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Using CamGrid to model the 
evolution of Influenza 



Influenza virus: pandemic and epidemic
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The Influenza Virus

Annually, 'flu infects 5-15% of the global 
population (~600 million people)

Virus genome contains 8 RNA segments 
which code 11 proteins 
 
RNA polymerase makes a single 
nucleotide error roughly every 13 
thousand nucleotides
  
Nearly every new influenza virus has a 
mutation thus is highly antigenically 
variable 

Over time, mutations build up and 
antibodies lose the ability to bind. 

For this reason, the 'flu vaccine has had to 
be updated more than 20 times over the 
last 40 years. 
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Haemagglutinin
Protein expressed on surface of virus 

The major component of the 'flu vaccine

The main focus of global 'flu surveillance

There are ~500 HA proteins on surface of virus

HA binds to sugars on the surface of the cell 



Antigenic Variation  
Genetic changes which lead to vaccine breakdown

Species Specificity  
Binding preference (human/avian) and zoonotic potential 

 

What are we interested in modelling? 



Antigenic differences among strains of influenza virus

Haemagglutinin-inhibition (HI) assay data



  

 A genotype to phenotype map for HA

 Two dimensional

 Mostly linear 

 Forms Clusters

 Chronologically ordered  

 Equal time between clusters

 Equal distance between clusters

 “Antigenic map” of Influenza H3N2 1968-2003
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Northern Hemisphere October 2003
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In silico predictions of the structure of the virus

Model strain
of interest

Xray structure of a strain of HA

Molecular Dynamics or 

Monte Carlo simulations
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In Silico Genotype to phenotype prediction of the evolution of HA 

Given the sequence (genotype) of any 
HA ,we could predict its tertiary 
structure and its phenotype and position 
on the 'map'. 

Predict which mutations would alter its 
phenotype.

This would aid surveillance and vaccine 
selection

Pre-emptive vaccination could be used 
to block the virus from moving in a 
particular direction
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Species Specificity  
Binding preference (human/avian) and zoonotic potential 

 

What are we interested in modelling? 



  

α-2,6 linkage

Human & Pig 
adapted influenza 

viruses

Avian, Equine & Pig 
adapted influenza 

viruses 

Determinants of ligand specificity

Sialic acid

galactose

N-Acetyl 
Glucoosamine

α-2,3 linkage



  

 Binding Mode 1

 Binding Mode 2

Add ligand from xray data

In silico predictions of ligand binding



  

Intro for SC1918

Stevens et al. J Mol Biol. 2006  355(5):1143-55

Sugar binding properties of H1N1 A/South Carolina/1/1918

A/South Carolina/1/1918 A/South Carolina/1/1918
+ D222G

The single mutation D222G 
Gains binding to sulphated α2,3 glycans (increased mortality)
Loses binding to α2,6 glycans (poor transmission)

How does the D222G mutation affect binding in 2009 pdm H1N1 strain?



  

Molecular Dynamics of A/South Carolina/1/1918 with α2,6 glycan

Ala224

~1300 structures extracted from each simulation

Asp222

mode 1                  mode 2



  

A/South Carolina/1/1918 +D222G A/South Carolina/1/1918 

Main interactions with sidechain of D222 
and D187

D222G Reduces possible interactions

Hydrogen binding frequencies involving ligand 

D222G strain makes fewer interactions with α2,6 glycan than wild type.



  

2009 pdmH1N1 A/NL/602/2009

More continuous distribution between two modes

mode 1                  mode 2



  

PDM A/Netherlands/602/09 A/South Carolina/1/1918 

Genetic differences provides extra networks of 
interactions which stabilise intermediate binding mode



  

A/Netherlands/602/09 A/Netherlands/602/09+D222G

Decrease of 222 interactions compensated for by increase in 
interactions with E224, S183 and K130.  



  

A/Netherlands/602/09
+D222G

A/South Carolina/1/1918
+D222G 

We would predict that, unlike A/SC/1918+D222G, A/Netherlands/602/09+D222G 
binds just as well as A/Netherlands/602/09 



  

Two distinct binding modes of the galactose sugar for SC1918

A more continuous distribution for A/Netherlands/602/09

A role for E224, S183, K130 in binding

Reduction of interactions for SC1918+D222G

Conservation of binding for A/Netherlands/602/09+D222G

Predictions from the MD simulation



  

Hua Yang, Paul Carney, and James Stevens. 

Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. 

PLoS Curr Influenza. 2010 

2009 PDM + D222G maintains α2,6 binding

Texas/5/2009

α-2,6 α-2,6α-2,3α-2,3



  

Future Work 

Improvements in quantitative binding calculations
 
Investigate binding to α2,3 glycans

Investigate evidence for multiple binding modes 

More robust docking and sampling of the glycans into the RBS

Longer simulations for benchmark set for improved statistics
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WHO global influenza surveillance
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