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RELAXATION TO EQUILIBRIUM FOR THE KINETIC

FOKKER-PLANCK EQUATION

DAVIDE PIAZZOLI

Abstract. We want to study long-time behaviour of solutions ft of kinetic
Fokker-Planck equation in Rd, namely their convergence towards equilibrium
f∞ in the form

d(ft, f∞) ≤ C1e
−C2td(f0, µ)

for appropriate distances d and constants C1 ≥ 1, C2 > 0.
In Section 1 we provide an introduction and motivation for the equation,

together with the setting of [9] which will be useful in Section 2.
In Section 2 we will review the monograph [9], where such convergence is

proved, for h = f/µ, in H1(µ) and Hµ+Iµ, that is, the sum of relative entropy
and Fisher information. Here results are stated in terms of general operators
∂t+A∗A+B = 0, and commutation conditions on A and B are to be imposed.

In Section 3 we shall take into consideration the work by Monmarché [5]
in which such convergence is established by rephrasing some concepts in term
of Γ-calculus: with respect to [9] there is no need for regularization along the
semigroup since the functional taken into account is a modi�ed H + I that at
initial time only takes entropy into account, and the argument turns out to

be shorter. Also, the convergence rate is e−Ct(1−e
−t)2 instead of C1e−C2t.

However it turns out, as in [9], that for this case it is strictly needed to have
a pointwise bound on D2U , where U is the con�nement potential. A draw-
back of this method with respect to [9] is that, in a more general setting
than kinetic Fokker-Planck equation, stronger commutation assumptions are
required, which imply that the di�usion matrix is basically required to be con-
stant. On this work a speci�c analysis was carried out, simplifying the proof
for our Fokker-Planck case and �nding explicit and improved expressions for
convergence constants.

The same author in [6], which is the subject of Section 4, addresses a
Vlasov-Fokker-Planck equation with a potential that generalizes U and the
related particle system. Chaos propagation in W2, the 2-Wasserstein distance,

is proved, namely W2(f
(1,N)
t , ft) ≤ CN−ε. This leads to both Wasserstein

and L1 hypocoercivity, however dependence of the right hand side from the
initial data is not linear as wished.
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1. A general approach for Sobolev and entropical convergence

In this Section we shall present basic facts on kinetic Fokker-Planck equation,
together with the main abstract tools to be used in Section 1. Here we follow [9]
where we expand some classical computations which are often left as an exercise.

Here we will study the equation

(1.1) ∂th+ Lh = 0

where h is a real function de�ned on RN � N ≥ 1 � and belongs to a Hilbert space
H � in our case it will be L2(µ), with µ equilibrium measure for (1.1).

We will consider operators of the form

(1.2) L = A∗A+B ,

where A : DomA ⊂ H → Hm and B : DomB ⊂ H → H is antisymmetric, that is,
we suppose some positivity of the symmetric part of L. Let us stress that A∗ is to
be meant as the adjoint of A according to the product of Hm, that is the product
of H component by component, so that A∗ : DomA∗ ⊂ Hm → H thanks to the
identi�cation of H∗ with H. It is then easy to prove that for g ∈ Hm

A∗g =

m∑
i=1

A∗i gi ∈ H

so that (1.2) is to be read as

L =

m∑
i=1

A∗iAi +B .

We do not require any boundedness of A or B, as in our case they will be
derivation operators.

We will indi�erently denote with e−tLh, Sth or ht the semigroup associated to
L: if h is a function RN → R, e−tLh solves ∂tg + Lg = 0 with g0 = h.

Remark 1. A �rst, simple e�ect of the structure of our generator L is that we can
readily compute

DomL ∩Ker(A∗A+B) = KerA ∩KerB .

In order to see this, notice �rst that obviously for all h antisymmetricity of B gives

〈Bh, h〉 = −〈h,Bh〉 = −〈Bh, h〉 ,

that is, concerning the real part

Re〈Bh, h〉 = 0 ,

so that

Re〈Lh, h〉 = <〈A∗Ah, h〉 = ‖Ah‖2 ,

giving that Lh = 0 forces Ah = Bh = 0.

Let us now see a motivation for the study of such equations: take the stochastic
di�erential equation in RN

dZt = ξ(Zt) dt+ Ξ(Zt) dBt ,
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where ξ : RN → RN and Ξ : RN → RN×N are smooth enough vector and matrix
�elds on RN . By considering the law ft(x) of Zt, we want to study its evolution:
pick a test function φ ∈ C∞c (RN ,R), then by Itô formula

d[φ(Zt)] =
∑
i

∂iφ(Zt)dZ
i
t +

1

2

∑
i,j,k

∂2
ijφ(Zt)Ξik(Zt)Ξjk(Zt) dt

so that

φ(Zt) =

∫ t

0

[∑
i

∂iφ(Zs)ξ
i(Zs) +

1

2

∑
i,j,k

∂2
ijφ(Zs)Ξik(Zs)Ξjk(Zs)

]
ds

+

∫ t

0

∑
i

∂iφ(Zs)Ξik(Zs) dB
k
s + φ(Z0)

from which, by martingale property,∫
RN

d
dt
ft(x)φ(x) dx =

d
dt

∫
RN

ft(x)φ(x) dx =
d
dt

E[φ(Zt)]

= E
[∑

i

∂iφ(Zt)ξ
i(Zt) +

1

2

∑
i,j,k

∂2
ijφ(Zt)Ξik(Zt)Ξjk(Zt)

]
=

∫
RN

[∑
i

∂iφ(x)ξi(x) +
1

2

∑
i,j,k

∂2
ijφ(x)Ξik(x)Ξjk(x)

]
ft(x) dx ,

where in the �rst equality we may interchange derivation and integration by sup-
posing some regularity of f � for instance ∂tf locally bounded in R+ ×RN � since
φ ∈ C∞c . Here and throughout the Section we will use indi�erently the notations∫
Rp g and

∫
Rp g(x)dx. Since, formally,∫

RN
ft∇φ · ξ = −

∫
RN

φ∇ · (ftξ) ,

meaning we are done with the �rst part, let us focus on the second term and, by
de�ning

Dij :=
1

2

∑
k

ΞikΞjk =
1

2
(ΞΞT )ij ,

there holds, still formally and up to regularity issues of ft and Ξ,∫
RN

∑
i,j

∂2
ijφDijft =

∫
RN

∑
i,j

∂2
ij(ftDij)φ =

=

∫
RN

∑
i

φ∂i
(
(D∇ft)i

)
+
∑
i,j

φ∂i
(
ft∂jDij

)
=

∫
RN

φ∇ ·
(
D∇ft + ft∇(D1)

)
,

which means that, by calling

di(x) :=
∑
j

∂jDij(x) ,

we have reached the weak formulation for the evolution of ft,

(1.3) ∂tft = ∇ ·
(
D∇ft + ft(d− ξ)

)
.
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We will refer to this as natural equation since it arises from a physically natural
setting.

Suppose now that there exists a stationary solution f∞ for (1.3), smooth and
positive, possibly of in�nite mass. Then the ratio ht := ft

f∞
satis�es

dht
dt

=
1

f∞
∇ ·
(
D∇ft + ft(d− ξ)

)
=

1

f∞
∇ ·
(
f∞D∇ht + f∞ht(d− ξ) + htD∇f∞

)
= ∇ · (D∇ht) +

1

f∞
∇f∞D∇ht +

ht
f∞
∇ ·
(
f∞(d− ξ)

)
+ (d− ξ) · ∇ht

+
1

f∞
∇ · (D∇f∞)ht +

1

f∞
∇htD∇f∞

= ∇ · (D∇ht) +

(
2D∇f∞
f∞

+ (d− ξ)
)
· ∇ht

(1.4)

where we used that f∞ has the right hand side of (1.3) vanishing.
We wish to write this under the form of (1.1), so let us choose the Hilbert setting of
H = L2(f∞). Let us also consider Ξ∇ and compute its adjoint in H: pick smooth
g : Rm → Rm and h : Rm → R; then

〈(Ξ∇)∗g, h〉H = 〈g,Ξ∇h〉Hm =

∫
RN
∇hΞT gf∞ = −

∫
RN

h∇ · (ΞT gf∞)

= −
∫
RN

h
[
∇ · (ΞT g) +

∇f∞
f∞

ΞT g
]
f∞ ,

that is,

(Ξ∇)∗g = −∇ · (ΞT g)− ∇f∞
f∞

ΞT g

and

(Ξ∇)∗(Ξ∇)h = −∇ · (2D∇h)− ∇f∞
f∞

2D∇h ,

giving that we shall choose

A =
1√
2

Ξ∇

which gives
dht
dt

= −A∗Aht +

(
D∇f∞
f∞

+ (d− ξ)
)
· ∇ht .

We just need to prove that the last term is antisymmetric: by calling it

B = b · ∇ ,

we shall prove that for all h
〈Bh, h〉 = 0

which is equivalent to antisymmetricity of B by writing

〈Bh, g〉+ 〈h,Bg〉 = 〈B(g + h), g + h〉 − 〈Bh, h〉 − 〈Bg, g〉 .
Indeed

〈Bh, h〉 =

∫
RN

(b · ∇h)hf∞ =
1

2

∫
RN

b · ∇(h2)f∞ = −1

2

∫
RN

h2∇ · (bf∞)

=− 1

2

∫
RN

h2∇ ·
(
D∇f∞ + (d− ξ)f∞

)
= 0
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for all h.
This means that ht solves an equation as (1.1), with B antisymmetric derivation
�eld, in the Hilbertian setting of L2(f∞). In view of this fact, we shall call (1.4)
formal equation.

Here arises our favourite example, linear kinetic Fokker-Planck equation � ac-
tually, the particular case from which we decide to build a general theory: let the
physical dimension be d ≥ 1 and take two space and velocity processes Xt and Vt
in Rd de�ned by

{ dXt = Vt dt

dVt = −∇xU(Xt) dt− γVt dt+ σ dBt
,

where U is a C1 potential Rd → R � it corresponds to space con�nement, and
from time to time we shall require growth conditions at in�nity in order to prevent
particles from being scattered away � Bt is a d-dimensional Brownian motion ,
γ and σ are positive constants. Then it is easy to see that the induced natural
equation (1.3) reads

∂tf + v · ∇xf −∇xU(x) · ∇vf =
σ2

2
∆vf + γ∇v · (vf) ,

that is,

D(x, v) =
σ2

2

[
0x 0v
0x Idv

]
and

ξ(x, v) =

[
v

−∇xU(x)− γv

]
and f∞(x, v) = e−

2γ

σ2

(
U(x)+

|v|2
2

)
, up to a normalizing constant. The matrix D being

constant, the vector d(x, v) from (1.4) is null, allowing us to refer to d as the
dimension only, with no notation ambiguity.

Let us us now provide the direct computation of the classical change of the
equation from natural to formal. This is just an easy computation, often left as an
exercise, that we wish to provide.

Proposition 1. Suppose that f = f(t, x, v) satis�es

∂tf + v · ∇xf −∇xU · ∇vf =
σ2

2
∆vf + γ∇v · (vf) , t ≥ 0, (x, v) ∈ Rd × Rd

for some γ, σ > 0, which admits as equilibrium, up to a normalizing constant,

f∞(x, v) = e−
2γ

σ2

(
U(x)+

|v|2
2

)
.

Then the density with respect to equilibrium f
f∞

satis�es

∂th+ v · ∇xh−∇xU · ∇vh =
σ2

2
∆vh− γv · ∇vh

Proof. Let us compute all di�erential items when applied to f
f∞

. First

∂t

(
f

f∞

)
= −v · ∇xf

f∞
+
∇xU · ∇vf

f∞
+
σ2

2

∆vf

f∞
+ γ
∇v · (vf)

f∞
.
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Next, we may compute, for all di�erential operators involved G, G(f/f∞) and look
for G(f)/f∞ on the right hand side. Indeed

∇x
(
f

f∞

)
= ∇x(e

2γ

σ2 (U(x)+
|v|2

2 ))f +
∇xf
f∞

=
2γ

σ2
e

2γ

σ2 (U(x)+
|v|2

2 )f∇xU +
∇xf
f∞

so that

−v · ∇xf
f∞

=
2γ

σ2
v · ∇xU

f

f∞
−∇x

(
f

f∞

)
.

In the same fashion

∇v
(
f

f∞

)
= ∇v(e

2γ

σ2 (U(x)+
|v|2

2 ))f +
∇vf
f∞

=
2γ

σ2
e

2γ

σ2 (U(x)+
|v|2

2 )fv +
∇vf
f∞

leads to
∇xU · ∇vf

f∞
= ∇xU · ∇v

(
f

f∞

)
− 2γ

σ2

f

f∞
∇xU · v .

Summing the two expressions gives

−v · ∇xf
f∞

+
∇xU · ∇vf

f∞
= −v · ∇x

(
f

f∞

)
+∇xU · ∇v

(
f

f∞

)
.

Now let us take into consideration the Laplacian: by recalling that, for all smooth
f and g, the formula ∆(fg) = g∆f + 2∇f · ∇g + f∆g holds,

σ2

2
∆v

(
f

f∞

)
=
σ2

2

∆vf

f∞
+ σ2∇vf · ∇v(e

2γ

σ2 (U(x)+
|v|2

2 )) +
σ2

2
f∆v

(
1

f∞

)
=
σ2

2

∆vf

f∞
+ 2γ

∇vf
f∞
· v +

σ2

2
f∆v

(
1

f∞

)
.

By writing explicitly the last term

σ2

2
f∆v

(
1

f∞

)
= γf∇v · (ve

2γ

σ2 (U(x)+
|v|2

2 )) = γf∇v ·
(
v

f∞

)
which gives

σ2

2

∆vf

f∞
=
σ2

2
∆v

(
f

f∞

)
− 2γ

∇vf
f∞
· v − γf∇v ·

(
v

f∞

)
and, summing up everything we have computed,

∂t

(
f

f∞

)
+ v · ∇x

(
f

f∞

)
−∇xU · ∇v

(
f

f∞

)
=
σ2

2
∆v

(
f

f∞

)
− 2γ

v · ∇vf
f∞

− γf∇v ·
(
v

f∞

)
+ γ
∇v · (vf)

f∞
.

It is now easy to �nd the coe�cient of γ as a function of f
f∞

by applying several
times Leibniz rule:
∇v · (vf)

f∞
− 2v · ∇vf

f∞
− f∇v ·

(
v

f∞

)
=
∇v · (vf)

f∞
− v · ∇vf

f∞
−∇v ·

(
v
f

f∞

)
= −∇v

(
1

f∞

)
· vf − v · ∇vf

f∞
= −v · ∇v

(
f

f∞

)
which gives

∂t

(
f

f∞

)
+ v · ∇x

(
f

f∞

)
−∇xU · ∇v

(
f

f∞

)
=
σ2

2
∆v

(
f

f∞

)
− γv · ∇v

(
f

f∞

)
. �
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2. General approach to hypocoercivity: Villani's method

In this Section we are going to brie�y expose some features of the monograph
[9], with a stress on kinetic Fokker-Planck equation, which is the main application
therein - not the only one, though. We have tried to be to some extent comple-
mentary to its author, by sketching some parts which are there in deep detail and,
conversely, expanding some computations which are glossed over.

In Subsection 2.1 we are going to provide results in a general setting for Sobolev
H1 norm � or better, an abstract version of it � with Theorem 2 and entropy �
or rather the sum of entropy and Fisher information � in the way more detailed
Theorem 3. In Subsection 2.2 we are going to apply such results to kinetic Fokker-
Planck equation. We will also provide some regularity results for solutions of the
equation, which, in addition to being of their own interest, allow for convergence
results starting from a way less regular data, at the price of a worse dependence
from data on the right hand side. In Subsection 2.3 we provide the outline of the
theory developed to tackle a nonlinear variant of kinetic Fokker-Planck equation.

2.1. Linear setting: L2 and entropic convergence. Now let us turn to the
abstract study of our operator: take a Hilbert space H̃ ↪→ (KerL)⊥∩DomL densely,
where orthogonality is to be meant according to the structure of H � typically we
will consider H1 embedded in 0-mean functions. We will say that the generator
L : H → H is λ-coercive if for all h ∈ DomL ∩ (KerL)⊥

Re〈Lh, h〉H̃ ≥ λ ‖h‖
2
H̃ ,

that is, if the symmetric part of L, when restricted, admits a spectral gap in H̃.
An equivalent formulation, closer to our purposes, comes from noticing that the
previous de�nition is nothing but Gronwall inequality on the squared norm along
L �ow: for every h0 ∈ H̃ and ht satisfying (1.1), coercivity is equivalent to

‖ht‖H̃ ≤ e
−λt ‖h0‖H̃ .

Concerning this last formulation, what is always true is that

d
dt
‖ht‖2H = −2 ‖Aht‖2H ,

which gives that ‖·‖H does not increase along the evolution, and therefore that
the semigroup operator St is H-non expansive for all t. This will not be useful for
coercivity though, since it will never hold

A∗A & Id ,

as we will have A = ∇v. This is a symptom of the usual di�culty that we encounter
when dealing with relaxation and kinetic equations: the full Laplacian that helps
in spatial Fokker-Planck equation is now present in half of its form only.

However our hope to have a coercive L is going to be frustrated, so we will say
that L is hypocoercive if

‖ht‖H̃ ≤ Ce
−λt ‖h0‖H̃ , h0 ∈ H̃,

for some constants C ≥ 1 and λ > 0, and for an appropriate and nontrivial H̃. This
is what we will always aim to prove, in an appropriate setting.

We shall see that a important role is played by commutation. Indeed, suppose
A and B commute, in that B commutes with all of Ai; then so do their exponen-
tials, and e−tL = e−tA

∗Ae−tB . Since e−tB is norm-preserving, hypocoercivity of L
9



is equivalent to hypocoercivity of A∗A, however in our case this does not occur.
Indeed, by de�ning

[A,B] := AB −B⊗mA : H → Hm ,

where by B⊗m : Hm → Hm we denote B applied component by component, in
our Fokker-Planck setting we shall have [A,B] = ∇x. Since in this case it will be
non-zero, the strategy will be to impose magnitude bounds on several commutators
in order to make its e�ect negligible.

Now, de�ne recursively the operators

C0 := A

and
Ck+1 := [Ck, B] : H → Hm

to be meant as above. Then

• KerL ⊂
⋂
k≥0 KerCk: if Lh = 0, Remark 1 gives that Ah = 0 ∈ Hm and

Bh = 0 ∈ H , so that C0h = 0. Inductively, Ck+1h = CkBh−B⊗mCkh = 0
•
⋂
k≥0 KerCk is invariant under e−tL.

Since we wish to have KerL =
⋂
k≥0 KerCk, or better

⋂K
k=0 KerCk, we will ask for∑K

k=0 C
∗
kCk 6= 0 on {L 6= 0}. More strongly, we will ask for

∑K
k=0 C

∗
kCk coercive

on (KerL)⊥.
Now we can state the �rst big result, which corresponds to Theorem 18 in [9].

Its proof will be only sketched by synthetically pointing at main ideas, since a close
analogue will be proved in greater generality for the entropic case. We will write

‖h‖2H1 := ‖h‖2H +

K∑
k=0

‖Ckh‖2H

and we will say that an operator T is α-bounded with respect to {Sj}j if for all h
it holds ‖Th‖ ≤ α

∑
j ‖Sjh‖. Also, we will write K = KerL and write [A,A∗] for

the matrix {[Aj , A∗k]}jk.

Theorem 2 (H1 convergence). Here we will deal with K = 1. We will suppose
that:

• A commutes with C, A∗ commutes with C and Ai commutes with Aj for
all i and j
• [A,A∗] is α-bounded with respect to I and A, and [B,C] is β-bounded by
A, A2, C and AC
• A∗A+ C∗C is coercive in H-norm on (K)⊥.

Then there exists a scalar product ((·, ·)) on (K⊥)H1 of the form 〈·, ·〉 + a ‖A·‖2 +

b〈A·, C·〉 + c ‖C·‖2, where products and norms are to be meant in H, such that L
is ((·, ·))-coercive on (K⊥)H1 . This inner product is equivalent to H1, so that L is
H1-hypocoercive.

Proof. Take h ∈ H1 ∩ K⊥, write down ((h, Lh)) and separate it between various
terms of ((·, ·)); commute and estimate various terms, either by domination as-
sumptions, or by antisymmetricity or simply with Cauchy-Schwarz; at this point,
we reached an expression of the form

((h, Lh)) ≥
(
‖Ah‖ ,

∥∥A2h
∥∥ , ‖Ch‖ , ‖CAh‖ ) ·M · ( ‖Ah‖ ,∥∥A2h

∥∥ , ‖Ch‖ , ‖CAh‖ ) ,
10



whereM is a 4 by 4 matrix, whose entries are just numbers depending on constants
and parameters a, b and c which are still to be chosen. We should just prove that
the symmetric part ofM is positive de�nite, so that we will yield, by denoting with
c a generic constant,

((h, Lh)) ≥ c(‖Ah‖2 + ‖Ch‖2) ≥ c

2
(‖Ah‖2 + ‖Ch‖2) +

cλ

2
‖h‖2 ≥ c((h))

thanks to coercivity of commutators. In order to get positivity of the matrix, and
to make sure that our product is positive, we need an upper bound on the linear
growth and a lower bound on the geometric growth of a, b and c, which is done by
an arithmetical argument. �

This argument may be generalized, to K > 1 and by writing

[Ck, B] = Zk+1Ck+1 +Rk+1 ,

where Zk are �xed �elds Hm → Hm bounded from above and below, and Rk are
remainder terms with a magnitude condition.

After dealing with a generalization of Sobolev convergence � this comparison will
be clearer in Subsection 2.2 � let us focus on the entropy case, by giving de�nitions
in a more general framework than the one we need; recall that, given µ measure on
RN and a µ-measurable function h : RN → [0,+∞), we de�ne the relative entropy
of hµ with respect to µ as

Hµ(hµ) :=

∫
RN

h log h dµ ,

and the Fisher information of hµ with respect to µ as

Iµ(hµ) :=

∫
RN

|∇h|2

h
dµ .

We will write Hµ(ν) = Iµ(ν) =∞ if ν is not absolutely continuous with respect to
µ, and we will even write Iµ(h) ≡ Iµ(hµ) in case there is no possibility of confusion.
Here we abandon the Hilbertian setting of L2(µ), and we will just consider functions
on RN ; we will consider a reference measure ν rapidly decreasing at in�nity and
with su�ciently well behaved semigroup, in that it maps a set of smooth and fast
decaying enough functions into itself. Also, we will consider operators of the form
A = Ξ ·∇ and B = b ·∇, where Ξ and b are a matrix and a vector �eld, and we will
refer to such operators as derivations. Here we will deal with relative boundedness
of derivations in terms of pointwise boundedness of the representing �elds when
viewed as matrices. In other words, if an array of derivations is represented by
the matrix �eld {ξij}ij , pointwise boundedness with respect to A means that there
exists c > 0 such that

wiξij(x)wj ≤ c wiΞij(x)wj , x ∈ RN , w ∈ Rm .

We are now ready for the following result, which amounts to Theorem 28 in [9];
the proof here shown also contains the important Lemma 32 in the monograph,
together with the expansion of therein glossed over computations.
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Theorem 3 (Entropy convergence). Let us set ourselves in the situation where
C0 = A and, for 0 ≤ k ≤ K, [Ck, B] = Zk+1Ck+1 + Rk+1, where Zk : RN → RN ,
1 ≤ k ≤ K, are �elds such that for real constants λk and Λk

0 < λk |x|2 ≤ Zk(x) · x ≤ Λk |x|2 ,

and Ck, Rk are derivations. We will suppose:

(i) [Ck, A] pointwise bounded with respect to A with constant c1
(ii) [Ck, A]∗ pointwise bounded with respect to I and A with constant c2
(iii) [Ck, A

∗] pointwise bounded with respect to I and {Cj}kj=0 with constant c3
(iv) Rk+1 pointwise bounded with respect to {Cj}kj=0 with constant cR
(v) The matrices of coe�cients Ck satisfy

K∑
k=0

C∗k(x)Ck(x) ≥ cIN , x ∈ RN

(vi) µ satis�es a Logarithmic Sobolev Inequality, that is,

Hµ(ν) ≤ 1

2C
Iµ(ν)

for all ν such that
∫
dν =

∫
dµ.

Then we have entropic hypocoercivity, in the weaker sense that for ht satisfying
(∂t + L)h = 0

(Hµ + Iµ)(ht) ≤ Ce−λt(Hµ + Iµ)(h0)

for a constant λ which depends on all previous constants.

Proof. We de�ne the target functional as

E(h) ≡
∫
RN

h log h dµ+

K∑
k=0

(
ak

∫
RN

|Ckh|2

h
dµ+ 2bk

∫
RN

Ckh · Ck+1h

h
dµ
)
,

that is, the sum of relative entropy and Fisher information twisted via the tridi-
agonal quadratic form M = M(x), which is a N ×N matrix �eld of the following
fashion: by identifying the derivation operator Ck with its m × N matrix �eld of
coe�cients,

〈M(x)ξ, ξ〉N =

K∑
k=0

ak |Ck(x)ξ|2m + 2

K−1∑
k=0

bk〈Ck(x)ξ, Ck+1(x)ξ〉m , ξ ∈ RN ,

where m is the amplitude of derivation operators, that is, A = (Ai)
m
i=1 We will

sometimes be denoting inner products by 〈v, w〉p just to make clear, if ambiguous,
that v, w ∈ Rp.

From time to time we will be imposing conditions on ak and bk that will eventu-
ally be chosen accordingly. For instance, for E to be equivalent to H + I, we need
uniform positivity of M with respect to I, for which we ask for

b2k ≤ δakak+1 ,

for some δ > 0 to be �xed later, since it gives

〈M(x)ξ, ξ〉N ≥ (1− 2δ)

K∑
k=0

ak ‖Ck(x)ξ‖2 , ξ ∈ RN .
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We can now study evolution of E in itself:

d
dt
Hµ(hµ) = −

∫
RN

(log h+ 1)(A∗Ah+Bh) dµ

= −
∫
RN

A(log h+ 1) ·Ah−
∫
RN

B(h log h) dµ = −
∫
RN

|Ah|2

h
dµ .

It is easy to notice that the e�ect of B is not a pure chance, but it holds with any
F (h) as long as the generator of the evolution is antisymmetric:

d
dt

∫
RN

F (h) dµ = −
∫
RN

F ′(h)Bh dµ

= −
∫
RN

B(F (h)) dµ =

∫
RN

F (h)B∗(1)dµ = 0 ,

thanks to chain rule and to B∗ being a derivation.
Now let us turn to the dissipation of the modi�ed Fisher information: �rst we

shall deal with the general term in the sum by relabelling it as

∫
RN

Ch · C̃h
h

dµ

and noticing that we can write it, for instance, as

d
dt

∫
RN

Ch · C̃h
h

dµ = 4

∫
C
√
h · C̃∂t

√
hdµ+ 4

∫
RN

C̃
√
h · C∂t

√
h dµ

= −2

∫
RN

C
√
h · C̃

(Lh√
h

)
dµ− 2

∫
RN

C̃
√
h · C

(Lh√
h

)
dµ

highlighting thus L-additivity so that we can analyse separately the e�ect of A∗A
and B, by writing

d
dt

K∑
k=0

(
ak

∫
RN

|Ckh|2

h
dµ+ 2bk

∫
RN

Ckh · Ck+1h

h
dµ
)

(2.1)

=

K∑
k=0

ak((I)Ak + (I)Bk ) + bk((II)Ak + (II)Bk )

Let us study thoroughly the form of each of the four terms on the right hand
side, by �rst dealing with B: consider h solving (∂t + B)h = 0. Then, since it is a
�rst-order derivation, we also have

∂t
√
h+B

√
h =

1

2
√
h

(∂t +B)h = 0 ,
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so that it is useful to rewrite the ratio as the better-behaving quadratic formulation

d
dt

∫
RN

Ch · C̃h
h

dµ =4
d
dt

∫
RN

C
√
h · C̃

√
h dµ

=− 4

∫
RN

CB
√
h · C̃

√
h dµ− 4

∫
RN

C̃B
√
h · C

√
h dµ

=− 4

∫
RN

[C,B]
√
h · C̃

√
h dµ− 4

∫
RN

BC
√
h · C̃

√
h dµ

− 4

∫
RN

[C̃, B]
√
h · C

√
h dµ− 4

∫
RN

BC̃
√
h · C

√
h dµ

=− 4

∫
RN

[C,B]
√
h · C̃

√
h dµ− 4

∫
RN

[C̃, B]
√
h · C

√
h dµ

=−
∫
RN

[C,B]h · C̃h
h

dµ−
∫
RN

[C̃, B]h · Ch
h

dµ .

We can now turn to A∗A, taking h such that (∂t +A∗A)h = 0.

d
dt

∫
RN

Ch · C̃h
h

dµ =
d
dt

∫
RN

hC log h · C̃ log h dµ =
d
dt

∫
RN

fC log h · C̃ log h

=

∫
RN

∂tf C log h · C̃ log h︸ ︷︷ ︸
(1)

+

∫
RN

fC
(∂tf
f

)
· C̃ log h︸ ︷︷ ︸

(2)

+

∫
RN

fC̃
(∂tf
f

)
· C log h︸ ︷︷ ︸

(2′)

.

We shall deal separately with each of the terms, anyway ft = hte
−E evolves ac-

cording to

∂tft = ∇ · (D∇ft + ft(
√

2d− ξ)) = ∇ · (D(∇ft + ft∇E))

since

0 = −b =
D∇e−E

e−E
+ (
√

2d− ξ) ,

where B = b · ∇ and D = ΞTΞ. Then

(1) = −
∫
RN

(D(∇f + f∇E)) · ∇(C log h · C̃ log h)

= −
∫
RN

Ξ(e−E∇h− h∇Ee−E + f∇E) · Ξ∇(C log h · C̃ log h)

= −
∫
RN

Ξ(f∇ log h) · Ξ∇(C log h · C̃ log h)

= −
∫
RN

fA log h ·A(C log h · C̃ log h)

14



and, since we now know the equation satis�ed by ft, let us highlight f

(2) =

∫
RN

fC
(∇ · (D(∇f + f∇E))

f

)
· C̃ log h

=

∫
RN

fC
(∇ · (fD∇ log h)

f

)
· C̃ log h

=

∫
RN

f
〈
C(∇ · (D∇ log h)), C̃ log h

〉
m

+

∫
RN

f
〈
C〈∇ log f,D∇ log h〉N , C̃ log h

〉
m

=

∫
RN

f
〈
C(∇ · (D∇ log h)− 〈D∇E,∇ log h〉N ), C̃ log h

〉
m

+

∫
RN

f
〈
C〈∇ log h,D∇ log h〉N , C̃ log h

〉
m

=−
∫
RN

f〈C(A∗A log h), C̃ log h〉m +

∫
RN

f〈C |A log h|2 , C̃ log h〉m

=−
∫
RN

f〈[C,A∗]A log h, C̃ log h〉m︸ ︷︷ ︸
(2.1)

−
∫
RN

f〈A∗CA log h, C̃ log h〉m︸ ︷︷ ︸
(2.2)

+ 2

∫
RN

f
〈
(CA log h)(A log h), C̃ log h

〉
m︸ ︷︷ ︸

(2.3)

where we also used that A∗A = −∇·(D∇)+D∇E·∇ and wished to make dimensions
clear: for instance, by calling a → b an operator on functions RN → Ra taking
values in functions RN → Rb, [C,A∗] is to be meant as m → m and A∗CA is
1→ m. Now let us look at the second term:

(2.2) =−
∫
RN
〈A∗CA log h, C̃h〉m dµ

=−
∫
RN
〈CA log h, [A, C̃]h〉m×m dµ−

∫
RN
〈CA log h, C̃Ah〉m×m dµ

=−
∫
RN
〈CA log h, [A, C̃]h〉m×m dµ−

∫
RN
〈CA log h, C̃(hA log h)〉m×m dµ

=−
∫
RN

f〈CA log h, [A, C̃] log h〉m×m︸ ︷︷ ︸
2.2.1

−
∫
RN

f〈CA log h, C̃A log h〉m×m︸ ︷︷ ︸
2.2.2

−
∫
RN

f
〈
(CA log h)(A log h), C̃ log h

〉
m︸ ︷︷ ︸

2.2.3

.
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Here (2.2.3) may be summed with (2.3), giving that, together with the symmetric
equivalent,

(1) + (2.3) + (2.2.3) + (2′.3) + (2′.2.3) = −
∫
RN

fA log h ·A(C log h · C̃ log h)

+

∫
RN

f
〈
(CA log h)(A log h), C̃ log h

〉
m

+

∫
RN

f
〈
(C̃A log h)(A log h), C log h

〉
m

=

∫
RN

fC̃j log h [Cj , Ai] log h Ai log h+

∫
RN

fCj log h [C̃j , Ai] log h Ai log h

=

∫
RN

C̃j log h [Cj , Ai]h Ai log h dµ+

∫
RN

Cj log h [C̃j , Ai]h Ai log h dµ

=

∫
RN

f [Cj , Ai]
∗(C̃j log h ·Ai log h)+

∫
RN

f [C̃j , Ai]
∗(Cj log h ·Ai log h)

where the sum is implicit for 1 ≤ i, j ≤ m. All in all, for ∂th+A∗Ah = 0, one can
perform symmetric computations and yield

d
dt

∫
RN

Ch · C̃h
h

dµ = [(2.1) + (2′.1)] + [(2.2.1) + (2′.2.1)] + [(2.2.2) + (2′.2.2)]

+ [(1) + (2.3) + (2.2.3) + (2′.3) + (2′.2.3)]

=−
∫
RN

f〈[C,A∗]A log h, C̃ log h〉m −
∫
RN

f〈[C̃, A∗]A log h,C log h〉m

−
∫
RN

f〈CA log h, [A, C̃] log h〉m×m −
∫
RN

f〈C̃A log h, [A,C] log h〉m×m

− 2

∫
RN

f〈CA log h, C̃A log h〉m×m

+

∫
RN

f [Cj , Ai]
∗(C̃j log h ·Ai log h)+

∫
RN

f [C̃j , Ai]
∗(Cj log h ·Ai log h) .

We can now compute (I)Ak , (II)Ak , (I)Bk , (II)Bk and use commutators' decomposition

(I)Bk =− 2

∫
RN

[Ck, B]h · Ckh
h

dµ

=− 2

∫
RN

Zk+1Ck+1h · Ckh
h

dµ− 2

∫
RN

Rk+1h · Ckh
h

dµ

≤2Λk+1

√∫
RN

|Ck+1h|2

h
dµ

√∫
RN

|Ckh|2

h
dµ

+ 2cR

√√√√ k∑
j=0

∫
RN

|Cjh|2

h
dµ

√∫
RN

|Ckh|2

h
dµ
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where we used that Zk+1(x) · x ≥ Λk+1 |x|2 for all x ∈ RN and enforced condition
(iv) on Rk+1. The mixed term in B gives

(II)Bk =−
∫
RN

Zk+1Ck+1h · Ck+1h

h
dµ−

∫
RN

Rk+1h · Ck+1h

h
dµ

−
∫
RN

Zk+2Ck+2h · Ckh
h

dµ−
∫
RN

Rk+2h · Ckh
h

dµ

≤− λk+1

∫
RN

|Ck+1h|2

h
dµ+ cR

√√√√ k∑
j=0

∫
RN

|Cjh|2

h
dµ

√∫
RN

|Ck+1h|2

h
dµ

+ Λk+2

√∫
RN

|Ck+2h|2

h
dµ

√∫
RN

|Ckh|2

h
dµ

+ cR

√√√√k+1∑
j=0

∫
RN

|Cjh|2

h
dµ

√∫
RN

|Ckh|2

h
dµ

again thanks to bounds on Zk+1. All terms we have gained for the moment are
positive and we wish to estimate them via the only negative one. Let us now work
on A, by �rst focusing on the last term appearing in (I)Ak and (II)Ak . By enforcing
condition (ii) on [Ck, A]∗ and (i) on [Ck, A],

∫
RN

f [Ck, A]∗·(Ck log h⊗A log h)

≤c2
∫
RN

f |Ck log h⊗A log h|+ c2

∫
RN

f |A(Ck log h⊗A log h)|

≤c2
∫
RN

f |Ck log h⊗A log h|+ c2

∫
RN

f
∣∣A2 log h Ck log h

∣∣
+ c2

∫
RN

f |CkA log h A log h|+ c2

∫
RN

f |[A,Ck] log h A log h|

≤c2
∫
RN

f |Ck log h⊗A log h|+ c2

∫
RN

f
∣∣A2 log h Ck log h

∣∣
+ c2

∫
RN

f |CkA log h A log h|+ c1c2

∫
RN

f |A log h|2
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thanks to which

(I)Ak ≤− 2

∫
RN

f〈[Ck, A∗]A log h,Ck log h〉m

− 2

∫
RN

f〈CkA log h, [A,Ck] log h〉m×m

− 2

∫
RN

f |CkA log h|2m×m

+ 2c2

∫
RN

f |Ck log h⊗A log h|+ 2c2

∫
RN

f
∣∣A2 log h Ck log h

∣∣
+ 2c2

∫
RN

f |CkA log h A log h|+ 2c1c2

∫
RN

f |A log h|2

≤− 2

∫
RN

f |CkA log h|2

+ 2c3

√∫
RN

f |Ck log h|2
√√√√ k∑
j=−1

∫
RN

f |CjA log h|2

+ 2(c1 + c2)

√∫
RN

f |CkA log h|2
√∫

RN
f |A log h|2

+ 2c2

√∫
RN

f |Ck log h|2
√∫

RN
f |A log h|2

+ 2c2

√∫
RN

f |Ck log h|2
√∫

RN
f |A2 log h|2

+ 2c1c2

∫
RN

f |A log h|2

by enforcing conditions (i) and (iii) and compactly denoting I = C−1. Similarly,
without repeating analogous calculations, one obtains that

(II)Ak ≤ 2

√∫
RN

f |CkA log h|2
√∫

RN
f |Ck+1A log h|2

+ c3

√∫
RN

f |Ck log h|2
√√√√ k+1∑
j=−1

∫
RN

f |Cj log h|2

+ c3

√∫
RN

f |Ck+1 log h|2
√√√√ k∑
j=−1

∫
RN

f |Cj log h|2
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+ c1

√∫
RN

f |A log h|2
(√∫

RN
f |CkA log h|2 +

√∫
RN

f |Ck+1A log h|2
)

+ c2

√∫
RN

f |A log h|2
(√∫

RN
f |Ck log h|2 +

√∫
RN

f |Ck+1 log h|2
)

+ c2

√∫
RN

f |A2 log h|2
(√∫

RN
f |Ck log h|2 +

√∫
RN

f |Ck+1 log h|2
)

+ c2

√∫
RN

f |A log h|2
(√∫

RN
f |CkA log h|2 +

√∫
RN

f |Ck+1A log h|2
)

+ c1c2

∫
RN
|A log h|2 .

This enormous amount of positive terms we have collected should not frighten,
since they shall all be dominated in the end; indeed for the sake of brevity we shall
no more write the whole right hand side of (2.1), which shall contain as the only
negative terms

−2bkλk+1

∫
RN

f |Ck+1 log h|2 and − 2ak

∫
RN

f |CkA log h|2 .

Here we are always supposing 0 ≤ k ≤ K − 1, the case of k = K is even easier and
should be treated separately. Our strategy will be the following: we will regroup
all positive terms in two groups: Group 2 will be made by terms appearing from
the estimate of

2

∫
RN

f [Ck, A]∗·(Ck log h⊗A log h)

+

∫
RN

f [Ck, A]∗·(Ck+1 log h⊗A log h) +

∫
RN

f [Ck+1, A]∗ · (Ck log h⊗A log h)

while Group 1 is the remainder. We shall �rst focus on Group 1 aiming to prove
Group 2 to be negligible with respect to the former: since via Cauchy-Schwarz we
have managed to yield everywhere a multiplication times a√∫

RN
f |Cj log h|2 or a

√∫
RN

f |CjA log h|2 ,

we shall perform Young inequalities on each single term in Group 1, so that we
earn a

εaj

∫
RN

f |CjA log h|2 or a εbj−1

∫
RN

f |Cj log h|2

in order to, eventually, compare the sum with

(2.2) ε

( K∑
j=0

(
aj

∫
RN

f |CjA log h|2 + bj

∫
RN

f |Cj+1 log h|2
)

+

∫
RN

f |A log h|2
)

for ε small enough that cancellation with negative terms occurs. Clearly, as a
price we shall have the second terms given by Young inequality with conjugated
coe�cient as an expression of aj and bj : for instance, in the fourth line of (II)Ak
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we shall estimate

bkc1

√∫
RN

f |A log h|2
√∫

RN
f |CkA log h|2

≤ εak
∫
RN

f |CkA log h|2 +
b2k
ak

c21
4ε

∫
RN

f |A log h|2 .

Since we may suppose ε to be �xed, we shall try to have the product of aj and
bj small enough for the second term to be negligible with respect to the �rst one.
Indeed we have already de�ned the quadratic form with aj and bj depending on a
parameter δ > 0, and we will ask

b2k
ak
∈ oδ→0(ak) ≡ b2k

ak
≤δ ak .

Clearly it will be a δ(ε), which will make sure that for �xed ε we will have yielded
a bound by

εak

(∫
RN

f |CkA log h|2 + oδ(1)

)

which collected among the whole of Group 1 yields an amount of requirements
on {aj} and {bj} to be analysed in the end. Concerning Group 2, we will only
be concerned with proving they become negligible as δ → 0. We shall aim to
compare each term in Group 2 with a subset of terms in sum (2.2), without ε. Since
comparison will be via Young inequality, we shall compare coe�cient in Group 2
with the square root of the product of target coe�cients in (2.2). For instance, for
the penultimate term in (II)Ak we shall aim to a comparison with

∫
RN f |A log h|2 +

ak+1

∫
RN f |Ck+1A log h|2. To this scope, let us impose

bk ≤δ
√
ak+1

thanks to which

bk

√∫
RN

f |A log h|2
√∫

RN
f |Ck+1A log h|2

≤δ
√
ak+1

√∫
RN

f |A log h|2
√∫

RN
f |Ck+1A log h|2

≤
∫
RN

f |A log h|2 + ak+1

∫
RN

f |Ck+1A log h|2 ,
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which means that, as long some conditions on {aj} and {bj} are enforced, we can
summarize everything as

d
dt

[
Hµ(hµ) +

K∑
k=0

(
ak

∫
RN

|Ckh|2

h
dµ+ 2bk

∫
RN

Ckh · Ck+1h

h
dµ
)]

≤−
∫
RN

|Ah|2

h
dµ−

K∑
k=0

(
2ak

∫
RN

f |CkA log h|2 + bkλk+1

∫
RN

f |Ck+1 log h|2
)

+ (ε+ oδ(1))

·
[ K∑
k=0

(
ak

∫
RN

f |CkA log h|2 + bk

∫
RN

f |Ck+1 log h|2
)

+

∫
RN

|Ah|2

h
dµ

]

.−
∫
RN

|Ah|2

h
dµ−

K∑
k=0

(
ak

∫
RN

f |CkA log h|2 + bk

∫
RN

f |Ck+1 log h|2
)

≤−
∫
RN

f |C0 log h|2 −
K∑
k=1

bk−1

∫
RN

f |Ck log h|2

if ε and δ are small enough, thanks to which the hidden constant is arbitrarily close
to 1. We are now only wish to impose enough conditions to close the inequality
with Hµ + Iµ,M . For this we shall use (v) and (vi) on half of the last term in the
inequality and simply recover Iµ,M , giving

−
∫
RN

f |C0 log h|2 −
K∑
k=1

bk−1

∫
RN

f |Ck log h|2

.− 1

2

K∑
k=0

(
ak

∫
RN

f |Ck log h|2 + 2bk

∫
RN

f Ck log h · Ck+1 log h
)

− 1

2

K∑
k=0

∫
RN

f |Ck log h|2

≤− 1

2

(
Iµ,M (h) + cIµ(h)

)
≤− 1

2

(
Iµ,M (h) + 2cCLSIHµ(h)

)
where the hidden constant only depends on coe�cients {ak} and {bk}.

The only thing we need to have the theorem proved is enforcing conditions on
{ak}Kk=0 and {bk}

K−1
k=0 themselves and proving their compatibility for existence: such

conditions were all derived from asking remainders in Group 1 were δ-negligible with
respect to principal terms, and from asking Group 2 to be δ-negligible with respect
to Group 1. All in all, these conditions are satis�ed if we set

ak := u2k+1 and bk := u2k+2

where {uk}2K+2
k=0 is a sequence of positive numbers satisfying{

uk+1 ≤ δuk
u2
k ≤ δuk−1uk+1 .
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This is done by asking ratios to tend to 0 and setting uk = ηmk , thus transforming
the previous conditions into{

mk+1 −mk > 0

2mk − (mk+1 −mk−1) > 0

which ful�l our requirements for η → 0, since the sequence is �nite. In order to
prove the existence of mk, it su�ces to notice that one may choose m0 = 0, m1 = 1
and increments such that 0 < mk+1 − mk < mk − mk−1. This completes the
proof. �

2.2. Application to kinetic Fokker-Planck equation. Let us see how the two
previous Theorems apply to our Fokker-Planck setting. We shall consider the formal
equation

∂th+ v · ∇xh−∇xU(x) · ∇vh = ∆vh− v · ∇vh ,

on the Hilbert space L2(e−U(x)− |v|
2

2 ). We wish to apply Theorem 2; here it is easy
to prove that KerL is made by constant functions (either by integrating Lh against
h or by reminding that KerL = KerA ∩KerB) so that

K⊥ =

{
h :

∫
Rdx×Rdv

hdµ = 0

}
.

Here and in the following, we shall not write the domain of integrals whenever it is
meant to be Rdx × Rdv. Also, C = [A,B] = ∇x, so that H1 = H1( dµ) restricted to
zero-mean functions. Concerning hypotheses of the theorem to be veri�ed,

• A = ∇v and A∗ = −∇v · +v· commute with C, since they only interact
with the v variable; also, easily Ai = ∂vi commutes with Aj .

• [A,A∗] = I : Hm → Hm, therefore 1-bounded with respect to I and A
• [B,C] = ∇2

xU(x) · ∇v should be bounded with respect to ∇v, ∇2
v, ∇x,

∇2
xv in L2(µ). Indeed, it is enough if D2

xU(x)· is bounded by I and ∇x
in L2

x(e−U(x)dx). In other words, we wish
∣∣D2U

∣∣ · to be bounded from
H1(e−U ) to L2(e−U ).

For this to happen, it is enough to ask for

(2.3)
∣∣D2U

∣∣ ≤ c(1 + |∇U |) ,

which roughly corresponds to exponential growth at most. To prove
that (2.3) implies our desired boundedness, let us prove the same for |∇U |2

instead of
∣∣D2U

∣∣2, which implies our claim by (2.3): pick g smooth and
fast-decaying enough and, by reminding that

(∆U)2 ≤
d∑
j=1

(∂2
jjU)2 +

1

2

∑
i 6=j

[(∂2
iiU)2 + (∂2

jjU)2] ≤ d
∣∣D2U

∣∣2
≤ 2dc2(1 + |∇U |2) ,
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write ‖g∇U‖2L2(e−U ) and by integrating by parts twice∫
Rd
|∇U |2 g2e−U =

∫
Rd
∇ · (g2∇U)e−U

=

∫
Rd
g2∆Ue−U + 2

∫
Rd
g∇g · ∇Ue−U

≤
√

2dc

√∫
Rd
g2e−U

√∫
Rd
g2e−U +

∫
Rd
|∇U |2 g2e−U

+ 2

√∫
Rd
|∇U |2 g2e−U

√∫
Rd
|∇g|2 e−U

≤1

2

∫
Rd
|∇U |2 g2e−U + (

√
2dc+ 2dc2)

∫
Rd
g2e−U

+ 4

∫
Rd
|∇g|2 e−U

by arguing by Cauchy-Schwarz and Young inequality multiple times. This
is enough to prove the claim

• Proving that A∗A+C∗C is coercive on K⊥ amounts to proving that for all
h ∈ H1∫ (

|∇xh|2 + |∇vh|2
)
dµ ≥ C

[∫
h2 dµ−

(∫
hdµ

)2
]
,

that is, Poincaré inequality for µ. Since Poincaré is satis�ed by the Gauss-
ian, this requirement is equivalent to Poincaré inequality for e−U(x).

Su�cient conditions for Poincaré inequality are a classical exercise: for
instance,

|∇U(x)|2

2
−∆U(x) −−−−→

|x|→∞
∞

is taken from Appendix A.19 in [9]. Let us provide a rough outline of
its proof: start from that Poincaré holds on bounded sets, then deal by
integration by parts with the gradient to yield an estimate of L2

(
(|∇U |2 /2−

∆U)µ
)
in terms of Ḣ1(µ), and use it outside the ball.

According to this criterion, all measures behaving at in�nity like e−|x|
α

,
with α > 1, satisfy a Poincaré inequality. We are then asking for our
potential to grow at least linearly (indeed e−|x| satis�es Poincaré inequality
as well) and at most exponentially.

In order to conclude, we only need to produce a S space, dense and such that
A : S → Sm and B : S → S are continuous. This is easy if U ∈ C∞; if U ∈ C2

only, we approximate with Vε and pass things to the limit. Let us summarize in
the following, corresponding to Proposition 35 in [9].

Proposition 4 (H1 hypocoercivity for Fokker-Planck). Let U ∈ C2(Rd), satisfying
a Poincaré inequality and such that for some CU > 0∣∣D2U(x)

∣∣ ≤ CU (1 + |∇U(x)|) , x ∈ Rd .
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Then there exist C and λ > 0 such that for every h0 ∈ H1(µ)∥∥∥∥ht − ∫ h0 dµ

∥∥∥∥
H1(µ)

≤ Ce−λt ‖h0‖H1(µ) .

The proof of Theorem 3 could be carried out for this particular case, improving
explicit estimates on constants.

For less regular initial data, the following hypoellipticity result will be useful. It
corresponds to Theorem A.8 in Appendix A.21 in [9], completely devoted to regu-
larization results. We shall here present its proof by expanding some computations
and by slightly changing its presentation.

Proposition 5. Suppose that U ∈ C2 satis�es∣∣D2U
∣∣ ≤ CU (1 + |∇U |) .

Then there exists C > 0, which only depends on d and CU , such that for all h0 ∈
L2(µ)

‖ht‖Ḣ1,3
x,v(µ) ≤

C

t3/2
‖h0‖L2(µ) , 0 < t < 1 .

Proof. First, we shall establish a di�erential inequality on ‖ht‖2Ḣ1,3
x,v

. To see this, by
writing the generator of the semigroup of ht, in the sense that ∂tht + Lht = 0,

L := v · ∇x −∇xU · ∇v −∆v + v · ∇v ,

one can start investigating d

dt ‖ht‖
2
Ḣ1
x(µ) by adding the term L∇x and studying

commutation of L with ∇xh

1

2

d
dt
|∇xh|2 +∇xh · L∇xh = ∇xh · (∂t + L)∇xh = ∇xh · (−∇xL+ L∇x)h

= ∇xh ·D2
xU · ∇vh .

By integrating against µ we recover d

dt ‖ht‖
2
Ḣ1
x(µ) as the �rst term, while the second

one gives∫
L∇xh · ∇xh dµ =−

∫
∆v∇xh · ∇xh dµ+

∫
v ·DvDxh · ∇xhdµ

=−
∫

∆v∇xh · ∇xhdµ+

∫
∇v · (DvDxh∇xh) dµ

=

∫
|DxDvh|2 dµ

since it is easy to prove that transport and spatial con�nement terms cancel each
other, giving
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1

2

d
dt
‖h‖2

Ḣ1
x(µ)

+

∫ ∣∣D2
xvh
∣∣2 dµ =

∫
∇vh(D2

xU)∇xhdµ

=−
∫
hD2

xU ·D2
xvh dµ+

∫
hvD2

xU∇xhdµ

≤
∫ ∣∣D2

xU
∣∣2 h2 dµ+

1

4

∫ ∣∣D2
xvh
∣∣2 dµ

+
( ∫ ∣∣D2

xU
∣∣2 h2 dµ

) 1
2
(∫

|v|2 |∇xh|2 dµ

) 1
2

≤ C

(∫
h2 dµ+

∫
|∇xh|2 dµ

)
+

1

4

∫ ∣∣D2
xvh
∣∣2 dµ

+ C2

(∫
h2 dµ+

∫
|∇xh|2 dµ

)
+

1

4

∫
|∇xh|2 dµ+

1

4

∫ ∣∣D2
xvh
∣∣2 dµ

where we used that (∇v)∗ = −∇v ·+v· : H1(µ)→ L2(µ) and C-boundedness in
H1 of |v|2 and |∇xU |2 operators. On the other hand, for D3

vh let us deal with each
∂3
vivjvk

h singularly by relabelling it as ∂3
v

1

2

d
dt

∣∣∂3
vh
∣∣2+ ∂3

vhL∂
3
vh = ∂3

vh(−∂3
vL+ L∂3

v)h

= ∂3
vh
(
− ∂3

v(v ·∇xh) + v ·∇x∂3
vh− ∂3

v(v · ∇vh) + v · ∂3
v∇vh

)
= −∂3

vh(∂3
xvvh+ ∂3

vxvh+ ∂3
vvxh)− 3(∂3

vh)2

where, for instance, ∂3
xvvh stays for ∂3

xivjvk
h. The second term on the left hand

side, when integrated in dµ, gives

∫
∂3
vhL∂

3
vhdµ =

∫
∂3
vh(−∆v∂

3
vh+ v · ∇v∂3

vh) dµ =

∫
∂3
vh(∇v)∗(∇v∂3

vh)dµ

=

∫ ∣∣∇v∂3
vh
∣∣2 dµ .

When summing over i, j, k, by commuting derivation order in the mixed term,

1

2

d
dt
‖h‖2Ḣ3

v(µ) +

∫ ∣∣D4
vh
∣∣2 dµ+ 3

∫ ∣∣D3
vh
∣∣2 dµ = −3

∫
D3
vh ·D3

vvxhdµ

=3

∫
∆vD

2
vh ·D2

vxh dµ− 3

∫
vD3

vhD
2
vxhdµ

≤1

4

∫ ∣∣D4
vh
∣∣2 dµ+ 9

∫ ∣∣D2
vxh
∣∣2 dµ

+
1

4

∫ ∣∣D3
vh
∣∣2 dµ+

1

4

∫ ∣∣D4
vh
∣∣2 dµ+ 9C

∫ ∣∣D2
xvh
∣∣2 dµ
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that we can summarize, times a constant ε, together with the previous as

1

2

d
dt

∫ (
|∇xh|2 + ε

∣∣D3
vh
∣∣2 ) dµ

≤(C + C2)

∫
h2 dµ+

(
C + C2 +

1

4

)∫
|∇xh|2 dµ

+

(
− 1

2
+ 9ε(C + 1)

)∫ ∣∣D2
xvh
∣∣2 dµ− ε11

4

∫ ∣∣D3
vh
∣∣2 dµ− ε

2

∫ ∣∣D4
vh
∣∣2 dµ .

Let us now analyse the evolution of the mixed derivative ∇xh · ∇vh, for which we
will only add the 0-average term L(∇xh·∇vh) without multiplying as we did before:

(∂t + L)∇xh · ∇vh = − |∇xh|2 +∇vhD2
xU∇vh− 2D2

xvh ·D2
vh−∇xh · ∇vh

where the four terms on the right hand side originate respectively from each of the
terms in L. After integration we have

d
dt

∫
∇xh · ∇vh dµ =−

∫
|∇xh|2 dµ−

∫
hD2

xU ·D2
vh dµ+

∫
h vD2

xU∇vhdµ

− 2

∫
D2
xvh ·D2

vhdµ−
∫
∇xh · ∇vh dµ

≤−
∫
|∇xh|2 dµ+ Cδ

(∫
h2 dµ+

∫
|∇xh|2 dµ

)
+
C + 1

2δ

∫
|∇vh|2 dµ+

C

2δ

∫ ∣∣D2
vh
∣∣2 dµ

+

∫ ∣∣D2
xvh
∣∣2 dµ+

∫ ∣∣D2
vh
∣∣2 dµ

+
1

4

∫
|∇xh|2 dµ+

∫
|∇vh|2 dµ ,

for all δ > 0. By picking it small enough and losing track of all constants, we can
summarize it into

d
dt

∫
∇xh · ∇vh dµ .−

∫
|∇xh|2 dµ+

∫
h2 dµ+

∫
|∇vh|2 dµ

+

∫ ∣∣D2
vh
∣∣2 dµ+

∫ ∣∣D2
xvh
∣∣2 dµ .

Now, by linearity and L2-nonexpansivess of the Fokker-Planck semigroup, we can
suppose that ‖ht‖L2(µ) ≤ 1 for all t ≥ 0. We may then estimate the last term in
the last inequality with∫

h2 dµ+

∫
|∇vh|2 dµ+

∫ ∣∣D2
vh
∣∣2 dµ . 1 +

(∫ ∣∣D3
vh
∣∣2 dµ) 1

3

+

(∫ ∣∣D3
vh
∣∣2 dµ) 2

3

.
∫ ∣∣D3

vh
∣∣2 dµ ,

summarize the previous di�erential inequality into

d
dt

∫ (
|∇xh|2 + ε

∣∣D3
vh
∣∣2 ) dµ

.−
(∫ ∣∣D2

xvh
∣∣2 dµ+

∫ ∣∣D4
vh
∣∣2 dµ)+ 1 +

(∫
|∇xh|2 dµ+ ε

∫ ∣∣D3
vh
∣∣2 dµ)
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and thanks to∫ ∣∣D3
vh
∣∣2 dµ . (∫ |∇xh|2 dµ+

∫ ∣∣D4
vh
∣∣2 dµ+

∫ ∣∣D2
xvh
∣∣2 dµ) 3

4

,

together with∣∣∣∣∫ ∇xh · ∇vhdµ∣∣∣∣ . (∫ |∇xh|2 dµ+ ε

∫ ∣∣D3
vh
∣∣2 dµ) 2

3

.

Now we are done by combining the last four di�erential inequalities thanks to
Lemma A.26 in [9]: this is simply a calculus result, whose proof is not straight-
forward and will not be presented here. It involves functions (0, 1] → R and we
will use the common symbols . a and � with the meaning that the ratio of two
functions is bounded from above and both from above and from below, respectively.
This general result considers E , X, Y , Z,M functions (0, 1]→ R, and we ask for

E � X + Y ,

|M| . E1−δ ,

dE
dt
. −Z + E ,

Y . (X + Z)1−θ ,

dM
dt
. −X + Y + Z

where δ, θ are �xed constants in (0, 1), which turn out to imply that

E . t−max
(

1
δ ,

1
θ−1
)
.

In our case one may prove that we need to set

E(t) =

∫
|∇xht|2 dµ+ ε

∫ ∣∣D3
vht
∣∣2 dµ ,

X(t) =

∫
|∇xht|2 dµ ,

Y (t) =

∫ ∣∣D3
vht
∣∣2 dµ ,

Z(t) =

∫ ∣∣D4
vht
∣∣2 dµ+

∫ ∣∣D2
xvht

∣∣2 dµ ,
M(t) =

∫
∇xht · ∇vht dµ

while δ = 1
3 and θ = 1

4 provide the rate of convergence t−3 in the squared inequality,
which is the claim. �

Thus convergence still holds even if we start from a L2(µ) initial data: in-
deed, by Proposition 5 it su�ces to regularize until any positive time ε, and then
apply H1(µ) convergence. However this is too strong as an assumption, since
h ∈ L2(µ) means Theorem applies to the natural equation for initial data f0 sat-

isfying
∫
f2

0 e
U(x)+

|v|2
2 dx dv < ∞. This is rather strong as a decay assumption, so

we look forward to convergence with milder initial assumptions.
Actually we will give up on Sobolev regularization, and take the entropy way,

allowing for strong assumptions � essential quadraticness � on the potential U : the
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following is Theorem 39 in [9], of which it is nice to provide an outline of two
possible ways of proof.

Proposition 6. • Take U ∈ C2(Rd), with
∣∣D2U

∣∣ bounded
• Suppose µ satis�es a Logarithmic Sobolev Inequality
• Let f0 be a probability measure on Rdx × Rdv with �nite second moment:∫

Rdx×Rdv
f0(x, v)

(
|x|2 + |v|2

)
dx dv <∞ .

Call, as usual, ft the evolution of f0 under the Fokker-Planck natural equation

∂tf + v · ∇xf −∇xU(x) · ∇vf =
σ2

2
∆vf + γ∇v · (vf) ,

Then hypocoercivity holds in the weaker entropy sense: upon calling, as usual,

ht(x, v) =
ft(x, v)

µ(x, v)
+ ft(x, v)e

2γ

σ2

(
U(x)+

|v|2
2

)
,

we have that there exist positive constants C and λ, which depend from f0, such
that ∫

Rdx×Rdv
ht log ht dµ+

∫
Rdx×Rdv

|∇ht|2

ht
dµ ≤ Ce−λt .

Proof. The goal is just regularizing f0 until we get �nite H and I; then we will be
able to apply Theorem 3 with the usual K = 1, A = ∇v, B concerning transport
and con�nement term, and we will write

[A,B] = ∇x + 0

and
[C1, B] = 0−∇2

xU · ∇v·
that is, with the notation of Theorem 3, Z1 = Z2 = I, C1 = ∇x R1 = 0 and
R2 = −∇2

xU · ∇v. Concerning pointwise bounds to prove, all commutators are
zero, except for [A,A∗] = I, therefore pointwise bounded with respect to I and
{Cj}j . Just, in order to prove R2 bounded with respect to A, our assumption
makes sure that |R2(x, v)| =

∣∣D2U(x)
∣∣ ≤ C . 1 = |A(x, v)|. Last, pointwise

coercivity is equivalent to Poincaré inequality for µ, which is implied by LSI.
There are two routes to prove �niteness in �nite time of H and I: in Route 1 we

use �rst Sobolev regularization to yield for t→ 0∫ (
|∇xft|2 + |∇vft|2

)
dx dv = O(t−γ)

for some γ > 0. By Nash inequality (Lemma A.25 in [9]) we may bound the homo-
geneous Sobolev norm with a power of L2 norm (recall that L1 norm is conserved).
Since

∫
f log f ≤

∫
f2, we have that, for small t,

∫
ft log ft = O(t−β). On the other

hand, ∫
ft log(µ−1) .

∫
ft(x, v)

(
|x|2 + |v|2

)
dx dv = O(1 + t)

for small t, by a simple computation. It follows that for all t0 > 0∫
ft0(x, v) log

(
ft0(x, v)

µ(x, v)

)
dx dv <∞ .

Hence, again by entropy regularization, we can deduce that for all t1 > t0 Iµ(ft1) <
∞ as well, and we can apply Theorem 3.
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Next, in Route 2 we shall suppose U ∈ C∞ and
∣∣∇jU ∣∣ ≤ Cj for all j ≥ 2, and

f0 having bounded moments of all orders. This � in particular, bounds on all
derivatives of the potential� gives that instantaneously ft ∈ Hk,l

x,v for all k, l positive.
Since it may be proved that ∫

|∇f |2

f
. ‖f‖Hsk

for k and s large enough, we have
∫ |∇ft|2

ft
<∞ for all t > 0.

On the other hand, since

Iµ(f) =

∫
|∇f |2

f
+∇f · ∇E + f |∇E|2

and we can estimate the middle term in a standard way with the other two, we are
left with an estimate for

∫
f |∇E|2. Again, by Lipschitz property of the potential

|∇E| ≤ C
(
|x|+ |v|

)
, so that an estimate on the second moment will su�ce. This

will be done as in the previous case, and we have Iµ(ft) <∞. Logarithmic Sobolev
Inequality gives �niteness of entropy, and we can act as in the previous case.

�

2.3. Kinetic Fokker-Planck equation with a nonlinearity. This Subsection
is meant to give a quick summary of Part III in [9], in particular the outline of
the proof of the main result and its application to self-consistent Vlasov-Fokker-
Planck equation: here we shall consider a variant of the usual kinetic Fokker-Planck
equation, in the following sense:

• The usual space-con�ning potential U is replaced by space periodicity of
the solution, i.e. x ∈ Td;

• An interactive force acts among particles, and it is represented by a small
and smooth potential W .

Let us read it then:

(2.4)


∂tf + v · ∇xf + F [f ] · ∇vf = ∆vf +∇v · (vf)

F [f ](t, x) = −
∫
Rdv

(
∇W (·) ∗x ft(·, v)

)
(x) dv

Well-posedness is as in the linear case: the tool is regularity of coe�cients in the
SDE. Here one may prove that ‖F‖Ck . ‖W‖Ck+1 , so that it is possible to prove
all regularity results as in the linear case.

Also, the Maxwellian M(v) = (2π)−d/2e−
|v|2

2 is a stationary solution of (2.4) as
expected, since x-constant functions lie in KerF .

Proposition 7 (Convergence to equilibrium in Vlasov-Fokker-Planck). Let f0 be
a probability measure on Td × Rd, with∫

Td×Rd
f0(x, v) |v|k dx dv <∞
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for all k ∈ N. Let W ∈ C∞(Td) be even with
∫
TdW = 0, and suppose ‖W‖L∞ <

0.38. Then
‖ft −M‖L2 = O(t−∞) ,

where this is a classical notation meaning that for all α > 0 there exists Cα > 0
independent from t and f0 such that ‖ft −M‖L2 ≤ Cαt−α.

This result is a consequence of a way more general theory, of which we introduce
characters with an outline of assumptions:

• {Xs}s≥0 is a decreasing family of normed spaces (a high s corresponds to
considering very regular functions) such that: X0 has a Hilbert structure
(we will write ‖·‖ = ‖·‖0), Xs2 ↪→ Xs1 if s1 ≤ s2, and they interpolate, in
that ‖·‖(1−θ)s0+θs1

. ‖·‖1−θs0
‖·‖θs1 ;

• We consider the equation

∂tf +Bf = Cf
where B ("conservative") and C ("dissipative") are to be thought as di�er-
ential operators de�ned on convex and bounded (for all s) X ⊂

⋂
sXs; they

allow losses of derivatives, in that they are smooth from large enough s to
smaller s; f is quite smooth, namely f ∈ C1(R+, Xs) ∩ C0([0,+∞), Xs),
and ft ∈ X for all t;

• There exists a stationary state, i.e. a f∞ ∈ X s.t. Bf∞ = Cf∞ = 0;
• We have {Πj}Jj=1 nonlinear projections de�ned on X, ideally nested, pro-
jecting to a set of minimizers of E with some constraints, and shrinking to
f∞: for all j we ask Πj(X) ⊂ Ker C, Πjf∞ = f∞, ΠJ(X) = f∞ and both
Π′j and Π′′j allow losses of derivatives.

• E : X → R will serve as a Lyapounov functional, admitting f∞ as unique
minimizer. Also we ask that projections push us to equilibrium, in the
following sense: for all f ∈ X

E(f∞) ≤ E(Π1f) ≤ E(f) , f ∈ X,
and for all ε ∈ (0, 1)

E(Π1f)− E(f) . −‖f −Π1f‖2+ε

and the convergence to equilibrium along projections is essentially quadratic

‖Π1f − f∞‖2+ε . E(Π1f)− E(f∞) . ‖Π1f − f∞‖2−ε

where constants may depend on ε;
• E is dissipated along C, and coercively so out of Π1's range:

E ′(f) · C(f) . −[E(f)− E(Π1f)]1+ε ,

while it is conserved along B. Also, we ask that the dissipation of Id−Πj

along B and starting from Πjf dominates ‖(Πj −Πj+1)f‖1+ε:∥∥∥(Id−Πj)
′
Πjf · (BΠjf)

∥∥∥ & ‖Πjf −Πj+1f‖1+ε
.

Theorem 8. Under the previous assumptions, for every β > 0,

E(ft)− E(f∞) = O(t−β) .

This implies that for every s ≥ 0 and β > 0

‖ft − f∞‖s = O(t−β) .
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It is easy to see how the second part is implied: we just prove it for s = 0,
then we argue by interpolation and boundedness of solutions for all s. Then for
any ε > 0 (say ε = 1) our conditions on E give in particular that E(f) − E(f∞) &
‖f∞ −Π1f‖2+ε and E(f)− E(f∞) & ‖f −Π1f‖2+ε, so that

‖ft − f∞‖ ≤ ‖f −Π1f‖+ ‖Π1f − f∞‖ . [E(f)− E(f∞)]
1

2+ε

which easily gives the claim. How to prove the �rst statement in Theorem 8?
Unfortunately E itself is not enough Lyapounov, so we also have to consider the
dissipation of ‖Id−Πj‖2 along B:

L(f) := E(f)− E(f∞) +

J∑
j=1

aj〈(Id−Πj)f, (Id−Πj)
′(f) ·Bf〉 .

Actually this is not Lyapounov either, but we will consider time intervals when
E(f)−E(f∞) is bounded from above and below; on this interval we will �x {aj} so
that L is Lyapounov, and after a su�cient decrease we update {aj} to perform the
same trick again. This will give dL

dt ≤ −CL
1+δ, which will provide enough estimate

for E(ft)− E(f∞). In particular a rather technical result states that

Proposition 9. Suppose that for some E > 0

E

2
≤ E(f)− E(f∞) ≤ E ,

and �x ε > 0 small enough. Then there exist choice of the {aj} and a constant K,
both depending on ε, such that

E

4
≤ L(f) ≤ 5

4
E ,

and

L′(f) · (Cf −Bf) ≤ −KaJ−1E
1+ε .

Proof(of Theorem 8 from Proposition 9). Take E > 0 small enough, so that E(f0)−
E(f∞) ≤ E � which is �nite because initial data are in X where E is de�ned � and
let [t0, t0 + T (E)] be the time-interval � which is connected from decreasingness of
E � for which E

2 ≤ E(ft)− E(f∞) ≤ E
Now, since coe�cients in the functional are rather large, comparable to E, we

expect dissipation to be rather negative, comparable to E. Since then we have
upper bounds for the di�erence we expect time-interval to be small, let us prove
that T (E) ≤ CE−λε , for suitable λ: take {aj} from the previous Proposition 9.
Then, according to [9], we may take aJ−1 ≥ K ′Elε, for su�ciently universal K ′

and l. Therefore if t ∈ [t0, t0 + T (E)]

d
dt
L(ft) ≤ −aJ−1KE

1+ε ≤ −K̃E1+ε(l+1) .

Recalling that we are also provided with upper and lower bounds on L,

−E ≤ L(ft0+T (E))− L(ft0) ≤ −K̃E1+ε(l+1) · T (E) ,

which gives the desired estimate

T (E) ≤ CE−ελ.
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Now let us prove that this provides E(ft) − E(f∞) = O(t−
2
ελ ): the argument is

classical. Write Et := E(ft)− E(f∞), then, after T (E0), Et drops below E0/2, and
therefore (by monotonicity) it does after CE−λε0 as well; then, after

m∑
n=0

T (2−nE0) ≤ CE−λε0

(
1− 2λε(m+1)

1− 2λε

)
. E−λε0 2λεm ,

E(ft) − E(f∞) has dropped under E02−m−1. This gives that, if t = C2λεm, Et .
t
−m−1
ελm , which gives O(t−

1+δ
ελ ) for all δ > 0, upon taking m large enough. �

Now let us apply this general result to our Vlasov-Fokker-Planck case: we are go-
ing to follow the proof of Theorem 56 of [9], aiming to yield better-than-polynomial
convergence in Sobolev norms.
�x f0 as in the hypothesis; we want to work in Xs = Hs

x,v

(
(1 + |v|2)s

)
, s ≥ 0: for

integer k they may be de�ned as

‖f‖Xk :=
∑

|l|+|m|≤k

∥∥∇lx∇mv f∥∥L2
x,v((1+|v|2)k)

,

so we wish the solution ft to be t-bounded in this space. To this scope, we will
by start with integer k and argue by interpolation between moments and Sobolev
norms.
Concerning the latter, hypoellipticity techniques give that for all t0 > 0 and k ∈ N,

sup
t≥t0
‖ft‖Hk <∞ ;

concerning the former, let us de�ne the regularized moments

Mk(t) :=

∫
ft(x, v)(1 + |v|2)k/2 dx dv .

Then one may prove that for all k ≥ 1

M ′k ≤ −kMk + CMk−1 +
(
k2 + k(n− 1)

)
Mk−2 ,

where C is a constant arising from the forcing term, and the negative coe�cient k
comes from the divergence term. We can argue by induction on k, since solutions to
f ′ ≤ −af + b are globally bounded; indeed M0 is mass � which is exactly conserved
� and, concerning M1, it is easy to bound negative moments with mass, and we are
done.
We have then that f is bounded in time in all Xk for integer k, and therefore
for s ∈ R by interpolation. Next, we translate in concrete means the previous
formalism: we will take

Bf = v · ∇xf + F [f ]

and
Cf = ∆vf +∇v · (vf) ,

and clearly f∞(x, v) = M(v). Also, we will consider spatial density ρ(t, x) :=∫
Rd f(t, x, v) dv, and choose as projection the homogenization in velocity

Π1f(t, x, v) = ρ(t, x)M(v)

and Π2f(t, x, v) = M(v) = f∞. Our functional will be

E(f) :=

∫
f log f +

1

2

∫
f(x, v) |v|2 dx dv +

1

2

∫
Td×Td

ρ(x)ρ(y)W (x− y) dx dy .
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Let us then check it behaves properly with projections:

E(f)− E(Π1f) =

∫
f log

f

ρM
≥ 1

2
‖f − ρM‖2L1 ≥ Cε ‖f − ρM‖−εHk ‖f − ρM‖

2+ε
L2 ,

where �rst we just performed a computation, then we used Kullback-Pinsker in-
equality and L1-Hk interpolation, for k(ε) large enough. Similarly,

E(Π1f)− E(f∞) =

∫
ρ(x) log ρ(x) dx+

1

2

∫ (
ρ(x)− 1

)(
ρ(y)− 1

)
W (x− y) dx dy

≥ 1

2

(
1− ‖W‖∞

)
‖ρ− 1‖2L1

x
= C ‖ρM −M‖2L1

and then we argue by interpolation by estimating the last term with ‖ρM −M‖2+ε
L2 .

Also, since
∫
W = 0,

E(Π1f)− E(f∞) ≤ ‖ρ− 1‖L2 + C ‖ρ‖2L1

and again we argue by interpolation as before. Notice that we did not introduce our
workspace X. Indeed, we already know that our solution is Xs-bounded in time,
for all s ≥ 0. Also, let us remind that we have a hypoelliptical lower bound on the
solution f . Then ρ as well is bounded from below, uniformly in x, which allows to
choose as workspace, in order to avoid issues with H(f |ρM),

X = {f : ‖f‖s ≤ Cs ∀s, ρ ≥ c > 0} ,

where Cs and c are depending from our equation. Now, this de�nition allows to
easily prove that many of our assumptions are satis�ed, leaving us with dissipation
issues. First, let us compute that, with the L2 di�erential structure, and thanks to
f and ρ being bounded from below,

E ′(f)·h =

∫ (
log f(x, v)+1+

|v|2

2

)
h(x, v) dx dv+

∫
ρ(y)h(x, v)W (x−y)dx dy dv ,

so that, taking f satisfying ∂tf = Cf

d
dt
E(ft) = E ′(f) · Cf = −

∫
f

∣∣∣∣∇v log
( f
M

)∣∣∣∣2 ≤ −2

∫
f log

f

ρM
= E(Π1f)− E(f)

where we used log-Sobolev inequality x-wise and a previous computation. Also, it
is easy to show that E is invariant on the �ow of B, so we are left to show that∥∥∥(Id−Π1)′Π1f

· (BΠ1f)
∥∥∥ ≥ Kε ‖Π1f − f∞‖1+ε.

In fact, notice that Π vanishes on the range of B, and that by linearity Π′ = Π, so
that after some manipulations, and using the lower bound on ρ, we yield∥∥(Id−Π)′Πf · (BΠf)

∥∥2 ≥ C
∫
Tn
ρ

∣∣∣∣∇ρρ +∇(ρ ∗W )

∣∣∣∣2 .

Now, write ∇(ρ ∗W ) = ∇
(
− log(ce−ρ∗W )

)
where c is normalizing. It is very easy

to see that ρ ∗W is bounded from above and below, so that log-Sobolev applies,
and we have∫

ρ

∣∣∣∣∇ρρ +∇(ρ ∗W )

∣∣∣∣2 ≥ K(∫ ρ log ρ+

∫
ρ(ρ ∗W ) + log

∫
e−W∗ρ

)
.
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We estimate the �rst term with Cziszar-Kullback-Pinsker inequality, and the other
two with standard means, and we yield, for δ = ‖W‖∞,∥∥(Id−Π1)′Π1f · (BΠ1f)

∥∥2 ≥ K
(

1

2
− δ − δ2eδ

2

)
‖ρ− 1‖2L1 ,

then integrate times M(v) dv and interpolate with L2 and Hk as before.

Remark. Let us remark that, indeed, we proved that better-than-polynomial con-
vergence holds for L2 and for all Hk

(
(1 + |v|)k

)
. However, by recalling the precise

statement of the Theorem, we yield entropic and therefore L1 convergence as well.
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3. Improvement of quantitative estimates on entropical relaxation

Here we will be studying kinetic Fokker-Planck equation in relation with its
long-time behaviour by mainly following [5]. In addition to the review of the work
and proofs developed in it in a general framework, we shall focus on the proof of
entropical relaxation by particularly emphasizing the case of kinetic Fokker-Planck
equation, providing a sharper proof and a remarkable improvement in the quanti-
tative computation of the relaxation constant with respect to the computation in
[6], both of which things constitute a novelty.

The outline of the Section is as follows: in Subsection 3.1 we shall expose classical
features of Γ-calculus; in Subsection 3.2 we shall show the proof of Theorem 11,
which is the main content of [5] and which provides entropical relaxation in a
very general context; in Subsection 3.3 we shall perform a precise estimate on the
relaxation constant for kinetic Fokker-Planck equation provided in the previous
Subsection.

3.1. Markov semigroups and generalized Γ-calculus. We shall brie�y sketch
some classical concepts on Markov semigroups, a more precise explanation and
further details may be found for instance in [2]. Let (Xt)t≥0 be process on the
probability space (Ω,F ,P) taking values in Rn, such that X0 = x ∈ Rn a.s. and
adapted to the �ltration {Ft}t≥0. By denoting the law of the random variable Xt

by LXt, we shall call (Xt)t a (time-homogeneous) Markov process if, for 0 ≤ s < t,
LXt given Fs may be identi�ed with LXt given Xs and with LXt−s in the following
sense: for all smooth and bounded f ,

E(f(Xt)|Fs) = µt−s(Xs, f) .

Next, given a Markov process (Xt)t, we call Pt its associated Markov semigroup on
Rn, by de�ning for all suitable measurable functions f : Rn → R

Ptf(x) := E[f(Xt)|X0 = x] t ≥ 0 , x ∈ Rn

and de�ne its generator L as

Lf(x) := lim
t→0

Ptf(x)− f(x)

t
x ∈ Rn

as long as f belongs to some D(L), the domain of L.
Suppose that both L and Pt �x a some set A � in that they map A into itself

� and take Φ as a functional de�ned on A+, that is, positive functions of A. Here
we will also need to take the structure of the function space into consideration,
namely we ask A to be included in a Banach space B which in this memoire will
be a natural L2 space whenever not speci�ed. Suppose Φ : A+ → A+ � which we
will call gauge function throughout this essay � is smooth enough and de�ne

ΓL,Φ(f) :=
LΦ(f)− dΦ(f).Lf

2
, f ∈ A+

where dΦ(f).Lf denotes the dual coupling between the di�erential dΦ(f) ∈ A∗ and
Lf ∈ A according to the structure of B.

From the de�nition it follows immediately that Γ is (L,Φ)-bilinear, in that a
linear combination of either a �nite set of generators or a �nite set of gauge functions
transfers to the operator Γ. It is also easy to show that ΓL,Φ(f) ≥ 0 for all f if Φ
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is a positive and convex function R→ R. Indeed for all x

ΓL,Φ(f)(x) =
[∂t|t=0

PtΦ(f)− ∂t|t=0
Φ(Ptf)](x)

2

= lim
t→0

[PtΦ(f)− Φ(f)− (Φ(Ptf)− Φ(f))](x)

2

= lim
t→0

E[Φ(f(Xt))|X0 = x]− Φ(E[f(Xt)|X0 = x])

2
≥ 0

from Jensen inequality.
While dependence from L may be omitted since we will always be studying Γ

operators with respect to some �xed evolution Pt, we shall always write ΓΦ in order
to keep track of the gauge function.

A remarkable case of gauge function is Φ(f) = f2, which has been �rst introduced
by Bakry and Émery in [1] and which makes the functional Γ polarizable into a
two-variable one. In this case the traditional notation reads

Γ := Γ·2

so that what is traditionally called carré du champ

Γ(f, g) =
L(fg)− fLg − gLf

2

measures the defect of Leibniz property of the generator L. We will also write

Γ2 := ΓΓ(·,·) ,

that is,

Γ2(f, g) =
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf)

2
,

where the number 2 referring to an iteration is not to be confused with the aforemen-
tioned square operation ·2. First, let us notice that Γ is insensitive to a�ne pertur-
bations of the functional: for all a, b ∈ R, if Φ(f) = f2 +af +b, dΦ(f).g = 2fg+ag
for all f and g, giving that

Γ·2+a·+b(f) =
L(f2 + af + b)− (2f.Lf + aLf)

2
=
Lf2 + Lb− 2f.Lf

2

and, since by Markov property Lb = 0, we have Γ·2+a·+b(f) = Γ(f, f).
Let us now consider the classical case of L = ∆−∇U ·∇, induced by the Markov

process
dXt = −∇U(Xt)dt+ dBt

where Bt is a n-dimensional Brownian motion, and compute for all f and g

Γ(f, g) =
1

2
[∆(fg)−∇U · ∇(fg)− g∆f + g∇U · ∇f − f∆g− f∇U · ∇g] = ∇f · ∇g

where obtaining the standard Dirichlet form shows the reason of the factor 1
2 mul-

tiplying Γ. Then

Γ2(f, g) =
1

2
[(∆−∇U · ∇)(∇f · ∇g)

−∇f · ∇(∆g −∇U · ∇g)−∇g · ∇(∆f −∇U · ∇f)] .

Since
∇(∇f · ∇g) = D2f∇g +D2g∇f ,
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we have

Γ2(f, g) =
1

2
[∇ · (D2f∇g +D2g∇f)−∇U · (D2f∇g +D2g∇f)

−∇f · (∇∆g −D2U · ∇g −D2g · ∇U)

−∇g · (∇∆f −D2U · ∇f −D2f · ∇U)]

=
1

2
[∇ · (D2f∇g +D2g∇f) + 2∇fD2U∇g −∇f · ∇∆g −∇g · ∇∆f ] .

Also,

∇ · (D2f∇g +D2g∇f) =
1

2

[∑
j

∂j

(∑
i

∂2
ijf∂ig + ∂2

ijg∂if
)]

=
∑
i,j

∂3
ijjf∂ig + ∂2

ijf∂
2
ijg + ∂3

ijjg∂if + ∂2
ijg∂

2
ijf

= ∇∆f · ∇g +∇f · ∇∆g + 2D2f : D2g ,

where : denotes the termwise product of matrices, that is A :B :=
∑n
i,j=1 aijbij .

This means that
Γ2(f, g) = D2f : D2g +∇fD2U∇g .

Let us now expose some general applications of Γ-calculus: indeed for Φ(f) =

|∇f |2 the next result is classically due to Bakry and Émery in [1].

Proposition 10. The pointwise exponential subcommutation

(3.1) Φ(Ptf) ≤ e−2ρtPt[Φ(f)] , t ≥ 0, f ∈ A+

for some ρ ∈ R is equivalent to the curvature condition

(3.2) ΓΦ ≥ ρΦ .

Proof. Indeed consider for �xed t > 0, f ≥ 0 and x ∈ Rn the function

ψt(s) = PsΦ(Pt−sf)(x) , 0 ≤ s ≤ t .

Then, by writing Φ(s, g) = PsΦ(g),

ψ′t(s) =
d

ds
[Φ(s, Pt−sf)(x)] = L[PsΦ(Pt−sf)](x) + dΦ(s, Pt−sf).(−LPt−sf)(x)

= Ps[L(Φ(Pt−sf))− dΦ(Pt−sf).LPt−sf ](x) = 2PsΓΦ(Pt−sf)(x)

from the commutation between L and Ps. Then the curvature condition (3.2)
implies

ψ′t(s) ≥ 2ρPsΦ(Pt−sf) = 2ρψt(s) ,

which integrated in s gives

PtΦ(f)(x) = PtΦ(P0f)(x) = ψt(t) ≥ e2ρtψt(0) = e2ρtP0Φ(Ptf)(x) = e2ρtΦ(Ptf)(x)

which is the subcommutation (3.1). Conversely, if (3.1) holds,

dΦ(f).Lf =
d

dt |t=0

Φ(Ptf) = lim
t→0

Φ(Ptf)− Φ(f)

t
≤ lim
t→0

e−2ρtPtΦ(f)− Φ(f)

t

=
d

dt |t=0

[e−2ρtPtΦ(f)] = −2ρΦ(f) + LΦ(f) ,

that is, ΓΦ ≥ 2ρΦ. �
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In order to get the link with our long-time behaviour problem, suppose Pt admits
an invariant law µ, that is, such that for all f ≥ 0, t ≥ 0∫

Rn
Ptf dµ =

∫
Rn
f dµ

or, equivalently,
∫
Rn Lf dµ = 0 for f ∈ A. Then integrating in space (3.1) gives∫

Rn
Φ(Ptf)dµ ≤ e−2ρt

∫
Rn
Pt[Φ(f)]dµ = e−2ρt

∫
Rn

Φ(f) dµ

which is, upon proper choice of Φ, our goal in this essay.
Also, it is classical that

|∇Ptf | ≤ e−ρtPt |∇f |
for Pt linked with L = ∆ − ∇V · ∇. By Jensen inequality applied to Pt it then
follows that |∇Ptf |2 ≤ e−2ρtPt |∇f | which implies by Proposition 10 that it indeed
holds Γ|∇·|2 ≥ ρ |∇·|

2.
These last facts should highlight the interest of establishing inequalities as the

curvature condition.
Next, let us see a criterion to establish inequalities as (3.2): consider Φ1 and Φ2

gauge functions and γ : R+ → R+ integrable. Suppose that

(3.3) ΓΦ1(Ptf) ≤ γ(t)PtΦ2(f)

for all f ≥ 0 and t ≥ 0. Suppose also that Pt is ergodic, that is, it admits a unique
invariant law µ and

Ptf(x) −−−→
t→∞

∫
Rn
f dµ

for all f and for all x ∈ Rn. Then∫
Rn

Φ1(f) dµ− Φ1

(∫
Rn
f dµ

)
≤ 2

(∫ ∞
0

γ(s)ds

)∫
Rn

Φ2(f) dµ

for all f ≥ 0.
To prove this �x una tantum x ∈ Rn, de�ne as before ψt(s) = Ps[Φ1(Pt−sf)](x)

and compute

PtΦ1(f)(x)− Φ1(Ptf)(x) = PtΦ1(P0f)(x)− P0[Φ1(Ptf)](x) = ψt(t)− ψt(0)

=

∫ t

0

ψ′t(s)ds = 2

∫ t

0

PsΓΦ(Pt−sf)(x) ds

≤ 2

∫ t

0

Ps[γ(t− s)Pt−sΦ2(f)](x) ds

= 2
( ∫ t

0

γ(s) ds

)
PtΦ2(f)(x)

since Ps is sign-preserving. By letting t→∞, the left hand side gives

PtΦ1(f)(x)− Φ1(Ptf)(x) −−−→
t→∞

∫
Rn

Φ1(f) dµ− Φ1

(∫
Rn
f dµ

)
,

where the last term is to be meant as Φ1 applied to the constant function
∫
Rn f dµ.

In the same fashion,

PtΦ1(f)(x) −−−→
t→∞

∫
Rn

Φ1(f) dµ
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giving thus our claim.
Notice that (3.3) is interesting in itself before time integration gives space glob-

alization: for instance the Laplacian L = ∆ satis�es of course Γ2 ≥ 0, giving that
0-curvature condition holds, for Φ = Γ. Since

Γ∆(f) = |∇f |2 ,

Γ2 ≥ 0 is equivalent by Proposition 10 to

|∇Ptf |2 ≤ Pt |∇f |2 .

This condition is (3.3) with γ(t) = 1, Φ1(f) = f2 � that is, ΓΦ1
(f) = Γ(f) = |∇f |2

� and Φ2(f) = Γ(f). Then for all t > 0

Pt(f
2)− (Ptf)2 ≤ 2tPt(|∇f |2) .

Since in this case γ(t) = t /∈ L1(R+), this information is not useful for large
time. However for small t it provides a version of Poincaré inequality, where the
integration is given by the conditional expectation of the Markov semigroup Pt.

This application with Γ2 suggests to apply the result in the following Γ2 setting:
suppose that, in addition to ergodicity of Pt,

(3.4) ΓΓΦ1
≥ ρΓΦ1

with ρ > 0. Then we know this is equivalent to

ΓΦ1
(Ptf) ≤ e−2ρtPt[ΓΦ1

(f)] .

which is (3.3), with Φ2 = ΓΦ1 and γ(t) = e−2ρt. Then∫
Rn

Φ1(f) dµ−Φ1

(∫
Rn
f dµ

)
≤ 2

∫ ∞
0

e−2ρs ds
∫
Rn

ΓΦ1(f) dµ =
1

ρ

∫
Rn

ΓΦ1(f)dµ .

Let us highlight its character of necessarity for the generalized Γ2 condition: take
the semigroup

Lf(x) = Bx · ∇f(x) +∇ · (D∇f)(x)

where B is the linear drift �eld and D is the constant, positive semide�nite di�usion
matrix. Then

Γ(f) =
L(f2)− 2fLf

2
=
∇ · (D∇(f2))− 2f∇ · (D∇f)

2
= ∇ · (fD∇f)− f∇ · (D∇f) = ∇fD∇f ,

where the drift does not appear since it is a simple derivation. Then, if D admits a
nontrivial kernel � as it is the case for kinetic Fokker-Planck equation � there may
not be a positive Γ2 curvature, even without computing the Γ2 functional. Indeed,
if (3.4) held for some ρ > 0 and Φ1(f) = f2, we would have also the modi�ed
Poincaré inequality∫

Rn
f2 dµ−

(∫
Rn
f dµ

)2

≤ 1

ρ

∫
Rn

Γ(f)dµ =
1

ρ

∫
Rn
∇fD∇f dµ

for all f ≥ 0. However this is not possible by just considering f not µ-a.e. constant
such that ∇f(x) ∈ kerD for all x � for instance pick ψ : R→ R+ smooth, w ∈ kerD
and consider x 7→ ψ(x ·w). Thus the left hand side is positive while the right hand
side is null.

Let us now introduce di�usion semigroups by de�ning them as Pt generated by
an operator L such that the following change of variable formulas hold:
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(i) For all f and all ψ ∈ C∞c
L(ψ(f)) = ψ′(f)Lf + ψ′′(f)Γ(f, f)

(ii) For all f and g and all ψ ∈ C∞c
Γ(ψ(f), g) = ψ′(f)Γ(f, g)

While this de�nition may look too abstract, the most common kind of generators
� namely second order derivative operators � satisfy the di�usion property: �x

L =

n∑
i,j=1

aij(x)∂2
ij +

n∑
j=1

bj(x)∂j

with aij = aji and bj smooth coe�cients. The constant coe�cient is imposed to be
null in order to keep the Markov property

L1 = 0 .

In this case

Γ(f, g) =
L(fg)− fLg − gLf

2

=
1

2

[ n∑
i,j=1

aij∂2
ij(fg)−faij∂2

ijg −gaij∂2
ijf +

n∑
j=1

bj∂j(fg)−bjf∂jg −bjg∂jf
]

=

n∑
i,j=1

aij∂if∂jg .

Then, if ψ ∈ C∞c , for all smooth f and g

Γ(ψ(f), g) =

n∑
i,j=1

aij∂i(ψ(f))∂jg =

n∑
i,j=1

aijψ′(f)∂i∂jg = ψ′(f)Γ(f, g)

proving thus that (ii) holds, while concerning (i)

L[ψ(f)] =

n∑
i,j=1

aij∂2
ij [ψ(f)] +

n∑
j=1

bj∂j [ψ(f)]

=

n∑
i,j=1

aij∂i[ψ
′(f)∂jf ] +

n∑
j=1

bjψ′(f)∂jf

=

n∑
i,j=1

aij [ψ′′(f)∂if∂jf + ψ′(f)∂2
ijf ] +

n∑
j=1

bjψ′(f)∂jf

= ψ′′(f)Γ(f) + ψ′(f)Lf

from the previous computation of Γ.
Back to general di�usion generators L, it is possible to establish a link between

Γa(·), for convex a : R→ R, and Γ. Since

d[a](f).g = lim
h→0

a(f + hg)− a(f)

h
= a′(f)g ,

we have that

(3.5) Γa(f) =
L[a(f)]− d[a](f).Lf

2
=
L[a(f)]− a′(f)Lf

2
=
a′′(f)

2
Γ(f) .
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More generally, if Φ and a are given, we can apply (i) to the function Φ(f) and
yield

Γa(Φ(·))(f) =
L[a(Φ(f))]− d[a(Φ)]f.Lf

2
=
L[a(Φ(f))]− a′(Φ(f))dΦf.Lf

2

=
a′(Φ(f))LΦ(f) + a′′(Φ(f))Γ(Φ(f))− a′(Φ(f))dΦf.Lf

2

=
a′′(Φ(f))

2
Γ(Φ(f)) + a′(Φ(f))ΓΦ(f) .(3.6)

since d[a(Φ)] = a′(Φ)dΦ through the previous simple reasoning. Setting Φ(f) = f
gives (3.5), since Γid = 0.

For instance, suppose that Φ satis�es the curvature condition ΓΦ ≥ ρΦ and that
Φ ≥ 0. Then, for p > 1, (3.6) gives

ΓΦpf =
p(p− 1)

2
Φp−2(f)Γ(Φ(f)) + pΦp−1(f)ΓΦ(f) ≥ pΦp−1(f)ΓΦ(f) ≥ pρΦp(f)

since ΓΦ ≥ 0. It follows that, as long as Pt is a di�usion semigroup,

Φp(Ptf) ≤ e−2pρtPt[Φ
p(f)] ,

that is, Φp satis�es the curvature condition with constant pρ. This is not new but
is consistent with

Φ(Ptf) ≤ e−2ρtPt[Φ(f)] ≤ e−2ρt[Pt(Φ
p(f))]1/p

which just comes from Proposition 10 and from Jensen inequality applied to the
Markov semigroup Pt.

If L =
∑d
j=1A

2
j +B where Aj = aj · ∇ and B = b · ∇

ΓL = ΓB +

d∑
j=1

ΓA2
j

=

d∑
j=1

ΓA2
j

since B is a derivation, and

ΓA2
j
f =

A2
j (f

2)

2
− f A2

jf =
aj · ∇(aj · ∇f2)

2
− f aj · ∇(aj · ∇f)

= aj · ∇(faj · ∇f)− f aj · ∇(aj · ∇f = (aj · ∇f)2 = (Ajf)2

so that
ΓLf = |Af |2 = AT f Af .

3.2. A general result of convergence for second-order equations. Let a :
R+ → R be a non-strictly convex function and let ν ∈ Pac(Rn). Then for all
nonnegative f : Rn → R+ we may de�ne the a-entropy with respect to ν as

Eaν (f) :=

∫
Rn
a(f)dν − a

(∫
Rn
f dν

)
which is of course nonnegative by Jensen inequality. In the following we will suppose
that

• a ∈ C4(R+)
• a′′ > 0
• (1/a′′)′′ ≤ 0 .
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Notice that this does not rule out neither the logarithmic entropy, for which a(x) =
x log x and 1/a′′(x) = x, nor the quadratic case of a(x) = x2, where 1/a′′ = 1/2.
Indeed it is easy to prove that a(x) = xα is admissible for α ≥ 2.

With these two main examples of gauge function in mind, we are in the position
to state the main result of the essay, which is also general in L and corresponds
to Theorem 10 of [5]. It will be easy to restrict to the kinetic Fokker-Planck case,
and we shall indeed prove a rather technical part in our particular case only. This
result will be subsequently used to provide a quantitatively better estimate in the
convergence rate.

Theorem 11. Let L =
∑r
j=1A

2
j + B and suppose there exists C0 : A → Ap such

that, upon writing

[B,Ci] = Zi+1Ci+1 +Ri+1

for some operator 0 < λ ≤ Zi ≤ Λ and some remainder Ri, one can set, for some
I ≥ 1,

CI+1 = 0

such that for all i and j

(i) [Aj , Ci] = 0

and in such a way that

(ii) CT0 C0 ≤ m1A
TA ,

for all i ≥ 1

(iii) RTi Ri ≤ m2

i−1∑
j=0

CTj Cj

and

(iv)
I∑
i=0

CTi Ci ≥ ρ

which is as usual to be meant as
∑d
i=1

∑d
k=1(ci,k(x)∂kf(x))2 ≥ ρ |∇f(x)|2 for all

f and all x. Suppose also that there exists a probability measure µ invariant under
Pt such that the following inequality is satis�ed, which should remind of logarithmic
Sobolev inequality:

(v) Eaµ(f) ≤ 1

K

∫
Rn
a′′(f) |∇f |2 dµ .

Then there exists C > 0 such that for all f

Eaµ(Ptf) ≤ e−C
∫ t
0

(1−e−s)2I
dsEaµ(f)

Remark 2. Let us compare this result with its very close analogue in Section 1,
that is, Theorem 3: �rst, this one has as a strong point that it actually involves
relative entropy, instead of a sum of it and Fisher information. Also, no geometric
structure of the function space is required, so that there is no need of computing
the adjoint of the operator A.

On the other hand, the convergence constant provided by this last Theorem �
even if sharpened as in Subsection 3.3 � is incredibly small, of the order of 10−7. In
addition to this, the convergence is slightly worse than e−Ct, even though just by a
multiplicative constant. However the most remarkable issue is that condition (i) is
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quite stringent on coe�cients of A: in most cases the only admissible con�guration
is where A has constant coe�cients, which is luckily our case.

Proof. Take εI > 0 to be later chosen, and set εi ∈ (0, εI) and λi > 0 to be later
determined. De�ne

Φ(t)(f) :=

I∑
i=0

λiΦi,(t)(f)

where
Φ0,(t)(f) := a(f) + ε2

0(1− e−t)a′′(f) |C0f |2 ,

while for i ≥ 1

Φi,(t)(f) := εi(1− e−t)2i−1a′′(f)
∣∣(Ci−1 + εi(1− e−t)Ci)f

∣∣2 .

We want to prove monotonicity, for all t > 0, of the function

s 7→ ψt(s) := PsΦ(t−s)(Pt−sf) .

Indeed

ψt(0) =Φ(t)Ptf = a(Ptf) + a′′(Ptf)
[
ε2

0(1− e−t) |C0Ptf |2

+
∑
i≥1

λiεi(1− e−t)2i−1
∣∣(Ci−1 + εi(1− e−t)Ci)Ptf

∣∣2 ]
and

ψt(t) = PtΦ(0)(f) = Pta(f) .

Since

ψ′t(s) = Ps[(LΦ(t−s) − dΦ(t−s).L− ∂τΦ(t−s))(Pt−sf)]

= Ps[(2ΓΦ(t−s) − ∂τΦ(t−s))(Pt−sf)] ,

in order to prove that ψ′t(s) ≥ 0 it will be enough to show that, for all r ≥ 0
and all function g, [2ΓΦ(r)

− ∂τΦ(r)](g) ≥ 0 and argue by sign-preservation of the
semigroup. Indeed

[2ΓΦ(r)
− ∂τΦ(r)](g) =

I∑
i=0

λi(2ΓΦi,(r) − ∂τΦi,(r))(g)

≥a′′(g)

I∑
i=0

−b1λi
( i−1∑
j=0

(1−e−r)2j |Cjg|2
)

+ b2λiε
2
i (1−e−r)2i |Cig|2− b3λiε4

i (1−e−r)2i+2 |Ci+1g|2

=a′′(g)

I∑
i=0

|Cig|2 (1− e−r)2i
[
− b1

( I∑
j=i+1

λj

)
+ b2λiε

2
i − b3λi−1ε

4
i−1

]

thanks to Lemma 12 below, where we have set λ−1ε
4
−1 = 0; as already stated,

even if we are studying a general time r and function g, one may think them as
t and Ptf respectively. We want to bound the last term from below. Let us set
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λ0 = 1, λi = εαi−1λi−1 and εi−1 = εβi with α > 0, β > 1 to be determined. Then, if
εαI ≤ 1/2, with the crude estimate εαk ≤ εαI ≤ 1/2, for all j ≥ i+ 1

λj = λi+1

j−1∏
k=i+1

εαk ≤ λi+12−j+i+1 = λiε
α
i 2−j+i+1

so that the term we are interested in gives

(3.7) −b1
( I∑
j=i+1

λj

)
+ b2λiε

2
i − b3λi−1ε

4
i−1 ≥ λiε2

i (−2b1ε
α−2
i + b2 − b3εβ(4−α)−2

i )

and we want this expression to be positive for all εi su�ciently small. Then the
choices 2 < α < 4 and β > 2/(4 − α), together with b2 > 0, yield the existence of
some ε∗ ∈ (0, 1) and c = c(α, β, ε∗) > 0 such that if all εi ∈ (0, ε∗)

(3.8) [2ΓΦ(r)
− ∂τΦ(r)](g) ≥ ca′′(g)

I∑
i=0

|Cig|2 (1− e−r)2iλiε
2
i ,

for a suitable value of εI .
Our goal is turning (3.8) into a Gronwall inequality. This is motivated by the

identity ∫
Rn

[2ΓΦ(t)
− ∂tΦ(t)](Ptf) dµ =−

∫
Rn

[dΦ(t).L+ ∂tΦ(t)](Ptf)dµ

=− ∂t
∫
Rn

[Φ(t)(Ptf)] dµ

since µ being an invariant measure gives
∫
Rn Lg dµ = 0 for all g. In order to close

the inequality let us integrate (3.8) with a crude bound on time∫
Rn

[2ΓΦ(t)
− ∂tΦ(t)](Ptf) dµ ≥ c

∫
Rn
a′′(Ptf)

I∑
i=0

|CiPtf |2 (1− e−t)2iλiε
2
i dµ

≥ cλIε2
I(1− e−t)2I

∫
Rn
a′′(Ptf)

I∑
i=0

|CiPtf |2 dµ

where, in order to keep track of constants, we have used λi+1ε
2
i+1 = λiε

2
i ε
α−2
i ε2

i+1 <

λiε
2
i since α > 2 and εk < 1. Now for all δ ∈ (0, 1) let us use δ times hypothesis

(iv) to have∫
Rn

[2ΓΦ(t)
− ∂tΦ(t)](Ptf) dµ

≥ cλIε2
I(1− e−t)2I

∫
Rn
a′′(Ptf)

[
(1− δ)

I∑
i=0

|CiPtf |2 + δρ |∇Ptf |2
]
dµ .

On the Fisher-like term use (v), while for the �rst term use the bound

η

I∑
i=0

|ci|2 ≥ (1− e−t)ε2
0 |c0|

2
+

I∑
i=1

εi(1− e−t)2i−1
∣∣ci−1 + (1− e−t)εici

∣∣2
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for some η = η(β) > 0 as shown in the following, predictable, Lemma 14, so that

(1− δ)
∫
Rn
a′′(Ptf)

I∑
i=0

|CiPtf |2 dµ

≥ 1− δ
η

∫
Rn
a′′(Ptf)

[
ε2

0(1− e−t) |C0Ptf |2

+
∑
i≥1

εi(1− e−t)2i−1
∣∣(Ci−1 + εi(1− e−t)Ci)Ptf

∣∣2 ] dµ .
Then∫

Rn
[2ΓΦ(t)

− ∂tΦ(t)](Ptf) dµ ≥ cλIε2
I(1− e−t)2I

[
δρKEaµ(Ptf)

+
1− δ
η

∫
Rn
a′′(Ptf)

(
ε2

0 |C0Ptf |2

+
∑
i≥1

εi(1− e−t)2i−1
∣∣(Ci−1 + (1− e−t)εiCi)Ptf

∣∣2 ) dµ] .
Now, since λi ≤ λ0 = 1 for all i,∫

Rn
[2ΓΦ(t)

− ∂tΦ(t)](Ptf) dµ

≥ cλIε2
I(1− e−t)2I min

(
δρK,

1− δ
η

)[∫
Rn

Φ(t)(Ptf) dµ− a
(∫

Rn
Ptf dµ

)]

where the minimum, thanks to an optimization in δ, will be taken as the optimal
value ρK

ρKη+1 .
Now we only need a term as a(

∫
Rn Ptf dµ) in

∫
Rn Φ(t)(Ptf) dµ, but notice that

we can indeed change the functional into∫
Rn

Φ(t)(Ptf) dµ− a
(∫

Rn
Ptf dµ

)
=: H(t)

since ∂ta(
∫
Rn Ptf dµ) = 0 by invariance of µ. Therefore, by letting C =

cλIε
2
IρK

1+ρKη ,
we have obtained

−H ′(t) ≥ C(1− e−t)2IH(t) , t ≥ 0

which means
H(t) ≤ H(0)e−C

∫ t
0

(1−e−s)2I
ds , t ≥ 0 .

It now su�ces to notice that

H(t) =

∫
Rn

(
a(Ptf) + ε2

0(1− e−t)a′′(Ptf) |C0Ptf |2

+

I∑
i=1

λiεi(1− e−t)2i−1a′′(Ptf)
∣∣(Ci−1 + εi(1− e−t)Ci)(Ptf)

∣∣2 ) dµ
− a
(∫

Rn
Ptf dµ

)
≥Eaµ(Ptf)
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and

H(0) = Eaµ(f)

to conclude. �

Remark 3 (A short-time e�ect). Let us focus on

[2ΓΦ(r)
− ∂τΦ(r)](g) ≥ 0

which gave, in the beginning of the proof of Theorem 11, that ψ′t(s) ≥ 0 for all
s ≥ 0. In particular from ψt(t) ≥ ψt(0) we get that, for all x,

Pt(a(f))(x)− a(Ptf)(x) ≥ a′′(Ptf)
[
ε2

0(1− e−t) |C0Ptf |2

+
∑
i≥1

λiεi(1− e−t)2i−1
∣∣(Ci−1 + εi(1− e−t)Ci)Ptf

∣∣2 ] ,
where we have omitted dependence on x in the right hand side. Let now t > 0; in
the quadratic form in Ci on the right hand side all coe�cients of |Ci|2 are multiplied
by (1−e−t)2i+1 and mixed terms by (1−e−t)2i, so that the right hand side is indeed
(1− e−t) times a positive de�nite quadratic form of (1− e−t)iCi:

(3.9) Pt(a(f))(x)− a(Ptf)(x) ≥ η3 a
′′(Ptf)(1− e−t)

I∑
i=0

(1− e−t)2i |CiPtf |2 .

where η3 is linked to the quadratic form in a similar fashion of Lemma 14 and does
not depend on time.

To get the regularizing meaning of this last part, take the Poincaré setting, with
a(f) = f2: for t→∞ we expect, from Ptf(x)→

∫
Rn f dµ for all x, that CiPtf → 0,

so that the inequality is not stronger than
∫
Rn f

2 dµ −
(∫

Rn f dµ

)2

≥ 0, that is

the well-known Cauchy-Schwarz inequality. On the other hand the statement for
small t becomes

I∑
i=0

t2i |CiPtf |2 ≤ C
Pt(f

2)− (Ptf)2

t

and since of course the semigroup maps L2 into L2, the left-hand side is �nite,
giving H1 regularization.

The following result is crucial for Theorem 11 itself, but it shall be presented
separately since it is rather technical. Also, part of the proof will be focused on the
particular case of kinetic Fokker-Planck we have in exam.

Lemma 12. Consider Φi,(t), 0 ≤ i ≤ I as de�ned in the proof of Theorem 11,
supposing all hypotheses on L are satis�ed. Then there exist b1, b2, b3 > 0 and
ε∗ ∈ (0, 1) such that, for all εi ∈ (0, ε∗) for 0 ≤ i ≤ I

(2ΓΦi − ∂tΦi,(t))(f) ≥ a′′(f)
[
− b1

( i−1∑
j=0

(1− e−t)2j |Cjf |2
)

+ b2ε
2
i (1− e−t)2i |Cif |2 − b3ε4

i (1− e−t)2i+2 |Ci+1f |2
]
.
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Proof. For i = 0 we want to prove

(2ΓΦ0
− ∂tΦ0,(t))(f) ≥ a′′(f)

[
b2ε

2
0 |C0f |2 − b3ε4

0(1− e−t)2 |C1f |2
]
.

By linearity
ΓΦ0

= Γa(·) + ε2
0(1− e−t)Γa′′(·)|C0·|2 ;

For the �rst term we use di�usion property

2Γa(·)f = a′′(f)Γf = a′′(f) |Af |2 ≥ a′′(f)
|C0f |2

m1
,

while for the second Γ operator we shall use the following Lemma 13 to estimate

Γa′′(·)|C0·|2f ≥ a
′′(f)[L,C0]f · C0f .

Also, from [Aj , C0] = 0 it also easily follows [A2
j , C0] = 0, so that

[L,C0] = [B,C0] = Z1C1 +R1 .

Last, for time-derivative, clearly

−∂tΦ0,(t) = −ε2
0e
−ta′′ |C0|2 .

Then

2ΓΦ0
− ∂tΦ0,(t)

a′′
≥ |C0|2

m1
+ 2ε2

0(1− e−t)C0 · (Z1C1 +R1)− ε2
0e
−t |C0|2

Now Young inequality, with a parameter δ to be soon determined, gives

2C0 · ε2
0(1− e−t)(Z1C1 +R1) ≥ −2 |C0| · ε2

0(1− e−t)(|Z1C1|+ |R1|)

≥ −|C0|2

δ
− δε4

0(1− e−t)2(|Z1C1|2 + |R1|2)

≥ −|C0|2

c
− δε4

0(1− e−t)2(Λ2 |C1|2 +m2 |C0|2)

where we also used initial hypotheses on Z1 and R1. Now let δ = 2m1 so that

2ΓΦ0,(t)
− ∂tΦ0,(t)

a′′
≥ |C0|2

(
1

2m1
− 2m1m2ε

4
0(1− e−t)2 − ε2

0e
−t
)

− 2m1Λ2ε4
0(1− e−t)2 |C1|2

≥ |C0|2
(

1

2m1
− 2m1m2ε

4
0 − ε2

0

)
− 2Λ2m1ε

4
0(1− e−t)2 |C1|2

and we are done if we force ε0, via ε∗, to be small enough. In particular it is easy
to show that we need

ε2
0 <

√
1 + 4m2 − 1

4m1m2
.

Now let i ≥ 1. By reminding that

Φi,(t)(f) = εi(1− e−t)2i−1a′′(f)
∣∣(Ci−1 + εi(1− e−t)Ci)f

∣∣2 ,

we can use Lemma 13 with C = Ci−1+εi(1−e−t)Ci and b(f) = εi(1−e−t)2i−1a′′(f).
Again [L,Ci] = [B,Ci] from hypothesis (i) gives

ΓΦi,(t) ≥εi(1− e
−t)2i−1a′′(Ci−1 + εi(1− e−t)Ci) · [L,Ci−1 + εi(1− e−t)Ci]

=εi(1− e−t)2i−1a′′(Ci−1 + εi(1− e−t)Ci)
· (ZiCi +Ri + εi(1− e−t)(Zi+1Ci+1 +Ri+1))
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while

−∂tΦi,(t) =− εia′′
[
(2i− 1)e−t(1− e−t)2i−2

∣∣Ci−1 + εi(1− e−t)Ci
∣∣2

+ (1− e−t)2i−12εie
−tCi(Ci−1 + εi(1− e−t)Ci)

]
so that

2ΓΦi,(t) − ∂tΦi,(t) ≥εia
′′(1− e−t)2i−2(Ci−1 + εi(1− e−t)Ci)

·
(

2(1− e−t)
(
ZiCi +Ri + εi(1− e−t)(Zi+1Ci+1 +Ri+1)

)
− (2i− 1)e−t(Ci−1 + εi(1− e−t)Ci)− 2(1− e−t)εie−tCi

)
.

From now on let us restrict ourselves to the kinetic Fokker-Planck case, as described
in Subsection 3.3, where i = I = 1. We want to prove that

(2ΓΦ1
− ∂tΦ1,(t))(f) ≥ a′′(f)

[
− b1 |C0f |2 + b2ε

2
1(1− e−t)2 |C1f |2

]
.

Kinetic Fokker-Planck amounts, as computed in Subsection 3.3, to R1 = γ∇v =
γC0 and |R2| =

∣∣D2
xU · ∇v

∣∣ ≤ c |C0| for some c = CU > 0 , so, just by applying
these identities and expanding the product,

2ΓΦ1,(t)
− ∂tΦ1,(t)

a′′
≥ε1

(
C0 + ε1(1− e−t)C1

)
·
(

2
(
1− e−t

)(
C1 + γC0 + ε1(1− e−t)R2

)
− e−t

(
C0 + ε1(1− e−t)C1

)
− 2(1− e−t)ε1e

−tC1

)
=ε1

(
C0 + ε1(1− e−t)C1

)
·
((

2γ(1− e−t)− e−t
)
C0 + 2ε1(1− e−t)2R2

+ (1− e−t)(2− 3ε1e
−t)C1

)
=ε1

(
2γ(1− e−t)− e−t

)
|C0|2 + ε2

1(1− e−t)2(2− 3ε1e
−t) |C1|2

+ ε1(1− e−t)
(
(2− 3ε1e

−t)+ ε1

(
2γ(1− e−t)− e−t)

)
C0 · C1

+ 2ε2
1(1− e−t)2R2

(
C0 + ε1(1− e−t)C1

)
≥ε1

(
2γ(1− e−t)− e−t − 2cε1(1− e−t)2

)
|C0|2

+ ε2
1(1− e−t)2(2− 3ε1e

−t) |C1|2

− ε1(1− e−t)
(

(2− 3ε1e
−t)

+ ε1

∣∣2γ(1− e−t)− e−t
∣∣+ 2cε2

1(1− e−t)2
)
|C0| |C1| .

We can already see that the coe�cient of |C1|2 has already the desired order, so
we have to perform Young estimates on the mixed term in such a way that the
current arrangement with orders is not perturbated. Of the three terms composing
|C0| |C1|, the �rst one reads

−ε1(1− e−t)(2− 3ε1e
−t) |C0| |C1| ≥ −

1

2
ε1(1− e−t) |C0| |C1|

≥ −1

2
|C0|2 −

1

8
ε2

1(1− e−t)2 |C1|2
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since εi ≤ 1
2 , say. Concerning the second one,

−ε2
1(1− e−t)

∣∣2γ(1− e−t)− e−t
∣∣ |C0| |C1| ≥ −cγε2

1(1− e−t) |C0| |C1|

≥ −c2γ |C0|2 −
1

4
ε4

1(1− e−t)2 |C1|2

where

cγ = sup
t>0

∣∣2γ(1− e−t)− e−t
∣∣ = max{1, 2γ} =

{
1 if γ < 1

2

2γ if γ ≥ 1
2

while the third term gives

−2cε3
1(1− e−t)3 |C0| |C1| ≥ −ε4

1(1− e−t)2 |C1|2 − c2ε2
1(1− e−t)4 |C0|2

so that summing everything up we have

2ΓΦ1,(t)
− ∂tΦ1,(t)

a′′

≥
(

2ε1γ(1− e−t)− ε1e
−t − 2cε2

1(1− e−t)2 − 1

2
− c2γ − c2ε2

1(1− e−t)4

)
|C0|2

+ ε2
1(1− e−t)2

(
2− 3ε1e

−t − 1

8
− ε2

1

4

)
|C1|2

and, by using εi ≤ 1/2,

2− 3ε1e
−t − 1

8
− ε2

1

4
≥ 2− 3ε1 −

1

8
− ε2

1

4
≥ 5

16
.

On the other hand the coe�cient of |C0|2 is clearly bounded from below, namely
by

−ε1 − 2cε2
1 −

1

2
− c2γ − c2ε2

1 ≥ −1− c

2
− c2γ −

c2

4
.

This concludes the proof for the particular case of kinetic Fokker-Planck. �

Remark 4. For i = 0 we reported the proof in [5] for the sake of showing analogies
with other indexes, but it was enough to notice that Γa′′(·)|C0·|2 ≥ 0 to conclude,
instead of using Lemma 13.

Let us again focus on the case of I = 1, and keep supposing that R1 = γC0 and
|R2| ≤ CU |C0|. Then we may choose

b1 = 1 +
CU
2

+
C2
U

4
+ c2γ

since it only appears in the computations of ΓΦ1 , and b3 = 0 thanks to Remark
4. This last fact gives that we can widen our conditions on α and β to α > 2 and
β ≥ 1. Concerning b2, we should take into consideration 1

2m1
− 2m1m2ε

4
0 − ε2

0 and
5
16 . In order to bound the �rst expression away from 0 pick

ε∗ ≤ min

{
c1,m

2
,

1

2

}
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where c1,m :=
√√

1+4m2−1
4m1m2

is the positive root of 1
2m1
− 2m1m2ε

4
0 − ε2

0 = 0. Thus,
from ε0 ≤ ε∗,

1

2m1
− 2m1m2ε

4
0 − ε2

0 ≥
1

2m1
− m1m2

8

(√
1 + 4m2 − 1

4m1m2

)2

−
√

1 + 4m2 − 1

16m1m2

=
1

2m1
+

3− 2m2 − 3
√

1 + 4m2

64m1m2

=
3 + 30m2 − 3

√
1 + 4m2

64m1m2
=: c2,m .

We can then set b2 = min{c2,m, 5
16}. Notice as well that, from the proof of Theorem

11, we need ε∗ to be small enough that for some c

−2b1ε
α−2
i + b2 − b3εβ(4−α)−2

i ≥ c

as long that εi ≤ ε∗. In particular we shall choose

ε∗ ≤
(
b2
4b1

) 1
α−2

for some λ to be chosen later, so that

−2b1ε
α−2
1 + b2 − b3εβ(4−α)−2

1 = −2b1ε
α−2
1 + b2 ≥ −2b1ε

α−2
∗ + b2 =

b2
2

=: c

and we may choose

ε∗ = min

{
c1,m

2
,

1

2
,

(
b2
4b1

) 1
α−2
}
.

Further choices will be made in Subsection 3.3 for our speci�c case.
In view of the proof of Lemma 12 we need the following result, which will be

stated with a general function b instead of a′′.

Lemma 13. Let L be the generator of any di�usion semigroup, and let b : R+ → R+

be a positive, C2 function such that 1
b is concave. Let also C be a linear operator

on a space of smooth functions A to some Ap. Then for all f

Γb(·)|C·|2f ≥ b(f)Cf · [L,C]f .

Proof. Fix f and write

L(b(f) |Cf |2) = |Cf |2 L(b(f)) + L(|Cf |2)b(f) + 2Γ(b(f), |Cf |2)

and by di�usion property (i)

L(b(f)) = b′(f) Lf + b′′(f) Γf

so that

L(b(f) |Cf |2) = |Cf |2 b′(f) Lf + |Cf |2 b′′(f) Γf +L(|Cf |2)b(f) + 2Γ(b(f), |Cf |2) .

Also

d(|C|2 b)(f)Lf = Lf
[
d(|C|2)(f) b(f) + |Cf |2 b′(f)

]
,
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so that

Γb(·)|C·|2f =
1

2

[
|Cf |2 b′′(f) Γf + L(|Cf |2)b(f) + 2Γ(b(f), |Cf |2)

− Lfd(|C|2)(f) b(f)
]

=
1

2
|Cf |2 b′′(f) Γf + b(f)Γ|C·|2f + Γ(b(f), |Cf |2) .

Concerning the last term, let us apply di�usion property (ii) and

Γ(b(f), |Cf |2) = b′(f)2Cf · Γ(Cf, f) .

For the second one let us compute

Γ|C|2f =
L(Cf · Cf)− d |C|2 (f)(Lf)

2
=
L(Cf · Cf)− 2Cf · CLf

2
= Γ(Cf)− Cf · CLf + Cf · LCf = Γ(Cf) + Cf · [L,C]f .

Now let us write, since (1/b)′′ ≤ 0,

b′′ =

(
1

1/b

)′′
= − (1/b)′′

(1/b)2
+ 2

((1/b)′)2

(1/b)3
≥ 2

((1/b)′)2

(1/b)3

so that, reminding that Γf ≥ 0,

Γb(·)|C·|2f ≥
((1/b)′)2

(1/b)3
|Cf |2 Γf + b(f)[Γ(Cf) + Cf · [L,C]f ] + 2b′(f)Cf · Γ(Cf, f)

=
((1/b)′)2

(1/b)3
|Cf |2 Γf + b(f)[Γ(Cf) + Cf · [L,C]f ]

− 2
(1/b)′

(1/b)2
(f)Cf · Γ(Cf, f) .

Now we want to apply Cauchy-Schwarz inequality to Γ(Cf, f) in order to get rid
of the last term thanks to the �rst two ones. Indeed

−2
(1/b)′

(1/b)2
(f)Cf · Γ(Cf, f) ≥ −2

|(1/b)′|
(1/b)2

(f) |Cf | |Γ(Cf, f)|

≥ −2
|(1/b)′|
(1/b)2

(f) |Cf |
√

Γ(Cf)Γf

≥ − ((1/b)′)2

(1/b)3
(f) |Cf |2 Γf − b(f)Γ(Cf)

so that thanks to Young inequality in the last passage we have the initial claim. �

Remark 5. Notice that the inequality is rather sharp in the usual cases of logarith-
mic entropy and L2 since, except for classical arithmetical estimates, we only used
(1/a′′)′′ ≤ 0. Indeed in these two cases 1/(a′′(x)) is respectively equal to x and 1/2.

Lemma 14. There exists η = ηI(β) > 0, independent from t, such that for all
ci ∈ Rd, 0 ≤ i ≤ I,

(1− e−t)ε2
0 |c0|

2
+

I∑
i=1

εi(1− e−t)2i−1
∣∣ci−1 + (1− e−t)εici

∣∣2 ≤ η(1− e−t)
I∑
i=0

|ci|2
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Proof.

(1− e−t)ε2
0 |c0|

2
+

I∑
i=1

εi(1− e−t)2i−1
∣∣ci−1 + (1− e−t)εici

∣∣2
≤(1− e−t)ε2

0 |c0|
2

+ 2

I∑
i=1

(1− e−t)2i−1
(
εi |ci−1|2 + (1− e−t)2ε3

i |ci|
2 )

=(1− e−t)(ε2
0 + 2ε1) |c0|2

+ 2

I−1∑
i=1

(1− e−t)2i+1(ε3
i + εi+1) |ci|2 + 2(1− e−t)2I+1ε3

I |cI |
2

≤(1− e−t)
[
(ε2

0 + 2ε1) |c0|2 + 2

I−1∑
i=1

(ε3
i + εi+1) |ci|2 + 2ε3

I |cI |
2
]

where the formula also holds, with no sum, for I = 1. We want to �nd the largest
coe�cient in it, so start by supposing that I ≥ 2. Concerning terms in the sum
notice that, since εi−1 = εβi < εi where β ≥ 1, ε3

i−1 + εi < ε3
i + εi+1. Also, clearly

ε3
I < εI < ε3

I−1 + εI . Last let us compare coe�cients of |c0|2 and |c1|2. For this
suppose that β ≥ 2, which does not rule out the standard case α = β = 3. Then,
reminding that εi ≤ 1/2 for all i,

ε2
0 + 2ε1 = ε2β2

2 + 2εβ2 ≤ ε2(2−2β2+1 + 2−β) ≤ ε2(2−7 + 1) < 2ε2 < 2(ε2 + ε3β
2 )

= 2(ε2 + ε3
1)

which implies that we can choose η = 2(εI + ε3β
I ).

However when I = 1 there is no such term in the sum, we end up with

ε2
0 + 2ε1 > 2ε3

1

so that η1 = ε2β
1 + 2ε1. �

Remark 6. Let us explain the choice of the exponential term in Theorem 11: indeed
we could have proved that

Eaµ(Ptf) ≤ e−Cα
∫ t
0

(α(s))2I
dsEaµ(f)

for all α(t) such that α(0) = 0, 0 ≤ α(t) ≤ 1 and |α′(t)| ≤ 1.

3.3. Application to kinetic Fokker-Planck equation. Now let us focus our
concrete case:

Here we take Aj = σ√
2
∂vj and B = −v · ∇x + ∇xU · ∇v − γv · ∇v in order to

reach the ∂t =
∑d
j=1A

2
j +B form. Let us choose

C0 = ∇v

and compute, reminding that U = U(x), the commutator

[B,C0]i = [−v · ∇x + (∇xU − γv) · ∇v, ∂vi ] = [−v · ∇x − γv · ∇v, ∂vi ]
= −v · ∇x∂vi + ∂vi(v · ∇x)− γv · ∇v∂vi + ∂vi(γv · ∇v) = ∂xi + γ∂vi .
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Let us set then C1 = ∇x, Z1 = Id and R1 = γ∇v. Also

[B,C1]i = [−v · ∇x + (∇xU − γv) · ∇v, ∂xi ] = [∇xU · ∇v, ∂xi ]

= ∇xU · ∇v∂xi −
d∑
j=1

∂xi(∂xjU∂vj ) = −
d∑
j=1

∂2
xixjU∂vj

so that we can choose C2 = 0 and R2 = −D2
xU · ∇v with, of course, Z2 = Id.

One can now check hypotheses from Theorem 11 with I = 1, since of course

[Aj , C0] = [∂vj ,∇v] = 0 = [∂vj ,∇x] = [Aj , C1] ,

CT0 C0 = |∇v|2 =
2

σ2
ATA ,

and

CT0 C0 + CT1 C1 = |∇x|2 + |∇v|2 = |∇|2

so that (i), (ii) and (iv) are satis�ed with m1 = 2
σ2 and ρ = 1. Concerning (iii),

RT1 R1 = γ2∇Tv∇v = γ2CT0 C0

and

RT2 R2 = ∇v · [D2
xU ]2 · ∇v .

This last equality tells us that that, unfortunately, in order to have hypothesis (iii)
ful�lled it is strictly necessary to suppose that there exists some CU > 0 such that
for all x ∈ Rd ∣∣∣∣w ·D2

xU(x) · w
∣∣∣∣ ≤ CU |w|2 , w ∈ Rd ,

as in [9]. We can then set m2 := max{γ2, C2
U}.

Next let us focus on conditions on a and µ, included in hypothesis (v): we shall
choose, up to a normalizing constant,

µ = f∞(x, v) = e−
2γ

σ2

(
U(x)+

|v|2
2

)
,

which is clearly invariant under Pt, and a(x) = x log x. Thus

Eaµ(f) =

∫
Rdx×Rdv

f log f dµ−
∫
Rdx×Rdv

f dµ log

(∫
Rdx×Rdv

f dµ

)
, f ∈ A+

but since fµ satis�es a Fokker-Planck equation in divergence form
∫
Rn f dµ is

conserved, so by choosing f ∈ P( dµ) we have Ef log f
µ = Hµ, the Kullback in-

formation with respect to µ. We then want to prove that the product measure

e−
2γ

σ2 U(x) ⊗ e−
2γ

σ2
|v|2

2 satis�es a logarithmic Sobolev inequality. Indeed, it is well-
known that Logarithmic Sobolev Inequality tensorizes and that we just need to �nd
the smallest between the two constants.

Proposition 15. Let νλ be the gaussian measure on Rn with mean 0 and variance
λ2. Then νλ satis�es a logarithmic Sobolev inequality∫

Rn
f log f dνλ ≤

λ2

2

∫
Rn

|∇f |2

f
dνλ

for all f ∈ P(dνλ).
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Proof. Let us deal with n = 1 and then argue by tensorization. By reminding
that the standard gaussian measure satis�es a logarithmic Sobolev inequality with
constant 1, that is, for all f ≥ 0,∫

Rn
f(x) log f(x)e−

|x|2
2 dx−

∫
Rn
f(x)e−

|x|2
2 dx log

(∫
Rn
f(x)e−

|x|2
2 dx

)
≤1

2

∫
Rn

|∇f(x)|2

f(x)
e−
|x|2

2 dx

�x λ > 0 and take f such that

∫
Rn

f(x)e−
|x|2

2λ2

√
2πλ

dx = 1 .

Then∫
Rn
f(x) log f(x)

e−
|x|2

2λ2

√
2πλ

dx =

∫
Rn
f(λy) log f(λy)

e−
|y|2

2

√
2π

dy

≤1

2

∫
Rn

|∇yf(λy)|2

f(λy)

e−
|y|2

2

√
2π

dy +

∫
Rn
f(λy)

e−
|y|2

2

√
2π

dy log

(∫
Rn
f(λy)

e−
|y|2

2

√
2π

dy

)
.

Since ∫
Rn
f(λy)

e−
|y|2

2

√
2π

dy =

∫
Rn
f(y)

e−
|y|2

2λ2

√
2πλ

dy = 1 ,

we have ∫
Rn
f(x) log f(x)

e−
|x|2

2λ2

√
2πλ

dx ≤ 1

2

∫
Rn

|∇yf(λy)|2

f(λy)

e−
|y|2

2

√
2π

dy

=
λ2

2

∫
Rn

|∇λyf(λy)|2

f(λy)

e−
|y|2

2

√
2π

dy

=
λ2

2

∫
Rn

|∇xf(x)|2

f(x)

e−
|x|2

2λ2

√
2πλ

dx .

�

The gaussian e−
2γ

σ2
|v|2

2 = νσ2/2γ satis�es therefore a logarithmic Sobolev inequal-

ity with constant λ2

2 = σ2

4γ , that is,∫
Rdv
f log f dνσ2/2γ ≤

σ2

4γ

∫
Rdv

|∇f |2

f
dνσ2/2γ

for all f ∈ P(dνσ2/2γ). Concerning e−
2γ

σ2 U(x), we wish to apply Bakry-Émery
criterion: we shall therefore suppose that U ∈ C2(Rd) with

w ·D2U(x)w ≥ cU |w|2 , w ∈ Rd ,
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uniformly in x ∈ Rd. This gives that e−
2γ

σ2 U(x) satis�es a logarithmic Sobolev
inequality with constant σ2

4γcU
, so that for all f ∈ P(µ)∫

Rdx×Rdv
f log f dµ ≤max

{
σ2

4γcU
,
σ2

4γ

}∫
Rdx×Rdv

|∇f |2

f
dµ

=
σ2

4γ

1

min{1, cU}

∫
Rdx×Rdv

|∇f |2

f
dµ ,

that is, K = 4γ
σ2 min{1, cU}. The appearance of the absolute constant 1 should not

surprise, since it is linked with the transport term.
We are now able to compute explicitly in this case the constant C of Theorem

11, that is, such that for all f

Eaµ(Ptf) ≤ e−C
∫ t

0
(1− e−s)2 dsEaµ(f) .

Let us recall that, for general I,

C =
cλIε

2
IρK

1 + ρKη
,

and that in this setting

λI = λ1 = εα0λ0 = εαβ1

while η = ε2β
1 + 2ε1 as shown in the proof of Lemma 14. Thus, by relabelling

min{1, cU} with cU ,

C =
4γcε2+αβ

1 cU

σ2 + 4γ(ε2β
1 + 2ε1)cU

.

It is then clear that β should be as small as possible, namely β = 1.
We now only need to �nd c = c(α, β, ε∗, {bi}i) as in the proof of Theorem 11

and ε∗ in order to be done. We have already proved that in this case we may set

c =
b2
2

and

b2 = min

{
5

16
, c2,m

}
= min

{
5

16
,

3 + 30m2 − 3
√

1 + 4m2

64m1m2

}
= min

{
5

16
,
σ2

2

3 + 30m2 − 3
√

1 + 4m2

64m2

}
=: min

{
5

16
,

3σ2

128
c3,m

}
.

It is elementary to prove that 8 < c3,m < 10 for all max{γ2, C2
U} = m2 > 0,

therefore upon picking σ2 ≥ 5
3 we can suppose

b2 =
5

16

and so

c =
5

32
.

Now let us take into consideration the value taken by

ε∗ = min

{
1

2
,
c1,m

2
,

(
b2
4b1

) 1
α−2
}

=: min

{
1

2
, ε(∗,1), ε(∗,2)

}
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by analysing the di�erent items. Since m1 = 2
σ2 ,

ε(∗,1) =
1

4

√√
1 + 4m2 − 1

m1m2
=

σ

4
√

2

√√
1 + 4m2 − 1

m2

and it is easy to notice that 0 <
√√

1+4m2−1
m2

<
√

2 and that it is a decreasing

function of m2 = max{γ2, C2
U}. Last,

ε(∗,2) =

(
b2
4b1

) 1
α−2

=

(
5

64
(
1 + CU

2 +
C2
U

4 + c2γ
)
) 1
α−2

.

Since cγ = max{1, 2γ} ≥ 2γ, we have

CU +
C2
U

4
+ c2γ ≥

m2

4

whence, by reminding that α > 2,

ε(∗,2) ≤
(

5

64
(
1 + m2

4

)) 1
α−2

=: ε̃(∗,2) .

Let us now choose α = 4 � which is an admissible choice because b3 = 0 � and
compare ε(∗,1) and ε̃(∗,2). Then it is elementary to prove that

ε̃(∗,2) ≤ ε(∗,1)

for all choice of m2 > 0 as long as σ2 ≥
√

19−2
3 . Since this last value is clearly

smaller than 5
3 and ε(∗,2) ≤

√
5
64 <

1
2 , we may pick

(3.10)

ε∗ = ε(∗,2) =

√
5

64
(
1 + CU

2 +
C2
U

4 + c2γ
) =

√
5

64
(
1 + CU

2 +
C2
U

4 + max{1, 4γ2}
) .

We have therefore proved the following

Theorem 16. Consider the equation

∂tf + v · ∇xf −∇xU · ∇vf =
σ2

2
∆vf + γ∇v · (vf) , t ≥ 0, (x, v) ∈ Rd × Rd ,

and suppose that σ2 ≥ 5
3 , γ > 0 and U ∈ C2(Rdx) such that

cU ≤ D2
xU(x) ≤ CU , x ∈ Rd ,

where 0 < cU ≤ 1 and CU <∞ are constants which do not depend on x. Then, by
writing ft as the evolution at time t of f0, for all t > 0 and for all f0 ∈ P( dµ)∫

Rdx×Rdv
ft log

( dft
dµ

)
dµ ≤ e−C

∫ t
0

(1−e−s)2
ds

∫
Rdx×Rdv

f0 log
( df0

dµ

)
dµ .

where

(3.11) C =
5γε6
∗cU

8
(
σ2 + 4γ(ε2

∗ + 2ε∗)cU
)

and ε∗ = ε∗(CU , γ) is under the form (3.10).
56



In particular notice that the standard case σ2 = 2, γ = 1 with the quadratic

potential U(x) = |x|2
2 , for which cU = CU = 1, is covered by our assumptions.

Then ε∗ =
√

5
4
√

23
= 0.11656... and C = 5.2491... · 10−7, which is considerably better

than the order 10−46 that is obtained in [6].
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4. Entropic convergence for self-consistent Vlasov-Fokker-Planck

equation by particle method

In this Section we shall provide a result on Wasserstein-2 hypocoercivity result
for a self-interacting system, and we will closely follow [6].
We shall consider the Vlasov-Fokker-Planck equation, namely

(4.1) ∂tft+v ·∇xft =
σ2

2
∆vft+∇v ·

(
γftv+ft

∫
Rdx×Rdv

∇xU(x, y)ft(y, v) dy dv

)
,

where γ, σ > 0, x, v ∈ Rd, ft = ft(x, v) denotes the unknown density of particles at
time t > 0 and f0 ∈ Pac(Rdx×Rdv) is given. Here U : Rdx×Rdy → R is a two-variable
potential modelling external force in the �rst variable x and self-interaction in the
second variable y. If U = U(x) this reduces to kinetic Fokker-Planck equation with
external potential U , by mass conservation from the divergence form. The existence
of an equilibrium measure f∞ may be proved as in Proposition 2 of [3], which relies
on the compactness argument in Proposition 3.1 in [8].
Analogously to it, one can see ft as the law at time t of the stochastic process
(X̄t, V̄t) in Rdx × Rdv where

(4.2)

{
dX̄t = V̄t dt

dV̄t = −γV̄t dt−
( ∫
∇xU(X̄t, y)ft(y, v) dy dv

)
dt+ σ dBt

and (X̄0, V̄0) has law f0. As usual Bt denotes a d-dimensional Brownian motion.
In this Section we will study long-time behaviour of densities ft by approximating
tensorized solutions (X̄, V̄ )⊗N of (4.2) with (X,V ) ∈ R2dN , where for all 1 ≤ i ≤ N
(Xi

t , V
i
t ) ∈ R2d solves

(4.3)

{
dXi

t = V it dt

dV it = −γV it dt− 1
N

∑N
j=1∇xU(Xi

t , X
j
t )dt+ σ dBit ,

where (Xi
0, V

i
0 ) ∈ R2d are independent and identically distributed as f0, and {Bit}i

are N independent d-dimensional Brownian motions. We shall call f (N)
t : R2dN →

R+ the law of (Xt, Vt) such that, as seen in Section 1, f (N)
t satis�es a di�usion

equation, namely

(4.4)

∂tf
(N)
t + v · ∇xf (N)

t − 1

N

N∑
i,j=1

∇xU(xi, xj) · ∇vif
(N)
t =

σ2

2
∆vf

(N)
t + γ∇v · (vf (N)

t )

with f (N)
0 = f⊗N0 . This means that, upon calling UN (x) := 1

N

∑N
i,j=1∇xU(xi, xj) :

RdN → R, the equilibrium of (4.4) is given, up to a constant, by

f (N)
∞ (x, v) = e−

2γ
σ2 (UN (x) + |v|2

2 ) .
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Throughout this Section we will consider potentials

U(x, y) = U(x) +W (x− y) + U(y)

and we will always suppose the following:

(i) U is smooth, and there exists a constant cU > 0 independent from x such that

D2U(x) ≥ cU

in the sense that z ·D2U(x) · z ≥ cU |z|2 for all z ∈ Rd and for all x ∈ Rd, and
there exists a �nite constant CU such that∥∥D2U(x)

∥∥ ≤ CU , x ∈ Rd

for some norm ‖·‖ on Rd×d;
(ii) W is even, smooth and there exists a constant cW ∈ R with

cW <
cU
2

such that

D2W ≥ −cW
and a constant CW such that∥∥D2W (x)

∥∥ ≤ CW , x ∈ Rd .

In this Section one of the main features we will be dealing with is Wasserstein
distance, which has been increasingly used in the last two decades. We shall recall
here main features, for � much � more information one may view, for instance
Chapter 7 in [10] or Chapter 5 in [7]: given µ and ν probability measures on Rn
and 1 ≤ p <∞ de�ne

Wp(µ, ν) := inf

{(∫
Rn×Rn

|x− y|p dγ(x, y)

) 1
p

: γ ∈ P(µ, ν)

}
= inf

{[
E
(
|X − Y |p

)] 1
p

: law(X) = µ , law(Y ) = ν

}
where with P(µ, ν) we denote the set of probability measures on Rnx × Rny whose
marginals on Rnx and Rny are equal to µ and ν respectively. Such probability mea-
sures are generalizations of maps which push forward µ on ν, so that Wp represents
the best transport cost of µ to ν; the second equality is simply a probabilistic
rephrasing. It is trivial to prove that Wp(µ, ν) < ∞ as long as both µ and ν have
�nite p-th moment, and with a bit more work one may prove Wp to be a distance.
Convergence under this distance turns out to be equivalent to weak-* convergence
coupled with convergence of the p-th moment. Simple variational arguments also
show the existence of a minimizer γ̄, or (X̄, V̄ ). We need no other basic tool to
enter the main discussion.

Lemma 17. Let p ∈ [1,+∞). For all µ and ν probability measures on Rn with
�nite p-th moment and all N ≥ 1,

W p
p (µ⊗N , ν⊗N ) = NW p

p (µ, ν) .
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Proof. Clearly by considering a minimizer γ̄ in Wp(µ, ν), we have that γ̄⊗N has
marginals µ⊗N and ν⊗N so that, by writing x = (x1, . . . , xN ) ∈ RnN

W p
p (µ⊗N , ν⊗N ) ≤

∫
RnNx ×RnNy

N∑
i=i

|xi − yi|p dγ̄⊗N (x, y)

= N

∫
Rnx1
×Rny1

|x1 − y1|p dγ̄(x1, y1) = NW p
p (µ, ν) .

Conversely, for all γ(N) ∈ P(µ⊗N , ν⊗N ), by calling γ(N)
i the measure on Rn × Rn

obtained by projecting γ(N) along all but the i-th coordinate, it is clear that γ(N)
i ∈

P(µ, ν) so that∫
RnNx ×RnNy

|x− y|p dγ(N)(x, y) =

N∑
i=1

∫
RnNx ×RnNy

|xi − yi|p dγ(N)(x, y)

=

N∑
i=1

∫
RNxi×R

N
yi

|xi − yi|p dγ(N)
i (xi, yi) ≥ NW p

p (µ, ν)

and the claim follows by just taking the in�mum in γ(N). �

Theorem 18. Suppose that ft solves (4.1) and that the initial data f0 satis�es

M2(f0) :=

∫
Rdx×Rdv

f0(x, v)
(
|x|2+|v|2

)
dx dv <∞ .

Then there exist constants C1 > 0, depending on M2(f0) and parameters of the
equation, and C2, depending only on the parameters of the equation, such that

W 2
2 (ft, f∞) ≤ C1e

−C2t .

Proof. First, by Lemma 17 squared Wasserstein distance tensorizes as a sum, so we
can establish a link between W 2

2

(
ft, f∞) and W 2

2

(
f⊗Nt , f⊗N∞

)
for arbitrary N to be

eventually chosen. Let us then triangulate the latter with the other measures on
R2dN f

(N)
t and f (N)

∞ and

W 2
2 (ft, f∞) =

1

N
W 2

2

(
f⊗Nt , f⊗N∞

)
≤ 1

N

(
W2

(
f⊗Nt , f

(N)
t

)
+W2

(
f

(N)
t , f (N)

∞
)

+W2

(
f (N)
∞ , f⊗N∞

))2

.(4.5)

By focusing, at �rst, on the second term, the equilibrium

f (N)
∞ (x, v) = e−

2γ
σ2 (UN (x) + |v|2

2 )

satis�es a Talagrand inequality: the potential is 2γc
σ2 -convex, where we relabel c :=

min{cU + 2cW , 1} > 0. Then, by Bakry-Émery criterion, it satis�es a Logarithmic
Sobolev Inequality with constant 2γc

σ2 , and therefore it also satis�es a Talagrand
inequality with the same constant � for such and other interesting inequalities see
Chapter 9 in [2]. Therefore

W 2
2

(
f

(N)
t , f (N)

∞
)
≤ σ2

γc
H
f

(N)
∞

(
f

(N)
t

)
.

Since we are now dealing with f (N)
t solution of a Fokker-Planck equation with po-

tential UN , by Theorem 16 the decay of the right hand side is close to exponential,
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with decay constant CN which, by the explicit formula (3.11), is an increasing
function of the convexity cUN of the potential UN . Such increasingness gives that a
growth of the dimension will just improve the convergence, giving a more than sat-
isfactory uniformity as the dimension grows. It then follows from our assumptions
on the potential that all f (N)

t decay with some rate C > 0, giving that

W 2
2

(
f

(N)
t , f (N)

∞
)
≤ σ2

γc
H
f

(N)
∞

(f
(N)
0 )e−Ct(1−e

−t)2

.

We now wish to give a somehow explicit bound to the relative entropy of f (N)
0 ,

that we may factorize into f⊗N0 by the assumption of independence at time 0: by

reminding that f (N)
∞ (x, v) = e

− 2γ

σ2 UN (x,v)

CN
where UN (x, v) = UN (x) + |v|2

2 and CN is
just the renormalizing constant,

H
f

(N)
∞

(f⊗N0 ) =

∫
f⊗N0 log

(f⊗N0

f
(N)
∞

)
=

∫
f⊗N0 log f⊗N0 +

2γ

σ2

∫
f⊗N0 (x, v)[UN (x) +

|v|2

2
] dx dv

+ log(CN )

∫
f⊗N0 .

For brevity we will always write R2dN for RdNx × RdNv . The tensorization of the H
functional gives∫

R2dN

f⊗N0 log f⊗N0 dx dv =

N∑
i=1

∫
R2dN

N∏
j=1

f0(xj , vj) log f0(xi, vi) dx dv

=

N∑
i=1

∫
R2d

f0(xi, vi) log f0(xi, vi) dxi dvi

= N

∫
R2d

f0(x, v) log f0(x, v) dx dv

since f0 has mass 1 on R2d. Next,∫
R2d

f⊗N0 UN

=

∫
R2dN

f0(x1, v1) . . . f0(xN , vN )
[ N∑
i=1

U(xi) +
1

2N

N∑
i,j=1

W (xi − xj)
]
dx dv .

By supposing that U(x) ≤ aU + bU |x|2 and W (x) ≤ aW + bW |x|2,

∫
R2dN

f0(x1, v1) . . . f0(xN , vN )
[ N∑
i=1

U(xi) dx dv
]

= N

∫
R2d

f0(x, v)U(x) dx dv ≤ N
[
aU + bU

∫
R2d

f0(x, v) |x|2 dx dv
]
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and ∫
R2dN

f0(x1, v1) . . . f0(xN , vN )
[ 1

2N

N∑
i,j=1

W (xi − xj)
]
dx dv

≤ 1

2N

∫
R2dN

f0(x1, v1) . . . f0(xN , vN )
[ N∑
i,j=1

aW + bW |xi − xj |2
]
dx dv

≤ N

2
aW +

bW
N

N∑
i,j=1

∫
R2dN

f0(x1, v1) . . . f0(xN , vN )
(
|xi|2 + |xj |2

)
dx dv

=
N

2
aW + 2NbW

∫
R2d

f0(x, v) |x|2 dx dv ,

while clearly ∫
R2dN

f⊗N0 (x, v)
|v|2

2
dx dv =

N

2

∫
R2d

f0(x, v) |v|2 dx dv ,

so that∫
R2dN

f⊗N0 UN

≤ N
[
aU +

aW
2

+(bU +2bW )

∫
R2d

f0(x, v) |x|2 dx dv+
1

2

∫
R2d

f0(x, v) |v|2 dx dv
]
.

Last, let us focus on log(CN ): by our assumptions we may suppose that UN (x) ≥
a+ b |x|2

CN =

∫
R2dN

e−
2γ

σ2 UN (x,v) dx dv =

∫
RdN

e−
2γ

σ2 UN (x) dx
∫
RdN

e−
2γ

σ2
|v|2

2 dv

≤
∫
RdN

e−
2γ

σ2 (a+b|x|2) dx
∫
RdN

e−
2γ

σ2
|v|2

2 dv = e−
2γa

σ2

[
πσ2

2
√
bγ

]dN
giving that

log(CN )

∫
R2dN

f⊗N0 ≤ −2γa

σ2
+Nd log

[ πσ2

2
√
dγ

]
.

All in all,

H
f

(N)
∞

(f⊗N0 ) ≤N
[

2γ

σ2

(
aU +

aW
2

+ (bU + 2bW )

∫
R2d

f0(x, v) |x|2 dx dv

+
1

2

∫
R2d

f0(x, v) |v|2 dx dv

)
+

∫
R2d

f0 log f0 + d

∣∣∣∣ log

(
πσ2

2
√
dγ

)∣∣∣∣]
or, more compactly,

H
f

(N)
∞

(f⊗N0 ) ≤ K(f0)N ,

where K depends on the second moment and the free entropy of f0. Back to our
system, we have yielded that

(4.6) W 2
2 (f

(N)
t , f (N)

∞ ) ≤ σ2

γc
K(f0)Ne−Ct(1−e

−t)

which is enough for the second term in (4.5).
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Concerning the third term, we refer to [4]. By considering t approaching in�nity,
we can deduce that

(4.7) W2(f (N)
∞ , f⊗N∞ ) ≤ K ,

where K depends on f0 and parameters of the equation, but not on N .
We are now left only with the �rst term in (4.5), with which we will deal in the fol-
lowing way: consider ZN (t) = (Xt, Vt) and Z̄N (t) = (X̄t, V̄t) solutions of equations
(4.3), (4.2) and driven by the same Brownian motion Bt. We want to establish an

estimate, uniform in N , on E
[ ∣∣ZN (t)− Z̄N (t)

∣∣2 ]: for all 1 ≤ i ≤ N , by recalling
that U(x, y) = U(x) + U(y) +W (x− y),

∂t(
∣∣Xi

t − X̄i
t

∣∣2 +
∣∣V it − V̄ it ∣∣2) = 2(X − X̄i

t) · (V − V̄ it ) + 2(V it − V̄ it )

·
[
− γ(V it − V̄ it )−

(
1

N

N∑
j=1

∇xU(Xi
t , X

j
t )−

∫
R2d

∇xU(X̄i
t , y)ft(y, v) dy dv

)]
≤ 2

∣∣Xi
t − X̄i

t

∣∣ ∣∣V it − V̄ it ∣∣− 2γ
∣∣V it − V̄ it ∣∣2

+ 2
∣∣V it − V̄ it ∣∣ [ ∣∣∇xU(Xi

t)−∇xU(X̄i
t)
∣∣

+

∣∣∣∣ 1

N

N∑
j=1

∇W (Xi
t −X

j
t )−

∫
R2d

∇W (X̄i
t − y)ft(y, v) dy dv

∣∣∣∣] .
Concerning the exterior potential, we have that

2
∣∣V it − V̄ it ∣∣ [∇xU(Xi

t)−∇xU(X̄i
t)] ≤ 2

∥∥D2U
∥∥
L∞

∣∣Xi
t − X̄i

t

∣∣ ∣∣V it − V̄ it ∣∣ ,
while, for the interactive part, triangulate with ∇W (X̄i

t − X̄
j
t ) and

∣∣∣∣ 1

N

N∑
j=1

∇xW (Xi
t −X

j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

∣∣∣∣
=

1

N

∣∣∣∣ N∑
j=1

[
∇xW (Xi

t −X
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

]∣∣∣∣
≤ 1

N

∣∣∣∣ N∑
j=1

[
∇xW (Xi

t −X
j
t )−∇W (X̄i

t − X̄
j
t )

]∣∣∣∣
+

1

N

∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

]∣∣∣∣
≤ 1

N

∥∥D2W
∥∥
L∞

N∑
j=1

∣∣∣Xi
t − X̄i

t +Xj
t − X̄

j
t

∣∣∣
+

1

N

∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

]∣∣∣∣
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so that, by taking expectation,

∂tE
[ ∣∣Xi

t − X̄i
t

∣∣2 +
∣∣V it − V̄ it ∣∣2 ] ≤ (1 +

∥∥D2U
∥∥
∞

)
E
[ ∣∣Xi

t − X̄i
t

∣∣2 +
∣∣V it − V̄ it ∣∣2 ]

+
1

N

∥∥D2W
∥∥
L∞

N∑
j=1

E
∣∣V it − V̄ it ∣∣ ∣∣∣Xi

t − X̄i
t +Xj

t − X̄
j
t

∣∣∣
(4.8)

+
1

N
E

[ ∣∣V it − V̄ it ∣∣ ∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

]∣∣∣∣
]
.

The last term gives, by Cauchy-Schwarz,

1

N
E

[ ∣∣V it − V̄ it ∣∣ ∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

]∣∣∣∣
]

≤1

2
E
[ ∣∣V it − V̄ it ∣∣2 ]

+
1

2N2
E
∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v)dy dv

]∣∣∣∣2.
The N random variables

{
∇xW (X̄i

t − X̄
j
t ) −

∫
R2d ∇xW (X̄i

t − y)ft(y, v) dy dv
}N
j=1

are independent conditionally to {X̄i
t}i, since X̄

j
t are, and of zero average:

E
[
∇xW (X̄i

t − X̄
j
t )
]

=

∫
R2d

∇xW (x− y)ft(y, v)ft(x,w) dy dv dx dw

= E
[ ∫

R2d

∇xW (X̄i
t − y)ft(y, v)dy dv

]
,

so that orthogonality gives

E

[∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v)dy dv

]∣∣∣∣2
]

=

N∑
j=1

E
∣∣∣∣∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v)dy dv

∣∣∣∣2 .
Since ∣∣∣∣∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v) dy dv

∣∣∣∣
=

∣∣∣∣ ∫
R2d

[∇xW (X̄i
t − X̄

j
t )−∇xW (X̄i

t − y)]ft(y, v) dy dv

∣∣∣∣
≤
∥∥D2W

∥∥
∞

∫
R2d

∣∣∣X̄j
t − y

∣∣∣ ft(y, v) dy dv
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by the usual mean value argument,

E

[∣∣∣∣ N∑
j=1

[
∇xW (X̄i

t − X̄
j
t )−

∫
R2d

∇xW (X̄i
t − y)ft(y, v)dy dv

]∣∣∣∣2
]

≤
∥∥D2W

∥∥2

∞

N∑
j=1

E
(∫

R2d

∣∣∣X̄j
t − y

∣∣∣ ft(y, v) dy dv

)2

≤
∥∥D2W

∥∥2

∞

N∑
j=1

E
∫
R2d

∣∣∣X̄j
t − y

∣∣∣2 ft(y, v) dy dv

= N
∥∥D2W

∥∥2

∞

∫
R2d

|x− y|2 ft(y, v)ft(x,w) dy dv dx dw

≤ N
∥∥D2W

∥∥2

∞

∫
R2d

2
(
|x|2 + |y|2

)
ft(y, v)ft(x,w) dy dv dx dw

= 4N
∥∥D2W

∥∥2

∞

∫
R2d

|y|2 ft(y, v) dy dv = 4N
∥∥D2W

∥∥2

∞ E
[ ∣∣X̄i

t

∣∣2 ] .

(4.9)

Concerning the second line in (4.8),

1

N

∥∥D2W
∥∥
L∞

N∑
j=1

E
∣∣V it − V̄ it ∣∣ ∣∣∣Xi

t − X̄i
t +Xj

t − X̄
j
t

∣∣∣
=
∥∥D2W

∥∥
L∞

E
[ ∣∣V it − V̄ it ∣∣ 1

N

N∑
j=1

∣∣∣Xi
t − X̄i

t +Xj
t − X̄

j
t

∣∣∣ ]

≤ 1

2

∥∥D2W
∥∥2

L∞

[
E
∣∣V it − V̄ it ∣∣2 +

1

N2

N∑
j=1

∣∣Xi
t − X̄i

t

∣∣2 +
∣∣∣Xj

t − X̄
j
t

∣∣∣2 ] .

This gives that

∂tE
[ ∣∣Xi

t − X̄i
t

∣∣2 +
∣∣V it − V̄ it ∣∣2 ]

≤
(
2 +

∥∥D2U
∥∥
∞

)
E[
∣∣Xi

t − X̄i
t

∣∣2 +
∣∣V it − V̄ it ∣∣2]

+
1

2

∥∥D2W
∥∥2

∞

[
E
∣∣V it − V̄ it ∣∣2 +

1

N2

N∑
j=1

( ∣∣Xi
t − X̄i

t

∣∣2 +
∣∣∣Xj

t − X̄
j
t

∣∣∣2 )]
+

2

N

∥∥D2W
∥∥2

∞ E
[ ∣∣X̄i

t

∣∣2 ]

and, by taking the sum on i,
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∂tE
[ ∣∣Xt − X̄t

∣∣2 +
∣∣Vt − V̄t∣∣2 ]

≤
(
2 +

∥∥D2U
∥∥
∞

)
E
[ ∣∣Xt − X̄t

∣∣2 +
∣∣Vt − V̄t∣∣2 ]

+
∥∥D2W

∥∥2

∞

[
1

2
E
∣∣Vt − V̄t∣∣2

+
1

2N2

N∑
i,j=1

( ∣∣Xi
t − X̄i

t

∣∣2 +
∣∣∣Xj

t − X̄
j
t

∣∣∣2 )+
2

N

N∑
i=1

E
∣∣X̄i

t

∣∣2 ]
=
(
2 +

∥∥D2U
∥∥
∞

)
E
[ ∣∣Xt − X̄t

∣∣2 +
∣∣Vt − V̄t∣∣2 ]

+
∥∥D2W

∥∥2

∞

[
1

2
E
∣∣Vt − V̄t∣∣2 +

1

N

∣∣Xt − X̄t

∣∣2 +
2

N
E
∣∣X̄t

∣∣2 ]
≤
(

2 +
∥∥D2U

∥∥
∞+

1

2

∥∥D2W
∥∥2

∞

)
· E
[ ∣∣Xt − X̄t

∣∣2 +
∣∣Vt − V̄t∣∣2 +

2

N

∥∥D2W
∥∥2

∞ E
∣∣X̄t

∣∣2 ]
since the X̄i

t are independent. We then only need to give a bound on the second
moment of X̄, which comes from Lemma 19, to reach an inequality of the form

∂tE
[ ∣∣ZN − Z̄N ∣∣2 ] ≤ aE[

∣∣ZN − Z̄N ∣∣2] + b .

Since for all real, positive function g satisfying

g′ ≤ ag + b , a, b ∈ R ,

it holds

g(t) ≤ g(0)eat +
b

a
eat − b

a
,

and since

E
[ ∣∣ZN (0)− Z̄N (0)

∣∣2 ] = 0 ,

it �nally follows that

E
[ ∣∣ZN (t)− Z̄N (t)

∣∣2 ] ≤ b

a
(eat − 1) ,

giving us the desired bound

(4.10) W 2
2 (f⊗Nt , f

(N)
t ) ≤ E

[ ∣∣Xt − X̄t

∣∣2 +
∣∣Vt − V̄t∣∣2 ] ≤ b

a
(eat − 1)

which is evident from the de�nition of Wasserstein distance. We can now collect
(4.6), (4.7) and (4.10) so that (4.5) gives

W 2
2 (ft, f∞) ≤ 1

N
[W2(f⊗Nt , f

(N)
t ) +W2(f

(N)
t , f (N)

∞ ) +W2(f (N)
∞ , f⊗N∞ )]2

≤ 1

N
[C1e

at + C2N
1
2 e−

C
2 t(1−e

−t) + C3]2

which, upon taking N = N(t) large enough, gives the claim.
�
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Lemma 19. Let (X,V ) and (X̄, V̄ ) solve (4.3) and (4.2) respectively. Then there
exists a constant C, which depends on the initial data (X̄0, V̄0) and on parameters
of the equation, such that for all t and all N

E[
∣∣X̄t

∣∣2] ≤ CN

Proof. In order to give a bound to the moment of X̄ let us study the modi�ed
moment

Hε(X̄, V̄ ) = UN (X̄, V̄ ) + εX̄ · V̄ = UN (X̄) +
1

2

∣∣V̄ ∣∣2 + εX̄ · V̄ .

We want to establish a di�erential inequality on E[Hε(X̄, V̄ )] in order to prove that
it is bounded in time for su�ciently small ε, that will also imply boundedness of

E[
∣∣X̄∣∣2] by uniform convexity of UN . By calling L̄N the generator of f

⊗N
t

f⊗N∞
and L̄∗N

its adjoint in L2(f⊗N∞ )

∂tE[Hε(X̄, V̄ )] =

∫
R2dN

Hε(x, v)∂t
f⊗Nt
f⊗N∞

f⊗N∞ dx dv

=

∫
R2dN

Hε(x, v)L̄N

(
f⊗Nt
f⊗N∞

)
f⊗N∞ dx dv

=

∫
R2dN

L̄∗N [Hε(x, v)]f⊗Nt dx dv .

Since

L̄N = −v · ∇x +∇xŪN · ∇v − γv · ∇v +
σ2

2
∆v ,

where

ŪN (x) =

N∑
i=1

∫
R2d

U(xi, y)ft(y, w) dy dw ,

it follows from easy computations that

L̄∗N = v · ∇x −∇xŪN · ∇v − γv · ∇v +
σ2

2
∆v = L∗N + (∇xUN −∇xŪN ) · ∇v

where LN denotes the generator of f (N)
t , and the last adjoint is to be meant in

L2(f
(N)
∞ ). First,

L∗N [Hε(x, v)] = ε |v|2 − εx · ∇xUN − γ
(
|v|2 + εxv

)
+
σ2

2
dN

≤
(
− γ + ε+ 2γ2

√
ε
)
|v|2 +

(
− C1ε+ ε

√
ε
)
|x|2 +

σ2

2
dN

where we used that UN attains its minimum in 0 and that the value of the minimum
is 0. This may easily be supposed by considering translations of f if needed and
by noticing that the potential, as such, is de�ned up to a constant. C1 here is the
lower bound to the convexity of UN .

L∗N [Hε(x, v)] ≤ −γ
4
|v|2 − C1ε

2
|x|2 +

σ2

2
dN
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Also, concerning the other term in L̄∗N ,

(∇xUN −∇xŪN ) · ∇vHε = (∇xUN −∇xŪN ) · (v + εx)

≤ Cε
∣∣∇xUN −∇xŪN ∣∣2 +

γ

8
|v|2 +

C1ε

4
|x|2

thanks to Young inequality with a su�ciently large constant Cε, giving that

L̄∗N [Hε(x, v)] = L∗N + (∇xUN −∇xŪN ) · ∇vHε

≤ −γ
8
|v|2 − C1ε

4
|x|2 +

σ2

2
dN + Cε

∣∣∇xUN −∇xŪN ∣∣2
≤ −γ

8
|v|2 − C1

2C2
εUN (x) +

σ2

2
dN + Cε

∣∣∇xUN −∇xŪN ∣∣2
≤ −cεHε(x, v) +

σ2

2
dN + Cε

∣∣∇xUN −∇xŪN ∣∣2 .

where we called C2 the upper bound of D2UN and cε a su�ciently small constant.
It follows that, for su�ciently small ε,
(4.11)

∂tE[Hε(X̄t, V̄t)] ≤ −cεE[Hε(X̄t, V̄t)] + CεE
∣∣∇xUN (X̄t)−∇xŪN (X̄t)

∣∣2 +
σ2

2
dN .

We just need to compute the term in the middle: for all 1 ≤ k ≤ N , by writing
∇k = ∇xk ∈ Rd,

∇kUN (x)−∇kŪN (x)

=∇k
[ N∑
j=1

U(xj) +
1

2N

N∑
i,j=1

W (xi − xj)
]

−
N∑
j=1

∇k
[
U(xj) +

∫
R2d

W (xj − y)ft(y, v) dy dv

]

=
1

2N

N∑
i,j=1

∇kW (xi − xj)−
N∑
j=1

∫
R2d

∇kW (xj − y)ft(y, v) dy dv

=
1

N

N∑
j=1

[
∇W (xj − xk)−

∫
R2d

∇W (xk − y)ft(y, v) dy dv

]
,

since it may be supposed that ∇W (0) = 0, and then we have that

E
∣∣∇xUN (X̄t)−∇xŪN (X̄t)

∣∣2
=

1

N2

N∑
k=1

E
∣∣∣∣ N∑
j=1

[
∇xW (X̄j

t − X̄k
t )−

∫
R2d

∇xW (X̄k
t − y)ft(y, v) dy dv

]∣∣∣∣2

=
1

N
E
∣∣∣∣ N∑
j=1

[
∇xW (X̄j

t − X̄1
t )−

∫
R2d

∇xW (X̄1
t − y)ft(y, v) dy dv

]∣∣∣∣2

≤ 1

N

∥∥D2W
∥∥2

∞

N∑
j=1

E
∫
R2d

∣∣∣X̄j
t − y

∣∣∣2 ft(y, v) dy dv ≤ 4

N

∥∥D2W
∥∥2

∞ E
[ ∣∣X̄t

∣∣2 ]
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where we acted as in (4.9) since the X̄k are identically distributed. We can then
go back to (4.11) and, supposing ε to have been �xed small enough,

∂tE[H(X̄t, V̄t)] ≤ −cE[H(X̄t, V̄t)] +
4C

N

∥∥D2W
∥∥2

∞ E
[ ∣∣X̄∣∣2 ]+

σ2

2
dN

≤ −cE[H(X̄t, V̄t)] +
C

N
E[H(X̄t, V̄t)] +

σ2

2
dN

≤ −cE[H(X̄t, V̄t)] +
σ2

2
dN

by taking N large enough and relabelling constants. This closes our inequality and
gives that for all t

E[H(X̄t, V̄t)] ≤ e−ct
(
E[X̄(0), V̄ (0)]− 2c

σ2dN

)
+

2c

σ2dN

≤ max

{
E[H(X̄(0)), H(V̄ (0))],

2c

σ2dN

}
�
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