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Summary
This thesis is in three parts. All parts are motivated by a desire to gain

a better understanding of models of the phenomenon of two-dimensional

diffusion limited aggregation, henceforth DLA. The first part proves some

generalisations of results relating to Hastings-Levitov with α = 0, henceforth

HL(0), another two-dimensional growth process. The second part is a study

of numerical algorithms for simulating off-grid DLA. The third part describes

and reports on some numerical experiments on multiple models of DLA.

Part I provides a generalization of the concept of disturbance flows and

of the coalescing Brownian flow, also known as the Brownian web, proving

facts about the convergence of the former to the latter and about their time-

reversals. This work was motivated as an attempt to generalize known results

about the harmonic flow of HL(0) to the case of HL(2), which is supposed

to be a model for DLA.

Part II provides the first rigorous analysis of the asymptotic runtimes of

four different previously published algorithms for simulating off-grid DLA.

A variation on one of these algorithms, incorporating an improvement from

another source and a trick new to this work, is implemented in code, with

the runtimes comparing favourably to previous work. The runtime of this

algorithm, like that of the algorithm it is based on, is Õ(n), which is optimal.

Part III is a report on experiments testing whether or not off-grid DLA,

HL(2) and noise-reduced DLA all have the same limiting shape in the many

particle limit. It also contains a heuristic discussion of whether regularized

HL can provide a good model for DLA. The results and heuristics indicate

that regularizing HL with slit particles is not a promising way to simulate

DLA. However, HL with circular particles, off-grid DLA and noise-reduced

DLA are found to be in agreement.
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Introduction
The unifying topic of the three parts of this thesis is Diffusion Limited Ag-

gregation (DLA). Here we describe the physical motivation for the concept

and informally introduce commonly studied models of DLA to refer to later.

DLA is a model for the growth of clusters, where their growth is primarily

governed by diffusion. Most clearly from the definition, the relevant situa-

tions can involve particles diffusing until they adhere to the cluster, such

as in electro deposition. However, similar behaviour occurs in the case of

exothermic crystal growth, where the diffusion is of dissipating heat. It is

also related to models of dielectric breakdown and can be used to model

dielectric breakdown in the high resistance limit [3].

DLA is an irreversible growth process in which a cluster of particles is

grown by adding one particle at a time. The particles are added at a point

on the boundary chosen according to harmonic measure from infinity, i.e.

the point is chosen from the limiting hitting distribution of a random walk

or Brownian motion started from far away. The original definition was in-

troduced by Witten and Sander [36] on the square lattice. As lattice based

models have been shown to be non-isotropic [3] we shall be primarily inter-

ested in lattice free models.

The first lattice free model was that of off-grid DLA introduced by Meakin

[18]. In this model, each particle has a fixed radius, say one, and can have

any position in R2. The particles each in turn start from infinity performing

a Brownian motion until they make contact with the cluster, at which point

they stop and are added to the cluster at their current location. In Part II,

we will analyze various algorithms for simulating this model.

The only notable results we know of for the lattice based model are bounds

on the fractal dimension (more accurately growth rate of the radius of the

cluster). These are due to Kesten [13] and Benjamini and Yadin [5]. No

results are known for the Meakin model. This motivates the need for another
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model which would allow us to more easily prove results.

Another lattice free model was proposed by Hastings and Levitov [12]. In

this model, the growth of the cluster by a particle is simulated by applying

a conformal map to the exterior of the cluster. The details of this process

are explained more clearly in Part III. The main purpose of Part III is to

test experimentally whether this model, and the Meakin model given above,

converge to the same distribution of cluster shape.

In fact, Hastings and Levitov proposed a parametrised family of models

(also introduced in Part III). Special cases of this model family have yielded

a decent level of understanding to the work of Norris and Turner [23] and

Silvestri [31]; and a regularized version is considered by Johansson Viklund,

Sola and Turner [35]. For this regularized model, they can prove theorems for

a larger variety of parameter choices, though the parameters corresponding

to DLA remain hard to analyze. This regularized model is discussed in Part

III.
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Part I

Time-Reversal of Coalescing

Diffusive Flows and Weak

Convergence of Localized

Disturbance Flows

This part is a contribution to the theory of stochastic flows in one dimension,

specifically the study of inhomogeneous flows and their time-reversals. We

provide two proofs of our main result, Theorem 4.1, which says that the time-

reversal of a coalescing diffusive flow with drift b and diffusivity a is (provided

the spatial derivative a′ of a is Lipschitz) given by a coalescing diffusive flow

of drift −b+ a′

2
and diffusivity a. Theorem 5.4, which establishes convergence

of certain families of inhomogeneous disturbance flows to coalescing diffusive

flows, may also be of independent interest.

1 Introduction

A disturbance flow, introduced in [24], is a composition of independent ran-

dom maps of the circle to itself. Unlike [24], we do not require that our maps

are identically distributed or that their distributions are invariant under con-

jugation by a rotation of the circle. For a pair of suitably smooth a, b, we

consider limits where the maps F are close to the identity, well localized and

have mean of F (x)−x close to hb(x) and variance of F (x)−x close to ha(x)

as h → 0. We prove convergence of individual paths to diffusion processes

and of the flow as a whole to the coalescing diffusive flow with diffusivity and
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drift given by a and b. We also describe the time-reversal of the disturbance

flows and use this to describe the time-reversal of a coalescing diffusive flow.

The coalescing diffusive flow consists of a diffusion process starting from

each point in space-time, each with drift and diffusivity given by the same

functions of space and time. They evolve independently until they collide,

at which point they coalesce. The idea of such an object with standard

Brownian motions instead of diffusions has been studied widely, starting with

Arratia in 1979 [2]. One approach to this is to define a family of random

measurable functions (φts : s ≤ t ∈ R) satisfying the flow property

φts ◦ φsr = φtr, r ≤ s ≤ t

and such that every finite collection of trajectories (φts(x) : t ≥ s) performs

coalescing Brownian motion. This is the approach taken in Arratia [2], Le

Jan and Raimond [15] and Tsirelson [34]. A problem, however, with this

approach is that the φts cannot be chosen to be right-continuous, as the com-

position of two right-continuous functions is not necessarily right-continuous.

An alternative approach that avoids this problem is given by Fontes et al.

[10] based on completing the set of trajectories to form a compact set of

continuous paths, this completion can be done in multiple ways leading to

multiple objects known as Brownian webs. Another way around the problem

was introduced by Norris and Turner in [24], based on the idea of considering

pairs {φ−, φ+} of left and right continuous modifications of the Arratia flow.

This setup does not store the information of the value of φts at a jump, and

as a result the flow property must be relaxed to a weak flow property (def-

inition in Section 3 of this part). The space of weak flows with the metric

appearing in [24] provides a useful space for studying weak convergence, as

it contains flows without continuous trajectories such as disturbance flows.

This is the approach that this work builds on. A later paper by Berestycki

et al. [6] provides another state-space and topology for the Brownian web,

which was based on the quad crossings of Schramm and Smirnov.
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Konarovskyi [14] also studies a generalization of coalescing Brownian mo-

tions with varying diffusivity. In that work, the diffusions only start from

time t = 0 and the diffusivity of each is taken to be inversely proportional to

the fraction of the diffusions that have coalesced to form it, rather than as

as function of position and time, as in this work.

This part is structured as follows. Section 2 proves existence and unique-

ness of a simplified version of the coalescing diffusive flows, which consists

of only countably many paths. Section 3 defines the metric spaces that our

flows take values in, and proves existence and uniqueness of the coalescing

diffusive flows (Theorem 3.1). Section 4 defines the time-reversal of a flow

and provides the statement of our main result (Theorem 4.1), which identi-

fies the time-reversal of a coalescing diffusive flow. At this point the reader

has the option of skipping straight to Section 7 which will not require Sec-

tions 5 or 6. Section 5 defines the notion of a disturbance flow, and shows

convergence of paths from the flow to diffusions and of countable collections

of paths to the simplified flow from Section 2. Section 6 shows convergence

of the disturbance flows to coalescing diffusive flows, identifies their time-

reversals and uses this to provide a proof of Theorem 4.1. Section 7 provides

an alternative proof of Theorem 4.1 that does not require the use of distur-

bance flows. It also contains as an intermediate weaker version (requiring

more smoothness of a and b) Theorem 7.1.

The disturbance flow based approach to our main result is based on [24];

much of the notation is taken from there and some of the proofs are very

similar. However, there are multiple places where new ideas are required to

handle the generalization. While [24] allows the distribution of disturbances

to be random only in that the location of the disturbance is chosen uniformly

at random from around the circle, we allow the disturbances to vary in size

and shape both randomly and with location in space and time, the shape

and size is also allowed to vary a lot more as we take the limit to small

disturbances than is allowed in [24]. The new ideas in the proofs are first
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evident in the proof of Theorem 5.1, showing that individual trajectories

of suitable disturbance flows converge weakly, where the proof of tightness

requires bounds that hold despite the possibly varying drift and diffusivity.

The time reversal results in Section 6 are generalizations of those in [24].

However, the statement of our main result Theorem 4.1 is not something that

you would obviously expect, and the proof had to be modified substantially

to deal with the more general disturbance flows.

The proof in Section 7 is original in idea as well as in detail. While it is

about the same length as the disturbance flow based proof, the weaker version

of our main result Theorem 7.1 (which is identical except it assumes that a

and b are Lipschitz in time as well as space) is proved with a substantially

smaller amount of work (about 5 pages after the statement has been made

rigorous rather than eighteen) and might suffice for future applications. In

particular it provides a short proof, without the use of disturbance flows, of

the Brownian case which is Corollary 7.2 of [24].

2 Countable Collections of Coalescing Diffu-

sions

In this section, we recall uniqueness in law for weak solutions of SDEs, then

define a metric space, DE, whose elements consist of countable collections

of cadlag paths. Finally, using a martingale problem in the style of [32],

specifically those corresponding to a countable family of coalescing diffusion

processes that are independent until collision; we identify certain elements of

DE.

Given functions a : R2 → R>0 and b : R2 → R measurable, bounded

uniformly on compacts in the first variable and L-Lipschitz in the second, let
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σ(t, x) =
√
a(t, x), then the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (1)

has uniqueness in law for weak solutions [28], i.e. given e = (s, x) and a triple

(X,W )t≥s, (Ω,F ,P), (Ft)t≥s, such that

a) (Ω,F ,P) is a probability space with (Ft)t≥s as a filtration satisfying

the usual conditions

b) X is adapted to (Ft), X is continuous and W is an (Ft)-Brownian

motion

c) Xs = x

d) Almost surely, both X and the quadratic variation of X are bounded

on each compact time interval and

e) Almost surely

Xt = Xs +

∫ t

s

b(r,Xr)dr +

∫ t

s

σ(r,Xr)dWr,∀t ≥ s (2)

then the law of X is determined by a,b and e.

We will write this law as µa,be , and say that X is a diffusion process with

drift b and diffusivity a. Throughout we will assume that a and b have

period 1 in the second variable (as well as the properties above), and X will

be considered as a diffusion process on the circle R/Z.

We will in several proofs use the notation

b∗ := sup
x∈[0,1],r∈I

|b(r, x)|

a∗ := sup
x∈[0,1],r∈I

a(r, x)

a∗ := inf
x∈[0,1],r∈I

a(r, x)

where I is an compact interval of time that contains all the times relevant to

the given context. It will only be important that in any given context these
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numbers are finite and a∗ > 0.

Let De = Dx([s,∞),R) be the space of cadlag paths starting from x at

time s. Write de for the Skorokhod metric on De.

Given a sequence E = (ek : k ∈ N) in R2, set

DE =
∞∏
k=1

Dek

and define a metric dE on DE by

dE(z, z′) =
∞∑
k=1

2−k(dek(z
k, z′k) ∧ 1).

Then (DE, dE) is a complete separable metric space.

Write ek = (sk, xk) and denote by (Zk
t )t≥sk the kth coordinate process on

DE, given by Zk
t (z) = zkt . Consider the filtration (Zt)t∈R on DE, where Zt

is the σ-algebra generated by (Zk
s : sk < s ≤ t ∨ sk, k ∈ N). Write CE for

the (measurable) subset of DE, where each coordinate path is continuous.

Define on CE

T jk = inf{t ≥ sj ∨ sk : Zj
t − Zk

t ∈ Z}.

The T jk are the collision times of the paths considered in R/Z. The following

is a generalization of a reformulation in [24] of a result of Arratia in [2].

Proposition 2.1. Given a, b measurable and bounded uniformly on com-

pacts in time and L-Lipschitz in space as in (1), there exists a unique Borel

probability measure µa,bE on DE under which, for all j, k ∈ N, the processes(
Zk
t −

∫ t

sk

b(s, Zk
s )ds

)
t≥sk
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and(
Zk
t Z

j
t −

∫ t

sj∨sk
Zk
s b(s, Z

j
s) + Zj

sb(s, Z
k
s )ds−

∫ t

T jk∧t
a(s, Zj

s)ds

)
t≥sj∨sk

are both continuous local martingales.

We give the following proof sketch. For existence, one can take indepen-

dent diffusion processes, with coefficients a and b, from each of the given

time-space starting points and then impose a rule of coalescence on collision,

deleting the path of larger index. The law of the resulting process has the

desired properties. On the other hand, given a probability measure such as

described in the proposition, on some larger probability space, one can use a

supply of independent Brownian motions to build diffusions continuing each

of the paths deleted at each collision. Then, the martingale problem charac-

terization of diffusion processes given in [32], can be used to see that one has

recovered the set-up used for existence. This gives uniqueness.

3 Existence and Uniqueness of Coalescing

Diffusive Flows

We now introduce the space of continuous weak flows C◦(R,D) and the space

of cadlag weak flows D◦(R,D), both introduced in [24]. We will then identify

certain elements of C◦(R,D) as coalescing diffusive flows, again using a mar-

tingale problem. The space C◦(R,D) is sufficient for stating our main result

and understanding the proof that doesn’t use disturbance flows. However,

we will need D◦(R,D) to deal with the fact that the disturbance flows are

not continuous in time. The following explanation of notation follows [24]

very closely, and all the claims made in italics are proved in [24].

We consider non-decreasing, right-continuous functions f+ : R→ R with
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the degree 1 property

f+(x+ n) = f+(x) + n, x ∈ R, n ∈ Z.

Let us denote the set of such functions by R and the set of analogous left-

continuous functions by L. Each f+ ∈ R has a left-continuous modification

given by f−(x) = limy↑x f
+(y). Let D denote the set of corresponding pairs

f = {f−, f+}. We will write f in place of f± when the choice is irrelevant

for the purpose at hand, especially in the case when f+ = f−, i.e. f+ is

continuous.

Firstly, we define a metric on D. Associate to each function f a function

f× given by f×(t) = t− x, where x ∈ R is the unique value such that

x+ f−(x)

2
≤ t ≤ x+ f+(x)

2

as shown in Figure 1. We can define a complete locally compact metric

(D, dD) by

dD(f, g) = sup
t∈[0,1)

|f×(t)− g×(t)|.

Consider φ = (φI : I ⊆ R), with φI ∈ D and I ranging over all non-empty

bounded intervals. We say that φ is a weak flow if given I a disjoint union

of intervals I1 and I2, with sup I1 =∈ I2,

φ−I2 ◦ φ
−
I1
≤ φ−I ≤ φ+

I ≤ φ+
I2
◦ φ+

I1
.

φ is said to be cadlag if for all t ∈ R,

φ(s,t) → id as s ↑ t, φ(t,u) → id as u ↓ t.

Here, the convergence of functions is in the uniform norm (also note that this

definition is left-right symmetric, we call it cadlag to match previous work).
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f(x)

x

f×(t)
t

Figure 1: The graph of f× can be formed from the graph of f by rotating
the axes by π

4
and scaling both axes up by

√
2
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D◦(R,D) is the set of cadlag weak flows. We set φ∅ = id. Given {In : n ∈
N} and I bounded intervals, write In → I if

I =
⋃
n

⋂
m≥n

Im =
⋂
n

⋃
m≥n

Im.

For every φ ∈ D◦(R,D), we have

φIn → φI whenever In → I

If φ ∈ D◦(R,D) satisfies φ{t} = id for all t ∈ R then we have that

φ(s,t) = φ(s,t] = φ[s,t) = φ[s,t] for all s < t. Denoting these all by φts we define

C◦(R,D) to be the set of all such (φts : s, t ∈ R, s < t). For φ, ψ ∈ C◦(R,D)

and n ≥ 1, define

d
(n)
C (φ, ψ) = sup

s,t∈(−n,n),s<t

dD(φts, ψts)

and then let

dC(φ, ψ) =
∞∑
n=1

2−n
(
d

(n)
C (φ, ψ) ∧ 1

)
.

Under this metric C◦(R,D) is complete and separable.

In the interests of defining a metric on D◦(R,D), for λ an increasing

homeomorphism of R we define

γ(λ) = sup
t∈R
|λ(t)− t| ∨ sup

s,t∈R,s<t

∣∣∣∣log

(
λ(t)− λ(s)

t− s

)∣∣∣∣ ,
and let χn be the cut-off function given by

χn(I) = 0 ∨ (n+ 1−R) ∧ 1, R = sup I ∨ (− inf I).
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We can now define for φ, ψ ∈ D◦(R,D) and n ≥ 1,

d
(n)
D (φ, ψ) = inf

λ

{
γ(λ) ∨ sup

I⊆R
‖χn(I)φ×I − χn(λ(I))ψ×λ(I)‖∞

}
where the infimum is taken over the set of increasing homeomorphisms λ of

R. Then define

dD(φ, ψ) =
∞∑
n=1

2−n
(
d

(n)
D (φ, ψ) ∧ 1

)
.

Then (D◦(R,D), dD) is a complete and separable metric space. Moreover

dC and dD generate the same topology on C◦(R,D). For the metric dD, all

bounded intervals I and all x ∈ R, the evaluation map

φ 7→ φ+
I (x) : D◦(R,D)→ R

is Borel measurable. Moreover the Borel σ−algebra on D◦(R,D) is generated

by the set of all such evaluation maps with I = (s, t] and s, t and x rational.

For e = (s, x) ∈ R and φ ∈ D◦(R,D), the maps

t 7→ φ±(s,t](x) : [s,∞)→ R

are cadlag. Hence we can define Ze = Ze,+ and Ze,−, as maps from D◦(R,D)

to De, by setting

Ze,±(φ) = (φ±(s,t](x) : t ≥ s).

The maps, t→ Ze,±
t (φ) are continuous when φ ∈ C◦(R,D).

Finally, define a σ-algebra F and a filtration (Ft)t∈R on C◦(R,D) by

F = σ(Z
(s,x)
t : (s, x) ∈ R2, t ≥ s)

and

Ft = σ(Z(s,x)
r : (s, x) ∈ R2, r ∈ (−∞, t] ∩ [s,∞)).
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Then Ft is generated by the random variables Z
(s,x)
r with (s, x) ∈ Q2 and

r ∈ (−∞, t] ∩ [s,∞), and F is the Borel σ-algebra of the metric dC .

The following theorem states the existence of coalescing diffusive flows.

The proof given follows the line of argument for the less general result The-

orem 3.1 in [24]. The italicized assertions in the proof below are proved in

[24]. Generalizing the argument requires generalized versions of results, from

[24] which are Proposition 2.1 and Proposition 8.1.

Analogously to T jk, if e = (s, x) and e′ = (s′, x′) we define

T ee
′
= inf{t ≥ s ∨ s′ : Ze

t − Ze′

t ∈ Z}.

Theorem 3.1. Given a, b as before, there exists a unique Borel probability

measure µa,bA on C◦(R,D) under which, for all e = (s, x), e′ = (s′, x′) ∈ R2,

the processes (
Ze
t −

∫ t

s

b(r, Ze
r )dr

)
t≥s

(3)

and(
Ze
tZ

e′

t −
∫ t

s∨s′
Ze
rb(r, Z

e′

r ) + Ze′

r b(r, Z
e
r )dr −

∫ t

T ee′∧t
a(r, Ze′

r )dr

)
t≥s∨s′

(4)

are continuous local martingales with respect to (Ft)t∈R. Moreover, for all

e ∈ R2 we have µa,bA -almost surely Ze,+ = Ze,−.

Proof. Fix an enumeration E = (ek : k ∈ N) of Q2. Define ZE,± : C◦(R,D)→
CE by ZE,±(φ) = (Zek,±(φ) : k ∈ N). Then, we have Ft = {(ZE,+)−1(B) :

B ∈ Zt}. Set

C◦,±E = {ZE,±(φ) : φ ∈ C◦(R,D)}.

Then the sets C◦,±E are measurable subsets of CE and, by Proposition 8.1,

µa,bE (C◦,±E ) = 1. Moreover ZE,± maps C◦(R,D) bijectively to C◦,±E and the in-

verse bijections C◦,±E → C◦(R,D), which we denote by ΦE,±, are measurable.
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Write ZE for ZE,+ and ΦE for ΦE,+. Then, on C◦,+E , for all j, k ∈ N, we have

Zek ◦ ΦE = Zk, T ejek ◦ ΦE = T jk

and for all t ∈ R and B ∈ Ft we have 1B ◦ ΦE = 1B′ for some B′ ∈ Zt.
Define µa,bA = µa,bE ◦ (ΦE)−1. By Proposition 2.1, under µa,bA , for all j, k ∈ N,

taking e = ej and e′ = ek makes the processes (3) and (4) into continuous

local martingales for (Ft)t∈R.

On the other hand, for every probability measure µ on C◦(R,D) having

this property, under the image measure µ ◦ (ZE)−1 on CE, for all j, k ∈ N,

taking e = ej and e′ = ek makes the processes (3) and (4) into continuous

local martingales for (Zt)t∈R, so µ ◦ (ZE)−1 = µa,bE by Proposition 2.1, and so

µ = µa,bA .

Given e−1, e0 ∈ R2, all the assertions above hold when E is replaced by

the sequence E ′ = (e−1, e0, e1, e2, ...). We repeat the steps taken to obtain

a probability measure µ′a,bA = µa,bE′ ◦ (ΦE′)−1 on C◦(R,D). Then, under µ′a,bA ,

taking e = e−1 and e′ = e0 makes the processes (3) and (4) into continuous

local martingales for (Ft)t∈R. But also, under µ′a,bA , for all j, k ∈ N, taking

e = ej and e′ = ek makes the processes (3) and (4) into continuous local

martingales for (Ft)t∈R, so µa,bA = µ′a,bA .

Finally, we have ΦE′,+ = ΦE′,− on C◦,−E′ ∩ C
◦,+
E′ , so

Ze,−(ΦE′) = Ze,−(ΦE′,−) = Ze,+(ΦE′)

µa,bE′ -almost surely, and so Ze,− = Ze,+, µa,bA -almost surely, as claimed.

We will often write µA instead of µa,bA in order to simplify notation.
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4 Time Reversal

In this section we quote some definitions and observations from [24] and

then state our main theorem. For f+ ∈ R and f− ∈ R, define the left-

continuous inverse from R to L and the inverse operation right-continuous

inverse respectively as follows

(f+)−1(y) = sup{x ∈ R : f+(x) < y},

(f−)−1(y) = inf{x ∈ R : f−(x) > y}.

Note that these operations are distributive over concatenation. The inverse

of f ∈ D is given by

f−1 = {(f+)−1, (f−)−1} ∈ D.

The time-reversal φ̂ of a flow φ is given by

φ̂I = φ−1
−I .

The time-reversal map is a well defined isometry of both D◦(R,D) and

C◦(R,D).

As before, let a and b be the diffusivity and drift of a diffusive flow with law

µA. We require that a and b satisfy the smoothness requirements of Section

2 and further require that a is differentiable with respect to x with derivative

a′(t, x), which is L-Lipschitz in x and measurable and bounded uniformly on

compacts in t. Let aν(t, x) = a(−t, x) and bν(t, x) = −b(t,−x) + a′(−t, x)/2,

let νA = µa
ν ,bν

A , i.e. let it be the law of a disturbance flow with drift and

diffusivity given by bν and aν . Finally, write µ̂A for the image measure of µA

under time-reversal.

Theorem 4.1. The time-reversal of the diffusive flow µA is a diffusive flow
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with the new parameters given in the previous paragraph, i.e.

µ̂A = νA

We will provide two proofs of this theorem: one in Section 6 which de-

pends on Section, 5 and one in Section 7 which does not depend on Sections

5 or 6.

5 Disturbance Flows from Countably Many

Points on a Circle

This section lays the ground work for Section 6. The reader may skip to

Section 7 at this point if they only wish to read the direct proof.

We start this section by defining the notion of a disturbance flow on the

circle. This is based on a notion of disturbance flow which was given in [24],

but is more general, so as to allow for our disturbance flows to have drift

and varying diffusivity. We will then proceed to state and prove two propo-

sitions and deduce a theorem. The propositions are as follows: firstly, under

appropriate conditions a sequence of single paths from disturbance flows can

converge to a diffusion process; and secondly, a sequence of countable fam-

ilies of paths from disturbance flows can converge to a countable family of

coalescing diffusions. Combining these propositions with a result from [24],

we conclude that disturbance flows can converge to coalescing diffusive flows.

We specify a disturbance flow by a family of probability distributions on

D written

η = {ηh,t : h > 0, t ∈ R}.

The parameters of the family are h > 0, which corresponds to the size of the

disturbance (the limit for our convergence later will be taking h to 0 while

20



making disturbances more frequent) and time t, which allows our flow to be

inhomogeneous in time. We require that η be measurable as a function of t.

Given f1, f2 ∈ D, define f2 ◦ f1 := {f−2 ◦ f−1 , f+
2 ◦ f+

1 }. This is not in

general an element of D, however, so long as f1 sends no interval of positive

length to a point of discontinuity of f2, we will have f2 ◦ f1 ∈ D. To avoid

this issue, we will only consider families of probability distributions on D
such that, if Fh,t ∼ ηh,t, then

F+
h,t(x) = F−h,t(x) a.s. ∀x, t ∈ R and h ∈ R+.

We denote the set of such families by D∗, and assume from here on that

η = {ηh,t : h > 0, t ∈ R} ∈ D∗. Let N be a Poisson random measure on R of

intensity h−1 and set

Nt =

N(0, t], t ≥ 0

−N(t, 0], t < 0.

Let

tn = inf{t : Nt ≥ n}

and {Fh,tn : h > 0, n ∈ N} be independent random variables with Fh,tn ∼
ηh,tn . We will sometimes write Fn for Fh,tn .

We extend the inverse functions of Section 4 to families of probability

distributions F ∈ D∗ by setting

(F−1)h,t(y) = (Fh,t)
−1(y)

where the inverse on the right hand side is being taken with respect to the

x argument (as opposed to the implicit ω argument). Also let F̃h,t(x) =

Fh,t(x)− x.

Then, for any interval I, define

ΦI(x) = x+

∫
I

F̃h,r(φI∩(−∞,r))N(dr).
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Write Φ for the family of maps ΦI where I ranges over all bounded intervals

in R. We call Φ the Poisson disturbance flow or just the disturbance flow

and write µηA for the distribution of Φ in D◦(R,D).

Fixing e = (s, x) ∈ R2 we define 2 processes Xe,±
t by setting Xe,±

t =

Φ±(s,t](x) for t ≥ s. Because Φ ∈ D a.s. we have a.s. that for all t ∈ Q≥s

Xe,−
t = Xe,+

t

and thus by right continuity of Xe,± we have a.s. that for all t ≥ s,

Xe,−
t = Xe,+

t .

Thus, we drop the ± and write simply Xe. Write µηe for the distribution

of Xe on the Skorokhod space De. Similarly, for E = (ek ∈ R2 : k ∈ N),

(Xek : k ∈ N) is a random variable in DE, and we write µηE for its distribution

on DE.

Given a family η ∈ D∗, and coefficients a and b as in Section 2, we define

the functions

bh(t, x) =
1

h
E(F̃h,t(x))

ah(t, x) =
1

h
E(F̃h,t(x)2)

Mh = sup
x∈[0,1],t≤T,ω∈Ω

|F̃h,t(x)|

Bh = sup
x∈[0,1],t≤T

|bh − b|

Ah = sup
x∈[0,1],t≤T

|ah − a|.

The following three conditions will be important for the next proposition and
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consequently for the rest of the results:

lim
h↘0

Bh = 0 ∀T ∈ R+ (5)

lim
h↘0

Ah = 0 ∀T ∈ R+ (6)

lim
h↘0

Mh = 0 ∀T ∈ R+. (7)

Proposition 5.1. Suppose a and b are coefficients as in Section 2, and that

η is such that conditions (5), (6) & (7) hold. Then we have µηe → µa,be weakly

on De, as h→ 0.

Proof. Let (Xn)n∈N be a sequence of processes distributed according to µηe

with h→ 0 as n→∞. By the definition of the Skorokhod metric, it suffices

to show that for any T > s, the restrictions of Xn to [s, T ] converge weakly to

a solution of the SDE on [s, T ]. For the remainder of this proof we consider

Xn to be restricted to [s, T ]. We then take e = (s, x) = (0, 0) and T = 1,

without loss of generality.

Firstly, we shall calculate (up to an error that is small for small |t − s|)
two expected values (defined in terms of s, t ∈ R). We shall then prove a

characterization of tightness of the sequence. This will require us to use these

calculations to show that the process can’t vary too much on a given inter-

val, then deduce the existence of a subsequential limit of each subsequence

by Prokhorov’s theorem. Finally we will identify the distribution of every

subsequential limit as a weak solution of equation (1), using again the 2 ex-

pectation calculations. Then we will conclude the proof using the uniqueness

in law for such solutions .

Let Fnt be the completion of the filtration generated by Xn. For 1 ≥ t ≥
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s ≥ 0 we have

E(Xn
t −Xn

s |Fns ) = e−
t−s
h
t− s
h

E(F̃Ns+1(Xn
s )|tNs+1 ≤ t < tNs+2) + E1

=

∫ t

s

bh(r,X
n
s )dr + E1 + E2

= E

(∫ t

s

bh(r,X
n
r )dr

)
+ E1 + E2 + E3.

Where the approximation errors Ei can be bounded as follows. Let Gs,k =

F̃Ns+k ◦ ... ◦ F̃Ns+1

|E1| =

∣∣∣∣∣∑
k≥2

exp

(
−t− s

h

)
(t− s)k

k!hk
E(Gs,k(X

n
s )|tNs+k ≤ t < tNs+k+1)

∣∣∣∣∣
≤ exp

(
−t− s

h

)∑
k≥2

(t− s)k

k!hk
kMh

= exp

(
−t− s

h

)
t− s
h

Mh

∑
k≥1

(t− s)k

k!hk

=Mh
t− s
h

exp

(
−t− s

h

)(
exp

(
t− s
h

)
− 1

)
=O

(
(t− s)2

)
Note that

∫ t
s
bh(r,X

n
s )dr = t−s

h
E(F̃Ns+1(Xn

s )|tNs+1 ≤ t < tNs+2) to under-
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stand E2.

|E2| =
(

1− exp

(
−t− s

h

))
t− s
h

E(F̃Ns+1(Xn
s )|tNs+1 ≤ t < tNs+2)

≤
(

1− exp

(
−t− s

h

))
t− s
h

Mh

= O
(
(t− s)2

)

|E3| = E

(∣∣∣∣∫ t

s

bh(r,X
n
s )− bh(r,Xn

r )dr

∣∣∣∣)
≤ (t− s)(2b∗ + 2Bh)P(tNs+1 ≤ t)

= O
(
(t− s)2

)
.

Breaking the interval (s, t] into a large number of small intervals and

taking the limit as the interval sizes go to 0, we have that:

E(Xn
t −Xn

s | Fns ) = E

(∫ t

s

bh(r,X
n
r )dr

∣∣∣∣Fns ) . (8)

Similarly

E((Xn
t −Xn

s )2 | Fns ) = E

(∫ t

s

ah(r,X
n
r )dr

∣∣∣∣Fns ) . (9)

The characterization of tightness that we shall use is given in Billingsley

1968 [7] Theorem 15.3, it says that tightness is equivalent to the following 2

conditions holding:

1. For all ε > 0 there exists a K such that

P

(
sup
t
|Xn

t | ≥ K

)
≤ ε, ∀n ≥ 1.
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2. Taking

w′′Xn(δ) = sup
t1≤t≤t2
t2−t1≤δ

min{|Xn(t)−Xn(t1)|, |Xn(t)−Xn(t2)|}

and

wXn(I) = sup
s,t∈I
|Xn

s −Xn
t |

for all ε > 0 there exists δ ∈ (0, 1) and N ∈ N such that

P(w′′Xn(δ) ≥ ε) ≤ ε, ∀n ≥ N

and

P(wXn [0, δ) ≥ ε) ≤ ε, ∀n ≥ N

and

P(wXn(1− δ, 1] ≥ ε) ≤ ε, ∀n ≥ N.

Note that Bh and Ah going to 0 as n → ∞ means that |bh| and |ah|
are bounded uniformly in n, x and t ∈ [0, 1]. We call the bounds B and A

respectively.

The first condition can be shown as follows, where TK is the first time t

such that Xn
t ≥ K.

P

(
sup
t≤1

Xn
t ≥ K

)
=P (TK ≤ 1)

≤P

(
Xn

1 ≥
K

2

)
+ P

(
TK ≤ 1, Xn

1 ≤
K

2

)
≤P

(
Xn

1 ≥
K

2

)
+ E

(
P

(
Xn

1 −Xn
Tk∧1 ≤ −

K

2

∣∣∣∣FTK∧1

))
≤ 2A

(K
2
−B)2
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where in the final inequality we have used Chebyshev’s inequality. This

bound goes to 0 as K →∞ uniformly in h. Combining with a corresponding

bound for inf Xn
t gives the first condition.

Note that for the second condition, it suffices to show the following

stronger statement, where Iδ is the set of subintervals of [0, 1] of length δ.

For all ε > 0 there exists δ ∈ (0, 1) and N ∈ N such that

P(∃I ∈ Iδ such that wXn(I) ≥ ε) ≤ ε ∀n > N (10)

which in turn is implied by the following, where I′δ is the set of intervals of

length δ with endpoints that are multiples of δ/2.

For all ε > 0 there exists δ with 2 ≤ 1
δ
∈ N and N ∈ N such that

P(∃I ∈ I′δ such that wXn(I) ≥ ε) ≤ ε ∀n > N.

There are only 2
δ

elements in I′δ, so using a union bound it suffices to show

that for sufficiently small h and some δ we have

sup
I∈I′δ

P(wXn(I) ≥ 4ε) ≤ δε

2

where a factor of 4 has been included purely for convenience later.

We present the proof for I = [0, δ] but the same argument and bound will

hold for all I ∈ I′δ. We have that

P(wXn(I) ≥ 4ε) ≤ P

(
sup
t≤δ

Xn
t ≥ 2ε

)
+ P

(
inf
t≤δ

Xn
t ≤ −2ε

)
.

We will bound the first term on the right with a bound that will also apply

to the second term by symmetry.

Unfortunately, Chebyshev is not strong enough to bound the first term

sufficiently tightly. We will apply the Azuma-Hoeffding inequality which

requires the following set-up. Let X ′nt = Xn
t − tB and note that this is a
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super-martingale. Fix 0 < α < 1
2
, let R0 = 0 and for i ≥ 1 let Ri be the first

time t > Ri−1 such that |X ′nt −X ′nRi−1
| ≥Mα

h .

Firstly, we show that only about δM−2α
h of the Ri are less than δ. Consider

the distribution of Ri − Ri−1 conditional on FnRi−1
, by the same argument

used in the first condition we have the following for l <
Mα
h

4B
.

P(Ri −Ri−1 ≤ l) ≤ 2lA

(Mα
h − 2lB)2

≤ l
8A

M2α
h

.

From which we deduce that Ri −Ri−1 stochastically dominates the uniform

distribution on [0,
M2α
h

8A
] for sufficiently small h. An application of the Azuma-

Hoeffding Inequality to uniform random variables gives the following.

P(Rd 32Aδ

M2α
h

e ≤ δ) ≤ exp

(
− Aδ

M2α
h

)
Thus letting J = d32Aδ

M2α
h
e and R be the minimum of RJ and the first time Ri

such that X ′Ri > ε− Mh

2
,

P

(
sup
t≤δ

X ′nt ≥ 2ε

)
≤ exp

(
− Aδ

M2α
h

)
+ P

(
sup
i≤J

X ′nRi ≥ 2ε−Mh

)

P

(
sup
i≤J

X ′nRi ≥ 2ε−Mh

)
≤

P

(
X ′nRJ ≥ ε− Mh

2

)
+ E

(
P

(
X ′nRJ −X

′n
R ≤ −ε+

Mh

2

∣∣∣∣FnR))
We will bound the first term on the right of the last inequality, and note the

second term can be bounded similarly. Let X ′′ni = X ′nRi− iMh. Note that this
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is a discrete super-martingale with step size bounded by Mα
h +Mh.

P

(
X ′nRJ ≥ ε− Mh

2

)
≤ P (X ′′nJ ≥ ε− (J + 1)Mh)

≤ exp

(
−(ε− (J + 1)Mh)

2

2J(Mα
h +Mh)2

)
≤ exp

(
− ε2

65Aδ

)
for sufficiently small h (11)

where we have used the Azuma-Hoeffding inequality again. Bringing these

bounds together gives that for a given δ we have for sufficiently small h that

sup
I∈I′δ

P(wXn(I) ≥ 4ε) ≤ 2 exp

(
− Aδ

M2α
h

)
+ 4 exp

(
− ε2

65Aδ

)
.

Thus, by choosing δ so that the second term is less than δε
4

, and then choosing

N such that, for all n ≥ N we have, h is sufficiently small that the bound

(11) holds and the first term is less than δε
4

, we can conclude that the second

condition holds and the sequence µηe is tight.

By Prokhorov’s theorem, we now know that every subsequence has a

weakly convergent subsequence, and by standard arguments it suffices to

show that the limit of every such sequence is µa,be (restricted to [0, 1]). Let µ

be the limit of such a subsequence and X be distributed according to µ.

We now show that X is a solution of the SDE (1). Let (Ft)t≥s be the

completion of the filtration generated by X, and let W be defined as follows.

Wt =

∫ t

0

1

σ(s,Xs)
dXs −

∫ t

0

b(s,Xs)

σ(s,Xs)
ds

Note continuity of X follows from the bound (10), and so F is right-

continuous and thus satisfies the usual conditions. It is immediate that Xs =

x and Equation (2) holds by the definition of W .

The identities (8) and (9) show in the limit n→∞ that both X and the

quadratic variation of X are a.s. bounded on each compact interval. The
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same argument used to get these identities can also be used to find that

E(Wt −Ws|Fs) = 0

and

E((Wt −Ws)
2|Fs) = t− s.

From the definition of W and the continuity of X, we can deduce W is

continuous a.s., putting this together with the above expectations we can

conclude by Lévy-Characterization that W is a (Ft)-Brownian motion.

Thus X solves (1) and has the required law.

Define λh(f) to be the infimum of λ such that,

λ ≤ |x− y| ≤ 1− λ =⇒ 1

h
E(|F̃h,t(x)F̃h,t(y)|) < λ ∀t.

Proposition 5.2. Under the conditions of Proposition 5.1 and that λh → 0,

we have µηE → µa,bE weakly on DE.

Proof. We write Xk for Xek . The family of laws on DE is tight as each family

of marginal laws on Dek is tight. Let µ be a weak limit law for µηE, then for

all j, k and all t > s ≥ sj ∨ sk, letting E∗(·) = E(· | tNs+1 ≤ t < tNs+2,Fs) we
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have:

E(Xj
tX

k
t −Xj

sX
k
s | Fs)

=
t− s
h

E∗(FNs+1(Xj
s )FNs+1(Xk

s )−Xj
sX

k
s ) +O

(
(t− s)2

h2

)
=
t− s
h

E∗(F̃Ns+1(Xj
s )X

k
s + F̃Ns+1(Xk

s )Xj
s + F̃Ns+1(Xk

s )F̃Ns+1(Xj
s ))

+O

(
(t− s)2

h2

)
=

∫ t

s

bh(r,X
j
s )drX

k
s +

∫ t

s

bh(r,X
k
s )drXj

s

+
(t− s)
h

E∗(F̃Ns+1(Xk
s )F̃Ns+1(Xj

s )) +O

(
(t− s)2

h2

)
=E

(∫ t

s

b(r,Xj
r )X

k
r + b(r,Xk

r )Xj
rdr | F

)
+ E1

+
(t− s)
h

E∗(F̃Ns+1(Xk
s )F̃Ns+1(Xj

s )) +O

(
(t− s)2

h2

)
.

Where we have (by the same method used to bound E3 in Proposition 5.1)

|E1| = O
(
(t− s)2

)
and provided |Xj

s −Xk
s | ≥ λh (distance considered modulo one) we have∣∣∣∣(t− s)h
E∗(F̃Ns+1(Xk

s )F̃Ns+1(Xj
s ))

∣∣∣∣ ≤ (t− s)λh.

So for (t− s) 1
2 � h� 1 we have

E
(
Xj
tX

k
t −Xj

sX
k
s

∣∣Fs, |Xj
s −Xk

s | ≥ λh
)

=

∫ t

s

b(r,Xj
r )X

k
r + b(r,Xk

r )Xj
rdr + o(t− s).

Hence, breaking [sj ∨ sk,∞) into intervals of length t− s and taking the
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limit as t− s and h go to 0, gives that the following process, stopped at time

T jk is a martingale.

Zj
tZ

k
t −

∫ t

sj∨sk
Zk
s b(s, Z

j
s) + Zj

sb(s, Z
k
s )ds.

Further, this process must be continuous because Proposition 5.1 tells us

that Zj
t and Zk

t are continuous. We know from Proposition 5.1 that, under

µ, both (Zk
t −

∫ t
sk
b(Zk

s )ds)t≥sk and

(
(Zk

t )2 − 2

∫ t

sk

Zk
s b(s, Z

k
s )ds−

∫ t

sk

a(s, Zk
s )ds

)
t≥sk

are continuous local martingales.

It remains to show that Zj
t − Zk

t is constant for t ≥ T jk after which the

result follows from Proposition 2.1. Let Yt = Zj
t − Zk

t and assume w.l.o.g

that Y0 > 0 and YT jk = 0. The process Y inherits the property of not

changing sign as our disturbances are order preserving. Given R ∈ R and

ε > 0 localize Y using the stopping time S = inf{t : Yt > 1 or t > R} and

note that:

E|Y S
T jk+t| ≤

∫ T jk+t

T jk
EL|Y S

s |ds = L

∫ T jk+t

T jk
E|Y S

s |ds

where L is the Lipschitz constant of b. So, by Gronwall’s inequality, E|Y S
T jk+t

|
is identically 0, up to time t = R. So Yt = 0 for all t > T jk a.s. and we are

done.

Let E = (ek : k ∈ N) be an enumeration of Q2. Write ZE,± for the

maps D◦(R,D) → DE given by ZE,± = (Zek,± : k ∈ N). Write ZE = ZE,+.

The following result is a criterion for weak convergence on D◦(R,D), and is

Theorem 5.1 of [24].

Theorem 5.3. Let (µn : n ∈ N) be a sequence of Borel probability measures
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on D◦(R,D), and let µ be a Borel probability measure on C◦(R,D). Assume

that ZE,− = ZE,+ holds µn-almost surely for all n and µ-almost surely. As-

sume further that µn ◦ (ZE)−1 → µ ◦ (ZE)−1 weakly on DE. Then µn → µ

weakly on D◦(R,D).

The following result is immediate from Proposition 5.2 and Theorem 5.3.

Theorem 5.4. Given a family of distributions F along with a, b, Lipschitz

in space measurable in time, obeying equations (5)-(7) and with λh → 0 then

the following convergence holds.

µFA → µa,bA weakly on D◦(R,D) as h→ 0.

In English, this theorem says: if the disturbances defining a sequence of

disturbance flows converge nicely, then those disturbance flows converge to

a specified continuous stochastic flow.

6 Proof of Theorem 4.1 using Disturbance

Flows

In this section, we identify the time-reversal of a generic disturbance flow.

We then apply this identification to an explicit sequence of flows and, as

the limit of the reversals must be the reversal of the limit, we can deduce

Theorem 4.1.

The following proposition is a generalization of the first half of Proposition

7.1 of [24], which can be recovered by assuming that bh ≡ 0 and ah ≡ 1.

Proposition 6.1. Set Gh,t = F−1
h,−t. The time-reversal of a disturbance flow

with disturbance Fh is a disturbance flow with disturbance Gh, for all h. Thus

µ̂FhA = µGhA , for all h.
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Proof. The proof is very close to the second half of the proof of proposition

7.1 of [24].

Set m and n to be the minimal and maximal values taken by Nt at jumps

in I. Also, take −n̂ and −m̂ to be the minimal and maximal values taken

by Nt at jumps in −I. Then, we can define a disturbance flow Φ with

disturbance Fh, by

Φ±I = F±h,tn ◦ · · · ◦ F
±
h,tm

.

Then

Φ̂±I = G±h,−t−n̂ ◦ · · · ◦G
±
h,−t−m̂ .

By the properties of the Poisson process (−t−m̂, . . . ,−t−n̂) is equal in distri-

bution to (tm, . . . , tn), so Φ̂ is a disturbance flow with disturbance Gh.

In [24], it is then shown for a ≡ 1 and b ≡ 0 that µA is invariant under

time-reversal. We generalize this result to Theorem 4.1.

Theorem 4.1. If a has spatial derivative a′ and a, b and a′ are uniformly

bounded on compacts in time and Lipschitz in space then

µ̂A = νA := µa
ν ,bν

A

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the

time reversal of µA.

Proof. The proof is based on the fact that given a family (Fh)h>0 (satisfying

the conditions of Proposition 5.1) we have that: µ
F−1
h,−t
A = µ̂FhA → µ̂A. It thus

suffices to show for some specific family (Fh)h>0 that µ
F−1
h,−t
A → νA. This is

true by Theorem 5.4 if (F−1
h,−t)h>0 satisfies the conditions that we put on F ,

but with a(t, x) and b(t, x) replaced by aν(−t, x) and bν(−t, x). Let âh, â, b̂h

and b̂ be defined from F−1 as ah and bh are defined from F .

For every fixed h, consider the sequence tn, and let θh,tn be i.i.d. uniform

random variables on [0, 1]. We will write θ as shorthand for θh,tn , and for the
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remainder of this proof t will refer to an element of {tn : n ∈ N}. Let

rθ,t =
h

2
3

2

(
b

(
t, θ − 1

2

)
− a′

(
t, θ − 1

2

))
and

w =

(
3a(t, θ)h

2

) 1
3

.

Then, for sufficiently small h, we consider the family of disturbances given

by setting,

Fh,t(x) =



x+ rθ,t (x− θ) ∈ (1
2
− h 1

3 , 1
2

+ h
1
3 )

1
2

+ h
1
3 + rθ,t + θ (x− θ) ∈ (1

2
+ h

1
3 , 1

2
+ h

1
3 + rθ,t)

1
2
− h 1

3 + rθ,t + θ (x− θ) ∈ (1
2
− h 1

3 + rθ,t,
1
2
− h 1

3 )

θ (x− θ) ∈ (−w,w)

x otherwise.

An example from this family is graphed in Figure 2.

Note that λ → 0 for both F and F−1 (The disturbance of size rθ,t is

negligible in computing λ as it is O(h
2
3 ) in magnitude O(h

1
3 ) in width and

always multiplied by something of size O(h
1
3 ) in the definition of λ). The first

three cases in the above definition also contribute nothing to either limh→0 ah

or limh→0 âh, and their contribution to limh→0 bh is exactly the negative of

their contribution to limh→0 b̂h. So it suffices to prove that the proposition

holds for the case b = a′, i.e. the case where rθ,t ≡ 0.

We write w± for the largest offsets from x a disturbance can have whilst

not mapping x to itself. For sufficiently small h they are given by the follow-

ing implicit equation:

w± =

(
3a(t, x± w±)h

2

) 1
3

.
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Fh,t(x)

x

1

1

θ

θ − w θ + w

θ + 1
2
− h 1

3 + rθ,t

θ + 1
2
− h 1

3

θ + 1
2

+ h
1
3

Figure 2: An example from the specific family of disturbances used in this
proof.

Expanding this by substitution and Taylor’s theorem, and letting

c = ch(x) =

(
3a(t, x)h

2

) 1
3

.

gives

w± = c± a′c2

3a
+ o(h

2
3 ).

where unless otherwise specified a and a′ are evaluated at (t, x). We can now
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calculate

ah =
1

h
E
(
F̃h,t(x)2

)
=

1

h

∫ w+

−w−
α2dα

=
1

3h

(
w3

+ + w3
−
)

=
2c3

3h
+ o(1)

→ a

and

bh =
1

h
E
(
F̃h,t(x)

)
=

1

h

∫ w+

−w−
αdα

=
1

2h

(
w2

+ − w2
−
)

=
1

2h

((
c2 +

2a′c3

3a
+ o(h)

)
−
(
c2 − 2a′c3

3a
+ o(h)

))
=

2a′c3

3ha
+ o(1)

→ a′.

By Taylor and binomial expansion we also get

ch(x+ α) = ch(x)

(
1 +

a′α

3a

)
+ o(h

1
3α).
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Which allows us to calculate,

âh(−t, x) =
1

h

∫ 0

−w−
(α + ch(x+ α))2dα +

1

h

∫ w+

0

(α− ch(x+ α))2dα

=
1

h

∫ 0

−c
α2 + 2αc+ c2dα +

1

h

∫ c

0

α2 − 2αc+ c2dα + o(1)

=
2

h

∫ c

0

α2 − 2αc+ c2dα + o(1)

=
2

h
(
c3

3
− c3 + c3) + o(1)

→ a

and

b̂h(−t, x) =
1

h

∫ 0

−w−
α + ch(x+ α)dα +

1

h

∫ w+

0

α− ch(x+ α)dα

= bh +
c

h

∫ 0

−w−
1 +

a′α

3a
+ o(α)dα− c

h

∫ w+

0

1 +
a′α

3a
+ o(α)dα

= bh +
c

h

(
w− − w+ −

a′

6a
(w2
− + w2

+) + o(h
2
3 )

)
= bh +

c

h

(
−2a′c2

3a
− a′c2

3a

)
+ o(1)

= bh − a′ −
a′

2
+ o(1)

→ −a
′

2
.

So the result holds.

The following corollary is similar to Corollary 7.3 of [24] (and with an

almost identical proof) in that it gives weak convergence for paths running

both forward and backward from a given sequence of points. First we define

the notation for this result.

Given e = (s, x) ∈ R2, define D̄e = {ξ ∈ D(R,R) : ξs = x} and for
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E = (ek : k ∈ N) set D̄E =
∏∞

k=1 D̄ek . For φ ∈ D◦(R,D), define

Z̄e,±
t (φ) =

φ±(s,t](x), t ≥ s,

(φ−1)±(t,s](x), t < s.

Then Z̄e,±(φ) ∈ D̄e and extends Ze,±(φ), from [s,∞) to the whole of R. For

all e ∈ R2, we have Z̄e,− almost everywhere on D◦(R,D) for both µA and µfA,

for every disturbance function f . So we drop the ±. Denote by µ̄fE the law

of (Z̄ek : k ∈ N) on D̄E under µfA and by µ̄a,bE the corresponding law under

µa,bA

Corollary 6.2. µ̄FhE → µ̄a,bE weakly on D̄E,

Proof. Given φ with law µa,bA , we have that almost surely

Z̄(s,x±δ),+(φ)→ Z̄(s,x),+(φ)

uniformly on R as δ → 0. We also have φ ∈ C◦(R,D) almost surely and it

follows that Z̄(s,x),+ is continuous at φ almost surely. Thus, the result holds

as we already know the convergence holds component wise.

7 Proof of Theorem 4.1 without Disturbance

Flows

In this section we first prove a version of Theorem 4.1 with the extra hy-

pothesis that a and b are Lipschitz in time. Then we use an approximation

argument to show Theorem 4.1 in the general case.
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Theorem 7.1. If a has spatial derivative a′ and a, b and a′ are Lipschitz in

both time and space then

µ̂A = νA := µa
ν ,bν

A

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the

time reversal of µA.

Proof. Let φ ∼ µA. It suffices to show that the restriction of φ̂ to E given

by ZE,+(φ̂), which we shall call φ̂E, has distribution νE, for each countable

set E ⊂ R× R. The distribution νE is characterised by its restriction to two

point motions by Theorem 3.1.

Coalescence of two motions follows immediately from the definition of

time-reversal. As does the continuity of a single motion.

As φts and φsu are independent for s ∈ (u, t), we have the Markov prop-

erty. Thus, by Donsker’s Invariance Principle, we can identify the two point

motion from just the mean and covariance matrix of small increments.

First, we consider each one point motion separately. We will proceed by

relating the backward and forward flows, then, noting that increments of the

forward process are small, we approximate a and b on an interval that the

forward process almost surely won’t leave in such a way as to make exact

calculations possible. Then we check that the incurred error is small using

that a and b are Lipschitz in time, and that the exact calculations give the

required answer. Finally, we will show that the increments of each process

are independent, conditional on an event of large probability, and so the

covariances are small.

We have the relation,

P
(
φ̂t+h,t(y) < x

)
= P(φ−t,−t−h(x) > y)

which we can use to determine the distribution of φ̂t+h,t(y) if we first under-

stand the distributions of the variables φ−t,−t−h(x).
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To study these variables, we first show that the forward paths are lo-

calised.

P

(
sup

0<δt<h
|φt+δt,t(x)− x| > h

1
2
−ε
)
≤P

(
sup

0<δt<h
φt+δt,t(x)− x > h

1
2
−ε
)

+ P

(
inf

0<δt<h
φt+δt,t(x)− x < −h

1
2
−ε
)

Each of these terms can be bounded in the same way. To bound the first

term, consider the process φt+δt,t(x) − b∗δt parametrised by δt. This is a

supermartingale with diffusivity bounded by a∗, and thus by the reflection

principle

P

(
sup

0<δt<h
φt+δt,t(x)− x > h

1
2
−ε
)
≤ 2Φ

(
−h

1
2
−ε − b∗h

2(a∗h)
1
2

)
.

Thus we can derive that

P

(
sup

0<δt<h
|φt+δt,t(x)− x| > h

1
2
−ε
)

≤4Φ

(
−h

1
2
−ε − b∗h

2(a∗h)
1
2

)
≤ exp

(
−C(A,B)h−2ε

)
for sufficiently small h

where C is positive and independent of h and t.

Now we approximate a and b by ã and b̃ which, on the interval [y −
2h

1
2
−ε, y + 2h

1
2
−ε], are given by

ã(s, x) =
a′2

4a

(
x− y +

2a

a′

)2

and

b̃(s, x) =
ba′

2a

(
x− y +

2a

a′

)
.
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Where we have written a for a(t, y), a′ for a′(t, y) and b for b′(t, y). We then

extend ã and b̃ to L̃-Lipschitz and L̃-Lipschitz differentiable functions on the

circle for some L̃. For sufficiently small values of h, this extension can and

will be chosen so that a∗ ≤ ã ≤ a∗. Note that for all s, a(t, y) = ã(s, y),

a′(t, y) = ã′(s, y) and b(t, y) = b̃(s, y), this will turn out to make them

sufficiently good approximations.

We now approximate the diffusion process φt+δt,t(x) for each x ∈ [y −
h

1
2
−ε, y + h

1
2
−ε] by a diffusion process Xδt started from x, with drift b̃ and

diffusivity ã, but driven by the same Brownian motion Bδt as φt+δt,t(x). Note

that ã and b̃ are constant with respect to time. Let G be the event{
sup

0<δt<h
|φt+δt,t(x)− x| < h

1
2
−ε
}
∩
{

sup
0<δt<h

|Xδt − x| < h
1
2
−ε
}

and note the second event in this union has probability bounded like the first,

so P(G) = 1 − O
(
e−Ch

−2ε
)

. Note also that on this event, X and φt+δt,t(x)

stay within the interval we explicitly defined ã and b̃ on.

On this event the error in the approximation is given by

∆δt := Xδt − φt+δt,t(x)

=

∫ δt

0

b̃(t,Xu)− b(t+ u, φt+u,t(x))du

+

∫ δt

0

√
ã(t,Xu)−

√
a(t+ u, φt+u,t(x))dBu.
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We have that if Eh := supδt<h |∆δt| then

Eh ≤ sup
δt<h

∫ δt

0

|b̃(t,Xu)− b̃(t, φt+u,t(x))|+ |b̃(t, φt+u,t(x))− b(t, y)|

+ |b(t, y)− b(t, φt+u,t(x))|

+ |b(t, φt+u,t(x))− b(t+ u, φt+u,t(x))|du

+

∣∣∣∣∫ δt

0

(√
ã(t,Xu)−

√
ã(t, φt+u,t(x)) +

√
ã(t, φt+u,t(x))−

√
a(t, y)

+
√
a(t, y)−

√
a(t, φt+u,t(x))

+
√
a(t, φt+u,t(x))−

√
a(t+ u, φt+u,t(x))

)
dBu

∣∣∣∣.
The first integrand is bounded, on G, by 2L̃h

1
2
−ε + 2Lh

1
2
−ε + 2L̃h

1
2
−ε +Lh ≤

4(L+L̃)h
1
2
−ε. To bound the second integrand we first observe that the square

root funciton is Lipschitz with some constant Ls on the interval [a∗, a
∗]. Sec-

ondly, note that we can achieve a stronger bound than for the first inte-

grand as a′ is Lipschitz in x. The second integrand is thus bounded, on

G, by d1 := 2L̃h
1
2
−ε + 2Lh1−2ε + 2L̃h1−2ε + Lh. The first integral is there-

fore bounded by 4δt(L + L̃)h
1
2
−ε. The second integral is a martingale with

diffusivity bounded by d1. Therefore it has absolute value stochastically dom-

inated by that of a martingale with diffusivity d1. Equivalently, there exists

a Brownian motion B′ such that, on the event G, Eh ≤ supδt<h |∆′δt| where

∆′δt = 4δt(L+ L̃)h
1
2
−ε +

∣∣∣∣∫ δt

0

d1dB
′
u

∣∣∣∣ .
Consider the event G′ = {supδt<h |∆′δt| < h1−2ε}. The probability of this

event is 1 − O(e−Ch
−2ε

). This isn’t quite a strong enough bound due to the

h
1
2
−ε term in d1. However, as that term is proportional to the bound we

have on Xu − φt+u,t(x) and this result provides a stronger bound, we can
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bootstrap this argument. To that effect note that, on G ∩ G′, the second

integrand is bounded by 2L̃h1−2ε + 2(L + L̃)h1−2ε + Lh ≤ 4(L + L̃)h1−2ε.

Thus, as before, there exists a Brownian motion B′′ such that, on the event

G ∩G′, Eδt ≤ supv<δt |∆′′v| where

∆′′δt = 4δt(L+ L̃)h
1
2
−ε +

∣∣∣∣∫ δt

0

4(L+ L̃)h1−2εdB′′u

∣∣∣∣ .
Finally consider G′′ = {supv<δt |∆′′v| < h

3
2
−3ε} and note that the probability

of this event, conditioned on G∩G′ is 1−O(e−Ch
−2ε

). Thus we can conclude

that

P(|∆h| > h
3
2
−3ε) ≤ 1− P(G ∩G′ ∩G′′) = O

(
e−Ch

−2ε
)
.

This result suffices to control the error of the approximation.

Next, we calculate the distribution of Xh. Note that on the event G, we

have, for some Brownian motion W , that

dXt =
ba′

2a

(
Xt − y +

2a

a′

)
dt+

a′

2
√
a

(
Xt − y +

2a

a′

)
dWt.

Where we are again writing a for a(t, y), a′ for a′(t, y) and b for b′(t, y). Define

f(x) = 2
√
a

a′
log(x− y + 2a

a′
). An application of Itō’s lemma gives that

df(Xt) =
1√
a

(
b− a′

4

)
dt+ dWt.

The choices for ã, b̃ and f were made so that this equation has constant

coefficients. Thus f(Xh) is normally distributed with mean f(x)+ h√
a

(
b− a′

4

)
and variance h. So we can calculate that P(Xh > y) = P(f(Xh) > f(y)) =
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Fy(x) +O(e−Ch
−2ε

), where

Fy(x) := Φ

(
f(x)− f(y)√

h
+

√
h

a

(
b− a′

4

))

= Φ

(
2
√
a

a′
√
h

log

(
1 +

a′

2a
(x− y)

)
+

√
h

a

(
b− a′

4

))
.

This implies that

P(|Xh − x| > h
1
2
−ε) = O(e−Ch

−2ε

).

We can then calculate for y = 0 and |x| < h
1
2
−ε that

F ′0(x) =

(
1√

2ahπ

1

1 + a′x
2a

)

× exp

−1

2

(
2
√
a

a′
√
h

log

(
1 +

a′x

2a

)
+

√
h

a

(
b− a′

4

))2


=
1√

2ahπ

(
1− a′x

2a
+O

(
h1−2ε

))
e−

x2

2ah

× exp

(
− x√

ah

(
− a′x2

4
√
a3h

+

√
h

a

(
b− a′

4

))
+O

(
h1−4ε

))

=
1√

2ahπ

(
1− a′x

2a
+O

(
h1−2ε

))
e−

x2

2ah

×

(
1− x√

ah

(
− a′x2

4
√
a3h

+

√
h

a

(
b− a′

4

))
+O

(
h1−6ε

))

=
e−

x2

2ah

√
2ahπ

(
1− x

a

(
b− a′

4
+
a′

2

)
+
a′x3

4a2h
+O(h1−6ε)

)
.
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This is related to φ̂ by

P
(
φ̂t+h,t(y) < x

)
= P(φ−t,−t−h(x) > y)

= F
y+O

(
h

3
2−3ε

)(x) +O
(
e−Ch

−2ε
)

= Fy(x) +O

(
h

3
2
−3ε sup

y∈R

dFy(x)

dy

)
+O

(
e−Ch

−2ε
)

and on
[
y − h 1

2
−ε, y + h

1
2
−ε
]

this is equal to

Fy(x) +O(h1−3ε).
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Finally, we use this to compute,

E(φ̂t+h,t(y))

=y +

∫ ∞
y

1− P
(
φ̂t+h,t(y) < x

)
dx−

∫ y

−∞
P
(
φ̂t+h,t(y) < x

)
dx

=y +

∫ y+h
1
2−ε

y

1− P
(
φ̂t+h,t(y) < x

)
dx

−
∫ y

y−h
1
2−ε

P
(
φ̂t+h,t(y) < x

)
dx+O

(
e−Ch

−2ε
)

=y +

∫ y+h
1
2−ε

y

1− Fy(x)dx−
∫ y

y−h
1
2−ε

Fy(x)dx+O
(
h

3
2
−4ε
)

=y + h
1
2
−ε −

∫ y+h
1
2−ε

y−h
1
2−ε

Fy(x)dx+O
(
h

3
2
−4ε
)

=y + h
1
2
−ε −

∫ h
1
2−ε

−h
1
2−ε

F0(x)dx+O
(
h

3
2
−4ε
)

=y + h
1
2
−ε − h

1
2
−ε(F0(h

1
2
−ε)− F0(−h

1
2
−ε)) +

∫ h
1
2−ε

−h
1
2−ε

xF ′0(x)dx+O
(
h

3
2
−4ε
)

=y +

∫ h
1
2−ε

−h
1
2−ε

xF ′0(x)dx+O
(
h

3
2
−4ε
)

=y +

∫ h
1
2−ε

−h
1
2−ε

(
x− x2

a

(
b+

a′

4

)
+
a′x4

4a2h

)
e−

x2

2ah

√
2ahπ

dx+O
(
h

3
2
−7ε
)

=y +

∫ ∞
−∞

(
x− x2

a

(
b+

a′

4

)
+
a′x4

4a2h

)
e−

x2

2ah

√
2ahπ

dx+O
(
h

3
2
−7ε
)

=y − h
(
b+

a′

4

)
+

3ha′

4
+O

(
h

3
2
−7ε
)

=y + h

(
−b+

a′

2

)
+O(h

3
2
−7ε).
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Similarly, we find that

Var
(
φ̂t+h,t(y)

)
= ah+O(h2−8ε).

Thus, the single point motions are diffusion processes with the required

drift and diffusivity.

Next, we will show that the motions started from y1 and y2 have zero

covariation until they coalesce, and thus, are independent until they coalesce.

This follows immediately from the fact that for y1 6= y2

Cov
(
φ̂t+h,t(y1), φ̂t+h,t(y2)

)
= o(h).

To establish this fact consider the events

Ai =

{
sup

0<δt<h

∣∣∣φ̂t+δt,t(yi)− yi∣∣∣ < |y2 − y1|
2

}
for i = 1, 2.

On the intersection of these events, we know that the φ̂t+h,t(yi) are indepen-

dent as the forward flows on [−t − h, t] ×
[
yi − |y2−y1|

2
, yi + |y2−y1|

2

]
are in-

dependent, and each determines the corresponding Ai and φ̂t+h,t(yi). Thus,

writing B for the complement of A1 ∩ A2,∣∣∣Cov
(
φ̂t+h,t(y1), φ̂t+h,t(y2)

)∣∣∣ =
∣∣∣Cov

(
1Bφ̂t+h,t(y1), 1Bφ̂t+h,t(y2)

)∣∣∣
≤
√

Var
(

1Bφ̂t+h,t(y2)
)

Var
(

1Bφ̂t+h,t(y1)
)

≤ max
i=1,2

{
Var

(
1Bφ̂t+h,t(yi)

)}
≤ max

i=1,2

{
E

(
1B
(
φ̂t+h,t(yi)− yi

)2
)}

but, as we know that

P
(∣∣∣φ̂t+h,t(yi)− yi∣∣∣ > x

)
≤ 2

(
1− Φ

(
x− b∗h√
a∗h

))
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we can deduce that∣∣∣Cov
(
φ̂t+h,t(y1), φ̂t+h,t(y2)

)∣∣∣ ≤ ∫ ∞
|y2−y1|

2

x2 2√
a∗h

Φ′
(
x− b∗h√
a∗h

)
dx

=

∫ ∞
|y2−y1|−2b∗h

2
√
a∗h

x22Φ′(u)du

=

√
2

a∗hπ

∫ ∞
|y2−y1|−2b∗h

2
√
a∗h

a∗h(u+ b∗h)2e−
u2

2 du

=

√
2a∗h

π
(1 +O(h))

∫ ∞
|y2−y1|−2b∗h

2
√
a∗h

u2e−
u2

2 du.

For sufficiently small h this is bounded by√
3a∗h

π

∫ ∞
|y2−y1|
3
√
a∗h

u2e−
u2

2 du

=

√
3a∗h

π

(
|y2 − y1|
3
√
a∗h

e−
|y2−y1|

2

18a∗h +

∫ ∞
|y2−y1|
3
√
a∗h

e−
u2

2 du

)

=O

(
e−
|y2−y1|

2

18a∗h

)
This establishes the result.

Finally, we relax the restriction that a and b are Lipschitz in time.

Theorem 4.1. If a has spatial derivative a′ and a, b and a′ are uniformly

bounded on compacts in time and Lipschitz in space then

µ̂A = νA := µa
ν ,bν

A

where aν(t, x) = a(−t, x), bν(t, x) = −b(−t, x) + a′(−t, x)/2 and µ̂A is the

time reversal of µA.
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Proof. Define approximations an and bn by

an = a ∗Kn and bn = b ∗Kn

where ∗ denotes convolution in time,

Kn(t) = nK(tn)

and K is a smooth, non-negative function supported on [−1, 1] with supre-

mum and integral equal to one. The resulting an and bn are smooth. Thus,

we will be able to apply Theorem 7.1 to a flow with these parameters.

Let φn ∈ C◦(R,D) be the coalescing diffusive flow driven by an and bn

and let

b∗k = sup
[−k−1,k+1]×[0,1]

|b(t, x)|

and

a∗k = sup
[−k−1,k+1]×[0,1]

a(t, x).

We define AN to be the subset of φ ∈ C◦(R,D) such that for all k both

|φts(x)− x| ≤ 4b∗kk + kN
√

8a∗k + 1 ∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with s < t

and

|φts(x)− x| ≤ 1

k
∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with t− s ∈ [0, δk,N ]

where

δk,N = min

{
1

18k3Na∗k(1 + a∗k + b∗k)
,
a∗k

2b∗k
2

}
.

In Proposition 8.2, we prove that AN is compact; and in Proposition 8.3,

we prove that φn ∈ AN with high probability in N uniformly in n. Thus, we

can deduce that the φn are tight. Let φ be a weak sub-sequential limit of φn.
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We will show that φ ∼ µA and that φ̂ ∼ νA, which establishes the theorem.

We present here only the proof that φ ∼ µA. The proof that limn→∞ φ̂
n ∼

νA is identical, but considering φ̂n and −b + a′

2
instead of φn and b, it then

follows that φ̂ ∼ νA as time reversal is an isometry. By Theorem 3.1 it suffices

to show that

E

(
φts(x)−

∫ t

s

b(r, φrs(x))dr

)
= x ∀x ∈ [0, 1] ∀s < t

and

E (Mst(x1, x2, b, a, φ)) = x1x2 ∀x1, x2 ∈ [0, 1] ∀s < t

where

Mst(x1, x2, b, a, φ) =φts(x1)φts(x2)−
∫ t

s

φrs(x1)b(r, φrs(x2))

+ φrs(x2)b(r, φrs(x1))dr −
∫ t

T (s,x1)(s,x2)∧t
a(r, φrs(x1))dr

The proof of these two statements are very similar, so we will only provide

the more complicated second one here.

Proposition 8.4 says that E (Mst(x1, x2, b, a, φ)) is a continuous function

of x1 and x2. Thus, it suffices to show that

ExEφ (Mst(x1, x2, b, a, φ)) = Ex(x1x2)

where Ex averages over values of x1 and x2 in a pair of intervals I1 and I2

respectively, and Eφ is the same as E on previous lines. Proposition 8.6 says

EφEx(Mst(x1, x2, b, a, φ)) = lim
n

EφnEx (Mst(x1, x2, b, a, φ
n))

which is used in the calculation below. Writing Dn for Mst(x1, x2, b, a, φ
n)−

Mst(x1, x2, bn, an, φ
n) we can calculate, using Proposition 7.1 in the fourth

equality, that
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ExEφ(Mst(x1, x2, b, a, φ))

=EφEx(Mst(x1, x2, b, a, φ))

= lim
n

EφnEx (Mst(x1, x2, b, a, φ
n))

= lim
n

EφnEx (Mst(x1, x2, bn, an, φ
n)) + lim

n
EφnEx (Dn)

=Ex (x1x2) + lim
n

ExEφn (Dn) .

It remains only to show that Eφn(Dn) goes to 0 uniformly in x as n→∞.

Dn =

∫ t

s

φnrs(x1)(bn(r, φnrs(x2))− b(r, φnrs(x2)))dr

+

∫ t

s

φnrs(x2)(bn(r, φnrs(x1))− b(r, φnrs(x1)))dr

+

∫ t

T (s,x1)(s,x2)

an(r, φnrs(x1))− a(r, φnrs(x1))dr

Each of these terms has expectation tending to 0. We will prove this for

the first term (the second term is very similar and the third term is even

simpler, so the same argument works). We firstly rearrange each half of the

first term separately.
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∫ t

s

φnrs(x1)bn(r, φnrs(x2))dr

=

∫ t

s

∫ 1
n

− 1
n

φnrs(x1)b(r + u, φnrs(x2))Kn(u)dudr

=

∫ t+ 1
n

s− 1
n

∫ (v−s)∧ 1
n

(v−t)∨− 1
n

φnv−u,s(x1)b(v, φnv−u,s(x2))Kn(u)dudv

=

∫ s+ 1
n

s− 1
n

∫ (v−s)

− 1
n

I1dudv +

∫ t+ 1
n

t− 1
n

∫ 1
n

v−t
I1dudv +

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I1dudv

where v = r + u and I1 = φnv−u,s(x1)b(v, φnv−u,s(x2))Kn(u). The first two of

these integrals are over an area that is O(n−2) and the integrand I1 = O(n),

so only the final integral will contribute to the limit.

∫ t

s

φnrs(x1)b(r, φnrs(x2))dr

=

∫ t

s

∫ 1
n

− 1
n

φnrs(x1)b(r, φnrs(x2))Kn(u)dudr

=

∫ s+ 1
n

s− 1
n

∫ 1
n

− 1
n

I2dudr +

∫ t+ 1
n

t− 1
n

∫ 1
n

− 1
n

I2dudr +

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I2dudr

where I2 = φnrs(x1)b(r, φnrs(x2))Kn(u). Again, the first two terms are O(n−1),

so only the last term will contribute to the limit. Combining these 2 rear-
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rangements together and discarding small terms we find that

lim
n

Eφn(Dn)

= lim
n

Eφn

(∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

I1dudv −
∫ t− 1

n

s+ 1
n

∫ 1
n

− 1
n

I2dudr

)

= lim
n

Eφn
∫ t− 1

n

s+ 1
n

∫ 1
n

− 1
n

I3Kn(u)dudr

≤ lim
n

∫ t− 1
n

s+ 1
n

∫ 1
n

− 1
n

Kn(u)dudr sup
u∈[− 1

n
, 1
n

]

r∈[s+ 1
n
,t− 1

n ]

EφnI3

≤(t− s) lim
n

sup
u∈[− 1

n
, 1
n

]

r∈[s+ 1
n
,t− 1

n ]

EφnI3

where

I3 =
(
φnr−u,s(x1)b(r, φnr−u,s(x2))− φnrs(x1)b(r, φnrs(x2))

)
.

As b is Lipschitz in space and the φn have bounded diffusivity, this final

supremum convereges to zero.

8 Appendix

The following result is required to prove the existence of the coalescing dif-

fusive flows, as stated in Theorem 3.1. It is a generalization of Proposition

A.10 of [24] and has a similar proof.

Proposition 8.1. Let E be a countable subset of R2 containing Q2, and let

a, b be measurable and uniformly bounded on compacts in time and Lipschitz

in space. Then, taking C◦E = C◦,+E ∩ C◦,−E , we have µa,bE (C◦E) = 1.

Proof. Following the proof of Proposition 8.10 in [24] we will verify that each
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of five conditions hold a.s., and as they characterize C◦E inside CE [24], the

result follows. The first condition is that:

z
(s,x+n)
t = z

(s,x)
t + n, s, t, x ∈ Q, s < t, n ∈ Z.

Taking e = (s, x) and e′ = (s, x+ n), we have that T ee
′

= s. So by proof

of Proposition 2.1, this condition is satisfied.

Next we consider the 3 conditions

z
(s,x)
t = inf

y∈Q,y>x
z

(s,y)
t , (s, x) ∈ E, t ∈ Q, t > s,

z
(s,x)
t = sup

y∈Q,y<x
z

(s,y)
t , (s, x) ∈ E, t ∈ Q, t > s

and

Φ−(t,u] ◦ Φ−(s,t] ≤ Φ−(s,u] ≤ Φ+
(s,u] ≤ Φ+

(t,u] ◦ Φ+
(s,t], s, t, u ∈ Q, s < t < u.

Where we define

Φ−(s,t](x) = sup
y∈Q,y<x

z
(s,y)
t , Φ+

(s,t](x) = inf
y∈Q,y>x

z
(s,y)
t .

Let (s, x) ∈ E and t, u ∈ Q, with s ≤ t < u. Consider the event

A =

{
sup

y∈Q,y<Z(s,x)
t

Z(t,y)
u = Z(s,x)

u = inf
y′∈Q,y′>Z(s,x)

t

Z(t,y′)
u

}
.

Note that on the countable intersection, over s, x, t, u, of the events A, the

above 3 conditions hold. So to show they hold a.s., it suffices to show P(A) =

1. Fix n ∈ N and set Y = n−1bnZ(s,x)
t c and Y ′ = Y + 1/n. Then Y and

Y ′ are Q valued, Ft-measurable random variables. Now note that P(Y <
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Z
(s,x)
t < Y ′) = 1 and

{Y < Z
(s,x)
t < Y ′} ∩ {T (t,Y )(t,Y ′) ≤ u} ⊆ A.

Consider the process

Z(t,Y ′)
r − Z(t,Y )

r − 2(r − t)b∗

as a function of τ where

τ =

∫ r

t

a(ρ, Z(t,Y ′)
ρ ) + a(ρ, Z(t,Y )

ρ )dρ

is defined to make the diffusivity of this process 1.

This can be bounded above by a Brownian motion Bτ started at 1/n. For

n sufficiently large that u− t > 1/n and

P(T (t,Y )(t,Y ′) ≤ u) ≥ P

(
inf
τ≤ 1

n

Bτ < −
b∗

na∗

)

= 2Φ

(
1 + b∗/a∗√

n

)
→ 1.

So P(A) = 1 and the conditions hold.

The final condition is that for all ε > 0 and all n ∈ N, there exists δ > 0

such that

‖Φ(s,t] − id‖∞ < ε

for all s, t ∈ Q ∩ (−n, n) with 0 < t− s < δ.

Define for δ > 0 and e = (s, x) ∈ E,

V e(δ) = sup
s≤t≤s+δ2

|Ze
t − x|.

Then, letting B be a standard Brownian motion, for sufficiently small δ and
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large n

P(V e(δ) > nδ) ≤ 2P

(
sup

s≤t≤s+δ2

Bt −Bs >
nδ − b∗δ2

a∗

)
≤ e−

(n−1)2

2a∗2 .

Consider, for each n ∈ N the set

En =

{
(j2−2n, k2−n) : j ∈ 1

2
Z ∩ [−n

1
3 22n, n

1
3 22n), k = 0, 1, . . . , 2n − 1

}
and the event

An =
⋃
e∈En

{V e(2−n) > n2−n}.

Then, P(An) ≤ |En| supe∈En P (V e(2−n) > n2−n).

P
(
V e(2−n) > n2−n

)
≤P

(
sup

s≤t≤s+2−2n

Ze
t − x > n2−n

)

+ P

(
inf

s≤t≤s+2−2n
Ze
t − x < n2−n

)

For n sufficiently large that 2n > b∗, both of these terms are O
(
e−

(n−1)2

2

)
by

the reflection principle. As |En| = eO(n), we can conclude that
∑

n P(An) <

∞, so by Borel-Cantelli, almost surely there exists some N < ∞ such that

V e(2−n) ≤ n2−n for all e ∈ En, for all n ≥ N .

Given ε > 0, choose n ≥ N such that (4n+ 2)2−n ≤ ε and set δ = 2−2n−1.

Then, for all rationals s, t ∈ (−n, n) with 0 < t − s < δ and all rationals
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x ∈ [0, 1], there exist e± = (r, y±) ∈ En such that

r ≤ s < t ≤ r + 2−2n,

x+ n2−n < y+ ≤ x+ (n+ 1)2−n,

x− (n+ 1)2−n ≤ y− < x− n2−n,

then, Ze−
s < x < Ze+

s , so

x− ε ≤ Ze−

t ≤ Z
(s,x)
t ≤ Ze+

t ≤ x+ ε.

Hence, the final condition holds almost surely and thus the proposition holds.

The rest of the propositions in this appendix are used in the direct proof

of Theorem 4.1 in Section 7. The definition of AN can be found in that proof.

Proposition 8.2. AN is compact

Proof. AN is a closed subset of C◦(R,D), and so is complete. Therefore, by a

diagonal argument, it suffices to show that for all ε > 0 and for all sequences

S in AN , there exists a subsequence S ′ that is contained in a ball of radius ε.

To this end take M such that

∞∑
m=M+1

2−m <
ε

2

then we have that

dC(φ, ψ) <
M∑
m=1

2−md
(m)
C (φ, ψ) +

ε

2
∀φ, ψ ∈ C◦(R,D).

Thus, it suffices to find a subsequence S ′ where, for m = 1 to M , we have

d
(m)
C (φ, ψ) <

ε

2
∀φ, ψ ∈ S ′. (12)
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As d
(m)
C is increasing in m, it suffices for this to hold for m = M . Note

that d
(M)
C only depends on the flows between times in [−M,M ]. By the

definition of AN , the set of paths from a given point, for each of the flows in

S, is uniformly bounded and equicontinuous when restricted to the interval

[−M,M ]. This interval is also compact, so by the Arzelà-Ascoli Theorem,

the set of such restricted paths is compact in the uniform norm. Using

this compactness we can, for a finite set Eε,M,N ⊂ [−M,M ] × [0, 1], find a

subsequence S ′ of S such that

‖φ·s(x)− ψ·s(x)‖L∞([s,M ]) <
ε

2
∀φ, ψ ∈ S ′ ∀(s, x) ∈ Eε,M,N . (13)

Let [i] = {1, . . . , i}. We will take the S ′ corresponding to

Eε,M,N =

{(
−M +mδK,N ,

lε

6

)
: m ∈

[⌈
2M

δK,N

⌉]
, l ∈

[⌈
6

ε

⌉]}
where K = max

{
d6
ε
e,M

}
. It remains to show from (13) that (12) holds for

m = M , i.e.

dD(φts, ψts) <
ε

2
∀s, t ∈ [−M,M ], s < t ∀φ, ψ ∈ S ′. (14)

By the definition of dD this is the same as saying there exists s, t, φ, ψ as

above such that for all x

ψts

(
x− ε

2

)
< φts(x) +

ε

2
(15)

and

φts

(
x− ε

2

)
< ψts(x) +

ε

2
.

We will show the first of these the other follows by symmetry.

Given s, t, φ, ψ as in (14), there exists

(u, y) ∈ [s, s+ δK,N ]×
(
x− ε

3
, x− ε

6

)
∩ Eε,M,N
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and by the equicontinuity condition in the definition of AN

ψus

(
x− ε

2

)
< y

φus(x) > y.

Putting these together with (13) we get

ψts(x−
ε

2
) ≤ ψtu(y) < φtu(y) +

ε

2
≤ φts(x) +

ε

2
.

This is equation (15) and so we are done.

Proposition 8.3. As N →∞

P(φn ∈ AN)→ 1

uniformly in n.

Proof. Throughout Wt is a standard Brownian motion. We start by show-

ing that w.h.p. the condition that gives uniform boundedness on compact

intervals holds.

P
(
|φnts(x)− x| < 4b∗kk + kN

√
8a∗k + 1 ∀x ∈ [0, 1] ∀s < t ∈ [−k, k]

)
≥P

(
sup

t∈[−k,k]

|φnt,−k(0)| < 2b∗kk + kN
√

2a∗k

)
≥1− 4P

(√
a∗kW2k > kN

√
2a∗k

)
=1− 4Φ

(
−N
√
k
)
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and thus

P(|φnts(x)− x| < 4b∗kk + kN
√

8a∗k + 1 ∀s < t ∈ [−k, k] ∀x ∈ [0, 1] ∀k)

≥1− 4
∞∑
k=1

Φ(−N
√
k)→ 1

Now we will show that w.h.p. the equicontinuity requirement on compact

intervals holds. Let

Ek,N =

{(
k −mδk,N ,

l

3k

)
: m ∈

{
1, . . . ,

⌈
2k

δk,N

⌉}
, l ∈ {1, . . . , 3k}

}
The below calculation says that with high probability for all k paths from

each of these points will not move more than 1
3k

from their stating point

within time 2δk,N and the non-crossing property then implies the required

equicontinuity.

P

(
|φts(x)− x| ≤ 1

k
∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with t− s ∈ [0, δk,N ]

)
≥P

(
sup

t∈[s,s+2δk,N ]

|φts(x)− x| < 1

3k
∀(s, x) ∈ Ek,N

)

≥1− 4|Ek,N |P
(√

a∗kW2δk,N + 2δk,Nb
∗
k >

1

3k

)
=1− 12k

⌈
2k

δk,N

⌉
Φ

(
− 1√

2δk,Na∗k

(
1

3k
− 2δk,Nb

∗
k

))

≥1− 36k2

δk,N
Φ

− 1√
18k2a∗kδk,N

+

√
2b∗K

2δk,N
a∗k


≥1−max

{
72k2b∗k

2

a∗k
, 648k5Na∗k(1 + a∗k + b∗k)

}
Φ

(
−
√
kN(1 + a∗k + b∗k) + 1

)
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As the maximum can be bounded by a polynomial in k,N, a∗k and b∗k, and

Φ(. . . ) is decreasing exponentially in all of those variables, we can conclude

by use of a union bound that

P

(
|φts(x)− x| ≤ 1

k
∀x ∈ [0, 1] ∀s, t ∈ [−k, k] with t− s ∈ [0, δk,N ] ∀k

)
→ 1 as N →∞.

Proposition 8.4. E (Mst(x1, x2, b, a, φ)) is a continuous function of x1 and

x2.

Proof. We will show that

|Eφ (Mst(x1, x2, b, a, φ))− Eφ (Mst(x
′
1, x
′
2, b, a, φ))| → 0

uniformly for deucl((x1, x2), (x′1, x
′
2)) < δ as δ → 0. We start by decomposing

Mst(x1, x2, b, a, φ) into the integrals up to time s + δ and the rest. The

integrals up until time s+ δ are

−
∫ s+δ

s

φrs(x1)b(r, φrs(x2)) + φrs(x2)b(r, φrs(x1))dr

and

−
∫ (T (s,x1)(s,x2)∧t)∨(s+δ)

T (s,x1)(s,x2)∧t
a(r, φrs(x1))dr.

Taking expected value w.r.t. φ and exchanging order of integration leaves

two integrals with length at most δ and integrands bounded by

b∗ sup
r∈[s,s+δ]

Eφ(|φrs(x1)|+ |φrs(x2)|) and a∗

respectively. As φrs(xi) is uniformly integrable for r ≤ t these integrals

contribute only O(δ) to M . Thus they can be neglected.

We will use M δ
st to mean Mst minus the integrals we have just shown are
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O(δ). Note that

Eφ
(
M δ
)

= Eφ
(
Eφ
(
M δ|Fs+δ

))
and by the strong Markov property

Eφ
(
M δ

st(x1, x2, b, a, φ)|Fs+δ
)

is a function of φs+δ,s(x1) and φs+δ,s(x2). Proposition 8.5 says that

dTV ((φs+δ,s(x1), φs+δ,s(x2)), (φs+δ,s(x
′
1), φs+δ,s(x

′
2)))→ 0

so we can deduce that

dTV
(
Eφ
(
M δ

st(x1, x2, b, a, φ)|Fs+δ
)
,Eφ

(
M δ

st(x
′
1, x
′
2, b, a, φ)|Fs+δ

))
→ 0.

Combining this with the fact that Eφ(M δ
st(x1, x2, b, a, φ)|Fs+δ) is uniformly

integrable for (x1, x2) in each compact set, we are done.

Proposition 8.5.

dTV ((φs+δ,s(x1), φs+δ,s(x2)), (φs+δ,s(x
′
1), φs+δ,s(x

′
2)))→ 0

uniformly for deucl((x1, x2), (x′1, x
′
2)) < δ as δ → 0.

Proof. Let φ̃ have the same distribution as φ but be coupled with φ such that,

for each i = 1, 2, we have φt,s(xi) and φ̃t,s(x
′
i) evolve independently until they

take the same value at which point they coalesce. This is possible, as having

fixed φ we can construct φ̃ by first constructing φ̃(x′1) independently until it

hits φ(x1), then constructing φ̃(x′2) independently until it hits φ̃(x′1) or φ(x2).
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dTV ((φs+δ,s(x1), φs+δ,s(x2)), (φs+δ,s(x
′
1), φs+δ,s(x

′
2)))

≤1− P
(
φs+δ,s(xi) = φ̃s+δ,s(xi) for both i = 1, 2

)
≤P
(
φs+δ,s(x1) 6= φ̃s+δ,s(x1)

)
+ P

(
φs+δ,s(x2) 6= φ̃s+δ,s(x2)

)
≤2(1− 2P(a∗Wδ < −δ − δb∗))

=2

(
1− 2Φ

(
−
√
δ

1 + b∗

a∗

))
≤2

(
1− 2

(
0.5−

√
δ

2π

1 + b∗

a∗

))

=

√
8δ

π

1 + b∗

a∗
→ 0.

Proposition 8.6.

EφEx(Mst(x1, x2, b, a, φ)) = lim
n

EφnEx (Mst(x1, x2, b, a, φ
n))

Proof. We would like to be able to say that Ex(Mst) is a continuous function

of φ, and apply weak convergence. Unfortunately, even after averaging over

x, this still isn’t true, as T (s,x1)(s,x2) is not a continuous function of φ, so we

now proceed to smooth Mst even more. Define

Tη = inf {r ≥ s : d(φrs(x1),Z + φrs(x2) )< η}
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and then define

M̃ ε
st(x1, x2, b, a, φ) =φts(x1)φts(x2)−

∫ t

s

φrs(x1)b(r, φrs(x2))

+ φrs(x2)b(r, φrs(x1))dr − 1

ε

∫ ε

0

∫ t

Tη∧t
a(r, φrs(x1))drdη.

By applying the triangle inequality the following three claims will now suffice

to complete the proof. Firstly

EφnExM̃
ε(φn)→ EφExM̃

ε(φ) as n→∞

secondly

EφExM̃
ε(φ)→ EφExM(φ) as ε→ 0

and thirdly

EφnExM̃
ε(φn)→ EφnExM(φn) as ε→ 0 uniformly in n.

We first prove the second claim. Note that Tη monotonically increases to

T0 as η → 0 and thus M̃ ε is monotonically increasing to M as ε → 0. Thus

the second claim holds by the Monotone Convergence Theorem.

We next prove the third claim. We have that

|M̃ ε(φn)−M(φn)| =1

ε

∫ ε

0

∫ T0∧t

Tη∧t
a(r, φnrs(x1))drdη

≤a∗ ((T0 − Tε) ∧ (t− s))

and thus ∣∣∣Eφn (M̃ ε(φn)−M(φn)
)∣∣∣ ≤a∗ (ε+ (t− s)P(T0 − Tε > ε)) .
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Using the strong Markov property at time Tε we can see that

P(T0 − Tε > ε) ≤1− 2P(2a∗Wε < −ε(1 + 2b∗))

=1− 2Φ

(
−
√
ε(1 + 2b∗)

2a∗

)
=O(
√
ε).

Putting this together and averaging over x, we get the third claim with the

order of the expectations swapped. Note that each term of M̃ ε(φn) and

M(φn) have sub-exponential tails. Thus, we can apply Fubini’s theorem to

deduce the third claim.

Finally, we will show that ExM̃ ε(φ) is a continuous function of φ, from

which our first claim immediately follows due to weak convergence. Then we

will be done.

Fix φ′ ∈ C◦(R,D). Let φ′′ be distance at most δ from φ′. We have, for

δ < 1, that

φ′(x1)− 1− δ ≤ φ′(x1 − δ)− δ ≤ φ′′(x1) ≤ φ′(x1 + δ) + δ ≤ φ′(x1) + 1 + δ.
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Let [l1, u1] be the interval that x1 is being averaged over, then

Ex1 (φ′′(x1)) ≤ 1

u1 − l1

∫ u1

l1

φ′(x1 + δ) + δdx1

≤ 1

u1 − l1

∫ u1−δ

l1

φ′(x1 + δ)dx1 +
1

u1 − l1

∫ u1

u1−δ
φ′(x1) + 1dx1 + δ

≤ Ex1 (φ′(x1))− 1

u1 − l1

∫ l1+δ

l1

φ′(x1)dx1

+
1

u1 − l1

∫ u1

u1−δ
φ′(x1)dx1 + δ

(
1

u1 − l1
+ 1

)
≤ Ex1 (φ′(x1)) + δ

(
1 +

1 + 2 supl1≤x1≤u1
|φ′(x1)|

u1 − l1

)
→ Ex1 (φ′(x1)) as δ → 0.

The lower bound is similar. We can deduce that Ex1(φ(x1)) is continuous in

φ, and so the first term of ExM̃ ε, i.e.

Ex1(φ(x1))Ex2(φ(x2))

is also continuous in φ. To show that the second term of ExM̃ ε is continuous

in φ, as φ′′rs(x1) is bounded uniformly over r ∈ [s, t] and φ′′ for fixed δ and

φ′, it suffices to show that

Ex1b(t, φ(x1))

is continuous in φ (for all t > s).

b (t, φ′′(x1)) ≤ sup
|δx|≤δ

b (t, φ′(x1 + δx)) + Lδ

≤ b (t, φ′(x1)) + L

(
δ + sup

|δx|≤δ
|φ′(x1 + δx)− φ′(x1)|

)
.
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Cut the interval [l1 − δ, u1 + δ] into pieces of length δ. Let C be the amount

that φ increases by over that interval. Call a piece bad if φ increases by

more than
√
δ

2
on that piece or either of the neighbouring pieces. As φ is

non-decreasing there can be at most 6C√
δ

bad pieces. If x1 is not in a bad

piece then

sup
|δx|≤δ

|φ′(x1 + δx)− φ′(x1)| ≤
√
δ.

So our bound on b (t, φ′′(x1)) gives

b (t, φ′′(x1)) ≤ b (t, φ′(x1)) + L
(
δ +
√
δ + C1{x1∈a bad piece}

)
.

Combining this with the corresponding lower bound whose derivation is sim-

ilar we find

|Ex1 (b (t, φ′′(x1)))− Ex1 (b (t, φ′(x1)))|

≤L
(
δ +
√
δ + CPx1(x1 ∈ a bad piece)

)
≤L

(
δ +
√
δ +

6C2
√
δ

u1 − l1

)
= O

(√
δ
)
.

Thus, Ex1b(t, φ(x1)) and the second term of ExM̃ ε are continuous in φ.

Similarly, we can conclude that Ex1a(t, φ(x1)) is continuous with respect

to φ, and further, as the products of intervals generate the Borel σ-algebra

on R2, that ∫
a(t, φ(x1))dµ(x) (16)

is a continuous function of φ for each measure µ that is bounded, compactly

supported and absolutely continuous with respect to Lebesgue measure on
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R2. This will be useful after we rewrite the third term of ExM̃ ε as

Ex
1

ε

∫ ε

0

∫ t

Tη∧t
a(r, φrs(x1))drdη

=Ex

∫ ε

0

∫ t

s

a(r, φrs(x1))
1{r>Tη}

ε
drdη

=

∫ t

s

Ex

(
a(r, φrs(x1))

∫ ε

0

1{r>Tη}

ε
dη

)
dr.

To show this is continuous it suffices to show that

Ex

(
a(t, φ(x1))

∫ ε

0

1{t>Tη}

ε
dη

)
is continuous and uniformly bounded for all t > s. The boundedness is

immediate. The continuity is not immediate from (16) being continuous,

because Tη depends on φ. However, it can be shown as follows. Let T 0
η be

the Tη corresponding to φ′ and define T δη similarly. Let µ′ be the measure on

R2 with Radon-Nikodym derivative∫ ε

0

1{t>Tη}

ε
dη

with respect to the uniform probability measure on I1 × I2 and define µ′′

similarly. Then∣∣∣∣Ex(a (t, φ′′(x1))

∫ ε

0

1{t>T δη }

ε
dη

)
− Ex

(
a (t, φ′(x1))

∫ ε

0

1{t>T 0
η }

ε
dη

)∣∣∣∣
=

∣∣∣∣∫ a (t, φ′′(x1)) dµ′′(x1)−
∫
a (t, φ′(x1)) dµ′(x1)

∣∣∣∣
≤
∣∣∣∣∫ a (t, φ′′(x1)) dµ′′(x1)−

∫
a (t, φ′′(x1)) dµ′(x1)

∣∣∣∣
+

∣∣∣∣∫ a (t, φ′′(x1)) dµ′(x1)−
∫
a (t, φ′(x1)) dµ′(x1)

∣∣∣∣ .
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The second of these terms is small due to the continuity of (16), the first

term is bounded by

a∗

ε

∫ u1

l1

∫ u2

l2

∫ ε

0

∣∣∣1{t>T δη } − 1{t>T 0
η }

∣∣∣ dηdx2dx1.

The contribution to this integral when |x1 − x2| < 2δ is clearly small. We

will show that the contribution when x1 ≥ x2 + 2δ is small and, as the case

for x1 ≤ x2−2δ is similar, we will then be done. Conditional on x1 ≥ x2 +2δ

we have

T 0
η+2δ(x1 − δ, x2 + δ) ≤ T δη (x1, x2) ≤ T 0

η−2δ(x1 + δ, x2 − δ)

and thus our integrand is zero unless

t ∈
[
T 0
η+2δ(x1 − δ, x2 + δ), T 0

η−2δ(x1 + δ, x2 − δ)
]
. (17)

To see that the integral is small we will change the variables of the integral.

We will use an orthonormal substitution to change the variables to, α =

(2η−x1 +x2)/
√

6, β = (−η−x1 +x2)/
√

3, and γ = (x1 +x2)/
√

2. For some

values of the endpoints, the result is as follows

a∗

ε

∫ γ2

γ1

∫ β2

β1

∫ α2

α1

∣∣∣1{t>T δη } − 1{t>T 0
η }

∣∣∣ dαdβdγ.
Note that the end points of the integral are independent of δ. Thus the whole

expression has at most the same order as the inner integral for small δ. For

any fixed value of β and γ, the interval of α for which Equation (17) can hold

has length at most 2
√

6δ (as for values of α differeing by more than that, the

corresponding intervals on the right hand side are disjoint). As the integrand

is bounded by one, the inner integral is bounded by 2
√

6δ. Therefore, the

total expression is O(δ).
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Part II

Off-Grid Diffusion Limited

Aggregation can be Simulated

in Õ(n) Time and Space

In this part we look at previous algorithms proposed for simulating off-grid

DLA. We provide the first analytic analysis of the asymptotic runtimes of four

previously proposed algorithms. An algorithm from the early 1990s is found

to have better asymptotic runtime and memory usage than more recent pro-

posals. We also wrote code for a variation of that algorithm combining it with

tricks from a couple of the more recent papers and a new trick presented here.

Our code can be downloaded at www.github.com/mathsjames/fastDLA and

can also simulate noise reduced DLA.

1 Introduction

DLA is a model of irreversible growth proposed by Witten and Sander in 1981

[36]. The definition works in any dimension but work has focussed primarily

on the two and three dimensional cases. It has attracted a great degree of

interest in the following four decades. The original model was defined on

an underlying lattice and was studied through the 1980s with simulations in

e.g. [18] [17] [3] and with an analytical result in [13]. The off-grid version

introduced in [18] was studied numerically in e.g. [17] [25] [26]. A good

survey of work on DLA prior to 1995 can be found in [19].

Further models supposed to have the same asymptotic behaviour were

introduced by Hastings and Levitov in [12] and Ball et al. in [4]. The

Hastings-Levitov method is specific to two dimensions but unifies analogues
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of DLA, dielectric breakdown and the Eden model in a family of models

with one real parameter. Some parts of this family, not including those cor-

responding to DLA, have had analytic results proved about them in [23] [31],

however extending these results to the DLA case seems to be a hard problem.

Further generalisation of the Hastings-Levitov model is suggested and anal-

ysed in [35]. The noise reduced DLA of Ball et al. has been demonstrated

to converge faster into its asymptotic growth rate than the original model

does [4] [8], but shows no signs of accessibility by analytic methods. The

algorithms presented here for off-grid DLA generalise easily to the noise re-

duced case and so even if one is interested in exploring the asymptotics of this

faster converging process this work is very relevant and the code available at

www.github.com/mathsjames/fastDLA will also compute this model.

More recent work on off-grid DLA has included a study by Menshutin in

2012 [21] that demonstrated that finite size effects are quite substantial for

clusters with up to 107 particles. Generating even one cluster of this size is

not trivial and being able to do so efficiently is important for being able to

understand the asymptotics of DLA. In the rest of the introduction we look

at the history of simulating DLA.

Originally the DLA process took place on a lattice, however in 1985 Ball

and Brady [3] demonstrated that the asymptotic shape of this original DLA

model was anisotropic and dependent on the underlying lattice. As a result

the non-lattice or off-grid model introduced by Meakin in 1983 [18] is a

better candidate for a universal model. The algorithm in [3] was only very

briefly described and they claimed that, for a cluster of n particles, it only

requires O
(
log2(n)

)
steps per particle. This algorithm was generalised to the

off-grid case by Ossadnik in 1991 [25]. Here, the algorithm is well described

and claimed to require O
(
log2(n)

)
steps per particle. However, the focus in

that paper is also the results of the simulations, so no rigorous analysis and

limited runtime data are provided. Ossadnik was able to produce 100 clusters

of 106 particles using RAM only, and managed to grow a cluster of 6 × 106
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particles using swap space. We will show in Section 5 that this algorithm

requires O
(
log2(n)

)
steps per particle and in Section 7 that each step can

be implemented in O (log(n)) time, thus this algorithm runs in O
(
n log3(n)

)
time. We also show in Section 7 that the algorithm requires O (n) space.

As in this part, and in Part III, we are primarily concerned with Meakin’s

off-grid DLA, the acronym DLA will refer to Meakin’s DLA unless otherwise

specified.

More recent work in simulating square-lattice DLA has been conducted by

Loh [16]. This was recently used, by Grebenkov and Beliaev[11], to demon-

strate that such clusters appear to converge to a one dimensional limit. How-

ever, this is mainly concerned with reducing biases introduced by approxi-

mating the lattice. Therefore it is not relevant to the case we are concerned

with.

In 2006 Menshutin and Shchur [20] generated 100 clusters of 5× 107 par-

ticles. Their algorithm is discussed in Section 4.4.1 where it is shown to have

a runtime of Ω
(
n

8
4+d

+o(1)
)
≈ Ω (n1.40) given certain physical assumptions,

including that the dimension of the cluster is given by d ≈ 1.71. Whether this

algorithm is good for the cluster sizes considered is unclear as they provide

no data on runtimes, and the increase in cluster size generated compared to

[25] could be explained by better hardware. In 2008 Alves, Ferreira and Mar-

tins [1] proposed an algorithm for off-grid DLA. They cite Ball and Brady

but present an algorithm that runs, as we will show in Section 4.4.2, in

n1+ 2
d

+o(1) ≈ Θ (n2.17) time, whilst claiming that runtimes grow as n1.4. The

largest cluster that they grow has 106 particles and they do so only twenty

times faster than [25], despite a factor of 100 improvement in CPU speed and

a lot more available memory which Ossadnik had needed to optimize for. In

2014, Kuijpers, de Mart́ın and Van Ommen [27] proposed another algorithm

which they claimed runs in n1.08 time. We will show in Section 4.4.3 that this

algorithm runs in at best n1+ 1
d

+o(1) ≈ n1.58 time, depending on how param-

eters are chosen. The runtimes they give are significantly faster than those
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of [1] but are still slow compared to the algorithm of [25]. Furthermore their

algorithm requires 100 times as much space as that of [25]. Details of these

runtimes are given and considered in Section 6.

The algorithm proposed in this work, in Section 5, differs only slightly

from that of [25]. In Section 4.2 we describe a technique for resetting particles

from far away to the starting circle, that first appeared in [30]; and in Section

4.3 a new technique for adhering particles to the cluster without a step size

dependent approximation is presented. Both of these are then incorporated

into our recommended algorithm. In Section 7 we describe Ossadnik’s idea

for keeping memory consumption down; however we found this to be an

unnecessary and inefficient trade off with runtime for our application and so

have not implemented it.

In Section 8 we discuss how well this algorithm generalizes to higher

dimensions and what would be required to do better in that context. In

Section 9 we discuss how the logarithmic factors might be improved and

possible directions for future work.

2 Definition of Off-Grid Diffusion Limited

Aggregation

DLA models the growth of a cluster of particles. As is standard, we take each

particle to be a circle of radius one. However, the idea of all the algorithms

discussed here could be extended to the setting where the radius of each

particle is generated independently before the particle is added to the cluster

(although fat-tailed distributions of radii would lead to a slow down). Let

C(r) denote the circle of radius r centred on the origin. The process of DLA

is described in Algorithm 1.

Initially, the cluster consists of a single particle at the origin. Each of n

particles in turn follows a Brownian motion from infinity until it touches the

cluster. At this point the particle is fixed at its current location and added
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Algorithm 1: Ideal DLA

Input: Number of particles to add n
Output: P ∈ (R2)

n+1

1: P = [(0, 0)]
2: for i in {1..n}
3: Let Bt be 2D Brownian motion starting from ∞
4: Let T = inf {t|d(Bt, P ) ≤ 2}
5: Append BT onto P
6: endfor
7: Return P . The sequence of particle centres

to the cluster. Once all particles have been added, the cluster is complete.

We are here using a Brownian motion started from infinity to mean that the

limit of this distribution (of cluster or attachment point) should be taken as

the starting point of the Brownian motions goes to infinity. We describe how

to approximate Algorithm 1 numerically in the following sections.

3 The Basic Algorithm

To make Algorithm 1 implementable on a computer we make the following

changes.

• Instead of starting from infinity each particle will start from a uniformly

randomly selected point on a circle containing the cluster up to this

aggregation, referred to as the starting circle.

• The Brownian motion is replaced by a discrete time random walk with

a fixed step size in a uniformly chosen direction.

• If during a random walk the particle gets very far from the cluster (say

ten times the radius of the starting circle) then it is reset to a uniformly

random point on the starting circle.
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• Upon collision with the cluster a particle is placed on the line between

the position it was in immediately before collision and the position it

had stepped to, so that it just touches the cluster.

• All positions and steps are computed in floating point arithmetic

The first two changes above are not approximations at all but are exact,

so long as the particle has distance from the cluster at least given by the

step size. This is because harmonic measure from the centre of a disc to its

boundary is precisely the uniform distribution on the boundary.

The third and fourth changes incur an error. The error from resetting

the particle can be made small by only resetting once the particle gets very

far away; however this incurs extra computational cost which isn’t negligible,

even with optimisations to the step sizes. Crucially this error will not shrink

with the number of particles in the cluster. A means to remove this approxi-

mation at little computational cost which first appeared in [30], is described

in Section 4.2.

The error due to the fourth change seems likely to become negligible

as the number of particles becomes large. More precisely, it seems it will

be of the same order as the error between the model and the real world

physical processes it is meant to model. However, in Section 4.3 we present an

approach to removing this approximation in a way similar to addressing the

approximation in the third change, because we want to have a single simple

model without an extraneous parameter, step size, affecting the distribution

of the resulting cluster.

The use of floating point numbers is a necessary approximation as com-

puters can’t do infinite precision of arbitrary real numbers and the continuous

randomness entails generic real numbers. The resulting algorithm is specified

in Algorithm 2

In the following sections we shall optimize this basic algorithm, but before

that we shall assess its time and space requirements.
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Algorithm 2: Basic DLA

Parameter: Step size l, reset ratio σ.
Input: Number of particles to add n
Output: P ∈ (R2)

n+1

1: P = [(0, 0)]
2: r = 2
3: for i in {1..n}
4: Sample p← C(r)
5: while d(p, P ) > 2
6: Sample s← C(l)
7: p = p+ s
8: if d(0, p) > σr then sample p← C(r)
9: endwhile

10: p = p−as for smallest positive a such that d(p−as, P ) = 2

11: r = max {r, |p|+ 2}
12: Append p onto P
13: endfor
14: Return P . The sequence of particle centres

3.1 Complexity

The spatial complexity of this basic algorithm is O(n) as it is only required

to store the points in the cluster so far and a constant number of working

variables.

The time complexity can be broken down as,

n× cost per step× steps per particle. (18)

The most complicated part of understanding the time complexity is as-

certaining how many steps each particle will take i.e. how many times the

while loop is executed. To get a lower bound that matches the order of the

upper bound we will require the following assumption.

Assumption 3.1. If P is a DLA cluster, r = maxp∈P |p| + 2 , and x is
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sampled from C(r) then

E

(
d(x, P )

r

)
= Ω(1)

This assumption roughly says that DLA clusters are not asymptotically

circular discs. Hopefully the reader will agree this is clear from simulations

although there is no known proof.

Lemma 3.2. Given Assumption 3.1, the while loop in Algorithm 2 is on

average executed Θ (r2) times for each execution of the for loop.

Proof. The number of while loop executions within a for loop execution is

the number of steps a single particle takes before colliding with the cluster.

For fixed sigma the expected number of times each particle is reset is O(1) as

the probability of being reset before adhering is bounded away from 1. Thus

the order of the expected number of steps a particle will take is equal to the

order of the expected number of steps it will take before it is first reset.

For each iteration of the for loop. Let P be the cluster of particles so far,

r = maxp∈P |p|+2 be the radius of the cluster (plus 1) and ps be the starting

point of the next particle.

The number of steps before the particle either adheres or is reset for the

first time is bounded above by the number of steps it would take to get

distance (σ + 2)r from ps and below by how long it takes to get distance

d(ps, P ) − 2 which by assumption is Ω(r) with probability bounded away

from zero. A random walk takes order k2 expected time to get distance k

from its starting point so the result follows.

Assumption 3.3. There exists d ∈ R, called the dimension of DLA such

that if P is a DLA cluster of n points and r = maxp∈P |p|+ 2 then

r = n
1
d

+o(1)
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This assumption is uncontroversial in the physics literature and the value

of d has been found to be about 1.71± 0.01 [4].

Proposition 3.4. Under Assumptions 3.1 and 3.3, the time complexity of

the basic algorithm is n2+ 2
d

+o(1)

Proof. By Lemma 3.2 each particle requires Θ (r2) = n
2
d

+o(1) steps to place

and each time we wish to check for a collision (the condition of the while loop)

we must check each of the Θ(n) particles already in the cluster. Therefore,

by Expression (18), the runtime is of order n× n 2
d

+o(1) × n.

This runtime is approximately Θ (n3.17). We now move onto the methods

used in previous work to speed this process up. These assumptions are

needed in the analysis of previous attempts to speed up the algorithm given

in [20], [1] and [27], and analysing the algorithm of [20] will require further

assumptions. However, no unproven assumptions are required to prove the

bounds on the algorithm of [25] and the variation on it that we recommend.

4 Improvements to Runtime and Accuracy

We break down the improvements that we recommend into four changes.

Most of the runtime improvement comes from the first and last, whilst the

second and third improve the accuracy of the simulation. The first improve-

ment, in Section 4.1, is employed by all previous proposed algorithms [25] [20]

[1] [27] and provides a way to check for collisions in O(1) time. The second,

in Section 4.2, is from [30] and allows us to reset a particle that moves away

from the cluster cheaply and exactly. The third improvement, in Section

4.3, allows us to not incur any approximation in a step that could result in

the particle colliding with the cluster. The fourth improvement, in Section

4.4, is to take larger steps. All previous algorithms do this in different ways

and we look at how they each approached reducing the number of steps per
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particle, analysing how much of a reduction they each achieve and at what

computational cost.

After implementing the third improvement there is no checking for colli-

sions step. However, the idea behind the first improvement is used in imple-

menting the third improvement, so is still important.

4.1 Fast Collision Checking

It is convenient to store the particles according to where they are in the

cluster so as to speed up checking whether or not there is a collision after

each step.

To achieve this goal we can lay a grid over the space the cluster will

grow into (this idea of storing information in a grid laid over the cluster

will also be used in all approaches to increasing step size in Section 4.4).

The grid must cover a large enough area that we can be confident that the

cluster we wish to grow will not exceed its bounds, i.e. the area must be

Ω (r2) ≈ Ω (n1.17). Further we will take the side length of each square of the

grid to be a constant, in [20] the side length of twenty is suggested. For each

square of the grid we store a vector containing all of the points within that

square. Now when checking for collisions we need only check the distance

from each of the points in grid squares close to our particle.

This alteration reduces the cost of each step considerably to O(1), reduc-

ing the time complexity of Algorithm 2 to n1+ 2
d

+o(1) ≈ Θ (n2.17). It comes at

a cost of increasing the space complexity to n
2
d

+o(1) ≈ Θ (n1.17) however, as

will be discussed in more detail in Section 6. For practical cluster sizes this

is a small price to pay as the constant of the n
2
d

+o(1) term can be made to

be quite small and still achieve a very substantial speed up. In Section 7 we

will explain how the space requirement can be reduced to O(n).
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4.2 Exact Resetting

If the particle is not reset when it gets far away from the cluster then, even if

steps are always taken to be of size equal to the distance to the cluster, the

expected number of steps to get within distance ε of the cluster is infinite.

This is because the logarithm of the distance from the origin is a martin-

gale (see Equation (19) in the proof of Lemma 4.1) with quadratic variation

growing at a bounded rate. This was dealt with in the basic algorithm above

by resetting the particle to a uniformly random point on the starting circle

whenever it gets too far from the cluster. This however incurs errors. A bet-

ter approach is to use an analytic method to sample from the distribution of

the point where the particle would next hit the starting circle if it were doing

a true Brownian motion, and advance the particle to there. This method is

described in [30] and in appendix A of [20], but we present another derivation

here that we find more intuitive and better matches the method of sampling

used in our code.

In this section (as in our code) we view R2 as the complex plane. The

path of a Brownian motion is invariant under conformal maps so we apply

conformal maps to simplify the situation. First apply a conformal map that

sends the starting circle to the real line and the current position of the particle

to the upper half plane, then scale and shift by real values to map the image

of the current position to i. Now we can sample from the standard Cauchy

distribution on R, which is the hitting distribution of the real line by a

Brownian motion from i, and map that via the inverses of our conformal

maps to the starting circle.

If r is the radius of the starting circle and p is the current position of

the particle which is outside of the starting circle, then this process works as

follows. Define

f(z) = i
z − r
z + r

and note that f is conformal as it is a Möbius map, that it maps the starting
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circle to R and p to the upper half plane and finally that f−1 is given by

f−1(z) = −r z + i

z − i
.

The map that takes f(p) to i is

g(z) =
z −< (f(p))

= (f(p))

with inverse

g−1(z) = < (f(p)) + = (f(p)) z.

Thus, if we now generate a standard Cauchy random variable X then

f−1 (g−1 (X)) has the correct distribution to be the point we advance our

particle to.

This process uses only as much entropy as a single ordinary step and not

much more CPU time. It therefore speeds up the algorithm, marginally, as

well as making it more accurate.

4.3 An Exact Approach to Adhering

In all previous algorithms once the active particle gets within some distance

of the cluster it takes a step that has a positive probability of overlapping

with the cluster. After this step, if the particle has collided it is moved out

by some rule so that it only touches the cluster. This process does not result

in the same distribution of collision point as a true Brownian motion would.

To sample from that true distribution we can use a process similar to that

used in Section 4.2 to reset the active particle. This process works as follows.

Firstly we find the nearest particle in the cluster, whose centre we call

q, and the centre to centre distance to the second nearest particle, which we

call a. We wish to sample from the distribution of the hitting point, of a

Brownian motion starting from p, on the union of the circle of radius a − 2

centred at p and the circle of radius 2 centred at q. Call the intersection
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points of the two circles in our union w+ and w−, and let θ be the acute

angle formed at q by the line through p and the line through w+. According

to the cosine rule θ is given by

θ = cos−1

(
(a− 2)2 − 4− |q − p|2

4|q − p|

)
.

Let f1 translate and rotate p to 0 and q to (0,∞) i.e.

f1(z) = |q − p|z − p
q − p

.

We can now see by trigonometry that

f1 (w±) = |q − p| − 2 cos(θ)± 2i sin(θ)

and so we can map f1 of our boundary to a pair of rays from 0 using

f2(z) =
z − f1(w+)

z − f1(w−)
.

Then the angle between these rays is given by φ = arg
(
f2(|q−p|−2)
f2(2−a)

)
and we

can now conformally map this pair of rays to the real line by applying

f3(z) =
zφ

f2(2− a)φ
.

Let α + iβ = f3 (f2(0)), now letting X be a standard Cauchy random

variable we can sample a new position for the particle by computing

f−1
1 ◦ f−1

2 ◦ f−1
3 (α + βX) .

This process is a little complicated but requires no more entropy and not

much more computational time than an ordinary step, and removes any error

that could be caused by taking finishing steps to be too large or from too far
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away.

4.4 Taking Larger Steps

Algorithm 3: Generic Large Step DLA

Not Specified: How and when to reset, how to and size of step.
Input: Number of particles to add n
Output: P ∈ (R2)

n+1

1: P = [(0, 0)]
2: r = 2
3: for i in {1..n}
4: Sample p← C(r)
5: Set fixed = False
6: while not fixed
7: if |p| too large
8: Reset p to C(r)
9: else

10: Take a step . This may include adhering

11: If touching the cluster set fixed = True
12: endif
13: endwhile
14: r = max {r, |p|+ 2}
15: Append p onto P
16: endfor
17: Return P . The sequence of particle centres

The basic idea behind all previous attempts to reduce the number of steps

per particle is the observation that we incur no error by increasing the size of

each step so long as the step size is smaller than the current distance to the

cluster. Algorithm 3 is a generic algorithm that all the following algorithms

fit into and it allows us to state the following lemma. This lemma will be

used for analysing the algorithm from [20] as well as the algorithm of [25]

and our variation of it in Section 5. We call a step ordinary if it consists

of moving the particle a fixed amount in a uniformly random direction and
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can’t collide with the cluster. We call a step a δ-finishing step if, conditional

on the previous history, the probability of the partice adhereing with that

step is at least δ.

Lemma 4.1. If in Algorithm 3 the following conditions hold, then the number

of steps and resets required for each particle is O
(
log2(n)

)
. There exists

C, ε, δ > 0 independent of n satisfying the following conditions.

• The particle is reset, using the trick in Section 4.2, whenever it goes

beyond the starting circle but is never reset otherwise.

• Whenever d(p, P ) < ε+ 2 the next step is a δ-finishing step.

• Every step is either a δ-finishing step or an ordinary step of size between

(d(p, P )− 2)C and d(p, P )− 2.

Proof. Note that the expected number of δ-finishing steps is O(1), so it suf-

fices to show that the expected number of steps before the next δ-finishing

step is always O
(
log2(n)

)
. Further, as every reset is followed by a step, it

suffices to show that the expected number of steps is O
(
log2(n)

)
.

Let S be the number of ordinary steps required before the next δ-finishing

step and r be the radius of the starting circle. We will show that Xm,

defined to be log (d(p, P )− 2) right before the m + 1th step, and Ym :=

(log(3r)−Xm)2 are such that for some v > 0,

• E (Ym+1 − Ym|Ym) ≥ v

• and E
(
min (0, XS − log(ε))2) = O(1 + log(ε)2).

It follows from the final point that

E (YS) = E
(
(log(3r)− log(ε) + log(ε)− log (XS))2)

≤ 2 (log(3r)− log(ε))2 + 2E
(
min (0, XS − log(ε))2)

≤ 2 (log(3r)− log(ε))2 +O(1 + log(ε))
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but as E (Ym) grows by v with each step we must have E (YS) ≥ vE (S).

Therefore E(S) ≤
(
2 (log(3r)− log(ε))2 +O(1 + log(ε)2)

)
/v and the result

is attained.

Xm is mapped to Xm+1 by the effects of one ordinary step followed pos-

sibly by a reset.

The possible reset can be simulated to arbitrary accuracy as follows.

Whilst d(p, 0) < 2r, take an ordinary step with size equal to the distance

to return to the starting circle. If p gets close enough to the starting cir-

cle then stop; otherwise, once d(p, 0) ≥ 2r, reset the particle in the usual

way. Note that resetting the particle in the usual way from a position with

d(p, 0) ≥ 2r always decreases log (d(p, P )− 2), and as we only do that from

positions with d(p, 0) < 3r, this must result in an increase in Y . Therefore, to

show that the reset does not decrease Y it suffices to show that ordinary steps

of any size less than d(p, P ) do not increase log (d(p, P )− 2) in expectation.

Let l be the step size, s be the step and q be the point in P closest to p

before the step. Then as d(p+ s, P ) ≤ d(p+ s, q) it suffices to show that

E (log (d(p+ s, q)− 2)) = log (d(p, q)− 2) . (19)

The expression on the left is given by the following integral.

1

2π

∫ 2π

0

log

(√
(d(p, q)− 2 + l sin(θ))2 + l2 cos(θ)2

)
dθ

This expression is equal to log (d(p, q)− 2) and so the reset does not decrease

Y .

Next we establish that Ym grows by some v > 0 in expectation with

each ordinary step of size at least C (d(p, P )− 2), that cannot reach beyond

distance 3r from the origin. Let p be the position of the incoming particle

before the step, p+ s the position afterwards and q the point in P closest to

p. We know that d(p+ s, P ) ≤ d(p+ s, q) ≤ 3r and that Equation (19) holds
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so

E (Ym+1|Ym) = E
(
(log(3r)− log (d(p+ s, P )− 2))2)

≥ E
(
(log(3r)− log (d(p+ s, q)− 2))2)

= (log(3r)− log (d(p, q)− 2))2 + Var (log (d(p+ s, q)− 2))

= Ym + Var (log (d(p+ s, q)− 2)) .

This variance is guaranteed to be greater than some v > 0 as the ratio of

l = |s| to d(p, q)− 2 is bounded away from zero.

Finally, we must show that E
(
min (0, XS − log(ε))2) ≤ 1. Let fε(x) =

min (0, x− log(ε))2. To complete the proof it suffices to show that E (fε(Xm+1)|S = m+ 1, p) ≤
1 for allm and p. Note that asXm+1 is increasing in d(p′, q) and {d(p′, q)−2 <

ε} ⊂ {S = m+ 1} we have that

E (fε(Xm+1)|S = m+ 1, p) ≤ E (fε(Xm+1)|d(p′, q)− 2 < ε, p) .

If l < d(p, q) − 2 − epsilon/2 then d(p′, q) > 2 + ε/2 and log(d(p′, q) − 2) −
log(ε))2 < log(2)2, thus we are done. Therefore we can assume that

l ≥ d(p, q)− 2− ε

2
. (20)

Note that the step generating p′ from p is an ordinary step with some step

size l. Suppose w.l.o.g. that q = (0, 0) and p = (d(p, q), 0). Let A be the arc

of radius l about p that is within 2 + ε of q and let a be sampled uniformly

from A.

E (fε(Xm+1)|d(p′, q)− 2 < ε, p) ≤ E (fε(log(d(a, q)− 2)))

Let B be the result of projecting A onto the line x = d(p, q) − l. Let b

be a uniformly random point on B, note that the distribution of d(q, b) is
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stochastically dominated by that of d(q, a), therefore

E (fε(log(d(a, q)− 2))) ≤ E (fε(log(d(b, q)− 2))) .

This expectation can be written, in terms of the length y of B, as

2

y

∫ y/2

0

fε(log(
√
x2 + (d(p, q)− l)2 − 2))dx.

As the arc A must be centred outside of the circle of radius 2 + ε about q,

y must satisfy y/2 ≥
√

3
2

(2 + ε − (d(p, q) − l)). Defining z = d(p, q) − l and

assuming the worst case (minimal) value of y gives

E (fε(log(d(b, q)− 2))) ≤ 1√
3(2 + ε− z)

∫ √3(2+ε−z)

0

(log(
√
x2 + z2−2)−log(ε))2dx.

At least point we can invoke Equation (20) to note that 2 ≤ z ≤ 2 + ε/2 and

thus

E (fε(log(d(b, q)− 2))) ≤ 2√
3ε

∫ √3ε

0

(log(
√
x2 + 22 − 2)− log(ε))2dx.

Given that ε < 2 we can bound the square root.

E (fε(log(d(b, q)− 2))) ≤ 2√
3ε

∫ √3ε

0

(log(x2/6)− log(ε))2dx

=
2√
3ε

∫ √3ε

0

(log(x2/6ε))2dx

Into this integral we can substitute u = x/
√

6ε to get

2
√

2√
ε

∫ √ ε
2

0

4(log(u))2du = 2((log(ε/2)− 1)2 + 4) = O(log(ε)2 + 1).

This completes the proof.
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Remark 4.2. In Section 9 we present empirical evidence that this is a tight

upper bound.

The straightforward way to take large steps is to always take steps of size

d(p, P ) − 2 until very close to the cluster and then switch to taking steps

with a positive probability of finishing, which could be either ordinary steps

slightly bigger than d(p, P )− 2, followed by a check for collision, or could be

the exact finishing steps described in Section 4.3. The number of steps per

particle for this algorithm is O
(
log2(n)

)
and the cost per step with a naive

implementation is Θ(n), so this gives a O
(
n2 log2(n)

)
algorithm.

We now look at the three more recent papers and their approaches to

choosing step size. For all three of these analyses we assume the truth of

Assumptions 3.1 and 3.3, conditional on which we can show the following.

All three have n1+ 2
d

+o(1) ≈ Θ (n2.17) runtimes as described in the relevant

papers, though by choosing parameters depending on n the first and third

can be made to run in order n
8

4+d
+o(1) ≈ n1.40 and order n1+ 1

d
+o(1) ≈ n1.58

time respectively (though further assumptions are required to prove this in

the case of the first algorithm). The second may also have better asymptotic

runtimes with parameter choices dependent on n, but they don’t seem to have

optimised their parameters for the values of n they look at. The algorithm

proposed in the older paper [25] is analysed in Sections 5.1 and 7 as we

recommend only a slight variation of it (this analysis is independent of all

non-proven assumptions).

4.4.1 Menshutin and Shchur

The first algorithm we consider is given in [20] from 2006 by Menshutin and

Shchur. They used a grid of squares to store their points. Their squares have

side length twenty in their paper but we will call their side length L so we

can discuss the effects of changing it more easily.

Each of their L by L grid squares has a 32-bit integer associated to it,

indicating whether each of twenty five sub-squares within that square has a
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particle in it. When they wish to know what size of step to take next, they

explore outwards from the square containing the current value of p, checking

every square in increasing order of distance from p until they come across

a particle in the cluster. They then search the contents of each square that

might contain the closest particle, allowing them to compute d(p, P ) and take

steps with size d(p, P ) − 2. They also optimize their algorithm by storing

with each square the size of the previous step from that square so that all but

the first step taken from that square can work from that distance inwards.

We will compute an upper and lower bound on the runtime of this algorithm

in terms of L and n.

We will bound the runtime of this algorithm conditional on the following

two extra assumptions, the first of which roughly says that the radius of the

cluster grows continuously as new particles are added.

Assumption 4.3. Let a DLA cluster of n particles be grown and Pstart be

the set of points where particles first come within their corresponding r of

the origin (i.e. the starting points of particles in this algorithm). If a grid

of side length L is superimposed over the cluster, then the number of squares

containing an element of Pstart is

Θ

(
min

{
n,
r2

final

L2

})

Furthermore, for Θ
(

min
{
n,

r2
final

L2

})
of those squares the first element of

Pstart inside that square is distance Ω(r) from the cluster as it was when

that point was added.

This assumption makes sense as we expect the n starting points to be

roughly evenly spread out. Thus, if the number of squares in the grid (within

rfinal of the origin) is much bigger than n, then we would expect the n starting

points to be mostly in a square on their own, whilst if the number of squares

is much smaller than n, then we would expect most of the squares to have a
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starting point in them. Furthermore, due to Assumption 3.1 we expect most

of these squares to be Ω(r) from the cluster.

Our second assumption says that the density of the cluster around any

given particle is expected to be roughly the same as the global density.

Assumption 4.4. For 1� L� rfinal, most particles of the cluster are in a

grid square that contains Ld+o(1) particles.

This assumption is reasonable as DLA clusters seem to be self-similar and

have already been assumed to have dimension d on a global scale.

Firstly note that by Lemma 4.1 the total number of steps is O
(
n log2(n)

)
and thus Θ̃(n).

Assumption 4.3 provides a lower bound on how many steps will be the

first from the square they start from, and the total number of steps and the

total number of squares provide an almost matching upper bound. Thus, we

can conclude the number of such steps is Θ̃
(

min
{
n,

r2
final

L2

})
. Furthermore,

Θ̃
(

min
{
n,

r2
final

L2

})
of these will be distance Ω (rfinal) from the cluster at the

time, therefore the total number of squares that the algorithm has to read

the bit for is Θ̃
(

min
{
n,

r2
final

L2

}
r2
final

L2

)
.

Assumption 4.4 implies most of the particles (i.e. Θ̃(n) of them) are

added to a square that already contains Ld+o(1) particles. Over the course of

growing the whole cluster this will require checking Ω
(
nLd+o(1)

)
points for a

collision. Thus the total runtime can be lower bounded by

Ω

(
min

{
n,
r2

final

L2

}
r2

final

L2
+ nLd+o(1)

)
.

For constant L this clearly gives a lower bound of Ω
(
n1+ 2

d
+o(1)

)
on the

runtime. This lower bound is minimised when L is chosen to be n
1
d

4−d
4+d when

it becomes Ω
(
n

8
4+d

+o(1)
)
≈ n1.40.

To get an upper bound on the runtime, we need an upper bound on the

number of squares that we have to iterate over the contents of whilst finding

91



a large step size. The obvious bound is rfinal

L
which gives a runtime of

O

(
min

{
n,
r2

final

L2

}
r2

final

L2
+ nrfinalL

d−1+o(1)

)
.

With an optimal choice of L this becomes O
(
n

8
3+d

+o(1)
)
≈ O (n1.70). We

consider it far more likely that the number of squares whose contents are

iterated over in an average step is O(1), though this would have to be taken

as another assumption. Thus, we believe that this algorithm has a runtime

of n
8

4+d
+o(1) ≈ n1.40, if L is set appropriately.

Menshutin and Shchur do not provide any asymptotic analysis or runtimes

for their code in their paper, presumably as they were only interested in

finding an algorithm good enough for the simulations that they wanted to do

at the time. However, it is not clear whether their choice of L was optimal

or close to optimal, and it is impossible to compare the runtimes that they

got in practice for small clusters with those achieved by the other algorithms

discussed in this paper.

Menshutin and Shchur cite Ball and Brady [3] but say of the idea of a

hierarchical model that “This approach seems rather memory consumptive:

in growing a large cluster, it would become a bottleneck of an algorithm.”

This is a subjective statement, but we hope to convince the reader later that

it is not a practical concern. The absence of the data from grids of larger

mesh size is the reason their algorithm is not O (npolylog(n)).

4.4.2 Alves, Ferreira and Martins

We now look at the algorithm given in [1] in 2008 by Alves, Ferreira and

Martins. They cite Ball and Brady [3] and use three grids in a hierarchical

structure, with squares of side length 4, 8 and 16 respectively.

Each square in each grid is labelled with a 1 if either it or any of the

neighbouring eight cells contains the centre of a particle in the cluster and

a 0 otherwise. To find the size for a step they check the grids in decreasing
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order of mesh size. For each grid, if the square containing p is labelled with

a 1 then they move onto the next grid, if it is labelled with a 0 then the step

size is taken to be the side length of the square minus two.

If all three grids return the label 1, then the particle is close to the cluster

and takes a step of size 1. Then a check to see if there has been a collision is

performed. They present multiple methods for checking for collisions, finding

the best method to be having a grid of squares of side length 4 and storing all

the particles in each square in a place pointed to by that square (as described

in Section 4.1). This allows the collision checks to be made in O(1) time.

The labels need to be updated each time a point is added to the cluster

but this requires updating only nine values on each grid for each particle

added, and so only takes O(1) time per particle.

The problem with this algorithm is that it never takes steps of size > 14.

As a result, the argument of Lemma 3.2 (given Assumption 3.1) implies that

this algorithm will run in n1+ 2
d

+o(1) ≈ Θ (n2.17) time.

This algorithm is very similar to the one in Section 5, but with a fixed

number of grids of fixed mesh size. This is arguably not a problem so long

as their choice for the number of grids is optimised for the cluster sizes they

consider. However, the choice of sixteen as the largest mesh size is far too

small for the sizes of cluster that are considered in the paper, a problem that

can be seen quite clearly in Section 6. They present simulation runtimes

suggesting a growth of O (n1.4), but this averages the increase in runtimes

between n = 103 and n = 106. Looking at their increase in runtime between

n = 5 × 105 and n = 106 suggests runtimes are growing like n1.98, and as n

gets bigger this will approach the n2.17 shown above. This algorithm fails to

be competitive because it can never take large steps.

4.4.3 Kuijpers, Mart́ın and van Ommen

We now look at the algorithm given in [27] in 2014 by Kuijpers, Mart́ın and

van Ommen.
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They use only a single grid of squares with a side length of 1. Each

square contains two integers: a first describing if there is a particle there

and, if so, where in memory it is stored; and a second which is the distance

from there to the nearest particle, if that distance is less than a parameter

Dmax. Otherwise it is Dmax.

When a step is to be taken, it is chosen according to the distance to the

nearest particle given in the relevant square. This process is very fast and

gives a close to optimal step size, so long as the particle is within Dmax of the

cluster. There are two downsides to this approach. Firstly, most particles

start Θ (rfinal) from the cluster. If this is much bigger than Dmax, then the

step size will be too small and the walk will take a long time, r2
finalD

−2
max.

Secondly, most insertions require updating Θ (D2
max) entries in the grid, so

together the insertions take Θ (nD2
max). This leads to a trade off in the choice

of Dmax.

For a fixed value of Dmax = 140, the analysis of numerical runtimes given

in the paper claims the algorithm runs in O (n1.08) time. For all the values of

n they consider in the paper, Dmax = 90 is, by their own published runtimes,

faster than taking Dmax = 140. Because Dmax = 90 is much faster for the

smaller values of n, it gives worse apparent asymptotics.

The asymptotics for this algorithm are better if Dmax is chosen depending

on n. Then the trade off above gives a runtime of Θ
(
nr2

final

D2
max

+ nD2
max

)
which,

for an optimal choice of Dmax =
√
rfinal, gives a runtime of Θ (nrfinal) =

n1+ 1
d

+o(1) ≈ Θ (n1.58).

They note that the space requirements for their algorithm are quite high

and that this is due to the grid with squares of side length as small as 1. They

suggest future work could use a larger mesh size to save memory. Whilst they

don’t draw attention to the fact, this would also improve runtimes as well due

to having fewer updates to make after each insertion. These optimizations

still wouldn’t allow runtimes of O (n1.08) though.

The runtimes for the largest value of n they both look at, 106, are better
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by a factor of 5 than those in Alves et al. They achieve this as taking steps

of size up to 140, or even 90, is a significant improvement over taking steps of

size at most 14 when a particle is distance 1500 from the cluster. However,

this is really an improvement of a constant factor and not an improvement

to the exponent of the runtime.

5 The Recommended Algorithm

We now present the algorithm that we would recommend to anyone looking

to do large scale simulations of DLA. It is available implemented in C++

at github.com/mathsjames/fastDLA. It is a variation on the algorithm in

[25] and thus a generalisation of the lattice DLA algorithm proposed in [3] to

the off-grid case. We use the method of generalizing the grids of [3] given in

[1]; keep the particle from wandering far from the cluster with the technique

described in Section 4.2 and taken from [30]; and deal with adhering particles

to the cluster using the new technique described in Section 4.3. An overview

of the algorithm is given as Algorithm 4 and the following few paragraphs

describe it in words.

Firstly we choose rmax large enough that the cluster radius won’t exceed it

and then find L = 2−armax = O(1) for some a ∈ Z. We chose L ∈ [12, 24] for

all values of n in our implementation by trial and error to minimise runtime.

The points of the cluster are stored in an array P with length n + 1. We

have two types of grid, a points grid with mesh size 2L and a hierarchy of

grids with mesh sizes L2k for each k from 0 to a. Each grid is realised as

an array with each entry containing the data for one square. Each square in

the points grid contains a vector of integers which are the indices in P of the

points contained in that square. Each square in the other grids contains a

single boolean variable indicating if there is a point either within that square

or any of the neighbouring eight squares (This is how the boolean variables

in [1] are set for each grid and unlike [25] where they indicated whether or
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Algorithm 4: Fast Grid DLA

Input: Number of particles to add n
Output: P ∈ (R2)

n+1

1: P = [(0, 0)]
2: Initialise all grids
3: Reference (0, 0) in points grid
4: Mark grids for (0, 0)
5: r = 2
6: for i in {1..n}
7: Sample p← C(r)
8: while True
9: Binary search grids for step size

10: if step size found
11: Take step
12: else
13: Find nearest and second nearest points
14: Take finishing step
15: if touched cluster
16: breakwhile
17: endif
18: endif
19: if d(0, p) > r then reset to C(r)
20: endwhile
21: r = max {r, |p|+ 2}
22: Append p onto P
23: Reference p in points grid
24: Mark grids for p
25: endfor
26: Return P . The sequence of particle centres

not that square alone contained a particle, this only affects runtime by a

constant factor).

The cluster is grown one particle at a time. Each particle starts at a

uniformly selected point on a circle, with radius r, containing the cluster so

far. The particle then proceeds to step as follows: if the particle is outside
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the starting circle, return it to the starting circle as described in Section 4.2.

Otherwise, if the hierarchy of grids provides a valid step size as described in

the next paragraph, take a step in a uniform direction of that size. If not, the

particle is close to the cluster and we can search the few surrounding points

grid squares to find the nearest two particles in the cluster and perform a

finishing step as described in Section 4.3.

To find a step size from the hierarchy of grids, we wish to find the grid

of largest mesh size which contains a 0 in the square corresponding to the

particle. The returned step size will then be the mesh size minus two to

account for the size of the particles. We can find this grid by binary searching

because if any grid contains a 1 in the relevant square so will every grid of

larger mesh size. If no such grid exists, then the particle is close to the cluster

and this process fails to provide a valid step size.

Once a finishing step results in the particle touching the cluster, we add

the particle to the cluster. This requires adding it to the array P , adding a

reference to it in the points grid and updating the other grids.

Once the final particle is added, P is an array containing all of the particle

positions in the order they were added to the cluster.

5.1 Complexity

The following is an analysis of the time and space complexity of the rec-

ommended algorithm, only Assumption 3.3 is needed here and only for the

analysis of the initialisation phase and the space requirements. The alter-

ations detailed in Section 7, while we don’t recommend them in practice,

remove the need for this assumption whilst providing better asymptotics.

Due to the fact that L = O(1), the space requirements of the algorithm

are O (r2
max) ≈ O (n1.17) due to having to store the finest grids. Note that

each grid in the hierarchy uses a quarter as much memory as the next finest

grid, so the entire hierarchy only requires four thirds as much memory as the

finest grid on its own. This is why we think [20] was wrong to dismiss the
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hierarchical structure due to memory concerns. In Section 7, we will show

how to reduce this to O(n). However, for values of n up to 108, the array

P uses about as much memory as the grids do and the changes would incur

increases to the constants both for space and runtime.

The time complexity of initialising the grids is of course O (r2
max) ≈

O (n1.17). This is reduced to O (1) by the changes proposed in Section 7.

However, initialisation accounts for less than 1% of the runtime for a cluster

of size 108 so in practice this is negligible and only the growing of the cluster

matters.

Each of n particles takes O
(
log2(n)

)
steps by Lemma 4.1, for each step all

computations run in O (1) time except for the binary search of the O (log(n))

grids which takes O (log log(n)) time. When each particle is fixed, there are

O (log (n)) grids to update, and each one only takes O(1) time to update.

Thus the runtime after initialisation is O
(
n log2(n) log log(n)

)
.

6 Numerical Assessment

The table below shows the runtimes, in seconds, for the algorithm given here

and the two most recent works considered in this paper. Alves et al. used

a 3.0GHz processor, Kuijpers et al. a 3.1GHz processor and our simulations

were run on a 3.4GHz processor. While these clock speeds are similar, due

to the ten years of development in processor design between the Alves et al.

work and this work, caution should be taken when comparing these runtimes.
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CPU runtimes in seconds

n This work Kuijpers et al. [27] Alves et al. [1]

103 0.018 0.093 0.10

104 0.18 1.0 2.4

105 2.0 12 30

106 26 313 1560

5× 106 158 3398 -

107 336 - -

108 4230 - -

These results show clearly that this approach beats the other recent sug-

gestions (with published runtimes) for small values of n, as well as asymp-

totically. It is unclear how well the algorithm in [20] performs as they do

not publish runtimes. The next table shows memory usage for the algorithm

given here and the minimum amount required to hold the particles in the

cluster i.e. the output.

Space requirements

n This work (MB) Minimum (MB) Others

103 0.093 0.015 -

104 0.31 0.15 -

105 2.6 1.5 -

106 28 15 14MB Ossadnik [25]

5× 106 134 76 -

107 325 153 > 16GB Kuijpers et al. [27]

108 3956 1535 -

None of the three recent papers say how much memory their programs

used. However, Kuijpers et al. [27] say that they do not include runtimes

for growing clusters of size 107, as their 16GB machine didn’t have enough

memory. Ossadnik [25] says that his entire program uses only 14MB of
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memory which is lower than what we claim to be the minimum. We suspect

the reason for this discrepancy is that he was working with single precision

floating point rather than double. If rewritten to use single precision, our

algorithm would require about 21MB of memory rather than 28MB.

It is difficult to compare our runtimes to those of Ossadnik [25], who

reports using about 9 hours of CPU time to generate a 106 particle cluster

which we can produce in 26 seconds. He reports using a Sun SPARCstation

1, which had a 20MHz processor, suggesting that he required a little over

7 times the number of clock cycles that we do. There were almost three

decades of processor development between these two measurements and he

had to optimize for memory usage, so this number should not be taken too

seriously. However combined with the fact that he was working in single

precision we take this as a good indicator that our code is competitive.

7 Reducing Asymptotic Memory Usage

We now present the idea explained in [25] and generalised from [3] for reduc-

ing the memory usage of the algorithm. As is noted in Section 5.1 only

O (npolylog(n)) time is needed after initialisation, and therefore at least

asymptotically almost all memory will never be written to during the grow-

ing of the cluster. The idea is to avoid ever assigning most of that memory

at all.

To that end we will structure the memory as a tree, with the points grid

identified with one of the other grids, typically the finest one, so that it fits

into the structure. Each cell in a grid that isn’t the finest contains, along

with its boolean value, four pointers to the locations in memory that the four

cells beneath it are stored. If a cell and all of its descendants have not had

data written to them since the initialisation phase then that cell does not

need to be stored. Its parent will have a null pointer instead of a pointer to

its location and this will tell the executing program that whatever value it
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was looking for in that branch of the tree is zero.

At initialisation only the root node needs to be created which is a O(1)

operation. The use of binary search when trying to find the next step size

is no longer possible as in order to read a value from one of the grids one

has to follow a length log(n) path down the tree. Writing to an entry also

requires navigating a path through the tree however, as the tree is only ever

written to when adding a particle and every level of the tree in the direction

of the particle is written to when doing so. This doesn’t worsen the bound

we presented above. Overall this increases the runtime of the main section

of the algorithm to O
(
n log3(n)

)
, which is also the order of the runtime of

the whole algorithm.

We now show that the space used is O(n). We refer to the 5× 5 sub-grid

of a grid centred at a certain cell as the surroundings of that cell. There are

O(1) cells in each grid whose surroundings contain the origin. Now consider

the grid with cells of side length l. A cell only has to be allocated memory if

a particle is inserted into it or one of the neighbouring eight cells. For cells

that don’t have the origin within their surroundings, that requires there to be

a touching sequence of particles stretching from outside of the surroundings

to a neighbouring cell. As these must cross a cell, the surroundings must

contain at least l−2
2

particles. Thus, as there are n particles, the grid can

have at most 50n
l−2

+ O(1) occupied cells. As we go through the grids from

finest to least fine, the value of l grows exponentially and thus summing this

bound over all O (log(n)) grids gives a O(n) bound on the total number of

cells that need allocating. Clearly the number of particle positions that need

storing is n and everything else is O(1). So we are done.

The order of the runtime of the algorithm has been increased, though in

Section 9 we will explain how this could probably be removed. The reason

that we are wary of this approach is that the apparent need to store multiple

pointers in each cell applies a massive constant to the space requirement that

more than negates the reduction in order for realistic values. In Section 9,
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we will also discuss how this could be optimised and we can tell from the

results presented in [25] that Ossadnik must have managed to implement

this in a way to save space. However one would have to be careful with the

implementation and it might necessarily entail a significant cost to runtime.

8 Higher Dimensions

Most of the ideas in these algorithms generalise straight-forwardly to higher

dimensions.

The technique for exact resetting generalises to higher dimensions fine

with the use of a higher dimensional Möbius map. However the exact fin-

ishing step does not generalize easily as it requires the use of a non-Möbius

conformal map, of which there are none in higher dimensions.

For fixed dimension, the process of finding a step size still runs in time

O (log log(n)) by the same argument and the step size is still bounded below

by some positive factor of the maximum step size. However the number

of steps that are required per particle can’t be shown to be O
(
log2(n)

)
in

the same way. Indeed we would not expect this to be true in sufficiently

high dimension. The problem is that higher dimensional random walks are

transient and so we suspect that when the co-dimension of the cluster gets

too large the Brownian motion could move around amongst the cluster, going

around fingers for a very long time before it collides.

9 Future Improvements

As the output of two-dimensional DLA is O(n), the space and runtime re-

quirements must be at least O(n). Thus there is no room for improving the

order of the space requirements. Any attempt to improve the constants sig-

nificantly is likely to depend on the details of the implementation including

the language and hardware used to implement the algorithm, and so we do
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not consider this here.

The runtime of both the algorithm recommended here and the tree based

version can probably be reduced to O
(
n log2(n)

)
using the following observa-

tion. The binary search, for finding a step size, makes no use of our knowledge

of the previous step size. We could instead start our search from the grid

corresponding to the previous step size and then search linearly from that

grid through finer or rougher grids. The number of grids searched is of the

order of the number of grids between the one corresponding to the previous

step size and the one corresponding to the current step size. Heuristically,

if we consider a particle at a uniform point inside a grid cell of side length

2kl taking a step of size l− 2, the probability of this particle leaving the cell

is < 22−k. Thus, we suspect that the expected number of grids to search in

order to find the next step size and thus the runtime for finding the step size

will be O(1). However, we do not have a rigorous proof of this fact.

Reducing the remaining log2(n) seems harder. Within the paradigm of

making steps in a uniformly selected direction, with step size independent

of direction, there is a limit to the amount of improvement that would be

possible. We suspect though, that this has not yet been achieved. Figure 3 is

a log-log plot of the average number of steps required to add the kth particle

to a cluster against log(k) for both the algorithm recommended here and

an algorithm that takes maximal step sizes every time. For the algorithm

described here, the curve seems to be settling towards a gradient of 2, sug-

gesting that the upper bound of O
(
log2(n)

)
on the number of required steps

is tight. For the algorithm taking maximally sized steps though, the gradient

seems to be 1, thus indicating that only O (log(n)) steps are required. This

indicates that there is something to be gained from taking larger steps and

the question is then how to go about quickly finding the maximal step size or

a closer approximation. One possible idea would be to have even more grids

with mesh sizes between those already used, though we have not explored

this idea here. Between the finest grids this would require a lot of memory,
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but between all but the finest grids it could be quite cheap. As the grids no

longer fit together nicely, the monotonicity property that the binary search

(and the improvement suggested above) relies on will not work. Therefore,

how to search these grids efficiently and the trade off between space, step size

and time to find each step size becomes complicated. We doubt that trying

to exploit this idea is worth the effort, but it is the best approach we have

thought of.

Another interesting and related question which has a significant impact

on what is possible in the next part of this thesis, is how to efficiently simulate

Hastings-Levitov clusters. The straight-forward approach for this task takes

O (n2) time and we are unaware of any way to achieve a lower order runtime.

We are of the opinion that aO (npolylog(n)) runtime algorithm for simulating

HL(2) would be the biggest contribution to the numerical simulation of 2-

dimensional growth processes since the algorithm of [3] in 1985.

104



Figure 3: A plot of the number of steps required to add each particle in a
cluster of 105 particles, summed over 100 clusters. Green is for the algorithm
recommended here, blue is for an algorithm that always takes the maximum
allowable step.
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Part III

Is Hastings Levitov a Good

Model of Diffsion Limited

Aggregation?

1 Introduction

In this part we heuristically and numerically investigate whether three dif-

ferent models of diffusion limited aggregation converge to the same limiting

shape. We look at Meakin’s version of the off-grid diffusion limited aggre-

gation model [18] (refered to as DLA or off-grid DLA), the noise reduced

version introduced by Ball et al. in [4] and the Hastings-Levitov model with

α = 2 introduced in [12].

[4] considered the growth rate of the radius of each of these clusters and

found that their noise reduced clusters settle into their asymptotic growth

faster, thus making a better model for exploring asymptotic properties nu-

merically. However, they do not verify that these models match asymptoti-

cally except in the growth rates of their radii.

Hastings-Levitov clusters have received more attention, largely due to

hopes that it might be possible to prove theorems about them. Results have

been proven about HL clusters with α = 0 [23] [31] and for regularized ver-

sions of HL with an extra parameter σ [35]. Simulations of HL have been

conducted in [4] and [22], however they have been held back compared to

simulation of other models due to the lack of a sub quadratic time algo-

rithm, meaning that the simulated clusters have previously had at most 105

particles. A variation of the Hastings-Levitov model was proposed by Rohde

and Zinsmeister [29] and will be briefly discussed later.
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In Section 2 we will define the models under consideration. In Section 3 we

provide a heuristic discussion together with pictures of clusters to illustrate

our conclusions where they are clearly visible. In Section 4 we will describe

the methodology for statistically testing some of the questions which remain

unclear after Section 3, and in Section 5 we present the results of these tests.

A discussion of what might be interpreted from these results beyond that

which was explicitly tested for is then provided in Section 6.

2 Definition of the Models

Off-lattice or off-grid diffusion limited aggregation (DLA) is a model in which

a cluster of circular particles of radius one is grown. To begin with the cluster

consists of a single particle at the origin. Particles are added to the cluster

one at a time. Each particle does a Brownian motion started from infinity

until it touches the cluster, at which point it is added to the cluster and will

never move from that position. Let C(r) denote the circle of radius r. The

process of DLA and how to simulate it was described Part II.

This process can straight forwardly be generalised to particles with differ-

ent sizes. Given any distribution D on [0,∞), one can draw the size of each

particle independently from D before setting it off from infinity. We denote

this process as DLAD, see [9] for an analysis of simulations of this model.

Hastings and Levitov proposed a one-parameter family of two-dimensional

growth processes based on conformal maps. This family is denoted HL(α)

for α ∈ [0,∞). Let D be the closed unit disc in C and ∆ = C\D its comple-

ment. To construct a Hastings-Levitov cluster we must first choose a family

of particle maps fc : ∆→ ∆, where c can take any value in R≥0. This family

must have the following properties.

• fc is conformal.

• ∞ is a fixed point of fc.
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• The derivative of fc at ∞ is equal to ec, that is the log-capacity of fc

should be equal to c.

• ∆\fc (∆) is a contiguous set contained in a o(1) radius ball around 1

as c→ 0, this should be thought of as a single particle attached to the

unit disc at 1.

For an angle θ ∈ [0, 2π], we now define f θc : z → eiθfc
(
ze−iθ

)
. This map

attaches a particle to the unit disc at eiθ.

Given a sequence (ck)
n
k=1 of capacities and a sequence (θk)

n
k=1 of attach-

ment angles, which we will explain how to choose momentarily, we define

Φk = f θ1c1 ◦ f
θ2
c2
◦ . . . ◦ f θkck

and the corresponding cluster of n particles as

C\Φn (D) .

Where the attachment point of the kth particle is therefore given by

Φk−1

(
eiθk
)
.

The θk in this model are chosen independently and uniformly at random

from [0, 2π). Thus, due to the conformal invariance of harmonic measure,

the attachment point of the kth particle is distributed according to harmonic

measure from infinity on the boundary of the cluster of the first k−1 particles

i.e. the distribution of the hitting point of Brownian motion from infinity.

Therefore, it is natural to expect this to be a good model of DLA so long

as the particles are all the same size in some appropriate sense. However,

as the kth particle is distorted by Φk−1, we need to choose ck in a way that

is dependent on Φk−1. Hastings and Levitov reasoned that the particle will

be enlarged by a factor of approximately
∣∣Φ′k−1

(
eiθk
)∣∣ by Φk−1, and so they
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chose to set

ck =
c∣∣Φ′k−1 (eiθk)

∣∣α
for some fixed value of c, and when α = 2 they suggested this should give

a model for DLA. The extent to which this holds and attempts to vary this

model are discussed in Section 3.

Another generalisation of DLA was proposed in [4] called noise reduced

diffusion limited aggregation. Here, particles are circles of radius one and are

added to the cluster one at a time exactly as in DLA except that, after they

touch the cluster, but before being fixed in place, they first “sink into” the

particle they made contact with. That is to say, if p is the position of the

particle at the moment it makes contact, and q is the position of the particle

it makes contact with, then the final position for the centre of the added

particle is Ap + (1 − A)q for some parameter A ∈ (0, 1). We denote this

process NRDLA(A). In [4] it is shown by simulation that the growth of the

radius of NRDLA(A) clusters for A < 1 settles into the believed asymptotic

rate much faster than for regular DLA.

3 HL Particle Maps and Regularization

Multiple choices for the particle maps fc have been used, but we will focus

on two families here. The first is that of slit particles which Hastings and

Levitov used for their simulations in the case α = 0 and which Viklund, Sola

and Turner used in their work on regularizing HL(α) [35]. The second is of

circular particles which are similar to the bump particles used by Hastings

and Levitov in their original work for the α = 1.5 and α = 2 case.

3.1 Slit Particles

A particle map for a slit particle is fixed by the fact that fc(∆) = ∆\(1, 1+d]

for some d(c), thus the particle that is added is a one dimensional line (or
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curve if it is distorted by the maps of previous particles). We will write dk

for d(ck) copying [35]. We observe, as in [35], that the actual length of the

kth particle is given by∫ 1+dk

1

∣∣Φ′k−1

(
reiθk

)∣∣ dr = dk
∣∣Φ′k−1

(
r0e

iθk
)∣∣ (21)

for some r0 ∈ [1, 1 + dk].

(a) Off-Grid DLA (b) HL(2) with slit particles

(c) HLexact (d) Rohde and Zinsmeister

Figure 4: Diffusion Limited Aggregation

Figure 4 shows three clusters of 105 particles. One was generated by
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DLA and another by HL(2) with slit particles. We hope it is clear that

these clusters are very different. In the HL(2) case some of the particles have

macroscopic size i.e. on the order of the size of the cluster. The idea of the

HL(2) model is that
∣∣Φ′k−1

(
eiθk
)∣∣ will be a good enough approximation to∣∣Φ′k−1

(
r0e

iθk
)∣∣. This has failed because the derivative of Φk−1 can change

very quickly near the boundary of ∆ and in particular can approach 0. In

order to explore whether this is the only issue, we simulate a model where

each dk is chosen by a numerical method so that the distance from the base

of each particle to the tip is always the same. The third cluster in Figure 4 is

generated from this model which we call HLexact. This cluster looks a lot more

like DLA and so there is hope that an appropriate method for choosing the

dk (and thus the ck) whilst avoiding the complexity of the implicit scheme

in HLexact, could be a good model for DLA. We call the value of dk that

HLexactchooses for a given cluster of k− 1 particles, d̂k. The fourth cluster in

Figure 4 is generated by the method of Rohde and Zinsmeister. In this model

the rescaling factor for the size of the particle is chosen to be the inverse of

the derivative at the tip of the particle, as opposed to the base as in Hastings

Levitov. This is simpler than HLexacthowever it is still an implicit scheme

and so does not fulfil the above goal. It is not obvious and is unaddressed

here whether or not this model converges to the same limiting shape as DLA.

One place to look for such a model is [35] which defines a regularized

version of HL(α), called HL(α,σ). σ is called the regularization parameter.

The model is the same as Hastings-Levitov except the ck are chosen according

to the rule

ck =
c∣∣Φ′k−1 (eiθk+σ)

∣∣α .
The idea of this σ is to avoid measuring the derivative on the boundary

where it can take extreme values and thus hopefully avoid the problem of

macroscopic particles. It is stated in [35] that σ � d1 is a natural choice of

σ due to Equation (21). This makes sense in the small particle limit which

they consider, i.e. where c � 1
n
, because they take cn � 1 and thus could
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(a) σ = 0 (b) σ = 0.005

(c) σ = 0.011 (d) σ = 0.017

(e) σ = 0.023 (f) σ = 0.060

Figure 5: Hastings-Levitov with α = 2 and various σ, note that only the
base point of each particle is marked

112



reasonably expect some average of dk to be � d1. More generally, one could

choose σ � E (dn|Φn−1) when generating a cluster of n particles (note this

is an implicit definition). Figure 5 shows a collection of clusters for various

values of σ. Whilst they do show non-trivial geometric behaviour they are

clearly not the same shape as DLA.

Figure 6: log10 of absolute value of derivative along radial lines

To understand why this doesn’t work as a model for DLA take a look

at the plot in Figure 6. It shows how the derivative of an instance of Φ104

(from HLexact) changes along ten rays from the origin as the distance from D

increases (note the logarithmic scale on the y-axis). If eiθ10001 was on one of

these rays, our task in HLexactwould be to find the value of d10001 such that

the length of the particle, i.e. the integral in Equation (21) of the functions

plotted, is d. In the HL(2) case, these functions are approximated by their

values on D. Amongst the ten rays shown here, one of them has derivative

≈ 10 on D rising very quickly to > 200. This particle would therefore end

up roughly twenty times larger than it should be. More extreme values will

occur as more samples beyond these ten are taken.

In the HL(2, σ) case, the behaviour of the cluster depends on σ. If it is
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small compared to the possible values of d̂k, then the growth will proceed

like HL(2), with many oversized particles leading to long thin fingers. If it

is large compared to the possible values of d̂k, then the differences in the

derivatives near D will not be seen and so they will not be corrected for.

The particle capacities are then close to deterministic, leading to HL(0)

like behaviour where the gaps are filled in and the cluster ends up roughly

circular. This observation is made precise and proved in [35]. The most

interesting case is when σ is amongst the possible values of d̂k, with a non-

trivial shape emerging. However, this growth is not very DLA like. The issue

is that the spread of possible values for d̂k extends over orders of magnitude.

Therefore in some places (e.g. deep inside gaps), σ is relatively large and we

get an HL(0) style smoothing effect, whilst in other areas (e.g. the ends of

fingers), σ is relatively small, meaning some particles end up very significantly

oversized which leads to smoothing on a global scale.

It seems that any method that tries to imitate DLA by choosing the

dk as a function of Φ′k−1, must measure this derivative at a point that is

distance of order d̂k from D. As the cluster gets larger and more intricate, the

spread of values of d̂k will extend over more orders of magnitude, therefore,

at least naively, the number of measurements taken must be unbounded to

find the right level to look at. This unbounded number of measurements

is the approach used in our implementation of HLexact. However, whilst we

can not rule out the existence of a method for approximating d̂k using a

bounded number of measurements, there is a much simpler approach. The

problem with HL(2) was that |Φ′k−1(z)| could be very close to zero for z

on the boundary of D, but increase away from zero very quickly as z moves

away from D. In the next subsection, we argue that all that is required to

avoid this is to take a particle map whose derivative is bounded away from

zero. Then, HL(2) will be a good model for DLA. From this we believe it is

clear that attempting to regularize HL(α) with slit particles, whilst providing

interesting behaviour to study for its own sake, is not a good approach to
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trying to model DLA.

3.2 Circular Particles

A particle map for a circular particle is fixed by the fact that fck(∆) = ∆\Ck,
where Ck is a disc whose boundary meets the unit circle at right angles and

whose centre is in R>0. The correspondence between the radius rk of Ck

and the capacity ck is non-trivial. However, to get the correct behaviour for

small particle sizes, it suffices to assume either that ck ∝ r2
k or, asymptotically

equivalently, that the distance ak from 1 to the furthest part of the particle

satisfies ck ∝ a2
k. Thus, we relax the definition of HL(2) and take ak =

a0

|Φ′k−1(eiθk)|
in our simulations. Figure 7 shows two clusters of 105 particles,

one from this model and one from off-grid DLA. This model will be tested

statistically later on, however, we believe there are good heuristic reasons to

think that this is a good model for DLA which we outline in the rest of this

section.

(a) Off-Grid DLA (b) HL(2) with circular particles

Figure 7: Diffusion Limited Aggregation

The important point is that for the asymptotic shape to match that of

DLA, there is no need to require every particle to have the same size, even
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asymptotically. We expect it to be sufficient for the expected size of the

particle to be very close to independent of the global shape of the cluster and

this particle’s global location, and for the size distribution to be concentrated

enough that all particles are small compared to the cluster. With slit particles

the concentration failed, as when a new particle attaches near the tip of a

previous particle, |Φ′| is measured on the boundary as being very close to

zero compared to its value on the rest of the resulting particle. This causes

macroscopic particles to arise. In the circular particle case, this doesn’t

happen as the derivative of the particle map is bounded away from zero. Of

course, in this case, the size of the particle is determined by the cluster so far

and the particle’s location. However, we claim that it is reasonable to suppose

that, asymptotically, the distribution of the size of a particle is determined

by the shape of the cluster within any ω(1) ball around the attachment point.

This is because the asymptotic effect of macroscopic features of the cluster

outside of this ball on the derivatives near the particle, is just going to be to

change them all by the same factor. Thus, the global location and shape are

not important. The histogram in Figure 8 shows the empirical distribution

of the sizes of particles from HL(2) with circular particles. It is clearly highly

concentrated, with not one of the 105 particles exceeding twice the median

size.

We will call the empirical distribution shown in Figure 8 D. We will

later simulate both DLADwith this distribution and also simulate a version of

HLexactwith circular particles, where a numerical scheme is used to set the re-

sulting length of the kth particle, defined as
∣∣Φk−1

(
eiθk
)
− Φk−1

(
f θkck
(
eiθk
))∣∣,

to an independent sample from D, which we denote HLexact
D .

4 Methods

We wish to test a variety of different models to see if there is a difference

in the distribution of the shape of the resulting cluster. We do this by
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Figure 8: A histogram the actual size of every tenth particle from ten clusters
of 105 particles generated from HL(2), a similar picture for clusters of 104

particles was indistinguishable by eye.

simulating many clusters from each model, projecting each cluster into a

Euclidean vector space and then using a test for equality of distribution in

Euclidean space proposed in [33].

4.1 The Test Used

The models produce different sizes of clusters, but we wish to disregard this

information. Therefore we normalise all clusters to have the same radius.

The different kinds of cluster are very easy to tell apart on the microscopic

level. We are not interested in these differences so it is important to choose a

projection that disregards the microscopic information. To achieve this goal

we first rescale every cluster so that the outermost centre, or in the case of

Hastings Levitov type models, the base point, of any particle is distance 1

from the origin. Then we replace each cluster with the set of points within
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distance 0.04 of a centre or base point. This results in a normalised and

fattened cluster. Finally, the projection itself consists of taking the empirical

distribution function of the distance from a random point in the disc of radius

1.1 to this new cluster using 10000 sampled points. This gives us a CDF for

each cluster, which we can consider as an element of a function space with

the L2 norm.

The numbers in the previous paragraph are to a fair extent arbitrary. The

important property of 0.04 is that it is much smaller than 1. Therefore, whilst

it is much bigger than the ratio of the particle radius to the cluster radius,

so does smother the microscopic details, it isn’t so large that it smothers the

entire cluster. The important property of 1.1 is merely being bigger than

1.04, without being so much bigger that a significant fraction of the noise

from the sampling is a result of the distance of the sampled points from the

circle containing the cluster. Finally, the power of the test increases to a

limit with the number of points sampled to construct each CDF. We chose

10000 as this gets a good approximation of the actual CDF for each cluster,

without taking too long to compute.

We now have collections of functions drawn from different distributions

of a Euclidean function space, and so can apply the method of [33], which we

now describe. If f1, ..., fn1 and g1, ..., gn2 are elements of a Euclidean vector

space drawn independently from two distributions Df and Dg which we wish

to test for equality, the energy En1,n2 is defined to be

n1n2

n1 + n2

(
2

n1n2

n1∑
i=1

n2∑
m=1

‖fi − gm‖ −
1

n2
1

n1∑
i,j=1

‖fi − fj‖ −
1

n2
2

n2∑
l,m=1

‖gl − gm‖

)
.

This statistic is guaranteed to be non-negative and, under the null hy-

pothesis that the distributions are equal, has a limiting distribution as n1 and

n2 converge to infinity with n1/n2 converging away from 0 [33]. Furthermore,

the test which rejects the null hypothesis given En1,n2 > cα, is consistent in
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that limit [33].

Unfortunately, the limiting distribution is not straightforward to calcu-

late, and it is more complicated to understand the speed of convergence to it.

As a result, the authors of [33] recommend using a permutation test, which

we do for each pair of models that we consider.

In order to give a clearer picture of what is going on here, we also compute

the energy distance between the two samples given by√
n1 + n2

n1n2

En1,n2 .

For large n1, n2, this is approximately
√

E (2‖f1 − g1‖ − ‖f1 − f2‖ − ‖g1 − g2‖).

4.2 Models Tested and Sample Sizes

At first the models we tested were DLA, DLAD, HL(2) (with circular par-

ticles), HLexact(with slit particles) and HLexact
D (with circular particles). The

distribution D was the empirical distribution of the actual sizes of particles

from HL(2) clusters (which were not otherwise used in any analysis). In all

of these cases we used 105 particles per cluster.

As a basic rule, we chose the sample sizes to be proportional to the re-

ciprocal of the square root of the computation time of a single instance of

the model, as this maximises the power attained for a fixed level of compu-

tational resources. However, we deviated from that basic rule by doubling

the sample sizes for HL(2) and DLA as we thought these cases were the most

interesting. The resulting sample sizes are given in the following table.

Model DLA DLAD HL(2) HLexact HLexact
D

Number of Clusters 16000 5000 3000 500 500

After seeing the results of these tests and reading [21] and [4] we decided

to add two more categories to our experiments. Firstly, as finite size effects

had been found to be significant in DLA for millions of particles in [21],
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and our results so far had shown DLA to be far from the Hastings-Levitov

type models, we added DLA clusters with 108 particles to see if these would

be substantially closer to the Hastings-Levitov clusters. We also simulate

NRDLA(0.03) clusters with 105 and 107 particles, as the radius of these

clusters settles into its asymptotic behaviour much faster than in the case of

regular DLA, in order to test if they converge faster toward some universal

limiting shape. The sample sizes for these three cases are given in the next

table.

Model DLA n = 108 NRDLA(0.03) n = 105 NRDLA(0.03) n = 107

Number of Clusters 3000 5000 3000

Finally, having seen the results of all of those experiments, we also simu-

lated HL clusters with 104 and 106 particles to get a clearer picture of whether

HL was converging towards the same limit as the others, sampling 3000 and

200 cases respectively.

5 Results

The following table contains the value of the energy between different cluster

types.

Energies DLAD HL HLexact HLexact
D DLA 108 NRDLA NRDLA 107 HL 104 HL 106

DLA 2.56 5.42 1.12 1.27 44.1 28.9 48.3 19.5 1.42

DLAD - 2.00 0.488 0.519 21.8 11.2 24.5 22.0 0.735

HL - - 0.0157 0.0361 14.4 4.49 16.3 17.4 0.450

HLexact - - - 0.0175 3.79 1.02 4.30 5.26 0.294

HLexact
D - - - - 3.54 0.885 4.05 5.72 0.257

DLA 108 - - - - - 10.1 0.0990 59.0 0.495

NRDLA - - - - - - 11.7 40.2 0.389

NRDLA 107 - - - - - - - 62.1 0.629

HL 104 - - - - - - - - 4.23

This table gives the corresponding p-values.
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p-values DLAD HL HLexact HLexact
D DLA 108 NRDLA NRDLA 107 HL 104 HL 106

DLA 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

DLAD - 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5

HL - - 0.750 0.268 10−5 10−5 10−5 10−5 10−5

HLexact - - - 0.670 10−5 10−5 10−5 10−5 5× 10−5

HLexact
D - - - - 10−5 10−5 10−5 10−5 7× 10−5

DLA 108 - - - - - 10−5 0.00794 10−5 10−5

NRDLA - - - - - - 10−5 10−5 10−5

NRDLA 107 - - - - - - - 10−5 10−5

HL 104 - - - - - - - - 10−5

Finally, this table gives the energy distances between the samples.

Distances DLAD HL HLexact HLexact
D DLA 108 NRDLA NRDLA 107 HL 104 HL 106

DLA 0.0259 0.0463 0.0481 0.0511 0.132 0.0871 0.138 0.0878 0.0846

DLAD - 0.0326 0.0328 0.0338 0.108 0.0670 0.114 0.108 0.0618

HL - - 0.00606 0.00918 0.0979 0.0489 0.104 0.108 0.0490

HLexact - - - 0.00837 0.0940 0.0473 0.100 0.111 0.0454

HLexact
D - - - - 0.0909 0.0441 0.0973 0.116 0.0424

DLA 108 - - - - - 0.0734 0.00812 0.198 0.0514

NRDLA - - - - - - 0.0789 0.147 0.0450

NRDLA 107 - - - - - - - 0.204 0.0579

HL 104 - - - - - - - - 0.150

6 Conclusion

The table of p-values shows that all of the different kinds of cluster studied

could be distinguished with p-value < 0.01, except for the different kinds

of HL clusters with the same number of particles. This indicates that we

have the necessary resolution, and that the different types of cluster are still

distinguishable. To understand the data, we turn to looking at the distances

rather than the p-values, as they provide more information.

Looking at the distances for the first five types of cluster we can see that,

for HL, randomizing the particle sizes or changing between different particle

shapes (so long as all particles are microscopic) makes much less difference
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to the shape of the resulting cluster than randomizing the particle sizes for

ordinary DLA.

The smallest distance (excluding those between different types of HL with

105 particles) was between DLA, with 108, and NRDLA, with 107, particles.

These are the two kinds that were expected to be closest to the limit, so this

is a good indication that DLA and NRDLA are converging to the same limit.

The distances from NRDLA 107 to HL with 104, 105 and 106 particles were

respectively 0.204, 0.104 and 0.0579, which strongly suggests that HL is also

converging to the same place.

As all of these models are converging to the same limiting shape, another

interesting question is whether they are approaching from the same direction.

To answer this, for each pair of models (excluding those with NRDLA 107

or DLA 108) we have embedded the three-point metric space, consisting of

those three models with distances given by the distance table, into Euclidean

space. We then computed the angle formed by joining each of the pair with

a line to NRDLA 107. The largest resulting angle was 0.619 < π
5

between

NRDLA 105 and DLA 105. We think this is quite a small angle given that

the space is reasonably high dimensional and the expected angle formed by

random directions would be π
2
.

In conclusion, we believe that HL(2) with circular particles, NRDLA and

DLA all converge to the same limiting shape, and that they do so from the

same direction to first order.

References

[1] Sidiney Alves, Silvio Ferreira, and M L. Martins. Strategies for Optimize

Off-Lattice Aggregate Simulations. Brazilian Journal of Physics, 38, 04

2008.

[2] Richard Alejandro Arratia. Coalescing Brownian Motions on the Line.

ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)–The University

122



of Wisconsin - Madison.

[3] R C Ball and R M Brady. Large Scale Lattice Effect in Diffusion-

Limited Aggregation. Journal of Physics A: Mathematical and General,

18(13):L809, 1985.

[4] Robin Ball, Neill E. Bowler, Leonard M. (Leonard Michael) Sander, and

Ellák Somfai. Off-Lattice Noise Reduction and the Ultimate Scaling of

Diffusion-Limited Aggregation in Two Dimensions. Physical Review E,

Vol.66(No.2), August 2002.

[5] Itai Benjamini and Ariel Yadin. Upper Bounds on the Growth Rate of

Diffusion Limited Aggregation. 05 2017.
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