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Transformations for Linguistic Steganography

Ching-Yun Chang

Abstract

Linguistic steganography is a form of covert communication using natural language
to conceal the existence of the hidden message. It is usually achieved by systemati-
cally making changes to a cover text, such that the manipulations, namely the very act
of communication, are undetectable to an outside observer (human or computer). In
this thesis, we explore three possible linguistic transformations — lexical substitution,
adjective deletion and word ordering — which are able to generate alternatives for a
cover text. For each transformation, we propose different transformation checkers in
order to certify the naturalness of a modified sentence.

Our lexical substitution checkers are based on contextual n-gram counts and the α-
skew divergence of those counts derived from the Google n-gram corpus. For adjec-
tive deletion, we propose an n-gram count method similar to the substitution n-gram
checker and a support vector machine classifier using n-gram counts and other mea-
sures to classify deletable and undeletable adjectives in context. As for word ordering,
we train a maximum entropy classifier using some syntactic features to determine the
naturalness of a sentence permutation.

The proposed transformation checkers were evaluated by human judged data, and the
evaluation results are presented using precision and recall curves. The precision and
recall of a transformation checker can be interpreted as the security level and the em-
bedding capacity of the stegosystem, respectively. The results show that the proposed
transformation checkers can provide a confident security level and reasonable embed-
ding capacity for the steganography application.

In addition to the transformation checkers, we demonstrate possible data encoding
methods for each of the linguistic transformations. For lexical substitution, we pro-
pose a novel encoding method based on vertex colouring. For adjective deletion, we
not only illustrate its usage in the steganography application, but also show that the ad-
jective deletion technique can be applied to a secret sharing scheme, where the secret
message is encoded in two different versions of the carrier text, with different adjec-
tives deleted in each version. For word ordering, we propose a ranking-based encoding
method and also show how the technique can be integrated into existing translation-
based embedding methods.
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Chapter 1

Introduction

With the development of science and technology, we now rely heavily upon multimedia
and automated systems to distribute, transmit, and gather information. One of the ma-
jor concerns in such environments is data privacy since most of the data are transmitted
over an open channel where information is communicated in an insecure fashion. One
consequence of open communication is that potential monitoring bodies can seek to
detect and control unwanted communication. Although secure communication can be
implemented by using encryption techniques, sending encrypted messages frequently
would draw the attention of third parties, such as crackers and hackers, and may cause
attempts to break and reveal the secret messages.

In order to transmit information through an open channel without detection by anyone
other than the receiver, a covert channel can be carefully designed and used. In infor-
mation theory, a covert channel is a parasitic communications channel that is hidden
within the medium of a legitimate communication channel (Lampson, 1973). For ex-
ample, steganography is a form of covert channel in which certain properties of the
medium are manipulated in an unexpected, unconventional, or unforeseen way so that,
with steganographic transmission, the encrypted messages can be well camouflaged
in a seemingly natural medium and sent to the receiver with less chance of being
suspected and attacked. Since the changes to the medium are so subtle, anyone not
specifically looking for a hidden message is unlikely to notice the changes (Fridrich,
2009).

17



18 1.1. STEGANOGRAPHY

1.1 Steganography

The word steganography has Greek origins and means “concealed writing”. The orig-
inal practice can be traced back to around 440 BC when the ancient Greeks hid mes-
sages within wax tables by writing messages on the wood before applying a wax sur-
face (Herodotus, 1987). Another early recorded use of steganography is that in ancient
Greece messengers tattooed messages on their shaved heads and concealed the mes-
sages with the hair that grew over them afterwards, a technique also used by German
spies in the early 20th century (Newman, 1940). With the advent of tiny images, dur-
ing the Franco-Prussian War (1870-1871) messages were put on microfilm and sent
out by pigeon post (Tissandier, 1874); in the Russo-Japanese War (1905) microscopic
images were hidden in ears, nostrils or under finger nails (Stevens, 1957); during both
World Wars messages were reduced to microdots and stuck on top of printed periods
or commas in innocent cover material such as magazines, or inserted into slits of the
edges of post cards (Newman, 1940; Hoover, 1946). In both World Wars invisible inks
were also used extensively to write messages under visible text (Kahn, 1967). The
application of special inks is still used today in the field of currency security to write a
hidden message on bank notes or other secure documents.

Since the 1980s, with the advent of computer technologies, digital equivalents of these
camouflage techniques were invented to hide messages in digital cover media, such as
images, video and audio signals (Fridrich, 2009). For example, in 2010, the United
States Department of Justice retrieved more than 100 encrypted messages embedded
in images that were posted to the Web. According to the Steganography Analysis
and Research Centre,1 there have been over 1,100 digital steganography applications
identified. Most of the digital steganography systems exploit the redundancy of the
cover media and rely on the limitations of the human auditory or visual systems. For
example, a standard image steganography system uses the least-significant-bit (LSB)
substitution technique. Since the difference between 11111111 and 11111110 in the
value for red/green/blue intensity is likely to be undetectable by the human eye, the
LSB can be used to hide information other than colour, without being perceptable by
a human observer.2

1http://www.sarc-wv.com/ (last verified in June 2013)
2The observer may also be a computer program, designed to detect statistical anomalies in the image

representation which may indicate the presence of hidden information.
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Simmons (1984) formulated steganography as the “Prisoners’ Problem”. The prob-
lem describes a scenario where two prisoners named Alice and Bob are locked up in
separate cells far apart from each other and wish to hatch an escape plan. All their
communications have to pass through the warden, Willie. If Willie detects any sign
of conspiracy, he will thwart their plan by throwing them into high-security cells from
which nobody has ever escaped; as long as Willie does not suspect anything, the com-
munication can be put through. So Alice and Bob must find some way for embedding
hidden information into their seemingly natural messages. Alice and Bob can suc-
ceed if they are able to exchange information allowing them to coordinate their escape
without arousing Willie’s suspicion. According to information hiding terminology
(Pfitzmann, 1996), a legitimate communication among the prisoners is called a cover
datatype, and a message with embedded hidden information is called a stego datatype,
where datatype stands for “text”, “image”, “audio”, or whatever media is being used.
The algorithms that Alice used for creating the stego datatype and Bob used for decod-
ing the message are collectively called a stegosystem.

A stegosystem has to fulfil two fundamental requirements. The first and foremost re-
quirement is security. This means that the stegomedia in which the secret message is
hidden must not be suspicious to a human or a computer. The second requirement is
payload capacity. The payload is the size of the secret message that the sender wishes
to conceal and transport relative to the size of the cover media. Since steganography
aims at covert information transmission, it requires sufficient embedding capacity. An
ideal stegosystem would have a high level of security and large payload capacity. How-
ever, there is a fundamental trade-off between security and payload since any attempt
to embed additional information in the cover media is likely to increase the chance of
introducing anomalies into the media, thus degrading the security level.

A related area to steganography is digital watermarking, in which changes are made to
a cover medium in order to verify its authenticity or to show the identity of its own-
ers, for example for copyright purposes (Cox et al., 2008; Shih, 2008). An interesting
watermarking application is “traitor tracing”, in which documents are changed in or-
der to embed individual watermarks. These marks can then be used to later identify
particular documents, for example if a set of documents — identical except for the
changes used to embed the watermarks — has been sent to a group of individuals,
and one of the documents has been leaked to a newspaper. Both steganography and
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watermarking employ steganographic techniques to embed information in cover me-
dia. However, steganography aims for the imperceptibility of a secret message to an
observer, whereas watermarking tries to mark cover media with information that is ro-
bust against modifications. For steganography a user can have the freedom to choose
the cover medium to carry messages, whereas for watermarking the cover medium is
already decided.

1.2 Linguistic Steganography

A key question for any stegosystem is the choice of cover medium. Given the ubiqui-
tous nature of natural languages and omnipresence of text, text is an obvious medium
to consider. For example, a Nazi spy in World War II sent the following message
(Kahn, 1967):

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects pretext for embargo on by-products, ejecting suets and vegetable
oils.

By taking the second letter from each word the following message emerges:

Pershing sails from NY June I

The advantage of this method is that the secret message appears as some normal com-
munication which may not arouse suspicion. However, given the current state-of-the-
art of Natural Language Processing (NLP) technology, NLP techniques are not capable
of creating meaningful and natural text from scratch and of hiding messages in it.
Therefore, most of the existing linguistic stegosystems take already existing text as the
cover text, and linguistic properties of the text are used to modify it and hide informa-
tion.

Figure 1.1 shows the general Linguistic Steganography framework. First, some secret
message, represented as a sequence of bits, is hidden in a cover text using the em-
bedding algorithm, resulting in the stego text.3 Next, the stego text passes the observer
(human or computer), who is happy for innocuous messages to pass between the sender

3The message may have been encrypted initially also, as in the figure, but this is not important in
this thesis; the key point is that the hidden message is a sequence of bits.
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Figure 1.1: The Linguistic Steganography framework

and receiver, but will examine the text for any suspicious looking content. Once the
stego text reaches the receiver, the hidden message is recovered using the extracting
algorithm.

In order to embed messages, a cover text must provide information carriers that can be
modified to represent the secret. For example, a lexical substitution-based stegosystem
substitutes selected words (the information carriers) with their synonyms so that the
concatenation of the bitstrings represented by the synonyms is identical to the secret.
Note that an unmodifiable text cannot carry information. So far, the literature on Lin-
guistic Steganography is small compared with other media (Bergmair, 2007). One of
the likely reasons is that it is easier to make changes to images and other non-linguistic
media which are undetectable by an observer. Language has the property that even
small local changes to a text, e.g. replacing a word by a word with similar meaning,
may result in text which is anomalous at the document level, or anomalous with re-
spect to the state of the world. Hence, finding linguistic transformations which can be
applied reliably and often is a challenging problem for Linguistic Steganography.

An addition challenge for linguistic steganography is that evaluation of linguistic stegosys-
tems is much more difficult than that of image, audio or video stegosystems because
such evaluation requires us to consider many controversial linguistic issues, such as
meaning, grammaticality, fluency and style. Unlike some of the NLP tasks, such as
machine translation, text summarisation, paraphrasing and simplification which aim at
transforming the original text in a grammatical and meaning preserving way, linguistic
steganography does not require a stego text to convey the same meaning as its cover
text. Instead, linguistic steganography only considers whether the modified text is nat-
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ural; hence, a stego text should be evaluated independently of the cover text. Although
some computational steganalysis systems have been developed to identify stego text
from innocent text using statistical methods, the systems can only be applied to text
that undergoes certain linguistic transformations such as translation and lexical substi-
tution, and they are not accurate enough for practical evaluation. Therefore, most of
the current linguistic stegosystems were evaluated by human judges (Murphy and Vo-
gel, 2007a,b; Meral et al., 2007; Kim, 2008; Meral et al., 2009; Kim, 2009; Chang and
Clark, 2010a), where a human assessor was provided with stego text and was asked to
rate or improve the naturalness of the stego text.

1.3 The scope of this thesis

In this thesis I focus on linguistic steganography rather than watermarking, since I am
interested in the requirement that any changes to a text must be imperceptible to an
observer, as this makes for a strong test of the NLP technology used to modify the
cover text. There are various practical security issues in the steganography applica-
tion that I have chosen to ignore or simplify in order to focus on the underlying NLP

techniques. For example, I assume the adversary in the espionage scenario is a human
acting passively rather than actively. A passive warden examines all messages ex-
changed between Alice and Bob but crucially does not modify any message. In other
words, I have ignored the possibility of computational steganalysis and steganographic
attacks (Fridrich, 2009), via an active warden who deliberately modifies messages in
order to thwart any hidden communication. In addition, I do not test the security level
of the proposed stegosystems by applying Kerckhoffs’ principle (Kerckhoffs, 1883),
which states that a method of secretly coding and transmitting information should be
secure even if everything about the system, except the key and any private randomizer,
is public knowledge. In the proposed stegosystems there are some parameters that can
be treated as secret keys only shared between a sender and a receiver. However, I do
not measure the secrecy of the hidden information using the keys. Instead, I evalu-
ate the security level of the proposed systems by the naturalness of generated stego
text. Another evaluation aspect that I do not emphasize particularly in this thesis is
the computational complexity of the proposed stegosystems since steganography tra-
ditionally is not an instantaneous communication as the sender and the receiver encode
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and decode messages off-line.

In this research I focus on hiding information in English text. However, the proposed
methods can also be applied to other languages as long as the same resources and tools
are available for the other language, such as synonym dictionaries, n-gram corpora,
parsers and word ordering systems. In order to embed messages in a cover document,
I exploit three different linguistic transformations to modify the original text. The first
transformation I use is lexical substitution which replaces a selected word with a same
part-of-speech synonym; the second linguistic transformation deletes unnecessary ad-
jectives in noun phrases; and the third transformation rearranges words in a sentence.
For each transformation I develop a checker to certify the naturalness of modified sen-
tences. Note that, in this thesis, I do not investigate the document-level coherence of
stego text since this requires sophisticated knowledge of natural language semantics
and pragmatics which I consider to be outside the scope of this work. Instead, I tackle
the problem of distinguishing the naturalness of a modified sentence in isolation from
the rest of a document. Finally, I propose possible secret embedding methods that can
work with the linguistic transformation checkers and generate natural stego text.

1.4 The approaches in this thesis

The main objective of this thesis is to explore possible linguistic transformations for
the application of steganography. As mentioned previously, the transformation must
be applied reliably and often to a cover text in order to fulfil the requirements of se-
curity and payload. The following gives a brief overview of the three transformations
exploited in the proposed stegosystems and the linguistic transformation checkers that
I develop to certify the naturalness of modified sentences (in order to satisfy the secu-
rity requirement). More details of how each transformation and checker work in the
proposed stegosystem are given in Chapter 3, Chapter 4 and Chapter 5.

The first transformation I use is lexical substitution which is a relatively straightforward
modification of text. It replaces selected words with the same part of speech (POS)
synonyms, and does not involve operating on the sentence structure so the modification
is likely to be grammatical.

There are two practical difficulties associated with hiding bits using synonym substi-
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tution. The first is that words can have more than one sense. In terms of WordNet
(Fellbaum, 1998), which is the electronic dictionary I use, words can appear in more
than one synonym set (synset).4 This is a problem because a word may be assigned
different secret bitstrings in the different synsets, and the receiver does not know which
of the senses to use, and hence does not know which hidden bitstring to recover. My
solution to this problem is a novel vertex colouring method which ensures that words
are always assigned the same bitstring, even when they appear in different synsets.

The second problem is that many synonyms are only applicable in certain contexts.
For example, the words in the WordNet synset {bridge, span} share the meaning of “a
structure that allows people or vehicles to cross an obstacle such as a river or canal or
railway etc.” However, bridge and span cannot be substituted for each other in the sen-
tence “suspension bridges are typically ranked by the length of their main span”, and
doing so would likely raise the suspicion of an observer due to the resulting anomaly in
the text. My solution to this problem is to perform a contextual check which utilises the
Google n-gram corpus (Brants and Franz, 2006). I evaluate the substitution checker
using the data from the English Lexical Substitution task for SemEval-20075 and a
human judgement corpus created specifically for the work in this thesis.

The second linguistic transformation I exploit is adjective deletion. If an adjective can
be removed from a sentence without significant change in the sentence’s naturalness,
the adjective can be used as an information carrier in the proposed stegosystem. In or-
der to certify the deletion grammaticality, I only accept a deletion that does not change
the CCG categories of the rest of the words. The CCG parser used in this grammati-
cality check was developed by Clark and Curran (2007). Next, I propose two methods
to determine whether the removal of the adjective in a noun phrase is natural to the
context. The first method uses the Google n-gram corpus, whereas the second method,
which performs better, trains an SVM model that combines n-gram statistics, lexical
association measures, entropy-based measures and an n-gram divergence statistic. The
methods are evaluated using human judgements of sentence naturalness after removing
selected adjectives.

The third transformation is word re-ordering. The sender in the proposed scheme uses

4A synset contains a group of synonymous words or collocations that convey similar meaning; dif-
ferent senses of a word are in different synsets.

5http://www.dianamccarthy.co.uk/task10index.html (last verified in June 2013)
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the n-best list output from a word ordering system as the set of possible alternatives for
a cover sentence. Since not all the sentence permutations generated by a word ordering
system are grammatical and semantically meaningful, I develop a maximum entropy
classifier to distinguish natural word orders from awkward wordings. The proposed
classifier is again evaluated by human judgements and also compared to a baseline
method using the Google n-gram corpus.

For the proposed linguistic transformation checkers, the more natural the passed sen-
tences are, the less suspicious the stego text may be. In addition, the more sentences
that pass the check, the more information carriers the stegosystem can use. Therefore,
the evaluation of the proposed linguistic transformation checkers can be seen as an
indirect evaluation of the proposed stegosystems. For this reason, the performance of
the proposed linguistic transformation checkers is evaluated in terms of precision and
recall. Precision is the percentage of sentences judged acceptable by the checker which
are determined to be natural by the human judges; recall is the percentage of sentences
determined to be natural by the human judges which are also passed by the checker.
The interpretation of the measures for a stegosystem is that a higher precision value
implies a better security level; whereas a larger recall value means a greater payload
capacity.

1.5 Contributions

A significant contribution of the thesis is to advertise the Linguistic Steganography
problem to the NLP community. The requirement that any linguistic transformations
generate natural sounding and meaningful stego text makes the problem a strong test
for existing NLP technology. In this research I explore a variety of linguistic transfor-
mations, each with different properties, including lexical substitution, adjective dele-
tion and word ordering, and create novel links between these transformations and lin-
guistic steganography. In addition, the proposed transformation checkers for certify-
ing sentence naturalness potentially benefit not only the steganography application but
also other NLP applications, such as sentence compression, text summarization, sur-
face realisation and machine translation, because these tasks all require the generated
sentences to be as natural as possible.

Another contribution of the thesis is the evaluation of the proposed stegosystems. The
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results suggest that it is possible to develop practical linguistic steganography systems
with current NLP techniques. In addition, the collected human judgement corpora for
evaluating my systems could be used as a gold standard for other NLP tasks, such as
automated sentence scoring systems or sentence compression systems.6

The rest of this thesis is organized as follows. Chapter 2 reviews the current state-of-
the-art in linguistic steganography and the various linguistic transformations that have
been employed in existing stegosystems. In Chapter 3, I describe my first stegosystem
using lexical substitution, along with the method for checking substitution quality to-
gether with an empirical evaluation. In Chapter 3, I also propose a novel vertex colour
coding algorithm to solve the decoding ambiguity problem. Chapter 4 gives the details
of my second stegosystem that hides messages in redundant adjectives. Apart from
the steganography application, I also show that the adjective deletion technique can be
used in a secret sharing scheme, in which the secret message is encoded in two dif-
ferent versions of the carrier text, with different adjectives deleted in each version. In
Chapter 5, I present details of my word ordering-based stegosystem and the maximum
entropy classifier for determining the naturalness of sentence permutations. Moreover,
I explain how the word ordering transformation can be used with existing translation-
based secret embedding algorithms. Finally, Chapter 6 gives some conclusions and
future research directions.

6The human judgement corpora are available at www.cl.cam.ac.uk/∼cyc30 (last verified in June
2013).



Chapter 2

Background

This chapter reviews existing linguistic stegosystems. Under my interpretation of the
term Linguistic Steganography, I am only concerned with stegosystems which make
changes that are linguistic in nature, rather than operating on superficial properties
of the text, e.g. the amount of white space between words (Por et al., 2008), font
colors (Khairullah, 2009), or relying on specific file formats, such as ASCII or HTML
(Bennett, 2004; Shahreza, 2006).

Most of the existing stegosystems consist of three independent modules — linguis-
tic transformation, data encoding and text selection — as shown in Figure 2.1. As
explained in Chapter 1, in order to embed messages, a cover text must provide in-
formation carriers that can be modified to represent the secret, and the modification
must be natural to an observer. This step is called linguistic transformation. According
to the linguistic transformation used in a stegosystem, we can classify existing work
into three major categories: lexical or phrase substitutions, syntactic transformations,
and semantic transformations. After generating different versions of the cover text, an
encoding method is used to assign bitstrings to the alternatives, which is called data
encoding. The final phase is text selection which chooses the alternative representing
the secret bitstring as the stego text. If there is no alternative associated with the secret
bitstring, the secret embedding fails. Therefore, it is important to generate sufficient
alternatives as well as to efficiently encode each option. The convenient modularity
between the linguistic transformation and data encoding allows a transformation to be
combined with different encoding algorithms, although it may put some constraints on
what method can be used. I will refer back to Figure 2.1 when describing the proposed

27
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Figure 2.1: Three modules in a linguistic stegosystem

stegosystems in Chapter 3, Chapter 4 and Chapter 5. In the following sections, I first
explain the three linguistic transformation categories mentioned above and then intro-
duce several encoding methods. In addition, I summarise the evaluation methods and
performance of existing linguistic stegosystems.

2.1 Linguistic transformations

In this section, I explain the three linguistic transformation categories — lexical or
phrase substitutions, syntactic transformations, and semantic transformations — that
have been used in existing stegosystems to modify cover text. For each transformation,
some examples are provided to demonstrate the text manipulation.

2.1.1 Lexical and phrase substitutions

Lexical substitution is a relatively straightforward modification of text. It replaces
selected words with synonyms, without operating on the sentence structure, so the
modification is likely to be grammatical. There are a few electronic dictionaries avail-
able that are designed to capture various lexical relationships between words and serve
as lexical reference systems (Fellbaum, 1998; Schuler, 2005). One of the most well-
known electronic dictionaries is WordNet (Fellbaum, 1998) in which English nouns,
verbs, adjectives and adverbs are categorized into synonym sets (synsets). Words in
the same synset have the same or similar meaning and in principle can be substituted
with each other. For example, a search result of the word marry in WordNet 3.1 is
summarized in Table 2.1. According to this table, we can change the sentence “The
minister will marry us on Sunday” to “The minister will wed us on Sunday” without
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marry (verb)

gloss: take in marriage
synset: marry, get married, wed, conjoin, hook up with, get hitched with, espouse
gloss: perform a marriage ceremony
synet: marry, wed, tie, splice

Table 2.1: Synsets of the word marry in WordNet 3.1

introducing much semantic difference since marry and wed express a similar lexical
concept in this context.

There are three main challenges when using lexical substitution as the linguistic trans-
formation. The first challenge is word-category disambiguation, which marks up a
word with a particular part-of-speech (POS) based on both its definition as well as
the context. For example, fast is an adverb in the phrase “hold fast to the rope”,
an adjective in the phrase “a fast car”, and a verb in the phrase “Catholics fast dur-
ing Lent”. Existing POS taggers have achieved 97% accuracy on the Penn Treebank
(Toutanova et al., 2003; Shen et al., 2007; Spoustová et al., 2009; Søgaard, 2010) and
are widely used in lexical substitution-based stegosystems (Chapman et al., 2001; Bol-
shakov, 2004; Taskiran et al., 2006; Topkara et al., 2006c,a; Chang and Clark, 2010b).

The second challenge is word-sense disambiguation, which identifies the sense of a
word in context (if the word has more than one meaning) so the correct synset can
be used. For example, according to the context, bottom means “a cargo ship” instead
of “the lower side of anything” in the sentence “we did our overseas trade in foreign
bottoms”, and therefore it can be replaced with freighter but not undersurface. The first
lexical substitution stegosystem was proposed by Winstein (1999). In order to handle
the fact that a word may appear in more than one synset in WordNet, Winstein defines
“interchangeable words” as words that belong to the same synsets, and only uses these
words for substitution. For example, marry and wed in Table 2.1 are interchangeable
words since they are always synonyms even under different meanings. Any words
that are not interchangeable are discarded and not available for carrying information.
Winstein (1999) calculates that only 30% of WordNet can be used in such a system.

The main purpose of linguistic transformations is to generate unsuspicious alternatives
for a cover sentence. Although replacing a word with its synonym that conveys the
same concept may preserve the meaning of the sentence, much of the time there are still
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semantic and pragmatic differences among synonyms. For example, the synset {chase,
trail, tail, tag, dog, track} means “go after with the intent to catch”. However, an
awkward sentence would be generated if we replace chase with dog in the sentence “the
dogs chase the rabbit”. Hence, it is important to check the acceptability of a synonym
in context. Bolshakov (2004) used a collocation-based test to determine whether a
substitution is applicable in context. Taskiran et al. (2006) attempted to use context
by prioritizing the alternatives using an n-gram language model; that is, rather than
randomly choose an option from the synset, the system relies on the language model
to select the synonym. In Chapter 3, I describe how the proposed lexical substitution-
based stegosystem uses the Google n-gram corpus to certify the naturalness of the
proposed substitution.

Similar to synonym substitution, text paraphrasing restates a phrase using different
words while preserving the essential meaning of the source material being paraphrased.
In other words, text paraphrasing is multi-word substitution. For example, we can para-
phrase “a high percentage of” by “a large number of” in the sentence “a form of as-
bestos has caused a high percentage of cancer deaths”. However, text paraphrasing may
have more effect on the grammaticality of a sentence than lexical substitution. In my
Masters research (Chang and Clark, 2010a; Chang, 2010) I developed a stegosystem
exploiting a paraphrase dictionary (Callison-Burch, 2008) to find potential informa-
tion carriers, and used the Google n-gram corpus and a CCG parser (Clark and Curran,
2007) to certify the paraphrasing grammaticality. Similar techniques will be used in
the proposed stegosystems to check the applicability of a linguistic transformation.

2.1.2 Syntactic transformations

Syntactic transformation methods are based on the fact that a sentence can be trans-
formed into more than one semantically equivalent syntactic structure, using transfor-
mations such as passivization, topicalization and clefting. Table 2.2 lists some of the
common syntactic transformations in English.1

The first syntactic transformation method was presented by Atallah et al. (2000). Later,
Atallah et al. (2001) generated alternative sentences by adjusting the structural prop-
erties of intermediate representations of a cover sentence. In other words, instead of

1The categories of transformations are adopted from Topkara et al. (2005).
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Transformation Original sentence Transformed sentence

Passivization The dog kissed Peter. Peter was kissed by the dog.
Topicalization I like pasta. Pasta, I like.
Clefting He won a new bike. It was a new bike that he won.
Extraposition To achieve that is impossible. It is impossible to achieve that.
Preposing I like cheese bagels. Cheese bagels are what I like.
There-construction A cat is in the garden. There is a cat in the garden.
Pronominalization I put the cake in the fridge. I put it there.
Fronting “What!” Peter said. “What!” said Peter.

Table 2.2: Some common syntactic transformations in English

performing lexical substitution directly on the text, the modifications are performed on
the syntactic parse tree of a cover sentence. Murphy (2001), Liu et al. (2005), Topkara
et al. (2006b), Meral et al. (2007), Murphy and Vogel (2007b) and Meral et al. (2009)
all belong to this syntactic transformation category. After manipulating the syntac-
tic parse tree, the modified deep structure form is converted into the surface structure
format via language generation tools.

Aside from the above systems, Wayner (1995) and Chapman and Davida (1997) pro-
posed mimicry text approaches associated with linguistic syntax. These two stegosys-
tems generate stego text from scratch instead of modifying an existing text. Wayner
(1995) proposed a method with his context-free mimic function (Wayner, 1992) to gen-
erate a stego text that has statistical properties close to natural language. The context-
free mimic function employs a probabilistic grammar-based model to structure the
stego text. Since the mimicry method only puts emphasis on the syntactic structure of
a sentence, it is likely to generate nonsensical stego text which is perceptible by hu-
mans. Chapman and Davida (1997) developed a stegosystem called NICETEXT that
generates stego sentences using style sources and context-free grammars to simulate
certain aspects of writing style. Comparing with Peter Wayner’s mimicry method, the
stego text generated by NICETEXT is more natural in terms of the semantics, but still
not at a level that would be suitable for practical steganography.
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2.1.3 Semantic transformations

The semantic transformation is the most sophisticated approach for linguistic steganog-
raphy, and perhaps impractical given the current state-of-the-art for NLP technology. It
requires some sophisticated tools and knowledge to model natural language semantics
and to evaluate equivalence between texts in order to perform deep semantic manipu-
lations. For example, consider the following sentences:

Bond takes revenge for Vesper’s death.
Vesper’s death is avenged by Bond.
007 takes revenge for Vesper’s death.

The idea is to define the semantic representation in such a way that the translation from
any of the above sentences to their semantic representations would yield the same form.
In this manner, the meaning of the cover sentence can be expressed in another natural
language text. For this to be successful for the example, we would have to understand
sentences in different voice, such as active and passive voice, and make use of some
world knowledge, such as the fact that the codename of James Bond is 007.

The work of Atallah et al. (2002) used semantic transformations and aimed to output
alternatives by modifying the text-meaning representation (TMR) tree of a cover sen-
tence. The modifications include pruning, grafting, or substituting the tree structure
with information available from ontology resources. A linguistic ontology is a for-
mal knowledge representation of the world; a conceptualization of entities, events, and
their relationships in an abstract way. For example, Figure 2.2 taken from Atallah et al.
(2002) shows parts of the ontological semantics for Afghanistan that are structured in
a tree-like hierarchy.2 An ontology provides concepts that are used to define propo-
sitions in TMR. TMR of a natural language expression can show information such as
clause relationship, author attitude, topic composition, and so on. It is constructed
through mapping lexical items and events that are referred in the expression to their
ontology concepts. Figure 2.3(a) shows the TMR of the sentence “the United States
are attacking Afghanistan”. A modification of the tree can be performed by grafting
additional semantic information of Afghanistan as shown in Figure 2.3(b), yielding the
alternative sentence “the United States are attacking Afghanistan, which is ruled by
Mullah Mohamme Omar”. Vybornova and Macq (2007) also exploited the linguistic

2Afghanistan was ruled by Mullah Mohammed Omar at the time of Atallah et al. (2002).
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Afghanistan (nation)
borders-on China, Iran, Pakistan, Tajikistan, Uzbekistan
has-currency afghani
has-member Pashtun, Tajik, Hazara, Uzbek
has-representative Mullah Mohammad Omar

Figure 2.2: Parts of the ontological semantics for Afghanistan

assault–|–agent–nation–“United States”
|–theme–nation–“Afghanistan”

(a)

assault–|–agent–nation–“United States”
|–theme–nation–“Afghanistan”–|–has-representative–politician–“Mullah Mohammad Omar”

(b)

Figure 2.3: An example of the TMR tree modification taken from Atallah et al. (2002)

phenomenon of presupposition, with the idea that some presuppositional information
can be removed without changing the meaning of a sentence.

Another group of studies aims to use machine translated sentences as the alternatives.
The main advantage of using machine translated text is that translations are seldom
perfect, and therefore it is hard to determine whether the anomalies are introduced by
a translation system or due to the camouflage of secret information.

The first translation-based stegosystem was proposed by Grothoff et al. (2005). In
their method, the sender uses a set of machine translation systems to generate multiple
translations for a given cover sentence. Stutsman et al. (2006) also utilised multiple
translation systems to output alternatives for a cover sentence. Since Grothoff et al.
(2005) and Stutsman et al. (2006) used multiple machine translation systems to gener-
ate alternative translations, the selected stego sentences may not have a uniform style
and therefore it is easy to detect the existence of the secret message (Meng et al., 2010;
Chen et al., 2011). Instead of obtaining alternative translations from multiple transla-
tion systems, Meng et al. (2011) and Venugopal et al. (2011) used a statistical machine
translation system to generate the n-best translations for a given cover sentence. Since
translations are from one system, each of them is more similar to the rest than that
derived from another translation system.



34 2.2. ENCODING METHODS

So far I have explained different transformation methods for generating alternatives
for an input text. This procedure is seen as the Linguistic Transformation module in
Figure 2.1. After deriving alternatives for a cover text, the Data Encoding module
maps each alternative to a code that can be used to represent a secret bitstring. In the
next section, I will explain several encoding methods that have been used in existing
stegosystems.

2.2 Encoding methods

In order to demonstrate each encoding method, let me assume the cover sentence is
“we finish the charitable project” and the transformation applied to the text consists
of simply replacing a word with its synonym. The alternatives for the cover text arise
from replacing finish with complete, and replacing project with labour, task or under-
taking. In the following I introduce four encoding methods that assign bitstrings to the
alternative candidates. Note that, as mentioned at the beginning of the Chapter, lin-
guistic transformations are largely independent of the encoding methods and therefore
the encoding methods explained here are not restricted to lexical substitutions. After
encoding the alternatives, the secret can be embedded by selecting alternatives that
directly associate with the secret bitstring.

2.2.1 Block code method

For a set with cardinality n, the block code method assigns m-bit binary codes from
0 to (2m-1) to the elements in the set, where 2m ≤ n. For example, the synonym set
{complete, finish} has cardinality n = 2 so 1-bit binary codes 0 and 1 are assigned
to complete and finish, respectively. Since the synonym set {labour, project, task,
undertaking} has cardinality n = 4, the block code method can use either 1-bit or 2-bit
codes to represent the words as shown in Figure 2.4. When 1-bit codes are used, both
labour and task represent code 0, and both project and undertaking represent code 1;
when 2-bit codes are used, the 4 words are assigned different codes 00, 01, 10 and
11. The advantage of using 1-bit codes is that the cover word project needs to be
replaced with its synonym only 50% of the time, whereas the 2-bit scheme has a 75%
chance of modifying the cover word. However, 1-bit codes embed less information.
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1-bit Word 1-bit 2-bit Word

We 0 complete the charitable 0 00 labour .
1 finish 1 01 project

0 10 task
1 11 undertaking

Figure 2.4: An example of the block code method

Code Word Code Word

We 02 complete the charitable 04 labour .
12 finish 14 project

24 task
34 undertaking

Figure 2.5: An example of the mixed-radix number method

Hence, there is a trade-off between security and payload capacity. It is worth noting
that, in this simple scheme, each block code representation has the same probability of
being chosen, even though native speakers might have a preference for the choice of
synonyms, which would be security-relevant.

2.2.2 Mixed-radix number method

In a mixed-radix number system, the numerical base differs from position to posi-
tion. For example, 8 hours, 41 minutes and 21 seconds can be presented relative
to seconds in mixed-radix notation as: 8(24)41(60)21(60), where each digit is writ-
ten above its associated base. The numerical interpretation of a mixed-radix number
an(bn)an−1(bn−1)...a0(b0) is anbn−1bn−2...b0 + an−1bn−2bn−3...b0 + ... + a1b0 + a0, and
any number can be uniquely expressed in mixed-radix form (Soderstrand et al., 1986).

Figure 2.5 shows the use of the mixed-radix number method with the lexical substitu-
tion example which is described in Bergmair (2004). Firstly, the words in the synsets
{complete, finish} are encoded with 0 and 1 with base 2, and the words in the synset
{labour, project, task, undertaking} are encoded with 0, 1, 2 and 3 with base 4. There-
fore, the combinations of the substitutions yield the 2-digit mixed-radix numbers from
0204 to 1234, which are equal to the decimal numbers 0 to 7. Assume the secret bit-
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Code Word Prob. Code Word Prob.

We 0 complete 0.77 the charitable 110 labour 0.05 .
1 finish 0.23 0 project 0.69

10 task 0.25
111 undertaking 0.01

Figure 2.6: An example of the Huffman code method

string to be embedded is 110 which can be seen as the binary number for six. Since
“we finish the charitable task” represents the mixed-radix number 1224, which is the
decimal number 6, this sentence will be the stego sentence that embeds the secret. Like
the Block code method, each mixed-radix number representation has the same prob-
ability of being chosen, which may cause some security concern. To solve this issue,
one can utilise variable-length code methods described in the next section.

2.2.3 Huffman code method

Figure 2.6 demonstrates the use of variable-length codes, in the form of the Huffman
code (Huffman, 1952), for representing words in a synset. Assuming there are util-
ity rates for each word, then the Huffman algorithm determines a way to produce a
variable-length binary string for each word. More importantly, it does so in such a way
that an optimal encoding is created; that is, words with higher utility rates have shorter
codes while words with lower utility rates get longer codes. Thus, words frequently
used by native speakers are more likely to be chosen by the stegosystem (assuming
utility corresponds to frequency). The process shown in Figure 2.7 begins with leaf
nodes each containing a word along with its associated probability (Figure 2.7a). The
two nodes with the smallest probabilities are then chosen to become the children of
a new node whose probability is the sum of the probabilities of its children (Figure
2.7b). The newly created left and right branches are assigned bit 0 and 1, respectively.
Now only the newly created node is taken into consideration instead of its children.
The procedure is repeated until only one node remains, thereby constructing the Huff-
man tree (Figure 2.7d). To determine the binary code assigned to a particular word, we
start from the root node and gather the bits on the path to the leaf node connected to
that word. In this example we can see that “project” has the highest probability among



CHAPTER 2. BACKGROUND 37

Figure 2.7: The process of constructing a Huffman tree

words in the same synset and is encoded with the shortest code. Thus, it is more likely
to match the secret bitstring.

As described in Section 2.1.2, Wayner (1995) generates stego text by exploiting a
probabilistic context-free grammar. His method creates a Huffman tree for each set of
productions that expand the same non-terminal symbol. In this way, each production
has its own Huffman code representation as shown in Figure 2.8(a). Then, we begin
with a designated start-symbol S, and expand a non-terminal symbol by choosing the
production whose Huffman code representation is identical to the portion of the secret
bitstring. The procedure is repeated until a grammatical message is generated. In
the embedding example given in Figure 2.8(b), the secret bitstring is 1101110 and a
symbol “•” is used to indicate the current bit in reading the string. At the beginning,
the prefix string of the secret message •1101110 is “1” which is associated with the
second production, so the start-symbol S is expanded to AC. Now, the prefix string of
the message 1•101110 becomes “10”. The fourth production is applied, and a string
“You C” is generated. Next, we see the prefix string “1” in the message 101•110, and
therefore, the output string turns into “You won the D”. Finally, the end of the secret
message 1101110• is reached, and a stego sentence “You won the championship” is
generated. Theoretically, the block code representation or the mixed-radix technique
explained in the previous sections can be utilized in Wayner’s stegosystem.
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Rule No. Rule Code Probability

1. S→AB 0 0.3
2. S→AC 1 0.7

3. A→I 0 0.4
4. A→You 10 0.3
5. A→He 110 0.15
6. A→She 111 0.15

7. B→lost 0 0.4
8. B→won 1 0.6

9. C→lost the D 0 0.4
10. C→won the D 1 0.6

11. D→game 0 0.4
12. D→match 10 0.3
13. D→championship 110 0.2
14. D→competition 111 0.1

(a)

Position Prefix Rule Output

•1101110 1 2. AC
1•101110 10 4. You C
110•1110 1 10. You won the D
1101•110 110 13. You won the championship

(b)

Figure 2.8: An example of the Wayner (1995) mimicry method

2.2.4 Hash function method

For the block code method, the mixed-radix number approach and the Huffman code
representation, the encoding process is dependent on knowing all the alternatives (e.g.
the synset). Hence, in order to extract the code assigned to the stego text during the
secret recovery process, all the alternatives must be known to the receiver as well. Note
that the receiver does not need to know the original cover text. However, not all the lin-
guistic transformations can meet this requirement. For example, if the sender encodes
the four best machine translations of the cover sentence using block coding and sends
the translation that encodes the secret bits to the receiver, it is unlikely that the receiver
can retrieve the four best machine translations without knowing the original cover sen-
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tence. Thus, the secret recovery fails. For this reason, Grothoff et al. (2005), Stutsman
et al. (2006), Meng et al. (2011) and Venugopal et al. (2011) used a hash function to
map a translation to a code which is independent of the rest of the alternatives.

Venugopal et al. (2011) defined a random hashing operation that maps a translation to
a bit sequence of fixed length. Venugopal et al. stated that a good hash function should
produce a bitstring whose 0s and 1s are generated with equal probability. Grothoff
et al. (2005) used the least significant bit of a translation hash bitstring as the code
represented by the translation, and therefore the payload capacity is 1 bit per sentence.
Later Stutsman et al. (2006) improved the payload capacity of the hash function en-
coding scheme by introducing a footer (h bits) to indicate that b bits are embedded in a
translation, where h is shared between the sender and the receiver, and b is the integer
represented by the footer bits. The lowest h bits of a translation hash bitstring are the
footer bits and the lowest [h+1, h+b] bits are the code. For example, assume h = 2; a
hash bitstring “...10111” has footer bits 11 to indicate a 3-bit code is carried by this
translation, and the three bits are 101.

The problem of using a hash function is that the generation of a desired bitstring cannot
be guaranteed. For example, in the case where both the two translations happen to have
the least significant bit 1, choosing either of the two translations as the stego sentence
cannot embed a secret bit 0. Therefore, error correction codes must be used in this
protocol when there is no feasible hash code available, which increase the size of the
transmission data.

So far I have introduced different linguistic transformations used to produce alterna-
tives for a cover text as well as some encoding methods that are used to assign a bit-
string to a candidate. The final procedure is Text Selection in which an alternative that
encodes the secret bits is chosen as the stego text. We can see that the quality of a
stego text mainly relies on the quality of the applied linguistic transformation, typi-
cally requiring sophisticated NLP tools and resources to produce a realistic stego text.
However, given the current state-of-the-art, such NLP techniques cannot guarantee the
transformation’s imperceptibility. Hence, it is important to evaluate the security level
of a stegosystem.
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2.3 Stegosystem evaluations

A stegosystem can be evaluated from two aspects: the security level and the embed-
ding capacity. The security assessment methods used so far can be classified into
two categories: automatic evaluation and human evaluation. Topkara et al. (2006b)
and Topkara et al. (2006a) used machine translation evaluation metrics BLEU and
NIST, automatically measuring how close a stego sentence is to the original. Topkara
et al. (2006b) admitted that machine translation evaluation metrics are not sufficient
for evaluating stegosystems; for example, BLEU relies on word sequences in the stego
sentence matching those in the cover sentence, and thus is not suitable for evaluating
transformations that change the word order significantly.

The other widely adopted evaluation method is based on human judgements. Meral
et al. (2007), Kim (2008), Kim (2009) and Meral et al. (2009) asked subjects to edit
stegotext for improving intelligibility and style. The fewer edit-hits a transformed text
received, the higher the reported security level. Murphy and Vogel (2007b) and Mur-
phy and Vogel (2007a) first asked subjects to rate the acceptability (in terms of plau-
sibility, grammaticality and style) of the stego sentences on a seven-point scale. Then
subjects were provided with the originals and asked to judge to what extent meaning
was preserved on a seven-point scale. Chang and Clark (2010a) asked subjects to judge
whether a paraphrased sentence is grammatical and whether the paraphrasing retains
the meaning of the original.

For the work presented in this thesis, I use human judgements to evaluate the proposed
stegosystem, as this is close to the linguistic steganography scenario defined in Sec-
tion 1.3 where I assume the adversary is a human acting passively. I asked subjects
to judge the naturalness of a given sentence rather than linguistic acceptability and
meaning preservation of the cover text. As explained in Section 1.2, only the stego text
is observed by the adversary so it does not matter whether the stego text preserves the
meaning of the cover text as long as the stego text is reasonable and meaningful. For
example, changing a cover sentence “I like cats” to a stego sentence “I like dogs” does
not preserve the original meaning, but since “I like dogs” is just as natural as “I like
cats”, it should not draw the adversary’s attention. In addition, I do not evaluate the
linguistic acceptability of a stego sentence because it is possible that a sentence often
used by native English speakers is ungrammatical, for example “long time no see”.
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Therefore, throughout the thesis, I use “naturalness” as the main criterion along with
some examples as the guideline for human evaluations.

The other aspect of the stegosystem evaluation is to calculate the amount of data ca-
pable of being embedded in a stego text, which can be quantified in terms of bits per
language unit, for example per word or per sentence. Payload measurements can be
theoretical or empirical. The theoretical payload measurement only depends on an en-
coding method and is independent to the quality of a stego text; whereas the empirical
measurement takes the applicability of a linguistic transformation, namely the security
of a stego text, into consideration and measures the payload capacity while a certain
security level is achieved. Most of the payload rates reported in existing work are based
on empirical measurements.

For the lexical substitution transformation, Topkara et al. (2005) and Topkara et al.
(2006c) achieved an average embedding payload of 0.67 bits per sentence, despite
the large number of synonyms in English. The payload attained by syntactic trans-
formations was around 0.5 to 1.0 bits per sentence. For example, both Atallah et al.
(2001) and Topkara et al. (2006b) achieved an embedding payload of 0.5 bits per sen-
tence, and Meral et al. (2009) reported the data embedding rate of their system as 0.81
bits per sentence. Since the ontological semantic transformation is currently imprac-
tical, the empirical payload is not available. Another semantic method (Vybornova
and Macq, 2007) that aims at modifying presuppositional information in text achieved
a payload of 1 bit per sentence through the use of a secret key to indicate sentences
with or without presupposition information. Stutsman et al. (2006) showed that their
translation-based stegosystem has a payload of 0.33 bits per sentence.

Not only the linguistic transformation and the encoding method, but also the choice of
cover text can affect the security level and the payload capacity of a stegosystem. For
example, if a newspaper article were chosen as the cover text, then any changes could
be easily found in practice by comparing the stego text with the original article, which
is likely to be readily available. In addition, an anomaly introduced by a linguistic
transformation may be more noticeable in a newspaper article than in a blog article. In
terms of payload capacity, a synonym substitution-based stegosystem may find more
words that can be substituted in a fairy tale than in a medical paper since there are
usually many terms in a medical paper which cannot be changed or even cannot be
found in a standard dictionary. To the best of my knowledge, there is no study on the
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practical issue of using different types of cover text for the steganography application.

In this thesis, I indirectly evaluated the security levels of my three stegosystems by
measuring the precision and recall of the proposed transformation checkers. The pre-
cision of a linguistic checker implies the security level of a stegosystem since the more
natural the passed alternatives are, the less suspicious the stego text is likely to be. In
contrast, the recall of a checker implies the system’s payload capacity since the more
sentences that pass the check, the more information carriers the stegosystem can use,
and therefore, the more data can be embedded in the text. For each stegosystem, I
demonstrate the trade-off between the security and payload using precision and recall
diagrams so readers can observe the embedding rates at different security levels.



Chapter 3

Lexical substitution

In this chapter I introduce my first linguistic stegosystem based on lexical substitu-
tion.1 In the original work on linguistic steganography in the late 1990s, Winstein
(1999) proposed an information hiding algorithm using a block coding method to en-
code synonyms, so that the selection of a word from a synset directly associates with
part of the secret bitstring. An example of Winstein’s system can be found in Fig-
ure 2.4 in the previous chapter. In his system, a sender and a receiver share the same
coded synonym dictionary as the secret key. To recover the hidden message, the re-
ceiver first seeks words in the stego text which can be found in the shared dictionary.
Those words are information carriers, and therefore the codes assigned to them are
secret bitstrings. Note that the receiver does not need the original cover text to recover
the secret message.

One of the problems faced by a synonym-based stegosystem is that many words are
polysemous, having more than one sense, and this may cause ambiguities during the
secret recovery stage. In WordNet a synset contains words expressing a similar con-
cept, and a word may appear in more than one synset. For example, both marry and
wed appear in the two synsets in Table 2.1. Figure 3.1 shows what happens when the
block coding method is applied to the two overlapping synsets, assuming the stego
sentence received by the receiver is “the minister will wed us on Sunday”. Note that
I only take single word substitution into consideration in order to avoid the confusion
of finding information carriers during the secret recovering phase. For example, if the

1Most of the content in this chapter was published in Chang and Clark (2010b).
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Synset 1 Synset 2
Word Code Word Code

conjoin 00 marry 00
espouse 01 splice 01
marry 10 tie 10
wed 11 wed 11

Figure 3.1: An example of decoding ambiguity using lexical substitution

cover word espouse is replaced by hook up with, the receiver would not know whether
the secret message is embedded in the word hook or the phrase hook up with. After
deleting multi-word synonyms, words in the two synsets are sorted alphabetically and
assigned 2-bit codes. As can be seen in Figure 3.1, marry is represented by two dif-
ferent codewords and thus the secret bitstring cannot be reliably recovered, since the
receiver does not know the original cover word or the sense of the word.

In order to solve the problem of words appearing in more than one synonym set,
Winstein defines interchangeable words as words that are always synonyms to each
other even under different meanings (i.e. always appear together in the same synsets).
For example, marry and wed are interchangeable words under Winstein’s definition.
The advantage in this approach is that interchangeable words always receive the same
codeword. The disadvantage is that many synonyms need to be discarded in order to
achieve this property. Winstein reported that only 30% of words in WordNet are inter-
changeable words. In addition, as explained in Section 2.1.1, many synonyms are only
applicable in certain contexts. However, in Winstein’s steganography scheme there is
no method to filter out unacceptable substitutions, so the generated stego text may be
unnatural and arouse suspicion in others.

Another synonym substitution-based stegosystem was proposed by Bolshakov (2004),
who applies transitive closure to overlapping synsets to avoid the decoding ambigu-
ity. Applying transitive closure leads to a merger of all the overlapping synsets into
one set which is then seen as the synset of a target word. Consider the overlapping
synsets in Figure 3.1 as an example. After applying transitive closure, the resulting
set is {conjoin, espouse, marry, splice, tie, wed}. The disadvantage of Bolshakov’s
system is that all words in a synonym transitive closure chain need to be considered,
which can lead to very large sets of synonyms, many of which are not synonymous
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with the original target word. For this reason, Bolshakov used a collocation-based test
to remove unsuitable words after merging the synsets. Finally, the collocationally ver-
ified synonyms are encoded using the block coding method. Note that in Bolshakov’s
system it is possible to replace an original word with a non-synonymous word if the
non-synonymous word passes the collocation-based test.

Similar to Bolshakov’s method, my approach takes words in a synonym transitive clo-
sure chain into consideration and assigns a score to each word using the proposed sub-
stitution checker. A score threshold is applied to eliminate low-score words; that is, the
remaining words are those in the synonym transitive closure chain that are acceptable
to the context. More details of the proposed substitution checker will be described later
in the chapter. I then construct a synonym graph which has a vertex for each remain-
ing word and an undirected edge for every pair of words that share the same meaning.
After constructing the synonym graph, I use a novel coding method based on vertex
colouring to assign codes to every word in the graph.

A crucial difference from Bolshakov’s method is that in my approach the sender only
considers words that are synonymous with the cover word as alternatives, even though
the other words in the synonym graph can also fit into the context. The reason for also
including non-synonymous words during the encoding is because the receiver does
not know the cover word and, therefore, I need a method to ensure that the receiver is
encoding the same list of words, namely the same synonym graph, as the sender during
the secret recovery. In other words, the sender and the receiver must derive the same
synonym graph given that the sender knows the cover word and the receiver knows the
stego word.

Figure 3.2(a) shows a synonym graph constructed from a synonym transitive closure
chain which contains six synsets: {bind, tie}, {tie, draw}, {tie, wed, splice, marry},
{marry, wed, espouse, conjoin}, {conjoin, join}, {join, link, unite, connect}. Assume
the cover word is conjoin. In Bolshakov’s system, there is a chance of replacing conjoin
with draw which is three steps away from the original word in the graph; while in my
method I only consider a cover word’s synonyms as alternatives, that is, conjoin is only
allowed to be replaced by wed, espouse, marry or join. Note that I have not applied the
substitution check in this example.

Now let me apply the substitution check to words in the synonym transitive closure
chain, and suppose join and marry do not pass the check. Figure 3.2(b) shows the
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(a) An unchecked synonym graph

(b) Synonym graphs derived after substitution checking

(c) Another example of checked synonym graphs

Figure 3.2: Synonym graphs with and without the substitution check

two disconnected synonym graphs G1 and G2 derived from the checked pool. The two
synonym graphs are then encoded independently. In other words, the encoding of G1

does not affect the codes assigned to the words in G2. Since conjoin is the cover word,
the system may replace conjoin with either wed or espouse, or keep the original word
depending on the encoding of G1 and the secret bits. Assume wed is chosen as the stego
word. In order to work out the embedded message, the receiver needs to construct and
encode the same graphs as that generated by the sender. The decoding process starts
from extracting the synonym transitive closure chain of wed, and then applying the
substitution checker to the pool to filter out unacceptable words. Since the remaining
words are the same as those used by the sender, the receiver can successfully extract
the secret bits after constructing and encoding the synonym graphs.
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Since the proposed substitution checker measures the acceptability of a word according
to the context, the synonym graph for a target word varies depending on its context.
Let us consider another case where the cover word is still conjoin, but this time the
substitution checker determines that conjoin, espouse and marry are not acceptable to
the context. Figure 3.2(c) shows the corresponding synonym graphs of the remaining
words. In this case, the applicable alternatives are either wed or join since they are
synonyms of conjoin. As mentioned previously, disconnected graphs are encoded in-
dependently. Therefore, it is possible that both wed and join are assigned the same
codeword which does not match the secret bits. If neither of the synonyms can be used
as the stego word, the sender will keep the original word and send conjoin to the re-
ceiver. During the decoding process, the receiver should be able to know that conjoin
fails the check and thus does not carry any message. In contrast, if wed and join are
encoded by different codewords, say 0 and 1, respectively, the system can choose the
one that represents the secret bit as the stego word.

The following sections are organised so that the basic substitution checker using the
Google n-gram corpus (Brants and Franz, 2006) is described first. Then I introduce the
α-skew divergence measure (Lee, 1999) that can be combined with the basic n-gram
method. The proposed checkers are evaluated using data from the SemEval lexical
substitution task (McCarthy and Navigli, 2007), which is independent of the steganog-
raphy application. I also perform a more direct evaluation of the imperceptibility for
the steganography application by asking human judges to evaluate the naturalness
of sentences. After explaining the linguistic transformation module in my stegosys-
tem, I proceed with the data encoding module and present the vertex colouring coding
method. Finally I use an example to demonstrate the complete stegosystem.

3.1 Substitution Checkers

The aim of the proposed checkers is to filter out inapplicable substitutes given the origi-
nal word in context. The substitution checkers can work not only with the proposed lin-
guistic stegosystem, but can also be integrated into other synonym substitution-based
applications to certify the transformation quality.
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3.1.1 N-gram count method

The basic checking method, referred to as NGM, utilises the Google n-gram corpus
to calculate a substitution score for a candidate word in context. The Google n-gram
corpus was collected by Google Research for statistical language modelling, and has
been used for many tasks such as spelling correction (Carlson et al., 2008; Islam and
Inkpen, 2009), multi-word expression classification (Kummerfeld and Curran, 2008)
and lexical disambiguation (Bergsma et al., 2009). It contains frequency counts for n-
grams from uni-grams through to five-grams obtained from over 1 trillion word tokens
of English Web text. Only n-grams appearing more than 40 times were kept in the
corpus.

The checking method first extracts contextual bi- to five-grams around the word to be
tested and uses tools of Minnen et al. (2001) for correcting the form of an indefinite
and a verb’s tense. For example, if the word to be tested is maverick and it is going to
replace unorthodox in the phrase “the help of an unorthodox speech therapist named
Lionel”, the indefinite an will be corrected as a when extracting contextual n-grams.
As another example, assume the word to be replaced is bleach in the original phrase
“he might be bleaching his skin”, then a verb substitute decolour will be corrected as
decolouring since the original word is in the progressive tense.

After extracting contextual bi- to five-grams, the checking method queries the n-gram
frequency counts from the Google n-gram corpus. For each n, the total count fn is
calculated by summing up individual n-gram frequencies, for every contextual n-gram
containing the candidate word. I define a count function Count(w) =

∑5
n=2 log(fn)

where log(0) is defined as zero. If Count(w)=0, I assume the word w is unrelated to the
context and therefore is eliminated from the synonym transitive closure chain. After
calculating Count(w) for each word in the pool, the word that has the highest count
is called the most likely word, and its count is referred as maxcount. The main purpose
of having maxcount is to score each word relative to the most likely substitute in the
chain, so even in less frequent contexts which lead to smaller frequency counts, the
score of each word can still indicate the degree of feasibility. I also need to use the
most likely word, rather than the original cover word, since the receiver does not have
access to the cover text when applying the check. The most likely word in the context
may be the original word or another word in the synonym transitive closure chain. The
substitution score is defined as ScoreNGM(w) = Count(w)

maxcount
. The hypothesis is that a word



CHAPTER 3. LEXICAL SUBSTITUTION 49

n-gram frequency fn

was clever 40,726 f2 = 302,492
clever and 261,766
He was clever 1,798 f3 = 8,072
was clever and 6,188
clever and independent 86
He was clever and 343 f4 = 343
was clever and independent 0
clever and independent and 0
He was clever and independent 0 f5 = 0
was clever and independent and 0
clever and independent and proud 0
Count(clever) = log(f2) + log(f3) + log(f4) + log(f5) = 28
ScoreNGM(clever) = Count(clever)

maxcount
= 0.93 > threshold(0.9)

Figure 3.3: An example of the proposed NGM method

with a high score is more suitable for the context, and I apply a threshold so that words
having a score lower than the threshold are discarded.

Figure 3.3 demonstrates an example of calculating the substitution score for the candi-
date word clever which is going to replace bright in the cover sentence “he was bright
and independent and proud.” First of all, various contextual n-grams are extracted
from the sentence and the Google n-gram corpus is consulted to obtain their frequency
counts. Count(clever) is then calculated using the n-gram frequencies. Suppose the
threshold is 0.9, and the maxcount is 30 from the synonym transitive closure chain. The
substitution score ScoreNGM(clever) is 0.93, and so the word clever is determined as
acceptable for this context and is kept in the pool.

One disadvantage of using n-gram statistics is that high-frequency n-grams may dom-
inate the substitution score, especially lower-order n-grams. For example, even is not
a good substitute for eve in the sentence “on the eve of the wedding, Miranda tells
Mr. Big that marriage ruins everything”, but it still has a reasonably high score of 0.74
since the bi-grams “the even” and “even of” have high frequency counts compared
with those of the four-grams and five-grams. As a way of overcoming this problem, I
take the n-gram distributional similarity between a most likely word and a candidate
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substitute in context into consideration using alpha-skew divergence as explained in
the next section. I assume that an acceptable substitute should have a similar n-gram
distribution to the most likely word across the various n-gram counts.

3.1.2 Contextual α-skew divergence

The α-skew divergence is a non-symmetric measure of the difference between two
probability distributions P and Q. Typically P represents the observations, in my case
the n-gram count distribution of the most likely word, and Q represents a model, in my
case the candidate’s distribution. The α-skew divergence measure is defined as:

Sα(Q,P ) = D(P‖α·Q+ (1− α)·P ),

where 0 ≤ α ≤ 1 and D is the Kullback-Leibler divergence (Kullback, 1959):

D(P‖Q) =
∑
v

P (v) log
P (v)

Q(v)

The α parameter is for avoiding the problem of zero probabilities, and in my method I
use α=0.99. The value of the α-skew divergence measure is zero if the two probabil-
ity distributions are identical and increases positively as the distributions become less
similar.

I will use the example in Figure 3.4 to demonstrate how to calculate the contextual
divergence between the most likely word bright and a substitute clever. First I cal-
culate the n-gram frequency distributions of both words. I divide each n-gram fre-
quency by the total frequency to get Cni as shown in Figure 3.4, where i means the
ith n-gram; e.g. C32 is the second tri-gram. For a word, Cni should sum up to 1
(over all n, i). Then I can derive the α-skew divergence of these two distributions,
which is 0.014 in my example. Similar to the NGM method, I define a score func-
tion ScoreDVG(w) = 1 − Sα(

−→w ,
−−−−−−−−−−−−−−→
the most likely word)

maxdivergence
, where −→w and

−−−−−−−−−−−−−−→
the most likely word

are the probability distributions of n-gram counts of the target substitute and the most
likely word, respectively, and maxdivergence is the maximum divergence between the
most likely word and another word in the synonym transitive closure chain. In this
example, maxdivergence is 0.15 and the derived ScoreDVG(clever) is 0.91. The reason

to calculate Sα(
−→w ,
−−−−−−−−−−−−−−→
the most likely word)

maxdivergence
is to spread the divergence score between 0 and 1.
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C21 C22 C31 C32 C33 C41 C42 C43 C51 C52 C53

bright 0.081 0.892 0.002 0.024 0.0002 0 0 0 0 0 0
clever 0.130 0.843 0.006 0.020 0.0002 0.001 0 0 0 0 0

Sα(clever,bright) =
∑

n

∑
iC

bright
ni · log(

Cbright
ni

αCclever
ni +(1−α)Cbright

ni
) = 0.014

ScoreDVG(clever) = 1− 0.014
0.15

= 0.91

Figure 3.4: An example of the proposed DVG method

Note that the higher the divergence Sα(−→w ,
−−−−−−−−−−−−−−→
the most likely word) is, the lower the score

ScoreDVG(w). Finally I combine the distributional similarity with the NGM method, re-
ferred as NGM DVG method, by modifying the score function as follows:

ScoreNGM DVG(w) = λ·ScoreNGM(w) + (1− λ)·ScoreDVG(w),

where 0 ≤ λ ≤ 1. The value of λ decides the weight of ScoreNGM(w) and ScoreDVG(w),
and is an empirical parameter.

Both NGM and NGM DVG assign a score to a word according to the context and the
most likely word in the group. In order to evaluate the performance of the proposed
scoring methods, I apply my approaches to a ranking task that requires a system to
rank a list of candidate words given an original word and its context. The task can test
whether the proposed methods are capable of assigning higher scores to appropriate
substitutes than to unacceptable ones, and thus is useful for the steganography applica-
tion. The gold standard data is derived from the English Lexical Substitution task for
SemEval-2007 (McCarthy and Navigli, 2007) and the the evaluation measure used is
Generalised Average Precision (Kishida, 2005).

3.2 Ranking task evaluation

The ranking task gives a system a list of substitute words and the original word to be
replaced in context. A system then ranks the candidate list so that ideally appropriate
substitutes rank higher than words that are not acceptable to the context. In this section
I first describe the gold standard data used in this evaluation and then provide the
experiment results. I compare my results with two other models developed by Erk and
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Sentence Substitutes

He was bright and independent and proud. intelligent(3), clever(3)
The roses have grown out of control, wild and carefree,
their bright blooming faces turned to bathe in the early
autumn sun.

colourful(2), brilliant(1),
gleam(1), luminous(1)

Table 3.1: Two sentences in the SemEval-2007 lexical substitution gold standard

Padó (2010) and Dinu and Lapata (2010), both of which are designed for measuring
word meaning similarity in context.

3.2.1 Data

For this evaluation, I use the SemEval-2007 lexical substitution dataset as the gold
standard. The original purpose of the dataset is to develop systems that can automat-
ically find feasible substitutes given a target word in context. The human annotation
data comprises 2,010 sentences selected from English Internet Corpus (Sharoff, 2006),
and consists of 201 target words: nouns, verbs, adjectives and adverbs each with ten
sentences containing that word. The five annotators were asked to provide up to three
substitutes for a target word in the context of a sentence, and were permitted to consult
a dictionary or thesaurus of their choosing. After filtering out annotation sentences
where the target word is part of a proper name and for which annotators could not
think of a good substitute, the data was separated into 298 trial sentences and 1,696
test sentences. Table 3.1 illustrates two examples from the gold standard, both featur-
ing the target word bright. The right column lists appropriate substitutes of bright in
each context, and the numbers in parentheses indicate the number of annotators who
provided that substitute.

To allow comparison with previous results reported on the substitution ranking task,
following Erk and Padó (2010) and Dinu and Lapata (2010), I pool together the posi-
tive substitutes for each target word, considering all contexts, and rank the substitutes
using my scoring methods. For instance, assume in the gold standard there are only two
sentences containing the target word bright as shown in Table 3.1. I merge all the sub-
stitutes of bright given by the annotators and derive a large candidate pool {intelligent,
clever, colourful, brilliant, gleam, luminous}. I expect intelligent and clever to be
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ranked at the top of the list for the first sentence, with colourful, brilliant, gleam and
luminous ranked at the top for the second sentence.

3.2.2 Experiments and results

In the SemEval-2007 lexical substitution task participants were asked to discover pos-
sible replacements of a target word so the evaluation metrics provided are designed
to give credit for each correct guess and do not take the ordering of the guesses into
account. In contrast, in the ranking task a system is already given a fixed pool of sub-
stitutes and is asked to recover the order of the list. Therefore, I use the Generalised
Average Precision (GAP) to evaluate the ranked lists rather than the metrics provided
in the SemEval-2007 lexical substitution task. GAP rewards correctly ranked items
with respect to their gold standard weights while the traditional average precision is
only sensitive to the relative positions of correctly and incorrectly ranked items. Let
G = 〈g1, g2, ..., gm〉 be the list of gold substitutions with weights 〈y1, y2, ..., ym〉 for
a target word in context. In my task, the weight is the frequency of a substitute in
the gold standard. Let S = 〈s1, s2, ..., sn〉 be the system ranked substitute list and
〈x1, x2, ..., xn〉 be the weights associated with them, where m ≤ n and xi = 0 if si is
not in the gold list and G ⊆ S. Then

GAP(S,G) =
1∑m

j=1 I(yj)ȳj

n∑
i=1

I(xi)x̄i and x̄i =
1

i

i∑
k=1

xk

where I(xi) = 1 if xi is larger than zero, zero otherwise; x̄i is the average gold weight
of the first i system ranked items; ȳi is defined analogously.

After experimenting on the trial data, I decided a λ value of 0.6 for the NGM DVG
method. I then applied the proposed NGM and NGM DVG methods to rank pooled
substitutes for each sentence in the test data. Table 3.2 summarises the performances of
my approaches, where mean GAP values are reported on the whole test data as well as
different POS. One can see that the NGM DVG performs better than the NGM system
on the ranking task and achieved a mean GAP of 50.8% on the whole test data. I then
compare my results with that achieved by Erk and Padó (2010) and Dinu and Lapata
(2010). Erk and Padó (2010) developed an exemplar-based model for capturing word
meaning in context, where the meaning of a word in context is represented by a set of
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System test set (%) noun (%) verb (%) adj (%) adv (%)

NGM 49.7 48.5 44.3 53.2 64.7
NGM DVG 50.8 50.9 44.6 53.7 66.2
Dinu and Lapata (2010) 42.9 n/a n/a n/a n/a
Erk and Padó (2010) 38.6 n/a n/a n/a n/a

Table 3.2: GAP values of the ranking task evaluation

exemplar sentences most similar to it. Dinu and Lapata (2010) proposed a vector-space
model which models the meaning of a word as a probability distribution over a set of
latent senses. The best mean GAP values reported by Erk and Padó (2010) and Dinu
and Lapata (2010) are 38.6% and 42.9% on the test data, respectively. According to
Table 3.2, it seems to be easier to rank adjective and adverb lists compared to that of
nouns and verbs.

Although the ranking task evaluation gives some indication of how reliable the pro-
posed scoring methods are, for the steganography application I require a system that
can correctly distinguish acceptable substitutes from unacceptable ones. Thus, in the
next section, I conduct a classification task evaluation and observe the performances
of the NGM and NGM DVG methods with different score threshold values.

3.3 Classification task evaluation

The classification task is more related to the steganography application. The task re-
quires a system to determine acceptable substitutes from a group of candidates given
the word to be replaced and its context. Those passed substitutes can then carry differ-
ent codes and be used as stego words. Similar to the previous section, I first describe
the data and then explain the experimental setup and the evaluation results.

3.3.1 Data

I use the sentences in the gold standard of the SemEval-2007 Lexical Substitution
Task as the cover text in my experiments so that the substitutes provided by the an-
notators can be the positive data. Since I only take into consideration the single word
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noun verb adj adv

number of target words 59 54 57 35
number of sentences 570 527 558 349
number of positives 2,343 2,371 2,708 1,269
number of negatives 1,914 1,715 1,868 884

Table 3.3: Statistics of experimental data

substitutions, multi-word substitutes are removed from the positive data. Moreover, I
use WordNet as the source of providing candidate substitutes in my stegosystem, so
if a human-provided substitute does not appear in any synsets of its target word in
WordNet, there is no chance for my stegosystem to replace the target word with the
substitute; therefore, the substitute can be eliminated. Table 3.3 presents the statistics
of the positive data for my experiments.

Apart from positive data, I also need some negative data to test whether my meth-
ods have the ability to filter out bad substitutions. I extract the negative data for my
experiments by first matching positive substitutes of a target word to all the synsets
that contain the target word in WordNet. The synset that includes the most positive
substitutes is used to represent the meaning of the target word. If there is more than
one synset containing the highest number of positives, all of those synsets are taken
into consideration. I then randomly select up to six single-word synonyms other than
positive substitutes from the chosen synset(s) as negative instances of the target word.
Figure 3.5 shows an example of automatically collected negative data from WordNet
given a target word and its positive substitutes. The synset {remainder, balance, resid-
ual, residue, residuum, rest} is selected for negative data collection since it contains
one of the positives while the other synsets do not. I assume the selected synset repre-
sents the meaning of the original word, and those synonyms in the synset which are not
annotated as positives must have a certain degree of mismatch to the context. There-
fore, from this example, balance, residue, residuum and rest are extracted as negatives
to test whether my checking methods can pick out the substitutions not used by a small
number of human annotators from a set of words sharing similar or the same meaning.

In order to examine whether the automatically collected instances are true negatives
and hence form a useful test set, a sample of automatically generated negatives was se-
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Figure 3.5: An example of automatically collecting negative data

noun verb adj adv

number of true negatives 234 201 228 98
number of false negatives 9 20 28 16

Table 3.4: Annotation results for negative data

lected for human evaluation. For each POS, one sentence of each different target word
was selected, which results in roughly 13% of the collected negative data, and every
negative substitute of the selected sentences was judged by my supervisor, a native
English speaker. As can be seen from the annotation results shown in Table 3.4, most
of the instances are true negatives, and only a few cases are incorrectly chosen as false
negatives. Since the main purpose of the data set is to test whether the proposed check-
ing methods can guard against inappropriate lexical substitutions and be integrated in
the stegosystem, it is reasonable to have a few false negatives in my experimental data.
Also, it is less harmful to rule out a permissible substitution than including an inap-
propriate replacement for a stegosystem in terms of the security. Table 3.3 gives the
statistics of the automatically collected negative data for my experiments.
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System classification = T System classification = F
Gold standard label = T Tp Fn

Gold standard label = F Fp Tn

Table 3.5: Definition of Tp,Tn,Fp and Fn

3.3.2 Experiments and results

I evaluate the classification performances of the NGM system and the NGM DVG sys-
tem in terms of accuracy, precision and recall. Accuracy is the percentage of correct
classification decisions over all acceptable and unacceptable substitutes; precision is
the percentage of system accepted substitutes being human-provided; recall is the per-
centage of human-provided substitutes being accepted by the system. Accuracy is less
important for the steganography application, and the reasons for using precision and
recall were explained in Section 1.4: a higher precision value implies a better security
level, and a larger recall value means a greater payload capacity. Accuracy, precision
and recall are defined as follows:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
Precision =

Tp
Tp + Fp

Recall =
Tp

Tp + Fn
,

where the definitions of true positive (Tp), true negative (Tn), false positive (Fp) and
false negative (Fn) are illustrated in Table 3.5. It is worth noting that although there will
be a decrease in recall if more false negatives are obtained from a system, there will
not be a negative effect on the value of precision. That is, from a security perspective,
it would be harmless if a system rejects an acceptable substitute since this will not drop
the security level, but it will lower the payload capacity.

Both the NGM system and the NGM DVG system require a threshold to decide whether
a word is acceptable in context. In order to derive sensible threshold values for each
POS, 5-fold cross validation was used for the experiments. For each fold, 80% of
the data is used to find the threshold value which maximises the accuracy, and that
threshold is then applied to the remaining 20% to get the final result.

I first test whether the proposed methods would benefit from using only longer n-
grams. I compare the performance of different combinations of n-gram counts, which
are frequency counts of bi- to five-grams, tri- to five-grams, four- to five-grams and
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NGM NGM DVG
POS Acc (%) Pre (%) Rec (%) Threshold Acc (%) Pre (%) Rec (%) Threshold

noun 70.2 70.0 80.2 0.58 68.1 66.5 67.3 0.70
verb 68.1 69.7 79.5 0.56 64.8 65.7 66.7 0.70
adj 72.5 72.7 85.7 0.48 70.2 68.8 77.7 0.63
adv 73.7 76.4 80.1 0.54 68.0 66.4 75.9 0.63

Table 3.6: Performance of the NGM and NGM DVG systems on the classification task

five-grams only. The results show that for both methods the accuracy, precision and
recall values drop when using fewer n-grams. In other words, among the four combina-
tions, the one including bi-gram to five-gram frequency counts performs the best across
different POS and, therefore, is adopted in the NGM system and the NGM DVG sys-
tem. Table 3.6 gives the results for the two checking methods and the average threshold
values over the five folds. In contrast to the results of the ranking task evaluation, this
time the NGM system slightly outperforms the NGM DVG system. Since impercep-
tibility is an important issue for steganography, I would prefer a system with a higher
precision value. Thus I adopt the NGM method as the linguistic transformation checker
in my lexical substitution-based stegosystem.

In order to have a rough idea why the NGM DVG system is not effective on the clas-
sification task, I examine some of the false positives of the NGM DVG system which
have been correctly classified as unacceptable by the NGM system. The qualitative
evaluation suggests that the major reason for the NGM DVG method getting such
false positives is because the most unlikely word of a substitution group has a very
different n-gram count distribution to the most likely word, which leads to a larger
maxdivergence for that substitution group, and therefore, an unacceptable substitute w in
that group may have a higher ScoreDVG(w). This situation usually happens when most
of the n-grams of the most unlikely word cannot be found in the Google n-gram cor-
pus. For example, in the experiment data {luminous, clear, light, brilliant, burnished,
shining, vivid, hopeful, lustrous} is the substitution group for the target word bright
in the sentence “The actual field is not much different than that of a 40mm, only it is
smaller and quite a bit noticeably brighter, which is probably the main benefit” where
luminous, clear and light are acceptable to the context. For this substitution group
the maxdivergence is derived from bright and lustrous since lustrous only has a non-zero
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Figure 3.6: The performance of the NGM method under various thresholds

n-gram count for the bi-gram “lustrous ,” while most of the contextual n-grams of
bright can be found in the Google n-gram corpus. This maxdivergence leads to three false
positives shining, vivid and hopeful determined by the NGM DVG method.

In addition, I am interested in the effect of the threshold value on the performance of the
NGM method. Figure 3.6 shows the precision and recall values with respect to different
thresholds for each POS. From the charts one can clearly see the trade-off between
precision and recall. Although a higher precision can be achieved by using a higher
threshold value — for example noun substitutions reach almost 90% precision with
threshold equal to 0.9 — the large drop in recall means many applicable substitutes are
being eliminated. In other words, the trade-off between precision and recall implies the
trade-off between imperceptibility and payload capacity for linguistic steganography.
Therefore, the practical threshold setting would depend on how steganography users
want to trade off imperceptibility for payload.

So far I have presented the performance of my checking methods using two different
automatic evaluations, the ranking task and the classification task. From the ranking
task evaluation one can see that the n-gram distributional similarity does have the abil-
ity to further eliminate some bad substitutes after applying the basic n-gram method.
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However, when facing the classification task, which is more related to the steganog-
raphy application, I find that the checking method simply based on counts from the
Google n-gram corpus is hard to beat. In addition, from the results of different order
n-gram combinations I can conclude that the more information I include in the check-
ing method, namely using all counts from bi- to five-grams, the better the performance.
This is similar to the conclusion given by Bergsma et al. (2009): it is not only important
to use the largest possible corpus, but to get maximum information from the corpus.
Apart from the automatic evaluations, in the next section I will describe a more direct
evaluation of the imperceptibility for the steganography application by asking human
judges to evaluate the naturalness of sentences.

3.4 Human evaluation

I want to test how reliable the proposed NGM method is if it is used in a lexical
substitution-based stegosystem to guard against inappropriate substitutions. Thus, I
conducted a human evaluation of sentence naturalness. In the following sections, I
explain the evaluation data first and then describe the evaluation setup and results.

3.4.1 Data

I collected a total of 60 sentences from Robert Peston’s BBC blog.2 For each noun,
verb, adjective and adverb in a sentence, I first group the target word’s synset(s) in
WordNet and apply the NGM method with a score threshold equal to 0.95 to eliminate
bad substitutes. If more than one substitute passes the check, the one with the lowest
score is used to replace the original word. The reason for choosing the word with the
lowest score is because this makes the test more challenging. This process is applied to
a sentence where possible and results in around two changes being made per sentence.

I also generated another version of a sentence changed by random choice of a target
word and random choice of a substitute from a target word’s synset(s) (in order to
provide a baseline comparison). The number of changes made to a sentence using this

2http://www.bbc.co.uk/news/correspondents/robertpeston (last verified in June 2013).
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Version Sentence

COVER Apart from anything else, big companies have the size and muscle
to derive gains by forcing their suppliers to cut prices (as shown by
the furore highlighted in yesterday’s Telegraph over Serco’s demand
- now withdrawn - for a 2.5% rebate from its suppliers); smaller busi-
nesses lower down the food chain simply don’t have that opportunity.

SYSTEM Apart from anything else, large companies have the size and muscle
to derive gains by pushing their suppliers to cut prices (as evidenced
by the furore highlighted in yesterday’s Telegraph over Serco’s need
- now withdrawn - for a 2.5% rebate from its suppliers); smaller busi-
nesses lower down the food chain simply don’t have that opportunity.

RANDOM Apart from anything else, self-aggrandising companies have the size
and muscle to derive gains by forcing their suppliers to foreshorten
prices (as shown by the furore highlighted in yesterday’s Telegraph
over Serco’s demand - now withdrawn - for a 2.5% rebate from its
suppliers); smaller businesses lower down the food chain simply don’t
birth that chance.

Table 3.7: Different versions of a cover sentence

random method is the same as that in the version generated by the NGM method. In
this way, it is fair to compare the qualities of the two modified versions since both of
them receive the same number of substitutions. Table 3.7 shows lexical substituted
sentences generated by my method and by the random method. One can see that my
system replaces four words (in bold) in the original sentence so the same number of
words (in bold) are randomly selected when applying the random method. Note that
the random method just happens to pick the word big in the original sentence which
is also replaced by my system. I refer to an original sentence as COVER, a version
generated by my method as SYSTEM and a version modified by the random method
as RANDOM.
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s1, s2, . . . , s20 s21, s22, . . . , s40 s41, s42, . . . , s60

Group 1 COVER SYSTEM RANDOM
Group 2 RANDOM COVER SYSTEM
Group 3 SYSTEM RANDOM COVER

Table 3.8: Latin square design with three groups of judges

3.4.2 Evaluation setup and results

The experimental setup follows a Latin square design (Kirk, 2012) with three groups
of 10 native English speakers as shown in Table 3.8. In this table, each row represents a
set of annotation sentences for a group of judges, and one can see that each sentence is
presented in three different conditions: COVER, SYSTEM and RANDOM, as shown
in a column. Subjects in the same group receive the 60 sentences under the same
set of conditions, and each subject sees each sentence only once in one of the three
conditions. The annotation process is web-based. At the beginning of the annotation
task, I describe the aim of the annotation as shown in Figure 3.7. Subjects are asked
to rate the naturalness of each sentence on a scale from 1 to 4 with score 1 meaning
Poor English and score 4 meaning Perfect English. Each judgement score is explained
followed by an example sentence. Figure 3.8 shows a screen capture of an annotation
example presented to a subject.

The annotation results show that my judges gave an average score 3.67 out of 4 for
the original sentences; 3.33 for the sentences checked by the NGM system; and 2.82
for the randomly changed sentences. I measure the significance level of my annotation
results using the Wilcoxon signed-rank test (Wilcoxon, 1945). The test statistic shows
that the differences between the three versions (original, system changed and randomly
changed) are highly significant (p < 0.01). The payload capacity for this level of
imperceptibility is around 2 information carriers per sentence and each information
carrier guarantees to encode at least 1 bit. These results show that my stegosystem
achieves better payload capacity than existing lexical substitution-based stegosystems
which have achieved 0.67 bits per sentence (Topkara et al., 2005, 2006c). In addition,
in terms of security, the results suggest that with the proposed checking method, the
quality of stego sentences is improved compared to the random substitution baseline,
and a certain security level is achieved so the changes are not likely to be spotted.
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Figure 3.7: The introduction and guidelines for the lexical substitution annotation

As described at the beginning of this chapter, the proposed stegosystem extends the
original synset by adding words in a synonym transitive closure chain while retaining
the synonymous relationships between words using a synonym graph representation.
The NGM checker effectively controls the size of a synonym graph according to the
context. After constructing the graph, namely obtaining all the good alternatives for
a cover word, the data encoding module needs to assign codes to every word in the
graph. In the next section, I explain the encoding method used in my stegosystem
which is based on vertex colouring.
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Figure 3.8: A screen capture of the lexical substitution annotation

3.5 Vertex colouring coding method

A vertex colouring (Gould, 1988) is a labelling of a graph’s vertices with colours sub-
ject to the condition that no two adjacent vertices share the same colour. The smallest
number of colours required to colour a graph G is called its chromatic number χ(G),
and a graph G having chromatic number χ(G) = k is called a k-chromatic graph.
The aim of the proposed coding method is to convert an input synonym graph into a
coloured k-chromatic graph so that each node, namely word, is encoded by the code
that represents the colour. Figure 3.9 shows the coloured 4-chromatic synonym graph
of the two joint synsets from Figure 3.1, and the four colours are represented by four
block codes 00, 01, 10 and 11. Now, the problematic word marry receives a unique
codeword no matter which synset is considered, which means the secret recovery will
not encounter an ambiguity since the receiver can apply the same coding method to
derive identical codewords used by the sender.
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Figure 3.9: Encoding two joint synsets using the vertex colouring coding method

(a) χ(G) = 2 (b) χ(G) = 3

(c) χ(G) = 4

Figure 3.10: Examples of coded 2,3,4-chromatic synonym graphs

99.6% of synsets in WordNet have size less than 8, which means most of the synsets
cannot exhaust more than a 2-bit coding space (i.e. one can only encode at most 2
bits using a typical synset). Therefore, I restrict the chromatic number of a synonym
graph G to 1 < χ(G) ≤ 4, which implies the maximum size of a synset is 4. When
χ(G) = 2, each vertex is assigned a single-bit codeword, either 0 or 1, as shown in
Figure 3.10(a). When χ(G) = 3, the overlapping set’s size is either 2 or 3, which
cannot exhaust the 2-bit coding space although codewords 00, 01 and 10 are initially
assigned to each vertex. Therefore, only the most significant bits are used to represent
the synonyms, which I call codeword reduction. After codeword reduction, if a vertex
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has the same codeword, say 0, as all of its neighbours, the vertex’s codeword must be
changed to 1 so that the vertex would be able to accommodate either secret bit 0 or 1,
which I call codeword correction. Figure 3.10(b) shows an example of the process of
codeword reduction and codeword correction for χ(G) = 3. For the case of χ(G) = 4,
codeword reduction is applied to those vertices that have no access to all the codewords
00, 01, 10 and 11. For example, vertices a, b, c, e and f in Figure 3.10(c) meet the
requirement of needing codeword reduction. The codeword correction process is then
further applied to vertex f to rectify its accessibility.

Figure 3.11 describes a greedy algorithm for constructing a coded synonym graph
using at most 4 colours, given n substitutes w1, w2,. . . , wn in an input synonym graph.
Let us define a function E(wi, wj) which returns an edge between wi and wj if wi and
wj are in the same synset; otherwise returns false. Another function C(wi) returns
the colour of the word wi. The procedure loops through all the input substitutes. For
each iteration, the procedure first finds available colours for the substitute word wi.
If there is no colour available, namely all the four colours have already been given
to wi’s neighbours, wi is randomly assigned one of the four colours; otherwise, wi is
assigned one of the available colours. After adding wi to the graph G, the procedure
checks whether adding an edge of wi to graph G would violate the vertex colouring.
After constructing the coloured graph, codeword reduction and codeword correction
as previously described are applied to revise improper codewords.

3.6 Proposed lexical stegosystem

Figure 3.12 illustrates the framework of my lexical substitution-based stegosystem.
Note that I have preprocessed WordNet by excluding multi-word synonyms and single-
entry synsets. Table 3.9 shows the statistics of synsets used in my stegosystem. A
possible information carrier is first found in the cover sentence. I define a possible
information carrier as a word in the cover sentence that belongs to at least one synset
in my processed WordNet. Starting from the cover word’s synset, all words in the
synonym transitive closure chain are examined by the NGM method. A synonym
graph(s) is then built based on the remaining words. Next, I assign codes to each
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INPUT: words w1, w2,. . . , wn in a synonym graph G and an empty graph Gcoded

OUTPUT: a coded synonym graph Gcoded using at most four colours

FOR every word wi in G, initialize four colours as available for wi
FOR every wj in graph Gcoded

IF E(wi, wj) THEN
set C(wj) as unavailable

END IF
END FOR
IF there is a colour available THEN

A randomiser assigns one of the available colours to wi
ELSE

A randomiser assigns one of the four colours to wi
END IF
ADD wi to graph Gcoded

FOR every wj in graph Gcoded

IF E(wi, wj) and C(wi) is not equal to C(wj) THEN
ADD edge E(wi, wj) to Gcoded

END IF
END FOR

END FOR
codeword reduction
codeword correction
OUTPUT graph Gcoded

Figure 3.11: Constructing a coloured synonym graph

word in the synonym graph(s). During the data encoding procedure, if words in the
synonym graph all belong to the same synset, the block coding method is used to
encode the words; otherwise the vertex colouring coding is applied to the synonym
graph. Finally, according to the secret bitstring, the system selects a substitute that is
synonymous with the cover word and has as its codeword the longest potential match
with the secret bitstring.
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Figure 3.12: Framework of the proposed lexical substitution-based stegosystem

noun verb adjective adverb

number of synsets 16,079 4,529 6,655 964
number of words 30,933 6,495 14,151 2,025
average synset size 2.56 2.79 2.72 2.51
max synset size 25 16 21 8

Table 3.9: Statistics of synsets used in the stegosystem

Repeating a comment made earlier, I use the transitive closure chain of WordNet con-
taining the target word as a simple method to ensure that both sender and receiver
encode the same graph. It is important to note, however, that the sender only considers
the synonyms of the target word as potential substitutes; the transitive closure chain is
only used to consistently assign the codes.

For the decoding process, the receiver does not need the original text for extracting se-
cret data. An information carrier can be found in the stegotext by referring to WordNet
in which related synonyms are extracted. Those words in the related sets undergo the
NGM checking method, and the words passing the check form a synonym graph(s).
The synonym graph(s) are encoded by either block coding or the vertex colouring cod-
ing scheme depending on whether the remaining words are in the same synset. Finally,
the secret bitstring is implicit in the codeword of the information carrier and therefore
can be extracted.

I demonstrate how to embed secret bit 1 in the sentence “it is a shame that I could
not reach the next stage.” A possible information carrier shame is first found in the
sentence. Table 3.10 lists the synsets in the synonym transitive closure chain extracted
from WordNet. The score of each word calculated by the NGM method is given in
parentheses. For the purpose of demonstrating the use of vertex colouring coding,
I select a low threshold score of 0.27. The output of the synonym graph is shown
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cover sentence: It is a shame that we could not reach the next stage.

{pity (0.97), shame (1.0)}
{shame (1.0), disgrace (0.84), ignominy (0.24)}
{commiseration (0.28), pity (0.97), ruth (0.13), pathos (0.31)}
{compassion (0.49), pity (0.97)}
{condolence (0.27), commiseration (0.28)}
{compassion (0.49), compassionateness (0)}
{pathos (0.31), poignancy (0.31)}
{poignance (0.12), poignancy (0.31)}

Table 3.10: Synsets of shame in the synonym transitive closure chain with substitution
scores

in Figure 3.13(a). Since the remaining words do not belong to the same synset, the
vertex colouring coding method is then used to encode the words. Figure 3.13(b)
shows the coded synonym graph in which each vertex is assigned one of the four
colours; Figure 3.13(c) is the graph after applying codeword reduction. Although both
disgrace and pity are encoded by 1, pity is chosen to replace the cover word since it
has a higher score. Finally, the stegotext is generated, “it is a pity that we could not
reach the next stage.” As explained previously, even if a cover word does not pass the
NGM check, the proposed stegosystem can still use its synonyms to embed secret bits.
For example, assume the cover sentence is “it is a ignominy that we could not reach
the next stage”. The same coded synonym graph as Figure 3.13(c) will be constructed
since both the context and the synonym transitive closure chain are the same as that in
the original example. This time, the replacement of shame represents secret bit 0, and
the replacement of disgrace represents secret bit 1. In other words, a change must be
made in order to embed a secret bit in this case.

In Section 1.3 I explained Kerckhoffs’s principle for designing cryptosystems (Ker-
ckhoffs, 1883) where the security of a cryptosystem only depends on the secrecy of
the key and any private randomizer shared between the sender and receiver. In the pro-
posed steganography scheme, the secret key is the score threshold in the NGM method,
and the private randomiser is the one that assigns colours in the proposed vertex colour-
ing coding methods. The score threshold decides the size of a synonym graph, while
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the randomiser controls the encoding of a synonym graph. To extract the secret mes-
sage, the enemy needs to generate the same coded synonym graphs as constructed by
the sender. Therefore, it is difficult to recover the secret bits without knowing the score
threshold and the colour randomiser.

One of the contributions of this work is to develop a novel lexical substitution-based
stegosystem using vertex colouring coding which improves the data embedding capac-
ity compared to existing systems. The vertex colouring coding method represents syn-
onym substitution as a synonym graph so the relations between words can be clearly
observed. In addition, the NGM method, an automatic system for checking synonym
acceptability in context, is integrated in my stegosystem to ensure information secu-
rity. The proposed stegosystem was automatically evaluated by the gold standard from
the SemEval2007 lexical substitution task as well as a human evaluation. From the
evaluation results I may conclude that my substitution-based stegosystem has achieved
a reasonable level of security while reaching the payload capacity of around 2 bits per
sentence. In the next chapter, I will explain my second stegosystem which exploits
unnecessary adjectives in text.



CHAPTER 3. LEXICAL SUBSTITUTION 71

(a) The synonym graph of the synsets in Table 3.10

(b) Coded synonym graph using four colours

(c) Coded synonym graph after codeword reduction

Figure 3.13: Synonym graphs generated by the proposed stegosystem
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Chapter 4

Adjective deletion

In this chapter I introduce my second linguistic stegosystem based on adjective dele-
tion.1 As explained previously, in order to make steganographic encoding difficult to
detect, the changes to a cover medium due to the embedding of secret information
must be imperceptible. From an information theoretical point of view, this means that
the changes must be made to the redundant parts of a cover medium which are not
required for the cover signal. In linguistic steganography, the cover medium is text,
and the cover signal is the meaning conveyed by the text. Therefore, my intuition of
this work is to develop a system that can automatically determine words in text that are
unnecessary for forming a natural meaningful sentence.

I have identified adjectives as a potentially large source of redundancy in text, in the
sense that adjectives can often be removed without significantly affecting the natural-
ness of the resulting text. For example, “he spent only his own money” and “he spent
only his money” are both natural and meaningful sentences. In the extreme case, there
are adjective-noun pairs in which the adjective is somewhat redundant, for example
unfair prejudice, horrible crime and fragile glass. Therefore, I explore the identifica-
tion of redundant adjectives in context for the applications of linguistic steganography.
In addition, I apply the adjective deletion technique to another cryptographic method
called secret sharing (Blakley, 1979; Shamir, 1979) which aims at distributing a se-
cret among a group of people so that the secret can only be recovered when a sufficient
number of secret pieces are combined together. I propose a novel linguistic secret shar-

1The content in this chapter was published as Chang and Clark (2012a).
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Sentence Grammatical relations

He is affluent rich. (ncmod richJJ affluentJJ)
(xcomp isVBZ richJJ)
(ncsubj isVBZ HePRP )

This is a small beer festival. (ncmod festivalNN beerNN)
(ncmod festivalNN smallJJ)
(det festivalNN aDT)
(xcomp isVBZ festivalNN)
(ncsubj isVBZ ThisDT )

We own a nice house. (ncmod houseNN niceJJ)
(det houseNN aDT)
(dobj ownVBP houseNN)
(ncsubj ownVBP WePRP )

det: the relation between a noun and its determiner.
dobj: the relation between a predicate and its direct object.
ncmod: the relation between a non-clausal modifier and its head.
ncsubj: the relation between a non-clausal subject and its verbal heads.
xcomp: the relation between a head and an unsaturated VP complement.

Table 4.1: Examples of different grammatical relations

ing method where a secret is distributed among and camouflaged in two comparable
texts using the adjective deletion technique. These two texts can then be combined to
reveal the secret bitstring; but neither text by itself can reveal the bitstring. Hence the
proposed method is a novel combination of secret sharing and linguistic steganography.

Before explaining the proposed adjective deletion checkers, let me define the adjectives
I focus on. First, I only consider an adjective if it modifies a noun according to the
grammatical relation (GR) (Williams, 1984) derived from a parser, and the adjective is
immediately in front of the noun in the sentence. Grammatical relations are shallow
semantic representations of relationships between words in a sentence. For example,
Table 4.1 shows the GRs for some example sentences derived by the Clark and Curran
(2007) parser along with brief explanations of those relations. A full list of GRs and
their usage can be found in Briscoe (2006). I am interested in the ncmod relation since
it indicates the relationship between a modifier and an argument. One can see that in
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Sentence Those awaiting execution spent their last days alone .
Supertags before deletion NP[nb]/N N/N N (S[dcl]\NP)/NP NP[nb]/N N/N N NP\NP .
Supertags after deletion NP[nb]/N N/N N (S[dcl]\NP)/NP NP[nb]/N N NP\NP .

Sentence We met in UK last time .
Supertags before deletion NP S[dcl]\NP ((S\NP)\(S\NP))/NP N

((S\NP)\(S\NP))/((S\NP)\(S\NP)) (S\NP)\(S\NP) .
Supertags after deletion NP S[dcl]\NP ((S\NP)\(S\NP))/NP N/N N .

Table 4.2: Comparing supertags before and after adjective deletion

the first example sentence, the adjective affluent modifies rich; however, rich is also
an adjective so this is not the case I am looking for. In the second example sentence,
although the adjective small modifies the noun festival, they are not next to each other
in the sentence and therefore do not qualify either. The third example sentence has
a ncmod relation indicating that the adjective nice modifies the noun house and the
words are next to each other so this is a case that I consider.

The second restriction is that a target adjective must pass a grammaticality check. I use
the syntactic filter proposed in my earlier paper (Chang and Clark, 2010a) to prevent an
ungrammatical adjective deletion. In my original work of Chang and Clark (2010a),
the syntactic filter exploits the Clark and Curran (2007) CCG parser to analyse sen-
tences before and after text paraphrasing in order to eliminate ungrammatical transfor-
mations. Combinatory Categorial Grammar (CCG) is a lexicalised grammar formalism,
in which CCG lexical categories, also called supertags — typically expressing subcat-
egorisation information — are assigned to each word in a sentence. The grammatical
check works by checking if the words in the sentence outside of the phrase and para-
phrase receive the same supertags before and after paraphrasing. If there is any change
in supertag assignment to these words then the paraphrase is judged ungrammatical.

For my application, I observe whether there is an inconsistency in the supertags as-
signed to words other than the target adjective in a sentence before and after removing
the target adjective. If an adjective deletion does not change the supertags of the other
words, the deletion is seen as grammatical. Table 4.2 shows two adjective deletion ex-
amples where both instances of last meet my adjective-noun pair requirement.2 How-
ever, only the first deletion case passes the grammaticality check since all the supertags

2There is a parse error in the first sentence, but it does not affect the supertag comparison.
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remain the same after deleting last; while in the second example, both UK and time’s
supertags are changed after the deletion. Therefore, the instance of last in the sentence
“those awaiting execution spent their last days alone” passes the grammaticality check
and is the target adjective I am interested in.

The syntactic filter is at the word, rather than derivation, level; however, CCG lexical
categories contain a large amount of syntactic information which this method is able to
exploit. This grammaticality check is only a preliminary check and does not guarantee
sentence fluency. Therefore, in the following sections, I propose two methods for
checking the acceptability of adjective deletions in noun phrases. The first method
uses the Google n-gram corpus to check the fluency of the remaining context after an
adjective is removed. The second method trains an SVM model using n-gram counts
and other measures to classify deletable and undeletable adjectives in context. Both
methods are evaluated against human judgements of sentence naturalness; therefore,
the results give some indication of the security level of an adjective deletion-based
stegosystem that uses my deletion checkers to certify the transformation quality. I
then demonstrate that the adjective deletion technique can be combined with a coding
method proposed in Chang and Clark (2010a). In addition, I explain the proposed
secret sharing scheme based on adjective deletion.

4.1 Adjective deletion checkers

In this section, I propose two methods for determining deletable adjectives. A deletable
adjective is defined as one where the removal of the adjective does not affect the natu-
ralness of the resulting sentence; that is, the generated sentence must be grammatical
and semantically meaningful. Note that the generated sentence does not necessarily
convey the same or similar meaning as the original, since in this work I only consider
the sentence-level naturalness rather than the coherence of the whole document. As for
the lexical substitution, I use tools of Minnen et al. (2001) for correcting the form of
an indefinite after removing a target adjective. For example, the indefinite a is changed
to an after removing little in the sentence “UVA Radiation has a little effect on skin
damage”.
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4.1.1 N-gram count method

My first adjective deletion checker is similar to that proposed in the previous chap-
ter using the Google n-gram corpus to calculate a deletion score for an adjective in
context. The score is based on the n-gram counts before and after a potential dele-
tion, as demonstrated in Figure 4.1, and a score threshold is used to prevent a low-
score deletion, namely an unacceptable case. For the example in Figure 4.1 I first
extract contextual bi- to five-grams containing the target adjective alternative as well
as that across the target position with alternative removed. In this example there are
14 before-deletion n-grams and 10 after-deletion n-grams. The Google n-gram cor-
pus is then consulted to obtain their frequency counts. I sum up all the logarithmic
counts3 for the original and modified cases. The reason for using the logarithm count
is that lower-order n-grams usually have much larger counts than higher-order n-grams
so taking the logarithm may prevent the sum being dominated by lower-order n-gram
counts. Since different numbers of n-grams are extracted before and after the adjective
removal, I divide the sum by the number of extracted n-grams and call the derived
average value the Countdeletion. Finally, I use a Scoredeletion function which is equal to
CountAfter

deletion

CountBefore
deletion

to measure how much the CountBefore
deletion changes after deleting the target adjec-

tive alternative. In this example the Scoredeletion for deleting alternative in this context
is equal to 1.4 and will be determined as acceptable by a threshold with value below
1.4.

Some n-grams may be more informative than others when deciding whether an adjec-
tive can be deleted. Therefore, in the next section I propose a machine learning method
that combines the n-gram counts and other numerical measures to train a Support Vec-
tor Machine (SVM) classifier (Cortes and Vapnik, 1995; Hearst et al., 1998) which has
been successfully applied to different classification problems with numeric data.

3log(0) and division by zero are taken to be zero.
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There is always an alternative choice in a mental situation.

N-grams before the deletion (log freq) N-grams after the deletion (log freq)
an alternative (15.5) a choice (15.2)
alternative choice (9.8) always a choice (8.8)
always an alternative (7.9) a choice in (11.3)
an alternative choice (9) is always a choice (8.3)
alternative choice in (6.2) always a choice in (5.5)
is always an alternative (7.4) a choice in a (7.6)
always an alternative choice (0) There is always a choice (7)
an alternative choice in (5.5) is always a choice in (4.3)
alternative choice in a (0) always a choice in a (0)
There is always an alternative (6) a choice in a mental (0)
is always an alternative choice (0)
always an alternative choice in (0)
an alternative choice in a (0)
alternative choice in a mental (0)
CountBefore

deletion = 4.8 CountAfter
deletion = 6.8

Scoredeletion = CountAfter
deletion

CountBefore
deletion

= 1.4

Figure 4.1: An example of the Google n-gram count method for checking adjective
deletion in context

4.1.2 SVM method

Support vector machines (SVMs) are supervised learning models capable of solving
linear and non-linear classification and regression problems and have been applied to
many NLP problems, such as text categorization (Joachims, 1998; Leopold and Kin-
dermann, 2002) and syntactic/semantic dependency structure analysis (Kudo and Mat-
sumoto, 2000; Bohnet, 2009). The basic SVM takes n training data points of the form
(xi, yi), where xi is a d dimensional vector (a list of d numerical features), yi ∈ −1, 1

indicating one of the two classes to which the point xi belongs, and i = 1 . . . n. The
SVM then constructs a (d-1)-dimensional hyperplane that has the largest distance to
the nearest training data point of any class — the maximum-margin hyperplane —
which divides the points having yi = 1 on the one side and having yi = −1 on the
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Figure 4.2: Three different hyperplanes in a 2-dimensional space

other. In other words, the goal of a basic SVM is to find a hyperplane such that the
two classes are divided linearly by a margin that is as wide as possible. Figure 4.2
shows three different hyperplanes in a 2-dimensional space. In this Figure, H1 does
not separate the two classes; both H2 and H3 successfully divide the two classes, but
H3 has the maximum margin and therefore will be used in a trained SVM model to
predict the class of a new data point.

There are cases where an SVM cannot find a suitable hyperplane to separate the
training data points. In this situation, an SVM can map the data points to a higher-
dimensional space using a non-linear kernel function. In this way, an appropriate linear
separating hyperplane may be found in the higher-dimensional space; that is, the hy-
perplane is non-linear in the original data space. The commonly used kernel functions
include polynomial function, Gaussian radial basis function and sigmoid function.

I use the LIBSVM (Chang and Lin, 2011) implementation of SVMs with the default
Gaussian radial basis function (RBF) kernel for classifying deletable adjectives. In
this SVM, there are two parameters, the misclassification penalty parameter C and
the kernel parameter γ. In order to identify what C and γ values are suitable for
my problem, I use the model selection (parameter search) tool grid.py provided from
LIBSVM to determine the best (C, γ). The grid-search tool tries various pairs of (C,
γ), the values of which are exponentially growing sequences (e.g. C = 2−5, 2−3, ...,
215; γ = 2−15, 2−13, ..., 23), and then selects the (C, γ) pair that achieves the best
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cross-validation accuracy on the training data. Using the cross-validation procedure
can prevent the problem of training data over fitting.

In addition, I exploit the probability estimate implementation in LIBSVM which is
originally proposed by Platt (1999), and train the SVM model to output a posterior
class probability P (y = 1|x) instead of a definite prediction. Platt (1999) proposes
approximating the posterior by fitting a sigmoid function to all estimated f(xi) and
derives probabilities of the form:

P (y = 1|x) ≈ PA,B(f) ≡ 1

1 + exp(Af +B)

where f = f(x) and the best parameter setting (A,B) is determined by minimizing
the negative log-likelihood of the training data:

min
A,B

−
n∑
i=1

(
yi + 1

2
log(pi) + (1− yi + 1

2
)log(1− pi)),where pi = PA,B(fi).

In this way, I can control the confidence of the deletable adjective prediction using a
probability threshold. In other words, the probability threshold will affect the adjective
deletion quality and is closely related to the security level of the proposed stegosystem.

As explained previously, an SVM uses a hyperplane to classify data points. In my
case, a data point is an adjective deletion case. Thus, I need to represent an adjective
deletion as a vector of numerical features. In the next section, I describe the different
features used in my SVM method.

4.2 Features for the SVM

For representing an adjective deletion case, I exploit features including contextual n-
gram counts found in the Google n-gram corpus, lexical association measures, adjective-
noun modification entropies and contextual α-skew divergence. Each of these features
is explained individually in the following sections.

4.2.1 N-gram counts

The first set of features consists of logarithmic contextual bi- to five-gram counts.
Before the deletion, there are 14 contextual windows; after the deletion, there are 10
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contextual windows as shown in Figure 4.1. If a target adjective has less than four
context words on either sides, there will be contextual windows that span beyond the
current sentence. In this situation, the counts of those unavailable windows are set to
zero. For each contextual window I provide an additional boolean feature to indicate
whether a window is available.

The second set of features consists of 5 score values. The first score is the Scoredeletion

function described in Section 4.1.1. The second to the fifth scores are the scores cal-
culated by only considering a specific window size n, where n = 2 to 5, using the same
method as for the Scoredeletion function. For instance, if I only use bi-gram counts to cal-
culate the deletion score of the example in Figure 4.1, Countn=2

Before is 12.7 and Countn=2
After

is 15.2 and thus, Scoren=2
deletion is 1.2. Again, each score is provided with an additional

boolean feature to indicate whether the CountBefore
deletion is equal to zero. There are a total

of 58 features contributed from the n-gram counts.

4.2.2 Lexical association measures

In addition to n-gram features, I exploit some standard lexical association measures
to determine the degree of association between an adjective and a noun. Pointwise
Mutual Information (PMI) (Church and Hanks, 1990) is roughly a measure of how
much one word tells us about the other and is defined as:

I(x, y) = log
p(x, y)

p(x)p(y)

In my case, x is an adjective and y is the noun modified by the adjective. In order to
calculate PMI, I need the joint frequency of the noun-adjective pair, the frequency of
the noun modified by any adjective and the frequency of the adjective modifying any
noun.

I collect adjective-noun pairs and their frequency counts from grammatical relations
(GRs). The GRs I use are derived by parsing a Wikipedia dump (dated October 2007)
with Clark and Curran (2007)’s CCG parser. I first consider GRs having the pattern
(ncmod noun adjective) and extract the (adjective, noun) pair. Next I extract pairs
that match patterns (xcomp be adjective) and (ncsubj be noun ) in a sentence. For
instance, the GRs of the sentence “The car is red” are (det car the) (xcomp be red)
and (ncsubj be car ), and since car and red match the two patterns, (red, car) is seen
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as an eligible pair for my database. A total of 63,896,006 adjective-noun pairs are
extracted from the parsed Wikipedia corpus which includes 832,320 noun types and
792,914 adjective types.

One problem with PMI is that it is sensitive to data sparseness. In particular, the
level of association between words can be greatly over-estimated with PMI when the
words are rare. Therefore, I also use the log likelihood ratio (LLR), an alternative
to PMI, which is reported to handle rare events better (Dunning, 1993; Manning and
Schütze, 1999). Again, the contingency table for computing LLR can be derived from
the parsed Wikipedia corpus described above. In the study of collocation extraction,
both high PMI and LLR values are treated as evidence that the collocation components
occur together more often than by chance. In this research, I use PMI and LLR as
numerical features in the SVM.

4.2.3 Noun and adjective entropy

Entropy (Manning and Schütze, 1999) is a measure of surprise or unpredictability.
The entropy H of a discrete random variable X with possible values {x1, x2, . . . , xn} is
defined as:

H(X) = −
n∑
i=0

p(xi)log p(xi)

where p(xi) is the probability of outcome xi. Suppose one observes a noun N1 as being
modified by adjective J1 five times, J2 twice and J3 three times. The modifier entropy
of N1 is H(N1) = −((0.5 log 0.5) + (0.2 log 0.2) + (0.3 log 0.3)) = 1.5. Now suppose
there is a noun N2 modified by J4 nine times and J5 once. The modifier entropy of
N2 is H(N2) = −((0.9 log 0.9) + (0.1 log 0.1)) = 0.5. Thus one can conclude that
the modifier of N1 is more unpredictable than that of N2. Similarly, I calculate an
adjective’s argument entropy based on the entropy of the noun given a fixed adjective.

I also observe the modification frequency of a noun using the parsed Wikipedia cor-
pus described in Section 4.2.2. From the corpus, I obtain the frequency of a noun
being modified by any adjective (modadj), the frequency of a noun being modified
by something other than an adjective (modother), and the frequency of a noun not
being modified at all (modnon). The modification entropy of a noun is defined as:
M(N) = −(p(modadj) log p(modadj) + p(modnon) log p(modnon)). Note that p(modother)
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Figure 4.3: N-gram count distributions before and after deleting joint

is not included in the definition of M(N) since I want to focus on the adjectival modifi-
cation of a noun. Modifier entropy, argument entropy, modification entropy as well as
the modification probabilities p(modadj), p(modother) and p(modnon) are used as features
for the SVM.

4.2.4 Contextual α-skew divergence

Another feature included in the SVM is the contextual n-gram divergence between the
original text and the generated text after removing the target adjective. I assume that
if an adjective in a noun phrase is deletable, the noun should have a similar n-gram
distribution to the original adjective-noun phrase across various n-gram counts. Fig-
ure 4.3 shows the logarithmic n-gram counts of joint collaboration and collaboration
being in the same context of the sentence “the task force will be a joint collaboration
between the cities of Sterling Heights and Warren.” In this example sentence, joint is
determined as deletable. One can see that the counts have similar distributions before
and after the deletion.

I use α-skew divergence (Lee, 1999) to calculate the n-gram distributional similarity
between the original and the modified sentences. A brief introduction to the α-skew
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divergence can be found in Section 3.1.2. Under my assumption, a deletable adjective
would have a smaller effect on the n-gram count distribution after deletion than an
undeletable adjective and, therefore, a deletable adjective would have a smaller diver-
gence value.

So far I have described the 67 features used to form a data point to represent an adjec-
tive deletion in the SVM. As suggested by Hsu et al. (2010), I scale feature values to
the range [-1, +1]. However, I still need the class of each data point, namely deletable
or undeletable, so the SVM can construct the maximum-margin hyperplane to separate
the two classes during training. In the next section, I describe the collection of two
labelled corpora for training, developing and testing the SVM classifier. In addition,
the data is also used to test the proposed n-gram count method.

4.3 Adjective deletion data

I collected two labelled datasets in order to experiment with and evaluate the proposed
adjective deletion checkers. Both datasets consist of independent sentences, each of
which has an adjective labelled as either deletable or undeletable. Recall that the target
adjective must meet my adjective-noun pair requirement and pass the syntactic filter
as explained earlier. In addition, the adjectives labelled as deletable in the datasets
mean that the removal of the adjective does not affect the naturalness of the resulting
sentence. In contrast, if removing an adjective leads to an awkward sentence, the
adjective is judged as undeletable.

4.3.1 Pilot study data

I first created a small dataset for a preliminary study. In order to experiment with
redundant adjectives in sentences, I collected 90 sentences from the Internet, each of
which contained an adjective-noun pleonasm.4 A pleonasm consists of two concepts
(usually two words) that are mutually redundant: examples are free gift, cold ice or
final end. In other words, pleonasms contain unnecessary words, and those words can
be removed without affecting the meaning of the text.

4A collection of pleonasms can be found at http://www.pleonasms.com (last verified in June 2013).
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Apart from deletable adjectives (positive data), I also need some undeletable adjectives
(negative data) to test whether the n-gram count method and the SVM classifier have
the ability to filter out bad deletions. My supervisor, a native English speaker, manu-
ally selected 76 undeletable adjectives in sentences from the British National Corpus
(BNC)5 as the negative data.

Adjectives in pleonasms can be seen as extreme redundancies in text, and remov-
ing those redundancies would not reduce the level of security in terms of linguistic
steganography. However, pleonasms are not general enough to be found frequently in
text, which diminishes the amount of secret information which can be embedded in the
text. Thus I collect more positive and negative data which are more frequent in text
for training, developing and testing the proposed deletion checkers. This additional set
serves as my main data source (described in the next section), with the pleonasm set
serving as a useful pilot study.

4.3.2 Human annotated data

In order to have a more practical dateset than the pilot study data, I asked 30 native
English speakers to judge whether a target adjective can be removed without affecting
the naturalness of the rest of the sentence. The annotation was designed as web-based.
At the beginning of the annotation task, I described the aim of the annotation and my
definition of deletable and undeletable adjectives as follows:

Your task is to judge whether the removal of an adjective in a noun phrase significantly
affects the naturalness of the resulting sentence. You will be shown 60 different sen-
tences, each of which contains an adjective in brackets. Below each sentence, the same
sentence will appear again, but this time with the adjective removed. Please indicate
whether the sentence after the adjective removal looks unnatural or tampered with.

In addition, as part of the annotator instructions, I gave six example annotation sen-
tences along with the judgements and explanations as shown in Table 4.3. After the
introduction, each annotator was then shown 60 different sentences, each of which
contained an adjective in brackets. Below each sentence, the same sentence appeared

5Distributed by Oxford University Computing Services on behalf of the BNC Consortium. URL:
http://www.natcorp.ox.ac.uk (last verified in June 2013).
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Example 1 He was putting on his [heavy] overcoat, asked again casually if he could have
a look at the glass.

Judgement In this case we say that heavy is deletable (YES), since the resulting sentence
after deletion looks entirely natural.

Example 2 We are seeking to find out what [local] people want, because they must own
the work themselves.

Judgement In this case we say that local is deletable (YES), since the resulting sentence
sounds natural even though the meaning is slightly changed.

Example 3 We are just at the beginning of the [worldwide] epidemic and the situation is
still very unstable.

Judgement In this case we say that worldwide is deletable (YES).
Example 4 He asserted that a modern artist should be in tune with his times, careful to

avoid [hackneyed] subjects.
Judgement In this case we say that hackneyed is not deletable (NO), since the meaning of

the resulting sentence after deletion is odd semantically (because hackneyed is
essential to the meaning of the original noun phrase).

Example 5 With various groups suggesting police complicity in township violence, many
blacks will find [little] security in a larger police force.

Judgement In this case we say that little is not deletable (NO), since although the resulting
sentence sounds natural, the sentence as a whole is odd semantically (since the
second clause is somewhat contradictory with respect to the first).

Example 6 There can be [little] doubt that such examples represent the tip of an iceberg.
Judgement In this case we say that little is not deletable (NO), since the phrase “There can

be doubt that” sounds unnatural.

Table 4.3: Judgement examples given to annotators

again, but this time with the adjective removed. Figure 4.4 shows a screen capture of
an annotation example presented to a subject.

The sentences for creating the data were randomly selected from section A of the BNC

other than those that were used as negatives in the pilot study data. I collected 1200
sentences, each of which contains one marked adjective to be annotated. In order to
measure the inter-annotator agreement, 300 of the 1200 sentences were assessed by 3
different judges; the others were labelled only once. I calculated the inter-annotator
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Figure 4.4: A screenshot of the deletable adjective annotation

agreement using Fleiss’ kappa (Fleiss et al., 2003) scored between 0 and 1. Fleiss’
kappa allows different items rated by different individuals with one restriction that
every item receives the same number of assessments; that is, item 1 is judged by an-
notators A, B and C; while item 2 is judged by annotators D, E and F. For the 300
multi-judged instances, the Fleiss’ kappa was 0.49, which can be interpreted as mod-
erate agreement according to Landis and Koch (1977).

The 300 multi-judged instances were labelled using the majority rule and were treated
as the test set; the other 900 instances were randomly split into a 700-instance training
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set and a 200-instance development set. The ratio of the number of deletable adjectives
to the number of undeletable adjectives was around 2:1 for all the datasets.

Since I now know the label of each deletion in the corpus, I can present those cases in
the training set as labelled points to the SVM classifier and find the optimal hyperplane
to separate deletable instances from undeletable ones. The hyperplane is then used to
classify a given point, either deletable or undeletable depending on the new point’s
position in the space. In the next section, I first observe the performance of the n-
gram count method on the pilot study data and the development set using various score
thresholds. Next, I experiment with different SVM classifiers trained using different
features on the development set. Finally, the best-performing SVM is tested on the test
set.

4.4 Experiments and results

The performance on the adjective deletion task is measured using precision and recall
on the positive deletable cases. From a steganography aspect, accuracy is not useful,
while the trade-off between precision and recall is more relevant. A precision base-
line is obtained by always saying an adjective is deletable. The precision baselines
in the pilot study data, development data and test data are 54.2%, 67.0% and 64.0%,
respectively.

4.4.1 Experiments using the n-gram count method

I test the n-gram count method on the pilot study data and the development data. Fig-
ure 4.5(a) and Figure 4.5(b) show the precision and recall curves with respect to dif-
ferent thresholds for the pilot study data and the development data, respectively. For
the pilot study data, the best precision of 72.1% is achieved with a 48.9% recall by
using a threshold equal to 1.05. For the development data, the best precision 84.2%
is achieved using a threshold equal to 1.9. However, the recall value drops to 11.9%
which means many deletable adjectives are being ignored.
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(a) Results on the pilot study data (b) Results on the development data

Figure 4.5: Performance of the n-gram count method

4.4.2 Experiments using the SVM classifier

For the SVM learning approach, I first train models with different features and test
the models on the development data. As mentioned in Section 4.1.2 I train an SVM
to output probability estimation; hence, a probability threshold is needed in order to
determine an acceptable deletion. Figure 4.6(a) and Figure 4.6(b) show the precision
and recall curves of the models with probability thresholds greater than 0.69 and lower
than 0.83 (since these values result in a reasonable precision range). In addition, I
ignore results that have recall values lower than 10% even though a high precision is
achieved. The SVM Ngm model is trained using the 58 features described in Sec-
tion 4.2.1. Its best precision is 85.2% (with a recall greater than 10%) which is similar
to that achieved by using the n-gram count method, but the corresponding recall is
slightly improved to 17.2%. Next I add the two association measures MI and LLR
to the features and train the model Ngm+AM. The best precision of the Ngm+AM
model is 86.7% and the corresponding recall is 19.4%. I then add features by includ-
ing entropies and modification probabilities described in Section 4.2.3 and train the
Ngm+AM+En model. This model achieves 92.3% precision with 17.9% recall. Fi-
nally, the Ngm+AM+En+Div model is trained with the divergence measure added to
the features. The best precision of this model is 94.6% with 26.1% recall when the
probability threshold 0.76 is used. Since the Ngm+AM+En+Div model achieves the
best precision value among all the models, I further evaluate this model using the pilot
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(a) Precision curves of the models (b) Recall curves of the models

Figure 4.6: Performance of SVM models using different features

(a) Results on the pilot study data (b) Results on the test data

Figure 4.7: Performance of the Ngm+AM+En+Div model

study dataset and the test dataset.

Figure 4.7(a) shows the performance of the Ngm+AM+En+Div model on the pilot
study data. With 50% recall on the pilot study data, the SVM model achieves a preci-
sion of 90%, while the n-gram method only achieves 72.1% precision at this level of
recall. One can see that there is a large improvement on classifying deletable adjectives
from undeletable adjectives in the pilot study data compared to both the baseline and
the n-gram count method. Finally, I use the probability threshold 0.76 that gives the
best precision on the development set to evaluate the pilot study data and the test data.
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For the pilot study data, the classifier achieves a precision of 94.7% and a recall of
20%; for the test data, the classifier achieves a precision of 85% and a recall of 26.6%.
Note that a precision of 100% is not necessarily required because the inter-annotator
agreement on the collected human judgements is not 100% and therefore it is not clear
whether the precision upper bound on this task is 100%.

Figure 4.7(b) shows the full range of precision-recall scores using different probability
threshold values on the test data.6 From this figure, one can clearly see the trade-off be-
tween precision and recall, which corresponds to the trade-off between imperceptibility
and payload for the linguistic steganography application. In practice, steganography
users can decide the threshold according to their requirements on the security level
and embedding capacity. In addition, since the cover text can be selected by users, the
payload can be improved by choosing a text containing more adjectives such as fiction
or fairy tales, which might increase the density of deletable adjectives in text.

With the proposed SVM model, I can determine which adjective is deletable in cover
text. Therefore, different versions of a cover text can be generated by removing dif-
ferent adjectives each time, and these alternatives can represent different codewords
depending on the coding method in a stegosystem. In the following sections, I first
demonstrate a stegosystem that uses adjective deletion as the linguistic transformation
and combines the deletion module with the coding method proposed in one of my
earlier papers (Chang and Clark, 2010a). Later, I propose another cryptographic ap-
plication for adjective deletion called secret sharing which distributes a secret bitstring
among two comparable texts, and only when aligning the two texts can the secret be
recovered.

4.5 Adjective deletion-based stegosystem

As explained in Chapter 2, for linguistic steganography there exists a convenient mod-
ularity between the linguistic transformation and the encoding method. In other words,
the utility of a specific encoding method does not imply a particular linguistic trans-
formation, although there might be some constraints on the transformation. In this

6Note that are not optimising for one single score on the test set, e.g. F-score, but showing the full
range of the precision-recall trade-off that corresponds to a security-payload trade-off in the steganog-
raphy setting.
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Segmentation Size
Text Sentences k = 2 k = 3 k = 4 k = 5

Cover s1 sd
2 s3 s4 sd

5 s6 101 11 1 1
Alternative s1 s2 s3 s4 sd

5 s6 001 01 0 1
Alternative s1 sd

2 s3 s4 s5 s6 100 10 1 1
Alternative s1 s2 s3 s4 s5 s6 000 00 0 0

Table 4.4: An example of the Chang and Clark (2010a) segment encoding method

section, I will show that the adjective deletion technique can be integrated into a data
encoding scheme proposed in my earlier paper (Chang and Clark, 2010a).

In Chang and Clark (2010a) we proposed a data encoding method based on text seg-
mentation. The method first divides an n-sentence text into equal-sized segments, each
of which contains k sentences and is called an embedding unit.7 Each segment is then
encoded by a one-bit codeword, namely either 0 or 1, depending on whether a linguis-
tic transformation can be applied to a sentence in that segment; a segment represents
bit 0 if no sentence in the segment can be changed, and bit 1 otherwise. In my case,
an unchangeable segment is one that does not have any deletable adjectives, and a
changeable segment is one that contains at least one deletable adjective.

Table 4.4 shows a cover text consists of six sentences s1, s2, . . . , s6 and three different
versions of the cover text after removing different adjective(s), where a sentence with
a superscript d means the sentence contains a deletable adjective. When k = 2, i.e.
the size of an embedding unit is two sentences, each text represents a three-bit code-
word as shown in the Table. However, there are no texts representing codewords 010,
011, 110 and 111. In other words, when k = 2, this segmentation coding does not
provide sufficient codeword choices for the text selection module, which might lead
to an embedding failure. In contrast, when k = 3, the four possible 2-bit codewords
are individually represented by each of the four texts and, therefore, the text selection
module can have a full range of choices while selecting the stego text. When k = 4
or k = 5, both bit 0 and bit 1 are encoded by at least one text so one secret bit can
be successfully embedded. Note that when k = 4 or k = 5, the last segment does not
contain enough words and is ignored.

7If the last segment has less than k sentences, it is ignored.
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Figure 4.8: Framework of the proposed adjective deletion-based stegosystem

In order to avoid embedding failure, each embedding unit must have the ability to
represent bit 0 and bit 1. In the previous example, when k = 2, the second embedding
unit contains s3 and s4, both of which cannot be modified, and thus always encode
bit 0. To solve this problem, in Chang and Clark (2010a) we define an applicable
segment size k such that, for every k sentences in a cover text, there will be at least one
changeable sentence. In this way, after encoding, all the embedding units in a cover
text represent 1s, and since all the segments are changeable, a full range of bn

k
c-bit

codewords can be encoded by removing different adjective(s).

Figure 4.8 illustrates the framework of the adjective deletion-based stegosystem. Dur-
ing linguistic transformation, the system first finds deletable adjectives in a cover text
using the proposed SVM classifier and generates different versions of the input text
by removing deletable adjectives. Next, a valid segment size is used to define embed-
ding units in each alternative and, according to the existence of deletable adjectives in
the units, a corresponding codeword is assigned to an alternative. Finally, the system
chooses one alternative that represents the secret bits as the stego text.

For the secret recovery, it is important to note that the receiver does not require the
original text. The receiver only needs the segment size to define embedding units in
the stego text and the adjective checking model to see whether there is a deletable
adjective in an embedding unit. Therefore, in the proposed stegosystem the secret
keys shared between the sender and receiver are the segment size k and the probability
threshold used in the adjective deletion checker.

The embedding capacity of the segmentation method relies on the number of change-
able sentences in the cover text. When every sentence in the cover text is changeable,
the stegosystem can have the maximum payload equal to 1 bit per sentence. In ad-
dition, the embedding capacity of the system highly depends on the distribution of
changeable sentences over the cover text. The maximum number of segments, i.e. the
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maximum number of embedding bits, can be derived when the changeable sentences
among the n cover sentences are uniformly distributed.

As an addition to the steganography application, in the next section I propose a novel
linguistic secret sharing scheme based on adjective deletion. The scheme not only
camouflages a secret bitstring in natural language, but also distributes the secret in two
comparable texts.

4.6 Secret sharing scheme based on adjective deletion

Secret sharing (Blakley, 1979; Shamir, 1979) refers to methods for distributing a secret
amongst a group of n people, each of whom is allocated a share of the secret. Individual
shares are of no use on their own; only when any group of t (for threshold) or more
shares are combined together can the secret be reconstructed. Such a system is called
a (t, n)-threshold scheme. For example, a simple (3,3)-threshold scheme for a secret
number s can be achieved by splitting s into three numerical shares s1, s2 and s3 such
that s = s1 + s2 + s3. Note that there is no way to recover the secret number by only
using one or two of the shares; all shares are required for effective recovery.

There are some proposed (t, n)-threshold schemes where t 6= n. For example, Shamir’s
scheme (Shamir, 1979) allows that any t out of n shares may be used to recover the
secret. This scheme relies on the idea that it takes t points to define a polynomial of
degree t-1 (e.g. it takes two points to define a straight line, three points to define a
quadratic, four points to define a cubic curve). The method first randomly creates a
polynomial of degree t-1 with the secret number as the first coefficient. Next each of
the n people is given a distinct point on the curve. Therefore, any t out of the n people
can fit a (t-1)th degree polynomial using their points, where the first coefficient is the
secret. For example, any three of the five points (1, 1494), (2, 1942), (3, 2578), (4,
3402) and (5, 4414) can fit the polynomial of degree two f(x) = 1234 + 166x + 94x2

and reveal the secret as 1234.8 From the above two secret sharing schemes one can see
that the share can be in different forms, such as numbers and points, depending on the
methods used.

I propose a novel secret sharing scheme based on the adjective deletion technique and

8http://en.wikipedia.org/wiki/Shamir’s Secret Sharing (last verified in June 2013).
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text alignment. The secret sharing scheme converts a secret bitstring into two shares,
Share0 and Share1, that are camouflaged in the form of natural language text. Share0

holds secret bits as 0s and Share1 holds secret bits as 1s. The order of the 0s and 1s
can only be reconstructed by aligning the two texts.

Figure 4.9 illustrates an example of the secret sharing scheme. The secret bitstring
is 101. I first give Share0 and Share1 the same text and use the proposed adjective
checking method to determine deletable adjectives in the text. In this example, the
n-gram count method with threshold equal to 1 is applied. The adjectives passing the
check are mysterious, terrible and single, and one deletable adjective will embed a
secret bit. The embedding rule is: to embed a secret bit 0/1, the target adjective is kept
in the share that holds 0s/1s, and is removed from the other share. For example, the
first secret bit is 1 so mysterious is kept in Share1 and is deleted from Share0. Next,
I embed the second secret bit 0 by keeping terrible in Share0 and removing it from
Share1. The third secret bit is 1 so I keep single in Share1 and remove it from Share0.
Now the secret bitstring 101 is converted into two meaningful texts. The reconstruction
of the secret bitstring can be done by aligning the two texts. The alignment will reveal
the positions of the deletable adjectives, which gives the order of the 0s and 1s, and
therefore the secret can be extracted. Note that this scheme does not require either the
original text or the adjective checking model to recover the secret bitstring.

One of the contributions of this work is to explore the identification of deletable adjec-
tives in noun phrases. I proposed two methods for checking the sentence naturalness
after removing an adjective, which were evaluated by human judgements. The results
suggest that the adjective deletion technique is applicable to cryptosystems since the
transformation is able to achieve satisfactory imperceptibility leading to a high security
level. According to my observations from section A of the BNC, on average there are
two deletable adjectives per five sentences. In other words, the payload upper bound
of using the adjective deletion technique is around 0.4 bits per sentence if a deletion
encodes a secret bit.

Another contribution of this chapter is the integration of the adjective deletion tech-
nique into an existing stegosystem and the proposal of a novel secret sharing scheme
based on adjective deletion. An advantage of my proposed system is that it is somewhat
language and domain independent.

Apart from the cryptosystem applications, the proposed adjective checking model can
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also benefit other studies such as sentence compression, text simplification and text
summarisation which usually involve removing unimportant words in a sentence in
order to make the text more concise. For example, Knight and Marcu (2002), Cohn
and Lapata (2008), Filippova and Strube (2008) and Zhu et al. (2010) have used word
deletion operations in their systems. However, to my knowledge, there is no work
looking at redundant adjectives in text in particular. The proposed adjective deletion
methods can be applied before and/or after a sentence compression system. Deleting
unnecessary adjectives before can help the system focus on other content of a sentence.
Deleting unnecessary adjectives after can generate an even more concise sentence.

My first and second stegosystems exploit lexical substitution and adjective deletion,
respectively, for generating alternatives for a cover text. Both of the two manipulations
are word-level transformations. In the next chapter, I will introduce my third stegosys-
tem that generates alternatives by changing word orders in a cover sentence, which
belongs to a sentence-level transformation. As for the previous two stegosystems, I
also propose a word-ordering checker to certify the naturalness of the transformation
when applied to a particular sentence.
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Secret bits: 101 Text: “Have you heard of the mysterious death of your late
boarder Mr. Enoch J. Drebber, of Cleveland?” A terrible change
came over the woman’s face as I asked the question. It was some
seconds before she could get out the single word “Yes” – and
when it did come it was in a husky, unnatural tone.

Embed 1st bit: 1 Share0: “Have you heard of the death of your late boarder Mr.
Enoch J. Drebber, of Cleveland?” A terrible change came over the
woman’s face as I asked the question. It was some seconds before
she could get out the single word “Yes” – and when it did come it
was in a husky, unnatural tone.

Target adj: mysterious

Share1: “Have you heard of the mysterious death of your late
boarder Mr. Enoch J. Drebber, of Cleveland?” A terrible change
came over the woman’s face as I asked the question. It was some
seconds before she could get out the single word “Yes” – and
when it did come it was in a husky, unnatural tone.

Embed 2nd bit: 0 Share0: “Have you heard of the death of your late boarder Mr.
Enoch J. Drebber, of Cleveland?” A terrible change came over the
woman’s face as I asked the question. It was some seconds before
she could get out the single word “Yes” – and when it did come it
was in a husky, unnatural tone.

Target adj: terrible

Share1: “Have you heard of the mysterious death of your late
boarder Mr. Enoch J. Drebber, of Cleveland?” A change came
over the woman’s face as I asked the question. It was some sec-
onds before she could get out the single word “Yes” – and when
it did come it was in a husky, unnatural tone.

Embed 3rd bit: 1 Share0: “Have you heard of the death of your late boarder Mr.
Enoch J. Drebber, of Cleveland?” A terrible change came over the
woman’s face as I asked the question. It was some seconds before
she could get out the word “Yes” – and when it did come it was in a
husky, unnatural tone.

Target adj: single

Share1: “Have you heard of the mysterious death of your late
boarder Mr. Enoch J. Drebber, of Cleveland?” A change came
over the woman’s face as I asked the question. It was some sec-
onds before she could get out the single word “Yes” – and when
it did come it was in a husky, unnatural tone.

Figure 4.9: An example of the secret sharing scheme
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Chapter 5

Word ordering

In this chapter I introduce my third linguistic stegosystem which exploits word or-
dering as the linguistic transformation.1 The motivation of this work is that some
sentences can be paraphrased by simply changing their word order without inserting,
deleting or replacing any words. For example, a cover sentence “there is no asbestos in
our products now” can be paraphrased to another grammatical sentence “in our prod-
ucts there is now no asbestos” using the same words, and the meaning conveyed by the
original sentence is not significantly affected by the word reordering.

In order to discover possible word reordering in a cover sentence, I first turn a cover
sentence into a set of un-ordered words: a bag-of-words. Then, a word ordering realisa-
tion system is used to construct possible sentence permutations from the bag-of-words.
There have been some word ordering realisation systems that take a bag-of-words as
input and automatically generate permutations (Wan et al., 2009; Zhang and Clark,
2011; Zhang et al., 2012). Existing realisation systems used syntax models to cer-
tify the grammaticality of generated sentences. The combination of permutation and
syntactic modelling results in a large search space, which was tackled using heuris-
tic search (Wan et al., 2009; Zhang and Clark, 2011; Zhang et al., 2012). Wan et al.
(2009) use a dependency grammar to model word ordering and apply greedy search to
find the best permutation. Zhang and Clark (2011) use a syntax-based discriminative
model together with best-first search to find the highest scoring permutation plus CCG

derivation. Zhang et al. (2012) is an extension of Zhang and Clark (2011) using online

1The content in this chapter was published as Chang and Clark (2012b).
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Input bag-of-words: asbestos, in, is, no, now, our, products, there, .

Permutations: In our products now there is asbestos.
In our products now there is no asbestos.
No asbestos there is now in our products.
Now in our products there is no asbestos.
Our products there now is no asbestos in.
There is no asbestos in our products now.
There no asbestos in our products is now.
There now is no asbestos in our products.

Table 5.1: Sentence permutations generated by Zhang et al. (2012) system

large-margin training and incorporating a large-scale language model. The above three
realisation systems were evaluated using the generation task of word order recovery,
which is to recover the original word order from an input bag-of-words. The evalua-
tion metric of the generation task is the BLEU score which measures how similar the
generated permutation and the original sentence are. Wan et al. (2009), Zhang and
Clark (2011) and Zhang et al. (2012) reported BLEU scores of 33.7, 40.1 and 43.8,
respectively, on Wall Street Journal newspaper sentences.

In this work, I use the Zhang et al. (2012) system to generate n-best permutations for a
cover sentence, but, in practice, any word ordering realisation system can be integrated
into the proposed word ordering-based stegosystem. Table 5.1 shows eight permuta-
tions generated by the Zhang et al. (2012) system given a bag-of-words {asbestos, in,
is, no, now, our, products, there, .}. Note that it is possible for a generated permutation
to only contain a subset of the input words, which provides more choices for a given
cover sentence. However, dropping words introduces the risk of deleting information
in the cover sentence and may lead to significant incoherence in the resulting text. For
example, the first permutation in Table 5.1 expresses the existence of asbestos in the
products because it excludes the cover word no, which conveys the opposite meaning
of the cover sentence “there is no asbestos in our products now”. Therefore, in the pro-
posed stegosystem, I only use permutations that include all the cover words. Another
reason to only consider full-length permutations is because the proposed stegosystem
relies on the receiver generating the same list of permutations as the sender, in order
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to recover the secret bits. That is, the bag-of-cover-words and the bag-of-stego-words
used by the sender and receiver, respectively, must be identical. If a shortened per-
mutation is selected as the stego sentence, the bag-of-stego-words is different from
the bag-of-cover-words, and thus, the secret recovery will fail. More details of the
proposed word ordering-based stegosystem will be given in Section 5.5.

From Table 5.1 one can see that there are some unnatural sentences generated from the
Zhang et al. (2012) system, e.g. “there no asbestos in our products is now.” and “our
products there now is no asbestos in.” Using an unnatural permutation as the stego
sentence significantly decreases the security level of a stegosystem. Therefore, it is
crucial to develop a method that can distinguish acceptable permutations from those
having awkward wordings in a word ordering-based stegosystem.

In the following sections I first explain a baseline word ordering checker using the
Google n-gram corpus to check whether a particular word ordering has been used fre-
quently on the Web. Then I propose another approach using some syntactic features
as part of a Maximum Entropy classifier (Berger et al., 1996) to determine the natural-
ness of a permutation. As for the proposed substitution checkers and adjective deletion
checkers, the word ordering checkers described in this chapter only tackle the problem
of distinguishing the naturalness of a sentence permutation in isolation from the rest
of a document; thus, it is possible that individual naturally sounding sentences might
lead to an unnatural document. Modelling the document-level coherence of stego text
would be useful but is outside the scope of my study. I evaluate both the baseline n-
gram count method and the maximum entropy classifier using human judgements of
sentence naturalness. The evaluation results can be seen as a reflection of the security
level of the proposed word ordering-based stegosystem since the better the checker’s
performance is, the more natural the passed permutations are and, thus, the less sus-
picious the stego text may be. At the end of this chapter, I not only demonstrate the
proposed word ordering-based stegosystem, but also show that the word ordering tech-
nique can be combined with the hash function coding method used in translation-based
stegosystems (Grothoff et al., 2005; Stutsman et al., 2006; Meng et al., 2011).
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5.1 Word ordering checkers

Since not all the permutations are grammatical and semantically meaningful, I propose
two checking methods to distinguish natural word orders from awkward wordings.
Both methods output a score/probability for a permutation and require a threshold
to decide the acceptability of a permutation. It is important to note that my word
ordering checkers take the original sentence into consideration when calculating a
score/probability because the permutation filtering happens at the secret embedding
stage where the sender knows what the cover sentence is; whereas the secret decoding
does not require the word ordering checker. Having the cover sentence available at the
checking stage is a feature I will exploit.

A research area that relates to the proposed permutation checking methods is realisa-
tion ranking (Cahill and Forst, 2010; White and Rajkumar, 2012) where a system is
given a set of permutations (e.g. a set of sentence permutations or a set of paragraph
permutations) and is asked to rate each text in the set. However, in the realisation rank-
ing task there is no “cover text” for a ranking system to refer to. Since the proposed
checking methods require the knowledge of the original text, they cannot be adapted
to the realisation ranking task directly.

5.1.1 N-gram count method

My baseline checker is similar to that proposed in the previous two chapters using the
Google n-gram corpus to calculate a score based on the n-gram counts before and after
word ordering. The task is as follows: given a cover sentence and its corresponding
permutation, decide if the permutation is acceptable in terms of naturalness. The base-
line method will do so by comparing Google n-gram counts from the two sentences.

In the Google n-gram corpus, sentence boundaries are marked by <S> and </S>,
where <S> represents the beginning of a sentence and </S> represents the end of a
sentence. Both tags are treated like word tokens during the n-gram collection. Hence,
after tokenising the cover sentence and its corresponding permutation, I add <S> and
</S> tags to the beginning and end of the sentences as shown in Figure 5.1. Then I
extract every bi- to five-gram from the cover sentence and the permutation. Since I am
only interested in newly generated wordings in the permutation, n-grams that appear
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Cover: Permutation:
<S> There is no asbestos in our products now . </S> <S> In our products now there is no asbestos . </S>

log freq n-gram log freq n-gram
19.1 <S> There 20.3 <S> In
11.6 asbestos in 14.3 now there
17.6 now . 12.0 asbestos .
17.8 <S> There is 15.2 <S> In our

6.1 no asbestos in 0 products now there
6.0 asbestos in our 13.0 now there is
9.3 products now . 6.5 no asbestos .

17.6 now . </S> 12.0 asbestos . </S>
16.4 <S> There is no 6.7 <S> In our products

5.1 is no asbestos in 0 our products now there
0 no asbestos in our 0 products now there is
0 asbestos in our products 11.1 now there is no

6.8 our products now . 3.7 is no asbestos .
0 products now . </S> 0 no asbestos . </S>

4.0 <S> There is no asbestos 0 <S> In our products now
4.8 There is no asbestos in 0 In our products now there

0 is no asbestos in our 0 our products now there is
0 no asbestos in our products 0 products now there is no
0 asbestos in our products now 0 now there is no asbestos
0 in our products now . 0 there is no asbestos .
0 our products now . </S> 0 is no asbestos . </S>

SumCover = 142.1 SumPermutation = 114.9

Figure 5.1: An example of the n-gram count method for checking word reordering

in both the cover and the permutation are eliminated, and the remaining n-grams and
their Google n-gram frequencies are used to calculate the score. For example, after
comparing the two sentences, there are 21 n-grams from the cover and 21 n-grams from
the permutation left in Figure 5.1. I sum up all the logarithmic counts2 for the cover
and permutation n-grams and derive SumCover and SumPermutation. The Scorereordering of a
permutation is defined as the ratio of SumPermutation and SumCover, which measures how
much the SumCover varies after performing the word ordering. In the given example,
the Scorereordering of the permutation is 0.81. A score threshold is needed to determine
the acceptability of a permutation. Even though this baseline method is only an n-gram
count comparison, Bergsma et al. (2009) show that the approach works well for lexical
disambiguation tasks and produces comparable performance to other more complex
methods, and it has worked well for my lexical substitution check.

2log(0) and division by zero are taken to be zero.
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5.1.2 Maximum entropy classifier

In addition to the baseline method, I propose a machine learning approach to clas-
sify natural and unnatural permutations. I choose the method of maximum entropy
modelling (MaxEnt for short) because of its proven performance for NLP tasks, such
as part-of-speech tagging (Ratnaparkhi et al., 1996; Curran and Clark, 2003), parsing
(Ratnaparkhi, 1999; Johnson et al., 1999) and language modelling (Rosenfeld, 1996),
and the ease with which features can be included in the model. In addition, some work
has shown that MaxEnt is viable for ranking the fluency of machine generated sen-
tences (Nakanishi et al., 2005; Velldal and Oepen, 2006; Velldal, 2008). The concept
of MaxEnt is to use observed features about a certain class (y) occurring in the context
(x) to estimate a probability model p(y|x). Its canonical form is:

p(y|x) =
1

Z(x)
exp

∑
i

λi fi(x, y)

where Z(x) is a normalisation constant to ensure a proper probability distribution and
λi is the weight of the feature fi(x, y). In the formulation of MaxEnt I use, a feature
fi is an “indicator function”, a boolean matching function with the value of either 0
or 1, which simply indicates the presence of a “contextual element” together with a
particular class y. In my naturalness classification scenario, contextual elements can
be any attributes in a permutation sentence x, such as n-grams, grammatical relations
or supertag sequences, and y is a class label, either natural or unnatural.

The training process of a MaxEnt classifier is to choose parameters λi that maximize
the conditional likelihood of the training data, which is equivalent to picking the most
uniform model subject to constraints on the feature expectations (Berger et al., 1996).
The MaxEnt implementation I used was from the Curran and Clark (2003) tagger,
adapted for classification rather than sequence tagging. After training a MaxEnt clas-
sifier, I can calculate the probabilities of a permutation being a natural sentence ac-
cording to the feature weights. My proposed method says that a permutation is natural
if the ratio of its naturalness probability to its unnaturalness probability is greater than
a threshold α. The threshold α controls the trade-off between precision and recall of
the MaxEnt classifier and can be decided by steganography users.

As explained above, to train a MaxEnt classifier, the first step is to identify a set of
indicator functions fi(x, y) from the training data. In the next section, I describe the
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contextual elements that I extract from a permutation. Later, I describe the human
annotation for collecting the labels of my experiment sentences.

5.2 Features for the maximum entropy classifier

Recall that my word ordering checkers take the original sentence into consideration
since the checking is only performed at the sender side, and the sender has access to
the cover text. The first attribute I extract from a permutation is the Levenshtein dis-
tance (Levenshtein, 1966) which measures the minimum number of edits needed to
transform one cover sentence into its permutation, with the allowable edit operations
being insertion, deletion, or substitution. After deriving the edit distance d, an obser-
vation “EDIST D” becomes the attribute for that permutation, where D=blog2dc. For
example, a permutation with an edit distance 4 and another permutation with an edit
distance 5 both have the same attribute “EDIST 2”. In addition, if the difference be-
tween a permutation and its original sentence is only a single word movement, I add the
POS tag of the moved word to the attribute, so the feature becomes “EDIST 1-POS”.

The second type of contextual element is derived by comparing the Stanford typed
dependencies (De Marneffe and Manning, 2008) of a permutation and its original
sentence. The Stanford typed dependencies provide descriptions of the grammati-
cal relationships as well as semantically contentful information in a sentence, which
can be obtained from the Stanford parser (De Marneffe et al., 2006). The Stanford
typed dependencies are triples denoting a relation between a governor and a depen-
dent. For example, amod(wine, red) denotes that red is an adjectival modifier of wine,
and agent(killed, spy) denotes that an agent spy is the complement of a verb killed. I
would expect that using grammatical relations described in Chapter 4 will not make
much difference to the results; one of the reasons for choosing Stanford parser and the
Stanford typed dependencies is to avoid using the same source for training the clas-
sifier and for selecting the experiment data where grammatical relations are used as
described in Section 5.3.

I first parse a permutation and its original sentence using the Stanford parser and com-
pare their Stanford typed dependencies. If a dependency TYPE(WORD1, WORD2) in
the permutation cannot be found in the original, two contextual elements “P dep TYPE”
and “P deppos TYPE POS1 POS2” are added to the permutation’s attribute set, where
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Cover:. Permutation:
There is no asbestos in our products now. Our products there is no asbestos in now.

Stanford typed dependencies: Stanford typed dependencies:
expl(is-VBZ-2, there-EX-1) poss(products-NNS-2, our-PRP$-1)
root(ROOT-ROOT-0, is-VBZ-2) nsubj(asbestos-NN-6, products-NNS-2)
det(asbestos-NN-4, no-DT-3) advmod(asbestos-NN-6, there-RB-3)
nsubj(is-VBZ-2, asbestos-NN-4) cop(asbestos-NN-6, is-VBZ-4)
prep(asbestos-NN-4, in-IN-5) det(asbestos-NN-6, no-DT-5)
poss(products-NNS-7, our-PRP$-6) root(ROOT-ROOT-0, asbestos-NN-6)
pobj(in-IN-5, products-NNS-7) prep(asbestos-NN-6, in-IN-7)
advmod(is-VBZ-2, now-RB-8) pobj(in-IN-7, now-RB-8)

dependency attributes of the permutation:
P dep nsubj, P deppos nsubj NN NNS, P dep advmod, P deppos advmod NN RB,
P dep cop, P deppos cop NN VBZ, P dep root, P deppos root ROOT NN, P dep pobj,
P deppos pobj IN RB, R dep poss, R deppos poss NNS PRP$ 0, R dep det,
R deppos det NN DT 0, R dep prep, R deppos prep NN IN 0

Figure 5.2: An example of the dependency indicator functions

POS1 and POS2 are the POS tags of WORD1 and WORD2, respectively. If a depen-
dency TYPE(WORD1, WORD2) in the permutation is the same as that in the original,
two contextual elements “R dep TYPE” and “R deppos TYPE POS1 POS2 DISTANCE”
are added to the permutation’s attribute set, where POS1 and POS2 are the POS tags
of WORD1 and WORD2, and DISTANCE is the difference of the distance between the
two words compared to the original.

Figure 5.2 shows the dependency attributes of the permutation “our products there is no
asbestos in now”. In this example, nsubj(asbestos, products) is a newly generated rela-
tion after word ordering so two contextual elements P dep nsubj and P deppos nsubj NN NNS
are added to the permutation’s attribute set; poss(products, our) is a recovered relation
from the original and the distance between product and our remains the same as that in
the original so two contextual elements R dep poss and R deppos poss NNS PRP$ 0
are added to the permutation’s attribute set.

The indicator functions fi(x, y) for the MaxEnt classifier are derived from permutation-
class pairs. So far I have described the attribute set observed from a permutation x. I
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still need the label y of each permutation, namely natural or unnatural, in order to form
indicator functions. In the next section, I describe the collection of labelled permuta-
tions for training, developing and testing the MaxEnt classifier. In addition, the data is
also used to test the baseline n-gram count method.

5.3 Human annotated data

In order to have a labelled corpus for training, developing and testing the MaxEnt clas-
sifier, I first randomly selected 765 sentences having length between 8 and 25 tokens
from sections 02-21 of the Penn Treebank (Marcus et al., 1993) as the cover sentences.
The restriction on the sentence length is because a short sentence may not have enough
good permutations for the steganography application, and a long cover sentence in-
creases the complexity of finding acceptable word orders from the bag-of-words and
therefore is unlikely to result in good permutations.

For each cover sentence, I created a bag-of-words as input and generated 100 permu-
tations using the Zhang et al. (2012) system. For 88% of the sentences, the original
cover sentence is in the 100-best list. This not only serves as a sanity check for the
realisation system, but also means the original sentence can be used to carry secret bits
without any modification.

To cut down a 100-best list for the human evaluation, I only keep five permutations that
retain the most grammatical relationships of the original cover sentence since these
permutations are more likely to convey the same meaning as the original. I parsed
the cover sentences and their permutations using a CCG parser (Clark and Curran,
2007), and calculated a dependency F-score for each permutation by comparing the
CCG predicate-argument dependencies of the permutation and its original. For each
cover sentence, the top five F-score permutations which are different from the cover
were chosen for human annotation, which results in 3,825 sentences (765 sets of 5
permutations).

The annotations were carried out via a web interface. A total of 34 native English
speakers were asked to judge the naturalness of the sentence permutations on a 4-point
scale. The instructions given to the annotators are as follows:

Your task is to judge the naturalness of sentences on a four-point scale. Each time you
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Score Explanation

1 Completely or largely non-fluent, and/or completely or largely lacking in
meaning.

2 Very awkward wording, major punctuation errors, and/or logical errors, but
still possible to understand.

3 Slightly awkward but still relatively fluent, clear and logical; may contain
slightly awkward wording and/or minor punctuation errors.

4 Perfectly natural – both grammatical and semantically meaningful.

Table 5.2: Rating scale and guidelines for human evaluation

Score Sentence and Judgement explanation

2 The yield on six-month Treasury bills sold at Monday’s auction from 8.04%, for
example, rose to 7.90%.
explanation: relatively fluent, but slightly illogical: from 8.04% to 7.90% is a drop,
not a rise

1 8.04% rose 7.90% from, for example to, the yield on six-month Treasury bills sold
at Monday’s auction.
explanation: completely non-fluent

1 The yield on six-month Treasury bills sold at Monday’s auction, for example, rose
8.04% from 7.90% to.
explanation: completely non-fluent

2 The yield on six-month Treasury bills sold at Monday’s auction, for example rose
to 8.04% from 7.90%,.
explanation: major punctuation error “,.”

4 The yield on six-month Treasury bills sold at Monday’s auction from 7.90%, for
example, rose to 8.04%.
explanation: natural

Table 5.3: Some of the judgement examples given to annotators

will be shown 5 sentences consisting of the same words, but arranged in a different
order, or with different punctuation. You will be given a total of 25 sets of sentences.
Please note that sentences are presented in a random order, and it is possible that all
the 5 sentences in the same set are all unnatural, or all natural.
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Figure 5.3: A screenshot of the word ordering annotation

Table 5.2 shows the guideline for each judgement score provided to the annotators. In
addition, as part of the annotator instructions, I gave some example annotation sen-
tences along with my judgements and explanations as shown in Table 5.3. After the
introduction, on each page, a subject was presented with 5 permutations consisting of
the same words, and a total of 125 permutations (25 sets) were annotated by each sub-
ject. Figure 5.3 shows a screen capture of a set of five sentences presented to a subject.
In order to calculate the inter-annotator agreement, 425 permutations were selected to
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be judged by two annotators.

For the steganography application, those permutations rated as perfectly natural (score
4) can achieve a high security level and are treated as positive data when training a
Maximum Entropy classifier; those permutations with scores lower than 4 are treated
as negative data. After converting the scores into a positive/negative representation, I
measured the inter-annotator agreement on the binary labelled data using Fleiss’ kappa
(Fleiss et al., 2003). The resulting kappa score of 0.54 for the data represents “mod-
erate” agreement according to Landis and Koch (1977). There were 47 out of the 425
agreement-measuring sentences that received different labels after applying the posi-
tive/negative representation, for which my supervisor made the definitive judgement.
In the end, the collected human judgement corpus contained 478 positive (perfectly
natural) permutations and 3,347 negative examples.

According to the human judgements, 321 out of the 765 cover sentences have at least
one natural sounding permutation in the top five F-score permutations. Therefore, the
upper bound of the number of possible information carriers is roughly 42% of the
cover sentences. Next, since there are studies using automatic evaluation metrics to
evaluate the security level of a stegosystem as described in Section 2.3, I observe how
well the BLEU score of a permutation correlates with the human judgement (for those
multi-judged sentences, an average score is assigned). The BLEU metric (Papineni
et al., 2002) was originally designed for automatic evaluation of machine translation.
It measures the n-gram precisions of a translation given the reference sentence(s) and
the final score is an interpolation of different n-gram precisions with a brevity penalty.
Here I treat a permutation as a translation and its original sentence as the reference
so that the BLEU score of a permutation can be obtained. Both Pearson’s correlation
coefficient (Pearson, 1920) and Spearman’s rank correlation coefficient (Spearman,
1910) between the human judged scores and the BLEU scores are calculated, which
are 0.10 and 0.09, respectively, and are significant at p < 0.001. This result indicates
there is little association between the human judgement of sentence naturalness and
the BLEU score, indicating the need for a manual evaluation to determine the likely
security level.

I divided the collected human judgement corpus into a 2700-instance training set,
a 350-instance development set and a 775-instance test set. The development set
was mainly used for preliminary experimentation and for deciding a score/probability
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Training Set Development Set Test Set

Number of Positives 467 52 90
Number of Negatives 2,364 298 685

Table 5.4: Statistics of the experimental data sets

threshold in the proposed checkers. Note that the 425 multi-judged sentences are all
included in the test set. Since the number of negatives is 7 times more than the number
of positives in the training set, I added another 131 positives annotated by ourselves to
the training set (but not the test set), in an attempt to address the imbalance. Table 5.4
presents the statistics of the data sets.

Now I know the class of each permutation in the training set, I can present the observed
indicator functions to the MaxEnt classifier and find the optimal weight for each fea-
ture. In the next section, I describe the evaluation of the proposed baseline n-gram
count method and the MaxEnt classifier and present the experiment results.

5.4 Experiments and results

I evaluate the Google n-gram method and the maximum entropy classifier using the
collected human judgements. The performance of the systems is measured in precision
and recall over the natural permutations (i.e. the positive examples in the test set).

5.4.1 Experiments using the n-gram count method

I first evaluated the Google n-gram method on the development set. Figure 5.4(a)
shows the precision and recall curves with respect to different threshold values. The
best precision achieved by the system is 66.7% with a very low recall of 3.9% when
the threshold is equal to 1.36. Then I use the threshold 1.36 to classify positive and
negative data in the test set. The derived precision and recall values are 28.6% and
4.4%, respectively. Figure 5.4(b) gives the precision and recall curves obtained by
using the Google n-gram method on the test data. From the diagram one can see that,
even when a threshold 1.26 is chosen, the best precision on the test set is only 34.8%,
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(a) Results on the development set (b) Results on the test set

Figure 5.4: Performance of the n-gram count method

which is not appropriate for the steganography application since the low precision
value would result in an unnatural stego text and hence fail the secret communication
requirement.

A possible explanation for the poor performance of the n-gram baseline is that the
n-gram method might be useful for checking local word changes (e.g. synonym sub-
stitution), but not the whole sentence rearrangement. In addition, longer n-grams are
not frequently found in the Google n-gram corpus according to my data so in these
cases the n-gram method only relies on checking the changes in lower-order n-grams,
such as bi-grams or tri-grams.

5.4.2 Experiments using the maximum entropy classifier

Next I train a maximum entropy classifier using sentences in the training set. Each
permutation in the training set is first represented by its indicator functions. A to-
tal of 5,815 indicator functions are extracted from the training set. As mentioned in
Section 5.1.2, the idea of a MaxEnt model is to maximize the conditional entropy
subject to a set of expectation constraints (with respect to different feature functions).
Those constraints force the model to be consistent with the training data. However,
in my training set the ratio of positives to negatives is about 1:5, and since there is
less positive data, how well the model fits the positive data has less impact on the final
model. To solve this issue, I duplicate the positives five times to balance the amount
of positives and negatives in the training set, which is equivalent to assigning a higher
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(a) Results on the development set (b) Results on the test set

Figure 5.5: Performance of the maximum entropy classifier

weight to each positive data point so that positive and negative data can have similar
influence in the weighted objective function. The trained weights are then used to cal-
culate the probabilities of a test instance being positive and negative. As mentioned in
Section 5.1.2, the system determines an instance as positive if:

exp
∑n

i=1 λifi(x, natural)

exp
∑n

i=1 λifi(x, unnatural)
> α

=⇒
n∑
i=1

λifi(x, natural)−
n∑
i=1

λifi(x, unnatural) > ln(α)

I observe the precision and recall values of the classifier with different α values. Fig-
ure 5.5(a) shows the performance of the classifier on the development set. The classi-
fier achieves a 90% precision with 17.3% recall when the threshold ln(α) is equal to
2.2. A precision of 100% can be obtained by raising the threshold to 2.6 with the cor-
responding recall being 13.5%. Since the inter-annotator agreement on the collected
human judgements is not 100%, as shown in Section 5.3, it is not clear whether the
90% precision achieved by the classifier really means that the remaining 10% sen-
tences (false positives) would be viewed as suspicious in a real steganography setting.
Therefore, I consider 90% to be a high level of precision/security.

The same classifier is then used to determine natural permutations in the test set and the
ln(α) is set to 2.2 since this setting gives a satisfactory imperceptibility and payload
capacity for the development set. The classifier achieves a precision of 93.3% and a
recall of 15.6% with the 2.2 threshold, which again provides a confident security level
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and reasonable embedding capacity for the steganography application. This result is
much better than the precision of 34.8% achieved by the baseline n-gram count method.
Since the training data used in my classifier is imbalanced (the number of negatives is
five times more than that of positives), the features observed from positive data may not
be enough to gain a higher recall. Therefore, I expect the recall value can be improved
using more balanced training data.

In order to show the trade-off between precision and recall, which corresponds to the
trade-off between imperceptibility and payload capacity for the linguistic steganogra-
phy application, the precision and recall curves of the classifier on the test set are given
in Figure 5.5(b). Note that I am not optimising on the test set; Figure 5.5(b) is just a
demonstration of where on the precision-recall tradeoff a practical stegosystem might
lie. In practice, the threshold value would depend on how steganography users want to
trade off security for payload.

With the proposed MaxEnt classifier, I can determine which permutation of a cover
sentence is acceptable, and the passed permutations provide a possible covert channel
for secret communication. In the following sections, I first demonstrate the proposed
stegosystem based on word ordering, and then I show that the word ordering technique
can be used in conjunction with existing translation-based encoding methods.

5.5 Word ordering-based stegosystem

As explained at the beginning of this chapter, a permutation that does not include all the
cover words might lose important information conveyed by the original sentence. In
addition, the secret recovery in the proposed steganography scheme relies on the sender
and receiver using the same bag-of-words to generate the same list of permutations as
demonstrated below. Therefore, only those permutations having the same length as the
cover are considered in my stegosystem.

Before any message exchange can take place, the sender and receiver must share a
word ordering system and a method to sort a set of sentence permutations, such as
alphabetical ordering, or ordering by realisation quality scores determined by the gen-
eration system or a language model. The sorting method must be independent of the
cover sentence since the receiver does not receive it. In addition, the number of secret
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Figure 5.6: Framework of the proposed word ordering-based stegosystem

bits carried by a permutation must be fixed and known by the sender and the receiver.

Figure 5.6 illustrates the framework of the proposed word ordering-based stegosystem.
During the data embedding, the sender first turns a cover sentence into a bag-of-words
and then uses the word ordering system to generate permutations. After eliminating
permutations shorter than the cover sentence (if any), the rest are sorted using the pre-
agreed method. The rank of a permutation in the sorted list is converted into a binary
string, and the lowest s bits are the secret bits carried by that permutation, where s is
the pre-fixed payload. Figure 5.7 shows six alphabetically ranked permutations and the
secret bit(s) carried by them when s is equal to 1, 2 and 3. Note that, in order to embed
s bits, there must be at least 2s permutations in the ordered list; otherwise, there will
be at least one desired secret bitstring not carried by any permutation. For example, in
Figure 5.7 secret bitstrings 000 and 111 cannot be found when s is equal to 3. Finally,
the text selection module chooses a permutation that represents the secret bitstring,
and is determined as natural by the MaxEnt classifier, as the stego sentence. However,
it may be the case that no permutation in the secret-bitstring group is natural. In this
situation, the cover sentence will be used instead, and error detection codes (Klve,
2007) which enables the receiver to verify the extracted secret must be added to the
transmission data.

To recover the secret bitstring, the receiver first transforms the received stego sentence
into a bag-of-stego-words. Since I only consider permutations having the same length
as the cover during embedding, the bag-of-stego-words obtained from the stego sen-
tence will be identical to that originally obtained from the cover sentence. Next, the
receiver reproduces the ordered permutations. According to the rank of the stego sen-
tence and the pre-agreed payload of s bits, the receiver can extract the secret bitstring.
Note that, in the proposed stegosystem, the receiver can extract the secret without
knowing the cover text.



116 5.6. USING WORD ORDERING IN TRANSLATION-BASED EMBEDDING

Rank Permutation Secret Bitstring
(binary) s = 1 s = 2 s = 3

1 (001) In our products now there is no asbestos. 1 01 001
2 (010) No asbestos there is now in our products. 0 10 010
3 (011) Now in our products there is no asbestos. 1 11 011
4 (100) There is no asbestos in our products now. 0 00 100
5 (101) There no asbestos in our products is now. 1 01 101
6 (110) There now is no asbestos in our products. 0 10 110

Figure 5.7: Ranked sentence permutations and their secret bits

The payload of the system is controlled by the variable s, and the security level depends
on the quality of the selected permutations. One of the differences between this word
ordering-based stegosystem and the other two stegosystems proposed in the previous
chapters is that the word ordering checker is integrated in the text selection module;
while both the substitution checker and adjective deletion checker are applied during
text transformation. The reason for the difference is that the proposed MaxEnt classi-
fier requires information from the original text and can only be applied by the sender.
In addition, the data encoding in the proposed word ordering-based stegosystem de-
pends on the rank of a permutation; if the sender filters out bad permutations before
data encoding, the rank of a permutation might be different from that derived by the
receiver since the receiver cannot perform the word ordering check. In the next section,
I demonstrate another word ordering-based stegosystem using a hash function as the
coding method. In this system the MaxEnt classifier can be applied to the linguistic
transformation module without affecting the secret recovery.

5.6 Using word ordering in translation-based embed-
ding

In Section 2.2.4 I explained the hash function encoding used in existing translation-
based stegosystems (Grothoff et al., 2005; Stutsman et al., 2006; Meng et al., 2011).
This encoding method exploits a hash function to map a translation to a codeword,
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Figure 5.8: Framework of the stegosystem using word ordering and hash function
encoding

which is independent of the rest of the alternatives; whereas the ranking-based encod-
ing method described in the previous section considers the whole set of alternatives
when assigning codewords. Since I can treat the word ordering technique as a “mono-
lingual translation” that translates a cover sentence into different permutations, I can
easily replace a machine translation system in a translation-based stegosystem with a
word ordering realisation system.

Figure 5.8 illustrates the framework of using the word ordering technique in the translation-
based embedding algorithm proposed by Grothoff et al. (2005). During the data em-
bedding, the word ordering realisation system generates several permutations for a
given cover sentence and the MaxEnt classifier is applied to eliminate unnatural per-
mutations. Note that permutations are not required to have the same length as the
original in this stegosystem. Next, a hash function maps each passed permutation to a
bitstring, and the least significant bit of that bitstring is the the codeword of the permu-
tation. Finally, a permutation having its least significant bit as identical to the secret
bit is selected as the stego sentence.

To recover the message, without knowing the original text, the receiver only needs to
compute the hash codes of the received sentences and concatenate the lowest bits of
every stego sentence. This basic embedding scheme has an upper bound of 1 bit per
sentence. The problem faced by this stegosystem is the same as that in the previous
system: it is possible that there is no permutation-carrying codeword that matches
the secret bitstring since the generation of a desired bitstring cannot be guaranteed.
Therefore, error detection codes must be used in this protocol when there is no feasible
hash code available, which increase the size of transmission data.

A contribution of this work is to create a novel link between word ordering realisation
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and linguistic steganography. In addition, I propose a maximum entropy classifier
to determine the naturalness of a permutation. The evaluation results suggest that
the proposed maximum entropy classifier can provide a high security level for the
linguistic steganography application.



Chapter 6

Conclusions and Future Work

The aim of this thesis is to explore possible linguistic transformations for the steganog-
raphy application. I have demonstrated the applicability of three different transforma-
tions: lexical substitution, adjective deletion and word ordering. As explained at the
beginning of the thesis, transformations made to the cover text must be natural to an
outside observer while the meaning of the cover text does not have to be preserved,
which makes linguistic steganography a distinct task from other NLP tasks (e.g. text
summarisation, paraphrasing or simplification) that not only require generated text to
be linguistically acceptable but also convey the meaning of the original text. For each
transformation, I proposed different checking methods to certify the sentence natural-
ness after the modification. In addition, I have demonstrated how to combine the trans-
formations with the proposed encoding methods, and some existing encoding methods,
in order to form different stegosystems. In the following section I summarise the main
contributions of the thesis.

6.1 Contributions of the thesis

Generalising and summarising linguistic steganography: In Chapter 2, I first de-
fined linguistic steganography as a combination of three independent modules: lin-
guistic transformation, data encoding and text selection, the modularity of which is
an important feature in designing linguistic stegosystems. Then I surveyed three ma-
jor categories of linguistic transformations as well as various encoding methods that

119
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have been exploited by existing linguistic stegosystems. In addition, I summarised the
methods of evaluating imperceptibility and the payload capacity of existing systems.
Chapter 2 provided the general framework and literature review for readers unfamiliar
with linguistic steganography.

Lexical substitution checkers: Lexical substitution was the first linguistic transfor-
mation I explored. In Chapter 3, I described my n-gram count-based checker and the
hybrid approach which combines the n-gram count method with contextual α-skew
divergence. Both methods were first evaluated by a substitution ranking task. The n-
gram count method and hybrid method achieved the GAP values of 49.7% and 50.8%
on the task, respectively, which outperformed the GAP values of 38.6% and 42.9%
derived by the Erk and Padó (2010) and Dinu and Lapata (2010) systems, respectively.
The proposed methods were also evaluated by a naturalness classification task, which
is more related to the steganography application than the ranking task. This time, the
n-gram count method performed better than the hybrid method over all POS that I
considered. Therefore, the n-gram count method was further assessed by a human
evaluation. The results showed that the substitutions checked by the proposed n-gram
count method received an average score of 3.33 out of 4; while without checking, the
changed sentences got an average score of 2.82. Not only can the proposed check-
ers benefit substitution-based stegosystems, but also other applications that require the
measurement of word similarity, such as document retrieval, machine translation and
word sense disambiguation.

Adjective deletion checkers: In Chapter 4, I proposed two methods for checking
deletable adjectives in noun phrases. The first approach exploits the Google n-gram
corpus and the second method trains an SVM classifier. Both methods were evaluated
against human judgements. The experimental results showed that the SVM classifier
performed better than the n-gram count method and achieved a precision of 94.7% and
85% on the pilot study data and test data, respectively; while the precision baselines
in the pilot study data and test data were 54.2% and 64.0%, respectively. Not only
can the proposed checkers benefit deletion-based stegosystems, but also other NLP

applications such as sentence compression, text simplification and text summarisation
which usually aim at generating concise text and require the removal of unimportant
words.
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Word ordering checkers: The third linguistic transformation I explored is word or-
dering. I proposed a method using a MaxEnt classifier to determine the naturalness
of a sentence permutation in Chapter 5. Again, the proposed MaxEnt classifier was
evaluated by human annotated data and was compared with a baseline method based
on the Google n-gram counts. The results showed that the MaxEnt classifier improved
the performance of the baseline method significantly and achieved 93.3% precision
with 15.6% recall on the test data; while the precision and recall values of the baseline
method were 28.6% and 4.4%, respectively.

Human annotated data: Many NLP tasks require human judged data for evaluating
a system, which is expensive to collect. In this thesis, I have collected three corpora
where native English speakers were asked to evaluate the naturalness of sentences after
undergoing lexical substitution, adjective deletion or word ordering. The corpora are
available on the Web1 and can be used as a gold standard to test other NLP systems.

Data encoding methods: From an information security perspective, I have proposed
different novel data encoding methods which can be combined with other linguistic
transformations because of the convenient modularity in linguistic steganography. For
lexical substitution, I proposed the vertex colouring coding method; for word reorder-
ing, I proposed the ranking-based coding method. In addition, I developed a novel
linguistic secret sharing scheme based on adjective deletion.

Stegosystem evaluation: Many existing works are proof-of-concept implementations
with little practical evaluation of the imperceptibility or embedding capacity. Another
contribution of the thesis is the practical evaluation of the proposed stegosystems. Al-
though I did not directly evaluate the quality of the stego text, I have demonstrated the
feasibility of using lexical substitution, adjective deletion and word ordering to gen-
erate natural sounding sentences and the frequency with which these transformations
can be made to text.

1The human judgement corpora are available at www.cl.cam.ac.uk/∼cyc30 (last verified in June
2013).
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6.2 Future work

All the proposed transformation checkers were evaluated against human judgements
of sentence naturalness. For each evaluation, I used precision-recall curves to demon-
strate the trade-off between imperceptibility and payload for the linguistic steganog-
raphy application. From those diagrams, one can see that high precision values can
be reached by the transformation checkers, which means a certain level of security
can be achieved by integrating the proposed checking methods into the stegosystems.
However, the corresponding recall values are around 20% which means many good
transformations are ignored by the proposed checkers and therefore potential informa-
tion carriers are wasted. Therefore, one possible extension of this thesis is to improve
the recall, namely the embedding capacity of a stegosystem. For example, one may
includes more features into machine learning classifiers, such as distributional seman-
tic information from the target adjective and its argument. In addition, in this thesis
I only evaluated the transformations in terms of the sentence-level naturalness rather
than meaning retention and document-level coherence. Therefore, it would be inter-
esting to see to what extent the proposed transformation checkers are useful for the
security of linguistic steganography at the document-level.

Apart from the linguistic transformations discussed in this thesis, I would like to ex-
plore more manipulations that can meet the requirements of linguistic steganography.
For example, in Chapter 4 I only focused on finding deletable adjectives in noun
phrases. According to the pilot study, many adverbs and punctuation (e.g. comma)
are redundant in text; for instance, “actually, I have already said: I cannot go” and
“I have said I cannot go” convey similar meaning. Therefore, exploring more lexical
redundancies in other POS is one possible future direction.

In addition, instead of finding redundancies in text, a system that can automatically
insert unnecessary words into text may benefit linguistic steganography as well. So
far many NLP systems have attempted to compress or summarise text by making text
shorter. No automatic insertion system has being developed. For linguistic steganog-
raphy, word insertion is a possible transformation and may create more alternatives for
a cover text, increasing the payload capacity. I have carried out a preliminary study
on automatic word insertion. The system first exploits the Google n-gram corpus to
find possible words for an insertion position in context, and then uses a grammaticality
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check and an n-gram count method, similar to that proposed for checking deletable
adjectives, to measure how much the contextual n-gram count changes after inserting
a particular word. Although some of the system output seems to be promising, I rec-
ognize the necessity for having a model to capture the semantic relation between an
inserted word and the sentence. For example, my insertion system generates the sen-
tence “well , the two cars are jam-packed bumper to bumper all the way from Beirut
to Tyre” by inserting the word two. However, in reality two cars would not be jam-
packed bumper to bumper and thus the modification can be easily spotted by a third
party in a linguistic steganography scheme. My feeling is that in general word inser-
tion is a harder problem than word deletion in the sense that word insertion requires
more understanding of the added information in order to maintain the naturalness of
the sentence in the context of the document and the world.

As mentioned in Section 2.3, there is no research on the practical issue of using differ-
ent types of cover text for the steganography application. Thus, it would be interesting
to see whether some types of cover text are better suited to linguistic steganography
than others. Another interesting question that I have not addressed is whether some
languages are easier to be modified than others, or whether some languages work bet-
ter with particular linguistic transformations than others.

Linguistic steganography is a rather new research area, and further efforts are needed
to develop more secure and efficient systems. The novel and original ideas provided
in this thesis can benefit research in both computational linguistics and information
security. It is hoped that my work can form the basis for more research devoted to
linguistic steganography.
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