Emergence of Biaxial Nematic Phases in Solutions of Semiflexible Dimers
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We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions be-
tween them, for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected
by a spacer with variable bending stiffness. We apply density-functional theory within the Onsager
approximation to describe strictly excluded-volume interactions in this athermal model and to self-
consistently find the orientational order parameters dictated by its complex symmetry, as functions
of the density. Earlier work on lyotropic ordering of rigid bent-rod molecules is reproduced, and
extended to show explicitly the continuous phase transition at the Landau point, at a critical bend
angle of 36°. For flexible dimers with no intrinsic biaxiality, we nevertheless find that a biaxial
nematic phase can form at sufficiently high density and low bending rigidity. For bending stiffness
k > 0.86kpT, this biaxial phase manifests itself as dimer bending fluctuations occurring prefer-
entially in one plane. When the dimers are more flexible, k < 0.86kpT, the modal shape of the
fluctuating dimer is a ‘V’ with a sharp opening angle, and the biaxial order parameter changes sign.
These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which

we generate in terms of the variables spacer stiffness and particle number density.

PACS numbers: 64.70.Md, 61.30.Cz

I. INTRODUCTION

The discovery in 1996 that achiral molecules of bent-
rod shape could exhibit ferroelectric smectic behavior [1]
started a decades-long fascination with these molecules,
which are now known variably as bent-core, ‘bananas’,
boomerangs, bow-shaped or V-shaped [2]. Their posi-
tionally disordered liquid crystal (LC) phases were thor-
oughly and systematically catalogued by Lubensky and
Radzihovsky [3]. Interestingly, these include the elusive
biaxial nematic (Ng) phase, which is characterized by
preferential alignment of not one, but two mutually or-
thogonal molecular axes, and thus exhibits two directors.
First predicted by Freisier back in 1970 [4], the Ny phase
has since been a source of excitement in LC science, on
account of both its fundamental interest and its potential
applications. For example, bistable displays or devices
might exploit the easier orientability of the secondary di-
rector of the Ng phase to achieve faster switching times.
The theory, simulation and experiment of biaxial nemat-
ics have been extensively and thoroughly reviewed in [5],
whereas the molecular design of biaxial nematogens is
addressed in [6].

In order to realize biaxial nematic order, the molecules
need to have a corresponding symmetry, with two distinct
orthogonal axes of anisometry. The parallelepiped has
been the most common starting point [4, 7], yet bent rods
were also early candidates [8, 9]. Biaxiality was indeed
claimed experimentally in 2004 by Madsen et al. [10] and
Acharya et al. [11], as well as more recently by others
[12-14], though not without some controversy [15-17].

Two theoretical approaches have been developed to in-
vestigate the phase behavior of bent-rod molecules, which
are suitable for thermotropic and lyotropic mesogens re-
spectively. In the first of these [18, 19], particles are
assumed to interact via a continuous anisotropic poten-
tial of the appropriate symmetry, which is then treated
within a mean-field approximation. The second approach
[8], in contrast, models each particle as two hard sphe-
rocylinders joined at their ends at a (fixed) angle, in-
cluding excluded-volume interactions only; the system is
then treated at the level of the Onsager second-virial ap-
proximation. Despite their different starting points, both
theories make essentially the same predictions. This is
not unexpected if one recognises that, from the point
of view of orientational order, the density in a lyotropic
LC plays the same role as the inverse temperature in
a thermotropic LC. We shall return to this point later,
but in summary: at high temperatures (low densities),
the stable phase is isotropic (I); as the temperature is
lowered (or the density raised), straight or slightly bent
rods with inter-arm angles close to 180° will undergo a
first-order transition into a calamitic uniaxial nematic
phase (N{;), where their long axes are ordered. Con-
versely, for strongly bent rods with an inter-arm angle
close to 90°, the first-order transition is into a discotic
(oblate) uniaxial nematic phase (Ny), where it is now
the axes perpendicular to the plane of the two arms that
order. In between these limits, for an inter-arm angle
close to the tetrahedral angle, there is a Landau point at
which the isotropic phase moves directly into a biaxial
nematic phase (Ng) via a continuous transition. Con-
tinuous transitions from the NS and Ny; phases into the



Np phase are also predicted on either side of the Landau
point.

Experimentally, however, the Ng phase was seen to
occur at higher temperatures and smaller rod bending
angles (hence smaller molecular biaxialities) than pre-
dicted. One possible source of this discrepancy might be
the large permanent transverse electric dipole present in
bent dimers [10, 20, 21], which was not accounted for
in [8, 18, 19]. There have been several attempts to in-
corporate dipoles into the theory [22, 23], which have
yielded results generally pointing in the right direction,
as well as new and exciting phase diagram topologies in-
cluding polar biaxial phases. Still, in the present paper
we are mostly concerned with qualitative effects rather
than quantitative agreement, and so we shall ignore these
complications.

Early Monte Carlo simulations of bent-rod particles
composed of two hard spherocylinders did not find un-
ambiguous evidence for a Ng phase, because of the for-
mation of pairs of particles locked together [24], or found
it to be pre-empted by smectic phases for aspect ratio
L/D = 5[25]. Similar results were obtained for molecules
consisting of seven tangent Lennard-Jones spheres rigidly
arranged into a V-shape [26]. However, Monte Carlo sim-
ulations of an extension of the Lebwohl-Lasher lattice
model of nematogens did confirm the general topology of
the phase diagram, with a Landau point at the tetrahe-
dral inter-arm angle for symmetrical bent rods [27]; in
asymmetrical bent rods, the Landau point was shifted
to smaller angles and eventually disappeared for large
asymimetries.

In this paper we revisit the simple model of a molecular
dimer with a flexible joint connecting the two rigid rods,
see Fig. 1. The instantaneous shape of a dimer is a bent
rod, but we assume its equilibrium shape to be straight,
with an energy penalty associated with spacer bend-
ing. Flexibility of the molecular bond allows for a more
general description of semiflexible filaments and other
molecules with an internal degree of freedom. The mean-
field density-functional theory of flexible thermotropic
dimers was developed by Terentjev et al. [28, 29], who
focused on the properties of the elastic spacer connecting
the two equivalent rods, and looked at even-odd effects
and the values of elastic constants [30-32]. However, the
analysis in [28, 29] was restricted to the uniaxial nematic
phase. Luckhurst [33] formulated a mean-field theory
of flexible thermotropic dimers that includes all symme-
tries and all types of orientational order. Yet this ap-
proach leads to problems in treating the excluded vol-
ume when the single-particle probabilities for each rod
are correlated; moreover, it has not been used to make
any detailed calculations of transitions. Our purpose is to
address all these issues for the model of flexible dimers,
where the control parameter is the bending stiffness of
the joint (spacer). In the limit of infinite stiffness our
theory must reduce to that of the standard lyotropic ne-
matic phase of rigid rods of doubled length. We do not
consider the more complicated problem of flexible dimers
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FIG. 1. (a) Flexible dimers consisting of two hard rods con-
nected by a flexible spacer. The angle v, with equilibrium
value 1 = 0, measures the degree of bending. (b) The biaxial
nematic phase of rigid bent rods studied in [8].

N

that are bent at a finite angle ¢ in equilibrium (see [29]
for a basic treatment of this problem in the uniaxial-order
limit).

This paper is organised as follows: in section II we re-
capitulate the theory of [8] for rigid bent rods (ITA) and
generalise it to include a flexible joint (IIB). In section
IIT we present our numerical results for the key order pa-
rameters, and the associated phase diagrams, for both
rigid bent rods and flexible dimers. The existence of a
biaxial phase in a solution of flexible but intrinsically
uniaxial dimers, with a non-trivial topology of phase di-
agram, is the main result of this paper.We conclude in
section IV.

II. THEORY
A. Rigid bent rods

In this section we recapitulate the theory of [8]. In the
Onsager second-virial theory, the free energy density of
a nematic phase can be written as [34, 35]:

BT @) -1+ [ £ m 5@+ Bap, (1)
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where p = N/V is the (number) density of rods. A =
(2rh? /mkT)'/? is the thermal de Broglie wavelength,
Q= (4,0, x) the set of Euler angles [36] defining the
passive rotation that transforms the particle-fixed frame
{u, v, w} into the lab-fixed frame {z, y, z}, and f(Q) is the
single-particle orientational distribution function (ODF).
The first two terms in the right-hand side of Eq. (1) are
the ideal-gas contribution. The third term is due to the
loss of entropy caused by the orientational order: it van-
ishes in the isotropic phase. Finally, the last term is the
contribution due to interparticle interactions, where Bs
is the (angle-dependent) second virial coefficient:

By — _%/q)uf(Ql)f(Qg)dQIdQer1dr2~ (2)



In Eq. 2, V is the volume of the system and ®15 is the
Mayer f-function

Dy = e~ 012/kBT 1 (3)

in which ¢12 = ¢(r1,r2,Q1,Q2) is the interparticle pair
potential, a function of both the positional (r;) and orien-
tational (£2;) coordinates of the two interacting particles.

It should be noted that the 2nd-virial approximation
only takes into account interactions between no more
than two particles simultaneously, and is therefore only
reliable at low densities. Discussions of the validity of
Onsager theory are usually framed in terms of how large
the particle aspect ratio L/D must be such that higher-
order virial coefficients are negligible compared to By. As
shown by Allen et al. [37], this is only the case beyond
L/D ~ 10%. However, Bolhuis and Frenkel [38] found
from simulations that Onsager theory actually gives a
very good description of the isotropic-nematic (I-N) tran-
sition densities of hard spherocylinders for L/D > 20.
Recalling that the I-N transition in the Onsager limit
occurs at a reduced density ¢ &~ 3.5 (see the defini-
tion in Eq. (22) below), this suggests that Onsager the-
ory should in practice be valid for volume fractions be-
low ¢ ~ 3.5/20 = 0.175 or number densities below
pD? =~ 0.01. We stress that this is merely an operational
criterion and not a rigorous proof of validity, which is
still an open question.

In the case of ‘hard’ particles with no long-range inter-
action potential, the Mayer f-function ®;, = —1 for over-
lapping geometries (when ¢12 = 00), and ®15 = 0 other-
wise (¢12 = 0). Hence, By reduces to the ODF-weighted
integral over orientations of the (angle-dependent) ex-
cluded volume vexc1(1,2) of two particles:

= %/f(Ql)Uexcl(Ql, Q) f(Qs) dy dQs.  (4)

This latter function is not known analytically for any
non-convex shapes, and thus needs to be found numer-
ically. Bisi and Rosso [39] calculated the excluded vol-
ume of two V-shaped objects consisting of tangent hard
spheres by Monte Carlo integration, and derived an ap-
proximation to it in terms of symmetry-adapted Wigner
functions. We could use this result, but a simpler alter-
native yielding qualitatively correct behavior is to follow
[8] and approximate the excluded volume of two dimers
by the sum of excluded volumes of pairs of their con-
stituent hard rods, here taken to be hard spherocylinders
of length L and diameter D. This ‘superposition approx-
imation’ amounts to treating the spherocylinders as inde-
pendent particles, and will introduce errors of (leading)
order LD?. These will, however, be vanishingly small
relative to the main ‘unperturbed’ term (of order DL?
[40]) in the limit of long, thin spherocylinders, L/D > 1,
where Onsager theory is best applicable. Onsager the-
ory itself predicts a I-N transition at a density ~ 1/DL?
(if L/D is of order 5 or smaller, it becomes necessary to
include higher-order virial coefficients [41]). Finally, we

FIG. 2. The principal axes and standard Euler angles defining
the orientation of a biaxial bent-rod molecule in the lab-fixed
frame (x,y, z). The shape of the molecule can be embedded
in a parallelepiped of thickness D, with long principal axis w
and short principal axis w 1 w. The long axis is inclined at
the angle 6 from z, the short axis lies in the plane that crosses
the z — y plane at angle ¢, and w is rotated counter-clockwise
by angle x in this plane.

TABLE I. Table of excluded volumes of two bent rods in the
Onsager limit (L > D), where the first rod is aligned with the
laboratory frame and the particle-fixed axes of the second are
coincident with the laboratory axes. Refer to Fig. 2 for the
definition of Euler angles (0, ,x). The first column shows
in which plane of the (z,y,z) frame the pair of orthogonal
principal vectors w, u lies, for each case.

'y z ¢ 0 X Uexcl/ZDLQ

u —w|0 0 0 [2[sin2y]

w—ul0 90°0 |2(1 +|cos2w|)

— w u[90° 90° 0 |4]sin(cos™ 1( sin21/)))\
—u w(90° 0 0 |4]sin(cos™ (cos )|
u w —|90° 90° 90° |4|sin(cos™ 1(s.m ¥))]
wu —[0  90° 90°|4|sin(cos ™" (4 sin2¢))|

do not recover the correct limit when the inter-arm angle
goes to zero (angle ¢ = 7/2 in Fig. 1), a point we revisit
in section IITA.

Instead of working with the angle-dependent excluded
volume in its general form, we shall follow Straley [7] by
considering the values this excluded volume takes for a
few particular orientations of the two particles. Assum-
ing particle 1 to be located at the origin of the lab frame,
ie. (01,01,x1) = (0,0,0) (see Fig. 2), we compute the
excluded volumes for the six distinct orientations parti-
cle 2 can have subject to the constraint that its long and
short axes are directed along the coordinate axes. Note
that within our superposition approximation we are ne-
glecting shape polarity, which is addressed in [42], for
example. These orientations are listed in Table I, where
we have used the result that the excluded volume of two
long, thin (L/D > 1) spherocylinders is [34]

Vexel(0) ~ 2D L2 sin(m — 21), (5)

which depends upon the angle between their long axes,
cf. Fig. 1(a). In the spirit of Straley’s treatment [7], we
then fit the entries in Table I to a second-order ‘inter-
polating potential’, which can be writen as an expansion
in terms of symmetry-adapted basis functions. Following



the notation of Mulder [35],

‘/int (Q) = O‘—"_BAl (9)+7[A2 (¢7 0)+A3 (9’ X)]+6A4(¢7 07 X)a

(6)
where the angular functions A;(€2) are linear combina-
tions of Wigner rotation functions of rank-2 [35, 36],
given by

>

1(0) = Py(cos ) = %(3(:0529 -1,

2(¢,0) = sin? 0 cos 2, (7)
(
(

> b

3(0, x) = sin® f cos 2,

1
Ay(0,0,x) = 5(1 + cos? 0) cos 2¢ cos 2
— cos 0 sin 2¢ sin 2.

The coefficients (a, 8,v,d) in Eq. (6) are chosen such
that Vine(Q) is equal to the excluded volume when the
principal axes of the molecules are coincident with the
coordinate frame (as given in Table I):

a 2 . . NP
SDIZ =3 <|sm2w| + 4| sin(cos (2 Slﬂ21/’))|> )

B _4 . . g1
5DIZ =3 | sin 29| + | sin(cos (5511121#))\ 1

— | cos 26| — 2| sin(cos™*(sin? ¢))], )

L—l . . —1/.:.2
SHIZ =3 (14 | cos 24| — 2| sin(cos™* (sin® ¥))])
ﬁSL? =1+ | cos 2tp| + 2| sin(cos™* (sin® ¢)))|

— 4| sin(cos_l(% sin 21)))].

We stress that these expressions are only valid in the On-
sager limit, i.e. thin rods for which L > D. This interpo-
lation approximation preserves the qualitative behavior
of the true excluded-volume potential whilst greatly sim-
plifying the form of the interaction and the subsequent
algebra.

The basis functions (7) also define the four orienta-
tional order parameters:

S = <A1(9)>’ Sy = <A2(¢79)>’ 53 = <A3(07X)>7
S4 = <A4<¢7 9, X)>7 (9)

where the angular brackets denote an ODF-weighted an-
gular average. It is important to note that, over the
years, the four key order parameters have been defined
in many different ways. A comprehensive historical and
comparative analysis has been undertaken by Rosso [43].
Here we adopt the notation of the first correct analysis,
by Straley [7], though giving the four order parameters
different (perhaps more systematic) names.

The ‘usual’ uniaxial nematic order is, of course, de-
scribed by S;. Non-zero S; and S3, combined with zero
So and Sy, indicate a uniaxial nematic phase aligned
along the z-axis. In contrast, nonzero Sy and S; de-
scribe biaxiality emerging in the plane perpendicular to

the principal z-axis. Positive S7,.S3 indicate a ‘prolate’
Ny, phase (the typical ordering of rods), whilst negative
S1,S3 correspond to an ‘oblate’ Ny; phase (the ordering
of flat discs). It should be noted that multiple nonzero .S;
may be indicative of a uniaxial phase that forms about
some axis other than z (rather than a biaxial phase).
This stems from our earlier arbitrary choice of z-axis. Re-
sults must therefore be interpreted carefully, as we shall
see in section III. In general the system will pass through
a uniaxial phase before exhibiting any biaxiality except
at the Landau point, which by definition is the point in
the phase diagram where the isotropic phase transitions
directly to Ng. A more thorough discussion of this can
be found in [19]. Finally, it should be noted that the
set of four order parameters in Eq. (9) is appropriate for
a biaxial nematic phase without polarity [42]. More so-
phisticated theories exist that predict many other phases
of polar bent dimers; in particular, Lubensky and Radz-
ihovsky [3], Méttout [44], and Luckhurst et al. [45] have
pointed out that the usual description of order in terms of
a single second-rank tensor is insufficient to capture the
full richness of phases potentially found in these systems.
In this paper we restrict ourselves to non-polar nematic
phases.

Note that Vine(Q) in Eq. (6) is in fact a two-particle
potential; as in [7, 8] we have assumed that the reference
particle is located at the origin of the lab-fixed frame
(both in terms of position and alignment). The corre-
sponding single-particle mean-field potential, W (), is
then obtained by integration over the coordinates of one
of the particles: War(Q1) = [ Vine(Q1,Q2) f(22)ds.
By symmetry, its form is determined by the same basis
functions

Wur = wiA1 + waAg + w3Ag + w4A4, (10)

leading to the self-consistency relations
3
wy = BS1 + 753, we = 1552 + 754,

(11)

From Eq. (1), the mean-field approximation to the free
energy is thus

3
w3 = ’)/Sl + 1(553,11)4 = ’}/Sg +68,.

F
NkgT

—In(A%) ~ 1+ [7(2) n(f(9)de
(12)
+ g(wlSl + wy Sy + w3S3 =+ w4S4).

Minimisation of this free energy functional with respect
to the ODF f(9) yields

1
1) = oo (~goWur(®). (3
with the normalisation constant
1
7z /exp <—2pWMF(Q)> dQ. (14)



Substituting Eq. (13) into Eq. (1) and recalling that
fiso(©) = 1/872 in the isotropic phase, we find the excess
free energy (that is, the difference in free energy between
the nematic and isotropic phases)

AF :-Fncm*}?isoiln 877(2
NkgT — NkgT z )

(15)

We see that the equilibrium free energy difference is com-
pletely encapsulated in the normalisation constant Z (the
partition function of the nematic mean field).

We finish this section with a remark on the formal
similarity of the Onsager and Maier-Saupe theories of
lyotropic and thermotropic nematics, respectively: both
lead to a self-consistency equation of the form of Eq.
(13). There is a critical difference however, in that the
factor of density (p) multiplying the mean field in the
Onsager theory is replaced by 1/kgT in the Maier-Saupe
theory. This reflects the fact that the Maier-Saupe the-
ory deals with attractive forces in addition to configura-
tional entropies and so allows for a temperature-driven
phase transition, in contrast to the density-driven On-
sager transition caused by entropic excluded-volume ef-
fects. In fact, both the Onsager and Maier-Saupe theories
can be viewed as special cases of more general mean-field
theories, where both the density p and the Boltzmann
factor 1/kgT act as control parameters. The limits p — 0
(kT — o0) and p — oo (kT — 0) correspond to the
(non-interacting) ideal gas and strong-coupling behav-
ior, respectively. Consequently, all results reported in
this paper for athermal systems can be transposed onto
a thermally-driven system by making the substitution
p — 1/kpT, and so have wider validity than may at first
be evident.

B. Flexible dimers

Here we extend the above treatment to the case of a
flexible, jointed dimer as shown in Fig. 1(a). The dimer
is modelled as two rods connected by a springlike bond,
with an energy penalty for nonzero bond angle

1
Ubend = iﬁZ/JQ. (16)

This can be incorporated into the mean-field formalism
developed above. First, on adding a new degree of free-
dom to the system we must include its (configurational)
entropic contribution. We do this by extending the ODF
and measure

FE)dQ — (2, ¢)dQdy, (17)

such that the new entropy is contained within the Gibbs
term in Eq. (1). Next, the bending energy, Eq. (16),
contributes an additional term to the overall free energy

AF, = N%mp?). (18)

We now define an additional pair of parameters

K

=——, A;=17 (19)

Ws pkBT’

and update the molecular mean-field expression, which
can be written concisely as

Wur = w1 + waAg + w3As + wi\s + wsAs. (20)

The total free energy now changes from Eq. (12) to the
form

NliT =1In(A3p) — 1 (21)
+ [0 (79 )0
+g(w151 + w2 Sz + w3Ss + waSs + w5 Ss).
Note that S5 = (Aj) does not represent a new order

parameter, being used merely as a common convenient
notation (a measure of the mean-square fluctuation of
the bending angle). Similarly, the added bending con-
tribution (wsS5) is not a virial term as the four other
terms are, but an intra-molecular energy. This com-
mon notation allows streamlined integration into the
generic Straley method. We set the true isotropic ODF
fiso(Q, 1) = 1/873, in keeping with Eq. (13); the extra
factor of 7 arising from the integration over .

Finally, there is a subtlety in Eq. (20) in that all factors
{w;} depend on the bending angle ¢ through the coeffi-
cients {f3,7, ¢}, cf. Eq. (8), and so must also be averaged
with the ODF f(£2,4) when solving the self-consistent
field condition Eq. (13).

III. RESULTS AND DISCUSSION

It will be helpful for what follows to define a dimen-
sionless ‘reduced density’ as

DL*p= =—-D’L=— (22)

where ¢ is the volume fraction of the rods. This follows
earlier works [8, 40, 46] and uses the fact that the proper
volume of a (straight) rod is 5 D?L to leading order in
D/L <« 1. Onsager theory can be used to find equilibria
between phases of different densities (see, e.g. [40]). We
shall not do this here: instead, we investigate the stability
of different phases as a function of density.

A. Rigid dimers

The self-consistent mean-field condition, Eq. (13), was
solved at each reduced density ¢ by making an initial
guess for the set of order parameters {5;}, substituting
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FIG. 3. (a) Order parameter and excess free energy (in units
of kgT) plotted for ¢» = 0°. There is a strong first-order
phase transition, with only S present. (b) Order parameter
and excess free energy (in units of kgT') for ¢ = 36° reflect
phase transitions just below the Landau point. The 17N$
transition is very nearly continuous, reflecting the proximity
to the Landau point. The arrows highlight the singularities
observed at the NU7N§ transition.

them into them into the mean field Wy, (10), and re-
calculating {S;} through Egs. (9). These values were re-
substituted back into Eq. (13), and the process iterated
until the convergence condition

|S; — S| <1077 (23)

was satisfied for all order parameters. This was deemed
sufficiently stringent to ensure full convergence. The nu-
merical integration was performed using 16-point Gauss-
Legendre quadrature, implemented in Fortran [47]. Tab-
ulated vales of trigonometric functions were used when
performing the angular integrations in order to increase
efficiency.

We have reproduced the results of Teixeira et al. [8],
correcting minor algebraic errors in their analysis in the
process. Figure 3(a) shows the first-order phase transi-
tion found for a straight double-rod (¢» = 0). The func-
tional form of W,z (in particular that of the A; part,
corresponding to the primary uniaxial order parameter)
indicates that this is identical to the Maier-Saupe result
if one were to replace p — 1/kpT. As the bond an-
gle increases, the phase transition occurs at progressively
higher densities; in addition, the secondary uniaxial or-
der parameter S5 becomes finite, see Fig. 3(b). A soft-
ening of the phase transition is also evident, becoming
‘weakly first-order’ in nature [49] as the rigid bond angle
increases. This is related to the increasing biaxiality of
the molecules [19, 48], illustrated by the rise in Sz 4. In
fact, the transition is predicted to become continuous at
the Landau point — as indeed is observed in Fig. 5 below.

A qualitative change in behavior is observed at the
Landau point which, for this system, is at ¥pandau ~
36.3°. For ¥ < WYpandau, the system exhibits a phase
transition from isotropic to a prolate N{E phase, whereas
for ¢ > tpandau the transition is into an oblate uniaxial
phase N; phase. The relevant results for ¥ just below
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Landau point. The first transition here is to an oblate uniaxial
Ny phase; the arrows highlight the singularities at the Ny—
Ng transition. (b) For a large bending angle, ¢ = 45°, the
molecule is essentially oblate and the corresponding Ny; phase
is the only outcome in the range of densities investigated.
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FIG. 5. I-Ng phase transitions for ¢ = 36.32°, at the Landau
point. Plot (a) was obtained with all initial {S;} positive; plot
(b) with negative initial S; and S2. The transition is man-
ifestly continuous, directly from the isotropic to the biaxial
nematic phase, and the free energy of both resulting phases is
nearly the same (to ~ 10™2kgT per molecule). This is consis-
tent with the change in behavior from prolate- to oblate-like
order across the Landau point, but implies that there are two
degenerate biaxial phases at the point itself, Ng and Ng.

and just above the Landau point are given in Figs. 3(b)
and 4(a), respectively. The main difference is in the sign
of Sy (i.e., prolate vs. oblate uniaxial order), which then
guides the difference in the corresponding biaxial phase
NJBr and Np, respectively. When solving Eq. (13) one
may find local minima, depending on the initial guesses
for the parameters {S;}. This is the case for p > 37°,
where positive guesses for the order parameters lead to
a phase for which Sy, = 257, Sy = %5'3, indicating N$
order about the z-axis. However, this is a metastable
phase, higher in free energy than the Ny; phase observed
when one chooses negative initial S1, S3 and positive Ss,
S4. This is clearly illustrated in Fig. 4(b) for ¢ = 45°.
The equilibrium free energy difference AF (per particle),
given by the Eq. (15), is included for completeness, and
to illustrate the nature of the transitions.



It is important to note that the interpolating-potential
approximation, Eq. (6) and coefficients, Eq. (8), does
not recover the correct limit as ¢ — /2 - a fully-folded
dimer. This might be regarded (to leading order in D/L)
as a straight parallelepiped of length L and thicknesses
2D in one plane and D in the other. This is inherent in
the nature of the approximation, which becomes increas-
ingly inaccurate as the bond angle reaches this limit [8]
because of the asymmetry associated with the (arbitrary)
choice of z-axis. As previously discussed, however, this
model does give the correct limit as ¢ — 0 (the straight
double-rod). Despite this shortcoming, the approxima-
tion preserves the topology of the phase diagram and the
character of the transitions whilst providing a tractable
theory, and is therefore very useful.

B. Flexible dimers

In this case we have the dimer bending angle ¢ as an
additional fluctuating variable, with associated changes
in the energy and entropy. As one would expect, by in-
creasing the dimension of the phase space over which each
integration takes place, and because of the complexity
of the coefficients Egs. (8) (which now need to be inte-
grated over 1), computation of the solution becomes sig-
nificantly more demanding. Fortunately the basis func-
tions A;_4 are functions of 2 only, and the coefficients
{B,7,6} are functions of i only, allowing the relevant
contributions to wi_4 to be calculated separately for ef-
ficiency. Tabulated trigonometric values were again used
when performing the integration over Euler angles (2.
However, the coefficients given by Egs. (8) were evaluated
using double-precision trigonometric functions, since the
solution of Eq. (13) was found to be very sensitive to
the accuracy of their computation, occasionally not con-
verging when tabulated values were employed. In ad-
dition, the Gauss-Legendre quadrature used to perform
the integrations over solid angle was found to be insuffi-
ciently accurate as kK — oo, being unable to capture the
rapid change of the integrand with ¢. Consequently, the
Romberg method [47] was employed for integration over
the internal bond angle.

Furthermore, the first-order nature of the transition
allowed the convergence condition, Eq. (23), to be re-
laxed somewhat when producing these data. Taking
S; > 0.1 as the criterion for a phase transition, the condi-
tion |S; — S9'9| < 10~° was sufficient to produce smooth
phase boundaries. Small sections of data were checked
with the more stringent condition, Eq. (23), in order to
verify the validity of this relaxation.

Figure 6 illustrates the phase ordering of flexible
dimers, comparing three contrasting cases: a very stiff
molecule (k = 100kpT with a correspondingly nar-
row distribution of bending angle fluctuations: standard
deviation o, = +/(¥?) =~ 8.5°); and a very flexible
molecule (k = 0.01kpT and a practically flat distribu-
tion of bending angle fluctuations: standard deviation
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FIG. 6. Order parameters and excess free energy (in units of
kpT) plotted against reduced density for three dimers: stiff,
with x = 100kgT (plain curves); medium, with k = 1kgT
(curves labelled by ®); and very flexible, with k = 0.01kpT
(curves labelled by ). In all cases we find a strong first-
order transition to the prolate Ni; phase, which in the case
of non-stiff dimers is followed by a Nﬁ—NB transition (marked
by arrows).

oy =/ (¥?) =~ 52°). A molecule with intermediate stiff-
ness (k = 1kpT and oy = /(¥?) ~ 43°) is also included.
For stiff dimers we find a single first-order transition to a
prolate uniaxial N{F phase. Note that there is a nonzero
equilibrium excess free energy arising from the Ss term
in the mean-field potential, which will always be present
when incorporating the intra-molecular energy into Egs.
(20)—(21), and so an additive constant needs to be intro-
duced to correctly compare AF' in the three cases, Fig.
6(b).

For k < kT we find a second transition, from the
uniaxial nematic phase into a biaxial phase Ny, where
the key order parameter Sy # 0. This is unexpected;
unlike the case of the rigid bent rod of the previous sec-
tion, the flexible dimer has no intrinsic biaxiality, with
its equilibrium shape straight (at ¥ = 0). It neverthe-
less appears that, when the spread of dimer fluctuations
becomes sufficiently wide, the system finds an advantage
in restricting these fluctuations to a single plane instead
of allowing the full range of the angle y to be uniformly
explored. We hypothesise that this is the origin of the
biaxial order emerging at higher densities; ordering ori-
entationally along one additional axis maximises free vol-
ume, as in the Onsager picture of the I-N transition. The
two transitions are very close (i.e., the uniaxial nematic
phase has a very narrow range) for flexible dimers, while
for kK = 1kpT, the two transitions rapidly diverge in re-
duced density, to between ¢ =~ 3.0 and 4.1 (see Fig. 6).

The most remarkable feature of the results presented in
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FIG. 7. Order parameters and excess free energy (in units of
kpT) plotted against reduced density for dimers with bending
stiffness & crossing over from the Ni to the Ng phase. For
%k = 0.855kpT (curves labelled by 0) the second transition is
into the phase with a negative S4; for k = 0.856kpT (labelled
by ®) the emerging phase has a positive Ss. The transitions
at k = 1kpT (plain curves) are also shown for reference; the
biaxial transition for this bending stiffness is marked by the
arrow).

Fig. 6 is the comparison of the transitions and phases at
k = 1kpT and 0.01kpT. On increasing the density, both
systems enter into a phase with positive order parameter
S7: this is the uniaxial prolate nematic NIJE. Then, the
next transition takes the system into a biaxial nematic
phase with a very small change in S7, but with the rapidl
y growing order parameter Sy. Surprisingly, there appear
to be two different biaxial nematic phases - one with pos-
itive Sy, the other with negative Sy. It is tempting to re-
late these two phases to N;{ and Ng, which we discussed
in section IITA (Fig. 5). There are, however, significant
differences: here, the two other order parameters (S3 and
S3) remain zero, and the principal uniaxial order param-
eter S7 remains positive. If we recall the definitions of
our four order parameters, which are the averages of the
Wigner functions, Egs. (7), it should not surprise us that
S3 = 0, as this order parameter is a measure of molecular
biaxiality, and a flexible dimer is not intrinsically biaxial
because it can bend in any plane. On the other hand,
S is (like S4) a measure of phase biaxiality; it describes
the asymmetry of the fluctuations of the long molecular
axis about the primary director. In the limit of strong
uniaxial order (S; — 1), which is approximately realised
here, it can be proved [50] that Sy oc S4 (1 — S1) and Sy
is thus expected to be small.

Fig. 7 zooms into the crossover region where the switch
between these Ng and Ng phases occurs, comparing sys-

tems with k = 0.855kpT" and 0.856kpT (again, the case
of kK = 1kpT is added for reference). We find a sharp
discontinuous switch between negative and positive Sy,
which then varies little on further density increase, asso-
ciated with a clear jump in the free energy AF at the
transitions, while having a negligible effect on the S; 23
order parameters. Comparing these results with Fig. 6,
we see that the ‘strength’ of this discontinuity at the Ny-
Ng transition diminishes in both directions away from
the critical value of k ~ 0.86kgT. The fact that the N;{
and N phases have precisely the same free energy, and
evidently Sy in the Ng phase is simply —S4 in the Ng
phase, suggests that Ng and Ng are not two physically
distinct phases, but rather the same phase with the sec-
ondary director along the x- and y-axes, respectively. In
other words, when the V-shaped molecule preferentially
lies in the zz-plane, Sy > 0, and when the V-shaped
molecule is in the yz-plane, Sy < 0, cf. the definition of
Sy in Egs. (9).

The full phase diagram of the system in terms of
the variables: (reduced) density ¢ vs. bending stiffness
(k/kpT) is shown in Fig. 8. This is a map of the param-
eter space where apparently four phases exist: isotropic,
prolate uniaxial nematic, and the two biaxial nematic
phases (which we assert is the same phase, with perpen-
dicular principal axes). The topology of the I-N; tran-
sition line is as expected: when the bending stiffness is
very high, the dimer behaves as a rigid rod of length 2L;
its ordering transition occurs at a lower reduced density
¢ =~ 1.32, which matches exactly a separate calculation
of the Onsager I-N transition of rigid rods for our choice
of units (remember that our reduced density ¢, defined
in Eq. (22), is constructed in such a way that results do
not depend on the molecular volume L2D, but the vol-
ume fraction ¢ refers to individual rods of length L). In
the opposite limit of a very flexible dimer, there is no
corresponding straightforward a priori limit to be met.
Even when the bending angle v is not constrained by any
energy penalty, the entropic effect of two connected rods
delays the onset of orientational order, thereby dramati-
cally driving up the transition density.

At a higher density and low bending stiffness, a second
transition line, between the N$ and Np phases emerges.
We labelled the two biaxial phases N]Jg and Ny in this
map according to the sign of the Sy order parameter. The
IfN#J and N$7NB transitions appear to be very close as
k — 0, and we are not certain whether this constitutes
a single Landau point, which we miss for some reason
of numerical fidelity, or whether the small separation of
the two transitions is a real physical effect. In either
case, we must remember that this physical system is very
different from the naturally biaxial rigid bent-rod, and
the nature of orientational ordering of two linked rods
with no bending penalty is very different too.

We were able to numerically map the topology of the
crossover region between N‘g and N phases with some
accuracy, as shown in the inset of Fig. 8. Again, we
wish to be certain whether the two biaxial phases, N§
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FIG. 8. Reduced density-bending stiffness phase diagram of
flexible dimers. The 17N$ phase transition boundary (lower
curve) reaches the asymptote of ¢ ~ 1.35 at very large k.
For small x the flexible dimers also form the biaxial phase at
higher density. Regions corresponding to the I, N{7, N and
N5 phases are labeled in the figure. The vertical arrows mark
the three density scans presented in Fig. 6. The horizontal
arrow in the inset marks the stiffness scan explored in Fig. 9.

and Ny, are always separated by an infinitesimally thin
region of uniaxial nematic phase, or if there is a direct
transition between them. We therefore attempted to scan
this phase map in a different direction: taking as constant
the reduced density ¢ and varying the dimer stiffness s
in great detail; the result is presented in Fig. 9. It is
clear that there is a narrow region of uniaxial nematic
phase separating the two versions of the biaxial phase
(i.e. in order to transform from Ny to N the system
needs to first melt into a higher-symmetry Ny phase).
We carried out the same scan at a much higher density
of ¢ = 5, finding the same (although narrower) region of
the uniaxial nematic phase.

To understand this phase ordering, one needs to cor-
relate the phases we observe with the theoretical analy-
ses of Lubensky and Radzikhovsky [3], and of Luckhurst
et al. [45], which establish the symmetries and possible
transitions between many possible phases. Their analy-
sis is based on phase symmetry, and therefore our biax-
ial phases (or just one fundamental phase Ng) must be
among their classification. However, linking the molecu-
lar shape with the phase symmetry, which is often the ba-
sis for understanding the phase ordering, is not straight-
forward since our molecules are not intrinsically biaxial,
nor do they have a rigid shape. As such, neither theory
[3, 45] applies directly to our system; the dynamical ef-
fect of the bending fluctuations of a flexible dimer on the
equilibrium phase ordering is yet to be fully understood.

The bending stiffness x of the dimer is the second
control parameter in this system (alongside the dimen-
sionless reduced density ¢); we used its non-dimensional
form k/kpgT to measure the strength of this interaction
per molecule, and also to compare with the overall free

0.8 T T T I

0.6 *S'] -

04 L 733 _
02 —Sa i a

Order parameter

(a)

-1.6+

170

1.8 B T _

1.9l _
NJ (b)
2 I I I I

0.6 0.7 0.8 0.9 1 1.1

Bending stiffness &/ kgT

Free Energy

FIG. 9. ‘Stiffness scan’ of the phase diagram across the
crossover region between the N to Ng phases, at ¢ = 4.1.
Plot (a) shows the four order parameters, with the notable
feature that the value of S in Ng is just minus its continu-
ation from N3 (as illustrated by the dashed line). Similarly,
plot (b) shows the values of the free energy difference, where
we see that the two biaxial phases, N; and Ny have essen-
tially the same free energy (by extrapolation). Likewise the
free energy difference of the uniaxial phase Ny sandwiched
between the two biaxial phases is the continuation of that of
the uniaxial phase at larger x (as illustrated by the dashed
lines).

energy difference AF' between the emerging phases pre-
sented in most plots. In a thermally-fluctuating system
with unrestricted values of the variable i, the variance
(standard deviation o) of its equilibrium distribution
would be given by oy = /kpT/k. Qualitatively, this
would have to be the limiting case for very stiff dimers,
for which the boundedness of the i-range is effectively
never probed. However, for moderate and low values of
Kk, the finite range of ¥ (¢ < 90°) will become signifi-
cant; in the limiting case of kK — 0, for which the fluc-
tuations of 1 are unrestricted, the variance saturates at
oy = /72/12. Our system is fully athermal, intended
to be driven purely by the entropy of excluded volume,
but the bending energy, Eq. (16), is added to the purely
entropic effects. We have effectively included this poten-
tial energy alongside all other effects by scaling x/kpgT.
A very interesting feature needs to be highlighted: at
our ‘critical’ value of stiffness k ~ 0.86kpT (where the
crossover between Nii and Ny occurs) we calculate the
distribution variance oy to be almost exactly 45°. For
Kk > 0.86kpT,i.e. in what we call the NE phase with pos-
itive Sy, the fluctuating dimer retains an extended shape



with a largely obtuse angle between the connected rods.
Not surprisingly, we find the dimer principally aligned
along z with its azimuthal fluctuations biased in the zy
plane (the apex pointing along z). On the other hand,
for k < 0.86kgT (i.e. in the N region), the r.m.s. angle
between the two rods is acute. We imagine that the V-
shaped (average) dimer aligns with its apex pointing up
the z axis, while the two rods preferentially reside in the
yz plane, producing the negative Sy.

Finally, a note of caution is in order - as detailed above,
our theory does not reproduce the correct behavior when
1 — 7/2. Very flexible dimers would have a noticeable
probability weight corresponding to configurations in this
range, and so the theory may become unreliable in this
limit. This was mentioned above in the discussion of Fig.
8 when k — 0.

IV. CONCLUSIONS

In this paper, the isotropic-nematic phase transitions
of rigidly bent and flexible dimers were investigated using
the Onsager second-virial theory of hard particle fluids in
the manner of Straley, combined with a superposition ap-
proximation. The results of [8] were confirmed, and the
continuous phase transition at the Landau point exhib-
ited. Flexible dimers were studied by modifying Straley’s
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method to include an intra-molecular energy term that
penalises bending, the results obtained being justifiable
on physical grounds. An apparently novel biaxial ne-
matic phase of intrinsically uniaxial flexible dimers was
found, although the molecules do not possess any per-
manent biaxiality. This new phase may, however, be an
artefact of the approximations employed, for example the
weak coupling between dimer stiffness and order param-
eters, and requires further investigation by either theory
or simulation. The phase diagram of flexible dimers was
plotted, which exhibits a non-trivial topology, with phase
transitions between isotropic, prolate uniaxial nematic,
and biaxial nematic phases, depending on the density and
bond stiffness. A natural continuation of this work would
be to investigate the effect of a non-zero equilibrium bond
angle, ¥y # 0, on the emergence and stability of various
orientationally ordered phases of flexible dimers.
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