
Single-trace template a�acks on
permutation-based cryptography

Shih-Chun You

University of Cambridge
Department of Computer Science and Technology

Girton College

December 2022

�is thesis is submi�ed for
the degree of Doctor of Philosophy

Declaration

�is thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and speci�ed in the text. I further state
that no substantial part of my thesis has already been submi�ed, or, is being concurrently
submi�ed for any such degree, diploma or other quali�cation at the University of Cambridge
or any other University or similar institution except as declared in the Preface and speci�ed
in the text. It does not exceed the prescribed word limit for the relevant Degree Commi�ee.

Single-trace template a�acks on
permutation-based cryptography

Shih-Chun You

Summary

�e Template A�ack introduced by Chari, Rao, and Rohatgi has been widely used in Side-

Channel A�acks on cryptographic algorithms running on microcontrollers. In 2014, Choudary
and Kuhn successfully optimized a variant of this technique, based on Linear Discriminant

Analysis (LDA), to reconstruct the actual values of a byte handled by a single microcontroller
machine instruction, instead of only its Hamming weight. While their a�ack targeted single
LOAD instructions, I believe this method can be even more powerful when a�ackers target
intermediate values inside a cryptographic algorithm, for such values can be related to more
than single instructions, and further mathematical tools can be applied for value enumeration
or error correction when multiple target values can be checked against one another.

In my dissertation, I �rst describe how I successfully built LDA-based templates for full-state
recovery on target intermediate bytes in the SHA3-512 hash function implemented on an 8-
bit device, which I combined with a three-layer enumeration technique for error correction to
recover all the input values of this hash function from a single trace recording. To demonstrate
an alternative technique, I also combined these template recovery results with a modi�ed
belief-propagation procedure for error recovery, adapting a 2020 design by Kannwischer et al.
In combination, these techniques reached success rates near 100% in recovering all SHA3-512
input bytes.

Secondly, I introduce the fragment template a�ack to make this technique feasible for targeting
32-bit microcontrollers. It cuts a 32-bit intermediate value into smaller pieces, applying the
LDA-based template a�ack by independently building templates for these pieces. For a SHA-3
implementation on a 32-bit device, the quality of these fragment templates is good enough
that their predictions can reconstruct the full arbitrary-length SHA-3 or SHAKE inputs with
a very high success rate when combined with belief propagation. �irdly, I also show that a
combination of fragment template a�ack, belief propagation, and key enumeration can recover
the key used in an Ascon-128 implementation.

My experiments show how LDA-based templates can pose a threat to cryptographic algo-
rithms once it is combined with belief propagation and key enumeration, even when they are
implemented on a 32-bit device and in applications where keys are only used once. �erefore,
we should not underestimate these risks and it is important to analyze the resilience against
template a�acks, in addition to DPA-style correlation a�acks, when designing or implement-
ing cryptographic algorithms and evaluating their security level.

Acknowledgements

Firstly, I would like to thank my principal supervisor Markus Kuhn for inspiring me with
ideas in research, helping me to improve my English writing and speaking, and supporting me
whenever I needed in these four years. I also had a good time with my second advisor Sergei
Skorobogatov, especially when we collaborated on an ECC project and I therefore gained much
experience with hardware. �e administrative and technical sta� in Computer Lab also pro-
vided me with lots of support when I was working in the department. Also thanks Sumanta
Sarkar and Feng Hao for the collaboration in the Ascon project, as well as Eric Chun-Yu Peng
and Dimitrije Erdeljan for sharing the o�ce.

Secondly, I would like to thank Jiun-Peng Chen, Chen-Mou Cheng, and Bo-Yin Yang for ref-
erencing me four years ago for my Ph.D. application to Cambridge. In these four years, Cam-
bridge Trust and the Ministry of Education, Taiwan were the main �nancial supporters of my
tuition fee and living cost, as well as my parents, my grandma, and my uncle also provided me
with some additional “pocket money” for traveling in Europe and living with be�er quality.

�irdly, I would like to thank my parents and my li�le brother for the weekly family Skype
meeting, and the co-founders Dr. Chiang and Mr. Huang of my beloved online cha�ing group,
Gekifujomon, with my close friends during the lockdowns.

Last but not the least, I would like to thank future readers of my thesis and technical report.

Contents

1 Introduction 13

1.1 Side-channel a�acks . 14

1.1.1 Categories of side-channel a�acks . 14

1.1.2 Extracting information from power traces 16

1.1.3 Template a�ack to reconstruct the full state 19

1.2 Post-processing side-channel information . 20

1.3 Target algorithms . 21

1.4 Countermeasures against power analysis . 22

1.4.1 A�ack Boolean-masked implementations 22

1.5 Contributions . 23

1.5.1 �esis structure . 23

2 Preliminaries 25

2.1 Template a�ack on current traces . 25

2.1.1 �e basic template a�ack . 25

2.1.2 �e template a�ack with linear regression models 26

2.1.3 Data compression with linear discriminant analysis 27

2.1.4 Template quality evaluation . 28

2.2 Key enumeration . 29

2.2.1 Search within two ranking tables . 30

2.2.2 Search with a recursive structure . 31

2.3 Belief propagation and SASCA . 32

2.4 Keccak . 35

2.4.1 Keccak-f [1600] permutation . 35

5

2.4.2 Keccak sponge functions: SHA-3 and SHAKE 38

2.5 Ascon . 39

2.5.1 Ascon permutation . 39

2.5.2 Ascon authenticated encryption with associated data 41

2.6 General experimental se�ing . 43

2.6.1 Measurement se�ing . 43

2.6.2 Recorded traces . 46

2.6.3 Computing resources . 47

3 LDA-based TA on a Keccak 8-bit implementation 51

3.1 A�ack strategy . 51

3.1.1 On a full Keccak sponge function . 51

3.1.2 On a single invocation of Keccak-f [1600] 53

3.2 Template a�ack on SHA3-512 . 53

3.2.1 Target implementation and measurement setup 54

3.2.2 Interesting clock cycle detection . 54

3.2.3 Pro�ling templates . 56

3.2.4 Evaluating the quality of templates . 57

3.3 Searching the correct intermediate states . 58

3.3.1 Layer 1: generating tables for byte rows 58

3.3.2 Layer 2: generating tables for byte slices 60

3.3.3 Layer 3: consistency checking . 61

3.3.4 Results . 61

3.4 Belief propagation on Keccak-f [1600] . 62

3.4.1 Bitwise model by Kannwischer et al. 63

3.4.2 Apply the bitwise model with full-state information 64

3.4.3 Experiments . 66

3.5 Discussion . 67

6

4 Fragment template attack on Keccak 69

4.1 Fragment template a�ack . 69

4.2 Nibble templates of Keccak on the 8-bit device 71

4.3 Byte templates of a stream cipher on a 32-bit device 73

4.3.1 Target se�ing and trace recording . 73

4.3.2 8-bit fragment template pro�ling . 73

4.3.3 Templates for 16-bit fragments . 77

4.4 A�acking a 32-bit Keccak implementation . 78

4.4.1 Keccak implementation and the target board 78

4.4.2 Trace recording . 78

4.4.3 SASCA model building and evaluation 79

4.4.4 Results for the SHA-3 and SHAKE functions 83

4.4.5 Experiments with 16-bit and nibble fragment templates 85

4.4.6 Damping in loopy belief propagation 88

4.5 Discussion . 88

5 Fragment template attack on Ascon 91

5.1 General experimental assumptions . 91

5.2 A�ack strategies . 92

5.2.1 A�ack strategy for single traces . 92

5.2.2 A�ack strategy for traces from multiple encryptions 94

5.2.3 Comparison against a very recent related study 95

5.3 �e a�ack with all intermediate values . 96

5.3.1 Experiment setup . 96

5.3.2 Detecting the interesting clock cycles 97

5.3.3 Fragment template pro�ling . 99

5.3.4 Results a�er belief propagation and secret enumeration 100

5.4 �e a�ack with intermediate values around the key 101

5.4.1 Loop-free alternative factor graph . 101

5.4.2 Results . 102

5.5 Compiler optimization levels . 103

7

5.6 A�acking a masked version . 105

5.6.1 A�ack strategy . 105

5.6.2 Experiments . 106

5.7 Size of fragments for template pro�ling . 108

5.8 Discussion . 108

6 Conclusion 111

6.1 Challenges . 112

6.2 Future research directions . 116

6.3 Review . 117

A Implementation notes 135

A.1 End-of-state management in secret enumeration 135

B Supporting tables and �gures 137

B.1 Lookup tables and algorithms for Keccak and Ascon 137

B.2 Data for the Keccak experiments on the 8-bit device 142

B.3 Data for the XOR experiments on the 32-bit device 143

B.4 Data for the Keccak experiments on the 32-bit device 146

B.5 Data for the Ascon experiments on the 32-bit device 153

8

Notation and glossary

General operations

X‖Y concatenation of two bitstrings

X ⊕ Y bitwise XOR

X ∨ Y bitwise OR

X ∧ Y bitwise AND

¬X NOT, operating on any size of bitarray by �ipping all the bits

Rot(X,n) a function that rotates a bitstring X to the right by n bit, no ma�er the
endianness, e.g. given a 3-bit sequenceY = Y [0]‖Y [1]‖Y [2], Rot(Y, 1) =

Y [2]‖Y [0]‖Y [1]

Trunc(X,n) a function that truncates a bitstring X to it le�-most n bits, e.g. given a
4-bit sequence Y = Y [0]‖Y [1]‖Y [2]‖Y [3], Trunc(Y, 2) = Y [0]‖Y [1]

In this thesis, ⊕,∨,∧ can operate on bits, bitstrings, two- or three-dimensional bit-arrays
if they have the same sizes or shapes. For example, if there are two 3-bit strings A and B.
A⊕B = (A[0]⊕B[0])‖(A[1]⊕B[1])‖(A[2]⊕B[2])

Keccak notation

CC-BY Keccak Team [1]

Keccak-f Keccak permutation

Keccak-f [1600] Keccak permutation with
a 1600-bit state

S a 1600-bit sequence, repre-
senting the input or output
of Keccak-f [1600]

state a 5-by-5-by-64-bit array
where Keccak-f [1600]

is executed

row a 5-bit sequence along the
x-axis in a state

9

i the coordinate of bits in a row, where additions and subtractions of i will
be on Z5

column a 5-bit sequence along the y-axis in a state

j the coordinate of bits in a column, where additions and subtractions of j
will be on Z5

lane a bit sequence along the z-axis in a state.

k the coordinate of bits in a lane; additions and subtractions of the coordi-
nates will be on Z64

4k, 8k, 16k, 32k the coordinates of nibbles, byte, 16-bit and 32-bit words in a lane, respec-
tively, where additions and subtractions of these coordinates will be on
Z16, Z8, Z4, and Z2

L(i,j) the lane in a state with (i, j), e.g., L(0,0) is the �rst lane in a state

plane a two-dimensional space, on which all the bits have the same y coordinate
in a state

sheet a two-dimensional space, on which all the bits have the same x coordinate
in a state

slice a two-dimensional space, on which all the bits have the same z coordinate
in a state

Ω the round index of the Keccak permutation, ranging from 0 to 23 in
Keccak-f [1600]

rate the number of bits that each invocation of Keccak-f [1600] will absorb or
squeeze out in a sponge function, denoted as r

Sr the bitstring representing the rate part of S

capacity the number of bits other than the rate part of S, denoted as c and therefore
r + c = 1600

Sc the bit sequence representing the capacity part of S, where S = Sr‖Sc

pad10*1 a bitstring starting with 1, then an arbitrary number of 0s, and ending
with 1 (1‖0∗‖1), of which the minimal size is two, used for padding in the
Keccak family

Keccak[c](N, d) a Keccak sponge function with capacity c, where N is the bitstring ab-
sorbed by the function and d is the length of the function’s output

10

SHA-3 a family of hash functions based on the Keccak sponge function, includ-
ing SHA3-512, SHA3-384, SHA3-256, and SHA3-224

SHAKE extendable-output functions (XOFs) based on the Keccak sponge func-
tion: SHAKE256 and SHAKE128

Ascon notation

S a 320-bit sequence, representing the input or output of the Ascon permu-
tation

state a 5-by-64-bit array where the Ascon permutation is executed, which is in
the same shape as a plane in Keccak-f [1600]

row a 5-bit sequence along the x-axis in a state, where the coordinate i is
de�ned the same way as the one in Keccak-f [1600]

lane a 64-bit sequence along the z-axis in a state, where the coordinates k, 4k,
8k, 16k, and 32k are de�ned the same way as those in Keccak-f [1600]

Li (or L′i) the lane with the x coordinate i, e.g. L0 is the �rst lane in a state

Ω the round index of the Ascon permutation

rate the number of bits that each invocation of the Ascon permutation will ab-
sorb or squeeze out in a sponge function, denoted as r, and Sr represents
the rate part of S

capacity the number of bits other than the rate part of S, denoted as c and therefore
r + c = 1600, and Sc represents the capacity part of S

Ascon-128 one of the Ascon functions for authenticated encryption with associated
data (AEAD)

Abbreviations

BP belief propagation

CPA correlation power analysis (or correlation power a�ack)

DPA di�erential power analysis (or di�erential power a�ack)

GE guessing entropy

11

HD Hamming distance

HW Hamming weight

LDA linear discriminant analysis

loopy-BP loopy belief-propagation procedure

LWC lightweight cryptography

PoI points of interest

PPC points per clock cycle

PQC post-quantum cryptography

SASCA so� analytical side-channel a�ack

SCA side-channel a�ack (or side-channel analysis)

SR success rate

TA template a�ack

12

Chapter 1

Introduction

Recent years have been a critical period for the cryptography community in that it is about
to standardize at least two new types of cryptographic algorithms for the next generation.
�e National Institute of Standards and Technology (NIST) [2] published in 2016 a call [3]
for proposals for Post-�antum Cryptography (PQC) algorithms that can survive the potential
risk posed by quantum computing. �ere, Shor’s algorithm [4] promises to dramatically re-
duce the time complexity of solving the problems of integer factorization and �nding discrete
logarithms [5] in certain cyclic groups, whereas the computational infeasibility of these prob-
lems is a prerequisite for the security of existing asymmetric-cryptography standards based
on RSA [6], Di�e–Hellman [7] and Elliptic Curve Cryptography (ECC) [8, 9] constructs. Sec-
ondly, NIST published another call [10] in 2018 for Lightweight Cryptography (LWC), which
focuses on authenticated encryption and secure hash constructs optimized for use in highly
resource-constrained applications, such as radio-frequency identi�cation (RFID [11]) devices
or authentication chips embedded in other components.

Since many of these algorithms may be used in devices that are expected to be physically
tamper-resistant, it is important to fully understand not only the security risks posed by dif-
ferent types of cryptanalysis but also by Side-Channel A�acks (SCA) [12, 13, 14], which exploit
physical information leaked from hardware devices during the execution of these algorithms,
such as power-supply current variations and electromagnetic emissions.

Modern cryptographic constructs and implementations pose more challenges for side-channel
a�ackers than before, in many ways. Be�er randomization of algorithms and protocols makes
it more di�cult to observe the same key being used many times, a prerequisite for correlation-
based side-channel a�acks such as Di�erential Power Analysis (DPA) [13]. In addition, the
mathematical structure of some of these new algorithms is more complicated, for example
through larger internal state spaces. Furthermore, embedded devices nowadays mainly rely
on 32-bit rather than 8-bit microcontrollers, where more bits processed in parallel make it
more di�cult for a�ackers to distinguish one bit from another in the leakage signal. �e focus
of this thesis is to explore techniques available to a�ackers to tackle some of these challenges

13

14 1.1. SIDE-CHANNEL ATTACKS

and to demonstrate that it is still possible for experienced a�ackers to recover the secrets given
these more complex hardware and so�ware conditions.

I, therefore, present here examples of advanced side-channel a�acks on a 32-bit processor,
running di�erent cryptographic algorithms related to a recently standardized hash-function
family, Secure Hash Algorithm 3 (SHA-3) [15]. I got particularly interested in the SHA-3 family
not only on its own, for its increasing use as a hash function and random-bit stream generator,
but also because it appears as a component in more than one of the recent post-quantum
candidate algorithms. And at least one of the lightweight authenticated encryption candidates,
Ascon, is also based on a permutation function closely related to the Keccak permutation at
the heart of SHA-3.

1.1 Side-channel attacks

In contrast to other types of cryptanalysis [16, 17, 18], the main characteristic of side-channel
a�acks is to acquire information about intermediate values during the execution of crypto-
graphic algorithms from certain unintentional, noisy side channels. �en a�ackers can use
this information, possibly along with some known ciphertexts or plaintexts, to reconstruct
targeted secrets, such as the key. Such side channels can be observations of the computa-
tion time [12], high-frequency �uctuations of the power consumption [13, 19, 20], or other
accidentally emi�ed electro-magnetic signals [21, 22] from a working device.

Precursors of Side-Channel A�acks (SCA) can be traced back to some early-to-mid 20th cen-
tury eavesdropping a�acks on military [23] and diplomatic communication systems [24, Chap-
ter 8, pp. 109–112]. In 1996, Kocher introduced his Timing A�ack [12] on implementations of
RSA. His idea was to repeatedly time the modular exponentiation function required for RSA
decryption, and then use an adaptive chosen-ciphertext a�ack to recover key bits in the se-
cret exponent, facilitated by preparing test ciphertexts for which the time needed to perform a
particular modular multiplication di�ers in the square-and-multiply algorithm used. Later, in
1998, Kocher, Ja�e, and Jun demonstrated with their Di�erential Power Analysis (DPA) a�ack
how to recover the key used in Data Encryption Standard (DES) [25], with information ob-
served from power-consumption traces measured from the device during the execution of the
decryption procedure [13]. A�er these successful a�acks on two side channels of standardized
cryptographic algorithms, implementers increasingly realized that Side-Channel A�acks may
pose serious security threats.

1.1.1 Categories of side-channel attacks

Mangard et al. [20, Sec. 1.2] categorize side-channel a�acks by two criteria: passive v.s. active
and invasive v.s. semi-invasive v.s. non-invasive.

CHAPTER 1. INTRODUCTION 15

Passive and Active attacks As mentioned previously, apart from the intended I/O chan-
nels, hardware devices can also interact with the environment through other channels. �ese
interactions can be in both directions, i.e., the device may leak some information through such
channels, while some information from the environment may also be passed into the device
through these channels. �erefore, sometimes a�ackers can not only passively collect the side-
channel information, but also actively a�ect the running device via these channels. Mangard
et al. describe passive a�acks as the case where a�ackers recover secrets by observing the ef-
fects of computation, such as the execution time or the power consumption when the device
is working largely or even entirely within its speci�cation. On the other hand, they describe
active a�acks as the situation where a�ackers manipulate the inputs and/or the environment
of a device to make it work abnormally, and then reveal the secret by exploiting the abnormal
behavior of the device [20, Sec. 1.2].

Invasive, semi-invasive, and non-invasive attacks Since side-channel a�acks exploit
those channels other than the normal ways of communication with target devices, a�ackers
may cause temporary changes or even damage the devices when they access their target in-
terface. Skorobogatov describes three types of side-channel a�acks, categorized into invasive,
semi-invasive, and non-invasive a�acks [26]. Non-invasive a�acks only exploit interfaces that
can be directly accessed, i.e., there are no permanent changes to the device; semi-invasive at-
tacks require depackaging or decapsulation of the device, but no direct electrical contact to a
chip surface; while invasive a�acks include all the other more aggressive a�acks, essentially
without limits [20, Sec. 1.2], including microprobing and circuit modi�cation.

Common means of attacks Here I provide some examples of side-channel a�acks. Based
on some early ideas [27, 28], Biham and Shamir introduced their Di�erential Fault Analysis

(DFA) in 1997 [29]. With the assumption that a fault occurs for one single intermediate bit each
time during DES encryption, they built a model to recover the key of DES by comparing a few
resulting faulty ciphertexts. �eir method has been generalized and used to a�ack other cryp-
tographic algorithms (e.g., AES [30]), and it also gradually became a major methodology for
active a�acks, and it can be used with a variety of means to inject faults. In 2002, Skorobogatov
and Anderson introduced their Optical Fault Induction A�acks [31]. �ey demonstrated this
semi-invasive a�ack by �ipping individual bits in the SRAM array of a depackaged microcon-
troller (Microchip PIC16F84) with a $30 photo�ash lamp. In 2009, Fukunaga and Takahashi
a�empted to supply glitchy clock signals for devices running their target block ciphers and
then collected faulty results to reduce the key candidate space [32].

On the other hand, various side channels have been studied for passive a�acks. Assuming that
the temperature leakage is linearly correlated to the power consumption, Hu�er and Schmidt
collected leaked power information from the dissipated heat of devices [33], which is also
known as the Temperature Side Channel. Genkin et al. introduced their Acoustic Cryptanalysis

16 1.1. SIDE-CHANNEL ATTACKS

in 2014 [34]. Monitoring the sound generated by the computer, they extracted full 4096-bit
RSA keys from the decryption of their chosen ciphertexts within one hour.

Besides the above interesting, but relatively niche side-channel a�acks, most researchers, how-
ever, collect the side-channel information by monitoring the current �ows in their target de-
vice. Based on their di�erent monitoring means, the side channels that these a�acks exploit
can be further categorized into Power Side Channels [13, 20] and Electromagnetic (EM) Side

Channels [22], and therefore the corresponding analysis of information from these channels
are usually referred to as Power Analysis and EM Analysis, respectively.

According to Kocher’s description [13], when conducting an a�ack via power side channels,
we can insert a small resistor into the GND or VDD line of the working device, where the voltage
drop across this resistor is proportional to the current �owing into or out of the device. With
an oscilloscope recording that voltage drop, I refer to the resulting one-dimensional array of
time samples as a power trace, or also simply a trace in this thesis. Such a recording method
can provide an aggregated view of the current �ow and power consumption of the working
device. Meanwhile, Agrawal et al. suggested that we can go beyond this aggregated view with
more �exible EM side channels [22], where a�ackers apply EM probes to detect the EM signal
induced from the (sometimes decapsulated [35]) circuit in their target devices. An example of
the �exibility of EM analysis was demonstrated in 2012 by Heyszl et al, whose experiments
showed that it is possible to detect localized electromagnetic signals induced from current
�ows from a small region of a circuit [36].

However, from my perspective, such �exibility also makes the EM a�ack experiments more
di�cult to control. For instance, the positioning of the probes can signi�cantly a�ect the
recording [36, 37]. In addition, many researchers preferred power analysis rather than EM
analysis when they developed most of the currently popular passive a�ack methods [13, 38, 39]
and studied SCA resilience of new candidates for standard cryptographic algorithms [40, 41].
As a result, I chose power analysis as my experimental method in this thesis.

1.1.2 Extracting information from power traces

A�er we collect power traces from a working device, the next step will be the analysis of that
raw data. In general, the goal is to �nd the relations between the value of samples in recorded
traces and the targeted secrets (e.g., the key) used by the program executed on the device.

Horizontal leakage and vertical leakage Since early publications of a�acks [12, 13], re-
searchers have been commonly using the term leakage to describe secret-related information
leaked through side channels. As each sample of a power trace indicated the voltage (propor-
tional to the current) at a given time, leakage may be observed in two dimensions. �e �rst
one is the timing leakage, also known as the horizontal leakage, since we usually plot the time
on the horizontal axis.

CHAPTER 1. INTRODUCTION 17

Classic timing leakage, as exploited by a timing a�ack, happens when the number of clock
cycles for a program part varies with the value of a secret. Kocher’s timing a�ack on im-
plementations of RSA in 1996 [12] targeted the modular exponentiation, which executes a
modular squaring when being provided a bit of the secret key with value 0, whereas it exe-
cutes a modular squaring followed by a modular multiplication if that bit is 1. �is additional
modular multiplication leads to a longer execution time, and therefore it causes some timing
leakage correlated to the bit value for the secret key. However, this �aw in cryptographic
implementations can be prevented in a few ways. Joye and Yen proposed the Montgomery

powering ladder [42], which adapts an idea by Montgomery [43], for modular exponentiation
in an abelian group for RSA as a timing-leakage free substitution for the square-and-multiply
algorithm. Besides, in cryptographic applications, designers and implementers also avoid con-
ditional statements (e.g., if/else) to make the number of instructions constant [44]. �erea�er,
the threat of timing a�acks focused on micro-architectural leakages, such as the timing vari-
ation from cache hits and misses [45].

On the other hand, a�ackers can also �nd some vertical leakage, such as the power leakage, to
extract information about the secret. �is kind of leakage mainly results from the di�erence
between the power consumption when target devices are processing di�erent values of the
secret. For example, when the device �ips a byte from all “0” to all “1”, it may require more
energy compared to �ipping only four bits. A�acks exploiting power leakage remain a main
threat to many embedded cryptographic implementations with untrusted device users, e.g.
smartcards and other hardware tokens. Unlike the approach of avoiding conditional branches
to prevent timing leakage, there are no well-recognized means to fundamentally eliminate
power leakage at the so�ware design level. �erefore, current research still focuses on the
development of vertical-leakage-related a�acks and their countermeasures.

Attacks on vertical leakage We commonly categorize the a�acks exploiting power (ver-
tical) leakage into pro�ling a�acks and non-pro�ling a�acks. In general, non-pro�ling a�acks
need a relatively large number (i.e., normally more than a few hundred for the best cases) of
a�ack power traces, but usually rely on only a few samples from each one. On the other hand,
pro�ling a�acks require only several or even single a�ack power traces, but need a pro�ling
device and phase.

Among the non-pro�ling a�acks, Di�erential Power Analysis (DPA) a�acks are the most com-
mon type. DPA a�acks reveal the secrets by comparing the samples of a large number of
power traces being recorded when di�erent data blocks are fed as the input for a process, e.g.,
encryption or decryption for a cryptographic application. �is requires that a�ackers know
at least a part of the input or output (e.g., the ciphertext of DES [25] decryption), and the
secret (e.g., the key of DES decryption) remains unchanged during the recording procedure.
�e sample analysis may involve some statistical measures, such as the di�erence of means

(DoM) [13] or the Pearson Correlation Coe�cient [46, 38].

18 1.1. SIDE-CHANNEL ATTACKS

In Kocher et al.’s initial DPA a�ack [13], they assumed that a�ackers have recorded power
traces with the corresponding ciphertexts from several decryptions of DES, and that there will
be a sample in these power traces, the value of which is correlated to a bit, b, of an intermediate
value, V , in the penultimate round. �is intermediate value can be found from a subkey, C ,
of the last round key and its corresponding part of the ciphertext, C , by calculating the linear
AddRoundKey (XOR) function and the non-linear SubstitutionBox (Sbox) function of DES:

guessed secret subkey K

known cipher fragment C
predicted intermediate value V .Sbox

Along with the known ciphertexts, once a�ackers correctly guess the value of the subkey, they
can successfully predict the corresponding intermediate value for each trace, and therefore
the bit b. In this case, if they separate all the power traces into two groups, according to the
predicted b value, they will obtain a relatively large estimate for the DoM between the two
groups. Otherwise, the value will not be signi�cant with the wrong grouping according to the
other incorrectly guessed subkey candidates.

Correlation Power Analysis (CPA), introduced by Brier, Clavier, and Olivier in 2004 [38], became
the most commonly used DPA-style technique. A CPA a�ack assumes that power consump-
tion is related to the number of “1” bits changing in a target intermediate data unit (e.g. a byte
on an 8-bit device or a 32-bit word on a 32-bit device), while the device processes all bits in
such a unit in the same clock cycle. �erefore, the power consumption can be modeled as a
noisy linear function of the Hamming Distance (HD) between two target intermediate units
(e.g. bytes) or even the Hamming Weight (HW) of a single target unit. Given several di�erent
plaintexts and their corresponding power-consumption traces recorded, we can choose as a
target an intermediate value calculated from a single key byte and a single byte from these
plaintexts before further di�usion, e.g. the state a�er the AddRoundKey and Substitution-

Box in the �rst round of AES [47, 48]. �en, if we have guessed the key byte correctly, a few
time samples on the traces will be highly correlated to the HW of a state or the HD between
two states, and consequently, there will be peaks in the Pearson Correlation Coe�cient [46]
at the corresponding time samples. Meanwhile, there will be no such peaks for the 255 other,
wrong key-byte candidates, and this way the correct key-byte value is identi�ed.

Pro�ling attacks �e advantage of the previous DPA or CPA a�acks is that they work well
with very generic leakage models, which distinguish only larger groups of values, such as
HW or HD, but work across many devices. Meanwhile, it is also possible to build far more
detailed leakage models, based on the observation that each bit in a register or on a bus has an
individual leakage signal. Such models require careful pro�ling of the type of hardware being
targeted, which adds to the complexity of the a�ack, but opens the possibility of correctly
identifying individual unit values, rather than just groups. Such a�acks are known as pro�ling
a�acks.

CHAPTER 1. INTRODUCTION 19

In my opinion, the security risks posed by pro�ling a�acks warrant particular a�ention. For
example, pro�ling a�acks may succeed to recover the actual value of secrets a�er just one
single observation of the execution of an algorithm, known as a single-trace a�ack. �ese may
help to circumvent many countermeasures targeted mainly at correlation-style a�acks that
need hundreds of traces. An early and in�uential pro�ling technique, the Template A�ack

(TA), was introduced by Chari, Rao, and Rohatgi in 2002 [39]. �e Template A�ack is a two-
stage procedure. In the pro�ling stage, a�ackers build a template including the expected value
and a covariance matrix of the selected samples from pre-recorded power traces where a par-
ticular candidate of a target state appears. By repeating the same procedure on each candidate,
they can complete the template set for the target state. �en, in the a�ack stage, they compare
the selected samples from the a�ack trace against each template in the set by calculating a
likelihood value, using this multivariate Gaussian model with its expected value and covari-
ance matrix. �e larger the likelihood value, the more likely the corresponding candidate of
the template is the secret value hidden in the a�ack traces. Chari et al. [39] already mentioned
their early a�empts to distinguish between key bytes with the same Hamming weight val-
ues, given that this still required that the a�acker records multiple a�ack traces for one target
encryption.

1.1.3 Template attack to reconstruct the full state

Before I started my Ph.D. project, an advanced template a�ack on 8-bit processors was in-
troduced by Choudary and Kuhn [49] to distinguish all the 256 candidates of a byte value
being processed by a LOAD instruction. �eir approach is based on Schindler et al.’s stochas-
tic model [50], which uses linear regression to build templates for individual bits, which they
combined with Fisher’s Linear Discriminant Analysis (LDA), as introduced by Standaert and
Archambeau [51] for dimensionality reduction of traces. �eir templates provided a likeli-
hood value for each candidate, and then they calculated the likelihood ranking of the correct
candidate. �ey nearly reach a 0-bit guessing entropy, i.e. the binary logarithm of the mean
rank of the correct candidate, from about 100 a�ack traces with the same secret value. In this
thesis, I will refer to this type of template a�ack, which can provide a likelihood prediction
for each possible actual value of the target, instead of just its Hamming weight, as a full-state

recovery.

In their a�ack, they focus on a handful of clock cycles, mainly covering the LOAD instruction.
I expected that a similar a�ack, targeting an intermediate value processed in a cryptographic
algorithm, may achieve an even be�er result, extending it down to single a�ack traces, con-
sidering that there will be more than one instruction handling such an intermediate value.
Besides, Choudary’s Ph.D. thesis [52] le� one issue open that I was also curious about: how to
apply the a�ack to situations where more than 8 bits of data are processed simultaneously, e.g.
in devices with 32-bit buses. Since 32-bit cores, such as ARM’s Cortex-M family, now dom-
inate the microcontroller market, exploring this type of full-state template a�ack remains of

20 1.2. POST-PROCESSING SIDE-CHANNEL INFORMATION

particular interest, especially on known cryptographic algorithms.

1.2 Post-processing side-channel information

When we apply a full-state template a�ack to recover a single byte, the procedure ends once
a�ackers obtain a predicted likelihood value for each candidate. In contrast, when we a�empt
to a�ack a cryptographic algorithm, a single TA (or DPA) procedure usually reveals only a
small piece of the target secret, such as a key byte. �erefore, a�er a�ackers have repeated
the procedure to collect all the pieces of the secret, they will need some post-processing steps
to predict a full secret. Most simply, the authors in some early studies implied that they just
concatenated the key byte candidates, each chosen according to the highest likelihood value
in TA [39], or with the most signi�cant Pearson correlation coe�cient value in CPA [38], into
a full key. �is means that there will be no room for mistakes to occur in the prediction of
each piece of the secret.

However, especially for template a�acks (e.g., previously mentioned Choudary’s LDA-based
a�ack), it is not easy to build a model that can always provide the correct candidate with the
highest likelihood value. �erefore, methods such as Key Enumeration [53], Algebraic Side-
Channel Analysis (ASCA) [54], Tolerant Algebraic Side-Channel Analysis (TASCA) [55], and
So� Analytical Side-Channel Analysis (SASCA) [56] have been developed and can apply to the
ambiguous and even misleading information provided by non-perfect templates so that a�ack
procedures can be more compatible with situations in the real world. �ese mathematical tools
usually require that a�ackers can access other values involved in the target cryptographic
algorithm.

I was particularly interested in two of the above methods. �e �rst one is using key enumer-
ation, which requires the knowledge of at least one pair of plaintext and ciphertext. Veyrat-
Charvillon et al. introduced their algorithm to e�ciently search the correct key-byte combi-
nation in 2012 [53]. �ey started by building a search scheme to optimize the enumeration of
the combinations of two key bytes with their respective side-channel-predicted probability for
each candidate, and then generalized it into a recursive way so that it can be used for search-
ing the correct combination of the 16-byte key in AES-128. For another type of approach,
Veyrat-Charvillon et al. later presented their SASCA [56] in 2014. �is methodology requires
side-channel information, normally probability tables, from a few more intermediate values
in addition to those originally targeted, and then mutually updates the probability tables fol-
lowing the algorithm-speci�c mathematical relations (usually represented by a factor graph)
between the target and the additional intermediate values, so that a�ackers can make more
reliable predictions of the target intermediate values.

CHAPTER 1. INTRODUCTION 21

1.3 Target algorithms

In 2015, NIST published the Secure Hash Algorithm 3 (SHA-3) in NIST FIPS 202 [15]. SHA-3 is
based on the Keccak permutation designed by Bertoni et al. [57]. With this permutation, they
described the concept of permutation-based cryptography [58], where various cryptographic
applications can be constructed by di�erent modes (e.g., sponge mode or duplex mode [58])
that consists of multiple invocations of the same permutation. �erefore, the Keccak per-
mutation is not only the main building block of the standardized SHA-3 family of hash func-
tions (e.g., SHA3-512) and extendable-output functions (e.g., SHAKE256), but can also be used
in many other contexts, such as pseudorandom function (e.g., Farfalle [59]), authenticated
encryption (e.g., Keyak [60]), and key-agreement schemes (e.g., SHAKE functions used in
NewHope [61] and CRYSTALS–Kyber [62]), where either its inputs or outputs can be con�-
dential data for which side-channel a�acks may be a concern. As more and more applications
rely on SHA-3 or the Keccak permutation, it is important to understand their resilience against
template a�acks and the need for countermeasures.

One characteristic of hash functions, including SHA-3, is that their output data will not con-
tain all the information about the secret inputs, so secret inputs of hash functions cannot be
inverted only with the output data. However, it is possible to obtain lost information if a�ack-
ers perform template a�acks to recover some intermediate values. For example, the secret key
in some implementations of HMAC-SHA-1 can be recovered by a template a�ack [63].

Before I started my Ph.D. program, previous papers discussed side-channel a�acks to recover
keys used in the generation of Keccak-based message authentication codes (MAC-Keccak).
Taha and Schaumont mainly used Di�erential Power Analysis (DPA) to a�ack one step (θ)
to recover a �xed-length key and discussed the relationship between key length and the DPA
resilience of MAC-Keccak [64]. �ey later applied similar a�acks to recovering MAC-Keccak
keys with arbitrary length [65]. Luo et al. modi�ed this a�ack to determine the intermediate
state a�er a complete round of Keccak permutation [66], applying DPA a�er the non-linear
step (χ). �ese a�acks have not yet applied a full-state template a�ack on Keccak. Given that
in some proposed applications [62, 67], the Keccak functions will not be executed multiple
times on common inputs, a single-trace template a�ack is more likely to pose a threat to these
applications than multi-trace DPA a�acks.

A�ack concepts that successfully target Keccak may also threaten permutation-based cryp-
tographic algorithms built on other permutations, such as Ascon [68], with appropriate mod-
i�cations. Following NIST’s call for LWC algorithms [10] in 2018, they chose Ascon as one
of the 10 candidates in 2021 for the last round competition [69] and announced it as the �-
nal winner in 2023 [70]. �erefore, I selected Ascon as my next target a�er Keccak. Both
algorithms have some mathematical similarities, particularly in their non-linear operations.

Apart from other cryptanalysis [71], early published side-channel a�acks on Ascon, still,
mostly focus on DPA-style a�acks [72, 73]. �is again shows the need to analyze the impact of

22 1.4. COUNTERMEASURES AGAINST POWER ANALYSIS

template a�acks on Keccak, Ascon, and other permutation-based cryptographic algorithms.

1.4 Countermeasures against power analysis

Since the issues of SCA have been highlighted for more than two decades, modern implemen-
tations of cryptographic applications are mostly protected by some countermeasures, such as
the previously mentioned Montgomery ladder against timing a�acks in Sec. 1.1.2. Mangard
et al. categorized various types of countermeasures against power analysis into hiding and
masking [20].

For hiding countermeasures, the goal is to decrease the signal-to-noise ratio (SNR) so that
the side-channel information can be hidden behind the noise [74]. �ese countermeasures
also include means such as inserting random dummy operations or shu�ing some indepen-
dent operations within the target cryptographic algorithms to fool side-channel a�ackers [20,
Ch. 7].

On the other hand, masking countermeasures date back to 1999, when Chari et al. [75] intro-
duced their technique to split secrets into N + 1 shares by providing N independent random
values (N masks in this thesis), which is later commonly referred to as N th-order masking.
�is makes it more di�cult to reconstruct secrets since now a�ackers will need to correctly
predict every share. Following their work, Prou� and Rivain provided a security analysis
of masking [76]. Since this technique originally aims to mitigate CPA/DPA-style a�acks, it
freshly masks the key at the start of each encryption.

Masking then gradually became a widely implemented countermeasure, and most symmetric
cryptographic algorithms, such as Rijndael [20, Sec. 9.2] and other AES candidates [77], can
implement Boolean masking [75, Sec. 3.3] to split the secret keys, where the mathematical
relation between the key K and the N + 1 shares S0 to SN is XOR (K =

⊕N
n=0 Sn).

However, it is expensive to implement Boolean masking on non-linear steps (e.g., Substitu-
tionBox) in symmetric cryptographic algorithms, and sometimes it requires hybrid use of
masking (i.e., Boolean masking for linear steps and other types for non-linear steps) for e�-
ciency [78, 79]. To address this problem, Bertoni et al. designed the non-linear step of Keccak
with only binary operations NOT, XOR, and AND, such that Boolean masking can easily be ap-
plied [80]. �is core of the non-linear function was later also used inAscon. �erefore, I expect
that Boolean masking will be widely used in the future implementations of these permutation-
based algorithms, and to what extent of protection this countermeasure can provide remains
an important issue.

1.4.1 Attack Boolean-masked implementations

Faced with this protection, despite the di�culty as the order increases, a�ackers can still apply
an (N+1)th-order DPA to a�ack an implementation withN th-order masking [13, 81, 82], which

CHAPTER 1. INTRODUCTION 23

is to consider N + 1 samples in a power trace, each representing a share for the N th-order-
masked key, in the DPA statistic model at the same time.

On the other hand, among previous proposals for template a�acks on masked cryptographic
implementations (e.g., [83, 84, 85, 86]), there is still not yet a widely recognized strategy for
countermeasures, unlike what is the case for DPA. However, some previous studies suggested
that we can still apply belief propagation to a masked cryptographic implementation by also
considering the mathematical relation between the original intermediate values and their
Boolean masking shares (i.e., the XOR operation for this case.) [87, 88]. �is requires a�ackers
to build templates for each share of their target secret, and therefore additional access to the
random generator may be necessary as well in the pro�ling stage, complicating this a�ack
even more.

1.5 Contributions

I introduce a methodology, fragment template a�ack (FTA), to extract information about indi-
vidual bits from power traces that observe activity on 32-bit parallel data buses. To achieve
this, I apply the LDA technique to project the data onto subspaces where the projected data are
only related to a fragment (e.g. a byte or a nibble) of the full 32-bit word, and then build tem-
plates for these fragments, to enable us to reconstruct their values independently and within a
reasonable run time. Within the various types of side-channel a�acks introduced previously,
my FTA technique is a passive, non-invasive, power-trace pro�ling a�ack. In this thesis, my
survey of this technique was still in its early stage, so my a�ack was implemented in a more
laboratory-controlled environment, which involves phase-locking clock sources of the oscillo-
scope and the target devices to avoid the unalignment problem, using target boards designed
for side-channel research, and using the same board for both pro�ling and a�ack stages.

With the assistance of two algorithmic SCA tools, the optimal key enumeration and SASCA,
this FTA technique can seriously threaten permutation-based cryptographic algorithms such
as Keccak and Ascon.

1.5.1 �esis structure

In this thesis, Chapter 2 discusses more details of available SCA tools, including the LDA-
based template a�ack, the optimal key enumeration, and SASCA. �is chapter also describes
the mathematical structure of Keccak and Ascon, and introduces the experiment platforms.
Chapter 3 presents how I used the LDA-based template a�ack to target a SHA3-512 imple-
mentation on an 8-bit device (Section 3.2) and how I designed a three-layer enumeration
to search the arbitrary-length input of SHA3-512, and its performance in experiments (Sec-
tion 3.3). �en, given that Kannwischer et al. [89] published a SASCA procedure originally
designed for simulated HW information approximately at the same time as my enumeration, I

24 1.5. CONTRIBUTIONS

also introduce how I modi�ed their methodology to make it compatible with the information
observed from my templates in Section 3.4.

Chapter 4 introduces perhaps the most important part of my research, the fragment template
a�ack. I demonstrate the feasibility of this a�ack through three di�erent experiments. �e
�rst one reused the previous SHA3-512 datasets recorded from the 8-bit device, but built tem-
plates for two nibble fragments of a target byte instead of a template for the byte directly.
�e second experiment is to apply the fragment template a�ack to recover secrets of a toy
stream cipher implemented on a 32-bit device, and then the last experiment is to a�ack an
implementation including all six functions in the Keccak family on the same hardware de-
vice. Chapter 5 applies the fragment template technique to a�ack both unmasked and masked
Ascon implementations also on the 32-bit device, to show that the threats of this a�ack can be
a more general issue beyond just Keccak. Finally, I discuss some side issues and future work
before concluding in Chapter 6.

I published earlier versions of much of the methodology and experimental results from Chap-
ter 3, 4 and 5 in two peer-reviewed papers and one poster, and I also published the �nal version
of my a�ack of Ascon in one peer-reviewed paper:

[90] A template a�ack to reconstruct the input of SHA-3 on an 8-bit device,
COSADE 2020, LNCS vol. 12244.

[91] Single-trace fragment template a�ack on a 32-bit implementation of Keccak,
CARDIS 2021, LNCS vol. 13173.

[92] A template a�ack on Ascon AEAD,
CHES 2022, poster. https://ches.iacr.org/2022/acceptedposters.php.

[93] Low trace-count template a�acks on 32-bit implementations of Ascon AEAD,
CHES 2023, pre-print version, to appear in TCHES 2023/4.

https://ches.iacr.org/2022/acceptedposters.php

Chapter 2

Preliminaries

2.1 Template attack on current traces

Chari et al. introduced a powerful side-channel exploitation technique called Template A�ack
(TA) [39]. It consists of two stages, pro�ling and a�ack. During pro�ling, a�ackers build
templates that model the leakage traces of di�erent candidate secrets from traces recorded
while a known secret is being processed. �en, they record an a�ack trace while an unknown
secret is being processed, and then compare that with all the templates and predict the secret
according to the candidate with the template most similar to the a�ack trace.

In this thesis, I am in particular interested in information leaked from the power consump-
tion of a device, observed via direct coupling, to minimize measurement noise. According to
Mangard et al.’s description [20, Sec. 3.4.2], we can insert a small resistor into the GND or VDD

line of the working device, where the voltage drop across this resistor is proportional to the
current �owing into or out of the device. With an oscilloscope recording that voltage drop, we
refer to the resulting one-dimensional array of time samples as a current trace, or also simply
a trace in this thesis.

When the oscilloscope and the target device are synchronized, the same sample index on each
trace will represent the current measured during the same phase of the same instruction during
the execution of a constant-time cryptographic algorithm. Implementations of cryptographic
algorithms generally avoid using conditional branches, to prevent timing a�acks. �is makes
it easier for a�ackers to obtain synchronized templates, unless there are countermeasures
introduced, such as random delays, to hinder synchronized recordings. In the la�er case,
additional steps would have to be taken to align traces.

2.1.1 �e basic template attack

In this approach, a�ackers need to collect a sizeable number of traces in the pro�ling stage.
�ese will be separated into subsets according to the secret value targeted. If we target one

25

26 2.1. TEMPLATE ATTACK ON CURRENT TRACES

intermediate byte, the number of subsets will be 256. From the trace subset corresponding to
intermediate byte b, we construct a template consisting of an expected trace x̄b ∈ Rm and a
covariance matrix Sb ∈ Rm×m, as

x̄b =
1

nb

nb∑

t=1

xb,t, Sb =
1

nb − 1

nb∑

t=1

(xb,t − x̄b)(xb,t − x̄b)
T,

where nb is the number of pro�ling traces in this subset, and xb,t is the tth pro�ling trace with
corresponding intermediate byte b, each trace containing m points in time.

When we obtain an a�ack trace xa, we can then calculate as a likelihood function a multivariate
Gaussian probability-density value for each template with

f(xa|x̄b,Sb) =
1√

(2π)m|Sb|
exp

(
−1

2
(xa − x̄b)

TS−1
b (xa − x̄b)

)
.

We can normalize these likelihoods to build a probability table by

p(b = ξ) =
f(xa|x̄ξ,Sξ)∑255

b′=0 f(xa|x̄b′ ,Sb′)
.

2.1.2 �e template attack with linear regression models

�e previous approach, where the arithmetic mean of the traces in each subset is used to
estimate their expected value, needs a large total number of pro�ling traces. Based on the
stochastic model F9 by Schindler et al. [50], Choudary and Kuhn used an alternative solu-
tion [49] that is more e�cient regarding the number of traces recorded. �ey treat each bit,
b[0] to b[7], in the targeted intermediate byte as an independent variable and then use multiple
linear regression to calculate coe�cients c0 to c7 and a constant c8 for predicting the expected
values of single points on a trace as x̂b =

∑7
`=0(b[`] · cl) + c8 and equivalently as

x̂b =
7∑

`=0

(b[`] · c`) + c8

for an entire trace, where c0, . . . , c8 ∈ Rm are the vectors of coe�cients and constants previ-
ously estimated by multiple linear regression.

�ey also modi�ed the way to calculate the covariance matrices Sb as

Sb =
1

nb − 1

nb∑

t=1

(xb,t − x̂b)(xb,t − x̂b)
T, Spooled =

1∑255
b=0 nb

255∑

b=0

(nb − 1)Sb.

Instead of a di�erent Sb in each template, they used one single pooled covariance matrix esti-
mate, Spooled, which is the weighted average of the Sb, because previous studies [94, 95] had
suggested this is a more e�ective estimate when the actual covariance matrix can be assumed

CHAPTER 2. PRELIMINARIES 27

to be independent of the targeted value b. �e function to calculate the probability density
value then becomes

f(xa|x̂b,Spooled) =
1√

(2π)m|Spooled|
exp

(
−1

2
(xa − x̂b)

TSpooled
−1(xa − x̂b)

)
.

With Spooled staying constant for all 256 candidates, we can normalize these likelihoods to build
a probability table by merely

p(b = ξ) =
f̂(xa|x̂ξ)∑255
b′=0 f̂(xa|x̂b′)

, f̂(xa|x̂b) = exp

(
−1

2
(xa − x̂b)

TSpooled
−1(xa − x̂b)

)
.

Alternatively, we can also represent this distribution as a logarithmic likelihood table by

plog(b = ξ) = −1

2
(xa − x̂ξ)

TSpooled
−1(xa − x̂ξ).

�en we can sort the 256 results from either a probability table or a logarithmic likelihood
table into a ranking table, where the top entry is the most likely candidate.

2.1.3 Data compression with linear discriminant analysis

Choudary and Kuhn also integrated Fisher’s Linear Discriminant Analysis (LDA), as proposed
by Standaert and Archambeau [51], into their approach [49, 52]. �is is a procedure to project
the traces onto a subspace with a higher signal-to-noise ratio (SNR), as determined by two
covariance matrices B and W, where B is the inter-class sca�er, representing the signal,
while W is the total intra-class sca�er, representing the noise. When recovering 8-bit secrets,
these two matrices can be calculated from the pro�ling traces as

B =
1∑255
b=0 nb

255∑

b=0

nb(x̂b − x̄)(x̂b − x̄)T,

W =
1∑255
b=0 nb

255∑

b=0

nb∑

t=1

(xb,t − x̂b)(xb,t − x̂b)
T,

where x̄ = 256−1
∑255

b=0 x̂b = c8 + 1
2

∑7
l=0 cl is the arithmetic mean of the expected values x̂b.

We then build a matrix A ∈ Rm×m′ where the columns are the m′ normalized eigenvectors
of the matrix W−1B corresponding to its m′ largest eigenvalues (see also [96, footnote 6]).
�e LDA projection of a raw trace xa onto the resulting m′-dimensional subspace is then
xproj = ATxa.

Following Choudary and Kuhn’s approach as outlined above, the complete procedure of tem-
plate pro�ling will be: �rstly using multiple linear regression to build matrices W and B,
secondly calculating the projection matrix A, then using that to project all pro�ling traces
onto the subspace with high SNR. From these projected traces, we then build very compact
templates, again using multiple linear regression. �e resulting template information consists
of a new pooled covariance matrix Sproj ∈ Rm′×m′ , 256 new expected traces x̂b,proj ∈ Rm′ ,
along with A.

28 2.1. TEMPLATE ATTACK ON CURRENT TRACES

0.0 0.2 0.4 0.6 0.8 1.0

SR

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

logarithmic GE for nibbles

0 1 2 3 4 5 6 7 8

logarithmic GE for bytes

0 2 4 6 8 10 12 14 16

logarithmic GE for 16-bit words

Figure 2.1: Examples for SR and logarithmic GE values in color matrices of this thesis.

Dimensionality of projected traces However, how to determine the dimensionality, m′,
of the projected trace remains an open question. Choudary integrated at least two di�er-
ent ways [52, Sec. 3.9.1], originally used in Principle Component Analysis [97, 98], into his
LDA-based model [52, Sec. 3.10]. Given the size, m, of the original trace is smaller than the
total number of pro�ling traces, we will observe at most m non-zero, normalized eigenvec-
tors a1, a2, . . . , am, sorted in descending order of their corresponding absolute eigenvalues
|λ1| ≥ |λ2| ≥ . . . ≥ |λm|. One of the methods selects the smallest value m′, such that the
cumulative percentage of total variation,

φ(m′) =

∑m′

g′=1 |λg′|∑m
g=1 |λg|

,

will be larger than a chosen threshold (e.g., 0.9). In my experiments, I started by using a
slightly modi�ed criterion, where I select each eigenvector ag′ with an eigenvalue larger than
one-thousandth of the total variation (|λg′ | > 0.001×∑m

g=1 |λg|) into the projected matrix A

until I observed the relation between the number of non-zero eigenvalues and the size of target
variable (see Section 4.4.5). Note that when I applied the la�er criterion to my experiments for
pro�ling templates for bytes with the F9 model, this will select m′ = 8 eigenvectors.

2.1.4 Template quality evaluation

It had been an open question of how to evaluate a Gaussian template model in a template a�ack
so that we know whether it can provide us with reliable predictions. �erefore, Standaert et
al. [99] de�ned their success rate and guessing entropy, which have already been widely used
in related studies [86, 100].

Success rate (SR) Given a ranking table for all the possible candidates of a variable predicted
by a side-channel distinguisher function, such as the likelihood function from the templates
introduced above, they de�ned the nth-order success rate as the probability that the correct
candidate is located within the �rst n candidates in the ranking table. In this thesis, I only
use the �rst-order success rate (n = 1) for template quality evaluation, where only the case

CHAPTER 2. PRELIMINARIES 29

of the correct candidate topping the ranking table is considered to be successful. Apart from
tables listing the success rates (e.g. Table B.4), I also plot the success rate as color matrices
(e.g. Figure 3.3) to provide an overview of how template quality di�ers across a larger set of
targeted intermediate values. In these matrices, I map the success rate value from white to
blue, where the darker the color, the higher the value.

Guessing entropy (GE) Given the same ranking table, they also de�ned the guessing en-
tropy as the expected value of the ranking of the correct candidate. In this thesis, I use the
arithmetic mean value of the rankings from several trials to estimate this value. When plo�ed
in a color matrix, I map the logarithmic guessing entropy values from white to black, where
the darker the color, the lower the value and the more information the templates provide.

Figure 2.1 shows how SR and logarithmic GE values are represented in color matrices in this
thesis. Unless stated otherwise, both these values are estimated here by ranking tables from
1000 di�erent trials. Note that these two values have their respective natural benchmarks
when compared to a model providing no information. Given a ranking table with 2n candi-
dates, the success rate will converge to 1

2n
for random guessing, while the guessing entropy

will converge to (1+2n)
2
≈ 2n−1. Once templates provide some information for our target, the

success rate will be higher than 1
2n

, while the guessing entropy will be lower than 2n−1.

2.2 Key enumeration

With ideal templates and in the absence of noise, a�ackers should �nd the full state of a secret
by simply taking the most likely candidate from each part of the secret (e.g., a byte) and con-
catenating them. However, template a�acks are noise sensitive, so the correct candidate will
not always top the ranking table. �erefore, Veyrat-Charvillon et al. introduced an optimal
key enumeration algorithm to search the correct key across the independent ranked likelihood
tables of the 16 key bytes of AES [53]. Given two ranking tables in descending order of like-
lihood, each with 28 values, there will be 216 possible combinations. �eir approach searches
the 216 possible combinations in descending order of their joint likelihood until the correct
combination is found, without calculating the joint likelihoods of all 216 combinations. �ey
generalized this method using a recursive tree structure that combines two tables at a time to
combine the results of more than two ranking tables. With this algorithm, it becomes practical
to search for the correct combination of the key bytes when the correct candidates do not top
the tables. �is increases the noise resiliency of the a�ack signi�cantly.

In this thesis, I also refer to this procedure as secret enumeration when it is used to enumerate
some intermediate values other than keys.

30 2.2. KEY ENUMERATION

s̃1,1 s̃1,2 s̃1,3 s̃1,N

s̃0,1

s̃0,2

s̃0,M

Figure 2.2: �e combination with the largest joint probability must be the top-le� element
when the search begins.

s̃1,1 s̃1,2 s̃1,3 s̃1,N

s̃0,1

s̃0,2

s̃0,M

Figure 2.3: �e frontier F , blocks labeled in red, when the gray blocks have been enumerated.

2.2.1 Search within two ranking tables

Assume that there are two independent secret variables s0 and s1 with M and N possible
values respectively. �rough some side-channel a�acks, we have already obtained their prob-
ability tables and sorted them into their ranking tables. Here the mth and nth most likely
candidates of these two variables are denoted as s̃0,m and s̃1,n, respectively, and their corre-
sponding probabilities are denoted as p0,m and p1,n. Figure 2.2 shows an M ×N array, where
each block represents the joint probability, p0,m × p1,n, of a combination (s̃0,m, s̃1,n).

CHAPTER 2. PRELIMINARIES 31

An e�cient comparing rule: In this array, as the tables have been sorted, there is an im-
portant rule that a probability represented by a block is always greater than (or equal to) an-
other represented by not only any blocks to its right in the same row, but also any blocks to its
bo�om in the same column. For their transitive relation, given a block represents (s̃0,m, s̃1,n),
we have

p0,m × p1,n > p0,m′ × p1,n′ , ∀m′ > m ∧ ∀n′ > n.

�is means that the joint probability of a block is greater than or equal to the value of any
other blocks to its bo�om right. �is also implies that a block will never be considered to be
a candidate of the next enumerated combination before all the blocks to its top le� have been
enumerated.

With this rule, the most top-le� block represents the combination with the largest joint prob-
ability, which is (s̃0,1, s̃1,1). Later, the combination with the second largest joint probability
can only be either (s̃0,2, s̃1,1) or (s̃0,1, s̃1,2), given the comparing rule will eliminate all the
other combinations, but it cannot apply to compare the joint probabilities of these two. �ey
will both be added into a set called frontier, F , which includes all candidate combinations
that cannot eliminate one another simply via the comparing rule. �erefore, we only need to
compare values from this set, instead of from all the remaining combinations, to �nd the next
enumerated value pair with the next largest joint probability.

For a more general case, see Figure 2.3: once all the combinations marked in gray have been
enumerated, the frontier F , marked in red, will be a set of all the combinations at the concave
corners. For these combinations, their joint probability must be larger than those of any other
unenumerated combinations to their bo�om-right, according to the comparing rule, but they
cannot mutually eliminate each other because they are either to the top-right or to the bo�om-
le� of one another. �erefore, we have to search in the frontier by comparing their probability
values, but that is still be�er than searching through all the unenumerated combinations.

While a combination (s̃0,m, s̃1,n) is being enumerated, we need to update F by removing
(s̃0,m, s̃1,n) (marking it gray here), and then considering whether (s̃0,m+1, s̃1,n) or (s̃0,m, s̃1,n+1)

or both shall be added to F , respectively. Only if one occupies a concave corner in the already
enumerated gray part of the array, will it become a new member of F at this time.

2.2.2 Search with a recursive structure

Following this algorithm, we can see that the probability p1,n will only be referenced a�er
the combination (s̃0,1, s̃1,n−1) has been enumerated and then we need to add (s̃0,1, s̃1,n) into
F , while this similarly applies to p0,m. �is means that we do not need all the values in the
probability tables in the beginning, and therefore we can separate the search procedure into
three nodes, two of which I call table nodes and one combining node. As a child node with
a ranking table, a table node will provide the next candidate (e.g. s̃1,n) and its corresponding
probability (e.g. p1,n) from its table to its parent combining node once the la�er requests the

32 2.3. BELIEF PROPAGATION AND SASCA

N

N

N

N

B15B14

N

B13B12

N

N

B11B10

N

B9B8

N

N

N

B7B6

N

B5B4

N

N

B3B2

N

B1B0

Figure 2.4: �e recursive enumeration in AES key combination, where N represents a com-
bining node, and Bn represents a table node with the ranking table of an AES subkey.

information for updatingF . From this design, we can build a tree of iterators recursively, given
a child node of a combining node can be another combining node, to search combinations of
candidates from beyond two tables.

Figure 2.4 shows the example of how Veyrat-Charvillon et al. [53] apply their algorithm to
combine key bytes into a round or master key used in AES. At the top level, the master com-
bining node will return the next combination of 16 key bytes with the next largest joint prob-
ability among those not yet being enumerated once we ask for it. At the second level, the two
combining nodes will return the next combination of eight key bytes with the largest joint
probability among those not yet being enumerated once being called by the master node. �is
similarly applies to other middle levels. As for the bo�om level, there are 16 table nodes each
with one ranking table for a key byte from template a�acks.

Note that this is a well-balanced tree structure because the number of key bytes, 16, is a power
of 2, but this algorithm can also be used for combining any number, besides powers of 2, of
target variables with an unbalanced structure. When I use this enumeration algorithm, I prefer
logarithmic likelihood tables (described in Section 2.1) so that we can use addition instead of
multiplication to calculate logarithmic joint probability values more e�ciently.

2.3 Belief propagation and SASCA

Veyrat-Charvillon et al. [56] introduced So� Analytical Side-Channel Analysis (SASCA), an
inference technique for template a�acks on cryptographic algorithms based on the belief-
propagation algorithm [101, Chapter 26]. �e idea behind SASCA is that all the probability
information available to the a�acker is represented as a factor graph, where there are two
types of nodes called variable, representing the intermediate states of the cryptographic algo-
rithm, and factor, representing how these intermediate states depend on each other and the
observed traces. Each of these nodes is only connected to nodes of the respective other type
(i.e., the factor graph is a bipartite graph), and information can �ow through these connections.

CHAPTER 2. PRELIMINARIES 33

�e factor graph therefore re�ects the mathematical structure of the cryptographic algorithm,
which then in�uences the updating of the probability estimates of the variables accordingly
during the execution of the belief-propagation or sum-product message-passing algorithm.

While the variable nodes represent the intermediate values in the cryptographic algorithm, I
prefer to classify the factor nodes into two subtypes, observation factors and constraint factors.
Observation factors fm(xn) represent observed probabilities of the values of their only con-
nected variable xn, here usually from a template-based likelihood. Constraint factors fm(xm)

are connected to more than one variable (xn1 , . . . , xnkm
) = xm (whereN (m) = {n1, . . . , nkm}

shall denote the set of indices of these variables) with a mathematical equation as the con-
straint. �e information �ow can be thought of as messages passed between variable nodes
xn and factor nodes fm, which in practice are stored in a table, and from which the marginal
probabilities of all the candidate values of each variable can be calculated. On a connection,
the information �ow is bi-directional, where a message from a variable xn to a factor fm is
denoted as qn−→m, and a message from a factor fm to a variable xn as rm−→n. Each of these
messages is a function of a value ξ of xn. �e probability of a candidate xn = ξ in message
qn−→m is:

qn−→m(xn = ξ) =
∏

m′ 6=m

rm′−→n(xn = ξ),

which means the probability passing from a variable to a factor is the product of the proba-
bilities of the same candidate in all the messages r passing from all other factors connected to
this variable. Meanwhile, the probability of a candidate xn = ξ in the message rm−→n is:

rm−→n(xn = ξ) =
∑

w


fm(xn = ξ,xm\xn = w)

∏

n′∈N (m)\n

qn′−→m(xn′ = wn′)


 ,

where

fm(xm = v) =





1, constraint holds with xm = v,

0, otherwise.
In other words, the probability passed from factor fm to variable xn is the sum of the product
of the probabilities of the candidates in the messages q passed from the other variables xn′
connected to factor fm, where these candidates combined with the candidate xn = ξ match
the constraint in fm. For the special case of an observation factor, this reduces to:

rm−→n(xn = ξ) = fm(xn = ξ),

where fm(xn) is the probability table observed from the templates, instead of a constraint
function. To obtain the �nal probability Pn of candidates xn = ξ, we need the product

Zn(xn = ξ) =
∏

m

rm−→n(xn = ξ)

of the probabilities in all the messages r passed to the same variable xn and then normalize
the result as

Pn(xn = ξ) =
Zn(xn = ξ)∑
ξ′ Zn(xn = ξ′)

.

34 2.3. BELIEF PROPAGATION AND SASCA

xa f⊕f1

f3xc

xb f2

Figure 2.5: A factor graph covering three variable xa, xb, xc. �e square nodes represent vari-
ables, while the circle nodes represent factors. In this �gure, f1, f2, f3 are observation factors,
and f⊕ is a constraint factor.

I provide a small example in the following scenario: an a�acker uses a template a�ack to
recover three binary variables xa, xb, xc, where the mathematical relation between these vari-
ables is xa = xb ⊕ xc. Observed from the templates, the probabilities of their two candidates
{0, 1} are {0.8, 0.2}, {0.7, 0.3}, {0.9, 0.1} respectively. Figure 2.5 depicts the factor graph cov-
ering these three variables. With the information above, the tables in observation factor nodes
f1, f2, f3 are:

f1(xa) =

{
0.8, xa = 0

0.2, xa = 1,
f2(xb) =

{
0.7, xb = 0

0.3, xb = 1,
f3(xc) =

{
0.9, xc = 0

0.1, xc = 1,

and the constraint function in factor node f⊕ is:

f⊕(xa, xb, xc) =

{
1, if xa = xb ⊕ xc
0, otherwise.

When calculating the probability Pa(xa = 0), we �rst �nd the value of Za(xa = 0) by:

Za(xa = 0) = r1−→a(xa = 0)× r⊕−→a(xa = 0)

= f1(xa = 0)×
∑

xa=0,xb,xc

[f⊕(xa, xb, xc)× qb−→⊕(xb)× qc−→⊕(xc)]

= 0.8× [qb−→⊕(0)× qc−→⊕(0) + qb−→⊕(1)× qc−→⊕(1)] ,

where we can keep following the rules to update q tables:

qb−→⊕(xb = ξ) = r2−→b(xb = ξ) = f2(xb = ξ),

qc−→⊕(xc = ξ) = r3−→c(xc = ξ) = f3(xc = ξ).

�erefore, Za(xa = 0) will be:

Za(xa = 0) = 0.8× [f2(xb = 0)× f3(xc = 0) + f2(xb = 1)× f3(xc = 1)]

= 0.8× [0.7× 0.9 + 0.3× 0.1] = 0.528.

CHAPTER 2. PRELIMINARIES 35

Likewise, Za(xa = 1) will be:

Za(xa = 1) = f1(xa = 1)× [f2(xb = 0)× f3(xc = 1) + f2(xb = 1)× f3(xc = 0)]

= 0.2× [0.7× 0.1 + 0.3× 0.9] = 0.068.

Finally, we can normalize the probability table Pa(0) = 0.528 ÷ (0.528 + 0.068) = 0.8859,
and Pa(1) = 0.068÷ (0.528 + 0.068) = 0.1141.

�is is how the probabilities can be updated recursively through a tree structure. �e algorithm
terminates on tree-shaped factor graphs once the number of steps has reached the diameter of
the tree. However, in most cases of cryptographic algorithms, the factor graph is less likely to
be a tree structure. Instead, it probably features loops, which means that this recursive belief
propagation will not terminate to output exact probabilities.

MacKay describes a solution [101, Chapter 26] called loopy belief propagation (loopy BP). �e
main idea is to initialize all the values in the table for all messages qwith one, then alternatingly
update all the messages in the table for r and then q, with renormalization to prevent the
probability values from becoming too small. �en the procedure terminates when it reaches
a steady state. We call it an iteration that updates r and then q once for each.

2.4 Keccak

2.4.1 Keccak-f [1600] permutation

Bertoni et al. [57] de�ne a family of Keccak-f [n] permutations, where n denotes the number
of bits they operate on. �e six standardized SHA-3 and SHAKE functions are based on the
Keccak-f [1600] permutation, which consists of a sequence of �ve steps that iterates 24 times
on a 1600-bit state. Each of the steps θ, ρ, π, χ and ι results in an intermediate state of 1600
bits. In this thesis, I refer to these intermediate states as αΩ, α′Ω, βΩ, and β′Ω as follows:

Input
θ−→ α0

ρ,π−→ α′0
χ−→ β0

ι−→ β′0
θ−→ α1

ρ,π−→ · · · χ−→ β23
ι−→ Output

�e round index Ω runs from 0 to 23 in Keccak-f [1600].

�e SHA-3 standard describes these states as a 5 × 5 × 64-bit cube with an x, y, and z axis
with li�le-endian bit order along the z axis. I use coordinates i ∈ Z5, j ∈ Z5, and k ∈ Z64

to denote each bit inside such states, e.g. an intermediate bit in state α0 will be referred to as
α0[i, j, k]. I closely follow the notation in paper [57], where the bits with the same coordinates
j and k are in the same row, the same i and k in the same column, and the same i and j in the
same lane, while bits with the same coordinate i are on the same sheet, the same j on the same
plane, and the same k on the same slice.

Considering the frequent use of an 8-bit unit in my experiments, I also refer to the 64 bits
along the z axis as eight intermediate bytes. For example, we describe an intermediate byte

36 2.4. KECCAK

in state α0 as α0[i, j, 8k]
8, where i ∈ Z5, j ∈ Z5,

8k ∈ Z8 are the coordinates in this case.
Note that because of the li�le-endian bit order, the least signi�cant, or the le�-most, bit of an
intermediate byte α0[i, j, 8k]

8
[0] is the intermediate bit α0[i, j, k] = α0[i, j, 8× 8k], while the

most signi�cant bit α0[i, j, 8k]
8
[7] can also be referred to as α0[i, j, k] = α0[i, j, 8 × 8k + 7].

In this situation, I call the �ve bytes with the same y and z coordinates a byte row, and the 25
bytes with the same z coordinate a byte slice in this thesis. Similarly, coordinates 4k, 16k, and
32k represent the cases of nibble, 16-bit words, and 32-bit words respectively.

For translation between an input (or output) bitstring S and a state state, the le�-most bit in
S will be the bit state[0, 0, 0], then being �lled along the z axis, then along the x axis, and
�nally along the y axis.

�e �ve steps are introduced as follows. Note that a lane in these states will be denoted as
L(i,j) or L′(i,j), e.g. L(i,j)[k] = state[i, j, k] or L(i,j)[k] = α0[i, j, k], considering its frequent
use as the operational unit in these steps. Here ‘¬’ denotes the operation to �ip all the bits in
the following bitarray, while ‘⊕’, ‘∨’, and ‘∧’ denote bitwise XOR, OR, and AND operations on
two bitarrays with the same shape respectively. Meanwhile, function Rot(X,n) rotates the
one-dimensional bitarray X to the right by n bits, regardless of its endianness.

Step θ As described in Algorithm 1, step θ �rst assigns a new internal plane C by calculating
the column parity of the input state, and then it applies a linear transform to calculate another
new plane D. Each plane in the input state will be XORed with D to calculate its corresponding
plane in the output state. �is is the most complicated linear step inside Keccak-f [1600]

permutation, as more bits are used here than in any other step to calculate a one-bit result.

Step ρ and Step π �ese two steps are both transpositions on bits. Step ρ is a rotation proce-
dure within a lane, while step π is a transposition among whole lanes. Algorithm 2 shows the
procedure of these two steps. In some implementations [102], these two transposition steps
do not strictly follow their original order, but can be mixed for optimization.

Step χ �is is the only non-linear step in the Keccak-f [1600] permutation. It applies NOT,
AND, and XOR instructions on �ve bits in the same row to calculate the output state. Table B.2
in Appendix B.1 provides the input and corresponding output values when this step is seen
as a 5-bit-in and 5-bit-out substitution box. Because the instructions in these steps are all
bitwise, we can also execute it in parallel among �ve lanes on the same plane as described in
Algorithm 3.

Step ι �is is to XOR the �rst lane of the state (i.e. L(0,0)) with a round constant, which can be
calculated given the round number (Ω) [15], but a pre-computed round constant table is used
in most implementations of SHA-3, including one of the o�cial C reference codes, XKCP [102].
�e round constant tables used in Keccak-f [1600] are listed in Table B.1 in Appendix B.1.

All �ve steps in a Keccak-f [1600] round are practical to invert [103] and the Keccak team
provides C++ implementations of the corresponding inverse functions [104]. In other words,
the input, output, and all intermediate states of a Keccak-f [1600] execution can be converted
into each other e�ciently.

CHAPTER 2. PRELIMINARIES 37

Algorithm 1 Step θ for round Ω

x

y z z

CC-BY Keccak Team [1]

1: procedure θ(β′Ω−1)
2: internal plane C,D

3: for i← 0 to 4, k ← 0 to 63 do

4: C[i, k]←⊕4
j=0 β

′
Ω−1[i, j, k]

5: end for

6: for i← 0 to 4, k ← 0 to 63 do

7: D[i, k]← C[i− 1, k]⊕C[i+ 1, k − 1]

8: end for

9: for i← 0 to 4, j ← 0 to 4, k ← 0 to 63 do

10: αΩ[i, j, k]← β′Ω−1[i, j, k]⊕D[i, k]

11: end for

12: return αΩ[i, j, k]

13: end procedure

Algorithm 2 Step ρ and π for round Ω

1: procedure π ◦ ρ(αΩ)
2: (L(0,0), L(1,0), L(2,0), . . . , L(3,4), L(4,4)) := αΩ . step ρ starts here
3: (i, j)← (1, 0)

4: for t← 0 to 23 do

5: r ← (t+ 1)(t+ 2)/2

6: L(i,j) ← Rot(L(i,j), r)

7: (i, j)← (j, (2i+ 3j))

8: end for

9: for i← 0 to 4, j ← 0 to 4 do . step π starts here
10: L′(i,j) ← L((i+3j),i)

11: end for

12: α′Ω := (L′(0,0), L
′
(1,0), L

′
(2,0), . . . , L

′
(3,4), L

′
(4,4))

13: return α′Ω
14: end procedure

Algorithm 3 Step χ for round Ω

1: procedure χ(α′Ω)
2: (L(0,0), L(1,0), L(2,0), . . . , L(3,4), L(4,4)) := α′Ω
3: for i← 0 to 4, j ← 0 to 4 do

4: L′(i,j) ← L(i,j) ⊕ ((¬L(i+1,j)) ∧ L(i+2,j))

5: end for

6: βΩ := (L′(0,0), L
′
(1,0), L

′
(2,0), . . . , L

′
(3,4), L

′
(4,4))

7: return βΩ

8: end procedure

38 2.4. KECCAK

Algorithm 4 Step ι for round Ω

1: procedure ι(βΩ)
2: β′Ω ← βΩ

3: rc← RCTable[Ω]

4: for k ← 0 to 63 do

5: β′Ω[0, 0, k]← β′Ω[0, 0, k]⊕ rc[k]

6: end for

7: return β′Ω
8: end procedure

Figure 2.6: �e diagram of the Keccak sponge function from NIST FIPS 202 [15]. In this
diagram, N is the arbitrary-length input sequence and Z is the d-bit output sequence.

2.4.2 Keccak sponge functions: SHA-3 and SHAKE

A Keccak sponge function, Keccak[c](N, d), consists of sequenced Keccak-f [1600] permu-
tations. It �rst absorbs an arbitrary-length input bitstring into its internal state and then can
squeeze out an arbitrary-length output bitstring, and so is described as a sponge function. �e
input or output bitstring S of each invocation of Keccak-f [1600] can be separated into two
parts, Sr and Sc. In other words, S = Sr‖Sc, where ‘‖’ denotes the operation to concatenate
one-dimensional bitarrays. Sr is the part used in the sponge function to absorb or squeeze out
the bitstring, whileSc is the part that stays unchanged for the input of the next Keccak-f [1600]

permutation. We refer to the length of Sr as rate and denote it as r, while the length of Sc is
called capacity and denoted as c.

Figure 2.6 shows how Keccak[c](N, d) absorbs the input bitstring N and squeezes out a d-bit
result. Input message N is �rst padded (N ← N‖pad10*1) to a sequence with a length equal
to a multiple of r and then split into blocks of r bits. A�er all r-bit blocks have been absorbed,
in the squeezing stage, the output sequence is generated by concatenating the Sr being output
by each iteration of Keccak-f [1600] until the concatenated sequence is at least of the required

CHAPTER 2. PRELIMINARIES 39

length d, and it is then truncated to d bits.

�e SHA-3 family is �nally de�ned for input messagesM using Keccak[c] for the output sizes
d ∈ {224, 256, 384, 512} bits as

SHA3-d(M) = Keccak[2d](M‖01, d).

In addition, SHA-3 de�nes two extendable-output functions (XOFs) as

SHAKE128(M,d) = Keccak[256](M‖1111, d),

SHAKE256(M,d) = Keccak[512](M‖1111, d),

where users have free choice over the output length d.

2.5 Ascon

2.5.1 Ascon permutation

�e Ascon team �rst introduces a family of 320-bit Ascon permutations. �ey describe the
320-bit state S as a two-dimensional structure, which is in the same shape with a plane (5×64)
in the Keccak-f [1600] state. �erefore, the state can be separated into �ve 64-bit words (or
�ve lanes), starting with the rate part (Sr) of the state and followed by the capacity part (Sc)
when this permutation is used in a sponge construction, as in

S = L0‖L1‖L2‖L3‖L4 = Sr‖Sc.

Note that, unlike Keccak, Ascon interprets the state S as a big-endian byte array (or a bit-
string) when needed. In this situation, the most signi�cant byte of L0 will be labeled as byte
0, and the least signi�cant byte of L4 will be labeled as byte 39.

Ascon performs either 6, 8, or 12 rounds of a substitution-permutation-network-based (SPN-
based) transformation p to update the state. �ese three permutations are referred to as p6,
p8, and p12, respectively. Each SPN-based transformation p consists of three steps: Constant
addition pC, Substitution pS, and Linear di�usion pL in chronological order:

p = pL ◦ pS ◦ pC.

Constant Addition �e step pC updates the state by XORing an 8-bit round constant with the
least signi�cant byte of L2 (byte 23). �ese round constants and their corresponding round Ω

in the three Ascon permutations are as follows:

Constant 0xf0 0xe1 0xd2 0xc3 0xb4 0xa5 0x96 0x87 0x78 0x69 0x5a 0x4b

p12 0 1 2 3 4 5 6 7 8 9 10 11
p8 - - - - 0 1 2 3 4 5 6 7
p6 - - - - - - 0 1 2 3 4 5

40 2.5. ASCON

Substitution Like the step χ in Keccak-f [1600], step pS applies a non-linear substitution
function on �ve bits in each row of the ASCON state. Table B.3 in Appendix B.1 show the
substitution table with �ve-bit input and output, e.g., I0 represents a bit from L0 and I1 rep-
resents a bit from L1, etc. Similarly, we can execute step pS in parallel on the �ve 64-bit lanes
with Algorithm 5. Note that lines 6 to 10 are the same as step χ in Keccak-f [1600].

Algorithm 5 Step pS of ASCON
1: procedure pS(state)
2: (L0, L1, L2, L3, L4)← state

3: L0 = L0 ⊕ L4

4: L4 = L4 ⊕ L3

5: L2 = L2 ⊕ L1

6: L′0 = L0 ⊕ ((¬L1) ∧ L2)

7: L′1 = L1 ⊕ ((¬L2) ∧ L3)

8: L′2 = L2 ⊕ ((¬L3) ∧ L4)

9: L′3 = L3 ⊕ ((¬L4) ∧ L0)

10: L′4 = L4 ⊕ ((¬L0) ∧ L1)

11: L′1 = L′1 ⊕ L′0
12: L′0 = L′0 ⊕ L′4
13: L′3 = L′3 ⊕ L′2
14: L′2 = ¬L′2
15: state← (L′0, L

′
1, L

′
2, L

′
3, L

′
4)

16: return state

17: end procedure

Linear Di�usion Step pL provides linear di�usion within each 64-bit word in the state via
Algorithm 6.

Algorithm 6 Step pL in Ascon permutation
1: procedure pL(state)
2: (L0, L1, L2, L3, L4)← state

3: L′0 = L0 ⊕Rot(L0, 19)⊕Rot(L0, 28)

4: L′1 = L1 ⊕Rot(L1, 61)⊕Rot(L1, 39)

5: L′2 = L2 ⊕Rot(L2, 1)⊕Rot(L2, 6)

6: L′3 = L3 ⊕Rot(L3, 10)⊕Rot(L3, 17)

7: L′4 = L4 ⊕Rot(L4, 7)⊕Rot(L4, 41)

8: state← (L′0, L
′
1, L

′
2, L

′
3, L

′
4)

9: return state

10: end procedure

CHAPTER 2. PRELIMINARIES 41

Initialization Associated Data Plaintext Finalization

AsA1 P1

IV ‖K‖N 0∗‖K K

T

0∗‖1 K‖0∗

PtCtCt−1C1 Pt−1

pa pb pb pb pb pa
⊕ ⊕ ⊕

⊕
⊕ ⊕

⊕ ⊕⊕

r

c

Figure 2.7: Encryption of Ascon AEAD

2.5.2 Ascon authenticated encryption with associated data

Based on the Ascon permutations, Dobraunig et al. designed the Ascon authenticated encryp-

tion with associated data (AEAD) and Ascon hashing. For Ascon AEAD, they de�ned two
encryptions Ascon-128 and Ascon-128a. �ey both take four inputs: a 128-bit key K , a 128-
bit nonceN , an arbitrary-length associated data bitstring A, and an arbitrary-length plaintext
P , and then calculated the ciphertext C with the same size of the plaintext. �e mathematical
structures of these two are very similar but with some di�erences in the choices of parameters.
I use ‘|X|’ to denote the length of a one-dimensional bitstring X in bits, such as |N | = 128.

Figure 2.7 shows the encryption of Ascon AEAD, which includes four processes: initializa-
tion, processing associated data, processing plaintext, and �nalization. In my experiments, I
demonstrated my a�ack only on Ascon-128. For this function, there are four important pa-
rameters used: the key size (|K| = 128 bits1), the rate size (r = 64 bits), the round number
(a = 12) for the invocations of pa in initialization and �nalization, and the round number
(b = 6) for the invocations of pb when processing associated data and plaintext. �e constant
64-bit initial vector IV records these four parameters in its �rst four bytes, then being padded
with an all-zero bitstring, so the value of the initial vector is:

IV = 0x80400c0600000000.

Initialization In this process, we �rst concatenate the initial vector with the key and the
nonce, and then we input the bitstring into permutation p12. �en, we calculate the output
of the process by XORing the key into the last 128-bit of the permutation output. We can
summarize the process by the following equation:

Sr‖Sc = S ← p12(IV ‖K‖N)⊕ (0192‖K).

Processing associated data If the associated data bitstring is null, there will not be any
invocations of permutations in this process. For any other associated data A, we �rst pad the
data with a single ‘1’ and the smallest number of repeated ‘0’s such that the size of the padded

1�e o�cial document uses ‘k’ to denote the size of the key, but I use ‘|K|’ to distinguish it from the z
coordinate k in this thesis.

42 2.5. ASCON

data will equal a multiple of the rate size r (64-bit), and then spli�ing the padded data into
r-bit bitstrings:

A1, . . . , As ←
{
r-bit blocks of A‖1‖0r−1−(|A| mod r) if |A| > 0,

∅ if |A| = 0.

�en, for each block, we XOR the associated data into the rate part of the state and update the
state by p6:

Sr‖Sc ← S ← p6((Sr ⊕ Aτ)‖Sc), for 1 ≤ τ ≤ s.

A�er processing the last block (also in the case of null associated data), we �ip the last bit of
the state:

S ← S ⊕ (0319‖1).

Processing plaintext Similar to the padding step processing associated data, we �rst pad
the plaintext P with a single ‘1’ and the smallest number of repeated ‘0’s such that the size of
the padded data will equal a multiple of the rate size r (64-bit), and then spli�ing the padded
data into r-bit bitstrings:

P1, . . . , Pt ← r-bit blocks of P‖1‖0r−1−(|P | mod r).

�en, for each block, we XOR the plaintext into the rate part of the state for calculating cipher
blocks, and update the state by p6, except for the last block:

Cτ ← Sr ⊕ Pτ , for 1 ≤ τ ≤ t, Sr‖Sc ← S ←
{
p6(Cτ‖Sc), for 1 ≤ τ ≤ t− 1,

Cτ‖Sc, for τ = t.

�en we concatenate the cipher blocks and truncate the result to the length of the plaintext
for the output ciphertext bitstring:

C ← Trunc(C1‖...‖Ct, |P |),

where function Trunc(X,n) truncates the one-dimensional bitarray X to its �rst n bits.

Finalization. At the beginning of �nalization, we use the key for the third time, by XORing
the key into the �rst 128 bits of the capacity part (Sc) of the state:

Sc ← Sc ⊕ (K‖0128),

and then update the state by the permutation p12:

S ← p12(Sr‖Sc).

CHAPTER 2. PRELIMINARIES 43

Finally, we can calculate the 128-bit tag T by XORing the key and the last 128 bits of the state:

T ← S[192 : 320]⊕K.

Now the ciphertext C and the tag T are the output data of the ASCON-128 encryption.

Algorithm 7 in Appendix B.1 shows the procedure of ASCON-128 encryption. Meanwhile, a
very similar procedure of its decryption is shown in Algorithm 8 in Appendix B.1, where the
initialization and the associated data processing are the same, but here we XOR each input
ciphertext block with the rate part of the state in the same invocation of the p6 permutation
to �nd the plaintext:

Pτ ← Sr ⊕ Cτ , for 1 ≤ τ ≤ t.

Another di�erence is that we need to compare the tag T ′ calculated in the �nalization process
with the input tag T , and will reject the decryption if they are di�erent, to protect the system
from chosen-cipher a�acks.

ASCON-128a shares the same encryption and decryption procedure with ASCON-128 and only
di�ers in parameters: |K| = 128, r = 128, a = 12, b = 8, and IV = 0x80800c0800000000.

In the later chapters, I refer to the internal states of Ascon p12 permutation as follows:

Input = β−1
pC,pS−−→ α0

pL−→ β0
pC,pS−−→ α1

pL−→ β2 · · · pL−→ β11 = Output,

and the bits, nibbles, bytes, or 16-bit fragments in a state will be denoted in the same style in
Keccak, except that there is no y coordinate j, such as α0[i, k] or β1[i, 8k]

8

2.6 General experimental setting

�is section explains the hardware and general setup for all my experiments, including the
Keccak experiment on an 8-bit device (Section 3.2), as well as the toy stream cipher experiment
(Section 4.3), the Keccak experiment (Section 4.4), and the Ascon experiments (Chapter 5) on
a 32-bit device.

2.6.1 Measurement setting

Recording equipment For power-trace recording, I used an NI PXI platform, including an
NI PXIe-5160 [105] 10-bit oscilloscope, which can sample at 2.5 GS/s into 2 GB of memory,
for recording the supply-current traces, a PXIe-5423 [106] arbitrary waveform generator to
supply the clock signal for the target devices, and a PXI-4110 [107] power supply, all installed
in the same PXIe chassis. I con�gured both the oscilloscope and waveform generator to use a
common 100 MHz reference clock signal from the la�er. �is helps me to preserve the phase
lock between the oscilloscope’s sampling clock and the CPU clock of the two target devices,
to avoid misaligned recordings.

44 2.6. GENERAL EXPERIMENTAL SETTING

Choudary’s 8-bit board I used a power-analysis test board designed by Choudary [52, Sec-
tion 2.2.2] as my 8-bit target, which will also be referred to as Choudary’s board. Its processor
is the 8-bit microcontroller ATxmega256A3U [108]. For the schematics of this target board,
see [52, Figure 2.8].

When recording traces for my experiments on this board, I powered it using the PXI-4110 [107]
power supply. �e target 8-bit processor was supplied with an external 2 MHz square-wave
clock signal generated by the PXIe-5423 waveform generator, con�gured to use the same ref-
erence clock as the PXIe-5160 oscilloscope. I used a coaxial cable with 50 Ω to connect the
oscilloscope and connector SMA MATCH on the board [52, Figure 2.8], where Choudary already
provided an impedance-matched connection point.

�is way, the samples on the traces captured by the oscilloscope will be proportional to the
current �owing through the 1 Ω resistor, RP [52, Figure 2.8], which is inserted between system
GND and the GND pin of the processor. With a sampling rate of 250 MHz, each clock cycle in
the recorded traces contains exactly 125 data points (125 points per clock cycle or 125 PPC),
with a phase ji�er of about 8 ps standard deviation.

ChipWhisperer-Lite 32-bit board My target 32-bit processor was the STM32F303RCT7,
which has one ARM Cortex-M4 core, on a ChipWhisperer-Lite (CW-Lite) board [109]. I will
also refer to this device as the CW-Lite board.

Note that this board includes a power-analysis oscilloscope, but that could not record more
than 24 kilosamples per trace (at up to 105 MS/s). Considering that this duration would only
cover a very small part of my target algorithms, I decided to use an external oscilloscope in-
stead of the onboard one. At the same time, I wanted to preserve the phase lock between the
oscilloscope’s sampling clock and the CPU clock. �erefore, I used again the PXIe-5160 oscil-
loscope and the PXIe-5423 waveform generator as an external clock signal source to supply
the target board with a 5 MHz square wave signal, which is the lowest frequency for the board
to work stably. On the other side, I con�gured the oscilloscope at the highest sampling rate,
2.5 GS/s, so it collected traces with 500 points per clock cycle (PPC). Compared to recording
the trace directly with a lower sampling rate, this se�ing provided me with the �exibility to
later digitally downsample to di�erent PPC values, as needed, by using the sum of consecu-
tive raw samples as a new sample. Note that the USB cable between the NI controller and the
CW-Lite board was not only the I/O channel but also the power source of the device, so it did
not require the PXI-4110 power supply.

Since I did not use the onboard oscilloscope, I had to create an impedance-matched connection
for the power signal. It used a 50 Ω coaxial cable to connect the oscilloscope and the CW-Lite’s
measure connector (JP10) [110]. However, JP10 taps the VDD connection of the CPU a�er a 13 Ω

source impedance (R66+R67), unlike the case of measuring from the GND side on Choudary’s
board. �is posed a problem: the 3.3 V DC level would have led to a high current drain with the
oscilloscope input con�gured to 50 Ω impedance and DC coupling, where the DC level should

CHAPTER 2. PRELIMINARIES 45

R_in
R=50 Ohm

C_HP
C=10 nF

R_MATCH
R=37 Ohm

JP10
Coaxial
Z=50 Ohm
L=600 mm

V1

Figure 2.8: My impedance-matched connection with AC coupling for CW-Lite board measure-
ment. Note that V1 is the value being recorded by the oscilloscope.

Figure 2.9: Measurement setup for the experiments on the 32-bit device.

be con�ned to between ±2.5 V. However, if there is no 50 Ω impedance match on at least one
end of the transmission line, re�ections will add a lot of ripples to the recorded waveform.
�erefore, as shown in Figure 2.8, I connected the coaxial cable to JP10 via a 37 Ω resistor2

R MATCH (to be�er match the 50 Ω impedance of the cable) and a 10 nF capacitor C HP (to
block the 3.3 V DC component). Together with the 50 Ω impedance (R in) of the oscilloscope
input, this capacitor forms a high-pass �lter with a time constant of 0.5 µs (2.5 clock cycles), or
a 3 dB cuto� frequency of about 320 kHz. �is way, I avoid ringing on the cable by terminating
it at both ends, but at the same time use AC coupling3 with an impulse response that decays
within a few clock cycles. Figure 2.9 shows the connected recording platform for the CW-Lite
32-bit device.

2It was actually a 15 Ω and a 22 Ω resistor in series.
3�e oscilloscope remained con�gured in DC-coupling mode with 50 Ω termination.

46 2.6. GENERAL EXPERIMENTAL SETTING

2.6.2 Recorded traces

As implied in Section 1.1.2, we need to record at least two sets of traces for the pro�ling stage
and the a�ack stage, respectively, in template a�ack experiments. However, for some early
checking purposes and for preventing over��ing issues, I further split the recorded traces into
the following sets in the pro�ling stage:

Reference I used the mean array of the relatively small number of traces in this
set to detect and then exclude possible errors such as trigger accidents,
misalignment, and other abnormal recordings. For my experiments on
Choudary’s board, I checked that all traces recorded in other sets have a
Pearson correlation coe�cient of at least 0.98 against this mean array, or
they would be seen as abnormal traces. I applied similar checks to my
experiments on the CW-Lite board, but no errors were detected.

Detection When we target a cryptographic algorithm, the recorded raw traces are
usually too long for pro�ling templates directly, even with the LDA di-
mensionality reduction. �erefore we should �rst determine the sam-
ples that contain information about the target intermediate values, where
these samples were referred to as points of interest (PoI) by Chari et al.’s
�rst template a�ack [39, Sec. 3.1]. I used the traces in this set with some
statistical methods (see Section 3.2.2) to determine m points of interest in
my experiments.

Pro�ling Once the m PoI have been selected with the detection set, I concatenate
the corresponding samples from the traces in the pro�ling set into new
m-sample traces, and then use these to pro�le LDA-based templates in
my a�acks. Separating the detection and pro�ling sets avoids the risk of
over��ing.

Validation I used these traces to calculate the two metrics, SR and GE, introduced in
Section 2.1.4, for template-quality evaluation and �ne-tuning parameters.

Table 2.1 shows the number of traces for each set in the pro�ling state of my main experiments.
�e number of instructions covered by each trace depends on the targeted algorithm. In all
my experiments on Keccak, I focused more on the Keccak-f [1600] permutation, and a trace
covers only the �rst few rounds of a single permutation, considering that the size of a trace
covering a full permutation could be very large. �erefore, we can collect more than one such
trace with a SHA-3 function with multiple Keccak-f [1600] permutations in the pro�ling stage.
For example, with Choudary’s board, I collected four traces from each SHA3-512 function with
the input that requires four invocations of Keccak-f [1600] to absorb, while I collected 10 each
time there with the CW-Lite board. In contrast, in all my experiments on Ascon, a trace covers

CHAPTER 2. PRELIMINARIES 47

Table 2.1: �e number of traces in each set of the pro�ling stage in my main experiments.

Experiments
Algorithm Keccak toy stream cipher Keccak Ascon
Board Choudary’s CW-Lite CW-Lite CW-Lite
Reference 1 600 1 600 1 600 1 600
Detection 16 000 16 000 16 000 16 000
Pro�ling 32 000 64 000 64 000 64 000
Validation 1 000 1 000 1 000 1 000

Source
SHA3-512 with four A full encryption SHA3-512 with ten A full encryption
Keccak-f [1600] of stream cipher Keccak-f [1600] of Ascon-128

the full AEAD mode thanks to the fewer clock cycles it requires. In other words, I collected
only one trace for each Ascon-128 encryption. For the toy stream cipher experiment, a trace
covers one full encryption as well.

Regarding the traces in the a�ack set, their categorization depends on the di�erent goals of
each experiment. �erefore, I introduce this later in the corresponding sections, respectively.

2.6.3 Computing resources

Although I ran some of my early template a�ack experiments on other computers, I provide
all the run-time estimation in this thesis with the last machine I used, which is the server
dev-cpu-1 in my department. �is machine was equipped with 32 Intel® Xeon® Gold 5218
processors (22M Cache, 2.30 GHz) [111] and 252 GB memory.

On this machine, I used Python (v3.10.6) for all my experiments. My template pro�ling proce-
dure highly relies on NumPy (v1.21.5 [112, 113]) for matrix multiplication, inverse calculation,
�nding eigenvalues and eigenvectors, etc. It also relies on scikit-learn (v1.1.3 [114, 115,
116]) to build multiple linear regression models. �ese also rely on the Intel® oneAPI Math
Kernel Library [117] to accelerate and parallelize matrix computations.

Limited points of interest In my experiments, template pro�ling is the most resource-
consuming step compared to other steps such as belief propagation or secret enumeration.
�erefore, I had to take my computing resources and their limitations into consideration when
I chose the parameters, points of interest m in particular, used in this stage.

Excluding the data loading and saving, I measured the following time intervals during template
pro�ling, to show where the bo�leneck is:

T0: build the multiple linear-regression model

T1: calculate the inter-class sca�er matrix B and the total intra-class sca�er matrix W

48 2.6. GENERAL EXPERIMENTAL SETTING

T2: calculate W−1B

T3: �nd eigenvalues and eigenvectors of W−1B

T4: calculate the projected pooled covariance matrix Sproj, the projected expected traces
x̂b,proj, and the projection matrix A

As in Section 2.1, we now pro�le a template with Schindler’s linear-regression model for an
l-bit target intermediate value from N pro�ling traces (i.e., N =

∑2l−1
b=0 nb, where nb is the

number of traces for each of the 2l values b). Given m points of interest, we apply an LDA
reduction down to m′ � m dimensions.

In my experiments, m (points of interest) plays the most important role when it comes to the
run time, because it varies most across di�erent target intermediate values, while l, N , andm′

are �xed in a single experiment. Table 2.2 shows the run time, where the values are averaged
over 100 pro�ling runs with di�erent m, given �xed l = 8, N = 64000, and m′ = 8. We can
see that the multiple linear regression and eigenvector decomposition take the longest.

Table 2.3 shows the run time for some largerm given the same other �xed parameters, based on
single trials. We can see the run time increases superlinearly with m, but remains acceptable
when we pro�le only a few templates. Considering that I target hundreds of intermediate
bytes in my a�acks (e.g., 600 for Keccak on the 8-bit device, and 1920 for Keccak on the 32-
bit device), I will �rst keep m below about 3500, as long as that achieves a satisfactory success
rate. My template pro�ling used about 45 GB RAM in my largest case m = 15 000, which is
still well below the 252 GB RAM available on dev-cpu-1, so memory use did not constrain
my choice of m.

Unlike in the pro�ling stage, multithreading did not help much in the a�ack stage on this
machine, so my template recovery procedure remained single-threaded in the later a�ack ex-
periments. Table 2.2 and Table 2.3 also show the a�ack-stage run time, averaged over 1000
trials for each value. �e a�ack-stage run time is far faster compared to the pro�ling stage.
We can observe that m still a�ects the a�ack-stage run time, but not as signi�cantly as in the
pro�ling stage.

CHAPTER 2. PRELIMINARIES 49

Table 2.2: �e run-time estimation of template pro�ling and a�ack with di�erent m (l = 8,
N = 64000, m′ = 8), where the results for pro�ling are estimated with the average of 100
trials and the results for a�ack are estimated with 1000 trials.

Pro�ling
#Samples (m) 1000 1500 2000 2500 3000 3500 4000

T0

CPU time (s) 175.953 190.565 228.531 271.053 320.039 356.163 460.848
Wall time (s) 16.600 23.427 34.323 41.283 54.288 64.174 134.086

T1

CPU time (s) 24.094 37.473 51.549 62.027 76.201 84.926 100.794
Wall time (s) 2.617 4.192 5.958 7.880 9.477 11.011 12.534

T2

CPU time (s) 3.341 7.483 9.054 11.088 13.989 16.876 21.294
Wall time (s) 0.119 0.387 0.657 1.153 1.534 2.330 3.113

T3

CPU time (s) 30.167 68.268 114.539 190.557 304.332 440.430 558.884
Wall time (s) 0.961 2.593 5.117 11.905 23.368 41.545 58.023

T4

CPU time (s) 0.589 1.105 1.642 2.748 3.483 3.263 3.916
Wall time (s) 0.112 0.287 0.493 0.767 1.081 1.425 1.847

Total
CPU time (s) 234.144 304.894 405.316 537.473 718.044 901.659 1145.736
Wall time (s) 20.409 30.886 46.548 62.988 89.747 120.486 209.603

A�ack
#Samples (m) 1000 1500 2000 2500 3000 3500 4000

Total
CPU time (µs) 300.087 326.923 353.150 360.314 353.743 365.349 388.008
Wall time (µs) 314.850 347.421 372.640 385.972 389.504 381.505 432.831

Table 2.3: �e run-time estimation of template pro�ling with selected larger m values. �e
results for pro�ling are estimated with only one trial and the results for a�ack are estimated
with the average of 1000 trials.

Pro�ling
#Samples (m) 5000 7000 10000 15000

Total
CPU time (s) 1687.176 2878.112 6176.754 14579.546
Wall time (s) 236.241 483.436 1129.878 2842.976

A�ack
#Samples (m) 5000 7000 10000 15000

Total
CPU time (µs) 398.024 456.010 466.810 549.702
Wall time (µs) 420.910 481.697 493.438 566.547

50 2.6. GENERAL EXPERIMENTAL SETTING

Chapter 3

LDA-based template attack on a Keccak

8-bit implementation

I started my investigation by extending Choudary’s LDA-based template a�ack to perform
a full-state recovery on three intermediate states of the Keccak-f [1600] permutations in a
Keccak sponge function, SHA3-512. With support from the techniques of secret enumeration
or belief propagation, the full input of the SHA3-512 function can be recovered.

As mentioned in Chapter 2, previous DPA-style a�acks can e�ectively recover a MAC-Keccak
key K , but they do not extend to other applications where there is no �xed key K , as they
require leakage traces of many thousand repeated executions of SHA3-d(K‖M) with known
variable input message M and �xed key K . For example, a DPA-style a�ack could not re-
construct the complete input of MAC-Keccak. Instead, I demonstrate here a template a�ack
on a single invocation of Keccak-f [1600] to reconstruct both its 1600-bit input and output
bitstrings. Using this capability, I then demonstrate recovery of a complete SHA3-512 input
given a single power trace and then verify the results with the given output of SHA3-512. My
technique therefore not only can recover a MAC-Keccak arbitrary-length keyK without prior
knowledge of the message M , but also can naturally extend to other Keccak-f applications
with con�dential inputs or outputs, such as random-bit generation.

3.1 Attack strategy

3.1.1 On a full Keccak sponge function

Since each step of the Keccak-f permutation is invertible, given its full output state we can
calculate the input state of the step. Likewise, if we can determine a complete intermediate
state in any middle rounds in Keccak-f , we can calculate the input, output, and even any
other intermediate states of the permutation from this successfully recovered state. Once we

51

52 3.1. ATTACK STRATEGY

?
=

⊕ ⊕ ⊕
2©5©

?
=

?
=
4©

8©

3© 1©

f f f f

?
=

SHA-3
output

Sr Sr Sr Sr Sr Sr Sr Sr

ScScScScScSc ScSc

6©

0c
?
=
7©

SHA-3 input
with padding

Figure 3.1: �e procedure to reconstruct SHA3-d inputs by template a�ack: 1© reconstruct an
intermediate state of the last Keccak-f [1600] permutation and calculate its input and output;
2© verify the correctness by checking whether the �rst d bits in the output match the SHA3-d

output; 3© repeat 1© on other permutations but 4© verify the correctness by checking whether
the Sc of the output matches that of the input in the following permutation; 5© XOR the Sr
of the two consecutive permutations to calculate each part of the SHA3-d input; 6© in the
special case of the �rst r bits of the SHA3-d input, that part is identical to the input Sr of the
�rst Keccak-f [1600] permutation and 7© the input Sc of that permutation should be c 0 bits;
8© concatenate each part to form the complete SHA3-d input with padding.

have a partially public input or output state, we can easily verify whether we have correctly
determined the state.

Given the fact described above, Figure 3.1 depicts the high-level procedure of my a�ack strat-
egy to recover the input of a SHA3-d function. Firstly, we can use LDA-based template a�acks
as well as some mathematical tools to reconstruct all the bytes in an intermediate state of the
last Keccak-f [1600] permutation. A�er, for example, state α′0 is reconstructed, we can calcu-
late the inverses of π, ρ, and θ to �nd out the input of this Keccak-f [1600] invocation, and
then its output. We can verify the correctness of the la�er by checking whether its �rst d bits
match the SHA3-d output.

Secondly, we can repeat what we have done on the last Keccak-f [1600] permutation for its
predecessor, and verify the correctness of its output by checking whether its last c = 2d bits,
also known as Sc, match those of the input of its successor. Without a predecessor, the input of
the �rst Keccak-f [1600] permutation has Sc equal to an all-zero string, following the Keccak
speci�cation.

�irdly, we can calculate each part of the SHA3-d input by XORing the Sr of the input and

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 53

the output of two consecutive Keccak-f [1600] permutations. In the special case of the �rst
r bits of the SHA3-d input, that is identical to the Sr of the input of the �rst Keccak-f [1600]

permutation. Finally, a�er concatenating all the parts and removing the padding, the input of
this SHA3-d function can be recovered.

3.1.2 On a single invocation of Keccak-f [1600]

With the procedure introduced in the previous subsection, now the question is how to suc-
cessfully reconstruct the values of all the bytes in an intermediate state. I �rst tried to use the
LDA-based template a�ack on every byte in a single full intermediate state α′0. With the log-
arithmic likelihood tables predicted by these templates, we can sort the tables in descending
order of the likelihood into their ranking tables, and then determine their values by selecting
their top candidates. However, the di�usion of Keccak-f means that even a single bit error
will result in a completely di�erent input or output, and the quality of these templates was
still too low that their predicted rank tables were not good enough for secret enumeration.

�erefore, I combined the LDA-based template a�ack on three consecutive intermediate states,
α′0, β0, andα1, with an enumeration technique around the mathematical structure of Keccak-f
to correct errors. Since the state of Keccak-f [1600] contains 200 bytes, there will be 600 per-
byte likelihood tables in total, which are then sorted into 600 ranking tables. In a pair of
(nearly) consecutive intermediate states, each byte will only depend on a small number of
bytes in neighboring states: the avalanche e�ect of di�usion takes multiple rounds to come
into e�ect. �is makes it possible to combine likelihood information from neighboring in-
termediate states to build be�er rank tables for secret enumeration, and I built a three-layer

scheme that can gradually combine the probabilistic information available about these bytes
into a full state. At the bo�om, Layer 1 �rst merges the rank tables associated with �ve bytes
from α′0 in the same byte row, enumerates a limited number of combinations, updates the
likelihood of each enumerated combination with the tables of β0, and then generates in total
40 new rank tables that cover entire byte rows. Layer 2 then repeats the steps in layer 1 to
combine and enumerate �ve byte rows in the same byte slice, update their likelihood values
by the tables of α1, and then generate eight new rank tables for byte slices. Finally, Layer 3 just
concatenates the eight top candidates from each byte-slice ranking table, and veri�es the cor-
rectness of the resulting full intermediate state α′0. �e detailed description of this three-layer
scheme is in 3.3.

3.2 Template attack on SHA3-512

I demonstrate all experiments in this chapter on SHA3-512(M), considering that this is the
SHA3-d variant with the largest capacity c, i.e. the largest security margin.

54 3.2. TEMPLATE ATTACK ON SHA3-512

3.2.1 Target implementation and measurement setup

�e SHA3-512 implementation targeted here is based on the Keccak-f [1600] implementation
in the o�cial C reference code, the Extended Keccak Code Package (XKCP) [102], and I ran it
on Choudary’s 8-bit board [52, Sec. 2.2.2], following the description in Section 2.6.1 to record
power traces. Each raw trace contained 40 000 clock cycles (or 5 000 000 samples), covering
the power consumption of the �rst two rounds of one Keccak-f [1600] permutation, which
include the target states α′0, β0, and α1.

For the a�ack stage, I also recorded two sets of SHA3-512 traces. �e �rst one contains 1000
random inputs with a length shorter than 71 bytes, so it needs one Keccak-f [1600] permu-
tation to absorb the input. �e second set contains 1000 random inputs whose lengths range
from 216 to 287 bytes, so it needs four Keccak-f [1600] permutations to absorb these inputs,
which is the same se�ing as the traces in the pro�ling stage.

3.2.2 Interesting clock cycle detection

Since the recorded raw traces were too long for pro�ling templates directly, we should �rst
determine the clock cycles that contain information about the targeted intermediate states,
which in the Keccak-f [1600] permutation each contain 200 intermediate bytes. Given a time
sample s and target intermediate values, we can use some statistical metrics, such as using
Welch’s t-test [118, 119], signal-to-noise ratio (SNR) [120], or normalized inter-class variance
(NICV) [121], as selection criteria. Once the value of these statistical metrics exceeds a cho-
sen threshold, indicating a relatively high correlation, the corresponding time sample will be
determined as a point of interest (PoI) of the target intermediate values.

However, since the recorded traces were very long, I detected only the peak current in each
clock cycle and determined whether all the samples in such a clock cycle should be selected
as PoIs. In other words, I selected the interesting clock cycles. Moreover, I decided to build
a multiple linear regression with a stochastic model F9 for the target intermediate values
and the peak current samples, and decide whether the correlation is su�ciently high via the
coe�cient of determination (R2), as estimated by the regression. �e choice of R2 be�er
�ts my experiments than the other statistic metrics, as now the F9 model applies to both
the interesting-clock-cycle detection and template pro�ling. In comparison, Welch’s t-test is
more suitable if there are just two groups of intermediate values, and both SNR and NICV
will consider the non-linear part of signals, which is not used in the linear regression with F9

model.

Considering that traditionally the interval −0.3 < R < 0.3 indicates a variable of low cor-
relation in many research �elds [122, Table 1], I selected clock cycles based on the threshold
R2 > 0.09, but the threshold can be lowered to select more clock cycles if needed. �e multi-
ple linear regression andR2 were calculated using the LinearRegression class in the Python

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 55

Figure 3.2: Comparison of the highest R2 coe�cient and SNR value in each clock cycle.

library scikit-learn [123]. Fig. 3.2 shows the resulting highest R2 value occurring in each
clock cycle, along with the SNR value [120]

SNR(s) =

∑255
b=0 nb(x̄b[s]− x̄[s])2

∑255
b=0

∑nb

t=0(xb,t[s]− x̄b[s])2

at each per-clock-cycle peak time s for comparison. �isR2 > 0.09 threshold is approximately
equivalent to an SNR > 7 threshold.

LetA′
0,[i,j,8k]8

be the set of interesting clock cycles for intermediate byte α′0[i, j, 8k]
8, B0,[i,j,8k]8

that of β0[i, j, 8k]
8, andA1,[i,j,8k]8 that ofα1[i, j, 8k]

8. �e clock cycles that leak these 3×200 =

600 intermediate bytes should be su�cient for pro�ling working templates, but we found a
method to consider more clock cycles at the same time. Between the intermediate states α0

and α′0 are the steps ρ and π, which are both transposition steps. Here is an example of how
the eight bits in byte α′0[2, 1, 1]8, labeled here as from α′0[2, 1, 1]8[0] to α′0[2, 1, 1]8[7], match
those from up to two bytes in α0:

α′0[2, 1, 1]8[0] = α0[0, 2, 0]8[5], α′0[2, 1, 1]8[1] = α0[0, 2, 0]8[6],

α′0[2, 1, 1]8[2] = α0[0, 2, 0]8[7], α′0[2, 1, 1]8[3] = α0[0, 2, 1]8[0],

α′0[2, 1, 1]8[4] = α0[0, 2, 1]8[1], α′0[2, 1, 1]8[5] = α0[0, 2, 1]8[2],

α′0[2, 1, 1]8[6] = α0[0, 2, 1]8[3], α′0[2, 1, 1]8[7] = α0[0, 2, 1]8[4].

�erefore we can extend the set of interesting clock cycles for α′0[2, 1, 1]8 from A′
0,[2,1,1]8

to
A′

0,[2,1,1]8
∪ A0,[0,2,0]8 ∪ A0,[0,2,1]8 . �is similarly applies to the intermediate state α1, but the

other way round.

Table 3.1 lists the number of interesting clock cycles selected for each intermediate byte a�er
that extension. In state α′0, the numbers in lanes L(0,0), L(3,2), and L(4,3) are smaller because
step ρ rotates the bits in these lanes by multiples of eight. For example, we always have
α′0[3, 2, 0]8 = α0[4, 3, 7]8, which implies that A′

0,[3,2,0]8
= A0,[4,3,7]8 = A′

0,[3,2,0]8
∪ A0,[4,3,7]8 ,

and that does not extend the set of clock cycles.

56 3.2. TEMPLATE ATTACK ON SHA3-512

Table 3.1: �e number of interesting clock cycles for each byte in α′0[i, j, 8k]
8 (le�) and

β0[i, j, 8k]
8 (right). �e numbers for α1 (omi�ed here) look similar to those for α′0.

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 36 38 33 33 32 33 42 33
(1, 0) 112 114 102 96 100 109 98 106
(2, 0) 107 103 96 96 98 103 94 98
(3, 0) 115 122 103 84 78 89 92 103
(4, 0) 134 124 82 74 74 87 95 100
(0, 1) 110 116 102 94 80 91 93 105
(1, 1) 109 117 95 83 77 88 97 102
(2, 1) 107 87 75 75 72 82 94 108
(3, 1) 109 109 96 93 97 102 92 100
(4, 1) 118 112 97 93 88 106 122 121
(0, 2) 90 75 75 73 69 70 84 97
(1, 2) 113 99 82 73 77 85 98 110
(2, 2) 86 86 94 85 70 69 76 81
(3, 2) 50 38 35 33 32 30 51 37
(4, 2) 103 99 87 71 65 72 80 100
(0, 3) 99 101 98 91 82 88 91 97
(1, 3) 108 112 104 99 95 97 97 103
(2, 3) 110 99 77 73 70 78 89 96
(3, 3) 127 114 79 70 73 87 89 99
(4, 3) 44 44 45 41 46 45 60 45
(0, 4) 127 119 104 98 97 112 127 125
(1, 4) 117 109 98 92 96 110 112 111
(2, 4) 115 110 100 103 94 89 94 98
(3, 4) 87 88 88 87 98 95 86 83
(4, 4) 93 87 89 83 72 80 90 104

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 34 39 34 31 30 29 37 33
(1, 0) 25 26 23 23 30 26 32 27
(2, 0) 28 28 25 29 27 24 31 30
(3, 0) 26 32 30 25 27 24 34 28
(4, 0) 29 38 24 25 24 24 31 30
(0, 1) 27 25 25 27 24 24 34 29
(1, 1) 27 29 23 25 23 24 34 29
(2, 1) 27 28 23 25 24 27 36 37
(3, 1) 26 30 25 26 28 29 34 31
(4, 1) 30 29 24 27 28 22 34 35
(0, 2) 27 27 23 24 23 23 35 34
(1, 2) 30 24 22 24 21 21 29 30
(2, 2) 27 28 28 25 21 21 30 28
(3, 2) 32 24 23 24 23 23 30 31
(4, 2) 28 28 21 23 21 23 29 29
(0, 3) 28 26 26 29 26 26 33 28
(1, 3) 25 25 22 26 27 28 32 28
(2, 3) 32 26 23 25 25 25 35 33
(3, 3) 31 36 22 28 24 25 35 30
(4, 3) 30 29 25 27 29 29 45 34
(0, 4) 28 36 23 27 24 26 36 36
(1, 4) 27 32 25 25 27 29 42 30
(2, 4) 28 32 26 31 31 25 35 30
(3, 4) 27 29 25 30 28 22 35 28
(4, 4) 26 33 26 30 56 32 35 40

3.2.3 Pro�ling templates

Pre-processing When targeting a speci�c byte, we shall select only the samples in the in-
teresting clock cycle set of this byte to pro�le its template. For example, when pro�ling the
template for α′0[2, 1, 1]8, the pro�ling traces reassembled this way cover 87 clock cycles with
m = 87× 125 = 10875 samples.

Since the 125 samples per clock cycle still lead to too long execution times for pro�ling tem-
plates for all the 600 target intermediate bytes (see Section 2.6.3 for the discussion of run time),
I reduced the sampling rate further by a factor of 5, averaging �ve consecutive samples into a
new sample, for a more feasible number of m for each target byte.

Templates with LDA compression A�er the detection and pre-processing steps, now
there were shorter traces for pro�ling templates for each of 600 bytes. I then apply Choudary
et al.’s method [49] described in Section 2.1. In the LDA compression, I selected the eigenvec-
tors by the criterion introduced in Section 2.1.3, leading to using only them′ = 8 eigenvectors
with the largest eigenvalues to form a projection matrix A for each byte, whereas the other
eigenvalues are negligible. Besides the projection matrices, the templates, therefore, contain
8× 8 pooled covariance matrices and 8-point expected traces.

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 57

0 1 2 3 4 5 6 7

8k

0

5

10

15

20

(i
+

4
×
j)

α′0
0 1 2 3 4 5 6 7

8k

β0
0 1 2 3 4 5 6 7

8k

α1

Figure 3.3: Success rates on my target states α′0, β0, and α1, where the higher the value, the
bluer is a block.

3.2.4 Evaluating the quality of templates

Having pro�led the templates, I used the 1000 validation traces to estimate template quality,
resulting in 600 rank tables for each validation trace. Table B.4 shows the resulting success
rates for states α′0 and β0, and Table B.5 shows the guessing entropy for each byte of states α′0
and β0. I also plot these results in Figure 3.3 and Figure 3.4. �ese results show that the quality
of templates for α′0 (and the omi�ed α1) were very good, as most of the corresponding success
rates are higher than 0.8, while the values of guessing entropy are below 3.0. Meanwhile, the
templates for β0 were not as e�ective as those for the other two target intermediate states but
still acceptable.

58 3.3. SEARCHING THE CORRECT INTERMEDIATE STATES

0 1 2 3 4 5 6 7

8k

0

5

10

15

20

(i
+

4
×
j)

α′0
0 1 2 3 4 5 6 7

8k

β0
0 1 2 3 4 5 6 7

8k

α1

Figure 3.4: Logarithmic guessing entropy values on my target states α′0, β0, and α1, where the
lower the value, the blacker is a block.

3.3 Searching the correct intermediate states

Now I provide a detailed description of my three-layer enumeration.

3.3.1 Layer 1: generating tables for byte rows

Between the intermediate states α′0 and β0 is the step χ, which can be calculated within a
byte row without any in�uence from other byte rows. �is allows us to split the combination
of these intermediate states into 40 mutually independent parts. �erefore we can combine
per-byte rank tables using a practical enumeration tree that covers only �ve bytes at a time. I
use the �rst byte row (j = 0, 8k = 0) here to demonstrate the enumeration procedure in this
layer.

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 59

Layer 1

Layer 2

3. Combine tables in the same byte row of α′0 to 40 byte-row
tables with the �rst T combinations

7. Update the joint likelihoods using tables forα1 , sort the tables

6. Combine tables in the same byte slice to 8 byte-slice tables with
the �rst T combinations

Layer 3

Failed

10. �adruple T

Tables for the 8 byte slices

Tables for the 40 byte rows

Recovered states
Passed

4. Update the joint likelihoods using tables forβ0 , sort the tables 11. Restart from Layer 1
2. Tables forα′0 , β0

1. Initialize T = 2500

5. Tables forα1

9. Concatenate the top-ranked combination in all byte-slice tables,
then check consistency

8. Either SHA-3 output orSc of the
input of the next permutation

Figure 3.5: My three-layer procedure to search the full α′0 state from 600 ranking tables.

First, we initialize T = 2500, which is the number of combinations that we want to collect in
the resulting byte-row ranking table. For state α′0, I use the �ve variablesA′0, A′1, A′2, A′3, A′4 to
represent the values of the �rst byte row, i.e., α′0[0, 0, 0]8, α′0[1, 0, 0]8, α′0[2, 0, 0]8, α′0[3, 0, 0]8,
α′0[4, 0, 0]8. As likelihood functions I use the multivariate Gaussian probability-density values
provided by the template a�ack: L(α′0[0, 0, 0]8 = A′0) = fα′0[0,0,0]8(xproj|x̂A′0,proj,Sproj), etc.
With the ranking tables of these �ve bytes, we can use the secret enumeration procedure to
search the �rst T combinations of a byte row, sorting with the descending order of their joint
likelihood. Assuming independence, the �rst estimate of their joint likelihood is

Lrow(α′0[·, 0, 0]8 = (A′0, A
′
1, A

′
2, A

′
3, A

′
4)) :=

4∏

i=0

L(α′0[i, 0, 0]8 = A′i).

Now the top-T combinations and their corresponding joint likelihoods form a truncated rank-
ing table for this byte row.

For these T combinations, we can calculate the values of state β0 in this byte row as

(B0, B1, B2, B3, B4) = χ(A′0, A
′
1, A

′
2, A

′
3, A

′
4).

Since we also have ranked likelihood tables for all bytes in state β0, we now can similarly
calculate the joint likelihood for any combination (B0, B1, B2, B3, B4), and update the above
top-T joint likelihoods by multiplying with these values, that is

Lnew
row (α′0[·, 0, 0]8 = (A′0, A

′
1, A

′
2, A

′
3, A

′
4)) :=

4∏

i=0

L(α′0[i, 0, 0]8 = A′i)L(β0[i, 0, 0]8 = Bi).

�en, we can sort these T combinations again in descending order of their updated joint like-
lihood, and obtain the new ranking table of this byte row.

60 3.3. SEARCHING THE CORRECT INTERMEDIATE STATES

3.3.2 Layer 2: generating tables for byte slices

Like Layer 1, a similar procedure can apply here to combine �ve byte-row ranking tables into
a byte-slice ranking table. I use here the �rst byte slice (8k = 0) to demonstrate this. Let R′j
represent a byte row value of state α′0[·, j, 0]8 in this byte slice, such that it contains �ve bytes,
where R′j = (A′0,j, A

′
1,j, A

′
2,j, A

′
3,j, A

′
4,j).

We can use the ranking tables of the �ve byte rows again for a secret enumeration to search the
�rst T , which is the same as in Layer 1, combinations in descending order of joint likelihood
of a byte slice. �e initial joint likelihood estimate for a byte slice is

Lslice(α
′
0[·, ·, 0]8 = (R′0, R

′
1, R

′
2, R

′
3, R

′
4)) :=

4∏

j=0

Lnew
row (α′0[·, j, 0]8 = R′j) =

4∏

j=0

4∏

i=0

L(α′0[i, j, 0]8 = A′i,j)L(β0[i, j, 0]8 = Bi,j).

Similar to Layer 1, we can now update these joint likelihoods by taking the ranking tables of
α1 into account. Here variable Ai,j represents the candidates of intermediate byte α1[i, j, 0],
and with Rj = (A0,j, A1,j, A2,j, A3,j, A4,j). Now we have

(R0, R1, R2, R3, R4) = θ∗(ι∗0,8k(χ(R′0), χ(R′1), χ(R′2), χ(R′3), χ(R′4)), τ).

where ι∗0,8k represents ι in the round Ω = 0 with input and output truncated to byte slice 8k,
and θ∗(. . . , τ) is θ applied to just one byte slice, where τ ∈ {0, 1}5 is the �ve bits of column-
parity information taken by θ from the previous byte slice. Since step χ operates within a
byte row, it will not use any data outside the byte slice. Likewise, step ι XORs with a round
constant, so it too is independent of other byte slices. However, when executing step θ on only
a byte slice, it lacks information about �ve bits, because bit rotations are involved in step θ
and hence these �ve bits come from another byte slice. Without that information τ , step θ∗ on
only one byte slice will have 32 possible outcomes. It is reasonable to choose the combination
τ that maximizes the joint likelihood of byte slice α1[·, ·, 0]8, which is

max
τ∈{0,1}5

4∏

j=0

4∏

i=0

L(α1[i, j, 0]8 = Ai,j).

�en, we can update the joint likelihood of this byte slice by multiplying with the joint likeli-
hood of α1, that is

Lnew
slice(α

′
0[·, ·, 0]8 = (R′0, R

′
1, R

′
2, R

′
3, R

′
4)) :=

4∏

j=0

4∏

i=0

L(α′0[i, j, 0]8 = A′i,j)L(β0[i, j, 0]8 = Bi,j)L(α1[i, j, 0]8 = Ai,j).

We then again sort these T combinations in descending order of the updated joint likelihoods
to form a new rank table for this byte slice.

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 61

3.3.3 Layer 3: consistency checking

In Layer 3, we can again use a secret enumeration to combine the top-T entries in the eight
byte-slice rank tables from Layer 2 into a single top-T ranking table for the full 200-byte state
of α′0. For each enumerated result, we then calculate the corresponding input and output of
the Keccak-f [1600] permutation to check the consistency of these with any available SHA3-d
data, as described in Section 3.1 and Figure 3.1. If all these T combinations fail this consistency
check, we can choose a larger T and restart the search from Layer 1 every time it fails until it
hits the correct combination or terminates with other pre-set conditions.

In practice, however, I found that this was not necessary for the enumeration in Layer 3 in my
experiments. Here the high quality of information from templates can ensure if a byte-slice
ranking table contained the correct combination, it should be already ranked top. Otherwise,
most likely the correct candidate had been already missing in the tables produced by layers
1 or 2. �erefore, without an enumeration, Layer 3 in my experiments only concatenated the
top-ranked combinations from all eight byte-slice tables together as the reconstruction results
of intermediate state α′0. For the failed cases, I quadrupled T each time to restart the search
and gave up a�er still not �nding a correct solution with T = 640 000. �is limit can of course
be raised given su�cient computing resources. Figure 3.5 shows the complete procedure of
my three-layer enumeration.

3.3.4 Results

SHA3-512 with only one Keccak-f [1600] invocation In my �rst a�ack trace set, each
of the 1000 recorded SHA3-512 executions invokes Keccak-f [1600] only once to digest the
input. In this case, it only needs to apply the template a�ack to obtain the 600 rank tables of
intermediate bytes in that one Keccak-f [1600] invocation, apply the three-layer search to �nd
the correct combination, and calculate the input and output of the Keccak-f [1600] invocation.
Its correctness can be veri�ed by checking whether the �rst 512 bits of the output match the
SHA3-521 output and whether the last 1024 bits of the input are all zero. If both checks pass,
the input of SHA3-512 can be reconstructed by removing the padding from the �rst 576 bits
of the recovered Keccak-f [1600] input.

In these 1000 a�ack a�empts, I successfully reconstructed the SHA3-512 input 999 times, while
I failed to recover one remaining input even with T = 640 000. �e number of additional traces
for which I recovered the correct input was for each T value.

T 2500 10 000 40 000 160 000 640 000 failed
new traces recovered 873 77 33 11 5 1

cumulative percentage 87.3% 95.0% 98.3% 99.4% 99.9% 100%
average CPU time [s] 9.38 41.14 180.59 902.95 4795.93 N/A

CPU time std. [s] 1.04 4.87 24.75 25.85 93.71 N/A

62 3.4. BELIEF PROPAGATION ON KECCAK-F [1600]

SHA3-512 with multiple Keccak-f [1600] invocations When the input is over 72 bytes
long, it takes multiple Keccak-f [1600] invocations to absorb. �ere we need to use the tem-
plates to obtain the 600 rank tables of the three intermediates states in every invocation, and
then start the three-layer search for each, from the last invocation to the �rst. We can verify
the correctness and calculate the SHA3-512 input as described in Section 3.1.

�e experiment on my second a�ack trace set demonstrated the case with four Keccak-f [1600]

invocations. In the 1000 a�ack a�empts, I successfully reconstructed the SHA3-512 input 999
times, while in the only unsuccessful one, the search failed for one invocation of the permu-
tation. While we would normally expect the success rate of a�acking SHA3-512 with shorter
input to be higher than with longer inputs1, in these experiments the success rates were both
too close to 1 to be distinguishable.

As I mentioned in Section 2.6.2, each trace covers only the �rst few rounds in one invocation
of Keccak-f [1600]. �erefore, there were 4000 traces in this a�ack set. �e following table
shows the total number of successfully recovered invocations of Keccak-f [1600] for each T
value.

T 2500 10 000 40 000 160 000 640 000 failed
new traces recovered 3724 202 57 12 4 1

cumulative percentage 93.100% 98.150% 99.575% 99.875% 99.975% 100%
average CPU time [s] 8.42 38.67 181.55 951.05 5269.00 N/A

CPU time std. [s] 0.97 3.89 9.49 52.66 72.73 N/A

It appears that the success rate for the a�ack on this set was slightly higher than that with
one invocation of Keccak-f [1600]. Recall that my pro�ling traces were also recorded from
inputs with four invocations of Keccak-f [1600], and therefore the a�ack on the input with
four invocations would bene�t from this similarity.

3.4 Belief propagation on Keccak-f [1600]

While I developed the a�ack above, a di�erent approach for single-trace recovery on Keccak
also appeared: Kannwischer et al. [89] used SASCA to recover a 128 or 256-bit secret S used in
Keccak-f [1600](S‖M), given known messageM , based on simulated noisy Hamming-weight
information of intermediate values in the Keccak-f [1600] permutation. �ey suggested their
SASCA approach may reach a higher success rate with a leakage model bearing more infor-
mation than just Hamming weights.

1While expecting that the success probability for each Keccak-f [1600] invocation shall be the same, the
success rate of reconstructing the entire SHA3-512 input will drop with an increasing number of invocations, as
the failure to recover the state of any Keccak-f [1600] invocation means that two SHA3-512 input blocks cannot
be recovered. If the success rate of reconstructing the state of one Keccak-f [1600] permutation is p, then the
success rate of reconstructing SHA3-512 inputs of L bytes length will be pdL+1

72 e.

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 63

Although I had already achieved a high success rate to reconstruct SHA3-512 inputs with my
strategy, which combines full-state template recovery with a three-layer enumeration, I was
also curious about whether the success rate can be raised even further (or the computation
can become more e�cient) with a new combination of my templates and belief propagation.
�erefore, I describe below how I modi�ed Kannwischer et al.’s model such that it can apply
the full-state information recovered by my templates for SHA3-512.

3.4.1 Bitwise model by Kannwischer et al.

Kannwischer et al. [89] demonstrate how they use loopy-BP given noisy Hamming-weight
information of intermediate values. �eir simulated a�acks targeted the secret �rst 128 or 256
bits of the input of a Keccak-f [1600] permutation, which is a common model of SHA3-d(K‖M),
with the remaining input bits being known. �ey �rst introduce a bitwise (i.e., ξ ∈ {0, 1})
loopy-BP network. In this case, many constraint factors and variables in the bit permutation
step ρ and π are no longer needed: �rstly, we can simply connect the output of step θ to the
input of step χ following the permutation rules of the two steps instead, and secondly, step
ι XORs a round constant in the �rst lane, so we only need to swap the output probabilities
corresponding to 0 and 1 of step χ there. �erefore, we only need to include one of the two
states αΩ and α′Ω in the factor graph, and one of βΩ and β′Ω.

As for the most complicated step, θ, the corresponding equation is

αΩ[i, j, k] =
4⊕

j=0

β′Ω−1[i− 1, j, k]⊕
4⊕

j=0

β′Ω−1[i+ 1, j, k − 1]⊕ β′Ω−1[i, j, k].

If we directly designed a constraint factor following this equation, it would connect to 12
variables. Instead, Kannwischer et al. [89, Fig. 1] separated it into three equations

CΩ[i, k] =
4⊕

j=0

β′Ω−1[i, j, k], (θ′)

DΩ[i, k] = CΩ[i− 1, k]⊕CΩ[i+ 1, k − 1], (θ′′)
αΩ[i, j, k] = DΩ[i, k]⊕ β′Ω−1[i, j, k], (θ′′′)

where C and D are internal planes within step θ as described in Algorithm 1, Section 2.4.1.
�ey then use these three substeps of θ to build the constraint factors in their graph.2

For step χ, they suggest combining the �ve-bit input and output in a row (where j and k

are �xed) into a single constraint factor node, instead of connecting these ten bits with �ve
separate nodes connecting to three input bits and one output bit. �ey claim this will increase
the e�ciency of the backward information transmission from β to α′ nodes. Fig. 3.6 shows
the resulting factor graph.

2β′[i, j, k], C[i, k], D[i, k], α[i, j, k] here are equivalent to I, P, T, O, respectively in [89, Sec. 4.3].

64 3.4. BELIEF PROPAGATION ON KECCAK-F [1600]

input C0 D0 α′
0 β0 C1 D1 α′

1 β1

θ′0 θ′′0 θ′1 θ′′1

θ′′′0 θ′′′1χ0 χ1

Figure 3.6: �e loopy-BP graph structure for the Keccak-f [1600] permutation, showing the
node relations for the �rst two rounds. Variable nodes are in circles, and constraint factors are
in squares. Observation factors are not shown here. Each state variable shown here actually
represents 1600 or 320 single-bit variable nodes, respectively.

�ey terminate the loopy-BP procedure if either the total entropy of all the variables drops to
0, the probabilities in the network no longer change, or the procedure has �nished 50 iterations
of message propagation.

�ey simulated a�acks on devices with 8, 16, or 32-bit words, of which their leakage model
provides noisy Hamming weights. �ey state that the bitwise factor graph is not suitable
for processing Hamming weights because marginalization will discard the information in the
joint distribution of the bits in the target word, leading to bad a�ack performance. �erefore,
they developed a “clustering” technique to deal with Hamming-weight information, which
combines e.g. eight bits into one variable (i.e., ξ ∈ Z256).

3.4.2 Apply the bitwise model with full-state information

Modi�cations of the methodology �e �rst of my modi�cations is to drop the cluster-
ing technique and operate instead with single-bit variables (i.e., ξ ∈ Z2). A�er my templates
generate the per-fragment probability tables for the selected intermediate states, I marginalize
these tables to eight binary tables of their member bits and then use a bitwise loopy-BP directly
as the belief propagation procedure. Kannwischer et al. [89, Sec. 4.1] stated that the probability
of a bit calculated by marginalizing the Hamming weight will lose much information available
in the joint distribution of the unit’s member bits, but this is not necessarily the case in my ex-
periments: these templates are based on the stochastic modelF9 [50] (see Section 2.1.2), where
bits in the target bytes are viewed as independent binary variables. With the assumption of
mutual independence, this model has already, to some extent, given up exploiting information
from a joint distribution across bits.

Besides that main di�erence, I made some other changes compared to Kannwischer et al.’s
design. Firstly, instead of their layer-a�er-layer message updating, in a single iteration, my
belief-propagation implementation simply updates all rm−→n messages in the factor graphs
before updating all qn−→m messages, which is more consistent with the method described by
MacKay [101]. �eir layer is one full 1600-bit intermediate state, such as α′Ω or βΩ, which

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 65

?
=

⊕ ⊕ ⊕

?
=

?
=0c

?
=

9©

f f f f

0c

2©

3©

Keccak[c] input with
padding

absorb stage squeeze stage

1©

4©

6©

5©

7©

8©

Sr SrSr Sr Sr Sr Sr Sr

ScSc Sc Sc Sc Sc Sc Sc

Figure 3.7: �e procedure to reconstruct input (and output) of sponge function Keccak [c] by
template a�ack: 1© generate the probability tables for the target intermediate states in the �rst
Keccak-f [1600] permutation and marginalize them to binary tables; 2© add the observation
factor for the Sc of the input, which is all 0; 3© run the loopy-BP network, terminate and
calculate the input and output of this invocation from state α′0 4©, and then 5© check the
consistency of the input Sc; 6© add the observation-factor for the Sc of the input, where the
bits match the Sc of the output from the previous invocation; 7© repeat template recovery,
table marginalization, and loopy-BP on la�er invocations in the absorb stage; 8© repeat step
5©; 9© XOR the Sr of consecutive invocations and concatenate these XOR results to �nd the

padded Keccak [c] input.

bears full information that can calculate the Keccak-f [1600] input and output. �eir layer-
a�er-layer updating starts updating the messages from the front layers through the la�er ones
until it reaches the end of the factor graph, and then proceeds backward, the other way round.
Secondly, I terminate the loopy-BP algorithm a�er either reaching a steady state or a maximum
iteration count of 200. I found that checking the total entropy value helped li�le and dropped
this termination check. Finally, they use the damping technique, which was introduced by
Pre�i [124] in 2005, to prevent possible oscillations when propagating information in their
factor graph. A�er not �nding consistent improvements when trying di�erent damping rates
(see Section 4.4.6), I present here only the results without any damping.

Recall that I did not acquire any side-channel observations for the input. Instead, its obser-
vation factors set the Sc of the Keccak-f [1600] input according to the sponge construct with
probability one to all-zero for the �rst invocation, and, also with probability one, to the veri�ed
output of the previous invocation in subsequent invocations. Without any prior information,
variables of the input Sr connect to observation factors initialized with uniform distribution,

66 3.4. BELIEF PROPAGATION ON KECCAK-F [1600]

which is mathematically equivalent to connecting to no observation factors because the uni-
form distribution does not provide any information.

Extend to multiple invocations Since Kannwischer et al.’s work only simulated process-
ing short secrets that can be absorbed within one invocation of Keccak-f [1600] permutation,
they did not report any a�empts targeting more than one invocation. �erefore, a�er replac-
ing the three-layer enumeration with the belief-propagation procedure, I slightly modify my
procedure to recover the full padded input of a Keccak sponge function as described in Fig. 3.7.

A�er the loopy-BP algorithm reaches a steady state, we can select in α′0 for each bit variable
the candidate with the higher probability to decide on our prediction for that intermediate bit.
However, the correctness of that state is not yet ensured. �erefore, we can feed the predicted
α′0 bits into the inverse functions of π, ρ, and θ, to calculate the corresponding input, checking
if its Sc matches the expected value (e.g., all zero at the �rst invocation). If it passes this check,
we accept this α′0 prediction and calculate from that the predicted output of the invocation.
Otherwise, we shall consider the a�empt to have failed and terminate. �e reason for using
the α′0 prediction instead of using the loopy-BP results of the input Sr variable nodes directly
is that the la�er does not bene�t from this consistency check against the Sc.

For a sponge function with more than one invocation, we can repeat what we have done for
the �rst invocation, but now the Sc of the input is veri�ed instead against the Sc of the output
from the previous invocation.

A�er recovering the input and output of every invocation, the remaining steps for calculating
the complete padded sponge-function input are straightforward, involving XORing the Sr
from inputs and outputs, as described in [90] and Fig. 3.7.

3.4.3 Experiments

I use the same testing data sets as in Section 3.3.4, consisting of 1000 SHA3-512 inputs with
one invocation of Keccak-f [1600] and 1000 of those with four invocations, applying three
scenarios for each set:

1© bitwise probability tables from the templates for states α′0, β0, α′1,

2© bitwise probability tables from known input capacity parts in addition to 1©,

3© bitwise probability tables from the templates for states β1 in addition to 2©.

�e bitwise probability tables for 1© can be directly calculated by reusing the templates for
states α′0, β0, α1. For the �rst two states, I just marginalized the byte tables from their tem-
plates. For bitwise tables for α′1, I marginalized the byte tables calculated from templates of
α1 and then change their order by the transposition steps of ρ and π. We can build the bitwise

CHAPTER 3. LDA-BASED TA ON A KECCAK 8-BIT IMPLEMENTATION 67

Table 3.2: Results of recovering the SHA3-512 inputs with one and four invocations.

Experiments #Invocations #Recover
#Iteration*

Median Mean σ Max

1© 1 977 23 24.964 9.804 156
4 900 22 23.327 6.071 176

2© 1 1000 32 31.330 3.246 40
4 1000 32 32.374 2.227 45

3© 1 1000 31 30.952 3.239 41
4 1000 32 32.032 2.317 45

* Only invocations that reached a steady state are taken into account.

tables for known input capacity parts by simply assigning the probability of the correct can-
didate to 1 and the other to 0. �e only new templates here are those for each byte in state β1

so that we can marginalize their predictions into bitwise tables later used in the scenario 3©.

Table 3.2 shows the number of successfully recovered inputs and related statistics on the num-
ber of iterations required for each of these experiments. Given the templates we already have,
we reached very high success rates, which are over 90% (1©), and even 100% once taking the
known capacity parts into account (2©). Although the newly pro�led templates for β1 did not
signi�cantly a�ect the results (3©), these experiments demonstrated the potential of the belief
propagation considering more intermediate states.

Meanwhile, I also recorded the execution CPU time (single-threaded), where the number of
each experiment for recovering SHA3-512 inputs with one invocation is: 1© 1.282 ± 0.340,
2© 1.392 ± 0.101, and 3© 1.499 ± 0.113 seconds, respectively. �ese numbers are estimated

by the average of the 1000 a�ack a�empts and their con�dence intervals with two standard
deviations. We can see that the belief propagation method is more e�cient than my three-layer
enumeration (see Section 3.3.4 for the run time).

3.5 Discussion

Recall that the previous CPA a�ack by Luo et al. focus on �xed size of the 320-bit keys used in
MAC-Keccak, and their HW-based CPA approach needed about 10 000 a�ack traces to achieve
a success rate over 90% [66]. In contrast, my experiments demonstrated that it is practical to
reconstruct the arbitrary-length inputs of an unprotected Keccak so�ware implementation
on an ATxmega256A3U 8-bit microcontroller using a single-trace full-state template a�ack,
even where the templates fail to rank some correct bytes highest. We can correct such er-
rors by either my three-layer enumeration or the belief propagation procedure modi�ed from
Kannwischer et al.’s design [89], which was originally designed to use only HW information.

68 3.5. DISCUSSION

When it comes to my three-layer enumeration, search time and success rate may be optimized
further by adjusting the rank-table length T for each byte row or slice separately, depending
on the relative likelihoods involved. So far we used the same T for all 40 byte rows in Layer 1
and all eight byte slices. From the numbers in Table B.4, it is evident that the success rates are
much be�er for some byte locations, and for these, smaller initial values of T may lead to a
faster hit. �is method could be extended by also pro�ling templates of intermediate states in
later rounds, such as a combination of α′1, β1, α2. When a�ackers fail to recover the state in
the �rst round, they could then try to search other rounds and do a similar search as they have
done in the �rst round. Although ι is di�erent in each round, there may be scope for reusing at
least some templates across rounds. In total, there would be 23 combinations of intermediate
states that a�ackers could target using this search method.

I obtained much mathematical knowledge about Keccak when developing my three-layer
enumeration. However, considering that we can bene�t from using belief propagation with
both the e�ciency and �exibility to take information from template recovery on intermediate
states in more rounds into account, as veri�ed in my experiments, I decided to apply this
technique in the later a�acks instead of my three-layer enumeration.

Chapter 4

Fragment template attack on a Keccak

32-bit implementation

Having been encouraged by the results of both the work of Kannwischer et al. [89] and my
approach introduced in Section 3.3, I then decided to target a more ambitious goal, namely to
reconstruct the complete arbitrary-length input of SHA-3 or SHAKE functions implemented
on the 32-bit device, the CW-Lite board [109], from a single trace. To achieve this, it is crucial to
�gure out how to practically build templates for a 32-bit bus that can obtain more information
than just the Hamming weight of a 32-bit state.

�erefore, based on Choudary and Kuhn’s LDA-based template-recovery method, I introduce
my fragment template a�ack, which cuts a 32-bit word into fragments and independently builds
templates for such smaller pieces of the original 32-bit word.

4.1 Fragment template attack

If we were to directly apply an LDA-based stochastic-model template [49] on each intermediate
32-bit word, we �rst would use multiple linear regression, treating the 32 member bits as
independent variables, to calculate the expected value for each candidate. We could then build
templates for these candidates, to which the a�ack traces can be compared. However, with 232

candidates, this approach is neither e�cient nor practical even on a single target 32-bit word,
not to mention that we may face hundreds or even thousands of target 32-bit intermediate
values for a�acks on cryptographic algorithms such as Keccak.

�erefore, I instead separate an intermediate word into fragments, here four bytes, and in-
dependently build templates for each. I expect that by limiting the candidate set to just the
values of one fragment f at a time, treating the values of the other fragments as noise, based
on the resulting per-fragment inter-class sca�er Bf and total (pooled) intra-class sca�er Wf ,
the LDA can project the traces onto di�erent subspaces, where each projection maximizes the
signal-to-noise ratio for just one byte at a time.

69

70 4.1. FRAGMENT TEMPLATE ATTACK

More speci�cally, applying the LDA procedure directly on an intermediate 32-bit word, of
value v, the matrices B and W would be

B =
232−1∑

v=0

nv(x̄v − x̄)(x̄v − x̄)T

/
232−1∑

v=0

nv,

W =
232−1∑

v=0

nv∑

t=1

(xv,t − x̄v)(xv,t − x̄v)
T

/
232−1∑

v=0

nv,

where x̄v is the expected value of traces corresponding to v with

x̄v =
31∑

`=0

(v[`] · c`) + c32, (4.1)

where c` is the coe�cient vector of bit v[`], and c32 is the constant vector.

Instead, my LDA procedure takes the same training trace set but pro�les the template with only
eight bits at a time. Here we can start from spli�ing each word value v ∈ Z232 into four byte
fragments v 7→ (F0(v), . . . , F3(v)) withFf (v) =

∑7
`=0 v[8f+`]·2`. Let Vf,b = {v |Ff (v) = b}

be the set of all 32-bit values where fragment number f has value b. For each f , we can apply
the F9 stochastic model to obtain the 256 expected trace vectors

x̄f,b =
7∑

`=0

b[`] · cf,` + cf,8, (4.2)

from the traces xv,t with v ∈ Vf,b, respectively. We then calculate the inter-class sca�er Bf

and the total intra-class sca�er Wf :

Bf =
255∑

b=0

∑

v∈Vf,b

nv(x̄f,b − x̄)(x̄f,b − x̄)T

/
255∑

b=0

∑

v∈Vf,b

nv,

Wf =
255∑

b=0

∑

v∈Vf,b

nv∑

t=1

(xv,t − x̄f,b)(xv,t − x̄f,b)
T

/
255∑

b=0

∑

v∈Vf,b

nv.

Now the inter-class sca�er Bf only contains the signals from fragment number f , and the
signals from the other three bytes no longer count in the inter-class sca�er, but instead con-
tribute to the total intra-class sca�er Wf . In other words, they are considered to be switching
noise in this model.

A�er projecting the pro�ling and a�ack traces to the new m′-dimensional subspace (m′ is
determined by the criterion introduced in Section 2.1.3) via these two matrices, we can cal-
culate the pooled covariance matrix and combine it with the projected expected traces as the
template for this target byte in the intermediate word.

Note that in practice, with far less than 232 pro�ling traces acquired, an e�cient implemen-
tation will exploit the fact that many nv will be zero, by iterating over recorded traces rather
than all v. Alternative schemes for partitioning a 32-bit word into fragments might be useful
as well, such as 11+11+10 bits, or grouping bits into fragments by distance of coe�cient c`.

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 71

0 2 4 6 8 10 12 14

4k

0

5

10

15

20

(i
+

4
×
j)

Success rate
0 2 4 6 8 10 12 14

4k

Guessing entropy

Figure 4.1: Success rates and logarithmic guessing entropy evaluated by the nibble templates
on my target state α′0. See Table B.6 and Table B.7 in Appendix B.3

4.2 Nibble templates of Keccak on the 8-bit device

Before building fragment templates for 32-bit words, I �rst started to build fragment templates
for my old SHA-3 data set recorded from the 8-bit device as a feasibility test. Given the same
pro�ling traces and evaluation traces, I built the 400 templates for nibbles in state α′0, β0, α1

and β1, where each byte in these states are separated into two nibbles. Figure 4.1 presents the
success rates (SR) and the guessing entropy (GE) of recovering nibbles in α′0.

Because the sizes of the targets are di�erent, it is a li�le bit di�cult to directly compare these
results with the data in Table B.4 and Table B.5 in Chapter 3. �erefore, I applied the enu-
meration algorithm to calculate the ranking of the correct candidate of an intermediate byte
given the ranking tables predicted by its fragment templates (the two nibble templates) and
then calculated the success rate and the guessing entropy so that they can be compared with
the results directly from the byte templates. Meanwhile, I also marginalized the probability
table from each byte template into two probability tables for its low and high nibble, respec-
tively, to calculate the success rate and guessing entropy, so they can be compared with the
results directly calculated from the nibble (fragment) templates. I included only the results of

72 4.2. NIBBLE TEMPLATES OF KECCAK ON THE 8-BIT DEVICE

Table 4.1: Comparison of the templates for full bytes and the fragment templates for the two
nibbles in the �rst lane (i = 0, j = 0) of state α′0.

8k 0 1 2 3 4 5 6 7

byte templates
SR 0.924 0.924 0.598 0.749 0.485 0.542 0.946 0.931
GE 1.095 1.109 2.336 1.616 3.215 2.592 1.074 1.096

enumerated with SR 0.798 0.673 0.371 0.402 0.283 0.358 0.824 0.712
two nib. templates GE 1.600 2.435 6.851 5.751 10.588 7.837 1.647 1.961

4k = 2× 8k 0 2 4 6 8 10 12 14
low nibble SR 0.925 0.925 0.654 0.787 0.578 0.623 0.948 0.936

(marginalized) GE 1.091 1.099 1.773 1.418 1.964 1.746 1.065 1.083
low nibble SR 0.847 0.743 0.499 0.553 0.489 0.524 0.890 0.819

(nib. templates) GE 1.207 1.418 2.296 2.064 2.392 2.148 1.143 1.258
4k = 2× 8k + 1 1 3 5 7 9 11 13 15
high nibble SR 0.937 0.943 0.674 0.803 0.580 0.625 0.946 0.939

(marginalized) GE 1.065 1.067 1.589 1.322 2.034 1.777 1.073 1.071
high nibble SR 0.882 0.820 0.626 0.658 0.505 0.568 0.881 0.833

(nib. templates) GE 1.129 1.238 1.687 1.587 2.237 1.964 1.165 1.237

Table 4.2: Results of recovering the SHA3-512 inputs with nibble templates.

Experiments #Invocations #Recover
#Iteration*

Median Mean σ Max

1© 1 914 28 32.313 15.713 188
4 628 27 30.270 11.364 197

2© 1 1000 34 33.622 2.755 44
4 1000 34 34.248 2.337 45

3© 1 1000 34 33.628 2.823 46
4 1000 34 34.275 2.377 47

* Only invocations that reached a steady state are taken into account.

the �rst lane, where i = 0 and j = 0, in Table 4.1. �e results indicate that the fragment tem-
plate technique works on 8-bit words, as these templates provided us with satisfactory success
rates and guessing entropy, but the quality of the fragment templates looks lower compared
to those built from full intermediate bytes.

Table 4.2 shows the results from when I repeated the experiments of the bitwise belief propa-
gation, given the bitwise probability tables being marginalized from the table predicted by the
nibble templates. We can see that the results in 1© (only including tables of state α′0, β0, and

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 73

α1) are signi�cantly worse than the previous results with byte templates. However, once we
take more information into account, such as in cases 2© and 3©, the di�erence becomes not so
signi�cant. �ey can also achieve a 100% success rate, however with more iterations.

4.3 Byte templates of a stream cipher on a 32-bit device

A�er having shown that it is possible to apply nibble fragments to build templates for traces
from the 8-bit device, I started a fragment template a�ack on a toy stream cipher running on
a 32-bit device.

4.3.1 Target setting and trace recording

�e following experiments target the processor STM32F303RCT7 on the CW-Lite 32-bit device
(See Section 2.6.1). I programmed a small 64-bit stream cipher, including a 64-bit key (K),
plaintext (P), and ciphertext (C), onto the CW-Lite 32-bit device. In this device, these values
are stored in two 32-bit registers. In other words, the �rst four bytes of the key, which are
referred to as K0‖K1‖K2‖K3, are in one register, while the last four bytes, K4‖K5‖K6‖K7,
are in another, and the same also applies to the plaintext and the ciphertext. I used the default
compiler se�ings of the ChipWhisperer 5.2.1 so�ware, such as optimization for space (-Os
with arm-none-eabi-gcc v9.2.1).

I recorded traces while the device executed the encryption of the stream cipher, which is sim-
ply the XOR step C = K ⊕P . At 2.5 GS/s, each 20,000-sample trace recorded covers 40 clock
cycles, and I categorized these traces into the sets introduced in Section 2.6.2. Since this exper-
iment mainly focused on template pro�ling rather than an a�ack on a speci�c cryptographic
algorithm, I did not record traces for the a�ack set.

4.3.2 8-bit fragment template pro�ling

Before any template-pro�ling experiments, I �rst used the 16 000 traces in the detection set
to calculate the R2 value of each fragment byte and each sample on the traces. Similar to my
previous experiments, the R2 values were evaluated with the F9 model. Figure 4.2 shows the
R2 values of four fragment bytes of the same words compared with the reference trace. We can
see that the R2 values for the fragments byte from the same 32-bit word are closely aligned.

Later, I recorded 64 000 traces for template pro�ling and 1 000 for template quality evaluation.
Based on the experience from previous experiments, I would not directly use the raw data
to build templates. Instead, I chose some di�erent rates to resample the raw traces. Given a
resampling rate, c, a new sample will be the summation of c consecutive samples from the
raw traces. For example, if c = 5, there will be 100 points per clock cycle (100 PPC) in the

74 4.3. BYTE TEMPLATES OF A STREAM CIPHER ON A 32-BIT DEVICE

−0.01

0.00

vo
lt

ag
e

(V
)

Reference Trace

0.000

0.025

0.050

0.075

R
2

K0

K1

K2

K3

0.00

0.02

0.04

0.06

R
2

K4

K5

K6

K7

0.00

0.02

0.04

R
2

P0

P1

P2

P3

0.00

0.05

0.10

R
2

P4

P5

P6

P7

0.00

0.05

0.10

R
2

C0

C1

C2

C3

4000 6000 8000 10000 12000 14000

Time Sample

0.00

0.05

0.10

0.15

R
2

C4

C5

C6

C7

Figure 4.2: A part of the reference trace and the corresponding R2 values for fragment bytes
in target 32-bit words.

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 75

Table 4.3: Guessing entropy of the byte fragment templates

byte
K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 107.527 110.627 111.298 107.411 100.971 107.309 103.904 101.977
100 5 109.083 106.758 108.875 105.562 99.646 106.684 101.739 98.863
50 10 102.622 104.868 107.024 102.670 93.823 102.981 96.551 95.286
25 20 99.100 101.782 100.966 99.087 92.568 101.215 95.064 90.556
20 25 98.334 100.116 100.763 97.525 93.122 101.341 95.346 90.584
10 50 97.524 98.101 99.913 97.565 92.384 96.824 94.172 87.687
5 100 96.887 97.269 100.273 98.453 91.294 96.196 93.493 86.860
4 125 97.804 97.721 101.847 99.069 91.092 96.425 93.478 87.233

byte
P0 P1 P2 P3 P4 P5 P6 P7PPC c

125 4 109.317 80.542 104.346 108.634 96.530 77.340 100.804 103.454
100 5 107.385 79.620 106.490 106.051 95.270 77.067 102.004 100.106
50 10 105.374 75.272 98.225 101.939 91.204 73.015 97.944 97.920
25 20 102.019 71.398 94.955 97.716 89.445 68.960 92.672 93.821
20 25 100.836 72.020 96.031 97.354 86.723 68.948 93.192 95.022
10 50 99.910 72.021 95.270 96.374 85.963 69.052 90.790 93.976
5 100 98.355 72.384 94.366 97.086 86.801 68.435 90.205 92.264
4 125 98.630 73.345 93.575 97.746 87.053 69.655 91.338 93.953

byte
C0 C1 C2 C3 C4 C5 C6 C7PPC c

125 4 76.350 101.259 98.211 98.298 75.595 104.709 99.194 84.177
100 5 74.545 101.250 99.668 98.386 74.174 100.704 97.952 84.241
50 10 70.832 96.781 95.174 93.587 69.867 96.933 93.711 78.399
25 20 70.215 94.208 93.197 91.269 66.674 93.385 91.350 77.473
20 25 69.024 94.274 93.849 90.064 66.651 92.493 89.845 77.175
10 50 69.444 92.169 92.241 89.680 66.088 91.138 88.402 75.850
5 100 70.184 90.064 90.344 90.112 67.143 91.176 87.663 76.317
4 125 71.387 89.390 88.696 92.167 67.168 91.087 86.970 75.998

resampled traces since there are 500 PPC in the raw traces. I selected several resampling rates
from 4 to 125 for my experiments, and then used these resampled traces to build templates.

Table 4.3 shows the guessing entropy achieved with these templates, where smaller values
indicate that the template quality is higher. Success rates are not provided here because so far
they are not very meaningful given these levels of guessing entropy. �e results suggest that
it achieves slightly lower guessing entropy values with templates built from traces resampled
to about 5 to 20 PPC.

76 4.3. BYTE TEMPLATES OF A STREAM CIPHER ON A 32-BIT DEVICE

Kn f⊕
prob.
table

prob.
tableCn

Pn

prob.
table

Figure 4.3: Factor graph for belief propagation of the stream cipher.

Table 4.4: Guessing entropy of the key bytes, a�er belief propagation with probability tables
of plaintext and ciphertext bytes.

byte
K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 108.476 110.594 111.435 108.026 98.612 106.144 103.326 101.794
100 5 109.987 105.842 109.925 106.800 97.992 106.360 101.230 97.388
50 10 103.592 103.226 107.333 103.208 91.991 102.496 95.913 92.838
25 20 98.517 99.923 101.317 100.025 89.730 100.371 94.395 89.498
20 25 98.184 97.130 100.909 98.443 90.346 99.992 95.615 89.356
10 50 97.086 95.665 100.443 97.527 88.632 95.970 94.150 86.813
5 100 96.680 94.181 100.269 98.775 88.245 95.122 93.451 85.683
4 125 97.007 95.939 102.161 99.401 88.094 95.567 93.232 87.435

Table 4.5: Guessing entropy of the key bytes, a�er belief propagation with probability tables
of plaintext bytes and known ciphertexts.

byte
K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 99.815 78.156 98.168 98.966 86.950 73.542 91.686 90.989
100 5 100.011 74.802 97.275 96.329 84.685 72.152 91.020 86.727
50 10 92.691 69.839 90.408 90.920 76.475 66.778 83.672 81.640
25 20 87.632 65.580 83.818 85.146 75.257 62.106 78.000 75.275
20 25 86.905 64.705 84.679 83.715 73.808 61.432 78.735 76.382
10 50 86.074 63.649 82.784 81.470 72.106 60.447 75.416 73.826
5 100 85.369 64.409 81.658 82.356 71.763 60.514 75.001 72.207
4 125 85.433 66.296 81.986 83.174 72.428 61.876 75.636 73.480

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 77

Apply belief propagation Since the target 32-bit words in this experiment are mathemat-
ically constrained by an XOR equation C = P ⊕ K , I applied belief propagation according
to a small factor graph covering these variables, which is shown in Figure 4.3. Because the
structure of the factor graph is very simple, it is still practical to update the probability table
of each key fragment directly. �erefore, I did not further marginalize these tables into bit
tables for the belief propagation procedure.

Table 4.4 shows the guessing entropy of each key fragment once they are updated with the
observed probability tables of plaintext fragments and ciphertext fragments through the be-
lief propagation. Although the results are not signi�cantly improved compared to the results
before belief propagation in this case, we can also consider another more common situation,
where the ciphertexts are known to the a�acker. In this situation, the table of a ciphertext
fragment contains only the probability of the correct candidate being equal to one and the
others equal to zero. Table 4.5 shows the guessing entropy of each key fragment once they are
updated with the observed probability tables of plaintext fragments and known ciphertexts
through the belief propagation, where the values of guessing entropy are lower than those
before belief propagation.

4.3.3 Templates for 16-bit fragments

I repeated the experiment by choosing the 16-bit fragment size to build templates. Since now
these fragments are equal to two previous byte fragments being concatenated together, I use
K0‖K1,K2‖K3, etc. to represent the new 16-bit fragments. Given the same 1000 testing traces,
Table B.8 (See Appendix B.3 for all the tables of this subsection.) shows the guessing entropy
values evaluated by the 16-bit templates. To be�er compare the results with the previous
values evaluated by the byte templates, I marginalized the 16-bit probability tables into byte
tables and then calculated their guessing entropy values, which are also provided in Table B.8.
However, compared to the results evaluated from the previous byte templates, all the guessing
entropy values are very similar, so we cannot tell whether these 16-bit templates are be�er.

For further investigating this issue, I also repeated applying belief propagation on these 16-
bit tables in three di�erent scenarios. �e �rst one is to use the marginalized byte tables of
keys, plaintexts, and ciphers, where Table B.9 shows the results of this experiment. Table B.10
shows the results of this experiment with the second scenario, which is to use the marginalized
byte tables of keys and plaintexts with known ciphertexts. When it comes to the situation to
use the 16-bit tables directly, I only chose the experiments using tables of keys and plaintexts
with known ciphertexts as the third experiment scenario, for it can be calculated within an
acceptable run time. �e known values of ciphertexts ensure that only their correct candidates
need to be considered in the procedure of belief propagation, while we need to consider all the
216 candidates once we use the observed probability tables of ciphertexts. Table B.11 provides
the guessing entropy values evaluated from the 16-bit tables a�er being updated by belief
propagation, as well as the values evaluated from 8-bit tables marginalized from the updated

78 4.4. ATTACKING A 32-BIT KECCAK IMPLEMENTATION

16-bit tables. It seems like the results were not signi�cantly a�ected in these experiments on
this small stream cipher, no ma�er whether we chose the 8-bit fragments or 16-bit fragments.

Considering these experiments are only based on small numbers of instructions (mostly XOR),
I remained optimistic about using this technique for SHA-3 since an intermediate state will be
involved in far more instructions.

4.4 Attacking a 32-bit Keccak implementation

At a high level, the a�ack consists of three main steps, similar to the previous procedure in
Figure 3.7. Firstly, I split each 32-bit target word into a few fragments, build a set of templates
targeting each fragment independently, and then use these pro�led fragment templates to
generate a probability table for every fragment in the words of the intermediate states that
they target in an invocation of the Keccak-f [1600] permutation. Secondly, I marginalize these
probability tables for fragments into binary probability tables for each bit, and then feed these,
as well as the known bits in the capacity part of the input, into the loopy-BP network for error
correction. Recall that the capacity input has all 0 bits in the �rst invocation in a Keccak
sponge function, and in later invocations, it is the same as the capacity output of the previous
invocation. �e third step is to calculate the complete input and output of this invocation.
Repeat this for each invocation. In the end, by XORing consecutive rate parts, a�ackers can
�nd the complete padded input of the Keccak sponge function.

4.4.1 Keccak implementation and the target board

My experiments still target the 32-bit processor on the CW-Lite board, while the Keccak im-
plementation is again based on the o�cial reference C code [102]. �e test application im-
plements the four SHA-3 functions (SHA3-224, SHA3-256, SHA3-384, SHA3-512) and two ex-
tendable output functions (SHAKE128, SHAKE256). �is device stores the target intermediate
states as a sequence of ��y 32-bit words. I used the default compiler se�ings of the ChipWhis-
perer 5.2.1 so�ware, such as optimization for space (-Os with arm-none-eabi-gcc v9.2.1).

4.4.2 Trace recording

Similar to the previous se�ing in Section 4.3.1, the recording platform includes the NI PXIe-
5160 [105] 10-bit oscilloscope and the NI PXIe-5423 [106] wave generator in the same PXIe
chassis, as well as the connector for impedance matching and high-pass �ltering.

I recorded traces while the device executed SHA3-512 on random inputs that each require 10
invocations of the Keccak-f [1600] permutation. At 2.5 GS/s, each 7,500,000-sample trace cov-
ers the �rst four complete rounds of Keccak-f [1600], and I recorded that for each invocation

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 79

169000 169500 170000 170500 171000 171500 172000 172500 173000

0.0

0.1

0.2

0.3

0.4

0.5

0.6
R

2

Coefficient of determination

R2
0

R2
1

R2
2

R2
3∑
f R

2
f

169000 169500 170000 170500 171000 171500 172000 172500 173000

sample

−0.015

−0.010

−0.005

0.000

0.005

0.010

vo
lt

ag
e

(V
)

Reference trace (inverted Y axis)

mean

2σ interval

Figure 4.4: �e corresponding four R2
f values of (α′0[0, 0, 0], . . . , α′0[0, 0, 3]) for each sample

based on the 16 000 detection traces and their sum representing the detection results of the
full 32-bit word (above), as well as the mean trace and the 2σ interval (below) at the same time
samples.

of the permutation. For trigger accident detection (none were detected still), the Pearson cor-
relation coe�cient threshold here was 0.98 against an average trace of 1600 pre-recorded ref-
erence traces. Overall, we recorded 16 000 traces for interesting-clock-cycle detection, 64 000

for template building, and 1 000 for model evaluation. For the traces recorded for testing, see
Section 4.4.4.

4.4.3 SASCA model building and evaluation

Interesting clock cycle detection Recall that in Section 3.2.2 (also in [90]), I used multiple
linear regression to �nd the coe�cient of determination (R2) between the voltage-peak point
in each clock cycle and the bit values of the target intermediate bytes. Using a threshold of
R2 > 0.09 to select the interesting clock cycle sets, I created far shorter training traces for
each intermediate byte to build its LDA-based template.

To detect the interesting clock cycle sets (ICs) for a 32-bit device, I assumed that the four
bytes in the same word will share the same sets. �erefore, a small change was applied to the
previous method for 8-bit devices. Rather than estimating the correlation between the samples
and the 32-bit intermediate value with a 32-bit linear regression, as in eq. (4.1), which would
need more traces to build, I instead estimated the correlation by adding the four R2

f values
calculated from the independently built 8-bit model (4.2) of each fragment byte in this 32-bit
intermediate value. While this may be less accurate, due to slight over��ing, it signi�cantly
reduces the number of traces required.

Fig. 4.4 shows a small part of the average trace for accident detection, covering the 32-bit word
consisting of four member bytes (α′0[0, 0, 0]8, . . . , α′0[0, 0, 3]8), along with the corresponding
fourR2

f values for each point, based on the 16 000 detection traces. Note that I also targeted the
intermediate planes CΩ and DΩ in addition to the intermediate states α′Ω and βΩ compared to

80 4.4. ATTACKING A 32-BIT KECCAK IMPLEMENTATION

Table 4.6: Numbers of interesting clock cycles selected in round Ω = 0 with thresholds∑
f R

2
f > 0.04 (le�) and

∑
f R

2
f > 0.01 (right)

Lane[i]
C0 D0

�rst word second word �rst word second word
[0] 13 15 3 2
[1] 12 16 3 1
[2] 10 16 3 1
[3] 11 17 3 2
[4] 12 16 3 1

Lane[i, j]
α′0 β0

�rst word second word �rst word second word
[0, 0] 21 35 28 39
[1, 0] 73 90 54 68
[2, 0] 67 89 53 68
[3, 0] 68 88 49 66
[4, 0] 71 88 54 68
[0, 1] 64 85 47 61
[1, 1] 71 87 56 69
[2, 1] 67 80 46 61
[3, 1] 71 89 53 70
[4, 1] 69 74 48 55
[0, 2] 61 90 49 70
[1, 2] 68 84 51 67
[2, 2] 66 87 48 64
[3, 2] 73 84 52 68
[4, 2] 73 91 59 69
[0, 3] 64 88 47 64
[1, 3] 63 88 43 61
[2, 3] 71 90 54 69
[3, 3] 68 89 55 73
[4, 3] 77 85 50 58
[0, 4] 75 74 50 62
[1, 4] 79 90 49 67
[2, 4] 64 86 50 65
[3, 4] 65 91 52 70
[4, 4] 65 82 45 60

Lane[i]
C0 D0

�rst word second word �rst word second word
[0] 31 35 36 30
[1] 31 33 25 33
[2] 32 35 25 26
[3] 31 38 17 32
[4] 35 36 34 55

Lane[i, j]
α′0 β0

�rst word second word �rst word second word
[0, 0] 55 69 48 66
[1, 0] 130 139 91 114
[2, 0] 125 141 88 112
[3, 0] 120 142 88 111
[4, 0] 136 158 96 111
[0, 1] 120 147 86 111
[1, 1] 124 144 92 111
[2, 1] 129 143 85 103
[3, 1] 127 141 91 110
[4, 1] 141 144 100 103
[0, 2] 143 166 87 113
[1, 2] 121 135 89 110
[2, 2] 126 142 90 113
[3, 2] 133 148 92 109
[4, 2] 134 162 101 116
[0, 3] 120 145 87 112
[1, 3] 115 140 84 112
[2, 3] 131 146 96 112
[3, 3] 116 144 90 115
[4, 3] 143 158 106 112
[0, 4] 133 146 102 106
[1, 4] 134 146 104 117
[2, 4] 122 137 83 111
[3, 4] 131 140 87 110
[4, 4] 135 153 83 126

my previous experiments on the 8-bit device, so the belief-propagation procedure can also take
their template-recovered information into account. Most of the data dependency is limited to
one clock cycle in the time interval shown. We also can see that the R2

f values peak near the
voltage peak, and we can use this to speed up the selection of samples from our 500 PPC data.
�erefore, I summed 50 voltage samples around each voltage peak and calculated

∑
f R

2
f for

that to decide whether this entire clock cycle should be included. Table 4.6 shows the number
of interesting clock cycles selected for each intermediate word in the �rst round, with two
di�erent thresholds (0.04 and 0.01); the results of the omi�ed other three rounds are similar.
I used the lower threshold

∑
f R

2
f > 0.01. �e SNR values of the points selected were in the

range of 0.01 to 3.43.

Template pro�ling and validation As the experiments in Section 4.3 revealed, we do not
need as many samples as 500 PPC to pro�le templates for a�acks on the CW-Lite device,
whereas Table 4.3 shows that using 5 to 20 PPC was good enough. I therefore decided to re-

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 81

0 1 2 3 4 5 6 7

8k

0

5

10

15

20

(i
+

4
×
j)

α′0 SR
0 1 2 3 4 5 6 7

8k

α′0 GE
0 1 2 3 4 5 6 7

8k

β0 SR
0 1 2 3 4 5 6 7

8k

β0 GE

0 1 2 3 4 5 6 7

8k

0

1

2

3

4

(i
+

4
×
j)

C0 SR
0 1 2 3 4 5 6 7

8k

C0 GE
0 1 2 3 4 5 6 7

8k

D0 SR
0 1 2 3 4 5 6 7

8k

D0 GE

Figure 4.5: Success rates and logarithmic guessing entropy evaluated by the fragment tem-
plates on my target state α′0, β0, C0, and D0. See Table B.12 Table B.13, B.14, B.15 in Ap-
pendix B.4

sample the training traces from 500 PPC down to 10 PPC, by averaging 50 consecutive samples
into one, e�ectively reducing the sampling rate to 50 MHz. Given the numbers of detected in-
teresting clock cycles shown in Table 4.6, such reduction results in pro�ling templates with
at most 1660 samples per trace, which is still comfortably under my computing restriction
introduced in Section 2.6.3.

Using the 1000 traces in the validation set, Figure 4.5 shows the resulting success rate and
guessing entropy for α′0, β0, C0 and D0, respectively. �e omi�ed data for other rounds look
similar. �e results for α′0 and β0 are not as good as the ones for the 8-bit processor in Sec-

82 4.4. ATTACKING A 32-BIT KECCAK IMPLEMENTATION

Table 4.7: Average (µ) and standard deviation (σ) of the number of correct bits found a�er
marginalization of the byte tables (out of 1600 bits in α′Ω and βΩ, and 320 bits in CΩ and DΩ,
respectively).

State α′0 β0 α′1 β1 α′2 β2 α′3 β3

µ 1353.432 1093.831 1352.345 1094.108 1353.010 1095.214 1353.998 1095.555
σ 15.854 17.746 16.313 17.103 16.028 17.255 15.243 17.265

State C0 D0 C1 D1 C2 D2 C3 D3

µ 211.007 187.974 211.480 187.722 211.509 187.489 211.051 187.565
σ 7.992 9.049 8.181 7.999 8.230 7.774 8.077 8.189

tion 3.2.4, and possibly not good enough for the enumeration procedure there but suitable
for belief propagation. Note that, similar to the results of 8-bit experiments in Table B.4 and
Table B.5, the results for the �rst lane of state α′ in every round are worse than those for the
other lanes in the same state. �is is because this lane is not rotated in steps π or ρ, resulting
in fewer interesting clock cycles for the bits in this lane.

Since I use the marginal probabilities in the Loopy-BP network, Table 4.7 also shows the av-
erage number of correct bits in di�erent intermediate states from the 1000 validation traces.
Because the probability tables are binary a�er marginalization, I de�ne whether a bit is suc-
cessfully predicted by checking if the probability of the correct candidate bit is higher than
0.5. �e marginalized results also show that these templates predicted the state α′Ω more suc-
cessfully in these four rounds than the other states.

Evaluation on di�erent factor graphs We now evaluate how well the loopy-BP algo-
rithm works when fed with marginalized binary probability tables from a single validation
trace recorded from the 32-bit device, along with 1024 known bits in the capacity part of the
input. Table 4.8 shows the number of validation traces reaching a steady state, along with
statistics on the number of iterations required, and the number of validation traces where all
intermediate bits were recovered. I provide results from factor graphs covering two, three,
and four rounds, respectively. Although intermediate values of all the validation traces are
successfully recovered in these three networks, we can see that it needs fewer iterations to
reach a steady state with the four-round factor graph. Figure 4.6 (le�) shows the percentage of
successfully recovered traces (de�ned as all the bits of α′0 being recovered correctly) out of the
1000 validation traces for these three factor graphs as a function of the number of loopy-BP
iterations. It takes fewer iterations to completely recover state α′0 than it takes for the net-
work to stabilize. It appears that the two-round factor graph takes more iterations to recover
all validation traces correctly than the larger two.

Figure 4.6 (right) shows the percentage of successfully recovered traces out of 1000 validation
traces when being provided with di�erent numbers of known bits (not just 1024), to explore
the situation when the size of the Sr (r unknown bits) and Sc (c known bits) of the permutation

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 83

Table 4.8: Results of terminating bitwise SASCA on the 32-bit device.

Network #Steady
#Iteration #Correct Traces

Median Mean σ Max Input α′0 β0 α′1 β1 α′2 β2 α′3 β3

4-round 1000 25 25.421 0.573 28 1000 1000 1000 1000 1000 1000 1000 1000 1000
3-round 1000 30 30.331 1.247 34 1000 1000 1000 1000 1000 1000 1000 N/A N/A
2-round 1000 51 51.730 4.374 71 1000 1000 1000 1000 1000 N/A N/A N/A N/A

0 10 20 30 40
#iteration

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
3 rounds
2 rounds

0 250 500 750 1000 1250 1500
#rate (unknown) bits

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
3 rounds
3 rounds

Figure 4.6: Percentage of successfully recovered traces for the di�erent factor graphs (with
di�erent numbers of rounds observed), as a function of the number of loopy-BP iterations
(le�) and the number of unknown input bits (right).

input vary in di�erent sponge functions. When the number of unknown bits increases beyond
half of the full state, including up to the 1600− 128× 2 = 1344 unknown bits in SHAKE128,
the four-round factor graph performs be�er than the others. As a result, I chose the four-round
factor graph for the �nal version used in the belief propagation procedure.

4.4.4 Results for the SHA-3 and SHAKE functions

I recorded �ve groups of 1000 test traces. Each group had a di�erent range of SHA3-512 in-
put lengths, requiring 1, 2, 4, 5, or 10 invocations of Keccak-f [1600] to absorb, respectively.
Table 4.9 shows the number of successfully recovered inputs for each of these test traces, and
related statistics on the number of iterations required. We can see that all the inputs were suc-
cessfully recovered, a�er about 25–30 iterations. Recall that Kannwischer et al.’s results [89]
for their all-zero public input set, which is similar to our experiments with very short Keccak[c]

input, were worse than those for their random public input set. I did not observe such variabil-
ity in our se�ing, i.e. the success rates or the number of iterations required did not signi�cantly
vary with the input length of Keccak[c], even down to just one byte.

Apart from SHA3-512, I also recorded test traces for other Keccak[c] sponge functions, in-
cluding the other three SHA-3 variants and the two SHAKE extendable output functions. It
is noteworthy that because the belief propagation of Keccak-f [1600] relies on the Sc of the

84 4.4. ATTACKING A 32-BIT KECCAK IMPLEMENTATION

Table 4.9: Results of recovering the functions in the SHA-3 family with di�erent numbers of
invocations by the four-round factor graph.

Function c #Inv. #Rec.
#Iteration*

Med. Mean σ Max

SHA3-512 1024

1 1000 25 25.399 0.804 28
2 1000 26 25.629 0.619 29
4 1000 26 25.575 0.611 29
5 1000 26 25.615 0.621 31
10 1000 25 25.364 0.552 28

SHA3-384 768
1 1000 27 26.838 0.942 29
2 1000 27 27.061 0.662 30

SHA3-256

512

1 1000 29 28.646 1.246 32
2 998 29 28.679 0.761 33

SHAKE256

1 997 29 29.054 1.272 34
2 996 29 28.996 0.926 37

SHA3-224 448
1 1000 29 29.106 1.255 33
2 996 29 29.440 0.971 37

SHAKE128 256
1 979 31 30.897 1.512 39
2 971 31 31.206 1.212 39

* Only the invocations successfully reaching a steady state are taken into account.

output from the previous invocation, the functions with a shorter Sc (c known bits) may en-
counter a lower success rate or may require more iterations to reach a steady state. Table 4.9
also shows some results of these �ve functions with inputs that can be absorbed by one or
two invocations. We can see the results meet our expectation that the shorter the Sc, the
lower the number of inputs can be successfully recovered, and the more iterations it took to
reach a steady state, despite all success rates remaining close to 1. It is also noteworthy that in
the same function, if the success rate for inputs requiring one invocation is p, that for inputs
requiring two invocations should be p2, which is also consistent with our results.

In addition to the four-round version, I have also tried these experiments with three-round
and two-round factor graphs. Table B.17 and Table B.18 in Appendix B.4 show the results of
recovering 1000 inputs with one and two invocations from the test traces of the six SHA-3 or
SHAKE functions. It appears that the four-round belief propagation provides be�er results,
suggesting that recording longer traces covering more rounds helps to push the success rate
much closer to 1.

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 85

4.4.5 Experiments with 16-bit and nibble fragment templates

I also tried other choices of fragment size besides 4×8 bits: 2×16 bits, 11+11+10 bits, 8×4

bits, 16 × 2 bits and 32 × 1 bit. As an example, the following data compare the performance
of these di�erent fragment sizes for the �rst bit in α′0 a�er marginalization:

Fragments 2× 16 bits 11 + 11 + 10 bits 4× 8 bits 8× 4 bits 16× 2 bits 32× 1 bit
Prob. 0.740549 0.752437 0.750506 0.752002 0.752274 0.751888

#Success 731 729 730 733 733 732
Max |ε| 0.046705 0.026377 – 0.010587 0.013578 0.013906

Average |ε| 0.008799 0.002809 – 0.001652 0.001872 0.002043

We can observe that fragment size had li�le in�uence on the accuracy of bit prediction, as
illustrated here for the �rst bit in α′0, using several metrics: predicted marginalized probability
of correct candidate from the �rst trace (Prob.), number of correct bit predictions over 1000
validation traces (#Success), maximum and average deviation (|ε|) of probability among these
1000 trials from the predictions made by four-byte fragment templates.

However, recall the experiments on the 8-bit device: when I provided information from fewer
templates (see the situation 1© in Section 3.4.3), the results of the experiment targeting full
bytes were be�er than the one targeting 4-bit fragments. �is implies that although insigni�-
cant in single-bit prediction, the fragment size can still cause a di�erence in a�acks to recover
the full inputs of Keccak sponge functions. As a result, I repeated the experiments on the
32-bit device with marginalized tables from 16-bit fragment templates to check whether these
templates can achieve be�er success rates. Figure B.1 in Appendix B.4 depicts the results of
recovering state α′0 from the 1000 validation traces, as a function of the number of loopy-BP
iterations (le�) and the number of unknown input bits (right), while Table B.19, B.20, and B.21
in Appendix B.4 show the results for each SHA-3 or SHAKE function with templates for in-
termediate 16-bit fragments in the �rst four, three, and two rounds respectively. I found that
some success rates increased especially in the case of SHA3-224 with two rounds, but there
are no signi�cant changes in the cases with three or four rounds.

Similarly, Table B.22, B.23, B.24 and Figure B.2 in Appendix B.4 demonstrate the results of
using nibble fragment templates for a�acks. Figure 4.7 plots the results with nibble, byte, and
16-bit fragment templates in the same subplots for the convenience of comparison, and we
can see the di�erences are not so signi�cant.

�erefore, although the larger size fragments may provide a (slightly) higher success rate for
some cases in the experiments, I still suggest the fragment size should be chosen here to opti-
mize computation time rather than optimize the success rates. In the a�ack stage, compared
to templates with a smaller fragment size, a single 16-bit template recovery requires much
longer run time (Table B.16). On the other hand, with 32 1-bit fragments, the pro�ling stage
takes longer, as we need separate eigendecomposition of W−1

f Bf for each fragment in the
LDA procedure, the most time-consuming pro�ling step. �erefore, for our experiments with
single-bit marginalization, the use of 4×8-bit fragment templates seemed a good compromise.

86 4.4. ATTACKING A 32-BIT KECCAK IMPLEMENTATION

0 10 20 30 40
#iteration

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
nibble
byte
16-bit

0 250 500 750 1000 1250 1500
#rate (unknown) bits

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
nibble
byte
16-bit

0 10 20 30 40
#iteration

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

3 rounds
nibble
byte
16-bit

0 250 500 750 1000 1250 1500
#rate (unknown) bits

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

3 rounds
nibble
byte
16-bit

0 10 20 30 40
#iteration

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

2 rounds
nibble
byte
16-bit

0 250 500 750 1000 1250 1500
#rate (unknown) bits

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

2 rounds
nibble
byte
16-bit

Figure 4.7: Percentage of successfully recovered traces with templates of di�erent sizes, as a
function of the number of loopy-BP iterations (le�) and the number of unknown input bits
(right).

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 87

5 10 15 20

g′
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|λ
g
′ |/
∑

m g
=

1
|λ
g
|

nibble template

5 10 15 20

g′

byte template

5 10 15 20

g′

16-bit template

Figure 4.8: �e ratio (|λg′|/
∑m

g=1 |λg|) of the largest 20 eigenvalues (for 1 ≤ g′ ≤ 20) ver-
sus the sum of all eigenvalues (

∑m
g=1 |λg|) of the W−1

f Bf , for the last nibble, byte, and 16-
bit fragments, respectively, of lane L(4,3) from α′0 (i.e., fragment α′0[4, 3, 15]4, α′0[4, 3, 7]8, and
α′0[4, 3, 3]16).

A new eigenvector selection criterion Previously, I used the criterion introduced in Sec-
tion 2.1.3 to determine the dimension m′ of the projected traces a�er the LDA dimensional-
ity reduction step, where the corresponding eigenvalue of a selected eigenvector needs to be
larger than one-thousandth of the summation of all the eigenvalues. �at criterion always
selected m′ = 8 eigenvectors with non-negligible eigenvalues when pro�ling templates for
bytes, and m′ = 4 for nibbles. When it came to the templates for 16-bit fragments, there were
16 eigenvectors selected by this criterion in nearly all cases. In a few exceptions, there were
about 13 to 15 selected eigenvectors. �is indicates that there could be the same number of
independent binary variables as the number of non-negligible eigenvalues in this LDA-based
multiple linear regression model, but my current ad-hoc criterion sometimes failed to select
all the non-negligible eigenvectors when pro�ling templates for 16-bit fragments.

�erefore, I decided to plot the ratio (|λg′|/
∑m

g=1 |λg|) of the eigenvalues and visually check
the numbers. Figure 4.8 shows the proportions of the largest 20 eigenvalues from the W−1

f Bf

matrix of the last nibble, byte, and 16-bit fragments, respectively, of lane L(4,3) from α′0 as an
example. As we can see, the fragment size matches the number of non-negligible eigenval-
ues when I used every single bit as an independent binary variable in the regression model.
Meanwhile, the contribution of the remaining eigenvalues is below 10−12. �e red horizon-
tal do�ed line marks my previous threshold, 10−3, for the selection criterion, and Figure 4.8
clearly shows that criterion may fail when pro�ling templates for 16-bit fragments.

As a result, I replaced my previous criterion with the new one, namely that we let m′ be equal
to the number of the independent variables, which is also the same as the fragment size, in my
later experiments.

88 4.5. DISCUSSION

Table 4.10: Results of recovering the functions in the SHA-3 family with one invocation, with
2, 3, and 4-round factor graphs, given di�erent damping rates.

Function c r
No damping (γ = 1) γ = 0.99 γ = 0.95 γ = 0.75

2R 3R 4R 2R 3R 4R 2R 3R 4R 2R 3R 4R
SHA3-512 1024 576 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
SHA3-384 768 832 997 1000 1000 998 1000 1000 998 1000 1000 996 1000 1000
SHA3-256

512 1088
940 999 1000 947 997 1000 927 998 998 915 994 998

SHAKE256 867 999 997 945 997 998 926 997 998 913 998 998
SHA3-224 448 1152 419 992 1000 849 983 992 802 980 989 743 978 986
SHAKE128 256 1344 35 921 979 213 904 966 170 873 941 128 854 946

4.4.6 Damping in loopy belief propagation

In Kannwischer et al.’s paper, they suggest using a damping technique proposed by Pre�i [124]
when running the belief propagation following their factor graph for Keccak. In a loopy
factor graph for belief propagation, sometimes the information �ow will be stuck in an endless
oscillation within a loop, which is more common when the loop is very small. In this case, the
belief propagation may not terminate normally until the iteration reaches some cut-o� limit.
�e damping technique was designed to prevent such endless oscillation. When applying it,
we do not directly send the new messages over the edges connecting neighbor factor and
variable nodes, but send the weighted averages of the new messages and the messages sent in
the last iteration, such as

u = γ × unew + (1− γ)× uprev.,

where γ, ranging from 0 to 1, is de�ned as the damping rate. �is is essentially low-pass
�ltering messages. Kannwischer et al. set γ = 0.75 in their simulations. We can set γ = 1 to
disable the damping technique.

I tested this damping technique in my belief-propagation procedure for Keccak with di�erent
damping rates, and Table 4.10 shows very mixed results. For the cases where information
is only collected from the �rst two rounds, it seems that damping rates very close to 1 will
increase the success rate, while for cases with information from more rounds, the damping
technique did not improve the belief propagation procedure. �erefore, I believe that the
damping technique was not an essential part of my a�ack procedure. Perhaps the endless
oscillation case did not occur frequently in my experiments.

4.5 Discussion

With the help of LDA-based dimensionality reduction, I successfully built fragment templates
that generate separate probability tables for each byte in the 32-bit words of the targeted in-
termediate states, a�er the experience of separately building nibble templates for intermediate

CHAPTER 4. FRAGMENT TEMPLATE ATTACK ON KECCAK 89

bytes from my old data recorded on the 8-bit device. In the case of the small stream cipher, it
seems like the quality of templates is still not good enough for trace-single a�acks since we
can only collect information from a handful of instructions (or clock cycles) involved with the
targets. In the case of Keccak, however, the quality of the fragment templates is su�cient
for creating per-bit marginalized observation factors from which a bitwise loopy-BP network
can reconstruct the full input and output of each invocation of Keccak-f [1600], using also
knowledge about a part of its input, as given by the sponge construction. From that, we can
easily reconstruct the padded arbitrary-length inputs of the Keccak sponge functions. Inter-
estingly, the results so far indicate that, although the Keccak[c] functions with a longer capac-
ity have cryptographically a higher security margin, that actually helps in our a�ack strategy.
My experiments suggest that this method will also work for Keccak-based sponge functions
with a shorter capacity, especially when observing more rounds by recording longer traces. I
also expect that this a�ack strategy can easily be applied to other SHA-3-derived functions,
such as cSHAKE, KMAC, TupleHash, and ParallelHash, de�ned in NIST Special Publication
800-185 [125], which also use the Keccak[256] or Keccak[512] functions, except for di�erent
padding methods.

Here the fragment templates reconstruct full-state information stored in larger word sizes
(such as 32 bits) than are practical with traditional template a�acks, by using the LDA tech-
nique to project traces onto subspaces that are only related to a manageable part of the state.
Further improvements should be possible, for example, lowering the R2 threshold to include
more interesting clock cycles may help to build templates with even higher success rates, at the
expense of more computational time required for pro�ling. We expect this fragment-template
technique can be extended beyond a�acks on SHA-3 or Keccak-related functions. Also, so
far we have only demonstrated this technique using the same board for pro�ling and a�ack,
therefore its portability remains to be investigated; however LDA-based techniques have pre-
viously already been shown to help with the portability of templates across boards [96].

90 4.5. DISCUSSION

Chapter 5

Fragment template attack on Ascon-128

32-bit implementations

A�er a�acking the Keccak implementation on a ChipWhisperer-Lite 32-bit device, I started
to implement a very similar a�ack strategy on an Ascon AEAD encryption implementation,
to see if the combination of fragment template a�ack and belief propagation poses a more
general risk than we had expected.

A�er a �rst glance at the Ascon AEAD structure, one issue I was concerned about is the use
of the key four times in encryption or decryption. �is may signi�cantly enhance the chance
for a�ackers to recover the key directly because repeated key use would lead to more inter-
esting clock cycles for pro�ling templates with be�er quality. �erefore, my a�ack focused
on recovering the key-related fragments with templates of their own, and with information
collected from other intermediate states through belief propagation.

5.1 General experimental assumptions

As explained in the introduction of Ascon AEAD (Section 2.5.2), the input and output bit-
strings involved in the encryption procedure are the key K , the nonce N , the associated data
A, the plaintext P , the ciphertext C , and the tag T . I de�ned my a�ack as a pro�led �xed-
length known plaintext a�ack, only targeting the secret key K . In the pro�ling stage, the
a�acker can provide varying K , N , A, P , and can observe the corresponding C and T along
with recorded power traces. In the a�ack stage, they can obtain values of N , A, P , C , T , and
recorded power traces, to recover the secret key K .

I demonstrate the a�ack by targeting Ascon-128. Note that while Ascon allows arbitrary-
length associated data and plaintexts, in this a�ack demonstration, I used empty associated
data and 7-byte plaintexts, to keep the traces aligned and minimize their length when cov-
ering the entire encryption process. In other words, there will be only two invocations of
permutation p12 involved in this case and Figure 5.1 depicts this special encryption procedure.

91

92 5.2. ATTACK STRATEGIES

Initialization Finalization

IV ‖K‖N

CP‖1‖07

C‖?8

(K‖K)⊕ (0255‖1)
T

p12 p12

64

K

256

⊕

⊕⊕

Figure 5.1: Ascon-128 with a short input.

Another good reason for the choice of such demonstration is that Ascon AEAD supports a
so-called leveled implementation [126, 127], where we need to implement more side-channel
countermeasures on Initialization and Finalization since the side-channel leakage from these
two phases will pose a more serious threat to both the integrity and con�dentiality of Ascon
AEAD. �is, however, implies that a�ackers can focus on these two phases for a�acks.

5.2 Attack strategies

5.2.1 Attack strategy for single traces

�e a�ack stage consists of three main steps: fragment template a�ack, belief propagation,
and key enumeration. Some previous studies have used belief propagation and enumeration
together [128] to be�er exploit the side-channel information, and Kannwischer et al. [89, Sec.
6.1] also indicated the possibility to integrate their a�ack on Keccak and key enumeration
techniques to reach be�er results.

Fragment template attack Firstly, we need to build fragment templates for our target states.
Previously, in the cases of SHA-3 and SHAKE, the traces we had recorded only covered the �rst
four rounds of the Keccak-f [1600] permutation. However, thanks to the simpler structure of
Ascon, it is practical to record power traces covering the short full encryption procedure in
Figure 5.1. �erefore, I built templates for target fragments of all the twelve αΩ and thirteen
βΩ states of permutation p12 in both Initialization and Finalization.

In these 50 states ((12 + 13) × 2), we do not need to build the templates for some special
fragments. For the p12 in Initialization, the �rst 64 bits of the input are the initial vector IV ,
while the last 128 bits are the nonce N , and for the p12 in Finalization, the �rst 56 bits of the
input is the ciphertext C . �ese values are public in my a�acking scenario, so we only need
to generate their probability tables by assigning the probability of the correct candidate to be
1 and others to be 0. Note that besides the IV and N values, the other two lanes (L1 and L2)
of the Initialization input (β−1) contain the key fragments, which are our main targets.

Similar to the previous loopy-BP procedure in the Keccak experiments, all the probability
tables estimated by these templates will be marginalized into bitwise tables for later steps.

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 93

βΩ−1 fS αΩ fL βΩ

prob.
table

prob.
table

prob.
table

Figure 5.2: �e factor graph for round Ω of the Ascon permutation. Similar to the case in
Figure 3.6, state variables βΩ−1, αΩ, and βΩ shown here each represent 320 single-bit variable
nodes, respectively.

Initialization Finalization

K fS

IV

N

fL fS fL β11

f⊕

f⊕

f⊕

β11

C‖?8

P‖1‖07fmext

Tf⊕

Figure 5.3: �e factor graph at state level covering a full Ascon-128 encryption with null
associated data and a seven-byte plaintext (observation factors omi�ed). �e blue-part exten-
sion is for multi-trace a�ack, where this original single-trace graph is connected to the other
single-trace graphs via the fmext constraint factor (See Section 5.2.2).

Belief propagation We can start by building the factor graph for a bitwise belief propagation
procedure within a single round of the Ascon permutation, which is plo�ed in Figure 5.2.
�is small factor graph includes three variable states and their corresponding observed factors:
βΩ−1, αΩ, βΩ, and two types of constraint factors, named fS and fL, connecting these variables.

Recall that αΩ = pS ◦ pC(βΩ−1), the constraint factors fS should update the information fol-
lowing the mathematical relations in functions pC (Constant Addition) and pS (Substitution).
�erefore, we can design these factors by connecting the �ve input bits and �ve output bits
of pS and use the S-box table as the mathematical constraint, just like how Kannwischer et
al. designed their constraint factors for step χ in Keccak [89, Sec. 4.1]. As for pC, we can
just swap the probability values of the two candidates (0 and 1) when the value of the corre-
sponding constant bit is 1, which is also like Kannwischer et al.’s design for step ι [89, Sec.
4.1]. For another type of constraint factor fL, they update the information following the math-
ematical relations in the linear function pL, which are all XOR functions with three inputs
and one output in the bitwise level. For example, in the �rst lane, a mathematical constraint
βΩ[0, 0] = αΩ[0, 0] ⊕ αΩ[0, 64 − 19] ⊕ αΩ[0, 64 − 28] holds because the linear function pL

updates the �rst lane by

L0 ← L0 ⊕Rot(L0, 19)⊕Rot(L0, 28).

94 5.2. ATTACK STRATEGIES

Once building the factor graph for the �rst round in the p12 permutation, we can simply repeat
the same construction for the la�er eleven rounds, only with di�erent round constants, to
cover all the states in an invocation of this permutation.

Considering the Ascon AEAD encryptions are procedures comprising a sequence of Ascon
permutations with some XOR steps as well as additional input and output values, their factor
graphs will be multiple single-invocation factor graphs connected by constraint factors with
XOR functions and variables representing those additional inputs or outputs. Figure 5.3 shows
the factor graph covering all the target states in my experiment. Here I de�ne f⊕ as a type of
constraint factor, where their only output O and multiple inputs I1 to IN follow the constraint

O =
N⊕

n=1

In.

According to the encryption plo�ed in Figure 5.1, the input state (β−1) of the p12 in Final-
ization will be the output state (β11) of p12 in Initialization XORed with the following state:
P‖(0x80)‖K‖K ′, where K ′ is the key K with the least signi�cant bit �ipped. �erefore, via a
constraint factor f⊕, the two variables respectively representing the bit in the �rst lane L0 of
the input state of Finalization and its counterpart in the output state of Initialization will be
connected with the variable for the corresponding variable for the bit in the padded plaintext
P‖(0x80). Similarly, bits from the L1‖L2 of the two states will be connected to variables for
the K via constraint factor f⊕, while those from L3‖L4 to variables for K as well with the
probability swapping for information exchanged with the variable of the least signi�cant bit.
Likewise, we should connect the variables of the last 128 bits of the Finalization output, the
key K , and the tag T together via f⊕ for the same reason.

Here the variables for key bits are connected to four di�erent constraint factors, then forming
a loopy structure. �erefore, a loopy-BP procedure applies and it will output probability tables
for the bits in K once the procedure terminates.

Key enumeration Finally, we apply the key enumeration algorithm [53] to �nd the correct
combination for the key, given the bit probability tables obtained from the belief propagation
procedure. Since we know N , A, P , C , and T according to my assumptions in Section 5.1, we
can simply check the correctness by encryption with these known data and the enumerated
key fragment combination.

5.2.2 Attack strategy for traces from multiple encryptions

In the real world, a key for an encryption procedure may stay in use for a while. �is means
that we may change the other input values N , A, and P , but use the same key for several
encryptions. As a result, I generalize my a�ack strategy to deal with such a situation. For
building a factor graph covering public data and recorded power traces from multiple encryp-
tions with the same secret key, one obvious way is to connect all the related constraint factors

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 95

to the same variables for key bits. Considering each variable has already been connected to
four constraint factors in the factor graph for single encryptions, it may be very messy to man-
age these variables if I were to build the graph this way. Instead, I introduce another external
constraint factor fmext , where the constraint is K1 = K2 = ... = KN , to connect each key
variable from a separate factor graph for a single encryption. Figure 5.3 also demonstrates the
extended factor graph when this external constraint factor is introduced to my belief propa-
gation procedure.

Recall that for a connected variable xn, a constraint factor fm shall update the probability of
a candidate xn = ξ in the message rm−→n by

rm−→n(xn = ξ) =
∑

w


fm(xn = ξ,xm\xn = w)

∏

n′∈N (m)\n

qn′−→m(xn′ = wn′)


 ,

where

fm(xm = v) =





1, constraint holds with xm = v,

0, otherwise.

In the case of fmext(K1 = K2 = ... = KN), the only situation that makes this constraint hold
is v = ξ, ∀v ∈ v, which means the updated procedure will be reduced to

rmext−→n(xn = ξ) =
∏

n′∈N (mext)\n

qn′−→mext(xn′ = ξ).

We can see that fmext updates the message more like how a variable node does in a factor
graph, although it is a constraint factor by de�nition. A�er the belief propagation procedure
terminates, we can use the updated message in this node instead of those in variables for keys
from di�erent encryption to evaluate the likelihood of each candidate (Zmext(xmext = ξ)) and
the �nal probability table (Pmext(xmext)) by

Zmext(xmext = ξ) =
N∏

n=1

qn−→mext(xn = ξ), Pmext(xmext = ξ) =
Zmext(xmext = ξ)∑
ξ′ Zmext(xmext = ξ′)

.

Similar to the previous procedure for single encryptions, we can apply a key enumeration on
these probability tables for the key fragments.

Note that this multi-trace approach is mathematically similar to the Template-Based DPA At-

tack by Oswald and Mangard [83, Sec. 2.3], but they described the part of considering the
template-recovered information of the key from multiple traces with Bayes’ theorem instead
of the external constraint factor implemented in my factor graph.

5.2.3 Comparison against a very recent related study

Shortly before I submi�ed this thesis, a paper was published by Luo et al., on 17 Nov. 2022 [129],
simulating a multi-trace template a�ack on Ascon AEAD with belief propagation. �erefore,
it is noteworthy to point out the di�erences between their work and mine as follows.

96 5.3. THE ATTACK WITH ALL INTERMEDIATE VALUES

Firstly, their a�ack is based on simulated noisy HW models for 8-bit devices, and therefore,
their belief-propagation factor graph is designed for HWs of 8-bit values. Whereas, the side-
channel information in my a�ack is the probability table from fragment templates for Ascon
AEAD implemented on a 32-bit device, and I build a bitwise factor graph a�er marginalizing
those probability tables.

Secondly, their a�ack focuses on Initialization, whereas (see Section 5.1) my a�ack takes both
Initialization and Finalization into account, not only for the factor graph design but also for
the interesting-point selection. When building templates for an 8-bit device, their approach
may achieve su�ciently good templates by only considering the interesting clock cycles in
Initialization, but I believe later clock cycles from Finalization also leak some information from
the two XOR operations on the target key, helping a�ackers to build be�er fragment templates.
Since it is more di�cult to build templates for a 32-bit device, any li�le improvement can be
critical for the success rates in the later belief propagation.

�irdly, their a�ack has yet to be evaluated with key enumeration, which may increase the
success rates, especially in cases with few or even single traces.

5.3 �e attack with all intermediate values

5.3.1 Experiment setup

For the source code of AsconAEAD, I �rst targeted Weatherley’s unmaskedAscon-128 imple-
mentation [130, ASCON/], where they provided an optimized Ascon permutation for ARMv7-
M Architecture [131], which is compatible with the Cortex-M4 processor on the CW-Lite 32-bit
board. �is implementation was compiled with arm-none-eabi-gcc (v9.2.1) compiler options
-Os and wri�en onto the CW-Lite 32-bit board, and again following the recording se�ing in
Section 2.6.1. I will refer to this experiment as U-Os, to distinguish it from the other two exper-
iments, U-O3 and M-Os, where the former is on the unmasked implementation with the com-
piler option -O3, and the la�er is on Weatherley’s masked Ascon-128 implementation [130,
ASCON masked/] with the compiler option -Os.

Recall that I used empty A and seven-byte P in this a�ack demonstration. In the pro�ling
stage, I recorded one trace for each encryption with varyingK ,N , andP , and then categorized
them into the sets introduced in Section 2.6.2. I recorded 10 000 traces for the a�ack stage,
where every 10 traces were recorded from encryptions with the sameK , but varyingN and P ,
so they can evaluate the results of our experiments for multiple-encryption belief propagation
provided with up to 10 traces.

In the pro�ling stage, I repeated the same procedure in the Keccak experiments described in
Chapter 4, which includes interesting clock cycle detection, fragment template pro�ling, and
checking the quality of templates. In the a�ack stage, I limited the belief propagation to at

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 97

Table 5.1: Number of interesting clock cycles detected for lanes of intermediate states in U-Os.
�e detection for L0, L3, and L4 for state β−1 of Initialization is not needed since these lanes
are loaded with known values IV and N , and therefore we do not build templates for them.

lane L0 L1 L2 L3 L4

Init.

input (β−1) IV 310 366 N

α0 39 143 46 41 110
β0 29 25 33 27 40
α1 24 34 40 32 34
β1 22 23 32 24 38
α2 28 19 38 44 30
β2 20 30 33 24 42
α3 29 19 42 35 26
β3 21 23 39 32 41
α4 49 29 41 36 31
β4 20 24 34 36 38
α5 25 27 38 23 64
β5 20 30 31 34 38
α6 27 22 36 31 28
β6 25 30 30 31 38
α7 26 22 54 31 26
β7 26 26 43 31 45
α8 22 20 36 38 26
β8 20 29 33 26 38
α9 26 23 38 33 26
β9 38 28 32 29 40
α10 26 21 37 30 28
β10 23 32 34 34 40
α11 25 18 45 35 32
β11 116 47 86 34 58

lane L0 L1 L2 L3 L4

Fin.

input (β−1) 143 49 56 57 91
α0 38 23 43 33 26
β0 25 27 31 35 41
α1 25 24 40 30 36
β1 15 28 29 26 41
α2 33 20 39 30 31
β2 28 33 39 36 40
α3 26 28 42 35 30
β3 19 30 31 30 39
α4 24 23 42 35 29
β4 23 25 31 34 41
α5 30 25 46 30 38
β5 27 28 30 29 41
α6 27 24 38 29 29
β6 20 23 31 31 39
α7 25 19 36 41 32
β7 27 45 32 34 41
α8 24 20 33 33 29
β8 29 29 32 26 43
α9 32 27 45 32 29
β9 23 34 32 26 40
α10 25 30 34 30 30
β10 20 25 34 29 41
α11 26 20 36 32 37
β11 79 77 74 134 163

most 1000 iterations if it did not reach a steady state. �is number is higher than the previ-
ous number of 200 in Keccak since now there are more layers (full-size intermediate states,
supposedly bearing all information, see Section 3.4.2), which may require more iterations to
stabilize. For the key enumeration step, I limited the search to enumerating up to 100 000
candidate keys when evaluating the success rate.

5.3.2 Detecting the interesting clock cycles

At �rst, I had planned to directly follow the method used in Section 4.4.3 to detect interesting
clock cycles for 32-bit words of intermediate states (β−1, α0, . . . , β11) in the Ascon permuta-
tion, but Weatherley implemented a bit-interleaved [68, Sec. 4.1.1] version of Ascon, which
a�ected the storage of intermediate states, so I had to modify the detection procedure.

Previously, the target Keccak implementation simply separated each 64-bit lane into its high

98 5.3. THE ATTACK WITH ALL INTERMEDIATE VALUES

0 500 1000 1500 2000 2500

clock cycle

0.0

0.2

0.4

0.6

0.8

1.0

Σ
f
R

2 f

region 1 region 2 region 3

region 4

high word of L1

low word of L1

high word of L2

low word of L2

Figure 5.4: �e ΣfR
2
f results for each 32-bit word of the 128-bit K for U-Os. �e spikes lie in

the marked regions corresponding to the four uses of K .

and low 32-bit words. However, when it comes to this bit-interleaved version of Ascon, a 64-
bit lane is not just separated into a high and a low 32-bit word, but also sliced into its odd and
even parts during the permutation, such that one 64-bit rotation becomes two 32-bit rotations.
�erefore, data bits, especially the input and output, can be separated into high and low words
(H/L words), as well as sliced into even-bit and odd-bit words (E/O words). �erefore, I decided
to detect the interesting clock cycles for both the H/L and E/O words for a lane, and use their
union set as the interesting clock sets for this lane, to consider both situations.

Tables B.25 and B.26 show the number of detected interesting clock cycles for each target 32-bit
word of the intermediate states for the full AEAD process (H/L and E/O words, respectively).
Note that I set the ΣfR

2
f threshold to 0.004, which was lower than the previous 0.01 in Sec-

tion 4.4.3 for selecting more clock cycles into the interesting sets for be�er templates but not
beyond the restriction introduced in Section 2.6.3. A�er merging them into their union set,
Table 5.1 shows the number of interesting clock cycles ultimately selected for each target lane
of the intermediate states. We can see that there were more interesting clock cycles detected
for those words closer to input or output (i.e., β−1 or β11), as some of their interesting clock
cycles were related to operations outside of the Ascon permutation, such as loading the initial
states, XORing with P or K , or calculating T .

Among all the words, we can observe the highest number of interesting clock cycles for L1

and L2 in β−1 of Initialization, since these two lanes are loaded with K , which is used four
times in the full encryption. Figure 5.4 shows the ΣfR

2
f values for the H/L words from L1 and

L2 in β−1 of Initializaion with the corresponding clock cycles. We can see that the spikes were
mainly located in four separate regions, indicating the clock cycles related to the four times
when Ascon AEAD uses the key K .

Similar to the previous Keccak experiment on the same device, I downsampled the selected
interesting clock cycles from 500 to 10 PPC by replacing each 50 consecutive samples with
their average, and then concatenated these averaged samples to form the traces x used for
LDA-based template building.

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 99

Table 5.2: �ality evaluation of selected fragment templates for the U-Os experiment.
word high low
byte 0 1 2 3 4 5 6 7

L1 of Init. input SR 0.859 0.809 0.852 0.733 0.804 0.684 0.751 0.619
(1st lane of K) GE 1.244 1.395 1.276 1.695 1.457 1.803 1.514 2.224
L2 of Init. input SR 0.791 0.758 0.820 0.766 0.868 0.777 0.758 0.647
(2nd lane of K) GE 1.399 1.515 1.274 1.421 1.214 1.462 1.492 1.900

word even odd
byte 0 1 2 3 4 5 6 7

L3 of Fin. β11

SR 0.126 0.095 0.165 0.165 0.137 0.144 0.170 0.119
GE 18.728 23.033 15.163 16.794 17.962 20.246 14.554 17.330

L4 of Fin. β11

SR 0.099 0.095 0.193 0.195 0.158 0.112 0.186 0.202
GE 21.818 27.116 14.571 12.420 16.128 22.128 11.345 11.514

L0 of Init. α6

SR 0.003 0.006 0.008 0.009 0.009 0.012 0.004 0.006
GE 108.681 103.795 90.442 112.758 101.961 107.853 108.965 106.971

L1 of Init. α6

SR 0.004 0.003 0.005 0.002 0.009 0.007 0.007 0.005
GE 115.661 112.195 116.034 115.362 113.493 119.685 114.003 113.712

L2 of Init. α6

SR 0.014 0.010 0.011 0.014 0.007 0.011 0.016 0.003
GE 81.931 97.490 81.405 99.522 96.865 88.722 81.449 100.995

L3 of Init. α6

SR 0.006 0.006 0.010 0.009 0.006 0.006 0.009 0.010
GE 106.805 115.582 107.647 113.903 101.543 104.414 99.483 108.038

L4 of Init. α6

SR 0.011 0.007 0.008 0.009 0.008 0.007 0.012 0.011
GE 101.617 107.802 103.061 110.333 110.936 111.034 99.328 106.930

Table 5.3: �ality evaluation of fragment templates for the key of Ascon AEAD with either
all or only one part of the interesting clock cycles (U-Os experiment).

lane L1 L2

word high low high low
byte 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

all interesting SR 0.859 0.809 0.852 0.733 0.804 0.684 0.751 0.619 0.791 0.758 0.820 0.766 0.868 0.777 0.758 0.647
clock cycles GE 1.244 1.395 1.276 1.695 1.457 1.803 1.514 2.224 1.399 1.515 1.274 1.421 1.214 1.462 1.492 1. 900

region 1 only
SR 0.090 0.112 0.125 0.090 0.088 0.069 0.082 0.057 0.075 0.083 0.094 0.070 0.145 0.065 0.092 0.118
GE 25.020 22.873 16.210 26.027 27.975 35.203 26.050 36.413 31.651 25.207 26.250 32.843 14.897 29.643 26.532 18.068

region 2 only
SR 0.100 0.085 0.093 0.051 0.166 0.112 0.141 0.089 0.150 0.166 0.203 0.158 0.175 0.177 0.149 0.098
GE 25.797 28.291 26.319 44.628 13.469 21.747 13.740 26.549 13.986 16.174 11.067 15.628 11.194 13.307 15.471 26.583

region 3 only
SR 0.135 0.095 0.088 0.061 0.103 0.104 0.110 0.065 0.098 0.066 0.127 0.070 0.152 0.137 0.121 0.066
GE 17.130 21.803 23.270 36.412 23.911 23.527 21.761 37.945 22.369 33.036 16.823 31.951 12.932 16.340 19.684 30.772

region 4 only
SR 0.114 0.112 0.124 0.091 0.099 0.083 0.119 0.091 0.068 0.077 0.093 0.089 0.096 0.103 0.130 0.050
GE 19.158 15.346 15.581 16.260 20.283 18.838 15.107 20.198 25.091 20.325 17.508 18.849 18.837 16.932 13.124 28.112

5.3.3 Fragment template pro�ling

A�er building the LDA-based template parameters (S, x̄b,proj for all 256 values b of a fragment,
etc.), according to the results of the interesting-clock-cycle detection, I used the 1000 traces
in the validation set to evaluate the quality of these templates. Table 5.2 shows success rate
(SR) and guessing entropy (GE) from only a few example templates, while Figure 5.5 plots the
results for all the target templates. Note that I built the H/L templates for the key, but E/O
templates for the other intermediate values, to be�er match the implementation.

We can observe that templates for the key fragments had the best quality among all the tem-
plates, as K fragments were built from the highest numbers of clock cycles. �e results for
templates of fragments in the last two lanes in state β11 in Finalization were also satisfactory,
considering that these two lanes are part of the permutation output and then XORed with the

100 5.3. THE ATTACK WITH ALL INTERMEDIATE VALUES

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e
Initialization

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Finalization

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Initialization

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Finalization

Figure 5.5: Success rate (le�) and guessing entropy (right) of all target fragment templates
from U-Os. Each row represents a 40-byte state, e.g. state 0 is β−1, state 1 is α0, state 2 is β0,
etc., in chronological order. �e red blocks represent bytes of the known values IV , N , for
which no templates were needed.

key for the tag T , leading to more interesting clock cycles detected. �e SRs for fragments from
the middle rounds, α6 in Initialization for example, were much lower, while the corresponding
GEs were much higher than those values from eitherK or β11 in Finalization, as the optimized
implementation of Weatherley appears to reduce the clock cycles that operate on a single in-
termediate value inside the permutation, whereas the input and output of a permutation will
be involved in more operations across the permutations for AEAD mode.

Table 5.3 also shows the results of quality evaluation when building the templates for the key
fragments with only one of the four regions of interesting clock cycles. �ese results provide
evidence that using the same key more than once in an Ascon AEAD signi�cantly helps the
a�ackers to build be�er templates, as the quality will be much be�er when considering all
interesting clock cycles instead of only those from each key use.

5.3.4 Results a�er belief propagation and secret enumeration

With the fragment templates, I applied the previously described a�ack procedure to the a�ack
data set. �e loopy belief propagation was limited to 1000 iterations if it did not reach a
steady state before that, while the key enumeration was limited to enumerating up to 100 000
candidate keys when evaluating the key-recovery success rate.

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 101

Tβ11

f⊕

K K

β11

f⊕ f⊕ f⊕

β11 T

fmext

K K

β11 TT

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

Figure 5.6: Tree-shaped factor graphs for single (le�) and multiple encryptions (right).

With up to 10 encryptions for each key, Table B.27 and Figure 5.4.2 show the success rates for
recovering the 1000 di�erent a�ack keys a�er template recovery, belief propagation, and key
enumeration1. We can see that the a�ack on single encryptions was not yet very successful,
but the success rates exceeded 90% once the a�ackers obtained traces from a few encryptions.

5.4 �e attack with intermediate values around the key

5.4.1 Loop-free alternative factor graph

As we can see from the results of the template evaluation in Figure 5.5, the templates for frag-
ments in the middle states of both the permutations in Initialization and Finalization provide
only a li�le information. �erefore, it may not be worth performing belief propagation with a
large factor graph covering all the middle states. Instead, I removed the nodes for those middle
states from the factor graph in my experiment, and only kept the nodes related to the XOR
operation of the key K and the last 128 bits of β11 in Finalization to calculate the tag T , as
a loop-free alternative factor graph. Figure 5.6 shows the new smaller factor graph for sin-
gle encryptions and its expanded version for multiple encryptions with the same key. �ese
smaller factor graphs will similarly output updated probability tables for key enumeration.

�ere are two advantages of this smaller graph design. �e �rst one is that it is no longer a
loopy structure, but a tree, so it will update the information recursively by accessing each node
only once. On the other hand, thanks to the simplicity of the XOR operation, as well as the
assumption that the tag T is already known by a�ackers, it will still be practical to perform
belief propagation on byte tables or tables for even larger fragments (e.g., 16 bits), and therefore
avoid the information loss caused by marginalization to bit tables. In these cases, the belief
propagation procedure will output the updated probability tables for fragments instead of bits
for enumeration.

1For the enumeration on bit tables, the implementation requires end-of-state management, see Appendix A.1.

102 5.4. THE ATTACK WITH INTERMEDIATE VALUES AROUND THE KEY

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

loopy BP on bit tables

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on bit tables

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on byte tables

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

s
ra

te

tree BP on 16-bit tables

1 trace

2 traces

3 traces

4 traces

5 traces

6 traces

7 traces

8 traces

7 traces

10 traces

Figure 5.7: Success rates in the four experiments.

5.4.2 Results

To compare with the results of the previous experiment with the factor graph covering all the
intermediate states, Table B.28 shows the success rates of recovering the 1000 a�ack keys when
applying the smaller factor graph in the belief propagation procedure on bit tables marginal-
ized from the predictions of byte templates. Table B.29 shows the results of the U-Os experi-
ment directly on probability tables obtained from byte fragment templates. Note that without
the marginalization step, it is more di�cult to use probability tables from H/L templates and
E/O templates within a factor graph. �erefore, we have to stick to either version in an ex-
periment, and here I show results with H/L templates. A�er 100 000 combinations of key
fragments enumerated, this a�ack achieved 100% success rates with multiple traces. Even
with single a�ack traces, the success rate is 99.2%.

To observe whether a larger fragment size in template building helps a�ackers to collect more
information, we decided to repeat the experiment by cu�ing the 32-bit words into 16-bit frag-

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 103

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on byte tables

1 trace

2 traces

3 traces

4 traces

5 traces

6 traces

7 traces

8 traces

9 traces

10 traces

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on 16-bit tables

Figure 5.8: Success rates on Ascon-128 with optimization option -O3, for both 8 and 16-bit
fragments (See Table B.32 and B.33 for the actual values). See Figure 5.7 for comparison against
the -Os version.

ments instead of bytes for template building. Table B.30 shows the results of quality evaluation
on the templates for the H/L fragments of the key and the last two lanes of β11 in Finaliza-
tion, while Table B.31 also shows the results of the experiment directly on tables from these
16-bit fragment templates. We can see that the success rates are even higher than those with
templates for bytes, given the same number of traces and the same number of searched com-
binations. For be�er comparison, Figure 5.7 depicts the results for the success rates with the
four di�erent se�ings (loopy BP on bit tables, tree BP on bit tables, tree BP on 8-bit tables, and
tree BP on 16-bit table) in the U-Os experiment.

5.5 Compiler optimization levels

In my previous experiments to a�ack Keccak, I had le� the gcc optimization level to option
-Os (optimized for space), as it was the so�ware default se�ing of both the 8-bit board de-
signed by Choudary [52, Section 2.2.2] and the ChipWhisperer platform. When I submi�ed
the CARDIS paper about the experiments of Keccak implemented on a 32-bit device, one of
the reviewers suggested we should also look into how the optimization level and goal can
a�ect the template pro�ling. �ey indicated that it could be more di�cult if we had either
compiled the C codes with level -O3 (optimized for time) or used another manually optimized
assembly implementation from the same package.

�erefore, in addition to the previous U-Os experiment on Ascon AEAD, I decided to repeat
the experiment with gcc option -O3 (optimize for time), resulting in the U-O3 recordings, to
see whether the compiler’s code generation can signi�cantly a�ect the performance of our at-
tack. Note that the di�erent optimization options will not a�ect the execution of Weatherley’s

104 5.5. COMPILER OPTIMIZATION LEVELS

2470 2480 2490 2500 2510 2520 2530

clock cycle

0.0

0.2

0.4

0.6

0.8

1.0
ΣfR

2
f

R2
0

R2
1

R2
2

R2
3

(a) U-Os experiment

2420 2430 2440 2450 2460 2470 2480

clock cycle

0.0

0.2

0.4

0.6

0.8

1.0
ΣfR

2
f

R2
0

R2
1

R2
2

R2
3

(b) U-O3 experiment

Figure 5.9: �e ΣfR
2
f results and the R2

f values for each byte fragment (f = 0, 1, 2, 3) of the
high word of L1 in K

Ascon permutation [130, ASCON/internal-ascon-armv7m.S], since its source code is man-
ually optimized assembly code, which bypasses the optimizer. However, they a�ect the AEAD
code generated around the permutation, such as XORing the key K or calculating the tag T ,
as these operations are wri�en in C. �us, here I focused only on the tree-BP experiment, as
the middle rounds of the permutation will not be a�ected.

Figure 5.8 shows the same information as Figure 5.7, but using compiler option -O3 instead of
-Os. �e performance of the a�ack is worse: it needed 10 a�ack traces for each key to reach
near 100% success rate using 16-bit fragments (Table B.33), and achieved only 73.4% success
rate with 8-bit fragments (Table B.32), rather than being able to reach nearly 100% success rate
from a single a�ack trace in the U-Os experiment.

A look into both the C source code of Weatherley’s unmasked implementation and the as-
sembler listing produced by the compiler (with option -Wa,-adhlns=file.lst), revealed the
reason. Although the handwri�en assembler code for the permutation uses 32-bit registers,
the surrounding C code XORs the key K with the state of the duplex construct. For example,
it XORs two lanes of Finalization output (β11) with K , to generate the tag T , using the macro
lw xor block 2 src() in [130, ASCON/internal-util.h], which is a loop processing indi-
vidual bytes. When compiled to optimize code space (i.e., minimize the size of the executable)
with gcc option -Os, the resulting ARMv7-M assembler code looks pre�y exactly like the
source code suggests, i.e., a loop over 16 bytes, which loads one byte from K and one from
β11 into the 32-bit registers, XORs them, and stores one byte of T per iteration. In contrast, if
we instead ask the compiler to optimize for time (-O3), it not only unrolls that loop, but also
converts it into a sequence of just four repetitions of the operations for loading, XORing, and
storing 32-bit words. In other words, the optimizer converted here an 8-bit implementation of
the key XOR operation into a 32-bit implementation.

We can also observe this di�erence from the recorded traces. Figure 5.9a and 5.9b show the
results of the interesting clock-cycle detection for the high word of the �rst lane (L1) of K
during the calculation of T , when the code was compiled with options -Os and -O3, respec-
tively. For U-Os, the peaks of theR2

f values of each 8-bit fragment are located in four di�erent
clock cycles, indicating that their operations were not executed simultaneously, whereas for
U-O3, the peaks are located in the same clock cycle.

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 105

5.6 Attacking a masked version

A�er my experiments on the unprotected Ascon implementation above, I also tried to apply
the combination of fragment template a�ack, belief propagation, and key enumeration on an
implementation with masking.

5.6.1 Attack strategy

�e target masked implementation of Ascon AEAD was from the same package by Weather-
ley [130, ASCON masked/]. �is o�ers a C implementation of the permutation and protects the
inputs (key, nonce, plaintext, etc.) with �rst-order Boolean masking [75], separating each of
these values into two shares: one is the mask, varying per encryption, provided by a pseudo-
random generator based on ChaCha [132], and therefore the other share is the XOR of the input
value and the mask. �roughout the encryption process, the intermediate values all remain
likewise split into two shares, to randomize all the register values during execution. Besides,
compared to the unmasked (naive) version, this implementation also avoids some problems
that may help side-channel a�acks on the former. For example, it no longer XORs 8-bit values
when calculating the tag T , and the two shares of the key are only sliced once, rather than
three times.

Bronchain and Standaert [88] a�acked Boolean-masked implementations of AES and Clyde by
extending the factor graph for the unmasked algorithm with nodes representing the original
values connected to their shares in the masked version via a f⊕ factor. Following this idea,
I introduce a multi-trace a�ack derived from the previous tree-shaped one, where the factor
graph (Figure 5.10) will also cover the two shares of the original target states. Similar to the
se�ing of the previous unmasked version, I use the empty associated data A and �x the size
of the plaintext P to seven bytes. In the pro�ling stage, I assume that a�ackers can access all
the input and output values (K , N , P , C , and T) as well as the seed of the pseudo-random
generator, so they can produce fragment templates for the key, its two shares, and all the other
intermediate states in the factor graph. In the a�ack stage, I only use the probability tables
obtained from the templates, and the known T values, to perform belief propagation and key
enumeration, without knowledge of the seed.

Note that Figure 5.10 re�ects the mathematical relations among the original values and their
shares, not the actual steps in this masked implementation to calculate T . �e implementation
�rst calculates TA := KA⊕βA

11, T B := KB⊕βB
11, and �nally T := TA⊕T B. �erefore, it is not

possible to build templates for the fragments of β11 since this value never appears. Instead,
I assign them a probability table with a uniform distribution (i.e., no information update).
Besides, the assumption was that the a�acker knows T , so we do not need the templates or
probability tables of TA and T B, given that they will not a�ect the belief propagation following
the factor graph in Figure 5.10.

106 5.6. ATTACKING A MASKED VERSION

KA βB
11KB βA

11

f⊕ β11 f⊕ T B

TAf⊕Tf⊕Kfmext

Figure 5.10: Factor graph for the M-Os experiment. (Each variable node also connects to an
observation factor node, which is omi�ed in this graph.)

Table 5.4: Numbers of interesting clock cycle detected for the M-Os experiment.
target state K KA KB Fin. βA

11 Fin. βB
11 TA T B

Lane 1
high/low 21 26 113 109 161 157 41 42 46 40 29 26 33 33
even/odd 16 28 113 106 213 207 36 33 28 39 26 13 26 26

union 37 144 240 50 58 34 38

Lane 2
high/low 20 26 107 109 203 174 36 36 44 43 35 36 30 36
even/odd 30 33 114 116 230 227 17 41 16 39 15 37 19 30

union 35 139 259 49 51 45 43

Table 5.5: �ality evaluation of fragment templates for the M-Os experiment (10 PPC).
byte

Lane 1 Lane 2
even word odd word even word odd word

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

K
SR 0.006 0.004 0.012 0.016 0.013 0.018 0.020 0.011 0.003 0.006 0.012 0.013 0.016 0.016 0.013 0.021
GE 94.191 93.927 95.611 96.468 86.433 89.916 80.927 89.966 98.839 98.854 92.056 89.635 95.598 96.537 88.315 77.098

KA SR 0.179 0.112 0.245 0.206 0.115 0.108 0.129 0.162 0.177 0.099 0.246 0.149 0.142 0.102 0.173 0.214
GE 12.832 21.155 8.404 10.507 21.120 21.548 19.525 15.095 12.263 26.006 9.219 16.535 18.674 19.911 11.733 10.043

KB SR 0.308 0.400 0.440 0.511 0.354 0.535 0.340 0.598 0.330 0.390 0.419 0.509 0.313 0.431 0.307 0.622
GE 6.428 4.157 3.978 2.619 4.847 2.563 5.265 2.155 6.159 3.344 4.002 2.688 5.710 4.301 6.615 2.186

Fin. βA
11

SR 0.014 0.014 0.021 0.017 0.013 0.016 0.013 0.026 0.017 0.011 0.016 0.019 0.011 0.015 0.014 0.023
GE 83.441 89.578 64.616 59.874 87.379 91.359 66.304 58.571 84.304 90.400 76.079 67.148 92.852 93.192 89.379 64.534

Fin. βB
11

SR 0.007 0.010 0.014 0.015 0.016 0.016 0.018 0.019 0.014 0.011 0.007 0.007 0.011 0.007 0.010 0.020
GE 90.673 95.790 73.321 75.462 85.796 88.584 69.418 57.238 95.561 103.957 101.897 88.470 80.066 83.126 70.817 55.938

TA SR 0.014 0.008 0.022 0.015 0.015 0.008 0.009 0.008 0.003 0.009 0.010 0.020 0.015 0.023 0.030 0.029
GE 87.089 92.368 63.086 61.486 98.785 96.537 99.952 72.166 98.220 97.729 104.405 71.752 78.881 83.457 56.376 43.318

T B SR 0.007 0.012 0.011 0.016 0.011 0.014 0.014 0.013 0.004 0.011 0.007 0.012 0.018 0.008 0.027 0.017
GE 76.986 87.305 83.276 64.351 93.276 94.675 90.775 78.822 101.118 96.928 98.279 89.296 80.710 85.440 63.543 70.187

5.6.2 Experiments

For the experimental setup, most of the environment and parameters stay the same as with
the experiments on the unmasked versions (U-Os and U-O3), except for the larger number
of a�ack traces recorded, to have 100 encryptions each for the same key. As I still use 1000
di�erent keys, eventually I recorded 100 000 traces in total for the a�ack set. I will later refer
to this recording and experiment as M-Os.

Table 5.4 shows the number of interesting clock cycles detected in the M-Os experiment, while
Table 5.5 shows the results of the quality evaluation of the fragment templates with 10 points
per clock cycle. Here the fragment templates are for sliced registers (E/O words) since that

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 107

Table 5.6: Success rates of key recovery in the experiments in the M-Os experiment.
#Traces

#Combinations searched
1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105 2× 105 5× 105 106

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.005 0.011 0.018
10 0.001 0.001 0.003 0.008 0.010 0.019 0.022 0.031 0.055 0.070 0.087 0.114 0.159 0.201 0.252 0.309 0.371 0.427 0.476
20 0.016 0.024 0.053 0.076 0.104 0.148 0.199 0.248 0.310 0.360 0.419 0.504 0.562 0.614 0.698 0.741 0.780 0.835 0.867
50 0.063 0.101 0.160 0.218 0.276 0.365 0.423 0.503 0.580 0.642 0.703 0.759 0.798 0.833 0.874 0.901 0.915 0.943 0.966
100 0.092 0.142 0.216 0.283 0.369 0.456 0.525 0.595 0.661 0.709 0.755 0.816 0.845 0.876 0.902 0.931 0.951 0.970 0.976

100 101 102 103 104 105 106

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

1 trace

2 traces

5 traces

10 traces

20 traces

50 traces

100 traces

Figure 5.11: Success rates of a�ack on the masked implementation of Ascon-128 encryption.

is how the implementation represents most of my target states. We can see that the masking
does protect the key K to some extent, as fewer interesting clock cycles (37 and 35 for the
two lanes, respectively) were detected compared to the unmasked experiments (see Table 5.1,
β−1 in Init.), leading to lower quality templates as evident from the higher guessing-entropy
values for these fragments. However, for the two shares KA and KB, I still detected a large
number of interesting clock cycles (144 and 139 for two lanes of KA, 240 and 259 for KB),
and therefore the quality of their templates is still promising once a�ackers can calculate the
random numbers for masking in the pro�ling stage. Note that there are more interesting clock
cycles for KB, the random mask, than for KA, because for the former we can also detect leaks
from where the masks are generated.

For the belief propagation and key enumeration, Figure 5.11 and Table 5.6 show the key-
recovery success rates for di�erent numbers of a�ack traces, and key enumeration of up to
1 000 000 combinations. With 10 traces using the same key, the success rate was 47.6%, while
with 100 traces, it was 97.6%. However, single-trace a�acks did not succeed in this experiment.

108 5.7. SIZE OF FRAGMENTS FOR TEMPLATE PROFILING

5.7 Size of fragments for template pro�ling

In the experiments on Keccak and Ascon, I provided some comparisons between the results
from di�erent sizes of fragments. From these results, it seems like we can achieve a slightly
be�er success rate when pro�ling templates with larger fragments, but it is not always worth
doing so since the template recovery will be slower. In my a�acks on Keccak, I recorded traces
long enough to cover multiple rounds in Keccak-f permutations, and then collect informa-
tion from templates for hundreds of fragments. In this case, the a�ack procedure with 16-bit
fragments became even longer.

On the other hand, given the large number of target fragments and the complicated mathemat-
ical relations between them, it is more feasible to use a bitwise belief-propagation procedure
with probability table marginalization, which may further narrow down the advantage of us-
ing 16-bit or even larger fragments.

Meanwhile, in the case of a�acking Ascon with tree-shaped belief propagation and key enu-
meration (Section 5.4), the 16-bit option is still manageable with the smaller factor graph and
no marginalization applies in the procedure. �erefore, I recommend using 16-bit fragments in
cases with limited numbers of target values and only simple mathematical relations between
these values, such as XOR.

However, it is also possible to choose di�erent fragment sizes in template pro�ling. Based
on my data for experiments with Keccak implemented on the 32-bit device, there is a not
yet published report about follow-up research by Spyropoulos [133] that applied 11-11-10-bit
fragments and analyzed how this option could be be�er than using byte fragments. �erefore,
I believe that the choice of fragment size in template pro�ling is �exible, depending on the
goals of a�ackers and how many computing resources are available.

5.8 Discussion

On the CW-Lite 32-bit device, I have shown that we can recover the key used in an unmasked
Ascon AEAD implementation by a procedure involving fragment template a�ack, belief prop-
agation, and key enumeration. For the belief propagation, I �rst used a loopy factor graph
covering all the intermediate states in the encryption procedure with marginalized tables. �e
results strongly indicate that the quadruple use of the key in Ascon AEAD mode increases the
exposure of the key in pro�led side-channel a�acks, although this is cryptographically useful
to strengthen the Initialization and Finalization phases. �e success rate was much lower if
we observed only clock cycles from any one of these four applications of the key (Table 5.3).
�at higher exposure of the key, which in the loopy factor graph is directly connected to four
di�erent locations (Figure 5.3), enables the belief propagation algorithm to pass messages be-
tween Initialization and Finalization. Previous a�ack simulations by Luo et al. [129] did not

CHAPTER 5. FRAGMENT TEMPLATE ATTACK ON ASCON 109

exploit this higher key exposure and used only the mathematical relations around the �rst use
of the key, at the start of Initialization.

As Weatherley’s Ascon permutation is already manually optimized for the ARMv7-M Archi-
tecture, I had only built templates with low quality for the intermediate states in the middle
rounds of the permutation. �erefore, we can use the loop-free alternative factor graph only
covering the single XOR operation calculating the tag, to avoid the information loss caused by
table marginalization.

�e successful single-trace a�ack (U-Os) bene�ted from some remaining 8-bit instructions in
an open-source 32-bit adaption of the algorithm. Yet, even once these were fully converted to
32-bit instructions (U-O3), we still could recover the key used in this unmasked Ascon AEAD
implementation, by belief propagation and key enumeration, with high success rates, from
no more than 10 traces. From these experiments, I noticed that the optimization level of the
implementation may play an important role when pro�ling templates.

�e successful multi-trace a�ack on the more carefully wri�en �rst-order Boolean-masked
Ascon AEAD implementation demonstrates how such protection, originally designed against
CPA/DPA-style a�acks, can be overcome by an appropriately designed template a�ack. Con-
sidering the similarity between Ascon-128 and Ascon-128a, I believe that this a�ack proce-
dure should also apply to both unmasked and masked Ascon-128a implementations with only
minor modi�cations.

An additional outstanding challenge remains to recover complete Ascon hashing inputs from
a single trace, as was accomplished in my previous experiments for SHA-3 (Keccak). �is will
likely require be�er templates for the internal states of the Ascon permutation. �e templates
for these (e.g., Init. α6 in Table 5.2 and Figure 5.5) were less e�ective than those for the Keccak
permutation in Figure 4.5. However, even with the very similar hardware se�ing I used, such
direct comparisons are still complicated by the fact that the Keccak and Ascon target imple-
mentations came from di�erent authors and had di�erent programming styles. �e former
was entirely portable C code that le� the 64-bit to 32-bit conversion to the compiler, whereas
the la�er o�ered a handcra�ed assembler implementation of the permutation. �at, but also
the fact that Ascon’s permutation is signi�cantly simpler, for example, it lacks an equivalent
of Keccak’s complex θ step, overall appears to have resulted in less information leaking from
the fewer instructions needed by Ascon to process its intermediate values.

I hope that this a�ack methodology can serve as a benchmark for the design of stronger mask-
ing protections, and other implementation guidance, speci�cally for protecting against pro-
�led a�acks on so�ware implementations of Ascon.

110 5.8. DISCUSSION

Chapter 6

Conclusion

Even before I started my Ph.D. program, I believed that template a�acks are the most powerful
category of side-channel a�acks, and Choudary et al. have shown that it is promising to use
LDA-based template a�acks to recover the actual values of a state (full-state recovery) rather
than merely extract functions such as HW values of this state. �eir research was targeting
individual instructions rather than entire algorithms, relying on access to more than one a�ack
trace.

�e �rst main contribution of this thesis is that I have successfully extended their approach
from a�acking a handful of instructions to targeting a complete permutation-based crypto-
graphic algorithm. In Chapter 3, from my experiments targeting the SHA3-512 implementa-
tion on the 8-bit device, I �rst built good templates for full-state recovery on target interme-
diate bytes in Keccak-f , and the results have shown that once being used along with algo-
rithmic tools such as secret enumeration or belief propagation, Choudary et al.’s method of
linear-regression-and-LDA-based templates can a�ack the newly standardized SHA-3 family.
My successful single-trace a�ack demonstrates that LDA-based templates can be even more
powerful when a�acking a cryptographic algorithm compared to a single target value, given
that the multiple instructions on the intermediate values in such an algorithm can leak more
information that can be detected and exploited in template pro�ling.

Secondly, my fragment template a�ack experiments have demonstrated that, by cu�ing a 32-
bit intermediate value into smaller pieces, it is possible to apply a template a�ack to achieve
full-state recovery with independently built templates for these pieces. When this method was
used to a�ack the Keccak-f [1600] implementation on the 32-bit device, the quality of these
fragment templates was good enough that their predictions could later be used in bitwise
belief propagation to recover the full arbitrary-length SHA-3 or SHAKE inputs with very high
success rates. �is clearly shows that this LDA technique is very helpful when we perform
template a�acks targeting devices with registers larger than bytes.

When it comes to other possible targets of the fragment template a�ack, I have also shown
that it can recover the key used in an unmasked Ascon-128 implementation with belief propa-

111

112 6.1. CHALLENGES

gation, with factor graphs covering either full encryptions of Ascon-128 or solely XOR opera-
tions involving the key, tag and the output in Finalization, with multiple or even single traces.
I also showed how these fragment templates can potentially be used to a�ack a masked As-
con-128 implementation.

Impacts of my research When it comes to the impact on future SCA techniques, I believe
my fragment template a�ack has already encouraged other researchers to consider a full-state
style recovery on 32-bit devices as a practical a�ack scenario. For example, recently in 2023,
Cassiers et al. [134] quoted my fragment template a�ack method as the �rst successful a�empt
to a�ack a 32-bit implementation of Keccak by full-state recovery instead of by HW values
and then tried to directly pro�le templates for 32-bit values to a�ack ISAP-A [135], another
Ascon application for re-keying. �eir accelerated algorithm makes the pro�ling and a�ack
procedure more feasible for 32-bit values. However, their belief propagation procedure directly
used the probability tables predicted by the 32-bit templates, leading to larger memory usage
(1.13 TiB of RAM) and longer run time (2.7 hours on 2.0 GHz CPU, single-threaded). Although
direct comparison is not accurate, my experiments with 8-bit or 16-bit fragments normally
used no more than a few GB of RAM and completed within a few seconds or minutes, even with
a Python implementation. �erefore, I expect that my fragment template a�ack technique will
become particularly a concern for fast a�acks. However, no ma�er which approach is applied,
full-state recovery template a�acks on 32-bit devices are becoming more feasible.

As for the impacts on the security of Keccak and Ascon, my research is a reminder of the
threats that template a�acks may pose to such newly standardized permutation-based crypto-
graphic algorithms. Compared to the simulated a�acks on Keccak by Kannwischer et al. [89]
and Ascon by Luo et al. [129], my a�acks were on real power traces. �is provides more con-
vincing evidence of the power and feasibility of template a�acks. While their simulation work
was mainly focused on 8-bit or 16-bit implementations, my fragment template a�ack was the
�rst a�empt to successfully a�ack 32-bit implementations of Keccak’s sponge function and
Ascon AEAD. From these a�acks, we should take away how e�ectively template a�acks can
extract information from unprotected permutation-based cryptographic applications, even on
32-bit devices.

6.1 Challenges

However, real-world applications of my fragment template a�ack may still face challenges,
such as lack of knowledge about the target source code, alignment issues outside of a labo-
ratory environment, or the portability of template a�acks. Besides, there are a few possible
improvements to my experiment setup.

CHAPTER 6. CONCLUSION 113

Knowledge of source code When applying a fragment template a�ack on di�erent appli-
cations, we may need a di�erent level of knowledge about the implementations for a successful
a�ack. It is possible that a�ackers only need to identify the target algorithm, or they need the
knowledge of the source code or even machine instructions, to predict intermediate values,
construct factor graph, and successfully perform a template a�ack.

My target Keccak implementation was entirely portable C code that closely follows the o�cial
Keccak document [15] and leaves the 64-bit to 32-bit conversion to the compiler, where the
intermediate values stay in the original order without any bit interleaving (mentioned in Sec-
tion 5.3.2). �is enables a�ackers to pro�le templates using only the knowledge of the Keccak
algorithm, but no lower-level implementation details, in the pro�ling stage: once they obtain
the input state for the pro�ling traces, they can predict all the intermediate values they need
for the F9 linear-regression model used in interesting-clock-cycle detection, LDA projection,
and pro�ling templates.

On the other hand, the unmasked Ascon-128 target was based on a handcra�ed assembler
implementation of the Ascon permutation with bit interleaving. However, even with that, the
intermediate values in this implementation are still deterministic once we provide the same
K , N , A, and P for an Ascon-128 encryption. �is means that a�ackers can still predict the
intermediate values if they know whether bit interleaving was applied to their target imple-
mentations. �ey can observe such information from the C code or the assembly code, or
may just guess it from other implementations. Meanwhile, I demonstrated how a�ackers can
consider both situations (bit-interleaved or not) at the same time, by detecting the interest-
ing clock cycles with both the H/L and E/O bit groupings. In this case, a�ackers can rely on
only knowledge of the Ascon-128 algorithm, without knowing the source or assembly code
(to a�ack, e.g., Weatherley’s unmasked implementation).

However, when it comes to Weatherley’s masked Ascon implementation, the a�ack became
more complicated. For any cryptographic implementations with masking, the intermediate
values will be randomized. �is makes it very di�cult for a�ackers to perform template a�acks
with only knowledge of the algorithm. For example, I need to access the C code to observe
information on which pseudo-random generator is used to generate the masks, and whether it
�rst bit interleaves the key and then separates them into shares, or does it the other way round.
Without such information from the C code, I might have failed to predict the intermediate
values used for interesting-clock-cycle detection or template pro�ling. Besides, it is not always
possible to access the seeds used in the pseudo-random generator during the pro�ling phase
in a real-world scenario.

For my experiments in this thesis, I did not rely on knowledge of the targeted assembly code
since I located the interesting clock cycles by using statistical methods (i.e., R2 values of from
multiple linear regression with theF9 model). I only used it to understand the impact of using
di�erent compiler optimization options (see Section 5.5). In summary, I believe that a�ackers
will need only the knowledge of the algorithm or pseudo code of their target applications,

114 6.1. CHALLENGES

when using my fragment template a�ack on unprotected implementations with deterministic
intermediate values, but they will likely bene�t from the knowledge of source code to a�ack
a masked implementation.

Improvement for measurement and trace processing Another remaining issue is that
even in my laboratory-controlled environment, the se�ing (see Section 2.6.1) for trace record-
ing is possibly suboptimal. In my experiments on the 32-bit device, I recorded traces with the
highest sampling rate of the oscilloscope and then downsampled the traces by summing up
consecutive raw samples, which is equivalent to using a digital box �lter [136] for low-pass
�ltering. Similarly, for my experiments on Choudary’s 8-bit device, I also used a box �lter for
trace processing. However, using an analog lower-pass �lter or digital �ltering alternatives
with other window functions, such as Lanczos �ltering [137], etc. [138], may provide a be�er
result. It deserves a careful survey on how the choice of the low-pass �lter a�ects my fragment
template a�ack.

Meanwhile, the current analog high-pass �lter in my measurement setup for experiments on
the CW-Lite board may also a�ect the a�acks. �e time constant of this high-pass �lter is
0.5 µs, equivalent to the time for 2.5 clock cycles of my target device. With this relatively long
time constant, any changes in the voltage originally within a clock cycle could be prolonged
to a few later clock cycles, and this may lead to some samples being a�ected by variation from
preceding clock cycles. �is may a�ect the template a�ack in a more complicated way than
we expected. On one hand, this could bring additional noise to our target clock cycles, but
on the other hand, this introduction of correlation could help in template pro�ling since both
signal and noise play an important role in the LDA procedure. One phenomenon I observed
from my experiments with this high-pass �lter was that we may pro�le be�er templates by
also selecting some neighbor clock cycles to the originally selected interesting clock cycles.
Figure B.3 shows the results when I repeated the a�ack on the Ascon U-Os data set, using tem-
plates pro�led with interesting clock cycle sets expanded by also including the three neighbor
clock cycles, and Figure B.4 shows their single-trace results comparing against the original
a�ack (Figure 5.7). �is may indicate that some of the signals we target may be a�ected by
the neighbor clock cycles, but this phenomenon should be carefully compared with future
experiments.

To avoid this problem, it is also possible to choose a high-pass �lter with a shorter time con-
stant, but that may lead to more distortion of the shape of the recorded traces. In my opinion, if
we do not want to complicate the situation by using any high-pass �lter, the ultimate solution
is to record the power consumption from the GND side (e.g., on Choudary’s board) instead of
from the VDD side (e.g., on CW-Lite board) of the circuit, or use a broadband transformer or
di�erential ampli�er.

Besides, there is a problem with my interesting-clock-cycle detection. �e threshold for this
procedure did not stay the same in each of my experiments, as I tried to select as many PoI

CHAPTER 6. CONCLUSION 115

as possible given the computing resources available. It remains an open question whether we
can set a more meaningful threshold for R2, such as the widely-recognized 4.5 threshold for
Welch’s t-test used in leakage detection [139].

From laboratory environment to real-world scenarios Although my experiments were
more realistic than only using simulated pro�ling a�acks, they were still in a laboratory-
controlled environment. When applying fragment template a�ack techniques in a more real-
world scenario, we may need to overcome some challenges that previous SCA techniques also
faced.

�e �rst, and maybe the most common one, would be the alignment issue. In my measure-
ment se�ing, I used phase-locked clock sources for my target device and the oscilloscope, but
we cannot always supply an external clock source to the target device to synchronize both.
Given the length of the recorded traces, la�er samples will become less aligned. However, this
problem can be �xed by a few existing algorithms (e.g., elastic alignment introduced by van
Woudenberg et al. [140]), to realign the traces, with possibly compromised template quality.
Other causes of misalignment include unexpected clock cycles that are unrelated to the target
algorithms, such as interrupts from the operating system or dummy instructions implemented
as a hiding countermeasure. In these situations, we may need to use preprocessing steps to
remove samples from the clock cycles not related to the target algorithms before we can pro�le
templates.

Another challenge we may face is the portability [141] of fragment templates. Templates can
be very speci�c to the pro�led target hardware and can also be sensitive to other variables
(e.g., temperature). �erefore, we do not usually expect that templates will remain valid when
we implement the same so�ware on hardware devices with di�erent speci�cations. However,
templates can stay e�ective when they are applied to traces recorded from other devices with
the same speci�cation [142] or the same device but in a di�erent environment [141]. My
experiments with fragment templates were still using the same device for pro�ling and a�ack,
and how well my templates can be used to extract side-channel information from the traces
from other devices with the same speci�cation is still unknown. �is weakness could reduce
the feasibility of my fragment template a�ack.

In 2018, Choudary and Kuhn [142] demonstrated using LDA-based templates pro�led with
traces from one device to extract information from traces from another device. �ey found
that the most signi�cant cause of variation from the di�erent devices is the DC component,
but LDA dimensionality reduction can to some extent eliminate this and other di�erences.
�ere are also some other possible variations, such as phase shi� or di�erent ampli�cation,
and these two types of mismatches can be corrected by preprocessing a�ack traces with re-
alignment or renormalization preprocessing, respectively [141]. On the other hand, some pre-
vious a�empts [143, 144] were based on pro�ling templates with traces collected from more
than one copy of the target device, which avoids templates over��ing a single device. �ese

116 6.2. FUTURE RESEARCH DIRECTIONS

techniques can be applied to my fragment template a�ack, but I expect that either the success
rate of the a�ack will be compromised, or we may need more traces for a�acks on Ascon
AEAD and require templates for intermediate values of more than four rounds in Keccak-f
permutation.

6.2 Future research directions

In addition to the previously mentioned technical improvements on my fragment template
a�ack, this section discusses some high-level directions that fragment templates may have an
impact on.

Attacks beyond permutation-based cryptography With either a fragment template at-
tack or Cassiers et al.’s method to directly pro�le templates for 32-bit values [134], it is no
doubt that full-state recovery technique can pose a serious threat to permutation-based crypto-
graphic applications. However, these a�acks were based on not only the full-state information
provided by templates, but also on the fact that it is not very di�cult to perform belief propa-
gation following the mathematical structures of these applications. It would be a question of
whether the full-state information that templates can provide is enough once we a�ack cryp-
tographic applications such as ECC or other asymmetric algorithms, where the factor graphs
could be far more complicated than those for permutation-based ciphers.

Attacks on registers larger than 32 bits We may expect that the fragment template a�ack
technique can also work on devices with registers larger than 32 bits, with some compromised
quality of templates, but how much the quality will drop remains unknown. I believe that it
could be a good starting point to survey the situation where Keccak and Ascon are imple-
mented on 64-bit devices, as the basic units of both these permutations are 64-bit lanes. �en,
how the fragment template a�ack can be used to a�ack applications on FPGA boards could
be another interesting issue, given that these boards can use operations with even more bits
changing during the same clock cycles.

Attacks on other masked implementations In this thesis, I have already analyzed the
case of Weatherley’s �rst-order Boolean masked Ascon implementation. However, it is still
unclear whether my fragment template a�ack can easily apply to a�ack Ascon and Keccak
implementations with higher-order masking. With Bertoni et al.’s design for the non-linear
function suitable for this countermeasure (see Section 1.4), we can expect that there would
be more higher-order Boolean masked implementations of these permutation-based crypto-
graphic algorithms compared to previous algorithms such as AES. For example, the o�cial C
implementations of Ascon already provide one version supporting up to third-order masking
(i.e., four shares) [145]. �erefore, further surveys on this issue would be important.

CHAPTER 6. CONCLUSION 117

Attacks via more than one side channel Some previous surveys [146, 147] show that at-
tackers can integrate recordings from more than one side channel to extract more information.
For example, Standaert et al. [147] concatenated both traces recorded from power consump-
tion and EM signals into one hybrid trace and then applied an LDA-based template a�ack. It
remains an interesting question whether it will signi�cantly help to improve the quality of
templates once we use such hybrid traces in a fragment template a�ack. Other options could
involve power traces recorded from both the GND and VDD sides, or from multiple GND pins.

6.3 Review

My experiments have provided evidence of how a combination of full-state template a�ack,
belief propagation, and enumeration can pose a threat to the implementations of permutation-
based cryptographic algorithms. Even if these applications are implemented on 32-bit devices
with some extent of countermeasure, we can still apply the fragment template a�ack to extract
some full-state information rather than only the HW values of the target state. Although this
technique has only been evaluated in laboratory-controlled environments and could face some
challenges in real-world scenarios, I still argue that we should put more a�ention to the po-
tential threats from template a�acks in addition to those from CPA or DPA-style non-pro�ling
a�acks when we standardize new cryptographic applications and develop their proper hard-
ware implementations even on 32-bit devices.

118 6.3. REVIEW

Bibliography

[1] “Keccak team �gures.” [Online]. Available: h�ps://keccak.team/�gures.html

[2] “National Institute of Standards and Technology (NIST).” [Online]. Available: h�ps:
//www.nist.gov/

[3] “Submission requirements and evaluation criteria for the post-quantum cryptography
standardization process,” National Institute of Standards and Technology, December
2016. [Online]. Available: h�ps://csrc.nist.gov/CSRC/media/Projects/Post-�antum-
Cryptography/documents/call-for-proposals-�nal-dec-2016.pdf

[4] P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”
in Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp.
124–134. [Online]. Available: h�ps://doi.org/10.1109/SFCS.1994.365700

[5] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic curves,”
2003. [Online]. Available: h�ps://arxiv.org/abs/quant-ph/0301141

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978. [Online]. Available: h�ps://doi.org/10.1145/359340.359342

[7] W. Di�e and M. Hellman, “New directions in cryptography,” IEEE Transactions

on Information �eory, vol. 22, no. 6, pp. 644–654, 1976. [Online]. Available:
h�ps://doi.org/10.1109/TIT.1976.1055638

[8] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology —

CRYPTO ’85 Proceedings, H. C. Williams, Ed. Springer, Berlin, Heidelberg, 1986, pp.
417–426. [Online]. Available: h�ps://doi.org/10.1007/3-540-39799-X 31

[9] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48, no. 177,
pp. 203–209, 1987.

[10] “Submission requirements and evaluation criteria for the lightweight cryptog-
raphy standardization process,” National Institute of Standards and Technol-
ogy. [Online]. Available: h�ps://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/�nal-lwc-submission-requirements-august2018.pdf

119

https://keccak.team/figures.html
https://www.nist.gov/
https://www.nist.gov/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1109/SFCS.1994.365700
https://arxiv.org/abs/quant-ph/0301141
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/3-540-39799-X_31
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

120 BIBLIOGRAPHY

[11] V. D. Hunt, A. Puglia, and M. Puglia, RFID: a guide to radio frequency identi�cation. John
Wiley & Sons, 2007.

[12] P. C. Kocher, “Timing a�acks on implementations of Di�e–Hellman, RSA, DSS, and
other systems,” in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed. Springer,
Berlin, Heidelberg, 1996, pp. 104–113. [Online]. Available: h�ps://doi.org/10.1007/3-
540-68697-5 9

[13] P. Kocher, J. Ja�e, and B. Jun, “Di�erential power analysis,” in Advances in Cryptology —

CRYPTO’ 99, M. Wiener, Ed. Springer, Berlin, Heidelberg, 1999, pp. 388–397. [Online].
Available: h�ps://doi.org/10.1007/3-540-48405-1 25

[14] F.-X. Standaert, Introduction to Side-Channel A�acks. Boston, MA: Springer US, 2010,
pp. 27–42. [Online]. Available: h�ps://doi.org/10.1007/978-0-387-71829-3 2

[15] SHA-3 standard: permutation-based hash and extendable-output functions, NIST, Aug.
2015, FIPS PUB 202. [Online]. Available: h�ps://doi.org/10.6028/NIST.FIPS.202

[16] E. Biham and A. Shamir, “Di�erential cryptanalysis of DES-like cryptosystems,” Journal
of Cryptology, vol. 4, pp. 3–72, 1991. [Online]. Available: h�ps://doi.org/10.1007/
BF00630563

[17] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances in Cryptology

— EUROCRYPT ’93, T. Helleseth, Ed. Springer Berlin Heidelberg, 1994, pp. 386–397.
[Online]. Available: h�ps://doi.org/10.1007/3-540-48285-7 33

[18] G. Bard, Algebraic cryptanalysis. Springer Science & Business Media, 2009.

[19] T. Messerges, E. Dabbish, and R. Sloan, “Examining smart-card security under the
threat of power analysis a�acks,” IEEE Transactions on Computers, vol. 51, no. 5, pp.
541–552, 2002. [Online]. Available: h�ps://doi.org/10.1109/TC.2002.1004593

[20] S. Mangard, E. Oswald, and T. Popp, Power analysis a�acks: Revealing the secrets of smart

cards. Springer Science & Business Media, 2008, vol. 31.

[21] K. Gandol�, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete results,” in
Cryptographic Hardware and Embedded Systems – CHES 2001, Ç. K. Koç, D. Naccache,
and C. Paar, Eds. Springer, Berlin, Heidelberg, 2001, pp. 251–261. [Online]. Available:
h�ps://doi.org/10.1007/3-540-44709-1 21

[22] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “�e EM side—channel(s),” in
Cryptographic Hardware and Embedded Systems – CHES 2002, B. S. Kaliski, Ç. K. Koç,
and C. Paar, Eds. Springer, Berlin, Heidelberg, 2003, pp. 29–45. [Online]. Available:
h�ps://doi.org/10.1007/3-540-36400-5 4

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-0-387-71829-3_2
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1109/TC.2002.1004593
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-36400-5_4

BIBLIOGRAPHY 121

[23] A. O. Bauer, “Some aspects of military line communications as deployed by the German
armed forces prior to 1945,” in �e History of Military Communications, Proc. 5th Annual

Colloquium, 1999.

[24] P. Wright, P. Greengrass, and G. Ladjadj-Koenig, Spycatcher. Heinemann Melbourne,
1987.

[25] National Bureau of Standards, “Data encryption standard,” 1977, federal information
processing standards publication 46 (FIPS PUB 46). [Online]. Available: h�ps:
//csrc.nist.gov/�les/pubs/�ps/46/�nal/docs/nbs.�ps.46.pdf

[26] S. P. Skorobogatov, “Semi-invasive a�acks – A new approach to hardware security
analysis,” University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-
630, Apr. 2005. [Online]. Available: h�ps://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-630.pdf

[27] J. Marko�, “Potential �aw seen in cash card security,” New York Times, 1996.

[28] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking
cryptographic protocols for faults,” in Advances in Cryptology — EUROCRYPT ’97,
W. Fumy, Ed. Springer Berlin Heidelberg, 1997, pp. 37–51. [Online]. Available:
h�ps://doi.org/10.1007/3-540-69053-0 4

[29] E. Biham and A. Shamir, “Di�erential fault analysis of secret key cryptosystems,” in
Advances in Cryptology — CRYPTO ’97, B. S. Kaliski, Ed. Springer Berlin Heidelberg,
1997, pp. 513–525. [Online]. Available: h�ps://doi.org/10.1007/BFb0052259

[30] P. Dusart, G. Letourneux, and O. Vivolo, “Di�erential fault analysis on A.E.S,”
in Applied Cryptography and Network Security, J. Zhou, M. Yung, and Y. Han,
Eds. Springer Berlin Heidelberg, 2003, pp. 293–306. [Online]. Available: h�ps:
//doi.org/10.1007/978-3-540-45203-4 23

[31] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction a�acks,” inCryptographic

Hardware and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K. Koç, and C. Paar, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 2–12. [Online]. Available:
h�ps://doi.org/10.1007/3-540-36400-5 2

[32] T. Fukunaga and J. Takahashi, “Practical fault a�ack on a cryptographic LSI
with ISO/IEC 18033-3 block ciphers,” in 2009 Workshop on Fault Diagnosis and

Tolerance in Cryptography (FDTC), 2009, pp. 84–92. [Online]. Available: h�ps:
//doi.org/10.1109/FDTC.2009.34

[33] M. Hu�er and J.-M. Schmidt, “�e temperature side channel and heating fault a�acks,”
in Smart Card Research and Advanced Applications, A. Francillon and P. Rohatgi,

https://csrc.nist.gov/files/pubs/fips/46/final/docs/nbs.fips.46.pdf
https://csrc.nist.gov/files/pubs/fips/46/final/docs/nbs.fips.46.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1109/FDTC.2009.34
https://doi.org/10.1109/FDTC.2009.34

122 BIBLIOGRAPHY

Eds. Cham: Springer International Publishing, 2014, pp. 219–235. [Online]. Available:
h�ps://doi.org/10.1007/978-3-319-08302-5 15

[34] D. Genkin, A. Shamir, and E. Tromer, “RSA key extraction via low-bandwidth
acoustic cryptanalysis,” in Advances in Cryptology — CRYPTO 2014, J. A. Garay and
R. Gennaro, Eds. Springer Berlin Heidelberg, 2014, pp. 444–461. [Online]. Available:
h�ps://doi.org/10.1007/978-3-662-44371-2 25

[35] K. Gandol�, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete results,” in
Cryptographic Hardware and Embedded Systems — CHES 2001, Ç. K. Koç, D. Naccache,
and C. Paar, Eds. Springer Berlin Heidelberg, 2001, pp. 251–261. [Online]. Available:
h�ps://doi.org/10.1007/3-540-44709-1 21

[36] J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl, “Localized electromagnetic
analysis of cryptographic implementations,” in Topics in Cryptology – CT-RSA 2012,
O. Dunkelman, Ed. Springer Berlin Heidelberg, 2012, pp. 231–244. [Online]. Available:
h�ps://doi.org/10.1007/978-3-642-27954-6 15

[37] J. Heyszl, D. Merli, B. Heinz, F. De Santis, and G. Sigl, “Strengths and limitations of
high-resolution electromagnetic �eld measurements for side-channel analysis,” in Smart

Card Research and Advanced Applications, S. Mangard, Ed. Springer Berlin Heidelberg,
2013, pp. 248–262. [Online]. Available: h�ps://doi.org/10.1007/978-3-642-37288-9 17

[38] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage model,”
in Cryptographic Hardware and Embedded Systems – CHES 2004, M. Joye and J.-J.
�isquater, Eds. Springer, Berlin, Heidelberg, 2004, pp. 16–29. [Online]. Available:
h�ps://doi.org/10.1007/978-3-540-28632-5 2

[39] S. Chari, J. R. Rao, and P. Rohatgi, “Template a�acks,” in Cryptographic Hardware

and Embedded Systems – CHES 2002, B. S. Kaliski, Ç. K. Koç, and C. Paar,
Eds. Springer, Berlin, Heidelberg, 2003, pp. 13–28. [Online]. Available: h�ps:
//doi.org/10.1007/3-540-36400-5 3

[40] R. McEvoy, M. Tunstall, C. C. Murphy, and W. P. Marnane, “Di�erential power analysis
of HMAC based on SHA-2, and countermeasures,” in Information Security Applications,
S. Kim, M. Yung, and H.-W. Lee, Eds. Springer Berlin Heidelberg, 2007, pp. 317–332.
[Online]. Available: h�ps://doi.org/10.1007/978-3-540-77535-5 23

[41] E. Karabulut, E. Alkim, and A. Aysu, “Single-trace side-channel a�acks on ω-small
polynomial sampling: With applications to NTRU, NTRU Prime, and CRYSTALS-
DILITHIUM,” in 2021 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), 2021, pp. 35–45. [Online]. Available: h�ps://doi.org/10.1109/
HOST49136.2021.9702284

https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-642-37288-9_17
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-77535-5_23
https://doi.org/10.1109/HOST49136.2021.9702284
https://doi.org/10.1109/HOST49136.2021.9702284

BIBLIOGRAPHY 123

[42] M. Joye and S.-M. Yen, “�e Montgomery powering ladder,” in Cryptographic

Hardware and Embedded Systems — CHES 2002, B. S. Kaliski, ç. K. Koç, and
C. Paar, Eds. Springer Berlin Heidelberg, 2003, pp. 291–302. [Online]. Available:
h�ps://doi.org/10.1007/3-540-36400-5 22

[43] P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factorization,”
Mathematics of Computation, vol. 48, no. 177, pp. 243–264, 1987. [Online]. Available:
h�ps://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/

[44] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-channel
leaks using program repair,” in Proceedings of the 27th ACM SIGSOFT International

Symposium on So�ware Testing and Analysis, ser. ISSTA 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 15–26. [Online]. Available:
h�ps://doi.org/10.1145/3213846.3213851

[45] D. Page, “�eoretical use of cache memory as a cryptanalytic side-channel,”
Cryptology ePrint Archive, Paper 2002/169, 2002. [Online]. Available: h�ps:
//eprint.iacr.org/2002/169

[46] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Pearson Correlation Coe�cient. Springer,
Berlin, Heidelberg, 2009, pp. 1–4. [Online]. Available: h�ps://doi.org/10.1007/978-3-
642-00296-0 5

[47] J. Daemen and V. Rijmen. (1999) AES proposal: Rijndael. Accessed 9 Nov
2022. [Online]. Available: h�ps://www.cs.miami.edu/home/burt/learning/Csc688.012/
rijndael/rijndael doc V2.pdf

[48] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and
J. Dray, “Advanced Encryption Standard (AES),” Nov. 2001. [Online]. Available:
h�ps://doi.org/10.6028/NIST.FIPS.197

[49] M. O. Choudary and M. G. Kuhn, “E�cient stochastic methods: pro�led a�acks beyond
8 bits,” in International Conference on Smart Card Research and Advanced Applications.
Springer, 2014, pp. 85–103. [Online]. Available: h�ps://doi.org/10.1007/978-3-319-
16763-3 6

[50] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for di�erential side channel
cryptanalysis,” in International Workshop on Cryptographic Hardware and Embedded

Systems. Springer, 2005, pp. 30–46. [Online]. Available: h�ps://doi.org/10.1007/
11545262 3

[51] F.-X. Standaert and C. Archambeau, “Using subspace-based template a�acks to compare
and combine power and electromagnetic information leakages,” in International

Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2008, pp.
411–425. [Online]. Available: h�ps://doi.org/10.1007/978-3-540-85053-3 26

https://doi.org/10.1007/3-540-36400-5_22
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
https://doi.org/10.1145/3213846.3213851
https://eprint.iacr.org/2002/169
https://eprint.iacr.org/2002/169
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-540-85053-3_26

124 BIBLIOGRAPHY

[52] M. O. Choudary, “E�cient multivariate statistical techniques for extracting secrets
from electronic devices,” University of Cambridge, Computer Laboratory, Tech.
Rep. UCAM-CL-TR-878, Sep. 2015. [Online]. Available: h�ps://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-878.pdf

[53] N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert, “An optimal key
enumeration algorithm and its application to side-channel a�acks,” in International

Conference on Selected Areas in Cryptography. Springer, 2012, pp. 390–406. [Online].
Available: h�ps://doi.org/10.1007/978-3-642-35999-6 25

[54] M. Renauld and F.-X. Standaert, “Algebraic side-channel a�acks,” in Information Security

and Cryptology, F. Bao, M. Yung, D. Lin, and J. Jing, Eds. Springer, Berlin, Heidelberg,
2010, pp. 393–410. [Online]. Available: h�ps://doi.org/10.1007/978-3-642-16342-5 29

[55] Y. Oren, M. Kirschbaum, T. Popp, and A. Wool, “Algebraic side-channel analysis in
the presence of errors,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
S. Mangard and F.-X. Standaert, Eds. Springer, Berlin, Heidelberg, 2010, pp. 428–442.
[Online]. Available: h�ps://doi.org/10.1007/978-3-642-15031-9 29

[56] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “So� analytical side-channel
a�acks,” in International Conference on the �eory and Application of Cryptology

and Information Security. Springer, 2014, pp. 282–296. [Online]. Available: h�ps:
//doi.org/10.1007/978-3-662-45611-8 15

[57] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,” in Advances in

Cryptology – EUROCRYPT 2013, T. Johansson and P. Q. Nguyen, Eds. Springer, Berlin,
Heidelberg, 2013, pp. 313–314. [Online]. Available: h�ps://doi.org/10.1007/978-3-642-
38348-9 19

[58] ——, “Permutation-based encryption, authentication and authenticated en-
cryption,” Directions in Authenticated Ciphers, pp. 159–170, 2012. [On-
line]. Available: h�ps://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
dc8231a00d1e57008743f63044821d378cc3bceb

[59] G. Bertoni, J. Daemen, S. Ho�ert, M. Peeters, G. V. Assche, and R. V. Keer,
“Farfalle: parallel permutation-based cryptography,” Cryptology ePrint Archive,
Paper 2016/1188, 2016, h�ps://eprint.iacr.org/2016/1188. [Online]. Available: h�ps:
//eprint.iacr.org/2016/1188

[60] ——, “�e keyak authenticated encryption scheme,” accessed July 2023. [Online].
Available: h�ps://keccak.team/keyak.html

[61] E. Alkim et al., “NewHope: Algorithm speci�cations and supporting documentation,”
2019. [Online]. Available: h�ps://newhopecrypto.org/

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-878.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-878.pdf
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-16342-5_29
https://doi.org/10.1007/978-3-642-15031-9_29
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dc8231a00d1e57008743f63044821d378cc3bceb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dc8231a00d1e57008743f63044821d378cc3bceb
https://eprint.iacr.org/2016/1188
https://eprint.iacr.org/2016/1188
https://eprint.iacr.org/2016/1188
https://keccak.team/keyak.html
https://newhopecrypto.org/

BIBLIOGRAPHY 125

[62] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehle, “CRYSTALS - Kyber: a CCA-secure module-la�ice-based KEM,”
in 2018 IEEE European Symposium on Security and Privacy (EuroS&P), 2018, pp. 353–367.
[Online]. Available: h�ps://doi.org/10.1109/EuroSP.2018.00032

[63] P.-A. Fouque, G. Leurent, D. Réal, and F. Vale�e, “Practical electromagnetic
template a�ack on HMAC,” in International Workshop on Cryptographic Hardware

and Embedded Systems. Springer, 2009, pp. 66–80. [Online]. Available: h�ps:
//doi.org/10.1007/978-3-642-04138-9 6

[64] M. Taha and P. Schaumont, “Side-channel analysis of MAC-Keccak,” in 2013 IEEE

International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 2013,
pp. 125–130. [Online]. Available: h�ps://doi.org/10.1109/HST.2013.6581577

[65] ——, “Di�erential power analysis of MAC-Keccak at any key-length,” in Advances in

Information and Computer Security, K. Sakiyama and M. Terada, Eds. Springer, Berlin,
Heidelberg, 2013, pp. 68–82. [Online]. Available: h�ps://doi.org/10.1007/978-3-642-
41383-4 5

[66] P. Luo, Y. Fei, X. Fang, A. A. Ding, D. R. Kaeli, and M. Leeser, “Side-channel analysis of
MAC-Keccak hardware implementations.” IACR Cryptology ePrint Archive, vol. 2015, p.
411, 2015. [Online]. Available: h�ps://eprint.iacr.org/2015/411

[67] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé,
“CRYSTALS-Dilithium: a la�ice-based digital signature scheme,” IACR Transactions on

Cryptographic Hardware and Embedded Systems, vol. 2018, no. 1, pp. 238–268, Feb. 2018.
[Online]. Available: h�ps://tches.iacr.org/index.php/TCHES/article/view/839

[68] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlä�er, “Ascon v1.2,” May 2021,
submission to the �nal round of NIST lightweight cryptography standardization
process. [Online]. Available: h�ps://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/�nalist-round/updated-spec-doc/ascon-spec-�nal.pdf

[69] M. S. Turan, K. McKay, D. Chang, Ç. Çalık, L. Bassham, J. Kang, and J. Kelsey, “Status
report on the second round of the NIST lightweight cryptography standardization
process,” NIST, NISTIR 8369. [Online]. Available: h�ps://nvlpubs.nist.gov/nistpubs/ir/
2021/NIST.IR.8369.pdf

[70] M. Sönmez Turan, K. McKay, D. Chang, L. E. Bassham, J. Kang, N. D. Waller, J. M. Kelsey,
and D. Hong, “Status report on the �nal round of the NIST lightweight cryptography
standardization process,” Gaithersburg, MD, 2023, NIST Interagency or Internal Report
(IR) NIST IR 8454. [Online]. Available: h�ps://doi.org/10.6028/NIST.IR.8454

[71] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlä�er, “Cryptanalysis of Ascon,” in
Topics in Cryptology — CT-RSA 2015, K. Nyberg, Ed. Cham: Springer International

https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-3-642-04138-9_6
https://doi.org/10.1007/978-3-642-04138-9_6
https://doi.org/10.1109/HST.2013.6581577
https://doi.org/10.1007/978-3-642-41383-4_5
https://doi.org/10.1007/978-3-642-41383-4_5
https://eprint.iacr.org/2015/411
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
https://doi.org/10.6028/NIST.IR.8454

126 BIBLIOGRAPHY

Publishing, 2015, pp. 371–387. [Online]. Available: h�ps://doi.org/10.1007/978-3-319-
16715-2 20

[72] H. Gross, E. Wenger, C. Dobraunig, and C. Ehrenhöfer, “Ascon hardware implemen-
tations and side-channel evaluation,” Microprocessors and Microsystems, vol. 52, pp.
470–479, 2017. [Online]. Available: h�ps://www.sciencedirect.com/science/article/pii/
S0141933116302721

[73] L. Batina, I. R. Buhan, Ł. M. Chmielewski, E. Gunnarsdó�ir, V. Jahandideh, T. Stock,
and L. J. A. Weissbart, “Side-channel evaluation report on implementations of several
NIST LWC �nalists,” 2022. [Online]. Available: h�ps://repository.ubn.ru.nl/handle/
2066/253567

[74] P. Sasdrich, A. Moradi, and T. Güneysu, “Hiding higher-order side-channel leakage,” in
Topics in Cryptology – CT-RSA 2017, H. Handschuh, Ed. Cham: Springer International
Publishing, 2017, pp. 131–146. [Online]. Available: h�ps://doi.org/10.1007/978-3-319-
52153-4 8

[75] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches
to counteract power-analysis a�acks,” in Advances in Cryptology — CRYPTO’ 99,
M. Wiener, Ed. Springer, Berlin, Heidelberg, 1999, pp. 398–412. [Online]. Available:
h�ps://doi.org/10.1007/3-540-48405-1 26

[76] E. Prou� and M. Rivain, “Masking against side-channel a�acks: A formal security
proof,” in Advances in Cryptology – EUROCRYPT 2013, T. Johansson and P. Q.
Nguyen, Eds. Springer, Berlin, Heidelberg, 2013, pp. 142–159. [Online]. Available:
h�ps://doi.org/10.1007/978-3-642-38348-9 9

[77] T. S. Messerges, “Securing the AES �nalists against power analysis a�acks,” in
Fast So�ware Encryption, G. Goos, J. Hartmanis, J. van Leeuwen, and B. Schneier,
Eds. Springer, Berlin, Heidelberg, 2001, pp. 150–164. [Online]. Available: h�ps:
//doi.org/10.1007/3-540-44706-7 11

[78] M.-L. Akkar and C. Giraud, “An implementation of DES and AES, secure against
some a�acks,” in Cryptographic Hardware and Embedded Systems — CHES 2001, Ç. K.
Koç, D. Naccache, and C. Paar, Eds. Springer Berlin Heidelberg, 2001, pp. 309–318.
[Online]. Available: h�ps://doi.org/10.1007/3-540-44709-1 26

[79] E. Trichina, D. De Seta, and L. Germani, “Simpli�ed adaptive multiplicative masking
for AES,” in Cryptographic Hardware and Embedded Systems — CHES 2002, B. S. Kaliski,
ç. K. Koç, and C. Paar, Eds. Springer Berlin Heidelberg, 2003, pp. 187–197. [Online].
Available: h�ps://doi.org/10.1007/3-540-36400-5 15

[80] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Building power analysis resistant
implementations of keccak,” in Second SHA-3 candidate conference, vol. 142. Citeseer,

https://doi.org/10.1007/978-3-319-16715-2_20
https://doi.org/10.1007/978-3-319-16715-2_20
https://www.sciencedirect.com/science/article/pii/S0141933116302721
https://www.sciencedirect.com/science/article/pii/S0141933116302721
https://repository.ubn.ru.nl/handle/2066/253567
https://repository.ubn.ru.nl/handle/2066/253567
https://doi.org/10.1007/978-3-319-52153-4_8
https://doi.org/10.1007/978-3-319-52153-4_8
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-36400-5_15

BIBLIOGRAPHY 127

2010. [Online]. Available: h�ps://citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=fe3d80a12e34d67ce14d438935302c6ef371901c

[81] T. S. Messerges, “Using second-order power analysis to a�ack DPA resistant so�ware,”
in Cryptographic Hardware and Embedded Systems — CHES 2000, Ç. K. Koç and
C. Paar, Eds. Springer, Berlin, Heidelberg, 2000, pp. 238–251. [Online]. Available:
h�ps://doi.org/10.1007/3-540-44499-8 19

[82] J. Waddle and D. Wagner, “Towards e�cient second-order power analysis,” in
Cryptographic Hardware and Embedded Systems – CHES 2004, M. Joye and J.-J.
�isquater, Eds. Springer, Berlin, Heidelberg, 2004, pp. 1–15. [Online]. Available:
h�ps://doi.org/10.1007/978-3-540-28632-5 1

[83] E. Oswald and S. Mangard, “Template a�acks on masking—resistance is futile,” in
Topics in Cryptology – CT-RSA 2007, M. Abe, Ed. Springer, Berlin, Heidelberg, 2006,
pp. 243–256. [Online]. Available: h�ps://doi.org/10.1007/11967668 16

[84] L. Lerman and O. Markowitch, “E�cient pro�led a�acks on masking schemes,” IEEE

Transactions on Information Forensics and Security, vol. 14, no. 6, pp. 1445–1454, 2019.
[Online]. Available: h�ps://doi.org/10.1109/TIFS.2018.2879295

[85] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based a�ack on a
masked implementation of aes,” in 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), 2015, pp. 106–111. [Online]. Available: h�ps:
//doi.org/10.1109/HST.2015.7140247

[86] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some noise. unleashing
the power of convolutional neural networks for pro�led side-channel analysis,” IACR

Transactions on Cryptographic Hardware and Embedded Systems, vol. 2019, no. 3,
p. 148–179, May 2019. [Online]. Available: h�ps://tches.iacr.org/index.php/TCHES/
article/view/8292

[87] V. Grosso and F.-X. Standaert, “Masking proofs are tight and how to exploit it in
security evaluations,” in Advances in Cryptology – EUROCRYPT 2018, J. B. Nielsen
and V. Rijmen, Eds. Springer, Cham, 2018, pp. 385–412. [Online]. Available:
h�ps://doi.org/10.1007/978-3-319-78375-8 13

[88] O. Bronchain and F.-X. Standaert, “Breaking masked implementations with many
shares on 32-bit so�ware platforms: or when the security order does not ma�er,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2021, no. 3,
p. 202–234, July 2021. [Online]. Available: h�ps://tches.iacr.org/index.php/TCHES/
article/view/8973

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fe3d80a12e34d67ce14d438935302c6ef371901c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fe3d80a12e34d67ce14d438935302c6ef371901c
https://doi.org/10.1007/3-540-44499-8_19
https://doi.org/10.1007/978-3-540-28632-5_1
https://doi.org/10.1007/11967668_16
https://doi.org/10.1109/TIFS.2018.2879295
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://doi.org/10.1007/978-3-319-78375-8_13
https://tches.iacr.org/index.php/TCHES/article/view/8973
https://tches.iacr.org/index.php/TCHES/article/view/8973

128 BIBLIOGRAPHY

[89] M. J. Kannwischer, P. Pessl, and R. Primas, “Single-trace a�acks on Keccak,”
Cryptology ePrint Archive, Paper 2020/371, 2020, h�ps://eprint.iacr.org/2020/371.
[Online]. Available: h�ps://eprint.iacr.org/2020/371

[90] S.-C. You and M. G. Kuhn, “A template a�ack to reconstruct the input of SHA-3
on an 8-bit device,” in Constructive Side-Channel Analysis and Secure Design, G. M.
Bertoni and F. Regazzoni, Eds. Springer, Cham, 2021, pp. 25–42. [Online]. Available:
h�ps://doi.org/10.1007/978-3-030-68773-1 2

[91] ——, “Single-trace fragment template a�ack on a 32-bit implementation of Keccak,” in
Smart Card Research and Advanced Applications, V. Grosso and T. Pöppelmann, Eds.
Springer, Cham, 2022, pp. 3–23. [Online]. Available: h�ps://doi.org/10.1007/978-3-030-
97348-3 1

[92] S.-C. You, M. G. Kuhn, S. Sarkar, and F. Hao, “A template a�ack on Ascon AEAD,” CHES
2022 poster 23. [Online]. Available: h�ps://ches.iacr.org/2022/acceptedposters.php

[93] ——, “Low trace-count template a�acks on 32-bit implementations of Ascon AEAD,”
pre-print version. [Online]. Available: h�ps://www.cl.cam.ac.uk/∼scy27/ches2023-
ascon.pdf

[94] D. Oswald and C. Paar, “Breaking Mifare DESFire MF3ICD40: power analysis
and templates in the real world,” in International Workshop on Cryptographic

Hardware and Embedded Systems. Springer, 2011, pp. 207–222. [Online]. Available:
h�ps://doi.org/10.1007/978-3-642-23951-9 14

[95] O. Choudary and M. G. Kuhn, “E�cient template a�acks,” in International Conference

on Smart Card Research and Advanced Applications. Springer, 2013, pp. 253–270.
[Online]. Available: h�ps://doi.org/10.1007/978-3-319-08302-5 17

[96] M. O. Choudary and M. G. Kuhn, “E�cient, portable template a�acks,” IEEE

Transactions on Information Forensics and Security, vol. 13, no. 2, pp. 490–501, Feb. 2018.
[Online]. Available: h�ps://doi.org/10.1109/TIFS.2017.2757440

[97] I. T. Jolli�e and J. Cadima, “Principal component analysis: a review and recent
developments,” Philosophical transactions of the royal society A: Mathematical, Physical

and Engineering Sciences, vol. 374, no. 2065, p. 20150202, 2016. [Online]. Available:
h�ps://royalsocietypublishing.org/doi/full/10.1098/rsta.2015.0202

[98] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and Intelligent Laboratory Systems, vol. 2, no. 1, pp. 37–52, 1987, proceedings of the
Multivariate Statistical Workshop for Geologists and Geochemists. [Online]. Available:
h�ps://www.sciencedirect.com/science/article/pii/0169743987800849

https://eprint.iacr.org/2020/371
https://eprint.iacr.org/2020/371
https://doi.org/10.1007/978-3-030-68773-1_2
https://doi.org/10.1007/978-3-030-97348-3_1
https://doi.org/10.1007/978-3-030-97348-3_1
https://ches.iacr.org/2022/acceptedposters.php
https://www.cl.cam.ac.uk/~scy27/ches2023-ascon.pdf
https://www.cl.cam.ac.uk/~scy27/ches2023-ascon.pdf
https://doi.org/10.1007/978-3-642-23951-9_14
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1109/TIFS.2017.2757440
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2015.0202
https://www.sciencedirect.com/science/article/pii/0169743987800849

BIBLIOGRAPHY 129

[99] F.-X. Standaert, T. G. Malkin, and M. Yung, “A uni�ed framework for the analysis of
side-channel key recovery a�acks,” in Annual International Conference on the �eory

and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2009, pp.
443–461. [Online]. Available: h�ps://doi.org/10.1007/978-3-642-01001-9 26

[100] H. Maghrebi, T. Portiglia�i, and E. Prou�, “Breaking cryptographic implementations
using deep learning techniques,” in Security, Privacy, and Applied Cryptography

Engineering, C. Carlet, M. A. Hasan, and V. Saraswat, Eds. Springer, Cham, 2016, pp.
3–26. [Online]. Available: h�ps://doi.org/10.1007/978-3-319-49445-6 1

[101] D. J. C. MacKay, Information theory, inference and learning algorithms. Cambridge
University Press, 2003.

[102] “Extended Keccak code package,” accessed April 2019, lib/low/KeccakP-1600/

Compact64/KeccakP-1600-compact64.c. [Online]. Available: h�ps://github.com/
XKCP/XKCP

[103] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “�e Keccak reference,” SHA-3
competition (Round 3), Jan. 2011. [Online]. Available: h�ps://keccak.team/�les/Keccak-
reference-3.0.pdf

[104] “KeccakTools.” [Online]. Available: h�ps://github.com/KeccakTeam/KeccakTools

[105] NI PXIe-5160. [Online]. Available: h�p://www.ni.com/en-gb/support/model.pxie-
5160.html

[106] NI PXIe-5423. [Online]. Available: h�p://www.ni.com/en-gb/support/model.pxie-
5423.html

[107] NI PXI-4110. [Online]. Available: h�p://www.ni.com/en-gb/support/model.pxi-
4110.html

[108] ATxmega256A3U, Microchip, accessed February 2020. [Online]. Available: h�ps:
//www.microchip.com/wwwproducts/en/atxmega256a3u

[109] “CW1173: ChipWhisperer-Lite,” accessed February 2018. [Online]. Available: h�ps:
//media.newae.com/datasheets/NAE-CW1173 datasheet.pdf

[110] “ChipWhisperer-Lite arm edition,” schematic REV-03, commit e2adf19 on 2 December
2019. [Online]. Available: h�ps://github.com/newaetech/chipwhisperer/blob/develop/
hardware/capture/chipwhisperer-lite-32bit/cw-lite-arm-main.pdf

[111] “Intel® Xeon® Gold 5218 processor,” accessed July 2023. [Online]. Avail-
able: h�ps://www.intel.com/content/www/us/en/products/sku/192444/intel-xeon-
gold-5218-processor-22m-cache-2-30-ghz/speci�cations.html

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-319-49445-6_1
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://github.com/KeccakTeam/KeccakTools
http://www.ni.com/en-gb/support/model.pxie-5160.html
http://www.ni.com/en-gb/support/model.pxie-5160.html
http://www.ni.com/en-gb/support/model.pxie-5423.html
http://www.ni.com/en-gb/support/model.pxie-5423.html
http://www.ni.com/en-gb/support/model.pxi-4110.html
http://www.ni.com/en-gb/support/model.pxi-4110.html
https://www.microchip.com/wwwproducts/en/atxmega256a3u
https://www.microchip.com/wwwproducts/en/atxmega256a3u
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://github.com/newaetech/chipwhisperer/blob/develop/hardware/capture/chipwhisperer-lite-32bit/cw-lite-arm-main.pdf
https://github.com/newaetech/chipwhisperer/blob/develop/hardware/capture/chipwhisperer-lite-32bit/cw-lite-arm-main.pdf
https://www.intel.com/content/www/us/en/products/sku/192444/intel-xeon-gold-5218-processor-22m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/192444/intel-xeon-gold-5218-processor-22m-cache-2-30-ghz/specifications.html

130 BIBLIOGRAPHY

[112] “NumPy 1.21.5 project description,” December 2021. [Online]. Available: h�ps:
//pypi.org/project/numpy/1.21.5/

[113] “NumPy v1.21 manual,” June 2021. [Online]. Available: h�ps://numpy.org/doc/1.21/

[114] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel, M. Blondel,
P. Pre�enhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available:
h�ps://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=h�ps:/

[115] “Scikit-learn – machine learning in Python.” [Online]. Available: h�ps://scikit-
learn.org/stable/index.html

[116] “Scikit-learn 1.1.3 project description,” Otcober 2022. [Online]. Available: h�ps:
//pypi.org/project/scikit-learn/1.1.3/

[117] “Intel® oneAPIi math kernel library.” [Online]. Available: h�ps://www.intel.com/
content/www/us/en/developer/tools/oneapi/onemkl.html

[118] B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. stochastic methods,”
in Cryptographic Hardware and Embedded Systems — CHES 2006, L. Goubin and
M. Matsui, Eds. Springer Berlin Heidelberg, 2006, pp. 15–29. [Online]. Available:
h�ps://doi.org/10.1007/11894063 2

[119] B. J. Gilbert Goodwill, J. Ja�e, P. Rohatgi et al., “A testing methodology for side-channel
resistance validation,” in NIST non-invasive a�ack testing workshop, vol. 7, 2011, pp. 115–
136.

[120] S. Mangard, “Hardware countermeasures against DPA – a statistical analysis of their
e�ectiveness,” in Topics in Cryptology – CT-RSA 2004. Springer, Berlin, Heidelberg,
2004. [Online]. Available: h�ps://doi.org/10.1007/978-3-540-24660-2 18

[121] S. Bhasin, J.-L. Danger, S. Guilley, and Z. Najm, “NICV: normalized inter-class
variance for detection of side-channel leakage,” in 2014 International Symposium

on Electromagnetic Compatibility, Tokyo, 2014, pp. 310–313. [Online]. Available:
h�ps://ieeexplore.ieee.org/abstract/document/6997167

[122] H. Akoglu, “User’s guide to correlation coe�cients,” Turkish Journal of

Emergency Medicine, vol. 18, no. 3, pp. 91–93, 2018. [Online]. Available:
h�ps://www.sciencedirect.com/science/article/pii/S2452247318302164

[123] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. �irion, O. Grisel, M. Blondel,
P. Pre�enhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, Oct 2011. [Online].
Available: h�ps://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

https://pypi.org/project/numpy/1.21.5/
https://pypi.org/project/numpy/1.21.5/
https://numpy.org/doc/1.21/
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://pypi.org/project/scikit-learn/1.1.3/
https://pypi.org/project/scikit-learn/1.1.3/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/978-3-540-24660-2_18
https://ieeexplore.ieee.org/abstract/document/6997167
https://www.sciencedirect.com/science/article/pii/S2452247318302164
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

BIBLIOGRAPHY 131

[124] M. Pre�i, “A message-passing algorithm with damping,” Journal of Statistical Mechanics:

�eory and Experiment, vol. 2005, no. 11, p. P11008, nov 2005. [Online]. Available:
h�ps://dx.doi.org/10.1088/1742-5468/2005/11/P11008

[125] J. Kelsey, S. Chang, and R. Perlner, “SHA-3 derived functions: cSHAKE, KMAC, Tuple-
Hash and ParallelHash,” December 2016, NIST Special Publication 800-185. [Online].
Available: h�ps://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

[126] D. Bellizia, O. Bronchain, G. Cassiers, V. Grosso, C. Guo, C. Momin, O. Pereira,
T. Peters, and F.-X. Standaert, “Mode-level vs. implementation-level physical
security in symmetric cryptography,” in Advances in Cryptology – CRYPTO 2020.
Cham: Springer International Publishing, 2020, pp. 369–400. [Online]. Available:
h�ps://doi.org/10.1007/978-3-030-56784-2 13

[127] C. Verhamme, G. Cassiers, and F.-X. Standaert, “Analyzing the leakage resistance
of the NIST’s lightweight crypto competition’s �nalists,” in Smart Card Research and

Advanced Applications, I. Buhan and T. Schneider, Eds. Cham: Springer International
Publishing, 2023, pp. 290–308. [Online]. Available: h�ps://doi.org/10.1007/978-3-031-
25319-5 15

[128] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel a�acks on masked
la�ice-based encryption,” in Cryptographic Hardware and Embedded Systems – CHES

2017, W. Fischer and N. Homma, Eds. Springer, Cham, 2017, pp. 513–533. [Online].
Available: h�ps://doi.org/10.1007/978-3-319-66787-4 25

[129] S. Luo, W. Wu, Y. Li, R. Zhang, and Z. Liu, “An e�cient so� analytical side-channel
a�ack on Ascon,” in Wireless Algorithms, Systems, and Applications, L. Wang, M. Segal,
J. Chen, and T. Qiu, Eds. Springer, Cham, 2022, pp. 389–400. [Online]. Available:
h�ps://doi.org/10.1007/978-3-031-19208-1 32

[130] R. Weatherley, “Finalists to the NIST lightweight cryptography competition,”
June 2021. [Online]. Available: h�ps://github.com/rweather/lwc-�nalists/tree/
5d2b22c9�7744be429cabda0c078ea5b7b6f79e/src/individual

[131] “ARMv7-M architecture reference manual,” Arm Limited, ARM DDI 0403E.e (ID021621).
[Online]. Available: h�ps://developer.arm.com/documentation/ddi0403/latest/

[132] D. J. Bernstein, “ChaCha, a variant of Salsa20,” in Workshop record of SASC 2008.
ECRYPT, 2008, pp. 273–278. [Online]. Available: h�ps://cr.yp.to/chacha/chacha-
20080120.pdf

[133] M. Spyropoulos, “Side-channel a�acks on words longer than 8 bits,” 2022.

[134] G. Cassiers, H. Devillez, F.-X. Standaert, and B. Udvarhelyi, “E�cient regression-based
linear discriminant analysis for side-channel security evaluations,” accepted paper for
CHES—2023. [Online]. Available: h�ps://perso.cassiersg.be/papers/lrda.pdf

https://dx.doi.org/10.1088/1742-5468/2005/11/P11008
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/978-3-031-25319-5_15
https://doi.org/10.1007/978-3-031-25319-5_15
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-031-19208-1_32
https://github.com/rweather/lwc-finalists/tree/5d2b22c9ff7744be429cabda0c078ea5b7b6f79e/src/individual
https://github.com/rweather/lwc-finalists/tree/5d2b22c9ff7744be429cabda0c078ea5b7b6f79e/src/individual
https://developer.arm.com/documentation/ddi0403/latest/
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
https://perso.cassiersg.be/papers/lrda.pdf

132 BIBLIOGRAPHY

[135] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, and
T. Unterluggauer, “Isap v2.0,” IACR Transactions on Symmetric Cryptology, vol.
2020, no. S1, p. 390–416, Jun. 2020. [Online]. Available: h�ps://doi.org/10.13154/
tosc.v2020.iS1.390-416

[136] M. McDonnell, “Box-�ltering techniques,” Computer Graphics and Image Processing,
vol. 17, no. 1, pp. 65–70, 1981. [Online]. Available: h�ps://www.sciencedirect.com/
science/article/pii/S0146664X81800093

[137] C. E. Duchon, “Lanczos �ltering in one and two dimensions,” Journal of Applied

Meteorology and Climatology, vol. 18, no. 8, pp. 1016–1022, 1979. [Online].
Available: h�ps://journals.ametsoc.org/view/journals/apme/18/8/1520-0450 1979 018
1016 l�oat 2 0 co 2.xml

[138] T. K. Roy and M. Morshed, “Performance analysis of low pass �r �lters design
using kaiser, gaussian and tukey window function methods,” in 2013 2nd International

Conference on Advances in Electrical Engineering (ICAEE), 2013, pp. 1–6. [Online].
Available: h�ps:/doi.org/10.1109/ICAEE.2013.6750294

[139] T. Schneider and A. Moradi, “Leakage assessment methodology,” in Cryptographic

Hardware and Embedded Systems — CHES 2015, T. Güneysu and H. Handschuh,
Eds. Springer Berlin Heidelberg, 2015, pp. 495–513. [Online]. Available: h�ps:
//doi.org/10.1007/978-3-662-48324-4 25

[140] J. G. J. van Woudenberg, M. F. Wi�eman, and B. Bakker, “Improving di�erential
power analysis by elastic alignment,” in Topics in Cryptology – CT-RSA 2011,
A. Kiayias, Ed. Springer Berlin Heidelberg, 2011, pp. 104–119. [Online]. Available:
h�ps://doi.org/10.1007/978-3-642-19074-2 8

[141] M. A. Elaabid and S. Guilley, “Portability of templates,” Journal of Cryptographic

Engineering, vol. 2, pp. 63–74, 2012. [Online]. Available: h�ps://doi.org/10.1007/s13389-
012-0030-6

[142] M. O. Choudary and M. G. Kuhn, “E�cient, portable template a�acks,” IEEE

Transactions on Information Forensics and Security, vol. 13, no. 2, pp. 490–501, 2018.
[Online]. Available: h�ps://doi.org/10.1109/TIFS.2017.2757440

[143] O. Choudary and M. G. Kuhn, “Template a�acks on di�erent devices,” in Constructive

Side-Channel Analysis and Secure Design, E. Prou�, Ed. Cham: Springer International
Publishing, 2014, pp. 179–198. [Online]. Available: h�ps://doi.org/10.1007/978-3-319-
10175-0 13

[144] U. Rioja, L. Batina, and I. Armendariz, “When similarities among devices are taken
for granted: Another look at portability,” in Progress in Cryptology — AFRICACRYPT

https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://doi.org/10.13154/tosc.v2020.iS1.390-416
https://www.sciencedirect.com/science/article/pii/S0146664X81800093
https://www.sciencedirect.com/science/article/pii/S0146664X81800093
https://journals.ametsoc.org/view/journals/apme/18/8/1520-0450_1979_018_1016_lfioat_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/apme/18/8/1520-0450_1979_018_1016_lfioat_2_0_co_2.xml
https:/doi.org/10.1109/ICAEE.2013.6750294
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/s13389-012-0030-6
https://doi.org/10.1007/s13389-012-0030-6
https://doi.org/10.1109/TIFS.2017.2757440
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/978-3-319-10175-0_13

BIBLIOGRAPHY 133

2020, A. Nitaj and A. Youssef, Eds. Cham: Springer International Publishing, 2020, pp.
337–357. [Online]. Available: h�ps://doi.org/10.1007/978-3-030-51938-4 17

[145] C. Dobraunig and M. Schlä�er, “Reference, highly optimized, masked
C and ASM implementations of Ascon,” November 2022, 32-bit masked
bit-interleaved ARMv6. [Online]. Available: h�ps://github.com/ascon/
ascon-c/tree/29ef7a20a7372bd47fe7f4c92861e58e49cdce94/crypto aead/ascon128v12/
protected bi32 armv6

[146] D. Agrawal, J. R. Rao, and P. Rohatgi, “Multi-channel a�acks,” in Cryptographic

Hardware and Embedded Systems - CHES 2003, C. D. Walter, Ç. K. Koç, and
C. Paar, Eds. Springer Berlin Heidelberg, 2003, pp. 2–16. [Online]. Available:
h�ps://doi.org/10.1007/978-3-540-45238-6 2

[147] F.-X. Standaert and C. Archambeau, “Using subspace-based template a�acks to compare
and combine power and electromagnetic information leakages,” in Cryptographic

Hardware and Embedded Systems – CHES 2008, E. Oswald and P. Rohatgi, Eds.
Springer Berlin Heidelberg, 2008, pp. 411–425. [Online]. Available: h�ps://doi.org/
10.1007/978-3-540-85053-3 26

https://doi.org/10.1007/978-3-030-51938-4_17
https://github.com/ascon/ascon-c/tree/29ef7a20a7372bd47fe7f4c92861e58e49cdce94/crypto_aead/ascon128v12/protected_bi32_armv6
https://github.com/ascon/ascon-c/tree/29ef7a20a7372bd47fe7f4c92861e58e49cdce94/crypto_aead/ascon128v12/protected_bi32_armv6
https://github.com/ascon/ascon-c/tree/29ef7a20a7372bd47fe7f4c92861e58e49cdce94/crypto_aead/ascon128v12/protected_bi32_armv6
https://doi.org/10.1007/978-3-540-45238-6_2
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-540-85053-3_26

134 BIBLIOGRAPHY

Appendix A

Implementation notes

A.1 End-of-state management in secret enumeration

s̃1,1 s̃1,2 s̃1,3 s̃1,N

s̃0,1

s̃0,2

s̃0,M

−∞

−∞

s̃1,N+1

s̃0,M+1

s̃1,1 s̃1,2 s̃1,3 s̃1,N

s̃0,1

s̃0,2

s̃0,M

s̃1,N+1

s̃0,M+1

−∞

−∞

Figure A.1: �e dummy combinations occupy the most top-right and the most bo�om-le�
blocks outside the original M ×N array (le�), which will only be reached once the last com-
bination, labeled in blue, is enumerated (right).

When I applied the key enumeration algorithm (see Section 2.2) in my experiments, one prob-
lem I faced was how to deal with the marginal condition when the enumeration reaches the
bo�om of some tables. �is may happen when we have short ranking tables in table nodes,
e.g. combining secrets bit-by-bit and therefore having tables with only two candidates. My
solution is to add a dummy element at the end of the ranking tables. Such a dummy includes
a value that is never a candidate, e.g. −1 in my case, and a logarithmic probability value −∞,
which is a valid IEEE �oating-point number. Once reaching the bo�om of its ranking table,
the table node will start to return only the dummy element from this function call.

When either child table node returns a dummy element, it will naturally create a dummy
element with logarithmic probability value −∞, which occupies either the most top-right or

135

136 A.1. END-OF-STATE MANAGEMENT IN SECRET ENUMERATION

most bo�om-le� corner as depicted in Figure A.1. �ese dummy elements will later never be
reached before all the M × N combinations are enumerated, since no possible logarithmic
probability values will be smaller than −∞. Once either of them is reached, we consequently
know that the enumeration in this combining node ends, and it will start to return a dummy
element with a combination of (−1,−1) and logarithmic probability value −∞ to its parent
node from this function call so that the parent node can apply similar marginal condition
management.

As I always use ranking tables containing logarithmic likelihood values in this enumeration
procedure, we need to convert a probability table into a logarithmic likelihood table, and then
a ranking table if we obtain one from a previous procedure, such as belief propagation. Here
we may meet another marginal condition when we convert those values equal to 0 into a
logarithmic scale. I decide to assign their converted value to be −745.134, where the value
of e−745.134 calculated by NumPy [113] is slightly smaller than the smallest non-zero positive
number that a 64-bit �oating-point number can reach. �is helps me to distinguish the case
of the logarithmic value of a zero from the −∞ in my dummy.

Appendix B

Supporting tables and �gures

B.1 Lookup tables and algorithms for Keccak and Ascon

Table B.1: RCTable[Ω] (in big endianness)

Ω Constant Ω Constant Ω Constant
0 0x0000000000000001 8 0x000000000000008A 16 0x8000000000008002

1 0x0000000000008082 9 0x0000000000000088 17 0x8000000000000080

2 0x800000000000808A 10 0x0000000080008009 18 0x000000000000800A

3 0x8000000080008000 11 0x000000008000000A 19 0x800000008000000A

4 0x000000000000808B 12 0x000000008000808B 20 0x8000000080008081

5 0x0000000080000001 13 0x800000000000008B 21 0x8000000000008080

6 0x8000000080008081 14 0x8000000000008089 22 0x0000000080000001

7 0x8000000000008009 15 0x8000000000008003 23 0x8000000080008008

137

138 B.1. LOOKUP TABLES AND ALGORITHMS FOR KECCAK AND ASCON

Table B.2: �e substitution table for step χ

Input Output
I0 I1 I2 I3 I4 O0 O1 O2 O3 O4

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0 1 0
0 0 0 1 1 0 1 0 1 1
0 0 1 0 0 1 0 1 0 0
0 0 1 0 1 1 0 0 0 1
0 0 1 1 0 1 0 1 1 0
0 0 1 1 1 1 0 1 1 1
0 1 0 0 0 0 1 0 0 1
0 1 0 0 1 0 1 1 0 0
0 1 0 1 0 0 0 0 1 1
0 1 0 1 1 0 0 0 1 0
0 1 1 0 0 0 1 1 0 1
0 1 1 0 1 0 1 0 0 0
0 1 1 1 0 0 1 1 1 1
0 1 1 1 1 0 1 1 1 0
1 0 0 0 0 1 0 0 1 0
1 0 0 0 1 1 0 1 0 1
1 0 0 1 0 1 1 0 0 0
1 0 0 1 1 1 1 0 1 1
1 0 1 0 0 0 0 1 1 0
1 0 1 0 1 0 0 0 0 1
1 0 1 1 0 0 0 1 0 0
1 0 1 1 1 0 0 1 1 1
1 1 0 0 0 1 1 0 1 0
1 1 0 0 1 1 1 1 0 1
1 1 0 1 0 1 0 0 0 0
1 1 0 1 1 1 0 0 1 1
1 1 1 0 0 1 1 1 1 0
1 1 1 0 1 1 1 0 0 1
1 1 1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1

APPENDIX B. SUPPORTING TABLES AND FIGURES 139

Table B.3: �e substitution table for step pS

Input Output
I0 I1 I2 I3 I4 O0 O1 O2 O3 O4

0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1 1 1
0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 1 1 0 1 0
0 0 1 0 1 1 0 1 0 1
0 0 1 1 0 0 1 0 0 1
0 0 1 1 1 0 0 0 1 0
0 1 0 0 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 0 1 0 0 0
0 1 0 1 1 1 0 0 1 0
0 1 1 0 0 1 1 1 0 1
0 1 1 0 1 0 0 0 1 1
0 1 1 1 0 0 0 1 1 0
0 1 1 1 1 1 1 1 0 0
1 0 0 0 0 1 1 1 1 0
1 0 0 0 1 1 0 0 1 1
1 0 0 1 0 0 0 1 1 1
1 0 0 1 1 0 1 1 1 0
1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 0 0 1
1 0 1 1 1 1 1 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 0 0 1 0 1 1 0 0
1 1 0 1 0 0 0 0 0 1
1 1 0 1 1 1 1 0 0 1
1 1 1 0 0 1 0 1 1 0
1 1 1 0 1 0 1 0 1 0
1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 0 1 1 1

140 B.1. LOOKUP TABLES AND ALGORITHMS FOR KECCAK AND ASCON

Algorithm 7 Ascon-128 encryption procedure
1: procedure Enc(K,N,A, P)
2: Parameter :

3: |K| = 128

4: r = 64

5: a = 12

6: b = 6

7: IV = 0x80400c0600000000

8: Sr‖Sc = S ← pa(IV ‖K‖N)⊕ (0320−|K|‖K) . Initialization
9: if |A| > 0 then . Processing associated data

10: A1, . . . , As ← A‖1‖0r−1−(|A| mod r)

11: for τ = 1 . . . s do

12: Sr‖Sc ← S ← pb((Sr ⊕ Aτ)‖Sc)
13: end for

14: end if

15: S ← S ⊕ (0319‖1)

16: P1, . . . , Pt ← P‖1‖0r−1−(|P | mod r) . Processing plaintext
17: for τ = 1 . . . t do

18: Cτ ← Sr ⊕ Pτ
19: Sr‖Sc ← S ← Cτ‖Sc
20: if τ == t then

21: break

22: end if

23: Sr‖Sc ← S ← pb(Sr‖Sc)
24: end for

25: C ← Trunc(C1‖ . . . ‖Ct, |P |)
26: Sc ← Sc ⊕ (K‖0320−r−|K|) . Finalization
27: S ← pa(Sr‖Sc)
28: T ← S[(320− |K|) : 320]⊕K
29: return C , T
30: end procedure

APPENDIX B. SUPPORTING TABLES AND FIGURES 141

Algorithm 8 Ascon-128 decryption procedure
1: procedure Dec(K,N,A,C, T)
2: Parameter :

3: |K| = 128

4: r = 64

5: a = 12

6: b = 6

7: IV = 0x80400c0600000000

8: Sr‖Sc = S ← pa(IV ‖K‖N)⊕ (0320−|K|‖K) . Initialization
9: if |A| > 0 then . Processing associated data

10: A1, . . . , As ← A‖1‖0r−1−(|A| mod r)

11: for τ = 1 . . . s do

12: Sr‖Sc ← S ← pb((Sr ⊕ Aτ)‖Sc)
13: end for

14: end if

15: S ← S ⊕ (0319‖1)

16: C1, . . . , Ct ← C‖1‖0r−1−(|C| mod r) . Processing ciphertext
17: for τ = 1 . . . t do

18: Pτ ← Sr ⊕ Cτ
19: Sr‖Sc ← S ← Cτ‖Sc
20: if τ == t then

21: break

22: end if

23: Sr‖Sc ← S ← pb(Sr‖Sc)
24: end for

25: P ← Trunc(P1‖ . . . ‖Pt, |C|)
26: Sc ← Sc ⊕ (K‖0320−r−|K|) . Finalization
27: S ← pa(Sr‖Sc)
28: T ′ ← S[(320− |K|) : 320]⊕K
29: if T ′ == T then

30: return P

31: else

32: reject decryption

33: end if

34: end procedure

142 B.2. DATA FOR THE KECCAK EXPERIMENTS ON THE 8-BIT DEVICE

B.2 Data for the Keccak experiments on the 8-bit device

Table B.4: Success rates on α′0[i, j, 8k]
8 (le�) and β0[i, j, 8k]

8 (right). �e rates for α1 (omi�ed
here) look similar to those for α′0.

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 0.924 0.924 0.598 0.749 0.485 0.542 0.946 0.931
(1, 0) 0.995 0.994 0.931 0.957 0.971 0.965 0.999 0.991
(2, 0) 0.993 0.978 0.937 0.936 0.963 0.918 0.981 0.992
(3, 0) 0.999 0.997 0.983 0.787 0.771 0.878 0.967 0.969
(4, 0) 0.999 0.999 0.769 0.736 0.669 0.831 0.979 0.995
(0, 1) 1.000 1.000 0.982 0.956 0.846 0.780 0.999 0.986
(1, 1) 0.995 0.997 0.931 0.905 0.794 0.903 0.984 0.991
(2, 1) 1.000 0.925 0.811 0.819 0.655 0.879 0.987 0.998
(3, 1) 0.997 0.978 0.923 0.946 0.995 0.949 0.988 0.988
(4, 1) 1.000 0.975 0.877 0.921 0.896 0.943 0.998 1.000
(0, 2) 0.998 0.951 0.829 0.803 0.657 0.695 0.999 1.000
(1, 2) 0.998 0.997 0.836 0.726 0.669 0.838 0.995 0.998
(2, 2) 0.972 0.989 0.984 0.853 0.719 0.664 0.969 0.990
(3, 2) 0.998 0.816 0.642 0.536 0.579 0.616 0.973 0.991
(4, 2) 0.997 0.977 0.810 0.679 0.677 0.747 0.984 0.997
(0, 3) 1.000 1.000 0.968 0.945 0.816 0.846 0.994 0.980
(1, 3) 0.990 0.996 0.941 0.979 0.959 0.945 0.988 0.994
(2, 3) 0.999 0.942 0.823 0.728 0.703 0.658 0.986 1.000
(3, 3) 0.999 1.000 0.732 0.715 0.632 0.834 0.964 0.994
(4, 3) 0.911 0.878 0.791 0.759 0.850 0.972 0.997 0.987
(0, 4) 1.000 1.000 0.897 0.889 0.880 0.961 1.000 1.000
(1, 4) 1.000 0.998 0.879 0.895 0.896 0.978 1.000 0.991
(2, 4) 0.992 0.996 0.935 0.984 0.984 0.749 0.970 0.991
(3, 4) 0.982 0.939 0.905 0.977 0.992 0.832 0.972 0.989
(4, 4) 0.991 0.947 0.914 0.959 0.727 0.768 0.999 1.000

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 0.803 0.872 0.718 0.587 0.413 0.528 0.801 0.677
(1, 0) 0.530 0.654 0.255 0.226 0.354 0.274 0.522 0.314
(2, 0) 0.487 0.592 0.334 0.262 0.263 0.355 0.475 0.351
(3, 0) 0.529 0.683 0.309 0.220 0.294 0.275 0.498 0.355
(4, 0) 0.526 0.651 0.299 0.207 0.235 0.351 0.490 0.353
(0, 1) 0.373 0.365 0.286 0.305 0.274 0.306 0.536 0.483
(1, 1) 0.293 0.348 0.327 0.280 0.272 0.376 0.608 0.449
(2, 1) 0.259 0.353 0.262 0.240 0.291 0.298 0.596 0.533
(3, 1) 0.290 0.346 0.290 0.267 0.352 0.376 0.544 0.485
(4, 1) 0.358 0.385 0.295 0.390 0.362 0.259 0.619 0.437
(0, 2) 0.277 0.300 0.340 0.322 0.200 0.263 0.569 0.325
(1, 2) 0.289 0.300 0.309 0.354 0.216 0.259 0.553 0.341
(2, 2) 0.224 0.299 0.339 0.358 0.197 0.258 0.541 0.281
(3, 2) 0.275 0.244 0.327 0.269 0.233 0.270 0.508 0.341
(4, 2) 0.284 0.230 0.236 0.293 0.173 0.263 0.530 0.315
(0, 3) 0.301 0.252 0.291 0.289 0.444 0.319 0.638 0.374
(1, 3) 0.312 0.256 0.260 0.257 0.438 0.344 0.700 0.336
(2, 3) 0.383 0.225 0.274 0.268 0.347 0.328 0.661 0.396
(3, 3) 0.379 0.285 0.270 0.265 0.311 0.307 0.695 0.340
(4, 3) 0.337 0.262 0.260 0.247 0.425 0.340 0.696 0.401
(0, 4) 0.351 0.413 0.241 0.225 0.256 0.326 0.612 0.474
(1, 4) 0.338 0.393 0.260 0.216 0.228 0.332 0.593 0.332
(2, 4) 0.299 0.350 0.282 0.299 0.302 0.318 0.616 0.493
(3, 4) 0.303 0.326 0.271 0.290 0.253 0.262 0.649 0.400
(4, 4) 0.319 0.783 0.528 0.516 0.828 0.601 0.587 0.670

Table B.5: Guessing entropy on α′0[i, j, 8k]
8 (le�) and β0[i, j, 8k]

8 (right). �e entropy for α1

(omi�ed here) look similar to those for α′0.

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 1.095 1.109 2.336 1.616 3.215 2.592 1.074 1.096
(1, 0) 1.005 1.006 1.085 1.049 1.033 1.048 1.001 1.009
(2, 0) 1.007 1.024 1.074 1.070 1.044 1.102 1.022 1.008
(3, 0) 1.001 1.003 1.018 1.377 1.424 1.185 1.035 1.034
(4, 0) 1.001 1.001 1.452 1.575 1.680 1.297 1.028 1.005
(0, 1) 1.000 1.000 1.021 1.053 1.255 1.440 1.002 1.014
(1, 1) 1.005 1.003 1.084 1.127 1.353 1.147 1.020 1.009
(2, 1) 1.000 1.089 1.325 1.347 1.756 1.208 1.014 1.002
(3, 1) 1.003 1.022 1.092 1.066 1.006 1.056 1.013 1.012
(4, 1) 1.000 1.027 1.187 1.107 1.158 1.076 1.002 1.000
(0, 2) 1.003 1.057 1.294 1.377 1.833 1.819 1.001 1.000
(1, 2) 1.002 1.003 1.275 1.565 1.670 1.269 1.005 1.002
(2, 2) 1.031 1.012 1.020 1.274 1.625 1.947 1.035 1.010
(3, 2) 1.002 1.341 2.042 2.546 2.370 2.100 1.027 1.009
(4, 2) 1.003 1.026 1.395 1.709 1.832 1.508 1.019 1.003
(0, 3) 1.000 1.000 1.035 1.075 1.297 1.294 1.008 1.026
(1, 3) 1.010 1.004 1.068 1.024 1.053 1.072 1.012 1.008
(2, 3) 1.001 1.072 1.355 1.575 1.710 1.812 1.015 1.000
(3, 3) 1.001 1.000 1.594 1.618 1.959 1.324 1.050 1.006
(4, 3) 1.121 1.194 1.443 1.525 1.301 1.054 1.003 1.013
(0, 4) 1.000 1.000 1.140 1.175 1.156 1.054 1.000 1.000
(1, 4) 1.000 1.002 1.216 1.177 1.142 1.024 1.000 1.009
(2, 4) 1.010 1.005 1.083 1.020 1.022 1.491 1.030 1.009
(3, 4) 1.023 1.078 1.131 1.028 1.008 1.318 1.032 1.012
(4, 4) 1.009 1.060 1.122 1.052 1.652 1.492 1.001 1.000

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 1.296 1.178 1.622 2.351 3.931 2.629 1.391 1.715
(1, 0) 2.643 1.954 7.313 9.001 5.537 7.692 2.752 5.906
(2, 0) 2.675 2.241 4.973 8.000 6.842 4.567 2.914 4.949
(3, 0) 2.371 1.778 7.058 8.803 6.444 6.724 2.959 5.089
(4, 0) 2.433 1.794 6.284 9.404 6.959 4.883 3.105 5.764
(0, 1) 4.583 5.037 6.780 7.534 5.965 6.288 2.697 3.360
(1, 1) 6.258 5.443 5.074 7.012 7.183 4.046 2.053 3.480
(2, 1) 6.325 5.132 7.682 8.731 6.660 6.622 2.468 2.980
(3, 1) 6.103 5.088 6.765 7.806 5.521 4.701 2.317 3.210
(4, 1) 5.267 4.972 6.526 5.000 4.129 7.227 2.214 3.897
(0, 2) 7.704 6.183 5.059 5.273 9.640 7.801 2.431 6.919
(1, 2) 5.800 7.270 6.671 4.691 9.212 6.722 2.723 5.457
(2, 2) 8.800 7.315 5.902 4.676 9.164 7.875 2.852 7.929
(3, 2) 6.875 8.534 6.677 6.691 8.061 8.670 2.906 6.216
(4, 2) 7.238 8.397 8.326 6.095 9.477 9.050 2.687 7.163
(0, 3) 5.747 7.825 6.600 6.936 3.231 5.893 2.140 4.747
(1, 3) 5.547 8.029 7.555 7.707 3.502 5.444 1.716 5.898
(2, 3) 4.549 8.766 7.473 6.990 4.631 5.860 1.899 3.982
(3, 3) 4.746 6.739 7.764 7.300 5.486 6.208 1.648 5.044
(4, 3) 5.313 8.414 8.048 7.751 3.531 5.413 1.796 4.470
(0, 4) 5.294 3.874 7.979 9.418 8.310 6.139 2.309 3.309
(1, 4) 5.309 3.939 7.766 8.770 7.162 6.030 2.335 5.722
(2, 4) 5.261 4.359 6.343 6.365 6.494 6.079 2.259 3.364
(3, 4) 6.766 4.995 7.510 7.268 7.313 7.794 1.929 4.508
(4, 4) 5.753 1.355 2.426 3.045 1.295 2.164 2.393 2.405

APPENDIX B. SUPPORTING TABLES AND FIGURES 143

B.3 Data for the XOR experiments on the 32-bit device

Table B.6: Success rates on every nibble in α̂′0[i, j, 4k]
4

(i, j)

4k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(0, 0) 0.847 0.882 0.743 0.820 0.499 0.626 0.553 0.658 0.489 0.505 0.524 0.568 0.890 0.881 0.819 0.833
(1, 0) 0.990 0.997 0.995 0.979 0.903 0.982 0.931 0.981 0.968 0.985 0.990 0.953 0.998 0.994 0.984 0.986
(2, 0) 0.991 0.998 0.968 0.967 0.891 0.967 0.919 0.984 0.948 0.987 0.978 0.891 0.975 0.967 0.987 0.964
(3, 0) 0.998 0.999 0.992 0.991 0.969 0.961 0.749 0.720 0.750 0.736 0.829 0.812 0.935 0.937 0.906 0.942
(4, 0) 1.000 0.998 0.990 0.996 0.654 0.758 0.624 0.743 0.596 0.685 0.750 0.841 0.923 0.954 0.986 0.988
(0, 1) 0.998 1.000 1.000 0.999 0.960 0.998 0.985 0.939 0.834 0.905 0.872 0.815 0.986 0.973 0.971 0.979
(1, 1) 0.991 0.999 0.995 0.997 0.981 0.912 0.894 0.877 0.850 0.801 0.897 0.923 0.989 0.976 0.978 0.985
(2, 1) 0.995 0.999 0.896 0.872 0.773 0.765 0.782 0.807 0.649 0.743 0.867 0.873 0.985 0.977 0.998 0.992
(3, 1) 0.990 0.993 0.990 0.966 0.857 0.897 0.875 0.881 0.978 0.977 0.944 0.923 0.967 0.975 0.935 0.970
(4, 1) 0.992 0.996 0.984 0.951 0.775 0.865 0.847 0.863 0.830 0.891 0.868 0.922 0.994 0.998 1.000 1.000
(0, 2) 0.991 0.995 0.831 0.916 0.795 0.834 0.767 0.747 0.649 0.640 0.716 0.667 1.000 0.993 1.000 1.000
(1, 2) 0.997 1.000 0.990 0.984 0.743 0.849 0.648 0.714 0.578 0.674 0.778 0.793 0.986 0.991 0.993 0.965
(2, 2) 0.970 0.943 0.993 0.977 0.941 0.969 0.869 0.800 0.729 0.647 0.701 0.607 0.968 0.935 0.986 0.933
(3, 2) 0.981 0.990 0.815 0.737 0.627 0.591 0.548 0.517 0.571 0.508 0.668 0.550 0.959 0.937 0.987 0.990
(4, 2) 0.998 0.991 0.995 0.977 0.869 0.730 0.760 0.633 0.713 0.640 0.747 0.710 0.987 0.981 0.993 0.994
(0, 3) 1.000 1.000 0.999 0.998 0.957 0.999 0.931 0.887 0.797 0.848 0.832 0.805 0.993 0.976 0.968 0.966
(1, 3) 0.991 0.996 0.997 0.990 0.917 0.994 0.980 0.976 0.959 0.960 0.946 0.952 0.996 0.988 0.984 0.998
(2, 3) 1.000 0.998 0.924 0.903 0.834 0.771 0.740 0.659 0.684 0.638 0.684 0.654 0.991 0.974 0.999 0.999
(3, 3) 0.999 0.998 0.999 0.998 0.666 0.700 0.611 0.683 0.527 0.642 0.760 0.810 0.964 0.938 0.986 0.976
(4, 3) 0.913 0.859 0.867 0.794 0.743 0.715 0.759 0.662 0.811 0.798 0.938 0.941 0.996 0.996 0.982 0.973
(0, 4) 1.000 1.000 0.998 0.999 0.786 0.874 0.779 0.826 0.784 0.818 0.907 0.956 0.999 0.999 1.000 1.000
(1, 4) 0.999 0.996 0.997 0.997 0.849 0.896 0.830 0.853 0.839 0.882 0.964 0.946 1.000 1.000 0.981 0.945
(2, 4) 0.993 0.991 0.996 0.993 0.902 0.938 0.986 0.944 0.956 0.955 0.714 0.734 0.979 0.952 0.981 0.949
(3, 4) 0.991 0.975 0.924 0.885 0.907 0.874 0.979 0.941 0.966 0.965 0.893 0.771 0.978 0.913 0.980 0.945
(4, 4) 0.993 0.973 0.901 0.868 0.916 0.871 0.904 0.908 0.802 0.660 0.790 0.734 0.997 0.997 1.000 0.997

Table B.7: Guessing entropy of every nibble in α̂′0[i, j, 4k]
4

(i, j)

4k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(0, 0) 1.207 1.129 1.418 1.238 2.296 1.687 2.064 1.587 2.392 2.237 2.148 1.964 1.143 1.165 1.258 1.237
(1, 0) 1.010 1.003 1.005 1.022 1.135 1.022 1.081 1.019 1.036 1.017 1.013 1.057 1.002 1.007 1.019 1.015
(2, 0) 1.009 1.002 1.036 1.034 1.121 1.037 1.090 1.016 1.064 1.015 1.024 1.141 1.026 1.037 1.016 1.036
(3, 0) 1.002 1.001 1.008 1.010 1.032 1.044 1.384 1.453 1.376 1.439 1.209 1.256 1.070 1.070 1.113 1.062
(4, 0) 1.000 1.002 1.010 1.004 1.675 1.329 1.750 1.382 1.797 1.499 1.392 1.226 1.093 1.047 1.016 1.012
(0, 1) 1.002 1.000 1.000 1.001 1.052 1.002 1.018 1.074 1.221 1.126 1.181 1.312 1.016 1.030 1.035 1.025
(1, 1) 1.010 1.001 1.005 1.003 1.019 1.122 1.140 1.157 1.211 1.294 1.148 1.085 1.014 1.027 1.026 1.015
(2, 1) 1.005 1.001 1.110 1.166 1.317 1.361 1.347 1.306 1.655 1.438 1.200 1.172 1.015 1.024 1.002 1.008
(3, 1) 1.010 1.008 1.010 1.040 1.178 1.115 1.150 1.124 1.022 1.024 1.060 1.088 1.036 1.025 1.079 1.030
(4, 1) 1.008 1.004 1.016 1.050 1.345 1.162 1.221 1.170 1.253 1.137 1.182 1.081 1.006 1.002 1.000 1.000
(0, 2) 1.010 1.005 1.211 1.099 1.313 1.222 1.349 1.423 1.621 1.714 1.490 1.656 1.000 1.009 1.000 1.000
(1, 2) 1.003 1.000 1.010 1.016 1.423 1.195 1.674 1.439 2.009 1.525 1.349 1.278 1.018 1.009 1.007 1.035
(2, 2) 1.030 1.070 1.009 1.025 1.067 1.033 1.195 1.313 1.455 1.729 1.502 1.820 1.033 1.078 1.020 1.067
(3, 2) 1.021 1.010 1.283 1.475 1.756 1.879 2.050 2.184 2.001 2.113 1.633 2.117 1.045 1.074 1.013 1.010
(4, 2) 1.002 1.010 1.006 1.029 1.148 1.491 1.369 1.802 1.480 1.769 1.376 1.536 1.017 1.023 1.007 1.008
(0, 3) 1.000 1.000 1.001 1.002 1.048 1.001 1.073 1.145 1.316 1.221 1.256 1.319 1.009 1.029 1.035 1.034
(1, 3) 1.010 1.004 1.003 1.011 1.100 1.006 1.021 1.027 1.047 1.045 1.060 1.056 1.004 1.012 1.016 1.002
(2, 3) 1.000 1.002 1.082 1.132 1.227 1.407 1.389 1.653 1.590 1.663 1.533 1.694 1.009 1.027 1.001 1.001
(3, 3) 1.001 1.002 1.001 1.002 1.641 1.493 1.758 1.532 2.132 1.680 1.391 1.292 1.046 1.080 1.015 1.028
(4, 3) 1.114 1.196 1.177 1.308 1.438 1.530 1.390 1.649 1.264 1.380 1.086 1.072 1.005 1.005 1.019 1.028
(0, 4) 1.000 1.000 1.002 1.001 1.316 1.161 1.360 1.224 1.347 1.234 1.113 1.051 1.001 1.001 1.000 1.000
(1, 4) 1.001 1.004 1.003 1.003 1.210 1.129 1.251 1.209 1.211 1.165 1.040 1.056 1.000 1.000 1.021 1.062
(2, 4) 1.007 1.010 1.004 1.007 1.137 1.072 1.015 1.067 1.053 1.054 1.455 1.415 1.021 1.054 1.020 1.054
(3, 4) 1.009 1.032 1.087 1.160 1.112 1.181 1.025 1.069 1.040 1.041 1.136 1.390 1.024 1.109 1.024 1.062
(4, 4) 1.007 1.031 1.111 1.172 1.097 1.163 1.124 1.110 1.281 1.629 1.297 1.485 1.004 1.004 1.000 1.003

144 B.3. DATA FOR THE XOR EXPERIMENTS ON THE 32-BIT DEVICE

Table B.8: Guessing entropy of the 16-bit fragment templates

original table marginalized table
fragment

K0‖K1 K2‖K3 K4‖K5 K6‖K7 K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 25163.901 24846.461 22400.132 22383.710 107.436 110.550 111.359 107.428 100.985 107.273 103.984 102.025
100 5 24495.540 24095.835 21879.470 21732.560 109.024 106.711 109.009 105.554 99.676 106.696 101.844 98.846
50 10 23044.614 23208.794 20341.347 20380.109 102.535 104.804 107.148 102.725 93.799 103.040 96.627 95.344
25 20 22114.698 21570.856 19882.537 19170.855 99.097 101.781 101.008 99.094 92.629 101.233 95.074 90.624
20 25 21568.866 21824.465 20083.905 19185.527 98.332 100.077 100.873 97.542 93.091 101.384 95.391 90.620
10 50 21371.623 21461.922 19290.490 18607.576 97.531 98.073 99.975 97.536 92.385 96.869 94.232 87.749
5 100 21049.649 21681.278 19117.445 18207.491 96.833 97.230 100.331 98.399 91.334 96.278 93.572 86.812
4 125 21378.706 22262.627 19085.549 18351.998 97.771 97.728 101.910 99.063 91.159 96.465 93.507 87.244

original table marginalized table
fragment

P0‖P1 P2‖P3 P4‖P5 P6‖P7 P0 P1 P2 P3 P4 P5 P6 P7PPC c

125 4 19162.143 23197.876 16506.523 21350.179 109.410 80.554 104.356 108.615 96.617 77.336 100.882 103.501
100 5 18485.322 22839.778 15984.318 21051.767 107.394 79.670 106.533 106.028 95.296 77.067 102.001 100.109
50 10 17116.233 20881.639 14595.119 20001.790 105.402 75.300 98.292 101.903 91.242 73.028 97.944 97.966
25 20 15984.368 19711.693 13620.423 18311.100 102.111 71.406 95.028 97.690 89.462 68.940 92.724 93.828
20 25 15771.413 19804.819 13241.689 18728.436 101.086 72.065 96.064 97.384 86.718 68.956 93.227 94.988
10 50 15691.727 19645.105 13207.999 18030.963 99.999 72.005 95.286 96.362 85.917 69.032 90.821 93.973
5 100 15753.523 19613.759 13341.622 17863.096 98.378 72.420 94.417 97.075 86.720 68.395 90.211 92.305
4 125 15997.928 19597.525 13557.455 18150.181 98.427 73.539 93.567 97.758 86.688 69.685 91.384 93.961

original table marginalized table
fragment

C0‖C1 C2‖C3 C4‖C5 C6‖C7 C0 C1 C2 C3 C4 C5 C6 C7PPC c

125 4 16738.053 20440.974 17525.669 17558.714 76.380 101.198 98.206 98.247 75.578 104.699 99.284 84.162
100 5 16206.107 20347.449 16372.716 17216.277 74.610 101.278 99.659 98.487 74.204 100.618 98.039 84.282
50 10 14953.529 18916.827 14999.383 15390.817 70.868 96.812 95.288 93.564 69.864 96.818 93.852 78.416
25 20 14439.826 18320.846 14021.992 15070.342 70.256 94.322 93.239 91.310 66.644 93.290 91.470 77.459
20 25 14000.471 18276.798 13848.165 14669.357 69.047 94.401 93.860 90.054 66.637 92.391 89.981 77.170
10 50 14006.286 18010.309 13631.111 14198.935 69.452 92.204 92.277 89.666 66.073 91.079 88.501 75.854
5 100 13911.666 17725.837 13854.991 14323.605 70.209 90.094 90.370 90.068 67.115 91.059 87.717 76.339
4 125 14347.565 17929.550 13887.252 14236.946 71.235 89.428 88.765 92.169 67.210 90.683 87.043 75.875

Table B.9: Guessing entropy of the key bytes, a�er belief propagation with byte probability
tables of keys, plaintexts, and ciphertexts marginalized from the 16-bit template results.

fragment
K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 108.446 110.566 111.514 108.057 98.628 106.119 103.397 101.825
100 5 109.943 105.834 110.028 106.858 98.015 106.442 101.322 97.514
50 10 103.555 103.105 107.490 103.276 91.987 102.565 95.938 92.885
25 20 98.463 99.960 101.409 100.024 89.739 100.410 94.428 89.537
20 25 98.114 97.079 101.000 98.419 90.332 100.042 95.693 89.448
10 50 97.120 95.665 100.520 97.585 88.722 95.995 94.132 86.847
5 100 96.609 94.166 100.236 98.765 88.272 95.096 93.483 85.682
4 125 96.877 95.894 102.211 99.402 88.153 95.591 93.279 87.479

APPENDIX B. SUPPORTING TABLES AND FIGURES 145

Table B.10: Guessing entropy of the key bytes, a�er belief propagation with byte probabil-
ity tables of keys and plaintexts marginalized from the 16-bit template results, and known
ciphertexts.

fragment
K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 99.858 78.163 98.201 98.892 86.900 73.482 91.756 90.995
100 5 99.919 74.775 97.382 96.324 84.711 72.113 91.066 86.781
50 10 92.790 69.867 90.489 90.891 76.604 66.760 83.761 81.792
25 20 87.626 65.575 83.953 85.146 75.290 62.046 78.031 75.276
20 25 87.046 64.722 84.852 83.740 73.897 61.435 78.768 76.385
10 50 86.198 63.661 82.891 81.487 72.150 60.474 75.456 73.877
5 100 85.439 64.393 81.701 82.336 71.646 60.500 75.034 72.181
4 125 85.487 66.486 82.002 83.189 72.184 61.896 75.637 73.480

Table B.11: Guessing entropy of the 16-bit fragment templates a�er belief propagation directly
with 16-bit tables

original table marginalized table
fragment

K0‖K1 K2‖K3 K4‖K5 K6‖K7 K0 K1 K2 K3 K4 K5 K6 K7PPC c

125 4 17281.571 19841.913 13752.300 17158.669 99.576 78.169 97.412 98.804 86.647 73.331 91.412 90.677
100 5 16407.325 19167.969 13093.923 16465.513 99.769 74.669 96.484 96.059 84.530 71.750 91.083 86.976
50 10 14666.972 17271.035 11233.157 14728.097 92.752 69.762 90.203 90.908 76.425 66.426 83.867 81.913
25 20 13239.219 15507.825 10439.856 13076.071 87.645 65.643 83.667 85.069 74.908 61.645 77.874 75.383
20 25 12802.147 15683.551 10203.931 13473.870 86.948 64.914 84.456 83.612 73.920 61.261 78.893 76.426
10 50 12572.240 15058.004 9810.055 12644.133 86.064 63.714 82.420 81.467 72.068 60.347 75.679 73.986
5 100 12538.710 15119.313 9766.814 12219.906 85.150 64.525 81.310 82.337 71.531 60.266 74.909 72.289
4 125 12970.457 15504.747 10056.026 12457.592 85.378 66.458 81.852 83.203 71.895 61.594 75.482 73.416

146 B.4. DATA FOR THE KECCAK EXPERIMENTS ON THE 32-BIT DEVICE

B.4 Data for the Keccak experiments on the 32-bit device

Table B.12: Success rates (le�) and guessing entropy (right) of templates in α′0

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 0.036 0.046 0.021 0.023 0.029 0.050 0.012 0.015
(1, 0) 0.534 0.580 0.192 0.203 0.176 0.426 0.338 0.463
(2, 0) 0.459 0.558 0.259 0.152 0.206 0.457 0.352 0.386
(3, 0) 0.376 0.213 0.248 0.469 0.289 0.306 0.291 0.612
(4, 0) 0.522 0.377 0.370 0.246 0.275 0.384 0.506 0.351
(0, 1) 0.450 0.273 0.133 0.348 0.412 0.393 0.145 0.405
(1, 1) 0.473 0.242 0.435 0.449 0.342 0.373 0.347 0.487
(2, 1) 0.878 0.358 0.109 0.149 0.791 0.389 0.151 0.163
(3, 1) 0.360 0.332 0.259 0.279 0.173 0.358 0.366 0.531
(4, 1) 0.598 0.337 0.140 0.447 0.432 0.230 0.068 0.307
(0, 2) 0.717 0.292 0.110 0.140 0.790 0.427 0.162 0.284
(1, 2) 0.807 0.457 0.182 0.135 0.610 0.539 0.173 0.196
(2, 2) 0.423 0.214 0.110 0.789 0.383 0.277 0.176 0.777
(3, 2) 0.789 0.554 0.233 0.164 0.608 0.423 0.219 0.242
(4, 2) 0.435 0.255 0.533 0.357 0.268 0.390 0.601 0.537
(0, 3) 0.517 0.240 0.112 0.424 0.387 0.364 0.168 0.554
(1, 3) 0.740 0.318 0.118 0.124 0.577 0.460 0.217 0.305
(2, 3) 0.599 0.609 0.248 0.195 0.358 0.709 0.256 0.230
(3, 3) 0.359 0.295 0.362 0.277 0.271 0.388 0.559 0.382
(4, 3) 0.517 0.263 0.228 0.807 0.263 0.187 0.132 0.885
(0, 4) 0.635 0.424 0.122 0.290 0.445 0.288 0.061 0.183
(1, 4) 0.522 0.234 0.282 0.747 0.211 0.160 0.164 0.845
(2, 4) 0.767 0.504 0.151 0.138 0.411 0.503 0.273 0.267
(3, 4) 0.633 0.571 0.148 0.140 0.250 0.621 0.265 0.382
(4, 4) 0.860 0.359 0.111 0.178 0.838 0.397 0.146 0.203

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 47.918 37.603 72.631 66.417 58.449 36.038 84.323 69.128
(1, 0) 2.914 2.228 9.998 9.484 10.852 3.305 5.991 3.168
(2, 0) 3.296 2.191 7.754 13.492 10.111 2.793 4.998 4.433
(3, 0) 3.878 10.928 7.214 3.287 6.476 5.613 5.836 2.142
(4, 0) 2.576 4.329 4.455 7.112 8.444 4.172 2.976 5.131
(0, 1) 3.304 6.886 21.260 3.147 3.947 3.788 13.872 2.868
(1, 1) 2.725 7.374 2.801 3.769 5.946 4.577 5.000 3.175
(2, 1) 1.161 4.434 21.005 16.938 1.381 4.054 16.640 12.926
(3, 1) 4.909 4.014 7.500 7.730 13.265 3.903 5.013 2.675
(4, 1) 2.005 4.753 18.085 3.258 3.421 8.237 30.208 3.685
(0, 2) 1.573 5.369 22.824 15.404 1.378 3.447 12.988 7.555
(1, 2) 1.295 3.155 12.805 16.964 2.118 2.141 13.294 12.928
(2, 2) 3.110 8.532 21.392 1.404 5.061 6.394 13.671 1.291
(3, 2) 1.308 2.049 9.743 14.054 2.401 3.065 11.262 8.953
(4, 2) 2.866 6.688 2.319 5.176 8.416 4.756 1.986 2.902
(0, 3) 2.555 8.155 22.583 2.758 4.980 4.951 14.281 2.157
(1, 3) 1.509 5.179 17.242 16.478 2.061 3.089 9.198 6.468
(2, 3) 2.029 1.885 8.480 12.055 5.119 1.573 8.126 8.616
(3, 3) 4.863 5.171 4.425 6.750 9.046 4.186 2.511 5.356
(4, 3) 2.509 7.140 9.502 1.275 7.513 11.743 17.919 1.167
(0, 4) 1.866 3.518 19.914 4.703 3.229 6.271 33.439 7.764
(1, 4) 2.620 9.101 8.051 1.582 10.651 13.080 14.079 1.306
(2, 4) 1.549 2.537 13.825 18.494 3.763 2.569 7.648 8.671
(3, 4) 2.066 2.134 15.311 16.691 7.488 1.926 8.879 4.935
(4, 4) 1.212 4.708 25.596 12.427 1.255 4.436 19.452 9.656

Table B.13: Success rates (le�) and guessing entropy (right) of templates in β0

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 0.063 0.060 0.026 0.034 0.035 0.039 0.022 0.017
(1, 0) 0.067 0.084 0.039 0.034 0.035 0.065 0.035 0.058
(2, 0) 0.055 0.073 0.049 0.043 0.046 0.070 0.039 0.052
(3, 0) 0.061 0.049 0.030 0.057 0.052 0.058 0.046 0.052
(4, 0) 0.045 0.066 0.059 0.044 0.056 0.080 0.048 0.051
(0, 1) 0.054 0.053 0.028 0.055 0.056 0.050 0.036 0.054
(1, 1) 0.062 0.052 0.061 0.054 0.049 0.043 0.043 0.043
(2, 1) 0.096 0.045 0.034 0.041 0.063 0.068 0.022 0.029
(3, 1) 0.047 0.063 0.043 0.055 0.045 0.055 0.038 0.064
(4, 1) 0.081 0.055 0.032 0.063 0.073 0.047 0.020 0.049
(0, 2) 0.055 0.062 0.029 0.033 0.067 0.056 0.029 0.035
(1, 2) 0.070 0.059 0.032 0.050 0.059 0.054 0.025 0.033
(2, 2) 0.064 0.049 0.028 0.065 0.049 0.057 0.029 0.067
(3, 2) 0.076 0.073 0.050 0.028 0.049 0.057 0.029 0.040
(4, 2) 0.064 0.072 0.080 0.053 0.051 0.064 0.065 0.058
(0, 3) 0.048 0.061 0.031 0.054 0.051 0.058 0.025 0.055
(1, 3) 0.088 0.062 0.031 0.030 0.051 0.085 0.032 0.050
(2, 3) 0.065 0.079 0.046 0.049 0.043 0.080 0.042 0.033
(3, 3) 0.055 0.067 0.053 0.038 0.044 0.065 0.050 0.050
(4, 3) 0.062 0.067 0.043 0.066 0.051 0.056 0.018 0.061
(0, 4) 0.063 0.080 0.028 0.063 0.050 0.044 0.022 0.031
(1, 4) 0.064 0.056 0.045 0.060 0.049 0.048 0.032 0.057
(2, 4) 0.073 0.074 0.037 0.025 0.048 0.072 0.044 0.054
(3, 4) 0.057 0.084 0.030 0.045 0.032 0.083 0.025 0.054
(4, 4) 0.077 0.061 0.020 0.041 0.163 0.144 0.038 0.055

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 29.099 31.206 66.016 55.164 49.097 41.215 77.061 72.161
(1, 0) 41.296 27.599 51.756 51.166 51.967 35.532 52.942 43.689
(2, 0) 45.505 31.928 47.914 52.142 52.209 34.579 52.971 48.676
(3, 0) 46.225 38.049 48.516 43.621 45.427 39.180 53.513 44.922
(4, 0) 44.973 33.773 41.436 53.657 45.342 29.965 45.826 47.460
(0, 1) 42.920 37.477 55.296 43.037 47.861 39.370 62.768 47.697
(1, 1) 44.062 41.569 43.692 47.447 49.794 41.370 51.363 48.475
(2, 1) 37.942 35.927 58.811 53.895 39.371 37.991 61.425 57.728
(3, 1) 49.000 33.408 47.756 51.132 54.896 38.350 52.300 44.095
(4, 1) 39.393 34.967 55.991 43.244 38.900 35.159 70.819 49.384
(0, 2) 40.071 34.954 57.510 54.016 40.775 36.531 61.750 54.218
(1, 2) 37.223 35.369 53.714 52.559 43.220 38.293 61.419 59.342
(2, 2) 42.703 38.837 58.793 42.058 44.949 41.459 63.710 40.046
(3, 2) 38.453 34.161 51.291 54.249 44.727 36.590 60.970 54.708
(4, 2) 40.264 35.120 43.146 49.255 43.270 33.627 44.398 47.326
(0, 3) 41.919 38.271 58.745 46.345 45.974 39.711 64.287 47.035
(1, 3) 35.889 34.639 56.862 54.783 43.745 32.077 56.285 52.072
(2, 3) 39.466 29.259 47.707 52.404 47.964 28.582 53.567 55.279
(3, 3) 47.758 34.515 41.710 50.016 45.893 35.975 51.737 50.468
(4, 3) 36.454 33.344 46.953 38.291 38.767 35.921 63.725 36.496
(0, 4) 36.658 30.434 57.476 47.138 45.926 38.289 73.197 47.420
(1, 4) 41.344 35.637 47.295 43.026 50.578 45.520 64.383 42.099
(2, 4) 38.915 32.309 55.223 55.883 42.468 35.518 55.496 49.946
(3, 4) 42.077 29.945 53.072 53.553 51.580 35.255 56.883 48.758
(4, 4) 37.359 38.467 61.073 50.593 15.980 21.212 53.895 33.795

APPENDIX B. SUPPORTING TABLES AND FIGURES 147

Table B.14: Success rates (le�) and guessing entropy (right) of templates in C0

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 0.027 0.036 0.016 0.030 0.041 0.060 0.019 0.042
(1, 0) 0.025 0.044 0.020 0.039 0.034 0.066 0.015 0.036
(2, 0) 0.027 0.043 0.027 0.039 0.047 0.051 0.018 0.043
(3, 0) 0.032 0.047 0.017 0.045 0.045 0.056 0.015 0.046
(4, 0) 0.026 0.048 0.022 0.037 0.066 0.075 0.018 0.048

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 58.015 39.596 65.977 51.890 42.605 31.637 76.724 49.012
(1, 0) 58.307 40.936 69.313 49.246 43.310 32.581 77.534 46.917
(2, 0) 56.889 42.208 66.796 51.466 36.740 33.989 72.759 47.559
(3, 0) 59.543 41.348 68.157 51.589 38.406 31.291 74.440 44.055
(4, 0) 60.075 39.145 69.823 49.706 33.487 29.861 65.547 43.852

Table B.15: Success rates (le�) and guessing entropy (right) of templates in D0

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 0.013 0.020 0.006 0.012 0.016 0.010 0.008 0.013
(1, 0) 0.013 0.016 0.010 0.016 0.016 0.016 0.008 0.015
(2, 0) 0.008 0.016 0.011 0.014 0.012 0.021 0.005 0.016
(3, 0) 0.010 0.020 0.009 0.013 0.016 0.019 0.012 0.011
(4, 0) 0.017 0.006 0.011 0.012 0.020 0.020 0.009 0.019

(i, j)

8k 0 1 2 3 4 5 6 7

(0, 0) 91.069 84.318 92.714 87.537 84.127 73.385 93.005 85.368
(1, 0) 87.800 84.453 89.139 86.089 78.383 78.650 90.992 80.381
(2, 0) 89.727 86.831 89.815 88.058 76.028 78.165 92.148 84.787
(3, 0) 93.462 83.278 92.638 84.953 84.579 70.239 92.599 82.877
(4, 0) 91.890 81.804 90.937 88.506 80.511 76.263 91.385 76.724

Table B.16: �e run-time estimation of template pro�ling and a�ack with di�erent fragment
size (with m = 2000, N = 64000, m′ = 8), where the results for pro�ling are estimated with
the average of 100 trials and the results for a�ack are estimated with 1000 trials.

Pro�ling
fragment size 4-bit 8-bit 16-bit

Total
CPU time (s) 379.644 405.316 509.050
Wall time (s) 45.803 46.548 61.953

A�ack
fragment size 4-bit 8-bit 16-bit

Single-core
CPU time (µs) 251.199 353.150 218269.503
Wall time (µs) 269.781 372.640 219348.418

32-core
CPU time (µs) 18247.971 32176.628 5893249.263
Wall time (µs) 599.665 1031.811 184540.310

148 B.4. DATA FOR THE KECCAK EXPERIMENTS ON THE 32-BIT DEVICE

Table B.17: Results of recovering the functions in the SHA-3 family with di�erent numbers of
invocations by the three-round factor graph.

Function c #Inv. #Rec.
#Iteration*

Med. Mean σ Max

SHA3-512 1024

1 1000 30 30.064 1.720 35
2 1000 30 30.577 1.285 36
4 1000 30 30.485 1.277 37
5 1000 30 30.519 1.306 36
10 1000 30 30.273 1.282 37

SHA3-384 768
1 1000 34 34.066 2.057 41
2 1000 34 34.420 1.497 41

SHA3-256

512

1 999 38 38.023 2.924 46
2 997 38 38.323 1.700 45

SHAKE256

1 999 39 38.789 2.727 50
2 994 39 38.785 1.902 50

SHA3-224 448
1 992 39 39.284 2.947 52
2 979 40 40.086 2.138 55

SHAKE128 256
1 921 43 43.511 5.021 106
2 862 44 44.191 3.560 116

* Only the invocations successfully reaching a steady state are taken into account.

APPENDIX B. SUPPORTING TABLES AND FIGURES 149

Table B.18: Results of recovering the functions in the SHA-3 family with di�erent numbers of
invocations by the two-round factor graph.

Function c #Inv. #Rec.
#Iteration*

Med. Mean σ Max

SHA3-512 1024

1 1000 51 50.909 5.362 71
2 998 51 52.189 5.550 163
4 999 52 52.217 4.914 104
5 1000 52 52.266 5.082 161
10 999 51 51.566 4.762 107

SHA3-384 768
1 997 65 66.025 10.526 154
2 993 66 67.035 8.254 130

SHA3-256

512

1 940 89 95.240 29.147 198
2 912 90 97.705 26.110 198

SHAKE256

1 867 95 100.993 30.085 198
2 828 93 101.265 28.166 199

SHA3-224 448
1 419 94 98.173 30.634 195
2 140 105 111.207 28.667 199

SHAKE128 256
1 35 59 63.943 14.485 110
2 0 89 89.000 0.000 89

* Only the invocations successfully reaching a steady state are taken into account.

150 B.4. DATA FOR THE KECCAK EXPERIMENTS ON THE 32-BIT DEVICE

Table B.19: Results of recovering the functions in the SHA-3 family with one invocation by
the 16-bit fragment templates and the four-round factor graph.

Function c r #Rec.
#Iteration*

Median Mean σ Max
SHA3-512 1024 576 1000 25 24.922 0.796 28
SHA3-384 768 832 1000 26 26.291 0.935 29
SHA3-256

512 1088
999 28 27.973 1.232 31

SHAKE256 997 28 28.362 1.237 33
SHA3-224 448 1152 999 28 28.403 1.219 33
SHAKE128 256 1344 984 30 30.052 1.488 38

* Only invocations that reached a steady state are taken into account.

Table B.20: Results of recovering the functions in the SHA-3 family with one invocation by
the 16-bit fragment templates and the three-round factor graph.

Function c r #Rec.
#Iteration*

Median Mean σ Max
SHA3-512 1024 576 1000 29 29.417 1.686 35
SHA3-384 768 832 1000 33 33.169 2.018 40
SHA3-256

512 1088
998 37 36.787 2.806 45

SHAKE256 999 38 37.492 2.568 47
SHA3-224 448 1152 996 38 37.879 2.766 45
SHAKE128 256 1344 956 42 41.361 3.506 65

* Only invocations that reached a steady state are taken into account.

Table B.21: Results of recovering the functions in the SHA-3 family with one invocation by
the 16-bit fragment templates and the two-round factor graph.

Function c r #Rec.
#Iteration*

Median Mean σ Max
SHA3-512 1024 576 1000 49 49.119 5.176 73
SHA3-384 768 832 1000 62 63.001 9.278 135
SHA3-256

512 1088
971 83 87.463 25.959 197

SHAKE256 944 86 92.684 26.726 199
SHA3-224 448 1152 575 89 93.790 29.063 197
SHAKE128 256 1344 47 55.5 65.729 26.573 167

* Only invocations that reached a steady state are taken into account.

APPENDIX B. SUPPORTING TABLES AND FIGURES 151

Table B.22: Results of recovering the functions in the SHA-3 family with one invocation by
the nibble templates and the four-round factor graph.

Function c r #Rec.
#Iteration*

Median Mean σ Max
SHA3-512 1024 576 1000 26 25.763 0.806 28
SHA3-384 768 832 1000 27 27.178 0.936 30
SHA3-256

512 1088
1000 29 29.049 1.264 33

SHAKE256 997 30 29.528 1.297 35
SHA3-224 448 1152 1000 30 29.545 1.275 34
SHAKE128 256 1344 976 32 31.465 1.586 41

* Only invocations that reached a steady state are taken into account.

Table B.23: Results of recovering the functions in the SHA-3 family with one invocation by
the nibble templates and the three-round factor graph.

Function c r #Rec.
#Iteration*

Median Mean σ Max
SHA3-512 1024 576 1000 31 30.551 1.753 35
SHA3-384 768 832 1000 35 34.683 2.108 40
SHA3-256

512 1088
998 39 38.865 3.002 46

SHAKE256 998 40 39.716 2.841 53
SHA3-224 448 1152 990 40 40.257 3.026 52
SHAKE128 256 1344 908 45 44.968 5.567 128

* Only invocations that reached a steady state are taken into account.

Table B.24: Results of recovering the functions in the SHA-3 family with one invocation by
the nibble templates and the two-round factor graph.

Function c r #Rec.
#Iteration*

Median Mean σ Max
SHA3-512 1024 576 1000 52 51.918 5.453 71
SHA3-384 768 832 997 67 67.902 11.682 184
SHA3-256

512 1088
908 94 99.515 29.847 198

SHAKE256 828 97 103.674 30.101 199
SHA3-224 448 1152 391 99 103.184 31.892 197
SHAKE128 256 1344 31 64 71.194 19.526 122

* Only invocations that reached a steady state are taken into account.

152 B.4. DATA FOR THE KECCAK EXPERIMENTS ON THE 32-BIT DEVICE

0 10 20 30 40
#iteration

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
3 rounds
2 rounds

0 250 500 750 1000 1250 1500
#rate (unknown) bits

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
3 rounds
3 rounds

Figure B.1: Percentage of successfully recovered traces with 16-bit templates for factor graphs
with di�erent numbers of rounds observed, as a function of the number of loopy-BP iterations
(le�) and the number of unknown input bits (right).

0 10 20 30 40
#iteration

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
3 rounds
2 rounds

0 250 500 750 1000 1250 1500
#rate (unknown) bits

0

20

40

60

80

100

%
re

co
ve

re
d

tra
ce

s

4 rounds
3 rounds
3 rounds

Figure B.2: Percentage of successfully recovered traces with nibble templates for factor graphs
with di�erent numbers of rounds observed, as a function of the number of loopy-BP iterations
(le�) and the number of unknown input bits (right).

APPENDIX B. SUPPORTING TABLES AND FIGURES 153

B.5 Data for the Ascon experiments on the 32-bit device

Table B.25: Number of interesting clock cycles detected for the high and low 32-bit interme-
diate words in U-Os. �e detection for IV and N is not needed since they are known values.

lane L0 L1 L2 L3 L4

32-bit word high low high low high low high low high low

Init.

input (β−1) IV 244 230 310 252 N

α0 32 27 111 128 43 36 34 24 89 90
β0 18 19 19 22 19 25 23 21 30 32
α1 17 17 17 13 33 31 23 24 27 23
β1 13 19 19 20 22 22 18 19 34 32
α2 17 19 12 13 29 30 29 19 25 21
β2 12 14 19 20 24 23 21 20 37 32
α3 18 19 12 15 29 27 24 24 22 22
β3 13 16 20 21 23 27 24 21 33 31
α4 18 39 16 18 33 29 23 23 24 27
β4 15 15 21 20 26 22 20 21 30 32
α5 17 17 15 14 33 27 20 21 50 28
β5 12 14 21 18 21 21 20 20 34 33
α6 18 20 16 13 30 28 23 22 23 24
β6 17 21 23 23 22 21 19 18 35 31
α7 17 18 14 19 29 32 24 18 23 24
β7 17 14 18 22 25 27 21 23 38 34
α8 17 17 17 11 29 27 25 25 25 22
β8 13 15 21 22 22 23 24 21 35 30
α9 19 17 16 14 29 27 21 28 23 22
β9 13 28 22 21 26 23 20 21 34 32
α10 23 18 16 12 30 27 22 19 23 21
β10 15 17 26 22 23 26 22 21 33 33
α11 20 17 13 14 33 29 25 23 31 27
β11 30 101 28 36 67 62 26 24 48 46

lane L0 L1 L2 L3 L4

32-bit word high low high low high low high low high low

Fin.

input (β−1) 102 133 40 41 45 46 40 41 76 80
α0 20 30 14 17 35 30 25 22 23 23
β0 18 14 21 20 25 25 25 20 31 32
α1 17 17 15 16 29 30 24 21 24 26
β1 12 13 20 20 21 22 20 21 34 31
α2 20 18 13 14 30 27 22 22 25 23
β2 21 15 21 23 23 23 18 29 32 32
α3 17 18 17 19 32 27 25 23 22 21
β3 16 12 24 19 22 21 22 19 31 33
α4 16 15 16 14 32 30 31 21 24 22
β4 15 17 22 19 20 25 28 21 33 30
α5 18 20 14 17 31 28 21 23 27 25
β5 19 17 22 21 23 22 20 19 35 34
α6 17 18 11 15 30 27 24 22 23 26
β6 15 15 20 20 26 22 23 22 32 35
α7 18 21 15 12 29 28 20 32 26 22
β7 18 16 22 34 22 21 26 20 36 33
α8 16 21 14 15 28 25 26 23 24 23
β8 17 15 24 22 23 22 21 22 34 35
α9 18 24 16 15 32 28 23 24 27 22
β9 15 13 30 21 21 25 19 19 37 33
α10 18 17 13 19 28 28 24 23 25 24
β10 11 15 21 20 18 23 19 21 33 34
α11 17 22 16 14 28 27 26 22 31 27
β11 65 63 62 65 63 65 98 99 116 124

Table B.26: Number of interesting clock cycles detected for the even and odd 32-bit interme-
diate words in U-Os. �e detection for IV and N is not needed since they are known values.

lane L0 L1 L2 L3 L4

32-bit word even odd even odd even odd even odd even odd

Init.

input (β−1) IV 257 283 315 320 N

α0 22 22 115 118 28 26 26 24 79 78
β0 18 7 14 18 13 23 14 13 21 25
α1 13 14 11 22 20 25 13 20 17 17
β1 14 7 12 17 13 22 12 12 25 19
α2 15 16 9 12 23 19 25 18 18 14
β2 11 8 21 15 17 19 11 11 23 20
α3 12 16 11 11 23 25 14 19 17 13
β3 12 9 13 14 15 23 14 15 23 23
α4 19 14 16 11 20 25 17 22 16 14
β4 12 8 13 16 17 22 20 13 20 23
α5 15 13 14 16 20 24 13 17 24 21
β5 12 8 16 19 15 19 12 21 20 22
α6 16 13 11 12 19 22 14 18 16 13
β6 13 7 14 16 15 19 11 19 24 21
α7 16 15 10 11 35 20 17 20 15 14
β7 13 9 15 18 13 29 16 12 19 23
α8 16 10 9 10 21 20 16 20 15 13
β8 13 8 16 18 15 20 14 12 26 21
α9 14 16 11 10 22 23 14 19 15 14
β9 15 15 16 16 15 20 17 13 22 23
α10 16 12 9 13 21 20 17 18 15 17
β10 13 6 17 17 16 20 17 13 23 23
α11 16 12 9 10 25 22 17 22 18 16
β11 95 81 26 26 29 72 21 18 37 40

lane L0 L1 L2 L3 L4

32-bit word even odd even odd even odd even odd even odd

Fin.

input (β−1) 132 108 31 29 41 35 29 28 75 54
α0 16 15 10 10 21 22 14 19 15 13
β0 13 10 17 15 13 15 16 15 22 25
α1 15 15 12 13 18 27 15 17 22 14
β1 10 5 15 17 16 18 13 12 28 22
α2 12 19 9 13 25 21 14 18 18 14
β2 13 10 20 16 17 23 17 11 22 22
α3 14 16 12 10 19 27 14 22 18 15
β3 12 7 14 19 16 21 14 14 21 23
α4 16 12 11 14 21 26 13 16 17 13
β4 12 8 14 19 15 18 15 14 27 20
α5 15 14 12 12 26 22 15 18 19 18
β5 10 10 14 16 18 18 17 12 23 21
α6 14 15 13 13 19 24 13 16 15 14
β6 11 9 15 14 12 20 15 12 27 21
α7 12 14 11 9 20 22 15 18 17 14
β7 13 6 22 16 16 20 14 13 24 22
α8 16 13 10 10 18 23 14 21 19 13
β8 12 13 15 17 14 21 14 14 23 25
α9 20 14 12 14 24 26 14 19 15 16
β9 13 9 14 18 18 18 14 13 21 20
α10 17 13 16 12 21 19 16 18 17 15
β10 13 8 19 14 17 18 13 12 25 22
α11 14 13 11 11 22 21 15 22 22 17
β11 72 58 62 65 62 65 117 120 141 141

154 B.5. DATA FOR THE ASCON EXPERIMENTS ON THE 32-BIT DEVICE

Table B.27: Key-recovery success rates evaluated with 1000 testing keys, for each by up to 10
traces within our loopy factor graph (U-Os experiment).

#Traces
#Combinations searched

1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105

1 0.197 0.209 0.224 0.248 0.268 0.299 0.322 0.364 0.412 0.443 0.488 0.538 0.582 0.614 0.655 0.686
2 0.807 0.811 0.818 0.821 0.830 0.839 0.847 0.855 0.867 0.885 0.895 0.913 0.925 0.940 0.949 0.955
3 0.950 0.950 0.951 0.954 0.954 0.959 0.960 0.962 0.965 0.968 0.970 0.974 0.974 0.975 0.979 0.981
4 0.970 0.971 0.971 0.973 0.973 0.975 0.976 0.980 0.983 0.984 0.985 0.986 0.988 0.988 0.990 0.991
5 0.972 0.972 0.974 0.975 0.975 0.975 0.975 0.975 0.976 0.977 0.977 0.977 0.978 0.979 0.979 0.980
6 0.987 0.987 0.987 0.987 0.989 0.989 0.989 0.989 0.989 0.990 0.990 0.990 0.990 0.991 0.991 0.991
7 0.974 0.975 0.975 0.975 0.975 0.975 0.976 0.977 0.977 0.977 0.978 0.979 0.979 0.979 0.979 0.979
8 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974
9 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.957 0.958 0.958 0.958 0.959 0.959
10 0.957 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.959 0.959 0.959 0.959 0.959 0.959 0.959

Table B.28: Success rates of recovering the 1000 testing keys by tree BP with marginalized
bitwise probability tables from byte templates (U-Os experiment).

#Traces
#Combinations searched

1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105

1 0.018 0.030 0.047 0.065 0.088 0.120 0.167 0.207 0.257 0.299 0.353 0.414 0.450 0.497 0.565 0.609
2 0.116 0.180 0.299 0.374 0.458 0.554 0.618 0.667 0.739 0.780 0.828 0.866 0.902 0.926 0.954 0.970
3 0.260 0.360 0.475 0.564 0.643 0.743 0.804 0.851 0.896 0.928 0.946 0.969 0.980 0.989 0.994 0.994
4 0.337 0.457 0.601 0.696 0.773 0.847 0.888 0.923 0.953 0.966 0.977 0.986 0.988 0.991 0.995 0.996
5 0.412 0.531 0.685 0.765 0.816 0.879 0.916 0.941 0.972 0.985 0.987 0.991 0.993 0.993 0.995 0.998
6 0.436 0.569 0.725 0.805 0.858 0.908 0.934 0.956 0.981 0.987 0.990 0.992 0.994 0.995 0.999 0.999
7 0.477 0.604 0.757 0.831 0.880 0.922 0.948 0.968 0.983 0.985 0.989 0.992 0.996 0.998 0.998 0.999
8 0.499 0.627 0.756 0.840 0.890 0.924 0.953 0.973 0.985 0.991 0.994 0.998 0.998 0.998 0.999 1.000
9 0.508 0.630 0.784 0.849 0.894 0.938 0.958 0.977 0.987 0.993 0.995 0.998 0.999 1.000 1.000 1.000
10 0.531 0.652 0.788 0.858 0.905 0.939 0.965 0.979 0.991 0.995 0.999 0.999 1.000 1.000 1.000 1.000

Table B.29: Success rates of recovering the 1000 testing keys by tree BP with probability tables
from byte templates (U-Os experiment).

#Traces
#Combinations searched

1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105

1 0.152 0.237 0.373 0.486 0.571 0.681 0.751 0.804 0.863 0.903 0.933 0.953 0.962 0.972 0.988 0.992
2 0.648 0.801 0.911 0.966 0.984 0.992 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.831 0.939 0.983 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.909 0.970 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.930 0.983 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 0.941 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7 0.958 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.967 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9 0.966 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.969 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

APPENDIX B. SUPPORTING TABLES AND FIGURES 155

Table B.30: �ality evaluation of templates for 16-bit fragments (H/L)

fragment K[0, 0]16 K[0, 1]16 K[0, 2]16 K[0, 3]16 K[1, 0]16 K[1, 1]16 K[1, 2]16 K[1, 3]16

Key K
SR 0.801 0.710 0.655 0.499 0.699 0.724 0.803 0.587
GR 1.559 2.099 2.708 4.430 2.125 1.746 1.574 3.454

fragment β11[3, 0]16 β11[3, 1]16 β11[3, 2]16 β11[3, 3]16 β11[4, 0]16 β11[4, 1]16 β11[4, 2]16 β11[4, 3]16

Fin. β11

SR 0.039 0.032 0.043 0.041 0.021 0.016 0.051 0.073
GR 505.350 822.536 331.481 383.037 679.468 1033.571 259.831 153.293

Table B.31: Success rates of recovering the 1000 testing keys by tree BP with probability tables
from 16-bit templates (U-Os experiment).

#Traces
#Combinations searched

1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105

1 0.319 0.465 0.621 0.735 0.817 0.886 0.932 0.949 0.961 0.974 0.988 0.995 0.996 0.998 1.000 1.000
2 0.800 0.928 0.981 0.995 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.914 0.980 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.953 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.969 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6 0.971 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7 0.982 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.986 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9 0.989 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table B.32: Success rates of recovering the 1000 testing keys by tree BP with probability tables
from byte templates (U-O3 experiment).

#Traces
#Combinations searched

1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105

1 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.007 0.008 0.011 0.015 0.019
2 0.001 0.001 0.001 0.003 0.003 0.009 0.013 0.017 0.031 0.040 0.052 0.075 0.103 0.127 0.157 0.193
3 0.003 0.007 0.009 0.010 0.014 0.028 0.037 0.048 0.070 0.089 0.129 0.181 0.219 0.271 0.333 0.385
4 0.004 0.008 0.014 0.019 0.024 0.048 0.069 0.090 0.134 0.166 0.210 0.274 0.329 0.381 0.453 0.509
5 0.006 0.008 0.016 0.025 0.044 0.068 0.086 0.126 0.171 0.226 0.274 0.341 0.393 0.452 0.534 0.587
6 0.008 0.010 0.027 0.034 0.049 0.085 0.126 0.152 0.213 0.263 0.311 0.390 0.436 0.493 0.584 0.635
7 0.009 0.017 0.029 0.041 0.066 0.101 0.136 0.170 0.236 0.284 0.335 0.419 0.478 0.540 0.611 0.671
8 0.012 0.018 0.029 0.041 0.063 0.106 0.157 0.199 0.258 0.319 0.369 0.448 0.503 0.556 0.643 0.694
9 0.009 0.018 0.035 0.056 0.084 0.123 0.154 0.206 0.283 0.338 0.393 0.479 0.533 0.596 0.669 0.716
10 0.012 0.020 0.034 0.054 0.084 0.130 0.177 0.231 0.302 0.359 0.411 0.491 0.553 0.617 0.680 0.734

156 B.5. DATA FOR THE ASCON EXPERIMENTS ON THE 32-BIT DEVICE

Table B.33: Success rates of recovering the 1000 testing keys by tree BP with probability tables
from 16-bit templates (U-O3 experiment).

#Traces
#Combinations searched

1 2 5 10 20 50 100 200 500 1000 2000 5000 10000 20000 50000 105

1 0.000 0.003 0.004 0.006 0.008 0.010 0.014 0.018 0.023 0.034 0.041 0.056 0.062 0.082 0.108 0.127
2 0.005 0.013 0.030 0.044 0.058 0.087 0.111 0.157 0.202 0.246 0.295 0.359 0.426 0.476 0.541 0.589
3 0.036 0.050 0.083 0.102 0.137 0.193 0.243 0.314 0.388 0.448 0.505 0.581 0.647 0.690 0.759 0.799
4 0.044 0.072 0.120 0.167 0.210 0.315 0.368 0.443 0.523 0.579 0.628 0.709 0.755 0.793 0.841 0.873
5 0.063 0.100 0.158 0.209 0.281 0.369 0.435 0.509 0.597 0.661 0.706 0.768 0.806 0.845 0.889 0.910
6 0.068 0.113 0.189 0.251 0.306 0.403 0.492 0.558 0.649 0.705 0.752 0.801 0.841 0.879 0.914 0.935
7 0.085 0.124 0.213 0.279 0.350 0.436 0.515 0.596 0.679 0.740 0.769 0.830 0.871 0.904 0.929 0.948
8 0.087 0.138 0.229 0.303 0.377 0.469 0.539 0.624 0.694 0.746 0.793 0.853 0.885 0.915 0.946 0.957
9 0.092 0.148 0.235 0.320 0.405 0.500 0.575 0.644 0.714 0.770 0.814 0.869 0.905 0.929 0.946 0.961
10 0.103 0.161 0.264 0.338 0.409 0.513 0.583 0.651 0.731 0.788 0.828 0.884 0.909 0.930 0.952 0.963

Table B.34: �ality evaluation of fragment templates for the key of Ascon AEAD with only
one part of the interesting clock cycles (U-O3 data sets).

lane L1 L2

word high low high low
byte 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

All interesting SR 0.683 0.418 0.438 0.306 0.320 0.261 0.239 0.243 0.419 0.299 0.227 0.200 0.524 0.328 0.485 0.493
clock cycles GR 1.681 4.622 4.107 7.380 6.026 9.774 9.001 7.726 3.961 6.862 10.292 12.206 2.767 5.635 3.387 3.316

from region 1
SR 0.196 0.085 0.102 0.100 0.057 0.043 0.074 0.065 0.056 0.068 0.070 0.070 0.135 0.067 0.073 0.108
GR 9.947 25.103 17.766 29.276 33.485 40.562 30.182 33.375 37.507 29.037 41.370 41.332 16.175 32.600 28.850 22.366

from region 2
SR 0.057 0.037 0.037 0.027 0.062 0.033 0.056 0.029 0.107 0.054 0.043 0.028 0.095 0.064 0.096 0.049
GR 35.195 50.700 45.368 60.148 29.351 48.493 47.342 50.945 20.727 40.203 45.081 53.499 22.801 37.779 21.944 39.046

from region 3
SR 0.146 0.082 0.074 0.044 0.063 0.035 0.049 0.031 0.065 0.064 0.048 0.033 0.070 0.056 0.123 0.095
GR 17.713 28.668 29.770 44.064 27.461 50.882 54.501 38.037 33.094 39.731 35.757 52.766 30.461 34.892 20.243 25.556

from region 4
SR 0.024 0.027 0.014 0.022 0.012 0.026 0.006 0.020 0.009 0.018 0.012 0.008 0.012 0.023 0.025 0.021
GE 64.327 63.113 83.875 80.022 91.798 62.308 94.149 81.054 91.080 70.160 88.492 90.651 71.301 54.705 72.237 62.764

lane L3 L4

word high low high low
byte 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

β11 in SR 0.089 0.042 0.048 0.046 0.111 0.077 0.091 0.045 0.110 0.079 0.062 0.040 0.118 0.069 0.122 0.063
Finalization GR 26.965 43.649 43.980 47.691 22.775 34.171 24.764 36.879 21.568 34.633 38.302 41.534 17.675 32.054 20.596 34.329

APPENDIX B. SUPPORTING TABLES AND FIGURES 157

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

templates for byte fragments

 1 trace
 2 traces
 3 traces
 4 traces
 5 traces
 6 traces
 7 traces
 8 traces
 9 traces
10 traces

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

templates for 16-bit fragments

 1 trace
 2 traces
 3 traces
 4 traces
 5 traces
 6 traces
 7 traces
 8 traces
 9 traces
10 traces

Figure B.3: Success rates on Ascon-128 with expanded interesting clock cycle sets, for both 8
and 16-bit fragments. We can compare these results with those in Figure 5.7.

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

templates for byte fragments
original
expanded

100 101 102 103 104 105

combinations searched (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

templates for 16-bit fragments
original
expanded

Figure B.4: Single-trace success rates on Ascon-128, with both original (Figure 5.7) and ex-
panded (Figure B.3) interesting clock cycle sets plo�ed together for comparison.

	Introduction
	Side-channel attacks
	Categories of side-channel attacks
	Extracting information from power traces
	Template attack to reconstruct the full state

	Post-processing side-channel information
	Target algorithms
	Countermeasures against power analysis
	Attack Boolean-masked implementations

	Contributions
	Thesis structure

	Preliminaries
	Template attack on current traces
	The basic template attack
	The template attack with linear regression models
	Data compression with linear discriminant analysis
	Template quality evaluation

	Key enumeration
	Search within two ranking tables
	Search with a recursive structure

	Belief propagation and SASCA
	Keccak
	Keccak-f[1600] permutation
	Keccak sponge functions: SHA-3 and SHAKE

	Ascon
	Ascon permutation
	Ascon authenticated encryption with associated data

	General experimental setting
	Measurement setting
	Recorded traces
	Computing resources

	LDA-based TA on a Keccak 8-bit implementation
	Attack strategy
	On a full Keccak sponge function
	On a single invocation of Keccak-f[1600]

	Template attack on SHA3-512
	Target implementation and measurement setup
	Interesting clock cycle detection
	Profiling templates
	Evaluating the quality of templates

	Searching the correct intermediate states
	Layer 1: generating tables for byte rows
	Layer 2: generating tables for byte slices
	Layer 3: consistency checking
	Results

	Belief propagation on Keccak-f[1600]
	Bitwise model by Kannwischer et al.
	Apply the bitwise model with full-state information
	Experiments

	Discussion

	Fragment template attack on Keccak
	Fragment template attack
	Nibble templates of Keccak on the 8-bit device
	Byte templates of a stream cipher on a 32-bit device
	Target setting and trace recording
	8-bit fragment template profiling
	Templates for 16-bit fragments

	Attacking a 32-bit Keccak implementation
	Keccak implementation and the target board
	Trace recording
	SASCA model building and evaluation
	Results for the SHA-3 and SHAKE functions
	Experiments with 16-bit and nibble fragment templates
	Damping in loopy belief propagation

	Discussion

	Fragment template attack on Ascon
	General experimental assumptions
	Attack strategies
	Attack strategy for single traces
	Attack strategy for traces from multiple encryptions
	Comparison against a very recent related study

	The attack with all intermediate values
	Experiment setup
	Detecting the interesting clock cycles
	Fragment template profiling
	Results after belief propagation and secret enumeration

	The attack with intermediate values around the key
	Loop-free alternative factor graph
	Results

	Compiler optimization levels
	Attacking a masked version
	Attack strategy
	Experiments

	Size of fragments for template profiling
	Discussion

	Conclusion
	Challenges
	Future research directions
	Review

	Implementation notes
	End-of-state management in secret enumeration

	Supporting tables and figures
	Lookup tables and algorithms for Keccak and Ascon
	Data for the Keccak experiments on the 8-bit device
	Data for the XOR experiments on the 32-bit device
	Data for the Keccak experiments on the 32-bit device
	Data for the Ascon experiments on the 32-bit device

