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Abstract

Minimax optimality is a key property of an estimation procedure in statistical modelling.

This thesis looks at several problems in high-dimensional and nonparametric statistics

and proposes novel estimation procedures. It then provides statistical guarantees on the

performance of these methods and establishes whether those are computationally tractable.

In the first chapter, a new estimator for the volume of a convex set is proposed. The

estimator is minimax optimal and also efficient non-asymptotically: it is nearly unbiased

with minimal variance among all unbiased oracle-type estimators. Our approach is based

on a Poisson point process model and as an ingredient, we prove that the convex hull is a

sufficient and complete statistic. No hypotheses on the boundary of the convex set are

imposed. In a numerical study, we show that the estimator outperforms earlier estimators

for the volume. In addition, an improved set estimator for the convex body itself is

proposed.

The second chapter extends the results of the first chapter and develops a unified

framework for estimating the volume of a set in Rd based on observations of points

uniformly distributed over the set. The framework applies to all classes of sets satisfying

one simple axiom: a class is assumed to be intersection stable. No further hypotheses on

the boundary of the set are imposed; in particular, the class of convex sets and the class

of weakly-convex sets are covered by the framework. We introduce the so-called wrapping

hull, a generalization of the convex hull, and prove that it is a sufficient and complete

statistic. The proposed estimator of the volume is simply the volume of the wrapping

hull scaled with an appropriate factor. It is shown to be consistent for all classes of sets

satisfying the axiom and mimics an unbiased estimator with uniformly minimal variance.

The construction and proofs hinge upon an interplay between probabilistic and geometric

arguments. The tractability of the framework is numerically confirmed in a variety of

examples.

The third chapter considers the problem of link prediction, based on partial observation

of a large network, and on side information associated to its vertices. The generative

model is formulated as a matrix logistic regression. The performance of the model is

analysed in a high-dimensional regime under a structural assumption. The minimax rate

for the Frobenius-norm risk is established and a combinatorial estimator based on the



penalised maximum likelihood approach is shown to achieve it. Furthermore, it is shown

that this rate cannot be attained by any (randomised) polynomial-time algorithm under a

computational complexity assumption.

The trade-off between computational efficiency and statistical optimality is discussed

throughout the thesis. For estimating the volume of a set from the class of convex or

weakly-convex sets in high dimensions, we propose minimax optimal estimators in the

first and second chapters. However, they cannot be computed using a polynomial-time

algorithm in dimensions higher than three. Analogously, the proposed minimax optimal

estimator for a prediction task in the matrix logistic regression problem in the third

chapter cannot be computed in polynomial time. The third chapter further identifies a

computational lower bound in the regression problem, thereby revealing the gap between

the best possible rate of convergence of a polynomial-time algorithm and the minimax

optimal rate.
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Chapter 1

Unbiased estimation of the volume

of a convex body

1.1 Introduction to volume estimation

In this chapter, we introduce the problem of volume estimation and explore it from different

angles of analytic geometry, computational geometry and statistics. [12, 13]

1.1.1 Calculating the volume of geometric objects

The volume of a geometric set is one of its most basic functionals. Let us recall some of

the standard results of calculating the volume in geometry. We consider the Euclidean

space Rd . In the two-dimensional case, there are plenty of formulas for calculating the

area. The area Sp of a polygon inscribed in a circle, see Figure 1.1, of course, depends on

the location of its vertices. Due to the shoelace formula discovered by Gauß (1777-1855),

we have

Sp =
1

2
|(a1b2 + a2b3 + ...+ a5b1)− (b1a2 + b2a3 + ...+ b5a1)| .

For a polygon with the vertices lying on a grid of equidistant points with integer coordinates,

see Figure 1.1, Pick’s theorem, described by Pick (1859-1942), provides a simple formula for

calculating the area S of this polygon in terms of the number n◦ of grid points located in

the interior of the polygon and the number n∂ of grid points (blue) lying on the polygon’s

boundary:

S = n◦ +
n∂
2
− 1 .

Already in the three-dimensional case some problems appear to be quite challenging.

Calculating the volume of a polyhedron inscribed in a sphere is a fairly involved task.

Let us assume without loss of generality that the boundary of a polyhedron P is given

by a union of triangles Ai, i = 1, ..., n, with vertices (ai, bi, ci) which are assumed to be
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(a1, b1)

(a2, b2)

(a3, b3)

(a4, b4)

(a5, b5)

a) b)

Figure 1.1: Calculating the volume using the shoelace formula and Pick’s theorem

ordered counter clockwise on Ai . This means that on each Ai we can define the outer

normal vector ni = (bi − ai)× (ci − ai) . Then the volume of P is given by

VP =
1

6

n∑
i=1

ai•ni , (1.1.1)

where ai•ni denotes the dot product between ai and ni . The proof of this result is

based on the divergence theorem. As the divergence theorem, this result is due to Gauß.

The analytical expression for the volume of a polyhedron inscribed in a sphere becomes

even more involved. In some special cases, like when the polyhedron is a parallelotope, the

results are simplified using matrix calculus. We refer the reader to [33] for a comprehensive

summary of existing results in calculating the volume in geometry.

What about other convex bodies which have an arbitrary boundary? There is no unique

recipe that allows one to calculate the volume of an arbitrary convex body precisely, but,

as we shall see further, there are several techniques that allow one to approximate the

volume of an arbitrary convex body with good precision. Furthermore, a more intriguing

question is whether efficient estimation of the volume is possible for more general classes

of bodies, i.e families of compact subsets. This question is partly driven by applications in

image analysis and signal processing where the studied objects are rarely convex.

1.1.2 Estimating the volume in statistics

There can be no doubt that the origin of analytic geometry in antiquity was empirical.

However, when we think about calculating the volume of some natural objects that arise

nowadays, like a patient’s tumour in biology or a star cluster in astronomy, the objects

themselves are not accessible, i.e. we do not know the true shape of a studied object. We

have access to only some information, or data, often imprecise and we want to recover the

true shape of the body, its volume and/or other characteristics. The data we have are

14



some sort of measurements such as detection of the presence of a body in a certain region.

Extracting information from the data about the true body is an objective of statistical

inference.

A simple one-dimensional example

Let X1, ..., Xn be a sample of i.i.d. points drawn from the uniform distribution U(a, b) ,

and let X(1), ..., X(n) denote the order statistics, so that X(1) < ... < X(n) . It holds by

symmetry that the expected length of the interval (X(1), X(n)) satisfies

E[|X(n) −X(1)|] =
(n− 1)

(n+ 1)
(b− a) . (1.1.2)

An objective of statistical inference is to estimate the length of the interval, when the

location of the points a and b is assumed to be unknown. A naive estimator,

l̂naive := X(n) −X(1) , (1.1.3)

clearly underestimates the length. A more attractive idea is to somehow dilate the interval

(X(1), X(n)) and take the length of the dilated interval as an estimator. There are at

least two viable dilations: 1) add and subtract some fixed vectors from the end points

X(n) and X(1) (additive dilation) and 2) dilate the interval (X(1), X(n)) from its centre

(X(n) +X(1))/2 with some scaling factor (multiplicative dilation). In the one-dimensional

case, both dilations are equivalent. It follows from (1.1.2) that a reasonable additive

dilation factor is 2(X(n) −X(1))/(n− 1) which yields an estimator for the volume,

l̂1 :=
(n+ 1)

(n− 1)
(X(n) −X(1)) . (1.1.4)

This estimator is not only unbiased, E[l̂1] = b−a , but also, as we shall see in Section 2.3

and Section 2.4, is minimax optimal. We also refer to [106] for a comprehensive literature

review of set estimation in the one-dimensional case.

Estimation of the volume of a convex set in high dimensions

The one-dimensional model is useful to grasp the main ideas of volume estimation, yet it

is not widely used in real applications. The two-dimensional model already covers several

important applications in image analysis and signal processing. Here, we observe the points

X1, ..., Xn drawn uniformly over a set C ⊆ R2 and an objective is to recover the volume

VC of the set and the set itself. Let us assume that C belongs to the class of convex

sets. Analogously to the one-dimensional case, it is natural to consider the volume |Ĉn|
of the convex hull as a baseline estimator for the volume VC of the set C . It is quite

15



x̂0

C

Ĉ C̃X1

Xk

Xn

Figure 1.2: The points X1, ..., Xn drawn uniformly over a set C , the convex hull of the
points Ĉn = conv(X1, ..., Xn) and the dilated hull estimator C̃ .

intuitive that this estimator performs quite poorly because it always underestimates the

true volume and it should therefore be dilated as in the one-dimensional case. Section 2.3

and Section 2.4 show that an optimal estimator has the following form

V̂opt =
n+ 1

n◦ + 1
|Ĉn| , (1.1.5)

where n◦ is the number of purple points in Figure 1.2 that lie in the interior of the convex

hull Ĉn . Note that V̂opt is the volume of the “dilated” hull C̃ , the set obtained by dilating

the convex hull with the same factor from the centre of gravity x̂0 of the convex hull:

C̃ =
{
x̂0 +

( n+ 1

n◦ + 1

)1/2
(x− x̂0)

∣∣∣x ∈ Ĉn} , (1.1.6)

which can in fact be used to estimate the set C itself. Similarly, the same estimators for

the volume and the set itself can be used in higher dimensions.

The uniform model of a fixed number of points drawn uniformly over a convex set C

has been extensively studied in stochastic geometry. The focus of study is on understanding

the distributional characteristics of key functionals like the volume of Ĉn , the number

of vertices of Ĉn and the distance between Ĉn and C . The main references here are

[16, 113, 119, 120, 137]. The Poisson point process (PPP) model studied in this chapter is

closely related to the uniform model. Using Poissonisation and de-Poissonisation techniques,

this model exhibits asymptotic properties like the uniform model, see e.g. the references

above and Section 2.4.1. However the geometric properties of the PPP model are much richer

for conducting statistical inference, see [14, 118], where the techniques from the Poisson

point processes theory were successfully employed for estimation of linear functionals in a

one-sided regression model and estimation of the volume of a convex set.
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How fast can we estimate π?

There are quite a few ways how one can calculate the number π , see [8]. We here discuss

one interesting way based on the Monte Carlo simulations of independent uniformly

distributed random variables. It is a toy illustrative application of volume estimation in

sampling theory. Let us draw the points X1, ..., XN from the uniform distribution over the

square [0, 1]× [0, 1] and count the number of points n which fall inside the circle centred

at the origin of radius 1 . Let π̂ := n/N denote the ratio of the points inside the circle

to the total number of points. It approximately equals π/4 , because it is an unbiased

estimator:

E[π̂] =
1

N
E[n] =

1

N
E
[ N∑
i=1

1(Xi ∈ C)
]

=
π

4
, (1.1.7)

and therefore its mean squared risk is governed by the variance:

E
[
(π̂ − π)2

]
= Var(π̂) =

1

N2
Var

( N∑
i=1

1(Xi ∈ C)
)

=
1

N

π

4

(
1− π

4

)
. (1.1.8)

It turns out π̂ is even a maximum likelihood estimator. Surprisingly, we are able to

estimate π with a much faster rate based on the data points in this experiment. Following

(1.1.5), we define our properly scaled estimator as

π̂opt = 4
n+ 1

n◦ + 1
|Ĉn| , (1.1.9)

where n◦ is the number of points lying inside the convex hull Ĉn of the points lying inside

the circle. Theorem 2.3.1 and Theorem 2.4.2 to follow state that the rate of convergence

of the mean squared risk of the estimator π̂opt satisfies E
[
(π̂opt − π)2

]
= O(N−5/3) , see

Figure 1.3 for a numerical comparison of the two estimators. Note that both estimators

can easily be computed in polynomial time. The optimal time complexity of computing a

convex hull in 2- or 3- dimensional space is O(n log h) , where h is the number of vertices

of the convex hull, and is achieved by Chan’s algorithm in [45].

1.1.3 Estimating the support of a density

The problem of estimating the volume of a body is a special case of a more general problem

of estimating the support of a probability density. It has received a fairly large amount of

attention in the statistical literature since the 1980s partly because of several applications

in image analysis, signal processing and econometrics. The first fundamental results in this

area were obtained in [50, 55, 88–90]. Furthermore see [99, 124, 133] for a more general

problem of estimating the level sets of a density. In particular, [88] established the minimax

optimal rates for estimating the support of a density having a Hölder-continuous boundary

17



Figure 1.3: On the left: a sample of n = 500 points drawn uniformly over the square
[0, 1]× [0, 1] . On the right: Monte Carlo root mean squared error (RMSE) estimates for
the studied estimators for π based on 200 Monte Carlo simulations in each case.

in the Hausdorff and symmetric difference metrics and constructed an estimator which

attains the optimal rates. The case of convex support estimation was first studied in

[89, 90], where it was shown that the convex hull Ĉn of the sample points, which is the

maximum likelihood estimator, is rate-optimal for estimating the support set C in the

Hausdorff and symmetric difference metrics.

The volume of a set is clearly one of its most basic characteristics. Provocatively, as it

was shown in [88, 89], the volume of a rate-optimal estimator of the set is not necessarily

a rate-optimal estimator of the volume! The first fully rate-optimal estimators of the

volume of a convex support with smooth boundary and a support with Hölder-continuous

boundary were constructed by [67] based on three-fold sample splitting.

1.1.4 Looking further. Computational geometry

The problem of calculating the volume of a convex body has also attracted researchers

working in computer science and computational geometry, see [58, 80, 95]. As the dimension

of the space grows, the studied objects become more and more complicated and it is no

longer possible to apply some nice analytical formula like (1.1.1) even if we know the

location of an object. The so-called voxel-based methods serve to estimate the volume with

good precision. However, voxel-based methods have been found to be computationally

inefficient in high dimensions and researchers choose to use various fast randomised

methods to estimate the volume. We refer to [136] for a recent survey of the existing fast

randomised algorithms for calculating the volume of a convex body.
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One such randomised algorithm, although probably not the fastest, is exactly to follow

the strategy above. Given a body of interest, one can sample the points uniformly over it,

calculate the volume of the convex hull of the points and then make a necessary dilation.

Since it is computationally easier to calculate the volume of a polytope than of an arbitrary

convex body, this procedure can save expensive running time, although computing the

volume of the convex hull in high dimensions is still an involved task, see [131]. Nevertheless,

it is quite fascinating that once the volume of the convex hull is computed the dilation

(1.1.5) involving the number of points should be employed to estimate the volume with

the best possible precision.

To our best knowledge, no efficient estimators for the volume of a set from a class of

sets that is more general than the class of convex sets have previously been proposed.

1.2 Introduction to unbiased volume estimation of a

convex set

The contribution of this part is the construction of a very simple volume estimator which is

not only rate-optimal over all convex sets without boundary restrictions, but even adaptive

in the sense that it attains almost the parametric rate if the convex set is a polytope. The

analysis is based on a Poisson point process (PPP) observation model with intensity λ > 0

on the convex set C ⊆ Rd. We thus observe

X1, ..., XN
i.i.d.∼ U(C), N ∼ Poiss(λ|C|), (1.2.1)

where (Xn), N are independent, see Section 1.3 below for a concise introduction to the

PPP model. Using Poissonisation and de-Poissonisation techniques, this model exhibits

asymptotic properties like the uniform model, i.e. a sample of n = λ|C| uniformly on

C distributed random variables X1, . . . , Xn. The geometry of the PPP model, however,

allows for much more concise ideas and proofs, see also [103] for connections between PPP

and regression models with irregular error distributions. From an applied perspective, PPP

models are often natural, e.g. for spatial count data of photons or other emissions.

For known intensity λ of the PPP, we construct in Section 1.4 an oracle estimator

ϑ̂oracle. Theorem 1.4.2 shows that this estimator is UMVU (uniformly of minimum variance

among unbiased estimators) and rate-optimal. To this end, moment bounds from stochastic

geometry for the missing volume of the convex hull, obtained by [16] and [57] are essential.

Moreover, we derive results of independent interest: the convex hull Ĉ = conv{X1, . . . , XN}
forms a sufficient and complete statistic (Proposition 1.4.5) and the Poisson point process,

conditionally on Ĉ , remains Poisson within its convex hull (Theorem 2.2.5).

For the more realistic case of unknown intensity λ, we analyse in Section 1.5 our final
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estimator

ϑ̂
def
=

N + 1

N◦ + 1
|Ĉ| , (1.2.2)

where N◦ denotes the number of observed points in the interior of Ĉ. We are able to prove

a sharp oracle inequality, comparing the risk of this estimator to that of ϑ̂oracle. Here, very

recent and advanced results by [18, 113, 119] on the variance of the number of points

N∂ on the boundary of Ĉ and the missing volume |C \ Ĉ| are of key importance. This

interplay between stochastic geometry and statistics prevails throughout the work. Note

that a similar estimator for the volume, namely (N/N◦)|Ĉ| , was introduced earlier in

[125] and in [94] using heuristic arguments.

The lower bound showing that ϑ̂ is indeed minimax-optimal is proved in Theorem 1.4.4

by adopting the proof of the lower bound in the uniform model by [67]. A small simulation

study is presented in Section 1.6. Moreover, we propose to enlarge the convex hull set by

the factor ((N + 1)/(N◦ + 1))1/d and we study its error as an estimator of the set C itself.

The proof of Lemma 1.5.1 is deferred to the Appendix.

1.3 Digression on Poisson Point Processes

Most of the results and notation are adapted from [83]. We fix a compact convex set E in

Rd with non-empty interior as a state space and denote by E its Borel σ -algebra. We

define the family of convex subsets C = {C ⊆ E, convex, closed} (this implies that all

sets in C are compact) and the family of compact subsets K = {K ⊆ E, compact} . It

is natural to equip the space C (resp. K ) with the Hausdorff-metric dH and its Borel

σ -algebra BC (resp. BK ). Then (C, dH) is a compact, and thus, separable space and

the mapping (x1, . . . , xk) 7→ conv{x1, . . . , xk}, which generates the convex hull of points

xi ∈ E, is continuous from Ek to (C, dH).

On (E, E) we define the set of point measures M = {m measure on E : m(A) ∈
N, ∀A ∈ E} equipped with the σ -algebra M = σ(m 7→ m(A), A ∈ E) . Let C+

c (E)

be the collection of continuous functions E 7→ [0,∞) with compact support. A useful

topology for M is the vague topology which makes M a complete, separable metric space,

cf. Section 3.4 in [121]. A sequence of point measures mn ∈M then converges vaguely to a

limit m ∈M if and only if mn[f ]→ m[f ] for all f ∈ C+
c (E) where m[f ] =

∫
E
fdm . Let

(Ω,F ,P) be an abstract probability space. We call a measurable mapping N : Ω →M a

Poisson point process (PPP) of intensity λ > 0 on C ∈ C if

• for any A ∈ E , we have N (A) ∼ Poiss
(
λ|A ∩ C|

)
, where |A ∩ C| denotes the

Lebesgue measure of A ∩ C;

• for all mutually disjoint sets A1, ..., An ∈ E , the random variables N (A1), ...,N (An)

are independent.
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For statistical inference, we assume the Poisson point process to be defined on a set of

non zero Lebesgue measure, i.e. |C| > 0 . A more constructive and intuitive representation

of the PPP N is N =
∑N

i=1 δXi for N ∼ Poiss(λ|C|) and i.i.d. random variables

(Xi) , independent of N and distributed uniformly P(Xi ∈ A) = |A ∩ C|/|C| , so that

N (A) =
∑N

i=1 1(Xi ∈ A) for any A ∈ E .

We consider the convex hull of the PPP points Ĉ : M → C defined by Ĉ(N ) :=

conv{X1, ..., XN} , which by the above continuity property of the convex hull is a random

element with values in the Polish space (C, dH), see also [52] for a detailed study of the

continuity of the convex hull. For shorthand notation, we shall further write Ĉ to denote

the convex hull of the process N . In the sequel, conditional expectations and probabilities

with respect to Ĉ are thus well defined. We can also evaluate the probability

PC
(
Ĉ ∈ A

)
=
∞∑
k=0

e−λ|C|λk

k!

∫
Ck

1(conv{x1, ..., xk} ∈ A)d(x1, ..., xk)

for A ∈ BC . Usually, we only write the subscript C or sometimes (C, λ) when different

probability distributions are considered simultaneously. The likelihood function
dPC,λ
dPE,λ0

for

C ∈ C and λ, λ0 > 0 is then given by

dPC,λ
dPE,λ0

(X1, ..., XN) = eλ0|E|−λ|C|(λ/λ0)
N1(∀ i = 1, ..., N : Xi ∈ C) (1.3.1)

= eλ0|E|−λ|C|(λ/λ0)
N1(Ĉ ⊆ C) , (1.3.2)

cf. Thm. 1.3 in [91]. For the last line, we have used that a point set is in C if and only if

its convex hull is contained in C.

For the set-indexed process (N (K), K ∈ K) we define its natural set-indexed filtration

FK
def
= σ({N (U);U ⊆ K,U ∈ K}) (1.3.3)

for any K ∈ K . The filtration (FK , K ∈ K) possesses the following properties:

• monotonicity: FK1 ⊆ FK2 for any K1, K2 ∈ K with K1 ⊆ K2 ,

• continuity from above: FK = ∩∞i=1FKi if Ki ↓ K ;

cf. [148]. By construction, the restriction NK = N (· ∩K) of the point process N onto

K ∈ K is FK -measurable (in fact, FK = σ({NK(U);U ∈ K}) ). In addition, it can be

easily seen that NK is a Poisson point process in M , cf. the Restriction Theorem in [85],

and thus Ĉ(NK) = conv({X1, . . . , XN} ∩K) is by the above arguments FK -measurable.

A random compact set K is a measurable mapping K : (M,M)→ (K,BK) . Note that

[148] defines a random compact set as a measurable mapping from (M,M) to (K, σK)

where σK is the so-called Effros σ -algebra generated by the sets {F ∈ K : F ∩K 6= ∅} ,
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K ∈ K . Thanks to Thm. 2.7 in [105], the Effros σ -algebra σK induced on the family of

compact sets K coincides with the Borel σ -algebra BK , and we prefer to stick to the

first definition of a random compact set for convenience. Next, we recall the definition of

stopping sets from [127] in complete analogy with stopping times.

Definition 1.3.1. A random compact set K is called an FK -stopping set if {K ⊆ K} ∈
FK for all K ∈ K . The sigma-algebra of K -history is defined as FK = {A ∈ F : A∩{K ⊆
K} ∈ FK ∀K ∈ K}, where F = σ(FK ;K ∈ K) .

For a set A ⊆ E let Ac denote its complement.

Lemma 1.3.2. The set K̂ def
= Ĉc, the closure of the complement of the convex hull, is an

(FK)-stopping set.

Proof. We claim K̂ ⊆ K if and only if Kc ⊆ conv({X1, . . . , XN} ∩K). Indeed, if K̂ ⊆ K

holds, then the boundary ∂Ĉ = ∂K̂ is in K which implies conv({X1, . . . , XN} ∩ K) =

Ĉ. Consequently, Kc ⊆ K̂c ⊆ Ĉ = conv({X1, . . . , XN} ∩ K) holds. Conversely, Kc ⊆
conv({X1, . . . , XN}∩K) implies immediately Kc ⊆ Ĉ and thus Ĉc ⊆ K. Since K is closed,

we obtain K̂ ⊆ K.

Since {X1, . . . , XN} ∩ K are the realisations of the point process inside K and the

convex hull is measurable, we conclude {Kc ⊆ conv({X1, . . . , XN} ∩K)} ∈ FK .

We shall further use the following short notation: N = N (C) denotes the total number

of points, N◦ = N (Ĉ◦) the number of points in the interior of the convex hull Ĉ and

N∂ = N (∂Ĉ) = N (∂K̂) the number of points on the boundary of the convex hull. For

asymptotic bounds we write f(x) = O(g(x)) or f(x) . g(x) if f(x) is bounded by a

constant multiple of g(x) and f(x) ∼ g(x) if f(x) . g(x) as well as g(x) . f(x) .

1.4 Oracle case: intensity λ is known

For a PPP on C ∈ C with intensity λ > 0, we know N ∼ Poiss(λ|C|). In the oracle case,

when the intensity λ is known, N/λ estimates |C| without bias and yields the classical

parametric rate in λ:

E[(N/λ− |C|)2] = λ−2 Var(N) =
|C|
λ
. (1.4.1)

Another natural idea might be to use the plug-in estimator |Ĉ| whose error is given by

the missing volume and satisfies

E[(|Ĉ| − |C|)2] = E[|C \ Ĉ|2] = O(|C|2(d−1)/(d+1)λ−4/(d+1)) , (1.4.2)
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where the bound is obtained similarly to (1.4.8) and (1.4.10) below. This means that its

error is of smaller order than λ−1 for d 6 2, but larger for d > 4. For any d > 2, however,

both convergence rates are worse than the minimax-optimal rate λ−(d+3)/(d+1), established

below.

The way to improve these estimators is to observe that by the likelihood representation

(1.3.2) for λ = λ0 and the Neyman factorisation criterion the convex hull is a sufficient

statistic. Consequently, by the Rao-Blackwell theorem, the conditional expectation of N/λ

given the convex hull Ĉ is an estimator with smaller mean squared error (MSE).

The number of points N can be split into the number N∂ of points on the boundary

and the number N◦ of points in the interior of the convex hull. The following theorem is

essential in deriving the oracle estimator. Although the statement of the theorem is quite

intuitive and already used in [117], the proof turns out to be nontrivial and is deferred to

the Appendix.

Theorem 1.4.1. The number N∂ of points on the boundary of the convex hull is measur-

able with respect to the sigma-algebra of K̂ -history FK̂ . The number of points in the

interior of the convex hull N◦ is, conditionally on FK̂ , Poisson-distributed:

N◦
∣∣FK̂ ∼ Poiss(λ◦) with λ◦

def
= λ|Ĉ|. (1.4.3)

In addition, we have FK̂ = σ(Ĉ) , where the latter is the sigma-algebra σ({Ĉ ⊆ B,B ∈
C}) completed with the null sets in F .

With Theorem 2.2.5 at hand, we obtain the oracle estimator

ϑ̂oracle
def
= E

[N
λ

∣∣ Ĉ] = E
[N◦ +N∂

λ

∣∣ Ĉ] = |Ĉ|+ N∂

λ
, (1.4.4)

where conditioning on Ĉ means conditioning on σ(Ĉ) = FK̂ .

Theorem 1.4.2. For known intensity λ > 0, the oracle estimator ϑ̂oracle is unbiased and

of minimal variance among all unbiased estimators (UMVU). It satisfies

Var(ϑ̂oracle) =
1

λ
E[|C \ Ĉ|] .

Its worst case mean squared error over C decays like λ−(d+3)/(d+1) as λ ↑ ∞ in dimension

d:

lim sup
λ→∞

λ(d+3)/(d+1) sup
C∈C,|C|>0

{
|C|−(d−1)/(d+1)E

[
(ϑ̂oracle − |C|)2

]}
<∞ . (1.4.5)

Remark 1.4.3. The theorem implies that the rate of convergence for the RMSE (root mean-

squared error) of the estimator ϑ̂oracle is λ−(d+3)/(2d+2) . In Theorem 1.4.4 below, we prove

23



that the lower bound on the minimax risk in the PPP model is of the same order implying

that the rate is minimax-optimal. Even more, the oracle estimator is adaptive in the sense,

that its rate is faster if the missing volume decays faster. In particular, for polytopes C it is

shown in [16] and independently in [57] that E[|C \ Ĉ|] ∼ λ−1(log(λ|C|))d−1, which implies

a faster (almost parametric) rate of convergence for the RMSE of the oracle estimator.

Proof of Theorem 1.4.2. The unbiasedness follows immediately from the definition (1.4.4).

By the law of total variance, we obtain

Var(ϑ̂oracle) = Var
(N
λ

)
− E

[
Var

(N
λ

∣∣ Ĉ)] =
|C|
λ
− E

[
Var

(N◦
λ

∣∣ Ĉ)] (1.4.6)

=
|C|
λ
− E

[λ◦
λ2

]
=

1

λ
E[|C \ Ĉ|] . (1.4.7)

Proposition 1.4.5 below affirms that the convex hull Ĉ is not only a sufficient, but also a

complete statistic such that by the Lehmann-Scheffé theorem, the estimator ϑ̂oracle has

the UMVU property.

Finally, we bound the expectation of the missing volume |C \ Ĉ| by Poissonisation,

i.e. using that the convex hull Ĉ in the PPP model conditionally on the event {N = k}
is distributed as the convex hull Ĉk = conv{X1, ..., Xk} in the model with k uniform

observations on C, for which the following upper bound is known (e.g., [16]):

sup
C∈C,|C|>0

E
[ |C \ Ĉk|
|C|

]
= O

(
k−2/(d+1)

)
. (1.4.8)

Thus, it follows by a Poisson moment bound

sup
C∈C,|C|>0

E
[ |C \ Ĉ|
|C|(d−1)/(d+1)

]
= sup

C∈C,|C|>0

∞∑
k=0

e−λ|C|(λ|C|)k

|C|−2/(d+1)k!
E
[ |C \ Ĉk|
|C|

]
(1.4.9)

= O
(
λ−2/(d+1)

)
. (1.4.10)

This bound, together with (1.4.7), yields the assertion.

The lower bound for the risk in the PPP framework can be derived from the lower

bound in the uniform model with a fixed number of observations, see Thm. 6 in [67].

Theorem 1.4.4. For estimating |C| in the PPP model with parameter class C , the

following asymptotic lower bound holds

lim inf
λ→∞

λ(d+3)/(d+1) inf
ϑ̂λ

sup
C∈C

EC [(|C| − ϑ̂λ)2] > 0 , (1.4.11)

where the infimum extends over all estimators ϑ̂λ in the PPP model with intensity λ .
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Proof. We use that an estimator ϑ̂λ in the PPP model is an estimator in the uniform

model on the event {N = n} . Then, due to the lower bound in the uniform model in [67],

for a constant c > 0 and for all n ∈ N there exists a set Cn ∈ C with |Cn| ∼ 1 such

that for all k = 1, ..., n ,

ECn
[
(|Cn| − ϑ̂λ)2

∣∣N = k
]
> cn−(d+3)/(d+1), a.s. (1.4.12)

Then, in the PPP model for C = Cbλc with λ|C| > 1 , we have

EC [(|C| − ϑ̂λ)2] =
∑
k∈N

EC
[
(|C| − ϑ̂λ)2

∣∣N = k
]
P(N = k) (1.4.13)

>
∑
k6bλc

EC
[
(|C| − ϑ̂λ)2

∣∣N = k
]
P(N = k) (1.4.14)

> cbλc−(d+3)/(d+1)
(
1− P(N > bλc)

)
(1.4.15)

∼ λ−(d+3)/(d+1) , (1.4.16)

applying Chernoff’s inequality to N ∼ Poiss(λ|C|) for the last line. Thus, the lower bound

(1.4.11) follows.

Proposition 1.4.5. For known intensity λ > 0, the convex hull Ĉ = conv{X1, ..., XN} is

a complete statistic.

Proof. We need to show the implication

∀C ∈ C : EC
[
T (Ĉ)

]
= 0 =⇒ T (Ĉ) = 0 PE − a.s. (1.4.17)

for any BC -measurable function T : C→ R . From the likelihood in (1.3.2) for λ = λ0,

we derive

EC
[
T (Ĉ)

]
= EE

[
T (Ĉ) exp

(
λ|E \ C|

)
1(Ĉ ⊆ C)

]
. (1.4.18)

Since exp(λ|E \ C|) is deterministic, EC
[
T (Ĉ)

]
= 0 for all C ∈ C implies

∀C ∈ C : EE

[
T (Ĉ)1(Ĉ ⊆ C)

]
= 0 . (1.4.19)

For C ∈ C , define the family of convex subsets of C as [C] = {A ∈ C|A ⊆ C} such

that Ĉ ⊆ C ⇐⇒ Ĉ ∈ [C]. Splitting T = T+ − T− with non-negative BC -measurable

functions T+ and T− , we infer that the measures µ±(B) = EE[T±(Ĉ)1(Ĉ ∈ B)] ,

B ∈ BC, agree on {[C] |C ∈ C} .

Note that the brackets {[C]|C ∈ C} are ∩ -stable due to [A] ∩ [C] = [A ∩ C] and

A ∩ C ∈ C . If the σ-algebra C generated by {[C] |C ∈ C} contains BC, the uniqueness
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theorem asserts that the measures µ+, µ− agree on all Borel sets in BC , in particular on

{T > 0} and {T < 0} , which entails EE[T+(Ĉ)] = EE[T−(Ĉ)] = 0. Thus, in this case,

T (Ĉ) = 0 holds PE -a.s.

It remains to show that C = σ([C], C ∈ C) equals the Borel σ -algebra BC . This can

be derived as a non-trivial consequence of Choquet’s theorem, see Thm. 7.8 in [105], but we

propose a short self-contained proof here. Let us define the family 〈C〉 = {B ∈ C|C ⊆ B}
of convex sets containing C. Then the closed Hausdorff ball with center C and radius

ε > 0 has the representation

Bε(C)
def
= {A ∈ C | dH(A,C) 6 ε} = {A ∈ C |U−ε(C) ⊆ A ⊆ Uε(C)} , (1.4.20)

with Uε(C) = {x ∈ E | dist(x,C) 6 ε}, U−ε(C) = {x ∈ C | dist(x,E \ C) 6 ε}. Noting

that Uε(C), U−ε(C) are closed and convex and thus in C, we obtain

Bε(C) = 〈U−ε(C)〉 ∩ [Uε(C)] . (1.4.21)

Since (C, dH) is separable, our problem is reduced to proving that all angle sets 〈C〉 for

C ∈ C are in C. A further reduction is achieved by noting 〈C〉 =
⋂
x∈C〈x〉 =

⋂
x∈C∩Qd〈x〉

setting 〈x〉 = 〈{x}〉 for short such that it suffices to prove 〈x〉 ∈ C for all x ∈ E.

Now, let x ∈ E and C ∈ C such that x /∈ C . Then, by the Hahn-Banach theorem,

there are δ > 0, v ∈ Rd such that 〈v, c − x〉 > δ holds for all c ∈ C . By a density

argument, we may choose δ ∈ Q+ and v ∈ Qd. Denoting the corresponding hyperplane

intersected with E by Hδ,v = {ξ ∈ E | 〈v, ξ − x〉 > δ}, see Figure 3.1, we conclude

〈x〉{ =
⋃
δ∈Q+

⋃
v∈Qd

[Hδ,v]︸ ︷︷ ︸
∈C

∈ C . (1.4.22)

Consequently, 〈x〉 ∈ C and thus BC ⊆ C hold.

1.5 Unknown intensity λ : nearly unbiased estima-

tion

In case the intensity λ is unknown and the oracle estimator ϑ̂oracle in (1.4.4) is inaccessible,

the maximum-likelihood approach suggests to use N/|Ĉ| as an estimator for λ in (1.3.2).

This yields the plug-in estimator for the volume,

ϑ̂plugin
def
= |Ĉ|+ N∂

N
|Ĉ| . (1.5.1)
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Figure 1.4: The construction used in the proof.

In the unlikely event N = |Ĉ| = 0, we define ϑ̂plugin = 0. This estimator has a significant

bias due to the following result, which is proved in the appendix.

Lemma 1.5.1. For the bias of the plug-in MLE estimator ϑ̂plugin , it follows with some

universal constant c > 0

|C| − E[ϑ̂plugin] > cE[|Ĉ \ C|]2 , ∀C ∈ C . (1.5.2)

The maximal bias over C ∈ C is thus at least of order λ−4/(d+1), which is worse than

the minimax rate λ−(d+3)/(2d+2) for d > 5. Yet, in the two-dimensional finite sample study

of Section 1.6 below, its performance is quite convincing. We surmise that ϑ̂plugin is

rate-optimal for d 6 5 , but we leave that question aside because the final estimator we

propose will be nearly unbiased and will satisfy an exact oracle inequality. In particular, it

is rate-optimal in any dimension. The new idea is to exploit that the number of interior

points of Ĉ satisfies N◦
∣∣ Ĉ ∼ Poiss(λ◦), see (1.4.3).

Lemma 1.5.2. There is no conditionally unbiased estimator for λ−1◦ based on observing

N◦
∣∣ Ĉ ∼ Poiss(λ◦) for λ◦ ranging over some open (non-empty) interval.

Proof. A conditionally unbiased estimator µ̃(N◦) for λ−1◦ would satisfy E[µ̃(N◦)|Ĉ] = λ−1◦

implying
∞∑
k=0

λk◦
k!
µ̃(k)e−λ◦ = λ−1◦ ⇒

∞∑
k=0

λk+1
◦
k!

µ̃(k) =
∞∑
k=0

λk◦
k!
. (1.5.3)

The coefficient for the constant term in the left and right power series would thus differ (0

versus 1), in contradiction with the uniqueness theorem for power series.

We provide an almost unbiased estimator for λ−1◦ by noting that the first jump time

of a time-indexed Poisson process with intensity ν is Exp(ν)-distributed and thus has

expectation ν−1. Taking conditional expectation of the first jump time with respect to the
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value of the Poisson process at time 1, we conclude that

µ̂(N◦, λ◦)
def
=

(N◦ + 1)−1, for N◦ > 1,

1 + λ−1◦ , for N◦ = 0

satisfies E[µ̂(N◦, λ◦)|Ĉ] = λ−1◦ . Omitting the term λ−1◦ , depending on λ◦, in the unlikely

case N◦ = 0, we define our final estimator

ϑ̂
def
= |Ĉ|+ N∂

N◦ + 1
|Ĉ| .

For the proofs, we also define the pseudo-estimator

ϑ̂pseudo
def
= |Ĉ|+ |Ĉ|N∂

( 1

N◦ + 1
+

e−λ◦

λ◦

)
.

Theorem 1.5.3. The pseudo-estimator ϑ̂pseudo is unbiased and the estimator ϑ̂ is asymp-

totically unbiased in the sense that with constants c1, c2 > 0 depending on d, d > 1,

whenever λ|C| > 1:

0 6 |C| − E[ϑ̂] 6 c1|C| exp
(
−c2(λ|C|)(d−1)/(d+1)

)
, ∀C ∈ C . (1.5.4)

Proof. We have

E
[ 1

N◦ + 1
+

e−λ◦

λ◦

∣∣ Ĉ] = e−λ◦λ−1◦

( ∞∑
k=0

λk+1
◦

(k + 1)k!
+ 1
)

= λ−1◦ , (1.5.5)

which by |Ĉ|λ−1◦ = λ−1 and E[ϑ̂oracle] = |C| implies unbiasedness of ϑ̂pseudo . Thus, it

follows that

|C| − E[ϑ̂] = E
[
|Ĉ|N∂e

−λ◦λ−1◦
]

= λ−1E
[
N∂e

−λ|Ĉ|] .
We exploit the deviation inequality from Thm. 1 in [35] and derive the bound for the

exponential moment of the missing volume in the model with fixed number of points

E[exp (λ|C \ Ĉk|)] 6 b1 exp (b2λ|C|k−2/(d+1)) , k > 2 , (1.5.6)

for positive constants b1, b2 , depending on the dimension according to [35]. For the cases

k = 0, 1 , we have the identity E[exp (λ|C \ Ĉk|)] = exp (λ|C|) . By Poissonisation, similarly

to (1.4.10), we derive

exp(−λ|C|)E[exp (λ|C \ Ĉ|)] 6 b3 exp
(
− c2(λ|C|)(d−1)/(d+1)

)
, (1.5.7)
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for positive constants b3, c2 , depending on the dimension. Hence, using the Cauchy-Schwarz

inequality and the bound for the moments of the points on the convex hull,

E[N q
∂ ] = O

(
(λ|C|)q(d−1)/(d+1)

)
, q ∈ N , (1.5.8)

see e.g. Section 2.3.2 in [36], we derive for a constant c1 > 0

λ−1E
[
N∂e

−λ|Ĉ|] 6 λ−1e−λ|C|E[N2
∂ ]1/2E[e2λ|C\Ĉ|]1/2 (1.5.9)

6 c1λ
−2/(d+1)|C|(d−1)/(d+1) exp

(
− c2(λ|C|)(d−1)/(d+1)

)
(1.5.10)

6 c1|C| exp
(
− c2(λ|C|)(d−1)/(d+1)

)
. (1.5.11)

The next step of the analysis is to compare the variance of the pseudo-estimator ϑ̂pseudo

with the variance of the oracle estimator ϑ̂oracle , which is UMVU.

Theorem 1.5.4. The following oracle inequality holds with a universal constant c > 0 and

dimension-dependent constants c1, c2 > 0 for all C ∈ C with λ|C| > 1:

Var(ϑ̂pseudo) 6 (1 + cα(λ,C)) Var(ϑ̂oracle) + r(λ,C) , (1.5.12)

where

α(λ,C) =
1

|C|

(1

λ
+

Var(|C \ Ĉ|)
E[|C \ Ĉ|]

+ E[|C \ Ĉ|]
)
,

r(λ,C) = c1(λ|C|)2(d−1)/(d+1) exp
(
− c2(λ|C|)(d−1)/(d+1)

)
.

Proof. By the law of total variance, we obtain

Var(ϑ̂pseudo) = Var
(
E[ϑ̂pseudo|Ĉ]

)
+ E

[
Var(ϑ̂pseudo|Ĉ)

]
(1.5.13)

= Var(ϑ̂oracle) + E
[
(N∂|Ĉ|)2 Var

( 1

N◦ + 1
|Ĉ
)]
. (1.5.14)

In view of N◦ | Ĉ ∼ Poiss(λ◦) , a power series expansion gives

E[(N◦ + 1)−2| Ĉ] = λ−1◦ e−λ◦
∫ λ◦

0

(et − 1)/t dt .

The conditional variance can for λ◦ →∞ thus be bounded by

Var((1 +N◦)
−1| Ĉ) 6 λ−1◦ e−λ◦

∫ λ◦

λ◦/2

et/t dt− (λ◦)
−2 +O(e−λ◦/4)
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= (λ◦)
−1
∫ λ◦/2

0

e−s
( 1

λ◦ − s
− 1

λ◦

)
ds+O(e−λ◦/4)

= λ−3◦ (1 + o(1)) ,

where we have used (λ◦ − s)−1 − λ−1◦ = sλ−1◦ (λ◦ − s)−1,
∫∞
0
se−sds = 1 and dominated

convergence. Thanks to (N◦ + 1)−1 ∈ [0, 1] we conclude for some constant c > 1

Var((1 +N◦)
−1| Ĉ) 6 c(1 ∧ λ−3◦ ).

Consequently, we have

Var(ϑ̂pseudo) 6 Var(ϑ̂oracle) + E
[
(N∂|Ĉ|)2c(1 ∧ (λ|Ĉ|)−3)

]
(1.5.15)

= Var(ϑ̂oracle) + cE
[
(N∂|Ĉ|)2 ∧ λ−3(N∂)

2|Ĉ|−1
]
, (1.5.16)

and with (1.4.7)

Var(ϑ̂pseudo)

Var(ϑ̂oracle)
6 1 + c

E
[
(N∂λ|Ĉ|)2 ∧ (N∂)

2(λ|Ĉ|)−1
]

λE[|C \ Ĉ|]
(1.5.17)

= 1 + c
E
[
(N∂)

2
(
(λ|Ĉ|)2 ∧ (λ|Ĉ|)−1

)]
E[N∂]

. (1.5.18)

Define the ‘good’ event G = {|Ĉ| > |C|/2} , on which
(
(λ|Ĉ|)2 ∧ (λ|Ĉ|)−1

)
6 2(λ|C|)−1 .

On the complement Gc , we infer from A2 ∧ A−1 6 1 for A > 0

E
[
(N∂)

2
(
(λ|Ĉ|)2 ∧ (λ|Ĉ|)−1

)
1Gc
]
6 E

[
N2
∂1Gc

]
(1.5.19)

6 E[N4
∂ ]1/2P(|C \ Ĉ| > |C|/2)1/2 (1.5.20)

6 c1(λ|C|)2(d−1)/(d+1) exp
(
− c2(λ|C|)(d−1)/(d+1)

)
, (1.5.21)

for some positive constant c1 and c2 , using (1.5.7) and (1.5.8). It remains to estimate

the upper bound (1.5.18) on G

2c

λ|C|
E[N2

∂ ]

E[N∂]
=

2c

λ|C|

(Var(N∂)

E[N∂]
+ E[N∂]

)
. (1.5.22)

Using the identity (17) in [18] for the factorial moments for the number of vertices N∂ ,

we derive Var(N∂) 6 λ2 Var(|C \ Ĉ|) + λE[|C \ Ĉ|] in view of E[N∂ ] = λE[|C \ Ĉ|] . Thus,

(1.5.22) is bounded by

2c

λ|C|
E[N2

∂ ]

E[N∂]
6

2c

|C|

(1

λ
+

Var(|C \ Ĉ|)
E[|C \ Ĉ|]

+ E[|C \ Ĉ|]
)
, (1.5.23)
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which yields the assertion.

As a result, we obtain an oracle inequality for the estimator ϑ̂ .

Theorem 1.5.5. It follows for the risk of the estimator ϑ̂ for all C ∈ C whenever λ|C| > 1:

E[(ϑ̂− |C|)2]1/2 6 (1 + cα(λ,C))E[(ϑ̂oracle − |C|)2]1/2 + r(λ,C) , (1.5.24)

with constant c > 0 and α(λ,C), r(λ,C) from Theorem 1.5.4. For any C ∈ C and λ > 0

we have α(λ,C) 6 1 + 1
λ|C| .

Proof. In view of λ◦ = λ|Ĉ|, we have ϑ̂ = ϑ̂pseudo − λ−1N∂e
−λ|Ĉ| and we derive as in

(1.5.11) and (1.5.21) with some constants c1, c2 > 0

E[(ϑ̂− ϑ̂pseudo)2] 6 λ−2E[N4
∂ ]1/2E[e−4λ|Ĉ|]1/2 6 c21 exp

(
− 2c2(λ|C|)(d−1)/(d+1)

)
.

To establish the oracle inequality, we apply the triangle inequality in L2-norm together

with Theorems 1.4.2 and 1.5.4.

The universal bound on α(λ,C) follows from the rough bound E[|C \ Ĉ|2] 6 |C|E[|C \
Ĉ|].

Note that the remainder term r(λ,C) is exponentially small in λ|C|. Therefore, an

immediate implication of Theorem 1.5.5 is that asymptotically our estimator ϑ̂ is minimax

rate-optimal in all dimensions, where the lower bound is proved in the next section. Yet,

even more is true: the oracle inequality is in all well-studied cases exact in the sense

that α(λ,C) → 0 holds for λ → ∞ such that the the UMVU risk of ϑ̂oracle is attained

asymptotically.

Lemma 1.5.6. We have tighter bounds on α(λ,C) from Theorem 1.5.4 in the following

cases:

1. for d = 1, 2 and C ∈ C arbitrary: α(λ,C) . (λ|C|)−2/(d+1) ,

2. for d > 2 , C with C2-boundary of positive curvature: α(λ,C) . (λ|C|)−2/(d+1) ,

3. for d > 2 and C a polytope: α(λ,C) . λ−1(log(λ|C|))d−1 .

Proof. Let us restrict to |C| = 1 , the case of general volume follows by rescaling. In view of

the expectation upper bound (1.4.10), the main issue is to bound Var(|C \ Ĉ|)/E[|C \ Ĉ|]
uniformly. Case (1) follows from [113], where λVar(|C \ Ĉ|) ∼ E[|C \ Ĉ|] is established.

For case (2) with smooth boundary, the upper bound for the variance, Var(|C \
Ĉ|) . λ−(d+3)/(d+1) , was obtained in [120], while the lower bound for the first moment,

E[|C \ Ĉ|] & λ−2/(d+1) , is due to [128].

For the case (3) of polytopes, the upper bound Var(|C \ Ĉ|) . λ−2(log λ)d−1 was

obtained in [17], while the lower bound for the first moment, E[|C \ Ĉ|] & λ−1(log λ)d−1 ,
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was proved in [16]. The expectation upper bound from Remark 1.4.3 thus yields the

result.

We conjecture that λVar(|C \ Ĉ|) ∼ E[|C \ Ĉ|] holds universally for all convex sets in

arbitrary dimensions and thus that the oracle inequality is always exact. Proving such a

universal bound is a challenging open problem in stochastic geometry, strongly connected

to the discussion on universal variance asymptotics in terms of the floating body by [17].

1.6 Finite sample behaviour and dilated hull estima-

tor

In this section, we demonstrate the performance of the main estimator ϑ̂ numerically

and compare it to other estimators including the naive estimator |Ĉ| , the naive oracle

estimator N/λ , the UMVU oracle estimator ϑ̂oracle and the plug-in MLE estimator

ϑ̂plugin = |Ĉ|(1 + N∂/N) . The main competitor from the literature is a rate-optimal

estimator proposed in [67]. In their construction, the whole sample is divided into three

equal parts X , X ′ and X ′′ of sizes N? (without loss of generality N? ∈ N ) and the

estimator is given by

ϑ̂G = |Ĉ|+ |Ĉ
′′|

N?

N?∑
i=1

1(X ′i /∈ Ĉ) , (1.6.1)

where Ĉ ′′ is the convex hull of the third sample X ′′ . The data points are simulated for

two convex sets: an ellipse and a polygon; see Figure 1.5.

The RMSE estimate normalised by the area of the true set is based on M = 500 Monte

Carlo iterations in each case. The results of the simulations are depicted in Figure 1.6

where n = λ|C| denotes the expected total number of points. The worst convergence rate

of N/λ is clearly visible. More importantly, we see that the RMSE of ϑ̂ approaches the

oracle risk for larger n (i.e. λ) as the oracle inequality predicts. It is also conspicuous that

in the studied cases the plug-in estimator ϑ̂plugin and the estimator ϑ̂ perform rather

similarly. This is explained by the fact that the number of points N∂ on the convex hull

increases with a moderate speed in the two-dimensional case, E[N∂] = O(λ1/3) , which

results in a small difference between the multiplication factors N∂/N and N∂/(N◦ + 1) .

The simulations in two dimensions were implemented using the R package “spatstat” by

[10]. To illustrate the sub-optimality of the plug-in estimator ϑ̂plugin in high dimensions, we

provide results of numerical simulations in dimensions d = 3, 4, 5, 6 for the case when the

true set C is a unit cube C = [0, 1]d , see Figure 1.8. The simulations were implemented

using the R package “geometry” by [72].

As an application of the obtained results, we propose a new estimator for the convex
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Figure 1.5: The two convex sets (blue), observations (points), their convex hulls (black
lines) and dilated convex hulls (black dashed lines).

Figure 1.6: Monte Carlo RMSE estimates for the studied estimators for the volume of two
convex sets: a polygon and an ellipse.
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set itself:

C̃
def
=
{
x̂0 +

( ϑ̂

|Ĉ|

)1/d
(x− x̂0)

∣∣∣x ∈ Ĉ} (1.6.2)

=
{
x̂0 +

( N + 1

N◦ + 1

)1/d
(x− x̂0)

∣∣∣x ∈ Ĉ} , (1.6.3)

which is just the dilation of the convex hull Ĉ from its barycentre x̂0, see the dashed

polygons in Figure 1.5. Since the convex hull is a sufficient statistic (for known λ), the

points in its interior do not bear any information on the shape of C itself such that

the barycentre is a reasonable choice. There are, of course, other enlargements of the

convex hull conceivable like argminB∈C,|B|=ϑ̂ dH(B, Ĉ) , the convex set closest (in Hausdorff

distance) to Ĉ with volume ϑ̂. The intuition behind these estimators is based on the

observation that once the volume of the true set is known, we can estimate the set itself

faster (in the constant), and ϑ̂ is a reasonable substitute for the true volume due to its

fast rate of convergence.

A detailed analysis is not pursued here, but in a small simulation study we investigate

the behaviour of the new dilated hull estimator for the above polygon. The error ratio

E[|C∆Ĉ|]/E[|C∆C̃|] in terms of the symmetric difference A∆B = (A \ B) ∪ (B \ A) is

approximated in M = 500 Monte Carlo iterations and shown in Figure 1.7. It turns out

that the dilation significantly improves the convex hull as an estimator for C , especially

for a small number of observations.

1.7 Appendix

1.7.1 Proof of Theorem 2.2.5

The proof is split into several statements, which might be of interest on their own.

Lemma 1.7.1. The random variable N (K) is measurable with respect to FK for any

stopping set K .

Proof. The proof is just a generalisation of the analogous statement for time-indexed

stochastic processes, see e.g. Proposition 2.18 in [81]. For this, the notions are extended

to the partial order ⊆ and then the right-continuity of (N (K), K ∈ K) (with respect

to inclusion) implies its progressive measurability and thus in turn the measurability of

N (K) .

Next, observe that the set-indexed process (N (K), K ∈ K) has independent incre-

ments, i.e. for K1, . . . , Km ∈ K with Ki ⊆ Ki+1 , i = 1, . . . ,m− 1, the random variables

N (Ki+1) − N (Ki) = N (Ki+1 \ Ki) are independent (by the independence of the PPP

34



Figure 1.7: Monte Carlo error ratio for the convex hull and its dilation when the true set
is a polygon.

on disjoint sets). In fact, we show in Proposition 1.7.2 that the process N is even a

strong Markov process. In addition, Proposition 1.7.2 yields (2.2.7) using that the closed

complement K̂ = Ĉc of the convex hull is a stopping set.

Proposition 1.7.2. The set-indexed process (N (K), K ∈ K) is strong Markov at every

stopping set K . More precisely, conditionally on FK the process (N (K \ K), K ∈ K)

is a Poisson point process with intensity λ on Kc. In particular, N (K \ K)
∣∣FK ∼

Poiss(λ|K \ K|) holds for all K ∈ K .

Remark 1.7.3. The fact that the increments N (K ∪K)−N (K) are independent of FK
can be derived from a general theorem about the strong Markov property for random

fields in Thm. 4 in [127]. See also [149] for a discussion of the strong Markov property

and its applications in stochastic geometry. These statements, however, do not provide a

distributional characterisation of the increments of the process.

Proof. A set-indexed, (FK) -adapted integrable process (XK , K ∈ K) is called a mar-

tingale if E[XB|FA] = XA holds for any A,B ∈ K with A ⊆ B . By the independence

of increments, the process MK
def
= N (K) − λ|K| , K ∈ K , is clearly a martingale with

respect to its natural filtration (FK , K ∈ K) . Then also the process

M̃K
def
= MK∪K −MK = N (K \ K)− λ|K \ K|

is a martingale with respect to the filtration F̃K
def
= FK ∨ FK = FK∪K because for

K1, K2 ∈ K with K1 ⊆ K2 the optional sampling theorem (see e.g. [148]) yields

E[M̃K2|F̃K1 ] = E[MK2∪K −MK|FK1∪K] = MK1∪K −MK = M̃K1 ,
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noting that K1 ∪ K is again a stopping set.

This implies that λ|K \ K| , conditionally on K , is the deterministic compensator

of the process ÑK = N (K \ K) . Then, due to the martingale characterisation of the

set-indexed Poisson process, see Thm. 3.1 in [78] (analogue of Watanabe’s characterisation

for the Poisson process), the process ÑK , conditionally on FK , is a Poisson point process

with mean measure µ̃(A) = λ|A ∩ Kc| .

The last statement of Theorem 2.2.5, that FK̂ = σ(Ĉ) is shown next. It can be seen

as a generalisation of the interesting fact that for a time-indexed Poisson process the

sigma-algebra σ(τ) associated with the first jump time τ coincides with the sigma-algebra

of τ -history Fτ .

Lemma 1.7.4. The sigma-algebra σ(Ĉ) coincides with the sigma-algebra FK̂ of K̂ -history,

i.e. σ(Ĉ) = FK̂ .

Proof. Since K̂ is FK̂-measurable by Lemma 1 in [148] and Ĉ = K̂c, it is evident that

σ(Ĉ) ⊆ FK̂ . The other direction is more involved. We use that the sigma-algebra FK̂
coincides with the sigma-algebra σ({N (K̂ ∩ K), K ∈ K}) generated by the process

stopped at K̂. This statement can be derived from Thm. 6, Ch. 1 in [130]. Note that their

assumption (1.11) is satisfied in our case, because for all K ∈ K and ω ∈ Ω there is

ω′ such that N (U ∩K,ω) = N (U, ω′) for all U ∈ K , which simply says that observing

points in K ∈ K there might be no points outside K . Finally, observe that by definition

of the convex hull N (Ĉc ∩K) = N ((∂Ĉ) ∩K). Modulo null sets, N ((∂Ĉ) ∩K) counts

the number of vertices of Ĉ in K and is thus σ(Ĉ)-measurable.

Proof of Lemma 1.5.1. Using that the bias of the oracle estimator ϑ̂ = |Ĉ|+ N∂/(N◦ +

1)|Ĉ| is exponentially small, it remains to compare its expectation with the expectation

of the plug-in estimator ϑ̂plugin to show (1.5.2):

E[ϑ̂− ϑ̂plugin] = E
[
|Ĉ|( N∂

N◦ + 1
− N∂

N
)

]
= E

[
|Ĉ| N2

∂ −N∂

(N◦ + 1)(N◦ +N∂)

]
(1.7.1)

>
d

d+ 1
E
[

|Ĉ|N2
∂

(N◦ + 1)2λ|C|
1(N 6 2λ|C|)

]
, (1.7.2)

where in the last line we have used |Ĉ| > 0 only if N∂ > d+ 1 and in this case N2
∂ −N∂ >

d
d+1

N2
∂ . Using E[(N◦ + 1)−1 | Ĉ] = λ−1◦ (1 − e−λ◦) from above, we obtain after writing

1(N 6 2λ|C|) = 1− 1(N > 2λ|C|)

E[ϑ̂− ϑ̂plugin] >
d

d+ 1

(
E
[
N2
∂ |Ĉ|(1− e−λ◦)

2λ◦λ|C|

]
− E

[
N2
∂ |Ĉ|

2λ|C|
1(N > 2λ|C|)

])
>

d

d+ 1

(E[N2
∂ (1− e−λ◦)]

2λ2|C|
−

E
[
N21(N > 2λ|C|)

]
2λ

)
.
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By Cauchy-Schwarz inequality and large deviations similarly to (1.5.11), the first term

is bounded from below by a constant multiple of E[|C \ Ĉ|]2/|C| in view of E[N2
∂ ] >

λ2E[|C \ Ĉ|]2 , see e.g. Section 2.3.2 in [36]. Because of N ∼ Poiss(λ|C|), the second term

is of order λ|C|2e−λ|C| and thus asymptotically of much smaller order.

Figure 1.8: Monte Carlo RMSE estimates for the studied estimators for the volume of the
unit cube C = [0, 1]d in dimensions d = 3, 4, 5, 6 .
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Chapter 2

The wrapping hull and a unified

framework for volume estimation

2.1 Main contribution and the structure

In this chapter, we combine techniques from statistics and stochastic geometry to build

a general framework for estimating the volume of a set. We focus on the Poisson point

process (PPP) observation model with intensity λ > 0 on a set A. We thus observe

X1, ..., XN
i.i.d.∼ U(A), N ∼ Poiss(λ|A|), (2.1.1)

where (Xn), N are independent and |A| denotes the volume or the Lebesgue measure of

the set A . The set A is meant to belong to a class A satisfying one simple assumption:

the class is assumed to be intersection stable, see Section 2.2 for a concise definition. The

classes of sets covered by the assumption include:

• convex sets;

• weakly-convex sets;

• star-shaped sets with a Hölder-continuous boundary;

• concentric sets;

• polytopes with fixed directions of outer unit normal vectors;

• compact sets.

In Section 2.2, we introduce the so-called wrapping hull Â , which can informally be

described as the minimal set from the class that contains the data points X1, ..., XN . It is

then used in Section 2.3 to construct the so-called oracle estimator for the volume of a

set belonging to one of the aforementioned classes when the intensity λ of the process
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is known. The oracle estimator is shown to be uniformly of minimum variance among

unbiased estimators (UMVU). Section 2.4 is devoted to the estimation of the intensity

and derives a fully data-driven estimator of the volume,

ϑ̂ =
N + 1

N◦ + 1
|Â| , (2.1.2)

where N◦ is the number of data points lying in the interior of the wrapping hull. Figure 2.1

illustrates an example in which a naive estimator |Â| significantly underestimates the

true volume |A| even in the case when the class of sets is known whereas the estimator

ϑ̂ produces a rather striking performance, see Section 2.8 for a more detailed numerical

study1. The mean squared risk of the estimator is shown to mimic the mean squared risk of

the oracle estimator. Although the main object of analysis is the PPP model, the key results

transfer to the so-called uniform model, cf. Section 2.4.1, using “Poissonisation”. Section 2.5

further establishes the rates of convergence of the oracle estimator and the estimator ϑ̂ in

(2.1.2) for the considered classes of sets satisfying the assumption. Theorem 2.4.4 states a

generalized Efron’s inequality for the wrapping hull, cf. [60], which reduces the analysis

of the mean squared error of the estimator ϑ̂ to the distributional characteristics of the

missing volume |A \ Â| , a uniform lower bound on its expectation and a uniform deviation

inequality. Interestingly, a uniform lower bound on the expectation of the missing volume

has not even been established for the class of convex sets. We therefore establish the rates

of convergence only for a relatively simple class of polytopes with fixed directions of outer

unit normal vectors in Section 2.5.5. A more general question is beyond the scope of the

present chapter and left to future research. In volume estimation of weakly-convex sets in

Section 2.5.1 there is a further peculiar question of adaptation to a smoothing parameter.

We suggest an adaptation procedure inspired by Lepski’s method, cf. [93], and study it

numerically in Section 2.8. Our numerical results in Section 2.8, mainly devoted to volume

estimation for the weakly-convex sets, in particular, demonstrate that overestimating the

smoothing parameter may have a significant cost for volume estimation. Some of the

technical lemmata are deferred to the Appendix. Finally, we encounter and state a variety

of new open questions in stochastic geometry, which we barely begin to nibble at the edges.

Interestingly enough, the framework was mentioned in a seminal paper [84] by David

Kendall in the Statslab at the University of Cambridge, but has never been fully explored.

1The simulations were implemented using the R package “spatstat” by [10].
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Figure 2.1: On the left: observations over an r-convex set A , the annulus B(0.5, 0.5) \
B(0.5, 0.25) with the ball inside B(0.5, 0.1) . On the right: the r-convex hull Â (black)

and the true set A (blue). The volume of the wrapping hull here is |Â| = 0.307 , the true

volume is |A| = 0.620 and our estimator yields ϑ̂ = 0.578 .

2.1.1 Relationship to the work on volume estimation of a convex

set

Some of the theoretical results in the present chapter naturally follows the results for the

convex case, cf. Section 2.3 and Theorem 2.4.2 in Section 2.4, and the corresponding results

in the first chapter. In fact, a key observation igniting the development of the present

framework is that estimation of the volume of convex sets can in fact solely rely upon the

property of convex sets being stable under taking intersections rather than convexity itself.

This observation appears to have a substantial value for volume estimation in a variety

of scenarios far beyond convexity. Volume estimation for some of the classes covered by

the framework, in particular, the weakly-convex sets, has been long seen as notoriously

difficult with standard geometric arguments, see the references in Section 2.5.

Not violating the flow of the thesis, we shall therefore omit some of the proofs of

the statements that are deduced from the proofs of the corresponding statements for

the convex case. The proof of the result that the wrapping hull is a complete statistic

in Theorem 2.3.3 is slightly simplified compared to the proof of the theorem that the

convex hull is a complete statistic and hinges upon a measure-theoretic result in stochastic

geometry. In contrast to the special case of convex sets, this chapter further argues that

the designed estimator ϑ̂ is in fact adaptive as its rate explicitly depends on the rate of

convergence of the missing volume |A\Â| . This result rests upon Efron’s inequality proved
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in Section 2.4.2. Section 2.4.1 explicitly states that the same estimator is minimax optimal

in the uniform model. Section 2.5 conveys the most noticeable value for applications as it

provides efficient data-driven estimators and clearly outlines the steps of deriving explicit

rates of convergence for specific classes of intersection stable sets.

2.2 The wrapping hull

In this section, we introduce the main notions and collect recently developed mathematical

tools. Let (Ω,F ,P) be a probability space, fix a convex compact set E in Rd and equip

it with the Borel σ -algebra E with respect to the Euclidean metric ρ . Without loss of

generality one may assume that E = [0, 1]d .

Let K be the set of all compact subsets of E equipped with its Borel σ -algebra BK

with respect to the Hausdorff-metric ρH defined for two non-empty compact sets A and

B by

ρH(A,B) = max
(

sup
x∈B

ρ(x,A), sup
x∈A

ρ(x,B)
)
. (2.2.1)

It is known, see Theorem C.5 in [105], that the Borel σ -algebra BK coincides with the

σ -algebra σ([B]K, B ∈ K) with [B]K = {A ∈ K : A ⊆ B} . Moreover, the space (K, ρH)

is Polish.

Let A ⊆ K be a family of compact subsets of E fulfilling the following assumption

Assumption 2.2.1. A is closed under taking arbitrary intersections and ∅,E ∈ A .

Then the metric subspace (A, ρH) has the induced Borel σ -algebra BA = A∩BK =

{A ∩K : K ∈ BK} , which thus coincides with the σ -algebra A = σ([B], B ∈ A) where

[B] = {A ∈ A : A ⊆ B} . It turns out there is an interesting connection between the

families of sets satisfying Assumption 2.2.1 and the trapping systems introduced in the

work of [84] on the theory of random sets, see also Section 7.2 in [105].

Recall that one can view (N (K), K ∈ K) as a set-indexed stochastic process. It has

no direct order and its natural filtration is defined by

FK
def
= σ({N (U);U ⊆ K,U ∈ K}) (2.2.2)

for any K ∈ K . The properties of the filtration (FK , K ∈ K) are well studied, cf [148].

By construction, the restriction NK = N (· ∩K) of the point process N onto K ∈ K is

FK -measurable (in fact, FK = σ({NK(U);U ∈ K}) ). Moreover, it can be easily seen that

NK is a Poisson point process in M , cf. the Restriction Theorem in [85]. Furthermore, we

say that a set-indexed, (FK) -adapted integrable process (XK , K ∈ K) is a martingale if

E[XB|FA] = XA holds for any A,B ∈ K with A ⊆ B . By the independence of increments,
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the process

MK
def
= N (K)− λ|K|, K ∈ K , (2.2.3)

is clearly a martingale with respect to its natural filtration (FK , K ∈ K) .

A random compact set K is a measurable mapping K : (M,M)→ (K,BK) . Recall

that a random compact set K is called an FK -stopping set if {K ⊆ K} ∈ FK for all

K ∈ K . The σ -algebra of K -history is defined as FK = {A ∈ F : A ∩ {K ⊆ K} ∈
FK ∀K ∈ K}, where F = σ(FK ;K ∈ K) . We introduce the wrapping hull of the PPP

points on a set A ∈ A , which is served as a set-estimator of A .

Definition 2.2.2. The A -wrapping hull (or simply the wrapping hull) of the PPP points

is a mapping Â : M → A defined as

Â
def
= wrapA{X1, ..., XN}

def
=
⋂
{A ∈ A : Xi ∈ A, ∀i = 1, ..., N} . (2.2.4)

For a set A ⊆ E let Ac denote its complement.

Lemma 2.2.3. The set K̂ def
= Âc, the closure of the complement of the wrapping hull, is an

(FK)-stopping set.

The proof of Lemma 2.2.3 essentially repeats the steps of the proof of an analogous

statement for the convex hull of the PPP points given in Lemma 2.2 in [14]. The fol-

lowing corollary of this lemma rests upon the optional sampling theorem for set-indexed

martingales, cf. [148].

Corollary 2.2.4. The number of points N∂ lying on the wrapping hull Â and the

missing volume |A \ Â| satisfy the relation

E[N∂] = λE[|A \ Â|] . (2.2.5)

As in the case of convex sets, we define the likelihood function for the PPP model.

Note that we can evaluate the probability

PA
(
Â ∈ B

)
=
∞∑
k=0

e−λ|A|λk

k!

∫
Ak

1(wrapA{x1, ..., xk} ∈ B) d(x1, ..., xk)

for B ∈ BA . Usually, we only write the subscript A or sometimes (A, λ) when different

probability distributions are considered simultaneously. The likelihood function L(A,N ) =
dPA,λ
dPE,λ0

for A ∈ A and λ, λ0 > 0 is then given by

L(A,N ) =
dPA,λ
dPE,λ0

(N ) = eλ0|E|−λ|A|(λ/λ0)
N1(Â ⊆ A) , (2.2.6)
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cf. Thm. 1.3 in [91]. For the last line, we have used that a point set is in A if and only if

its wrapping hull Â = wrapA{X1, ..., XN} is contained in A.

The following theorem is an essential ingredient for deriving our estimators. The

statement of the theorem is quite intuitive and already used in [117]. Its proof is similar

to the proof of Theorem 1.4.1 in Chapter 1.

Theorem 2.2.5. Set K̂ def
= Âc. The number N∂ of points on the boundary of the wrapping

hull Â is measurable with respect to the σ -algebra of K̂ -history FK̂ . The number of

points in the interior of the wrapping hull N◦ is, conditionally on FK̂ , Poisson-distributed:

N◦
∣∣FK̂ ∼ Poiss(λ◦) with λ◦

def
= λ|Â|. (2.2.7)

In addition, we have FK̂ = σ(Â) , where the latter is the σ -algebra σ({Â ⊆ B,B ∈ A})
completed with the null sets in F .

We shall further use the following short notation: N = N (E) denotes the total number

of points, N◦ = N (Â◦) the number of points in the interior of the wrapping hull Â and

N∂ = N (∂Â) = N (∂K̂) the number of points on the boundary of the wrapping hull.

2.3 Oracle case: known intensity λ

In the case when λ is known one can just estimate the volume |A| by N/λ , which is an

unbiased estimator, whose mean squared risk is given by

E[(N/λ− |A|)2] = Var(N/λ) = |A|/λ , (2.3.1)

thus implying O(λ−1/2) -rate of convergence. This rate can be improved. As we shall see

in Theorem 2.3.3, the wrapping hull is a complete and sufficient statistic thus allowing

one to construct the unique best unbiased estimator of the volume in virtue of the

Lehmann-Scheffé theorem. In view of Theorem 2.2.5 we thus derive our oracle estimator

ϑ̂oracle = E
[N
λ
|FK̂
]

= E
[N◦ +N∂

λ
|FK̂
]

=
N∂

λ
+ |Â| (2.3.2)

The following result is fundamental in characterising the rate of convergence of the risk of

the oracle estimator.

Theorem 2.3.1. For known intensity λ > 0 , the oracle estimator ϑ̂oracle is unbiased

and of minimal variance among all unbiased estimators (UMVU) in the PPP model with

parameter class A . It satisfies

E
[
(ϑ̂oracle − |A|)2

]
= Var(ϑ̂oracle) =

E[|A \ Â|]
λ

. (2.3.3)
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Remark 2.3.2. The theorem asserts that the rate of convergence of ϑ̂oracle is in fact faster

than λ−1/2 for all classes of sets A satisfying Assumption (2.2.1).

Proof. By the tower property of conditional expectation, the estimator ϑ̂oracle is unbiased,

E[ϑ̂oracle] = |A| . Using law of total variance, we derive

Var(ϑ̂oracle) = Var
(
E
[N
λ
|FK̂
])

= Var(
N

λ
)− E

[
Var

(N
λ
|FK̂
)]

(2.3.4)

=
|A|
λ
− E

[
Var

(N◦ +N∂

λ
|FK̂
)]

=
E[|A \ Â|]

λ
. (2.3.5)

Theorem 2.3.3 below affirms that the wrapping hull Â is a complete and sufficient

statistic such that by the Lehmann-Scheffé theorem, the estimator ϑ̂oracle has the UMVU

property.

Theorem 2.3.3. For known intensity λ > 0 , the wrapping hull is a complete and sufficient

statistic.

The proof of Theorem 2.3.3 is deferred to the Appendix. As a result of Theorem 2.3.1,

the performance of the estimator ϑ̂oracle of the volume is reduced to the analysis of the

performance of the wrapping hull estimator of the set itself, which clearly depends on the

geometric properties of classes of sets satisfying Assumption 2.2.1.

The minimax lower bounds on the rate of convergence of the risk of estimating the

volume of a set A ∈ A are often easier to establish for concrete classes of sets using the

so-called hypercube argument, cf. [67]. Interestingly, the following general bound on the

minimax optimal rate holds.

Theorem 2.3.4. The minimax optimal rate of estimating the volume of a set A ∈ A ,

where A follows Assumption (2.2.1) and is not finite, satisfies

λ−2 . inf
ϑ̂λ

sup
A∈A

E
[
(ϑ̂λ − |A|)2

]
. λ−1 , (2.3.6)

where the infimum extends over all estimators ϑ̂λ in the Poisson point process model with

intensity λ .

Remark 2.3.5. The rate O(λ−1) is minimax for estimating the volume in some parametric

classes of sets, in particular, the class of concentric sets, whereas the rate O(λ−1/2) is

established for estimating the volume in the class of compact sets, see Section 2.5.

Proof. The upper bound in (2.3.6) follows directly from Theorem 2.3.1. The lower bound

is obtained by reducing the minimax risk to the Bayes risk and then lower-bounding the

Bayes risk at its minimum. These steps are fairly standard, cf. [89], and we hence omit

them here.
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2.4 Data-driven estimator of the volume

The main ingredient to deriving the estimator of λ is the fact that the closure of the

complement of the A -wrapping hull K̂ def
= Âc is in fact an (FK)-stopping set according to

Lemma 2.2.3. Moreover in analogy with a time-indexed Poisson process, our problem boils

down to the estimation of the intensity of a time-indexed Poisson process starting from an

unknown origin. To see this, recall that according to Theorem 2.2.5, the number of points

N◦ lying inside the wrapping hull Â is Poisson-distributed with intensity λ◦
def
= λ|Â|

provided that |Â| > 0 :

N◦
∣∣FK̂ ∼ Poiss(λ◦). (2.4.1)

We aim to find an estimator for λ−1◦ . On the event {|Â| > 0} , we follow the idea developed

in Chapter 1. That is to say, we use that the first jump time τ of a time-indexed Poisson

process (Yt, t > 0) with intensity ν > 0 is Exp(ν) -distributed and hence E[τ ] = ν−1 .

Using the memoryless property of the exponential distribution, we then have

E[τ |Y1 = m] =
1

m+ 1
1(m > 1) + (1 + ν−1)1(m = 0) . (2.4.2)

Therefore, we conclude that

µ̂(N◦, λ◦)
def
=

(N◦ + 1)−1, for N◦ > 1,

1 + λ−1◦ , for N◦ = 0

satisfies E[µ̂(N◦, λ◦)|FK̂] = λ−1◦ provided that |Â| > 0 . Omitting the term depending on

λ◦ in the unlikely event N◦ = 0 , we derive our final estimator:

ϑ̂ = |Â|+ N∂

N◦ + 1
|Â| = N + 1

N◦ + 1
|Â| . (2.4.3)

Remark 2.4.1. As it follows from Definition 2.2.2, a wrapping hull Â may consist of

disjoint sets, in which case the number of points N◦,k lying inside a piece Âk satisfies

N◦,k
∣∣FK̂ ∼ Poiss(λ|Âk|) due to the homogeneity of the Poisson point process. This fact

can further be used to estimate λ−1 locally. However, in the homogeneous case, we prefer

to use the total number of points to estimate the intensity.

Note that a more explicit bound can be derived using the Cauchy-Schwarz inequality

given a bound on the expected number of points N∂ lying on the wrapping hull Â and a

bound on the moments of the missing volume |A\Â| . This clearly depends on a considered

class of sets satisfying Assumption 2.2.1. The following rather general oracle inequality

holds for the mean squared error of the estimator ϑ̂ . Its proof can be adapted from the
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proofs of Thm. 1.5.3 and Thm. 1.5.4 in Chapter 1 and we hence omit it here.

Theorem 2.4.2. The following oracle inequality for the risk of the estimator ϑ̂ holds for

all A ∈ A whenever λ|A| > 1:

E[(ϑ̂− |A|)2]1/2 6 (1 + cα(λ,A)) Var(ϑ̂oracle)
1/2 + r(λ,A) , (2.4.4)

where

α(λ,A) :=
1

|A|

(Var(|A \ Â|)
E[|A \ Â|]

+ E[|A \ Â|]
)
,

r(λ,A) := c1λ
−1E[N4

∂ ]1/4P(|A \ Â| > |A|/2)1/4 ,

with some numeric constants c, c1 > 0 . In particular, α(λ,A) is bounded by some universal

constant.

2.4.1 Volume estimation in the uniform model

In the PPP model, the data we observe are uniformly distributed points over a set in some

given class and the number of points is a realisation of a Poisson random variable. The

uniform model,

X1, ..., Xn
i.i.d.∼ U(A), A ∈ A , (2.4.5)

is closely related to the PPP model and assumes that the number of points n is fixed.

In stochastic geometry, the objects studied in the PPP model typically exhibit a similar

asymptotic behaviour in the uniform model and vice versa, see e.g. [113] and references

therein for a study of the functionals of the convex hull. This section examines which

results of the present thesis derived in the PPP model remain true in the uniform model.

It is relatively straightforward to show that the wrapping hull remains a sufficient and

complete statistic in the uniform model with slightly adjusted arguments of the proof of

Theorem 2.3.3. It is unknown however whether there exists an UMVU estimator in the

uniform model. Nevertheless, an estimator

ϑ̂unif,n :=
n+ 1

n◦ + 1
|Â| , (2.4.6)

where n◦ is the number of points lying inside the wrapping hull, inherits the same rate

of convergence as the final estimator ϑ̂ in (2.4.3) in the PPP model due to the following

result

Proposition 2.4.3 (Poissonisation). Let n = bλ|A|c > 0 with A being any set in a class
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A . Then letting λ→∞ the following asymptotic equivalence result holds true

E
[
(ϑ̂unif,n − |A|)2

]
∼ E

[
(ϑ̂− |A|)2

]
, ∀A ∈ A . (2.4.7)

Furthermore, the minimax risks satisfy

inf
ϑ̂n

sup
A∈A

E
[
(ϑ̂n − |A|)2

]
∼ inf

ϑ̂λ

sup
A∈A

E
[
(ϑ̂λ − |A|)2

]
, (2.4.8)

where the infimum on the left-hand side extends over all estimators in the uniform model,

whereas the infinum on the right-hand side extends over all estimators in the Poisson point

process model.

Proof. We only prove (2.4.8) here. (2.4.7) can then be proved exploiting similar arguments.

Let us first show the inequality “ & ” . Assume it does not hold and that there exists an

estimator ϑ̂′n in the uniform model with the rate of convergence faster than the minimax

optimal rate in the PPP model. Then for the estimator ϑ̂′N we have for any A ∈ A

E
[
(ϑ̂′N − |A|)2

]
=
∞∑
k=1

E
(
(ϑ̂′N − |A|)2

∣∣N = k
)
P(N = k) (2.4.9)

(2.4.10)

6
b2λ|A|c∑

k=bλ|A|/2c

E
(
(ϑ̂′N − |A|)2

∣∣N = k
)
P(N = k) + c2 exp(−c3n) (2.4.11)

6 c1E
[
(ϑ̂′n − |A|)2

]
+ c2 exp(−c3n) , (2.4.12)

for some constants c1, c2, c3 > 0 using Bennett’s inequality, a contradiction in view of

Theorem 2.3.4. The other direction follows using the same technique.

2.4.2 Efron’s inequality for the wrapping hull

In this section, we show that the rate of convergence of the risk for the estimator ϑ̂ in

Theorem 2.4.2 hinges in fact upon only a deviation of the missing volume |A \ Â| . More

than 50 years ago Efron showed in [60] that the moments of the number of the points N∂,k

lying on the boundary of a convex hull Ĉk in the uniform model X1, ..., Xk
i.i.d.∼ U(C) ,

with C ⊆ Rd being a convex set, satisfies the identity

E[N q
∂,k] =

q∑
r=1

n(k, q, r)E[|Ĉk−r|r] , (2.4.13)

where n(k, q, r) is the number of q -tuples from 1, ..., k having exactly r different values,

n(k, q, r) =
(
k
r

)∑r
m=1(−1)r−m

(
r
m

)
mq . This yields a dimension-free asymptotic equivalence
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result,

E[N q
∂,k] ∼ kqE[|C \ Ĉk|q] . (2.4.14)

We here extend a one-sided version of this results to the wrapping hull.

Proposition 2.4.4 (Efron’s inequality for the wrapping hull). Let A be any class

satisfying Assumption 2.2.1 and Â be the corresponding wrapping hull of the PPP points

of intensity λ > 0 over a set A ∈ A . Then the following asymptotic inequality holds

E[N q
∂ ] . λqE[|A \ Â|q] , (2.4.15)

provided that the probability of observing q points lying on the boundary of the wrapping

hull Â is non-zero.

Remark 2.4.5. It follows by Jensen’s inequality and Corollary 2.2.4, that E[N q
∂ ] >

E[N∂ ]q = λqE[|A\ Â|]q . For some examples, like the class of convex sets, this in fact implies

E[N q
∂ ] ∼ λqE[|A \ Â|q] .

Remark 2.4.6. Identities that relate the functionals of the convex hull of the points

distributed uniformly over a convex set are thoroughly studied in stochastic geometry, see

[18, 38, 113].

Proof. Let us first consider the uniform model and then transfer the result to the PPP

model using Poissonisation. We follow Efron’s idea, see also [18, 36], that

E[|A \ Âk|q] = |A|q P(Xk+1 /∈ Âk, ..., Xk+q /∈ Âk) (2.4.16)

> |A|q P(Xk+1 ∈ ∂Âk+q, ..., Xk+q ∈ ∂Âk+q) (2.4.17)

=
|A|q(
k+q
q

) E∑1(Xi1 ∈ ∂Âk+q, ..., Xiq ∈ ∂Âk+q) (2.4.18)

=
|A|q(
k+q
q

) E(N∂,k+q

q

)
, (2.4.19)

the sum being taken over all tuples (i1, ..., iq) from the integers 1, ..., k + q . Rearranging

the terms, this entails E[N q
∂,k] . kqE[|A \ Âk|q] .

Using Poissonisation, we further derive for the PPP model,

E[|A \ Â|q] =
∞∑
k=1

E(|A \ ÂN |q
∣∣N = k)P(N = k) (2.4.20)

&
∞∑
k=1

(2λ|A|)−qE
[
N q
∂,k

]
P(N = k) +

∞∑
k=b2λ|A|c

(k−q − (2λ|A|)−q)E
[
N q
∂,k

]
P(N = k)

(2.4.21)
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= (2λ|A|)−qE[N q
∂ ] +

∞∑
k=b2λ|A|c

(k−q − (2λ|A|)−q)E
[
N q
∂,k

]
P(N = k) (2.4.22)

with the absolute value of second sum being bounded using the Cauchy-Schwarz inequality

and large deviations by

c1 E[N2q
∂ ]1/2P(N > [2λ|A|])1/2 6 c1 E[N2q

∂ ]1/2 exp(−c2n) , (2.4.23)

for some constants c1, c2 > 0 . Thus, (2.4.14) follows.

Proposition 2.4.4 and Theorem 2.4.2 immediately suggest the following bound for the

remainder term in the oracle inequality,

r(λ,A) 6 cE[|A \ Â|4]1/4 P(|A \ Â| > |A|/2)1/4 , (2.4.24)

for some numeric constant c > 0 . Therefore, the oracle inequality in Theorem 2.4.2 hinges

upon only two variables:

• the ratio Var(|A \ Â|)/E[|A \ Â|] of the moments of the missing volume,

• a uniform deviation inequality for the missing volume.

Both results are fairly involved and we shall only discuss here how to derive them for some

simple classes of sets satisfying Assumption 2.2.1.

2.5 Classes of sets satisfying Assumption 2.2.1

This section collects some examples of classes of sets that satisfy Assumption 2.2.1. Note

that the class of all convex sets Cconv satisfies the assumption and was extensively

studied in [14]. The most involved statements in the inference on convex sets were

underpinned by the abundance of results from stochastic geometry on moment bounds

and deviation inequalities for the missing volume, see Lemma 4.6 in [14]. In particular,

the ratio Var(|C \ Ĉ|)/E[|C \ Ĉ|] ∼ 1/λ is established in [113] for all convex sets C

in dimensions d = 1, 2 . In dimensions d > 2 , one can bound the ratio only for some

subsets of the class of convex sets. Thus, for a convex set C with C2-boundary of positive

curvature, it is known thanks to [120] that Var(|C \ Ĉ|) . λ−(d+3)/(d+1) . The lower bound

for the first moment, E[|C \ Ĉ|] & λ−2/(d+1) , was shown in [128]. For a polytope C , the

upper bound Var(|C \ Ĉ|) . λ−2(log λ)d−1 was obtained in [17], while the lower bound

for the first moment, E[|C \ Ĉ|] & λ−1(log λ)d−1 , was proved in [16]. A uniform deviation

inequality for convex sets obtained in Thm. 1 in [35] allows to derive sharp upper bounds

on the moments of the missing volume. The proof of the deviation inequality exploited a

50



bound on the entropy of convex sets. It remains an intriguing open question in stochastic

geometry whether λVar(|C \ Ĉ|) ∼ E[|C \ Ĉ|] holds universally for all convex sets in

arbitrary dimensions. Some of the classes of sets we consider here are much larger, and

very little has been known about them in the mathematical literature.

2.5.1 r-convex sets

We denote by B(x, r) ⊆ Rd (resp. B◦(x, r) ) the closed (resp. open) ball with centre x

and radius r .

Definition 2.5.1. A compact set Cr in E ⊆ Rd is called r -convex (or weakly-convex )

for r > 0 , if its complement is the union of all open Euclidean balls of diameter r that

are disjoint to Cr , i.e. if

Cr =
⋂

Bc◦(x,r)∩Cr=∅

Bc
◦(x, r) . (2.5.1)

We denote the class of r -convex sets by Cr .

Note that an r -convex set fulfills the outside rolling ball condition, i.e. for all y ∈ ∂Cr
there is a closed ball B(x, r) such that y ∈ ∂B(x, r) and B◦(x, r)∩Cr = ∅ . Heuristically

this means that one can “roll” a ball of radius r freely over the boundary of a set. Note

that according to the definition, r -convex sets can have “holes” and do not need to be

connected, see Figure 2.4 for some examples. In the terminology of [84], Cr ∈ Cr means

that the set Cr is trapped by the balls of radius r . The r -convex sets were introduced

in [116] and presumably independently in [59]; see [51, 139] and references therein for a

recent work on estimation of r -convex sets. In the literature, much more attention has

been devoted to the sets satisfying the so-called inside and outside rolling ball condition,

when both Cr and Cc
r are r -convex, see [98, 138]. The reason probably is that sets

with smooth boundaries (with no angles) are sometimes easier to handle with geometric

arguments, see [114].

The Cr -wrapping hull is defined by

Ĉr :=
⋂

Bc◦(x,r)∩{X1,...,XN}=∅

Bc
◦(x, r) (2.5.2)

and often called the r -convex hull in the literature. Thus the oracle estimator in (2.3.2)

has the following form

ϑ̂r,oracle :=
N∂

λ
+ |Ĉr| , (2.5.3)

where N∂ is the number of sample points lying on the the r -convex hull Ĉr . In order

to investigate the performance of this estimator according to Theorem 2.3.1 it suffices to

study supCr∈Cr ECr [|Cr \ Ĉr|] . In fact the following result holds and it is a consequence of

Theorem 2.3.1.
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Theorem 2.5.2. For known intensity λ > 0, the worst case mean squared error of the oracle

estimator ϑ̂r,oracle over the parameter class Cr decays as λ ↑ ∞ like supCr∈Cr ECr [|Cr \
Ĉr|]/λ in dimension d:

lim sup
λ→∞

λ sup
Cr∈Cr,|Cr|>0

{
E
[
(ϑ̂r,oracle − |Cr|)2

]
/E
[
|Cr \ Ĉr|

]}
<∞ . (2.5.4)

Remark 2.5.3. Note that the class of convex sets Cconv belongs to Cr for all r > 0 and

thus using Theorem 3.4 in [14] we have a lower bound on the rate of convergence,

inf
ϑ̂λ

λ(d+3)/(d+1) sup
Cr∈Cr

ECr [(|Cr| − ϑ̂λ)2] (2.5.5)

> inf
ϑ̂λ

λ(d+3)/(d+1) sup
C∈Cconv

EC [(|C| − ϑ̂λ)2] > 0 , (2.5.6)

where the infimum extends over all estimators ϑ̂λ in the PPP model with intensity λ .

Furthermore, the rate λ−(d+3)/(d+1) is achieved up to a logarithmic factor for sets Cr ∈ Cr

with a smooth boundary following [114].

Following Section 2.4, the mean squared error of the estimator

ϑ̂r :=
N + 1

N◦ + 1
|Ĉr| , (2.5.7)

satisfies the oracle inequality in Theorem 2.4.2.

2.5.2 Compact sets

Interestingly the class of all compact sets K of non-zero Lebesgue measure satisfies

Assumption 2.2.1 as well. The richness of this class makes it most appealing for conducting

statistical inference. Estimation of compact sets was studied in [55], where it was shown

that the union of small Euclidean balls centred at the points of the sample is a consistent

estimator of a compact set. The K -wrapping hull is just the union of sample points and

so N∂ = N and |K̂| = 0 a.s. Hence for the oracle estimator in (2.3.2) we have

ϑ̂K,oracle :=
N

λ
. (2.5.8)

This estimator is unbiased and from (2.3.1) the following result immediately follows.

Lemma 2.5.4. For known intensity λ > 0, the worst case mean squared error of the oracle

estimator ϑ̂K,oracle over the parameter class K decays as λ ↑ ∞ like λ−1:

sup
K∈K

1

|K|
E
[
(ϑ̂K,oracle − |K|)2

]
=

1

λ
. (2.5.9)
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It seems impossible without imposing further structure on the class K to estimate λ

in this scenario.

2.5.3 Concentric sets

A class of sets generated by one specific convex set dilated from its centre of gravity fits

into the framework as well. We denote this class by D ⊆ Cconv and its generator by

D . We assume the centre point x0 of a set in the class is known and denote by Dr ,

0 < r <∞ , a member of the class:

Dr :=
{
x0 + r(x− x0)

∣∣∣x ∈ D} . (2.5.10)

Without loss of generality one may assume here that E = DR for some R > 0 . Note

that the class D is a parametric class and standard methods of functional estimation in

non-regular models, cf. [77], can possibly be exploited to construct asymptotically efficient

estimators in a sharp sense. In this section, we illustrate that it is straightforward to derive

an efficient estimator of the volume of a set in the class D with the proposed framework.

The D -wrapping hull is given by

D̂ :=
⋂

Dr:{X1,...,XN}∈Dr

Dr , (2.5.11)

and thus determined by only one point of the sample. The event to have more than one

point of the sample on the boundary ∂D̂ has measure zero yielding N∂ = 1 . This entails

for the oracle estimator:

ϑ̂D,oracle :=
1

λ
+ |D̂| . (2.5.12)

The risk of ϑ̂D,oracle according to Theorem 2.3.1 depends on supDr∈D EDr [|Dr \ D̂|] . In

view of Corollary 2.2.4, it holds:

∀Dr ∈ D : λE[|Dr \ D̂|] = 1 . (2.5.13)

Thus, we immediately derive the rate of convergence of ϑ̂D,oracle . The minimax optimality

is straightforward to prove using standard techniques for the lower bounds.

Lemma 2.5.5. For known intensity λ > 0, the worst case mean squared error of the oracle

estimator ϑ̂D,oracle over the parameter class D decays as λ ↑ ∞ like λ−2:

sup
Dr∈D

E
[
(ϑ̂D,oracle − |Dr|)2

]
=

1

λ
sup
Dr∈D

EDr [|Dr \ D̂|] =
1

λ2
. (2.5.14)
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Figure 2.2: The two concentric sets (blue), observations (points) and their D -wrapping
hulls (dashed lines).

The rate of convergence O(λ−1) is minimax optimal for estimating |Dr| in the PPP

model with parameter class D

Further following the general scheme of estimating λ in Section 2.4, we have the final

estimator for the volume

ϑ̂D :=
N + 1

N
|D̂| . (2.5.15)

To establish the asymptotic properties of this estimator, according to Theorem 2.4.2 and in

view of (2.5.13), it suffices to derive a uniform deviation inequality for the missing volume

|Dr \ D̂| . The following deviation inequality for the uniform model is easily transferred to

the PPP model using Poissonisation, cf. Section 2.4.1.

Lemma 2.5.6. In the uniform model with X1, ..., Xn
i.i.d.∼ U(Dr) , the following uniform

deviation result holds

lim
n→∞

sup
Dr∈D

PDr
(
n
|Dr \ D̂n|
|Dr|

> x

)
= e−x , ∀x > 0 . (2.5.16)

Furthermore, limn→∞ supDr∈D E
[
nq|Dr \ D̂n|q/|Dr|q

]
= qΓ (q) for any q ∈ N .

Proof. For any y ∈ (0, 1) and any Dr ∈ D , we obtain

PDr
(
|Dr \ D̂n| > y|Dr|

)
= (1− y)n . (2.5.17)

Taking y = x/n for any x > 0 and letting n → ∞ yields (2.5.16). The result on the

moments of the missing volume follows by Fubini’s theorem.

Corollary 2.5.7. It follows for the risk of the estimator ϑ̂D for all Dr ∈ D whenever
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λ|Dr| > 1 :

E
[
(ϑ̂D − |Dr|)2

]1/2
6
(

1 +
c1

λ|Dr|

)
E
[
(ϑ̂D,oracle − |Dr|)2

]1/2
+ c2e

−c3λ .
1

λ2
, (2.5.18)

with some numeric constants c1, c2, c3 > 0

2.5.4 Polytopes

It was noted in [14], that the estimator of the volume based on the Cconv -wrapping hull

estimator (the convex hull Ĉ ) is adaptive to the class of polytopes P (see Remark 3.3).

In fact, the estimator

ϑ̂P,oracle :=
N∂

λ
+ |Ĉ| (2.5.19)

satisfies

Lemma 2.5.8. For known intensity λ > 0, the worst case mean squared error of the oracle

estimator ϑ̂P,oracle over the parameter class P decays as λ ↑ ∞ like λ−2(log(λ))d−1:

lim sup
λ→∞

λ2(log(λ))1−d sup
P∈P,|P |>0

{
E
[
(ϑ̂P,oracle − |P |)2

]}
<∞ . (2.5.20)

We stress here, however, that the class polytopes P does not satisfy Assumption 2.2.1.

The framework applies to the class of convex sets C and Lemma 2.5.8 only allows to

improve the rate for the subclass of C . The class P is stable only under finite intersections;

taking arbitrary (possibly uncountable) intersections, one can obtain an element not lying

in the class.

2.5.5 Polytopes with fixed directions of outer unit normal vec-

tors

The class of polytopes PSk with fixed directions Sk = {u1, ..., uk} of outer unit normal

vectors uk belonging to the unit sphere Sd−1 provides another interesting example of

intersection stable sets. We assume the class is well-defined in the sense that there exists

a polytope PSk whose outer unit normal vectors are exactly {u1, ..., uk} . Without loss

of generality we may assume E = PSk . The PSk -wrapping hull P̂ is a polytope with at

most k facets and is given by

P̂ :=
⋂

P∈PSk
:{X1,...,XN}∈P

P . (2.5.21)
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The oracle estimator and the data-driven estimator are thus defined as

ϑ̂PSk
,oracle :=

N∂

λ
+ |P̂ | , ϑ̂PSk

=
N + 1

N◦ + 1
|P̂ | , (2.5.22)

where the number of points lying on the boundary of the wrapping hull N∂ is equal to

the number of facets of the wrapping hull and hence upper-bounded by k . According to

the general scheme, the rate of convergence of the risk for the oracle estimator ϑ̂PSk
,oracle

and the final estimator ϑ̂PSk
rests upon a deviation inequality for the missing volume and

is established in the following theorem which is proved in the Appendix.

Theorem 2.5.9. The worst case mean squared error of the estimator ϑ̂PSk
over the

parameter class PSk satisfies:

sup
P∈PSk

E
[
(ϑ̂PSk

− |P |)2
]
.
kW (λ/k)

λ2
, (2.5.23)

whenever λ|P | > 1 , where W is the Lambert-W function that satisfies W (zez) = z . The

rate can further be upper-bounded by k log(λ/k)/λ2 .

2.6 Uniform deviation inequality for weakly-convex

sets

An explicit minimax rate of convergence in terms of the intensity of the points is far more

involved and exploits a geometric structure of the weakly-convex sets from Definition 2.5.1.

Lemma 2.6.1. Let {C1, ..., CNε} ∈ Cr be an ε -net for the class Cr with respect to the

Haussdorf distance. Then for any set C ∈ C2r there exists a set Ck in the net such that

ρ1(Cr, C
k) 6 cε and Cr ⊆ Ck for some constant c > 1 .

Proof. Clearly we have C ∈ Cr since C ∈ C2r . Consider the set dCe := B(C, ε) around

C . It clearly satisfies ρH(dCe, C) = ε and moreover we have dCe ∈ Cr for ε small

enough. Hence there exists Ck in the ε -net for the class Cr such that ρH(Ck, dCe) < ε .

It then follows that ρH(Ck, Cr) < 2ε and Cr ⊆ Ck , which implies ρ1(C
k, Cr) < cε for

some constant c > 1 .

Theorem 2.6.2. In the PPP model, there exist a constant c > 1 such that the following

uniform deviation inequality holds

sup
Cr?∈Cr?

P
(
λ
(
|Cr? \ Ĉr| − 2cε

)
> x

)
6 e−x , ∀x > 0 . (2.6.1)

for any r 6 r? provided that ε satisfies the equation H(Cr/2, ρH , ε) = cλε .

56



Proof. The proof is inspired by a metric entropy approach, cf. [89]. Recall that both Cr?

and Ĉr belong to the class Cr since Cr? ⊆ Cr . Let {C1, ..., CNε} ∈ Cr/2 be an ε -net

for the class Cr/2 with respect to the Haussdorf distance. According to Lemma 2.6.1,

there exists a random set C ĵ in the net such that ρ1(Ĉr, C
ĵ) 6 cε and Ĉr ⊆ C ĵ ⊆ Cr?

for some constant c > 1 and ε small enough.

Let y = x/λ+ 2cε . We thus have

P
(
|Cr? \ Ĉr| > y

)
6 P

(
|Cr? \ C ĵ| > y − cε

)
(2.6.2)

6
∑

j:|Cr?\Cj |>y−cε

P
(
N (Cr? \ Cj) = 0

)
(2.6.3)

6 exp
(
− λy + cλε+H(Cr/2, ρH , ε)

)
6 e−x, (2.6.4)

provided that ε satisfies H(Cr/2, ρH , ε) = cλε .

Let us denote convr(C) the r -convex hull of a compact set C . We then derive a

useful corollary analogously to Theorem 2.6.3.

Corollary 2.6.3. In the PPP model, there exist a constant c > 1 such that the following

uniform deviation inequality holds

sup
Cr?∈Cr?

P
(
λ
(
|convr(Cr?) \ Ĉr| − 2cε

)
> x

)
6 e−x , ∀x > 0 . (2.6.5)

for any r > r? provided that ε satisfies the equation H(Cr/2, ρH , ε) = cλε .

Let us define

ψλ,r =
ελ,r
λ
, (2.6.6)

where ελ,r satisfies the equation H(Cr/2, ρH , ελ,r) = cλελ,r .

Theorem 2.6.4. The minimax rate of convergence of the estimator satisfies

lim sup
λ→∞

ψ−1λ,r sup
Cr?∈Cr? , |Cr? |>0

E
[
|Cr? \ Ĉr|

]
<∞ . (2.6.7)

for any r < r? .

Remark 2.6.5. Note that Theorem 2.6.4 suggests that it suffices to use the wrapping

hull Ĉr for any r < r? to achieve the minimax optimal rate of convergence. This is a

consequence of the fact that Cr? ∈ Cr? ⊆ Cr for any r < r? .
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2.6.1 Volume estimation and the dilated hull estimator

The volume of a weakly-convex set is one of its most fundamental functionals. In this

section, we quantify the minimax rate of convergence of an estimator of the volume

ϑ̂r :=
N + 1

N◦ + 1
|Ĉr| , (2.6.8)

recently proposed in [11]. This estimator was shown to have surprising non-asymptotic

properties like the UMVU (unbiased with minimal possible variance among all unbiased

estimator). The next result identifies the minimax rate of convergence of the estimator ϑ̂r .

Theorem 2.6.6. The minimax rate of convergence of the estimator ϑ̂r satisfies

lim sup
λ→∞

(λ/ψλ,r) sup
Cr?∈Cr? ,|Cr? |>0

{
E
[
(ϑ̂r − |Cr?|)2

]}
<∞ , (2.6.9)

for all r < r? where ψλ,r is given in (2.6.6).

Corollary 2.6.7. The following asymptotic equivalence result between the key functionals

of the r -convex hull holds

λE
[
(ϑ̂r − |Cr?|)2

]
� E

[
|Cr? \ Ĉr|

]
� E

[Nδ

λ

]
, (2.6.10)

for all r 6 r? .

Proof. Follows from Lemma 2.2.4 in view of Cr? ∈ Cr for all r 6 r? .

2.7 Adaptation to the regularity parameter r?

In applications, the regularity parameter r? is often unknown and an appropriate adapta-

tion procedure is hence desired. In view of the fact that the estimator of the volume hinges

upon the wrapping hull, it actually suffices to provide an adaptive procedure for estimating

the set only. Let us define the target regularity parameter r? > 0 corresponding to a set

Cr? as

r? := sup{r > 0 : C ∈ Cr} . (2.7.1)

From a non asymptotic point of view, it is clear that it is better to exploit the estimator

Ĉr for the values of r smaller than but close to r? , since we have |Cr? \ Ĉr2 | 6 |Cr? \ Ĉr1|
for r1 6 r2 6 r? . In the region r? < r <∞ , the estimator starts missing holes and hence

can lose dramatically in the risk of convergence. In fact, the estimator Ĉr estimates the

r -convex hull of the set Cr? . We further observe that in the regime r1 6 r2 6 r? ,

|Ĉr2 \ Ĉr1| = |Cr? \ Ĉr1| − |Cr? \ Ĉr2| ≈ Nδ,r1/λ−Nδ,r2/λ ,
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whereas in the regime r1 6 r? 6 r2 , an approximation error |convr(Cr?) \ Cr? | starts to

constitute the term |Ĉr2 \ Ĉr1| .
This intuition yields the following procedure for estimating the set. Let us fix some

R > 0 and break the interval (0, R) down into K pieces of equal length 0 < r1 < · · · <
rK = R . Let us define an estimator of the regularity parameter r as

r̂ := inf
{
rk−1| ∃k′ 6 k : |Ĉrk \ Ĉrk′ | > c1Nδ,rk′

/λ− c2Nδ,rk/λ
}
∧ rK , (2.7.2)

with some universal constants c1, c2 > 0 and define a corresponding element of the

partition by k̂ . This procedure is inspired by the prominent Lepskii’s method, see [93],

and was recently numerically studied in [11]. This procedure is numerically studied in the

following section.

2.8 Illustrative simulations

Let us first consider the two classes of concentric sets generated by a ball with a centre

at x = (0.5, 0.5) and a square with a centre at the same point, see Figure 2.2. The mean

squared error estimate is based on M = 1000 Monte Carlo iterations in each case. We

demonstrate the result of Lemma 2.5.5 that in fact

E
[
(ϑ̂D − |Dr|)2

]
=

1

λ2
, (2.8.1)

by plotting the mean squared error estimate multiplied by the intensity squared λ2 with

respect to λ in Figure 2.3. One can see that the lines in the plots are fairly closed to 1

supporting the claim. The simulations were implemented using the R package “spatstat”

by [10].

Furthermore, we illustrate the performance of the proposed estimators for a class of

r -convex sets. Our first example of an r -convex set for simulations is the annulus Cr? =

B(0.5, 0.5) \B(0.5, 0.25) . Thus clearly Cr? ∈ Cr for all 0 < r 6 0.25 . Figure 2.4 depicts

the r -convex hull estimator (2.5.3) for r = 0.01, 0.04, 0.2, 1 based on the observations of

the PPP with λ = 300 . An important observation is that once the value of r is larger

than the true radius r? of an r -convex set, the r -convex hull essentially misses the “holes”

of radius r? . One should bear this in mind when using large values of r for constructing

the oracle estimator when the number of observation points is small. This subtle issue is

depicted in Figure 2.5, where the root mean squared error of the oracle estimator ϑ̂r,oracle

for the volume (black line), based on the r -convex hull with r = 0.30 , converges to the

area of the “hole” of size π(0.25)2 ≈ 0.196 . Another point is that when the number of

observations is small, the r -convex hull with a small value of r essentially coincides with

the points themselves and thus the RMSE of the oracle estimator ϑ̂r,oracle coincides with
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Figure 2.3: The mean squared error E
[
(ϑ̂D − |Dr|)2

]
multiplied by the intensity squared

λ2 with respect to λ for the ball and the square from Figure 2.2.

the RMSE of ϑ̂K,oracle and equals |Cr? |/λ (red line in Figure 2.5)! Finally we depict

RMSE estimates for the oracle estimator ϑ̂r,oracle for different r in Figure 2.6. One can

clearly see the regions of decreasing value of the RMSE, the fairly flat value of RMSE and

the jump when r becomes larger than the true parameter r? . Table 2.1 further collects

the Monte Carlo estimates of the number of points N◦ lying inside the wrapping hull, the

number of points N∂ on the boundary of the wrapping hull and the number of isolated

points Niso of the boundary of the wrapping hull. For analyzing the performance of the

adaptive estimator proposed in Section 2.5.1, we break the interval [0.06, 0.5] into pieces

of length 0.02 , compute the estimates of the radius r̂ from (2.7.2) and the estimates of

the RMSE of ϑ̂r̂ based on 200 Monte Carlo iterations in Table 2.2.

2.9 Appendix

Proof of Theorem 2.3.3

Sufficiency follows from the Neyman factorisation criterion applied to the likelihood

function (2.2.6), while completeness follows by definition provided that we show

∀A ∈ A : EA
[
T (Â)

]
= 0 =⇒ T (Â) = 0 PE − a.s. (2.9.1)

for any A -measurable function T : A→ R . From the likelihood in (2.2.6) for λ = λ0, we

derive

EA
[
T (Â)

]
= EE

[
T (Â) exp

(
λ|E \ A|

)
1(Â ⊆ A)

]
. (2.9.2)
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Figure 2.4: The four weakly-convex set with r? = 0.25 (blue), observations of the PPP
with λ = 300 (points) and their r -convex hulls for different values of r (black).

Figure 2.5: Monte Carlo RMSE estimates for the oracle estimator for the volume of the
annulus B(0.5, 0.5) \B(0.5, 0.25) with respect to the sample size.
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r = 0.04

n = λ/|A| N◦ N∂ Niso RMSE(ϑ̂r,oracle) RMSE(ϑ̂r)
RMSE(ϑ̂r)

RMSE(ϑ̂r,oracle)

50 0.13 49.8 44 0.087 0.55 6.31
100 1.5 98.37 66 0.059 0.33 4.65
200 23.6 175.8 58 0.042 0.15 3.7
300 90.4 211 33 0.039 0.109 2.82
400 191.6 210 17 0.043 0.085 1.97

r = 0.1

n = λ/|A| N◦ N∂ Niso RMSE(ϑ̂r,oracle) RMSE(ϑ̂r)
RMSE(ϑ̂r)

RMSE(ϑ̂r,oracle)

50 8.5 42.16 8.52 0.071 0.138 1.94
100 45.9 53.34 1.37 0.043 0.064 1.48
200 138.2 60.95 0.03 0.021 0.027 1.26
300 233.4 68.08 0 0.015 0.018 1.20
400 326.1 74.40 0 0.013 0.015 1.15

r = 0.25

n = λ/|A| N◦ N∂ Niso RMSE(ϑ̂r,oracle) RMSE(ϑ̂r)
RMSE(ϑ̂r)

RMSE(ϑ̂r,oracle)

50 24.75 24.21 0.06 0.061 0.085 1.39
100 68.58 29.60 0 0.033 0.0405 1.20
200 163.75 36.03 0 0.018 0.019 1.04
300 261.44 40.68 0 0.0108 0.0124 1.13
400 357.41 44.17 0 0.0096 0.0104 1.076

r = 0.3

n = λ/|A| N◦ N∂ Niso RMSE(ϑ̂r,oracle) RMSE(ϑ̂r)
RMSE(ϑ̂r)

RMSE(ϑ̂r,oracle)

50 30.71 18.70 0 0.208 0.340 1.628
100 77.59 23.26 0 0.2002 0.258 1.29
200 170.30 29.39 0 0.1982 0.232 1.17
300 265.17 33.89 0 0.1978 0.223 1.13
400 362.43 37.89 0 0.1987 0.219 1.10

Table 2.1: Monte Carlo RMSE estimates for the oracle estimator ϑ̂r,oracle and for the fully

data-driven estimator ϑ̂r for the volume of the annulus A = B(0.5, 0.5) \ B(0.5, 0.25)
with respect to r and n = λ|A| , the number of points lying inside the wrapping hull
N◦ , the number of points on the boundary of the wrapping hull N∂ and the number of
isolated points of the boundary of the wrapping hull Niso .

n = λ/|A| r̂ RMSE(ϑ̂r̂)
50 0.088 0.36
100 0.085 0.160
200 0.084 0.069
300 0.105 0.033
400 0.125 0.0182
500 0.149 0.0123
1000 0.165 0.0056

Table 2.2: Monte Carlo RMSE estimates for the adaptive estimator ϑ̂r̂ for the volume of
the annulus A = B(0.5, 0.5) \B(0.5, 0.25) with respect to n = λ|A|.
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Figure 2.6: Monte Carlo RMSE estimates for the oracle estimator for the volume of the
annulus B(0.5, 0.5) \B(0.5, 0.25) with respect to r .

Since exp(λ|E \ A|) is deterministic, we have ∀A ∈ A

EA
[
T (Â)

]
= 0 =⇒ EE

[
T (Â)1(Â ⊆ A)

]
= 0 . (2.9.3)

Splitting T = T+− T− with non-negative A -measurable functions T+ and T− , we infer

that the measures µ±(B) = EE[T±(Â)1(Â ∈ B)] , B ∈ A, agree on {[B] |B ∈ A} , where

[B] = {A ∈ A|A ⊆ B} . Since the brackets {[B] |B ∈ A} generate the σ -algebra A the

measures µ±(B) agree on all sets in A , in particular on {T > 0} and {T < 0} , which

entails EE[T+(Â)] = EE[T−(Â)] = 0. Thus, T (Â) = 0 holds PE -a.s.

Proof of Theorem 2.5.9

Let us denote by ρ1(A,B) = |A4B| the symmetric distance between two compact subsets

A and B of the compact convex set E in Rd . Recall that an ε -net of the class PSk

with respect to the metric ρ1 is a collection {P 1, ..., PNε} ∈ PSk such that for each

P ∈ PSk , there exists i ∈ {1, ..., Nε} such that ρ1(P, P
i) 6 ε . The ε -covering number

N(PSk , ρ1, ε) is the cardinality of the smallest ε -net. The ε -entropy of the class PSk

is defined by H(PSk , ρ1, ε) = log2N(PSk , ρ1, ε) . Furthermore, it follows by dilation of

a set that for P̂ ∈ PSk there exists m̂ ∈ {1, ..., Nε} such that P̂ ⊆ P m̂ ⊆ P and

ρ1(P̂ , P
m̂) 6 cε for some universal constant c > 1 and ε small enough. We thus obtain

for all P ∈ PSk and x > 0 ,

P
(
|P \ P̂ | > x/λ+ 2cε

)
6 P

(
|P \ P m̂| > x/λ+ cε

)
(2.9.4)
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6
∑

m:|P\Pm|>x/λ+cε

P
(
N (P \ Pm) = 0

)
(2.9.5)

6 exp
(
− x− cλε+H(PSk , ρ1, ε)

)
= e−x , (2.9.6)

plugging in ε that solves H(PSk , ρ1, ε) = cλε . The ε -covering number N(PSk , ρ1, ε) of

the class PSk can be bounded by (C/ε)k for some universal constant C > 1 . As a result,

the asymptotic rate follows using Fubini’s theorem combined with Theorem 2.3.1 and

Theorem 2.4.2.
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Chapter 3

Optimal Link Prediction with

Matrix Logistic Regression

Introduction

While the estimators for the volume of a set from the classes of convex and weakly-convex

sets proposed in the first and second chapters achieve minimax optimal rates, they cannot

be computed using a polynomial-time algorithm in dimensions higher than three, see

e.g. [62, 129]. The computational aspect of volume estimation in high dimensions for

the considered variety of intersection stable classes of sets is a subject of computational

geometry and is beyond the scope of this thesis. In the statistical community, the interplay

between computational and statistical aspects of estimation has recently attracted a lot

of attention, see e.g. [24, 25, 47, 49, 66, 73, 96, 141, 145] for computational lower bounds

in high-dimensional statistics based on the so-called planted clique problem. This chapter

rigorously examines the statistical and computational trade-off in a high-dimensional

matrix logistic regression problem.

In the field of network analysis, the task of link prediction consists in predicting the

presence or absence of edges in a large graph, based on the observations of some of its

edges, and on side information. Network analysis has become a growing motivation for

statistical problems. Indeed, one of the main characteristics of datasets in the modern

scientific landscape is not only their growing size, but also their increasing complexity.

Most phenomena now studied in the natural and social sciences concern not only isolated

and independent variables, but also their interactions and connections.

The fundamental problem of link prediction is therefore naturally linked with statistical

estimation: the objective is to understand, through a generative model, why different

vertices are connected or not, and to generalise these observations to the rest of the graph.

Most statistical problems based on graphs are unsupervised: the graph itself is the

sole data, there is no side information, and the objective is to recover an unknown
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structure in the generative model. Examples include the planted clique problem [7, 92],

the stochastic block model [75]—see [1] for a recent survey of a very active line of work

[2, 15, 53, 101, 107, 108], the Ising blockmodel [26], random geometric graphs – see [115]

for an introduction and [37, 54] for recent developments in statistics, or metric-based

learning [20, 48] and ordinal embedings [79].

In supervised regression problems on the other hand, the focus is on understanding a

fundamental mechanism, formalized as the link between two variables. The objective is

to learn how an explanatory variable X allows to predict a response Y , i.e. to find the

unknown function f that best approximates the relationship Y ≈ f(X). This statistical

framework is often applied to the observation of a phenomenon measured by Y (e.g. of a

natural or social nature), given known information X: the principle is to understand said

phenomenon, to explain the relationship between the variables by estimating the function

f [74, 76].

We follow this approach here: our goal is to learn how known characteristics of each agent

(represented by a node) in the network induce a greater or smaller chance of connection, to

understand the mechanism of formation of the graph. We propose a model for supervised

link prediction, using the principle of regression for inference on graphs. For each vertex,

we are given side information, a vector of observations X ∈ Rd. Given observations Xi, Xj

about nodes i and j of a network, we aim to understand how these two explanatory

variables are related to the probability of connection between the two corresponding

vertices, such that P(Y(i,j) = 1) = f(Xi, Xj), by estimating f within a high-dimensional

class based on logistic regression. Besides this high-dimensional parametric modelling,

various fully nonparametric statistical frameworks were exploited in the literature, see, for

example, [65, 143] for graphon estimation, [27, 112] for graph reconstruction and [28] for

modularity analysis.

Link prediction can be useful in any application where data can be gathered about

the nodes of a network. One of the most obvious motivations is in social networks, in

order to model social interactions. With access to side information about each member of

a social network, the objective is to understand the mechanisms of connection between

members: shared interests, differences in artistic tastes or political opinion [142]. This can

also be applied to citation networks, or in the natural sciences to biological networks of

interactions between molecules or proteins [97, 144]. The key assumption in this model

is that the network is a consequence of the information, but not necessarily based on

similarity: it is possible to model more complex interactions, e.g. where opposites attract.

The focus on a high-dimensional setting is another aspect of this work that is also

motivated by modern applications of statistics: data is often collected without discernment

and the ambient dimension d can be much larger than the sample size. This setting is

common in regression problems: the underlying model is often actually very simple, to

66



reflect the fact that only a small number of measured parameters are relevant to the

problem at hand, and that the intrinsic dimension is much smaller. This is usually handled

through an assumption on the rank, sparsity, or regularity of a parameter. Here this needs

to be adapted to a model with two covariates (explanatory variables) and a structural

assumption is made in order to reflect this nature of our problem.

We therefore decide to tackle link prediction by modelling it as matrix logistic regression.

We study a generative model for which P(Y(i,j) = 1) = σ(X>i Θ?Xj), where σ is the sigmoid

function, and Θ? is the unknown matrix to estimate. It is a simple way to model how the

variables interact, by a quadratic affinity function and a sigmoid function. In order to

model realistic situations with partial observations, we assume that Y(i,j) is only observed

for a subset of all the pairs (i, j), denoted by Ω.

To convey the general idea of a simple dependency on Xi and Xj, we make structural

assumptions on the rank and sparsity of Θ?. This reflects that the affinity X>i Θ?Xj is

a function of the projections u>` X for the vectors Xi and Xj, for a small number of

orthogonal vectors, that have themselves a small number of non-zero coefficients (sparsity

assumption). In order to impose that the inverse problem is well-posed, we also make a

restricted conditioning assumption on Θ?, inspired by the restricted isometry property

(RIP). These conditions are discussed in Section 3.1. We talk of link prediction as this is

the legacy name but we focus almost entirely on the problem of estimating Θ?.

The classical techniques of likelihood maximization can lead to computationally

intractable optimization problems. We show that in this problem as well as others this is

a fundamental difficulty, not a weakness of one particular estimation technique; statistical

and computational complexities are intertwined.

This chapter is organized in the following manner: We give a formal description of

the problem in Section 3.1, as well as a discussion of our assumptions and links with

related work. Section 3.2 collects our main statistical results. We propose an estimator

Θ̂ based on the penalised maximum likelihood approach and analyse its performance in

Section 3.2.1 in terms of non-asymptotic rate of estimation. We show that it attains the

minimax rate of estimation over simultaneously block-sparse and low-rank matrices Θ?,

but is not computationally tractable. In Section 3.2.2, we provide a convex relaxation of

the problem which is in essence the Lasso estimator applied to a vectorised version of

the problem. The link prediction task is covered in Section 3.2.3. A matching minimax

lower bound for the rate of estimation is given in Section 3.2.4. Furthermore, we show in

Section 3.3 that the minimax rate cannot be attained by a (randomised) polynomial-time

algorithm, and we identify a corresponding computational lower bound. The proof of this

bound is based on a reduction scheme from the so-called dense subgraph detection problem.

Technical proofs are deferred to the appendix. Our findings are depicted in Figure 3.1.
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Notation: For any positive integer n, we denote by [n] the set {1, . . . , n} and by [[n]] the

set of pairs of [n], of cardinality
(
n
2

)
. We denote by R the set of real numbers and by Sn

the set of real symmetric matrices of size n. For a matrix A ∈ Sn, we denote by ‖A‖F its

Frobenius norm, defined by

‖A‖2F =
∑
i,j∈[d]

A2
ij .

We extend this definition for B ∈ Sn and any subset Ω ⊆ [[n]] to its semi-norm ‖B‖F,Ω
defined by

‖B‖2F,Ω =
∑

i,j : (i,j)∈Ω

B2
ij .

The corresponding bilinear form playing the role of inner-product of two matrices B1, B2 ∈
Sn is denoted as 〈〈B1, B2 〉〉 F,Ω . For a matrix B ∈ Sn, we also make use of the following

matrix norms and pseudo-norms for p, q ∈ [0,∞) , with ‖B‖p,q =
∥∥(‖B1∗‖p · · · ‖Bd∗‖p)

∥∥
q

,

where Bi∗ denotes the i th row of B, and ‖B‖∞ = max(i,j)∈[[d]] |Bij| .

3.1 Problem description

3.1.1 Generative model

For a set of vertices V = [n] and explanatory variables Xi ∈ Rd associated to each i ∈ V ,

a random graph G = (V,E) is generated by the following model. For all i, j ∈ V , variables

Xi, Xj ∈ Rd and an unknown matrix Θ? ∈ Sd, an edge connects the two vertices i and j

independently of the others according to the distribution

P
(
(i, j) ∈ E

)
= σ(X>i Θ?Xj) =

1

1 + exp(−X>i Θ?Xj)
. (3.1.1)

Here we denote by σ the sigmoid, or logistic function.

Definition 3.1.1. We denote by πij : Sd → [0, 1] the function mapping a matrix Θ ∈ Sd

to the probability in (3.1.1). Let Σ ∈ Sn with Σij = X>i ΘXj denote the so-called affinity

matrix. In particular, we then have πij(Θ) = σ(Σij) .

Our observation consists of the explanatory variables Xi and of the observation of a

subset of the graph. Formally, for a subset Ω ⊆ [[n]], we observe an adjacency vector Y

indexed by Ω that satisfies, for all (i, j) ∈ Ω, Y(i,j) = 1 if and only if (i, j) ∈ E (and 0

otherwise). We thus have

Y(i,j) ∼ Bernoulli
(
πij(Θ

?)
)
, (i, j) ∈ Ω . (3.1.2)

The joint data distribution is denoted by PΘ? and is thus completely specified by πij(Θ
?) ,
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Figure 3.1: The computational and statistical boundaries for estimation and prediction in
the matrix logistic regression model. Here k denotes the sparsity of Θ? and r its rank,
while N is the number of observed edges in the network.

(i, j) ∈ Ω . For ease of notation, we write N = |Ω|, representing the effective sample size.

Our objective is to estimate the parameter matrix Θ?, based on the observations Y ∈ RN

and on known explanatory variables X ∈ Rd×n.

This problem can be reformulated as a classical logistic regression problem. Indeed,

writing Vec(A) ∈ Rd2 for the vectorized form of a matrix A ∈ Sd, we have that

X>i Θ?Xj = tr(XjX
>
i Θ?) = 〈Vec(XjX

>
i ),Vec(Θ?)〉 . (3.1.3)

The vector of observation Y ∈ RN therefore follows a logistic distribution with explanatory

design matrix DΩ ∈ RN×d2 such that DΩ (i,j) = Vec(XjX
>
i ) and predictor Vec(Θ?) ∈ Rd2 .

We focus on the matrix formulation of this problem, and consider directly matrix logistic

regression in order to simplify the notation of the explanatory variables and our model

assumptions on Θ?, that are specific to matrices.

3.1.2 Comparaison with other models

This model can be compared to other settings in the statistical and learning literature.

Generalised linear model. As discussed above in the remark to (3.1.3), this is an

example of a logistic regression model. We focus in this work on the case where the matrix

Θ? is block-sparse. The problem of sparse generalised linear models, and sparse logistic

regression in particular has been extensively studied (see, e.g. [3, 9, 39, 102, 123, 135],

and references therein). Our work focuses on the more restricted case of block-sparse and

low-rank matrices, establishing interesting statistical and computational phenomena in

this setting.

Graphon model. The graphon model is a type of a random graph in which the

explanatory variables associated with the vertices in the graph are unknown. It has

recently become popular in the statistical community, see [65, 86, 143, 146]. Typically, an

objective of statistical inference is a link function which belongs to either a parametric or

nonparametric class of functions. Interestingly, the minimax lower bound for the classes of

Hölder-continuous functions, obtained in [65], has not been attained by any polynomial-time

algorithm.
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Trace regression models. The modelling assumption (3.1.1) of this chapter is in fact

very close to the trace regression model, as it follows from the representation (3.1.3). Thus,

the block-sparsity and low-rank structures are preserved and can well be studied by the

means of techniques developed for trace regression. We refer the reader to [64, 87, 109, 126]

for recent developments in the linear trace regression model, and [63] for the generalised

trace regression model. However, computational lower bounds have not been studied before

and many existing minimax optimal estimators cannot to be computed in polynomial

time.

Metric learning. In the task of metric learning, observations depend on an unknown

geometric representation V1, . . . , Vn of the variables in a Euclidean space of low dimension.

The goal is to estimate this representation (up to a rigid transformation), based on noisy

observations of 〈Vi, Vj〉 in the form of random evaluations of similarity. Formally, our

framework also recovers the task of metric learning by taking Xi = ei and Θ? an unknown

semidefinite positive matrix of small rank (here V >V ), since

〈Vi, Vj〉 = 〈V ei, V ej〉 = e>i V
>V ej .

We refer to [20, 48] and references therein for a comprehensive survey of metric learning

methods.

3.1.3 Parameter space

The unknown predictor matrix Θ? describes the relationship between the observed features

Xi and the probabilities of connection πij(Θ?) = σ(X>i Θ?Xj) following Definition 3.1.1.

We focus on the high-dimensional setting where d2 � N : the number of features for each

vertex in the graph, and number of free parameters, is much greater than the total number

of observations. In order to counter the curse of dimensionality, we make the assumption

that the function (Xi, Xj) 7→ πij depends only on a small subset S of size k of all the

coefficients of the explanatory variables. This translates to a block-sparsity assumption on

Θ?: the coefficients Θ? ij are only nonzero for i and j in S. Furthermore, we assume that

the rank of the matrix Θ? can be smaller than the size of the block. Formally, we define

the following parameter spaces

Pk,r(M) =
{
Θ ∈ Sd : ‖Θ‖1,1 < M , ‖Θ‖0,0 6 k , and rank(Θ) 6 r

}
,

for the coefficient-wise `1 norm ‖· ‖1,1 on Sd and integers k, r ∈ [d]. We also denote

P(M) = Pd,d(M) for convenience.

Remark 3.1.2. The bounds on block-sparsity and rank in our parameter space are

structural bounds: we consider the case where the matrix Θ? can be concisely described
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in terms of the number of parameters. This is motivated by considering the spectral

decomposition of the real symmetric matrix Θ? as

Θ? =
r∑
`=1

λ`u`u
>
` .

The affinity Σij = X>i Θ
?Xj between vertices i and j is therefore only a function of the

projections of Xi and Xj along the axes u`, i.e.

Σij = X>i Θ
?Xj =

r∑
`=1

λ`(u
>
` Xi)(u

>
` Xj) .

Assuming that there are only a few of these directions u` with non-zero impact on the

affinity motivates the low-rank assumption, while assuming that there are only few relevant

coefficients of Xi, Xj that influence the affinity corresponds to a sparsity assumption on

the u`, or block sparsity of Θ?. The effect of these projections on the affinity is weighted by

the λ`. By allowing for negative eigenvalues, we allow our model to go beyond a geometric

description, where close or similar Xs are more likely to be connected. This can be used

to model interactions where opposites attract.

The assumption of simultaneously sparse and low-rank matrices arises naturally in

many applications in statistics and machine learning and has attracted considerable recent

attention, [122]. Various regularisation techniques have been developed for estimation,

variable and rank selection in multivariate regression problems [see, e.g. 40, and the

references therein].

3.1.4 Explanatory variables

As mentioned above, this problem is different from tasks such as metric learning, where the

objective is to estimate the Xi with no side information. Here they are seen as covariates,

allowing us to infer from the observation on the graph the predictor variable Θ?. For this

task to be even possible in a high-dimensional setting, we settle the identifiability issue by

making the following variant of a classical assumption on X ∈ Rd×n.

Definition 3.1.3 (Block Isometry Property). For a matrix X ∈ Rd×n and an integer

s ∈ [d], we define ∆Ω,s(X) ∈ (0, 1) as the smallest positive real such that

N
(
1−∆Ω,s(X)

)
‖B‖2F 6 ‖X>BX‖2F,Ω 6 N

(
1 +∆Ω,s(X)

)
‖B‖2F ,

for all matrices B ∈ Sd that satisfy the block-sparsity assumption ‖B‖0,0 6 s.

Definition 3.1.4 (Restricted Isometry Properties). For a matrix A ∈ Rn×p and an integer
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s ∈ [p], δs(A) ∈ (0, 1) is the smallest positive real such that

n
(
1− δs(A)

)
‖v‖22 6 ‖Av‖22 6 n

(
1 + δs(A)

)
‖v‖22 ,

for all s-sparse vectors, i.e. satisfying ‖v‖0 6 s.

When p = d2 is a square, we define δB,s(A) as the smallest positive real such that

n
(
1− δB,s(A)

)
‖v‖22 6 ‖Av‖22 6 n

(
1 + δB,s(A)

)
‖v‖22 ,

for all vectors such that v = Vec(B), where B satisfies the block-sparsity assumption

‖B‖0,0 6 s.

The first definition is due to [44], with restriction to sparse vectors. It can be extended

in general, as here, to other types of restrictions [see, e.g. 132]. Since the restriction on the

vectors in the second definition (s-by-s block-sparsity) is more restricting than in the first

one (sparsity), δB,s is smaller than δs2 . These different measures of restricted isometry are

related, as shown in the following lemma

Lemma 3.1.5. For a matrix X ∈ Rd×n, let DΩ ∈ RN×d2 be defined row-wise by DΩ (i,j) =

Vec(XjX
>
i ) for all (i, j) ∈ Ω. It holds that

∆Ω,s(X) = δB,s(DΩ) .

Proof. This is a direct consequence of the definition of DΩ, which yields ‖X>BX‖2F,Ω =

‖DΩ Vec(B)‖22, and ‖Vec(B)‖22 = ‖B‖2F .

The assumptions above guarantee that the matrix Θ? can be recovered from observations

of the affinities, settling the well-posedness of this part of the inverse problem. However,

we do not directly observe these affinities, but their image through the sigmoid function.

We must therefore further impose the following assumption on the design matrix X that

yields constraints on the probabilities πij and in essence governs the identifiability of Θ? .

Assumption 3.1.6. The design matrix X satisfies ‖XjX
>
i ‖∞ 6 1, (i, j) ∈ Ω.

In particular, under this assumption we have max(i,j)∈Ω |X>i ΘXj| < M for all Θ in

the class P(M) , and a constant

L(M) := σ′(M) = σ(M)
(
1− σ(M)

)
, (3.1.4)
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is lower bounded away from zero, and we have

inf
Θ∈P(M)

σ′(X>i ΘXj) > L(M) > 0 , (3.1.5)

for all (i, j) ∈ Ω . Assuming that L(M) always depends on the same M , we sometimes

write simply L .

Remark 3.1.7. Assumption 3.1.6 is necessary for the identifiability of Θ? : if X>i Θ?Xj

can be arbitrarily large in magnitude, πij = σ(X>i Θ?Xj) can be arbitrarily close to 0 or 1.

Since our observations only depend on Θ? through its image πij, this could lead to a very

large estimation error on Θ? even with a small estimation error on the πij.

Remark 3.1.8. This assumption has already appeared in the literature on high-dimensional

estimation, see [3, 135]. Similarly to [9], Assumption 3.1.6 can be shown to be redundant

for minimax optimal prediction, because the log-likelihood function in the matrix logistic

regression model satisfies the so-called self-concordant property. Our analysis to follow

can be combined with an analysis similar to [9] to get rid of the assumption for minimax

optimal prediction.

Random design

For random designs, we require the block isometry property to hold with high probability.

Then the results in this article carry over directly and thus we do not discuss it in full

detail. It is well known that for sparse linear models with the dimension of a target vector

p and the sparsity k , the classical restricted isometry property holds for some classes of

random matrices with i.i.d. entries including sub-Gaussian and Bernoulli matrices, see

[104], provided that n & k log(p/k) , and i.i.d. subexponential random matrices, see [4],

provided that n & k log2(p/k) . In the same spirit, design matrices with independent

entries following sub-Gaussian, subexponential or Bernoulli distributions can be shown to

satisfy the block isometry property, cf. [140], provided that the number of observed edges

in the network satisfies N & k2 log2(d/k) for sub-Gaussian and subexponential designs

and N & k2 log(d/k) for Bernoulli designs.

3.2 Matrix Logistic Regression

The log-likelihood for this problem is

`Y (Θ) = −
∑

(i,j)∈Ω

ξ(s(i,j)X
>
i ΘXj) ,
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where s(i,j) = 2Y(i,j) − 1 is a sign variable that depends on the observations Y and

ξ : x 7→ log(1 + ex) is a softmax function, convex on R. As a consequence, the negative

log-likelihood −`Y is a convex function of Θ. Denoting by ` the expectation EΘ? [`Y ], we

recall the classical expressions for all Θ ∈ Sd

`(Θ) = `(Θ?)−
∑

(i,j)∈Ω

KL(πij(Θ?), πij(Θ))

= `(Θ?)− KL(PΘ? ,PΘ) ,

where we recall πij(Θ) = σ(X>i ΘXj), and

`Y (Θ) = `(Θ) + 〈〈∇ζ, Θ 〉〉 F ,

where ζ is a stochastic component of the log-likelihood with constant gradient ∇ζ ∈ Rd×d

given by ∇ζ =
∑

(i,j)∈Ω(Y(i,j) − πij(Θ?))XjX
>
i , which is a sum of independent centered

random variables.

3.2.1 Penalized logistic loss

In a classical setting where d is fixed and N grows, the maximiser of `Y - the maximum

likelihood estimator - is an accurate estimator of Θ?, provided that it is possible to identify

Θ from PΘ (i.e. if the Xi are well conditioned). We are here in a high-dimensional setting

where d2 � N , and this approach is not directly possible. Our parameter space indicates

that the intrinsic dimension of our problem is truly much lower in terms of rank and

block-sparsity. Our assumption on the conditioning of the Xi is tailored to this structural

assumption. In the same spirit, we also modify our estimator in order to promote the

selection of elements of low rank and block-sparsity. Following the ideas of [30] and [3], we

define the following penalized maximum likelihood estimator

Θ̂ ∈ argmin
Θ∈P(M)

{
− `Y (Θ) + p(Θ)

}
, (3.2.1)

with a penalty p defined as

p(Θ) = g(rank(Θ), ‖Θ‖0,0) , and g(R,K) = cKR + cK log
(de

K

)
, (3.2.2)

where c > 0 is a universal constant and to be specified further. The proof of the following

theorem is based on Dudley’s integral argument combined with Bousquet’s inequality and

is deferred to the Appendix.

Theorem 3.2.1. Assume the design matrix X satisfies max(i,j)∈Ω |X>i Θ?Xj| < M for

some M > 0 and all Θ? in a given class, and the penalty term p(Θ) satisfies (3.2.2) with

74



the constants c > c1/L , c1 > 1 , L given in (3.1.4). Then for the penalised MLE estimator

Θ̂ , the following non-asymptotic upper bound on the expectation of the Kullback-Leibler

divergence between the measures PΘ? and PΘ̂ holds

sup
Θ?∈Pk,r(M)

1

N
E[K◦(PΘ? ,PΘ̂)] 6 C1

kr

N
+ C1

k

N
log
(de

k

)
, (3.2.3)

where C1 > 3c is some universal constant for all k = 1, ..., d and r = 1, ..., k .

Remark 3.2.2. Random designs with i.i.d. entries following sub-Gaussian, Bernoulli and

subexponential distributions discussed in Section 3.1.4 yield the same rate as well. It can

formally be shown using standard conditioning arguments [see, e.g. 110].

Corollary 3.2.3. Assume the design matrix X satisfies the block isometry property

from Definition 3.1.3 and max(i,j)∈Ω |X>i Θ?Xj| < M for some M > 0 and all Θ? in a

given class, and the penalty term p(Θ) is as in Theorem 3.2.1. Then for the penalised

MLE estimator Θ̂ , the following non-asymptotic upper bound on the rate of estimation

holds

sup
Θ?∈Pk,r(M)

E
[
‖Θ̂ −Θ?‖2F

]
6

C1

L(M)
(
1−∆Ω,2k(X)

)(kr
N

+
k

N
log
(de

k

))
,

where C1 > 3c is some universal constant for all k = 1, ..., d and r = 1, ..., k .

Let us define rank-constrained maximum likelihood estimators with bounded block

size as

Θ̂k,r ∈ argmin
Θ∈Pk,r(M)

{−`Y (Θ)} .

It is intuitively clear that without imposing any regularisation on the likelihood function,

the maximum likelihood approach selects the most complex model. In fact, the following

result holds.

Theorem 3.2.4. Assume the design matrix X satisfies the block isometry property from

Definition 3.1.3 and max(i,j)∈Ω |X>i Θ?Xj| < M for some M > 0 and all Θ? in a given

class. Then for the maximum likelihood estimator Θ̂k,r , the following non-asymptotic

upper bound on the rate of estimation holds

sup
Θ?∈Pk,r(M)

E
[
‖Θ̂k,r −Θ?‖2F

]
6

C3

L(M)
(
1−∆Ω,2k(X)

)(kr
N

+
k

N
log
(de

k

))
,

for all k = 1, ..., d and r = 1, ..., k and some constant C3 > 0 .

Remark 3.2.5. The penalty (3.2.2) belongs to the class of the so-called minimal penalties,

cf. [30]. In particular, a naive MLE approach with p(Θ) = 0 in (3.2.1) yields a suboptimal

estimator as it follows from Theorem 3.2.4.

75



3.2.2 Convex relaxation

In practice, computation of the estimator (3.2.1) is often infeasible. In essence, in order

to compute it, we need to compare the likelihood functions over all possible subspaces

Pk,r(M) . Sophisticated step-wise model selection procedures allow one to reduce the

number of analysed models. However, they are not feasible in a high-dimensional setting

either. We here consider the following estimator

Θ̂Lasso = argmin
Θ∈Sd

{−`Y (Θ) + λ‖Θ‖1,1} , (3.2.4)

with λ > 0 to be chosen further, which is equivalent to the logistic Lasso on Vec(Θ) .

Using standard arguments, cf. Example 1 in [135], combined with the block isometry

property the following result immediately follows.

Theorem 3.2.6. Assume the design matrix X satisfies the block isometry property from

Definition 3.1.3 and max(i,j)∈Ω |X>i Θ?Xj| < M for some M > 0 and all Θ? in a given

class. Then for λ = C4

√
log d , where C4 > 0 is an appropriate universal constant, the

estimator (3.2.4) satisfies

sup
Θ?∈Pk,r(M)

E
[
‖Θ̂Lasso −Θ?‖2F

]
6

C5

L(M)
(
1−∆Ω,2k(X)

) k2
N

log d , (3.2.5)

for all k = 1, ..., d and r = 1, ..., k and some universal constant C5 > 0 .

As one could expect the upper bound on the rate of estimation of our feasible estimator

is independent of the true rank r . It is natural, when dealing with a low-rank and

block-sparse objective matrix, to combine the nuclear penalty with either the (2, 1) -norm

penalty or the (1, 1) -norm penalty of a matrix, cf. [40, 69, 87, 122]. In our setting, it

can be easily shown that combining the (1, 1) -norm penalty and the nuclear penalty

yields the same rate of estimation (k2/N) log d . This appears to be inevitable in view of a

computational lower bound, obtained in Section 3.3, which is independent of the rank as

well. In particular, these findings partially answer a question posed in Section 6.4.4 in [70].

3.2.3 Prediction

In applications, as new users join the network, we are interested in predicting the prob-

abilities of the links between them and the existing users. It is natural to measure the

prediction error of an estimator Θ̂ by E
[∑

(i,j)∈Ω(πij(Θ̂)− πij(Θ?))2
]

which is controlled

according to the following result using the smoothness of the logistic function σ .

Theorem 3.2.7. Under Assumption 3.1.6, we have the following rate for estimating the
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matrix of probabilities Σ? = X>Θ?X ∈ Rn×n with the estimator Σ̂ = X>Θ̂X ∈ Rn×n :

sup
Θ?∈Pk,r(M)

1

2N
E
[
‖Σ̂ −Σ?‖2F,Ω

]
6

C1

L(M)

(kr
N

+
k

N
log
(de

k

))
,

with the constant C1 from (3.2.3). The rate is minimax optimal, i.e. a minimax lower

bound of the same asymptotic order holds for the prediction error of estimating the matrix

of probabilities Σ? = X>Θ?X ∈ Rn×n .

3.2.4 Information-theoretic lower bounds

The following result demonstrates that the minimax lower bound on the rate of estimation

matches the upper bound in Theorem 3.2.1 implying that the rate of estimation is minimax

optimal.

Theorem 3.2.8. Let the design matrix X satisfy the block isometry property. Then for

estimating Θ? ∈ Pk,r(M) in the matrix logistic regression model, the following lower

bound on the rate of estimation holds

inf
Θ̂

sup
Θ?∈Pk,r(M)

E
[
‖Θ̂ −Θ?‖2F

]
>

C2

(1 +∆Ω,2k(X))

(kr
N

+
k

N
log
(de

k

))
,

where the constant C2 > 0 is independent of d, k, r and the infimum extends over all

estimators Θ̂ .

Remark 3.2.9. The lower bounds of the same order hold for the expectation of the

Kullback-Leibler divergence between the measures PΘ? and PΘ̂ and the prediction error

of estimating the matrix of probabilities Σ? = X>Θ?X ∈ Rn×n .

3.3 Computational lower bounds

In this section, we investigate whether the lower bound in Theorem 3.2.8 can be achieved

with an estimator computable in polynomial time. The fastest rate of estimation attained

by a (randomised) polynomial-time algorithm in the worst-case scenario is usually referred

to as a computational lower bound. Recently, the gap between computational and statistical

lower bounds has attracted a lot of attention in the statistical community. We refer to

[24, 25, 47, 49, 66, 73, 96, 141, 145] for computational lower bounds in high-dimensional

statistics based on the planted clique problem (see below), [22] using hardness of learning

parity with noise [111] for denoising of sparse and low-rank matrices, [5] for computational

trade-offs in statistical learning, as well as [147] for worst-case lower bounds for sparse

estimators in linear regression, as well as [34, 46] for another approach on computational

trade-offs in statistical problems, as well as [21, 23] on the management of these trade-offs.
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In order to establish a computational lower bound for the block-sparse matrix logistic

regression, we exploit a reduction scheme from [24]: we show that detecting a subspace of

Pk,r(M) can be computationally as hard as solving the dense subgraph detection problem.

3.3.1 The dense subgraph detection problem

Although our work is related to the study of graphs, we recall for absolute clarity the

following notions from graph theory. A graph G = (V,E) is a non-empty set V of vertices,

together with a set E of distinct unordered pairs {i, j} with i, j ∈ V , i 6= j . Each element

{i, j} of E is an edge and joins i to j . The vertices of an edge are called its endpoints.

We consider only undirected graphs with neither loops nor multiple edges. A graph is

called complete if every pair of distinct vertices is connected. A graph G′ = (V ′, E ′) is

a subgraph of a graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E . A subgraph C is called a

clique if it is complete. The problem of detecting a maximum clique, the so-called Clique

problem, in a given graph is known to be NP -complete, cf. [82].

The Planted Clique problem, motivated as an average case version of the Clique

problem, can be formalised as a decision problem over random graphs, parametrised by the

number of vertices n and the size of the subgraph k . Let Gn denote the collection of all

graphs with n vertices and G(n, 1/2) denote distribution of Erdös-Rényi random graphs,

uniform on Gn , where each edge is drawn independently at random with probability

1/2 . For any k ∈ {1, ..., n} and q ∈ (1/2, 1] , let G(n, 1/2, k, q) be a distribution on Gn

constructed by first picking k vertices independently at random and connecting all edges

in-between with probability q , and then joining each remaining pair of distinct vertices

by an edge independently at random with probability 1/2 . Formally, the Planted Clique

problem refers to the hypothesis testing problem of

H0 : A ∼ G(n, 1/2) vs. H1 : A ∼ G(n, 1/2, k, 1) , (3.3.1)

based on observing an adjacency matrix A ∈ Rn×n of a random graph drawn from either

G(n, 1/2) or G(n, 1/2, k, 1) .

One of the main properties of the Erdös-Rényi random graph were studied in [61], as

well as in [71], who in particular proved that the size of the largest clique in G(n, 1/2) is

asymptotically close to 2 log2 n almost surely. On the other hand, [6] proposed a spectral

method that for k > c
√
n detects a planted clique with high probability in polynomial

time. Hence the most intriguing regime for k is

2 log2 n 6 k 6 c
√
n . (3.3.2)

The conjecture that no polynomial-time algorithm exists for distinguishing between
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hypotheses in (3.3.1) in the regime (3.3.2) with probability tending to 1 as n → ∞
is the famous Planted Clique conjecture in complexity theory. Its variations have been

used extensively as computational hardness assumptions in statistical problems, see

[25, 41, 66, 141].

The Planted Clique problem can be reduced to the so-called dense subgraph detec-

tion problem of testing the null hypothesis in (3.3.1) against the alternative H1 : A ∼
G(n, 1/2, k, q) , where q ∈ (1/2, 1] . This is clearly a computationally harder problem. In

this chapter, we assume the following variation of the Planted Clique conjecture which is

used to establish a computational lower bound in the matrix logistic regression model.

Conjecture 3.3.1 (The dense subgraph detection conjecture, see [25, 41, 66, 141]). For

any sequence k = kn such that k 6 nβ for some 0 < β < 1/2 , and any q ∈ (1/2, 1] ,

there is no (randomised) polynomial-time algorithm that can correctly identify the dense

subgraph with probability tending to 1 as n→∞ , i.e. for any sequence of (randomised)

polynomial-time tests (ψn : Gn → {0, 1})n , we have

lim inf
n→∞

{
P0(ψn(A) = 1) + P1(ψn(A) = 0)

}
> 1/3 .

3.3.2 Reduction to the dense subgraph detection problem and

a computational lower bound

Consider the vectors of explanatory variables Xi = N1/4ei , ei ∈ Rd , i = 1, ..., n and

assume without loss of generality that the observed set of edges Ω in the matrix logistic

regression model consists of the interactions of the n nodes Xi , i.e. it holds N = |Ω| =
(
n
2

)
.

It follows from the matrix logistic regression modelling assumption (3.1.1) that the

Erdös-Rényi graph G(n, 1/2) corresponds to a random graph associated with the matrix

Θ0 = 0 ∈ Rd×d . Let Gl(k) be a subset of Pk,1(M) with a fixed support l of the block. In

addition, let GαNk ⊆ Pk,1(M) be a subset consisting of the matrices Θl ∈ Gl(k), l = 1, ..., K ,

K =
(
n
k

)
such that all elements in the block of a matrix Θl equal some αN = α/

√
N > 0 ,

see Figure 3.2. Then we have

P
(
(i, j) ∈ E|Xi, Xj) =

1

1 + e−X
>
i ΘXj

=
1

1 + e−α
,

for all Θ ∈ GαNk . Therefore, the testing problem

H0 : Y ∼ PΘ0 vs. H1 : Y ∼ PΘ, Θ ∈ GαNk , (3.3.3)

where Y ∈ {0, 1}N is the adjacency vector of binary responses in the matrix logistic

regression model, is reduced to the dense subgraph detection problem with q = 1/(1+e−α) .

This reduction scheme suggests that the computational lower bound for separating the
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GαNk 3 Θ =

Figure 3.2: The construction of matrices GαNk used in the reduction scheme.

hypotheses in the dense subgraph detection problem mimics the computational lower

bound for separating the hypotheses in (3.3.3) in the matrix logistic regression model. The

following theorem exploits this fact in order to establish a computational lower bound of

order k2/N for estimating the matrix Θ? ∈ Pk,r(M) .

Theorem 3.3.2. Let Fk be any class of matrices containing GαNk ∪Θ0 from the reduction

scheme. Let c > 0 be a positive constant and f(k, d,N) be a real-valued function

satisfying f(k, d,N) 6 ck2/N for k = kn < nβ , 0 < β < 1/2 and a sequence d = dn ,

for all n > m0 ∈ N . If Conjecture 3.3.1 holds for some design X that fulfils the block

isometry property from Definition 3.1.3, there is no estimator of Θ? ∈ Fk , that attains the

rate f(k, d,N) for the Frobenius norm risk, and can be evaluated using a (randomised)

polynomial-time algorithm, i.e. for any estimator Θ̂ , computable in polynomial time, there

exists a sequence (k, d,N) = (kn, dn, N) , such that

1

f(k, d,N)
sup
Θ?∈Fk

E
[
‖Θ̂ −Θ?‖2F

]
→∞ , (3.3.4)

as n→∞ . Similarly, for any estimator Θ̂ , computable in polynomial time, there exists a

sequence (k, d,N) = (kn, dn, N) , such that

1

f(k, d,N)
sup
Θ?∈Fk

1

N
E
[
‖Σ̂ −Σ?‖2F,Ω

]
→∞ , (3.3.5)

for the prediction error of estimating Σ? = X>Θ?X .

Remark 3.3.3. Thus the computational lower bound for estimating the matrix Θ? in

the matrix logistic regression model is of order k2/N compared to the minimax rate of

estimation of order kr/N + (k/N) log(de/k) and the rate of estimation (k2/N) log(d)

for the Lasso estimator Θ̂Lasso , cf. Figure 3.1. Hence the computational gap is most

noticeable for the matrices of rank 1 . Furthermore, as a simple consequence of this

result, the corresponding computational lower bound for the prediction risk of estimating

Σ? = X>Θ?X is k2/N as well.

Proof. We here provide a proof of the computational lower bound on the prediction error

(3.3.5) for convenience. The bound on the estimation error (3.3.4) is straightforward to
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show by utilizing the block isometry property. Assume that there exists a hypothetical

estimator Θ̂ computable in polynomial time that attains the rate f(k, d,N) for the

prediction error, i.e. such that it holds that

lim sup
n→∞

1

f(k, d,N)
sup
Θ?∈Fk

1

N
E
[
‖X>(Θ̂ −Θ?)X‖2F,Ω

]
6 b <∞ ,

for all sequences (k, d,N) = (kn, dn, N) and a constant b . Then by Markov’s inequality,

we have
1

N
‖X>(Θ̂ −Θ?)X‖2F,Ω 6 uf(k, d,N) , (3.3.6)

for some numeric constant u > 0 with probability 1 − b/u for all Θ? ∈ Fk . Following

the reduction scheme, we consider the design vectors Xi = N1/4ei , i = 1, ..., n and the

subset of edges Ω , such that

1

N
‖X>(Θ̂ −Θ?)X‖2F,Ω =

∑
(i,j)∈Ω

(Θ̂ij −Θ?
ij)

2 = ‖Θ̂ −Θ?‖2F,Ω , (3.3.7)

for any Θ? ∈ GαNk . Note, that the design vectors Xi = N1/4ei , i = 1, ..., n clearly satisfy

Assumption 3.1.6. Thus, in order to separate the hypotheses

H0 : Y ∼ P0 vs. H1 : Y ∼ PΘ, Θ ∈ GαNk , (3.3.8)

it is natural to employ the following test

ψ(Y ) = 1
(
‖Θ̂‖F,Ω > τd,k(u)

)
, (3.3.9)

where τ 2d,k(u) = uf(k, d,N) . The type I error of this test is controlled automatically due

to (3.3.6) and (3.3.7), P0(ψ = 1) 6 b/u . For the type II error, we obtain

sup
Θ∈GαNk

PΘ(ψ = 0) = sup
Θ∈GαNk

PΘ
(
‖Θ̂‖F,Ω < τd,k(u)

)
6 sup

Θ∈GαNk

PΘ
(
‖Θ̂ −Θ‖2F,Ω > ‖Θ‖2F,Ω − τ 2d,k(u)

)
6 b/u ,

provided that

k(k − 1)α2
N/2 > 2τ 2d,k(u) = 2uf(k, d,N) ,

which is true in the regime k 6 nβ , β < 1/2 , and α2 > 4u/c , (hence α2
N > 4u/(cN) )

by the definition of the function f(k, d,N) . Putting the pieces together, we obtain

lim sup
n→∞

{
P0(ψ(Y ) = 1) + sup

Θ∈GαNk

PΘ(ψ(Y ) = 0)
}
6 2b/u < 1/3 ,
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for u > 6b . Hence, the test (3.3.9) separates the hypotheses (3.3.8). This contradicts

Conjecture 3.3.1 and implies (3.3.5).

3.4 Concluding remarks

Our results shed further light on the emerging topic of statistical and computational

trade-offs in high-dimensional estimation. The matrix logistic regression model is very

natural to study the connection between statistical accuracy and computational efficiency

as the model is based on the study of a generative model for random graphs. It is also an

extension of lower bound for all statistical procedures to a model with covariates, the first

of its kind.

Our findings suggest that the block-sparsity is a limiting model selection criterion for

polynomial-time estimation in the logistic regression model. That is, imposing further

structure, like an additional low-rank constraint, and thus reducing the number of studied

models yields an expected gain in the minimax rate, but that gain can never be achieved

by a polynomial-time algorithm. In this setting, this implies that with a larger parameter

space, while the statistical rates might be worse, they might be closer to those that

are computationally achievable. As an illustration, both efficient and minimax optimal

estimation is possible for estimating sparse vectors in the high-dimensional linear regression

model, see, for example, SLOPE for achieving the exact minimax rate in [19, 31], extending

upon previous results on the Danzig selector and Lasso in [29, 43].

Logistic regression is also a representative of a large class of generalised linear models.

Furthermore, the proof of the minimax lower bound on the rate of estimation in Theo-

rem 3.2.8 can be extended to all generalised linear models. The combinatorial estimator

(3.2.1) can well be used to achieve the minimax rate. The computational lower bound then

becomes a delicate issue. A more sophisticated reduction scheme is needed to relate the

dense subgraph detection problem to an appropriate testing problem for a generalised

linear model. Approaching this question might require notions of noise discretisation and

Le Cam equivalence studied in [96].

An interesting question is whether it is possible to adopt polynomial-time algorithms

available for detecting a dense subgraph for estimating the target matrix in the logistic

regression model in all sparsity regimes. A common idea behind those algorithms is to

search a dense subgraph over the vertices of a high degree and thus substantially reduce

the number of compared models of subgraphs. The network we observe in the logistic

regression model is generated by a sparse matrix. We may still observe a fully connected

network which is generated by a small block in the target matrix. Therefore, it is not yet

clear how to adapt algorithms for dense subgraph detection to submatrix detection. It
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remains an open question to establish whether these results can be extended to any design

matrix, and all parameter regimes.
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3.5 Proofs

3.5.1 Some geometric properties of the likelihood

Let us recall the stochastic component of the likelihood function

ζ(Θ) = L(Θ)− `(Θ) =
∑

(i,j)∈Ω

(
Y(i,j) − πij(Θ?)

)
X>i ΘXj ,

which is a linear function in Θ . The deviation of the gradient ∇ζ of the stochastic

component is governed by the deviation of the independent Bernoulli random variables

εi,j = Y(i,j) − E[Y(i,j)] = Y(i,j) − πij(Θ?) , (i, j) ∈ Ω . Let us introduce an upper triangular

matrix EΩ = (εi,j)(i,j)∈Ω with zeros on the complement set Ωc . In this notation, we have

ζ(Θ) = 〈〈 ζ, Θ 〉〉 F , with

∇ζ =
∑

(i,j)∈Ω

εi,jXjX
>
i = X EΩX> ∈ Rd×d .

In particular, ∇ζ is sub-Gaussian with parameter
∑

(i,j)∈Ω ‖XjX
>
i ‖2F/4 = ‖X>X‖2F,Ω/4 ,

i.e. it holds for the moment generating function of 〈〈 ζ, B 〉〉 F for any B ∈ Rd×d and

σ2 = 1/4 ,

ϕ 〈〈 ζ,B 〉〉
F

(t) := E
[

exp(t 〈〈 ζ, B 〉〉 F )
]

=
∏

(i,j)∈Ω

E
[

exp(tεi,j 〈〈XjX
>
i , B 〉〉 F )

]
6

∏
(i,j)∈Ω

exp
(
t2σ2 〈〈XjX

>
i , B 〉〉 F

2
/2
)

= exp
(
tσ2‖X>BX‖2F,Ω/2

)
. (3.5.1)

We shall be frequently using versions of the following inequality, which is based on the fact

that ∇`(Θ?) = 0 ∈ Rd×d , the Taylor expansion and (3.1.5), and holds for any Θ ∈ P(M) ,

`(Θ?)− `(Θ) =
1

2

∑
(i,j)∈Ω

(
σ′(X>i Θ0Xj) 〈〈XjX

>
i , Θ

? −Θ 〉〉 2
)

>
L
2

∑
(i,j)∈Ω

〈〈XjX
>
i , Θ

? −Θ 〉〉 2F =
L
2
‖X>(Θ? −Θ)X‖2F,Ω , (3.5.2)

where Θ0 ∈ [Θ,Θ?] element-wise. Furthermore, using that supt∈R σ
′(t) 6 1/4 , we obtain

for all Θ ∈ P(M)

`(Θ?)− `(Θ) 6
1

8
‖X>(Θ? −Θ)X‖2F,Ω .

We shall also be using the bounds

max
(i,j)∈Ω

(
εi,jX

T
i (Θ −Θ?)Xj

)
6 ‖X>(Θ −Θ?)X‖F,Ω , a.s. , (3.5.3)
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Var
(
〈〈 EΩ,X>(Θ −Θ?)X 〉〉 F

)
6

1

4
‖X>(Θ −Θ?)X‖2F,Ω . (3.5.4)

3.5.2 Entropy bounds for some classes of matrices

Recall that an ε -net of a bounded subset K of some metric space with a metric ρ is a

collection {K1, ..., KNε} ∈ K such that for each K ∈ K , there exists i ∈ {1, ..., Nε} such

that ρ(K,Ki) 6 ε . The ε -covering number N(ε,K, ρ) is the cardinality of the smallest

ε -net. The ε -entropy of the class K is defined by H(ε,K, ρ) = log2N(ε,K, ρ) . The

following statement is adapted from Lemma 3.1 in [42].

Lemma 3.5.1. Let >0 := {Θ ∈ Rk×k : rank(Θ) 6 r, ‖Θ‖F 6 1} . Then it holds for any

ε > 0

H(ε,>0, ‖•‖F ) 6
(
(2k + 1)r + 1

)
log
(9

ε

)
.

3.5.3 Proof of Theorem 3.2.1 and Theorem 3.2.7

It suffices to show the following uniform deviation inequality

sup
Θ?∈Pk,r(M)

PΘ?
(
`(Θ?)− `(Θ̂) + p(Θ̂) > 2p(Θ?) +R2

t

)
6 e−cRt , (3.5.5)

for any Rt > 0 and some numeric constant c > 0 . Indeed, then taking R2
t = p(Θ?) ,

it follows that `(Θ?) − `(Θ̂) 6 3p(Θ?) uniformly for all Θ? in the considered class

with probability at least 1− e−c
√

pen(Θ?) . The upper bound (3.2.3) of Theorem 3.2.1 the

follows directly integrating the deviation inequality (3.5.5), while the upper bound on the

prediction error in Theorem 3.2.7 further follows using (3.5.2) and the smoothness of the

logistic function, supt∈R σ
′(t) 6 1/4 . Define

τ 2(Θ;Θ?) := `(Θ?)− `(Θ) + pen(Θ) , GR(Θ?) := {Θ : τ(Θ;Θ?) 6 R} . (3.5.6)

The inequality (3.5.5) clearly holds on the event {τ 2(Θ̂;Θ?) 6 2pen(Θ?)} . In view of

L(Θ̂)− pen(Θ̂) > L(Θ?)− pen(Θ?) , we have on the complement:

〈〈 EΩ,X>(Θ̂ −Θ?)X 〉〉 > `(Θ?)− `(Θ̂) + pen(Θ̂)− pen(Θ?) >
1

2
τ 2(Θ̂;Θ?) .

Therefore, for any Θ? ∈ Pk,r(M) , we have

PΘ?
(
τ 2(Θ̂;Θ?) > 2pen(Θ?) +R2

t

)
6 PΘ?

(
sup

τ(Θ;Θ?)>Rt

〈〈 EΩ,X>(Θ −Θ?)X 〉〉
τ 2(Θ;Θ?)

>
1

2

)
.

We now apply the so-called “peeling device” (or “slicing” as it sometimes called in the

literature). The idea is to “slice” the set τ(Θ;Θ?) > Rt into pieces on which the penalty
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term pen(Θ) is fixed and the term `(Θ?)− `(Θ) is bounded. It follows,

PΘ?
(

sup
τ(Θ;Θ?)>Rt

〈〈 EΩ,X>(Θ −Θ?)X 〉〉
τ 2(Θ;Θ?)

>
1

2

)
6

d∑
K=1

K∑
R=1

∞∑
s=1

PΘ?
(

sup
Θ∈G2sRt

(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈 EΩ,X>(Θ −Θ?)X 〉〉 > 1

8
22sR2

t

)
. (3.5.7)

On the set {Θ ∈ G2sRt(Θ
?), k(Θ) = K, rank(Θ) = R} , it holds by the definitions (3.5.6)

`(Θ?)− `(Θ) 6 22sR2
t − pen(K,R) ,

and therefore using (3.5.2), this implies

‖X>(Θ? −Θ)X‖F,Ω 6 Z(K,R, s) , Z2(K,R, s) =
2

L
(
22sR2

t − pen(K,R)
)
. (3.5.8)

Let us fix the location of the block, that is the support of a matrix Θ′ ∈ G1 := {Θ ∈
Rd×d : k(Θ) = K, rank(Θ) = R} belongs to the upper-left block of size K ×K . Then

following the lines of the proof of Lemma 3.5.1 and using the singular value decomposition,

we derive

H(ε, {X>Θ′X : Θ′ ∈ G1, ‖X>Θ′X‖F,Ω 6 B}, ‖•‖F,Ω) 6
(
(2K + 1)R + 1

)
log
(9B

ε

)
.

Consequently, for the set > := {X>(Θ − Θ?)X : Θ ∈ Rd×d, rank(Θ) = R, k(Θ) =

K, ‖X>(Θ? −Θ)X‖F,Ω 6 Z(K,R, s)} , we obtain

H(ε,>, ‖•‖F,Ω) 6
(
(2K + 1)R + 1

)
log
(9Z(K,R, s)

ε

)
+K log

(de

K

)
.

Denote t(K,R) :=
√
KR +

√
K log

(
de
K

)
. By Dudley’s entropy integral bound, see [56]

and [68] for a more recent reference, we then have

E
[

sup
Θ∈G2sRt

(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈 EΩ,X>(Θ −Θ?)X 〉〉
]
6 C ′

∫ Z(K,R,s)

0

√
H(ε,>, ‖•‖Ω) dε

6 C ′′
√
kr

∫ 9Z(K,R,s)

0

√
log
(9Z(K,R, s)

ε

)
dε+ 9C ′′Z(K,R, s)

√
K log

(de

K

)
6 CZ(K,R, s)t(K,R) ,

for some universal constant C > 0 . Furthermore, by Bousquet’s version of Talagrand’s

inequality, see Theorem 3.5.10, in view of the bounds (3.5.3) and (3.5.4), we have for all
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u > 0

PΘ?
(

sup
Θ∈G2sRt

(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈 EΩ,X>(Θ −Θ?)X 〉〉 > CZ(K,R, s)t(K,R)

+

√(1

2
Z2(K,R, s) + 4CZ2(K,R, s)t(K,R)

)
u+

Z(K,R, s)u

3

)
6 e−u .

Taking u(K,R, s) := L1/2Z(K,R, s) + L−1/2t(K,R) + 2 log d and using inequalities
√
c1 + c2 6

√
c1 +

√
c2 and

√
c1c2 6 1

2
(c1ε + c2

ε
) , which hold for any c1, c2, ε > 0 ,

we obtain

PΘ?
(

sup
Θ∈G2sRt

(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈 EΩ,X>(Θ −Θ?)X 〉〉

>
1

16
LZ2(K,R, s) + C2

1 t
2(K,R)/L

)
6 e−u(K,R,s) ,

for some numeric constant C1 > 0 . Plugging this back into (3.5.7) and using (3.5.8), we

obtain

PΘ?
(

sup
Θ∈G2sRt

(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈 EΩ,X>(Θ −Θ?)X 〉〉 > 1

8
22sR2

t

)
6 e−u(K,R,s) ,

for some numeric constant C2 > 0 , provided that

1

16
LZ2(K,R, s) +

C2
1

L
t2(K,R) 6

1

8
22sR2

t =
1

16
LZ2(K,R, s) + 8pen(K,R) , (3.5.9)

which is satisfied for pen(K,R) > (C2
1/L)t2(K,R) . Therefore,

PΘ?
(

sup
τ(Θ;Θ?)>Rt

〈〈 EΩ,X>(Θ −Θ?)X 〉〉
τ 2(Θ;Θ?)

>
1

2

)
6

d∑
K=1

K∑
R=1

∞∑
s=1

e−u(K,R,s) 6 e−cRt ,

for some numeric constants c > 0 using (3.5.9), which concludes the proof.

The following prominent result is due to [32].

Theorem 3.5.2 (Bousquet’s version of Talagrand’s inequality). Let (B,B) be a measurable

space and let ε1, ..., εn be independent B -valued random variables. Let F be a countable

set of measurable real-valued functions on B such that f(εi) 6 b <∞ a.s. and Ef(εi) = 0

for all i = 1, ..., n , f ∈ F . Let

S := sup
f∈F

n∑
i=1

f(εi) , v := sup
f∈F

n∑
i=1

E[f 2(εi)].
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Then for all u > 0 , it holds that

P
(
S − E[S] >

√
2(v + 2bE[S])u+

bu

3

)
6 e−u . (3.5.10)

3.5.4 Proof of Theorem 3.2.4

For the MLE Θ̂k,r , it clearly holds L(Θ̂k,r) > L(Θ?) implying

`(Θ?)− `(Θ̂k,r) 6 〈〈 EΩ,X>(Θ̂k,r −Θ?)X 〉〉 .

Furthermore, in view of (3.5.2), we derive

L
2
‖X>(Θ̂k,r −Θ?)X‖F,Ω 6

〈〈 EΩ,X>(Θ̂k,r −Θ?)X 〉〉
‖X>(Θ̂k,r −Θ?)X‖F,Ω

(3.5.11)

6 sup
Θ∈Pk,r(M)

〈〈 EΩ,X>(Θ −Θ?)X 〉〉
‖X>(Θ −Θ?)X‖F,Ω

. (3.5.12)

Following the lines of Section 3.5.3, by Dudley’s integral we next obtain

E
(

sup
Θ∈Pk,r(M)

〈〈 EΩ,X>(Θ −Θ?)X 〉〉
‖X>(Θ −Θ?)X‖F,Ω

)
6 c
√
kr + c

√
k log

(de

k

)
,

for some universal constant c > 0 . Plugging this bound back into (3.5.12) and using the

block isometry property yields the desired assertion.

3.5.5 Proof of Theorem 3.2.8

Proof. The proof is split into two parts. First, we show a lower bound of the order kr and

then a lower bound of the order k log(de/k) . A simple inequality (a+ b)/2 6 max{a, b}
for all a, b > 0 then completes the proof. Both parts of the proof exploit a version of

remarkable Fano’s inequality given in Proposition 3.5.3 to follow, cf. Section 2.7.1 in [134].

1. A bound kr . The proof of this bound is similar to the proof of a minimax lower

bound for estimating a low-rank matrix in the trace-norm regression model given in

Theorem 5 in [87]. For the sake of completeness, we provide the details here. Consider a

subclass of matrices

C =
{

A ∈ Rk×r : ai,j = {0, αN}, 1 6 i 6 k, 1 6 j 6 r
}
,

α2
N =

γ log 2

1 +∆Ω,2k(X)

r

2kN
,

where γ > 0 is a positive constant, ∆Ω,2k(X) > 0 is the the block isometry constant from
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Definition 3.1.3 and bxc denotes the integer part of x . Further define

B(C) =
{1

2
(A+ A>) : A = (Ã| · · · |Ã|O) ∈ Rk×k, Ã ∈ C

}
,

where O denotes the k×(k−rbk/rc) zero matrix. By construction, any matrix Θ ∈ B(C)

is symmetric, has rank at most r with entries bounded by αN . Applying a standard

version of the Varshamov-Gilbert lemma, see Lemma 2.9 in [134], there exists a subset

B◦ ⊆ B(C) of cardinality card(B◦) > 2kr/16 + 1 such that

kr

16

(αN
2

)2⌊k
r

⌋
6 ‖Θu −Θv‖2F 6 k2α2

N ,

for all Θu, Θv ∈ B◦ . Thus B◦ is a 2δ -separated set in the Frobenius metric with

δ2 = kr
64

(
αN
2

)2bk
r
c . The Kullback-Leibler divergence between the measures PΘu and PΘv ,

Θu, Θv ∈ B◦ , u 6= v , is upper bounded as

K◦(PΘu ,PΘv) = EPΘu [L(Θu)]− EPΘu [L(Θv)] 6
1

8

∑
(i,j)∈Ω

〈〈XjX
>
i , Θu −Θv 〉〉 2F

6
1 +∆Ω,2k(X)

8
k2α2

NN .

Taking γ > 0 small enough, we obtain

1 +∆Ω,2k(X)

8
k2α2

NN + log 2 =
kr

16
γ log 2 + log 2 = log(2

kr
16
γ+1) < log(2kr/16 + 1) ,

which, in view of Proposition 3.5.3, yields the desired lower bound.

2. A bound k log(de/k) . Let K =
(
d
k

)
and consider the set GαNk ⊆ Pk,1(M) from the

reduction scheme in Section 3.3.2 with

α2
N =

4γ log 2

kN(1 +∆Ω,2k(X))
log
(de

k

)
,

where γ > 0 is a positive constant. Using simple calculations, we then have (2k− 1)α2
N 6

‖Θu−Θv‖2F 6 2k2α2
N for all Θu, Θv ∈ GαNk , u 6= v . Furthermore, according to Lemma 3.5.4

to follow, there exists a subset GαN ,0k ⊆ GαNk such that

c0k
2α2

N 6 ‖Θu −Θv‖2F 6 2k2α2
N ,

and of cardinality card(GαN ,0k ) > 2ρk log(de/k) + 1 for some ρ > 0 depending on a constant

c0 > 0 and independent of k and d . Thus GαN ,0k is a 2δ -separated set in the Frobenius

metric with δ2 = c0k
2α2

N/4 . The Kullback-Leibler divergence between the measures PΘu
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and PΘv , Θu, Θv ∈ GαN ,0k , u 6= v , is upper bounded as

K◦(PΘu ,PΘv) = EPΘu [L(Θu)]− EPΘu [L(Θv)] 6
1

8

∑
(i,j)∈Ω

〈〈XjX
>
i , Θu −Θv 〉〉 2F

6
1 +∆Ω,2k(X)

4
k2α2

NN ,

for all u 6= v and ∆Ω,2k(X) > 0 from Definition 3.1.3. As in the first part of the proof,

taking γ > 0 small enough, we obtain

1 +∆Ω,2k(X)

4
k2α2

NN + log 2 = kγ log(2) log
(de

k

)
+ log 2 = log(2kγ log(de/k)+1)

< log(2ρk log(de/k) + 1) .

The desired lower bound then follows from Proposition 3.5.3.

Proposition 3.5.3 (Fano’s method). Let {Θ1, ..., ΘJ} be a 2δ -separated set in Rd×d

in the Frobenius metric, meaning that ‖Θk −Θl‖F > 2δ for all elements Θk, Θl , l 6= k

in the set. Then for any increasing and measurable function F : [0,∞) → [0,∞) , the

minimax risk is lower bounded as

inf
Θ̂

sup
Θ

EPΘ
[
F (‖Θ̂ −Θ‖F )

]
> F (δ)

(
1−

∑
u,v K◦(PΘu ,PΘv)/J2 + log 2

log J

)
.

Lemma 3.5.4 (Variant of the Varshamov-Gilbert lemma). Let G ⊆ Pk,1(M) be a set of

{0, 1}d×d symmetric block-sparse matrices with the size of the block k , where k 6 αβd for

some α, β ∈ (0, 1) . Denote K =
(
d
k

)
the cardinality of G and ρH(E,E ′) =

∑
i,j 1(Ei,j 6=

E ′i,j) the Hamming distance between two matrices E,E ′ ∈ G . Then there exists a subset

G0 = {E(0), ..., E(J)} ⊆ G of cardinality

log J := log(card(G0)) > ρk log(
de

k
) ,

where ρ = α
− log(αβ)

(− log β + β − 1) such that

ρH(E(k), E(l)) > ck2 ,

for all k 6= l where c = 2(1− α2) ∈ (0, 2) .

Proof. Let E(0) = {0}k×k , D = ck2 , and construct the set E1 = {E ∈ G : ρH(E(0), E) >

D} . Next, pick any E(1) ∈ E1 and proceed iteratively so that for a matrix E(j) ∈ Ej we

construct the set

Ej+1 = {E ∈ Ej : ρ(E(j), E) > D} .
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Let J denote the last index j for which Ej 6= ∅ . It remains to bound the cardinality J

of the constructed set G0 = {E(0), ..., E(J)} . For this, we consider the cardinality nj of

the subset {Ej \ Ej+1} :

nj := #{Ej \ Ej+1} 6 #{E ∈ G : ρH(E(j), E) 6 D}.

For all E,E ′ ∈ G , we have

ρH(E,E ′) = 2(k2 − (k −m)2) ,

where m ∈ [0, k] corresponds to the number of distinct columns of E (or E ′ ). Solving

the quadratic equation (3.5.5) for ρH(E,E ′) = D = ck2 we obtain

mD = k(1−
√

1− c/2) ,

for the maximum number of distinct columns of a block-sparse matrix E (and E ′ ) such

that ρH(E,E ′) 6 D = ck2 for c ∈ [0, 2] . For instance, in order to get the distance between

matrices 2k2 , i.e. c = 2 we need to shift all the k columns (and consequently rows) and

so the number of distinct columns of a matrix is m = k , and in order to get the minimal

possible distance 4k − 2 , i.e. c = (4k − 2)/k2 we need to shift only one column and a

corresponding row, i.e. m = 1 . Therefore, for nj in (3.5.5), we have

nj 6 #{E ∈ G : ρH(E(j), E) 6 D} =

mD∑
i=0

(
k

i

)(
d− k
i

)
=

k∑
i=k−mD

(
k

i

)(
d− k
k − i

)
.

Together with an evident equality
∑J

j=0 nj = K =
(
d
k

)
, this implies

k∑
i=k−mD

(
k

i

)(
d− k
k − i

)
/

(
d

k

)
>

1

J + 1
.

Note that taking mD = k , which as we have seen corresponds to c = 2 , we have a trivial

bound J + 1 > 1 using Vandermonde’s convolution. Furthermore, the expression on the

left-hand side in (3.5.5) is exactly the probability P(X > k − mD) = P(X > kα) for

α =
√

1− c/2 , where the variable X follows the hypergeometric distribution H(d, k, k/d) .

The rest of the proof is based on applying Chernoff’s inequality and follows the scheme of

the proof of Lemma 4.10 in [100].
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