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Complex networks analyses of many physical, biological and social phenomena show remarkable structural 

regularities [1-3], yet, their application in studying human past interaction remains underdeveloped. Here, we 

present an innovative method for identifying community structures in the archaeological record that allow for 

independent evaluation of the copper using societies in the Balkans, from c. 6200 to c. 3200 BC. We achieve this 

by exploring modularity of networked systems of these societies across an estimated 3000 years. We employ 

chemical data of copper-based objects from 79 archaeological sites as the independent variable for detecting 

most densely interconnected sets of nodes with a modularity maximization method [4]. Our results reveal three 

dominant modular structures across the entire period, which exhibit strong spatial and temporal significance. We 

interpret patterns of copper supply among prehistoric societies as reflective of social relations, which emerge as 

equally important as physical proximity. Although designed on a variable isolated from any archaeological and 

spatiotemporal information, our method provides archaeologically and spatiotemporally meaningful results. It 

produces models of human interaction and cooperation that can be evaluated independently of established 

archaeological systematics, and can find wide application on any quantitative data from archaeological and 

historical record. 
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1. Introduction 
 

Complex networks analyses have found a wide variety of applications in many disciplines [5], from economy [6] 

to neuroscience [7], and include explorations of the nature of diverse technological, biological and social 

systems [8-12]. Social networks are of particular interest since they are important for the development of 

cooperative interactions amongst humans [13]. Examples from studies of hunter-gatherer cooperation [14] reveal 

how social proximity shaped cooperative behaviour in addition to genetic and geographic relations. Moreover, 

homophily in cooperation and selective formation of network ties amongst humans emphasises that socially 

connected individuals tend to resemble one another in preferences, values, and beliefs [15]. 

In archaeological systematics, the depositions of similar associations of material, dwelling and subsistence forms 

distributed across distinct space-time are globally referred to as ‘archaeological cultures’. Thus, archaeologists 

have mostly strived to either group or split distinctive archaeological cultures based on specific expressions of 

similarity and its reproduction across the defined time and space [16]. The major point of debate on this matter is 

that specific expressions of similarity or differences are to a great extent based on subjective estimates, initially 

outlined in the early 20th century, and commonly in relation to one material, pottery. As a result, what they 

represent, and at what resolution remains a major problem in the field of archaeology [17].  

Here, we present a method that independently evaluates community structures in the Balkans between c. 6200 

BC to c. 3200 BC as proxied by the exchange of copper objects smelted from local ores [18-20]. This segment of 

the archaeological record possesses the world’s earliest known evidence for the evolution of extractive metal 

production [21, 22] and inferences about community structure help illuminate the existence of networks of metal 

production and exchange. Also, they provide the closest approximation of social and economic ties at the time.  

Our analyses include methods from complex networks, and in particular modularity research on a 

comprehensive archaeological database of copper artefacts circulating the prehistoric Balkans in the first 3000 

years since the emergence of copper mineral and metal use in Europe. The database we compiled includes 410 

copper-based artefacts distributed across c. 270,000 km2 in the northern Balkan Peninsula (Table S1). All 

artefacts come from 79 sites in total, of which 14 are multi-occupational, meaning that they existed through 

several chronological periods. Therefore, we have 93 site-periods in total, which correspond with the number of 

nodes in our networks (Table S2).  

The application of networks analysis in archaeology has thus far been dominated by a few popular perspectives 

[23]. The focus of scholarship in this field has usually been on mutual properties of networked systems: scale-

free networks, small world phenomena, power-law degree distribution and agent-based modelling, with 

emphasis set on identifying the key sites in a certain period [24-30]. Most studies derive from the application of 
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geographic information systems (GIS), where major outcomes are geographical networks indicating 

communication routes between the studied sites, and a few involve the establishment of links between nodes of 

interest based on typological similarities in material culture (obsidian or ceramic) [31, 32] and their 

geochemistry [33]. Mills et al. [28] made a significant impact with their use of networks analyses in examining 

the interaction of ceramic, obsidian and spatial networks in the 13th – 15th century AD US Southwest, which set 

out the methodological framework for challenging traditional artefact attribution approaches to understanding 

the interrelationship of spatial, social and material variables.  

Community structure (modularity) research, however, has not yet found its application in studying past social 

networks from archaeological data. This property stands for organisation of nodes in modules, where many links 

join nodes of the same module and comparatively few links join nodes with other modules or other parts of a 

network [3, 34]. Methods for modularity maximization have developed significantly, with success demonstrated 

in detecting modules in citation networks, food webs, and pollination systems [35, 36], amongst others. Being 

able to infer social groups in archaeological data using this network property would be a major step towards 

identifying patterns of human interaction in our past. We operate here under the premise that the supply 

networks of copper-based artefacts can reveal information relevant for the specific histories of their users, and 

hence reflect human behaviour [37]. Noteworthy is that metal objects, unlike obsidian for instance, are more 

challenging to trace back to their source, due to the various processes involved in metal extraction or (re)melting, 

which may fractionate the original chemical signature. Modern research addresses the origins of copper artefacts 

by measuring both lead isotope and trace element content, and works best by excluding potential ore deposits, 

rather than narrowing it down to a particular source [38]. Hence, studying human interaction though the 

circulation of metal objects carries more challenge than materials with less complex properties, which is why we 

opted for modularity research, an approach used here to explore the structure behind the network of copper 

objects with shared chemical signatures (Supplementary Information). 

Copper supply networks – previous research. In their study on the provenance of prehistoric Balkan 

metallurgy, Pernicka et al. [18, 19] produced high-precision provenance data for more than 300 copper artefacts 

from this region. For the purpose of their research, they used average-link cluster analyses to group these 

artefacts into nine compositional groups-clusters, of which two clusters showed good agreement with the trace 

element pattern of two ancient copper mines in the Balkans: Majdanpek in eastern Serbia and Ai Bunar in central 

Bulgaria, both exploited throughout the 5th millennium BC (see SI for details). The broad patterns of copper 

circulation at this time identified by Pernicka et al. [18, 19] include: a) strong regionalisation of copper 

production and trade patterns, and b) noticeable shifts in copper-making industry through time. In practice, the 

former was drawn from cases where prehistoric Serbian metal mostly came from eastern Serbian copper mines 

(e.g. Majdanpek), while the latter refers to the simultaneous collapse of one copper exploitation system (e.g. 
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central and eastern Bulgaria around 4100 BC) and the rise of another (e.g. eastern Serbia after c. 4100 BC). 

These studies provided insight into the copper exploitation and acquisition practices for the first c. 3000 years of 

copper use in this part of the world; however, little is known how and if these data reflect social networks of 

interaction, and can we use them to independently evaluate archaeological interpretations of social or economic 

structures that supported the production, use and deposition of copper objects within the observed time.  

2. Methods 
 

Data. We used published and unpublished sets of compositional data for 410 copper-based objects under 

consideration, spanning c. 6200 to c. 3200 BC (Table S1, dataset on https://doi.org/10.17863/CAM.9599). The 

time span between c. 6200 and c. 3200 BC was divided into seven periods, based on both absolute and relative 

chronology: Early/Middle Neolithic (Period 1, 6200-5500 BC), Late Neolithic (Period 2, 5500-5000 BC), Early 

Chalcolithic (Period 3, 5000-4600 BC), Middle Chalcolithic (Period 4, 4600-4450 BC), Late Chalcolithic 

(Period 5, 4450-4100 BC), Final Chalcolithic (Period 6, 4100-3700 BC) and Proto Bronze Age (Period 7, 3700-

3200 BC) (Table S3). The data were assembled from publications of Pernicka et al. [18, 19], Radivojević et al. 

[20], Radivojević [39] and UK’s AHRC-funded “Rise of Metallurgy in Eurasia” project (No. AH/J001406/1 

hosted by the UCL Institute of Archaeology) [40] (see Supplementary Information). 

Community property (modularity) analysis. In the course of our research, we designed two distinctive 

networks: one, that had artefacts for nodes (Artefacts Network), and the other, where archaeological sites acted 

as nodes (Sites Network). Our Artefacts and Sites networks were defined exclusively on data (selected trace 

elements for 410 copper artefacts) isolated from any geographical, cultural or chronological information, in order 

to secure an independent estimate of economic and social ties amongst copper-using societies in the Balkans 

within the observed time. Our network was built in two discrete steps: 1) we grouped the data in ten distinctive 

chemical clusters (Artefacts Network); 2) placed a connector between the sites that contain pairs of artefacts 

from the same cluster and analysed the modularity of the final network (Sites Network). In both steps we used 

the Louvain algorithm [4] to obtain community structures (modules), and bootstrapping to test the significance 

of acquired results. Essentially, we formed a bipartite network, where one type of nodes are artefacts and the 

other type of nodes are sites; this network is simple in design, since one artefact can belong to one site only. The 

information we use is transformed from the Artefacts Network to the Sites Network: the chemical composition 

of artefacts is employed for their clustering, and subsequently these clusters are used to link the sites where 

artefacts were discovered. Hence, the links in the Artefacts Network connect artefacts with a similar chemical 

signature, while the links in the Sites Network connect sites that yielded artefacts that belong to the same 

chemical cluster. Similar approach has been attempted before in a different field and type of dataset, for example 

for designing a network of authors and their publications [41]. 
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Artefacts Network – clustering the copper objects by trace element chemistry. Each artefact in our study has a 

unique chemical composition, which besides predominant copper contains trace elements (usually below 1 wt% 

or 10,000 ppm). Of all trace elements, seven (As, Sb, Co, Ni, Ag, Au, Se) are considered as the indicators of the 

origin, or the chemical signature of copper ore (s)melted to make this artefact [38, 42]. This is due to the affinity 

of these elements to transit into molten copper metal during its extraction from copper ores [43], and such 

behaviour has already proved useful in tracing the origins of the 5th millennium BC copper metal artefacts from 

the Balkans analysed by Pernicka et al. [18, 19]. Their dataset makes a large part of our study collection (335 

artefacts out of 410 in Table S1). 

Theoretically, the goal of chemical clustering is to detect groups of copper artefacts whose compositional 

signature (here a string of 7 trace elements) is more similar within a group (or a cluster) than with compositional 

signature of copper artefacts - members of other groups (or clusters). In other words, the links that join copper 

artefacts of the same chemical cluster are based on compositional similarity, and they are comparatively stronger 

within a cluster of chemically similar artefacts than the links connecting these artefacts to other clusters. Since 

this compares closely to the definition of network modularity [3, 34], we designed the cluster analyses based on 

the principles of community structure research in networks. As mentioned above, the nodes in our Artefacts 

Network are copper artefacts, while links are defined using Euclidean distance of the vectors of trace elements 

(see below and Supplementary Information for more details).  

The calculation of Euclidean distance with the original trace element values was met with two problems: a) they 

showed lognormal, instead of Gaussian distribution in our case (Fig. 1) and b) they were correlated to begin with 

(Fig. 2a). Starting with the former, the lognormal distribution of our data indicated that small values are 

predominant (Fig. 1), and computing distances between the original data would lead to losing information on 

variation in smaller values. Hence, in order to account for relative differences, we transformed the original 

values into logarithms. The logarithms of original data brought out clearly the correlations between chemical 

elements, like Sb and As, Au, Ag and Se, or Sb with Ag/Au/Se (Fig. 2b). The nature of compositional data is 

specific, since all variables have a sum of 1 or 100% (this is known as constant-sum constraint, see below). It 

means that individual variables in the compositional data do not vary independently – i.e. if one variable 

decreases, the proportion of the remaining must increase. Such an induced correlation may easily hinder the true 

relationships among variables (in our case trace elements), which is why the next step in our data processing was 

to eliminate these correlations. For this, we ran principal component analysis (PCA), a statistical procedure used 

to reduce the dimensionality of a dataset consisting of a large number of interrelated variables, while retaining 

the variation present in the dataset [44]. It is otherwise the same procedure as eigenvalues decompositions from 

linear algebra. The PCA removed these correlations (Fig. S1), preparing the output, now calculated as principal 

component scores (Table S1), for network analysis.  
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The straight approach to PCA with original compositional data has already been known as fraught with 

difficulties because of the marked curvature often displayed by such datasets and the constant-sum constraint 

that each compositional vector must satisfy [45, 46]. Aitchison [45] proposed a way around these constraints by 

arguing that the best way to compute principal components out of restricted types of data (e.g. in allometry, or 

compositional data) is to use logarithms of the original data. This supports the treatment of our original data, 

although in our case it was also evident as a necessity from lognormal distribution (Fig. 1). A disadvantage of his 

approach was in that it could not handle zeros (0), which in our case was about to lead to losing a small handful 

of objects where particular trace elements were not detected (or were below the detection limit of the analytical 

instrument). An alternative, however, was to replace zero values with a small positive number, which is what we 

did before transforming the original values into logarithms. Our small positive number was smaller than the 

detection limit of any of the analysed elements (0.0001). 

 

FIG. 1. Distribution of trace elements before (left) and after (right) the logarithmic transformation. 

In the following step, the principal component scores (Table S1) were used to calculate the Euclidean distance 

between all pairs of artefacts. For this, we followed the rationale below: if ! is a principal component vector of 
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one artefact and ! is a principal component vector of another artefact, the distance between the two artefacts will 

be defined as Euclidean distance between these two vectors as: 

! !, ! = !!– !! !
!

!!!
 

Hence, the links in our Artefacts Network were defined as 1/d2 (d = Euclidean distance). We acquired the 

number of clusters with Louvain algorithm [4], which is a high-performance method in complex networks 

analyses for identification of community structures.  

          

FIG. 2. A) Correlation of original trace element values. Note the colour gradient on the side marking blue for positive and 
red for negative correlations; B) Correlation of logarithms of original trace element values. Note the stronger correlation 
patterns brought out by logarithmic transformation of the original trace element data. 

Louvain method is based on the maximization of modularity Q, which measures the quality a certain partitioning 

of a network and is defined as: 

! = 1
2! !!" −

!!!!
2!!"

! !! , !!  

where Aij is the weight of the link, ki and kj are weighted degrees (also known as strengths – the sums of the 

weights of all the links coming from that node) of the nodes i and j, m is the half sum of all the weights in the 

network, and δ(ci,cj) is delta function, which will be 1 if the nodes i and j belong to the same cluster ci  (cj). 

Modularity Q can result in values between -1 and 1, and the larger the value, the better the partitioning of the 
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network. This is because more links exist between the nodes of the same cluster in contrast to the links between 

the nodes of different clusters. Louvain algorithm includes an additional benefit in that it maximizes the 

partitioning of the entire network (ie level 1) but also produces alternative partitioning (level 2, level 3 etc), 

where modularity reaches a local maximum.  

The Louvain method yielded results on two levels for our Artefacts Network: the one with 6 clusters that 

corresponded to the global maximum of the mentioned algorithm, and another with 10 clusters, which 

represented a refined picture of the initial partitioning with 6 clusters. After opting for the level with 10 

(chemical) clusters in order to acquire a better resolution, we tested the significance of our results with network 

randomization (bootstrapping). For this, we used the resulting partitioning of our network and then randomised 

it, keeping only the important properties (for Artefacts Network, the weight of links). This process was repeated 

1000 times, and it yielded the distribution of 1000 modularity values in our randomised network, which we then 

compared with the modularity value of the Artefacts Network (0.3088). The mean of the distribution of 

modularities of the randomized networks is 0.1012. The latter has the standard deviation of 0.0008, making the 

value of the original network 280 standard deviations larger then the mean of the randomized networks values 

(see Fig. 3a). This corresponds to the p value of <0.001.  

Finally, although there are other methods that can be used for determining the number of chemical clusters, we 

developed this one for two main reasons: a) it offers a clear criterion for obtaining the number of modules by 

maximising the value of modularity (unlike, for example, hierarchical clustering) and b) it gives us an option to 

test the significance of the obtained clustering structure with bootstrapping, by using comparison between the 

value of modularity and the value of randomized networks. This is the first time this method has been developed 

for application on archaeological data and although it differs from the average-link clustering employed by 

Pernicka et al [19], we observed a general consistency of our results with the outcomes of their clustering 

analyses (Supplementary Information, Figures S2 and S3). 

Sites Network – community structure analyses of archaeological sites. Our second and final step (Sites Network) 

has archaeological sites as nodes, where links amongst them stand for pairs of artefacts from these sites that 

share the same chemical cluster. This relationship was established under the assumption that two artefacts 

belonging to the same chemical cluster could have ended up from the places of exploitation or production in two 

different sites through either direct or indirect contact (i.e. various types of intermediaries); we encompass both 

options under the term ‘supply network’. The link between the archaeological sites in out Sites Network 

practically works in the following way: artefact A and artefact B from two different sites (nodes) belong to 

(chemical) cluster 1, and therefore these two sites have a link. If these two sites contain more artefacts from the 

same cluster, the weight of the link is larger. For example: if site i contains artefacts from clusters 

[0,1,1,1,1,2,2,2,3] and site j has artefact from clusters [0,1,1,2,2,8,9], then the weight of the link is 5 (one for 
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each artefact of the common type). We analysed the final network with Louvain algorithm and acquired only one 

level with three distinctive community structures (Modules 0, 1 and 2). For the Sites Network randomisation 

procedure, we cut each link and randomly reconnected it to a different node while saving only the information of 

the degree of each node for this type of network; this procedure was repeated 1000 times. We took into 

consideration, for instance, that the link with weight 5 is actually 5 links. The modularity of the original network 

(Sites Network) is 0.276; it is also 57 standard deviations larger from the mean of the modularities of the 

randomized network (0.078 ± 0.004), hence confirming significance of our final network (Fig. 3b). Geographical 

coordinates of archaeological sites/nodes (Table S1) were used solely for illustrative purposes in this paper. The 

Sites Network is the final outcome of our network design, the only one whose modularity we discuss below, and 

which we refer to in our results and discussion.  

     

FIG. 3. A) Testing the significance of the Artefacts Network. The blue line represents the original modularity of the 
Artefacts Network and the red lines the distribution of modularities of randomized networks; B) Testing the significance of 
the Sites Network. Modularity of original network (blue line) and the modularities obtained through the randomized 
networks (red lines). 

 

The importance of archaeological sites (nodes). We tested the importance of our nodes with three different 

node centrality measurements: degree centrality (based on number of links each node includes), PageRank [47] 

and betweenness centrality [48]. All three yielded meaningful results for determining the importance of the 

specific archaeological sites. The degree centrality of the node (in this case weighted degree or strength) tells us 

with how many other sites the observed site had some kind of communication. The PageRank takes into account 

how important the observed sites are. However, given that our network is not directed, these two properties 

appear significantly correlated (see Figure S5), and hence both presented similar results for our study. On the 

other hand, the betweenness centrality is defined as a number of shortest paths that go through an observed node. 

In order to calculate it, we defined the weights as 1/w or 1/w2, where w is the weight in the original network; this 
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procedure ensured that if there were more connections between the sites, it was easier to travel between them. 

Once we compared the betweenness centrality and the PageRank we observed that, barring the large difference 

for nodes of smaller PageRank values, the more important nodes were still more important by both measures 

(see Figure S6). Also, the betweenness centrality measure is not very robust and by removing only one artefact 

from the original input, the values change substantially, although again the more important nodes still come out 

the same. To conclude, using any of the importance measure yielded very similar results, which is why we give 

all three in Table S2. For the purpose of illustration in our maps (size of the nodes) we opted for PageRank.  

The modularity analysis produced three modules with high statistical confidence, while centrality measures 

indicated the importance of sites in our network, reflected in the size of nodes in Figures 4-7. These three 

modules are interpreted as representatives of one or many copper supply networks, where the strength of links 

between nodes defines their membership to a module in a particular period (which may vary, see Table S2, 

Figure S4). This does not exclude the fact that nodes from different modules are also interconnected, rather that 

these links are peripheral and less strong than the strength of the links within the origin module. A more detailed 

account of both the nature of data and the procedure we developed is placed in the Supplementary Information, 

which represents an extended version of the Methods section.  

3. Results and Discussion 
 

Modularity. Module 0 is spatially constrained to eastern Serbia and western Bulgaria (Figures 4 and 5a), and 

includes 50.5% of nodes in the total network. This is the only module that chronologically covers all seven 

periods, although to a variable extent. The most densely interconnected nodes occur between c. 4100 and 3700 

BC, reflecting 60% of the total Module 0 assemblage, or 33 out of 55 copper-based artefacts (Figures 5a, 6e, 

Table S2). The most striking feature of the Module 0 structure is that the 4100-3700 BC period is predominantly 

represented with the Jászladány type axe-adzes, a hallmark of the Bodrogkeresztúr culture in eastern Serbia and 

western Bulgaria (see Fig. 7e). Almost two thirds of these axes feature in this module, most of which are stray 

individual finds; this in turn might explain the equal weight of the edges among the nodes observed in this 

module (Table S2). The pervasiveness of chemical cluster 2 indicates that copper supply network of Module 0 

was likely organised around a single deposit, with occasional presence of another two clusters (no. 4 and 8) (Fig. 

5d). 

Module 1 is the smallest one in the group of three, comprising 11.8% nodes that are largely aligned along the 

main riverine routes and their hinterlands in the northern Balkans (Fig. 5b, 6b, Table S1). It covers the c. 5500 – 

4450 BC and c. 4100 – 3700 BC periods and a wide variety of artefacts, from copper minerals and slags to 

copper metal artefacts. It exclusively contains all metal production evidence in the entire assemblage (within c. 

5000 – 4450 BC). The supremacy of cluster 2, followed by the minor presence of clusters 0, 4, and 9 (Fig. 5e) 
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resembles largely the Module 0 supply network (Fig. 5d). More than 70% of artefacts in this module are ascribed 

to Periods 3 and 4 (c. 5000 - 4450 BC) (Figures 5e, 6b, 6c, Tables S1 and S2), and the spatiotemporal pattern 

represents a proxy for the distribution of metal producing societies traditionally identified as the Vinča culture 

(see Fig. 7a-c).  

 

FIG. 4. Modularity analysis reveals three densely connected communities that produced and exchanged copper in the 
Balkans between c. 6200 BC and c. 3200 BC. Four nodes (Pločnik, Durankulak, Goljamo Delcevo, Zlotska pecina) appear 
in more than one module in different periods (Pločnik in Modules 0, 1 and 2, Durankulak in Modules 1 and 2, Goljamo 
Delcevo and Zlotska pecina in Modules 0 and 1, see Fig. S4), hence different indications of color symbol/links in this 
figure. The node size depends on the Page Rank value (Table S2). 

Module 2 displays the strongest spatial presence in eastern Balkans (Bulgaria, and only 4 nodes in Serbia), with 

37.6% of nodes in the total network. It includes the time frame between c. 5000 BC and c. 3200 BC, with 

Periods 4 and 5 (c. 4600 – 4100 BC, Figures 6c, 6d) solely representing 85% of all artefacts in this module, 

which translates into 223 copper-based artefacts (Table S1). A great variety of copper metal artefacts dominate 

this module, barring a few metal casting prills. The diversified supply networks are reflected in the presence of 

all chemical clusters, indicating an extensive exploitation of various copper sources (Fig. 5f), in contrast to rather 

monopolised supply routes in Modules 0 and 1 (Figures 5d, 5e). The strongest connection between the format of 

this network and the established concepts of archaeological cultures is seen in the overlap of the former with the 
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distribution of the Kodžadermen-Gumelniţa-Karanovo VI complex and the Varna culture in north-central and 

east Bulgaria respectively (see Figures 7c, 7d).  

Archaeological and spatiotemporal significance. The three community structures discussed above exhibit high 

correlation with the known spatial and chronological dynamics of various cultural phenomena – archaeological 

cultures in the Balkans between the 7th and the 4th millennium BC (Fig. 7). The earliest known copper-based 

artefacts are included in the Module 0 assemblage, identified as copper minerals from the Early Neolithic 

Starčevo culture horizons at Lepenski Vir, Vlasac and Kolubara-Jaričište, dated from c. 6200 to c. 5500 BC 

(Figures 6a, 7a). These fall within the same module as copper minerals and beads from the early Vinča culture 

occupation at the sites of Pločnik (Period 2, 5500 – 5000 BC, Fig. 7a), but also Gomolava and Medvednjak 

(Period 3, 5000-4600 BC, Fig. 7b). Thus, communities from these sites were members of the same copper supply 

network throughout Periods 1-3, a notion also supported via the exclusive presence of cluster 2 at the time (Fig. 

5d). Lead isotope analyses of copper minerals from these sites, which were not taken into account for our 

networks analyses, offer further support for the link between these artefacts by confirming their origin from the 

eastern Serbian sources, like Majdanpek [22, 39] (see also Fig. S2).  

The presence of one node from the Vinča culture in Module 1 in Period 2 (5500-5000 BC, Belovode) might be 

taken as an exception to the rule, or explained as the emergence of a parallel copper supply network that 

develops fully in the following, Period 3 (5000-4600 BC), and that included only Vinča culture sites with the 

confirmed evidence for metal production (Figures 6b, 7b), as for instance Vinča, Selevac and Pločnik [21, 49, 

50]. To this group we also add the site of Durankulak, located on the western Black Sea coast, with which early 

copper mineral and metal exchange ties with the Vinča culture metal-producing sites were known from earlier 

archaeological studies [19, 51]. Noteworthy is the change of modules for the site of Pločnik (from Module 0 to 

Module 1) in Period 3, which happens in parallel with the introduction of metalmaking activities in this 

prehistoric village [50].  

Module 2 communities start appearing from Period 3 (5000-4600 BC) as well; two nodes, Slatino and Marica 

(Figures 6b, 7b), emerge in the hinterlands of the copper-rich deposits in central Bulgaria, and one of the two 

prominent ancient mines in the Balkans, Ai Bunar. This particularly prolific copper mine in the past is the 

probable source for cluster 4 artefacts (see Fig. S3), which dominates Module 2 throughout all periods (Fig. 5f).  

Period 4 (4600-4450 BC) is archaeologically known as the time of the collapse of the Vinča culture (mostly 

northern sites), spread of the Krivodol-Salcuţa-Bubanj Hum (KSBh) I cultural complex, and the rise of two 

distinctive cultural phenomena in Bulgaria: Kodžadermen-Gumelniţa-Karanovo (KGK) VI and Varna cultures 

[52]. This situation is well exemplified in the fragmentation of copper supply networks in Figures 6c and 7c, 

which appear severed due to the mentioned developments.   
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The most notable example is again the communities at the site of Pločnik, which after the collapse of the 

northern Vinča culture settlement, established ties with Module 2 communities, largely represented with the 

KGK VI complex (Fig. 7d, Table S1). These ties have already been confirmed with the lead isotope analyses that 

suggested Bulgarian deposits as likely sources for some copper metal implements discovered in Pločnik in its 

latest phases of occupation [18]. 

Another similar example is the site of Durankulak, which changed supply network and, similarly to Pločnik, 

transferred into another module (from Module 1 to Module 2, Figures 6b, 6c, 7b, 7c). Interestingly, the sites of 

Pločnik and Durankulak emerge as the most important in the PageRank analysis, along with Tell Ruse in the 

same period (4600-4450 BC, Table S2). This practically means that these nodes/sites contained most artefacts 

that shared chemical cluster with a number of others, all of which seem to appear only in Module 2 (Table S2). 

This is also the time when 8 out of 10 chemical clusters occur in the supply network of Module 2, probably 

implying the intensification of multiple sources exploitation (Fig. 5f), a trend archaeologically recognised earlier 

as the Balkan ‘metal boom’ [53, 54].  

Module 0 sites in Period 4 (4600-4450 BC) are largely representative of the spread of KSBh I cultural complex 

(Fig. 7c), although there are exceptions to the rule. Period 5 (4450-4100 BC) is dominated by Module 2 supply 

network solely, which carries high spatial and temporal resemblance with the KGK VI cultural complex, 

followed by developed phases of the Varna and KSBh I cultures (Figures 6d, 7d, Table S2). These 

archaeological phenomena are, in terms of (copper-based) metallurgical practice and knowledge almost 

indistinguishable. The extensive lead isotope studies of copper metal artefacts from this period [19] suggested 

common use of several copper deposits across modern day Bulgaria, with distinctions only noticeable in the 

style of implement-making, like axes of a particular type (see Table S1). Such an ‘open market’ approach to 

acquisition of copper ores or copper metal ingots is well illustrated in Fig. 5f, which shows the presence of 6 out 

of 10 chemical clusters in this period. The prevalence of clusters 4 and 9 indicates clearly different extent of 

dependence on these potential sources (or cluster of adjacent sources with a similar chemical signature) in 

comparison with Modules 0 and 1, which are dominated by cluster 2 (Figures 5d, 5e).  

The following period (4100-3700 BC) reveals a shift in copper supply networks from Bulgaria towards east and 

central Serbia (Figures 6e, 7e). This shift in copper supply networks is consistent with the known collapse of the 

KGK VI complex in Bulgaria and the emergence of the Bodrogkeresztúr phenomenon, confirmed as dependant 

on copper sources in eastern Serbia, like Majdanpek [19]. The striking dominance of cluster 2 confirms this 

earlier finding further, while the use of cluster 4 in this period may be matched with the remnants of the Module 

2 network, presented with the sites belonging to the latest phase of KSBh IV and the rise of important 

settlements like Telish (Fig. 7e, Table S2). The Module 0 nodes in this period stand for finds from three hoards, 

carrying mixed typological characteristics of the Bodrogkeresztúr and KSBh IV phenomena (Table S1).  
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The last observed period (3700-3200 BC) shows the disintegration of copper supply networks (Figures 6f, 7f); 

this is presented with individual or stray finds of typologically distinctive artefacts for the Proto Bronze Age, 

mixed with a few artefacts from the previous period [52]. The said situation is archaeologically reflected in the 

documented discontinuation of the 5th millennium BC metalmaking techniques in the Balkans, which were 

unique across this space, particularly in the finishing techniques for making massive copper implements, a 

hallmark of the mentioned millennium [39, 55, 56].  

 
4. Conclusion 

"
Here we capture properties of highly interconnected systems – community structures made of supply networks 

that reflect organisation of copper industry and effectively social and economic ties in the Balkans between c. 

6200 and c. 3200 BC. The intensity of algorithmically calculated social interaction reveals three main groups of 

communities that are spatiotemporally and statistically significant (Figures 4 -7). We notice selective formation 

of networks ties amongst sites’ populations in relation to specific regional copper sources (e.g. eastern Serbia, 

central Bulgaria) or communication routes (e.g. lower Danube), as well as their association with either seemingly 

monopolised (dominance of cluster 2, Figures 5d, 5e) or ‘open-market’ (all clusters included, Fig. 5f) 

organisation of copper supply networks across the observed periods. Noteworthy is that clusters 2 and 4 are 

overall coherent with the chemical signatures of the ancient mines of Majdanpek and Ai Bunar respectively 

(Figures S2, S3 and discussion in SI), a result consistent with previous research on metal provenancing in the 

Balkans [18, 19]. Importantly, the observed spatial and chronological divide of clusters 2 and 4 artefacts (Figures 

5 and 6) confirms the archaeological significance of our results. It also further indicates the tendency of 

communities identified as archaeological cultures to maintain their own regional network of copper exploitation, 

production, exchange and consumption. In this light, metal recycling practices are plausible, although they 

would likely occur within community structures defined by our modularity research (see Supplementary 

Information). 

The complex wiring topologies of three modules identify the evolving and collapsing past social structures, 

which are quantified for the first time independently from cultural, chronological and geographical attributes. 

These networked structures also carry strong resemblance with at least three dominant economic and social cores 

of copper industries in the Balkans across c. 3000 years, traditionally defined as Vinča, KGK VI & Varna, and 

Bodrogkeresztúr cultures through Modules 1, 2 and 0 in respective chronological order (Figures 5-7). Besides 

suggestive spatiotemporal patterning, such resemblance shows that algorithmically calculated community 

structures represent currently the most precise mathematical model for identifying archaeological phenomena, or 

what appears to show here as the selective formation of past social ties across the observed period. The dynamics 
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of copper exploitation, production and consumption practices in this case reflect closely the dynamics of 

recorded social interaction within the observed time and region. Although we are not suggesting that metallurgy-

related practices were the sole factor in defining these interactions, such as collapses or rises of cultural 

complexes, our research indicates that they must have been sufficiently powerful to play a major role in their 

shaping.  

The results of our analysis indicate that: a) the obtained community structures exhibit patterns of cooperation and 

complex human interaction that derive from shared economic interests, cultural values [57], beliefs and probably 

common communication system; b) these patterns were obtained independently of inputs like cultural, 

chronological or geographical attribution of data and c) the consistency of gained structures with the distribution 

of archaeological cultures illustrates that foundations of our method are reliable. Its resolution and verified 

probability demonstrate capacity for revealing a significantly nuanced picture of past social interaction, in 

contrast to the traditional methods. We therefore suggest that community structure property of networked 

systems represents a compelling tool for an independent evaluation of the archaeological record.  

The obtained high-resolution picture of dynamics of networked systems in the past provides a model that stands 

in stark contrast to the static nature of determining patterns of social interaction based on accumulation of 

seemingly similar material traits in the archaeological record. A good example for the high-resolution result is 

Pločnik, a site that changed modules throughout three distinctive periods (Figures 6a, 6b, 6c). Looking closely at 

the nature of these changes, it can be seen that they were triggered at the time of the known developments: 

emergence of metallurgical activities (c. 5000 BC, Module 0 to 1) and collapse of the majority of networked 

structure occupied by communities labelled as the Vinča culture (c. 4600 BC, Module 1 to 2). Our method can, 

therefore, reveal connections that traditional systematics was not able to and provide insight into the dynamic 

nature of (re)forging relations in the altering climate of social and economic evolution of past societies. Equally 

so, complex networks analyses allow us to observe the spread of technological innovations, like metallurgy, 

through the lens of cooperative networks and processes involved in their formation and maintenance. It would be 

relevant for this study to compare our results with any demographic changes at the time. Although a few 

innovative studies have addressed this matter earlier [58, 59], along with the exemplary success related to 

networks analyses in the pre-Hispanic US Southwest [28], there have not yet been attempts to integrate 

metallurgical and population data for the 7th - 4th millennium BC Balkans. 

We select two key arguments to highlight the novelty of our model for studying community structures in the 

human past record. One is that it is based on a variable independent of any archaeological and spatiotemporal 

information, yet provides archaeologically and spatiotemporally significant results. The second is that a study of 

community structure property of networked systems in the past produces coherent models of human interaction 

and cooperation that can be evaluated independently of established archaeological systematics. Despite the 



19"

 

"

imperfect social signal extracted from the archaeological record, our method provides important new insights 

into the evolution of the world’s earliest copper supply network and establishes a widely applicable model for 

exploring technological, economic and social phenomena in human past, anywhere. 
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Data. For networks analyses we used published and unpublished sets of compositional data for 410 
copper-based objects under consideration, spanning c. 6200 to c. 3200 BC. These were assembled 
from publications of Pernicka et al. [1, 2], Radivojević et al. [3], Radivojević [4] and UK’s AHRC-
funded “Rise of Metallurgy in Eurasia” project (hosted by the UCL Institute of Archaeology, no. 
AH/J001406/1)[5]. All data originate from the analytical set up of a single laboratory, Centre for 
Archaeometry in Mannheim, Germany, led by Professor Ernst Pernicka (DOI: 10.17863/CAM.9599). 
The data from 410 objects are presented with a unique laboratory number (given by Centre for 
Archaeometry) and include the following types of materials (Table S1): copper mineral (30 in total), 
mineral ornament (17 in total), production evidence (smelting/casting, 22 in total), metal ornament (99 
in total), and metal implement (242 in total). The metal implement type some instances contained 
information on the type of axe, included in a separate column (no data labelled as: unk). Besides a 
unique geographical location (given as latitude and longitude in degrees), sites are ascribed the 
following regional codes: SRB (Serbia), W (West Bulgaria), THR (Thrace), RHD (Rhodope), NC 
(North-central Bulgaria), NE (North-east Bulgaria) and BSC (Black Sea Coast). The dataset is 
available under: https://doi.org/10.17863/CAM.9599. 

Chronological and cultural attribution of studied materials was ascribed based on available relative 
and absolute dating in the area under consideration [1-3, 6-26]. Seven cultural periods were designated 
for this study: Early/Middle Neolithic (Period 1, 6200-5500 BC), Late Neolithic (Period 2, 5500-5000 
BC), Early Chalcolithic (Period 3, 5000-4600 BC), Middle Chalcolithic (Period 4, 4600-4450 BC), 
Late Chalcolithic (Period 5, 4450-4100 BC), Final Chalcolithic (Period 6, 4100-3700 BC) and Proto 
Bronze Age (Period 7, 3700-3200 BC). We would like to emphasise that there is not a general 
consensus on the relative vs. absolute chronology of existing cultural phenomena observed here 
amongst (Balkan) archaeologists; thus, the entries on chronology in Tables S1 and S3 should be taken 
as tentative interpretations based on the latest chronological update in the field.  

Period 1. Early/Middle Neolithic (EN, 6200-5500 BC). This period is represented only with the finds 
belonging to the Neolithic occupation of sites in eastern and western Serbia (proto/Starčevo culture) 
(see Figure 7a, Table S3). The use of malachite at the time of the introduction of agriculture or 
domestication is not uncommon, and similar examples have been documented in the Near East. 
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However, the minerals listed here are unique since their function remained unknown, although the 
provenance analyses indicate their origin from local, eastern Serbian sources [18].  

 

Period C14 
dates 

Vojvodina Central  

Balkans 

West Bulgaria South 
Bulgaria 
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Cernavoda I 
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Krivodol-Salcuţa-
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VI 

 

 

Marica IV 
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Karanovo VI 

 

Boian-Spanţov 
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Gumelniţa-

Karanovo VI 
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Chalcolithic 

4450 Vinča D Varna I 
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Hamangia 
IV 
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Chalcolithic 

4600 Vinča D 
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III- 
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V 

 

Boian-Vidra 
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Late 
Neolithic 

5000 Vinča B 

Vinča A 

Kurilo/Akropotamos 

Topolnica 

Karanovo 
IV 

Karanovo 
III 

Boian III  

Hotnica 

Hamangia 
II 

Hamangia I  

Early 
Neolithic 

5500 

6200 

Starčevo 

Lepenski Vir III 

     

 

Table S3. Relative and absolute chronology of malachite and metal-using cultures in the Balkans, 7th – 4th mill BC. 
Green font stands for using copper minerals (e.g. malachite beads), red for metallurgical materials (e.g. metal 
artefacts, slags). The shaded fields indicate the periods and regions covered in this study.  

Period 2. Late Neolithic (LN, 5500-5000 BC). This period is linked with the emergence of 
archaeological cultures that would grow into large metal producing and consuming phenomena (like 
Vinča in Serbia or Karanovo in Bulgaria) during the 5th millennium BC [27]. While Vinča culture 
occupied most of the central Balkans, the Karanovo phenomenon emerged in central Bulgaria and 
expanded significantly in the second half of the 5th millennium BC, including territories from the 
Black Sea coast to Thrace. With settlements rising on river plateaux across the region, exceptional 
craftsmanship in pottery and stone industry started to develop. Copper minerals and malachite beads 
found in settlements and cemeteries at the time became more numerous, although no thermal treatment 
has been recorded prior to c. 5000 BC. In eastern Serbia, the Vinča culture communities commenced 
mining activities in the currently earliest known copper mine, Rudna Glava [28]. Although no metal 
artefacts from this period (or later) were found to compositionally and isotopically match this source, 
there were other mines in otherwise copper-abundant region of eastern Serbia, such as Majdanpek, 
which were particularly prolific during the 5th millennium BC [1]. 
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Period 3. Early Chalcolithic (EC, 5000-4600 BC). The start of the copper smelting activities is set 
around 5000 BC [3], which corresponds with the earliest known metal artefacts appearing in the Vinča 
culture site of Pločnik in south Serbia, followed by similar finds along the Black Sea Coast and in 
south Bulgaria [29]. Settlements grew in size, particularly along the lower Danube, which was 
probably the easiest and quickest means of transport for the emerging long-distance trade of 
prestigious commodities, such as spondylus, obsidian, malachite beads and metal artefacts, amongst 
others [30, 31]. Many of these were found in the first organised cemeteries at the time, probably 
designating high status of buried individuals (i.e. Durankulak). The ‘metal effect’ is seen in the 
occurrence of graphite-painted decorations on pottery at the time, possibly imitating one of the most 
desired materials of the 5th millennium BC in the Balkans. Towards the very end of this period, 
archaeologists have recorded the first mining activities in Bulgaria, at the site of Ai Bunar, started by 
the bearers of the Marica culture [32, 33] (Table S3). It grew to be the most important source of 
eastern Balkan region throughout the later 5th millennium BC. 

Period 4. Middle Chalcolithic (MC, 4600-4450 BC). This period is difficult to separate out from what 
appears to be an uninterrupted evolution of metal making cultures in eastern Balkans (Bulgaria) and 
slow disintegration of the Vinča culture in Serbia. It is generally characterised with the rise of two 
large cultural complexes and one culture in northeastern Bulgaria. While northern Vinča culture sites 
were rapidly being abandoned and conflagrated, a few southern ones (like Pločnik) continued to live 
until the very end of the Vinča culture in south Serbia (c. 4450 BC). Some scholars argued that it was 
the late Vinča culture in this region and Gradešnica in west Bulgaria that gave impetus for the 
formation of the Krivodol-Salcuţa-Bubanj Hum (KSBh) I cultural complex [21]. The other large 
cultural complex was formed by the merging of Marica, Karanovo V and Boian Spanţov cultures in 
south Bulgaria and Muntenia, and is known under the name of Kodžadermen-Gumelniţa-Karanovo 
(KGK) VI (Table S3). Varna culture, named after the eponymous burial site with the world’s earliest 
gold objects, occupied the (western) Black Sea coast. This is the time when large tell-sites dotted both 
riverbanks along the lower Danube, but also other regions in Bulgaria (like Karanovo tell-settlement, 
for instance). Metal production enters its peak production, where diversification in copper hammer-
axe design was most likely due to communities seeking for a personal stamp in then fast-expanding 
metalmaking industry.  

Period 5. Late Chalcolithic (LC, 4450-4100 BC). While in some parts of Bulgaria the transition from 
the previous period into this one is hardly recognisable in material culture, the Late Chalcolithic 
period has been supported with absolute dates. The material culture and domestic architecture are 
developing in this period together with the extensive burial evidence for the rising wealth of 
individuals, and hence a potential social stratification and emergence of an elite [34]. A rapid climate 
change towards the end of this period is seen as the major cause of disappearance of any record of the 
communities in the east and central Bulgaria. The disintegration of the communities seemingly started 
with the coming of the steppe population, although the complete cultural caesura must have been a 
combination of several factors [24]. In the west, KSBh cultural complex spreads over a vast space 
between Oltenia and the Aegean (Thassos). The material expression and settling habits differ from the 
developments in the east, with settlements mostly established at higher altitudes or caves. In Serbia, 
this cultural complex borders with the Tiszapolgár culture (Table S3).  

Period 6. Final Chalcolithic (FC, 4100-3700 BC). This period was characterised by the shift in metal-
making industry towards the west of the observed area. Metallurgy intensified in the KSBh IV cultural 
complex, potentially due to the decline of the Thracian mining centres [21]. Evolving domestic 
architecture, settlements established on inaccessible paths, and innovations in pottery making were all 
part of this new phase of the KSBh cultural complex evolution. The mining and metal production was 
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revived in eastern Serbia, particularly with the massive production of Jászladány type hammer axes, 
related isotopically to the Majdanpek mine, and culturally to the Bodrogkeresztúr culture [2]. This 
culture emerges east of the Tisza river, with sites dotted along its lowlands and into the Serbian Banat 
[15]; its southern spread is a matter of content, however, the spread of the Jászladány hammer axes 
indicates strong social and economic ties with area south of Danube. Gold objects occur for the first 
time in this part of the Balkans.  

Period 7. Proto Bronze Age (PB, 3700-3200 BC). This period saw the final disintegration of all 
cultural complexes formed during the 5th millennium BC. Small-scale settlements with rare metal 
artefacts are recorded throughout Bulgaria, with new metal tools, like daggers, making the appearance 
for the first time, presumably echoing the Eurasian Steppe influence.  

Each node in our network was followed by the designated time-period in our analyses in order to 
clarify which occupational horizon within a site (node) yielded which type of artefacts. Barring seven 
exceptions (see Table S1), all sites (or nodes) were ascribed a relative cultural affiliation based on the 
current state of research.  

Community structure (modularity) analysis. Our network was built in two discrete steps: 1) we 
grouped the data in ten distinctive chemical clusters (Artefacts Network); 2) placed a connector 
between the sites that contain pairs of artefacts from the same cluster and analysed the final network 
for community structures (Sites Network). In both steps we used the Louvain algorithm [35] to obtain 
community structures (modules) and bootstrapping to test the significance of gained results.  

Artefacts Network – clustering the copper objects by trace element chemistry. For each of 410 
artefacts (Table S1) we used the readings for the following seven trace elements: arsenic (As), 
antimony (Sb), cobalt (Co), nickel (Ni), silver (Ag), gold (Au), and selenium (Se), since they are the 
ones that are commonly thought to survive the hot temperature treatment from the copper ore to the 
copper metal in our case [36-38]. We therefore extracted only these values (presented in Table S1) and 
then performed the following course of actions that led to obtaining the number of chemical clusters in 
our dataset:  

1) transforming several compositional readings in our dataset with zero (0) value into a small positive 
number (0.0001); this number was smaller than the detection limit of any of the analysed elements; 

2) calculating logarithms of all 7 trace elements;  

3) running principal component analyses of the logged values and obtaining principal component 
scores; 

4) determining Euclidean distance between all pairs of artefacts;  

5) designing the Artefacts network with artefacts as nodes and links defined as 1/d2 (d = Euclidean 
distance), and  

6) obtaining the number of chemical clusters after conducting modularity analyses with the Louvain 
algorithm. 

To rationalise this sequence, we will start with justifying the modularity approach to chemical 
clustering. Theoretically, the goal of chemical clustering is to detect groups of copper artefacts whose 
compositional signature (a string of 7 trace elements) is more similar within a group (or a cluster) than 
with compositional signature of copper artefacts - members of other groups (or clusters). In other 
words, the links that join copper artefacts of the same chemical cluster are based on compositional 
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similarity, and they are comparatively stronger within a cluster of chemically similar artefacts than the 
links connecting these artefacts to other clusters. Since this compares closely to the definition of 
network modularity [39, 40], we designed the cluster analyses based on the principles of community 
structure research in networks. There are other methods that can be used for determining the number 
of chemical clustering, however, we developed this one for two main reasons: 

1) it offers a clear criterion for obtaining the number of modules by maximising the value of 
modularity (unlike, for example, hierarchical clustering); 

2) it gives us an option to test the significance of the obtained clustering structure with 
bootstrapping, by using comparison between the value of modularity and the value of 
randomized networks. 
 

Hence, the nodes of our network for obtaining chemical clusters were artefacts, while we defined links 
using Euclidean distance of the vectors of transformed trace element values. Namely, calculating 
Euclidean distance with the original trace element values proved challenging for two reasons: a) they 
showed lognormal, instead of Gaussian distribution in our case (Fig. 1) and b) they were correlated to 
begin with (Fig. 2a). Starting with the former, the lognormal distribution of our data indicated that 
small values are predominant (Fig. 1), and computing distances between the original data would lead 
to losing information on variation in smaller values. For instance, the difference between the values of 
0.001 and 0.002 would make much smaller contribution in comparison to the difference between the 
values of 100 and 101. Hence, in order to account for these variations on the same scale, or same 
relative differences, we transformed the original values into logarithms. The logarithms of original 
data brought out clearly the correlations between chemical elements, like Sb and As, Au, Ag and Se, 
or Sb with Ag/Au/Se (Fig. 2b). This took us to acknowledging a particular (mathematical) property of 
compositional datasets, known as the constant-sum constraint (CSC), which refers to a constant sum 
of 1 or 100% for all variables in a measured sample [41, 42]. It means that individual variables in the 
compositional data do not vary independently – i.e. if one variable decreases, the proportion of the 
remaining must increase. Such an induced correlation may easily hinder the true relationships among 
variables (in our case trace elements), which is why the next step in our data processing was to 
eliminate these correlations. For this, we ran principal component analysis (PCA), a statistical 
procedure used to reduce the dimensionality of a dataset consisting of a large number of interrelated 
variables, while retaining the variation present in the dataset. The output are uncorrelated variables 
(principal components), ordered in a way that the first few keep most of the variation present in all of 
the original variables [43]. The PCA is the same procedure as eigenvalues decompositions from linear 
algebra. The PCA removed these correlations (Fig. S1), preparing the output, now calculated as 
principal component scores (Table S1), for network analysis. The logarithmic transformation, PCA, 
and visualisation in Figures 1, 2 and S1 were all computed in R (we used the corrplot library for 
correlations in these figures). 

The straight approach to PCA with original compositional data has already been known as fraught 
with difficulties for the reasons mentioned above [41, 42]. Aitchison [41] proposed a way around these 
constraints by arguing that the best way to compute principal components out of restricted types of 
data (e.g. in allometry, or compositional data) is to use logarithms of the original data. This supports 
the treatment of our original data, although it was also in our case evident as a necessity from 
lognormal distribution (Fig. 1). A disadvantage of his approach was in that it could not handle zeros 
(0), which in our case was about to lead to losing a small handful of objects where particular trace 
elements were not detected (or were below the detection limit of the analytical instrument). An 
alternative, however, was to replace zero values with a small positive number, which is what we did 
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before transforming the original values into logarithms. Our small positive number was smaller than 
the detection limit of any of the analysed elements (0.0001), as mentioned above. 

 

Figure S1. The principal component analysis yielded the uncorrelated variables (compare with Figures 1 and 2). 

In the following step, the principal component scores (Table S1) were used to calculate the Euclidean 
distance between all pairs of artefacts. For this, we followed the rationale below: if ! is a principal 
component vector of one artefact and ! is a principal component vector of another artefact, the 
distance between the two artefacts will be defined as Euclidean distance between these two vectors as: 

! !, ! = !!– !! !
!

!!!
 

Thus, the network we formed has artefacts as nodes and links defined as 1/d2 (d = Euclidean distance). 
The number of clusters was obtained with the Louvain algorithm [35]. We used the original 
implementation of the code written in C++ by E. Lefebvre, and later adapted by J.-L. Guillaume; it is 
also freely available for download on https://sites.google.com/site/findcommunities/ (the current 
version is maintained on  https://sourceforge.net/projects/louvain/).  
 

Louvain method is based on the maximization of modularity Q, which measures the quality a certain 
partitioning of a network and is defined as: 

! = 1
2! !!" −

!!!!
2!!"

! !! , !!  

where Aij is the weight of the link, ki and kj are weighted degrees (also known as strengths – the sums 
of the weights of all the links coming from that node) of the nodes i and j, m is the half sum of all the 
weights in the network, and δ(ci,cj) is delta function, which will be 1 if the nodes i and j belong to the 
same cluster ci  (cj). Modularity Q can result in values between -1 and 1, and the larger the value, the 
better the partitioning of the network. This is because more links exist between the nodes of the same 
cluster in contrast to the links between the nodes of different clusters. Louvain algorithm includes an 
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additional benefit in that it maximizes the partitioning of the entire network (ie level 1) but also 
produces alternative partitioning (level 2, level 3 etc), where modularity reaches a local maximum. 
Out of two levels of results, one with 6, and the other with 10 clusters, we opted for 10 and tested the 
significance of our results with network randomization (bootstrapping). 

Network randomization (bootstrapping). We performed the bootstrapping in the following way: we 
used the obtained partitioning of the network and then randomized it, keeping only the properties that 
were important (here we only preserved the weights of the links, but we shuffle the nodes they were 
connected to). The result was the unique partitioning of the randomized network and the 
corresponding modularity value. This process was repeated 1000 times, and it yielded the distribution 
of 1000 modularity values in our randomized network, which we then compared with the modularity 
value of our Artefacts Network (Fig. 3a). The calculations were run in Python using the code for the 
Louvain algorithm (written in C++) for obtaining the modularity values. Histograms in Fig. 3 in the 
main text were produced in Gnuplot. 

The modularity of the Artefacts Network is 0.3088 and the mean of the distribution of modularities of 
the randomized networks is 0.1012. The latter has the standard deviation of 0.0008, making the value 
of the original network 280 standard deviations larger then the mean of the randomized networks 
values (see Figure 3a). This corresponds to the p value of <0.001, since we randomized the network 
1000 times over.  

Clustering method – consistency with the previous research.  

In the previous study on the provenance of the 5th millennium BC Balkan copper metallurgy, Pernicka 
et al [1, 2] conducted average-link analyses (a type of hierarchical clustering) in order to group more 
than 300 copper artefacts into cohesive clusters. They initially transformed the trace element 
concentration of As, Sb, Ag, Co, Ni, Au, and Se into logarithms and then applied the average-link 
cluster analysis with Euclidean distances using the SAS (Statistical Analysis Software) program 
package. This program uses the cubic clustering criterion [36, 44] as the parameter for determining the 
optimum number of clusters, which is how Pernicka et al. [1, 2] arrived to defining nine chemical 
clusters in their research. They then used discriminant analysis to calculate the probability of each 
sample to belong to the cluster it was assigned to with the average-link procedure, and applied the 
50% rule: where cases (objects) had less than 50% probability of belonging to the assigned cluster, 
they were re-assigned to the cluster they had the highest probability for membership.   

In order to check the consistency of our clustering method (modularity) with the one described above, 
we tested the data from our two largest clusters, cluster 2 and cluster 4 (Table S1), against the trace 
element patterns of the two most prolific prehistoric copper mines in the Balkans, Majdanpek and Ai 
Bunar (Figures S2 and S3). Namely, Pernicka et al. [2, 117, Fig. 20] managed to identify the chemical 
correlation between the Majdanpek mine and their cluster 2 (58 artefacts), and the Ai Bunar mine and 
their cluster 3 (43 artefacts), hence providing support for the argument that these two mines/copper 
deposits were exploited to make the observed sets of copper artefacts from the 5th millennium BC 
Balkans. We performed a similar test by plotting the trace element values of our cluster 2 artefacts 
(161 objects) with the trace element signature of Majdanpek (Fig. S2), and the trace element values of 
our cluster 4 artefacts (129 objects) with the trace element signature of Ai Bunar (Fig. S3). We chose 
these clusters since the former relates mostly to sites in Serbia and western Bulgaria, while the latter 
shows similar preferred associations with the sites in central and east Bulgaria. Also, these clusters (2 
and 4) largely represented expanded versions of Pernicka et al.’s clusters 2 and 3 respectively; we 
were not, however, expecting the exact overlap between these given that we were working with a 
larger dataset than these authors.  
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The plot on figure S2 shows a general consistency of cluster 2 artefacts with the Majdanpek ore field 
(grey), with the notable exception of three samples in total (labels: MA-071499, L354, L355, see 
Table S1). While Ni and Ag values in the Majdanpek ore and cluster 2 artefacts appear most 
correlated in Fig. S2, the greatest fluctuations are noticed in the Sb, Co and Au values. The plot on 
figure S3 also presents a tight pattern of cluster 4 artefacts matching closely the trace element pattern 
of Ai Bunar ores (grey field). The trace element values in this plot are highly correlated, barring As 
and Sb readings.  

Chemical fluctuations can be explained with several factors, both from the perspective of designated 
ore fields or the nature of artefacts making. Namely, when it comes to potential chemical variability in 
the ore fields, noteworthy is that the grey (mine) patterns in figures S2 and S3 stand for the 10th and 
90th percentile of the maximum and minimum recorded trace element values for Majdanpek and Ai 
Bunar. Although it does not mean that the grey patterns are incorrect, there is always a possibility that 
the sample size representing this ore field was not representative to begin with. 

Speaking of the chemical fluctuation of trace element patterns of artefacts against the original ore 
background, the lower readings of As and Sb in copper artefacts (in fig. S3 and partly in fig. S2) may 
imply the possibility of loss during metal extraction or recycling, particularly since the former has 
been known as volatile. The extent of volatility of As during arsenical copper recycling has been hotly 
debated in archaeology and archaeometallurgy, with discussions mostly concentrating on the redox 
conditions of the (s)melt and the compositional threshold below which As in copper becomes less 
volatile [45, 46]. In this light, and given that we are addressing here traces of both As and Sb (in ppm, 
not in percentages), we propose the recycling hypothesis only as an assumption that needs further 
probing. If the loss of As and Sb was indeed related to recycling in our cases, then such practice must 
have occurred within regionally (and potentially culturally) defined spaces. This conclusion follows 
neatly our modularity research, and is also addressed in the main manuscript.  

!

Figure S2. Trace element signatures of 161 copper artefacts belonging to cluster 2 (lines) plotted against the trace 
element signature of Majdanpek (grey field), a copper mine in eastern Serbia.  
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The third potential explanation for the observed chemical fluctuations is that both clusters 2 and 4 
reflect chemical signatures of several deposits adjacent to Majdanpek and Ai Bunar respectively. This 
is not improbable given that nowadays the preserved prehistoric mining commonly represents copper 
deposits that survived the later exploitation (and hence destruction) as not economically feasible 
investments in modern terms. While Ai Bunar might represent such a case, the exploitation of 
Majdanpek has only been confirmed through provenance analyses thus far [1], and not through 
verified traces of prehistoric exploitation beyond a few chronologically indistinctive grooved hammer-
stones kept in the Mining Museum in Majdanpek in Serbia. Thus, the best-case scenario for the 
surviving ancient mining is the poor ore quality, which may provide some grounds to presume that our 
two prolific mining sites in Serbia and Bulgaria may be only reflecting the less rich remnants of the 
actual copper mineral vein that had been mined in their vicinity.  

Chronology of the plotted artefacts may also help understand the chemical fluctuations. Cluster 2 is 
dominated by copper artefacts from two distinctive chronological ‘block periods’: 5500-4450 BC and 
4100-3700 BC, while cluster 4 includes mainly artefacts from 4450-4100 BC. The fluctuating pattern 
of cluster 2 artefacts may indicate the use of different ore sources in 5500-4450 BC and 4100-3700 BC 
respectively, although regionally constrained to eastern Serbia. On the other hand, the tight pattern of 
cluster 4 may indicate exploitation of a source in the vicinity of Ai Bunar with lower As and Sb 
content, or Ai Bunar itself followed by extensive recycling that took place within the constrains of the 
cultural / social boundaries of the KGK VI and related cultural complexes. All options presented here 
will be addressed in detail in future research. 

Overall, figures S2 and S3 exhibit noticeable correlation of cluster 2 and cluster 4 artefacts with 
Majdanpek and Ai Bunar. Our clustering method shows good consistency with the cluster analyses of 
Pernicka et al. [1, 2], which along with bootstrapping (Fig. 3a), verifies its reliability. 

!

Figure S3. Trace element signatures of 129 copper artefacts belonging to cluster 4 (lines) plotted against the trace 
element signature of Ai Bunar (grey field), a copper mine in central Bulgaria.  
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Sites Network – community structure analyses of archaeological sites. In this step, the 
archaeological sites represented nodes, and links between them were based on sharing the same 
chemical cluster for pairs of copper artefacts found in those sites. This relationship was established 
under the assumption that two artefacts belonging to the same chemical cluster could have ended up 
from the places of exploitation or production in two different sites through either direct or indirect 
contact (i.e. various types of intermediaries); we encompass both options under the term ‘supply 
network’. Thus, the link between the sites in out network practically works in the following way: 
artefact A and artefact B from two different sites belong to (chemical) cluster 1, and therefore these 
two sites (nodes) have a link placed between them. If these two sites contain more artefacts from the 
same cluster, the weight of the link is larger. For example: if site i contains artefacts from clusters 
[0,1,1,1,1,2,2,2,3] and site j has artefact from clusters [0,1,1,2,2,8,9], then the weight of the link is 5 
(one for each artefact of the common type). We analysed the final network with Louvain algorithm 
[35] and gained only one level with three distinctive community structures. 

When randomizing the network, we cut each link and randomly reconnected it to a different node 
while saving only the information of the degree of each node for this type of network. We took into 
consideration, for instance, that the link with weight 5 is actually 5 links. We repeat the randomization 
procedure 1000 times. The modularity of the original network (Sites Network) was 0.276, which is 57 
standard deviations larger from the mean of the modularities of the randomized network (0.078 ± 
0.004) (Figure 3b). Geographical coordinates of archaeological sites/nodes (Table S1) were used 
solely for illustrative purposes in this paper. Visualisation of Sites Network (Figures 4-7) was 
produced in Python from scratch, using Matlibplot package and the background map with kind 
permission of Prof. M. Milinkovic (University of Belgrade, Serbia). The Sites Network is the final 
outcome of our network design, and the only one whose modularity we discuss in the article. 

Since some of the observed sites (nodes) were active throughout multiple time-periods, and we wanted 
to observe their position in each of them, we regarded the same site in a different period as a separate 
node (site-period), and added the chronological span to the site name for easier navigation through 
results (see Table S2). Most importantly, apart from chemical cluster number we did not use any 
archaeologically relevant information in our network. In total, we have 79 sites and 93 site-periods. 
The sites (nodes) that appear in more than one period are listed below (Figure S4): 

- Ai Bunar   4600-4450 BC, 4100-3700 BC 

- Belovode 5500-5000 BC, 5000-4600 BC, 4600-4450 BC 

- Durankulak 5000-4600 BC, 4600-4450 BC, 4450-4100 BC, 3700-3200 BC 

- Goljamo Delcevo 4600-4450 BC, 4450-4100 BC 

- Gomolava 5000-4600 BC, 4600-4450 BC 

- Hotnica 4450-4100 BC, 3700-3200 BC 

- Pločnik 5500-5000 BC, 5000-4600 BC, 4600-4450 BC 

- Smjadovo 4450-4100 BC, 3700-3200 BC 

- Tell Ruse 4600-4450 BC, 4450-4100 BC 

- Zlotska pecina 4100-3700 BC, 3700-3200 BC 
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Figure S4. The sites (nodes) that exist throughout multiple time periods. Pločnik, Zlotska pecina and Goljamo Delcevo 
change the module over the observed time frame (c. 6200 to c. 3200 BC). 

 

 
 
The importance of archaeological sites (nodes). We initially tested the importance of our nodes with 
three different node centrality measurements: degree centrality (based on number of links each node 
includes), PageRank [47] and betweenness centrality [48]. All three yielded meaningful results for 
determining the importance of the specific archaeological sites. The degree centrality of the node (in 
this case weighted degree or strength) tells us with how many other sites the observed site had some 
kind of communication. The PageRank takes into account how important the observed sites are. 
However, given that our network is not directed, these two properties appear significantly correlated 
(see Figure S5), and hence both presented similar results for our study. On the other hand, the 
betweenness centrality is defined as a number of shortest paths that go through an observed node. In 
order to calculate it we defined the weights as 1/w or 1/w2, where w is the weight in the original 
network; this procedure ensured that if there were more connections between the sites, it was easier to 
travel between them. Once we compared the betweenness centrality and the PageRank we observed 
that barring the large difference for nodes of smaller PageRank values, the more important nodes were 
still more important by both measures (see Figure S6). Also, the betweenness centrality measure is not 
very robust and by removing only one artefact from the original input, the values change substantially, 
although again the more important nodes still come out the same. To conclude, using any of the 
importance measure yielded very similar results, which is why we give all three in Table S2. For the 
purpose of illustration in our maps (size of the nodes) we opted for PageRank; these are, again, not 
robust, which is why we use them only for visualisation. 
!
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Figure S5. PageRank vs. weighted degree (strength). The two measures are strongly correlated, as expected in 

undirected networks, which makes both useful for measuring the importance of the site (node). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. PageRank vs. betweenness centrality. Please note that except for the values with small PageRank, the two 
measures are correlated, which makes both suitable for measuring importance of the site. 
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