx2, so that

knowledge of PΩb will not allow us to distinguish between multiple candidates for

x. Ideally though we would like to be able to take m � n to reduce either the

computational or financial costs associated with using the scanning device M .

So far, we have not assumed any additional structure on x. However, let us consider

the case where the vector x consists mostly of zeros. More precisely, we make the

following definition:

Definition 1.5.1 (Sparsity). A vector x ∈ Cn is said to be s-sparse for some natural

number s if |supp(x)| ≤ s, where supp(x) denotes the support of x.

If x is sufficiently sparse, it is natural to expect that looking for the solution x̂ to

PΩMx̂ = PΩb with the least number of zeros would be an effective way of recovering

x. However, this problem is non-convex. Instead, the key to CS is the fact that, under

certain conditions, any minimiser of either the Basis Pursuit (BP) problem (sometimes

known as Basis Pursuit with `1 regularisation)

z ∈ arg min ‖x̂‖1 such that y = Ux̂ (BP)

or the Basis Pursuit Denoising (BPDN) problem (defined for fixed δ > 0 and again,

sometimes known as Basis Pursuit Denoising with `1 regularisation)

z ∈ arg min ‖x̂‖1 such that ‖Ux̂− (y + η)‖2 ≤ δ. (BPDN)

(where U := PΩM is a matrix in Cm×n, η ∈ Cm is a noise term with ‖η‖2 ≤ δ and

y = PΩb = Ux) gives a good approximation to x, provided that x has some form of

sparsity.

There are two natural questions that arise from the statement of these problems

� Under which circumstances on x, U and δ does the solution to either (BP) or

(BPDN) give a good approximation to x?

� Are (BP) or (BPDN) computable?

CHAPTER 1. INTRODUCTION 16

Establishing criteria for the first of these questions is non-trivial. For example, if

U is a subsampled identity matrix then there will always be x which are sparse but

cannot be recovered. We shall further discuss this question in Chapter 3.

The second question is one of the primary focuses of this thesis. We will see that

if we permit arbitrary y and U , neither (BP) nor (BPDN) can be computed. This will

be discussed in detail in section 4.2.

To give a reference for the types of U that are typically chosen, sometimes we insist

that M = AW−1 for some measurement operator A and some sparsifying operator W .

In particular, frequent choices include the case where A is a fourier matrix and W is

a a wavelet transform.

A different collection of commonly studied choices for U include the Hadamard and

Bernoulli random matrices [60]. Since these matrices will be important later, we shall

give a precise definition:

Definition 1.5.2 (Hadamard random matrices). The Hadamard random matrices of

size m× 2k is the matrix PmHk where Hk is defined by the recurrence relation

Hj = H1 ⊗Hj−1, H1 =

(
1 1

1 −1

)
H0 = 1, j ∈ N

and Pm is a random selection of m rows followed by scaling by a factor of 1/
√
m.

Definition 1.5.3 (Bernoulli random matrices). The Bernoulli random matrices B

of size m × N is a matrix with independent identically distributed entries such that

P(Bi,j = 1) = P(Bi,j = −1) = 1/2.

Let us conclude this section with a simple example taken from [10]. We considered

an original image of a pomegranate which used 20482 pixels. The aim is to capture

this image using a simulated MRI scanner. First, we considered the approach of

simply reading the central 2562 fourier frequencies and then performing a direct matrix

inversion on that data. This is the linear recovery method. Next, we compared to an

approach using compressed sensing - we took 2562 measurements in a level based

structure (see Chapter 3 and the first sampling pattern in 3.2 for a similar example).

We then attempted to compute the minimiser of the basis pursuit procedure (BP) with

U = PΩM . Ω was defined to be the sampling pattern and the matrix M was given

by a composition of the 2D fourier transform and an inverse curvelet transform. The

results are presented in Figure 1.1.

CHAPTER 1. INTRODUCTION 17

(a) (b) (c)

Figure 1.1: An example using compressed sensing. (a) Original image with small
synthetic detail added, shown in the red region. (b) Zoomed linear recovery from
the central 2562 (around the 0 Fourier frequency) Fourier measurements. (c) Zoomed
compressed sensing with a multilevel random sampling pattern with subsampling using
m = 2562 measurements.

It is clear that with the same number of samples, compressed sensing has shown

a vast improvement in image quality. This may be very important if instead of a

pomegranate, the object being scanned is a human organ. In that scenario, small

artefacts may cause a misdiagnosis of a patient’s medical issues.

1.6 Statistical estimation

Statistical estimation is the task of finding out which features (and how strongly) can be

used to predict observations. Specifically, we are given m observations of a dependent

variable y and, for each y, corresponding values of N features Ai,j for i = 1, 2, . . . ,m

and j = 1, 2, . . . , N . We wish to establish which of the N features are important and

to quantify this to make future predictions based on knowledge of the intensity of

each feature. The simplest initial idea for doing this is to solve the equation Ax = y

for x. However, there is no reason to suspect that A is invertible. To expand on

this simple initial idea, one could try to solve a least squares problem, namely find

argminx∈RN ‖Ax − y‖22. Unfortunately, this may lead to infinitely many solutions. In

particular, this can occur if we only have a small number of observations relative to

the number of features, i.e. m < N .

If however we know a-priori that few features are likely to be relevant (even if we do

not know which ones are the relevant ones), we can instead try to solve some regularised

version of least squares. Constrained LASSO [66, 115] does exactly this: for a fixed

t > 0, we solve argminx∈RN ‖Ax− y‖22 such that ‖x‖1 ≤ τ . By forcing the `1 norm to

be small, we can avoid overfitting noisy data (which may happen if we instead solve

the least squares problem) and penalise solutions that have many non-zero features

(whilst still maintaining the desirable convex property of the problem).

A related problem is that of Unconstrained LASSO. This is in some sense the dual

of constrained lasso and can be written as argminx∈RN ‖Ax−y‖22 +λ‖x‖1 where λ ≥ 0

CHAPTER 1. INTRODUCTION 18

is fixed. In practice, both problems are studied. A consequence of convex analysis is

that if for some t, the vector x solves constrained lasso with the observations y and

predictors A then there is a λ (depending on x) so that x (with the same observations

and predictors) also solves unconstrained lasso and vice-versa. The two problems are

therefore very similar.

Despite the apparent similarity, the problems are not identical in the sense that if

S is the set of all solutions to a constrained lasso problem then it may not be the case

that there is a lambda for which S is exactly the solution set to unconstrained lasso.

Indeed, consider the following constrained lasso problem:

A =
(

1 1/2 1/3
)
, y = 1, τ = 2.

It is clear that the vectors x1 = (1, 0, 0)T , x2 = (0, 2, 0)T are both solutions (since

both have `1 norm bounded by 2 and Ax1, Ax2 = y) but the vector x3 = (0, 0, 3)T is

not a solution. For unconstrained lasso however, if λ > 0 and x1 is a solution then

‖Ax2 − y‖2 + λ‖x2‖1 > ‖Ax1 − y‖22 + λ‖x1‖1 and so x2 is not a solution. If instead

λ = 0 then x1, x2 and x3 are all solutions. Thus there is no lambda for which x1, x2 are

solutions and x3 isn’t. Because of this observation we shall find that the two problems

have different computational properties. We shall elaborate on this in Section 4.3.

1.7 Neural networks

Suppose that we are given a collection of images and we wish to determine automati-

cally whether or not a given image contains a dog. Such a problem is a specific example

of a more general classification problem. We assume that there is an intrinsic but not

known function f : M → {0, 1} that classifies our inputs which exist in a space M ⊆ Rd

(in this case we might take M = [0, 1]d to be the values of the d pixels of the image and

0, 1 represent ‘not dog’ and ‘dog’ respectively). Our task is to find from a fixed finite

collection of samples S ⊆ M and knowledge of f(x) for each x ∈ S an approximation

to f on the entirety of M . Of course, we should not expect any approach to work for

all possible f and M , but we can still see reasonable success at this problem by using

a neural network.

1.7.1 Perceptrons

Before explaining neural networks, let us consider a more basic concept: a perceptron

[92]. The basic idea is that we can make choices based on weighing up different inputs.

The perceptron takes input x, applies weights to it, and then applies a simple activation

function to determine whether f(x) = 0 or f(x) = 1. Mathematically, a perceptron

works in the following way: there are w ∈ R1×d, b ∈ R and g : R → {0, 1} such that

for a given x, the output of the perceptron is g(wTx+ b). The activation function here

is taken to be g(x) = 1 if x > 0 and g(x) = 0 if x ≤ 0. w represents the weights of the

network and b is a bias that either pushes the perceptron towards or away from 0 or

1. This is demonstrated in Figure 1.2.

CHAPTER 1. INTRODUCTION 19

x1

x2

...

...

...

xd

wTx+ b Output
g

Weights

and bias

Inputs

Figure 1.2: A simple perceptron model.

We then ’train’ the perceptron by attempting to find suitable w and b so that

g(x) ≈ f(x) whenever x ∈ S. This model will see success with some patterns f .

However, let us consider the exclusive or pattern i.e. M = {(0, 0), (1, 0), (0, 1), (1, 1)}
and

f(a, b) =

{
1 if exactly one of a, b = 1

0. otherwise

It is easy to see that no perceptron can exactly capture f , even though f is in some sense

relatively simple (such a result was demonstrated in [92]). Indeed to capture f exactly,

we require g(w1+b) = 1, g(w2+b) = 1 and g(b) = 0. Thus w1+w2+b ≥ w1+w2+2b ≥
(w1 + b) + (w2 + b) > 0. But this immediately implies that g(w1 + w2 + b) = 1 and

thus g 6= f . We therefore take a different approach.

1.7.2 Feed forward neural networks

To move from perceptrons to neural networks (see [82] and references within), we make

two changes. Firstly, we allow for a different class of activation functions than the

simple function g that we described earlier. Instead, we deal with a fixed ρ : R → R.

This has computational consequences: the g defined above is clearly discontinuous,

whereas here we can work with ρ that are continuous. We call this now modified

perceptron a neuron. Our second change will be to use multiple neurons. Indeed, we

shall arrange the neurons in layers. The input information will be termed the input

layer and the output neurons the output layer. Any other layers will be termed hidden

layers.

To demonstrate this, let us consider a one hidden layer network. In the hidden

layer, we set up a collection of N1 neurons which each with their own weights and

biases. For reasons that will become clear later, we label the weights from the ith

neuron as W 1
i,1,W

1
i,2, . . .W

1
i,d and the bias as b1i . For a given input x ∈ Rd, each neuron

computes
∑d

j=1W
1
i,jx + b1i and then applies the function ρ to it. We then have an

CHAPTER 1. INTRODUCTION 20

output neuron, which takes the results of the N1 neurons and applies it’s own weights

W 2
1,1,W

2
1,2, . . . ,W

2
1,N1

and a bias b2. This is demonstrated in the top part of Figure 1.3

with N1 = 2

x1

x2

...

...

...

xd

W 1,T
1 ·+b11

W 1,T
2 ·+b12

W 2,T
1 ·+b21 Output

x W 1 ·+b1 W 2 ·+b2 Output
ρ

ρ

ρ

Hidden

layer Output

layer

Input

layer

Figure 1.3: Top half: A diagram of a neural network with a two neuron single hidden
layer. Bottom half: A simplified version using matrix arithmetic.

It is easy to see that for inputs x, with this model, we are computing A2ρA1(x)

where A1, A2 are the operators A1 = W 1 + b1, A2 = W 2 + b2 with the matrices W 1

and W 2 are formed by the entries W 1
i,j ,W

2
1,j respectively. The function ρ is applied

componentwise. This is summarised in the bottom half of Figure 1.3. As a natural

generalisation, we can introduce multiple hidden layers and even attempt to work with

f that map to a multidimensional output space. With L layers including the output

layer, such a network would be of the form

ALρAL−1ρ · · ·A2ρA1, Al = W l + bl with W l ∈ RNl×Nl−1 , bl ∈ RNl

for fixed parameters N = (N0, N1, N2, . . . , NL) with N0 = d. We denote the class of

all such neural networks by NNN,L.

A natural question is that of expressibility. Namely, which f can be approximated

by such neural networks? It transpires that provided ρ is not a polynomial, every

continuous f : Rd → R can be approximated arbitrarily by neural networks. Precisely,

we have the following variant of the universal approximation theorem [95].

Theorem 1.7.1. Let NN∞,2 denote ∪∞N1=1NNN,2 with N = (d,N1, 1). Then NN∞,2
is dense (in the topology of uniform convergence on compact sets) in the space of contin-

uous functions on Rd provided that ρ is a continuous function that is non-polynomial.

CHAPTER 1. INTRODUCTION 21

The ρ that we shall examine in this thesis is the rectified linear unit. Specifically,

we set ρ(x) = 0 if x < 0 and ρ(x) = x if x ≥ 0 [72,93].

1.7.3 Training a neural network

So far, we have been able to define neural networks. However, it is not obvious how we

should go from a set of examples to finding the correct neural network to approximate

f . We therefore need to discuss training the neural network. At the very least, we

should hope to match f closely on S. Thus we introduce a cost function C ∈ CF

CF = {C : R|S| × R|S| → R+ |C(v, w) = 0 iff v = w} (1.7.1)

which penalises incorrectly classified training examples. We thus attempt to solve

min
ϕ∈NNN,L

C
[
(φ(x1), φ(x2), . . . , φ(x|S|)), (f(x1), f(x2), f(x3), . . . , f(x|S|)

]
.

Typically, C can be written as a sum of identical cost functions acting from R× R to

R+. We write

C
[
(φ(x1), φ(x2), . . . , φ(x|S|)), (f(x1), f(x2), f(x3), . . . , f(x|S|)

]
=
∑

x∈S
C ′(φ(x), f(x))

Example choices of C ′ include C ′(a, b) = ‖a − b‖pp (most commonly when p = 2,

termed the quadratic cost function) or the cross entropy cost function, C ′(a, b) =

b log(a) + (1− b) log(1− a) for a /∈ {0, 1} and C ′(a, b) = 0 otherwise.

This minimisation problem can be expressed in terms of the weights and bias. If

ρ is differentiable, we can attack this minimisation problem using a form of gradient

descent, assuming that we can find the derivative with respect to changes in weights

and bias. This is done using backpropagation [107], which we shall not discuss here.

Of course, the method may get stuck in a local minimum and we are trying to apply it

to a function ρ that has one point of non-differentiability, but these issues are ignored

in practice.

Therefore one attempts to find weights wi such that

wi = wi−1 − γ
∑

x∈S
∇wC ′(φ(x), f(x))

for some step size (known within the machine learning community as the learning

rate) γ > 0 and where ∇w represents the gradient with respect to the weights and

biases. However, computing ∇wC ′(φ(x), f(x)) is generally prohibitively expensive.

Thus an algorithm termed stochastic gradient descent [19, 113] is used in place of

gradient descent. Instead of each update wi requiring |S| gradient computations, we

calculate ∇wC ′(φ(x), f(x)) for a randomly chosen x ∈ S (note that this randomness

can be with or without replacement, but this is not important for the purposes of this

thesis). We then immediately update wi by wi = wi−1 − γ∇wC ′(φ(x), f(x)). This

yields a random method; applying this method twice to the same set S and f , there is

CHAPTER 1. INTRODUCTION 22

no guarantee that the weights will converge to the same value. Thus, we must enhance

our discussion of the limitation of algorithms to include randomised algorithms. This

is done in section 2.7.

1.8 Image processing

Image processing is a vast field. Topics are as varied as denoising images taken with

noise artefacts [106] to automatically ‘filling in’ a portion of the image using image

inpainting [15,38]. Since there are so many topics to choose from, we focus on inverse

problems in a similar way to Section 1.5 and image deblurring. Both use the total

variation norm (TV), which measures the amount of variation between neighbouring

pixels of an image. Mathematically, an image is a matrix in Rm1×m2 , with each entry

of the matrix representing a pixel. We can now define the gradient of an image.

Definition 1.8.1. For x ∈ Rm1×m2, the gradient of x, denoted by ∇(x),

[∇(x)]i,j =





(|xi+1,j − xi,j |, |xi,j+1 − xi,j |) if 0 ≤ i ≤ m1 − 1 and 0 ≤ j ≤ m2 − 1

(|xi+1,j − xi,j |, 0) if 0 ≤ i ≤ m1 − 1 and j = m2

(0, |xi,j+1 − xi,j |) if i = m1 and 0 ≤ j ≤ m2 − 1

(0, 0) otherwise.

In some sense, ‘natural images’ have a small gradient. The general idea behind both

image deblurring and inverse problems in this setting will be to try to find images that

have a small gradient. This is captured by defining the total variation norm, which

can be done in either an anisotropic way or an isotropic (invariant to rotations of the

gradient operator) way as follows.

Definition 1.8.2. [37, 54, 84] Let x ∈ Rm1×m2. The anisotropic TV norm of x,

denoted by ‖x‖TV aniso, is given by

‖x‖TV aniso :=

m1∑

i=1

m2∑

j=1

‖[∇(x)]i,j‖1 .

The isotropic TV norm of x, denoted by ‖x‖TV iso

‖x‖TV iso :=

m1∑

i=1

m2∑

j=1

‖[∇(x)]i,j‖2 .

Since our results apply to either of these norms, we shall simply avoid the distinction

and refer to the TV norm ‖ · ‖TV. We will now discuss inverse problems and image

deblurring in this context.

1.8.1 Total variation inverse problems

The idea that ‘natural’ images must somehow have a small gradient allows us to solve

inverse problems in a different way to the one proposed in section 1.5. There, we were

CHAPTER 1. INTRODUCTION 23

presented with a matrix U ∈ Rm×N (with m < N) and data y = Ux for some x, and

our task was to find x from the many potential candidates. To do this, we selected

based on a small `1 norm after transforming to a domain in which we expect x to be

sparse. If we know however that x represents an image, an alternative strategy would

be ask for a small total variation norm. Specifically, we can adapt the basis pursuit

problem BP to a basis pursuit with TV regularisation problem [96], defined as follows:

z ∈ arg min ‖x̂‖TV such that y = Ux̂. (BPTV)

Although we could ask similar questions related to understanding when solving

(BPTV) exactly will yield a sensible solution to x, this is outside of the scope of this

thesis. Instead we shall focus on the computational aspect, namely, can we compute

(BPTV)?

1.8.2 Image deblurring

The process of image deblurring [36] is similar to working with TV inverse problems.

Let us suppose that we are given an image that has been blurred by some non invertible

operator U ∈ Rm×N and some noise term η ∈ Rm. Thus we are told the value of

y = Ux + η. We want to deblur the image, subject to knowing how the image was

blurred (there is a concept of blind deblurring [80] where the operator U is not known

a-priori, but we shall not discuss this further here). To do so we can look for an image

which, when blurred, will be roughly the same as y. Since many such images may

exist, we can also ask for an image which does not feature a large total variation.

Mathematically, we can adapt the lasso defined in section 1.6 to try to find z such that

z ∈ arg min ‖x̂‖TV + λ‖y − Ux̂‖2 (DeblurTV)

Again, we focus only on the computational properties of such a problem.

Chapter 2

Computational frameworks and

the SCI hierarchy

In this chapter we discuss and generalise various models of computation and formulate

the problems introduced in Chapter 1 as computational problems.

2.1 A new model for computation

There are a variety of existing approaches used to understand computability theory.

Two important examples are turing machines and BSS machines. Although it would

be possible to prove many of the results in this thesis with these models, we shall not

do so. Instead we work with a newly introduced model known as a general algorithm.

There are a number of reasons for doing this:

� Generality - BSS and turing machines form examples of general algorithms.

Thus proving a result that says something cannot be computed with a general

algorithm will immediately imply that it cannot be computed with either BSS

machines or turing machines. By introducing this more general model for com-

putation we are able to abstract away from specific details and thus prove results

that are independent of the precise model of computation under consideration.

� Focus - A general algorithm does not describe the operations that a machine

is permitted to use to perform computations. Instead, the focus is on the in-

formation that the algorithm is allowed to access. The results that are proven

in this thesis all rely on the limited information that the algorithms are allowed

to access to solve their problems. We therefore believe that a proof of a weaker

negative result that suggests that many of these problems are non-computable

with a turing machine/a BSS machine would also need to implicitly work with a

general algorithm.

� Power - We illustrate this idea with an example. Consider the problem of

training a neural network. Since the optimisation problem is non-convex, it

is entirely possible for an algorithm to get ‘stuck’ in a local minimum. As a

general algorithm does not limit the computational operations available, a general

24

CHAPTER 2. THE SCI HIERARCHY 25

algorithm could make use of an oracle that guarantees that the procedure avoids

local minima. Therefore a result that proves that training a neural network with

a given cost function is non-computable is far stronger if the result is proven with

a general algorithm than with, say, a turing machine.

For these reasons, we structure this chapter as follows: firstly, we introduce the

well known turing and BSS models of computation. Secondly, we describe general

algorithms. Next, we discuss some famous non-computable problems. Up until this

point all the material presented is not novel to this thesis. The novel material begins

in Section 2.6 when we introduce the idea of an algorithm having access to only limited

precision approximations of the true inputs. We also precisely define the breakdown

epsilons to model the limited output accuracy that may be attainable. After that,

we further generalise the work to randomised algorithms and then prove a key novel

proposition on how inexact information can affect computability. With this in hand,

we formulate the problems discussed in Chapter 1 in our new framework so that we

are ready to prove results about them. Finally, Section 2.11 is a discussion of (well

established) concepts used to understand how ‘bad’ a problem is from a computational

perspective, known as condition numbers.

2.2 Turing machines

One of the most well studied and discussed models of computation is that of a turing

machine. Informally, a turing machine consists of an (infinitely long) tape which are

used to write and read information (one character at a time, specified by the current

location of the head), a list of states which the machine can be in at any moment and

a finite table of transitions which dictate how the machine writes information and also

how it transitions between various states. Included in the list of possible states is a

start state, an accept state and a reject state. For a given input ι, the turing machine

is said to accept ι if it reaches the accept state with finitely many transitions and

reject ι if either it reaches the reject state or it fails to terminate after finitely many

operations.

There are many (equivalent) ways of defining a turing machine formally. We follow

[87].

Definition 2.2.1. A turing machine is a 7-tuple (Σ, α,Q, q0, qaccept, qreject, δ) where

� Σ is some finite set called the input alphabet. The tape is initialised with some

finite combination of elements of Σ

� α is a finite set called the tape alphabet. This includes a blank character. More-

over, Σ ⊆ α.

� Q is a finite list of states that the machine can occupy at any given stage.

� q0 ∈ Q is the initial state that the machine occupies at the start.

� qaccept ∈ Q is the accept state that allows the machine to accept a given input.

CHAPTER 2. THE SCI HIERARCHY 26

� qreject ∈ Q is the reject state that allows the machine to reject a given input.

� δ : α×Q→ α×Q× {L,R,N} is the transition function.

The transition function takes input from the tape and a state and tells the machine

what the new state is, a replacement character (which can be the same) to insert at the

current location on the tape and a movement instruction to move the head left, right

or not move at all.

Typically, turing machines are defined so that the tape has finitely many non-blank

characters each in Σ when initialised. This allows us to do computations with rational

inputs, so that we can (for example) add or subtract two rational numbers using a

turing machine. However, in scientific computing, it is important to be able to discuss

the computability of problems with real numbers. As a simple example, let us consider

the problem of adding two real numbers. There are two obvious barriers to using a

turing machine in this way - firstly, since the tape alphabet has to be finite it will

be impossible (in general) to add two real numbers using a turing machine. Indeed,

to represent every real number we would need either an infinite tape alphabet or an

infinitely long tape. Accessing each entry of this tape will prevent the algorithm from

halting and thus we cannot add two real numbers together. Secondly, since the tape of

the turing machine has to be initialised with only finitely many non-blank characters,

it will be impossible to input our two real numbers to the machine. To address these

concerns we turn to the BSS (Blum-Smale-Shub) [17] model of computation.

2.3 BSS machines

As in the previous section, BSS machines are designed to be more amenable to prob-

lems in numerical analysis. In particular, BSS machines can be set up so that they

allow computations on real numbers. The definition begins with a ring (or a field)

R. Informally, the BSS machine takes values from an input space and moves through

finitely many states (in a state space) and instruction nodes to a value in an output

space. Each instruction node in the state space either tells the machine to perform

some operation on the state or to branch based on the current values of the state.

More precisely, we have the following definition

Definition 2.3.1. For l,m, n ∈ N, a BSS machine M over R is a four tuple consisting

of

1. An input space Ī ⊆ Rl.

2. An output space Ō ⊆ Rn.

3. A state space S̄ ⊆ Rm.

4. A finite directed graph of instruction nodes. Each instruction node is one of the

following:

CHAPTER 2. THE SCI HIERARCHY 27

(a) An input node (of which there is only one). The input node has exactly

one output edge to another node. The input node also contains a linear and

injective map that takes the input to the state space.

(b) An output node which contains a linear map from the state space to the

output space. Such a node must have no outgoing edges.

(c) A computational node which contains a polynomial map from the state space

to the state space. Each computational node has exactly one outgoing edge.

(d) A branch node which has two outgoing edges labelled β+ and β−. Attached

to the branch node is a polynomial from the state space to R.

The machine works as follows: at the beginning, the machine starts with input ι

at the input node. It then applies the linear map to ι to get a value in the state space

(that it stores as the current state) and moves along its only edge to the next node.

The machine now acts depending on what the next node is.

� If the next node is an output node, then the machine applies the linear map

attached to this output node to the value of the current state and outputs this

new value.

� If the next node is a computational node, the machine applies the polynomial

map to the current state and stores this value as the new current state. It then

moves to the next node on its outgoing edge.

� If the next node is a branch node, the machine will apply the attached polynomial

to the current state. If this polynomial is less than or equal to 0, it goes along

the edge labelled β−. If the polynomial is greater than 0 then it will go along

the edge labelled β+.

The machine then repeats this process until it reaches a suitable output node.

Remark 2.3.2. It is also possible to define a BSS machine for l,m, n =∞, but since

this adds complexity and we shall not use this in the work that follows, we do not do

this here and only note that our results will hold even for such BSS machines.

Remark 2.3.3. For our purposes, we consider R to be a field. Here, we replace the

word ‘polynomial’ in our definition with ‘rational function’. In this case it is possible

that the denominator of such a function is 0. To deal with this issue, we introduce the

halting set of inputs which is the set of inputs for which the machine halts and never

divides by 0. We then consider the machine to only be operating on such inputs.

2.4 General algorithms and the SCI hierarchy

As we have seen, there are many different models of computation each with their own

limitations and strengths. If we want to prove general results about computability

theory, it would be useful to abstract away from the model. We thus make a definition

for an computational problem.

CHAPTER 2. THE SCI HIERARCHY 28

Definition 2.4.1 (Computational problem). A computational problem {Ξ,Ω,M,Λ}
is comprised of the following objects:

� Ω is some set, which we call the primary or input set

� Λ is a set of complex valued functions on Ω, called the evaluation set

� M is a metric space which we call the output set

� Ξ : Ω→M is a function which we call the problem function

When it is clear what M and Λ are we will sometimes write {Ξ,Ω} for brevity.

In essence, Ω is the set of inputs that the problem can work with. Ξ is some

function that maps an input to an output (which we only require belongs to a metric

spaceM). This is the function that we are trying to compute with some machine (e.g.

a BSS or turing machine). The set Λ acts as the set of information that is accessible

to the machine.

At first glance, it may seem strange to include Λ as part of the definition of the

problem. To show how important this is, we consider the following simple example:

Example 2.4.2. Let P 1(Z) be the space of all non-constant linear polynomials from

R → R with integer coefficients. Our task is to find the root of these polynomials.

We can write this computational problem in the following way: {Ξ,Ω,M,Λ} with

Ω = P 1(Z), Ξ(p) = −b/a for p ∈ P 1(Z) such that p(x) = ax+ b andM is the space of

rational numbers endowed with the euclidean norm. It is clear that

� If Λ = {λ1, λ2} with λ1(p) = a, λ2(p) = b (in other words, we have access to

both coefficients of the linear polynomial) then the problem is computable with

a turing machine.

� If Λ = {λn such that n ∈ Z} with λn(p) = p(n) (in other words, we can access

evaluations of the polynomial at integer values) then the problem is computable

with a turing machine.

� If Λ = {λ1} with λ1 defined as above (in other words, we can access just the first

coefficient) then the problem is not computable with a turing machine.

� If Λ = {λ0} with λ0 defined as above (in other words, we can access the polyno-

mial evaluated at 0) the problem is not computable with a turing machine.

This example highlights how the information that the machine has access to as well

as the operations the machine is allowed to perform completely changes the nature of

what is and what isn’t computable. Thus it is essential to include Λ in the definition

of a computational problem. Similarly, the input set Ω is also critical. Suppose that

instead of Ω = P 1(Z) in the example above, we took Ω = {p0} where p0(x) = x. In

this case, even if Λ = {λ1} or Λ = {λ0}, the problem would become computable since a

turing machine could simply output the answer 0 without considering the input. This

is an example of a more general idea: suppose that Ω is some set with a subset Ω′ and

CHAPTER 2. THE SCI HIERARCHY 29

that Ξ : Ω→M and Λ are such that the problem {Ξ,Ω,M,Λ} is computable (in the

sense of e.g. BSS or Turing). Then {Ξ,Ω′,M,Λ} is also computable.

We now make a natural generalisation of BSS and Turing machines for a compu-

tational problem:

Definition 2.4.3 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ},
a general algorithm is a mapping Γ : Ω→M such that for each ι ∈ Ω

(i) there exists a finite subset of evaluations ΛΓ(ι) ⊂ Λ ,

(ii) Γ(ι) only depends on {ιf}f∈ΛΓ(ι) where ιf := f(ι),

(iii) for every ι̃ ∈ Ω such that ι̃f = ιf for every f ∈ ΛΓ(ι), it holds that ΛΓ(ι̃) = ΛΓ(ι).

The three properties of the algorithm are very natural principles that we would

expect any computational device to obey. Essentially, the first one says that an al-

gorithm cannot ask for infinite information about an input (note that a single real

number does not count as infinite information for the purpose of this definition, so

a BSS machine is still a valid general algorithm). The second property says that the

output of an algorithm can only rely on the information that it has accessed - this pre-

vents an algorithm from bypassing Λ and automatically outputting the value Ξ(ι) for

a given input ι without first accessing functions in Λ. The third property says that an

algorithm must access information in a consistent way - if it sees the same information

for two different inputs, then it cannot behave differently for those inputs.

General algorithms are far more powerful than the standard BSS or Turing ma-

chines. In particular, a general algorithm is not restricted to arithmetic or rational

operations on the information it can see. This does not stop a general algorithm from

being a useful concept. If one can show a lower bound with a general algorithm (that

is, a result that says a computational problem is not computable using a general al-

gorithm) then automatically that same lower bound must apply to BSS machines and

Turing machines. Essentially any non-computability result shown using a general al-

gorithm suggests that the problem is inherently non-computable not because there are

not enough operations to give the correct answer, but because the information about

each input available to the algorithm is insufficient to solve the problem. Thus a lower

bound for a general algorithm also tells us something about the problem that a similar

result for a Turing machine or a BSS machine would be unable to do.

Of primary importance are two classes ∆G
0 and ∆G

1 that represent problems that

can be considered ‘computable’. The most obvious of these two is the class ∆G
0 of

problems which can be computed exactly with a general algorithm. More precisely:

Definition 2.4.4. A computational problem {Ξ,Ω,M,Λ} is said to be in ∆0 if there

exists a general algorithm Γ such that Γ(ι) = Ξ(ι) for every ι ∈ Ω. In this case, we

write {Ξ,Ω,M,Λ} ∈ ∆G
0

Later we shall work with computational problems for which the input is inexact.

Thus an expectation that the algorithm should be able to get the exact answer from

inexact readings may be too strong. We thus consider the slightly expanded class ∆1

CHAPTER 2. THE SCI HIERARCHY 30

of problems which can be computed up to a fixed, predefined (but arbitrarily small)

error. This can be expressed formally in the following way:

Definition 2.4.5. A computational problem {Ξ,Ω,M,Λ} is said to be in ∆1 if there

exists a sequence of general algorithms {Γn}∞n=1 such that

d(Γn(ι),Ξ(ι)) ≤ 2−n for every ι ∈ Ω. (2.4.1)

In this case, we write {Ξ,Ω,M,Λ} ∈ ∆G
1

Note trivially that all problems in ∆G
0 are also in ∆G

1 .

Before continuing, let us consider an example of finding the infimum of a sequence

with varying input sets to show how these definitions apply to computational problems.

Example 2.4.6. Define M = R, Ξ(ι) = infn∈N ιn where ι = (ι1, ι2, . . .) is a bounded

below sequence of real numbers. For such ι, we also define fn(ι) = ιn and set Λ =

{fn |n ∈ N}. We then define:

1. {Ξ1,Ω1,M1,Λ1} so that M1 = M, Ω1 is the space of all bounded below se-

quences of real numbers, Ξ1 = Ξ, and Λ1 = Λ.

2. {Ξ2,Ω2,M2,Λ2} so that M2 = M, Ω2 is instead the space of all decreasing

bounded below sequences ι such that if ι = (ι1, ι2, . . .) then |ιn − limk→∞ ιk| ≤
2−n, Ξ2 is the restriction of Ξ to Ω2 and Λ2 is the restriction of Λ to Ω2.

3. {Ξ3,Ω3,M3,Λ3} so that M3 = M, Ω3 is instead the space of all constant se-

quences, Ξ3 is the restriction of Ξ to Ω3 and Λ3 is the restriction of Λ to Ω3.

Then {Ξ1,Ω1,M1,Λ1} /∈ ∆1, {Ξ2,Ω2,M2,Λ2} ∈ ∆1\∆0 and {Ξ3,Ω3,M3,Λ3} ∈ ∆0.

Roughly speaking, these inclusions hold for the following reasons:

1. {Ξ1,Ω1,M1,Λ1} /∈ ∆1 because any general algorithm acting on an input ι must

terminate after accessing finitely many of the elements {f(ι) | f ∈ Λ1} which

corresponds directly to accessing finitely many elements of the sequence ι. Since

it is impossible to access finitely many elements of a sequence and find a neigh-

bourhood for the infimum, the problem cannot be in ∆1.

2. By contrast, {Ξ2,Ω2,M2,Λ2} ∈ ∆1 because for every ι ∈ Ω2, inf ι = limk→∞ ιk
and we know that the nth element of ι is at most 2−n from this limit. Hence

setting Γn(ι) = fn(ι) = ιn satisfies (2.4.1). However, this problem is still not in

∆0 since it is once again impossible to tell the exact limit of such a sequence just

from finitely many evaluations.

3. Finally, it is obvious from the definitions that {Ξ3,Ω3,M3,Λ3} ∈ ∆0: we simply

choose Γ so that Γ(ι) = f1(ι) = ι1.

Although it is not important for the thesis, it is worth noting that the there is a

generalisation of these two classes to an entire hierarchy of problems. This is known

as the SCI hierarchy [12, 13, 64] and can be used to classify the level of difficulty for

CHAPTER 2. THE SCI HIERARCHY 31

a problem that is not in ∆G
1 . Roughly speaking, the definitions above correspond to

exact computation (∆G
0) and computation that can be done exactly with one limit

of a sequence algorithms with additional access to error control - that is, we have an

upper bound for the maximum error across all inputs if we run just a finite subset

of the sequence of algorithms (∆G
1). Informally, for k ≥ 2 a problem is in ∆G

k if it

can be done with k − 1 nested limits of algorithms with no necessity for error control.

In many circumstances it is important to be able to classify where a problem lies in

the hierarchy, but for our purposes it suffices to classify a problem as in ∆0, in ∆1 or

outside of those two classes.

In fact, these definitions and the general SCI hierarchy are a direct continuation

of the program initiated by S. Smale to establish the foundations of computational

mathematics [17,23,24,109–112].

An important consequence of the definition of the SCI hierarchy and its reliance

on general algorithms is that, for a fixed k ∈ {1, 2}, if a problem is not in ∆G
k then a

similar result is also true for BSS or Turing machines. Thus any lower bound obtained

is independent of the computational model. However, a positive result that a problem

is in ∆G
k does not necessarily imply something about its status on a BSS or a Turing

machine.

Once again, we note that the purpose of a general algorithm is to show lower

bounds. For the positive results in this thesis, we produce explicit algorithms that

rely only on arithmetic operations, in the sense that the algorithms can easily be

implemented on a Turing machine if each f ∈ Λ has f(ι) ∈ Q and the algorithms can

be easily implemented on a BSS machine if instead each f ∈ Λ has f(ι) ∈ R.

We therefore make definitions for the purpose of stating positive results. We say

that {Ξ,Ω,M,Λ} ∈ ∆A
1 if every f ∈ Λ has f(ι) ∈ Q whenever ι ∈ Ω and there

exist algorithms Γn satisfying (2.4.1) that can be implemented using a turing machine.

We also say {Ξ,Ω,M,Λ} ∈ ∆A
1 if every f ∈ Λ has f(ι) ∈ R whenever ι ∈ Ω and

there exists algorithms Γn satisfying (2.4.1) that can be implemented using a BSS

machine. Note that in the rational case we assume that rationals that define Ω and

are independent of the specific input are accessible to the algorithm. Similarly in

the real case we assume that real constants that define Ω and are independent of the

specific input are accessible to the algorithm. This will prove to be important for the

positive results on the nullspace property. Finally, we can make analogous definitions

for ∆A
0 .

Remark 2.4.7. Although here Ξ is defined for single valued computational problems,

we do allow for Ξ to be multivalued in the following way: if Ξ is multivalued we consider

the computational task to find an algorithm Γ for which Γ(ι) ∈ Ξ(ι) for every ι ∈ Ω.

There will be further discussion on this later in Section 2.10.

2.5 LPO and LLPO - basic non-computable problems

This thesis makes use of the constructive philosophy of mathematics. In this section

we outline briefly the basic principles of constructive mathematics and discuss three re-

CHAPTER 2. THE SCI HIERARCHY 32

lated problems: the limited principle of omniscience (LPO), the lesser limited principle

of omniscience (LLPO) (we follow the work in [22]) and the halting problem.

In classical mathematics, to prove the existence or non-existence of an object it

suffices to show the opposite result. Specifically, classical mathematics makes great

use of the law of the excluded middle i.e. for a proposition P , either P or ¬P . In con-

structive mathematics a proof is only valid if one can specifically construct a sequence

of computations that can be performed in finite time to construct all relevant objects.

In particular, the law of the excluded middle is rejected in constructive mathematics.

As a very simple example, consider the following classical proof that there exist

a, b irrational with ab rational. We set a =
√

2 and c =
√

2
√

2
. If c is irrational then

ca =
√

2
√

2∗
√

2
= 2 is rational and the theorem is proven with b = c. Otherwise, b is

rational and thus aa is rational, so the theorem is proven with b = a. Although most

would consider this proof to be acceptable, in constructive analysis it is not valid. The

reason for this is that this proof does not give us an explicit example - to know which

of (a, c) or (a, a) is acceptable as an example we first have to know whether or not c is

irrational.

To understand the degree of non-constructivity of a problem, constructive mathe-

maticians consider two key computability problems. The first of which is LPO:

Definition 2.5.1 (LPO). Given a sequence {xi}∞i=1 with each xi ∈ {0, 1}, can we

determine if xi = 0 for every i or if there is an i such that xi = 1?

Of course, if one accepts the law of the excluded middle then one also accepts

LPO. Indeed, for any sequence of binary digits, one can set P to be the proposition

that ∃i |xi = 1. The negation of P is that ∀i xi = 0. Thus if one accepts that P or ¬P
then one also accepts LPO.

It is fair to say that LPO is viewed with considerable scepticism amongst construc-

tivists. Indeed, it is easy to show that if one can decide LPO then one can also decide

the following problem, known as the halting problem [57]. To state this theorem accu-

rately, first let Cq for q ∈ N be an enumeration of all possible Turing machines (noting

that by the definition of a Turing machine the set of all Turing machines is countable).

Definition 2.5.2 (Halting problem). The halting problem asks if there is a Turing

machine H which takes inputs a, b ∈ N that halts if and only if Ca(b) halts.

Famously, Turing [120] showed that such a Turing machine H does not exist.

A slight weakening of LPO that we will consider is LLPO.

Definition 2.5.3 (LLPO). Given a sequence {xi}∞i=1 with each xi ∈ {0, 1} such that

at most one xi is non-zero, can we determine if either x2i = 0 for all i or x2i−1 = 0

for all i?

To gain a heuristic understanding of why LLPO and LPO are suspicious from a

constructive viewpoint, consider that an algorithm that can solve either problem would

need to read infinite input to determine if a given sequence is composed entirely of

zeros. This means that expecting a finite time algorithm to solve either problem is

unlikely.

CHAPTER 2. THE SCI HIERARCHY 33

2.6 Inexact input and breakdown epsilons

At present, the definition of an SCI hierarchy is idealised in the sense that Λ could

be defined so that any algorithm has access to infinite precision real numbers. Even

though this is convenient for analysing problems in numerical analysis, this is not a

realistic assumption about how real world machines behave. Specifically, obtaining

f(ι) for a given input ι and f ∈ Λ may be a computational task in itself, for example

if f(ι) = π.

In such circumstances, we can also discuss an SCI hierarchy for obtaining Λ. Fol-

lowing from the ideas established in Section 2.4, we may then need several limits to

get the precise values of f(ι). Thus we discuss the concept of inexact input by making

the functions in Λ computational problems in their own right, for which we build a

similar computational hierarchy.

As with Section 2.4, we focus on ∆1 information. Here, instead of accessing f(ι)

where f ∈ Λ, a general algorithm is permitted only to access mappings fn : Ω→ F for

n ∈ N where fn satisfies

|fn(ι)− f(ι)| ≤ 2−n ∀ι ∈ Ω. (2.6.1)

More specifically, we can define ∆1 information to be

Definition 2.6.1 (∆1-information). Let {Ξ,Ω,M,Λ} be a computational problem.

We say that Λ has ∆1,F-information if each f ∈ Λ is not available, however, there are

mappings fn : Ω→ F + iF such that (2.6.1) holds. Finally, if Λ̂ is a collection of such

functions from Ω to F + iF described above satisfying (2.6.1), we say that Λ̂ provides

∆1,F information for Λ. Moreover, we denote the family of all such Λ̂ by Lk,F(Λ).

Of particular interest are the case F = Q, representing inexact rational approxima-

tions to the true values or the case F = R representing inexact real approximations to

the true values. Now that we have established the notion of ∆1,F information, we can

now define what we mean by a computational problem with ∆1,F information.

Definition 2.6.2 (Computational problem with ∆1,F information). Given 1 ∈ N
and a field F, a computational problem where Λ has ∆1,F-information is denoted by

{Ξ,Ω,M,Λ}∆1,F and denotes the family of computational problems {Ξ,Ω,M, Λ̂} where

Λ̂ ∈ L1,F(Λ).

This allows us to mathematically discuss computational problems that have input

that can be accessed by the algorithm to arbitrary but finite precision. We now discuss

∆1 in this new setting.

Definition 2.6.3 (Inexact algorithms in ∆1). We say the computational problem

{Ξ,Ω,M,Λ}∆1,F is in ∆1 if there exists a sequence of general algorithms Γn such that

d(Γn(ι),Ξ(ι)) ≤ 2−n for every ι ∈ Ω and, crucially, for every choice of Λ̂ ∈ Lm,F(Λ)

providing ∆1 information for Λ. Furthermore, to simplify exposition we abuse notation

slightly by letting, for a general algorithm Γ,

d(Γ(ι),Ξ(ι)), ι ∈ Ω

CHAPTER 2. THE SCI HIERARCHY 34

denote the supremum of d(Γ(ι),Ξ(ι)) over all computational problems in

{Ξ,Ω,M,Λ}∆1,F .

We will use the notation

{Ξ,Ω,M,Λ}∆1,F ∈ ∆α
k

(with k = 0 or k = 1 and α = G for general algorithms or α = A for BSS/Turing

machine algorithms) to denote that the computational problem is in ∆α
k with respect

to towers of algorithms with ∆1,F-information. Since {Ξ,Ω,M,Λ}∆m,F is the collection

of all computational problems with Λ replaced by Λ̂ ∈ L1,F(Λ), we note that the use

of ∈ is a slight abuse of notation. When M and Λ are obvious then we will write

{Ξ,Ω}∆1,F ∈ ∆α
k for short.

Remark 2.6.4. Any result concerning {Ξ,Ω,M,Λ}∆1 (so that the underlying field

F is not mentioned) should be interpreted as correct in both the case F = R and the

case F = Q.

One of the main questions discussed in this thesis is then the following:

For which k is {Ξ,Ω,M,Λ}∆1 ∈ ∆α
k?

It is clear that we cannot always expect the problems discussed in the introduction

with inexact input to be in ∆0 - to do so would mean that we can take inexact input

and somehow get an exact answer. Therefore the best that we should hope for is that

the problems are in ∆1. In what remains, we will talk about whether or not a problem

is in ∆1 rather than whether or not it is computable: if a problem is not in ∆1, then

there is some ε > 0 such that for any given algorithm there must be some input for

which the algorithm is unable to get within ε of the correct answer. We call the largest

such value of ε the strong breakdown epsilon. More precisely,

Definition 2.6.5 (Strong breakdown epsilon). We define the Strong Breakdown-

epsilon εB ≥ 0 as follows:

εsB = sup{ε ≥ 0 | ∀general algorithms Γ, ∃ ι ∈ Ω such that dM(Γ(ι),Ξ(ι)) > ε},

If, for a given computational problem, εsB is large, then this can mean that results

obtained in practice are very different from the true solution (see for example the

numerical example at the end of Section 4.2.1). If instead εsB is sufficiently small, it

will be possible to produce an algorithm that gives reasonably accurate results. An

immediate practical consequence of a non-zero breakdown epsilon is that the algorithm

should halt when it obtains a precision equal to the breakdown epsilon - any further

computations may or may not do better, but the algorithm itself will be unable to tell

for all inputs if this is possible. We shall see later that basis pursuit denoising acting

on ‘nice’ (in a sense made precise in Theorem 4.2.15) is an example of a problem for

which there is a non-zero breakdown epsilon (and thus traditional computability theory

would suggest is impossible) but which can be computed with a high level of accuracy

in practice - a fact explained by the small breakdown epsilon.

CHAPTER 2. THE SCI HIERARCHY 35

Even though a small breakdown epsilon implies the existence of an algorithm that

can compute the problem to a high degree of accuracy, it is possible that such an

algorithm can take arbitrarily long to compute if there is a time cost associated to

more accurate approximations to functions in Λ. To characterise this, we introduce

the concepts of minimum runtime, runtime breakdown epsilon and weak breakdown

epsilon.

Definition 2.6.6 (Minimum runtime). Given {Ξ,Ω,M,Λ}∆1,F and a general al-

gorithm Γ, we define the minimum runtime T F
Γ (ι) for Γ and ι ∈ Ω as

T F
Γ (ι) := sup{m ∈ N | f̂m ∈ Λ̂Γ(ι), f ∈ Λ and Λ̂ ∈ L1(Λ)},

where L1,F(Λ) is defined in Definition 2.6.1. Moreover, given a general algorithm Γ

and ε > 0 we define

T F(Γ, ε) :=

{
sup{T F

Γ (ι) | ι ∈ Ω}, if ∀ι ∈ Ω dM(Γ(ι),Ξ(ι)) ≤ ε
∞ otherwise.

Definition 2.6.7 (Limited-runtime breakdown epsilon). Given {Ξ,Ω,M,Λ}∆1,F,

we define the runtime breakdown epsilon εlr,FB (M) for each M ∈ N to be the number

in R ∪ {∞} such that

εlr,FB (M) := inf{ε ≥ 0 such that there exists an algorithm Γ with T F(Γ, ε) ≤M}

where we recall that inf(∅) =∞

Definition 2.6.8 (Weak breakdown epsilon). The weak breakdown epsilon εwB is

defined by

εw,FB = sup{ε ≥ 0 | ∀general algorithms Γ and M ∈ N ∃ ι ∈ Ω such that

dM(Γ(ι),Ξ(ι)) > ε or T F
Γ (ι) > M}.

Roughly speaking, for a given algorithm Γ and ε ≥ 0, the minimum runtime explains

how much information on Λ is required to get a guaranteed accuracy ε on all inputs.

If the minimum runtime is large then the algorithm is unable to guarantee ε accuracy

without taking a long time. The runtime breakdown epsilon εlrB(M) is the best ε

attainable with a fixed precision 2−M on functions in Λ.

The weak breakdown epsilon is the largest epsilon such that no algorithm can

guarantee an accuracy smaller than or equal to epsilon and still have a finite mini-

mum runtime. We shall see later (for example, the example presented in the proof of

Theorem 4.3.4) that this can differ greatly from the strong breakdown epsilon. If a

problem has a large weak breakdown epsilon and a small breakdown epsilon then there

will be an algorithm that can compute the solution to a high degree of accuracy, but

for any such algorithm, there will exist inputs for which it takes a very large time (for

example, five hundred billion years) to get accurate results.

Remark 2.6.9. Again, whenever we discuss εlrB(M), εwB, T (Γ, ε), TΓ(ι) with no mention

CHAPTER 2. THE SCI HIERARCHY 36

of the underlying field F then the result holds for both F = Q and F = R

2.7 Randomised general algorithms

The theory explained above discusses deterministic algorithms. Whilst in some areas

of the mathematics of information (e.g. compressed sensing [11, 121]) the algorithms

typically used are deterministic, in others (e.g. deep learning) the algorithms are

probabilistic in the sense that running the algorithm on the same input twice can yield

different results due to randomness inherent in the algorithm. We thus discuss the

existing concept of a probabilistic turing machine and build a theory of randomised

general algorithms that allows us to discuss the computability of various problems

with probabilistic algorithms.

We first state the mathematical definition of a randomised general algorithm and

then explain it informally.

Definition 2.7.1 (Randomised General Algorithm). Given a computational problem

{Ξ,Ω,M,Λ}, a randomised general algorithm (RGA) is a set X of general algorithms

Γ : Ω→M, a sigma-algebra F on X and a family of probability measure {P}ι∈Ω such

that the following conditions hold:

(Pi) For each ι, the mapping Γran
ι : X →M defined by Γran

ι (Γ) = Γ(ι) is measurable

from (X,F) to (M,B) where B is the borel-sigma algebra on M.

(Pii) Suppose that ι1, ι2 ∈ Ω and X ′ ∈ F is a set such that for every Γ ∈ X ′, we have

that if λ ∈ ΛΓ(ι1) then λ(ι1) = λ(ι2). Then Pι1(X ′) = Pι2(X ′).

(Piii) For each n ∈ N and ι ∈ Ω, the sets Tn(ι) := {Γ ∈ X |TΓ(ι) ≤ n} are F-

measurable (i.e. Tn(ι) ∈ F).

Roughly speaking, a randomised general algorithm takes an input, randomly picks

a general algorithm and executes it on that input. This is a similar idea to randomly

choosing a path at each step of the program, but it does not require specifying any or-

dering of the execution (in the same way that a turing machine is defined by discussing

how it proceeds given that the machine is in a certain position whereas a general algo-

rithm does not require this to be specified). The idea of having a family of probability

measures is to allow for a certain level of bias in the way it executes on a given in-

put. To explain where this idea comes from, imagine that we want to generalise the

BSS machine to a randomised BSS machine. The difference between the BSS machine

and the random BSS machine would be that each branch node connects to a family

of instruction nodes and executes such a branch node by picking its next instruction

node according to some random distribution. To accurately model what is possible

on a real computer, the random distribution would be a function of the current state

(in particular, we have lost no generality by switching to a random BSS machine from

a BSS machine). Since the current state is somehow a function of the input, for a

randomised general algorithm we allow the underlying distribution to depend on the

input.

CHAPTER 2. THE SCI HIERARCHY 37

We then have the three conditions (Pi), (Pii) and (Piii). (Pi) is simple to explain:

we would somehow like to measure the distribution inM of the algorithm’s execution

on input ι. In particular, without condition (Pi), we cannot ask for the probability

that the output of the algorithm with input ι has a certain error, or even ask for the

probability of the algorithm executing ι and getting the correct answer. Since this is

a crucial question, we define it as the first condition.

The second condition, (Pii), places a limitation on how the general algorithm is

randomly selected for a given input ι. In some sense it establishes some level of con-

sistency: if we have a measurable set X ′ of general algorithms which all see matching

information when executed on ι1 and ι2 then we should select X ′ with the same prob-

ability for input ι1 and ι2. This reflects the idea that for any model of computation

with a list of execution steps, the distribution of the next step should only depend

on the information that the computer has observed so far (i.e. the state space) and

not directly on the input itself. Thus if two inputs yield the same observations then

the computer should choose its next step in the same way for both inputs. We shall

see shortly that without this condition, it is possible to design a randomised general

algorithm that can solve the LPO problem with probability 1.

Finally, the third condition (Piii) allows us to ask, for a fixed input, about the

distribution of the runtime for that input. This is an important quantity that we

would very much like to be able to measure. Without it, we cannot ask what for the

probability of the algorithm taking longer than, say, fifty million years, to execute on

input ι. Actually and perhaps surprisingly, the third condition is even more important

than that: without it, it is again possible to design a randomised general algorithm

that can solve the LPO problem with probability 1.

2.7.1 Solving LPO with relaxed conditions

In this section we shall show how losing either (Pii) or (Piii) from the list of require-

ments would allow us to create a randomised general algorithm that can solve the

LPO problem. Let us start by considering an alternative definition of randomised gen-

eral algorithms that only satisfy (Pi) and (Piii). Set {Ξ3,Ω3,M3,Λ3} to be the LPO

problem as discussed in Section 2.5. We set A1 to be an algorithm that immediately

outputs the value 1 and A0 to be an algorithm that immediately outputs 0. We set

X = {A0, A1} and the sigma algebra F to be F = ({A0}, {A1}, {A0, A1}, ∅). For

ι ∈ Ω, if ι has no entries with a 1, we set Pι(A0) = 1 and Pι(A1) = 0. If instead ι

has an entry with a 1, we set Pι(A0) = 0 and Pι(A1) = 1. It is clear then that (Pi) is

satisfied and moreover Pι(Γran
ι = Ξ(ι)) = 1. Furthermore, for each n ∈ N and ι ∈ Ω,

Tn(ι) = X ∈ F . This construction therefore satisfies (Pi) and (Piii) and solves LPO

with probability 1.

Showing that dropping condition (Piii) can lead to a randomised general algorithm

that can solve LPO is more involved. We define the following family of algorithms:

for n ∈ N, we set A1
n to be an algorithm that reads the first n entries of the infinite

input vector ι, and then outputs 1 and we set A0
n to be an algorithm that reads the

first n entries of ι and then outputs 0. Let A0 = ∪∞n=1A
0
n. We define F to be the sigma

CHAPTER 2. THE SCI HIERARCHY 38

algebra generated by A0 and each set {A1
n} for n ∈ N. Crucially, sets of the form

{A0
n} are not F measurable. If every entry of the input ι is 0 then we set Pι(S) = 1

for any set S ∈ F such that A0 ⊆ S and Pι(S) = 0 if A0 6⊆ S. If instead ι has

a 1 somewhere in its entries, we let n be the first entry of ι that is equal to 1. If

A1
n ⊆ S, we set Pι(S) = 1 and if instead A1

n 6⊆ S then we set Pι(S) = 0. It is clear

that Γran
ι is F ,B measurable: Γran(ι) = 1 is exactly ∪∞n=1A

1
n and Γran(ι) = 0 is exactly

∪∞n=1A
0
n which are both measurable. Moreover, for ι with all entries set to 0 we have

Pι(Γran(ι) = 0) = 1 and for ι with an entry set to 1 we have Pι(Γran(ι) = 1) = 1. Thus

this randomised general algorithm solves LPO with probability 1.

Finally, we check the consistency condition (Pii). Let ι1, ι2 be distinct inputs in Ω.

There are two cases for ι1 and ι2: either exactly one of ι1, ι2 is a sequence consisting

entirely of 0 entries, or both ι1 and ι2 have at least one 1 somewhere. Let S be a set

such that for all algorithms Γ ∈ S and λ ∈ ΛΓ(ι)1, we have λ(ι1) = λ(ι2).

In the first case, we first suppose that A0 ⊆ S. Then since A0
n is in S for all n, the

first n entries of ι1 are equal to the first n entries of ι2. Thus ι1 = ι2, contradicting ι1, ι2
distinct. If instead A0 6⊆ S then S consists only of unions of sets of the form {A1

n}.
We therefore have Pι1(S) = 0. Let the first non-zero entry of ι2 be the nth entry (such

an n exists because ι2 6= ι1). If A1
n 6∈ S then Pι2(S) = 0. If instead A1

n ∈ S then by

the definition of A1
n (specifically that A1

n always reads the first n entries of its input),

λn ∈ ΛA1
n
(ι1). But then by the definition of S and the fact that ι1 is comprised entirely

of 0s, we have 0 = λn(ι1) = λn(ι2). Hence the nth entry of ι2 is 0, contradicting the

assumption that the nth entry of ι2 is 1.

In the second case, both ι1 and ι2 are non-zero in at least one entry. Let n1 (respec-

tively n2) be the first entry of ι1 (respectively ι2) which is non-zero. If A1
n1
, A1

n2
/∈ S

then Pι1(S) = Pι2(S) = 0. If instead A1
n1
∈ S then (by the definition of A1

n1
),

λ1, λ2, . . . , λn1 ∈ ΛA1
n1

(ι1). Thus λi(ι1) = λi(ι2) for all i ≤ n1. Thus ι2 has zeros

as its first n1 − 1 entries and the n1th entry of ι2 is 1. Therefore n1 = n2 and so

Pι1(S) = Pι2(S) = 1. Finally, if A1
n2
∈ S then λ1, λ2, . . . , λn2 ∈ ΛA1

n2
(ι1) by the defini-

tion of A1
n2

. Hence λi(ι1) = λi(ι2) for all i ≤ n2 and thus once again n1 = n2. Thus

Pι1(S) = Pι2(S) = 1. This completes the proof that the algorithm obeys (Pii).

2.8 Probabilistic breakdown epsilons

In the same way that we can define a collection of breakdown epsilons for deterministic

algorithms, we can define the probabilistic breakdown epsilons.

Definition 2.8.1 (Probabilistic Strong Breakdown-epsilon). We define the probabilis-

tic Strong Breakdown-epsilon εsPB : [0, 1)→ R as follows:

εsPB(p) = sup{ε ≥ 0, | ∀Γran ∈ RGA ∃ ι ∈ Ω such that Pι(dM(Γran
ι ,Ξ(ι)) > ε) > p}

where Γran
ι is defined in (Pi) in Definition 2.7.1.

To simplify the exposition, there is a slight abuse of notation as Pι(dM(Γran
ι ,Ξ(ι)))

here obviously refers to the the pushforward measure from (X,F ,Pι) to the real Borel

CHAPTER 2. THE SCI HIERARCHY 39

sigma algebra. However, the exact meaning will be obvious from the context. We will

also do the same on other occasions without specifically commenting on the pushfor-

ward measure. Note that the probabilistic Strong Breakdown-epsilon of p is the largest

ε so that the probability of failure with at least ε-error is greater than p.

To construct the probabilistic version of the weak breakdown epsilon (where the

same abuse of notation is employed), we first need to construct the probabilistic run-

time. In particular, given ι ∈ Ω, we denote the random variable TΓran(ι) by

TΓran(·)(ι) : X → N ∪ {∞} by TΓran(Γ)(ι) = TΓ(ι)

By assumption (Piii), this random variable is measurable. We can thus define the

probabilistic weak breakdown epsilon:

Definition 2.8.2 (Probabilistic Weak Breakdown epsilon). We define the probabilistic

weak breakdown epsilon εwPB : [0, 1)→ R as follows:

εwPB(p) = sup{ε ≥ 0 | ∀Γran ∈ RGA and M ∈ N ∃ ι ∈ Ω such that

Pι(dM(Γran
ι ,Ξ(ι)) > ε or TΓran(ι) > M) > p},

where Γran
ι is defined in (Pi) in Definition 2.7.1.

The probabilistic Weak Breakdown-epsilon describes a weaker form of failure than

the probabilistic Strong Breakdown-epsilon. In particular, the Weak Breakdown-

epsilon of p is the largest ε so that for any randomised algorithm and M ∈ N, the

probability of either getting an error at least of size ε, or having spent runtime longer

than M , is greater than p. Finally, just as the Strong and Weak Breakdown-epsilons

have probabilistic versions, so has the Limited-runtime Breakdown-epsilon.

Note that T (Γ, ε) can be written as

T (Γ, ε) =





inf{m | dM(Γ(ι),Ξ(ι)) ≤ ε and TΓ(ι) ≤ m ∀ι ∈ Ω} if such an m

exists
∞ otherwise.

That is to say, T (Γ, ε) is the worst-case (over possible inputs) runtime for Γ to obtain ε

accuracy. This allows us to make a probabilistic Limited-runtime Breakdown-epsilon.

In particular, for any randomised general algorithm Γran we can define

TP(Γran, ε, p) :=

{
inf M if M 6= ∅
∞ otherwise

(2.8.1)

where M := {m |Pι(dM(Γran
ι ,Ξ(ι)) ≤ ε and TΓran(ι) ≤ m) > p ∀ι ∈ Ω}.

We remark in passing that the definitions are well defined as the sets considered are

clearly measurable by the continuity of the metric dM as well as (Pi) and (Piii) in

Definition 2.7.1 of an RGA.

Definition 2.8.3 (Probabilistic Limited-runtime Breakdown-epsilon). Given the com-

putational problem {Ξ,Ω,M,Λ}∆1, we define the probabilistic limited-runtime break-

CHAPTER 2. THE SCI HIERARCHY 40

down epsilon εlrPB(M,p) for each M ∈ N as

εlrPB(M,p) := inf{ε ≥ 0 such that ∃ Γran ∈ RGA with TP(Γran, ε, p) ≤M},

where we recall that inf(∅) =∞

The connection between the different Breakdown-epsilons can be summarised in

the following simple proposition which we prove in Chapter 5.

Proposition 2.8.4. Given {Ξ,Ω,M,Λ}∆1, M ∈ N and p, q ∈ (0, 1) with p ≤ q we

have

εsPB(q) ≤ εsPB(p) ≤ εsB, (2.8.2)

εwPB(q) ≤ εwPB(p) ≤ εwB, (2.8.3)

εlrPB(M,p) ≤ εlrPB(M, q) ≤ εlrB(M), (2.8.4)

εsPB(p) ≤ εwPB(p), (2.8.5)

εwPB(p) ≤ εlrPB(M,p), p = [1/2, 1), (2.8.6)

εsB ≤ εwB ≤ εlrB(M). (2.8.7)

Moreover,

lim
M→∞

εlrB(M) = εwB, lim
M→∞

εlrPB(M,p)

{
= εwPB(p) p = 1/2

≤ εwPB(p) p ∈ (0, 1/2).
(2.8.8)

2.9 A key result

The following major result allows us to show that a variety of problems have non-zero

breakdown epsilons.

Theorem 2.9.1. Let {Ξ,Ω,M,Λ} be an arbitrary computational problem. Fix N ∈
N ∪ {∞} with N ≥ 3, and suppose that there are two sequences {ι1n}Nn=1, {ι2n}Nn=1 ⊂ Ω

satisfying the following conditions:

(a) There are sets S1, S2 ⊂ M and κ > 0 such that infx1∈S1,x2∈S2 dM(x1, x2) ≥ κ

and Ξ(ιjn) ⊂ Sj for j = 1, 2.

(b) For every f ∈ Λ there is a cf ∈ C such that |f(ιjn) − cf | ≤ 1/4n for all n ≤ N

and j = 1, 2.

Then, if we consider {Ξ,Ω,M,Λ}∆1, we have the following:

(i) For all M ≤ N − 2 and p ≥ 1/2 then εlrB(M) ≥ εlrPB(M,p) ≥ κ/2.

(ii) For N =∞ and p ∈ (0, 1/2) then εwB ≥ εwPB(p) ≥ κ/2.

(iii) If there is an ι0 ∈ Ω such that for every f ∈ Λ we have that (b) is satisfied

with cf = f(ι0) then {Ξ,Ω,M,Λ}∆1 /∈ ∆G
1 . Moreover, εsB ≥ εsPB(p) ≥ κ/2 for

p ∈ (0, 1/2).

CHAPTER 2. THE SCI HIERARCHY 41

(iv) If (iii) is satisfied, M = (Rd, ‖ · ‖r) for some r ∈ N ∪ {∞}, Λ is finite, S1 and

S2 in (a) are singletons, and

∀ ι1n, ι2k ∈ Ω where ι1n 6= ι2k ∃f ∈ Λ such that f(ι1n) 6= f(ι2k), (2.9.1)

then {Ξ,Ω,M,Λ}∆1,R ∈ ∆A
1 implies decidability of the LLPO (Lesser Lim-

ited Principle of Omniscience), and if in addition Ξ(ι0) = S2 in (iii) then

{Ξ,Ω,M,Λ}∆1,R ∈ ∆A
1 implies decidability of the Halting problem. Further-

more, if f(ι1n), f(ι2n) are both rational for each f ∈ Λ and S1, S2 ∈ Qd then each

reference to ∆1,R also holds for ∆1,Q.

To show non-computability results, it will suffice to generate examples satisfying

(a) and (b). We can then obtain more precise results using (i) to (iv) depending on

the situation.

The proof of Theorem 2.9.1 is highly technical. We shall delay this proof until

Chapter 5. However, we shall provide here a rough justification of the valdiity of 2.9.1

for establishing that deterministic functions that satisfy (a) and (b) are not computable

on a BSS machine in the case where cf = f(ι0) as in part (iii).

1. Set ι2n = ι1n, ι2n−1 = ι2n. Roughly speaking, we choose ∆1 information for Λ in

the following way: for f ∈ Λ we have fm(ιn) = f(ιn) if n ≤ m and fm(ιn) = cf
otherwise.

2. The algorithm terminates in finite time for ι0 and hence M := TΓ(ι) is finite.

3. For m ≤M we have fm(ι0) = fm(ιM+1) = fm(ιM+2). Thus the algorithm ‘sees’

the same values on ι0, ιM+1 and ιM+2.

4. Since the algorithm is guaranteed to behave in the same way if it sees the same

input, we must have Γ(ι0) = Γ(ιM+1) = Γ(ιM+2). But then either Γ(ιM+1) is far

from Ξ(ιM+1) or Γ(ιM+2) is far from Ξ(ιM+2), otherwise there are members of

Ξ(ιM+1) and Ξ(ιM+2) which are ‘close’, contradicting (a). Thus Γ either gives a

value far away from the true solution at ιM+1 or at ιM+2.

Remark 2.9.2. Of course, this is an oversimplification. There are additional techni-

calities when working with Turing machines since cf needs to be rational in the Turing

case for this approach to produce valid ∆1 information. Moreover, we have not shown

anything about the breakdown epsilon and we have not discussed the additional dif-

ficulty of working with probabilistic algorithms. If we were to take these issues into

account the proof becomes vastly more complicated and interested readers looking for

the full details are advised to see Chapter 5.

2.9.1 A comparison to existing work

Theorem 2.9.1 is somewhat similar in appearance to some earlier work on computable

functions for type two turing machines and similar models (for example [77, 126]).

In both of these two references, continuity is shown to be a necessary condition for

CHAPTER 2. THE SCI HIERARCHY 42

computability with machines similar to type two turing machines. At first glance

these results may appear to be very similar to Theorem 2.9.1. However, there are

some important differences:

1. The results proven in both [77, 126] do not directly apply to models that are

substantially different from a turing machine. This is important since the BSS

model is crucial for analysing algorithms used in numerical analysis.

2. Theorem 2.9.1 also applies if the function Ξ is multivalued. As the problems we

analyse are potentially multivalued this additional feature of Theorem 2.9.1 is

absolutely necessary.

3. Standard techniques in neural networks are probabilistic, in the sense that the

algorithm can adaptively change its behaviour depending on the input that it has

read and its own choice of randomisation. This adaptive (i.e. depending on the

input) randomisation is not covered by a theorem solely addressing deterministic

computation.

4. Perhaps most importantly, since a substantial part of this thesis is to demonstrate

that a collection of practical methods are non-computable but nonetheless effec-

tive, a theory that only distinguishes between computable and non-computable

functions is insufficiently fine to explain the success of techniques like basis pur-

suit denoising observed in practice. The concept of a breakdown epsilon is used

throughout the thesis to address this issue and is a key component of Theorem

2.9.1.

It is worth expanding our discussion on 2. There is a well established notion of continu-

ity for multivalued functions known as hemicontinuity and defined by first explaining

the concepts of upper and lower hemicontinuity (we present here a version of [6] adapted

from topological spaces to metric spaces). Specifically, hemicontinuity is defined in the

following way:

Definition 2.9.3. Assume that both Ω and M are metric spaces and let Ξ be a mul-

tivalued mapping from Ω to M. We say that Ξ is upper hemicontinuous at the point

ι ∈ Ω if for every sequence {ιn}∞n=1 such that ιn → ι then if bn ∈ Ξ(ιn) is such that

bn → b for some b then b ∈ Ξ(ι).

Remark 2.9.4. Note that the definition used here for upper hemicontinuity is slightly

stronger than the standard definition. However, for our problems Ξ(ι) is compact for

each ι ∈ Ω and under this condition the definition above coincides with the standard

topological definition.

Definition 2.9.5. With the same setup as in the previous definition for Ω, M and Ξ,

we say that Ξ is lower hemicontinuous at ι ∈ Ω if for any b ∈ Ξ(ι) and any sequence

{ιn}∞n=1 such that ιn → ι, we have a subsequence {ιnk}∞k=1 of {ιn}∞n=1 such that there

are bnk ∈ Ξ(ιnk) with bnk → b as k →∞.

CHAPTER 2. THE SCI HIERARCHY 43

To explain the two definitions, let us present now an example of a function which

is upper but not lower hemicontinuous and an example of a function which is lower

but not upper hemicontinuous

Example 2.9.6 (Upper but not lower hemicontinuous). Let Ω = M = [0, 1]. We

set Ξ(ι) = [0, 1] if ι = 1 and Ξ(ι) = 0 for ι ∈ [0, 1). At 1 it is easy to see that

Ξ is upper hemicontinuous: indeed, if ιn ∈ [0, 1] is not eventually identically 1 and

bn ∈ Ξ(ιn) is convergent then bn = 0 and hence the limit b = 0 ∈ Ξ(1). If instead

ιn is eventually identically 1 then it is clear that eventually Ξ(ιn) = Ξ(1) and so Ξ is

upper hemicontinuous at 1. However, Ξ is not lower hemicontinuous: for the sequence

ιn = 1 − 1/n we have Ξ(ιn) = 0 and hence no subsequence of Ξ(ιn) can converge to

b = 1.

Example 2.9.7 (Lower but not upper hemicontinuous). Again, we take Ω = M =

[0, 1]. This time, set Ξ(ι) = 0 if ι = 1 and Ξ(ι) = [0, 1] for ι ∈ [0, 1). It is clear that

Ξ is lower hemicontinuous at 1: if ιn → 1 then any subsequence of ιn has 0 ∈ Ξ(ιn)

and therefore there exists a bn := 0 with bn ∈ Ξ(ιn) convergent to the single element

of Ξ(1). However, Ξ is not upper hemicontinuous: let ιn = 1− 1/n so that 1 ∈ Ξ(ιn).

We can then set bn = 1 and observe that bn is constant (and so bn is convergent to 1).

Thus for Ξ to be upper hemicontinuous we require 1 ∈ Ξ(1). However, Ξ(1) = 0 and

we conclude that Ξ is not upper hemicontinuous at 1.

Continuity is then defined in the following way: a multivalued function is hemicon-

tinuous iff it is both upper and lower hemicontinuous. Natural analogues of the work

in [77, 126] would be to consider hemicontinuity as a necessity for computability, and

failing that, replace the word ’hemicontinuity’ with either ’upper hemicontinuity’ or

’lower hemicontinuity’. However, the two examples above are both computable and

thus counterexamples to such a theorem: in either case, we choose Γ(ι) ≡ 0 thus giving

Γ(ι) ∈ Ξ(ι) for each ι ∈ [0, 1]. Therefore continuity alone is insufficient for our multi-

valued problems and thus we require a theorem closer in nature to that of Theorem

2.9.1.

2.10 Optimisation as a computational problem

To prove results about the computability of optimisation problems using (probabilistic)

general algorithms, the SCI hierarchy, imprecise information and breakdown epsilons,

we must first cast the problems discussed in Chapter 1 as computational problems

defined as in Section 2.4. We write ‖ · ‖∗ for ‖ · ‖1 or ‖ · ‖TV (see Definition 1.8.2 the

definition of TV-norm) depending on the context. Note that all the statements in our

theorems are true regardless of isotropic or anisotropic TV norm. In the TV case we

let V 1 = Cm1×m2 and V 2 = Cm1m2×N1N2 to be the set of bounded linear operators

between CN1×N2 to V 1, whereas in the l1 case we let m1 = m, m2 = 1, N1 = N ,

N2 = 1 for some fixed integers m,N .

In all the problems, except for neural networks, (M, d) is either (Fd∪{∞}, ‖ · ‖) or

(Fm×n ∪{∞}, ‖ · ‖), where F is either R or C and the dimensions d,m, n and the norm

CHAPTER 2. THE SCI HIERARCHY 44

‖ · ‖ is the frobenius norm. The metric space for the neural network case is described

below. In all cases, the primary set Ω will always contain vectors and/or matrices,

thus Λ will always be the collection of coordinate functions. In particular, if ι ∈ Ω is

always of the form ι = (y, U) where y ∈ Cm and U ∈ Cm×n then

Λ = {fj , fi,j | fi,j = Uij , fj(y) = yj}.

Note that Ω will change depending on the classes of Us and ys, where these classes can

be described by a finite string of rational numbers. Also, Ω could be the set of pairs

(y, U), where y is fixed and only U is allowed to vary. Note that lower bounds become

stronger if one or more of the elements in the k-tuple inputs are fixed. The rest of the

elements in the computational problems are defined below.

Definition 2.10.1 (Computational problems). We define the following for the prob-

lems listed in the introduction:

(i) Linear Programming: ι ∈ Ω is always of the form ι = (y,A), where A ∈ Rm×N

and y ∈ Rm, and

ΞLP(ι) = argmin
x∈RN

cTx such that Ax = y, x ≥ 0

with c a fixed vector in QN .

(ii) Basis Pursuit and basis pursuit denoising: ι ∈ Ω is always of the form ι = (y, U)

where y ∈ V 1 and U ∈ V 2. Moreover, the parameter δ ≥ 0 is a fixed rational

number (with δ > 0 representing basis pursuit denoising and δ = 0 representing

basis pursuit) and

ΞBP(ι) =

{
argminx∈V 1 ‖x‖1 such that ‖Ux− y‖2 ≤ δ, if ι is feasible

∞ otherwise .

(iii) Constrained Lasso: For CL, Ω is as in the BP case. Also, the parameter τ > 0

is a fixed rational number and

ΞCL(ι) = argmin
x∈V 1

‖Ax− y‖2 such that ‖x‖1 ≤ τ.

(iv) Unconstrained Lasso: For UL, Ω is as in the BP case. Moreover, the parameter

λ > 0 is a fixed rational number and

ΞUL(ι) = argmin
x∈V 1

‖Ax− y‖22 + λ‖x‖1.

(v) Basis pursuit total variation: ι ∈ Ω is always of the form ι = (y,A) where y ∈ V 1

CHAPTER 2. THE SCI HIERARCHY 45

and A ∈ V 2. ΞBPTV is defined as follows

ΞBPTV(ι) =

{
argminx∈V 1 ‖x‖TV such that Ax = y, if ι is feasible

∞ otherwise .

(vi) Image deblurring: For image deblurring, Ω is as in the BPTV case. Moreover,

the parameter λ > 0 is a fixed rational number and

ΞDeblurTV(ι) = argmin
x∈V 1

‖Ax− y‖22 + λ‖x‖TV.

(vii) Neural Networks (Deep Learning): We only consider lower bounds and thus con-

centrate on the simplest classification functions f : Rd → {0, 1}. Given such

f and a training set T = {x1, . . . , xr} ⊂ Rd, the task is to compute a neural

network φ ∈ NNN,L,d and evaluate it on a classification set C = {y1, . . . , ys} We

let (M, d) = (Rs, ‖ · ‖∞). For a given δ > 0 we let Ω be the collection of

ι =
{
{(x̂j , f(x̂j))}rj=1, {ŷj}sj=1

}

where x̂j ∈ B∞δ (xj), xj ∈ T , ŷj ∈ B∞δ (yj) and yj ∈ C. Finally, for a given cost

function C ∈ CF , where CF is defined in (1.7.1),

ΞCNN(ι) = {φ(ŷj)}sj=1, φ ∈ argmin
φ̃∈NNN,L,d

C(v, w),

with v = {φ̃(x̂j)}rj=1, w = {f(x̂j)}rj=1.

Remark 2.10.2. For the neural network case, we note that the ΞNN is the (potentially

multivalued if there is more than one minimising φ) map to all possible sets of the form

{φ(ŷj)}sj=1 for each φ that minimises the cost function. Importantly, this is different

from all possible sets of the form

{
φ1(ŷ1), φ2(ŷ2), . . . , φs(ŷ

s) |φ1, φ2, . . . , φs ∈ argmin
φ̃∈NNN,L,d

C(v, w)

}
.

We emphasise the fact that the computational problem is to train a neural network

and then run that fixed neural network on each of the elements in the classification set,

as opposed to considering the possible outputs of all neural networks for each element

in the classification set.

Remark 2.10.3. As noted earlier, since there is no reason for Ξ(ι) to have a single

solution for each of the minimisation problems above, we need to account for multival-

ued computational problems. Thus we consider our task to find either Γ(ι) ∈ Ξ(ι) in

the ∆0 case or to find a sequence Γn(ι) with infξ∈Ξ(ι) d(Γn(ι), ξ) ≤ 2−n in the ∆1 case.

As an example of how the concepts and theorems developed in this section can be

used to produce computability results, let us consider linear programming on 1 × 1

CHAPTER 2. THE SCI HIERARCHY 46

matrices with the class Ω = {ιn |n ≥ 1} ∪ {ι0} where ι0 = (y0, A0) and ιn = (yn, An)

with yn = 1/4n, An = 1/4n and y0 = A0 = 0. A simple application of Theorem

2.9.1 shows that the problem is not in ∆G
1 (so not computable with a BSS or Turing

machine). We get with no additional work that the strong breakdown epsilon must be

at least 1/2: this applies for both probabilistic and deterministic algorithms. Moreover,

if one could design an algorithm that can solve the problem to accuracy better than

1/2 then one can also decide the halting problem. We will use a similar approach

(sometimes with significantly more complicated example choices of ι) to prove each of

the non-computability results in Chapter 4.

2.11 Conditioning

Given that many of the problems discussed earlier are non-computable, it is natural to

try to ask if there is a criteria that can be used to ‘rule out’ certain problematic inputs.

An initial approach might be to use condition numbers. Let us take for example the

problem of solving a linear system of equations. Specifically, we are given y ∈ Cn and

U ∈ Cn×n and wish to find x such that Ux = y. Of course, such a problem is ill-defined

if U−1 does not exist. Moreover, it is easy to see that even if U−1 exists, if ‖U‖2 or

‖U−1‖2 is large then slight perturbations in y can cause large perturbations in the

output solution x. Thus one can consider the condition number of a matrix defined in

the following way:

Definition 2.11.1 (Condition number of a matrix). The classical condition number

of a matrix A is given by Cond(A) = ‖A‖‖A−1‖.

One might hope that we can use a similar form of condition number to rule out

problematic inputs and thus create problems that are computable. However, the sit-

uation is far more subtle. There are a myriad of different definitions of condition, see

for example the pioneering work by Renegar [102,103] and the book by Burgisser and

Cucker [23], see also [42]. In this section we shall recall some of the standard definitions

of condition which depend on the computational problem at hand.

Before doing so, let us consider a simple example that we will use to inform the pre-

cise definitions of condition number in the sense of a computational problem defined in

Section 2.4. Suppose that {Ξ,Ω,M,Λ} is such that Ω is the set of all lower triangular

matrices of dimension 2× 2 and Ξ : R2×2 → R finds the spectrum of a matrix. We set

Λ = {fi,j | fi,j(ι) = ιi,j for i, j ∈ {1, 2}}, M = (R2, ‖ · ‖∞).

In some sense, many of the upcoming definitions of condition number are designed

to capture how small perturbations affect the output of Ξ. However, any algorithm

designed to solve the problem above would be uninterested in the value of f1,2: these

values would be the constant 0 whenever ι ∈ Ω. Thus any reasonable definition of

condition number would ignore small perturbations in that direction.

We therefore define the active coordinates of Ω (for Ω = Rd for some dimension d)

CHAPTER 2. THE SCI HIERARCHY 47

to be A(Ω) = {j | ∃x, y ∈ Ω, xj 6= yj}. Moreover, for ν > 0 we define

Ω̃ν = {x | ∃ y ∈ Ω such that ‖x− y‖∞ ≤ ν, xAc = yAc}

(noting that here and throughout the remainder of this thesis, for index sets I and

vectors x the notation xI corresponds to the vector x with all entries outside of I set to

0). In other words, Ω̃ν is the set of ν-perturbations along the non-constant coordinates

of elements in Ω. We can now recall some of the classical condition numbers.

Definition 2.11.2. Condition numbers

(i) (Condition of a mapping) Let Ξ : Ω ⊂ Cn → Cm be a linear or non-linear

mapping, and suppose that Ξ is also defined on Ω̃ν for some ν > 0. Then,

Cond(Ξ) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ω̃ν
0<‖z‖≤ε

{
dist(Ξ(x+ z),Ξ(x))

‖z‖

}
, (2.11.1)

where we allow for multivalued functions by defining

dist(Ξ(x),Ξ(z)) = min
x̃∈Ξ(x),z̃∈Ξ(z)

‖x̃− z̃‖.

(ii) (Distance to infeasibility) If Ξ denotes the solution map to any of the problems

in Definition 2.10.1 (i), (ii), (v) with domain Ω, we define, for (y,A) ∈ Ω

ρ(A, y) = sup{δ | ‖Â‖, ‖ŷ‖ ≤ δ, (A+ Â, y + ŷ) ∈ Ω̃∞

⇒ (A+ Â, y + ŷ) are feasible inputs},

and this yields the Feasibility Primal (FP) condition number

CFP(A, y) :=
‖A‖ ∨ ‖y‖
ρ(A, y)

, (2.11.2)

where the active set is defined by identifying (y,A) with Rd.

(iii) (Distance to solution with several minimisers) If Ξ denotes the solution map to

any of the problems in Definition 2.10.1 (except (vii)) with domain Ω then we

define, for (y,A) ∈ Ω,

%(A, y) = sup{δ : ‖Â‖, ‖ŷ‖ ≤ δ, (A+ Â, y + ŷ) ∈ Ω̃∞

⇒ (A+ Â, y + ŷ) yields at most one solution},

and this yields the RCC condition number

CRCC(A, y) :=
‖A‖2 ∨ ‖y‖2
%(A, y)

. (2.11.3)

where again the active set is defined by identifying (y,A) with Rd.

CHAPTER 2. THE SCI HIERARCHY 48

Finally, for any of the problems in Definition 2.10.1 (except (vii)), we define ‖ι‖ =

max(‖A‖2, ‖y‖2). We usually insist that ‖ι‖ is bounded for each ι ∈ Ω to force the

input data to be bounded.

We will see that there are limitations to how much condition can help us. In partic-

ular, if we force all the inputs to be well conditioned in the sense that CRCC is small, we

can still end up in a situation where our problems are not in ∆1. If instead we insist that

all the inputs (y,A) ∈ Ω for say, basis pursuit satisfy Cond(AA∗), CFP(A, y),Cond(Ξ) ≤
2, then we are still unable to get ∆1 results. Moreover, for Basis Pursuit there are

important classes of inputs (y,A) such that we can get a ∆1 result, however, there are

inputs in the class such that CRCC(A, y) =∞.

Chapter 3

Compressed sensing: the RIP

and NSP in levels

Let us consider compressed sensing as in Section 1.5. The general idea is therefore to

recover x from observations y = Ux where U ∈ Rm×N and m � N . Under certain

conditions on the matrix U , every ‘s-sparse’ vector x (i.e. any vector x with at most s

non-zero entries) can be recovered by observing y and solving the basis pursuit problem

with `1. Namely, one solves argminx′ ‖x′‖1Ux′ = y and hopes that x = x′ provided

that x has s-non-zero entries.

If any s-sparse vectors x can be perfectly recovered in this way with the same choice

of U , we say that uniform recovery of order s is possible. More generally if x is close

to an s-sparse vector then we might expect solutions to the `1 basis pursuit problem

(BP) to be close to x. We can encapsulate this statement mathematically by making

the following definition:

Definition 3.0.1 (Uniform recovery of order s). Let s be a positive integer. We say

that uniform recovery of order s is possible for the matrix U if solutions x̃ to (BP)

satisfy

‖x− x̃‖1 ≤ Cσs(x)1, σs(x)1 := min{‖x− x̂2‖1 such that x̂2 is s-sparse}. (3.0.1)

for some constant C independent of x. Note that (3.0.1) implies that all s-sparse x

are recovered exactly by solving (BP), since if x is s-sparse then σs(x)1 = 0.

Proving that uniform recovery of order s is possible for the matrix U is an inherently

complicated task. To simplify this task, the nullspace property and Restricted Isometry

Property (RIP) have been introduced (see [33] and [60] for more information). More

specifically, the nullspace property is defined as follows:

Definition 3.0.2 (`2 RNSP of order s). A matrix U ∈ Cm×n is said to satisfy the `2

robust nullspace property (`2 RNSP) of order s if there is a ρ ∈ (0, 1) and a τ > 0

such that for all vectors v ∈ Cn and all S which are subsets of {1, 2, 3, . . . , n} with

|S| ≤ s, we have ‖vS‖2 ≤ ρ‖vSc‖1/
√
s+ τ‖Uv‖2.

The Restricted Isometry Property (RIP) is defined in terms of the Restricted Isom-

etry Constant δs. A matrix is said to have the RIP if δs < 1.

49

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 50

Definition 3.0.3 (Restricted Isometry Property). The Restricted Isometry Constant

(RIC) of order s for a matrix U ∈ Cm×n, denoted by δs, is the minimal δ ≥ 0 such

that

(1− δ)‖x‖22 ≤ ‖Ux‖22 ≤ (1 + δ)‖x‖22 (3.0.2)

for all s-sparse vectors x ∈ Cn.

It is well known (e.g. [7] and [60]) that if U satisfies the `2 RNSP or the RIC of

order s is sufficiently small, then equation (3.0.1) is satisfied when finding minimisers

x̃ of the basis pursuit problem (BP).

Remark 3.0.4. In fact, the RIP and RNSP both imply a stronger result - suppose

that instead of seeing Ux, we see a noisy version v := Ux + ν for some noise vector

ν with ‖ν‖2 ≤ ε. Instead of finding minimisers of (BP), we can try to recover x by

finding minimisers to the basis pursuit denoising problem (BPDN) (so that x itself is

a feasible solution). Then any minimiser x̃ to (BPDN) will satisfy both

‖x− x̃‖1 ≤ Cσs(x)1 +Dε
√
s (3.0.3)

‖x− x̃‖2 ≤
Cσs(x)1√

s
+Dε (3.0.4)

for some universal constants C and D provided that U satisfies the `2 RNSP (e.g. [60],

Theorem 4.22) or δs is sufficiently small (e.g. [26,27,30,59] and [28,48,119] for optimal

conditions). In later chapters we shall introduce the `2 RNSP in levels and the RIP in

levels which will also have a similar resilience to noise.

Given the recent substantial interest in uniform recovery it is natural to ask whether

this intriguing mathematical concept is actually observed in many of the applications

where CS is applied. Certain conditions on U , like the Restricted Isometry Property

(RIP) (see Definition 3.0.2) and the nullspace property of order s (see Definition 3.0.2)

imply uniform recovery of order s. However, for general matrices U it is difficult to

check that these properties hold. Indeed, it is shown in [117] that verifying that the

RIP holds (and thus order s uniform recovery is possible) for general U is an NP

hard problem. However, there is a simple test that can be used to show that certain

matrices cannot achieve uniform recovery of order s for reasonable values of s. This

is called the flip test. As this test reveals, there are a significant number of practical

applications where uniform recovery is not the correct model for compressed sensing.

This list of applications includes Magnetic Resonance Imaging (MRI) [62, 86], other

areas of medical imaging such as Computerised Tomography (CT) [40, 65], Nuclear

Magnetic Resonance (NMR) [71], Electron Tomography [61,81], as well as other fields

such as Fluorescence microscopy [104, 114], Surface scattering such as Helium Atom

Scattering (HAS) [73] and Radio interferometry [89].

We will thoroughly document the lack of uniform recovery of order s in this paper,

and explain why it does not hold for reasonable s in many applications. It is then

natural to ask whether there might be an alternative to uniform recovery of order s

that may be more suitable for the actual real world CS applications. With this in mind,

we shall generalise uniform recovery of order s to a level based uniform recovery, which

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 51

we term uniform recovery of order (s,M). Numerical experiments will suggest that

uniform recovery of order (s,M) is better suited to many of the applications where CS

is used than uniform recovery of order s. We will extend the concepts of the RIP and

the nullspace property to this setting with the introduction of the RIP in levels and

the `2 robust nullspace property of order (s,M).

3.1 The absence of the uniform recovery and the flip test

3.1.1 The flip test

w′
2x

1w′
2

U
si
ng

C
S

x̃1

Q
reverse

w′
2x

2w′
2 w′

2x̃
2w′

2

Using CS

w′
2Q

−1
reversex̃

2w′
2

Q
−1rev
er
se

Figure 3.1: A graphical demonstration of the flip test for matrices which exhibit the
uniform recovery where x1 is a vector exactly recovered by minimisers of (BP). Darker
colours denote larger values. If uniform recovery of a sufficiently high order holds, then
Q−1

reversex̃
2 = x̃1.

Although uniform recovery seems convenient, it is in general very difficult to verify

that uniform recovery of order s is possible for a matrix U . In fact, showing that

the RIC of an arbitrary matrix is below a certain value is an NP hard problem [117].

However, some special cases for U do exhibit uniform recovery of order s (e.g. with

high probability, Gaussian and Bernoulli matrices can achieve uniform recovery [34]).

Even though it is hard to show that uniform recovery is possible for a general matrix

U , there is a simple test (the ‘flip test’, introduced in [2]) that shows that there are

a variety of matrices used in practical applications for which uniform recovery grossly

underestimates the effectiveness of compressed sensing.

Flip test (sparse vectors):

Suppose we are given U ∈ Cm×n, s1 ∈ N and an s1-sparse vector x1 that is perfectly

recovered by finding minimisers of the BP problem (BP) using U and x = x1. We now

want to test if this recovery is uniform.

1. Let Q be an operator that permutes the entries of x1 and let x2 = Qx1. Run

the BP problem (BP) with x = x2 to try to recover x2 from Ux2 and obtain

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 52

a minimiser x̃2. Compare x1 and Q−1x̃2. If x1 6= Q−1x̃2 then we do not have

uniform recovery of order s1.

2. If the test in the first step failed, we want to test how far we were from uniform

recovery of order s1. We want to see how many coefficients s2 of x2 one could

hope to recover uniformly. Select a nonzero coefficient of x2 and set it to zero

and call this new vector h1. If we recover h1 by using BP with x = h1 in (BP),

then set s2 = s1 − 1. If not set n non-zero coefficients of x2 to zero to obtain hn

and repeat until hn is recovered exactly by using BP with x = hn in (BP). Let

s2 = s1 − n.

3. If the first step succeeds, retry it with many different permutation matrices Q.

If this succeeds for a large variety of such Q then this is an indicator (but not a

mathematical proof) that we may have uniform recovery.

The particular choice of Q that was given in [2] was the permutation Qreverse that

reverses order - namely, if x ∈ Cn then

Qreverse(x1, x2, . . . , xn−1, xn) = (xn, xn−1, . . . , x2, x1).

A graphical demonstration and summary of the expected results of the flip test with

a matrix U that exhibits uniform recovery is given in Figure 3.1.

We have performed the flip test on Fourier and Hadamard matrices in combinations

with wavelet transforms. In particular, the U used in the test is of the form

U = PΩDFT ·DWT−1
N or U = PΩHAD ·DWT−1

N

for different successful sampling patterns Ω. The notation DFT,HAD and DWTN

is used throughout this chapter to represent the Discrete Fourier Transform, the

Hadamard Transform and the Discrete Wavelet Transform (with Daubechies wavelets

with N vanishing moments) respectively. These different types of matrices are rep-

resented in a variety of applications including (but not limited to) MRI [62, 86], Ra-

dio Interferometry [89], Helium Atom Scattering [73], Electron Tomography [61, 81],

CT [40,65], Fluorescence Microscopy [104,114], and NMR [71].

Image Operator s1 s2

College 1 DFT·DWT−1
3 121,923 329

College 2 DFT·DWT−1
4 1,850,917 143

College 3 HAD·DWT−1
2 167,772 4

Table 3.1: A table displaying the number of non-zeros that are recovered exactly by
various operators. s1 represents the number of non-zeros that can be recovered from
a standard image, whereas s2 represents the non-zeros recoverable after flipping.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 53

CS recovery (x1) Flip recovery (Q−1x̃2) Subsampling pattern

College 1

12% samples

DFT·DWT−1
3

MRI, Surface

Scattering,

NMR

College 2

97% samples

DFT·DWT−1
4

Radio inter-

ferometry,

Electron

tomography

College 3

16% samples

HAD·DWT−1
2

Fluorescence

microscopy,

Lensless

camera

Figure 3.2: Results of the flip test for different compressed sensing matrices frequently
used in applications.

In Figure 3.2 and Table 3.1 we have displayed the results of the flip test. Note

the failure of uniform recovery displayed visually in Figure 3.2. More quantitatively,

observe the substantial differences between s1 and s2 in Table 3.1. It is worth noting

that even with 97% sampling as in the second row of Figure 3.2, there is still a vast

difference between x̃1 and Q−1x2. Although this may seem surprising at first, this

is a consequence the near block diagonal structure of the matrix DFT · DWT−1 (see

Figure 3.3 and Remark 3.1.2). The high Fourier frequencies (which, due to the block

diagonality, correspond to the finer detail wavelet coefficients) are heavily subsampled

since the finer detail coefficients are highly sparse. However, when the wavelet co-

efficients are flipped, we are now subsampling the Fourier frequencies corresponding

to the non-sparse coarse wavelet coefficients. Thus the recovery is poor and we get

the results of Figure 3.2. Note that the flip test will fail in a similar manner if we

replace wavelets with other popular frames such as curvelets, contourlets or shear-

lets [31,49,79]. We thus need to consider more structure than just sparsity to explain

the success of compressed sensing in these applications.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 54

DFT ·DWT−1
2 DFT ·DWT−1

5 HAD ·DWT−1
Haar

Figure 3.3: First row: an image and its wavelet coefficients, where a brighter colour
corresponds to a larger value. Second row: absolute values of a variety of compressive
sensing matrices. The block diagonal structure allows us to fully sample rows that
correspond to the coarser wavelet levels and subsample the rows that correspond to
the finer wavelet levels.

Remark 3.1.1 (Sparsity cannot be the right model). The flip test reveals that sparsity

cannot be the correct model for these examples in compressed sensing. When the values

of s1 and s2 are (for example)

s1 = 121,923, s2 = 329,

it is hard to argue that one recovers s-sparse vectors for a representative s when the

location of the non-zero coefficients is arbitrary. On the contrary, as the flip test

reveals, the location of the non-zero coefficients is highly important. If sparsity is

not the correct model one needs to revise the model in order to find a more realistic

description. Moreover, the concepts of the nullspace property of order s and the RIP

no longer apply if sparsity is not the correct model for compressed sensing. Of course,

it could be the case that the RIC of order 329 is sufficiently small to allow uniform

recovery of order 329, however, that has nothing to do with the successful recovery of

the image with s = 121,923 non-zero wavelet coefficients.

Remark 3.1.2 (Large coherence and almost block diagonality). One can understand

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 55

the lack of uniform recovery from simply looking at Figure 3.3. The blocks in the

matrices correspond to the different scales in the wavelet expansion that give a level

structure. The wavelet coefficients get relatively sparser in the finer levels and this

corresponds to the blocks in the matrices where the absolute values (coherence, see

Definition 3.2.8) decrease. The coherence is not uniformly small. In fact, it is very big

in the upper left corner and then decreases with the levels. As is well known [60], it

is the uniform small coherence that is the key property to prove uniform recovery. It

should be noted that there have been attempts in applications to change the measure-

ments in for example MRI and Radio interferometry, in order to make the coherence

smaller in the first levels. This is called the spread spectrum technique [98,99].

3.1.2 Weighted sparsity

Consideration of a different explanation for the success of compressed sensing that

includes more structure than just plain sparsity is not a novel idea. Indeed, weighted

sparsity and the weighted RIP was described in [101] as a structured alternative to

sparsity and the RIP. To describe this approach, we shall begin by defining weighted

sparsity. More specifically, given a collection of weights ω := (ω1, ω2, . . . , ωn) ∈ Rn with

ωj ≥ 1 for each j, a vector x ∈ Cn is said to be (ω, s)-weighted sparse if the weighted

`0 norm, ‖x‖ω,0 :=
∑

j∈supp(x) ω
2
j , satisfies ‖x‖ω,0 < s. We can similarly extend the

`1 norm to a weighted `1 norm by defining ‖x‖ω,1 :=
∑n

j=1 ωjxj and then examine

weighted `1 minimisation in the same way that we can discuss `1 minimisation. A

preliminary idea to deal with the difficulties raised in Section 3.1.1 is to argue that

instead of expecting uniform recovery of order s as in equation (3.0.1) to hold whenever

x̃ is a minimiser of (BP), we should hope for uniform recovery of order (ω, s) to hold.

More specifically,

‖x̃− x‖1 ≤ Cσω,s(x)1 (3.1.1)

where σω,s(x)1 := min{‖x − x̂2‖1 such that x̂2 is (ω, s)-weighted sparse} and C is a

fixed constant. This is further motivated by the success of such an approach to the

recovery of smooth functions from undersampled measurements [101] and the improve-

ments seen by applying weighted `1 techniques to random Gaussian matrices [76].

3.1.2.1 The insufficiency of uniform recovery of weighted sparse vectors

through `1 minimisation with wavelets

Unfortunately, there are issues with this method when applied to problems involving

a level based construction basis such as wavelets like in Section 3.1.1. These are more

thoroughly documented in [1], but we shall provide a brief outline here. Just as the

flip test demonstrates that in many examples relevant to practical applications the

class of s-sparse vectors is too big and contains objects that cannot be recovered by

`1 minimisation, we have the same phenomenon for weighted sparsity. We find that

for problems involving a level based reconstruction basis, and for any choice of weights

ω, the class of (ω, s)-sparse vectors is too large and contains vectors that cannot be

recovered by either weighted-`1 or `1 minimisation.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 56

In our specific setting above, this means that we have a ‘natural’ image with wavelet

coefficients w that is recovered exactly and a vector w′ with ‖w′‖(ω,0) ≤ ‖w‖(ω,0) which

is not recovered. Therefore, either ‖w‖(ω,0) > s and w is not (ω, s)-sparse (so a theory

based on weighted sparsity does not explain why w is recovered) or w′ is (ω, s)-sparse

(but not recovered, so that the class of (ω, s)-sparse vectors is too large and inequality

(3.1.1) does not hold).

We can show these results by expanding the ‘flip test’ from Section 3.1.1. The

result is the flip test for weighted sparse vectors:

Flip test (weighted sparse vectors):

Suppose we are given U ∈ Cm×n, a collection of weights ω ∈ Cn and a vector

x1 ∈ Cn that is perfectly recovered by finding a minimiser of the BP problem (BP)

using U and x = x1. Set s to be the minimal value so that x1 is (ω, s)-sparse. We now

want to test if this recovery is uniform across all (ω, s)-weighted sparse vectors.

1. LetQ be an operator that permutes the entries of x1 and let v = Qx1. Repeatedly

set individual coefficients of v to be 0 until v is also (ω, s)-sparse. Call this new

vector x2.

2. Run the BP problem (BP) with x = x2 to try to recover x2 from Ux2 and obtain

a minimiser x̃2.

3. If x̃2 is not recovered exactly with this method, we do not have uniform recovery

of (ω, s)-weighted sparse vectors.

4. Retry steps 1 to 3 with many different permutation matrices Q. If this succeeds

over for a large variety of such Q then this is an indicator (but not a mathe-

matical proof) that we may have uniform recovery. A single failure, however,

demonstrates that we do not have uniform recovery of (ω, s)-weighted sparse

vectors.

Figure 3.4 displays some examples where the flip test implies a lack of uniform

recovery of weighted sparse vectors (either because s is too small to explain the perfect

recovery observed or s is too large and there are too many vectors that are (ω, s)-

weighted sparse as in the previous discussion). Thus, weighted sparsity is insufficient

to explain the success of compressed sensing when using wavelets and other X-lets.

In Figure 3.4 we have only displayed the result of using `1 recovery, however, the

results are the same when using weighted `1. See [1] for a thorough discussion of

this phenomenon. We shall provide additional insight as to why weighted sparsity is

insufficient in Section 3.2.1.4.

Remark 3.1.3. It must be emphasised that weighted sparsity and the weighted RIP

were developed in [101] for the purpose of recovering smooth functions with polynomi-

als. Thus, one should not expect the weighted RIP to hold for wavelets. Conversely,

the RIP in levels may not work for polynomials, as unlike wavelets there is no level

structure present. Moreover, in [76] the weighted approach is used in combination with

random Gaussian measurements, which is very different from the setup in this paper.

These facts demonstrates the finesses of compressed sensing theory and that we are

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 57

Setup

The function f The sampling pattern Ω used

0 0.2 0.4 0.6 0.8 1

-5.0

 0.0

 5.0

-500 0 500

0.0

0.5

1.0

Standard CS
The vector x1 Perfect recovery of x1 using Ω

(non-zero wavelet coeff. of f set to 1)

0 200 400 600 800 1000

-0.5

 0.0

 0.5

 1.0

0 200 400 600 800 1000

-0.5

 0.0

 0.5

 1.0

CS after the generalised flip test

The vector x2 with the x̃2 recovered
same weighted sparsity as x1 unsuccessfully using Ω

0 200 400 600 800 1000

-0.5

 0.0

 0.5

 1.0

0 200 400 600 800 1000

-0.5

 0.0

 0.5

 1.0

Figure 3.4: The figure displays the flip test for weighted sparse vectors with the func-
tion f(x) = sin(x)1[0,0.3] − 10 cos(x)1(0.3,0.8] + 91(0.8,1] after its wavelet coefficients are
thresholded so that perfect recovery is possible. Recovery was done using a subsampled
1D fourier to wavelet matrix, with Daubechies 3 wavelets and `1 minimisation. The
weights on the coefficients in level i were given by 2i. Similar results follow for other
weights and also for recovery with weighted `1 minimisation.

in need for a collection of much more specific theorems using different sparsity models

that depend on the problem.

Remark 3.1.4. The matrices discussed in Section 3.1.1 and Section 3.1.2.1 focused

on matrices that can be used to solve finite dimensional models of the real world com-

pressive sensing applications. In some circumstances, it has been shown that this does

not match the original infinite dimensional problem and a different finite dimensional

approximation is needed [3, 4, 20, 62, 63, 97]. It should be noted that the preceding

flip tests could easily be adapted to this infinite dimensional setting, and thus uni-

form recovery of either s-sparse vectors or (ω, s)-weighted sparse vectors will still be

unattainable for descriptive values of s.

3.2 An extended theory for compressed sensing

The current mathematical theory for compressive sensing revolves around a few key

ideas. These are the concepts of sparsity, incoherence, uniform subsampling and uni-

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 58

form recovery of order s. In [4] and [104], it was shown that these concepts are absent

for a large class of compressed sensing problems. To solve this problem, the extended

concepts of asymptotic sparsity, asymptotic incoherence and multi-level sampling were

introduced. We now introduce the fourth extended concept in the new theory of com-

pressive sensing: uniform recovery of order (s,M). To accomplish this, we shall extend

the definitions of nullspace property and restricted isometry property of order s to a

pair of new concepts - the RIP in levels and the nullspace property of order (s,M).

3.2.1 A level based alternative to sparsity: (s,M)-sparsity

The examples given in Figure 3.2 all involve reconstructing in a basis that is divided

into various levels. It is this level based structure that prevents us from observing

uniform recovery of order s and necessitates a new theory based on a different kind of

sparsity. We shall demonstrate this new theory with wavelets, which we give a brief

description of in the following section. Despite our focus on wavelets in the next few

pages, it should be noted that our work applies equally to all level based reconstruction

bases.

3.2.1.1 Wavelets

A multiresolution analysis (as defined in [44,45,85]) for L2(X) (where X is an interval

or a square) is formed by constructing increasing linear spaces (Vj)
∞
j=0 (known as

the scaling spaces) and linear spaces (Wj)
∞
j=0 (known as the wavelet spaces) with

Vj ,Wj ⊂ L2(X) so that

1. If f(·) ∈ Vj then f(2·) ∈ Vj+1, and vice-versa.

2.
∞⋃
j=0

Vj = L2(X) and
∞⋂
j=0

Vj = V0 is the space of all constant functions on X.

3. Wj is the orthogonal complement of Vj in Vj+1.

The wavelet expansion of a function f is an expansion in terms of basis elements of V0

(the scaling level) and Wj for j ≥ 0 (the wavelet levels, said to be increasingly fine as j

increases). For natural images f , the largest coefficients in the wavelet expansion of f

appear in the levels corresponding to smaller j (the coarser levels). Closer examination

of the relative sparsity in each level also reveals a pattern: let w be the collection of

wavelet coefficients of f and for a given level k let Sk be the indices of all wavelet

coefficients of f in the kth level. Additionally, let Mn be the largest (in absolute

value) n wavelet coefficients of f . Given ε ∈ [0, 1], we define the functions s(ε) and

sk(ε) (as in [4]) by

s(ε) := min



n : ‖wMn‖2 =

√∑

i∈Mn

|wi|2 ≥ ε
√∑

k∈N

∑

i∈Sk
|wi|2 = ε‖w‖2



 ,

sk(ε) := |Ms(ε) ∩ Sk|.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 59

0.5 0.6 0.7 0.8 0.9 1

ǫ

0

0.2

0.4

0.6

0.8

1

S
p
ar
si
ty

s k
(ǫ
)/
S
k

Scaling level

Level 3

Level 5

Level 7

Level 9

Level 11

0.85 0.9 0.95 1

ǫ

0

0.2

0.4

0.6

0.8

1

S
p
ar
si
ty

s k
(ǫ
)/
S
k

Scaling level

Level 3

Level 5

Level 7

Level 9

Level 11

0.5 0.6 0.7 0.8 0.9 1

ǫ

0

0.2

0.4

0.6

0.8

1

S
p
ar
si
ty

s k
(ǫ
)/
S
k

Scaling level

Level 3

Level 5

Level 7

Level 9

Level 11

0.85 0.9 0.95 1

ǫ

0

0.2

0.4

0.6

0.8

1

S
p
ar
si
ty

s k
(ǫ
)/
S
k

Scaling level

Level 3

Level 5

Level 7

Level 9

Level 11

Figure 3.5: The relative sparsity of Haar wavelet coefficients of two image. The leftmost
column displays the image in question. The middle and final columns display the values
of sk(ε) for ε ∈ [0.5, 1] and ε ∈ [0.85, 1] respectively, where k represents a wavelet level.
Of particular importance is the rapid decay of sk(ε) as k grows larger. ‘Scaling level’
denotes the case where k corresponds to the scaling level.

More succinctly, sk(ε) represents the relative sparsity of the wavelet coefficients of f at

the kth scale. If an image is very well represented by wavelets, we would like sk(ε) to be

as small as possible for ε close to 1. However, one can make the following observation:

then the ratios sk(ε)/|Sk| decay very rapidly for a fixed ε. Numerical examples showing

this phenomenon with Haar Wavelets are displayed in Figure 3.5. Summarising, we

observe that images taken from the real world are sparse with a structure which the

traditional RIP ignores.

3.2.1.2 (s,M)-sparsity and uniform recovery of order (s,M)

Uniform recovery of order s suggests that we are able to recover all s-sparse vectors

exactly, independent of which levels the s-sparse vectors are primarily supported on.

Instead of such a stringent requirement, we can take advantage of the structure of our

problem, a concept that is already popular from the recovery point of view [8, 67, 68,

118]. We have observed that, for wavelets, sk(ε)/|Sk| decays rapidly as k → ∞ (see

Figure 3.5). To further understand this phenomenon, in [4] the concept of (s,M)-

sparsity was introduced.

Definition 3.2.1 ((s,M)-sparsity). Let M = (M0,M1, . . . ,Ml) ∈ Nl+1 with 1 ≤M1 <

M2 < · · · < Ml and M0 = 0, where the natural number l is called the number of levels.

Additionally, let s = (s1, s2, . . . , sl) ∈ Nl with si ≤Mi−Mi−1. We call (s,M) a sparsity

pattern.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 60

A set Λ of integers is said to be (s,M)-sparse if Λ ⊂ {M0 + 1,M0 + 2, . . . ,Ml}
and for each i ∈ {1, 2, . . . , l}, we have |Λ ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi} | ≤ si. A

vector is said to be (s,M)-sparse if its support is an (s,M)-sparse set. The collection

of (s,M)-sparse vectors is denoted by Σs,M. We can also define σs,M(x)1 as a natural

extension of σs(x)1. Namely, σs,M(x)1 := min
x̂∈Σs,M

‖x− x̂‖1.

Remark 3.2.2. If (s,M) is a sparsity pattern, we will sometimes refer to (as,M)-

sparse sets for some natural number a even though asi may be larger than Mi−Mi−1.

To make sense of such a statement, we define (in this context)

as := (min(as1,M1 −M0),min(as2,M2 −M1), . . . ,min(asl,Ml −Ml−1)) .

Let us now look at a specific case where (s,M) represent wavelet levels (again, we

emphasise that wavelets are simply one example of a level based system and that our

work is more general). Roughly speaking, we can choose s and M (we set M so that

Mi−1 + 1 is the first index for the i-th wavelet level)such that x is (s,M)-sparse if it

has fewer non-zero coefficients in the finer wavelet levels. As with uniform recovery

of order s, we ask for minimisers x̃ to (BP). Instead of asking for (3.0.1), we might

expect

‖x− x̃‖1 ≤ Cσs,M(x)1 (3.2.1)

for some C independent of x. If these conditions are satisfied then we say that uniform

recovery of order (s,M) is possible for the matrix U .

3.2.1.3 The flip test in levels

In Section 3.1.1, we saw that there was a simple test that uniform recovery of order

s is not an accurate explanation for why compressed sensing is effective with some

matrices U . However, the argument in Section 3.1.1 does not apply if we expect

uniform recovery of order (s,M) instead of uniform recovery of order s (since equation

(3.0.1) will no longer hold for minimisers x̃ of (BP)).

Flip test in levels ((s,M)-sparse vectors):

Suppose we are given U ∈ Cm×n, a sparsity pattern (s,M) and an (s,M)-sparse

vector x1 that is perfectly recovered by finding a minimiser of the BP problem (BP)

using U and x = x1. We now want to test if this recovery is uniform.

1. Let Q be a randomly chosen permutation with Q(Σs,M) = Σs,M and let x2 =

Qx1. Run the BP problem (BP) with x = x2 to try to recover x2 from Ux2 and

obtain a minimiser x̃2. Compare x1 and Q−1x̃2. If x1 6= Q−1x̃2 then we do not

have uniform recovery of order (s,M) (since x2 is (s,M)-sparse).

2. If the first step succeeds, retry it with many different permutation matrices Q

satisfying Q(Σs,M) = Σs,M. If this succeeds over for a large variety of such

Q then this is an indicator (but not a mathematical proof) that we may have

uniform recovery.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 61

CS recovery (x̃1) Flip in levels recovery Subsampling pattern

College 1

12% samples

DFT·DWT−1
3

MRI,

Spectroscopy,

Radio-

interferometry

College 2

97% samples

DFT·DWT−1
4

MRI,

Spectroscopy,

Radio-

interferometry

Rocks

12% samples

HAD·DWT−1
2

Comp.

imag.,

Hadamard

spectroscopy,

Fluorescence

microscopy

Figure 3.6: Results of the flip test when the flipping preserves the sparsity within the
levels.

The requirement that Q(Σs,M) = Σs,M now requires us to consider different per-

mutations than a simple reverse permutation as in Section 3.1.1. A natural adaptation

of Qreverse to this new ‘flip test in levels’ is a permutation that just reverses coefficients

within each wavelet level. Figure 3.6 displays what happens when we attempt to do

the flip test with this permutation. In this case, we see that the performance of CS

reconstruction under flipping and the performance of standard CS reconstruction are

very similar. This suggests that uniform recovery within the class of (s,M)-sparse

vectors (as in 3.2.1) is possible with a variety of practical compressive sensing matri-

ces. Indeed, in Table 3.2 we also consider a collection of randomly generated Q with

Q(Σs,M) = Σs,M. We see that perfect recovery of Qx1 is possible for a wide variety of

permutation matrices Q.

Remark 3.2.3. Throughout this chapter we have used a variety of numerical tests to

demonstrate that in a collection of compressive imaging applications the concepts of

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 62

Table 3.2: Flip test in levels with randomly generated permutations

Image Subsampling Matrix Permutations Permutations
percentage where x2 was where x2 was

was perfectly was not perfectly
recovered recovered

College 1 12.48% DFT ·DWT−1
3 1000 0

College 2 97.17% DFT ·DWT−1
4 1000 0

College 3 15.54% HAD ·DWT−1
2 1000 0

A table displaying the flip test in levels for various images x1 as in Figure 3.6 permuted
using Q to form x2 = Qx1. Each image was processed with a fixed subsampling pattern
and 1000 randomly generated permutations as described in Section 3.2.1.3.

uniform recovery of sparse vectors or uniform recovery of weighted sparse vectors are

not appropriate to explain the success of compressed sensing. By contrast, there is

evidence (like the flip test in levels) to suggest that uniform recovery of (s,M)-sparse

vectors is the right model to explain why compressive imaging works with applications

using matrices such as DFT · IWT or HAD · IWT. Further detail on this claim is

provided in [1].

3.2.1.4 Relating (s,M)-sparsity and weighted sparsity

The ‘flip test in levels’ suggests that for many compressed sensing problems, there are s

and M such that all (s,M)-sparse vectors are recovered equally well by `1 minimisation.

With this in mind, we are now in a position to provide additional details on why the

same is not the case for weighted sparsity. Indeed, one can easily state and prove the

following theorem (see [1] for details):

Theorem 3.2.4 (The relationship between weighted sparsity and (s,M)-sparsity).

Let (s,M) have l levels (with l > 2) and fix r < l. Suppose that the collection of

(s,M)-sparse vectors are all (ω,X)-weighted sparse for some X. Then there is an

l0 with r < l0 < l such that the collection of (̃s,M)-sparse are also (ω,X)-weighted

sparse, where

s̃ = (s1, s2, . . . , sr︸ ︷︷ ︸
r

, 0, 0, . . . , 0︸ ︷︷ ︸
l0−1−r

, (l − r)sl0 , 0, . . . , 0).

In particular, the set of (s,M)-sparse and (ω,X)-weighted sparse vectors are not the

same.

The use of this theorem becomes apparent if we consider Figure 3.4. As in the

second row of Figure 3.3, the Fourier to Wavelet matrix in Figure 3.4 is well approx-

imated by block diagonal matrices. This block diagonality structure means that we

can design our sampling pattern so that information corresponding to coarser wavelet

levels is more readily captured than the information corresponding to the finer wavelet

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 63

levels. Since the finer wavelet levels are relatively more sparse (see the first row of Fig-

ure 3.3 and Figure 3.5) we can design a sampling pattern to effectively capture images

(note however that this variable density/multilevel sampling schemes have been dis-

cussed in [4,16,39,78,86,100,125] and structured sampling in [35,124]). To utilise these

ideas we choose a sampling pattern so that the first r levels will be fully sampled, but

after that subsampling occurs and this is where we run into difficulties with weighted

sparsity. If we suppose that recovering all vectors with sk non zero coefficients in the

indices corresponding to the kth wavelet level takes Ωk measurements in that level,

then recovering all weighted sparse vectors requires (l−r)Ωk measurements for some k.

Unfortunately, this leads to weighted sparsity overestimating the number of measure-

ments required to recover all vectors of interest. Unless we substantially oversample

the finer wavelet levels then we are unable to see uniform recovery of weighted sparse

vectors.

3.2.1.5 The `2 robust nullspace property of order (s,M) and the RIP in

levels

Given the success of the ‘flip test in levels’, let us now try to find a sufficient condition

on a matrix U ∈ Cm×n that allows us to conclude that uniform recovery of order (s,M)

is possible for U . If the RIP implies uniform recovery of order s then the obvious idea

is to extend the RIP to a so-called ‘RIP in levels’, defined as follows:

Definition 3.2.5 (RIP in levels). For a given sparsity pattern (s,M) and matrix

U ∈ Cm×n, the RIP in levels (RIPL) constant of order (s,M) (RICL), denoted by

δs,M, is the smallest δ > 0 such that

(1− δ)‖x‖22 ≤ ‖Ux‖22 ≤ (1 + δ)‖x‖22

for all x ∈ Σs,M.

We will see that the RIP in levels allows us to obtain error estimates on ‖x−x̃‖1 and

‖x− x̃‖2 with x̃ set to be a minimiser of (BP). Similar error estimates can be obtained

if U satisfies the `2 robust nullspace property of order (s,M), a natural generalisation

of the nullspace property of order s.

Definition 3.2.6 (The order (s,M) `2 RNSP). A matrix U ∈ Cm×n satisfies the `2

robust nullspace property of order (s,M) if there is a ρ ∈ (0, 1) and a τ > 0 such that

‖vS‖2 ≤
ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 (3.2.2)

for all (s,M)-sparse sets S and vectors v ∈ Cn.

3.2.2 Matrices with a small RIPL constant

To see how matrices similar to the ones in Figure 3.6 have a small RICL, we will

first explain how the sampling patterns in Figure 3.6 were obtained. Earlier work

on compressive sensing suggested that sampling should be done uniformly at random

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 64

(see [60]). Because of the near block diagonality of the matrices DFT · IWT and

HAD · IWT for a variety of wavelets, instead of sampling uniformly at random, it

is better to sample using a multilevel structure, where the percentage subsampling of

each block depends on the relative importance of the corresponding wavelet coefficients

(as done in [4], among others). More precisely, we can make the following definition:

Definition 3.2.7 (Multilevel sampling). Let N be the dimension of the ambient mea-

surement space. We set N := (N0, N1, . . . , Nl) and m := (m1,m2, . . . ,ml) so that

0 = N0 < N1 < N2 · · · < Nl = N and mk ≤ Nk − Nk−1 for every k = 1, . . . , l.

For each such k, set Ωk = {tk,1, . . . tk,mk} where the tk,j for j = 1, . . .mk are se-

lected independently and uniformly at random from {Nk−1 + 1, . . . , Nk}. We call

Ω = ΩN,m = Ω1 ∪ Ω2 · · · ∪ Ωl a (N,m)-multilevel subsampling scheme

We define the coherence of U to determine how effective recovery is with equation

(BP) for matrices U = PΩM where M is an isometry and where Ω is taken uniformly

at random.

Definition 3.2.8 (Coherence). The coherence of a matrix M ∈ CN×N , denoted by

µ(M), is the quantity

µ(M) := max
i,j=1,...,N

|Mi,j |2.

If µ(M) is sufficiently small and Ω is a sufficiently large set taken uniformly at

random from 1, 2, . . . , N then with high probability PΩM will satisfy the RIP (and

therefore exhibit uniform recovery). The related quantity with uniform multilevel

subsampling is coherence in levels.

Definition 3.2.9 (Local Coherence). Given a sparsity pattern (s,M) and a uniform

(m,N)-multilevel subsampling scheme, we define the (j, k) coherence in levels of the

matrix M with respect to (s,M) and (m,N) to be the value µj,k(N,M) where

µj,k(M) = max{|Ms,t|2 such that s ∈ {Nj−1 + 1, . . . , Nj}, t ∈ {Mk−1 + 1, . . .Mk}}
(3.2.3)

If the coherence in levels of a matrix is sufficiently small and Ω is a sufficiently

dense uniform multilevel subsampling scheme then we can show that PΩM satisfies

the RIPL. Indeed in [83] the following result was shown

Theorem 3.2.10 (The existence of RIPL matrices). There exists a constant C > 0

with the following property: let M ∈ CN×N be an isometry, l ∈ N and ε, δ real numbers

such that 0 < ε, δ < 1. Let l0 be a natural number with 0 ≤ l0 ≤ l and ΩN,m be an

(N,m)-multilevel subsampling scheme and (s,M) be a sparsity pattern. Suppose that

mk = Nk −Nk−1 for k = 1, 2 . . . , l0 and that

mk ≥ Cδ−2(Nk −Nk−1)

(
l∑

r=1

µk,rsr

)
(l log(2m̃) log(2N) log2(2s) + log(ε−1)) (3.2.4)

k > l0 where m̃ = ml0+1 + · · ·mr. Then with probability at least 1 − ε, the matrix

U = PΩM satisfies the RIPL of order (s,M) with constant δs,M ≤ δ.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 65

In particular, it is possible to use results from [5] to obtain a condition on the

number of measurements taken that guarantees that matrices of the form PΩDFT ·
Haar−1 satisfy the RIPL where Ω is a uniform multilevel subsampling scheme and

DFT and Haar−1 are the 1D Discrete Fourier Transform and 1D Inverse Haar Wavelet

Transform respectively. More precisely, Corollary 3.3 from [83] says the following.

Theorem 3.2.11 (The RIPL of the DFT · Haar−1 matrix). There exists a constant

C > 0 with the following property: let N = 2l for some l ∈ N, where l is the number

of wavelet levels and ε, δ real numbers such that 0 < ε, δ < 1. Set Sk = 2max(k−1,1) to

be the number of wavelet coefficients in the kth level. Suppose that mk satisfies

mk ≥ Cδ−2


sk +

l∑

r=l0+1

2−|k−r|sr


(log(2m) log2(2N) log2(2s) + log(ε−1)

)
(3.2.5)

for k = 1, 2, . . . , l and where s =
∑l

i=1 si. Then if Ω is a (N,m)-multilevel sampling

scheme with N = (0, S1, S1 + S2, . . . ,
∑l

r=1 S
k) and m = (m1,m2, . . . ,ml) then the

matrix PΩ DFT · Haar−1 satisfies δs,M < δ for M := N and s := (s1, s2, . . . , sl) with

probability exceeding 1− ε.

It is possible to give further examples of matrices with a small RIPL constant by

examining their coherence in levels and employing Theorem 3.2.10. Bounds on the

coherence in levels for a variety of matrices can be examined by using tools developed

in papers such as [74]. Moreover, one can obtain a version of Theorem 3.2.11 for

Hadamard matrices combined with Haar wavelets as the resulting matrix U = HAD ·
DWT−1

Haar is completely block diagonal (see Figure 3.3), however, this is beyond the

scope of this paper.

3.3 Main results

If a matrix U ∈ Cm×n satisfies the RIP then (1 − δs) < ‖ui‖22 < (1 + δs) for each

column ui of U . To ensure that we have similar control over ‖ui‖2 with the RIPL we

make the following two definitions:

Definition 3.3.1 (Ratio constant). The ratio constant of a sparsity pattern (s,M),

which we denote by ηs,M, is given by ηs,M := maxi,j si/sj .

If the sparsity pattern (s,M) has l levels and there is a j ∈ {1, 2, . . . , l} for which

sj = 0 then we write ηs,M =∞.

Definition 3.3.2 (Covering a matrix). A sparsity pattern (s,M) is said to cover a

matrix U ∈ Cm×n if

1. ηs,M <∞

2. Ml ≥ n where l is the number of levels for (s,M).

If a sparsity pattern does not cover U because it fails to satisfy either 1 or 2 from

the definition of a sparsity pattern covering a matrix U then we cannot guarantee

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 66

recovery of (s,M)-sparse vectors, even in the case that δs,M = 0. We shall justify the

necessity of both conditions using two counterexamples. Firstly, we shall provide a

matrix U , a sparsity pattern (s,M) and an (s,M)-sparse vector x1 ∈ Cn such that

ηs,M = ∞, δs,M = 0 and x1 is not recovered by standard `1 minimisation. Indeed,

consider the following

U =

(
1 2

0 0

)
, s = (1, 0), M = (0, 1, 2), x1 =

(
1

0

)
.

By the definition of ηs,M, we have ηs,M = ∞ and it is obvious that δs,M =

0. Furthermore, even without noise, x1 does not solve the minimisation problem

min ‖x̃‖1 such that Ux1 = Ux̃. This can easily be seen by observing that Ux1 = Ux2

with ‖x2‖1 = 1
2 where x2 := (0, 1/2)T . It is therefore clear that Assumption 1 is neces-

sary. We shall now provide an explanation for why Assumption 2 is also a requirement

if we wish for the RIPL to be a sufficient condition for the recovery of (s,M)-sparse

vectors. This time, consider the following combination of U , (s,M) and x1:

U =

(
1 0 2

0 1 0

)
, s = (1), M = (0, 1), x1 = (1, 0, 0)T .

and again, even though δs,M = 0, recovery is not possible because Ux1 = Ux2 with

‖x2‖1 = 1/2 where x2 := (0, 0, 1/2)T .

We shall therefore try to prove that uniform recovery of order (s,M) is possible

with the RIPL under the assumption that (s,M) covers U . To do this, we need one

further definition. In equation (3.0.4) the bound on ||x− x̃||2 involves
√
s. This arises

because s is the maximum number of non-zero values that could be in an s-sparse

vector. The equivalent for (s,M)-sparse vectors is the following:

Definition 3.3.3 (Number of elements of a sparsity pattern). The number of elements

of a sparsity pattern (s,M), which we denote by s̃, is given by s̃ := s1 + s2 + · · ·+ sl.

To prove that a sufficiently small RIP in levels constant implies uniform recovery of

order (s,M), it is natural to adapt the steps used in [7] to prove that the RIP implies

uniform recovery of order s. This adaptation yields a sufficient condition for recovery

even in the noisy case.

Theorem 3.3.4 (RIPL Recovery Theorem). Let (s,M) be a sparsity pattern with l

levels and ratio constant ηs,M. Suppose that the matrix U ∈ Cm×n is covered by (s,M)

and has a RIPL constant δ2s,M satisfying

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

. (3.3.1)

Furthermore, suppose that x ∈ Cn and v = Ux+ ν where ‖ν‖2 ≤ ε. Then any x̃ ∈ Cn

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 67

which are minimisers of the noisy `1 minimisation problem (BPDN) also satisfy

‖x− x̃‖1 ≤ C1σs,M(x)1 +D1

√
s̃ ε and (3.3.2)

‖x− x̃‖2 ≤
σs,M(x)1√

s̃

(
C2 + C ′2

4
√
lηs,M

)
+ ε
(
D2 +D′2

4
√
lηs,M

)
(3.3.3)

where C1, C2, C
′
2, D1, D2 and D′2 depend only on δ2s,M. Note that the noiseless case

ε = 0, equation (3.3.2) reduces to uniform recovery of order (s,M) and (BPDN)

reduces to (BP).

This result allows uniform recovery within the class of (s,M)-sparse vectors but

the requirement on δ2s,M depends on l and ηs,M. We make the following observations:

1. If we pick a sparsity pattern that uses lots of levels then we will require a smaller

RIPL constant (note however that if we work with wavelets and M corresponds

to wavelet levels then the number of levels l is approximately log2(N), so that

the RIPL constant only has to shrink like 1/
√

log2(N)).

2. If we pick a sparsity pattern with fewer levels then to explain the excellent ob-

served recovery in applications we shall have choose si so that si/sj is corre-

spondingly larger for distinct i and j.

3. If the RIPL constant δ2s,M is sufficiently small so that the conclusion of Theorem

3.3.4 holds, the bound on ‖x − x̃‖2 is weaker than the bound (3.0.4) obtained

using the RIP.

As a consequence of these observations, at first glance it may appear that the results

we have obtained with the RIPL are weaker than those given using the standard RIP.

However, Theorem 3.3.4 is stronger than any theorem based around uniform recovery

in two senses. Firstly, if one considers a sparsity pattern with one level then the bounds

(3.3.2) and (3.3.3) reduce to (3.0.3) and (3.0.4) respectively. Secondly, neither equation

(3.0.1) nor (3.0.3) applies at all if we do not have uniform recovery. Therefore, for the

examples given in Figure 3.2, (3.0.1) and (3.0.3) are not applicable.

Ideally, it would be possible to find a constant C such that if the RIPL constant

is smaller than C then recovery of all (s,M)-sparse vectors would be possible. Un-

fortunately, we shall demonstrate that this is impossible in Theorems 3.3.5 and 3.3.6.

Indeed, in some sense Theorem 3.3.4 is optimal in l and ηs,M, as the following results

confirm.

Theorem 3.3.5 (RIPL dependence on the ratio constant). Fix a ∈ N and f : R→ R
such that f(ηs,M) = o(η

1
2
s,M). Then there are m,n ∈ N, a matrix U ′ ∈ Cm×n and

a sparsity pattern (s,M) with two levels that covers U ′ such that the RIPL constant

δas,M and ratio constant ηs,M satisfy

δas,M ≤
1

|f(ηs,M)|
(3.3.4)

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 68

but there is an (s,M)-sparse z1 such that

z1 /∈ arg min ‖z‖1 such that U ′z = U ′z1.

Roughly speaking, Theorem 3.3.5 says that if we fix the number of levels and try

to replace the condition

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

with a condition of the form δ2s,M < (ηs,M)−α/2 /(C
√
l) for some constant C and

some α < 1 then the conclusion of Theorem 3.3.4 ceases to hold. In particular, the

requirement on δ2s,M cannot be independent of ηs,M. The parameter a in the statement

of Theorem 3.3.5 says that we cannot simply fix the issue by changing δ2s,M to δ3s,M

or any further multiple of s.

Similarly, we can state and prove a similar theorem that shows that the dependence

on the number of levels, l, cannot be ignored.

Theorem 3.3.6 (RIPL dependence on the number of levels). Fix a ∈ N and f : R→ R
such that f(l) = o(l

1
2). Then there are m,n ∈ N, a matrix U ′ ∈ Cm×n and a sparsity

pattern (s,M) that covers U ′ with ratio constant ηs,M = 1 and l levels such that the

RIPL constant δas,M corresponding to U ′ satisfies δas,M ≤ 1/|f(l)| but there is an

(s,M)-sparse z1 such that

z1 /∈ arg min ‖z‖1 such that U ′z = U ′z1.

Furthermore, Theorem 3.3.7 shows that the `2 error estimate on ‖x−x̃‖2 is optimal

up to constant terms.

Theorem 3.3.7 (RIPL `2 error optimality). The `2 result (3.3.3) in Theorem 3.3.4

is sharp in the following sense:

1. For a fixed a ∈ N and any functions f, g : R → R such that f(η) = o(η
1
4) and

g(η) = O(
√
η), there are natural numbers m and n, a matrix U ′ ∈ Cm×n and a

sparsity pattern (s,M) with two levels that such that

� (s,M) covers U ′

� The RIPL constant corresponding to the sparsity pattern (as,M), denoted

by δas,M, satisfies δas,M ≤ 1/|g(ηs,M)|.
� There exist vectors z and z1 such that U ′(z− z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ηs,M)√

s̃
σs,M(z1)1.

2. For a fixed a ∈ N and any functions f, g : R → R such that f(l) = o(l
1
4) and

g(l) = O(
√
l), there are natural numbers m and n, a matrix U ′ ∈ Cm×n and a

sparsity pattern (s,M) with ηs,M = 1 such that

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 69

� (s,M) covers U ′

� The RIPL constant corresponding to the sparsity pattern (as,M), denoted

by δas,M, satisfies δas,M ≤ 1/|g(l)|.

� There exist vectors z and z1 such that U ′(z− z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(l)√
s̃
σs,M(z1)1.

As with the RIP in levels, we can obtain results on recovery using the `2 robust

nullspace property of order (s,M)

Theorem 3.3.8 (`2 RNSP of order (s,M) recovery theorem). Suppose that a matrix

U ∈ Cm×n satisfies the `2 robust nullspace property of order (s,M) with constants

ρ ∈ (0, 1) and τ > 0. Let x ∈ Cn and y ∈ Cm satisfy ‖Ux − y‖2 < ε. Then any

solutions x̃ of the `1 minimisation problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

satisfy

‖x̃− x‖1 ≤ A1σs,M(x)1 + C1ε
√
s̃ (3.3.5)

‖x̃− x‖2 ≤
σs,M(x)1√

s̃

(
A2 +B2

4
√
lηs,M

)
+ 2ε

(
C2 +D2

4
√
lηs,M

)
(3.3.6)

where

A1 :=
2 + 2ρ

1− ρ
, C1 :=

4τ

1− ρ
, A2 :=

2ρ+ 2ρ2

1− ρ
,

B2 :=

(
2
√
ρ+ 1

)
(1 + ρ)

1− ρ
, C2 :=

ρτ + τ

1− ρ
and D2 :=

4
√
ρτ + 3τ − ρτ

2− 2ρ
.

This Theorem explains where the dependence on ηs,M and l in (3.3.3) emerges

from. One technique for showing that the RIP implies uniform recovery of order s is

to prove that a sufficiently small RIC implies the nullspace property (for example, this

method is used in [60]). In a similar way, we prove the `2 error estimate in Theorem

3.3.4 by showing that a sufficiently small RIPL constant implies the robust `2 nullspace

property of order (s,M). The `2 error estimate (3.3.6) follows and we are left with a

dependence on 4
√
lηs,M in the right hand side of (3.3.3). As before, we can show that

this is optimal. We do this in Theorem 3.3.9.

Theorem 3.3.9 (`2 RNSP of order (s,M) optimality). The result in Theorem 3.3.8

is sharp, in the sense that

1. For any f : R3 → R satisfying f(ρ, τ, η) = o(η
1
4) for fixed ρ ∈ (0, 1) and τ > 0,

there are natural numbers m and n, a matrix U ′ ∈ Cm×n and a sparsity pattern

(s,M) with ratio constant ηs,M and two levels such that

� (s,M) covers U ′

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 70

� U ′ satisfies the `2 robust nullspace property of order (s,M) with constants

ρ ∈ (0, 1) and τ > 0

� There exist vectors z and z1 such that U ′(z− z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ρ, τ, ηs,M)√

s̃
σs,M(z1)1.

2. For any f : R3 → R satisfying f(ρ, τ, l) = o(l
1
4) for fixed ρ ∈ (0, 1) and τ > 0,

there are natural numbers m and n, a matrix U ′ ∈ Cm×n and a sparsity pattern

(s,M) with ratio constant ηs,M = 1 and l levels such that

� (s,M) covers U ′

� U ′ satisfies the `2 robust nullspace property of order (s,M) with constants

ρ ∈ (0, 1) and τ > 0

� There exist vectors z and z1 such that U ′(z− z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ρ, τ, l)√

s̃
σs,M(z1)1.

The conclusions that we can draw from the above theorems are the following:

1. The RIPL will guarantee uniform recovery of order (s,M), provided that the

RIPL constant is sufficiently small (Theorem 3.3.4).

2. The requirement on the RIPL constant to achieve uniform recovery of order

(s,M) is dependent on
√
ηs,M and

√
l. This is optimal up to constants (Theorem

3.3.5 and Theorem 3.3.6).

3. When compared to the error estimates obtained using the RIP, the `2 error when

using the RIPL has additional factors of the form 4
√
l and 4

√
ηs,M. Again, these

are optimal up to constants (Theorem 3.3.7).

4. The same additional factors of the form 4
√
l and 4

√
ηs,M on the `2 error estimate

(Theorem 3.3.8) are also present with the robust `2 nullspace property of order

(s,M).

5. These factors are optimal up to constants, so that even if we ignore the RIPL and

still try to prove results using the `2 robust nullspace property of order (s,M)

then we would be unable to improve the `2 error (Theorem 3.3.9).

With these results, we have demonstrated that the RIP in levels may be able to explain

why permutations within levels are possible and why more general permutations are

impossible with compressed sensing for the matrices in 3.2 (similar numerical argu-

ments can be used whenever the matrix is nearly block diagonal). The results that we

have obtained give a sufficient condition on the RIP in levels constant that guaran-

tees (s,M)-sparse recovery. Furthermore, we have managed to demonstrate that this

condition and the conclusions that follow from it are optimal up to constants.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 71

3.4 Proofs

We shall present the proofs in a different arrangement to the order in which their

statements were presented. The first proof that we shall present is that of Theorem

3.3.8.

3.4.1 Proof of Theorem 3.3.8

We begin with the following lemma:

Lemma 3.4.1. Suppose that U ∈ Cm×n satisfies the `2 robust nullspace property of

order (s,M) with constants ρ ∈ (0, 1) and τ > 0. Fix v ∈ Cn, and let S be an (s,M)-

sparse set such that |S| = s̃ and the property that if T is an (s,M)-sparse set, we have

‖vS‖1 ≥ ‖vT ‖1. Then

‖v‖2 ≤
‖vSc‖1√

s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]
.

Proof. For i = 1, 2, . . . , l, we define Si0 to be Si0 = S ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi}
(i.e. Si0 is the elements of S that are in the ith level). Let m = maxi=1,2,...,l minj∈Si0 |vj |.
Since |Si0| = si (otherwise |S| < s̃), we can see that given any i = 1, 2, . . . , l

‖vS‖2 =

√∑

n∈S
|vn|2 ≥

√∑

j∈Si0

|vj |2 ≥
√
si min
j∈Si0
|vj | ≥ min

k=1,2,...,l

√
sk min

j∈Si0
|vj |

so that ‖vS‖2 ≥ m min
k=1,2,...,l

√
sk. Furthermore, |vj | ≤ m for each j ∈ Sc otherwise

there is an (s,M)-sparse T with ‖vT ‖1 > ‖vS‖1. Therefore ‖vSc‖22 =
∑

j∈Sc |vj |2 ≤∑
j∈Scm|vj | ≤

‖vSc‖1‖vS‖2
min

k=1,2,...,l

√
sk
. By the `2 robust nullspace property of order (s,M),

‖vSc‖1‖vS‖2 ≤ ρ√
s̃
‖vSc‖21 + τ‖Uv‖2‖vSc‖1. Since

√
a+ b ≤

√
a+
√
b whenever a, b > 0,

‖vSc‖2 ≤
1

min 4
√
si

(√
ρ

4
√
s̃
‖vSc‖1 +

√
τ‖Uv‖2‖vSc‖1

)
(3.4.1)

Using the arithmetic-geometric mean inequality,

√
τ‖Uv‖2‖vSc‖1 =

√
τ‖Uv‖2

4
√
s̃
‖vSc‖1

4
√
s̃
≤ τ‖Uv‖2 4

√
s̃

2
+
‖vSc‖1
2 4
√
s̃

Therefore, (3.4.1) yields

‖vSc‖2 ≤
1

min 4
√
si

(√
ρ

4
√
s̃
‖vSc‖1 +

‖vSc‖1
2 4
√
s̃

+
τ‖Uv‖2 4

√
s̃

2

)

≤ ‖vSc‖1
4
√
s̃min 4

√
si

(
√
ρ+

1

2

)
+
τ‖Uv‖2 4

√
lηs,M

2

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 72

because s̃
min si

≤ lηs,M. Once again, employing the `2 nullspace property gives

‖v‖2 ≤ ‖vS‖2 + ‖vSc‖2 ≤
ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 +

‖vSc‖1
4
√
s̃min 4

√
si

(
√
ρ+

1

2

)

+
τ‖Uv‖2 4

√
lηs,M

2

≤ ‖vS
c‖1√
s̃

[
ρ+

(
√
ρ+

1

2

) 4
√
s̃

min 4
√
si

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]

≤ ‖vS
c‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]
.

The remaining error estimates will follow from various properties related to the `1

robust nullspace property (see [60], definition 4.17) holds. To be precise,

Definition 3.4.2. A matrix U ∈ Cm×n satisfies the `1 robust nullspace property rela-

tive to S with constants ρ ∈ (0, 1) and τ ′ > 0 if

‖vS‖1 ≤ ρ‖vSc‖1 + τ ′‖Uv‖2 (3.4.2)

for any v ∈ Cn. We say that U satisfies the `1 robust nullspace property of order (s,M)

if (3.4.2) holds for any (s,M)-sparse sets S.

It is easy to see that if U satisfies the `2 robust nullspace property of order (s,M)

with constants ρ and τ then, for any (s,M)-sparse set S, U also satisfies the `1 robust

nullspace property relative to S with constants ρ and τ
√
s̃. Indeed, assume that U

satisfies the `2 robust nullspace property of order (s,M) with constants ρ and τ . Then

(by the Cauchy-Schwarz inequality) ‖vS‖1 ≤
√
s̃‖vS‖2 ≤ ρ‖vSc‖1 + τ

√
s̃‖Uv‖2.

An immediate conclusion of the robust nullspace property is the following, proven

in [60] as Theorem 4.20.

Lemma 3.4.3. Suppose that U ∈ Cm×n satisfies the `1 robust null space property with

constants ρ ∈ (0, 1) and τ ′ relative to a set S. Then for any complex vectors x, z ∈ Cn,

we have

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ ′

1− ρ
‖U(z − x)‖2.

We can use this lemma to show the following important result, which is similar

both in proof and statement to Theorem 4.19 in [60].

Lemma 3.4.4. Suppose that a matrix U ∈ Cm×n satisfies the `1 robust nullspace

property of order (s,M) with constants ρ ∈ (0, 1) and τ ′ > 0. Furthermore, suppose

that ‖Ux− y‖2 ≤ ε. Then any solutions x̃ to the `1 minimisation problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 73

satisfy

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
σs,M(x)1 +

4τ ′ε
1− ρ

.

Proof. By Lemma 3.4.3, for any (s,M)-sparse set S

‖x̃− x‖1 ≤
1 + ρ

1− ρ
(‖x̃‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ ′

1− ρ
‖U(x̃− x)‖2

Because both ‖Ux−y‖2 and ‖Ux̃−y‖2 are smaller than or equal to ε, ‖Ux−Ux̃‖ ≤ 2ε.

Furthermore, because x̃ has minimal `1 norm, ‖x̃‖1 − ‖x‖1 ≤ 0.

Thus ‖x− x̃‖1 ≤ 2+2ρ
1−ρ ‖xSc‖1 + 4τ ′ε

1−ρ . If we take S to be the (s,M)-sparse set which

maximizes ‖xS‖1, then

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
σs,M(x)1 +

4τ ′ε
1− ρ

.

We can combine these results to complete the proof of Theorem 3.3.8. Indeed,

(3.3.5) follows immediately from Lemma 3.4.4 and the fact that U satisfies the `1

robust nullspace property with constants ρ and τ
√
s̃. To prove (3.3.6), we can simply

set v = x− x̃ in Lemma 3.4.1 to see that

‖x− x̃‖2 ≤
‖(x− x̃)Sc‖1√

s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖U (x− x̃) ‖2

[
4
√
lηs,M

2
+ 1

]

≤ ‖x− x̃‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ 2τε

[
4
√
lηs,M

2
+ 1

]

and the result follows from (3.3.5).

3.4.2 Proof of Theorem 3.3.4

It will suffice to prove that the conditions on δs,M and (s,M) in Theorem 3.3.4 imply

the `2 robust nullspace property. To show this, we begin by stating the following

inequality, proven in [25]:

Lemma 3.4.5 (The norm inequality for `1 and `2). Let v = (v1, v2, . . . , vs) where

v1 ≥ v2 ≥ v3 ≥ · · · ≥ vs. Then

‖v‖2 ≤
1√
s
‖v‖1 +

√
s

4
(v1 − vs)

We will now prove the following additional lemma which is almost identical in

statement and proof to that of Lemma 6.1 in [7].

Lemma 3.4.6. Suppose that x, y ∈ Σs,M and that

‖Ux‖22 − ‖x‖22 = t‖x‖22. (3.4.3)

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 74

Additionally, suppose that x and y are orthogonal. Then |〈Ux,Uy〉| ≤√
δ2

2s,M − t2‖x‖2‖y‖2 where δ2s,M is the restricted isometry constant corresponding

to the sparsity pattern (2s,M) and the matrix U .

Proof. Without loss of generality, we can assume that ‖x‖2 = ‖y‖2 = 1. Note that

for α, β ∈ R and γ ∈ C, the vectors αx + γy and βx − γy are contained in Σ2s,M.

Therefore,

‖U (αx+ γy) ‖22 ≤ (1 + δ2s,M)‖αx+ γy‖22 = (1 + δ2s,M)(α2 + |γ|2). (3.4.4)

where the last line follows because 〈x, y〉 = 0 (from the orthogonality of x and y).

Similarly,

− ‖U(βx− γy)‖22 ≤ −(1− δ2s,M)(β2 + |γ|2) (3.4.5)

We will now add these two inequalities. On the one hand (by using the assumption in

(3.4.3) and the fact that α,β are real), we have

‖U(αx+ γy)‖22 − ‖U(βx− γy)‖22 = α2‖Ux‖22 + 2Re(αγ 〈Ux,Uy〉) + |γ|2‖Uy‖22
−
(
β2‖Ux‖22 − 2Re(βγ 〈Ux,Uy〉) + |γ|2‖Uy‖22

)

= (1 + t)
(
α2 − β2

)
+ 2(α+ β)Re(γ 〈Ux,Uy〉)

and on the other hand (from (3.4.4) and (3.4.5))

‖U(αx+ γy)‖22 − ‖U(βx− γy)‖22 ≤ δ2s,M

(
α2 + β2 + 2|γ|2

)
+ α2 − β2.

Therefore,

(1 + t)
(
α2 − β2

)
+ 2(α+ β)Re(γ 〈Ux,Uy〉) ≤ δ2s,M

(
α2 + β2 + 2|γ|2

)
+ α2 − β2.

After choosing γ so that Re(γ 〈Ux,Uy〉) = | 〈Ux,Uy〉 | we obtain

| 〈Ux,Uy〉 | ≤ 1

2α+ 2β

[
(δ2s,M − t)α2 + (δ2s,M + t)β2 + 2δ2s,M

]
(3.4.6)

because |γ| = 1. By the definition of the RIP in levels constant, δ2s,M ≥ δs,M and so

|t| =
∣∣‖Ux‖22 − ‖x‖22

∣∣ ≤ δs,M ≤ δ2s,M. (3.4.7)

If equality holds in (3.4.7), then we can set β = 0 and send α→∞ in (3.4.6) to obtain

the required result. Otherwise, equation (3.4.7) implies that
√

δ2s,M+t
δ2s,M−t ∈ R and so we

can set α =
√

δ2s,M+t
δ2s,M−t and β = 1

α in equation (3.4.6). With these values, we obtain

|〈Ux,Uy〉| ≤ α

2α2 + 2
(δ2s,M + t+ δ2s,M − t+ 2δ2s,M)

≤
4δ2s,Mα(δ2s,M − t)

4δ2s,M
≤
√
δ2

2s,M − t2.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 75

Proof of Theorem 3.3.4. Let x ∈ Cm be an arbitrary m dimensional complex vector,

and let

xi := x{Mi−1+1,Mi−1+2,...,Mi}

denote the ith level of x. For an arbitrary vector v = (v1, v2, . . . , vn), we define |v| to be

the vector (|v1|, |v2|, . . . , |vn|). Let Si0 denote the indexes of the sith largest elements of

|xi|, and S0 :=
⋃l
i=1 S

i
0. We then define Si1 to be the indexes of the sith largest elements

of |xi| that are not contained in Si0 (if there are fewer that si elements remaining, we

simply take the indexes of any remaining elements of |xi|) and define S1 :=
⋃l
i=1 S

i
1.

In general, we can make a similar definition to form a collection of index sets labelled

(Sij)i=1,2...,l,j=1,2,... and corresponding (s,M)-sparse Sj .

These definitions and the fact that (s,M) covers U implies that if Ω =
⋃
j≥0

Sj then

xΩ = x. By the definition of S0, ‖xΛ‖2 ≤ ‖xS0‖2 and ‖xSc0‖1 ≤ ‖xΛc‖1 whenever Λ is

(s,M)-sparse. It will suffice to verify that

√
s̃‖xS0‖2 ≤ ρ‖xSc0‖1 + τ

√
s̃‖Ux‖2 (3.4.8)

holds for some ρ ∈ (0, 1) and τ > 0. Indeed, if (3.4.8) holds then for (s,M)-sparse sets

Λ,

√
s̃‖xΛ‖2 ≤

√
s̃‖xS0‖2 ≤ ρ‖xSc0‖1 + τ

√
s̃‖Ux‖2

≤ ρ‖xΛc‖1 + τ
√
s̃‖Ux‖2

as required in Theorem 3.3.8,. Set

‖UxS0‖22 = (1 + t)‖xS0‖22. (3.4.9)

Clearly, |t| ≤ δs,M. Then

‖UxS0‖22 = 〈UxS0 , UxS0〉 = 〈UxS0 , Ux〉 −
∑

j≥1

〈
UxS0 , UxSj

〉
. (3.4.10)

where we have used xΩ = x. Using the Cauchy-Schwarz inequality and (3.4.9) yields

| 〈UxS0 , Ux〉 | ≤ ‖UxS0‖2‖Ux‖2 ≤
√

1 + t ‖xS0‖2‖Ux‖2. (3.4.11)

Furthermore, we can use Lemma 3.4.6 to see that

∣∣∣∣∣∣
∑

j≥1

〈
UxS0 , UxSj

〉
∣∣∣∣∣∣
≤
√
δ2

2s,M − t2
∑

j≥1

‖xS0‖2‖xSj‖2

≤ ‖xS0‖2
√
δ2

2s,M − t2
l∑

i=1

∑

j≥1

‖xSij‖2. (3.4.12)

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 76

Combining (3.4.9),(3.4.10),(3.4.11) and (3.4.12) yields

(1 + t)‖xS0‖22 ≤
√

1 + t ‖xS0‖2‖Ux‖2 + ‖xS0‖2
√
δ2

2s,M − t2
l∑

i=1

∑

j≥1

‖xSij‖2. (3.4.13)

If |Sij | = si then let x+
i,j (correspondingly x−i,j) be the largest element of

∣∣∣xSij
∣∣∣ (cor-

respondingly the smallest element of
∣∣∣xSij

∣∣∣). If Sij is non-empty with fewer than si

elements then we set x+
i,j to be the largest element of

∣∣∣xSij
∣∣∣ and x−i,j = 0. Finally, when

Sij = ∅, we let x+
i,j = x−i,j = 0. It is clear then that x+

i,j+1 ≤ x
−
i,j .

Since xSij
contains at most si non-zero elements, we can apply the norm inequality

for `1 and `2 (Lemma 3.4.5) to obtain

‖xSij‖2 ≤
1
√
si
‖xSij‖1 +

√
si
4

(
x+
i,j − x

−
i,j

)

for any i = 1, 2, . . . , l and j ∈ N. Therefore

∑

j≥1

‖xSij‖2 ≤
∑

j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4

∑

j≥1

(
x+
i,j − x

−
i,j

)

=
∑

j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4


x+

i,1 +
∑

j≥2

x+
i,j −

∑

j≥1

x+
i,j




=
∑

j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4


x+

i,1 +
∑

j≥1

(
x+
i,j+1 − x

−
i,j

)



≤
∑

j≥1

(
1
√
si
‖xSij‖1

)
+

√
si
4
x+
i,1

where the last inequality follows because x+
i,j+1 − x

−
i,j ≤ 0. Additionally,

√
six

+
i,1 =

√
si‖xSi1‖∞ ≤ ‖xSi0‖2 because each element of

∣∣∣xSi0
∣∣∣ is larger than x+

i,1. We conclude

that

l∑

i=1

∑

j≥1

‖xSij‖2 ≤
∑

j≥1

l∑

i=1

1
√
si
‖xSij‖1 +

l∑

i=1

1

4
‖xSi0‖2

≤ 1

min
√
si

∑

j≥1

l∑

i=1

‖xSij‖1 +
1

4

√
l‖xS0‖2

≤ 1

min
√
si

∑

j≥1

‖xSj‖1 +
1

4

√
l‖xS0‖2 ≤

1

min
√
si

∥∥∥∥∥x
⋃
j≥1

Sj

∥∥∥∥∥
1

+
1

4

√
l‖xS0‖2

where the second inequality follows from the Cauchy-Schwarz inequality applied to

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 77

(1, 1, . . . , 1︸ ︷︷ ︸
l

) and (‖xS1
0
‖2, ‖xS2

0
‖2, . . . , ‖xSl0‖2) and the third and fourth inequalities fol-

low from the disjoint supports of the vectors xSij
and x

Si
′
j′

whenever i 6= i′ or j 6= j′.

By xΩ = x and the disjointedness of Si, Sj for i 6= j,
⋃
j≥1

Sj = Sc0 so

l∑

i=1

∑

j≥1

‖xSij‖2 ≤
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0‖2. (3.4.14)

Dividing (3.4.13) by ‖xS0‖2 and employing (3.4.14) yields

(1 + t)‖xS0‖2 ≤
√

1 + t‖Ux‖2 +
√
δ2

2s,M − t2
(

1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0‖2

)
.

(3.4.15)

Let g(t) :=
δ2
2s,M−t2
(1+t)2 for |t| ≤ δ2s,M. It is clear that g(δ2s,M) = g(−δ2s,M) = 0.

Furthermore, g is differentiable. Therefore g attains its maximum at tmax, where

g′(tmax) = 0. A simple calculation shows us that tmax = −δ2
2s,M (note that by the

assumption (3.3.1), δ2
2s,M ≤ δ2s,M). Thus g(t) ≤ g(−δ2

2s,M) =
δ2
2s,M

1−δ2
2s,M

. Additionally,

1√
1+t
≤ 1√

1−δ2s,M
. Combining this with (3.4.15) yields

‖xS0‖2 ≤
1√

1 + t
‖Ux‖2 +

√
g(t)

(
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0‖2

)

≤ 1√
1− δ2s,M

‖Ux‖2 +
δ2s,M√

1− δ2
2s,M

(
1

min
√
si
‖xSc0‖1 +

1

4

√
l‖xS0‖2

)
.

A simple rearrangement gives

‖xS0‖2 ≤
√

1 + δ2s,M√
1− δ2

2s,M − δ2s,M

√
l/4
‖Ux‖2+

δ2s,M

min
√
si

(√
1− δ2

2s,M − δ2s,M

√
l/4
)‖xSc0‖1

(3.4.16)

provided √
1− δ2

2s,M − δ2s,M

√
l/4 > 0. (3.4.17)

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 78

Multiplying (3.4.16) by
√
s̃ yields

√
s̃‖xS0‖ ≤

√
s̃

√
1 + δ2s,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖Ux‖2

+
δ2s,M

√
s̃

min
√
si

(√
1− δ2

2s,M − δ2s,M

√
l/4
)‖xSc0‖1

≤ τ
√
s̃ ‖Ux‖2 +

δ2s,M√
1− δ2

2s,M − δ2s,M

√
l/4

√√√√
l∑

k=1

sk
min si

‖xSc0‖1

≤ τ
√
s̃ ‖Ux‖2 +

δ2s,M

√
lηs,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖xSc0‖1

where τ =

√
1+δ2s,M√

1−δ2
2s,M−δ2s,M

√
l/4
. It is clear that (3.4.8) is satisfied if condition (3.4.17)

holds and

δ2s,M

√
lηs,M√

1− δ2
2s,M − δ2s,M

√
l/4

< 1 or equivalently δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

(3.4.18)

whilst (3.4.17) is equivalent to δ2s,M < 1√
l

16
+1
. Since

1√
l
(√
ηs,M + 1

4

)2
+ 1
≤ 1√

l
16 + 1

it will suffice for (3.4.18) to hold, completing the proof.

3.4.3 Proof of Theorem 3.3.5 and 3.3.6

Proof of Theorem 3.3.5. The ideas behind the counterexample in this proof are similar

to those in Theorem 3.2 in [27]. We prove this theorem in three stages. First we shall

construct the matrix U . Next we shall show that our construction does indeed have a

RIP in levels constant satisfying (3.3.4). Finally, we shall explain why z1 exists.

Step I: Set n = C +C2, where the non-negative integer C is much greater than a

(we shall give a precise choice of C later). Let x1 ∈ Cn be the vector

x1 := λ(C,C, . . . , C︸ ︷︷ ︸
C

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

).

With this definition, the first C elements of x1 have value Cλ and the next C2 elements

have value λ. Our (s,M) sparsity pattern is given by s = (1, C2) and M = (0, C, C +

C2). Clearly, by the definition of the ratio constant, ηs,M = C2 (in particular, ηs,M is

finite). Choose λ = 1√
C3+C2

so that ‖x1‖2 = 1. By using this fact, we can form an

orthonormal basis of CC+C2
that includes x1. We can write this basis as (xi)C+C2

i=1 .

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 79

Finally, for a vector v ∈ CC+C2
, we define the linear map U by

U ′v :=
C+C2∑

i=2

vixi where v =
C+C2∑

i=1

vixi

In particular, notice that the nullspace of U is precisely the space spanned by x1, and

that vi =
〈
v, xi

〉
.

Step II: Let γ be an (as,M) sparse vector. Our aim will be to estimate∣∣ ‖Uγ‖22 − ‖γ‖22
∣∣. Clearly, ‖Uγ‖22 − ‖γ‖22 = −|γ1|2, where γ1 is the coefficient of x1

in the expansion of γ in the basis (xi). Therefore, to show that U satisfies the RIPL
we will only need to bound |γ1| = |

〈
γ, x1

〉
|. Let S be the support of γ. Then

|
〈
γ, x1

〉
| = |

〈
γS , x

1
〉
| = |

〈
γ, x1

S

〉
| ≤ ‖γ‖2‖x1

S‖2 ≤ λ‖γ‖2
√
aC2 + C2

where we have used Cauchy-Schwarz in the first inequality and in the second inequality

we have used the fact that x1
S has at most a elements of size λC and at most C2 elements

of size λ. From the definition of λ we get
∣∣〈γ, x1

〉∣∣ ≤
√

a+1
C+1‖γ‖2. Therefore,

∣∣ ‖Uγ‖22 − ‖γ‖22
∣∣ = |

〈
γ, x1

〉
|2 ≤ a+ 1

C + 1
‖γ‖22.

By the assumption that f(x) = o(x
1
2), we can find a C ∈ N sufficiently large so that

a+1
C+1 ≤

1
|f(C2)| . Then δas,M ≤ 1

|f(ηs,M)| as claimed.

Step III: Let

z1 := (C, 0, 0, . . . , 0, 0︸ ︷︷ ︸
C−1

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

), z2 := (0, C, C, . . . , C, C︸ ︷︷ ︸
C−1

, 0, 0, . . . , 0︸ ︷︷ ︸
C2

).

It is clear that z1 is (s,M)-sparse. Additionally, ‖z1‖1 = C2 + C and ‖ − z2‖1 =

(C − 1)C = C2 − C. Because U(z1 + z2) = U(x1)/λ = 0, we have U(−z2) = U(z1).

Since the kernel of U is of dimension 1, the only vectors z which satisfy U(z) = U(z1)

are z = z1 and z = −z2. Moreover, ‖z1‖1 > ‖ − z2‖1. Consequently

z1 /∈ arg min ‖z‖1 such that Uz = Uz1.

Proof of Theorem 3.3.6. The proof of this theorem is almost identical to that of The-

orem 3.3.5, so we shall omit details here. Again, we set x1 so that

x1 := λ(C,C, . . . , C︸ ︷︷ ︸
C

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

)

where C � a. We choose λ so that ‖x1‖2 = 1. In contrast to the proof of Theorem

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 80

3.3.5, we take

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2+1

), M = (0, C, C + 1, . . . , C + C2 − 1, C + C2).

This time, there are C2 +1 levels and the ratio constant ηs,M is equal to 1. Once again,

we produce an orthonormal basis of CC+C2
that includes x1, which we label (xi)C+C2

i=1

and we define the linear map U by

U ′v :=

C+C2∑

i=2

vixi where v =

C+C2∑

i=1

vixi.

The same argument as before proves that for any (as,M)-sparse γ,

∣∣ ‖U ′γ‖22 − ‖γ‖22
∣∣ ≤ a+ 1

C + 1
‖γ‖22

and again, taking C sufficiently large so that a+1
C+1 ≤

1
|f(C2+1)| yields δas,M ≤ 1

|f(l)| .

The proof of the existence of z1 is the identical to Step III in the proof of Theorem

3.3.5.

3.4.4 Proof of Theorem 3.3.7

Proof. Once again, we prove this theorem in three stages. First we shall construct

the matrix U ′. Next, we shall show that the matrix U ′ has a sufficiently small RIPL
constant. Finally, we shall explain why both z1 and z exist.

Step I: Let x1 be the vector

x1 := λ(0, 0, . . . , 0︸ ︷︷ ︸
C2

, 1, 1, . . . , 1︸ ︷︷ ︸
ω(ρ,C)+1

)

where ω(ρ, C) = ceil(2C
ρ) for a fixed ρ ∈ (0, 1) which we will specify later, ceil(a)

denotes the smallest integer greater than or equal to a and C is an integer greater than

1. In other words, the first C2 elements of x1 have value 0 and the next ω(ρ, C) + 1

elements have value λ. We choose λ so that ‖x1‖2 = 1 and C so that C2 > ω(ρ, C) and

choose our (s,M) sparsity pattern so that s = (C2, 1) and M = (0, C2, C2+ω(ρ, C)+1).

By the definition of the ratio constant, ηs,M = C2 (in particular, ηs,M is finite). Because

‖x1‖2 = 1, we can form an orthonormal basis of CC2+ω(ρ,C)+1 that includes x1 which

we can write as (xi)
C2+ω(ρ,C)+1
i=1 . Finally, for a vector v ∈ CC2+ω(ρ,C)+1, we define the

linear map U ′ by

U ′v :=

√
2w

τ
where w =

C2+ω(ρ,C)+1∑

i=2

vixi and v = v1x1 + w

In particular, notice that the nullspace of U ′ is precisely the space spanned by x1, and

that vi =
〈
v, xi

〉
.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 81

Step II: Let γ be an (as,M) sparse vector. For the purposes of proving Theorem

3.3.7, it will suffice to take τ =
√

2. Then

‖U ′γ‖22 − ‖γ‖22 = −|γ1|2,

where γ1 is the coefficient corresponding to x1 in the expansion of γ in the basis (xi).

As in the proof of Theorem 3.3.5, |γ1| = |
〈
γ, x1

〉
|. Let S be the support of γ. Then

|
〈
γS , x

1
〉
| = |

〈
γ, x1

S

〉
| ≤ ‖γ‖2‖x1

S‖2 ≤ λ‖γ‖2
√
a

where we have used Cauchy-Scharwz in the first inequality and in the second inequality

we have used the fact that x1
S has at most a elements of size λ. It is easy to see that

λ = 1√
ω(ρ,C)+1

. Therefore,

∣∣ ‖U ′γ‖22 − ‖γ‖22
∣∣ = |

〈
γ, x1

〉
|2 ≤ a

ω(ρ, C) + 1
‖γ‖22 ≤

ρa

2C
.

because ω(ρ, C) ≥ 2C
ρ . By the assumption that g(ηs,M) ≤ 1

A

√
ηs,M for some A > 0

and ηs,M sufficiently large, and the fact that ηs,M = C2, we must have A
C ≤

1
g(ηs,M) . If

we take ρ sufficiently small and C sufficiently large, then

δas,M <
ρa

2C
≤ A

C
≤ 1

g(ηs,M)
.

as claimed.

Step III: Let z1 := x1 and set z to be the 0 vector in CC2+ω(ρ,C)+1. Because x1

is in the kernel of U ′, U ′(z − z1) = 0. Furthermore, it is obvious that ‖z‖1 ≤ ‖z1‖1.

Additionally, ‖z1‖2 = 1 and

σs,M(z1)1√
s̃

= λ
ω(ρ, C)√
C2 + 1

≤ ω(ρ, C)√
ω(ρ, C) (C2 + 1)

≤

√
2C + 1

ρ (C2 + 1)
≤
√

3

ρ
√
ηs,M

since ηs,M = C2 and ω(ρ, C) ≤ 2C/ρ+ 1 ≤ (2C + 1)/ρ. Because f(ηs,M) = o(η
1
4
s,M),

σs,M(z1)1√
s̃

f(ηs,M)→ 0, ηs,M →∞.

The desired result follows by taking ηs,M sufficiently large so that

‖z − z1‖2 = 1 >
σs,M(z1)1√

s̃
f(ηs,M).

Proof of part 2. The proof of part 2 follows with a few alterations to the previous case.

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 82

We now use the sparsity pattern

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2

, 1) and M = (0, 1, 2, . . . , C2, C2 + ω(ρ, C) + 1).

In this case, ηs,M = 1 and l = C2 + 1. The result follows by simply employing the

same matrix U ′ with this new sparsity pattern.

3.4.5 Proofs of Theorem 3.3.9

The counterexample for Theorem 3.3.9 is the same as the one used in the proof of

Theorem 3.3.7. In that case, the matrix depended on three parameters: C, τ and

ρ. We show that U ′ satisfies the `2 robust nullspace property of order (s,M) with

parameters ρ and τ . The existence of z1 and z is identical to Step III in the proof of

Theorem 3.3.7.

Proof of part 1. Firstly, if T ⊂ S then for any v ∈ CC2+ω(ρ,C)+1, we have

‖vT ‖2 ≤ ‖vS‖2 and
ρ√
s̃
‖vT c‖1 + τ‖U ′v‖2 ≥

ρ√
s̃
‖vSc‖1 + τ‖U ′v‖2

so it will suffice to prove that U ′ satisfies (3.2.2) for (s,M)-sparse sets S with |S| = s̃.

As before, we set U ′v :=
√

2w/τ where w is defined as in the proof of Theorem 3.3.7.

Let us consider a set S such that |S| = s̃. Because wS and wSc have disjoint support,

by the Cauchy-Schwarz inequality applied to the vectors (1, 1) and (‖wS‖2, ‖wSc‖2) we

get
√

2‖w‖2 ≥ ‖wS‖2 + ‖wSc‖2. Therefore,

τ‖U ′v‖2 ≥
√

2‖w‖2 ≥ ‖wS‖2 + ‖wSc‖2. (3.4.19)

Furthermore, because |S| = s̃ ≥ |Sc| (recall that |S| = C2 + 1 and that C was chosen

so that C2 > ω(ρ, C) = |Sc|) and ρ ∈ (0, 1)

‖wSc‖2 ≥
1√
|Sc|
‖wSc‖1 ≥

1√
s̃
‖wSc‖1 ≥

ρ√
s̃
‖wSc‖1 (3.4.20)

Combining 3.4.19 and (3.4.20) gives

τ‖U ′v‖2 +
ρ√
s̃
‖vSc‖1 ≥ ‖wS‖2 +

ρ√
s̃
‖wSc‖1 +

ρ√
s̃
‖vSc‖1 ≥ ‖wS‖2 +

ρ√
s̃
‖vSc − wSc‖1

≥ ‖wS‖2 +
ρ√
s̃
‖v1x1

Sc‖1

(3.4.21)

We shall now aim to bound ‖v1x1
S‖2 in terms of ‖v1x1

Sc‖1. We have

‖v1x1
S‖2 ≤ λ|v1| (3.4.22)

since at most one element of x1
S is non-zero and its value will be at most λ. Additionally,

CHAPTER 3. COMPRESSED SENSING: THE RIP AND NSP IN LEVELS 83

since each element of x1
Sc has value λ and there are at least 2C

ρ of them

ρ‖v1x1
Sc‖1 = ρ|v1|‖x1

Sc‖1 ≥
2λC

ρ
ρ|v1| ≥ 2λC|v1|.

Therefore,

ρ√
s̃
‖v1x1

Sc‖1 ≥
2λC√
C2 + 1

|v1| ≥ λ|v1|. (3.4.23)

Using (3.4.22) and (3.4.23), we have ‖v1x1
S‖2 ≤

ρ√
s̃
‖v1x1

Sc‖1. We can conclude the

proof that U ′ satisfies the `2 robust nullspace property by combining this result with

(3.4.21) as follows:

‖vS‖2 ≤ ‖v1x1
S‖2 + ‖wS‖2 ≤

ρ√
s̃
‖v1x1

Sc‖1 + ‖wS‖2 ≤ τ‖U ′v‖2 +
ρ√
s̃
‖vSc‖1.

Proof of part 2. The proof of part 2 is identical. We simply adapt the sparsity pattern

so that

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2

, 1) and M = (0, 1, 2, . . . , C2, C2 + ω(ρ, C) + 1).

We can apply the proceeding argument with this new sparsity pattern to obtain the

required result.

Chapter 4

Computational barriers in

information theory

Recall from chapter 1 that we are interested in the following questions:

Q3: For any ε > 0, is there an algorithm that executes in finite time and computes an

approximate solution no further than ε away from a true solution? The algorithm

can choose the input accuracy ε̂ to be as small as desired (as a function of ε and

the input) to produce the output.

Q4: Can we get a positive answer to the previous question if, for a given ε > 0, ε̂ is

uniformly bounded across all possible inputs?

Q5: Suppose that the answer to the two previous questions is negative. Can we

replace the requirement that the algorithm has to exist for each ε > 0 with one

that insists that the algorithm must only work for a ‘small’ ε > 0 and get a

positive answer?

which when phrased in the language of chapter 2 read as follows

Q3’: Is {Ξ,Ω,M,Λ}∆1 ∈ ∆G
1 ?

Q4’: If the answer to the previous question is positive, can we form an algorithm Γ

that solves {Ξ,Ω,M,Λ} to output accuracy ε with runtime T (Γ, ε) <∞?

Q5’: If either of the previous questions are answered in the negative, what are the

breakdown epsilons?

4.1 Linear programming and linear systems

The linear programming problem is stated as (for fixed c)

argminx∈RN c
Tx such that Ax = y, x ≥ 0, whereas the linear systems problem

is to find an x such that Ax = y. One of the purposes of the results in this chapter

is to demonstrate and explain the general non-computability issues that can occur if

there are few restrictions on the primary set and contrast them with linear systems.

84

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 85

Let ΞLP(ι) denote the solution set, with input ι ∈ Ω where ι = (y,A), of the linear

programming problem and let ΞLS(ι) denote the solution set, with input ι ∈ Ω where

ι = (y,A) of the linear systems problem.

Theorem 4.1.1. We have contrasting results for linear programming and linear sys-

tems:

1. For any dimensions m,N , there exists a set of inputs Ω such that for any ι ∈ Ω,

ι = (y,A) for some vector y ∈ Rm, A ∈ Rm×N , ΞLP(ι) has a unique minimiser

and ‖ι‖ ≤ 1, yet

{ΞLP,Ω}∆1 /∈ ∆G
1 , εsB, ε

s
PB(p) ≥ 1/2,

for p ∈ (0, 1/2). Moreover, {ΞLP,Ω}∆1 ∈ ∆A
1 implies decidability of the Halting

Problem.

2. For any dimensions m,N let Ω be the set of y ∈ Rm, A ∈ Rm×N such that

the linear systems problem with input y and A has a unique solution. Then

{ΞLS,Ω}∆1 ∈ ∆A
1 .

Remark 4.1.2. We should note at this point that we do not claim novelty on Theorem

4.1.1 part 2. Indeed, such a result was already shown in the computational analysis

setting in [128]. We do provide proof of this variant in Chapter 5, however, our proof

strategy is substantially similar to this existing work.

As the first non-computability result of this paper, it is worth examining Theorem

4.1.1 part 1 in closer detail. Firstly, we have a bounded input set which we guarantee

has exactly one minimiser for every problem. The conclusion of the theorem implies

that the linear programming problem is non-computable, and computability with a

turing machine would imply that the halting problem is decidable. The statement

about the breakdown epsilons describes the degree of noncomputability - firstly, the

strong breakdown epsilon alludes to the fact that any algorithm will perform at least

as badly as committing an error of 1/2 for some inputs in the dataset.

For the probabilistic breakdown epsilon, the result says that a probabilistic algo-

rithm will do no better than a deterministic one unless we are willing to accept a high

probability of failing. To understand the relevance of the constant 1/2, let us imagine

a computational problem {Ξ,Ω,M,Λ} for which ∪ι∈ΩΞ(ι) has cardinality 2. It is easy

to achieve a probabilistic algorithm that outputs the correct answer with probability

a half by choosing uniformly at random from the two possible values of Ξ(ι). Such an

algorithm would clearly be of no practical interest - the result would be independent

of the input.

Let us contrast this result with that of Theorem 4.1.1 part 2. We make the same

assumptions on the input set as in part 1, but now by changing from the linear pro-

gramming problem to the linear systems problem we change the computational problem

from being outside of ∆G
1 to being inside ∆A

1 and thus computable. At first glance,

the change from linear programming to linear systems may seem completely innocu-

ous from a computability perspective. This result demonstrates that this intuition is

wrong and shows just how subtle this theory can be.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 86

The final result on linear programming shows that even with quite strong restric-

tions on the primary set, finding the minimiser of linear programming can still be a

non-computable problem. By contrast, with the same set of inputs it will be perfectly

possible to compute the objective function.

Theorem 4.1.3. There exists a set of inputs Ω such that for all ι ∈ Ω we can write

ι = (y,A) for some vector y ∈ Rm and matrix A ∈ Rm×N with bounded condition

numbers in the following sense: Cond(AA∗), CFP(y,A),Cond(Ξ) ≤ 2, ‖ι‖ ≤
√

2, yet

{ΞLP,Ω}∆1 /∈ ∆G
1 , εsB ≥

1√
2

Furthermore, {ΞLP,Ω}∆1 ∈ ∆A
1 implies decidability of LLPO. By contrast, let ΞObj

LP be

defined on the same set Ω to be

ΞObj
LP (ι) := min

x∈RN
cTx such that y = Ax, whereι = (y,A).

We have {ΞObj
LP ,Ω}∆1 ∈ ∆A

0 .

This serves to highlight the important difference between finding the minimiser and

computing the objective function. We stress at this point that in many applications

one is more interested in the former than the latter. Thus a computability theory

revolving around finding minimisers becomes of great importance.

Remark 4.1.4. Note that for most of the remaining results in this thesis, we shall

discuss only the deterministic breakdown epsilons even though our techniques are easily

able to show bounds on the probabilistic breakdown epsilons. This is because the

typical algorithms used to solve all but the neural network problem are deterministic

in nature.

4.2 Compressed sensing

As we shall see that basis pursuit and basis pursuit denoising have different computa-

tional properties, we will split our work here into two sections.

4.2.1 Basis pursuit

Firstly, recall that the basis pursuit problem is to find a solution to

argminx∈RN ‖x‖1 such that Ux = y.

We begin by discussing the basic non-computability results on basis pursuit.

Firstly, basis pursuit is not a ∆1 problem even when restricted to single minimiser

problems and bounded input. Secondly, basis pursuit is still not a ∆1 problem even

under reasonable assumptions on all but the RCC condition number. More precisely:

Theorem 4.2.1 (Basis Pursuit). Let Ξ(ι) denote the solution set, with input ι ∈ Ω,

of basis pursuit with l1 norm.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 87

(i) For any dimensions m,N ∈ N, there exists a set of inputs Ω such that for any

ι ∈ Ω, ι = (y, U) for some vector y ∈ Rm and matrix U ∈ Rm×N , Ξ(ι) has a

unique minimiser and ‖ι‖ ≤ 1 for all ι ∈ Ω, yet

{Ξ,Ω}∆1 /∈ ∆G
1 , εsB ≥

1

2
.

Moreover, {Ξ,Ω}∆1 ∈ ∆A
1 implies decidability of the Halting Problem.

(ii) For any dimensions m,N ∈ N with m < N , there exists a set of inputs Ω

such that for all ι ∈ Ω we can write ι = (y, U) for some vector y ∈ Rm

and matrix U ∈ Rm×N with bounded condition numbers in the following sense:

Cond(UU∗), CFP(y, U),Cond(Ξ) ≤ 2, ‖ι‖ ≤
√

2, yet

{Ξ,Ω}∆1 /∈ ∆G
1 , εsB ≥

1√
2

Furthermore, {Ξ,Ω}∆1 ∈ ∆A
1 implies decidability of LLPO.

As a counterpart to this theorem, it is natural to ask for conditions on the input set

that ensure that the problem is indeed in ∆A
1 . An initial attempt might be to show that

we can establish a positive result if we assume that Cond(UU∗), CFP(y, U),Cond(Ξ)

and additionally CRCC are all bounded.

We shall not argue whether or not such conditions lead to a computability result

here. Instead, let us suppose that these conditions were able to prove a computability

result. Our aim would then be to show that compressed sensing problems have these

conditions and thus conclude that even though basis pursuit is not in ∆1, if we only

work with compressed sensing problems we can compute to arbitrary precision.

Thus a natural question is whether or not ‘standard’ compressed sensing problems

have a small RCC condition number. Our next theorem shows that this is not the

case, and thus a computability result that requires a small RCC would be inapplicable

in explaining why compressed sensing techniques seem to perform well in practice.

Moreover, we do in fact show that these ‘standard’ compressed sensing problems are

in ∆1, meaning that a small RCC is not necessary to guarantee computability for these

important compressed sensing problems.

Theorem 4.2.2. There exists a set of inputs Ω such that

1. If y = Ux for some x is such that (y, U) is in Ω then the set of U ∈ Rm×N so

that (Ux,U) ∈ Ω is an open set.

2. There is an input ι = (ỹ, Ũ) ∈ Ω such that Ũ is a Hadamard matrix and

CRCC(ι) =∞.

However, despite the infinite RCC condition of the problem, we have

{Ξ,Ω}∆1 ∈ ∆A
1 .

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 88

Moreover, there exists an algorithm Γ such that for any ε > 0 the algorithm has bounded

minimum runtime i.e.

T (Γ, ε) <∞.

Finally, the same result holds if we replace the word ‘Hadamard’ with ‘Bernoulli’.

The issue of input sets with two minimisers is very subtle and the subject of much

of the discussion in this thesis. On the one hand, 4.2.2 shows that if the inputs are

arbitrarily close to two minimisers we may still be able to build an algorithm to solve

the problem. On the other hand, we have the following result.

Theorem 4.2.3. Let {Ξ,Ω} denote the computational problem of Basis Pursuit (BP).

Suppose that there is input data ι = (y, U) ∈ Ω for which there are at least two distinct

elements in Ξ(ι). Suppose also that there is an ε > 0 such that for every negative

semidefinite diagonal matrix D with ‖D‖max < ε we have (y, U + UD) ∈ Ω. Then

{Ξ,Ω}∆1 /∈ ∆G
1 . Moreover, if x1, x2 ∈MBP

min(ι) then εsB ≥ ‖x1 − x2‖2/2.

The set MBP
min(ι) are the set of minimisers with minimal support. This key concept is

used in several of the arguments to get lower bounds on the strong breakdown epsilon.

More precisely, we define the following:

Definition 4.2.4 (Minimisers with minimal support). For feasible input y ∈ Cm,

U ∈ Cm×N and parameters δ ≥ 0, λ > 0, we consider the set MBP
min of basis pursuit

denoising minimisers with minimal support MBP
min (respectively the set MUL

min of lasso

minimisers with minimal support), defined by

MBP
min(y, U, δ) := {x ∈ ΞBP(y, U, δ) |x′ ∈ ΞBP(y, U, δ), supp(x′) ⊆ supp(x)⇒ x = x′}

MUL
min(y, U, λ) := {x ∈ ΞUL(y, U, λ) |x′ ∈ ΞUL(y, U, λ), supp(x′) ⊆ supp(x)⇒ x = x′}

Note that since we permit δ = 0 in the definition for basis pursuit denoising, so that

basis pursuit is a special case.

To give a condition that ensures that the problem is in ∆A
1 , we therefore take a

different approach. We would like to guarantee that the same properties that were

good for recovery are also good for computation (i.e. the RIP and nullspace property

in levels from Chapter 3) We show that this is indeed the case subject to the existence

of an primal convergent tower of algorithms:

Definition 4.2.5. A primal convergent tower of algorithms for basis pursuit (denois-

ing) is an arithmetic tower of algorithms {Γn} of height one so that for given ε > 0,

Ũ ∈ Cm×N and ỹ ∈ Cm we have

lim sup
n→∞

‖Ũxn − ỹ‖2 ≤ ε, lim
n→∞

‖xn‖1 = BPε(ỹ, Ũ), (4.2.1)

provided that there exists x0 with ‖Ũx0 − ỹ‖2 < ε, where xn is the nth iteration of the

algorithm with input (ỹ, Ũ , ε) and BPε(ỹ, Ũ) is the real value given by

min ‖x′‖1 such that ‖Ũx′ − ỹ‖ ≤ ε.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 89

Remark 4.2.6. Note that the existence of such an algorithm does not contradict the

previous theorem on the non-computability of basis pursuit as here we assume that

the algorithm is fed exact information on the inputs (as opposed to ∆1 information).

Theorem 4.2.7. Fix natural numbers l1 and η1 and real constants τ1 > 0, ρ1 < 1.

Assume that (s,M) is a sparsity pattern satisfying the following conditions:

1. The number of levels in the sparsity pattern (s,M), denoted by l, satisfies l < l1
with l

1/4
1 ∈ Q.

2. The ratio constant of the sparsity pattern (s,M), denoted by ηs,M, satisfies

ηs,M < η1 with η
1/4
1 ∈ Q.

Let {ΞBP,Ω} denote the Basis Pursuit problem with Ω being some (not necessarily

proper) subset of possible ι with ι = (y, U) such that U satisfies the `2 robust nullspace

property of order (s,M) with parameters ρ < ρ1 with ρ
1/2
1 ∈ Q, τ < τ1 and such that

y = Ux for some (s,M)-sparse x.

Then, subject to the existence of a primal convergent tower of algorithms, there

exists a collection of arithmetic algorithms {Γn}∞n=1 on Ω for which d(Γn(ι),ΞBP(ι)) ≤
2−n. Thus {ΞBP,Ω} ∈ ∆A

1 . Moreover, for any ε > 0, T (Γn, ε) <∞ provided that there

exists a C ∈ R such that for each ι ∈ Ω, ‖y‖1 < C.

Remark 4.2.8. The condition that l
1/4
1 , η

1/4
1 and ρ

1/2
1 are all rational is merely a

technical requirement and does not significantly weaken Theorem 4.2.7 because the

set of x ∈ R such that 4
√
x ∈ Q is dense in R+.

Remark 4.2.9. Because of the argument in the proof of Theorem 3.3.4, we get a

similar ∆A
1 result as in Theorem 4.2.7 if we replace the assumptions on the nullspace

property with an assumption that the input matrices have a sufficiently small RIPL
constant.

Remark 4.2.10. The strategy to proving Theorem 4.2.7 involves taking sufficiently

close approximations (ỹ, Ũ) to (y, U) and then applying a primal convergent algorithm

with ε taken to be small.

As a counterpart, we show that if the conditions given in the theorem above are

slightly relaxed then we return to the territory of being outside of ∆1.

Theorem 4.2.11. We set {Ξ,Ω} to be the `1 basis pursuit problem. Fix natural

numbers m,N with N ≥ 2 and m ≥ 1. Suppose that there is a real constant ρ > 1 and

a set K ⊂ {1, 2, . . . , N} with 1 ≤ |K| ≤ (m∧ (N −1)) such that if a matrix U ∈ Rm×N

satisfies

‖xK‖1 < ρ‖xKc‖1 whenever Ux = 0 and x 6= 0 (4.2.2)

then (y, U) ∈ Ω for all y such that y = Uv for some v with support K. For such

computational problems {Ξ,Ω}, we have {Ξ,Ω} /∈ ∆G
1 .

The requirement 1 ≤ |K| ≤ (m ∧ (N − 1)) is necessary for the conclusion of the

theorem to hold. If this condition is omitted, then note that if |K| > m then there are

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 90

no matrices satisfying (4.2.2): any such U would have UK ∈ Cm×|K| and thus UK has

a non-trivial nullspace, contradicting (4.2.2). If instead K = ∅ then the primary set

Ω would consist of all pairs (0m, U) where U is a matrix and 0m is the 0 vector, and

trivially this problem is in ∆0. Finally, if |K| = N then any matrix satisfying (4.2.2)

must have a trivial nullspace and therefore the basis pursuit problem is reduced to

gaussian elimination.

We can prove a similar result for inputs that have a RIP in levels constant that is

in some sense slightly too large:

Theorem 4.2.12. Fix γ > 1 and f : R+ → R+ such that f(x) = o(x1/2). For

parameters p := (δ,m,N, s,M) with δ′ > 0, m,N ∈ N and (s,M) a valid sparsity

pattern, we denote by Ωp the set of (y, U) such that

� U ∈ Rm×N and y = Ux for some (s,M)-sparse x ∈ RN .

� cond(UU∗) < γ and the RIPL constant of order (s,M) for U satisfies δs,M < δ′.

Then there exist valid parameters p such that

(A) (s,M) has two levels and δ′ ≤ 1
f(ηs,M)

but {Ξ,Ωp}∆1 /∈ ∆G
1 . Similarly, there exist valid parameters p such that if condition

(A) is replaced by

(B) ηs,M = 1 and δ′ ≤ 1
f(l)

then we still have {Ξ,Ωp}∆1 /∈ ∆G
1 .

4.2.2 Basis pursuit denoising

As with basis pursuit, there are some basic non-computability results for basis pursuit

denoising (defined as argminx∈RN ‖x‖1 such that ‖Ux− y‖2 ≤ δ).

Theorem 4.2.13 (Basis Pursuit Denoising). Let Ξ(ι) denote the solution set, with

input ι ∈ Ω, of basis pursuit with l1 norm.

(i) For any dimensions m,N ∈ N with m < N and δ > 0, there exists a set of inputs

Ω such that for all ι ∈ Ω we can write ι = (y, U, δ) for some vector y ∈ Rm and

matrix U ∈ Rm×N , Ξ(ι) has a unique minimiser and ‖ι‖ ≤ 1 for all ι ∈ Ω, yet

{Ξ,Ω}∆1 /∈ ∆G
1 , εsB ≥

1

2
.

Moreover, {Ξ,Ω}∆1 ∈ ∆A
1 implies decidability of the Halting Problem.

(ii) For any dimensions m,N ∈ N with m < N and denoising parameter δ ∈ (0, 1),

there exists a set of inputs Ω such that for all ι ∈ Ω we can write ι = (y, U, δ) for

some vector y ∈ Rm and matrix U ∈ Rm×N with bounded condition numbers in

the following sense: Cond(UU∗), CFP(U, y, δ),Cond(Ξ) ≤ 2, ‖ι‖ ≤ 1 yet

{Ξ,Ω}∆1 /∈ ∆G
1 , εsB ≥

1− δ√
2

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 91

Furthermore, {Ξ,Ω}∆1 ∈ ∆A
1 implies decidability of LLPO.

We also get a similar non-computability result on two minimiser problems:

Theorem 4.2.14. Let {Ξ,Ω} denote the computational problem of Basis Pursuit de-

noising for some δ > 0 with l1 regularisation and with some set Ω of valid inputs.

Suppose that there is input data ι = (y, U, δ) ∈ Ω for which there are at least two

distinct elements in Ξ(ι). Suppose also that there is an ε > 0 such that for every neg-

ative semidefinite diagonal matrix D with ‖D‖ < ε we have (y, U +UD, δ) ∈ Ω. Then

{Ξ3,Ω3,M3,Λ3}∆1 /∈ ∆G
1 . Moreover, if x1, x2 ∈MBP

min(ι) then εsB ≥ ‖x1 − x2‖2/2.

Thus, to get a positive result, we turn to the robust nullspace property as before.

Unfortunately, this will still not be enough to give us a result in ∆A
1 , as the following

statement shows.

Theorem 4.2.15. Fix s ∈ N and δ ∈ (0, 1] and let Ω denote the set of all ι satisfying

the following requirements:

1. U obeys the robust nullspace property with parameters ρ ≤ ρ′ = s+1
2blog2(s)c+2−s < 1

and τ ≤ 7
√

1 + ρ′.

2. ‖U‖ ≤ 6 and cond(UU∗) ≤ 36.

3. y = Ux for some s-sparse x and y ≤ 2.

Then {Ξ3,Ω3,M3,Λ3}∆1 /∈ ∆G
1 . Moreover, εsB ≥ δ/2.

However, we can also use a primal convergent algorithm to provide an upper bound

for the breakdown epsilon as a counterpart to Theorem 4.2.7.

Theorem 4.2.16. Fix natural numbers l1 and η1 and real constants δ ≥ 0, τ1 > 0, ρ1 <

1. Assume that (s,M) is a sparsity pattern satisfying the following conditions:

1. The number of levels in the sparsity pattern (s,M), denoted by l, satisfies l < l1
with l

1/4
1 ∈ Q.

2. The ratio constant of the sparsity pattern (s,M), denoted by ηs,M, satisfies

ηs,M < η1 with η
1/4
1 ∈ Q.

Let {ΞBPDN,Ω} denote the Basis Pursuit problem with Ω being some (not neces-

sarily proper) subset of possible ι with ι = (y, U) such that U ∈ Rm×N satisfies the `2

robust nullspace property of order (s,M) with parameters ρ < ρ1 with ρ
1/2
1 ∈ Q, τ < τ1

and such that ‖y − Ux‖ ≤ δ for some (s,M)-sparse x.

Then, subject to the existence of a primal convergent tower of algorithms, there

exists a collection of arithmetic algorithms {Γn}∞n=1 on Ω for which d(Γn(ι),ΞBP(ι)) ≤
2−n + ε′ where

ε′ := 2Nδα3/(N − 1) + 2δ
(
C +D 4

√
l1η1

)

α3 := τ1(4
√
l1η1/2 + 1 + 2(ρ1 + C0(ρ1) 4

√
l1η1))/(1− ρ1)

C :=
ρ1τ1 + τ1

1− ρ1
and D :=

4
√
ρ1τ1 + 3τ1 − ρ1τ1

2− 2ρ1
.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 92

Moreover, for any ε > ε′, T (Γn, ε) < ∞ provided that there exists a C ∈ R such that

for each ι ∈ Ω, ‖y‖1 < C.

These two results - one showing that the breakdown epsilon is non-zero even as-

suming that all inputs have the nullspace property (Theorem 4.2.15) and one showing

that the breakdown epsilon is bounded above in that circumstance (Theorem 4.2.16)

are important to this thesis. Firstly, they show that there are problems with a very

natural input set which are not computable. Secondly, they demonstrate that even

though such problems are in a sense not computable, we can compute them up to a

tolerably small error.

To conclude this section, let us demonstrate a simple numerical example of an

incorrect computation for basis pursuit using SPGL1. We run the following program

to solve

min
x∈R2

‖x‖1 such that Ux = y

where U =
(

1− ε 1
)
, y = 1 for some small ε > 0. This can be expressed in the

following code:

1 Large = 1e9; Epsilon = 1/Large;

2 y = 1;

3 U = [1-Epsilon , 1];

4 options = spgSetParms('optTol ',1e-50,'bpTol ',1e-50,'decTol '

,1e-50);

5 AlgBPAns = spgl1(U,y,[],[],[], opts)

The true solution is x = (0, 1)T . Instead, MATLAB prints the following output.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 93

==

SPGL1 v.1.9 (29 Apr 2015)

==

No. rows : 1 No. columns : 2

Initial tau : 0.00e+00 Two-norm of b : 1.00e+00

Optimality tol : 1.00e-50 Target objective : 0.00e+00

Basis pursuit tol : 1.00e-50 Maximum iterations : 10

Iter Objective Relative Gap Rel Error gNorm stepG nnzX nnzG tau

0 1.0000000e+00 0.0000000e+00 1.00e+00 1.000e+00 0.0 0 0 1.0000000e+00

1 7.5000000e-01 5.6250000e-01 7.50e-01 7.500e-01 -0.6 2 1

2 4.9999993e-10 2.4999993e-19 5.00e-10 5.000e-10 0.0 2 1

3 5.0000004e-10 2.5000004e-19 5.00e-10 5.000e-10 0.0 2 1

4 5.0000004e-10 2.5000004e-19 5.00e-10 5.000e-10 0.0 2 1

5 3.7500003e-10 3.2812507e-19 3.75e-10 3.750e-10 -0.6 2 1

6 0.0000000e+00 0.0000000e+00 0.00e+00 0.000e+00 0.0 2 2

EXIT -- Found a BP solution

Products with A : 13 Total time (secs) : 0.0

Products with A’ : 7 Project time (secs) : 0.0

Newton iterations : 2 Mat-vec time (secs) : 0.0

Line search its : 4 Subspace iterations : 0

AlgBPAns =

0.5000

0.5000

The value of x = (0.5, 0.5)T is very different to the true solution.

4.3 Statistical estimation

Recall that constrained lasso is to find a minimiser of argminx∈RN ‖Ax −
y‖2 such that ‖x‖1 ≤ τ . Similarly unconstrained lasso is to find a minimiser of

argminx∈RN ‖Ax − y‖22 + λ‖x‖1. Once again, we start by proving a general non-

computability result for both constrained and unconstrained lasso. However, this time

we will be unable to prove a result similar to the basis pursuit/basis pursuit denoising

case for single minimiser problems

Theorem 4.3.1 (Lasso). Let ΞUL(ι) (respectively ΞCL) denote the solution sets, with

input ι ∈ Ω, of unconstrained (respectively constrained) lasso with l1 norm. We have

the following:

(i) There exists a set of inputs Ω such that Cond(AA∗),Cond(Ξ) ≤ 2, ‖ι‖ ≤ 1 for

ι = (y,A) ∈ Ω, yet

{Ξ,Ω}∆1 /∈ ∆G
1 , εsB ≥

2− λ
2
√

2

Furthermore, {Ξ,Ω}∆1 ∈ ∆A
1 implies decidability of LLPO.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 94

(ii) For any dimensions m,N ∈ N with m < N and any constraint parameter τ such

that τ ∈ (0, 1), there exists a set of inputs Ω such that for all ι ∈ Ω we can

write ι = (y,A, τ) for some vector y ∈ Rm and matrix A ∈ Rm×N with bounded

condition numbers in the following sense: Cond(AA∗), CFP(A, y, τ),Cond(Ξ) ≤
2, ‖ι‖ ≤ 1 yet

{Ξ,Ω}∆1 /∈ ∆G
1 , εsB ≥

τ√
2

Furthermore, {Ξ,Ω}∆1 ∈ ∆A
1 implies decidability of LLPO.

In the previous discussion on basis pursuit and basis pursuit denoising we saw that

if the input set contained an input with two minimisers and all small perturbations on

that input were also in the input set then the problem is not in ∆1. This is indeed the

case for unconstrained lasso. For constrained lasso however we do not get this result.

This is summarised in the following theorem:

Theorem 4.3.2. 1. Let {Ξ,Ω} denote the computational problem of unconstrained

Lasso with l1 regularisation. Suppose that there is input data ι = (y,A) ∈ Ω

for which there are at least two distinct elements in Ξ(I). Suppose also that

there is an ε > 0 such that for every negative semidefinite diagonal matrix D

with ‖D‖max < ε we have (y,A + AD) ∈ Ω. Then {Ξ3,Ω3,M3,Λ3}∆1 /∈ ∆G
1 .

Moreover, if x1, x2 ∈MUL
min(ι) then εsB ≥ ‖x1 − x2‖2/2.

2. Let {Ξ4,Ω4,M4,Λ4} be the constrained lasso problem with `1 regularisation as

defined in section 2.10. There exists an input set Ω and ι ∈ Ω such that if

ι = (y,A, τ).

(a) There are at least two distinct vectors in Ξ4(ι).

(b) For any matrix D with ‖D‖ < 1/2, (y,A+AD, τ) ∈ Ω4.

(c) {Ξ4,Ω4,M4,Λ4} ∈ ∆A
1 with bounded minimum runtime so that there exist

Γn such that d(Γn(ι),Ξ(ι)) ≤ 2−n and T (Γn, ε) <∞.

Despite the result on the non-computability of unconstrained lasso above, in some

sense two minimiser unconstrained lasso problems are ‘rare’ when the matrix elements

have some underlying random distribution. Indeed, the following lemma is proven

in [116] as Lemma 4.

Theorem 4.3.3 (Tibshirani 2012). Suppose X ∈ Rm×N is a random matrix with

distribution absolutely continuous with respect to the lebesgue measure on Rm×N . Then

for any y and λ > 0, the unconstrained lasso problem has exactly one minimiser.

Thus it may appear that despite the results of Theorem 4.3.2, it is unlikely that

one will draw an input set with two minimiser problems. Even though this is the case,

it is possible to create a probability distribution so that it takes an arbitrarily long

time to solve the problems with probability greater than a half.

To state a precise theorem about this, we introduce some notation: for a subset S

of Rm×N , we denote the set of lebesgue measurable sets on S by L(S). Let R1×2
‖·‖max≤2

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 95

be the measurable space of all matrices with entries bounded (in absolute value) by 2.

We denote by X the measure space X = (R1×2
‖·‖max≤2,L(R1×2

‖·‖max≤2)).

Theorem 4.3.4. For any M ∈ N, there exists a probability measure PM on X abso-

lutely continuous with respect to the lebesgue measure and a vector y ∈ R with |y| ≤ 1

such that for every fixed λ ∈ (0, 2) and set Ω comprised of three tuples (y,A, λ) at least

one of the following two things occur

1. For the unconstrained lasso problem {Ξ,Ω}, εlrB(M) > (2− λ)/(2
√

2).

2. If it is measurable, the set of all A ∈ R1×2
‖·‖max≤2 such that (y,A, λ) ∈ Ω has PM

probability less than or equal to 1/2.

An initial attempt to get a positive result with lasso might use the robust nullspace

property as in the section on basis pursuit. However, this will not be enough to

guarantee that we are in ∆A
1 :

Theorem 4.3.5. Fix s ∈ N and λ ∈ (0, 1/
√
k] where k = 2blog2(s)c+1. Let Ω denote

the set of all ι satisfying the following requirements:

1. A obeys the robust nullspace property with parameters ρ ≤ ρ′ = s+1
2blog2(s)c+2−s < 1

and τ ≤ 7
√

1 + ρ′.

2. ‖A‖ ≤ 6 and cond(AA∗) ≤ 36.

3. y = Ax for some s-sparse x and y ≤ 2.

Then {Ξ4,Ω4,M4,Λ4}∆1 /∈ ∆G
1 . Moreover, εsB ≥

4λ
√
k

5
√

2
.

In the basis pursuit denoising case, we showed that we can attain close to the break-

down epsilon with an algorithm provided that we have the robust nullspace property

(Theorem 4.2.16). For lasso, the robust nullspace property is mainly of importance

in inverse problems and not for statistical estimation. We will thus pick a different

well studied criteria - specifically, we shall work with the dual certificate criteria. To

get a positive result with a limited runtime, we once again need the idea of a primal

convergent algorithm for lasso.

Definition 4.3.6. A primal convergent tower of algorithms for lasso is an arithmetic

tower of algorithms {Γn} of height one such that for given λ > 0, Ã ∈ Cm×N and

ỹ ∈ Cm and xn = Γn(ỹ, Ã, λ) then

lim
n→∞

‖xn‖1 = LASSOλ(Ã, ỹ), (4.3.1)

where LASSOλ(Ã, ỹ) is the real value given by minx′ ‖Ãx′ − ỹ‖+ λ‖x′‖1.

Once again, the existence of such an algorithm does not contradict any theorem

on the non-computability of lasso as we assume that the primal convergent algorithm

is fed exact information on the inputs (as opposed to ∆1 information). With this in

mind, we can now prove a positive result for unconstrained lasso:

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 96

Theorem 4.3.7. Fix natural numbers m,N , positive numbers λ, α1, α2, α3, α4 and a

set S ⊆ {1, 2, . . . , N}. Let Ω be the set of all (y,A) such that y ∈ Rm, A ∈ Rm×N and

the following conditions hold:

(i) y = Aη for some η ∈ RN with support contained in S.

(ii) ‖A∗ScAS(A∗SAS)−1‖∞ < 1− α1.

(iii) min{ρ ∈ Spec(A∗SAS)} ≥ α2 where Spec denotes the spectrum of a matrix.

(iv) ‖A‖2 ≤ α3 and ‖η‖1 ≤ α4.

If {Ξ4,Ω4,M4,Λ4}represents unconstrained lasso, then {Ξ4,Ω4,M4,Λ4}∆1 ∈ ∆A
1 .

Items (i) to (iv) in Theorem 4.3.7 are the dual certificate criteria studied in [123]

and references therein.

4.4 Neural networks - the paradoxes of deep learning

In the other sections, we began with a non-computability result and then augmented

it with a collection of either positive or negative results depending on how the input

set is further restricted. However, as highlighted in the introduction, there is currently

very little existing work that explains when a neural network will succeed and when it

will fail [46, 52].

We thus instead choose to present three separate issues with neural networks. To

exclude pathological examples with training and classification sets that have elements

that are arbitrary close to each other, that could make the classification function

jump subject to a small perturbation, or become arbitrary large, we introduce the

idea of well separated and stable sets. Specifically, for a given classification function

f : Rd → {0, 1}, we define the family of well separated and stable sets Sfδ with

separation at least δ:

Sfδ = {{x1, . . . , xr} | ‖xj‖ ≤ 1,min
i 6=j
‖xi − xj‖∞ ≥ δ, f(xj + y) = f(xj) for ‖y‖∞ < δ}.

Roughly speaking, the first issue with neural networks is a non-computability result

showing that there are uncountably many classification functions, training sets and

classification sets for which (provided small perturbations are still valid inputs to the

algorithm) it will be impossible to make an algorithm that automatically finds and

applies the optimal neural network to the classification sets. This is stated accurately

in the following theorem.

Theorem 4.4.1. For n ∈ N, we write ε(n) := ((4n+ 3)(2n+ 2))−1. Additionally, for

any ν > 0 and fixed training set T of size K with K ∈ N , let ΩTν be the collection of

ι =
{
{(x̂j , f(x̂j))}Kj=1, {x̂j}Kj=1

}
, with x̂j ∈ B∞ν (xj), xj ∈ T and where B∞ν (xj) is the

open ball of radius ν about xj in the `∞ norm.

There are an uncountable family of classification functions f : RN0 → {0, 1} such

that for any neural network dimensions N = (NL, NL−1, . . . , N1, N0) with N0, L ≥ 2

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 97

and any K ≥ 3(N1 + 1) · · · (NL−1 + 1) there exist uncountably many training sets T ∈
Sfε(K) of size K such that for any cost function C ∈ CF and ν < ε(K), {ΞCNN,Ω

T
ν } /∈

∆G
1 . Moreover, εsB ≥ εsPB(p) ≥ 1/4 for p < 1/2.

Note that Theorem 4.4.1 applies with a very general class of cost functions. Addi-

tionally, since we have a non-zero probabilistic breakdown epsilon, the issue cannot be

resolved by working with a probabilistic algorithm (so in particular, stochastic gradient

descent will be unable to solve this particular problem).

Finally, we note that the optimisation problem for neural networks is typically

non-convex, and at first glance it may seem that we are providing a problem for

which any algorithm will get ‘stuck’ in a local minima. Here we highlight specifically

that the result says that {Ξ,Ω} /∈ ∆G
1 as opposed to {Ξ,Ω} /∈ ∆A

1 . The immediate

and important implication is that no such algorithm to perform the computation will

exist even if we provide a candidate algorithm with an oracle to detect and avoid local

minima.

The second issue says that given an arbitrarily small distance ε we can find an

uncountable number of functions, training sets and classification sets so that there is

a neural network which can train exactly on the (arbitrarily large) training set and

give the correct result on the (arbitrarily large) classification set, but there will be

uncountably many new vectors within ε of the training and classification set which

this neural network will be unable to classify. This is stated precisely in the following

theorem:

Theorem 4.4.2. As in Theorem 4.4.1, for n ∈ N, we write ε(n) := ((4n + 3)(2n +

2))−1. There are an uncountable family of classification functions f : RN0 → {0, 1}
such that for any neural network dimensions N = (NL, NL−1, . . . , N1, N0) with N0, L ≥
2, any non-negative ε < 1/(K+M) where M can be made arbitrarily large and any K ≥
3(N1 + 1) · · · (NL−1 + 1) there exist uncountably many non-intersecting training sets

T = {x1, . . . , xK} ∈ Sfε(K+M) and uncountably many non-intersecting classification

sets C = {y1, . . . , yM} ∈ Sfε(K+M) such that if φ̃

φ̃ ∈ argmin
φ∈NNN,L

C(v, w), vj = φ(xj), wj = f(xj),

where 1 ≤ j ≤ K and C ∈ CF , then

φ̃(x) = f(x) ∀x ∈ T ∪ C. (4.4.1)

However, for every φ̂ ∈ NNN,L there exists uncountably many v ∈ RN0 such that

|φ̂(v)− f(v)| ≥ 1/2, ‖v − x‖∞ ≤ ε for some x ∈ T . (4.4.2)

The final neural network related issue is that for an uncountable number of classi-

fication functions, there are an uncountable number of training sets and classification

sets for which solving the optimisation problem (assuming we had an oracle which

could do so) will yield a neural network that gets an incorrect answer on at least one

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 98

element of the training set and at least one element of the classification set. However,

we can find arbitrarily small perturbations on the training set and classification set

for which solving the optimisation problem again with this new training set will yield

a neural network that will be able to exactly classify both the training set and the

classification set. This is formulated mathematically in the following theorem:

Theorem 4.4.3. There are an uncountable family of classification functions

f : RN0 → {0, 1} such that for any neural network dimensions N =

(NL, NL−1, . . . , N1, N0) with N0, L ≥ 2, any K ≥ 3(N1 + 1) · · · (NL−1 + 1), any

M ≥ K and any non-negative ε < 1/(K + M) there exist uncountably many non-

intersecting training sets of the form T1 = {x1, . . . , xK} ∈ Sf
(K+M)−1 and T2 =

{x̂1, . . . , x̂K} ∈ Sf
(K+M)−1 and uncountably many non-intersecting classification sets

C1 = {y1, . . . , yM} ∈ Sf
(K+M)−1 and C2 = {ŷ1, . . . , ŷM} ∈ Sf

(K+M)−1 with M ≥ K such

that T1 ⊂ B∞ε (T2) and C1 ⊂ B∞ε (C2). Moreover, we have

φ̃k ∈ argmin
φ∈NNN,L

C(vk, wk), k = 1, 2,

where

v1
j = φ(xj), w1

j = f(xj), v2
j = φ(x̂j), w2

j = f(x̂j),

such that there exist v ∈ T1 and w ∈ C1 with

|φ̃1(v)− f(v)| ≥ 1/2, |φ̃1(w)− f(w)| ≥ 1/2.

However,

φ̃2(x) = f(x) ∀x ∈ T2 ∪ C2.

Let us consider the three issues we have just highlighted. The first issue is a

computability issue, demonstrating that there are neural network problems that cannot

be computed. Yet, in practice, it seems that we are able to get good results when

attempting to compute neural networks with backpropagation and stochastic gradient

descent.

The second issue demonstrates a risk with the tactic of cross validation: namely,

training a neural network and then testing it on sensible data, observing success and

then assuming that it will still work well on new samples. In the absence of mathe-

matical models to explain when a neural network will fail and when a neural network

will succeed, this is seen to be an effective strategy for solving classification problems.

However, we have demonstrated here that this can fail with arbitrarily large cross

validation on an uncountable number of examples.

The final issue discusses a sensitivity to perturbations - even though we may fail to

train on a training set, an arbitrarily small perturbation can yield a successful result.

Thus it is very difficult to classify failure in the context of neural networks.

Let us examine the second issue further. Theorem 4.4.2 shows that for a given ε > 0,

there are classification functions for which the trained neural network is successful on

both the training set and arbitrarily large classification. However, such neural networks

have an instability on perturbations of size ε. Let us contrast this with Theorem

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 99

1.7.1 (the universal approximation theorem). Note that the classification functions

in Theorem 4.4.2 are in Sfε(K+M) and are thus constant under perturbations of size

ε < ε(K + M). An application of Theorem 1.7.1 shows that we can approximate a

smoothed version of this function to arbitrary accuracy. Thus there exists a neural

network that approximates the classification function arbitrarily well and is therefore

stable under small perturbations. Arguably, the added stability yields a ‘better’ neural

network that classifies well and is also stable.

We now introduce the idea of the paradoxes of deep learning. These relate to the

inefficiency in training the network. Specifically, the paradoxes are the following ideas:

Definition 4.4.4 (The paradoxes of deep learning). Despite their success, neural net-

works have the following paradoxical properties:

1. As shown in Theorem 4.4.1, the computational problem of training a neural net-

work and using it on a classification set is non-computable. This is even if there

exist computational oracles to avoid local minima and even using random algo-

rithms.

2. Even given an oracle that can train the network, the methodological process of

training a neural network will yield an undesirable answer in the sense that such

a neural network will be unstable. Despite this process failing, there will exist a

stable alternative neural network - but such an alternative neural network cannot

be trained by training the network.

To highlight potential issues with neural networks, let us consider an example using

‘Google translate’. At the time of writing, this functions by using a collection of neural

networks (more detail is given [127]). We ask a simple question: translate the Nor-

wegian word ’stortinget’. The correct translation in English is the word ‘parliament’

which is obtained by Google translate (see Figure 4.1). We also ask for the related

translation of ‘stortinget stortinget’ which should translate to ‘parliament parliament’.

Note that this would be correctly translated by an algorithm that simply looks up

words from a dictionary. Unfortunately, Google translate does not provide the correct

translation (see Figure 4.2).

Figure 4.1: An example of google translate succeeding.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 100

Figure 4.2: A similar example where google translate fails.

4.5 Image processing

Our results here will show that both (BPTV) (finding a minimiser to

argminx∈RN ‖x‖TV such that Ax = y) and (DeblurTV) (finding a minimiser to

argminx∈RN ‖Ax− y‖22 +λ‖x‖TV) are non-computable problems. This is encapsulated

mathematically in the following theorems:

Theorem 4.5.1 (Image inverse problems). Let ΞBPTV denote the problem function

for basis pursuit with total variation regularisation. There exists a set of inputs Ω such

that

Cond(AA∗), CFP(y,A) ≤ 2
√

2, ‖ι‖ ≤ 2

for all ι = (y,A) ∈ Ω, yet {ΞBPTV,Ω}∆1 /∈ ∆G
1 with εsB ≥

√
2.

Theorem 4.5.2 (Image deblurring). Fix λ < 1
(2+
√

2)2 . Let ΞDeblurTV denote the prob-

lem function for image deblurring. There exists a set of inputs Ω such that

Cond(AA∗), ‖ι‖ ≤ 2

for all ι = (y,A) ∈ Ω, yet {ΞDeblurTV,Ω}∆1 /∈ ∆G
1 with εsB ≥

√
2(1− 2λ).

Let us end this chapter with a simple example of total variation in inverse prob-

lems. Our aim will be to recover a Shepp-Logan phantom [108] of dimension 20482.

We choose 40% of the possible Fourier frequencies uniformly at random without re-

placement. Next, we try to recover using the standard `1 minimisation technique from

compressed sensing with Daubechies 2 wavelets (see (BP)). Finally, we use a total

variation minimisation strategy as in (BPTV) with the same samples. The results are

displayed in Figure 4.3.

CHAPTER 4. COMPUTATIONAL BARRIERS IN INFORMATION THEORY 101

(a) (b) (c)

Figure 4.3: Standard `1 basis pursuit (BP) compared to total variation minimisation
(BPTV) (a) The original Shepp-Logan phantom (b) Recovery using (BP) (c) Recovery
using total variation minimisation.

Given the striking visual improvement observed by using (BPTV) over (BP), it

is very tempting to state that total variation minimisation is a better method than

`1 basis pursuit for the given sampling pattern and image. However, this conclusion

cannot be drawn from Figure 4.3 alone.

Here we draw a distinction between the method and algorithm used to perform the

method. Theorem 4.2.1 and Theorem 4.5.1 show that in general, it is impossible to

compute the methods of (BP) or (BPTV). Thus the poor visual result demonstrated

in Figure 4.3 using (BP) may be the observed result of a failure of the algorithm as

opposed to a failure with the method.

This argument extends to all the techniques discussed in this thesis. Without a

prior understanding of what exactly the algorithms are computing, we cannot assert

anything about the underlying method from empirical evidence. Thus a comparison

of various methods in practical circumstances becomes very difficult unless further

analysis on when algorithms work and when they fail is completed.

Remark 4.5.3. Note that the performance observed in Figure 4.3 is far weaker than

the one displayed in Figure 1.1. We emphasize here that although the sampling pat-

tern is likely to be far from optimal, our point is merely about the importance of

understanding algorithm performance when making statements that compare various

methods and our choice of sampling pattern does not change this conclusion.

Chapter 5

Proofs

Note that throughout this section theorems from separate sections that share almost

identical proofs are typically grouped together. Thus results may not be proven in the

order that they were stated in the thesis.

5.1 Proof of Proposition 2.8.4

Proof of Proposition 2.8.4. We start with (2.8.2), and observe that εsPB(q) ≤ εsPB(p)

follows directly from the definition. To see that εsPB(p) ≤ εsB we argue by contradiction

and suppose that εsPB(p) > εsB. Then there exists an ε > 0 such that εsPB(p) > ε > εsB.

Hence,

∀Γran ∈ RGA ∃ ι ∈ Ω such that Pι(dM(Γran
ι ,Ξ(ι)) > ε) ≤ p. (5.1.1)

However, since ε > εsB there exists a general algorithm Γ such that for all ι ∈ Ω, we

have that dM(Γ(ι),Ξ(ι)) ≤ ε. Since any general algorithm Γ obviously is a RGA with

X = {Γ}, the latter statement violates (5.1.1) since p < 1. Note that the argument to

establish (2.8.3) is identical to the proof of (2.8.2). Thus, we concentrate on (2.8.4).

Indeed, note that εlrPB(M,p) ≤ εlrPB(M, q) follows directly from the definition. More-

over, to see that εlrPB(M, q) ≤ εlrB(M) we suppose the opposite and find an ε > 0 such

that εlrPB(M, q) > ε > εlrB(M). Hence,

∀ Γran ∈ RGA ∃ ι ∈ Ω such that Pι(dM(Γran
ι ,Ξ(ι)) ≤ ε and TΓran(ι) ≤M) ≤ p.

(5.1.2)

However, since ε > εlrB(M) we have that there exists a general algorithm Γ such that

∀ι ∈ Ω dM(Γ(ι),Ξ(ι)) ≤ ε and TΓ(ι) ≤M. (5.1.3)

As argued above any general algorithm is also a randomised algorithm, and thus (5.1.3)

contradicts (5.1.2). To address (2.8.5) we notice that εsPB(p) ≤ εwPB(p) follows directly

from the definition.

Now, to show (2.8.6) (i.e. that εwPB(p) ≤ εlrPB(M,p) for p ∈ [1/2, 1)) we argue by

contradiction and choose ε > 0 such that εwPB(p) > ε > εlrPB(M,p). Then

∃ Γran ∈ RGA ∀ι ∈ Ω Pι(dM(Γran
ι ,Ξ(ι)) ≤ ε and TΓran(ι) ≤M) > p, (5.1.4)

102

CHAPTER 5. PROOFS 103

which implies that

∃ Γran ∈ RGA ∀ι ∈ Ω Pι(dM(Γran
ι ,Ξ(ι)) > ε or TΓran(ι) > M) ≤ 1− p. (5.1.5)

However, since εwPB(p) > ε it follows that

∀Γran ∈ RGA ∃ ι ∈ Ω Pι(dM(Γran
ι ,Ξ(ι)) > ε or TΓran(ι) > M) > p,

which contradicts (5.1.5) and (5.1.4) since p ∈ [1/2, 1). To show (2.8.7) we note that

εsB ≤ εwB follows immediately from the definitions. Moreover, to show that εwB ≤ εlrB(M)

one can copy the proof of (2.8.6) almost verbatim.

Finally, to show (2.8.8) we start by showing the second part and observe that

εlrPB(M,p) is bounded below and decreases as M increases, hence, the limit exists in

[0,∞]. We will show the result that limM→∞ εlrPB(M,p) ≤ εwB for p ∈ [0, 1/2]: this

establishes immediately the first part of (2.8.8). By (2.8.6) we have that εwPB(p) ≤
εlrPB(M,p) when p = [1/2, 1) establishing the last part of (2.8.8). Note that there is

nothing to prove if εwB =∞, so let us assume instead that εwB <∞.

To finalise the proof let ε > εwPB(p). Then εlrPB(M,p) ≤ ε for large M . Indeed, if

not, then for any M ∈ N we have that (5.1.2) holds. However, since ε > εwPB(p), it

follows that

∃Γran ∈ RGA,M ∈ N ∀ ι ∈ Ω Pι(dM(Γran
ι ,Ξ(ι)) > ε or TΓran(ι) > M) ≤ p,

which implies that

∀ ι ∈ Ω Pι(dM(Γran
ι ,Ξ(ι)) ≤ ε and TΓran(ι) ≤M) > 1− p

which contradicts (5.1.2) if p ∈ (0, 1/2]. Thus, we have shown that

limM→∞ εlrPB(M,p) ≤ εwPB(p) when p ∈ (0, 1/2]. The proof that limM→∞ εlrB(M) = εwB
is almost verbatim, and we omit the details.

5.2 Proof of Theorem 2.9.1

Proof of Theorem 2.9.1. To prove (i), we argue by contradiction and assume that

εlrPB(M,p) < κ/2, p ∈ [1/2, 1], M ≤ N − 2. (5.2.1)

To reach the contradiction we first define the sequence {ιn}2Nn=1 by the following

formula: ι2n = ι1n, ι2n−1 = ι2n. Without loss of generality we can assume that

Ω = {ιn |n ≥ 1}. Our aim will be to produce ∆1 information for Ω.

For m,n ∈ N and f ∈ Λ, choose dn,mf ∈ Q (or dn,mf ∈ Q + iQ in the complex

case) such that |f(ιn) − dn,mf | ≤ 2−m. We also choose cmf ∈ Q (again cmf ∈ Q + iQ in

the complex case) such that |cmf − cf | ≤ 2−m−1 and |cmf − f(ιm)| ≤ 2−m where cf is

defined as in assumption (b). Such a cmf exists because |cf − f(ιm)| ≤ 2−m again by

CHAPTER 5. PROOFS 104

assumption (b). We define for ι ∈ Ω,

f̂m(ι) = dn,mf if ι = ιn for some n ≤ m, f̂m(ι) = cmf otherwise. (5.2.2)

We claim that Λ̂ := {f̂m | f ∈ Λ and m ∈ N} provides ∆1 information for Λ.

Indeed, for n > m with n,m ∈ N, we have

|f̂m(ιn)− f(ιn)| = |cmf − f(ιn)| ≤ |cmf − cf |+ |cf − f(ιn)| ≤ 2−m−1 + 2−n ≤ 2−m

since 2−n ≤ 2−m−1, whereas for n ≤ m we have |f̂m(ιn)−f(ιn)| = |dn,mf −f(ιn)| ≤ 2−m

by the above definition of dn,mf . Therefore Λ̂ provides ∆1 information (in the sense of

both ∆1,Q or ∆1,R defined in Definition 2.6.1) for Λ.

The rest of the argument is based on demonstrating a contradiction when the

algorithms are used with this particular choice of Λ̂. To do that we note that by

assumption (5.2.1) there is an ε < κ/2 such that

∃ Γran ∈ RGA with TP(Γran, ε, 1/2) ≤M,

where we recall the definition of TP(Γran, ε, 1/2) from (2.8.1). Note that since

TP(Γran, ε, 1/2) ≤M we have that for all ι ∈ Ω

Pι(dM(Γran
ι ,Ξ(ι)) ≤ ε and TΓran(ι) ≤M) > 1/2.

Hence, for all ι ∈ Ω

Pι(dM(Γran
ι ,Ξ(ι)) > ε or TΓran(ι) > M) < 1/2, (5.2.3)

which is a crucial bound that will be essential below. Next we define three sets that

form the basis for the rest of the argument. In particular, for n ∈ N and ι ∈ Ω let

T n(ι) := {Γ ∈ X |TΓ(ι) ≤ n}, and also define

Fj := {Γ ∈ X | dM(Γ(ιM+j),Ξ(ιM+j)) ≥ κ/2 or TΓ(ιM+j) > M}, j = 1, 2,

and

F̂2 = {Γ ∈ X | dM(Γ(ιM+2),Ξ(ιM+2)) ≥ κ/2},

F̃2 = {Γ ∈ X |TΓ(ιM+2) > M}.

Note that it is clear, from the continuity of the metric dM as well as (Pi) and (Piii) in

Definition 2.7.1 of an RGA, that F1, F2, F̂2 and F̃2 are measurable. Observe that by

(5.2.3) there is a p < 1/2 such that PιM+j (Fj) ≤ p for j = 1, 2.

Claim 1: We now claim the following.

(I) X = F1 ∪ F̂2.

(II) PιM+1(F̂2 ∩ F̃ c2) = PιM+2(F̂2 ∩ F̃ c2).

(III) PιM+1(F̃2) = PιM+2(F̃2)

CHAPTER 5. PROOFS 105

To see (I) we argue as follows. If Γ ∈ X then either TΓ(ιM+1) > M or TΓ(ιM+1) ≤
M . If TΓ(ιM+1) > M then obviously Γ ∈ F1 by its definition. Thus, we only need to

consider the case TΓ(ιM+1) ≤M . Proceeding with this case we let f̂k be in Λ̂Γ(ιM+1).

From the fact that TΓ(ιM+1) ≤M , we see that k ≤M . Therefore, by (5.2.2) it follows

that f̂k(ιM+1) = f̂k(ιM+2) = ckf .

Hence, by property (iii) in Definition 2.4.3 of a general algorithm, it follows that

Λ̂Γ(ιM+1) = Λ̂Γ(ιM+2). Thus, by (ii) in Definition 2.4.3, Γ(ιM+1) = Γ(ιM+2). If

Γ /∈ F1 nor Γ /∈ F̂2 then d(Γ(ιM+1),Ξ(ιM+1)) < κ/2 and d(Γ(ιM+1),Ξ(ιM+2)) =

d(Γ(ιM+2),Ξ(ιM+2)) < κ/2. Therefore d(Ξ(ιM+1),Ξ(ιM+2)) < κ, which contradicts

(a), and hence we conclude that Γ ∈ F1 or Γ ∈ F̂2, and therefore (II) holds.

To prove (II) and (III) it suffices to demonstrate that

PιM+1(E ∩ F̃ c2) = PιM+2(E ∩ F̃ c2) ∀E ∈ F . (5.2.4)

Indeed, given (5.2.4) (II) follows immediately, and (III) follows by letting E = X since

PιM+1(F̃2) = 1 − PιM+1(F̃ c2) = 1 − PιM+2(F̃ c2) = PιM+2(F̃2). To show (5.2.4) consider

E ∈ F that is not empty (if it is empty, there is nothing to prove). Let Γ ∈ E ∩ F̃ c2
and f̂k ∈ Λ̂Γ(ιM+2). Since

F̃ c2 = {Γ ∈ X |TΓ(ιM+2) ≤M}

it follows that k ≤ M . Hence, by (5.2.2) it follows that f̂k(ιM+1) = f̂k(ιM+2) = ckf .

Thus, by (Pii) in Definition 2.7.1 of a randomised general algorithm, we immediately

get (5.2.4), and we have proved the claim.

Armed with the claim we can now derive the final contradiction. In particular,

1 = PιM+1(F1) + PιM+1(F̂2) by (I)

= PιM+1(F1) + PιM+1(F̂2 ∩ F̃ c2) + PιM+1(F̂2 ∩ F̃2)

≤ PιM+1(F1) + PιM+2(F̂2 ∩ F̃ c2) + PιM+1(F̃2) by (II)

= PιM+1(F1) + PιM+2(F̂2 ∩ F̃ c2) + PιM+2(F̃2) by (III)

≤ PιM+1(F1) + PιM+2(F2) ≤ 2p < 1 since F̂2 ⊂ F2,

which yields the final contradiction.

To show (ii) we argue by contradiction and assume that εwPB(p) < κ/2 for p ∈
[0, 1/2). The argument is almost identical to the proof of (i). Indeed, we use the setup

in (5.2.2) and by assumption there is an ε < κ/2 such that

∃ Γran ∈ RGA,M ∈ N s.t. ∀ ι ∈ Ω Pι(dM(Γran
ι ,Ξ(ι)) ≥ ε or TΓran(ι) > M) ≤ p < 1/2,

which is identical to the statement in (5.2.3). Thus, the rest of the rest of the argument

is identical to the proof of (i) after (5.2.3).

To prove (iii), we define the sequence {ιn}n≥0 by the following formula (similar to

before, but note that now ι0 is defined): ι2n = ι1n, ι2n−1 = ι2n, with n ≥ 1, and ι0 = ι0.

It will suffice to show that the probabilistic breakdown epsilon εPB(p) ≥ κ/2. If this is

the case then by Lemma 2.8.4 it immediately follows that εsB, ε
P
B(p) ≥ κ/2 and that

CHAPTER 5. PROOFS 106

{Ξ,Ω,M,Λ}∆1 /∈ ∆G
1 . To show the required bound on the probabilistic breakdown

epsilon we shall assume instead that εPB(p) < κ/2 and argue by contradiction.

Without loss of generality it will suffice to assume that Ω = {ιn}n≥0. We set f̂m
as in the part (i) with the additional definition f̂m(ι0) = cmf for every m ∈ N. The

proof that Λ̂ := {f̂m | f ∈ Λ and m ∈ N} provides ∆1 information for Λ is similar

to the proof of part (i): indeed, as before we see that |f̂m(ιn) − f(ιn)| ≤ 2−m for

n,m ∈ N. However, there is now an additional element in Ω: namely ι0. We have

|f̂m(ι0)− f(ι0)| = |cmf − cf | ≤ 2−m−1 and this completes the proof that Λ̂ is indeed ∆1

information for Λ.

Next, for n ∈ N, we define the failure sets Fn by

Fn := {Γ ∈ X | dM(Γ(ιn),Ξ(ιn)) ≥ κ/2},

and the collection of general algorithms that have minimum runtime bounded by n ∈ N
by T n(ι) := {Γ ∈ X |TΓ(ι) ≤ n}. Note that by arguing as above it is clear that Fn is

F measurable. By the assumption that εPB(p) < κ/2

∃ Γran ∈ RGA s.t. ∀n ∈ N Pι(Fn) ≤ p,

We will show that this leads to the desired contradiction.

Claim 2: We claim the following.

(I) There is an n such that Pι0(Tn(ι0)) > 2p.

(II) For any n ∈ N, T n(ι0) = (Fn+1 ∩ T n(ι0)) ∪ (Fn+2 ∩ T n(ι0)).

(III) For any n ∈ N, both Pι0(Fn+1 ∩T n(ι0)) = Pιn+1(Fn+1 ∩T n(ι0)) and Pι0(Fn+2 ∩
T n(ι0)) = Pιn+2(Fn+2 ∩ T n(ι0)).

The contradiction arises by combining these results: indeed, by (I) and (II), 2p <

Pι0(T n(ι0)) = Pι0((Fn+1∩T n(ι0))∪(Fn+1∩T n(ι0))) and by (III) we get that Pι0(Fn+1∩
T n) + Pι0(Fn+2 ∩ T n) = Pιn+1(Fn+1 ∩ T n) + Pιn+2(Fn+2 ∩ T n). Therefore

2p < Pι0(T n(ι0)) = Pι0
(
(T n(ι0) ∩ Fn+1) ∪ (T n(ι0) ∩ Fn+2)

)

≤ Pι0(T n(ι0) ∩ Fn+1) + Pι0(T n(ι0) ∩ Fn+2)

= Pιn+1(T n(ι0) ∩ Fn+1) + Pιn+2(T n(ι0) ∩ Fn+2)

≤ Pιn+1(Fn+1) + Pιn+2(Fn+2) ≤ 2p

which is the desired contradiction. Thus our problem is reduced to showing (I), (II)

and (III).

For (I), suppose that we have PιM+1(T n(ιM+1)) ≤ 2p for all n ∈ N. Note that

we clearly have that T n(ιM+1) ⊂ T n+1(ιM+1). Moreover, since, for every Γ ∈ X the

set ΛΓ(ιM+1) is finite by (i) in Definition 2.4.3 of a general algorithm, it follows that

X =
⋃∞
n=1 T n(ιM+1). Hence,

PιM+1(X) = lim
n→∞

PιM+1(T n(ιM+1)) ≤ 2p < 1,

CHAPTER 5. PROOFS 107

since p < 1/2, which is a contradiction.

To prove (II) and (III), we make the intermediary step of showing that if Γ ∈ T n(ι0)

then Γ(ιn+1) = Γ(ιn+2). The argument is similar to the part (i): if f̂m ∈ Λ̂Γ(ι0) then

m < n + 1, n + 2 and so f̂m(ι0) = f̂m(ιn+1) = f̂m(ιn+2). Hence, by property (iii) in

Definition 2.4.3 of a general algorithm, it follows that Λ̂Γ(ι0) = Λ̂Γ(ιn+1), and similarly

we get that Λ̂Γ(ι0) = Λ̂Γ(ιn+2).

However, the fact that Λ̂Γ(ι0) = Λ̂Γ(ιn+1) = Λ̂Γ(ιn+2), (ii) and (iii) in Definition

2.4.3 imply that Γ(ι0) = Γ(ιn+1) and Γ(ι0) = Γ(ιn+2), so Γ(ιn+1) = Γ(ιn+2).

We can now show (II). For any Γ ∈ T n(ι0) we have shown that Γ(ιn+1) = Γ(ιn+2).

If Γ /∈ Fn+1 and Γ /∈ Fn+2 then d(Γ(ιn+1),Ξ(ιn+1)) < κ/2 and d(Γ(ιn+1,Ξ(ιn+2)) =

d(Γ(ιn+2),Ξ(ιn+2)) < κ/2. Therefore d(Ξ(ιn+1),Ξ(ιn+2)) < κ, which contradicts (a).

This contradiction completes the proof of (II).

Finally, to prove (III), we note that both T n(ι0) ∩ Fn+1 and T n(ι0) ∩ Fn+2 are

measurable because T n(ι0), Fn+1 and Fn+2 are all measurable. We will show the result

only for T n(ι0)∩Fn+1 as the corresponding argument for T n(ι0)∩Fn+2 is similar. If

Γ ∈ T n(ι0) ∩ Fn+1 then Γ ∈ T n(ι0). As before, this implies that if f̂m ∈ Λ̂Γ(ι0) then

f̂m(ιn+1) = f̂m(ι0). The result (III) follows immediately from (Pii) in Definition 2.7.1

of an RGA.

To prove (iv) we start with the LLPO statement. Clearly, we may assume without

loss of generality that Ω = {ιn}n≥0. As is standard for the LLPO problem, let Ω̃

be a subset of the collection of all binary sequences with the following property Ω̃ =

{{aj}j∈Z+ | |{j | aj = 1}| ≤ 1}, and

Ξ̃({aj}) = 1 if a2j = 0∀j ∈ Z+, Ξ̃({aj}) = 0 if a2j+1 = 0∀j ∈ Z+.

Note that Ξ̃ is multi-valued for the case where aj = 0 for all j. It suffices to show that

there is a recursive mapping Γ̃ such that Γ̃({aj}) = Ξ̃({aj}). To construct Γ̃ we start

by defining the real numbers x : Ω̃→ R, x({aj}) =
∑∞

j=0(−1)jaj2
−(j+1), xn({aj}) =∑n

j=0(−1)jaj2
−(j+1). Define ι : Ω̃→ Ω by

ι({aj}) =





ι1n if x({aj}) > 0, and n = min{l ∈ N |xl({aj}) > 0}
ι2n if x({aj}) < 0, and n = min{l ∈ N |xl({aj}) < 0}
ι0 otherwise,

(5.2.5)

Clearly ι is a bijection that gives an obvious identification. So, by a slight abuse

of notation, we consider ι as an element in Ω. Now, for f ∈ Λ and k ∈ Z+ define

f̂k : Ω = Ω̃→ R (or f̂k maps to Q in the Turing case) as follows,

f̂k(ι) =





f(ι1n) if xk({aj}) > 0, and n = min{l ≤ k |xl({aj}) > 0}
f(ι2n) if xk({aj}) < 0, and n = min{l ≤ k |xl({aj}) < 0},
f(ι1k+1) otherwise.

(5.2.6)

The key here is that f̂k is clearly recursively defined from {aj} which will be crucial later

on. Now let Λ̂ := {f̂k | f ∈ Λ and k ∈ N}. We claim that Λ̂ provides ∆1 information for

CHAPTER 5. PROOFS 108

Λ. Indeed, for a given k ∈ N, if xk({aj}) 6= 0 then fk(ι) = f(ι). If instead xk({aj}) = 0

then either aj is the 0 sequence or ι = ι1n or ι = ι2n for some n > k. Let us consider

these cases separately.

Firstly, if aj is the 0 sequence then ι = ι0. Moreover, f̂k(ι) = f(ι1k+1). Thus

|f(ι)− f̂k(ι)| = |f(ι0)− f(ι1k+1)| ≤ 1/4k+1 ≤ 1/2k.

If instead ι = ι1n for some n > k then

|f(ι)− f̂k(ι)| ≤ |f(ι1n)− f(ι0)|+ |f(ι0)− f(ι1k+1)| ≤ 1/4n + 1/4k+1 ≤ 1/2k.

A similar argument shows that if ι = ι2n then |f(ι) − f̂k(ι)| ≤ 1/2k. Thus, we have

established the claim.

Since, by assumption, {Ξ,Ω,M,Λ}∆1 ∈ ∆A
1 we can choose an arithmetic tower

{Γk} such that

Γk(ι) ∈ N2−k(Ξ(ι)) ∀ι ∈ Ω. (5.2.7)

where Nr(S) is the union of all open balls radius r about points x ∈ S. Now choose k

such that 2−k ≤ κ/8. To define our general height zero tower Γ̃ : Ω̃ →M for {Ξ̃, Ω̃}
we proceed as follows: let

N := N(ι({aj})) = max{m ∈ N | f̂m ∈ Λ̂Γk(ι({aj})), f ∈ Λ}.

Now we can define Γ̃ as follows. If

Γk(ι({aj})) /∈ N2−k(S1) ∪N2−k(S2), (5.2.8)

then we let Γ̃({aj}) := {0, 1}. If (5.2.8) is not satisfied then we define Γ̃ as follows:

if f̂N (ι({aj})) = f(ι1n), for some n ≤ N ∀f ∈ Λ⇒ Γ̃({aj}) := 1, (5.2.9)

if f̂N (ι({aj})) = f(ι2n), for some n ≤ N ∀f ∈ Λ⇒ Γ̃({aj}) := 0, (5.2.10)

and finally

if f̂N (ι({aj})) = f(ι1N+1) ∀f ∈ Λ⇒ Γ̃({aj}) := {0, 1}. (5.2.11)

First, note that by (5.2.6) and (2.9.1) it follows that Γ̃ is well defined. Second, we

claim that Γ̃ = Ξ̃.

Indeed, if (5.2.8) is satisfied then by (5.2.7) both Ξ(ι({aj}) 6= {S1} and Ξ(ι({aj}) 6=
{S2}, hence, by (5.2.5), ι = ι0, which implies, by (5.2.5), that Ξ̃({aj}) = {0, 1}. If

(5.2.9) is satisfied then, by (5.2.6) we have that xN ({aj} > 0, hence, Ξ̃({aj}) = 1. A

similar argument shows that if (5.2.10) is satisfied then Ξ̃({aj}) = 0.

Finally, if (5.2.11) is satisfied then we claim that {aj} is identically the zero se-

quence. If the claim is true then Ξ̃({aj}) = {0, 1}, thus we only need to show the

claim. Arguing by contradiction we assume the opposite. Then, by (5.2.11), there is

a j0 > N such that aj0 = 1 (so Ξ(ι({aj})) = S1 or Ξ(ι({aj})) = S2). Since (5.2.8) is

CHAPTER 5. PROOFS 109

not satisfied we have (5.2.7), this leaves two options; either

Γk(ι({aj})) ∈ N2−k(S1) or Γk(ι({aj})) ∈ N2−k(S2).

Let us first consider the case Γk(ι({aj})) ∈ N2−k(S1). If Ξ(ι({aj})) = S2 then by

(5.2.7) we must have that

dM(S1, S2) ≤ dM [Ξ(ι({aj})),Γk(ι({aj}))]+dM(S1,Γk(ι({aj}))) ≤ 2−k+2−k = 2−k+1

and since 2−k ≤ κ/8, we conclude that d(S1, S2) < κ, contradicting (a). Thus

Ξ(ι({aj})) = S1.

We conclude that j0 is an odd number. Now choose a different sequence {ãj} ∈
Ω̃ such that ãj1 = 1 with j1 = j0 + 1. In this case Ξ(ι({ãj}) = S2. Thus, since

{Ξ,Ω,M,Λ}∆1 ∈ ∆A
1 ,

dM(Γk(ι({ãj})), S2) ≤ 2−k ≤ κ/8.

However, since j0 > N we have that f̂k(ι({aj}) = f̂k(ι({ãj}) for all k ≤ N . Hence, by

(iii) in 2.4.3 of a general algorithm

Λ̂Γk(ι({aj})) = Λ̂Γk(ι({ãj})). (5.2.12)

Thus, by (ii) in Definition 2.4.3 of a general algorithm it follows that Γk(ι({aj})) =

Γk(ι({ãj})) which contradicts that Γk(ι({aj})) ⊂ N2−k(S1) and (a). This finishes the

case when Γk(ι({aj})) ⊂ N2−k(S1), however, the case Γk(ι({aj})) ⊂ N2−k(S2) follows

almost verbatim from the argument above.

To finish the argument we only need to show that Γ̃ is recursive. Since Γk is

recursive and the f̂ks are defined recursively, we finish the proof by observing that all

the requirements in (5.2.8), (5.2.9), (5.2.10), (5.2.11) can be checked recursively. In

particular, to check (5.2.9) for r <∞ it suffices to calculate ‖x− S1‖rr, ‖x− S2‖rr and

compare with 2−kr, which can all be done recursively. If r = ∞ then it suffices to

compare element-wise values of |x− S2| against 2−k.
To prove that if Ξ(ι0) = S2 then {Ξ,Ω,M,Λ}∆1 ∈ ∆A

1 implies decidability of

the Halting problem, we show that {Ξ,Ω,M,Λ}∆1 ∈ ∆A
1 implies decidability of LPO

which implies decidability of the Halting problem. Define the sequence {ιn}n≥0 as

follows: ιn = ι1n, for n ≥ 1, and ι0 = ι0. As above we may assume without loss of

generality that Ω = {ιn}n≥0 Let Ω̂ = Ω̃ as above and define

Ξ̂({aj}) = 0 if aj = 0∀j ∈ Z+, Ξ̂({aj}) = 1 otherwise

The rest of the proof is similar to the LLPO case and it suffices to show that there is

a recursive mapping Γ̂ such that Γ̂({aj}) = Ξ̂({aj}). To construct Γ̂ we define the real

numbers x : Ω̂ → R, x({aj}) =
∑∞

j=0 aj2
−(j+1), xn({aj}) =

∑n
j=0 aj2

−(j+1). Define

CHAPTER 5. PROOFS 110

ι : Ω̂→ Ω by

ι({aj}) =

{
ι1n if x({aj} > 0, and n = min{l ∈ N |xl({aj}) > 0}
ι0 otherwise.

(5.2.13)

Clearly ι is a bijection that gives an obvious identification. So, by a slight abuse of

notation, where we consider ι as an element in Ω we can, for f ∈ Λ and k ∈ Z+ define

f̂k : Ω = Ω̂→ R as follows,

f̂k(ι) = f(ιn) if xk({aj}) > 0 and ι = ιn for some n ≤ k, f̂k(ι) = f(ι1k+1) otherwise.

(5.2.14)

If we define Λ̂ := {f̂k | f ∈ Λ and k ∈ Z+}, similar reasoning as above in the proof of

the LLPO case yields that Λ̂ provides ∆1 information for Λ. Since, by assumption,

{Ξ,Ω,M,Λ}∆1 ∈ ∆A
1 we can choose an arithmetic tower {Γk} such that Γk(ι) ∈

N2−k(Ξ(ι)) ∀ι ∈ Ω. Now we choose k such that 2−k ≤ κ/8. To define our general

height zero tower Γ̂ : Ω̂→ {0, 1} for {Ξ̃, Ω̃} we proceed as follows. Let

N := N(ι({aj})) = max{m ∈ N | f̂m ∈ Λ̂Γk(ι({aj})), f ∈ Λ}.

Note that N must be finite since Γk is a general algorithm and Λ is finite. If

Γk(ι({aj})) ∈ N2−k(S1) then we let Γ̂({aj}) = 1 and otherwise let Γ̂({aj}) = 0.

We claim that Γ̂({aj}) = Ξ̂({aj}) and that Γ̂ is recursive. Indeed, Γk(ι({aj})) ∈
N2−k(S1) implies that Ξ(ι({aj}) = S1 (since otherwise dM(S1, S2) < κ as in the

LLPO case), which means that ι({aj}) = ι1n for some n. However, that implies

that x({aj}) > 0 and hence Γ̂({aj}) = 1. If Γk(ι({aj})) /∈ N2−k(S1), then, since

Γk(ι({aj})) ∈ N2−k(Ξ(ι({aj}))), we must have that Ξ(ι({aj})) = S2 (again, otherwise

dM(S1, S2) < κ). Moreover, this implies, by (5.2.13) that ι({aj}) = ι0 and hence

by (5.2.13), it follows that Γ̂({aj}) = 1. To see that Γ̂ is recursive we observe that

by (5.2.14) f̂k(ι) is recursively defined for all f ∈ Λ and all k ∈ N. Since {Γn} is an

arithmetic tower it now follows that Γ̂ is recursive.

5.3 A key proposition on two minimisers

Our aim in this section will be to prove the following result (which is valid for complex

inputs):

Proposition 5.3.1. Let λ > 0, y ∈ Cm and U ∈ Cm×N . Let ΞBP(y, U, δ) and

ΞUL(y, U, λ) denote the solution sets of the l1 Basis Pursuit denoising (since δ ≥ 0,

basis pursuit is a subcase) and Unconstrained Lasso respectively defined in section 2.10

(extended in the obvious way for complex inputs). If |ΞBP(y, U, δ)| ≥ 2, then there

are distinct x1, x2 ∈ MBP
min(y, U, δ) such that for any ε > 0 there are negative semidef-

inite diagonal matrices E1 = E1(ε) and E2 = E2(ε) with ‖E1‖max, ‖E2‖max < ε such

that x1 ∈ ΞBP(y, U + UE1, δ), x2 ∈ ΞBP(y, U + UE2, δ) and |ΞBP(y, U + UE1, δ)| =

|ΞBP(y, U + UE2, δ)| = 1. The same result will hold if in the previous statement

ΞBP(y, U, δ) is replaced by ΞUL(y, U, λ).

CHAPTER 5. PROOFS 111

To prove 5.3.1, we require two subsequent lemmas. The first lemma we state

(but since it is well known, we relegate its proof to the appendix) lists fundamental

properties of unconstrained lasso and basis pursuit denoising.

Lemma 5.3.2. Let MBP(y, U, δ) be the set of minimisers to the `1 basis pursuit de-

noising problem with input (y, U, δ) (δ ≥ 0) and let MUL(y, U, λ) be the set of min-

imisers to the `1 unconstrained lasso problem with input (y, U, λ), where `1 basis pur-

suit or unconstrained lasso are defined as in section 2.10. If M = MBP(y, U, δ) or

M = MUL(y, U, λ) and there are distinct v1, v2 ∈ M then M satisfies the following

properties

1. If v ∈M then Uv = Uv1.

2. If instead v ∈ CN and Uv = Uv1 then ‖v‖1 ≥ ‖v1‖1 = ‖v2‖1 .

3. If v ∈ CN and Uv = Uv1 and ‖v‖1 = ‖v1‖1 then v ∈M .

The next result is about the sets of minimisers with minimal support. We shall

show in Lemma 5.3.3 that MBP
min(y, U, δ) and MUL

min(y, U, δ) are never empty. Indeed,

we prove a stronger result:

Lemma 5.3.3. If there is an x ∈ M(ι) \Mmin(ι) then there are w1, w2 ∈ Mmin such

that supp(w1) 6⊆ supp(w2) and supp(w2) 6⊆ supp(w1) (where ι is either valid basis

pursuit denoising input or lasso input, M can be either MBP or MUL and likewise

Mmin = MBP
min or Mmin = MUL

min).

Proof. The proof is divided into several steps.

Step I: Suppose that there are distinct v1, v2 ∈ M with supp(v2) ⊆ supp(v1),

where M is either ΞBP(ι) or ΞUL(ι). We will produce a v3 ∈ M with supp(v3) ⊆
supp(v1) and a k ∈ N such that v2

k 6= 0 but v3
k = 0. The proof is based in the three

properties in Lemma 5.3.2 that are satisfied for both MBP(ι) and MUL(ι). Thus,

the proofs for MBP and MUL are identical and so we shall write M = MBP(ι) or

M = MUL(ι) without concerning ourselves with the underlying problem. First, we

note that sgn(v1
supp(v2)) = sgn(v2

supp(v2)). where for a complex number z = reiθ with

θ ∈ [0, 2π) and r ≥ 0, sgn(z) = eiθ whenever r > 0 and sgn(0) = 0. Indeed, otherwise

let j ∈ supp(v2) be such that sgn(v1
j) 6= sgn(v2

j) and set ṽ = (v1 + v2)/2. Then

Uṽ = (Uv1 + Uv2)/2 = Uv1 (by property (1) in Lemma 5.3.2) and

2‖ṽ‖1 =
n∑

i=1

|v1
i + v2

i | ≤ |v1
j + v2

j |+
n∑

i=1,i 6=j
|v1
i + v2

i | < |v1
j |+ |v2

j |+
n∑

i=1,i 6=j
|v1
i |+ |v2

i |,

where the last sum is bounded by ‖v1‖1 + ‖v2‖1. Hence, since ‖v1‖1 + ‖v2‖1 = 2‖v1‖1
then ‖ṽ‖1 = ‖v1‖1 contradicting property (2) in Lemma 5.3.2. Furthermore, we claim

that

S = {i ∈ {1, . . . , N} | |v2
i | > |v1

i |} 6= ∅.

Arguing by contradiction, suppose that S = ∅. It is clear then that supp(v2) =

supp(v1), otherwise ‖v1‖1 > ‖v2‖1, contradicting property (2) in Lemma 5.3.2.

CHAPTER 5. PROOFS 112

Therefore, we must have |v1
i | = |v2

i | for every i ∈ supp(v2), because otherwise

‖v1‖1 =
∑

i∈supp(v2) |v1
i | >

∑
i∈supp(v2) |v2

i | = ‖v2‖1 contradicting property (2) in

Lemma 5.3.2. But then v1
i = v2

i since sgn(v1
i) = sgn(v2

i) for all i ∈ supp(v2), con-

tradicting v1 6= v2, and we have established the claim.

Let us set e = v1 − v2 . Because {i | |v2
i | > |v1

i |} 6= ∅, we let k be any natural

number satisfying

k ∈ argmin
1≤i≤N

|v1
i |/|ei| such that |v2

i | > |v1
i |.

Next, we set α = v1
k/ek. Finally, we set v3 = v1 − αe and show that v3 and k have

the desired properties. To do this, we begin by observing that supp(v3) ⊆ supp(v1).

Furthermore, v2
k is non-zero (since |v2

k| > |v1
k|) but v3

k = v1
k − ekv1

k/ek = 0. Since e is

in the kernel of U we also have Uv3 = Uv1. It remains to show that ‖v3‖1 = ‖v1‖1
and the result will follow by property (3) in Lemma 5.3.2. Note that by the fact that

sgn(v1
supp(v2)) = sgn(v2

supp(v2))., which we showed above, we have sgn(v2
k) = sgn(v1

k).

Thus, since |v2
k| > |v1

k|, it follows that sgn(ek) = −sgn(v1
k) and so α is a negative real

number. We will show that |v1
i | −α|v1

i |+α|v2
i | ≥ 0 for all i. Indeed, if |v1

i | ≥ |v2
i | then

the claim follows because −α|v1
i | + α|v2

i | = |α|(|v1
i | − |v2

i |). If instead |v2
i | > |v1

i | then

by the definition of α we have |v1
i |/|v1

i − v2
i | ≥ |α| so

|v1
i | ≥ |α||v1

i − v2
i | ≥ |α|(|v2

i | − |v1
i |) = −α(|v2

i | − |v1
i |).

We conclude that

‖v3‖1 =
N∑

i=1

|v1
i − αei| =

N∑

i=1

|sgn(v1
i)|v1

i | − sgn(v1
i)α(|v1

i | − |v2
i |)|

=

N∑

i=1

||v1
i | − α|v1

i |+ α|v2
i ||

=
N∑

i=1

|v1
i | − α|v1

i |+ α|v2
i | = ‖v1‖1 − α‖v1‖1 + α‖v2‖1 = ‖v1‖1

where the first equality follows because sgn(v2) = sgn(v1) on supp(v2), and the third

equality follows from the fact that |v1
i | − α|v1

i |+ α|v2
i | ≥ 0. Therefore v3 ∈M and the

required properties for v3 and k are satisfied.

Step II: Using Step I we can now finish the proof. Set x0 = x. We produce a

collection of vectors xn for n = 0, 1, . . . , N0 such that xN0 is in Mmin. Recursively,

suppose xi is not in Mmin. Then we can find (by the definition of not being a member

of Mmin) x̃i+1 ∈ M, such that supp(x̃i+1) ⊆ supp(xi). and x̃i+1 6= xi. If supp(x̃i+1) (
supp(xi) we set xi+1 = x̃i+1. Otherwise, we apply Step I to the vectors xi and x̃i+1

(with v1 = xi, v2 = x̃i+1) to find xi+1 and k with supp(xi+1) ⊆ supp(xi) and xi+1
k =

0, x̃i+1
k 6= 0. Since supp(x̃i+1) = supp(xi), this implies that xik 6= 0, so that supp(xi+1)

is a proper subset of supp(xi). In particular, since supp(xi+1) is a proper subset

of supp(xi), it is easy to see by induction that |supp(xi)| ≤ |supp(x0)| − i. If the

process does not terminate (i.e. every xi ∈ M \Mmin) then limi→∞ |supp(xi)| = −∞

CHAPTER 5. PROOFS 113

which is a clear contradiction. Therefore the process terminates at some N0. We

set w1 = xN0 ∈ Mmin and note that supp(w1) is a proper subset of supp(x), or else

w1 /∈Mmin.

To find w2, we apply Step I to the vectors x and w1 (with v1 = x, v2 = w1, noting

that w1 ∈Mmin and x 6∈Mmin implies that x 6= w1) to produce a vector x̂ ∈M and a

natural number k such that supp(x̂) ⊆ supp(x), w1
k 6= 0 and x̂k = 0. We apply the same

process as before to produce a collection of vectors (x̂n)n=0,1,...,N1 such that x̂N1 ∈Mmin

with supp(x̂n+1) ⊆ supp(x̂n). We set w2 = x̂N1 . Since supp(w2) ⊆ supp(x̂), w2
k = 0.

Therefore supp(w1) 6⊆ supp(w2). Finally,

w2 ∈M, w1 ∈Mmin, supp(w2) ⊆ supp(w1)⇒ w2 = w1.

But w2
k 6= w1

k, so supp(w2) 6⊆ supp(w1).

The existence of minimisers with minimal support allows us to prove 5.3.1

Proof of Proposition 5.3.1. Let x1 and x2 be distinct vectors in MBP(y, U, δ) for the

basis pursuit problem or MUL(y, U, λ) for the lasso problem. Note that we may assume

without loss of generality that x1 and x2 are both in MBP
min(y, U, δ) (respectively x1, x2 ∈

MUL
min(y, U, λ) for the lasso problem). Otherwise, we can use Lemma 5.3.3 to find new

distinct vectors which are in MBP
min (respectively M lasso

min). We define the N×N diagonal

negative semidefinite matrices

E1(ε) := −βε(11/∈supp(x1) ⊕ 12/∈supp(x1) ⊕ . . .⊕ 1N /∈supp(x1))

E2(ε) := −βε(11/∈supp(x2) ⊕ 12/∈supp(x2) ⊕ . . .⊕ 1N /∈supp(x2))

where βε = min(1, ε)/2 and 1i/∈supp(x1) is 1 if i /∈ supp(x1) and 0 otherwise. Note that

both E1(ε) and E2(ε) are nonzero because of Lemma 5.3.3. We now need to show

for j = 1, 2 that xj is the unique vector in M(U + UEj). We will argue for j = 1:

the proof for j = 2 is analogous. Additionally, we will discuss basis pursuit and lasso

separately.

Case 1 (Basis pursuit): Firstly, since (U+UE1)v = Uv on vectors v with supp(v) =

supp(x1), ‖(U+UE1)x1−y‖2 ≤ δ. Let us suppose that there is a vector x̃1 with ‖(U+

UE1)x̃1−y‖2 ≤ δ and ‖x̃1‖1 ≤ ‖x1‖1. Let x̂1 = x̃1+E1x̃1. Clearly ‖Ux̂1−y‖2 ≤ δ. For

every j ∈ supp(x̂1) with j /∈ supp(x1), it is easy to see that |x̂1
j | = (1−βε)|x̃1

j | < |x̃1
j | and

for j ∈ supp(x1) we have x̂1
j = x̃1

j . Therefore if supp(x̂1) is not a subset of supp(x1),

then ‖x̂1‖1 < ‖x̃1‖1 ≤ ‖x1‖1, contradicting the fact that x1 ∈MBP(U). Thus supp(x̂1)

is a subset of supp(x1) so x̃1 = x̂1. But then x̂1 = x1 because x1 ∈MBP
min(U). Therefore

x1 is the unique vector in MBP(y, U + UE1, δ).

Case 2 (Lasso): Let us suppose that x̃1 ∈ CN satisfies ‖(U + UE1)x̃1 − y‖22 +

λ‖x̃1‖1 ≤ ‖(U + UE1)x1 − y‖22 + λ‖x1‖1. As in the basis pursuit case, we set x̂1 =

x̃1 +E1x̃1. If supp(x̂1) is not a subset of supp(x1), then ‖x̂1‖1 < ‖x̃1‖1. Therefore, by

CHAPTER 5. PROOFS 114

the above assumption,

‖Ux̂1 − y‖22 + λ‖x̂1‖1 < ‖(U + UE1)x̃1 − y‖22 + λ‖x̃1‖1
≤ ‖(U + UE1)x1 − y‖22 + λ‖x1‖1 = ‖Ux1 − y‖22 + λ‖x1‖1

contradicting the fact that x1 ∈ MUL. Thus supp(x̂1) = supp(x1). But then

supp(x̃1) = supp(x1), so ‖Ux̃1 − y‖22 + λ‖x̃1‖1 = ‖(U + UE1)x̃1 − y‖22 + λ‖x̃1‖1
≤ ‖(U + UE1)x1 − y‖22 + λ‖x1‖1 = ‖(U + UE1)x1 − y‖22 + λ‖x1‖1. We conclude

that x̃1 = x1 because x1 ∈ MUL
min(y, U, λ). Therefore x1 is the unique vector in

MUL(y, U + UE1, λ).

5.4 Proof of Theorem 4.1.1

Part 1: As with the other computability results, our aim will be to construct inputs

so as to employ proposition 2.9.1. Let MLP(y, U, c) denote the solution to a linear

programming problem of the form argminx∈RN c
Tx such that Ux = y, x ≥ 0. We

will consider inputs of the form

U ε = ε⊕ 0m−1×N−1, (yε)T = ε⊕ 0m−1, c = (1, 1, . . . , 1)

for ε ∈ [0, 1]. It is clear that if ι = (yε, U ε, c) then ‖ι‖2 ≤ ε ≤ 1. Moreover, the solution

to yε = U εx is uniquely given by x = 1 for ε > 0. For ε = 0, every x ∈ R is a solution

to U εx = yε. However, we seek a non-negative x which minimises cTx = x. Thus the

solution for ε = 0 to the linear programming is given by 0. To summarize, we have the

following result

MLP(yε, U ε, c) =

{
1 if ε ∈ (0, 1]

0 otherwise.

In the setting of proposition 2.9.1, we set the sequence ι1n := (y1/4n , U1/4n , c), the

constant sequence ι2n = (y0, U0, c), and ι0 = (y0, U0, c). Therefore with S1 = {e1},
S2 = {0}, we have Ξ(ι1n) = S1,Ξ(ι2n) = S2 and Ξ(ι0) = S2. Therefore (a) is satisfied

with κ = 1.

Note also that for f ∈ Λ, we have f(ι2n) = f(ι0) and |f(ι1n) − f(ι0)| ≤ 1/4n. We

conclude that (b) is satisfied with cf = f(ι0) and so εsB, ε
s
PB(p) ≥ 1/2 for p ∈ (0, 1/2).

The only thing left to show is that {Ξ,Ω}∆1 ∈ ∆A
1 implies the decidability of the

halting problem. Clearly the output space is exactly R with the `2 norm, Λ is finite

and S1 and S2 are singletons by definition. (2.9.1) is obvious because for ι = (y, U, c)

the function f : ι → R defined by f(y) = y1 is in Λ. The result follows immediately

by proposition 2.9.1 part (iv).

Part 2: Here, as for the other positive results, we will construct an algorithm

that solves the problem and then prove its correctness. We assume the existence of

recursive subroutines PosDef(M), SolLin(M,y), FindV(ι, ε) and FindM(ι, ε) that work

in the following way:

� PosDef(M) returns true iff the matrix M ∈ Rm×m is positive definite (i.e. for

CHAPTER 5. PROOFS 115

all x, 〈x,Mx〉 ≥ 0 with equality iff x = 0). This can be done with an algorithm

that is based on the cholesky decomposition.

� SolLin(M,y) solves for x the linear system of equations y = Mx (where y and

M are stored with exact precision). This can be achieved through gaussian

elimination.

� FindV(ι, ε) defined for ι = (y, U) and ε > 0 finds a vector v such that ‖v−y‖ ≤ ε.
This can be achieved by making use of the ∆1 information available to the

algorithm.

� FindM(ι, ε) defined for ι = (y, U) and ε > 0 finds a matrixM such that ‖M−U‖ ≤
ε. Again, this can be achieved through the use of the ∆1 information available

to the algorithm.

We then consider the following algorithm:

Algorithm LinearSystems(ι,n)

Input: ι ∈ Ω, n ∈ N
Output: Γn(ι) ∈ RN with dist(Γn(ι),Ξ(ι)) ≤ 2−n.

Subroutines: PosDef(M), SolLin(M,y) FindV(ι, ε), FindM(ι, ε).

We set the following parameters:

y0 := FindV(ι, 1), M0 := FindM(ι, 1), ε := 2−n, δ :=
ε

6

C := ‖y0‖1 ∨ ‖M0‖2F ∨ 1, N := dCe+ 2,

Then we proceed in the following way:

k = N

do-while PosDef((Mk)∗Mk − I
k) = 0

k = k + 1

Mk = FindM(I, δ
k5)

end

yk = FindV(I, δ
k5)

vk = SolLin((Mk)∗Mk, (Mk)∗yk)

Γn(I) := vk

We begin by showing that the above while-loop will terminate. For y = Ux to have

a unique solution, U must be invertible. Hence for vectors v, Uv = 0 if and only if

v = 0.

Suppose that the while loop does not terminate. Then there are a sequence of

vectors (xk)∞k=N0
with xk ∈ RN , ‖xk‖2 = 1 and 〈xk,

[
(Mk)∗Mk − I

n

]
xk〉 ≤ 0. By

passing to a convergent subsequence using the compactness of the unit ball in RN ,

CHAPTER 5. PROOFS 116

we assume that xk → x for some x ∈ RN with ‖x‖2 = 1. Furthermore, because

‖Mk−U‖2 ≤ δ/k5, we must have Mk → U as k →∞, since ε is defined independently

of k. Thus 〈x, U∗Ux〉 = lim
k→∞
〈xk,

(
(Mk)∗Mk − I

k

)
xk〉 ≤ 0. We conclude that x is in

the nullspace of U . Thus Ux = 0 and so x = 0, contradicting he fact that ‖x‖2 = 1.

We conclude that Γn is an arithmetic tower of algorithms, and we are left with the

problem of proving that dist(Γn(ι),ΞLS(ι)) ≤ 2−n for any ι ∈ Ω. We will therefore

show that ‖vn − x‖2 ≤ 2−n where Ux = y. With X = U∗U , Xk = (Mk)∗Mk, we have

(since x = (U∗U)−1U∗Ux = (U∗U)−1U∗y),

‖vk − x‖2 = ‖(Xk)−1(Mk)∗yk −X−1U∗y‖2
≤ ‖(Xk)−1(Mk)∗ −X−1U∗‖2‖y‖2 + ‖(Xk)−1(Mk)∗‖2‖yk − y‖2. (5.4.1)

Our aim will be to bound both ‖(Xk)−1(Mk)∗ − X−1U∗‖2‖y‖2 and

‖(Xk)−1(Mk)∗‖2‖yk − y‖2. To do this, we show the following:

‖Mk‖2, ‖U‖2, ‖y‖2, ‖(Xk)−1‖2 ≤ k, ‖Mk − U‖2 ≤
δ

k5
, ‖yk − y‖2 ≤

δ

k2
. (5.4.2)

The observation that ‖(Xk)−1‖2 ≤ k is a consequence of the fact that (since

the condition of the while loop is met) Xk − I/k is positive definite and thus

〈x − A−1x/k,A−1x〉 ≥ 0. Therefore ‖x‖2‖A−1x‖2 ≥ 〈x,A−1x〉 ≥ ‖A−1x‖2/k. The

result follows by taking supremums over ‖x‖2 = 1.

Furthermore, by the initial parameter setup we have ‖M0 − U‖2, ‖y0 − y‖2 ≤ 1

and C ≥ ‖M0‖2F ∨ 1 ≥ ‖M0‖22 ∨ 1 ≥ ‖M0‖2. We also have that C ≥ ‖y0‖1 ≥ ‖y0‖2.

Therefore we must have ‖U‖2, ‖y‖2 ≤ C + 1. Additionally, ‖Mk − U‖2 ≤ δ
k5 ≤ 1 by

the definition of FindM. Thus ‖Mk‖2 ≤ C + 2. (5.4.2) follows immediately from the

fact that k ≥ C + 2 and the definition of Mk and yk using FindM and FindV.

Next, we use (5.4.2) to bound ‖(Xk)−1(Mk)∗ −X−1U∗‖2. We have

‖(Xk)−1(Mk)∗ −X−1U∗‖2 ≤ ‖(Xk)−1‖2
∥∥∥
(
Mk − U

)∗∥∥∥
2

+ ‖(Xk)−1 −X−1‖2‖U∗‖2

≤ δ

k4
+ k‖(Xk)−1 −X−1‖2.

To bound ‖(Xk)−1 −X−1‖2, again we use (5.4.2) and note the following:

‖(Xk)−1 −X−1‖2 ≤ ‖X−1‖2‖(Xk)−1‖2‖X −Xk‖2

≤ k‖X−1‖
(
‖(Mk)∗Mk − (Mk)∗U‖2 + ‖(Mk)∗U − U∗U‖2

)

≤ k
(
‖(Xk)−1 −X−1‖2 + ‖(Xk)−1‖2

)(
‖Mk‖2 + ‖U‖2

)
‖Mk − U‖2

≤ 2δk2

k5

(
‖(Xk)−1 −X−1‖2 + k

)
≤ ‖(X

k)−1 −X−1‖2
2

+
2δ

k2

since 4δ ≤ 1 ≤ k3. Thus ‖(Xk)−1 −X−1‖2 ≤ 4δ
k2 and we conclude that

‖(Xk)−1Mk −X−1U‖2 ≤
δ

k4
+

4δ

k
≤ 5δ

k
.

CHAPTER 5. PROOFS 117

Combining this with (5.4.1) and (5.4.2) yields

‖vk − x‖2 ≤
5δ

k
‖y‖2 + ‖(Xk)−1Mk‖2‖yk − y‖2 ≤ 5δ + δ = 2−n

by the definition of δ.

5.5 Proof of Theorems 4.1.3, 4.2.1, 4.2.13

Throughout this section we assume ε = (ε1, ε2) with both ε1, ε2 ∈ [0, 1) and at most

one of ε1, ε2 6= 0. Our aim will be to produce problems that obey the prerequisites

of proposition 2.9.1. We will make use of the matrix A1
ε defined in the following way:

A1
ε :=

(
1− ε1 1− ε2

)
. A simple calculation shows that A1

ε (A
1
ε)
∗ = (1−ε1)2+(1−ε2)2.

Thus cond(A1
ε (A

1
ε)
∗) = 1 as A1

ε (A
1
ε)
∗ is a 1× 1 matrix.

We also set y1 = 1. Our first aim will be to prove a result on the solutions to

linear programming and basis pursuit (denoising) with this input. Actually, we prove

a slightly more general result so that we can make statements about the condition of

a map condition number.

Lemma 5.5.1. Fix δ ∈ [0, 1) and y > δ. Set U =
(
α β

)
. Let ΞLP,ΞBP,ΞBPDN

denote the problem functions for linear programming, basis pursuit and basis pursuit

denoising respectively. We have

ΞBP(y, U) =

{
y
αe1 if α > β
y
β e2 if β > α

, ΞBPDN(y, U) =

{
y−δ
α e1 if α > β
y−δ
β e2 if α < β

ΞLP(y, U) =

{
y
αe1 if α > β
y
β e2 if β > α

(5.5.1)

Moreover, for α = β we have ΞLP(y, U) = ΞBP(y, U) and

ΞBP(y, U) = Conv
(ye1

α
,
ye2

α

)

ΞBPDN(y, U) = Conv

(
(y − δ)e1

α
,
(y − δ)e2

α

)

Proof of Lemma 5.5.1. We prove the results in (5.5.1) only for α > β: the argument

for α < β is identical.

We start with basis pursuit denoising. Assume that α > β. Since U(y − δ)/αe1 =

y− δ and ‖(y− δ)/αe1‖1 = (y− δ)/α, if x ∈ ΞBPDN(y, U) then ‖x‖1 ≤ (y− δ)/α. Thus

for such an x we have

− δ ≤ αx1 + βx2 − y ≤ α|x1|+ β|x2| − y ≤ α‖x‖1 − y ≤ −δ (5.5.2)

Notice that the second inequality is an equality if and only if x1 and x2 are both

positive, the third inequality is an equality if and only if |x2| = 0 and the final inequality

is an equality if and only if ‖x‖1 = (y − δ)/α. All inequalities in (5.5.2) must however

CHAPTER 5. PROOFS 118

be equalities since otherwise (5.5.2) implies that −δ < −δ, which is a contradiction.

Thus x ∈ ΞBPDN(y, U) if and only if x2 = 0 and x1 ≥ 0 and ‖x‖1 = (y − δ)/α. Such

an x is clearly of the form x = (y − δ)e1/α.

The argument for α = β is similar. Let us assume that x̃ is a minimiser. For any

x ∈ Conv ((y − δ)e1/α, (y − δ)e2/α) we have ‖Ux − y‖2 = δ and ‖x‖1 = (y − δ)/α.

Hence ‖x̃‖1 ≤ (y − δ)/α and ‖Ux̃− y‖2 ≤ δ. Thus (in the same way as before)

−δ ≤ αx̃1 + αx̃2 − y ≤ α|x̃1|+ β|x̃2| − y = α‖x̃‖1 − y ≤ −δ

where now equality holds if and only if x̃1, x̃2 ≥ 0 and ‖x̃‖1 = (y − δ)/α. However,

such a x̃ would be an element of Conv ((y − δ)e1/α, (y − δ)e2/α). Hence

ΞBPDN(y,A) = Conv

(
(y − δ)e1

α
,
(y − δ)e2

α

)

which completes the proof of Lemma 5.5.1 for basis pursuit denoising.

Next, note that the result for basis pursuit follows immediately from the basis

pursuit denoising case when δ = 0. The only result that remains is the one for ΞLP: we

will show the inclusion ΞBP(y, U) ⊆ ΞLP(y, U) and the inclusion ΞLP(y, U) ⊆ ΞBP(y, U)

which will imply ΞLP(y, U) = ΞBP(y, U).

Firstly, for ΞBP(y, U) ⊆ ΞLP(y, U) note that we have already shown that every x̂

in ΞBP(y, U) has x̂1, x̂2 ≥ 0 and Ux̂ = y. Thus x̂ is feasible for the linear programming

problem. Let us suppose that x̂ /∈ ΞLP(y, U). Then there exists x with x1, x2 ≥ 0

such that Ux = y and cTx < cT x̂. However, cTx = x1 + x2 = |x1| + |x2| = ‖x‖1 and

similarly cT x̂ = ‖x̂‖1. Thus x is a vector with ‖x‖1 < ‖x̂‖1 and Ux = y. We conclude

that x̂ /∈ ΞBP(y, U), which is a contradiction.

Finally, to show that ΞLP(y, U) ⊆ ΞBP(y, U), let

ΞObj
LP (y, U) = min ‖x‖1 such that Ux = y and x1, x2 ≥ 0

ΞObj
BP (y, U) = min ‖x‖1 such that Ux = y

noting that ΞObj
LP (y, U) is the same value as the objective function for linear pro-

gramming since c = (1, 1)T and x1, x2 ≥ 0 for linear programming feasible x.

:et x̂ ∈ ΞLP(y, U). Then ‖x̂‖1 = ΞObj
LP (y, U) and Ux = y. Thus x̂ is feasible

for ΞBP(y, U). If we assume that x̂ /∈ ΞBP(y, U) then ‖x̂‖1 > ΞObj
BP (y, U). Thus

ΞObj
LP (y, U) > ΞObj

BP (y, U), which is a clear contradiction since the set of feasible points

for linear programming is a subset of the set of feasible points for basis pursuit.

With Lemma 5.5.1 in hand, we can prove Theorem 4.1.3, Theorem 4.2.1 and The-

orem 4.2.13. We start with Theorem 4.1.3

Proof of Theorem 4.1.3. To prove the non-computability result we appeal to Theorem

CHAPTER 5. PROOFS 119

2.9.1. We set

ι1n = (y1, A1
ε) with ε = (4−n, 0)

ι2n = (y1, A1
ε) with ε = (0, 4−n)

ι0 = (y1, A1
ε) with ε = (0, 0).

By Lemma 5.5.1, we have Ξ(ι1n) = {e2} and Ξ(ι2n) = {e1}. Thus requirement (a)

in Proposition 2.9.1 is satisfied with S1 = {e2}, S2 = {e1} and κ =
√

2. It is also

obvious (since A1
ε → A1

0,0 as ε → (0, 0)) that (b) is satisfied with cf = f(ι0). We

immediately conclude by Proposition 2.9.1, part (iii) that εsB ≥
√

2/2 = 1/
√

2 and

that {Ξ,Ω}∆1 /∈ ∆G
1 .

Next, we prove that {Ξ,Ω}∆1 ∈ ∆A
1 implies the decidability of LLPO. That M =

RN , Λ is finite and S1, S2 are singletons is clear by the definition and the previous

argument. It is also clear that for each ι1n, ι
2
k, there exists an f ∈ Λ such that f(ι1n) 6=

f(ι2k). Indeed, take f : ι → R to be the function such that f(y, U) = U1,1. Then

f(ι1n) = 1− 4−n 6= 1 = f(ι2k). The result then follows by Proposition 2.9.1, part (iv).

Finally, we show the results on the condition of elements ι ∈ Ω. Since

cond(A1
ε (A

1
ε)
∗) = 1 we immediately obtain that cond(A1

ε (A
1
ε)
∗) ≤ 2.

The result ‖ι‖ ≤
√

2 follows from the fact that

‖A1
ε‖2 =

√
‖A1

ε (A
1
ε)
∗‖2 ≤

√
cond(A1

ε (A
1
ε)
∗) ≤

√
2

and that ‖y1‖2 ≤ 1.

To show the bound on CFP, note that if ι = (y,A) ∈ Ω and Â, ŷ are such that

(y + ŷ, A+ Â) ∈ Ω̃∞ then y is non-negative provided that ‖ŷ‖2 ≤ 1. Moreover, A has

at least one entry that is exactly 1. Thus if ‖Â‖2 < 1, A + Â has a positive entry.

Without loss of generality, let us suppose that the second entry of A + Â is positive.

Then (y + ŷ)/(A2 + Â2) is a feasible point for the linear programming problem. Thus

ρ(y,A) ≥ 1 and so CFP(ι) ≤ 2.

The one remaining condition number to check is cond(Ξ). Fix ν > 0 and let us

assume that ι = ι1n = (y,A) for some n. Suppose that ι̂ = (ŷ, Â) is such that ι+ ι̂ ∈ Ω̃ν .

Since changes in y are not in the active set A(Ω), ŷ = 0. In addition, since ι = ι1n, we

have A1,1 < 1 = A1,2. Thus for sufficiently small ε > 0 if ‖Â‖2 ≤ ε then (A+ Â)1,1 <

(A+ Â)1,2. For such ι̂, we have by Lemma 5.5.1 that ΞLP(ι+ ι̂) = (1 + Â1,2)−1e2 and

ΞBP(ι) = e2.

Thus

dist(ΞLP(ι+ ι̂),ΞLP(ι)) =

∣∣∣∣∣1−
1

1 + Â1,2

∣∣∣∣∣ ≤
∣∣∣∣∣

Â1,2

1 + Â1,2

∣∣∣∣∣ ≤
ε

1− ε

and we conclude that for such ι,

lim
ε→0+

sup
ι+ι̂∈Ω̃ν ,0<‖ι̂‖≤ε

dist(ΞLP(ι+ ι̂),ΞLP(ι))

‖ι̂‖
≤ 1

CHAPTER 5. PROOFS 120

and the same argument shows that the same result if ι = ι2n for some n.

The last case to consider is ι = ι0. Again, suppose that ι̂ = (ŷ, Â) is such that

ι+ ι̂ ∈ Ω̃ν . Since changes in y are not in the active set A(Ω), ŷ = 0. We consider two

cases: firstly, Â1,1 > Â1,2 and secondly Â1,2 ≥ Â1,1.

If Â1,1 > Â1,2 > −1 then (A+ Â)1,1 > (A+ Â)1,2 > 0 and thus Lemma 5.5.1 shows

that (1 + Â1,1)−1e1 ∈ ΞLP(ι+ ι̂). Again by Lemma 5.5.1, e1 ∈ ΞLP(ι). Thus (provided

‖Â‖2 < 1)

dist(ΞLP(ι+ ι̂),ΞLP(ι)) =

∣∣∣∣∣1−
1

1 + Â1,1

∣∣∣∣∣ ≤
∣∣∣∣∣

Â1,1

1 + Â1,1

∣∣∣∣∣ ≤
ε

1− ε
.

Similarly, if Â1,2 ≥ Â1,2 > −1 then Lemma 5.5.1 shows that (1 + Â1,2)−1e2 ∈
ΞLP(ι+ ι̂). Again by Lemma 5.5.1, e2 ∈ ΞLP(ι). Thus

dist(ΞLP(ι+ ι̂),ΞLP(ι)) =

∣∣∣∣∣1−
1

1 + Â1,2

∣∣∣∣∣ ≤
∣∣∣∣∣

Â1,2

1 + Â1,1

∣∣∣∣∣ ≤
ε

1− ε
.

Thus

lim
ε→0+

sup
ι+ι̂∈Ω̃ν ,0<‖ι̂‖≤ε

dist(ΞLP(ι+ ι̂),ΞLP(ι))

‖ι̂‖
≤ 1.

We conclude that Cond(Ξ) ≤ 1. This completes the proof of the non-computability

result.

All that remains is the computability result for ΞObj
LP . However, for each ι ∈ Ω,

we can use Lemma 5.5.1 to see that if x ∈ ΞLP(ι), then ‖x‖1 = cTx = 1. Thus for

every ι ∈ Ω, ΞObj
LP (ι) = 1. It will therefore suffice to create the arithmetic algorithm

Γ : Ω→ R defined by Γ(ι) ≡ 1, which has Γ(ι) = ΞObj
LP (ι).

Next, we prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Part (i): The proof of part (i) is very similar to the proof

of Theorem 4.1.1. Indeed, we use the same choice of U ε and yε as in that argument.

In a similar way, we set the sequence ι1n := (y1/4n , U1/4n), the constant sequence

ι2n := (y0, U0) and ι0 := (y0, U0). The same argument as before shows that Ξ(ι1n) =

{(1⊕ 0N−1)T }. To see that Ξ(ι0) = 0N , note that U00N = 0m = y0. Moreover, every

non-zero x ∈ RN has ‖x‖1 > 0N . Thus Ξ(ι0) = {0N}. The remainder of the argument

is identical to the one in Theorem 4.1.1.

Part (ii): After replacing ΞLP with ΞBP, the proof reads identically to the one for

Theorem 4.1.3.

We use a similar approach (setting up an example problem and employing Propo-

sition 2.9.1) as before to prove Theorem 4.2.13:

Proof of Theorem 4.2.13. Part (i): The proof for part (i) differs from the proof of

part (i) in Theorem 4.1.1. We choose U ε in the same way as before but now we choose

yε,δ = (yε,δ)T = (ε + δ) ⊕ 0m−1. It is easy to see that if ‖U εx − yε,δ‖2 ≤ δ then we

require x1 ≥ 1 whenever ε > 0. Moreover, ‖U εe1 − yε,δ‖ = δ and thus all minimisers

CHAPTER 5. PROOFS 121

x must have ‖x‖1 ≤ 1, x1 ≥ 1. The only such vector is e1, thus Ξ(yε,δ, U ε,δ) = e1 if

ε > 0.

If instead ε = 0 we note that ‖U ε0 − yε,δ‖ = δ and so 0 is feasible for the basis

pursuit problem. But every non-zero vector has an `1 norm strictly larger than 0, so

0 is the unique minimiser. We can now apply proposition 2.9.1 with S1 = e1, S2 = 0

as in the proof of Theorem 4.1.1.

Part (ii): Up until the discussion on the condition of a map, the proof for part

(ii) is identical to that of Theorem 4.1.3 with two exceptions: firstly, we now have

ΞBPDN(ι1n) = {(1 − δ)e2} = S1,ΞBPDN(ι2n) = {(1 − δ)e1} = S2 by using Lemma

5.5.1. The second change comes from this new definition of S1, S2: we now have that

κ = (1 − δ)
√

2. Aside from these minor changes the proof (up to the statements on

the condition of a map) follows verbatim as in Theorem 4.1.3 part (ii).

For the statement on the condition of a map, the proof is almost the same, with

one notable difference. Following the argument in the same way as before, we now see

that for any ι ∈ Ω

lim
ε→0+

sup
ι+ι̂∈Ω̃ν ,0<‖ι̂‖≤ε

dist(ΞLP(ι+ ι̂),ΞLP(ι))

‖ι̂‖
≤ 1− δ

We conclude that Cond(Ξ) ≤ 1− δ (the previous result was the same except that the

value 1− δ is instead replaced by the value 1).

5.6 Proof of Theorem 4.2.7 and Theorem 4.2.16

It is easy to see that Theorem 4.2.7 is a subcase of Theorem 4.2.16. We thus start

with Theorem 4.2.16.

Proof of Theorem 4.2.16. Here, as for the other positive results, we will construct an

algorithm that solves the problem and then prove its correctness. We assume the

existence of recursive subroutines Sqrt(x, ε), FindV(ι, ε), FindM(ι, ε) and PCon(y, U, ε, k)

that work in the following way:

� Sqrt(x, ε) defined for x ≥ 0 and ε > 0 returns an approximation x̃ to
√
x such

that |(x̃−
√
x)|/
√
x ≤ ε. This can be done using the Babylonian algorithm.

� FindV(ι, ε) defined for ι = (y, U) and ε > 0 finds a vector v such that ‖v−y‖ ≤ ε.
This can be achieved by making use of the ∆1 information available to the

algorithm.

� FindM(ι, ε) defined for ι = (y, U) and ε > 0 finds a matrixM such that ‖M−U‖ ≤
ε. Again, this can be achieved through the use of the ∆1 information available

to the algorithm.

� PCon(y, U, ε, k) for y ∈ Rm, U ∈ Rm×N , ε > 0 and k ∈ N returns the nth

iteration of some preselected primal convergent basis pursuit denoising algorithm

with measurement vector y, matrix U and denoising parameter ε.

CHAPTER 5. PROOFS 122

We now describe an algorithm for basis pursuit denoising:

Algorithm BPursuitDN(ι,n,ϕ)

Input: ι ∈ Ω, n ∈ N, ϕ = (ρ1, τ1, l1, η1) ∈ R4 with l1 = r4
l , η1 = r4

η, ρ1 = r2
ρ for some

a-priori known constants rl, rη, rρ ∈ Q.

Output: Γn(ι) ∈ RN with dist(Γn(ι),Ξ(ι)) ≤ 2−n.

Subroutines: Sqrt(ι, ε),FindV(ι, ε), FindM(ι, ε),PCon(y, U, ε, k).

We set the parameters ε := 2−n,

α2 := (ρ1 + C0(ρ1)) 4
√
l1η1(1 + ρ1)/(1− ρ1),

α3 := τ1(4
√
l1η1/2 + 1 + 2(ρ1 + C0(ρ1) 4

√
l1η1))/(1− ρ1),

(5.6.1)

ε1 := ε/(8α2) ∧ 1, ε4 := ε/(16α3) ∧ 1, ε3 := ε4/3 ∧ ε/(8α3),

b := FindV(ι, ε3), α1 := τ1 (ε3 + ‖b‖1 + δ) ,

ε2 := 1/(Nα3) ∧ ε/(8α1α3) ∧ ε4/(3α1), A := FindM(ι, ε2).

(5.6.2)

k := 0,m := 0,m :=∞, G̃0 =∞.

Then we proceed in the following way

if ‖b‖22 ≤ (δ + ε4)2, set Γn(ι) = 0.

while G̃k > ε1/2 or εk4 ≥ (2ε4 + δ)2

k = k + 1

vk = PCon(A, b, ε4 + δ, k)

ek = Avk − b, εk4 = ‖ek‖22

if A∗ek 6= 0 and εk4 ≤ (2ε4 + δ)2 then

wk = Sqrt(
∑m

i=1 |eki |2,
ε1‖A∗ek‖∞
3(2ε4+δ)δ)

m = m ∧ ‖A∗ek‖−1
∞ [〈b, ek〉+ wk(δ + ε4)] , G̃k = ‖vk‖1 +m

else

m = m ∧ 0, G̃k = ‖vk‖1 +m

endif

end

Γn(I) := vk

To show that BPursuitDN will indeed give us the required arithmetic tower Γn, we

must show that (both in the case that ‖b‖2 ≤ δ + ε4 and ‖b‖2 > δ + ε4)

1. The algorithm uses only arithmetic operations.

2. The algorithm uses finitely many operations for each ι ∈ Ω.

CHAPTER 5. PROOFS 123

3. dist(Γn(ι),ΞBPDN(ι)) ≤ 2−n + 2Nδα3/(N − 1) + 2δ
(
C +D 4

√
l1η1

)
for any ι ∈ Ω.

To address this third point, note that by the definition of Ω, if ι = (y, U) ∈ Ω then

there exists an (s,M)-sparse x such that ‖Ux− y‖2 ≤ δ. By Theorem 3.3.8 it follows

that for any v ∈ ΞBPDN(ι), ‖v−x‖2 ≤ 2δ
(
C +D 4

√
l1η1

)
where C := ρ1τ1+τ1

1−ρ1
and D :=

4
√
ρ1τ1+3τ1−ρ1τ1

2−2ρ1
. Therefore, instead of proving the third point, it will suffice to show

that

4. ‖Γn(ι)− x‖ ≤ 2−n + 2Nδα3/(N − 1).

We now consider two cases. Firstly, we will show 1, 2 and 4 for the case ‖b‖2 ≤ δ+ ε4.

Next, we shall show 1, 2 and 4 if ‖b‖2 > δ + ε4.

If ‖b‖2 ≤ δ+ ε4 then it is obvious that the algorithm uses finitely many arithmetic

operations. Indeed, ‖b‖22 can be calculated using finitely many operations and the

algorithm simply outputs 0 at that point. By the definition of b and FindV, we have

‖y − b‖2 ≤ ε3. Thus 4 follows because

‖x‖2 ≤ τ‖Ux‖2 ≤ τ1 (‖Ux− y‖2 + ‖y − b‖2 + ‖b‖2)

≤ τ1 (2δ + ε3 + ε4) ≤ 2δα3 + α3(ε3 + ε4) ≤ 2δα3 + 2−n

which is itself a consequence of the fact that ε3 + ε4 ≤ 3ε/16α3 and α3 ≥ τ1.

We now consider the more complicated case, where ‖b‖ > δ+ ε4. The construction

of the values α2, α3, ε1, ε4, ε3, α1 and ε2 in the algorithm is clearly done using arithmetic

operations, given that the `1 norm can be calculated using arithmetic operations and

each of C0(ρ1), τ1 and 4
√

(l1η1) are known a-priori to the algorithm. The only stage

of the algorithm itself that may be ill-defined (noting that the square of the `2 norm

can also be calculated with arithmetic operations) is the line where vk is set to be

PCon(A, b, ε4 + δ, k). We must show here that there is an x0 with ‖Ax0 − b‖ < δ + ε4
so that we can apply the definition of a primal convergent algorithm.

Since ι = (y, U) ∈ Ω, we must have ‖y − Ux‖2 ≤ δ for some (s,M)-sparse x. We

claim that ‖Ax− b‖ < δ+ ε4. To see this, note firstly that from the nullspace property

on U and the fact that x is (s,M)-sparse, we have

‖x‖2 ≤ τ1‖Ux‖2 ≤ τ1(‖y‖2 + δ) ≤ τ1 (ε3 + ‖b‖2 + δ) = α1. (5.6.3)

Furthermore, by the definition of the constants above, ε2α1 + ε3 < ε4. Therefore

‖Ax− b‖ ≤ ‖(A− U)x‖+ ‖Ux− y‖+ ‖y − b‖ ≤ ε2‖x‖2 + δ + ε3 < ε4 + δ.

Next, we need to show that the algorithm uses only finitely many operations. This

will be obvious if we can show that G̃k > ε1/2. To do so, we show that |G̃k−Gk| ≤ ε1/3
where

Gk = ‖vk‖1 + min
m≤k

(〈b, pm〉+ (δ + ε4)‖pm‖2)

pm =

{
em

‖A∗em‖∞ if A∗em 6= 0 or ‖em‖2 > 2ε4 + δ

0 otherwise.

CHAPTER 5. PROOFS 124

Then we can apply Proposition A.1.1 (with ε = ε4) and so Gk → 0. Therefore eventu-

ally Gk < ε1/6 so that G̃k ≤ ε1/6 + ε1/3 ≤ ε1/2.

If A∗ek = 0 or εk4 > (2ε4 + δ)2 then it is obvious that 〈b, pm〉 + (δ + ε4)‖pm‖2 = 0

by the definition of pm. We claim that 〈b, pm〉 + (δ + ε4)‖pm‖2 is within ε1/3 of

(‖A∗ek‖∞)−1
[
〈b, ek〉+ wk(δ + ε4)

]
whenever A∗ek 6= 0 and εk4 > (2ε4 + δ)2. The result

follows from the fact that if the real numbers {ai}ki=1 and {ãi}ki=1 satisfy |ãi−ai| ≤ ε1/3
then mini≤k ãi is within ε1/3 of mini≤k ai.

By the definition of Sqrt, |wk −‖ek‖2|/‖ek‖2 ≤ ε1‖A∗ek‖∞/3(2ε4 + δ)δ. Therefore,

for each k with ‖ek‖22 = εk4 ≤ (2ε4 + δ)2 we have

∣∣∣‖A∗ek‖−1
∞ (〈b, ek〉+ wkδ)− ‖A∗ek‖−1

∞
(〈
b, ek

〉
+ δ‖ek‖2

)∣∣∣ = δ‖A∗ek‖−1
∞ |(wk − ‖ek‖2)|

≤ δ‖A∗ek‖−1
∞ ε1‖A∗ek‖∞‖ek‖2
3(2ε4 + δ)δ

≤ ε1/3.

Therefore |G̃k −Gk| ≤ ε1/3 and hence the while loop terminates in finite time.

All that remains is to show that ‖Γn(ι) − x‖ ≤ 2−n + 2Nδα3/(N − 1). Note that

it suffices to show that

‖Γn(ι)− x‖2 ≤
ε1α2 + 2ε4α3 + 2δα3 + ε3α3 + ε2α1α3

1− ε2α3
. (5.6.4)

Indeed, the definitions in (5.6.2) in BPursuitDN imply the following conditions for

ε1, ε2, ε3 and ε4: ε1α2 ≤ 2−n

8 , ε2α3 ≤ 1
N , ε2α1α3 ≤ 2−n

8 , ε2α1 <
ε4
2 , ε3 <

ε4
2 , ε3α3 ≤

2−n

8 , 2ε4α3 ≤ 2−n

8 . Therefore, by plugging these values into the right hand side of

(5.6.4) we get

‖Γn(ι)− x‖2 ≤
N − 1

N
(ε1α2 + 2ε4α3 + 2δα3 + ε3α3 + ε2α1α3)

≤ N − 1

N
(2−n/8 + 2−n/8 + 2δα3 + 2−n/8 + 2−n/8)

=
N − 1

N

(
2−n−1 + 2δα3

)
≤ 2−n + 2δα3(N − 1)/N.

For any z ∈ Rn, by Lemma 3.4.3 the nullspace property of order (s,M) with

parameters ρ < 1 and τ > 0 implies the following result: ‖z − x‖1 ≤ 1+ρ
1−ρ(‖z‖1 −

‖x‖1) + 2τ
√
s̃

1−ρ ‖U(z − x)‖2. Moreover, by Lemma 3.4.1 we have that

‖z − x‖2 ≤
‖z − x‖1√

s̃

(
ρ+ C0(ρ) 4

√
lηs,M

)
+ τ‖U(z − x)‖2

(
4
√
lηs,M/2 + 1

)
.

Combining these two results yields

CHAPTER 5. PROOFS 125

‖z − x‖2 ≤
[
ρ+ C0(ρ) 4

√
lηs,M

]
√
s̃

(
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1) +

2τ
√
s̃

1− ρ
‖U(z − x)‖2

)

+ τ‖U(z − x)‖2
(

4
√
lηs,M/2 + 1

)

≤ α2(‖z‖1 − ‖x‖1) + τ‖U(z − x)‖2

(
4
√
lηs,M/2 + 1 +

2
(
ρ+ C0(ρ) 4

√
lηs,M

)

1− ρ

)

≤ α2(‖z‖1 − ‖x‖1) + α3‖U(z − x)‖2 (5.6.5)

where the final line follows because

[
ρ+ C0(ρ) 4

√
lηs,M

]
√
s̃

[
1 + ρ

1− ρ

]
and τ

[
4
√
lηs,M

2
+ 1 +

2
(
ρ+ C0(ρ) 4

√
lηs,M

)

1− ρ

]

are increasing functions of ρ, l and ηs,M and ρ < ρ1, l < l1 and ηs,M < η1.

Note that Γn(I) = vk where vk is the final output of the while loop in BPursuitDN

and that ‖Avk − b‖2 ≤ 2ε4 + δ by the halting criteria in the while loop. For this vk,

we therefore have

‖U(vk − x)‖2 = ‖(Avk − b) + (Uvk −Avk) + (b− y) + y − Ux‖2
≤ 2ε4 + δ + ‖(A− U)vk‖2 + ε3 + δ

≤ 2ε4 + 2δ + ‖(A− U)(vk − x)‖2 + ‖(A− U)x‖2 + ε3

≤ 2ε4 + 2δ + ε2

(
‖vk − x‖2 + ‖x‖2

)
+ ε3.

and since ‖x‖2 ≤ α1, we obtain

‖U(vk − x)‖2 ≤ 2ε4 + 2δ + ε2‖vk − x‖2 + ε2α1 + ε3. (5.6.6)

Combining (5.6.5) with z = vk and (5.6.6), we obtain ‖vk − x‖2 ≤ α2(‖vk‖1 −‖x‖1) +

α3

(
2ε4 + 2δ + ε2‖vk − x‖2 + ε2α1 + ε3

)
and so by rearranging

‖vk − x‖2 ≤
α2(‖vk‖1 − ‖x‖1) + 2ε4α3 + 2δα3 + ε3α3 + ε2α1α3

1− ε2α3

At the conclusion of the while loop, G̃k ≤ ε1/2. In the proof that the algorithm

terminates after finitely many operations, we showed that |G̃k − Gk| ≤ ε1/3. Thus

when the algorithm has terminated Gk < ε1 and so by Proposition A.1.1 we have

‖vk‖1 − ‖x‖1 ≤ ‖vk‖1 −BPε4+δ(A, b) ≤ Gk ≤ ε1. Equation 5.6.4 follows since the final

step of the algorithm is to set Γn(ι) = vk.

Finally, we discuss briefly Theorem 4.2.7.

Proof of Theorem 4.2.7. To see the result of Theorem 4.2.7, note that the set Ω defined

in Theorem 4.2.16 is identical to the set Ω defined in Theorem 4.2.7. Furthermore,

CHAPTER 5. PROOFS 126

Theorem 4.2.16 includes the case δ = 0, from which the result of Theorem 4.2.7 follows

immediately.

5.7 Proof of Theorem 4.2.2

Let us begin by proving the following result that allows us to create examples of

problems with infinite condition number.

Lemma 5.7.1. Let U ∈ Rm×N , where we assume that Ω̃∞ ⊇ {(y′, U) | y′ ∈ Rm}.
Suppose that there is a non-empty set S ⊆ {1, 2, . . . , N} and a vector v in the row span

of U such that U, S and v satisfy the following properties:

1. There is a non-zero vector ξ1 such that supp(ξ1) ⊆ S and Uξ1 = 0

2. There is a constant c > 0 such that maxi∈S |vi| = mini∈S |vi| = 1/c and ‖vSc‖∞ ≤
1/c.

If T ⊆ S is a set with the following property:

3. If Uρ = 0 and supp(ρ) ∩ T 6= ∅ for some vector ρ ∈ CN then there is a non-zero

ρ′ with supp(ρ) ∩ T ⊆ supp(ρ′) ⊆ S and Uρ′ = 0.

then there is a vector x with supp(x) = T so that the distance to several minimisers

%(Ux,U) = 0 and ‖U‖2 > 0. Note that condition (3) is trivially satisfied if S =

{1, 2, . . . , N} (with ρ′ = ρ) or T = ∅ (where there is nothing to show).

Proof. To prove this lemma, we will construct a non-zero vector ξ ∈ RN with Uξ =

0, supp(ξ) ⊆ S and ξ has maximal support in S, in the sense that

If ξ′ with support in S is in the nullspace of U then supp(ξ′) ⊆ supp(ξ). (5.7.1)

Once ξ is constructed, we will construct non-empty disjoint sets J+ and J− along with

the vector x such that for any ε > 0,

(I) supp(ξ) = J+ ∪ J−

(II) U(x+ εξJ+) = U(x− εξJ−).

(III) ‖x+ εξJ+‖1 = ‖x− εξJ−‖1.

(IV) If ξ̂ ∈ RN is such that U(ξ̂ + x + εξJ+) = U(x + εξJ+) then ‖ξ̂ + x + εξJ+‖1 ≥
‖x+ εξJ+‖1.

This will imply that (x+ εξJ+), (x+ εξJ−) ∈ argmin ‖w‖1 such that Uw = U(x+ εξJ+)

Indeed, from (IV), x + εξJ+ is a minimiser. (II) implies that x − εξJ− is feasible, so

we can use (III) to see that x − εξJ− is also a minimiser. (I) will be used to prove

(III) and (IV). Consequently, %(U,Ux) = sup{δ : ‖Û‖, ‖ŷ‖ ≤ δ ⇒ (U + Û , Ux +

ŷ) has exactly one solution} ≤ ε. Since ε was arbitrary and independent of x, we must

have %(U,Ux) = 0 and the proof is completed by noticing that (2) implies that ‖U‖2 >
0.

CHAPTER 5. PROOFS 127

Step 1: Construction of ξ, J+, J−, x and the verification of (I): To construct

ξ, we inductively construct (ξk)N+1
k=1 starting from ξ1 as defined in the statement of the

lemma (property (1)) with Uξk = 0 and supp(ξk) ⊆ S. We set ξ = ξN . ξk is

constructed as follows: if ξk satisfies (5.7.1) then set ξk+1 = ξk. Otherwise, let ξ̃ have

support in S, Uξ̃ = 0 and ξ̃i 6= 0, ξki = 0 for some i (the existence of ξ̃ is exactly the

definition of ξk not satisfying (5.7.1)). We set mk = min{|ξkj | such that |ξkj | > 0} and

we define ξk+1 := ξk + mk ξ̃

2‖ξ̃‖∞
. It is clear that Uξk+1 = 0. We claim that supp(ξk) and

supp(ξ̃) are both subsets of supp(ξk+1), that supp(ξk+1) ⊆ S and that in this case,

|supp(ξk+1)| > |supp(ξk)|. To see this, note that

|ξk+1
j | ≥ |ξkj | −

|mk||ξ̃j |
2‖ξ̃‖∞

≥ |ξkj | −
|mk|

2
≥
|ξkj |
2
, j ∈ supp(ξk),

ξk+1
j = mkξ̃j/(2‖ξ̃‖∞) 6= 0, j ∈ supp(ξ̃) \ supp(ξk).

The fact that supp(ξk+1) ⊆ S follows from the fact that ξk+1 is a linear combination

of the vectors ξk and ξ̃, both of which have support contained in S. Finally, since

ξki = 0 and ξ̃i 6= 0 and supp(ξk), supp(ξ̃) ⊆ supp(ξk+1), if ξk does not satisfy (5.7.1)

then |supp(ξk+1)| > |supp(ξk)|. If there is a k1 such that ξk1 satisfies (5.7.1) then

ξN+1 = ξk1 and so ξN+1 satisfies (5.7.1). If instead, for each k, ξk does not satisfy

(5.7.1) then for each k |supp(ξk)| > |supp(ξk−1)| > |supp(ξk−2)| > · · · > |supp(ξ1).| In

particular, |supp(ξN+1)| > N , contradicting the fact that ξN+1 ∈ RN . Therefore ξN+1

satisfies (5.7.1).

Next, we define the sets J+ and J− by

J+ = {i ∈ S | viξi > 0}, J− = {i ∈ S | viξi < 0}.

Because v is non-zero on S (by property (2)) and ξ has support contained in S (by

the construction above), (I) holds (in particular, J+ and J− cannot both be empty so

ξ 6= 0). The vector x is constructed by setting

xi =





ξi if i ∈ J+ ∩ T
−ξi if i ∈ J− ∩ T
1 if i ∈ Jc+ ∩ Jc− ∩ T
0 otherwise.

Clearly supp(x) = T .

Step 2: Verification that (II) and (III) hold: From the fact that Uξ = 0

and (I), it follows that UξJ+ = −UξJ− and (II) follows immediately. To show (III),

we first show that ‖ξJ+‖1 = ‖ξJ−‖1. Since ξ is in the nullspace of U and v is in the

row span of U , 〈v, ξ〉 = 0. By (I), 0 = 〈v, ξJ+〉 + 〈v, ξJ−〉. Finally, by the definition

of J+, J− and (2), we must have 0 = 〈v, ξJ+〉 + 〈v, ξJ−〉 =
‖ξJ+

‖1−‖ξJ−‖1
c which proves

that ‖ξJ+‖1 = ‖ξJ−‖1. Next, because J+, T ∩ Jc+ ∩ Jc− and J− are all disjoint,

‖x+ εξJ+‖1 = ‖xJ+ + εξJ+‖1 + ‖xT∩Jc+∩Jc−‖1 + ‖xJ−‖1.

CHAPTER 5. PROOFS 128

Because supp(x) = T , sgn(xJ+∩T) = sgn(ξJ+∩T) and ‖ξJ+‖1 = ‖ξJ−‖1

‖xJ+ + εξJ+‖1 = ‖xJ+∩T ‖1 + ε‖ξJ+‖1 = ‖xJ+∩T ‖1 + ε‖ξJ−‖1.

Therefore ‖x + εξJ+‖1 = ‖xJ+∩T ‖1 + ε‖ξJ−‖1 + ‖xT∩Jc+∩Jc−‖1 + ‖xJ−‖1. Further-

more, sgn(xJ−∩T) = −sgn(ξJ−∩T) and supp(x) = T so ‖x + εξJ+‖1 = ‖xJ+∩T ‖1 +

‖xT∩Jc+∩Jc−‖1 +‖xJ−−εξJ−‖1. We conclude that ‖x+εξJ+‖1 = ‖x−εξJ−‖1, as claimed.

Step 3: Verification that (IV) holds: For any such ξ̂, we must have Uξ̂ = 0.

We claim that ξ̂T∩Jc+∩Jc− = 0. Otherwise, property (3) implies that we can find ρ′ 6= 0

and t ∈ T ∩ Jc+ ∩ Jc− satisfying

t ∈ supp(ξ̂) ∩ T ⊆ supp(ρ′) ⊆ S

and Uρ′ = 0. By (I), t /∈ supp(ξ). But then supp(ρ′) 6⊆ supp(ξ), contradicting (5.7.1).

Therefore ξ̂T∩Jc+∩Jc− = 0 as claimed. Consequently, using the fact that supp(x) = T ,

‖ξ̂ + x+ εξJ+‖1 = ‖ξ̂J+ + xJ+∩T + εξJ+‖1 + ‖ξ̂J− + xJ−∩T ‖1 + ‖ξ̂Jc+∩Jc− + xJc+∩Jc−‖1
= ‖ξ̂J+ + xJ+∩T + εξJ+‖1 + ‖ξ̂J− + xJ−∩T ‖1 + ‖xT∩Jc+∩Jc−‖1 + ‖ξ̂Jc+∩Jc−‖1

Now by (2) ‖v‖∞ = 1/c and so for any vector z ∈ CN , ‖z‖1 ≥ c〈v, z〉. Therefore

‖ξ̂ + x+ εξJ+‖1 ≥ c〈v, ξ̂J+ + xJ+∩T + εξJ+〉+ c〈v, ξ̂J− + xJ−∩T 〉

+ ‖xT∩Jc+∩Jc−‖1 + c〈v, ξ̂Jc+∩Jc−〉

= c〈v, ξ̂〉+ c〈v, xJ+∩T + εξJ+〉+ c〈v, xJ−∩T 〉+ ‖xT∩Jc+∩Jc−‖1
= c〈v, xJ+∩T + εξJ+〉+ c〈v, xJ−∩T 〉+ ‖xT∩Jc+∩Jc−‖1

where the last equality follows because ξ̂ is in the nullspace of U and v is in the row

span of U , so 〈v, ξ̂〉 = 0. Finally, by property (2) and the definition of x,

c〈v, xJ+∩T + εξJ+〉 = c〈v, ξJ+∩T + εξJ+〉 = ‖ξJ+∩T + εξJ+‖1 = ‖xJ+∩T + εξJ+‖1

Similar arguments show that c〈v, xJ−∩T 〉 = ‖ξJ−∩T ‖1 = ‖xJ−∩T ‖1. Therefore

‖ξ̂ + x+ εξJ+‖1 ≥ ‖xJ+∩T + εξJ+‖1 + ‖xJ−∩T ‖1 + ‖xT∩Jc+∩Jc−‖1
= ‖x+ εξJ+‖1,

and we have shown (IV).

Although we do not use this in the thesis, it is worth examining how Lemma 5.7.1

can be applied to produce examples of Hadamard and Bernoulli data with infinite

condition number. Let Hn ∈ R2n×2n be the 1D Hadamard transform with the sequency

ordering and let Wn ∈ R2n×2n be the 1D discrete Haar wavelet transform. It is easy

to see that HnW
−1
n =

⊕n−1
i=0 2−iXi where Xi ∈ R2i+1×2i+1

is a Hadamard matrix. An

efficient way to subsample is by defining projections PΩi onto sampling sets Ωi with

for i = 0, 1, 2, . . . , n − 1, where |Ωi| ≤ 2i−1 for i ≥ 1 and |Ω1| ≤ 1. Our subsampled

CHAPTER 5. PROOFS 129

matrix is then

A =

n−1⊕

i=0

2−iPΩiXi. (5.7.2)

However, even though such matrices are very effective in compressive sensing and

will with high probability satisfy conditions that guarantee that the l1 optimisation

problem can be computed with error control (i.e. it is in ∆1), it is easy to show that

we end up with an infinite condition number.

Proposition 5.7.2. The following are examples of matrix-vector pairs with infinite

condition number (where we assume as in Lemma 5.7.1 that for each case the set Ω̃∞
satisfies Ω̃∞ ⊇ {(y′, A) | y′ ∈ Rm}):

(i) Let A ∈ Rm×N with m < N and m > 0 be a subsampled Hadamard or Bernoulli

random matrix. Then we have the following: for any set T ⊆ {1, 2, . . . , N}, there

is a vector x (depending on A) with support T such that %(Ax,A) = 0.

(ii) If instead A is as in (5.7.2) with m =
∑n−1

i=1 |Ωi| < N and for every i we have

Ωi 6= ∅. Then, for any set T ⊆ {1, 2, . . . , N}, there is a vector x with support T

such that CRCC(A,Ax) =∞.

(iii) If A and m is as in (ii) such that there is an i ≥ 2 with |Ωi| ∈ [1, 2i−1−1]. Then

for any set T ⊆ {2i−1 + 1, 2i−1 + 2, . . . , 2i}, there is a vector x with support T

such that CRCC(A,Ax) =∞.

Proof of Proposition 5.7.2. Part (i): Since m < N , the nullspace of A is non-trivial.

Let η1 6= 0 satisfy Aη1 = 0. Because A is a subsampled Hadamard or Bernoulli matrix,

all the entries of A have constant modulus. Moreover, since m ≥ 1, the matrix A has

at least one row, and so we can set S = {1, 2, . . . , N}. Thus, (1) and (2) in Lemma

5.7.1 are satisfied. We can now apply Lemma 5.7.1 after observing that condition (3)

is met trivially for such an S.

Part (ii): As above, since m < N , the nullspace of A is non-trivial, thus letη1 6= 0

such that Aη1 = 0. Since

A =
n−1⊕

i=0

2−iPΩiXi,

where Xi is a Hadamard matrix it is clear that the entries of A have constant modulus

within each block. As a consequence, by the block diagonality of A, there is a vector

v in the rowspan of A with S := {1, 2, . . . , N} = supp(v) such that maxi∈S |vi| =

mini∈S |vi| = 1/c for some constant c > 0. Hence, the theorem follows from Lemma

5.7.1.

Part (iii): Since |ωi| ∈ [1, 2i−1 − 1] and Xi ∈ R2i−1×2i−1
, the matrix PωiXi has a

non-trivial nullspace. Let w be a non-zero vector in the nullspace of PωiXi, and write

n1
S = w, n1

Sc = 0Sc . Because A is block diagonal, An1 = 0. Set v to be a row taken

from the PωiXi block of A. On S, v has non-zero entries. Suppose ρ is a vector such

that supp(ρ) ∩ T 6= ∅. If Aρ = 0 then PωiXiρS = 0. Therefore by block diagonality

ρ′ = ρS is non-zero and Aρ′ = 0. The proof is complete by Lemma 5.7.1.

CHAPTER 5. PROOFS 130

We will now prove Theorem 4.2.2. To do this, we will choose Ω to be a subset of

all (y, U) such that y = Ux for some sparse x and U obeys the RIP. To guarantee

that such a set includes some Hadamard and the Bernoulli matrices, we quote the

following two results from [60]. In particular, [60, Theorem 12.31] and the surrounding

discussion yields

Theorem 5.7.3. If A ∈ Rm×N is a scaled Hadamard matrix with randomly selected

rows then there exists a constant C independent of m,N, δ (for some δ > 0) such that

if m ≥ C log4(N)sδ−2 then A obeys the RIP of order s with constant δs ≤ δ with

probability at least 1−N− log3(N).

Furthermore, [60, Theorem 9.2] tells us that

Theorem 5.7.4. There is a constant C > 0 such that if A is a scaled Bernoulli random

matrix then with probability at least 1− ε the matrix A obeys the RIP of order s with

constant δs ≤ δ provided

m ≥ Cδ
[
s log(eN/s) + log(2ε−1)

]
.

Proof of Theorem 4.2.2. For m,N, δ which shall be chosen later, we let Ω be the set

of all possible (y, U) with RIP constant of order 2 strictly smaller than 2δ and y = Ux

for some 1-sparse x. Note that for any (y, U) ∈ Ω, there exists ε′U > 0 so that if

‖U ′ − U‖2 ≤ ε′U then (y, U ′) ∈ Ω Take δ sufficiently small so that the RIP in levels

(with one level and a ratio constant of 1) constant δs,M holds so that U has the nullspace

property in levels as in Theorem 4.2.7. Note that this will occur for sufficiently small

δ by the argument used to show Theorem 4.2.14.

In the case of the Hadamard matrices, we choose m,N > 1 sufficiently large so that

m ≥ 4C log4(N)δ. There exists a Hadamard matrix A such that A ∈ Rm×N obeys the

RIP of order 2 with constant δ2 < 2δ by Theorem 5.7.3.

It is clear from the definition of a Hadamard matrix that for each natural number

i ≤ m there exists one-sparse x1,i, x2,i ∈ RN so that if yj = Axj,i for j = 1, 2 then

y1
i , y

2
i 6= 0 and y1

i = −y2
i . Thus since (yj , A) ∈ Ω, Ω̃∞ satisfies Ω̃∞ ⊇ {(y′, A) | y′ ∈ Rm}.

Therefore by Proposition 5.7.2 there exists x with support of size 1 such that if b = Ax

then %(b, A) = 0. Thus CRCC(b, A) =∞.

In the case of the Bernoulli matrices, we choose m,N sufficiently large so that

m ≥ Cδ
[
2 log(eN/2) + log(2ε−1)

]
where ε = 1/2. We claim that there exists a matrix

A ∈ Rm×N such that A is a Bernoulli matrix with RIP constant δ2 satisfying δ2 ≤ δ

and such that for each natural number i ≤ m there exists one-sparse x1,i, x2,i ∈ RN so

that if yj = Axj,i for j = 1, 2 then y1
i , y

2
i 6= 0 and y1

i = −y2
i .

Indeed, let A be chosen at random from all Bernoulli matrices in Rm×N . By

Theorem 5.7.4, A obeys the RIP of order δ2 ≤ δ with probability greater than or equal

to 1/2 (and thus there is at least one such A). Moreover, we have Ae1 = −Ae1 and

each entry of Aei is non-zero. Hence it suffices to choose x1,i = ei, x
2,i = −ei.

As before, by Proposition 5.7.2 there exists x with support of size 1 such that if

b = Ax then %(b, A) = 0 and so CRCC(b, A) =∞.

CHAPTER 5. PROOFS 131

All that remains is to show that in either case, {Ξ,Ω}∆1 ∈ ∆A
1 . But, as stated

before, the RIP (with sufficiently small δ) implies the nullspace property and thus the

nullspace property in levels (with one level and a ratio constant of 1). Therefore we

can conclude the argument by applying Theorem 4.2.7.

5.8 Proof of Theorem 4.2.3 and Theorem 4.2.14

The proofs of these two theorems are very similar and based on combining Proposition

2.9.1 and Proposition 5.3.1.

Proof of Theorem 4.2.3. Set εn = ε ∧ (N4n‖U‖max)−1. We find negative semidefi-

nite diagonal matrices E1
n := E1(εn), E2

n := E2(εn) and vectors x1 and x2 as in

Proposition 5.3.1. Set ι0 = (y, U) and ιjn := (y, U + UEjn) for j = 1, 2. Next, set

S1 = {x1}, S2 = {x2}. Our aim will be to use Proposition 2.9.1. The desired re-

sult will follow immediately if we can show that Proposition 2.9.1 condition (a) and

condition (b) hold.

By the definition of x1, x2 and E1, E2 we have that S1 = ΞBP(y, U + UE1) and

S2 = ΞBP(y, U + UE2). Furthermore, since x1 6= x2 we have that

inf
v∈S1,w∈S2

dM(v, w) = dM(x1, x2) = ‖x1 − x2‖2 = κ > 0.

Thus we have Proposition 2.9.1 condition (a).

Secondly, we will show that Proposition 2.9.1 condition (b) holds. We set cf =

f(ι0). It will suffice to consider f such that f(ι) = Ma,b for some fixed a and b

whenever ι = (y,M): for all other f it is obvious that f(ιjn) = f(ι0). We have that

|f(ι0)− f(ιjn)| = |(UEjn)a,b|. However,

‖UEjn‖max ≤ max
a≤m,b≤N

∣∣∣∣∣
N∑

i=1

Ua,i(E
j
n)i,b

∣∣∣∣∣ ≤ max
a≤m,b≤N

N∑

i=1

‖U‖max‖Ejn‖max ≤ N‖U‖maxεn.

We conclude that |f(ι0)− f(ιjn)| ≤ 4−n since N‖U‖maxεn ≤ 4−n and thus Proposition

2.9.1 condition (b) holds. The result follows from an application of Proposition 2.9.1.

Proof of Theorem 4.2.14. The proof of Theorem 4.2.14 is identical to the proof of

Theorem 4.2.3.

5.9 Proof of Theorem 4.2.11

We shall use Theorem 4.2.3 by constructing a matrix U (depending on K) that obeys

(4.2.2) and a vector y so that if ι = (y, U) then there are two minimisers to Ξ(ι).

We assume without loss of generality that K = {1, 2, . . . , |K|}, since otherwise we can

instead replace U by the matrix UQ where Q is a permutation matrix mapping the

set K to {1, 2, . . . , |K|} and then UQ will satisfy (4.2.2). Define

CHAPTER 5. PROOFS 132

U =




1 01×(|K|−1) 1

0(|K|−1)×1 I(|K|−1)×(|K|−1) 0(|K|−1)×1

0|K|×(N−|K|−1)

0(m−|K|)×N




y = 1⊕ 0m−1, v1 = 1⊕ 0N−1, v2 = 0K ⊕ 1⊕ 0N−K−1.

where for non-negative a and b, 0a×b is the (possibly empty for a or b equal to 0)

a × b matrix of 0s and Ia×a is the a × a identity matrix. It is easy to see that for all

x1 ∈ kerU , ‖x1
K‖1 ≤ ‖x1

Kc‖1 since if x1 ∈ kerU then x1
{2,3,...,K} = 0 and |x1

1| = |x1
K+1|.

Since Uv1 = y, we see that (y, U) ∈ Ω4. Note also that v1, v2 ∈ Ξ(y, U). Hence, if

we can show that for sufficiently small ε > 0, (y, U+UD) ∈ Ω whenever D is a diagonal

matrix with ‖D‖2 < ε, the result will follow immediately by Theorem 4.2.3. Let D be

a diagonal matrix with ‖D‖2 < ε (so that ‖D‖max < ε) and let x ∈ kerU + UD. Then

x+Dx ∈ kerU , so

(1− ε)‖xK‖1 ≤ ‖xK +DxK‖1 ≤ ‖xKc +DxKc‖1 ≤ (1 + ε)‖xKc‖1

therefore ‖xK‖1 ≤ (1+ε)
(1−ε)‖xKc‖1 < ρ‖xKc‖1 for small ε so that (U + UD) satisfies

(4.2.2). Moreover, since supp(v1 + Dv1) = supp(v1) it follows that (y, U + UD) is in

Ω. We now apply Theorem 4.2.3.

5.10 Proof of Theorem 4.2.12

Proof. For condition (A), we set s = (1, C2 − 2C) and M = (0, C, C2 − C) and for

condition (B) we set s = 1C2−2C+1 and M = (0, C, C + 1, . . . , C2 − C − 1, C2 − C),

with C chosen to be an integer such that

aC2 + C2 − 2C

C3 + C2 − 2C
≤ 1

2f(C2 − 2C + 1)
∨ 1

2f(C2 − 2C)
(5.10.1)

(C exists by the assumption on the decay of f). Set N = C2 − C, m = C2 − C − 1

and g(ηs,M, l) = 1
f(ηs,M) for condition (A) and g(ηs,M, l) = 1

f(l) for condition (B). Let

x1, x2 and b1 be the vectors

x1 := β(C ⊕ 0C−1 ⊕ 1C2−2C), x2 := β(0⊕ C1C−1 ⊕ 0C2−2C), b1 = x1 − x2,

where β =
√
C3 + C2 − 2C (note that x1 is (s,M)-sparse and that ‖b1‖ = 1 with

this choice of β). We form an orthornormal basis of RN which we denote by the row

vectors (bi)i=1,2,...,N (note that b1 is a unit vector). Next, we construct the R(N−1)×N

matrix U by setting U = [b2, b3, . . . , bN]T Note that U∗U = I so that if ‖X‖2 is

CHAPTER 5. PROOFS 133

sufficiently small (U +X)∗(U +X) is invertible and

‖(U +X)∗(U +X)‖2
‖((U +X)∗(U +X))−1‖2

< γ. (5.10.2)

Furthermore, let z̃ = λ1b
1 + λ2b

2 + · · · + λNb
N be an (as,M)-sparse vector. Denote

the support of z̃ by S. Then | ‖Uz‖2 − ‖z‖2| = |λ2
1| ≤ |〈z̃S , b1〉|2 = |〈z̃, b1S〉|. However,

‖b1S‖2 ≤
aC2+C2−2C
C3+C2−2C

≤ g/2 by (5.10.1) and the defintion of g. We conclude that W

does indeed satisfy the RIP in levels with constant δas,M ≤ g(ηs,M, l). We set y = Ux1

and note that Ux1 = Ux2. Furthermore, it is easy to see that the set of matrices

with sufficiently small RIPL constant is an open set, therefore by (5.10.2) the set of

acceptable inputs includes (y, U(I + D)) for diagonal D with ‖D‖2 sufficiently small.

We can thus apply Theorem 4.2.3 to see that {Ξ4,Ω4,M4,Λ4}∆1 /∈ ∆G
1 .

5.11 Proof of Theorem 4.2.15 and Theorem 4.3.5

We require the following basic lemma which, since it is well known, we prove in the

appendix.

Lemma 5.11.1. As usual, for any A ∈ Rm×N , y ∈ Rm and δ ≥ 0 set

MBP(y,A, δ) = arg min
x∈RN

‖x‖1 such that ‖Ax− y‖2 ≤ δ.

We have that 0 ∈ MBP(y,A, δ) if and only if ‖y‖2 ≤ δ. Furthermore, if 0 /∈
MBP(y,A, δ) then for any x ∈MBP(y,A, δ) we have ‖Ax− y‖2 = δ.

We begin this section by constructing a family of robust nullspace matrices which

have two minimisers when performing basis pursuit denoising. The proof of Theorem

4.2.15 will proceed by choosing a specific example from this family and then employing

the argument of Theorem 4.2.14.

Proposition 5.11.2. Fix a natural number s and real numbers α, γ > 0 with α >

γ(α2 +1). Set k = 2blog2(s)c+1. Then there is a matrix A ∈ Rm×N and a vector y ∈ Rm

with N := N(k) = 2k + k/2 and m := m(k) = 2k + k/2 − 1 such that the following

properties hold:

1. ‖AA∗‖2 ≤
√

1 + 2α2 + 1
γ4 (4 + α2γ2)2, ‖(AA∗)−1‖2 ≤

√(
1 + α2γ2

4

)2
+ 2α2γ4

16 + γ4

16 .

2. A obeys the `2 Robust Nullspace Property of order s with parameters ρ =
s

2blog2(s)c+2−s and τ =
√

1 + ρ‖A‖2‖(AA∗)−1‖2.

3. There is a y = Ax for some s-sparse x with ‖y‖2 ≤
√

1 + α2, such that if

MBP(y,A, δ) = argmin ‖x‖1 such that ‖Ax− y‖22 ≤ δ, then

MBP(y,A, 1) = Conv(c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2),

MBP
min(y,A) = {c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2},

CHAPTER 5. PROOFS 134

where

c1 =

√
2

k

(
−γ − γα2 + α

)

C
, c2 =

2
√

2√
kγ

[
αγ − 1

C
+ 1

]
, C =

√
γ2 + (1− αγ)2.

4. There is a y = Ax for some s-sparse x, such that if MUL(y,A, λ) =

argminλ‖x‖1 + ‖Ax− y‖22 then

MUL(y,A, λ) = Conv(c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2),

MBP
min(y,A) = {c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2},

where

c1 = λ

(
α

γ
− α2 − 1

)
, c2 =

2λ

γ

(
α− γ−1

)
+

2
√

2

γ
√
k

whenever β := λ
√
k√
2
< γ(1− αγ)−1.

Proof. Note that for some n ≥ 1, s can be written as s = 2n−1 + c where 0 ≤ c < 2n−1

(so that n = blog2(s)c + 1). Let k = 2n and let Hn be the Hadamard matrix with

entries ±1 of dimension k × k defined by the recurrence relation

Hj = H1 ⊗Hj−1, H1 =

(
1 1

1 −1

)
H0 = 1, j ∈ N.

Set m = 2k + k/2 − 1 and N = 2k + k/2. Let A be the Rm×N matrix and y be the

Rm×1 vector defined by

A =
1√
2k
P

(
H1 ⊗Hn η ⊗Hn−1

0k/2×2k γHn−1

)
, η = (0, 0, αγ, 0)T (5.11.1)

P ∈ Rm×N , P ej = ej−1, P e1 = 0, y = 0k−1 ⊕ α⊕ 0k−1 ⊕ 1⊕ 0k/2−1, (5.11.2)

where {ej} represents the canonical basis. To show (1) note that

(
H1 ⊗Hn η ⊗Hn−1

0k/2×2k γHn−1

)(
H1 ⊗Hn η ⊗Hn−1

0k/2×2k γHn−1

)∗

=

(
2kI2k + η ⊗ η∗ ⊗ k

2Ik/2 γη ⊗Hn−1H
∗
n−1

γ(η ⊗Hn−1H
∗
n−1)∗ γ2Hn−1H

∗
n−1

)

=

(
2kI2k + α2γ2ξ ⊗ ξ∗ ⊗ k

2Ik/2 αγ2ξ ⊗ k
2Ik/2

αγ2(ξ ⊗ k
2Ik/2)∗ γ2 k

2Ik/2

)
= 2k(Ik ⊕

(
S ⊗ Ik/2

)
),

where ξ = (0, 0, 1, 0)T and

S =




(1 + α2γ2

4) 0 αγ2

4

0 1 0
αγ2

4 0 γ2

4


 , S−1 =




1 0 −α
0 1 0

−α 0 1
γ2 (4 + α2γ2)


 . (5.11.3)

CHAPTER 5. PROOFS 135

Thus, by the definition of P it follows that

AA∗ = Ik−1 ⊕
(
S ⊗ Ik/2

)
, (AA∗)−1 = Ik−1 ⊕

(
S−1 ⊗ Ik/2

)
. (5.11.4)

Thus, we only need to estimate ‖S‖ and ‖S−1‖ from (5.11.3). To do that, note that for

a matrix of the form M :=

(
a b

b c

)
with fixed constants a, b, c and vectors x ∈ Ck with

x = x1 ⊕ x2 and x1, x2 ∈ Ck/2, we have ‖Mx‖22 = ‖ax1 + bx2‖22 + ‖bx1 + cx2‖22. The

Cauchy-Schwartz inequality yields for i = 1, 2, . . . , k/2 (|ax1
i +bx2

i |)2 ≤ (a2+b2)(|x1
i |2+

|x2
i |2). Thus (by summing and applying a similar idea to ‖bx1 + cx2‖22) we see that

‖Mx‖22 ≤ (a2 + 2b2 + c2)(‖x1‖22 + ‖x2‖22). Therefore ‖M‖ ≤
√
a2 + 2b2 + c2. Applying

this inequality to AA∗ and (AA∗)−1 using (5.11.3) and (5.11.4), we get ‖AA∗‖2 ≤ 1 ∨√
(1 + α2γ2/4)2 + α2γ4/8 + γ4/16 and ‖(AA∗)−1‖2 ≤ 1∨

√
1 + 2α2 + 1

γ4 (4 + α2γ2)2,

and the result follows.

To prove (2) let v ∈ RN be an arbitrary vector, and write v = ξ + A∗w where

ξ is in the nullspace of A and let K = {1, 2, . . . , 2k}. Note that the nullspace of

A is exactly the vectors of the form β(12k ⊕ 0k/2) where 12k = (1, . . . , 1) ∈ R2k,

0k/2 = (0, . . . , 0) ∈ Rk/2 and β ∈ R. Therefore, for any s-sparse set S, we have

‖ξS‖2 ≤ β
√
s and ‖ξSc∩K‖1 ≥ β|Sc ∩K|. Consequently

‖ξS‖2 ≤
√
s

|Sc ∩K|
‖ξSc∩K‖1 ≤

√
s

|Sc ∩K|
(‖vSc∩K‖1 + ‖(A∗w)Sc∩K‖1)

≤ s‖vSc‖1
|Sc ∩K|

√
s

+

√
s

|Sc ∩K|
‖(A∗w)Sc∩K‖1√
|Sc ∩K|

≤ ρ‖vSc‖1√
s

+

√
s

|Sc ∩K|
‖(A∗w)Sc∩K‖2

with ρ = s
2k−s , where the last line follows because |Sc ∩K| ≥ 2k − s. Hence,

‖vS‖2 ≤
ρ‖vSc‖1√

s
+
√
ρ‖(A∗w)Sc∩K‖2 + ‖(A∗w)S‖2 ≤

ρ‖vSc‖1√
s

+
√

1 + ρ‖A∗w‖2

where the inequality
√
ρ‖(A∗w)Sc∩K‖2 + ‖(A∗w)S‖2 ≤

√
1 + ρ‖A∗w‖2 is an

application of the cauchy-schwartz inequality with the vectors (
√
ρ, 1) and

(‖(A∗w)Sc∩K‖2, ‖(A∗w)S‖2). Since s = k/2 + c where c < k/2, s < k we see that

ρ < 1. To bound ‖A∗w‖2, we see that

‖A∗w‖2 ≤ ‖A‖2‖(AA∗)−1(AA∗)w‖2 ≤ ‖A‖2‖(AA∗)−1‖2‖AA∗w‖2 = ‖A‖2‖(AA∗)−1‖2‖Av‖2

because Av = AA∗w +Aξ = AA∗w since ξ is in the nullspace of A. We conclude that

‖vS‖2 ≤
ρ‖vSc‖1√

s
+
√

1 + ρ‖A∗w‖2 ≤
ρ‖vSc‖1√

s
+ τ‖Av‖2.

where τ =
√

1 + ρ‖A‖2‖(AA∗)−1‖2.

To establish (3) we begin by letting x = k
√

2k
2γ 02k ⊕ 1k/2. Then Ax = y. Moreover,

CHAPTER 5. PROOFS 136

since x has k/2 non-zero entries and k/2 = 2n−1 ≤ s, x is s-sparse. In order to establish

that |MBP(y,A, 1)| ≥ 2 and |MUL(y,A, λ∗)| ≥ 2 we will split the argument into several

sub-steps. In particular, we show the following:

(3a) The sets MBP(y,A, 1) and MUL(y,A, λ∗) are non-empty. Moreover any vector v

in MUL(y,A, λ∗) satisfies λ∗‖v‖1 + ‖Av − y‖22 ≤ λ∗α
√

2k + 1.

(3b) Let v ∈ MBP(y,A, 1) (similarly, for lasso let v ∈ MUL(y,A, λ∗)) where v =

v1 ⊕ v2 ⊕ v3 with v1, v2 ∈ Rk and v3 ∈ Rk/2. Then are c1, c2, c3 ∈ R such that

v1 = c11k, v
2 = c21k and v3 = c31k/2.

(3c) For basis pursuit, there is a t ∈ [0, 1] such that v = t(c11k,0k, c21K/2) + (1 −
t)(0k,−c11k, c21k/2) where

c1 =

√
2

k

(
−γ − γα2 + α

)

C
, c2 =

2
√

2√
kγ

[
αγ − 1

C
+ 1

]
, C =

√
γ2 + (1− αγ)2.

(3d) For lasso, there is a t ∈ [0, 1] such that v = t(c11k,0k, c21K/2) + (1 −
t)(0k,−c11k, c21k/2) where

c1 = λ

(
α

γ
− α2 − 1

)
, c2 =

2λ

γ

(
α− γ−1

)
+

2
√

2

γ
√
k

provided that β := λ
√
k√
2
< γ(1− αγ)−1.

We begin by showing (3a). For lasso, the existence of minimizers is obvious, whereas

for basis pursuit, we let

v′ =
α
√

2k

k
1k ⊕ 0k+k/2 so that Av′ = 0k−1 ⊕ α⊕ 0k−1+k/2.

Since ‖Av′−y‖2 = 1, the set of w with ‖Aw−y‖22 ≤ 1 is non-empty, and the existence

of minimizers follows immediately. Property (3a) follows for lasso and basis pursuit by

noting that ‖v′‖1 = α
√

2k. To show (3b), let v̄1 = c̄11k, v̄2 = c̄21k, v̄3 = c̄31k/2,

with v̄ = v̄1 ⊕ v̄2 ⊕ v̄3, c̄1 =
∑k
i=1 v

1
i

k , c̄2 =
∑k
i=1 v

2
i

k , c̄3 :=
2
∑k/2
i=1 v

3
i

k . Note that (3b) holds

if and only if v1 = v̄1, v2 = v̄2 and v3 = v̄3. We argue by contradiction - suppose

that (3b) does not hold and set yv = Av. We consider two cases: (i) v3 6= v̄3 and

(ii) v3 = v̄3, but we have that at least one of v1 and v2 satisfies v1 6= v̄1 or v2 6= v̄2.

Starting with case (i), if v3 6= v̄3 then, by the definition of the Hadamard matrix,

it follows that (Hn−1v
3)j 6= 0 for some j > 1. Thus, by (5.11.1), yvi 6= 0 for some

i ∈ {2k + 1, 2k + 2, . . . , 2k + k/2 − 1}. If we consider case (ii) then (Hn−1v
3)j = 0

except for j = 1. Note also that, by the definition of the Hadamard matrix, we must

have either

(
PHn PHn

)
(v1 ⊕ v2) 6= 0 or

(
PHn −PHn

)
(v1 ⊕ v2) 6= 0,

where P is as in (5.11.2), except adjusted to the right dimensions. Thus, there is an

i ∈ {1, . . . , 2k− 1} \ {k} such that yvi 6= 0. Hence, in both case (i) and (ii), there is an

CHAPTER 5. PROOFS 137

i ∈ {1, . . . , 2k + k/2− 1} \ {k, 2k} such that yvi 6= 0. However,

1√
2k

(
H1 ⊗Hn η ⊗Hn−1

0k/2×2k γHn−1

)
(v̄1 ⊕ v̄2 ⊕ v̄3) = 0k ⊕ yvk ⊕ 0k−1 ⊕ yv2k ⊕ 0k/2−1,

hence

Av̄ = 0k−1 ⊕ yvk ⊕ 0k−1 ⊕ yv2k ⊕ 0k/2−1, (5.11.5)

so ‖Av̄ − y‖2 < ‖Av − y‖22. Additionally, ‖v̄i‖1 ≤ ‖vi‖1 so ‖v̄‖1 ≤ ‖v‖1. We conclude

that ‖v̄‖1 ≤ ‖v‖1 and ‖Av̄ − y‖22 < ‖Av − y‖22. For lasso, this is an immediate

contradiction: these inequalities imply immediately that λ∗‖v̄‖1+‖Av̄−y‖2 < λ∗‖v‖1+

‖Av − y‖22. For basis pursuit, these inequalities imply that v̄ ∈MBP(y,A, 1) and here

we obtain a contradiction in the following way: since v̄ 6= v but both are elements

of MBP(y,A, 1), 0 /∈ MBP(y,A, 1). Therefore we can apply Lemma 5.11.1 to get

‖Av − y‖2 = 1, ‖Av̄ − y‖22 = 1. But this contradicts ‖Av̄ − y‖2 < ‖Av − y‖2. Thus

v = v̄.

Next, we prove (3c). Note that by (3b) and (5.11.5) it follows that Av − y =

0k−1 ⊕ (yvk − α) ⊕ 0k−1 ⊕ (yv2k − 1) ⊕ 0k/2−1, where yv = Av. Moreover, a quick

calculation gives yvk = 1√
2k

(
kc1 − kc2 + αγkc3

2

)
and yv2k = γc3k

2
√

2k
. Hence, we have that

‖Av − y‖22 =

[
1√
2k

(
kc1 − kc2 +

αγkc3

2

)
− α

]2

+

(
γc3k

2
√

2k
− 1

)2

,

‖v‖1 = |c1|k + |c2|k + |c3|
k

2
.

(5.11.6)

Thus, we can rewrite the problem of determining v by in terms of a weighted l1

problem. In particular, by a change of variables where we let x1 =
√
kc1/(

√
2α),

x2 =
√
kc2/(

√
2α) and x3 = kγc3/(2

√
2k), obtaining v is equivalent to finding

z ∈ argmin
x∈R3

√
2k(α|x1|+ α|x2|+

1

γ
|x3|) s. t. α2(x1 − x2 + x3 − 1)2 + (x3 − 1)2 ≤ 1.

Note that we deliberately choose this kind of change of variables instead of writing the

problem directly in terms of c1, c2, c3 in (5.11.6) as this gives easier to manage KKT

conditions. In particular, the KKT conditions for this problem are

0 ∈
√
k√
2
∂ ψ(x1) + µ1ω1(x)α, ψ(t) = |t|

0 ∈
√
k√
2
∂ ψ(x2)− µ1ω(x)α, 0 ∈

√
k√
2γ
∂ ψ(x3) + µ1

(
ω1(x)α2 + ω2(x)

)

µ1(ω1(x)2α2 + ω2(x)2 − 1) = 0, µ1 ≥ 0

ω1(x)2α2 + ω2(x)2 ≤ 1, ω1(x) = x1 − x2 + x3 − 1 ω2(x) = x3 − 1.

(5.11.7)

Note also that there are x′1, x
′
2, x
′
3 with α2(x′1−x′2+x′3−1)2+(x′3−1)2 < 1. Thus Slater’s

condition applies, so these KKT conditions are both necessary and sufficient. We make

the following claims: µ1 6= 0, so ω1(x)2α2 + ω2(x)2 − 1 = 0. Additionally, at least one

CHAPTER 5. PROOFS 138

of the inequalities x1 ≤ 0, x2 ≥ 0 is false, and finally we claim that x3 > 0. For the first

part, if µ1 = 0 then the first three equations imply that 0 ∈ sgn(x1), sgn(x2), sgn(x3).

Thus x1 = x2 = x3 = 0, violating the final condition that ω1(x)2α2 +ω2(x)2 ≤ 1 (since

α > 0). Therefore µ1 6= 0.

We claim that we cannot have both x1 ≤ 0, x2 ≥ 0. Suppose otherwise. Then

x1 − x2 ≤ 0, so ω2(x) ≥ ω1(x). If x3 ≤ 0 then ω2(x) ≤ −1, so ω1(x)2α2 + ω2(x)2 ≥
α2 + 1 > 1 contradicting the final condition. Thus x3 > 0 and so the third KKT

equation reads 0 =
√
k√
2γ

+ µ1

(
ω1(x)α2 + ω2(x)

)
≥

√
k√
2γ

+ µ1ω1(x)
(
α2 + 1

)
. Since

α2 + 1 ≥ 0, this implies that µ1ω1(x) < 0. Hence (from the first KKT equation),

µ1ω1(x) =
√
kK1

2α for some K1 ∈ [−1, 0). Thus, 0 ≥
√
k

2γ +
√
kK1

2α (α2 + 1). This implies

that −1
γ ≥

K1

α (α2 + 1). Therefore (since γ > 0) 1
γ ≤

|K1|
α (α2 + 1) ≤ α2+1

α , contradicting

the premise that α > γ(α2 + 1).

To see that x3 > 0, by the second property at least one of x1, x2 are non-zero.

Therefore, from the first two KKT equations, we must have that ω1(x) 6= 0. Since

α2ω1(x)2 + ω2(x)2 = 1 we get ω2(x) < 1. Thus x3 > 0.

Our last goal is to solve for x1, x2 and x3 now armed with the knowledge that at

x3 > 0 and that at least one of x1 > 0 or x2 < 0. Note that this implies that either

sgn(x1) = 1 or sgn(x2) = −1. Therefore µ1ω1(x)α+
√

k
2 = 0. Consequently, the KKT

equations are equivalent to

0 =

√
k√
2

+ µ1ω1(x)α, 0 =

√
k√
2γ

+ µ1

(
ω1(x)α2 + ω2(x)

)
, ω1(x)2α2 + ω2(x)2 = 1, µ1 > 0

x2 ≤ 0 and x1, x3 ≥ 0 with at least one of x1 > 0, x2 < 0.

Solving the first two equations yields ω1(x) = −µ′1/α, ω2(x) = µ′1 (α− 1/γ), where

µ′1 =
√

k
2µ2

1
. Using ω1(x)2α2 + ω2(x)2 = 1 yields µ′1 = γ/C. Therefore ω1(x) =

−γ/(Cα) and ω2(x) = (αγ − 1)/C. The substitutions ω1(x) = x1 − x2 + ω2(x) and

ω2(x) = x3 − 1 gives x1 − x2 = (−α2γ − γ + α)/Cα and x3 = (αγ − 1)/C + 1. The

values of x1, x2 and x3 in terms of c1, c2 and c3 yield the final result.

Our argument for LASSO is similar: as before, we still have

‖Av − y‖22 =

[
1√
2k

(
kc1 − kc2 +

αγkc3

2

)
− α

]2

+

(
γc3k

2
√

2k
− 1

)2

,

‖v‖1 = |c1|k + |c2|k + |c3|
k

2
.

(5.11.8)

With the same change of variables x1 =
√
kc1/(

√
2α), x2 =

√
kc2/(

√
2α) and x3 =

kγc3/(2
√

2k), obtaining v for the LASSO case is equivalent to finding

z ∈ argmin
x∈R3

λ
√

2k(α|x1|+ α|x2|+
1

γ
|x3|) + α2(x1 − x2 + x3 − 1)2 + (x3 − 1)2.

CHAPTER 5. PROOFS 139

Taking subdifferentials yields the following KKT conditions

0 ∈ β∂ ψ(x1) + ω1(x)α, ψ(t) = |t|

0 ∈ β∂ ψ(x2) + ω1(x)α, 0 ∈ β
γ
∂ ψ(x3) + ω1(x)α2 + ω2(x)

ω1(x) = x1 − x2 + x3 − 1, ω2(x) = x3 − 1, β =
λ
√
k√
2
.

(5.11.9)

Although these conditions are similar to the ones given in (5.11.7), we will no longer

be able to conclude easily that ω1(x)2α2 + ω2(x)2 − 1 = 0. Our proof will therefore

be slightly different and will rely on the fact that β < γ(1 − αγ)−1. We will initially

make three claims: firstly, that β < α, secondly that x3 > 0 and thirdly that at least

one of the inequalities x1 ≤ 0, x2 ≥ 0 is false.

It is easy to see the first claim: we have α > γ(α2 + 1). Thus α(1 − αγ) > γ

and the claim follows from the fact that β < γ(1 − αγ)−1. The second claim is more

involved: note that if x3 ≤ 0, the first KKT condition reads α ≤ βK1 + (x1− x2)α for

some K1 ∈ ∂ ψ(x1). If (x1 − x2) ≤ 0 then α ≤ βK1 ≤ β, contradicting the fact that

β < α. Thus either x1 > 0 or x2 < 0 (or both), and so at least one of the first two

KKT conditions can be written as 0 = β + ω1(x)α. If we substitute this into

0 ∈ β
γ
∂ ψ(x3) + ω1(x)α2 + ω2(x),

we get 0 = β
(
γ−1K3 − α

)
+ω2(x) for some K3 ∈ ∂ ψ(x3). Again using the assumption

that x3 ≤ 0, we have ω2(x) ≤ −1. Thus 1 ≤ βγ−1
(
K3 − αγ

)
≤ βγ−1 (1− αγ)

contradicting the condition β < γ(1− αγ)−1. Thus x3 > 0.

For the third claim, we argue similarly to the basis pursuit case. Let us assume

otherwise (i.e. that x1 ≤ 0 and x2 ≥ 0): then ω1(x) ≤ ω2(x). Using the second claim

and the third KKT equation, we see that 0 = β
γ +ω1(x)α2 +ω2(x) ≥ β

γ +ω1(x)(α2 +1).

From the first KKT equation there is a K1 ∈ ∂ ψ(x1) with ω1(x) = −βK1

α . Combining

these two equations gives β(α2+1)K1

α ≥ β
γ . But K1 ≤ 1, and so β(α2+1)K1

α ≥ β
γ implies

that γ(α2 + 1) ≥ α yielding the desired contradiction.

Therefore the KKT equations are equivalent to 0 = β+αω1(x), 0 = β
γ +α2ω1(x) +

ω2(x) and x2 ≤ 0 and x1, x3 ≥ 0 with at least one of x1 > 0, x2 < 0. We can now solve

these simultaneous equations for ω1 and ω2 to get ω1(x) = −β/α and ω2(x) = αβ−β/γ.

Thus from the definition of ω1 and ω2 in terms of x1, x2 and x3, we get x3 = αβ−β/γ+1

and x1 − x2 = −αβ + β(1/γ − 1/α). We can then use the substitutions for c1, c2, c3 in

terms of x1, x2, x3 to get the final result.

We will now choose sensible parameters in Proposition 5.11.2 to prove Theorem

4.2.15.

Proof of Theorem 4.2.15. We would like to apply Proposition 5.11.2 immediately. Un-

fortunately, that only covers the case δ = 1. However, we can extend the result there by

making the following claim: for any y ∈ Rm and U ∈ Rm×N and real numbers δ1, δ2 > 0

we have that x ∈ MBP(y, U, δ1) if and only if δ2x/δ1 ∈ MBP(δ2y/δ1, U, δ2). To see

CHAPTER 5. PROOFS 140

this, note it suffices to argue in only the forward direction (since the other direction is

identical to the forward direction with a change of parameters). Let x ∈MBP(y, U, δ1)

and let v be such that ‖Uv−δ2y/δ1‖2 ≤ δ2. Then ‖U δ1v
δ2 −δ1y‖2 ≤ δ1, so δ1‖v‖1

δ2 ≥ ‖x‖1.

Thus δ2x
δ1 satisfies ‖U δ2x

δ1 − δ2y
δ1 ‖2 = δ2

δ1 ‖Ux − y‖ ≤ δ2, and for all u such that

‖Uv − δ2y/δ1y‖ ≤ δ2, ‖u‖1 ≥ ‖ δ
2x
δ1 ‖1 and so δ2x

δ1 is indeed a minimiser.

With α = 1.4, γ = 0.37, Proposition 5.11.2 gives us the existence of y′, A such that

1.

‖AA∗‖2 ≤
√

1 + 2α2 +
1

γ4
(4 + α2γ2)2 ≈ 31.26

‖(AA∗)−1‖2 ≤

√(
1 +

α2γ2

4

)2

+
2α2γ4

16
+
γ4

16
≈ 1.14.

and thus cond(AA∗) ≤ 31.26× 1.14 ≈ 35.64 < 36 and ‖A‖2 ≤
√

31.26 < 6.

2. A obeys the `2 Robust Nullspace Property of order s with parameters ρ =
s

2blog2(s)c+2−s <
s+1

2blog2(s)c+2−s and

τ =
√

1 + ρ‖A‖2‖(AA∗)−1‖2 ≤
√

1 + ρ
√

31.26× 1.14 ≈ 6.4
√

1 + ρ < 7
√

1 + ρ′.

3. y′ = Ax for some s-sparse x with ‖y‖2 ≤
√

1 + α2 ≈ 1.7205 < 2, such that

MBP(y′, A, 1) = Conv(c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2),

MBP
min(y′, A, 1) = {c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2},

where

c1 × C
√
k

2
≈ 0.3048

√
k

2
≤ 0.3049

√
k

2
, C ≈ 0.6076 ≥ 0.6077.

so that c1 ≈ 0.5017
√

2
k > (

√
2k)−1.

Note that all calculations (with the exception of C for which the opposite occured) were

done by rounding up. Furthermore, the assertion that s+1
2blog2(s)c+2−s = ρ′ < 1 follows by

letting s = 2n−1 + c with n ≥ 1 and c an integer between 0 and 2n−1− 1 inclusive. We

then have that s+ 1 = 2n−1 + c+ 1 and that 2blog2(s)c+2 − s = 2n+1 − 2n−1 − c. Thus

s+1−(2blog2(s)c+2−s) = 2n−1+c+1−2n+1+2n−1+c ≤ −2n+2c+1 ≤ −2n+2n−2+1 < 0.

We thus get a matrix A satisfying the requirements for Theorem 4.2.15 with each

inequality satisfied in a strict sense. It is easy to see that since the inequalities are

satisfied in a strict sense, if we form B = A+ εA′ where ‖A′‖2 = 1 and ε is sufficiently

small then cond(BB∗) < 36, ‖B‖2 < 6, B will still obey the nullspace property with

possibly increased parameters ρ and τ (but still with ρ < ρ′ and τ < 7
√

1 + ρ′).
Moreover, if we set y = δy′ we note that ‖y‖2 = δ‖y′‖2 ≤ δ.

CHAPTER 5. PROOFS 141

We define ι = (y, U, δ) and note that |MBP(y, U, δ)| ≥ 2. The conclusion follows by

Theorem 4.2.14 with the statement about the breakdown epsilon following from the

fact that if x1, x2 ∈MBP
min(ι) then

x1 − x2 = ±δ
(
c11k ⊕ c11k ⊕ 0k/2

)

and so ‖x1 − x2‖2/2 = δc1

√
k
2 > δ/2.

The proof of Theorem 4.3.5 is very similar, making use of a specific choice of

parameters in Proposition 5.11.2.

Proof of Theorem 4.3.5. As in the proof of Theorem 4.2.15, we make the substitution

of α = 1.4, β = 0.37 in Proposition 5.11.2. The same calculations as before show us

that we get y,A such that

1. cond(AA∗) < 36 and ‖A‖2 < 6.

2. A obeys the `2 Robust Nullspace Property of order s with parameters ρ <
s+1

2blog2(s)c+2−s and τ < 7
√

1 + ρ′.

3. y = Ax for some s-sparse x with ‖y‖2 < 2, such that

MUL(y,A, λ) = Conv(c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2),

MBP
min(y,A) = {c11k ⊕ 0k ⊕ c21k/2,0k ⊕−c11k ⊕ c21k/2},

where

c1 = λ

(
α

γ
− α2 − 1

)
≈ 0.8239 > 0.8

whenever β := λ
√
k√
2
< γ(1−αγ)−1 ≈ 0.7676. Since

√
2×0.7676 ≈ 1.085 (rounded

down), this condition will be satisfied whenever λ < 1/
√
k.

We set ι = (y,A) and note as before that if we consider matricesB which are sufficiently

small perturbations of A then (y,B) ∈ Ω. We then employ Theorem 4.3.2, part 1. To

get the breakdown epsilon, note that if x1, x2 ∈MUL
min(ι) then

x1 − x2 = ±
(
c11k ⊕ c11k ⊕ 0k/2

)

and so ‖x1 − x2‖2/2 = c1

√
2k/2 > 4λ

√
k

5
√

2
.

5.12 Proof of Theorem 4.3.1

We start by proving the following scaling argument for unconstrained lasso

Lemma 5.12.1. For y ∈ Rm, U ∈ Rm×N and λ > 0, set

MUL(y, U, λ) := arg min
x∈RN

‖Ux− y‖22 + λ‖x‖1

CHAPTER 5. PROOFS 142

Then for γ1, γ2 > 0, we have

MUL(γ1y, γ2A, λ) = γ1γ
−1
2 MUL(y,A, γ−1

1 γ−1
2 λ).

Proof. We prove this in two steps, namely, we will show

MUL(γ1y, γ2A, λ) = γ−1
2 MUL(γ1y,A, γ

−1
2 λ) (5.12.1)

MUL(γ1y,A, γ
−1
2 λ) = γ1M

UL(y,A, γ−1
1 γ−1

2 λ). (5.12.2)

To see (5.12.1), let x̂ ∈ argminx∈RN ‖γ2Ax− γ1y‖2 + λ‖x‖1. Then for x ∈ RN we have

‖γ2Ax̂− γ1y‖22 + λ‖x̂‖1 ≤ ‖γ2Ax− γ1y‖22 + λ‖x‖1

so with v̂ = γ2x̂ and v = γ2x we have

‖Av̂ − γ1y‖22 + γ−1
2 λ‖v̂‖1 = ‖γ2Ax̂− γ1y‖22 + λ‖x̂‖1

≤ ‖γ2Ax− γ1y‖22 + λ‖x‖1 = ‖Av − γ1y‖22 + γ−1
2 λ‖v‖1.

Thus if x̂ ∈ MUL(γ1y, γ2A, λ) then γ2x̂ ∈ MUL(γ1y,A, γ
−1
2 λ). Since the argu-

ment is completely reversible we have that if γ2x̂ ∈ MUL(γ1y,A, γ
−1
2 λ) then x̂ ∈

MUL(γ1y, γ2A, λ). The claim follows immediately.

The argument for (5.12.2) is similar. Let x̂ ∈ argminx∈RN ‖Ax−γ1y‖2 +γ−1
2 λ‖x‖1.

Then for x ∈ RN we have

‖Ax̂− γ1y‖22 + γ−1
2 λ‖x̂‖1 ≤ ‖Ax− γ1y‖22 + γ−1

2 λ‖x‖1

so with v̂ = γ−1
1 x̂ and v = γ−1

1 x we have

γ2
1‖Av̂ − y‖22 + γ1γ

−1
2 λ‖v̂‖1 = ‖Ax̂− γ1y‖22 + γ−1

2 λ‖x̂‖1
≤ ‖Ax− γ1y‖22 + γ−1

2 λ‖x‖1
= γ2

1‖Av − γ1y‖22 + γ1γ
−1
2 λ‖v‖1.

Therefore (dividing by γ2
1)

‖Av̂ − y‖22 + γ−1
1 γ−1

2 λ‖v̂‖1 ≤ ‖Av − γ1y‖22 + γ−1
1 γ−1

2 λ‖v‖1.

Thus if x̂ ∈ MUL(γ1y,A, γ
−1
2 λ) then γ−1

1 x̂ ∈ MUL(y,A, γ−1
1 γ−1

2 λ). Since the ar-

gument is completely reversible we have that if γ−1
1 x̂ ∈ MUL(y,A, γ−1

1 γ−1
2 λ) then

x̂ ∈MUL(γ1y,A, γ
−1
2 λ). The claim follows immediately.

Lemma 5.12.2. Fix τ ∈ (0, 1), λ ∈ (0, 2) and α, β, y > 0 such that α ∨ β ≥ λ/2

and 1 ≥ ατ ∨ βτ . Set U =
(
α β

)
. Let ΞCL,ΞUL denote the problem functions for

constrained lasso and unconstrained lasso respectively. We have

ΞCL(1, U) =

{
τe1 if α > β

τe2 if β > α
, ΞUL(1, U) =

{
2α−λ
2α2 e1 if α > β

2β−λ
2β2 e2 if β > α.

(5.12.3)

CHAPTER 5. PROOFS 143

Moreover, for α = β we have

ΞCL(1, U) = Conv (τe1, τe2)

ΞUL(1, U) ⊇
{(

2α− λ
2α2

)
e1,

(
2α− λ

2α2

)
e2

}
.

Proof. We start with constrained lasso. As in the proof of Lemma 5.5.1, we consider

the case α > β, noting that the argument for β > α is identical. We have for x ∈ R2

with ‖x‖1 ≤ τ ,

y − (αx1 + βx2) ≥ y − (α|x1|+ β|x2|) ≥ y − α(|x1|+ |x2|) ≥ y − ατ

with equality if and only if |x2| = 0 and x1 = τ . Moreover, since y ≥ ατ , we have

0 < y − ατ ≤ y − (αx1 + βx2) = |y − (αx1 + βx2)| = ‖Ux− y‖2.

Thus over x ∈ R2 with ‖x‖1 ≤ τ , ‖Ux− y‖2 is minimised exactly when x = τe1.

To see the result for α = β, we work similarly: now if ‖x‖1 ≤ τ we have y− (αx1 +

βx2) ≥ y − ατ > 0. As before, we get that ‖Ux − y‖2 ≥ y − ατ with equality iff

x1, x2 are non-negative and ‖x‖1 = τ and this gives exactly the claimed formula for

the minimisers.

Finally, we prove the result for unconstrained lasso. This proof is somewhat more

involved than for the other computational problems. We start by considering the

problem for y = 1, α = 1 and β = (1− ε) for some positive ε < 1. Our aim will be to

prove that for such an input (y, U) that the minimiser is (1− λ/2)e1 provided λ ≤ 2.

We will then transform the problem to obtain the result for general U .

Suppose that (1 − λ/2)e1 is not the unique minimiser: then there is an x̃ =

(x1, x2)T 6= (1−λ/2)e1 such that the x̃ is a solution of argmin ‖Ux− 1‖22 +λ‖x‖1. Set

Fε(a, b) := (a+(1−ε)b−1)2+λ(|a|+|b|), so that ‖U(a, b)T−1‖22+λ‖(a, b)T ‖1 = Fε(a, b).

We now analyse Fε. Firstly, for Fε((x1, x2)) ≤ Fε(0, 1−λ/2) = λ(1−λ/4) we must

have λ|x1|+|x2| ≤ λ(1−λ/4) < λ. Thus x1+(1−ε)x2−1 ≤ |x1|+(1−ε)|x2|−1 < 0 with

the first inequality an inequality iff |x1| = x1 and |x2| = x2. Therefore Fε(x1, x2) ≥
Fε(|x1|, |x2|) with equality iff |x1|, |x2| ≥ 0. Thus to minimise Fε(x1, x2) the entries

x1 and x2 must be non-negative. We can then set x1 + x2 = α with α < 1 to obtain

Fε((x1, x2)) = (α − εx2 − 1)2 + λα ≥ (α − 1)2 + λα with equality iff x2 = 0. We

conclude that x2 = 0 and x1 is non-negative. Finally, it is easy to see that minimisers

of (α−1)2+λα for non-negative α occur when α = 1−λ/2. Therefore x1 = 1−λ/2 and

x2 = 0. Thus x̃ = (1 − λ/2)e1, which contradicts the erroneous original assumption

that x̃ 6= (1− λ/2)e1.

Now we consider the more general case for α, β not necessarily equal to 1. The aim

will be to transform this new lasso problem into the original one.

We prove the result only for α > β: the other case β > α follows by symmetry.

Write A = α
(

1 βα−1
)

. Since α > β and both α, β are positive we can write βα−1 =

CHAPTER 5. PROOFS 144

(1 − ε) for some ε ∈ (0, 1). Thus αA =
(

1 1− ε
)

for some ε ∈ (0, 1). By Lemma

5.12.1, MUL(1, A, λ) = α−1MUL(1,
(

1 1− ε
)
, α−1λ).

The result for α > β follows from the argument above that because α−1λ ≤ 2, the

unique solution to MUL(y,
(

1 1− ε
)
, α−1λ) is (1− α−1λ/2)e1.

It remains to show that both ce1 and ce2 are minimisers when α = β, where

c = 2α−λ
2α2 . Again, it will suffice to show the first of these two statements, since the

proof is analogous for the second. Let u ∈ RN . For positive β′ < β, set U ′ =

U ′(β′) =
(
α β′

)
. Since ce1 is the minimiser to MUL(1, U, λ) by (5.12.3), we see that

‖U ′u−y1‖2 +λ‖u‖1 ≥ ‖U ′ce1−y1‖2 +λc‖e1‖1. Noting that ‖ ·−y‖22 is continuous and

that U ′ → U as β′ ↑ β, we have ‖Uu− y1‖2 + λ‖u‖1 ≥ ‖Uce1 − y1‖2 + λ‖ce1‖1. Since

u was arbitrary we conclude that ce1 is indeed a minimiser. As previously stated, the

second statement that ce2 is a minimiser is analogous by instead considering positive

α′ < α, defining U ′ instead to be U ′ =
(
α′ β

)
and sending α′ ↑ α.

Proof of Theorem 4.3.1. For both parts, we will use the same proof as the one in The-

orem 4.1.3. Since the proofs are mostly identical with the exception of the discussion

on condition numbers, we only list the changes necessary in this new setting.

Part (i) Instead of appealing to Lemma 5.5.1, we now use Lemma 5.12.2. We will

now have S1 := Ξ(ι1n) = {(1 − λ/2)e2}, S2 := Ξ(ι2n) = {(1 − λ/2)e1}. This changes κ

to κ = 2−λ√
2

.

For ι ∈ Ω. The bound on ‖ι‖ is identical, and CFP is not relevant for the lasso

problems. Our argument for cond(ΞUL) is similar to the proof of Theorem 4.1.3. Again,

we see that if ι̂ = (ŷ, Â) is such that ι + ι̂ ∈ Ω̃ν then ŷ = 0. We consider two cases:

ι = ι1n, and ι = ι0. We set ι̂ = (ŷ, Â) and ι = (y,A). As before, if ε is sufficiently small,

if ‖Â‖2 ≤ ε then (A+ Â)1,1 < (A+ Â)1,2. Additionally, once again choosing sufficiently

small ε > 0, we get (Â1,1 + 1) ≥ λ/2 since λ < 2. For such ι̂, we have by Lemma 5.12.2

that ΞUL(ι+ ι̂) = (2β − λ)/(2β2) where β = 1 + Â1,2 and ΞUL(ι) = (2− λ)/2e2.

Thus

dist(ΞUL(ι+ ι̂),ΞUL(ι)) =

∣∣∣∣
2β − λ

2β2
− 2− λ

2

∣∣∣∣ =

∣∣∣∣
2β(1− β)− λ(1− β2)

2β2

∣∣∣∣

≤
∣∣∣∣
ε [2β − λ(1 + β)]

2β2

∣∣∣∣

and we conclude that for such ι (since β → 1 as ε ↓ 0),

lim
ε↓0

sup
ι+ι̂∈Ω̃ν ,0<‖ι̂‖≤ε

dist(ΞLP(ι+ ι̂),ΞLP(ι))

‖ι̂‖
≤ 1− λ

and the same argument shows that the same result if ι = ι2n for some n.

The last case to consider is ι = ι0. This argument is identical to Theorem 4.1.3,

except that as above we have that (A+ Â)1,1∨(A+ Â)1,2 ≥ λ/2 for Â sufficiently small

since A1,1, A1,2 = 1 and λ < 2. We conclude as above Cond(Ξ) ≤ 1− λ.

Part (ii) We will now have Ξ(ι1n) = {τe2} = S1, Ξ(ι2n) = {τe1} = S2. This changes

κ to κ =
√

2τ . The argument for condition is as in part (i) except that now the result

CHAPTER 5. PROOFS 145

that (A + Â) ∨ (A + Â)1,2 ≥ λ/2 for sufficiently small Â is replaced by the argument

that (A + Â)1,1τ ∨ (A + Â)1,2τ ≤ 1 since A1,1, A1,2 ≤ 1 and τ < 1. Additionally, we

now get that ΞCL(ι + ι̂) = ΞCL(ι) = τe1 or ΞCL(ι + ι̂) = ΞCL(ι) = τe2 depending on

the choice of ι provided that ι̂ is sufficiently small. The conclusion then becomes that

cond(ΞCL) = 0, which completes the proof of the boundedness of each of the condition

numbers.

5.13 Proof of Theorem 4.3.2

We prove the two parts separately. First we show the negative result for unconstrained

lasso:

Theorem 4.3.2, part 1. As with the proof of Theorem 4.2.14, the strategy and wording

is almost verbatim the same as the proof of Theorem 4.2.3. This time, we replace every

mention of the input (y, U + UEjn) with (y, U + UEjn, λ) and every mention of (y, U)

with (y, U, λ) in the proof of Theorem 4.2.3. The proof of Theorem 4.3.2, part 1 is

otherwise identical to the proof of Theorem 4.2.3.

Next, we prove the positive result for constrained lasso.

Theorem 4.3.2, part 2. We choose the primary set Ω to be all (y, U ′, τ) of the form

y = 1, U ′ =
(
a b

)
, τ = 3 where a ∈ (1/2, 1 + 1/2) and b ∈ (−1/2, 1/2). Set U =

(
1 0

)
and ι = (1, U, 3). Next, we prove that each of Properties (a) to (c) hold for

this choice of Ω. For (a), we note that if x = (1, α)T with α ∈ [0, 2], Ux = y and

‖x‖1 = 1 + α ≤ 3. Therefore there are infinitely many distinct minimisers of the

optimisation problem. To see that (b) is true, note that if D is a negative semidefinite

diagonal matrix with D < 1/2, U +UD = (1 + β, 0) where β is some number in [0, 1
2).

Thus (1, U + UD, 3) ∈ Ω4. To establish (c) and show that {Ξ4,Ω4,M4,Λ4} ∈ ∆A
1 ,

note that for any input ι′ = (1, U ′, 3) with U ′ =
(
a b

)
and a ∈ (1/2, 1 + 1/2),

the vector x′ = (1/a, 0)T ∈ Ξ4(I) is a solution, since ‖x′‖1 ≤ 2 and U ′x′ = 1. We

will produce a family of algorithms Γn such that given any ∆1 information on ι′,
‖Γn(ι′)− x′‖2 ≤ 2−n. To construct Γn, we read the first entry of U to precision ε̂ ≥ 0,

where ε̂ ≤ min(3 · 2−n−3, 1/4). This gives us a number â, and we output the vector

(1/â, 0)T , which can be done with one arithmetic operation. It is clear that Γn has

bounded minimum runtime from T (Γn, 2−n) < log2(3 ∗ 2−n−3) ≤ n− 2 <∞. Finally,

‖(1/â, 0)T − x′‖2 =
|â− a|
|aâ|

≤ ε̂

|a(a+ ε̂)|
≤ 2ε̂

|3a2|
≤ 8ε̂

3
≤ 2−n.

5.14 Proof of Theorem 4.3.4

The proof of Theorem 4.3.4 will make use of Lemma 5.12.2.

CHAPTER 5. PROOFS 146

Proof of Theorem 4.3.4. We choose PM so that a random PM matrix is such that both

entries are distributed according to the uniform distribution on (1, 1 + 4−M−2). It is

clear that such a probability measure is absolutely continuous with respect to the

lebesgue measure since it has a density function. Moreover with probability 1 the

entries of a PM matrix are bounded by 1 + 4−M−2 < 2. Next, we choose y = 1. For

a given Ω, we denote the set of all U ∈ R1×2
‖·‖max≤2 such that (y, U, λ) ∈ Ω by S. We

assume that S is lebesgue measurable - if not 2 holds trivially. There are three cases

to consider:

(a) For all U ∈ S, U1,1 ≥ U1,2

(b) For all U ∈ S, U1,1 < U1,2

(c) There exist U1 ∈ S and U2 ∈ S such that U1
1,1 > U1

1,2 and U2
1,1 < U2

2,2.

For either case (a) or case (b), we will claim that PM (S) ≤ 1/2. Let us start with case

(a). Let S+ be the set of all U ∈ R1×2
‖·‖max≤2 with U1,1 ≥ U1,2. It is clear that S ⊆ S+.

Additionally, PM (S+) = 1/2 since

PM (S+) = 42M+4

∫ 1+4−M−2

1

∫ 1+4−M−2

x2

dL(x1)dL(x2)

= 42M+2

∫ 1+4−M−2

1
(1 + 4−M−2 − x2) dL(x2) =

1

2

Thus PM (S) ≤ 1/2. The argument for (b) is the same with S+ replaced by the set S−

(defined to be the set of all U such that U1,1 < U1,2). Therefore for either case (a) or

(b) we have PM (S) ≤ 1/2 and therefore 2 holds.

The only remaining case is (c). For N = M + 2 and n ≤ N , we set ι1n =

(1, U1, λ), ι2n = (1, U2, λ) with an aim to using Proposition 2.9.1 part (i). We need

to show that Proposition 2.9.1 (a) and (b) hold.

Proposition 2.9.1 condition (a)

We use Lemma 5.12.2. By the distribution of U we can assume that

U1
1,1, U

1
1,2, U

2
1,1, U

2
2,2 ∈ [1, 1 + 4−M−2]. An application of Lemma 5.12.2 tells us that

Ξ(ι1n) =
2U1

1,1 − λ
2(U1

1,1)2
e1, Ξ(ι1n) =

2U2
1,2 − λ

2(U2
1,2)2

e2.

Let us examine the function f(x) = (2x−λ)/(2x2). Our task will to be to find a lower

bound for f on the interval [1, 2] for λ ∈ (0, 2). Note that since f is continuous on [1, 2]

and differentiable everywhere in [1, 2] either f attains its minimum on [1, 2] at some

point x̃ with f ′(x̃) = 0 or f attains its minimum on the boundary (i.e. either at 0 or

at 1).

We have f ′(x) = −1/x2 + λ/x3. Thus f attains its critical point at x = λ and

a simple calculation shows that f(λ) = (2λ)−1. On the other hand, at the boundary

point x = 1 we have f(x) = 1 − λ/2 and at the boundary point x = 2 we have

f(x) = 1− λ/4. Clearly for λ ∈ (0, 2), 1− λ/2 < 1− λ/4.

CHAPTER 5. PROOFS 147

Furthermore, we claim that 1 − λ/2 ≤ (2λ)−1. Indeed, suppose otherwise. Then

2λ− λ2 > 1 and so 0 > λ2 − 2λ+ 1 = (λ− 1)2. This is a clear contradiction. Thus for

x ∈ [1, 2] we have that f(x) ≥ 1− λ/2.

Therefore if we define S1 = {te1 | t ∈ [1 − λ/2,∞)} and S2 = {te2 | t ∈ [1 −
λ/2,∞)} then Ξ(ι1n) ⊆ S1 and Ξ(ι2n) ⊆ S2. Moreover, with κ = (1 − λ/2)

√
2 we

have infx1∈S1,x2∈S2 dM(x1, x2) ≥ κ. This concludes the proof that Proposition 2.9.1

condition (a) holds.

Proposition 2.9.1 condition (b)

This part of the proof is fairly straightforward. Let f ∈ Λ and i ∈ {1, 2}. By the

assumption that U1
1,1, U

1
1,2, U

2
1,1, U

2
2,2 ∈ [1, 1 + 4−M−2], if f : Ω → R is such that for

each ι = (y, U, λ) ∈ Ω we have f(ι) = Uj,k set cf = 1. Then f(ιin) − cf ∈ [0, 4−M−2].

Hence |f(ιin) − cf | ≤ 1/4N ≤ 1/4n. If instead f(ι) = y = 1 we set cf = 1 and so

|f(ιin)− cf | = 0 . Finally, if f(ι) = λ we set cf = λ and again see that |f(ιin)− cf | = 0.

We have thus shown that Proposition 2.9.1 condition (b) holds.

Since we have now shown both of the requirements for Proposition 2.9.1 the result

follows immediately.

5.15 Proof of Theorem 4.3.7

Our argument will be split into three main ideas. Firstly, we need to approximate the

modulus of continuity for lasso. Next, we need to establish stopping criteria for primal

convergent algorithms so that we can get an approximate solution on perturbed input

data. Finally, we need to combine these points to obtain the ∆A
1 family of algorithms.

Proposition 5.15.1. Let A ∈ Rm×N and S ⊆ {1, 2, . . . N}. Suppose that y = Aξ

where ξ ∈ Rm×N has supp(ξ) ⊆ S. Let v ∈MUL(y,A, λ). We assume that the matrix

A satisfies the following conditions:

(i) ‖A∗ScAS(A∗SAS)−1sgn(vS)‖∞ < 1− α1 for some fixed α1 > 0.

(ii) min(Spec(A∗SAS)) ≥ α2 for some fixed α2 > 0, where Spec denotes the spectrum

of a matrix.

Fix h1, h2 and h3 with h1, h2, h3 ≥ 0. If ỹ and Ã are such that ‖A−Ã‖2 ≤ h1 ‖y−ỹ‖2 ≤
h2 and the vector w satisfies ‖Ã(v+w)− ỹ‖22 +λ‖v+w‖1 ≤ h3 +minx∈RN ‖Ãx− ỹ‖22 +

λ‖x‖1 then

‖w‖2 ≤ α−1/2
2

(√
γ4 + ‖A‖22(λα1)−2(γ4)2 + ‖A‖2(λα1)−1γ4

)
+ (λα1)−1γ4,

where we have

γ1 := λ−1
(
h3 + (h1‖ξ‖2 + h2)2 + λ‖ξ‖1

)

γ2 := 2γ1 (h2‖A‖2 + h1(‖A‖2γ1 + ‖A‖2‖ξ‖2 + h2))

γ3 := 2‖A‖2(‖ξ‖1 + ‖ξ‖2)(h1‖ξ‖1 + h2) + (h1‖ξ‖1 + h2)2

γ4 := γ2 + γ3 + h3.

CHAPTER 5. PROOFS 148

Proof. We will estimate ‖wS‖2 and ‖wSc‖2, where the key to estimating the former is

through bounding ‖ASwS‖2, as assumption (ii) then easily can be applied. To obtain

the estimates we first need the following claim.

Claim: We claim that ‖Aw‖22 + λα1‖wSc‖1 ≤ γ4. Note that if the claim holds we

have that ‖wSc‖2 ≤ ‖wSc‖1 ≤ (λα1)−1(γ4) and ‖Aw‖22 ≤ γ4. Consequently

γ4 ≥ ‖ASwS‖22 + 2〈ASwS , AScwSc〉+ ‖AScwSc‖22
≥ ‖ASwS‖22 − 2‖ASwS‖2‖A‖2(λα1)−1(γ4)

≥ (‖ASwS‖2 − ‖A‖2(λα1)−1(γ4))2 − ‖A‖22(λα1)−2(γ4)2

so that
√
γ4 + ‖A‖22(λα1)−2(γ4)2 +‖A‖2(λα1)−1γ4 ≥ ‖ASwS‖2. Now from assumption

(ii) on A, we have ‖ASwS‖22 ≥ α2‖wS‖22. The result follows by observing that ‖w‖2 ≤
‖wS‖2 + ‖wSc‖2.

Hence, to complete the proof we only need to prove the claim. The conditions on

A imply that supp(v) ⊆ S (this is proven in [123] as a combination of Lemma 2 and

Lemma 3). Thus (since v = MUL(y,A, λ)) we have 2A∗S(Av−y)+λsgn(vS) = 0. Since

y = Aξ, and ξ has support S, this implies that 2(v − ξ) = −λ(A∗SAS)−1sgn(vS), so

that 2Av − y = −λAS(A∗SAS)−1sgn(vS). We thus have

2〈Aw,Av − y〉 = 2 (〈ASwS , Av − y〉+ 〈AScwSc , Av − y〉)
= −λ

(
〈wS , sgn(vS)〉+ 〈wSc , A∗ScAS(A∗SAS)−1sgn(vS)〉

)

≥ −λ〈wS , sgn(vS)〉+ λ(α− 1)‖wSc‖1. (5.15.1)

To simplify the expressions we will throughout the argument use, for T ∈ Rm×N ,

η1 ∈ RN and η2 ∈ Rm, Ψ(T, η1, η2) = ‖Tη1− η2‖22. We will now obtain a simple bound

on ‖v + w‖1 (and thus ‖v + w‖2). Let η = v + w. We must have

λ‖η‖1 ≤ h3 + Ψ(Ã, ξ, ỹ) + λ‖ξ‖1 ≤ h3 + Ψ(Ã−A, ξ, ỹ − y) + λ‖ξ‖1
≤ h3 + (h1‖ξ‖2 + h2)2 + λ‖ξ‖1,

so that ‖η‖2, ‖η‖1 ≤ γ1. Similarly, λ‖v‖1 ≤ Ψ(A, ξ, y) +λ‖ξ‖1 = λ‖ξ‖1. Next, we must

have

Ψ(Ã, η, ỹ) + λ‖η‖1 ≤ h3 + Ψ(Ã, v, ỹ) + λ‖v‖1. (5.15.2)

Working with the left hand side of (5.15.2), we must have Ψ(Ã, η, ỹ) = Ψ(A, η, ỹ) +

2〈(Ã−A)η,Aη − ỹ〉+ Ψ(Ã−A, η, 0). By some manipulation we get

2〈(Ã−A)η,Aη − ỹ〉+ Ψ(Ã−A, η, 0) ≥ −2h1‖η‖2‖Aη − ỹ‖2
≥ −2γ1h1(‖A‖2γ1 + ‖A‖2‖ξ‖2 + h2) = −γ2

(5.15.3)

Similarly, the right hand side of (5.15.2) can be controlled as follows: Ψ(Ã, v, ỹ) =

CHAPTER 5. PROOFS 149

Ψ(A, v, y) + 2〈(Ã−A)v + y − ỹ, Av − y〉+ Ψ(Ã−A), v, ỹ − y). Moreover,

2〈(Ã−A)v + y − ỹ, Av − y〉+ Ψ(Ã−A), v, y − ỹ)

≤ 2‖Av − y‖2(h1‖v‖2 + h2) + (h1‖v‖2 + h2)2

≤ 2‖A‖2(‖v‖2 + ‖ξ‖2)(h1‖v‖2 + h2) + (h1‖v‖2 + h2)2

≤ 2‖A‖2(‖ξ‖1 + ‖ξ‖2)(h1‖ξ‖1 + h2) + (h1‖ξ‖1 + h2)2 = γ3.

(5.15.4)

where in the last line we bound ‖v‖2 by

λ‖v‖2 ≤ λ‖v‖1 + ‖Av − y‖22 ≤ λ‖ξ‖1 + ‖Aξ − y‖22 = λ‖ξ‖1.

Substituting these calculations using (5.15.3) and (5.15.4) into (5.15.2) yields

λ‖η‖1+Ψ(A, η, y) ≤ λ‖v‖1+Ψ(A, v, y)+γ3+γ2+h3 = λ‖v‖1+Ψ(A, v, y)+γ4. (5.15.5)

Now using 5.15.1 Ψ(A, η, y) − Ψ(A, v, y) = ‖Aw‖22 + 2〈Aw,Av − y〉 ≥ ‖Aw‖22 −
λ〈wS , sgn(vS)〉+ λ(α− 1)‖wSc‖1, which combined with (5.15.5) gives

γ4 ≥ ‖Aw‖22 + λ (‖v + w‖1 − 〈wS , sgn(vS)〉+ (α1 − 1)‖wSc‖1 − ‖v‖1)

≥ ‖Aw‖22 + λ (‖(v + w)S‖1 + α‖wSc‖1 − 〈wS , sgn(vS)〉 − 〈vS , sgn(vS)〉)
≥ ‖Aw‖22 + λα1‖wSc‖1

where the second line follows because (v + w)Sc = wSc and the third line because

〈vS + wS , sgn(vS)〉 ≤ ‖(v + w)S‖1.

Next, we build a stopping criteria for lasso. In doing so we must identify when

a lasso solution is 0. Thus we state two lemmas, both of which are proven in the

appendix.

Lemma 5.15.2. We have the following result: ‖A∗b‖∞ ≤ λ
2 if and only if 0 ∈

argminx∈RN ‖Ax− y‖2 + λ‖x‖1.

Lemma 5.15.3. Suppose that algorithm produces a sequence xn such that ‖Axn −
b‖22 + λ‖xn‖1 → ‖Ax − b‖22 + λ‖x‖1 where the right hand side is minimised at x∗.
Furthermore suppose that ‖A∗b‖∞ > λ

2 . Then

0 ≤ ‖Axn − b‖2 + λ‖xn‖1 − ‖Ax− b‖22 − λ‖x‖1 ≤ Gn

where Gn = ‖Axn − b‖22 + λ‖xn‖1 + minm≤n
‖pm‖22

4 + 〈pm, b〉 and pm = λ(Axm −
b)/‖A∗(Axm − b)‖∞. Moreover limn→∞Gn = 0.

With this continuity estimate in place, we can now move onto the proof of 4.3.7.

Proof of Theorem 4.3.7. For ε ∈ (0, 1), our first aim will be to find sufficient conditions

on h1, h2 and h3 (as functions of ε, α1, α2, α3 and α4) that imply that ‖w‖2 < ε (where w

is defined as in proposition 5.15.1). It will prove useful to define additional parameters

CHAPTER 5. PROOFS 150

β3 = max(α3, 1), β4 = max(α4, 1). Firstly, let us assume that we can show that γ4 is

less than δ for some δ ∈ (0, 1]. Then (using the result of proposition 5.15.1):

‖w‖2 ≤ α−1/2
2

(√
δ + ‖A‖22(λα1)−2δ2 + ‖A‖2(λα1)−1δ

)
+ (λα1)−1δ

≤ α−1/2
2

(√
δ + 2‖A‖2(λα1)−1δ

)
+ (λα1)−1

√
δ

≤
√

(α2)−1δ + 2
√

(α2)−1β3δ2(λα1)−1 +
√
β3δ(λα1)−1

where the second line follows from the inequality
√
x+ y ≤

√
x +
√
y and the fact

that δ ≤ 1 implies
√
δ ≥ δ, and the third line follows from β3 ≥ 1. For positive

x, y the arithmetic geometric mean inequality implies that 2xy ≤ x2 + y2 and so

2
√

(α2)−1β3δ2(λα1)−1 ≤ δ/α2 + (λα1)−2β3δ.

If we assume additionally that
√
δ < Cεmin(λα1(β3)−1/2,

√
α2) for some constant

C ∈ (0, 1) that will be determined later, we get

‖w‖2 ≤
√

(α2)−1δ + δ/α2 + (λα1)−2β3δ +
√
β3δ(λα1)−1

≤ Cε+ (Cε)2 + (Cε)2 + Cε < 4Cε.

We thus choose C = 1/4 to get ‖w‖2 < ε. So far, we have shown that it will suffice to

ensure that

γ4 ≤ δ, provided that δ <
ε2

16
min(

λ2α2
1

β3
, α2, 1)

to conclude that ‖w‖2 < ε. We will now find parameters h1, h2, h3 that ensure that

γ4 ≤ δ.
Firstly, we have γ1 ≤ λ−1(h3 + (h1β4 + h2)2 + λβ4). We can use the inequality

(x+ y)2 ≤ 2x2 + 2y2 to get γ1 ≤ λ−1(h3 + 2(h1β4)2 + 2h2
2 + λβ4). Thus if

2(h1β4)2 ≤ λβ4

2
, 2h2

2 ≤
λβ4

2
, h3 ≤ λβ4 (5.15.6)

we get γ1 ≤ 3β4. Under these conditions, we have

γ2 ≤ 6β4 [h2β3 + h1(3β3β4 + β3β4 + h2)] ≤ 6h2β3β4 + 24h1β3β
2
4 + 6h1h2β4.

γ3 ≤ 2β3(2β4)(h1β4 + h2) + (h1β4 + h2)2 ≤ 4h1β3β
2
4 + 4h2β3β4 + (h1β4 + h2)2.

Therefore

γ2 + γ3 ≤ 28h1β3β
2
4 + 10h2β3β4 + 6h1h2β4 + (h1β4 + h2)2

≤ 28h1β3β
2
4 + 10h2β3β4 + 5(h1β4)2 + 5h2

2

where again we have used the inequalities 2xy ≤ x2 + y2 and (x + y)2 ≤ 2x2 + 2y2.

Consequently to ensure that γ4 ≤ δ it suffices to ensure that

h3 ≤ δ/2, 28h1β3β
2
4 ≤ δ/8, 10h2β3β4 ≤ δ/8, 5(h1β4)2 ≤ δ/8, 5h2

2 ≤ δ/8
(5.15.7)

and the conditions in (5.15.6) are satisfied.

CHAPTER 5. PROOFS 151

In particular, we choose (noting that 224 = 8× 28)

h1 := min

(
λ

4
,

δ

224β3β2
4

)
, h2 := min

(
λβ4

4
,

δ

80β3β4

)
, h3 := min

(
δ

2
, λβ4

)
.

(5.15.8)

To see that these values imply (5.15.6), note that h1 ≤ δ
224β3β2

4
implies that h1β4 ≤

1. Thus 2(h1β4)2 ≤ 2h1β4 ≤ 2λβ4/4 = λβ4/2. In the same way, h2 ≤ δ/(80β3β4)

implies that h2 ≤ 1 and so 2h2
2 ≤ 2h2 ≤ 2λβ4/4 = λβ4/2. The final requirement that

h3 ≤ λβ4 is obvious from the definition of h3.

Next, we show that the choice of h1, h2 and h3 in (5.15.8) imply (5.15.7). That h3 ≤
δ2 is obvious from the definition. Again, since 224 = 8 × 28, 28h1β3β

2
4 ≤ δ/8 follows

from the definition of h3. Similarly, 10h2β3β4 ≤ δ/8 is immediate. For 5(h1β4)2 ≤ δ/8,

we note as before that h1β4 ≤ 1. Thus 5(h1β4)2 ≤ 5h1β4 ≤ 5δ/(224β3β4) ≤ δ/8 since

224β3β4 ≥ 8× 5. Finally, h2 ≤ 1 gives 5h2
2 ≤ 5h2 ≤ 5δ/(80β3β4) ≤ δ/8.

We have shown that with the choice of h1, h2, h3 in (5.15.8), if we compute Ã, ỹ

such that ‖Ã−A‖2 ≤ h1, ‖ỹ − y‖ ≤ h2 and we compute v +w such that λ‖v +w‖1 +

‖Ã(v + w) − ỹ‖22 ≤ h3 + minx∈RN ‖Ãx − ỹ‖22 + λ‖x‖1 then ‖w‖2 ≤ ε. This motivates

the following algorithm:

Algorithm LASSO(ι,n,ϕ)

Input: ι ∈ Ω, n ∈ N, ϕ = (α1, α2, α3, α4) ∈ R4.

Output: Γn(ι) ∈ RN with dist(Γn(ι),Ξ(ι)) ≤ 2−n.

Subroutines: PCon(U, y, λ, k), FindV(ι, ε), FindM(ι, ε).

We set the parameters ε := 2−n and δ, h1, h2, h3 as in 5.15.8.

Then

k := 0,m := 0, G0 :=∞.

A = FindM(ι, h1), b = FindV(ι, h2).

if ‖A∗b‖∞ ≤ λ/2, set Γn(ι) = 0.

while G̃k > h3

k = k + 1

vk = PCon(A, b, λ, k)

ek = Avk − b

if A∗ek 6= 0 then

pk = λek/‖A∗ek‖∞

m = m ∧ (‖pk‖22/4 + 〈b, ek〉), G̃k = ‖Avk − b‖22 + λ‖vk‖1 +m

endif

end

Γn(ι) := vk

CHAPTER 5. PROOFS 152

To see that the algorithm is correct, note that each line uses arithmetic opera-

tions and if the algorithm terminates then by the previous argument we know that

dist(Γn(ι),Ξ(ι)) ≤ ε since Γ(ι) ∈ w + Ξ(ι) with ‖w‖2 ≤ ε. Thus it remains to show

that the algorithm does indeed terminate. This will only fail to occur if G̃k > h3 for

each k. But this contradicts 5.15.3, completing the proof.

5.16 Proof of Theorem 4.4.1

Proposition 5.16.1. Fix m ∈ N, n ∈ N, A ∈ RN×N0 , B ∈ Rm×N and w ∈ RN .

Suppose that R = {xq, xq+1, xq+2, . . . , xq+r−1} is a set such that |R| is divisible by

N + 1 and the xk are each vectors in RN0 such that such that the sequence {xk1}
q+r−1
k=q

is strictly increasing and xkj = 0 for j > 1. Then there is a matrix C ∈ Rm×2 a vector

v ∈ Rm and a set S ⊆ R with |S| ≥ R/(N + 1), S = {xs, xs+1, . . . , xs+t−1} such that

Bρ(Ax+ w) = Cx+ v for all x ∈ S.

Proof. Write B = (bj,k)
j=m,k=N
j=1,k=1 , A = (aj,k)

j=N,k=2
j=1,k=1 . We claim that there are at most

N + 1 entries in the set

SS = {(sgn(a1,1x1 + w1), sgn(a2,1x1 + w2), . . . , sgn(aN,1x1 + wN)) |x ∈ S}.

To see this, note that if we allow x1 to vary over R then each of the lines y = a1,1x1 +

w1, y = a2,1x1 +w2, . . . y = aN,1x1 +wN intersect the line y = 0 at most once. Between

each of the (at most N) intersections (allowing x1 to vary) the vector (sgn(a1,1x1 +

w1), sgn(a2,1x1 + w2), . . . , sgn(aN,1x1 + wN)) is constant. The proof is complete by

noticing that any line divided into at most N intersections has at most N + 1 regions

between intersections.

We can now define S: by the pigeonhole principle, there exists a subset of R with

cardinality at least |R|/(N + 1) such that the vector

sgn(a·,1x1 + w) = (sgn(a1,1x1 + w1), sgn(a2,1x1 + w2), . . . , sgn(aN,1x1 + wN))

is constant over x in this subset. Let S be the maximal (in cardinality) such subset.

The first requirement in the construction follows from the fact that |S| ≥ |R|/(N + 1).

To see that for some s and t, S = {xs, xs+1, . . . , xs+t−1}, suppose otherwise. Then

there are j1, k1 such that j1 + 1 < k1, xj1 , xk1 ∈ S and xj1+1 /∈ S. But then for

some l we must have sgn(al,1x
j1
1 + w1) = sgn(al,1x

k1
1 + w1) 6= sgn(al,1x

j1+1
1 + w1).

However, because {xj}k1
j=j1

is an increasing sequence, we see that if al,1 ≥ 0 then

al,1x
j
1 + w1 ≤ al,1x

j+1
1 + w1 ≤ al,1x

k
1 + w1 and similarly if al,1 < 0 then al,1x

j
1 + w1 >

al,1x
j+1
1 + w1 > al,1x

k
1 + w1 which is a contradiction. Thus the second requirement is

satisfied and the construction of S is complete.

We now show how to construct C and v. For any x ∈ S we have x2 = x3 = · · · =
xN0 = 0 and so for such x the ith row of Bρ(Ax+w) is given by

∑N
j=1 bi,jρ(aj,1x1+wj).

Since sgn(aj,1x1 + wj) is constant over x ∈ Si+1, we must have that for each j either

ρ(aj,1x1 + wj) = 0 or ρ(aj,1x1 + wj) = aj,1x1 + wj for all such x. In the former case,

CHAPTER 5. PROOFS 153

we define di,j = 0, yi,j = 0 and in the latter case we define di,j = bi,jaj,1, yi,j = bi,jwj .

Therefore, by definition, the ith row of Bρ(Ax+w) is given by
∑N

j=1 di,jx1 +yi,j . Now

we define the matrix C = (ci,j)
i=m,j=N0
i=1,j=1 and the vector v by

ci,1 =
N∑

j=1

di,j , ci,j = 0 for j > 1 and vi =
N∑

j=1

yi,j

Then the ith row of Bρ(Ax + w) is
∑N

j=1 di,jx1 + yi,j = ci,1x1 + ci,2x2 + vi which is

exactly the ith row of Cx+ v.

Proof of Theorem 4.4.1. Let a ∈ [1/2, 1] and define fa : RN0 → {0, 1} by fa(x) = 1 if

da/x1e is an odd integer and fa(x) = 0 otherwise. Note that this definition of fa yields

uncountably many unique classification functions. As with the other non-computability

results, we will appeal to Proposition 2.9.1. To do that we start by defining, for

κ ∈ [1/4, 3/4], T κ0 := {x1, x2, . . . , xK}, where xk = (a(k + 1 − κ)−1, 0, 0, . . . , 0) ∈
[0, 1]N0 . Define also for any δ > 0, T κδ = {x1,δ, x2,δ, . . . , xK,δ}, where xk,δ = (a(k + 1−
κ)−1, δ, 0, 0, . . . , 0) ∈ [0, 1]N0 if k is even and xk,δ = xk otherwise. Note that to assure

that T κ0 , T κδ ∈ S
fa
ε(K) we have to check that

min
x,y∈T κ0 ,x 6=y

‖x− y‖∞ ≥ ε(K) and for x ∈ T κ0 , fa(x+ y) = fa(x) when ‖y‖∞ < ε(K),

and similarly for T κδ . Let us start with T κ0 . For the first part, note that for distinct

xi, xj ∈ T κ0 we have

‖xi−xj‖∞ =

∣∣∣∣
a

i+ 1− κ
− a

j + 1− κ

∣∣∣∣ =
|a(j − i)|

(i+ 1− κ)(j + 1− κ)
≥ 1

2(K + 1− κ)(K − κ)

since a|j − i| ≥ a ≥ 1/2 and the condition that i, j ≤ K with at least one bounded

by K − 1 implies that (i + 1 − κ)−1(j + 1 − κ)−1 ≥ (K + 1 − κ)−1(K − κ)−1. Since

κ ≥ 1/4, we get ‖xi − xj‖∞ ≥ [2(K + 1− 1/4)(K − 1/4)]−1 ≥ ε(K).

Next, let us show the second part (i.e. that fa(x + y) = fa(x) whenever x ∈ T κ0
and y is such that ‖y‖∞ < ε(K)). Let x = xk for some k ∈ {1, 2, . . . ,K}. We have

a(1− κ)

(k + 1− κ)k
>

1

(4K + 3)(2K + 2)
≥ y1 ≥

−1

(4K + 3)(2K + 2)
≥ −aκ

(k + 1− κ)(k + 1)
.

We claim this implies that a(xk1 + y1)−1 ∈ (k, k + 1]. For the upper bound, note that

y1

a
≥ −κ

(k + 1− κ)(k + 1)
=

1

k + 1
− 1

k + 1− κ
=

1

k + 1
− x1

a
.

Similarly, for the lower bound, we have

y1

a
<

1− κ
k(k + 1− κ)

= k−1

(
k + 1− κ
k + 1− κ

− k

k + 1− κ

)
=

1

k
− x1

a
.

CHAPTER 5. PROOFS 154

Therefore da/(xk1 + y1)e = k + 1. Since this applies even when y = 0, we have,

fa(x
k + y) = fa(x

k) = 1 if and only if k + 1 is odd for y with ‖y‖∞ < ε(K) which is

what we wanted to show. The argument for T κδ is identical.

We have now constructed an uncountable family of training sets T κ0 , T κδ . Let

φ0 ∈ argmin
φ∈NNN,L,d

C(v1, w1), v1
j = φ(xj), w1

j = f(xj), 1 ≤ j ≤ K, (5.16.1)

φδ ∈ argmin
φ∈NNN,L,d

C(v2, w2), v2
j = φ(xj,δ), w2

j = f(xj,δ), 1 ≤ j ≤ K. (5.16.2)

We now make three claims. The first relates to φδ.

Claim I: φδ(x
k,δ) = f(xk,δ) for all k ∈ {1, . . . ,K}. Indeed, to see why this is the

case we start by defining the neural network

φ̃ = WLρWL−1ρWL−2 . . . ρW 1

where W lx = Alx+bl and Al ∈ RNl×Nl−1 , bl ∈ RNl are defined as follows: let A1
1,1 = 0,

A1
1,2 = δ−1 and A1

i,j = 0 otherwise, Al1,1 = 1 for l > 1 and Ali,j = 0 otherwise, and

bl = 0 for every l. Clearly

W 1xk,δ =

{
e1 ∈ RN1 if k + 1 is odd

0 ∈ RN1 if k + 1 is even

and it is therefore easy to see that φ̃(xk,δ) = 1 if k + 1 is odd and 0 otherwise. We

have shown already that fa(x
k,δ) = 1 if k + 1 is odd and fa(x

k,δ) = 0 otherwise so

that φ̃(xk,δ) = fa(x
k,δ). Since C(t, s) = 0 if t = s, we must have that the objective

function of (5.16.1) at the minimiser is at most 0. Thus (since C is non-negative), the

objective function is exactly 0. However, since C(t, s) 6= 0 if t 6= s, if there is a k such

that φδ(x
k,δ) 6= fa(x

k,δ) then the objective function evaluated at φδ is greater than 0,

which contradicts the fact that φδ is defined to be a minimiser.

Next, we shall prove two claims about φ0. Firstly, we claim the following:

Claim II: We now claim that there is a set

S = {xs, xs+1, xs+2} ⊂ T κ0

for some s ∈ N with s ≤ K − 2 such that there is an M ∈ R1×2 and z ∈ R such that

for all x ∈ S we have that φ0(x) = Mx+ z. Suppose for the moment that the claim is

true (we will prove it later on). We can then show the following claim:

Claim III: maxx∈T κ0 |φ0(x) − fa(x)| ≥ 1/2. Indeed, to show the claim, suppose

otherwise. Note that φ(xs+1) = aM1,1(s+ 2− κ)−1 + y1 ∈ [α, β] where

α := (aM1,1(s+ 1− κ)−1 + y1) ∧ (aM1,1(s+ 3− κ)−1 + y1) = φ0(xs) ∧ φ0(xs+2)

β := (aM1,1(s+ 1− κ)−1 + y1) ∨ (aM1,1(s+ 3− κ)−1 + y1) = φ0(xs) ∨ φ0(xs+2)

since the function g defined by g(x) := aM1,1x
−1 + y1 is monotonic away from zero.

By our earlier work, fa(x
k) = 1 if k is even and 0 otherwise. We will now consider

CHAPTER 5. PROOFS 155

two cases: firstly, the case where s is even and secondly the case where s is odd.

Suppose that s is even. Then we have fa(x
s) = fa(x

s+2) = 1 and thus we require

φ0(xs), φ0(xs+2) > 1/2. But then α > 1/2 and so φ0(xs+1) > 1/2, contradicting

fa(x
s+1) = 0.

If instead s is odd, we have fa(x
s) = fa(x

s+2) = 0 and thus we require

φ0(xs), φ0(xs+2) < 1/2. Therefore β < 1/2 and so φ0(xs+1) < 1/2, contradicting

fa(x
s+1) = 1. This completes the proof of Claim III.

Now let

ι0 =
{
{(x̂j , f(x̂j))}Kj=1, {x̂j}Kj=1

}
, x̂j ∈ T κ0 ,

and for n ∈ N we let ι1n = ι0 and

ι2n =
{
{(x̃j , f(x̃j))}Kj=1, {x̃j}Kj=1

}
, x̃j ∈ T κν/n.

Moreover, define S1 = Ξ(ι0), and S2 =
⋃
n∈N Ξ(ι2n). Note that for any {φ0(x̂j)}Kj=1 ∈ S1

we have that φ0 satisfies (5.16.1). Thus, by Claim III maxx∈T κ0 |φ0(x) − f(x)| ≥ 1/2.

However, for any {φν/n(x̂j)}Kj=1 ∈ S2 we have that φν/n satisfies (5.16.2) with δ = ν/n.

Hence, by Claim I it follows that maxx∈T κ
ν/n
|φν/n(x)−f(x)| = 0. Since T κ0 , T κν/n ∈ S

fa
ε(K)

it follows that f(x̂j) = f(x̃j) for all x̂j ∈ T κ0 and x̃j ∈ T κν/n. Hence,

inf
ξ1∈S1, ξ2∈S2

dM(ξ1, ξ2) ≥ 1/2.

Hence, we are now in the situation where it is clear that that conditions (a) and (b)

are satisfied in Proposition 2.9.1. Hence, the theorem follows from (ii) in Proposition

2.9.1.

Thus, to finish the proof we only need to verify the Claim II about the existence

of the set S. We show the existence of S inductively by showing that there are sets

Sl ⊂ {x1, x2, . . . , xK}, matrices M l ∈ RNL×Nl−1 and vectors zl for l = 1, . . . , L such

that

(i) |Sl| ≥ 3× (Nl−1 + 1)× · · · × (NL−1 + 1)

(ii) Sl = {xsl , xsl+1, . . . , xsl+tl} for some sl, tl ∈ N.

(iii) φ(x) = WLρWL−1ρWL−2 . . .W l+1ρ(M(x) + zl) whenever x ∈ Sl.

The first step of the induction is obvious by taking M1 = A1 and z1 = b1. If we assume

the existence of Sl,M
l and zl for some l < L, the existence of Sl+1 is guaranteed by

Proposition 5.16.1. Indeed, we apply Proposition 5.16.1 with B = Al+1, A = M l, R =

Sl and w = zl to obtain some set Sl+1, a matrix M l+1 and a vector vl+1 then we see that

Al+1ρ(M lx+b) = M l+1x+vl+1 on x ∈ Sl+1 and thus W l+1ρ(M lx+b) = M l+1x+zl+1

where zl+1 = vl+1 + bl+1. This completes the proof of the claim, and we are finally

done.

CHAPTER 5. PROOFS 156

5.17 Proof of Theorem 4.4.2

Proof. To prove this theorem we stay close to the proof of Theorem 4.4.1. To start with

we define the uncountable collection of functions fa : RN0 → {0, 1} for a ∈ [1/2, 1] by

fa(x) = 1 if da/x1e is an odd integer and fa(x) = 0 otherwise. Again, for κ1 ∈ [1/4, 3/4]

and for δ > 0, we define

T κ1
δ = {x1,δ, x2,δ, . . . , xK,δ}, Cκδ =

{
xK+1,δ, . . . , xK+M,δ

}
. (5.17.1)

where xk,δ = (a(k+ 1−κ1)−1, δ, 0, 0, . . . , 0) ∈ [0, 1]N0 if k is even and xk,δ = (a(k+ 1−
κ1)−1, 0, 0, 0, . . . , 0) otherwise.

We choose δ < ε. By arguing as in the proof of Theorem 4.4.1 we get that T κ1
δ , Cκ1

δ ∈
Sfaε(K+M). Note that this gives us uncountably many training and classification sets.

To pick an arbitrary element in this family we choose κ1 ∈ [1/4, 3/4]. We can now

construct φ̃. As in the proof of Theorem 4.4.1, we set φδ = WLρWL−1ρWL−2 . . . ρW 1

where W lx = Alx + bl and Al ∈ RNl×Nl−1 , bl ∈ RNl are as follows: let A1
1,1 = 0,

A1
1,2 = 1/(δ) and A1

i,j = 0 otherwise, Al1,1 = 1 for l > 1 and Ali,j = 0 otherwise, and

bl = 0 for every l. Clearly

W 1(xk,δ) =

{
e1 ∈ RN1 if k is even

0 ∈ RN1 if k is odd.
∀ k ∈ N.

Therefore as before we have φδ(x) = fa(x) for all x ∈ T κ1
δ ∪ Cκ1

δ , and we have thus

shown (4.4.1).

We are left with the task of showing the existence of uncountably many v ∈ RN0

such that

|φ̃(v)− fa(v)| ≥ 1/2, ‖v − x‖∞ ≤ ε for some x ∈ T κ1
δ .

For κ2 ∈ [1/4, 3/4], we define vk = (a(k + 1 − κ2)−1, 0, . . . , 0). There are arbitrarily

many κ2 sufficiently close to κ1 so that‖vk−xk,δ‖∞ ≤ ε, for every k such that 1 ≤ k ≤
K. Hence this construction gives us uncountably many candidate v for (4.4.2).

Thus, it it suffices to show that for any κ2 ∈ [1/4, 3/4] there is an v ∈ T κ2
0 where

T κ2
0 := {v1, v2, . . . , vK} (5.17.2)

such that |φ̃(v)− f(v)| ≥ 1/2. However, to show this we can argue exactly as in Claim

III in the proof of Theorem 4.4.1. In particular, the reasoning there is independent of

the initial choice of neural network.

5.18 Proof of Theorem 4.4.3

Proof. We will use a similar argument as in the proof of Theorem 4.4.2. In particular,

to generate the uncountable classification functions we set fa as in Theorem 4.4.2 and

for κ ∈ [1/4, 3/4], we set T κ1 = T κ0 , where T κ0 is defined in (5.17.2). Also, define

CHAPTER 5. PROOFS 157

T κ1 = T κδ where T κδ is defined in (5.17.1), and δ < ε. We continue and define

Cκ1 =
{
xK+1, . . . , xK+M

}
, xk = (a(k + 1− κ1)−1, 0, . . . , 0)

and Cκ2 = Cκδ where Cκδ is defined in (5.17.1). Note that it is clear from the definitions

that by choosing δ small enough we have T1 ⊂ B∞ε (T2) and C1 ⊂ B∞ε (C2). It is clear

that this gives an uncountable family of non-intersecting training and classification sets

fulfilling the requirements of Theorem 4.4.3. To finish up the proof we argue similarly

to the proof of Theorem 4.4.1 Claim III to deduce the existence of v ∈ T κ1 and w ∈ Cκ1
with

|φ̃1(v)− fa(v)| ≥ 1/2, |φ̃1(w)− fa(w)| ≥ 1/2.

Moreover, by arguing exactly as in the proof of Theorem 4.4.1 Claim I it follows that

φ̃2(x) = fa(x) ∀x ∈ T κ2 ∪ Cκ2 ,

which finishes the proof.

5.19 Proof of Theorem 4.5.1 and Theorem 4.5.2

In this section we assume that ε = (ε1, ε2) with ε1, ε2 ≥ 0 and at most one of them

non-zero. To prove Theorem 4.5.1 and 4.5.2, we will define the matrices ATV
ε and

vectors yTV by

ATV
ε : R4×4 → R3×4 by (ATV

ε x)i = Vε(x)i, (5.19.1)

Vε =
1− ε1√

2
ẽ1,1 +

1− ε2√
2
ẽ1,4 + ẽ2,2 + ẽ3,3 ∈ R3×4, ẽi,j = ei ⊗ ej ,

yTV =
1√
2
e1 ⊗ 14 ∈ R3×4,

(5.19.2)

We will now prove a result on the solution to the TV problem with these inputs.

Lemma 5.19.1. Let ATV
ε and yTV be as above, and for a positive r < 1/(2 +

√
2)

let λ = r2. Let ΞBPTV and ΞDeblurTV denote the problem functions of Basis Pursuit

and Unconstrained Lasso with parameter λ respectively, with TV regularisation (either

isotropic or anisotropic). Then

ΞBPTV((ATV
ε , yTV)) =





x1 := e4 ⊗ 14 ∈ R4×4 if ε1 > 0

x2 := e1 ⊗ 14 ∈ R4×4 if ε2 > 0,

{tx1 + (1− t)x2 | t ∈ [0, 1]} if ε1 = ε2

ΞDeblurTV((ATV
ε , yTV, λ)) =

{
η(ε1, λ)⊗ 14 ∈ R4×4 if ε1 > 0

(Pη(ε2, λ))⊗ 14 ∈ R4×4 if ε2 > 0,

where η(ε1, λ) = (ρ, ρ, ρ, 1 − λ − (1 − ε1)ρ)T , ρ = ρ(ε1) = λ(2 − ε1)/4 and P is the

permutation operator reversing the elements. Moreover, when viewed as a map from

R16 to R12, cond(ATV
ε (ATV

ε)∗) = 2/(2− 2ε1 + ε21).

CHAPTER 5. PROOFS 158

Proof of Lemma 5.19.1. It will suffice to assume that ε1 > 0: the argument for ε2 > 0

is identical by symmetry. We start with ΞBPTV: it is easy to see that ‖x1‖TV = 4 and

ATV
ε x1 = yTV. Suppose that ATV

ε x̃ = yTV and that x̃ 6= x1. Since ATV
ε x̃ = yTV, we

must have

x̃ = e1 ⊗ (x̃1,1, x̃1,2, x̃1,3, x̃1,4) + e4 ⊗ (x̃4,1, x̃4,2, x̃4,3, x̃4,4) ∈ R4×4.

Consequently (with either the anisotropic or the isotropic TV norm), ‖x̃‖TV ≥∑4
j=1 (|x̃1,j |+ |x̃4,j |). Additionally, ATV

ε x̃ = yTV also implies that (1−ε1)x̃1,j+x̃4,j = 1

for i = 1, . . . , 4. Therefore |x̃1,j | + |x̃4,j | > 1 unless x̃1,j = 0 and x̃4,j = 1

(conditions that would imply x̃ = x1) so that ‖x̃‖TV > ‖x1‖TV. Therefore x̃ /∈
argmin ‖x‖TV such that ATV

ε x = yTV. For ε1 = ε2 = 0, the same argument as be-

fore shows that if x̃ is in ΞBPTV((ATV
ε , yTV)) then x̃ must be of the form

x̃ = e1 ⊗ (x̃1,1, x̃1,1, x̃1,1, x̃1,1) + e4 ⊗ (x̃4,1, x̃4,1, x̃4,1, x̃4,1) ∈ R4×4.

All such vectors have TV norm greater than or equal to 4 with equality iff x̃1,1 +

x̃4,1 = 1 and both x̃1,1, x̃4,1 are non-zero. Additionally such vectors all satisfy ATV
ε x̃ =

yTV. This completes the proof for ε1 = ε2 = 0 and basis pursuit denoising.

The proof for ΞDeblurTV is considerably more involved. Letting (x̂)j denote the jth

column of a matrix x̂ ∈ Rm×n we define ‖(x̂)j‖TV :=
∑m−1

i=1 |x̂i+1,j − x̂i,j |. We also de-

fine, for vectors v ∈ R4, Ψε(v) := λ‖v‖TV +‖Vεv− (yTV)1‖22. Then, by the definition of

ATV
ε it follows that ‖ATV

ε x− yTV‖22 +λ‖x‖∗TV ≥ ‖Vε(x)j − (yTV)j‖22 +
∑4

i=1 λ‖(x)j‖TV

with equality if and only if (x)j is constant in j. Since, by the definition, (yTV)j
is constant, we therefore have ‖ATV

ε x − yTV‖22 + λ‖x‖∗TV ≥ 4 minv∈R4 Ψε(v) with

equality if and only if (x)j does not change with j and satisfies (x)j = ṽ for some

ṽ ∈ argminv∈R4 Ψε(v). We now examine the functional Ψε. We will claim the following

for ε1 > 0, where we use the standard ∧, ∨ notation to denote min and max:

1. |ṽ2 ∧ ṽ3|, |ṽ2 ∨ ṽ3| ≤ r and (1− ε1)ṽ1 + ṽ4 ≥ 1−
√

2r.

2. ṽ1 ≤ ṽ2 ∧ ṽ3 ≤ ṽ2 ∨ ṽ3 ≤ ṽ4.

3. ṽ2 = ṽ2 ∧ ṽ3 and ṽ3 = ṽ2 ∨ ṽ3 so that ṽi is increasing for i = 1, 2, . . . , 4

4. ṽ1 = ṽ2 = ṽ3 = λ(2− ε1)/4 and ṽ4 = 1− λ− (1− ε1)ṽ1.

To see (1), note that Ψε(ṽ) ≤ Ψε
(
(0, 0, 0, 1)T

)
= r2. Therefore ((1 − ε1)ṽ1 + ṽ4 −

1)2/2 + ṽ2
2 + ṽ2

3 ≤ r2 and the result follows. Next, we will show (2) by contradiction.

Assume that ṽ1 > ṽ2∧ṽ3. Let v̂ = (ṽ2∧ṽ3, ṽ2∧ṽ3, ṽ2∨ṽ3, (1−ε1)ṽ1+ṽ4−(1−ε1)ṽ2∧ṽ3)T .

Then (Vεv̂)1 = (Vεṽ)1. Moreover, (Vεv̂)2 = ṽ2 ∧ ṽ3 and (Vεv̂)3 = ṽ2 ∨ ṽ3 so

‖Vε(v̂)− (yTV)1‖22 − ‖Vε(ṽ)− (yTV)1‖22 = (ṽ2 ∧ ṽ3)2 + (ṽ2 ∨ ṽ3)2 − (v2
2 + v2

3) = 0.

Observe also that either ṽ2∨ ṽ3− ṽ2∧ ṽ3 = (v2−v3) or ṽ2∨ ṽ3− ṽ2∧ ṽ3 = (v3−v2).

CHAPTER 5. PROOFS 159

Thus |ṽ2 ∨ ṽ3 − ṽ2 ∧ ṽ3| = |v2 − v3| so

Ψε(ṽ)−Ψε(v̂)

λ
= ‖ṽ‖TV − ‖v̂‖TV = |ṽ1 − ṽ2|+ |ṽ2 − ṽ3|+ |ṽ3 − ṽ4|

− |(1− ε1)ṽ1 + ṽ4 − (1− ε1)ṽ2 ∧ ṽ3 − ṽ2 ∨ ṽ3| − |ṽ2 ∨ ṽ3 − ṽ2 ∧ ṽ3|
= |ṽ1 − ṽ2|+ |ṽ3 − ṽ4| − |(1− ε)ṽ1 + ṽ4 − (1− ε)ṽ2 ∧ ṽ3 − ṽ2 ∨ ṽ3|.

(5.19.3)

Note that by (1) it follows that (1− ε1)ṽ1 + ṽ4 − (1− ε1)ṽ2 ∧ ṽ3 − ṽ2 ∨ ṽ3 ≥ 1−
√

2r−
(1− ε1)r− r > 0 because r ≤ 1√

2+2
. Thus, we can remove the modulus in the last part

in the right hand side of the last equation in (5.19.3). Therefore

Ψε(ṽ)−Ψε(v̂)

λ
= |ṽ1 − ṽ2|+ |ṽ3 − ṽ4| − [(1− ε1)ṽ1 + ṽ4 − (1− ε1)ṽ2 ∧ ṽ3 − ṽ2 ∨ ṽ3]

= |ṽ1 − ṽ2|+ |ṽ3 − ṽ4| − [ṽ1 − ṽ2 + ṽ4 − ṽ3 − ε1(ṽ1 − ṽ2 ∧ ṽ3)] ≥ ε1(ṽ1 − ṽ2 ∧ ṽ3) > 0.

where the final inequality follows by the assumption that ṽ1 > ṽ2 ∧ ṽ3. Thus, Ψε(v̂) <

Ψε(ṽ), contradicting the minimality of Ψε(ṽ).

We conclude that ṽ1 ≤ |ṽ2∧ṽ3| ≤ r. But from the fact that (1−ε1)ṽ1+ṽ4 ≥ 1−
√

2r,

which was established in (1), we get ṽ4 > 1− (1 +
√

2)r. Therefore ṽ4 ≥ r ≥ |ṽ2 ∨ ṽ3|
(where the second inequality follows from 1. Result (2) follows.

Again, we argue by contradiction to show (3): if we do not have (3), ṽ3 = ṽ2 ∧ ṽ3

and ṽ2 = ṽ2 ∨ ṽ3 (and ṽ2 ∨ ṽ3 > ṽ2 ∧ ṽ3). This time we set v̂ = (ṽ1, ṽ2 ∧ ṽ3, ṽ2 ∨ ṽ3, ṽ4).

Once again, we have ‖Vεv̂ − (yTV)1‖22 = ‖Vεṽ − (yTV)1‖22. Moreover, we see that (by

(2))

‖v̂‖TV = |ṽ2 ∧ ṽ3 − ṽ1|+ |ṽ2 ∧ ṽ3 − ṽ2 ∨ ṽ3|+ |ṽ2 ∨ ṽ3 − ṽ4|
= ṽ2 ∧ ṽ3 − ṽ1 + ṽ2 ∨ ṽ3 − ṽ2 ∧ ṽ3 + ṽ4 − ṽ2 ∨ ṽ3 = ṽ4 − ṽ1

‖ṽ‖TV = |ṽ2 ∨ ṽ3 − ṽ1|+ |ṽ2 ∧ ṽ3 − ṽ2 ∨ ṽ3|+ |ṽ2 ∧ ṽ3 − ṽ4|
= ṽ2 ∨ ṽ3 − ṽ1 + ṽ2 ∨ ṽ3 − ṽ2 ∧ ṽ3 + ṽ4 − ṽ2 ∧ ṽ3 = ṽ4 − ṽ1 + ṽ2 ∨ ṽ3 − ṽ2 ∧ ṽ3.

So ‖ṽ‖TV > ‖v̂‖TV, which is our required contradiction of the minimality of Ψε(ṽ).

We can use (3) to get an expression for Ψε(ṽ). Indeed,

Ψε(ṽ) =
[(1− ε1)ṽ1 + ṽ4 − 1]2

2
+ ṽ2

2 + ṽ2
3 + λ(ṽ4 − ṽ3 + ṽ3 − ṽ2 + ṽ2 − ṽ1)

≥ [(1− ε1)ṽ1 + ṽ4 − 1]2

2
+ 2ṽ2

1 + λ(ṽ4 − ṽ1).

since ṽ2, ṽ3 ≥ ṽ1, with equality iff ṽ2 = ṽ3 = ṽ1. Since this is a lower bound, we must

have ṽ2 = ṽ3 = ṽ1. Therefore, as a function of ṽ1 and ṽ4, we must have (since ṽ is a

minimizer)

∂

∂ṽ1

Ψε(ṽ) = [(1− ε1)ṽ1 + ṽ4 − 1] (1− ε1) + 4ṽ1 − λ = 0 (5.19.4)

∂

∂ṽ4

Ψε(ṽ) = (1− ε1)ṽ1 + ṽ4 − 1 + λ = 0 (5.19.5)

CHAPTER 5. PROOFS 160

Substituting (5.19.5) into (5.19.4) yields ṽ1 = λ(2−ε1)/4 and (5.19.5) gives the desired

result for ṽ4. The corresponding result for ε2 > 0 is that ṽ4 = ṽ3 = ṽ2 = λ(2 − ε1)/4

and ṽ1 = 1 − λ − (1 − ε1)ṽ1, for which the proof techniques are identical. The major

difference comes in the definition of v̂ in part (2), which would now be defined as

v̂ = (ṽ1 + (1− ε2)ṽ4 − (1− ε2)ṽ2 ∧ ṽ3, ṽ2 ∨ ṽ3, ṽ2 ∧ ṽ3, ṽ2 ∧ ṽ3)T , however, apart from

that the proof is verbatim from the ε1 case.

To see the final statement about cond(ATV
ε (ATV

ε)∗), we note first that for ε1 ≥ 0,

ε2 = 0, the matrix Vε has VεV
∗
ε = diag((1−ε1)2+1

2 , 1, 1). Therefore ‖VεV ∗ε ‖2 = 1 and

‖(VεV ∗ε)−1‖2 = 2/(2 − 2ε1 + ε21). When considered as a map from R16 to R12, we

can write ATV
ε as Vε ⊕ Vε ⊕ Vε. Thus ATV

ε (ATV
ε)∗ = VεV

∗
ε ⊕ VεV

∗
ε ⊕ VεV

∗
ε and so

‖ATV
ε (ATV

ε)∗‖2 = 1, ‖(ATV
ε (ATV

ε)∗)−1‖2 = 2/(2− 2ε1 + ε21). Thus cond(ATV
ε) = 2/(2−

2ε1 + ε21).

Proof of Theorem 4.5.1. Our proof here is almost identical to that of Theorem 4.2.1

part (ii). We will use Proposition 2.9.1. Set

ι1n = (yTV, ATV
ε) with ε = (4−n, 0)

ι2n = (yTV, ATV
ε) with ε = (0, 4−n)

ι0 = (yTV, ATV
ε) with ε = (0, 0).

By Lemma 5.19.1, we have Ξ(ι1n) = x1,Ξ(ι2n) = x2. Thus requirement (a) in Propo-

sition 2.9.1 is satisfied with S1 = {e4 ⊗ 14}, S2 = {e1 ⊗ 14} and κ = 2
√

2. It is also

obvious (since ATV
ε → ATV

0,0 as ε → (0, 0)) that Proposition 2.9.1, (b) is satisfied with

cf = f(ι0). We immediately conclude by Proposition 2.9.1, part (iii) that εsB ≥ 2 and

that {Ξ,Ω}∆1 /∈ ∆G
1 .

It remains to show we show the results on the condition of elements ι ∈ Ω. Since

cond(ATV
ε (ATV

ε)∗) = 2/(2− 2ε1 + ε21) and 2− 2ε1 + ε21 = 1 + (ε1 − 1)2, we immediately

obtain that cond(ATV
ε (ATV

ε)∗) ≤ 2.

The result ‖ι‖ ≤ 2 follows from the fact that

‖ATV
ε ‖2 =

√
‖ATV

ε (ATV
ε)∗‖2 ≤

√
cond(ATV

ε (ATV
ε)∗) =

√
2

and that ‖yTV‖2 ≤ 2.

We now need to check the feasibility condition number. Let ι ∈ Ω. Then ι =

(yTV, ATV
ε) for some ε. Suppose that (ŷ, Â) ∈ Ω̃∞ is such that (ŷ + yTV, ATV

ε + Â) is

not feasible for the BPTV problem. Then there is no x such that (ATV
ε +Â)x = ŷ+yTV.

In particular, the rank of ATV
ε + Â when viewed as a map from R16 → R12 must be

strictly less than 12, since otherwise ATV
ε + Â is surjective. We will argue that for this

to happen, Â must have a norm at least 1/
√

2.

Note that the active set A(Ω) is exactly the entries with coordinates S :=

{(1, 1), (1, 4), (2, 2), (3, 3)} for each of the matrices Vε. For rank(ATV
ε + Â) < 12, we

must therefore have rank(Vε + V̂ε) < 3 where V̂ε is 0 except on S. Thus, we require at

least one of the following:

(Vε + V̂ε)1,1 = (Vε + V̂ε)1,4 = 0 or (Vε + V̂ε)2,2 = 0 or (Vε + V̂ε)3,3 = 0

CHAPTER 5. PROOFS 161

But (Vε)2,2 = (Vε)3,3 = 1 and (Vε)1,1 ∨ (Vε)1,4 = 1/
√

2. Therefore ‖V̂ε‖max ≥ 1/
√

2.

Thus since ‖·‖2 ≥ ‖·‖max, ρ(ATV
ε , yTV) > 1/

√
2. Finally since both ‖ATV

ε ‖2, ‖yTV‖ ≤ 2,

we must have CFP(ι) ≤ 2
√

2.

The proof of Theorem 4.5.2 is similar.

Proof of Theorem 4.5.2. As before, our aim will be to use Proposition 2.9.1. We pick

ι0, ι1n and ι2n as in the proof of Theorem 4.5.1 and choose Ω = ∪∞n=1{ι1n}∪∞n=1{ι2n}∪{ι0}.
The argument that Proposition 2.9.1, (b) is satisfied is verbatim as in Theorem 4.5.1.

The proof that Proposition 2.9.1, (a) is satisfied is somewhat more involved Set

S1 = {v1 ⊗ 14 | v1 = (a, a, a, b) with a ∈ [0, λ/2], b ∈ [1− 3λ/2, 1]}
S2 = {v2 ⊗ 14 | v2 = (b, a, a, a) with a ∈ [0, λ/2], b ∈ [1− 3λ/2, 1]}.

We have that dM(x1, x2) with x1 ∈ S1, x2 ∈ S2 is bounded below by minS, where

S ⊆ R is defined by

S := {‖w ⊗ 14‖2 |w = (b− a, 0, 0, a− b) with a ∈ [0, λ/2], b ∈ [1− 3λ/2, 1]} .

If a ∈ [0, λ/2] and b ∈ [1−3λ/2, 1] then b−a ∈ [1−2λ, 1]. Noting that 1−2λ > 0 since

λ < (2 +
√

2)−2, we get that |1−2λ| ≤ 1. Thus minS ≥ ‖(1−2λ, 0, 0, 1−2λ)⊗14‖2 =√
8(1− 2λ). We set κ =

√
8(1− 2λ).

By Lemma 5.19.1, we have Ξ(ι1n) = {η(4−n, λ)⊗14} and Ξ(ι2n) = {Pη(4−n, λ)⊗14}.
If ρ = λ(2 − 4−n) it is easy to see that ρ ∈ [0, λ/2). Therefore 1 − λ − (1 − 4−n)ρ ≥
1− λ− λ/2 = 1− 3λ/2. Moreover, 1− λ− (1− 4−n)ρ is clearly bounded above by 1.

Therefore η(ε1, λ)⊗ 14 ∈ S1, (Pη(ε2, λ)) ∈ S2. Proposition 2.9.1, (a) follows.

We now need to check each of the condition numbers. This process is identical

to the one in the proof of Theorem 4.5.1 noting that CFP does not apply for a lasso

problem.

We have now checked that the set Ω satisfies all the required bounds on the condi-

tion numbers and that Proposition 2.9.1, (a) and Proposition 2.9.1, (b) hold. Theorem

4.5.2 follows.

Chapter 6

Conclusions and future work

The main results of this thesis have shown that a general collection of mathematical

problems used in the mathematics of information cannot be solved with a computa-

tional device. In many cases, this is unfortunately still the case with some restrictions

on the condition number. By using a general algorithm, we have shown these results

for a more general computational model than just a turing machine - indeed, all our

results hold for BSS machines as well.

The natural question of how ‘bad’ this non-computability is lead to the novel defi-

nitions of breakdown epsilons, both in a deterministic and probabilistic setting. Small

breakdown epsilons may mean that a non-computable problem is amenable to a solu-

tion that is somehow ‘good enough’.

To demonstrate this, we introduced the RIP and nullspace property in levels, a

new collection of conditions that guarantee that the method of compressed sensing

will work well (assuming that the method can then be implemented on a computer).

We showed that these concepts are more relevant to real world examples than the

standard RIP and nullspace properties.

Although it is possible to produce an input set with the nullspace property/

nullspace property in levels so that basis pursuit denoising will be non-computable,

the breakdown epsilon for such an input set was shown to be small. This goes some

way to explaining the success of compressed sensing - if a matrix vector pair is suf-

ficiently nice so as to exhibit the RIP/nullspace property in levels (which happens

with high probability if the sampling pattern is chosen in a sensible random way) then

non-computability will only affect the output in a way that is difficult to visualise

with the human eye. Therefore although the approach fails in the traditional sense of

computability, basis pursuit denoising is successful in practice.

Our results have shown that both image processing and statistical estimation are

non-computable. In the case of statistical estimation, we were able to establish that

the dual certificate criteria yields a positive result on the computability of the method.

Establishing the relevance of this criteria to real world examples is an important future

step.

Finally, for neural networks we observed that the computational problem of training

a neural network and using it on a classification set is non-computable. Since we showed

162

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 163

this result using a general algorithm, this result applied even if the algorithm was given

an oracle to avoid local minima for the non-convex training problem. We termed this

the ‘first paradox of neural networks’: that in general, training a neural network is

impossible.

Understanding neural networks also required an adaptation to the SCI hierarchy

and general algorithms. We introduced the new concept of randomised general algo-

rithms and showed that similar issues occur even if the algorithm is permitted to use

a very general form of randomness. Intriguingly, we also showed that if the time taken

to compute a randomised general algorithm is allowed to be non-measurable then the

definition permits the existence of a randomised general algorithm which can solve

LPO.

We also observed some important phenomena for neural networks: firstly, it is pos-

sible to train a neural network on a training set and get the right result on both the

training set and an arbitrarily large classification set. However, there exist perturba-

tions of the training set for which the neural network gives the wrong result.

This raises questions about the notion of ‘success’ in neural networks - the neural

network was able to classify both the training set and classification set, but it is in

some sense unstable. It is then pertinent to ask whether or not this approach was

indeed successful.

The second phenomena that we observed was that there exists pairs of training

sets which are arbitrarily close together so that no trained neural network can get the

correct answer on the first training set but it is possible to get the right answer by

training on the second training set. This shows that training neural networks can be

extremely sensitive to perturbations.

In some sense these examples for neural networks were not isolated in that we

showed each of these results for uncountably many examples of training sets and clas-

sification functions. This of course leads to the natural question of identifying which

training sets and classification sets are somehow problematic.

As a final result, combining the first phenomena on success with the universal

approximation theorem yields the second paradox of neural networks. Namely, the

trained neural network is successful on both the training set and arbitrarily large

classification set. However, this trained neural network exhibits an instability. On the

other hand, the universal approximation theorem guarantees the existence of a stable

neural network that also succeeds on the training set and the classification set. In

some sense, the training process will identify the ‘wrong’ neural network’, even if the

training succeeds at finding the neural network that minimises the cost function.

We will now discuss some of the open questions that naturally follow from these

results. This is done in two separate sections - firstly, we discuss ‘general open ques-

tions’ that are broad and may require new definitions. We then discuss ‘specific open

questions’ that are more technical in nature and may result as a consequence of a

particular lemma or proposition proven in this thesis.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 164

6.1 General open questions

1. Of course, owing to the breadth of the field, it is impossible to cover every sin-

gle technique used in the mathematics of information. We have discussed some

broadly successful methods in this thesis, but there are others out there and

it is natural to ask if they too are non-computable and if a small breakdown

epsilon or a restricted input set is the reason why they might be useful in prac-

tice. Since we have chosen some very standard convex optimisation problems to

demonstrate the non-computability issues, it is surely the case that our examples

are not unique in exhibiting non-computability. We conjecture that these issues

will be observed for the vast majority of techniques used in the mathematics of

information.

2. On the one hand, these non-computability results are unfortunate. It would have

naturally been beneficial if the celebrated methods of the field were computable

for all possible choices of input data. On the other hand, this presents an oppor-

tunity for mathematicians. Namely, understanding exactly when the methods

studied in this thesis can be computed and when they can’t will require sub-

stantial mathematical analysis and potentially a variety of new techniques and

algorithms. A large part of this question has been answered for basis pursuit

and basis pursuit denoising. In that case, it was observed that sparsity and the

RIP in levels have implications on both the method of basis pursuit and the

computability of the method. We conjecture that a similar phenomena will be

observed for the other areas discussed in this thesis - that the same structure

that guarantees the method will be successful will also guarantee positive results

on the computability of the method.

3. As mentioned in Section 4.5, it is important to note that the results in this thesis

imply that comparisons between two different methods using empirical data are

not valid unless there is some understanding of how closely the underlying algo-

rithms were able to perform the methods. This will require considerable further

work and suggests that in future, additional analysis will be required when future

algorithms are constructed to demonstrate their robustness.

4. Standard models of complexity theory (for example, consideration of the classes

P and NP) assume that the problem is itself computable. However, we have

demonstrated here that there are non-computable problems which may be com-

putable up to a certain tolerance. This will require a new theory of complexity

- the seemingly oxymoronic idea of a ’complexity theory for non-computable

problems’. We are currently undertaking research in this area.

5. As a related issue, at the time of writing the idea of computer aided proofs is

gaining significant traction within mathematics. Indeed, a proof of the Kepler

conjecture that used computational assistance has just been published. It is

possible that future results will require the use of a computer applied to non-

computable problems to establish a result in pure mathematics. Again, this

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 165

seems like a contradiction in terms, but the breakdown epsilons may permit

some leeway here if the mathematical argument is robust to slight errors in the

computational approach.

6. The results on neural networks warrant substantial further thought. In partic-

ular, positive results need to establish more than just the existence of a neural

network which will succeed. Such a result would also need to explain how train-

ing the neural network will produce an acceptable output (assuming that there is

an oracle that can train correctly). In addition, there would need to be a coun-

terpart result showing that the training process is computable with the given

training set. This will likely require considerable resources and effort.

7. In the previous question, the word ‘success’ was used without consideration of the

meaning of ‘success’ in the context of a neural network. However, the example of

a neural network that succeeds on both the training and classification set but fails

on uncountably many small perturbations shows that it may not be sufficient to

declare a network successful if it works on the training set and is validated on

a classification set. A precise, mathematical definition of success is required to

properly understand why neural networks are so powerful in practice. This may

in fact depend on the real-world application that the neural network is being

used to help with. For example, a neural network that is being used to improve

the quality of casual photography may be held to a very different standard of

success compared to one that is being used in a self driving car.

6.2 Specific open questions

1. Throughout this thesis, there are a variety of breakdown epsilons presented. It

is important to know if these results are optimal, or if it is possible to improve

upon the results presented here either by means of a new technique or by pushing

the existing proof techniques further.

2. The results here are typically done in the real input case. However, Fourier ma-

trices (which are very important in compressed sensing) are complex. Analysing

these inputs will require some further work - some results are already proven

in the case of complex inputs (like Proposition 5.3.1), whereas others are only

applicable for real inputs (like Lemma 5.7.1).

3. Theorem 4.2.15 and Theorem 4.3.5 are both specific examples of Proposition

5.11.2. This proposition constructs a family of matrices (depending on parame-

ters α and γ) which satisfy the nullspace property but are somehow ‘bad’ inputs

to a basis pursuit denoising or unconstrained lasso algorithm. It should be possi-

ble to use this proposition to prove a more general result than the specific choices

of α and γ parameters used in the two main theorems.

4. Proposition 5.11.2 is only stated for the nullspace property and so far we have

been unable to show a similar result for the RIP. Thus the question of whether or

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 166

not RIP matrices are non-computable with basis pursuit denoising is still open.

A negative result may require very careful selection of the parameters α and γ or

perhaps an entirely new collection of ‘bad’ matrices whereas a positive result will

require something akin to a proof that the RIP implies the success of compressed

sensing whilst avoiding an argument that goes through the nullspace property

akin to the one presented in It is not obvious whether or not we should expect a

positive result.

5. Theorem 4.2.2 is a very specific example of a matrix vector pair with infinite RCC

condition number. However, Lemma 5.7.1 gives examples of a much broader

class of matrix vector pairs that have condition number. It is therefore possible

to give a variety of examples for which the condition is infinity. A different

example from just a Hadamard or a Bernoulli matrix is given in Proposition

5.7.2 where it is shown that under certain conditions the well studied Hadamard

to Haar matrices also have infinite condition number. There should be a number

of further extensions to these results that are available using Lemma 5.7.1.

6. Is it possible to expand the analysis done in [83] and 3.2.2 to show that a wider

variety of randomly sampled matrices exhibit the RIPL with a high probability?

As in Section 3.2.2, we believe this can be achieved using results from for example

[74].

7. Can one improve on the number of measurements required in Theorems 3.2.10 &

3.2.11 (perhaps by reducing log factors) or else show that the bounds in (3.2.4)

& (3.2.5) are optimal?

8. If instead of taking the measurement locations Ω at random using a multilevel

subsampling scheme, for which deterministic Ω, matricesM and sparsity patterns

(s,M) does PΩM satisfy the RIPL with a sufficiently small constant δs,M for

Theorem 3.3.4 to apply?

Bibliography

[1] B. Adcock, A. Bastounis, A. C. Hansen, and B. Roman. On fundamentals of

models and sampling in compressed sensing. preprint, 2015.

[2] B. Adcock, A. Hansen, B. Roman, and G. Teschke. Chapter four - generalized

sampling: Stable reconstructions, inverse problems and compressed sensing over

the continuum. volume 182 of Advances in Imaging and Electron Physics, pages

187 – 279. Elsevier, 2014.

[3] B. Adcock and A. C. Hansen. Generalized sampling and infinite-dimensional

compressed sensing. Found. Comp. Math., 2016.

[4] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence

barrier: A new theory for compressed sensing. Forum of Mathematics, Sigma,

1-84, 2017.

[5] B. Adcock, A. C. Hansen, and B. Roman. A note on compressed sensing of

structured sparse wavelet coefficients from subsampled fourier measurements.

IEEE Signal Processing Letters, 23(5):732–736, May 2016.

[6] C. D. Aliprantis and K. C. Border. Infinite dimensional analysis. Springer,

Berlin, third edition, 2006. A hitchhiker’s guide.

[7] J. Andersson and J. Strömberg. On the theorem of uniform recovery of random

sampling matrices. IEEE Trans. Inform. Theory, 60(3):1700–1710, 2014.

[8] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hedge. Model-based compres-

sive sensing. IEEE Trans. Inform. Theory, 56(4):1982–2001, 2010.

[9] A. Bastounis and A. C. Hansen. On the absence of uniform recovery in many real-

world applications of compressed sensing and the restricted isometry property

and nullspace property in levels. SIAM Journal on Imaging Sciences, 10(1):335–

371, 2017.

[10] A. Bastounis, A. C. Hansen, and A. Ben. From global to local: Getting more

from compressed sensing. SIAM News, October:5,7, 2017.

[11] S. Becker, J. Bobin, and E. J. Candès. Nesta: A fast and accurate first-order

method for sparse recovery. SIAM J. Img. Sci., 4(1):1–39, Jan. 2011.

167

BIBLIOGRAPHY 168

[12] J. Ben-Artzi, A. C. Hansen, O. Nevanlinna, and M. Seidel. New barriers in com-

plexity theory: On the solvability complexity index and the towers of algorithms.

Comptes Rendus Mathematique, 353(10):931 – 936, 2015.

[13] J. Ben-Artzi, A. C. Hansen, O. Nevanlinna, and M. Seidel. On the Solvability

Complexity Index Hierarchy and towers of algorithms. Preprint, 2017.

[14] A. Ben-Tal and A. S. Nemirovski. Lectures on Modern Convex Optimization:

Analysis, Algorithms, and Engineering Applications. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2001.

[15] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Pro-

ceedings of the 27th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’00, pages 417–424, New York, NY, USA, 2000. ACM

Press/Addison-Wesley Publishing Co.

[16] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling strategies in

compressed sensing. Arxiv, 1305.4446, 2013.

[17] L. Blum, M. Shub, and S. Smale. On a theory of computation and complex-

ity over the real numbers: NP-completeness, recursive functions and universal

machines. Bull. Amer. Math. Soc. (N.S.), 21(1):1–46, 1989.

[18] H. Boche, R. Calderbank, G. Kutyniok, and J. Vyb́ıral. Compressed Sensing and

its Applications. Springer, 2015.

[19] L. Bottou. Stochastic learning. In O. Bousquet and U. von Luxburg, editors,

Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence,

LNAI 3176, pages 146–168. Springer Verlag, Berlin, 2004.

[20] A. Bourrier, M. Davies, T. Peleg, P. Perez, and R. Gribonval. Fundamental

performance limits for ideal decoders in high-dimensional linear inverse problems.

IEEE Trans. Inform. Theory, 60(12):7928–7946, Dec 2014.

[21] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

[22] D. Bridges and F. Richman. Varieties of Constructive Mathematics. London

Mathematical Society Lecture Note Series. Cambridge University Press, 1987.

[23] P. Bürgisser and F. Cucker. On a problem posed by Steve Smale. Ann. of Math.

(2), 174(3):1785–1836, 2011.

[24] P. Bürgisser and F. Cucker. Condition : the geometry of numerical algorithms.

Grundlehren der mathematischen Wissenschaften. Springer, Berlin, Heidelberg,

New York, 2013.

[25] T. T. Cai, L. Wang, and G. Xu. New bounds for restricted isometry constants.

IEEE Trans. Inform. Theory, 56(9):4388–4394, 2010.

BIBLIOGRAPHY 169

[26] T. T. Cai, L. Wang, and G. Xu. Shifting inequality and recovery of sparse signals.

IEEE Trans. Signal Process., 58(3, part 1):1300–1308, 2010.

[27] T. T. Cai and A. Zhang. Sharp RIP bound for sparse signal and low-rank matrix

recovery. Appl. Comput. Harmon. Anal., 35(1):74–93, 2013.

[28] T. T. Cai and A. Zhang. Sparse representation of a polytope and recovery of

sparse signals and low-rank matrices. IEEE Transactions on Information Theory,

60(1):122–132, 2014.

[29] E. J. Candès. An introduction to compressive sensing. IEEE Signal Process.

Mag., 25(2):21–30, 2008.

[30] E. J. Candès. The restricted isometry property and its implications for com-

pressed sensing. C. R. Math. Acad. Sci. Paris, 346(9-10):589–592, 2008.

[31] E. J. Candès and D. Donoho. New tight frames of curvelets and optimal repre-

sentations of objects with piecewise C2 singularities. Comm. Pure Appl. Math.,

57(2):219–266, 2004.

[32] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information. IEEE Trans.

Inform. Theory, 52(2):489–509, 2006.

[33] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform.

Theory, 51(12):4203–4215, 2005.

[34] E. J. Candès and T. Tao. Near-optimal signal recovery from random projections:

universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425,

2006.

[35] W. R. Carson, M. Chen, M. R. D. Rodrigues, R. Calderbank, and L. Carin.

Communications-inspired projection design with application to compressive sens-

ing. SIAM J. Imaging Sci., 5(4):1185–1212, 2012.

[36] V. Caselles, A. Chambolle, D. Cremers, M. Novaga, and T. Pock. An introduction

to Total Variation for Image Analysis, volume 9, pages 263–340. 2010.

[37] A. Chambolle. An algorithm for total variation minimization and applications.

Journal of Mathematical Imaging and Vision, 20(1):89–97, Jan 2004.

[38] T. F. Chan and J. Shen. Mathematical models for local nontexture inpaintings.

SIAM J. Appl. Math, 62:1019–1043, 2002.

[39] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss. Variable density sampling with

continuous sampling trajectories. SIAM J. Imaging Sci., 2014.

[40] K. Choi, J. Wang, L. Zhu, T.-S. Suh, S. Boyd, and L. Xing. Compressed sens-

ing based cone-beam computed tomography reconstruction with a first-order

methoda). Medical Physics, 37(9):5113–5125, 2010.

BIBLIOGRAPHY 170

[41] A. Cohen, W. Dahmen, and R. Devore. Compressed sensing and best k-term

approximation. J. Amer. Math. Soc, pages 211–231, 2009.

[42] F. Cucker. A theory of complexity, condition, and roundoff. Forum of Mathe-

matics, Sigma, 3, 002 2015.

[43] G. Dantzig. Linear programming and extensions. Rand Corporation Research

Study. Princeton Univ. Press, Princeton, NJ, 1963.

[44] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm.

Pure Appl. Math., 41(7):909–996, 1988.

[45] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied

Mathematics, 1992.

[46] I. Daubechies. Big data’s mathematical mysteries. Quanta Magazine, 2015.

[47] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction

to compressed sensing. In Compressed Sensing: Theory and Applications. Cam-

bridge University Press, 2011.

[48] M. E. Davies and R. Gribonval. Restricted isometry constants where `p sparse

recovery can fail for 0 � p ≤ 1. IEEE Transactions on Information Theory,

55(5):2203–2214, May 2009.

[49] M. N. Do and M. Vetterli. The contourlet transform: An efficient directional

multiresolution image representation. IEEE Trans. Image Proc., 14(12):2091–

2106, 2005.

[50] D. L. Donoho and J. Tanner. Counting faces of randomly-projected polytopes

when the projection radically lowers dimension. J. Amer. Math. Soc., 22(1):1–53,

2009.

[51] P. Doyle and C. McMullen. Solving the quintic by iteration. Acta Math., 163(3-

4):151–180, 1989.

[52] M. Elad. Deep, deep trouble. SIAM News, May:12, 2017.

[53] Y. C. Eldar and G. Kutyniok, editors. Compressed Sensing: Theory and Appli-

cations. Cambridge University Press, 2012.

[54] S. Esedolu and S. J. Osher. Decomposition of images by the anisotropic

rudin-osher-fatemi model. Communications on Pure and Applied Mathematics,

57(12):1609–1626, 2004.

[55] H. Fawzi, J. Gouveia, P. A. Parrilo, R. Z. Robinson, and R. R. Thomas. Positive

semidefinite rank. Mathematical Programming, 153(1):133–177, Oct 2015.

[56] H. Fawzi, J. Saunderson, and P. A. Parrilo. Equivariant semidefinite lifts and

sum-of-squares hierarchies. SIAM Journal on Optimization, 25(4):2212–2243,

2015.

BIBLIOGRAPHY 171

[57] S. Feferman. Penrose’s godelian argument. Psyche, 2:21–32, 1996.

[58] M. Fornasier and H. Rauhut. Compressive sensing. In Handbook of Mathematical

Methods in Imaging, pages 187–228. Springer, 2011.

[59] S. Foucart. A note on guaranteed sparse recovery via `1-minimization. Appl.

Comput. Harmon. Anal., 29(1):97–103, 2010.

[60] S. Foucart and H. Rauhut. A mathematical introduction to compressive sens-

ing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York,

2013.

[61] M. D. Guay, W. Czaja, M. A. Aronova, and R. D. Leapman. Compressed sensing

electron tomography for determining biological structure. Scientific Reports,

6:27614 EP –, 06 2016.

[62] M. Guerquin-Kern, M. Häberlin, K. P. Pruessmann, and M. Unser. A fast

wavelet-based reconstruction method for Magnetic Resonance Imaging. IEEE

Trans. Med. Imaging, 30(9):1649–1660, 2011.

[63] M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser. Realistic

analytical phantoms for parallel Magnetic Resonance Imaging. IEEE Trans.

Med. Imaging, 31(3):626–636, 2012.

[64] A. C. Hansen. On the solvability complexity index, the n-pseudospectrum and

approximations of spectra of operators. J. Amer. Math. Soc., 24(1):81–124, 2011.

[65] S. Hashemi, S. Beheshti, P. R. Gill, N. S. Paul, and R. S. C. Cobbold. Accel-

erated compressed sensing based ct image reconstruction. Computational and

Mathematical Methods in Medicine, 2015:161797, 2015.

[66] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity:

The Lasso and Generalizations (Chapman & Hall/CRC Monographs on Statistics

& Applied Probability). Chapman and Hall/CRC, May 2015.

[67] L. He and L. Carin. Exploiting structure in wavelet-based Bayesian compressive

sensing. IEEE Trans. Signal Process., 57(9):3488–3497, 2009.

[68] L. He, H. Chen, and L. Carin. Tree-structured compressive sensing with varia-

tional Bayesian analysis. IEEE Signal Process. Letters, 17(3):233–236, 2010.

[69] M. A. Herman and T. Strohmer. High-resolution radar via compressed sensing.

IEEE Trans. Signal Process., 57(6):2275–2284, 2009.

[70] D. Hilbert. Principles of Mathematical Logic. Ams Chelsea, 1950.

[71] D. J. Holland, M. J. Bostock, L. F. Gladden, and D. Nietlispach. Fast multi-

dimensional nmr spectroscopy using compressed sensing. Angewandte Chemie

International Edition, 50(29):6548–6551, 2011.

BIBLIOGRAPHY 172

[72] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best

multi-stage architecture for object recognition? In 2009 IEEE 12th International

Conference on Computer Vision, pages 2146–2153, Sept 2009.

[73] A. Jones, A. Tamtögl, I. Calvo-Almazán, and A. Hansen. Continuous compressed

sensing for surface dynamical processes with helium atom scattering. Scientific

Reports, 6:27776 EP –, 06 2016.

[74] A. D. Jones, B. Adcock, and A. C. Hansen. On asymptotic incoherence and its

implications for compressed sensing of inverse problems. IEEE Trans. Informa-

tion Theory, 62(2):1020–1037, 2016.

[75] R. Kannan and C. L. Monma. On the Computational Complexity of Integer

Programming Problems, pages 161–172. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 1978.

[76] M. A. Khajehnejad, W. Xu, A. S. Avestimehr, and B. Hassibi. Weighted l1

minimization for sparse recovery with prior information. In Proceedings of the

2009 IEEE International Conference on Symposium on Information Theory -

Volume 1, ISIT’09, pages 483–487, Piscataway, NJ, USA, 2009. IEEE Press.

[77] K. Ko. Complexity theory of real functions. Progress in Theoretical Computer

Science. Birkhäuser Boston, Inc., Boston, MA, 1991.

[78] F. Krahmer and R. Ward. Stable and robust sampling strategies for compressive

imaging. IEEE Trans. Image Proc., 23(2):612–622, 2014.

[79] G. Kutyniok, J. Lemvig, and W.-Q. Lim. Compactly supported shearlets. In

M. Neamtu and L. Schumaker, editors, Approximation Theory XIII: San Antonio

2010, volume 13 of Springer Proceedings in Mathematics, pages 163–186. Springer

New York, 2012.

[80] E. Y. Lam and J. W. Goodman. Iterative statistical approach to blind image

deconvolution. J. Opt. Soc. Am. A, 17(7):1177–1184, Jul 2000.

[81] R. Leary, Z. Saghi, P. A. Midgley, and D. J. Holland. Compressed sensing electron

tomography. Ultramicroscopy, 131:70 – 91, 2013.

[82] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

May 2015. Insight.

[83] C. Li and B. Adcock. Compressed sensing with local structure: Uniform recovery

guarantees for the sparsity in levels class. Appl. Comput. Harmon. Anal., 2017.

[84] Y. Lou, T. Zeng, S. Osher, and J. Xin. A weighted difference of anisotropic and

isotropic total variation model for image processing. SIAM J. Imaging Sciences,

8(3):1798–1823, 2015.

BIBLIOGRAPHY 173

[85] A. K. Louis, P. Maaß, and A. Rieder. Wavelets. Teubner Studienbücher Math-

ematik. [Teubner Mathematical Textbooks]. B. G. Teubner, Stuttgart, second

edition, 1998. Theorie und Anwendungen. [Theory and applications].

[86] M. Lustig, D. L. Donoho, and J. M. Pauly. Sparse MRI: the application of

compressed sensing for rapid MRI imaging. Magn. Reson. Imaging, 58(6):1182–

1195, 2007.

[87] A. Maheshwari and M. Smid. Introduction to Theory of Computation. 2012.

[88] MATLAB. version 9.1.0 (R2016b). The MathWorks Inc., Natick, Massachusetts,

2016.

[89] J. D. McEwen and Y. Wiaux. Compressed sensing for radio interferometric imag-

ing: Review and future direction. In 2011 18th IEEE International Conference

on Image Processing, pages 1313–1316, Sept 2011.

[90] C. McMullen. Families of rational maps and iterative root-finding algorithms.

Ann. of Math. (2), 125(3):467–493, 1987.

[91] C. McMullen. Braiding of the attractor and the failure of iterative algorithms.

Invent. Math., 91(2):259–272, 1988.

[92] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Ge-

ometry. MIT Press, Cambridge, MA, USA, 1969.

[93] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on International

Conference on Machine Learning, ICML’10, pages 807–814, USA, 2010. Omni-

press.

[94] Y. Nesterov. Introductory lectures on convex optimization : a basic course. Ap-

plied optimization. Kluwer Academic Publ., Boston, Dordrecht, London, 2004.

[95] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta

Numerica, 8:143195, 1999.

[96] C. Poon. On the role of total variation in compressed sensing. SIAM Journal on

Imaging Sciences, 8(1):682–720, 2015.

[97] G. Puy, M. E. Davies, and R. Gribonval. Linear embeddings of low-dimensional

subsets of a hilbert space to Rm. EUSIPCO - 23rd European Signal Processing

Conference, 2015.

[98] G. Puy, J. P. Marques, R. Gruetter, J. P. Thiran, D. V. D. Ville, P. Van-

dergheynst, and Y. Wiaux. Spread spectrum magnetic resonance imaging. IEEE

Transactions on Medical Imaging, 31(3):586–598, March 2012.

BIBLIOGRAPHY 174

[99] G. Puy, P. Vandergheynst, R. Gribonval, and Y. Wiaux. Universal and efficient

compressed sensing by spread spectrum and application to realistic fourier imag-

ing techniques. EURASIP Journal on Advances in Signal Processing, 2012(1):1–

13, 2012.

[100] G. Puy, P. Vandergheynst, and Y. Wiaux. On variable density compressive

sampling. IEEE Signal Process. Letters, 18:595–598, 2011.

[101] H. Rauhut and R. Ward. Interpolation via weighted minimization. Appl. Comput.

Harmon. Anal., (to appear).

[102] J. Renegar. Incorporating condition measures into the complexity theory of linear

programming. SIAM Journal on Optimization, 5(3):506–524, 1995.

[103] J. Renegar. Linear programming, complexity theory and elementary functional

analysis. Mathematical Programming, 70(1):279–351, 1995.

[104] B. Roman, B. Adcock, and A. C. Hansen. On asymptotic structure in compressed

sensing. Arxiv, 1406.4178, 2015.

[105] J. Romberg. Imaging via compressive sampling. IEEE Signal Process. Mag.,

25(2):14–20, 2008.

[106] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise

removal algorithms. Phys. D, 60(1-4):259–268, Nov. 1992.

[107] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Founda-

tions of research. chapter Learning Representations by Back-propagating Errors,

pages 696–699. MIT Press, Cambridge, MA, USA, 1988.

[108] L. A. Shepp and B. F. Logan. The fourier reconstruction of a head section. IEEE

Transactions on Nuclear Science, 21(3):21–43, June 1974.

[109] M. Shub and S. Smale. Complexity of Bézout’s theorem. I. Geometric aspects.

J. Amer. Math. Soc., 6(2):459–501, 1993.

[110] M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an

algebraic version of NP 6= P? Duke Math. J., 81(1):47–54, 1995.

[111] S. Smale. The fundamental theorem of algebra and complexity theory. Bull.

Amer. Math. Soc. (N.S.), 4(1):1–36, 1981.

[112] S. Smale. Complexity theory and numerical analysis. In Acta numerica, 1997,

volume 6 of Acta Numer., pages 523–551. Cambridge Univ. Press, Cambridge,

1997.

[113] J. C. Spall. Introduction to Stochastic Search and Optimization. John Wiley &

Sons, Inc., New York, NY, USA, 1 edition, 2003.

BIBLIOGRAPHY 175

[114] V. Studer, J. Bobin, M. Chahid, H. Moussavi, E. Candès, and M. Dahan. Com-

pressive fluorescence microscopy for biological and hyperspectral imaging. Proc

Natl Acad Sci USA, 109(26):1679–1687, 2011.

[115] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B, 58:267–288, 1994.

[116] R. J. Tibshirani. The lasso problem and uniqueness. Electron. J. Statist., 7:1456–

1490, 2013.

[117] A. M. Tillmann and M. E. Pfetsch. The computational complexity of the re-

stricted isometry property, the nullspace property, and related concepts in com-

pressed sensing. IEEE Trans. Inform. Theory, 60(2):1248–1259, 2014.

[118] Q. Tran-Dinh and V. Cevher. A primal-dual algorithmic framework for con-

strained convex minimization. ArXiv, 1406.5403v2, 2014.

[119] Y. Traonmilin and R. Gribonval. Stable recovery of low-dimensional cones in

hilbert spaces: One rip to rule them all. Arxiv, 1510.00504, 2015.

[120] A. M. Turing. On Computable Numbers, with an Application to the Entschei-

dungsproblem. Proc. London Math. Soc., S2-42(1):230.

[121] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse

reconstruction, June 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[122] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49–

95, Mar. 1996.

[123] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity

recovery using l1-constrained quadratic programming (lasso). IEEE Trans. Inf.

Theor., 55(5):2183–2202, May 2009.

[124] L. Wang, D. Carlson, M. R. D. Rodrigues, D. Wilcox, R. Calderbank, and

L. Carin. Designed measurements for vector count data. In Advances in Neural

Information Processing Systems, pages 1142–1150, 2013.

[125] Q. Wang, M. Zenge, H. E. Cetingul, E. Mueller, and M. S. Nadar. Novel sampling

strategies for sparse mr image reconstruction. Proc. Int. Soc. Mag. Res. in Med.,

(22), 2014.

[126] K. Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An

EATCS Series. Springer-Verlag, Berlin, 2000. An introduction.

[127] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, ukasz

Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil,

W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado,

M. Hughes, and J. Dean. Google’s neural machine translation system: Bridging

the gap between human and machine translation. CoRR, abs/1609.08144, 2016.

BIBLIOGRAPHY 176

[128] M. Ziegler and V. Brattka. Computability in linear algebra. Theor. Comput.

Sci., 326(1-3):187–211, Oct. 2004.

Appendix A

Appendix

A.1 BPDN stopping criteria

Proposition A.1.1. Fix ε > 0 and let (xn) be a sequence generated by a primal

convergent algorithm for BPδ, where δ > 0. Assume that ‖b‖ > δ. Define the sequences

(pn)∞n=1 and (Gn)∞n=1 by

pn =

{
Axn−b

‖A∗(Axn−b)‖∞ if A∗(Axn − b) 6= 0 or ‖Axn − b‖2 > ε+ δ

0 otherwise

and Gn = ‖xn‖1 + minm≤n (〈b, pm〉+ δ‖pm‖2) . Then

0 ≤ ‖xn‖1 −BPδ ≤ Gn. (A.1.1)

Furthermore, limn→∞Gn = 0.

To prove this theorem, we also need to prove Lemma 5.11.1.

Proof of Lemma 5.11.1. The statement that 0 ∈ MBP(y,A, δ) if and only if ‖y‖2 ≤ δ

is obvious from the fact that 0 has minimal `1 norm and the fact that ‖A0−y‖2 = ‖y‖2.

To see that if 0 /∈MBP(y,A, δ) then for any x ∈MBP(y,A, δ) we have ‖Ax− y‖2 = δ,

suppose otherwise. Our aim will be to construct a vector x̃ such that ‖x̃‖1 < ‖x‖1, yet

‖Ax̃− y‖2 ≤ δ, contradicting the statement that x is a minimiser.

Let ‖Ax− y‖2 = ε < δ. We consider x̃ = (‖y‖2 − δ)x/(‖y‖2 − ε). By the previous

statement, ‖y‖ > δ and by definition, 0 ≤ ε < δ. Thus (‖y‖2 − δ)/(‖y‖2 − ε) < 1.

Furthermore, x 6= 0 so ‖x̃‖1 < ‖x‖1. It remains to prove that ‖Ax̃− y‖ ≤ δ. We have

177

APPENDIX A. APPENDIX 178

by a simple calculation that

∥∥∥∥
‖y‖2 − δ
‖y‖2 − ε

Ax− y
∥∥∥∥

2

=

(
‖y‖2 − δ
‖y‖2 − ε

)∥∥∥∥Ax− y
‖y‖2 − ε
‖y‖2 − δ

∥∥∥∥
2

=

(
‖y‖2 − δ
‖y‖2 − ε

)∥∥∥∥Ax− y
(

1 +
δ − ε
‖y‖2 − δ

)∥∥∥∥
2

≤
(
‖y‖2 − δ
‖y‖2 − ε

)[
‖Ax− y‖2 +

(δ − ε)‖y‖2
‖y‖2 − δ

]

=

(
1

‖y‖2 − ε

)
[ε(‖y‖2 − δ) + (δ − ε)‖y‖2] = δ.

The result follows.

We state without proof the following theorem (see [21, 60] and similar discussions

in [14,94]) which is itself a corollary of the Fenchel Duality Theorem.

Theorem A.1.2. Let A ∈ Rm×N . Suppose that F and G are convex functions with

F : Rm → (−∞,∞], G : RN → (−∞,∞). If there is an x ∈ RN with Ax ∈ dom(F)

and there are x̃, ξ̃ with x̃ ∈ argminx∈RN (F (Ax)+G(x)) and ξ̃ ∈ argmaxξ∈Rm(−F ∗(ξ)−
G∗(−A∗ξ)) then

F (Ax̃) +G(x̃) = −F ∗(ξ̃)−G∗(−A∗ξ̃).

Moreover, x̃, ξ̃ solves

min
x∈RN

max
ξ∈Rm

〈Ax, ξ〉+G(x)− F ∗(ξ) = max
ξ∈Rm

min
x∈RN

〈Ax, ξ〉+G(x)− F ∗(ξ)

Proof. The sequence (xn) is bounded in the 1-norm, so it has a convergent subsequence

(xnk) with limk→∞ xnk = x∗ for some vector x∗. Since (xnk) satisfies (4.2.1), we see that

x∗ is an optimal point for BPδ. Therefore by Lemma 5.11.1, limk→∞ ‖Axnk − b‖2 =

‖Ax∗ − b‖2 = δ > 0. We claim that for large enough k, ‖A∗(Axnk − b)‖∞ is bounded

away from zero. By continuity, it will suffice to show that A∗(Ax∗ − b) 6= 0. Indeed,

with f(x) := ‖Ax−b‖22, we note that f is convex and see that 2A∗(Ax∗−b) = (∇f)(x∗).
Thus A∗(Ax∗ − b) = 0 if and only if x∗ is a global minimum for f (because for any

convex function f , f ′(c) = 0 implies that f(c) is a global minimum for f). But by

the definition of a primal convergent algorithm there is an x0 with f(x0) < δ = f(x∗),
contradicting the minimality of f(x∗).

Note that the basis pursuit problem can be written as

arg min
x∈Rm

χ‖·−b‖2≤δ(Ax) + ‖x‖1 where χK(v) =

{
0 if v ∈ K
∞ otherwise

Our aim will be to apply Theorem A.1.2 with F = χ‖·−b‖2≤δ, G = ‖ · ‖1. Because

norms are convex, it is clear that F and G are also convex. Since ‖Ax0− b‖ < δ, there

is an x = x0 with x ∈ RN and Ax ∈ dom(F). Moreover, G : RN → (−∞,∞). The

APPENDIX A. APPENDIX 179

existence of an x∗ is obvious. To see the existence of ρ∗, first note that

F ∗(ρ) = sup
ρ′∈Rm

〈ρ, ρ′〉 − F (ρ′) = 〈ρ, b〉+ sup{〈ρ, ρ′ − b〉 | ‖ρ′ − b‖ ≤ δ} = 〈ρ, b〉+ δ‖ρ‖2.

By splitting into two cases, one where ‖ρ‖∞ > 1, and one where ‖ρ‖∞ ≤ 1 (using

Holder’s inequality), we see that G∗(ρ) = χ‖·‖∞≤1(ρ). Thus −F ∗(ρ) − G∗(−A∗ρ) =

−δ‖ρ‖2 − χ‖·‖∞≤1(−A∗ρ) and so

max
ρ∈Rm

−F ∗(ρ)−G∗(−A∗ρ) = max{−δ‖ρ‖2 − 〈ρ, b〉 | ‖A∗ρ‖∞ ≤ 1}

Let ρn be such that ‖A∗ρn‖∞ ≤ 1 and lim
n→∞

−δ‖ρn‖2 − 〈ρn, b〉 = max
ρ∈Rm

−F ∗(ρ) −

G∗(−A∗ρ). Since maxρ∈Rm −F ∗(ρ)−G∗(−A∗ρ) ≥ −F ∗(0)−G∗(−A∗0) = 0, we must

have that for n sufficiently large, −δ‖ρn‖2 − 〈ρn, b〉 ≥ −1. Because ‖Ax0 − b‖2 < δ,

we can write b = η + Ax0 where ‖η‖2 < δ. Thus −〈ρn, b〉 = −〈A∗ρn, x0〉 − 〈ρn, η〉 <
‖x0‖1 + ‖η‖2‖ρn‖2, because ‖A∗ρn‖∞ ≤ 1. Therefore

0 ≤ −δ‖ρn‖2 − 〈ρn, b〉+ 1 ≤ ‖x0‖1 + 1− (δ − ‖η‖2)‖ρn‖2

Thus ‖ρn‖2 must eventually be bounded. Therefore (for some C > 0)

max{−δ‖ρ‖2 − 〈ρ, b〉 | ‖A∗ρ‖∞ ≤ 1} = max{−δ‖ρ‖2 − 〈ρ, b〉 | ‖A∗ρ‖∞ ≤ 1, ‖ρ‖2 ≤ C}

and since the maximization on the right hand side is a maximization problem of a

continuous function taken over a closed, bounded set, the maximum is attained at

some ρ∗.
We can therefore apply Theorem A.1.2. We have

‖x∗‖1 = argmax{−δ‖ρ‖2 − 〈ρ, b〉 | ‖A∗ρ‖∞ ≤ 1} = −δ‖ρ∗‖2 − 〈ρ∗, b〉 (A.1.2)

Since

‖A∗pm‖∞ =

{
1 if A∗(Axm − b) 6= 0 or ‖Axn − b‖2 > ε+ δ

0 otherwise

we have that pm is feasible for the dual problem and thus

‖x∗‖1 ≥ max
m≤n
−δ‖pm‖2 − 〈pm, b〉 = −Gn + ‖xn‖1

from which we immediately get (A.1.1).

It remains to show that Gn → 0. Since eventually both ‖A∗(Axnk − b)‖∞ 6= 0 and

‖Axn − b‖2 ≤ ε+ δ, we have limk→∞ pnk = Ax∗−b
‖A∗(Ax∗−b)‖∞ , and we denote this limit by

APPENDIX A. APPENDIX 180

p∗. We claim that p∗ = ρ∗. If this claim holds then

−δ‖ρ∗‖2 − 〈ρ∗, b〉 = −δ‖p∗‖2 − 〈p∗, b〉 = lim inf
k→∞

−δ‖pnk‖2 − 〈pnk , b〉

≤ lim inf
n→∞

max
m≤n
−δ‖pm‖2 − 〈pm, b〉

≤ −δ‖ρ∗‖2 − 〈ρ∗, b〉

where we have used the continuity of norms and inner products and the maximality of

−δ‖ρ∗‖2−〈ρ∗, b〉. Since lim infn→∞maxm≤n−δ‖pm‖2−〈pm, b〉 = lim inf −Gn+‖xn‖1,

we see that lim inf −Gn + ‖xn‖1 = −δ‖ρ∗‖2 − 〈ρ∗, b〉. By (A.1.2), the right hand

side is ‖x∗‖1 and by continuity the left hand side is ‖x∗‖1 + lim inf −Gn. Therefore

− lim supGn = lim inf −Gn = 0 and because Gn ≥ 0 by (A.1.1), the result will follow.

It will therefore suffice to show that p∗ = ρ∗. The final part of Theorem A.1.2 tells

us that if L(x, ξ) = 〈Ax, ξ〉+ ‖x‖1 − δ‖ξ‖2 − 〈ξ, b〉 then

L(x∗, ρ∗) = min
x∈RN

max
ξ∈Rm

L(x, ξ) = max
ξ∈Rm

min
x∈RN

L(x, ξ).

We therefore obtain the following saddle point property: that for all x ∈ RN , ξ ∈
Rm, we have L(x∗, ξ) ≤ L(x∗, ρ∗) ≤ L(x, ρ∗). Thus 0 ∈ ∂L(·, ρ∗)(x∗), ∂L(x∗, ·)(ρ∗)
where ∂ denotes the subdifferential. The x derivative yields 0 ∈ ∂‖ · ‖1(x∗) + A∗ρ∗.
In particular, since v ∈ ∂‖ · ‖1(x∗) implies that |vsupp(x∗)| = |sgn(x∗supp(x∗))| = 1,

|vsupp(x∗)c | ∈ [0, 1] and x∗ is non-zero, we must have ‖v‖∞ = 1. Hence ‖A∗ρ∗‖∞ = 1.

In particular, ρ∗ 6= 0 and so L(x∗, ·) is differentiable at ρ∗. This derivative must be 0

and so −δ ρ∗

‖ρ∗‖2 −b+Ax∗ = 0. Thus ρ∗ = c(Ax∗−b) for some c ≥ 0. But ‖A∗ρ∗‖∞ = 1

so c = ‖A∗(Ax∗ − b)‖∞ and so ρ∗ = Ax∗−b
‖A∗(Ax∗−b)‖∞ = p∗.

A.2 Lasso stopping criteria

We will now prove the two results on when a lasso minimiser from section 5.15.

Proof of Lemma 5.15.2. We start by assuming that ‖A∗b‖∞ ≤ λ
2 . Set−λρ = 2A∗(A0−

b). Then ‖ρ‖∞ ≤ 1, so ρ is in the subdifferential of ‖ · ‖1 at 0. Therefore 2A∗(A0 −
b) + λρ = 0 where ρ ∈ δ(‖ · ‖1)(0), and so 0 is indeed a minimiser. Conversely, if

0 ∈ argminx∈RN ‖Ax − y‖2 + λ‖x‖1 then there is a ρ in the subdifferential of ‖ · ‖1
at 0 with 2A∗(A0 − b) + λρ = 0. However, such a ρ must have ‖ρ‖∞ ≤ 1 and thus

‖2A∗(−b)‖∞ ≤ λ‖ρ‖∞ ≤ λ. Thus ‖A∗b‖∞ ≤ λ/2.

Proof of Lemma 5.15.3. Since the proof is very similar to the proof of Lemma A.1.1,

we only give the details. Firstly, we note that lasso is equivalent to finding

argminx∈RN F (Ax) + G(x) where F (x) = ‖ · −b‖22, G(x) = λ‖x‖1. It is clear that

A0 ∈ dom(F) and that the optimal value of lasso is attained at some x∗ (which by

potentially passing to a convergent subsequence as in the proof of Lemma A.1.1 we set

to be x∗ = limn→∞ xn). It is also easy to see that the convex conjugates of F and G are

given by F ∗(ξ) = ‖ξ‖22/4 + 〈ξ, b〉 and G∗(ξ) = χ‖·‖∞≤λ(ξ). Since F ∗(ξ)→∞ as ‖ξ‖ →

APPENDIX A. APPENDIX 181

∞, the maximum of −F ∗(ξ)−G∗(A∗ξ) is attained. Thus Theorem A.1.2 applies and we

get ‖Ax∗−b‖22+λ‖x∗‖1 = maxξ∈Rm −F ∗(ξ)−G∗(A∗(ξ) ≥ −G(n)+‖Axn−b‖22+λ‖xn‖1.

All that remains is to see that Gn → 0 as n → ∞. As before, it will suffice to

show that limn→∞ pn = ξ∗ after passing to a subsequence. To see this, note that at any

optimal points (x∗, ξ∗) for both lasso and its dual, we must have that the subdifferential

in the ξ direction of L(x∗, ξ∗) = 〈Ax, ξ〉+ λ‖x‖1 − ‖ξ‖22/4 at (x, ξ∗) is 0. In particular

Ax∗ − ξ∗/2 − b = 0 and thus 2(Ax∗ − b) = ξ∗. Moreover, by 5.15.2, x∗ 6= 0. Taking

subdifferentails of the lasso objective function yields 2A∗(Ax∗ − b) + λsgn(x) = 0.

Since x is non-zero, ‖sgn(x)‖∞ = 1 and so ‖A∗(Ax∗− b)‖∞ = λ/2. Thus limn→∞ pn =

2(Ax∗ − b) and so pn converges to ξ∗.

	Introduction
	Outline of the thesis
	On novelty
	Condition
	Linear programming
	Compressed sensing
	Statistical estimation
	Neural networks
	Perceptrons
	Feed forward neural networks
	Training a neural network

	Image processing
	Total variation inverse problems
	Image deblurring

	Computational frameworks and the SCI hierarchy
	A new model for computation
	Turing machines
	BSS machines
	General algorithms and the SCI hierarchy
	LPO and LLPO - basic non-computable problems
	Inexact input and breakdown epsilons
	Randomised general algorithms
	Solving LPO with relaxed conditions

	Probabilistic breakdown epsilons
	A key result
	A comparison to existing work

	Optimisation as a computational problem
	Conditioning

	Compressed sensing: the RIP and NSP in levels
	The absence of the uniform recovery and the flip test
	The flip test
	Weighted sparsity

	An extended theory for compressed sensing
	A level based alternative to sparsity: (s,M)-sparsity
	Matrices with a small RIPL constant

	Main results
	Proofs
	Proof of Theorem 3.3.8
	Proof of Theorem 3.3.4
	Proof of Theorem 3.3.5 and 3.3.6
	Proof of Theorem 3.3.7
	Proofs of Theorem 3.3.9

	Computational barriers in information theory
	Linear programming and linear systems
	Compressed sensing
	Basis pursuit
	Basis pursuit denoising

	Statistical estimation
	Neural networks - the paradoxes of deep learning
	Image processing

	Proofs
	Proof of Proposition 2.8.4
	Proof of Theorem 2.9.1
	A key proposition on two minimisers
	Proof of Theorem 4.1.1
	Proof of Theorems 4.1.3, 4.2.1, 4.2.13
	Proof of Theorem 4.2.7 and Theorem 4.2.16
	Proof of Theorem 4.2.2
	Proof of Theorem 4.2.3 and Theorem 4.2.14
	Proof of Theorem 4.2.11
	Proof of Theorem 4.2.12
	Proof of Theorem 4.2.15 and Theorem 4.3.5
	Proof of Theorem 4.3.1
	Proof of Theorem 4.3.2
	Proof of Theorem 4.3.4
	Proof of Theorem 4.3.7
	Proof of Theorem 4.4.1
	Proof of Theorem 4.4.2
	Proof of Theorem 4.4.3
	Proof of Theorem 4.5.1 and Theorem 4.5.2

	Conclusions and future work
	General open questions
	Specific open questions

	Bibliography
	Appendix
	BPDN stopping criteria
	Lasso stopping criteria

