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RELAXATION TO EQUILIBRIUM FOR THE KINETIC
FOKKER-PLANCK EQUATION

DAVIDE PIAZZOLI

ABsTrRACT. We want to study long-time behaviour of solutions f; of kinetic
Fokker-Planck equation in R%, namely their convergence towards equilibrium
foo in the form

d(fi, foo) < Cre™C2Md(fo, 1)
for appropriate distances d and constants C1 > 1, Ca > 0.

In Section 1 we provide an introduction and motivation for the equation,
together with the setting of [9] which will be useful in Section 2.

In Section 2 we will review the monograph [9], where such convergence is
proved, for h = f/u, in H'(u) and H,, +I,,, that is, the sum of relative entropy
and Fisher information. Here results are stated in terms of general operators
0+ A*A+ B = 0, and commutation conditions on A and B are to be imposed.

In Section 3 we shall take into consideration the work by Monmarché [5]
in which such convergence is established by rephrasing some concepts in term
of I'-calculus: with respect to [9] there is no need for regularization along the
semigroup since the functional taken into account is a modified H + I that at
initial time only takes entropy into account, and the argument turns out to
be shorter. Also, the convergence rate is e=Ct1—e"? ingtead of Cre—C2t,
However it turns out, as in [9], that for this case it is strictly needed to have
a pointwise bound on D2U, where U is the confinement potential. A draw-
back of this method with respect to [9] is that, in a more general setting
than kinetic Fokker-Planck equation, stronger commutation assumptions are
required, which imply that the diffusion matrix is basically required to be con-
stant. On this work a specific analysis was carried out, simplifying the proof
for our Fokker-Planck case and finding explicit and improved expressions for
convergence constants.

The same author in [6], which is the subject of Section 4, addresses a
Vlasov-Fokker-Planck equation with a potential that generalizes U and the
related particle system. Chaos propagation in Wa, the 2-Wasserstein distance,
is proved, namely Wz(ft(l’N),ft) < CN~¢. This leads to both Wasserstein
and L' hypocoercivity, however dependence of the right hand side from the
initial data is not linear as wished.
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1. A GENERAL APPROACH FOR SOBOLEV AND ENTROPICAL CONVERGENCE

In this Section we shall present basic facts on kinetic Fokker-Planck equation,
together with the main abstract tools to be used in Section 1. Here we follow [9]
where we expand some classical computations which are often left as an exercise.

Here we will study the equation

(1.1) Oih+Lh=0

where h is a real function defined on RY — N > 1 — and belongs to a Hilbert space
H — in our case it will be L?(u), with u equilibrium measure for (1.1).
We will consider operators of the form

(1.2) L=A"A+B,

where A: Dom A C H — H™ and B : Dom B C H — H is antisymmetric, that is,
we suppose some positivity of the symmetric part of L. Let us stress that A* is to
be meant as the adjoint of A according to the product of H™, that is the product
of H component by component, so that A* : Dom A* C ‘H™ — H thanks to the
identification of H* with H. It is then easy to prove that for g € H™

A*g=2m:z4§gi eH

i=1

so that (1.2) is to be read as

LZiA;‘Ai-i-B.

i=1
We do not require any boundedness of A or B, as in our case they will be
derivation operators.
We will indifferently denote with e *Lh, S;h or h, the semigroup associated to
L: if his a function RY — R, e~ *'h solves 0,9 + Lg = 0 with gy = h.

Remark 1. A first, simple effect of the structure of our generator L is that we can
readily compute

Dom L NKer(A*A+ B) =Ker ANKer B .

In order to see this, notice first that obviously for all h antisymmetricity of B gives

(Bh,hy = —(h, Bh) = —(Bh,h) ,
that is, concerning the real part
Re(Bh,h) =0,
so that
Re(Lh, h) = R(A* Ah, h) = || Ah|* ,
giving that Lh = 0 forces Ah = Bh = 0.

Let us now see a motivation for the study of such equations: take the stochastic
differential equation in RY

dZt = g(Zt) dt + E(Zt) dBt 3
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where ¢ : RY — RN and Z : RV — RV*Y are smooth enough vector and matrix
fields on RY. By considering the law f;(x) of Z;, we want to study its evolution:
pick a test function ¢ € C*(RY R), then by Ito formula

Z{m Z)dZ + - Z A Ze)Zik(20)Zjk(Ze) dt

1,5,k
so that

Z) :/O {Zaiqﬁ(zs)gi(zs) + % 28%¢(Zs)5ik(Zs)Ejk(Zs)] ds

ij.k

+/0 > 0 Z.)Eu(2:) B + 0(Z0)

from which, by martingale property,

|, sif@owae =5 [ ol thWt”

[Z@(p 7)€ Z &(Z1)Zik Zt)ugzc(Zt)}

1,5,k

/[Zald) Z ) Zik (2 ~jk(33)}ft(x)dx,

1,5,k

where in the first equality we may interchange derivation and integration by sup-
posing some regularity of f — for instance d; f locally bounded in R, x RY — since
¢ € C. Here and throughout the Section we will use indifferently the notations
Jz» g and [;, g(x) dz. Since, formally,

| 1vos==[ ov-tre).

meaning we are done with the first part, let us focus on the second term and, by

defining
Il —- - | p—
Djj =) EpEj = 5(::T)ij ,

there holds, still formally and up to regularity issues of f; and E,

| X otonsn= [ > D)o~
- /. S0V + 00 (5sDy)

0,

= | ¢V-(DVfi+ fiV(D1)),

RN

)= 9;Dij(x) ,
J
we have reached the weak formulation for the evolution of f;,

(1.3) Oufr =V (DVfi+ fuld - ) .

5
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We will refer to this as natural equation since it arises from a physically natural
setting.
Suppose now that there exists a stationary solution f., for (1.3), smooth and

positive, possibly of infinite mass. Then the ratio h; := ffT; satisfies
(1.4)
dh; 1
A e (vat‘i'ft(d £)) = f V- (fooDVhe + foohi(d — &) + he DV foo)
hy
= V. (DVhy) + 7 VfooDVht + f—v (foo(d =)+ (d—&) -V
1
+ TV (DV foo )t + TVhtDVfoo
2DV foo
:V-(DVht)—F( f +(d—£)>-Vht

where we used that fo has the right hand side of (1.3) vanishing.

We wish to write this under the form of (1.1), so let us choose the Hilbert setting of
H = L*(fs). Let us also consider ZV and compute its adjoint in H: pick smooth
g:R™ - R™ and h: R™ — R; then

(EV)"g, h)z = (9. EVh)3m = . VhE g foo = —/R hV - (E"gf)
Voot
= - h . Y 0
/R . [V (ETg) + e }f
that is,
o - Voo -
(EV)'g =~V (E1g) - =27y
and
o Ve
(EV)*(EV)h = =V - (2DVh) — —=2DVh ,
giving that we shall choose
A= L =V
\[H
which gives
dh DV
th = —A*Ah, + ( Jo +(d—§)> - Vhy .
We just need to prove that the last term is antisymmetric: by calling it
B=b-V,
we shall prove that for all A
(Bh,h) =0

which is equivalent to antisymmetricity of B by writing
(Bh,g) + (h, Bg) = (B(g + h),g + h) — (Bh,h) — (Bg, g) .
Indeed
1
Bhby = [ (b VHhfe =3
RN 2
1

= 5/RNh?v.(Dwoﬁ(d—g)foo):o

b-V(h?)feo = —%/RN RV - (bfs)

RN
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for all h.
This means that h; solves an equation as (1.1), with B antisymmetric derivation
field, in the Hilbertian setting of L?(f..). In view of this fact, we shall call (1.4)
formal equation.

Here arises our favourite example, linear kinetic Fokker-Planck equation — ac-
tually, the particular case from which we decide to build a general theory: let the

physical dimension be d > 1 and take two space and velocity processes X; and V;
in R? defined by

dX, =V, dt
{th =V, U(X,)dt —yV,dt + cdB,

where U is a C' potential R? — R — it corresponds to space confinement, and
from time to time we shall require growth conditions at infinity in order to prevent
particles from being scattered away — B; is a d-dimensional Brownian motion |,
~v and o are positive constants. Then it is easy to see that the induced natural
equation (1.3) reads

2
Of +v-Vof —VoU(z) Vof = %Auf +AV, - (vf)

that is,

[

Do) = % {ox ov]
and
§(z,v) = { _VIUE)J:) — }

2
and foo(z,v) = e_c% (U(’;H%) , up to a normalizing constant. The matrix D being
constant, the vector d(x,v) from (1.4) is null, allowing us to refer to d as the
dimension only, with no notation ambiguity.
Let us us now provide the direct computation of the classical change of the
equation from natural to formal. This is just an easy computation, often left as an
exercise, that we wish to provide.

Proposition 1. Suppose that f = f(t,z,v) satisfies
2
Of +v-Vaf — VU -Vof = %Aq,f+vvv S(wf), t>0, (z,v) € R x RY

for some v, o > 0, which admits as equilibrium, up to a normalizing constant,

2
frolw,v) = e V@)
Then the density with respect to equilibrium fi satisfies

2
Oh+v-Voh — VU - Voh = %Avh—ﬁywvvh

Proof. Let us compute all differential items when applied to f% First
f > Uvzf szvvf o? Avf vv(vf)
d ( = - + ==+ :
"\ foo foe 2 fo |
7




Next, we may compute, for all differential operators involved G, G(f/f~) and look
for G(f)/feo on the right hand side. Indeed

: > B W@+, Vol _ 27 (B U@+ Vaof
Vel — | = Va(eo? 2 +
(foo ( )/ foo o? foo
so that - f ) s ;
V- Vg 7
- VU-— -V, | — ).
In the same fashion
f) L (U(2)+ Vof 27 234l Vo f
Vol =— ) = Vy(eo = = —eo?
<foo ( ) foo o2 foo
leads to V.UV f F 2 f
x : v o 17 .
7}&; =V, U -V, (foo> 2 fOOVzU v

Summing the two expressions gives

v-Vof VJU-Vof f f
el B v (L) e ()

Now let us take into consideration the Laplacian: by recalling that, for all smooth
f and g, the formula A(fg) = gAf +2Vf-Vg+ fAg holds,

2 2 2
T (L) =55 4 v B ) L Ty, ()

a2 A, f V [ o? ( 1 )
= 5 e Av e .
2 foo * T vty foo

By writing explicitly the last term

1Y _ B U@y ( )
fA (foo) YfVy - (ve ) =7fV,- I

302 () 45 (1)
> 7o e lgs) s Ve

and, summing up everything we have computed,

(fi)” Ve (fi) VeV (fi)

_ 2 / v-Vyf v (Uf)
2A”<foo>_2” Ve (ﬁ)” T

It is now easy to find the coefficient of v as a function of fi by applying several

which gives

times Leibniz rule:

Vo (vf) 20-Vof (v):vv-w)_v-vvf_ (f)
Foo AL Fe i\

1 _U-Vyf o i
V() vt = ()
which gives

1)) ()55 () 5 ()
<foo)+ V(foo> V.U Vv(foo) A e YU -V, e . 0O
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2. GENERAL APPROACH TO HYPOCOERCIVITY: VILLANI’S METHOD

In this Section we are going to briefly expose some features of the monograph
[9], with a stress on kinetic Fokker-Planck equation, which is the main application
therein - not the only one, though. We have tried to be to some extent comple-
mentary to its author, by sketching some parts which are there in deep detail and,
conversely, expanding some computations which are glossed over.

In Subsection 2.1 we are going to provide results in a general setting for Sobolev
H' norm — or better, an abstract version of it — with Theorem 2 and entropy —
or rather the sum of entropy and Fisher information — in the way more detailed
Theorem 3. In Subsection 2.2 we are going to apply such results to kinetic Fokker-
Planck equation. We will also provide some regularity results for solutions of the
equation, which, in addition to being of their own interest, allow for convergence
results starting from a way less regular data, at the price of a worse dependence
from data on the right hand side. In Subsection 2.3 we provide the outline of the
theory developed to tackle a nonlinear variant of kinetic Fokker-Planck equation.

2.1. Linear setting: L? and entropic convergence. Now let us turn to the
abstract study of our operator: take a Hilbert space H < (Ker L)*NDom L densely,
where orthogonality is to be meant according to the structure of H — typically we
will consider H! embedded in O-mean functions. We will say that the generator
L :H — H is M-coercive if for all h € Dom L N (Ker L)+

Re(Lh,h)z > XAl

that is, if the symmetric part of L, when restricted, admits a spectral gap in H.
An equivalent formulation, closer to our purposes, comes from noticing that the
previous definition is nothing but Gronwall inequality on the squared norm along
L flow: for every hy € H and h, satisfying (1.1), coercivity is equivalent to

el < e llholl -

Concerning this last formulation, what is always true is that
d 2 2
7 helle = =21 ARl

which gives that [|-|][,, does not increase along the evolution, and therefore that
the semigroup operator S; is H-non expansive for all . This will not be useful for
coercivity though, since it will never hold

A*A>1d,

as we will have A = V,,. This is a symptom of the usual difficulty that we encounter
when dealing with relaxation and kinetic equations: the full Laplacian that helps
in spatial Fokker-Planck equation is now present in half of its form only.

However our hope to have a coercive L is going to be frustrated, so we will say
that L is hypocoercive if

el < Ce ™ |lholly » ho € H,

for some constants C' > 1 and A > 0, and for an appropriate and nontrivial #. This
is what we will always aim to prove, in an appropriate setting.
We shall see that a important role is played by commutation. Indeed, suppose
A and B commute, in that B commutes with all of A;; then so do their exponen-
tials, and e tF = e~t4"4e=tB_ Since e P is norm-preserving, hypocoercivity of L
9



is equivalent to hypocoercivity of A*A, however in our case this does not occur.
Indeed, by defining

[A,B]:= AB — B*™A:H — H™,
where by B®™ : H™ — H™ we denote B applied component by component, in
our Fokker-Planck setting we shall have [A, B] = V,. Since in this case it will be
non-zero, the strategy will be to impose magnitude bounds on several commutators

in order to make its effect negligible.
Now, define recursively the operators

C() = A
and
Ck+1 = [Ck,B} H = H™
to be meant as above. Then

o KerL C nkzo Ker Cy: if Lh = 0, Remark 1 gives that Ah =0 € H™ and
Bh =0 € H,sothat Coh = 0. Inductively, Cy11h = CxBh— B®"Crh =0
® iz Ker Cy, is invariant under e~*".

Since we wish to have Ker L = (-, Ker Cy, or better ﬂkK:O Ker Cy, we will ask for
Zli(:() CiCr # 0 on {L # 0}. More strongly, we will ask for Zszo CiCy, coercive
on (Ker L)*.

Now we can state the first big result, which corresponds to Theorem 18 in [9].
Its proof will be only sketched by synthetically pointing at main ideas, since a close
analogue will be proved in greater generality for the entropic case. We will write

K
B30 = 1R+ Y I Cebl,
k=0
and we will say that an operator T" is a-bounded with respect to {S,}; if for all h
it holds || Th[| < o}, [S;h[. Also, we will write K = Ker L and write [A, A*] for
the matrix {[A4;, A}]} k-

Theorem 2 (H! convergence). Here we will deal with K = 1. We will suppose
that:

o A commutes with C, A* commutes with C and A; commutes with A; for
all i and j
o [A, A*] is a-bounded with respect to I and A, and [B,C| is B-bounded by
A, A%, C and AC
o A*A+ C*C is coercive in H-norm on (K)*.
Then there exists a scalar product ((-,-)) on (KL)y of the form (-,-) + a | A-]]* +
b(A-,C-) + ¢ ||C-||*, where products and norms are to be meant in H, such that L
is ((-,-))-coercive on (K+)y1. This inner product is equivalent to H', so that L is
H!-hypocoercive.

Proof. Take h € H! N K+, write down ((h, Lh)) and separate it between various
terms of ((-,-)); commute and estimate various terms, either by domination as-
sumptions, or by antisymmetricity or simply with Cauchy-Schwarz; at this point,
we reached an expression of the form

((h, L)) > (|ARI, [ A%A][ ICIIL IICARI) - M - (Il ARIL [[A2R]| [ ICAR])

10



where M is a 4 by 4 matrix, whose entries are just numbers depending on constants
and parameters a, b and ¢ which are still to be chosen. We should just prove that
the symmetric part of M is positive definite, so that we will yield, by denoting with
c a generic constant,

((h, Lh)) = c(| AR + |CRI*) = g(llAhll2 +[Chl?) + % 11]* > e((h)

thanks to coercivity of commutators. In order to get positivity of the matrix, and
to make sure that our product is positive, we need an upper bound on the linear
growth and a lower bound on the geometric growth of a, b and ¢, which is done by
an arithmetical argument. O

This argument may be generalized, to K > 1 and by writing
[Cy, B] = Zk+1Cl41 + R,

where Zj, are fixed fields H™ — H™ bounded from above and below, and R, are
remainder terms with a magnitude condition.

After dealing with a generalization of Sobolev convergence — this comparison will
be clearer in Subsection 2.2 —let us focus on the entropy case, by giving definitions
in a more general framework than the one we need; recall that, given p measure on
R and a p-measurable function h : RY — [0, +00), we define the relative entropy
of hu with respect to u as

H, (hpu) ::/ hloghdp ,
RN
and the Fisher information of hu with respect to p as

Vh|?
I (hp) == /]RN %dﬂ

We will write H,,(v) = I,(v) = oo if v is not absolutely continuous with respect to
, and we will even write I,,(h) = I,,(hu) in case there is no possibility of confusion.
Here we abandon the Hilbertian setting of L?(1), and we will just consider functions
on RY; we will consider a reference measure v rapidly decreasing at infinity and
with sufficiently well behaved semigroup, in that it maps a set of smooth and fast
decaying enough functions into itself. Also, we will consider operators of the form
A==-Vand B=10-V, where Z and b are a matrix and a vector field, and we will
refer to such operators as derivations. Here we will deal with relative boundedness
of derivations in terms of pointwise boundedness of the representing fields when
viewed as matrices. In other words, if an array of derivations is represented by
the matrix field {&;;};;, pointwise boundedness with respect to A means that there
exists ¢ > 0 such that

wi€ij()w; < c wiZij(x)w; , xRN | weR™.
We are now ready for the following result, which amounts to Theorem 28 in [9];

the proof here shown also contains the important Lemma 32 in the monograph,
together with the expansion of therein glossed over computations.

11



Theorem 3 (Entropy convergence). Let us set ourselves in the situation where
Co = A and, for 0 < k < K, [Cy, B] = Zx41Cx 11 + Riy1, where Zp : RN — RV,
1 <k < K, are fields such that for real constants A\, and Ay,

0< e |#)® < Zp(z) -z < Ay |z,
and Cy, Ry, are derivations. We will suppose:

(i) [Ck, A] pointwise bounded with respect to A with constant ¢,

(ii) [Ck, A]* pointwise bounded with respect to I and A with constant co
(iii) [Ck, A*] pointwise bounded with respect to I and {C; }?ZO with constant c3
(iv) Ryy1 pointwise bounded with respect to {Cj}fzo with constant cp

(v) The matrices of coefficients Cy, satisfy

K
ZCZ(x)Ck(x) >cly, zeRY
k=0

(vi) w satisfies a Logarithmic Sobolev Inequality, that is,
1
Hy() < 5 1u(v)
for all v such that [ dv = [ du.

Then we have entropic hypocoercivity, in the weaker sense that for h; satisfying
(O 4+ L)h =0
(Hy+ 1) (he) < Ce_/\t(Hu + 1) (ho)

for a constant A which depends on all previous constants.

Proof. We define the target functional as
|2

K
E(h) = / hlogh du+ Z (ak/ [Crh dp + 2bk/ Mdu) )
RN E—0 RN h RN h

that is, the sum of relative entropy and Fisher information twisted via the tridi-
agonal quadratic form M = M (z), which is a N x N matrix field of the following
fashion: by identifying the derivation operator Cj with its m x N matrix field of
coefficients,

K K-1
(M(2)6,&n =Y ar [Cr(2)E2, +2 > b{Ch(@)E, Chra(2)E)m , EERN,
k=0 k=0

where m is the amplitude of derivation operators, that is, A = (A4;)™, We will
sometimes be denoting inner products by (v, w), just to make clear, if ambiguous,
that v, w € RP.

From time to time we will be imposing conditions on ay and by that will eventu-
ally be chosen accordingly. For instance, for £ to be equivalent to H + I, we need
uniform positivity of M with respect to I, for which we ask for

b7 < daraxi1

for some § > 0 to be fixed later, since it gives

(M(2)&, &) > (1-20) > ar ||Cu(@)é]* , €€RY.
k=0

12



We can now study evolution of £ in itself:

Hoy(hpt) = / (log h + 1)(A* Ah + Bh) du
dt RN

A2
AP

=- A(logh+1) - Ah — B(hlogh)du:—/
"

RN RN

It is easy to notice that the effect of B is not a pure chance, but it holds with any
F(h) as long as the generator of the evolution is antisymmetric:

a F(h)dp:—/ F'(h)Bhdy
dt RN RN

_ _/ B(F(h))du:/ F(h)B*(1)du =0,
RN RN

thanks to chain rule and to B* being a derivation.
Now let us turn to the dissipation of the modified Fisher information: first we
shall deal with the general term in the sum by relabelling it as

/ Ch-Ch
dp
ey h

and noticing that we can write it, for instance, as

4 Mdu:AL/C\/ﬁC‘@t\/ﬁderél/ OV - Coh dp
RN

&t Jov R
S RNc\/ﬁ-é(\L/%)du—z RNC\/EC(\L/%)@

highlighting thus L-additivity so that we can analyse separately the effect of A*A
and B, by writing

(2.1 oy O( / CE o, [ Gl Cunl
K
Zak )B) + b (I + (IDP)

=0

Let us study thoroughly the form of each of the four terms on the right hand
side, by first dealing with B: consider h solving (9; + B)h = 0. Then, since it is a
first-order derivation, we also have

oVh+ BVh = f(aﬁB) =0,

13



so that it is useful to rewrite the ratio as the better-behaving quadratic formulation

q dp =4— cVh-CVh dp

d/ Ch-Ch d
vy h dt Jan

=—4 | CBVR-CVhdu—4 | CBVh-CVh du
RN

:_4/ [C,B]\/ﬁ.é\/ﬁdu—z;/ BCVE - VR du
_4/ [C‘,B]\/E-C\/ﬁdu—zl/ BOVE - OV dp
:_4/ [C,B]\/E~C*\/Edu—4/ G, BV - CVE du

:7/ [C,Blh-Ch du—/ [C.Blh-Ch du
RN h RN h

We can now turn to A* A, taking h such that (0; + A*A)h = 0.

d Ch-Ch d - d -
At o . dp At o hClogh - Clogh du T fClogh-Clogh
= [ 8.f Clogh-Clogh
RN
(1)
XN A ~(Ocf
C(25) - Clogh C(ZL)  Clogh .
+/RNf<f> & +/RNf(f) o8
) )

We shall deal separately with each of the terms, anyway f; = h;e” ¥ evolves ac-
cording to

Oifr =V - (DVfi + fi(V2d = €)) =V - (D(V fs + i VE))

since

)
(Va9

0=—b=
where B=10b-V and D = ZT=. Then
(1) = —/RN(D(Vf + fVE)) - V(Clogh - C'log h)
=— /RN (e BVh — hVEe P + fVE)-2V(Clogh - Clogh)
_ _/RN =(fVlogh) - EV(Clogh - Clog h)

=— | fAlogh-A(Clogh - Clogh)
RN

14



and, since we now know the equation satisfied by f;, let us highlight f

) :/RN fC(V.(D(V]}—i— fVE))) Clogh

(V - (fDV logh)
f

:/ ) -C’logh

RN

:/ F{C(V - (DVlogh)),Clogh),
RN

/ f{C(Vlog f,DVlogh)y,Clogh)
R

* N
:/R F{C(V - (DVlogh) — (DVE,Vlogh)y),Clogh),

+/RN f(C(Vlogh, DVlogh)n,Clogh)
=— o f(C(A*Alogh), Clogh / 1 C|Alogh| ,Clogh}
=— | f{C,A*]Alogh,Clogh)m — [ f(A*CAlogh, Clogh)m,

RN RN
(2.1) (2.2)

+ 2/ F{(CAlogh)(Alogh), Clogh)
RN

(2.3)

where we also used that A*A = —V-(DV)+DVE-V and wished to make dimensions
clear: for instance, by calling a — b an operator on functions RY — R® taking
values in functions RY — R® [C, A*] is to be meant as m — m and A*CA is
1 — m. Now let us look at the second term:

(2.2) = — / (A*CAlogh,Ch),, dp
RN

:—/ (CAlogh,[A, C Y At — / (CAlog h, C’Ah)mxmdu
RN RN

:—/ (CAlogh,[A, C Y At — (CAlog h, C (hAlog h)Ymxm dp
]RN RN
= f<CA log h7 [A,C] 10g h‘>m><m
RN
2.2.1
— f{CAlogh, C’Alogh)mxm—/ f<(CA10gh)(Alogh),C’logh>m
RN ]RN

2.2.2 2.2.3
15



Here (2.2.3) may be summed with (2.3), giving that, together with the symmetric
equivalent,

(1) + (2.3) + (2.2.3) + (2/.3) + (2/.2.3) = — . fAlogh - A(Clogh - Clogh)

Jr/RN f<(C’Alogh)(Alogh),élogh>m+/RN f<(C’Alogh)(Alogh),Clogh)m
:/RN fCjlogh [Cy, Ai]logh A; lothr/RN fCjlogh [Cy, Ai]logh A;logh
:/RN Cjlogh [C;, Ailh A;logh du+/RN Cjilogh [Cy, Ajlh A;logh du

=/ f[Cj,Ai]*(C'jlogh~Ailogh)+/ f[éj,Ai]*(leogh-Ailogh)
RN ]RN

where the sum is implicit for 1 < 4,5 < m. All in all, for 9;h + A*Ah = 0, one can
perform symmetric computations and yield

d Ch-Ch
dt Jen R
+[(1) + (2.3) + (2.2.3) + (2.3) + (2/.2.3)]

dp = [(2.1) + (2. 1)] + [(2.2.1) + (2/.2.1)] + [(2.2.2) + (2/.2.2)]

=— f([C,A*]Alogh,C'logh>m — f([é,A*]AloghC’logh)m

RN RN

- f(CAlogh,[A,Cl10g hmxm — / f(CAlogh,[A,C]10gh)mxm
RN RN
-2 f(CAlogh C’Alogh)me

/ flC *(Cjlogh - A;logh) / FIC;, Ai]*(Cilogh - Ajlogh) .

We can now compute (I)i, (I1)#, (I)2, (I1I)2 and use commutators’ decomposition

h

Z . .
o[ DenCiahi G gy [ Sl Col
h RN h

(Chahl ¢ / Cuhl?
<2A / Bk g, 2R g
’““\/ v h v h
k 2 2
|C;hl / |Crhl
T2 / du d
R$ j;) RN h RN h
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where we used that Zyy1(x) - 2 > Appq |z|° for all z € RY and enforced condition
(iv) on Rp4+1. The mixed term in B gives

(g —/ Zier Crih - G dM_/ Bipih-Cpnih
RN h RN h
[ FeaCeahoCih [ RehoGih
RN h RN h

Chiah)? : / C;h)? / Criah)?
<—A a1l g S Hd k1B
o k+1/]RN h Hen o) L h H RN h dp

Chaohl? Cy.h|?
+ Apes / [Chi2hl” / IChI” 4
v h v

k+1 2
Ch Cih
+CR$ | / [Cch d
RN

h
again thanks to bounds on Zjy;. All terms we have gained for the moment are
positive and we wish to estimate them via the only negative one. Let us now work
on A, by first focusing on the last term appearing in (I)#* and (I1){}. By enforcing
condition (ii) on [C, A]* and (i) on [Cy, 4],

/RN flCk, A*-(Cr logh @ Alogh)
§CQ/RNf|C’klogh®Alogh\ +02/RNf|A(C’klogh®Alogh)|
gCQ/RNﬂckmgh@Alogh\+CQ/RNf|A2logh Cy log h|
Jng/lRNf|C’kAlogh Alog h| +02/RNf\[A,C’k]1ogh Alog h|
SCQANf|Cklogh®Alogh\ +02/RNf|A210gh Cklogh|

+ ¢y f1CrAlogh Alogh|+ 6102/ f1Alog h|2
RN RN

17



thanks to which

(N <-2 f{[Cy, A*]Alog h, Cy log h),
RN

-2 f(CkAlog ha [A7 Ck] IOg h>m><m
]RN
—2/ flCeAlogh)?
]RN
+262/ f1Crlogh ® Aloghl +202/ f|A21ogh C’klogh’
RN RN
+2CQ/ f|CrAlogh Alogh|+20102/ f|Aloghl|?
RN RN

< —2/ £ |Cr Alog h?
RN

k
+ 2c3 / f1Crlogh)? Z/ f1C;Alog h|?
RN =1 RN
+2(01+02)\// f|CkAlogh2\// flAlogh|®
RN RN
+2c2\// f|cklogh|2\// f|Alog hf?
RN RN
+2cQ\// f|Oklogh|2\// 142 10g h)?
RN RN

+26182/ f|Alogh|?
RN

by enforcing conditions (i) and (iii) and compactly denoting I = C_;. Similarly,
without repeating analogous calculations, one obtains that

(INg < 2\// f|OkAlogh|2\// f|Cri1Alog h)?
RN RN
k+1
—1-031// f1Cxlog h? Z / fl1C; log h|*
RN j:71 ]RN
k
+C3\// £ |Crs1log h)? Z / f1C;log hf?
RN i RN

j=-1
18




+\// fIAloghl2<\// f|ckAlogh2+\// f|ck+1Alogh2>

RN RN RN

+\// fIAlogh|2<\// f|oklogh|2+w f|ck+1logh|2>
RN RN RN

+02\// f|A210gh|2<\// f|C’klogh|2+\// f|Ok+1logh|2>
RN RN RN

+\// fIAloghl2<\// f|ckAlogh2+\// f|ck+1Alogh2>
RN RN RN

—l—clcz/ |Alogh|* .
RN

This enormous amount of positive terms we have collected should not frighten,
since they shall all be dominated in the end; indeed for the sake of brevity we shall
no more write the whole right hand side of (2.1), which shall contain as the only
negative terms

—Qbk/\kﬂ/ f|Cri1logh|* and —Zak/ flCrAloghl® .
RN RN

Here we are always supposing 0 < k < K — 1, the case of k = K is even easier and
should be treated separately. Our strategy will be the following: we will regroup
all positive terms in two groups: Group 2 will be made by terms appearing from
the estimate of

2 fICk, A]*-(Cr logh @ Alogh)
RN

+ [ flCk; A" (Cryrlogh ® Alogh) + | f[Ciy1, A]" - (Clogh ® Alog h)
RN RN
while Group 1 is the remainder. We shall first focus on Group 1 aiming to prove
Group 2 to be negligible with respect to the former: since via Cauchy-Schwarz we
have managed to yield everywhere a multiplication times a

,// f1C;loghl® ora \// fl1C;Aloghl
RN RN

we shall perform Young inequalities on each single term in Group 1, so that we
earn a

aaj/ f|C’jAlogh|2 ora 5bj_1/ fl1C; log hl|?
RN RN

in order to, eventually, compare the sum with

K
Z (aj/ f|CjAlogh|2 +bj/ fl1C41 logh|2) —|—/ f|Alogh|2>
RN RN RN

Jj=0

(2.2) s(

for € small enough that cancellation with negative terms occurs. Clearly, as a

price we shall have the second terms given by Young inequality with conjugated

coefficient as an expression of a; and b;: for instance, in the fourth line of (1)
19



we shall estimate

bkcl\// f|Alogh|2\// flCrAloghl?
RN RN

b2 2
Saak/ f|C’kAlogh|2+—kc—1/ flAlogh|* .
RN ak4€ RN

Since we may suppose € to be fixed, we shall try to have the product of a; and
b; small enough for the second term to be negligible with respect to the first one.
Indeed we have already defined the quadratic form with a; and b; depending on a
parameter § > 0, and we will ask

2 2

k _ %
— € o50(ar) = = <5 ap .
ag ag

Clearly it will be a §(¢g), which will make sure that for fixed £ we will have yielded
a bound by

eak( /R _flCiAtoghl + 05<1>>

which collected among the whole of Group 1 yields an amount of requirements
on {a;} and {b;} to be analysed in the end. Concerning Group 2, we will only
be concerned with proving they become negligible as § — 0. We shall aim to
compare each term in Group 2 with a subset of terms in sum (2.2), without €. Since
comparison will be via Young inequality, we shall compare coefficient in Group 2
with the square root of the product of target coefficients in (2.2). For instance, for
the penultimate term in (I1);' we shall aim to a comparison with [,y f[Alog h® +

kt1 fRN f1Cry1Alog h|2. To this scope, let us impose

br, <5 v/art+1

thanks to which

bkw flAloghlz\// f|Crs1 Alog h?
RN RN

<s \/ak+1\// f|Alogh|2\// f|Cry1Alogh|?
RN RN

g/ f|A10gh|2+ak+1/ f|Crs1Aloghl? |
RN RN

20




which means that, as long some conditions on {a;} and {b;} are enforced, we can
summarize everything as

[ h,u+Z( / |C’“|d+2bk Md#)]

RN

Ah
< - /RN % dp — Z (2% /RN f1CxAlog h|? + b i1 /RN f1Cks1 10gh|2)

k=0
+ (e +05(1))

K AR
: { ak/ f|CrAlog h|? +bk:/ f|Chi1logh|” ) / hdﬂ}
k=0 RN

K

Anl?
< _/ !du - Z (ak/ f1CrAlog h|? +bk/ f1Ckt1 logh|2)
RN h P RN RN

K
f/ f|Cologh|Zbek,1/ f1Cxlog h|?
RN =1 RN

if € and § are small enough, thanks to which the hidden constant is arbitrarily close
to 1. We are now only wish to impose enough conditions to close the inequality
with H,, + I, ar. For this we shall use (v) and (vi) on half of the last term in the
inequality and simply recover I, ps, giving

K
—/ f\cologhF—Zbk,l/ f1Cxlog h|?
N b1 RN

1
<1y (an [ fiCtogh? 420 [ 7 Culogh- s logh)
2k: RN RN
1
QkZ/ 7 |Ci log hf?
1
< - §(pM )+ cl(h))
1
<- 5( h) +2c¢CrsiH,(h))

where the hidden constant only depends on coefficients {ax} and {by}.

The only thlng We need to have the theorem proved is enforcing conditions on
{ax}, and {by,}+—' themselves and proving their compatibility for existence: such
conditions were all derived from asking remainders in Group 1 were J-negligible with
respect to principal terms, and from asking Group 2 to be d-negligible with respect
to Group 1. All in all, these conditions are satisfied if we set

ap = ugk+1 and by = Uokio
2K+2 i g
where {u};2,“ is a sequence of positive numbers satisfying

{Ulc-i-l < duy

2
uj, < OUp—1Uk+1 -
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This is done by asking ratios to tend to 0 and setting ug = n™*, thus transforming
the previous conditions into

{7nk+17nk >0
2my — (mk+1 — mkfl) >0

which fulfil our requirements for n — 0, since the sequence is finite. In order to
prove the existence of my, it suffices to notice that one may choose mg =0, m; =1
and increments such that 0 < mg41 — mr < my — mi—1. This completes the
proof. ([

2.2. Application to kinetic Fokker-Planck equation. Let us see how the two
previous Theorems apply to our Fokker-Planck setting. We shall consider the formal
equation

Oh+v -V h =V, U(x) Vyoh=Ah—v-Vyh,

K 2
on the Hilbert space L?(e~ = ). We wish to apply Theorem 2; here it is easy
to prove that Ker L is made by constant functions (either by integrating Lh against
h or by reminding that Ker L = Ker A N Ker B) so that

K+ = h:/ hdp =0 .
R4 xR4

Here and in the following, we shall not write the domain of integrals whenever it is
meant to be RZ x R%. Also, C' = [A, B] = V., so that H! = H'(dyu) restricted to
zero-mean functions. Concerning hypotheses of the theorem to be verified,

e A=V, and A* = -V, - +v- commute with C, since they only interact
with the v variable; also, easily A; = 0,, commutes with A;.

o [A,A*] =1 :H™ — H™, therefore 1-bounded with respect to I and A

e [B,C] = V2U(x) - V, should be bounded with respect to V,, V2, V.,
V2, in L?*(u). Indeed, it is enough if D2U(z)- is bounded by I and V,
in L2(e"Y(®dz). In other words, we wish |D2U|- to be bounded from
H'(e7Y) to L?>(e7Y).

For this to happen, it is enough to ask for

(2.3) |D*U| < c(1+|VU)),

which roughly corresponds to exponential growth at most. To prove
that (2.3) implies our desired boundedness, let us prove the same for |VU|?

instead of ’D2U |2, which implies our claim by (2.3): pick g smooth and
fast-decaying enough and, by reminding that

Uy < (@50 ;[(82 U+ (3,0’ < d| DU’

<241+ VU,
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write ||gVU||2LQ(€_U) and by integrating by parts twice

/ VU g?e~ :/RdV(gQVU)e*U

:/ g*AUe Y +2/ gVg-VUe Y
Rd

\//Rdge_U\// 9€_U+ |VU| e
+2\// VU ge- \// Talte

2/ VU g%V + (V2dc + 2dc? )/ ge Y

4/ Vg* eV
Rd

by arguing by Cauchy-Schwarz and Young inequality multiple times. This
is enough to prove the claim
Proving that A*A+ C*C is coercive on X amounts to proving that for all

fra- ()]

that is, Poincaré inequality for p. Since Poincaré is satisfied by the Gauss-
ian, this requirement is equivalent to Poincaré inequality for e~V (),

Sufficient conditions for Poincaré inequality are a classical exercise: for
instance,

/(|vmh|2 V) du > C

is taken from Appendix A.19 in [9]. Let us provide a rough outline of
its proof: start from that Poincaré holds on bounded sets, then deal by
integration by parts with the gradient to yield an estimate of L? ((|VU|2 /2—
AU)p) in terms of H'(), and use it outside the ball.

According to this criterion, all measures behaving at infinity like e~1#"
with o > 1, satisfy a Poincaré inequality. We are then asking for our
potential to grow at least linearly (indeed e~ 17! satisfies Poincaré inequality
as well) and at most exponentially.

In order to conclude, we only need to produce a S space, dense and such that
A:S > S and B:S — S are continuous. This is easy if U € C™; if U € C?
only, we approximate with V. and pass things to the limit. Let us summarize in
the following, corresponding to Proposition 35 in [9].

Proposition 4 (H! hypocoercivity for Fokker-Planck). Let U € C?(R?), satisfying
a Poincaré inequality and such that for some Cy > 0

|D?U(2)| < Cu(1+|VU(z)), z€R?.
23



Then there exist C and X > 0 such that for every hg € H* (1)

he— / he dMH < Ce ™ lholl iy -
H ()

The proof of Theorem 3 could be carried out for this particular case, improving
explicit estimates on constants.

For less regular initial data, the following hypoellipticity result will be useful. It
corresponds to Theorem A.8 in Appendix A.21 in [9], completely devoted to regu-
larization results. We shall here present its proof by expanding some computations
and by slightly changing its presentation.

Proposition 5. Suppose that U € C? satisfies
|D*U| < Cy(1+|VUJ) .
Then there exists C' > 0, which only depends on d and Cy, such that for all hg €

L*(p)

C

< ||h0||L2(/.L) 9 0<t<1 .

el iz < 72

Proof. First, we shall establish a differential inequality on ||ht|\i1;% To see this, by
writing the generator of the semigroup of h, in the sense that 0;h; + Lh; = 0,

L:=v-V,—V,U-V,—A,+v-V,,

one can start investigating - ||ht||?'{1(ﬂ) by adding the term LV, and studying
commutation of L with V_h l

1d
5 IVoh|? + Vyh - LV h = Voh- (0 + L)Vyh = Voh - (=VoL + LV,)h

=V,h-D2U-V,h.

By integrating against u we recover % || Hi{l(u) as the first term, while the second
one gives

/vah~v$hdu: —/Avvwhvzh du+/v-DvDIh-vxhdu
= —/Avvwh-vxhdu+/vv - (DyD,hV . h) dp

:/|DIDvh|2 dp

since it is easy to prove that transport and spatial confinement terms cancel each
other, giving
24



2
35t M + [ 1D du= [ V.h(D20)Vahd

ff/hD2U~wahd,u+/th§UVzhdu

g/}DgU\Qthm%/wgvhf dp

27712 1.2 2 2 2 2
+( [ |D2U| n*dp lv|* |V.h|* du
< C(/h2 du+/|vmh|2 du) + i/!Dfmhf dy
1 1
+CQ</h2du+/Vxh2 du) +Z/|Vxh|2 du+1/|wah|2 dp

where we used that (V,)* = -V, - +v- : H'(u) — L?*(p) and C-boundedness in
H* of [v|* and |V,U|? operators. On the other hand, for D3h let us deal with each
93 . .. h singularly by relabelling it as 93

ViV Vs

\a3h|+a3hLa3h O3h(—02L + LO)h
= oh(— 03(v-Vyh) +v-Vu05h — 03 (v - Vyh) +v- 05V ,h)
= —O03h(d3, h+ 0%, h+ O3 3(931)?

Vv vTrv VYT )

2dt

h stays for &2 . h. The second term on the left hand

where, for instance, 92 0,0

rvv
side, when integrated in du, gives

/83hL83hdp /83 —AO2h+v-V,03h)dp = /83 ) (V,03h) du
= / IV, 02h]" dp .
When summing over i, 7, k, by commuting derivation order in the mixed term,

1d 2 4712 3712 3 3
§E||h||H§(#)+/|Dvh| du+3/\Dvh| du:—3/D h-D3,  hdu
:3/Angh~D§wh d,u—3/nghD§whdu
1 4712 2
= |Dyh|” dp+9 [ |D2,.h|

/|D B dp+ - /|D4h| du+90/|D I dp
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that we can summarize, times a constant €, together with the previous as

1d

2 dt
1

<(C+C? /h2 dp + (O +C? + 4) /|Vzh|2 dp

+ <—;+9€(C+1))/‘Da2wh|2d:u /\D R /‘Dﬁhfd“'

Let us now analyse the evolution of the mixed derivative V A - V,h, for which we
will only add the 0-average term L(V,h-V,h) without multiplying as we did before:

(8, + L)Vyh - Vyh = — |Voh|* + VohD2UV b — 2D2 b - D2h — Vgh - Vyh

(IV.h)? +2|D3h|*) du

where the four terms on the right hand side originate respectively from each of the
terms in L. After integration we have

d

5 | Vel Vohdp=— /|v%h|2 dyf/hD§U~D§hdu+/hvDﬁUVvhdu

—2/D§vh-Dﬁhdu—/Vxh~Vvhdu

—/|V$h|2 du+06</h2 du+/|v$h|2 du>
C“/W B dp +—/|D2h|
+ [ 1020 au+ [ 020" a

1
b 19 dut [ 190 d

for all 6 > 0. By picking it small enough and losing track of all constants, we can
summarize it into

d
E/Vzh-vvhdug—/wth du+/h2 d1u+/|mh|2 dp
+/|D3h\2 du+/|Divh]2 dp .

Now, by linearity and L2-nonexpansivess of the Fokker-Planck semigroup, we can
suppose that |||z, <1 for all ¢ > 0. We may then estimate the last term in
the last inequality with

/thu+/|Vvh| d,u+/}D2h| du<1+(/|D h|? d,u) </|D§h|2du>3

< [ Dol du,
summarize the previous differential inequality into
d 3
a0 (Ve h| +€|D h| ) du

S- (/\Divh|2du+/!D3h|2du> +1+ (/thQdu+s/\D§h\2du)
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and thanks to

/W%Mm<(/whmm+/W%pm+/wfﬂ@),

together with
'/\7h Vohdu| < (/HViqdu+e/ﬁDW4du>

Now we are done by combining the last four differential inequalities thanks to
Lemma A.26 in [9]: this is simply a calculus result, whose proof is not straight-
forward and will not be presented here. It involves functions (0,1] — R and we
will use the common symbols < a and =< with the meaning that the ratio of two
functions is bounded from above and both from above and from below, respectively.
This general result considers £, X, Y, Z, M functions (0,1] — R, and we ask for

ExX+Y,

M| S0,
d€
= <_Z+E,
a~ T
Y S(X+2)',
WM xrvez
where §, 6 are fixed constants in (0, 1), which turn out to imply that

£ St max(f 771) )

In our case one may prove that we need to set

:t/jvwhﬂ2du4-s/ﬂlﬁhﬁzdu,
;X@):i/ﬂVIhAQdu,
vt = [ 1D an
/|D4ht| dqu/]D el du

M(t) = /Vhchmu

while 6 = % and § = % provide the rate of convergence ¢~ in the squared inequality,
which is the claim. (]

Thus convergence still holds even if we start from a L?(u) initial data: in-
deed, by Proposition 5 it suffices to regularize until any positive time e, and then
apply H'(u) convergence. However this is too strong as an assumption, since
h € L?(u) means Theorem applies to the natural equation for initial data fy sat-

isfying [ fle U@+~ dz dv < co. This is rather strong as a decay assumption, so
we look forward to convergence with milder initial assumptions.
Actually we will give up on Sobolev regularization, and take the entropy way,
allowing for strong assumptions — essential quadraticness — on the potential U: the
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following is Theorem 39 in [9], of which it is nice to provide an outline of two
possible ways of proof.

Proposition 6. o Take U € C*(RY), with |D?*U| bounded
o Suppose y satisfies a Logarithmic Sobolev Inequality
e Let fo be a probability measure on R% x RE with finite second moment:

/ fo(x,v)(|x\2—|—\v\2)dxdv<oo .
R4 xRd
Call, as usual, f; the evolution of fo under the Fokker-Planck natural equation

2
atf +uv- vxf - VIU(‘r) ' vvf = %Avf + ’Yvu : ('Uf) )

Then hypocoercivity holds in the weaker entropy sense: upon calling, as usual,

v 2
hu(awv) = 250 g (g )3 (00
(@, v)
we have that there exist positive constants C and A, which depend from fy, such

that )
|Vh

/ hylog hy dp +/ dp < Ce M .
Ré xR RixRd

Proof. The goal is just regularizing fy until we get finite H and I; then we will be
able to apply Theorem 3 with the usual K =1, A = V,,, B concerning transport
and confinement term, and we will write

[A,B] =V, +0

and
[C1,B] =0—V2U -V,

that is, with the notation of Theorem 3, 7, = Zy, = I, C; = V, Ry = 0 and
Ry = —V2U - V,. Concerning pointwise bounds to prove, all commutators are
zero, except for [A, A*] = I, therefore pointwise bounded with respect to I and
{C;};. Just, in order to prove Ry bounded with respect to A, our assumption
makes sure that |Ry(z,v)| = |D?*U(z)| < C < 1 = |A(z,v)|. Last, pointwise
coercivity is equivalent to Poincaré inequality for p, which is implied by LSI.

There are two routes to prove finiteness in finite time of H and I: in Route 1 we
use first Sobolev regularization to yield for ¢ — 0

/ (|szt|2 + |V fil? Ydzdv=0(t")

for some vy > 0. By Nash inequality (Lemma A.25 in [9]) we may bound the homo-
geneous Sobolev norm with a power of L? norm (recall that L' norm is conserved).
Since [ flog f < [ f2, we have that, for small ¢, [ f;log fi = O(t="). On the other
hand,

/ftlog(;fl)5/ft(z,v)(|x\2+|v\2)dxdv:0(1+t)

for small ¢, by a simple computation. It follows that for all ¢ty > 0

/fto (z,v)log (W) dzdv < 00 .

Hence, again by entropy regularization, we can deduce that for all t1 > to I,,(f:,) <

oo as well, and we can apply Theorem 3.
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Next, in Route 2 we shall suppose U € C* and |VjU| < Cj for all j > 2, and
fo having bounded moments of all orders. This — in particular, bounds on all
derivatives of the potential— gives that instantaneously f; € H g’jfj for all k, [ positive.

Since it may be proved that
Vs
[ sy

for k and s large enough, we have [ Wfiﬂz < oo for all t > 0.
On the other hand, since

2
I#(f):/WJ{'JrVﬁVEJrﬂVEQ

and we can estimate the middle term in a standard way with the other two, we are
left with an estimate for [ f \VE\2. Again, by Lipschitz property of the potential
IVE| < C(|z| + |v]), so that an estimate on the second moment will suffice. This
will be done as in the previous case, and we have I,,(f;) < co. Logarithmic Sobolev

Inequality gives finiteness of entropy, and we can act as in the previous case.
O

2.3. Kinetic Fokker-Planck equation with a nonlinearity. This Subsection
is meant to give a quick summary of Part III in [9], in particular the outline of
the proof of the main result and its application to self-consistent Vlasov-Fokker-
Planck equation: here we shall consider a variant of the usual kinetic Fokker-Planck
equation, in the following sense:

e The usual space-confining potential U is replaced by space periodicity of
the solution, i.e. z € T

e An interactive force acts among particles, and it is represented by a small
and smooth potential W.

Let us read it then:

atf+vvrf+F[f]vvf:Aq)f+v1)(vf)
ﬂﬂ@@=—/(VWOmﬁth@®

d
RU

(2.4)

Well-posedness is as in the linear case: the tool is regularity of coefficients in the
SDE. Here one may prove that ||F||o« < [[W||crs1, so that it is possible to prove
all regularity results as in the linear case.

v]

2
Also, the Maxwellian M (v) = (27T)_d/26_‘T is a stationary solution of (2.4) as
expected, since xz-constant functions lie in Ker F.

Proposition 7 (Convergence to equilibrium in Vlasov-Fokker-Planck). Let fy be
a probability measure on T? x R, with

/ folz,v) [v|" do dv < o
Td xR4
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for all k € N. Let W € C°°(T%) be even with [, W =0, and suppose [|[W| - <
0.38. Then

1fs = M| = O(™) ,
where this is a classical notation meaning that for all o > 0 there exists C, > 0
independent from t and fy such that || fy — M|| ;. < Cat™®.

This result is a consequence of a way more general theory, of which we introduce
characters with an outline of assumptions:

o {X,}s>0 is a decreasing family of normed spaces (a high s corresponds to
considering very regular functions) such that: X, has a Hilbert structure
(we will write ||-]| = ||-[|,), X®* < X*®' if s; < s, and they interpolate, in

1-6 0
that (|| _gysepes S 1l [l5,5
e We consider the equation
of+Bf=Cf

where B ("conservative") and C ("dissipative") are to be thought as differ-
ential operators defined on convex and bounded (for all s) X C (), X; they
allow losses of derivatives, in that they are smooth from large enough s to
smaller s; f is quite smooth, namely f € C*(R,, X,) N C°([0, +), X,),
and f; € X for all t;

e There exists a stationary state, i.e. a foo € X sit. Bfoo =Cfs = 0;

e We have {II;}/_, nonlinear projections defined on X, ideally nested, pro-
jecting to a set of minimizers of £ with some constraints, and shrinking to
foo: for all j we ask II;(X) C KerC, II; foo = foo, Ij(X) = foo and both
1T} and II7 allow losses of derivatives.

e £: X — R will serve as a Lyapounov functional, admitting f., as unique
minimizer. Also we ask that projections push us to equilibrium, in the
following sense: for all f € X

E(fo) <EMLf) <E(f), [eX,
and for all € € (0,1)
E(ILS) — £(f) £ —IIf L fI***
and the convergence to equilibrium along projections is essentially quadratic
I f = fool®*° S EALS) — E(foc) < ITLf — Fool

where constants may depend on «;
e & is dissipated along C, and coercively so out of II;’s range:

E(f)-C(f) < —[E(f) — @],
while it is conserved along B. Also, we ask that the dissipation of Id — II;
along B and starting from II; f dominates ||(II; — Hj+1)f||1+€:

|1d = T0)f, - (BI )| 2T F = T

Theorem 8. Under the previous assumptions, for every 5 > 0,

E(fe) = E(fx) =0(™7) .
This implies that for every s >0 and § > 0

1fe = fooll, = OC77) .
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It is easy to see how the second part is implied: we just prove it for s = 0,
then we argue by interpolation and boundedness of solutions for all s. Then for
any € > 0 (say € = 1) our conditions on & give in particular that £(f) — £(fx) 2
1foo = L f % and E(f) = £(fx) Z If =T f[*"7, s0 that

e = fooll S IIf = T fll + ITaf = Fooll S ECF) = E(Fo0)) 7

which easily gives the claim. How to prove the first statement in Theorem 87
Unfortunately & itself is not enough Lyapounov, so we also have to consider the
dissipation of ||Id — II; |? along B:

J

L(f) = E(f) = E(fso) + Y a;{(Id —T,) f, (Id — T1;)'(f) - Bf) .

j=1

Actually this is not Lyapounov either, but we will consider time intervals when

E(f) —&(f) is bounded from above and below; on this interval we will fix {a;} so

that £ is Lyapounov, and after a sufficient decrease we update {a;} to perform the
dc

same trick again. This will give <3z < —C L' which will provide enough estimate

for £(fi) — €(fw). In particular a rather technical result states that

Proposition 9. Suppose that for some E >0

E

5 SEN) —Efx) < B

and fiz € > 0 small enough. Then there exist choice of the {a;} and a constant K,
both depending on €, such that

<L(f) <

|

and
L'(f)-(Cf—-Bf) < —Kay_E'e .

Proof(of Theorem 8 from Proposition 9). Take E > 0 small enough, so that £(fp)—
E(fso) < E — which is finite because initial data are in X where £ is defined — and
let [to,to + T(E)] be the time-interval — which is connected from decreasingness of
& —for which £ < &(f;) —&€(fx) < E

Now, since coefficients in the functional are rather large, comparable to E, we
expect dissipation to be rather negative, comparable to E. Since then we have
upper bounds for the difference we expect time-interval to be small, let us prove
that T(E) < CE~*¢ | for suitable \: take {a;} from the previous Proposition 9.
Then, according to [9], we may take ay_; > K'E', for sufficiently universal K’
and [. Therefore if ¢ € [to, to + T(F)]

d .
L) € —ay KB < — Kt
Recalling that we are also provided with upper and lower bounds on L,
—E < Lfiyy(m) = L(fr,) < —KE#D . T(E) |

which gives the desired estimate

T(E) < CE~.
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Now let us prove that this provides £(f;) — E(foo) = O(t™7%): the argument is
classical. Write E; := £(fi) — £(fo), then, after T(Ep), E; drops below Ey/2, and
therefore (by monotonicity) it does after CE;** as well; then, after

( 1— 2>\5(m+1)

— —Ae
> T2 "Ey) < CE, o

n=0

E(fi) — E(f) has dropped under Eg2~™~!. This gives that, if t = C2X\em, E; <

1

t=xm , which gives O(t*%&) for all § > 0, upon taking m large enough. d

) 5 E(;AEQ/\E"L ,

Now let us apply this general result to our Vlasov-Fokker-Planck case: we are go-
ing to follow the proof of Theorem 56 of [9], aiming to yield better-than-polynomial
convergence in Sobolev norms.
fix fo as in the hypothesis; we want to work in X, = Hj ,((1 + |v|2)5), s > 0: for
integer k they may be defined as

Il = Y, [[VEVES

[t]+[m|<k

L2 ((A+]v?)k) 2

so we wish the solution f; to be t-bounded in this space. To this scope, we will
by start with integer k£ and argue by interpolation between moments and Sobolev
norms.

Concerning the latter, hypoellipticity techniques give that for all ¢y > 0 and k£ € N,

sup || foll g < 00 ;
t>tg
concerning the former, let us define the regularized moments
My(t) :== /ft(x,v)(l + [v)*)*/? dz dv .
Then one may prove that for all £ > 1

My, < —kMjy, + CMy—y + (K + k(n — 1)) My ,

where C is a constant arising from the forcing term, and the negative coefficient k
comes from the divergence term. We can argue by induction on &, since solutions to
/' < —af +0b are globally bounded; indeed My is mass — which is exactly conserved
— and, concerning M, it is easy to bound negative moments with mass, and we are
done.
We have then that f is bounded in time in all X} for integer k, and therefore
for s € R by interpolation. Next, we translate in concrete means the previous
formalism: we will take
and

Cf:Avf+vv'(vf) ;
and clearly foo(z,v) = M(v). Also, we will consider spatial density p(t,z) :=
f]Rd f(t,z,v) dv, and choose as projection the homogenization in velocity

M f(t, @, v) = p(t, 2) M (v)
and Iy f (¢, z,v) = M (v) = feo. Our functional will be
1 ) 1
E(f) = 1 = dedv+ = W(x —y)dedy .
(1= [ f1ogf+5 [ fa) ol deavs 5 [ p@ipe)W e =) dsdy

2
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Let us then check it behaves properly with projections:

&)~ €M) = [ Flog T2 5 1£ = pMISs = Colf = MG I = pMIEES

where first we just performed a computation, then we used Kullback-Pinsker in-
equality and L'-H* interpolation, for k() large enough. Similarly,

ELf) ~ £(f) = [ pla)logpla)do+ 5 [ (pla) = 1) (ol) ~ YWz~ ) dody
> LU= W) o= 112 = C oM — M|

and then we argue by interpolation by estimating the last term with ||pM — M H2+E.

Also, since [W =0,

ELS) = E(foo) < llp— 2+ Cpll3x

and again we argue by interpolation as before. Notice that we did not introduce our
workspace X. Indeed, we already know that our solution is Xs-bounded in time,
for all s > 0. Also, let us remind that we have a hypoelliptical lower bound on the
solution f. Then p as well is bounded from below, uniformly in x, which allows to
choose as workspace, in order to avoid issues with H(f|pM),

X={f:|fl, <CVs, p=c>0},

where Cs and ¢ are depending from our equation. Now, this definition allows to
easily prove that many of our assumptions are satisfied, leaving us with dissipation
issues. First, let us compute that, with the L? differential structure, and thanks to
f and p being bounded from below,

E'(f)h= /(logf(x U)+1+| of ) (x,v) dmdv—i—/p(y)h(x,v)W(x—y) dzdydv,
so that, taking f satisfying 0,f =Cf

e =ew-cr=- [ 1|91

P Q/flogf— (L) — £(f)

where we used log-Sobolev inequality z-wise and a previous computation. Also, it
is easy to show that £ is invariant on the flow of B, so we are left to show that

|(1d =gy, - (BILY)|| 2 Ko f = f] .

In fact, notice that II vanishes on the range of B, and that by linearity IT' = II, so
that after some manipulations, and using the lower bound on p, we yield

2

\Y%
|ty - B> [ 0|4 500 w)

Now, write V(p* W) = V( — log(ce**")) where c is normalizing. It is very easy
to see that p « W is bounded from above and below, so that log-Sobolev applies,

and we have
2
ZK(/plogp+/p(p*W)+10g/6W*p> .
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We estimate the first term with Cziszar-Kullback-Pinsker inequality, and the other
two with standard means, and we yield, for 6 = [|[W|| ,

1 62 &
[(7d = Ty, - (BIL)|* = K<2 -0 ;) llp = 1171

then integrate times M (v)dv and interpolate with L? and H” as before.

Remark. Let us remark that, indeed, we proved that better-than-polynomial con-
vergence holds for L? and for all H*((1+ |v|)*). However, by recalling the precise
statement of the Theorem, we yield entropic and therefore L' convergence as well.
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3. IMPROVEMENT OF QUANTITATIVE ESTIMATES ON ENTROPICAL RELAXATION

Here we will be studying kinetic Fokker-Planck equation in relation with its
long-time behaviour by mainly following [5]. In addition to the review of the work
and proofs developed in it in a general framework, we shall focus on the proof of
entropical relaxation by particularly emphasizing the case of kinetic Fokker-Planck
equation, providing a sharper proof and a remarkable improvement in the quanti-
tative computation of the relaxation constant with respect to the computation in
[6], both of which things constitute a novelty.

The outline of the Section is as follows: in Subsection 3.1 we shall expose classical
features of I'-calculus; in Subsection 3.2 we shall show the proof of Theorem 11,
which is the main content of [5] and which provides entropical relaxation in a
very general context; in Subsection 3.3 we shall perform a precise estimate on the
relaxation constant for kinetic Fokker-Planck equation provided in the previous
Subsection.

3.1. Markov semigroups and generalized I'-calculus. We shall briefly sketch
some classical concepts on Markov semigroups, a more precise explanation and
further details may be found for instance in [2]. Let (X;);>0 be process on the
probability space (2, F,P) taking values in R"™, such that Xy = 2 € R™ a.s. and
adapted to the filtration {F;};>0. By denoting the law of the random variable X,
by L£LX,, we shall call (X;); a (time-homogeneous) Markov process if, for 0 < s < ¢,
L X, given F; may be identified with £X; given X and with £LX;_; in the following
sense: for all smooth and bounded f,

E(f(X0)[Fs) = pe—s(Xs, f) -

Next, given a Markov process (X;);, we call P, its associated Markov semigroup on
R™, by defining for all suitable measurable functions f : R™ — R

Pf(z) =E[f(X¢)|[Xo=2] t>0, ze€R"

and define its generator L as

r e R

as long as f belongs to some D(L), the domain of L.

Suppose that both L and P; fix a some set A — in that they map A into itself
— and take ® as a functional defined on A, that is, positive functions of 4. Here
we will also need to take the structure of the function space into consideration,
namely we ask A to be included in a Banach space B which in this memoire will
be a natural L? space whenever not specified. Suppose ® : Ay — A, — which we
will call gauge function throughout this essay — is smooth enough and define

ol = D=L

where d®(f).Lf denotes the dual coupling between the differential d®(f) € A* and
Lf € A according to the structure of B.

From the definition it follows immediately that T' is (L, ®)-bilinear, in that a
linear combination of either a finite set of generators or a finite set of gauge functions

transfers to the operator I'. It is also easy to show that I'y, &(f) > 0 for all f if ®
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is a positive and convex function R — R. Indeed for all x
(04, P2 (f) — Oy, P(PS)] ()

T'ra(f)(z) = 5
i P20 — O(F) — (B(Pf) — B()](@)
t—0 2
~ lim E[®(f(X¢))|[Xo = 2] ; P(EL/(X)|Xo=1]) _ |

from Jensen inequality.

While dependence from L may be omitted since we will always be studying I"
operators with respect to some fixed evolution P;, we shall always write I'¢ in order
to keep track of the gauge function.

A remarkable case of gauge function is ®(f) = f2, which has been first introduced
by Bakry and Emery in [1] and which makes the functional I polarizable into a
two-variable one. In this case the traditional notation reads

I':.= F_z
so that what is traditionally called carré du champ
L(fg) — fLg — gLf

I'(f,9) = 5
measures the defect of Leibniz property of the generator L. We will also write
FQ = PF(.7‘) y

that is,
Lr f7g -T faLg -T gaLf
where the number 2 referring to an iteration is not to be confused with the aforemen-
tioned square operation -2. First, let us notice that I is insensitive to affine pertur-
bations of the functional: for all a,b € R, if ®(f) = f2+af +b, d®(f).g = 2fg+ag
for all f and g, giving that

L(f?+af +b) — (2f.Lf +aLf) Lf*+ Lb—2f.Lf
and, since by Markov property Lb = 0, we have "2 ..., (f) = T'(f, f).

Let us now consider the classical case of L = A—VU -V, induced by the Markov
process

dX; = —VU(X,)dt + dB,

where By is a n-dimensional Brownian motion, and compute for all f and g
1
L(f.9) = 5[A(f9) = VU -V(f9) = gAf +gVU -V f — fAg = fVU-Vg| =V f-Vyg

where obtaining the standard Dirichlet form shows the reason of the factor % mul-
tiplying I'. Then
1
Ta(f.9) = 5[(A = VU - V)(Vf - Vg)
—Vf-V(Ag—-VU-Vg)—-Vg-V(Af=VU-Vf)].

Since
V(Vf-Vg)=D*fVg+ D*gVf,
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we have

Da(f,9) =3[V - (D2fVg + D*V ) ~ VU - (D*[Vg + D’V )

~Vf-(VAg— D*U-Vg— D%*g-VU)
—Vyg-(VAf —D?U-Vf—D*f -VU)]
1

:§[V~ (D?fVg+ D?*gVf) +2VfD?UVg —Vf-VAg—Vg-VAf].

Also,
2 2 _ 1 2 2
V(D Vg + DV ) = 5[ S 0,( D050 + ot )|
J )
= 0%, f0ig+ 0% f0% g+ 07,00, f + 0,90 f
,J

= VAf-Vg+Vf VAg+2D%f: D%,

where : denotes the termwise product of matrices, that is A: B := szzl a;ijbij.
This means that
I'a2(f,9) = D*f: D*g+ VfD?UVyg .
Let us now expose some general applications of I'-calculus: indeed for ®(f) =
\Vf\z the next result is classically due to Bakry and Emery in [1].

Proposition 10. The pointwise exponential subcommutation

(3]‘) q)(Ptf) S 672ptpt[q)(f)] at 2 07 f € "4-‘1—
for some p € R is equivalent to the curvature condition

Proof. Indeed consider for fixed ¢ > 0, f > 0 and « € R™ the function
1/)t(5):Pst’(Pt_sf)(x) 70S5§t .
Then, by writing ®(s,g) = P:®(g),

d
Vi(s) = (@5, Fies /) (@)] = LIPs (P [)](2) + d(s, Py f). (= LE—s f) ()
= Ps[L(®(Pi—sf)) — d®(Pi—sf).LP—s f](z) = 2PsTe(Pi—sf)(x)
from the commutation between L and P;. Then the curvature condition (3.2)
implies
7#2(5) > ZPPS(I)(Pt—sf) = prt(s) ,

which integrated in s gives
PO(f)(x) = P2(Pof)(x) = P1(t) = €91 (0) = e Py®(P,f) () = e*' @ (P, f) ()
which is the subcommutation (3.1). Conversely, if (3.1) holds,

_d OB () e PR O(S) — O(f)

av(p).Lf =5 o(Rf) = Jim D2 < iy t
_d
B ﬁhzo

that is, I's > 2p®. O
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In order to get the link with our long-time behaviour problem, suppose P; admits
an invariant law p, that is, such that for all f > 0,¢ >0

/Ptfdu: fdu
n R’VL

or, equivalently, fRn Lfdu=0for f € A. Then integrating in space (3.1) gives

/ CO(Pf)du < e / R du =" / (f) dp

n

which is, upon proper choice of ®, our goal in this essay.
Also, it is classical that

VP f| <e PP |Vf]

for P, linked with L = A — VV - V. By Jensen inequality applied to P; it then
follows that |VPtf\2 < e~ 2°! P, |V f| which implies by Proposition 10 that it indeed
holds T'g.12 > p|V-[°.

These last facts should highlight the interest of establishing inequalities as the
curvature condition.

Next, let us see a criterion to establish inequalities as (3.2): consider ®; and @,
gauge functions and v : Ry — R, integrable. Suppose that

(3.3) L, (P f) < ~(t)P,®a(f)

for all f > 0 and ¢ > 0. Suppose also that P; is ergodic, that is, it admits a unique
invariant law g and

Pf(x) — [ fdu
t—o00 R
for all f and for all x € R™. Then

[ onan—on [ ran) <o [Tawas) [ e

for all f > 0.
To prove this fix una tantum x € R™, define as before ¢;(s) = Ps[®1(Pi—s f)](x)
and compute

Py (f)(@) = @1 (Pf)(x) = P®1(Pof)(x) = Pol®1(Pf))(x) = vu(t) = 144(0)
:/ wé(s)d822/ PSFCP(Ptfsf)(x)ds
0 0

<2 [ Phit= )P @Dl ds

= ") ds)Ptcbz(f)(x)

since P; is sign-preserving. By letting ¢ — oo, the left hand side gives

(D) - 0P o [ eDan-an [ ran),

where the last term is to be meant as ®; applied to the constant function fRn fdu.
In the same fashion,
Py (f)(@) — | ®u(f)dp
t—o0 R
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giving thus our claim.

Notice that (3.3) is interesting in itself before time integration gives space glob-
alization: for instance the Laplacian L = A satisfies of course I's > 0, giving that
0-curvature condition holds, for ® =I". Since

La(f) = V17,
I’y > 0 is equivalent by Proposition 10 to
VP < P IVFP
This condition is (3.3) with y(t) = 1, ®;(f) = f2 — that is, T's, (f) = D(f) = |V/]?
—and ®3(f) =T(f). Then for all ¢t > 0
P(f?) = (Pf)? < 24PV fP) .

Since in this case y(t) = t ¢ L'(R,), this information is not useful for large

time. However for small ¢ it provides a version of Poincaré inequality, where the

integration is given by the conditional expectation of the Markov semigroup P;.
This application with I'; suggests to apply the result in the following I's setting;:

suppose that, in addition to ergodicity of P,

(3.4) I're, 2 pla,

with p > 0. Then we know this is equivalent to

L, (Pif) < e ' P[Ta, (f)] -
which is (3.3), with ®3 = I'g, and ~(t) = e~ 2/t Then

/n¢1(f)du¢1</nfdu> gz/owemds/nr@(f)du %/nfqn(f)du-

Let us highlight its character of necessarity for the generalized I's condition: take
the semigroup

Lf(x) = Be-Vf(z) + V - (DVf)(x)
where B is the linear drift field and D is the constant, positive semidefinite diffusion
matrix. Then

I'(f)

_L(?) - 2fLf _ V- (DV(f?) ~2/V - (DY)
2 2
=V (fDVf) - fV-(DVf) = VfDV] .

where the drift does not appear since it is a simple derivation. Then, if D admits a
nontrivial kernel — as it is the case for kinetic Fokker-Planck equation — there may
not be a positive I's curvature, even without computing the I'y functional. Indeed,
if (3.4) held for some p > 0 and ®;(f) = f?, we would have also the modified
Poincaré inequality

| 1
2dp — d - (fA)du == VfDVfd
[ pau- ([ ra) <2 [ =1 [ viovra

for all f > 0. However this is not possible by just considering f not p-a.e. constant
such that V f(x) € ker D for all z — for instance pick ¢ : R — Ry smooth, w € ker D
and consider x — ¢ (z - w). Thus the left hand side is positive while the right hand
side is null.
Let us now introduce diffusion semigroups by defining them as P, generated by
an operator L such that the following change of variable formulas hold:
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(i) For all f and all ¢ € C°

Lp(f) =" (HLf + " (HT (. f)
(ii) For all f and g and all ¢ € C°

L((f). 9) = V' (T (£, 9)

While this definition may look too abstract, the most common kind of generators
— namely second order derivative operators — satisfy the diffusion property: fix
n n
L= a’(@)0}+> ¥ (x)0;
i,j=1 j=1
with a¥ = a7% and ¥/ smooth coefficients. The constant coefficient is imposed to be
null in order to keep the Markov property

L1=0.
In this case
L(fg) — fLg—gLf
I(f,g) = 5
1 . .
i[Za”(’)z — faidR g — gawa2f+ZbJa (fg) —b fO;9 —bigd; f
i,j=1
= Z a0, f0;g .
i,j=1

Then, if ¢ € C°, for all smooth f and g

n

= 3 AW = Y U (A0 = (N9

i,j=1 i,j=1

proving thus that (ii) holds, while concerning (i)

= 3w ) + ijaj[w)]

1,7=1

= Za”(‘) o, f] +Zbﬂ¢ o;f
1,7=1

=Y aW(NIifo; f + ' (f +be¢
i,j=1

=" (HT(f) +4'(fILf

from the previous computation of T'.
Back to general diffusion generators L, it is possible to establish a link between
[y, for convex a : R — R, and I'. Since

da](f).g = lim

h—0 h
we have that

(3.5) La(f) = — = = L(f) .




More generally, if ® and a are given, we can apply (i) to the function ®(f) and
yield

Lla(®(f)] = dla(®)]f-Lf _ Lla(®(f))] = a'(2(f))dPf.Lf

Loy (f) = 5 5
_ @A) + " (@()N@() — (@) LS
2
(5. = PO (o) + o @()Ta()

since d[a(®)] = a’(®)d® through the previous simple reasoning. Setting ®(f) = f
gives (3.5), since I'ig = 0.

For instance, suppose that ® satisfies the curvature condition I's > p® and that
® > 0. Then, for p > 1, (3.6) gives

1) . 3 _
Pan = P2 aom2(ra() 4 p07 = (1Pa() 2 927~ (1Ta (1) 2 o2 ()
since I'g > 0. It follows that, as long as P, is a diffusion semigroup,

P (P f) < e *PPLR[OP(f)]

that is, ®P satisfies the curvature condition with constant pp. This is not new but
is consistent with

D(P,f) < e 2" R[D(f)] < e P P(DP(f))]MP

which just comes from Proposition 10 and from Jensen inequality applied to the
Markov semigroup P;.
IfL:Z;izlA?'FB where A]- :aj'VandB:b-V

d d
Iy :FB+ZFA§ :ZFA§
j=1

j=1

since B is a derivation, and

A2(f2 . . 2
Naof =20 g VO V) v, vy
=a;-V(fa;-Vf) = fa; - Via;-Vf=(a; V) =(A;f)
so that

Uof=|Aff>=ATf Af .

3.2. A general result of convergence for second-order equations. Let a :
R; — R be a non-strictly convex function and let v € P,.(R™). Then for all
nonnegative f : R” — R, we may define the a-entropy with respect to v as

0= [ atnav—ao [ sav)

which is of course nonnegative by Jensen inequality. In the following we will suppose
that
e acCHRy)
e a' >0
e (1/a")" <0.
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Notice that this does not rule out neither the logarithmic entropy, for which a(z) =
rlogz and 1/a”(x) = x, nor the quadratic case of a(x) = 22, where 1/a” = 1/2.
Indeed it is easy to prove that a(x) = z® is admissible for a > 2.

With these two main examples of gauge function in mind, we are in the position
to state the main result of the essay, which is also general in L and corresponds
to Theorem 10 of [5]. It will be easy to restrict to the kinetic Fokker-Planck case,
and we shall indeed prove a rather technical part in our particular case only. This
result will be subsequently used to provide a quantitatively better estimate in the
convergence rate.

Theorem 11. Let L = Z;Zl A? + B and suppose there exists Cy : A — AP such
that, upon writing

[B,Ci] = Zi 41041 + Riga
for some operator 0 < A < Z; < A and some remainder R;, one can set, for some
I>1,

Cry1=0

such that for all i and j
(i) [4;,Ci] =0
and in such a way that
(ii) CiCo <mATA
foralli>1

i—1
(iii) RIR; <my» ClC;

§=0
and

I
(iv) Y clci=p
i=0

which is as usual to be meant as Z?Zl Zz:l(ci,k(x)akf(x))Q > p|V ()] for all
f and all x. Suppose also that there exists a probability measure p invariant under
P; such that the following inequality is satisfied, which should remind of logarithmic
Sobolev inequality:

a 1 /" 2
) g < g [ NIV du.

n

Then there exists C > 0 such that for all f
_ t(1—e—*)2I gs ca
EX(Pf) < e Cloltmem) T daga )

Remark 2. Let us compare this result with its very close analogue in Section 1,
that is, Theorem 3: first, this one has as a strong point that it actually involves
relative entropy, instead of a sum of it and Fisher information. Also, no geometric
structure of the function space is required, so that there is no need of computing
the adjoint of the operator A.

On the other hand, the convergence constant provided by this last Theorem —
even if sharpened as in Subsection 3.3 — is incredibly small, of the order of 10~7. In
addition to this, the convergence is slightly worse than e~¢?, even though just by a
multiplicative constant. However the most remarkable issue is that condition (i) is
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quite stringent on coefficients of A: in most cases the only admissible configuration
is where A has constant coefficients, which is luckily our case.

Proof. Take e; > 0 to be later chosen, and set £; € (0,¢7) and \; > 0 to be later
determined. Define

T
Dy (f) = Z Ai®; 1) (f)
i=0

where

Do, 1y (f) = a(f) + (1 — e Ma"(f)|Cofl” |
while for 7 > 1

D iy(f) =il —e ) " (f)[(Cima + a1 — e ")Ci) f|
We want to prove monotonicity, for all ¢ > 0, of the function

S wt(s) = PS(I)(tfs) (Pt—sf) :

2

Indeed
Vi(0) =@ Prf = a(P,f) + a" (P, f) {5(2)(1 —e ) |CoPfI
+3 Nei(1— e )P (G +&i(1 - e’t)C’Z—)Ptf}Q}
i>1
and
Yi(t) = Pe®o)(f) = Pra(f) .
Since

Vi(s) = Ps[(L®(—sy — dPy_g).L — 0-P(4—s)) (Pi—s f)]
= Pi[(2To,_,) — 0:P(1—s))(Pi=sf)] ,
in order to prove that ;(s) > 0 it will be enough to show that, for all » > 0

and all function g, [2I's ,, — 9-®(,y](g) > 0 and argue by sign-preservation of the
semigroup. Indeed

I
20, — 0-0(](9) =Y _Ni(2ls, ) — 0-®; (1)) (9)
1=0
I 1—1 ]
>a"(9) Y ~bidi( Yo (1-e ) [Cygf?)
1=0 =0

i
+boie? (1—e™")% [Cig|* bshief (1—e7")* 2 |Ciga gl

:awg)}[]cigz(l—e‘W”[—bl( Z \)
=0

j=it1

+ bg)\i{{? — bg)\ifli‘f?fl]

thanks to Lemma 12 below, where we have set A\_je*, = 0; as already stated,

even if we are studying a general time r and function g, one may think them as

t and P,f respectively. We want to bound the last term from below. Let us set
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=1 =€ N_1andg;_; = sf with a > 0,3 > 1 to be determined. Then, if
€¥ < 1/2, with the crude estimate eff <ef <1/2,forall j >i+1

7j—1
)\ _)‘Z-‘rl H 51@ < /\+12 JH+i+1l _ /\ 6042 J+i+1
k=i+1
so that the term we are interested in gives

I
(37) 7b1< Z )\]> + bg)\ié‘? — bg/\i_lé‘?_l Z )\18?(*21)16?_2 + bg — b3€§(4_a)_2)
j=it1
and we want this expression to be positive for all e; sufficiently small. Then the
choices 2 < a < 4 and 8 > 2/(4 — ), together with by > 0, yield the existence of
some ¢, € (0,1) and ¢ = ¢(a, B, e,) > 0 such that if all g; € (0,e.)

[

(3.8) 2Cg,,, — 0:®(](g) > cd”( Z\c gl (1 — e )%\

for a suitable value of ¢;.
Our goal is turning (3.8) into a Gronwall inequality. This is motivated by the
identity

—= 0, [ (Pl du

since p being an invariant measure gives fR" Lgdp = 0 for all g. In order to close
the inequality let us integrate (3.8) with a crude bound on time

/” [2F¢(t) - 8t‘1)(t)](Ptf) d,u = — / [d‘l)(t).L + 8t‘I)(t)](Ptf) d,u

I
/ 2T, — 0:@ )| (Pef) dp > C/ "(Pif) Y ICiP 1P (1= e Ni} dps
Rm " i=0
I
> et e [ @) Yo ICRT
" i=0

where, in order to keep track of constants, we have used \; 112, = \ie2ef %e2,, <

Aie? since a > 2 and g, < 1. Now for all § € (0,1) let us use & times hypothesis
(iv) to have

| [2Pe, 0] (P

I
> ehef(l—e ) /IR d"(P)|(1=8) Y ICPAI +6p VRS | d

=0

On the Fisher-like term use (v), while for the first term use the bound

I
. _ 2
UZM (1—e" 8(2)|Co|2+26i(1—e P o+ (1 — e e

44



for some 1 = n(B) > 0 as shown in the following, predictable, Lemma 14, so that

I

(1-9) [ @B Y (GRS du

i=0
1-6 _
> — a”(Ptf){%(l—e N [CoP,fI?
n R™
+Z£1 (I—e > H(Cimy +ei(l—e) i)Ptf|2}d
i>1

Then

20, — D) (Prf) di > ehied(1— ) [SpKEL (P f)
n (t)

1—-9
+—— | d'(Bf) (53 CoP fI?
n R™
+ Z 1 —e 21 1 ‘(Cifl + (1 — e_t)EiCi)Ptf|2) du:| .
i>1

Now, since A\; < A9 = 1 for all 4,

/ [21_“1’(1,) - atq)(t)](Ptf) dﬂ
Rn

> C)\[S%(l — e_t)Q min ((5/)]( 1776) |:/" (I)(t)(Ptf) dup — a(/n P f du):|

where the minimum, thanks to an optimization in §, will be taken as the optimal
pK

value 5 Kn T

Now we only need a term as a( [z, Prf dp) in [5, @) (P f)dp, but notice that

we can indeed change the functional into

/" By (Pof) dji — a(/R Ptfdu) — H()

since 0ya( [pn Ppf dp) = 0 by invariance of p. Therefore, by letting C' =
we have obtained

c)\Ispr
1+pKn >

~H'{t)>C(1l—e M HE), t>0
which means
H(t) < H(0)e CJo—e™)¥ds 50

It now suffices to notice that

1) = [ (alPuf) + (0 e )" (P [CaPf

—|—Z}\52 1 —e H)2-t ”(Pf)|( i 1+Ei(1—€_t)ci)(Ptf)}2)d/~L

o

>E(Pf)
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and
H(0) = &;(f)

to conclude. O

Remark 3 (A short-time effect). Let us focus on
[2F<I’(7~) - 87'(1)(7')](9) 20

which gave, in the beginning of the proof of Theorem 11, that ;(s) > 0 for all
s > 0. In particular from () > 1:(0) we get that, for all z,

Pi(a(£))(@) — a(P.f)(@) = a"(Pif) [3(1 — ™) [CoPu P

+ZA161(176 27' 1| i— 1+€1(176 z)Ptf|2i| 5
i>1

where we have omitted dependence on z in the right hand side. Let now t > 0; in
the quadratic form in C; on the right hand side all coefficients of |C;|* are multiplied
by (1— ee_t)Q“’1 and mixed terms by (1—e~%)% so that the right hand side is indeed
(1 —et) times a positive definite quadratic form of (1 — e~ )'C;:

1
(3.9)  Palf)(@) — a(Pf)(@) = 15 a"(PS)(1— e ) S (1= e )2 [CiPfP
1=0

where 73 is linked to the quadratic form in a similar fashion of Lemma 14 and does
not depend on time.
To get the regularizing meaning of this last part, take the Poincaré setting, with

a(f) = f?: for t — oo we expect, from P, f(x) — [p, fdpfor all z, that C; P, f — 0,
2

so that the inequality is not stronger than [;, f2du — | [e. fdp ) >0, that is

the well-known Cauchy-Schwarz inequality. On the other hand the statement for

small ¢ becomes
I

Y o |CipfP < C

=0

P (f?) = (P.f)?
t

and since of course the semigroup maps L? into L2, the left-hand side is finite,
giving H' regularization.

The following result is crucial for Theorem 11 itself, but it shall be presented
separately since it is rather technical. Also, part of the proof will be focused on the
particular case of kinetic Fokker-Planck we have in exam.

Lemma 12. Consider ®; ), 0 < i < I as defined in the proof of Theorem 11,
supposing all hypotheses on L are satisfied. Then there exist bi,be,bs > 0 and
€ (0,1) such that, for all e; € (0,e,) for0<i<1T

i—1

(2T, — 9:Pi (1))(f) = a"(f) [ — bl(Z(l —e H¥ |O.jf|2)

=0

+boe(1— e )2 O f)? — baet(1 — et +2 ‘Ci+1f|2} .
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Proof. For i = 0 we want to prove
(2, = 01@0,0))(f) > 0 () [b2e3 Cof * = bach(L = e 2 [C1f 1] -
By linearity
F‘I’o = Fa(-) + 5(2)(1 — e_t)I‘a//(_”CO,F ;
For the first term we use diffusion property

2
Moy f = a"(FTf = a"(f) |AS]* > w'(ﬁ'%' ’

while for the second I' operator we shall use the following Lemma 13 to estimate
Coniyico2f 2 a" ()L, Colf - Cof
Also, from [A;, Co] = 0 it also easily follows [A3, Co] = 0, so that
[L,Co] = [B,Co] = Z:C1 + Ry .
Last, for time-derivative, clearly
L A e |Col?

Then

2T, — 01 Po (1) > |Co|

"

+2€g(1 7677:)00 (2101 +R1) *606 ‘CO|

a mi

Now Young inequality, with a parameter § to be soon determined, gives
2Cy - 6(2)(1 — e’t)(ZlCl + Rl) > -2 |Co‘ 6(2)(1 — eit)(|Z101‘ + |R1D

C 2
> G0 s erimal v mp)
S |Col” 5l —0\2(A2 |0 |2 2
> OO0 g e i oms P

where we also used initial hypotheses on Z; and R;. Now let § = 2m; so that

2r — 0 1
Lo 00 5002 [ —— — 2mimaeg(l —e )2 — e
a’ 2m,

—2mA%ed(1 — e 2|y

1
> |Col? (27711 — 2mymac] — 6(2)) —20%maed(1 — e )2 |y

and we are done if we force g, via &,, to be small enough. In particular it is easy
to show that we need

2 vV 14+ 4m2 —1
EO < - .
4m1m2

Now let ¢ > 1. By reminding that

B (f) = (1 — e (f) [(Cimy + (1 — e O

we can use Lemma 13 with C' = C;_1+¢;(1—e~%)C; and b(f) = &;(1—e~4)%"1a”(f).
Again [L, C;] = [B, C;] from hypothesis (i) gives
(
(

F@Mt) >€i(1 —e )21 1(1"( i—1 1+ & ) ) [L Ci_1 +€z(1 —e t)Ci]
=gi(1—e ") " (Cicy + & )Ci)
(Z C; + R; + 51‘(1 — eit)(Zi+1Ci+1 + Ri+1))
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while

—0y; (1) = — 5" | (2 — Ve (1 — e )P 2|0y +e5(1 — e )|

F (1= e 20,0ty (Ciy + £4(1 — e*t)c,»)]
so that
My, , — O 1) >e5a" (1 —e )7 (Ciy +ei(1 — e )C5)
: (2(1 — e (Z:Ci+ Ry + e:(1 — e ™) (ZigaCipr + Ritn))
— (20— D)e H(Chy +£5(1 — e 1)) — 2(1 — e*t)gie*tci) .

From now on let us restrict ourselves to the kinetic Fokker-Planck case, as described
in Subsection 3.3, where i = I = 1. We want to prove that

(2Te, — 0, @1 (1)) (f) > a"(f) { — b1 [Cof)* + bael(1 — e7")? |le\2} :

Kinetic Fokker-Planck amounts, as computed in Subsection 3.3, to Ry = vV, =
vCo and |Rz| = |D§U-VU| < ¢|Cy] for some ¢ = Cy > 0, so, just by applying
these identities and expanding the product,

2F(I)1,(t) - atél,(t)

1"

- >e1(Co+e1(l —e")Ch)

. (2(1 — e*t) (C1 +~vCo +e1(1 — e ")Ry)
— eit (Co + 61(1 — eft)C’l) — 2(1 — 6726)61672501)
=£1 (Co + 61(1 — e*t)Cl)
. ((2’}/(1 — e_t) — €_t)00 + 251(1 — e_t)zRg
F(1—et)2- 3€1e_t)01>
=e1(2y(1—e") —e™") |Col? +€2(1 — e H)?(2 — 3ere ™) |Cy )P
+e1(l—e)((2-3e1e") +e(2y(1—e") —e))Co - C4
+ 281(1 —e ) Ry (Co + 61(1 — 6_t)C1)
>eq(29(1— et — et = 2ce1 (1 — e7)?) |Col®
+e2(1—e" )2(2 3e1e”t) |Cy|?
—a(1- e*t)((z )
+er |29(1—et) — et| 4 2e23(1 — e_t)Q) 1Co| || -

We can already see that the coefficient of |C’1\2 has already the desired order, so
we have to perform Young estimates on the mixed term in such a way that the
current arrangement with orders is not perturbated. Of the three terms composing
|Co||C1], the first one reads

1
—51(1 — €_t)(2 — 3E1€_t) |Co‘ |01| Z —551(1 — €_t) |CO| ‘Cl|

1 2 1 — 2
> =5 1Col” = get(1—e™")?|Cy]
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since g; < %, say. Concerning the second one,

—ei(l—e ™) [2y(1 = e™") — 7| |Col |C1]

Y

—cye(1— e |Col 1]

Y

1 _
~ G0l — Zel(t — e ) |Cuf?
where

1 if v <
¢y = sup |2’y(1 —e ) — e_t’ = max{1,2v} = 1 K
t>0 2y ify>

N D=

while the third term gives
—2e(1 - e ) [Col |C1] = —ef(1 = e )P |Ch[* = Pef (1 — 7)o
so that summing everything up we have

21—‘(1)11(1,) - at¢1,(t)

1"

a
_ _ _ 1 _
> (261’7(1 —e ) —gremt —2ce (1 —eH)? — 5~ & —ceil—e t)4> |Co?

2 —t\2 1 52{ 2
re21—e )<2—3516 —8—4> leA

and, by using g; <1/2,

1 & 1 e _ 5
2-3cet—-—L>92 -3 -—--L>_
T T A Tt TR T AT 16
On the other hand the coefficient of |Cp|* is clearly bounded from below, namely
by
1 c c?
LR L= P L
This concludes the proof for the particular case of kinetic Fokker-Planck. O

Remark 4. For i = 0 we reported the proof in [5] for the sake of showing analogies
with other indexes, but it was enough to notice that Loryicy2 2 0 to conclude,
instead of using Lemma 13.

Let us again focus on the case of I = 1, and keep supposing that Ry = vCj and
|R2| < Cy |Cp|. Then we may choose

Cy C?

by=14—-2-+-Y

1 + 5 + 1

since it only appears in the computations of I's,, and b3 = 0 thanks to Remark

4. This last fact gives that we can widen our conditions on « and S to o > 2 and

B > 1. Concerning by, we should take into consideration ﬁ — 2mymaed — €2 and

2
+c

1—56. In order to bound the first expression away from 0 pick

1
€, < min 6177m7,
2 72

49



. [VIT¥dma—1 i 1 4 2 _
where ¢y, 1= I 18 the positive root of T 2mymaey — €5 = 0. Thus,

from g¢ < e,

1 o 1 mymy (VIFdma -1\ I+ dmy—1
—_— — 2m1m260 — &y > — —
2m1 2m1 8 4m1m2 16m1m2
1 372m273\/1+4m2
= +
le 64m1m2
_ 34+30my —3VTHdmy _
a 64m1m2 T Am

We can then set by = min{cg ,, 1—56} Notice as well that, from the proof of Theorem
11, we need ¢, to be small enough that for some ¢

(4—a)—2

—2b15?72 + by — b35? >c

as long that ¢; < e,. In particular we shall choose

1

b2 a—2
* < 1
= (4b1)

for some A to be chosen later, so that

21§72 by — byl TV TR = b1 by > —2b1ed Pt by = 2 =

. fecim 1 [ b -
x — 1NN [P .
c 2 2\ 4,

Further choices will be made in Subsection 3.3 for our specific case.
In view of the proof of Lemma 12 we need the following result, which will be
stated with a general function b instead of a”.

and we may choose

Lemma 13. Let L be the generator of any diffusion semigroup, and letb: Ry — R,
be a positive, C? function such that % is concave. Let also C be a linear operator
on a space of smooth functions A to some AP. Then for all f

Lyyezf 2 0(HCf-[L,CIf .

Proof. Fix f and write
L(f)|CF1?) = CF* LOO(F)) + LUCL)b(f) + 2D (b(f), |Cf[)

and by diffusion property (i)

L(b(f)) =V (f) Lf +V"(f) Tf
so that
LO(f) [CF1?) = [CH*V (f) Lf +|CF*V'(F) Tf + L(CFD(F) + 20 (b (f), ICFI?) -
Also

d(CPB)(LS = LF[AICP)() bl) + 1PV ()] |
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so that
Do f =5 | ICFE0 () TF + LICTEM() +200(F), 1)
— LE(ICP)(f) b))
=5IOSRV () TF 4 BT o f + DO CF)

Concerning the last term, let us apply diffusion property (ii) and
L(b(f)|CF*) =¥ ()20 -T(CF.f) -

For the second one let us compute

Dp = LCE-CH = dICF (L) _ LCF-CF) —20f-CLf
e = 2 - 2

=T(Cf)—Cf-CLf+Cf-LCf=T(Cf)+Cf-[L,C|f .

Now let us write, since (1/b)"” <0,

W ( 1 )” _ @y (@m)® o, (/0))

/b ame P amp 2 e
so that, reminding that I'f > 0,
Py f ><((11//‘;’)2 ICAETF +B(F)TCH) +Cf - [L.CIf] + 26 ())CF - T(CF. f)
@AW e ,
R ICH TS + bAINCR) + CF 1.l
I RCT

Now we want to apply Cauchy-Schwarz inequality to I'(C'f, f) in order to get rid
of the last term thanks to the first two ones. Indeed

(1/bY |(1/0)']
21 NS T(CL ) = ~2 s (1) CHIINCS £)]
> 2 ()| VITCTTT
((1/0))?
> =47 ) ICFPTf = b(f)T(CS)

so that thanks to Young inequality in the last passage we have the initial claim. O

Remark 5. Notice that the inequality is rather sharp in the usual cases of logarith-
mic entropy and L? since, except for classical arithmetical estimates, we only used
(1/a”)"” < 0. Indeed in these two cases 1/(a”(x)) is respectively equal to x and 1/2.

Lemma 14. There exists n = ni(8) > 0, independent from t, such that for all
g eRY 0<i<I,

T T
(1—eHe2|eol® + Zai(l —e )P e+ (1— e_t)sici’2 <n(l—e) Z les)?
i=1 i=0
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Proof.

I
(1—eMe2|eol + Zsi(l —e )P e+ (1 - e_t)sicif
i=1

I
<(t—eegleol* +2) (1 —e ) eileima + (1 — 7)€} e
=1
=(1— e ) (2 +2¢1) o]

I—1
+23 (1= e 2HED tepp) el + 21 — e HE [
=1

I-1
<1 —e™) |8 +2e0) eof +2 (&} +eer) el + 26 e |
i=1

where the formula also holds, with no sum, for 7 = 1. We want to find the largest
coefficient in it, so start by supposing that I > 2. Concerning terms in the sum
notice that, since ;,_ = ef < e where B> 1,¢2 | +¢ <&} +e;41. Also, clearly
€3 < e; < e3_, +¢e;. Last let us compare coefficients of |co|* and |¢;|*. For this
suppose that S > 2, which does not rule out the standard case o = 8 = 3. Then,
reminding that ¢; < 1/2 for all i,
2 -
5(2) + 2e1 = 6;6 + 265 < 5—:2(2*252+1 + 276) < 52(2*7 +1) <29 <2(e2+ s‘gﬁ)
= 2(eg +€3)

which implies that we can choose n = 2(e; + €§B).
However when I = 1 there is no such term in the sum, we end up with

e% + 2e1 > 26?

so that m, = e%ﬂ + 2¢7. O

Remark 6. Let us explain the choice of the exponential term in Theorem 11: indeed
we could have proved that

E9(Pf) < e=CoJle) dsgap)
for all a(t) such that (0) =0, 0 < a(t) <1 and [a/(t)] < 1.

3.3. Application to kinetic Fokker-Planck equation. Now let us focus our
concrete case:

Here we take A; = %61)]. and B=—-v-V,+V,U -V, —~v-V, in order to

reach the 9; = Z;l:l A% 4+ B form. Let us choose
CVO = vv
and compute, reminding that U = U(z), the commutator

[B, CO]i = [—11 Vg + (va - 'YU) : vvvavi} = [_U Vg — v -V, av,;]
=—v:V,0y, + 0y, (V- V) —yv - VyOy, + Op, (Y0 Vi) = O, + Y00, -
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Let us set then Cy =V, Z; =1d and R; =~V,. Also
[B7 Ol]i = [*” Vg + (VrU - ’W) : Vvvazi] = [er Vo, a:w]

U,

J

d d
=VoU - Vidy, — Y 05, (02,Uy,) =—> 02,
j=1

Jj=1

so that we can choose Co = 0 and Ry = —D2U - V,, with, of course, Z, = Id.
One can now check hypotheses from Theorem 11 with I = 1, since of course

[A]7CO] = [8Ujavv] = O = [8’Uj7v£] = [Ajycl] Y

2

CTCy=|V,|*= 5474,

g
and
C3'Co+CTCy = Vo +|Vo|* = |V/*
so that (i), (ii) and (iv) are satisfied with m; = 2 and p = 1. Concerning (iii),
RTR, =~+*VIV, =+2C{Cy

and

RIRy =V, [D}U)? -V, .

This last equality tells us that that, unfortunately, in order to have hypothesis (iii)
fulfilled it is strictly necessary to suppose that there exists some Cy > 0 such that
for all z € R?

w~D§U(a:)~w‘§CU|w|2 , weRT,

as in [9]. We can then set mo := max{~%, C3}.
Next let us focus on conditions on a and p, included in hypothesis (v): we shall
choose, up to a normalizing constant,

vl2
n= feo(l‘,’U) = 6_%(U(m)+%) s

which is clearly invariant under P;, and a(z) = xlogxz. Thus

&= [ fosfau- [ fau log(/ fdu> CfeA,
R4 xR¢ R4 xRd R4 xR¢

but since fyu satisfies a Fokker-Planck equation in divergence form [, fdu is
conserved, so by choosing f € P(du) we have Eglogf = H,, the Kullback in-
formation with respect to u. We then want to prove that the product measure

lv|?
eii%U(z) ® 67?’%T satisfies a logarithmic Sobolev inequality. Indeed, it is well-

known that Logarithmic Sobolev Inequality tensorizes and that we just need to find
the smallest between the two constants.

Proposition 15. Let vy be the gaussian measure on R™ with mean 0 and variance
A2, Then vy, satisfies a logarithmic Sobolev inequality

2 2
flog f dvy < %/ |V}f| dvy
RTL n

for all f € P(dvy).
53



Proof. Let us deal with n = 1 and then argue by tensorization. By reminding
that the standard gaussian measure satisfies a logarithmic Sobolev inequality with

constant 1, that is, for all f > 0,

f(z)log f(x)e*# dz — f(:v)e*% dz log < f(x)e” >
R™ R™ Rn
L@
Si/ @) e dx

fix A > 0 and take f such that

|2
fla)e™ 57
de=1.
pr VomA

Then

2
\ \ _lwl?
2

dz = / FOu) log 1) dy

2

2

y\ _ 1wl

[ 1w)os f@) =

L[ VS0P et ( ol
S2/ O var W Rnf(Ay) 7oy Qe [ TOw—

|
SN—

Since
1w

we have
lyl?

2

e L[ V0w e
/n f(x)logf(x)ﬁdx = i/n fy)  Ver o

N[ Va0l et
2 Jgn f(y) \/ﬂ

=2

N[ Vef@)f e

= dx
2 Jrgn  flx)  V27mA
O
_2y v
The gaussian e »2 2~ = v,z /5, satisfies therefore a logarithmic Sobolev inequal-

ity with constant )‘ = 7, that is,
¥

v
/ flngdI/ 2 /2y < 7’)/ Rg f dl/02/2,y

for all f € P(dv,2/2y). Concerning e~ AU ), we wish to apply Bakry-Emery
criterion: we shall therefore suppose that U € C?(RY) with

w - D?U(z)w > cp lw|” , weR?,
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uniformly in z € R? This gives that e~ *U (@) gatisfies a logarithmic Sobolev
2
inequality with constant ;2. so that for all f € Pu)

2 2 v 2
/ flogfduémax{ o "}/ FMIT 4,
Rd xR dyeu 4y ) Jraxre f

1 i
Cdymin{l, cu} Jragra  f

du

that is, K = i—g min{1, ¢y }. The appearance of the absolute constant 1 should not
surprise, since it is linked with the transport term.
We are now able to compute explicitly in this case the constant C' of Theorem

11, that is, such that for all f

_ t _ ,—s5)\2
gn(Pif) < e Ol =7 dsgaip).
Let us recall that, for general I,

_ cAjeipK
1+ pKn'’
and that in this setting
Ar =AM =efhg =P
while n = E%B + 2¢7 as shown in the proof of Lemma 14. Thus, by relabelling
min{1, ¢y} with ¢y,
B Ayee? TP ey
02+ 4y(eP 4 2e))ey
It is then clear that 8 should be as small as possible, namely 5 = 1.
We now only need to find ¢ = c(o, 5,4, {b;}i) as in the proof of Theorem 11
and ¢, in order to be done. We have already proved that in this case we may set

_b
)

Cc

and

.{5 } _ {5 3+3Om2—3\/1+4m2}
by = min Emg,m = min

16’ 64m1m2
. 5 023+ 30msy — 31+ dmg . 5 302
=min<{ —, — =:min< —, —C3.m
16" 2 64mo 16" 128 &

It is elementary to prove that 8 < c3,, < 10 for all max{y?,C%} = mg > 0,
therefore upon picking o2 > g we can suppose

5
bg—ﬁ
and so
L
327

Now let us take into consideration the value taken by

. [1 cim [ b2 =z .1
Eyx = IMIN 5, 9 y E —=:. min 576(*71)75(*,2)
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by analysing the different items. Since m; = %,

. _1 Vi+dma -1 o V1+4dme —1
(1) = 4 mi1meo - 4\/§ mo

and it is easy to notice that 0 < \/7%7:2_1 < /2 and that it is a decreasing

function of my = max{y?,C%}. Last,

1 ﬁ
- < b2 ) a—2 5
*72 = _— = .
2= by 64(1 4+ S + %2 4 2)

Since ¢, = max{1, 2y} > 2v, we have

CUJrCerC >

ma
4 4

whence, by reminding that a > 2,

5 =2 -
€(%,2) < (64(14—”142)) =1E(%,2) -

Let us now choose o = 4 — which is an admissible choice because b3 = 0 — and
compare €, 1y and €4 2). Then it is elementary to prove that

E(x,2) < E(x,1)

for all choice of ms > 0 as long as o2 > @. Since this last value is clearly

smaller than 2 and e, 2) < /& < 3, we may pick
(3.10)

5 5
64(1+ 9 + & + 2) 64(1+ 9= + SZ + max{1,42})
We have therefore proved the following

Theorem 16. Consider the equation

2
8tf+v~fo—VmU-va:%Avf—&—vvv-(vf), £>0, (z,0) € R4 x RY

and suppose that o > %, v >0 and U € C*(RY) such that
cv <DU(x) <Cy , x €R?,

where 0 < cy <1 and Cy < oo are constants which do not depend on x. Then, by
writing f; as the evolution at time t of fo, for all t > 0 and for all fo € P(dp)

ft —_C —s)2 fo
1 du < e=CJoli—e*)" ds 1
/RgXRd ft Og( d‘Ll,) 'u € ’ RgXRd fO Og( d )

where
5vebey
8(02 + 4vy(e2 + 2¢,)cy)

and €, = €.(Cy,~) is under the form (3.10).
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2

In particular notice that the standard case 0° = 2,7 = 1 with the quadratic

potential U(z) = %, for which ¢y = Cy = 1, is covered by our assumptions.
Then ¢, = 4—% = 0.11656... and C = 5.2491... - 107, which is considerably better

than the order 10746 that is obtained in [6].
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4. ENTROPIC CONVERGENCE FOR SELF-CONSISTENT VLASOV-FOKKER-PLANCK
EQUATION BY PARTICLE METHOD

In this Section we shall provide a result on Wasserstein-2 hypocoercivity result
for a self-interacting system, and we will closely follow [6].
We shall consider the Vlasov-Fokker-Planck equation, namely

2
(4.1) O¢fe4+v-Vafe = %Avft'i'vv' (’thv‘i‘ft/R Vald(z,y) ft(y,v) dydv) )

d d
TXRU

where 7,0 > 0, z,v € R, f; = f;(x,v) denotes the unknown density of particles at
time ¢ > 0 and fo € Pac(RE x RY) is given. Here U : RY x RY — R is a two-variable
potential modelling external force in the first variable z and self-interaction in the
second variable y. If U = U(x) this reduces to kinetic Fokker-Planck equation with
external potential I/, by mass conservation from the divergence form. The existence
of an equilibrium measure f., may be proved as in Proposition 2 of [3], which relies
on the compactness argument in Proposition 3.1 in [8].

Analogously to it, one can see f; as the law at time t of the stochastic process
(Xt,V;) in RE x RE where

(42) dV; = -V dt — (IVzU(Xt,y)ft(yw) dydv) dt + o dB;

and (X, V) has law f;. As usual B; denotes a d-dimensional Brownian motion.
In this Section we will study long-time behaviour of densities f; by approximating
tensorized solutions (X, V)@V of (4.2) with (X, V) € R?N whereforall 1 <i < N
(X{, Vi) € R? solves

dX} =Vidt
(4.3) i i 1 N i xJ i
AV = A Vidt - 3050, VaU(XE, X)) dt +odB;

where (X}, V{) € R2?¢ are independent and identically distributed as fo, and {B}};
are N independent d-dimensional Brownian motions. We shall call ft(N) : R2N

Ry the law of (X, V;) such that, as seen in Section 1, ft(N) satisfies a diffusion
equation, namely

(4.4)
1 N o?
8tft(N) +v- v;cft(N) N E vxu(xivxj) : vvift(N) = ?Avft(N) +Vy - (U t(N))
ij=1

with féN) = fN. This means that, upon calling Uy () := + Zgjzl Vold(zi,xj)

RN — R, the equilibrium of (4.4) is given, up to a constant, by

£ (2, 0) = e~ A UN () +157)
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Throughout this Section we will consider potentials
Uz, y) =Ulz) + Wz —y)+Uy)

and we will always suppose the following:

(i) U is smooth, and there exists a constant ¢y > 0 independent from x such that
D2U(z) > cy

in the sense that z- D2U(z) -z > ¢y |z|? for all z € R? and for all # € R?, and
there exists a finite constant Cy such that

|D*U(z)|| < Cu, xeR?

for some norm ||-|| on R¥*4;
(ii) W is even, smooth and there exists a constant ¢y € R with
cu

cw < —
LD

such that
D?*W > —Ccw
and a constant Cy such that
|D*W(z)|| < Cw , zeR®.

In this Section one of the main features we will be dealing with is Wasserstein
distance, which has been increasingly used in the last two decades. We shall recall
here main features, for — much — more information one may view, for instance
Chapter 7 in [10] or Chapter 5 in [7]: given p and v probability measures on R™
and 1 < p < oo define

Wy (p,v) :=inf { (/]R"x]R" v =yl dw(%y)) Ty e P, V)}
—inf { [E( X — Y|P)F daw(X) =p, law(Y) = y}

where with P(u,v) we denote the set of probability measures on R} x R} whose
marginals on R} and R} are equal to p and v respectively. Such probability mea-
sures are generalizations of maps which push forward p on v, so that W), represents
the best transport cost of p to v; the second equality is simply a probabilistic
rephrasing. It is trivial to prove that W,(u,v) < oo as long as both p and v have
finite p-th moment, and with a bit more work one may prove W, to be a distance.
Convergence under this distance turns out to be equivalent to weak-* convergence
coupled with convergence of the p-th moment. Simple variational arguments also
show the existence of a minimizer 7, or (X,V). We need no other basic tool to
enter the main discussion.

Lemma 17. Let p € [1,+00). For all i and v probability measures on R™ with
finite p-th moment and oll N > 1,

N Ny _
WE (N, v9Y) = NWP(u,v) .
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Proof. Clearly by considering a minimizer 4 in W, (u,v), we have that 3V has
marginals p®V and v®V so that, by writing = (z1,...,2zy) € R™Y
N
Wy oY) < [ S — il” 455 (2, y)

nN nN T
RNV RPN s

=N 21—y |” dY(x1,91) = NWE(p,v) .
R;Ll XRLLl

Conversely, for all y(V) € P(u®N v®N) by calling 'y(N)

;~ the measure on R™ x R"

(V) ¢

i

obtained by projecting 7V) along all but the i-th coordinate, it is clear that ~
P(p,v) so that

N
/ ooyl M) =3 [ 2 — wl” &™)
RN xR2N i—1 YRRV XR2N

N
N
=X [ w0 @) > NW )
i=1 v Rg, XKy

and the claim follows by just taking the infimum in V). O
Theorem 18. Suppose that f; solves (4.1) and that the initial data fo satisfies

Ma(fo) :== /Rd y fo(ff,v)(|x|2+|v|2) dr dv < oo .

Then there exist constants C; > 0, depending on Ms(fy) and parameters of the
equation, and Cs, depending only on the parameters of the equation, such that

W3 (fes foo) < Cre= Ot

Proof. First, by Lemma 17 squared Wasserstein distance tensorizes as a sum, so we
can establish a link between W2 ( fy, foo) and W2 (2N, fEN) for arbitrary N to be
eventually chosen. Let us then triangulate the latter with the other measures on

R24N ft(N) and féoN) and

W3 (i foo) = WR(EY, F2Y)
(4.5) < (WalFEN, 500) £ W7, 1) + W (500, £2N) )

By focusing, at first, on the second term, the equilibrium

F0 (@, 0) = e*??z(uzv(z) + @)

satisfies a Talagrand inequality: the potential is %—convex, where we relabel ¢ :=

min{cy + 2cw, 1} > 0. Then, by Bakry-Emery criterion, it satisfies a Logarithmic
Sobolev Inequality with constant %, and therefore it also satisfies a Talagrand
inequality with the same constant — for such and other interesting inequalities see

Chapter 9 in [2]. Therefore
2
N o N
WE (A1) < o0 (1Y)
Since we are now dealing with ft(N) solution of a Fokker-Planck equation with po-

tential Uy, by Theorem 16 the decay of the right hand side is close to exponential,
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with decay constant Cx which, by the explicit formula (3.11), is an increasing
function of the convexity ¢, of the potential Uy. Such increasingness gives that a
growth of the dimension will just improve the convergence, giving a more than sat-
isfactory uniformity as the dimension grows. It then follows from our assumptions
on the potential that all ft(N) decay with some rate C' > 0, giving that

7t)2

2
WE U I0) = SoH e (5™ e

We now wish to give a somehow explicit bound to the relative entropy of féN),

that we may factorize into f6®N by the assumption of independence at time 0: by
2

o (N) e GFUNE [v]? :
reminding that foo' ' (2,v) = <5 —— where Uy(z,v) = Un(x) + 5~ and Cy is
just the renormalizing constant,

oS /fg?N log (N))
QN oN | 2 QN |U|2
= [ 5™ 0a 157+ 2 [ 55V @ 0l(@) + ) ded
+log(C) [ £

For brevity we will always write R24Y for RN x RV, The tensorization of the H
functional gives

/2d fEN log &N dadv = Z/ H fo(zj,v;)log fo(xs,v;)de dv
R

RQdN N

= Z fo x4, v;) log folxy, v;) da; du;

—N / fol, v) log fo(, v) dz dv
R2d

since fy has mass 1 on R2¢, Next,

®N
fo " Un
R2d
N

- /deN fo(ml,vl)...fo(xN,vN){Z Z W(z; — z; }dxdv :

i=1 ij=1
By supposing that U(z) < ay + by |z|* and W (z) < aw + bw |z|?,

N

/dezv folz1,v1) ... folzn,vnN) [Z U(z;)dx dv]

i=1

=N fo(z,v)U(z)dxdv < N[aU + bU/ folz,v)|z|* dodv
R2d R2d
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and

N
1
— W(z; —x;)| dzd
/wao(a?l’vl) J”o(INaUN)[QNi;::1 (z %)} z dv
] N

2
gﬁ o fo(ml,vl)...fo(mNmN)LjZ_laW—I—bW |z; — ;] }dxdv

N bw 2 2
gg Z o(z1,v1) fo(:cN,vN)(|xi| + |z, )dxdv

RZdN

3,j=1

N
= —aw + 2NbW/ fo(z,v) |z]* dz dv ,
2 R2d

while clearly

[v)®

N
/ N (2, v) = dedv = —/ folz,v) [vf* dedo ,
R2dN 2 2 Jped
so that

/ fENUN
R2dN
1
< N[aU—i-aTW—l—(bU—i—?bW)/ fola,v) |z dz dv+§/ folz, ) |v]? dmdv} .
R2d R2d

Last, let us focus on log(Cx): by our assumptions we may suppose that Uy (z) >
a+blzf

_ 2y _ 2y _ 2y Jv?
Cn = e~ UN@EY) o do = e~ 2UNE) gy ez 2 du
RAN RAN

R2dN

2+ 2 24 |v]2 2va 7ro'2 dN
</ e~ o2 (atblzl )dx/ e 2 2 dv= 602{ ]
= JRan RAN 2\/57

giving that

2

2va o
log(C ON < _Z 4 Ndlog | ——| .
08(Cn) /]R2dN foo = o2 + o8 [2\/&7}

All in all,

Hf(m( Ny <N{Z( U+a7W+(bU+2bw)/ folz,v)|z|* dz dv

+%/R folz,v) |v]? dmdv) / fologfo+d1°g( \f7>H
H,o0 (f§Y) < K(fo)N

or, more compactly,
where K depends on the second moment and the free entropy of fy. Back to our
system, we have yielded that

2 t
(4.6) W2(f™, F) < %K(fo)Ne’Ct“’e_ )

which is enough for the second term in (4.5).
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Concerning the third term, we refer to [4]. By considering ¢ approaching infinity,
we can deduce that

(4.7) W (09, f2N) <

where K depends on f; and parameters of the equation, but not on V.
We are now left only with the first term in (4.5), with which we will deal in the fol-
lowing way: consider Zy (t) = (X, V;) and Zn (t) = (X, V;) solutions of equations
(4.3), (4.2) and driven by the same Brownian motion B;. We want to establish an
estimate, uniform in N, on E[|Zn(t) — ZN(t)|2]: for all 1 < i < N, by recalling
that U(z,y) = U(x) + U(y) + W(z —y),
i il? i tril? i (i i iri
On(| X7 = X" + [V -V | ) =2(X = X) - (V= V) +2(V) = V)
: [—V(V ) ( ZV u(xy, xi) / VU (X3, y) fiely, )dydv)]

<2 |Xz - Xi| Vi - Vi -2y Vi - Vi
+2 |V = V| [|9.U(x) - V.U (%))

]

N
1 , 4 _
g oW - x) - [ WO - e dydo
= R2d
Concerning the exterior potential, we have that
2|V = V| VU(X]) = Vo UXD)] < 2||D?U|| o | X0 = XETVE = V[

while, for the interactive part, triangulate with VW (X} — X7) and

1 N . — .

‘NZI Xt = [ VW =) dydo

1 N

= [vzw =X = [ VW = i) dya]
j:1 R2d

1| , ,

<y| [T - x) - vwii - x|
=1
e )

+ % > [V W(X; - X)) - » Vo W(X{ —y)fe(y,v) dydv}

Jj=1

<= W], Z [xi - Xi+ X7 - X4
j=1

[V:cW(Xf - X)) - - V. W(X{ —y)fi(y,v)dy dv}
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so that, by taking expectation,

E[|X/ - X{[" + |V} = V/["] < L+ |D?U| B[ |Xi - Xi|" + [V - %[
(4.8)

1 N o o
+ 5 IDPW < DBV = Vi X - X+ X - X

j=1

N
Vi - Z[V WKL = X))~ [ VW= o) ay]

1
“E
TN 2d

] |

The last term gives, by Cauchy-Schwarz,

N
> |vawee - xi) -

Jj=1

Vit = vi|

VLW (X — ) fily. )dydv}

|

R2d

<E[IVi - Vi["]
2

1
—E
+ 2N?

N
S [VaW (S = X = [ VW = )il dy]
j=1

The N random variables {V,W (X} — X7 - Jgoa VoW (X] = y) fu(y,v) dy dv};\[:1

are independent conditionally to {X7};, since X7 are, and of zero average:

B[V, W (X] - X])] = |, VaW (@ =) fi(y,0) e, w) dy dvde dw

= E[ V WI(X! —y)fi(y,v)dy dv} ,
]RQd

so that orthogonality gives

N 2
El [VxW(XZ - X)) - L W(X] =) fely, )dydv} ]

j=1

N . . o 2
_ ZE‘vxmxz ~X) = [ VaW(E = ) fuly,v) dyd
— R2d
Since
VaW(Xi = X7) = || VaW(X = 9)fily v) dy dv

[T W = X) = TaW (K~ )l 0) dyo

< ||D2W||OO/RM ’Xf *y‘ft(y,v) dy dv
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by the usual mean value argument,

N
E|Y {VIW(XZ - X)) -

j=1

VLW (XE — ) fuly,0) dy dv]

2
R2d

N
2
< lowZ oe( [,
=1 R

N . 2
(4.9) < HDQWHiOZ]E/RM ‘Xi —y( fe(y,v) dy dv
j=1

X] -y

2
Je(y,v)dy dv)

=N HDZWHiO /RM |z — y)? fi(y, v) fe(z, w) dy dv dz dw
<N HD2WHio/ , 2( |17|2 + |y|2 )ft(y,v)ft(o:,w) dydvdx dw
R2

:4NHD%VKq4MMMJJ%UMMdv:4NHDﬁVm;EHXﬂﬁ.
Concerning the second line in (4.8),

1 N o
¥ 1PV Y BV -V

Jj=1

ﬁ—ﬁ+ﬁ—ﬁ‘

N
= 1w B [V -V 5 S |xi - xd -

j=1

)

X} - X}

31

1 S AN
< ID*wl;. {EWJ ~ Vi’ + DI - X'+
j=1

This gives that
i il? i yri|?
OE[|1X] - X+ Vi = V]
<@+ |0 X - XiI + Vi -V

1 R 1 & - 2
I WL (B =W+ 5 2 (X - X1+ |xi - X3 )]
j=1

2 2 iy
+ o 1D B

and, by taking the sum on ¢,
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D[ X, X+ Vi - T
<(2+|020]| B[ |X, - %l + Vi~ Tl*]
1 _
+D2w i, |3 v - v

X/ - X}

1 o 7 71‘2 2 2 al 7i2
+ove o (1K =X+ )+~ 2 E|X]|
i,j=1 i=1
=2+ ||DU||)E[|X: — X + Vi — Vi[*]
1 _ 1 _ 2
DA, [FEW =W+ 5 1% - X+ 2Bl
1 2
<(2+ 0205 I0*W2,)
_ _ 2 _
E[ X - %"+ Vi - Vi + L IDW L E X

since the XZ; are independent. We then only need to give a bound on the second
moment of X, which comes from Lemma 19, to reach an inequality of the form

OE[|Zxn — Zn|*] < aB[|Zy — Zn|"] +b .
Since for all real, positive function g satisfying
g <ag+b, a,beR,
it holds

and since

it finally follows that

- b
E[|Zn(t) - Zn(t)|°] < (e 1),
giving us the desired bound
(@10)  WEUEN ) <E[X - X+ V- VT < Dt )

which is evident from the definition of Wasserstein distance. We can now collect
(4.6), (4.7) and (4.10) so that (4.5) gives

1
W3 (i foc) < S W2lFEN S+ Walf™) 100 + W0, 2N
]. 1 —t
< S0 + CeNzem 10D 4 gy
which, upon taking N = N(t) large enough, gives the claim.
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Lemma 19. Let (X, V) and (X, V) solve (4.3) and (4.2) respectively. Then there
exists a constant C, which depends on the initial data (Xo,Vy) and on parameters
of the equation, such that for all t and all N

E[|Xt|2] <CN

Proof. In order to give a bound to the moment of X let us study the modified
moment

o L o _ 1 o
HE(X,V):UN(X,V)+5X~V:Z/{N(X)+§}V|2+5X~V.

We want to establish a differential inequality on E[H.(X, V)] in order to prove that
it is bounded in time for sufficiently small €, that will also imply boundedness of

_ — QN —
]E[|X‘2] by uniform convexity of Uy. By calling Ly the generator of ;fgj and L}
its adjoint in L2(f&N)

®N

OE[H. (X, V)] = H.(z,v)0: t®N fEN dz dv
R2dN [

_ @N
— H.(z,v)Ly (ftw ) fEN da dv

R2dN

- / Ly[H(z,0)] 2N dzdo .
R2dN

Since
_ _ 0'2
LN:—U~V$+VIL{N-Vv—vv-VU—i—?Av ,

where
B N
(o) =Y [ i) fulyew) dydu
i—1 YR
it follows from easy computations that
— — 2 —
Ly =v-Vy— Villy -V — vV, + %AU = L% + (Volly — Vally) - Vs

where Ly denotes the generator of ft(N), and the last adjoint is to be meant in
L2(f0). First,

2
L [H.(z,0)] = e |v]* — ez - Voldy — v( lv]* + exv) + %dN

2
< (= +e+292VE) o)* + (— Cie +eve) |x|2+%dN

where we used that U attains its minimum in 0 and that the value of the minimum
is 0. This may easily be supposed by considering translations of f if needed and
by noticing that the potential, as such, is defined up to a constant. C; here is the
lower bound to the convexity of Uy .

015

Y2 2 o?
Ly [Hc(z,v)] < _ZM —7|33| +7dN
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Also, concerning the other term in L%,

(Valdy — Vo Un) - VoH. = (Voly — Vily) - (v + ex)

Cie

4

thanks to Young inequality with a sufficiently large constant C., giving that
Ly[H:(z,v)] = Ly + (Valdy — Vi Un) -V, He

Cie

4

SCE‘VIL{N—VJCHNF—F%\UF—&- |z|?

Y2 2, 0 In|?
< —g lol* = = lal* + G dN + Cc [ Vsthy — .2y |

Y2 i o’ In|?
< ~3 v]” — T@guN(ﬂﬁ) + 7dN+C€ |Vally = Vall |

2
< —CoH.(v,v) + -dN + Cc [Vally = Voldy[* .

where we called Cs the upper bound of D2 and c. a sufficiently small constant.
It follows that, for sufficiently small €,
(4.11)

B B B B B B B 2
OE[H.(X;, V;)] < —c.E[H.(X;, V)] + C-E |Vl (X)) — Vildn (X)) + %dN .

We just need to compute the term in the middle: for all 1 < k < N, by writing
Vi = mG c Rd,

VkuN(l') — VkZ;[N(il')
N 1 N
=V [ Yo UG) + g5 O Wi — )]

ij=1
N

_ ;Vk |:U(33j) -l—/]de W(x; — y)ft(y7'0)dyd’1}:|

N N
1
=oN > VW (zi — ) — Z/W VW (z; —y) fe(y,v) dy dv
j=1

7,j=1

N
:% ) [VW(%‘ —aw) = [ VW k=) fuly,v) dy dv] :
j=1

since it may be supposed that VIW(0) = 0, and then we have that

E |V, Un (X:) — Valdn ()|

N N 2
1 _ _ _
=75 2E| 2 [VW(Xi — X = [ VW =) fily ) dy dv]
k=1 |j=1
1 | L B 2
SES {vxww X - [ W ) ful o) dy dv}
j:1 RQd

IN

1 - o2 4 _
5 IID2W||QZE/W % =] fily o) dydo < - [D*W]2 B[ X[
j=1
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where we acted as in (4.9) since the X* are identically distributed. We can then
go back to (4.11) and, supposing ¢ to have been fixed small enough,

O, S5 4C _ 2
OE[H (X, V)] < —cE[H (X, V)] + ~ ||D2WH;E[|X|2] n %dN

o2

< ~CB[H (X, V)] + EH (X, V) + TN

2
< —cB[H(X,, Vo)) + 5-dN

by taking N large enough and relabelling constants. This closes our inequality and
gives that for all ¢

s, o < (8120, V0 - 225 ) + 2o

< max {E[H()_((O)), H(V(0))], 022;]\/'}
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