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Abstract

Biochemical networks maintain cellular homeostasis by processing information from
the intra- and extra-cellular environments and coordinating appropriate responses to
stimuli and stressors. During carcinogenesis, cells accrue genetic alterations that rewire
signalling pathways, eventually leading to the partial loss of homeostatic control and
cancer- related phenotypes. Cancer is a very heterogeneous disease with genetic alterations
that exhibit vast variability within a tumour, between tumours of different tissues, and
patients. Despite the enormous advances the community has achieved in understanding
the molecular causes of cancer, the mechanisms of pathogenicity of specific mutations
are often unclear, severely limiting the efficacy of the therapeutic intervention and
disease management. Moreover, we are recognizing that driver mutations once considered
sufficient to induce initiation and promotion of cancer are more frequent than originally
expected also in healthy tissues. In addition to genetic variability, cell-to-cell variability of
non-genetic origin is increasingly recognized – yet poorly understood – as a fundamental
force fuelling carcinogenesis and resistance to therapies. We therefore develop biochemical
imaging techniques to investigate aspects of cancer heterogeneity that are currently
challenging – if not impossible – to study.

KRAS is a driver gene significantly involved in lung, colorectal and pancreatic
carcinogenesis. Various types of KRAS mutations respond differently to therapy, and
some have been linked to the emergence of resistance. However, the mutation-specific
mechanisms leading to these phenotypes is not well understood. We used KRAS as a
clinically relevant model to study the effects of mutations at codon G12 on signalling
dynamics and phenotypic changes, including cell-to-cell variability.



viii

In this thesis, first I introduce the concepts of evolution-driven oncogenesis, genetic
and non-genetic heterogeneity and signal transduction pathways. In Chapter 2, I describe
the characterisation of KRAS mutation-specific MAPK signalling. To do this, I generated
an isogenic panel of cells stably expressing a FRET sensor and developed an experimental
pipeline including automated biochemical imaging, microfluidic-based stimulation, and
custom image analysis. Using these tools, I have identified differential signalling dynamics
and heterogeneity in response to epidermal growth factor (EGF). Taken together with
other results, we hypothesise the presence of a weakened negative feedback loop in cells
with a G12D mutation in KRAS. In Chapter 3, I report on methodological developments
aimed at drastically improving our capability to characterise biochemical networks in
single living cells. I have optimized novel pairs of fluorescent proteins dedicated to
biochemical multiplexing and capable of simultaneously monitoring three biochemical
reactions. Moreover, I developed an expandable software pipeline that yields single-cell
ERK signalling data and several types of analyses from microscopy FRET imaging.
Finally, I further develop optogenetic systems designed to dynamically and optically
activate KRAS in single cells.

In conclusion, I show the effects of KRAS mutations on signalling dynamics and cell-
to-cell variability, a first step towards a deeper understanding of how genetic and non-
genetic heterogeneity may cooperate to make of cancer the terrible disease we know. At
the same time, I have improved methodologies designed for the novel study of biochemical
networks, laying down the foundations of system-level investigation in single living cells.
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Chapter 1

General Introduction
Heterogeneity & Cell Signalling

To our knowledge, cancer has been a disease that has afflicted the human species for
a significant period of time, given that the first descriptions of the disease date back
from the egyptian civilisation (Faguet, 2015). It is only in the last century that we have
invested a copious amount of work into understanding this disease. Such investment has
allowed us to not only define its pathological features, but also grasp, for the first time
in History, the fundamental origin of cancer. Tumorigenesis is intricately and directly
linked to genetic aberrations (Vogelstein et al., 2013). To this date however, due to the
high-order complexity of such disease, we still struggle to manage - let alone cure - most
tumours. Genetic information is carried by each of the 30 trillion cells (Sender et al.,
2016) that make up the human organism. Thus, the physical outgrowth of tissue that we
come to know as cancer is, in fact, a disease of homeostatis. In addition to metastasis and
drug resistance, another major challenge we face today is understanding tumourigenesis
at its earliest steps.

At the micro-scale world, just as in the perceived world, genetics – although important
– are not the only factor contributing to life. How early genetic aberrations affect cellular
function has been thoroughly studied. Although single-cell research approaches are
not recent (Novick and Weiner, 1957), it is only in the last decade that major efforts
have been directed towards understanding cellular function and gene regulation at the
single cell level. Contextual single-cell approaches (i.e. the question on how cell-to-cell
interactions affect cellular function) as well as the inherent and natural variability existing
in biological systems are fields that have been studied rather separately in cancer research.
Through the coupling of these aspects we expect to gain a thorough understanding that
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will place us in a significantly better position to describe in detail the earlier stages of
tumourigenesis.

1.1 Evolution: Driver of Oncogenesis & Tumour Pro-
gression

Early Concepts

Two centuries ago, Jean-Baptiste Lamarck proposed a first theory of evolution of the
species that emphasised the environmental influence on species’ development (Lamarck,
1802, 1809). Lamarck argued that the use and disuse of body parts would result in
their enhancement or disappearance over time (Lamarck 1809). Half a century later,
Charles Darwin proposed the theory of evolution by natural selection arguing that natural
selection favours physical or behavorial changes across generations through inheritance of
characteristics that make individuals fitter in a given environment (Darwin and Kebler,
1859; Wallace, 1867). Natural selection is nowadays the established model for the
evolution of the species but the debate and controversies regarding evolutionary models
might still be valuable in cancer evolution. Lamarck implied that evolution is driven
by behaviour, Darwin stipulated that nature itself selects traits from a population that
exhibits pre-existing variation.

Fig. 1.1 The concept of evolution was outlined by both Charles Darwin and Jean-Baptiste
Lamarck in the 19th century. The latter suggested that evolution is species-driven through
the use (or disuse) of organs involved in a specific behaviour. Darwin stipulated that
both (existing) variation and a changing environment (exerting natural selection on a
diverse population) are required for a species to evolve.
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Besides the mechanistic explanation of evolution there are certain universal implica-
tions - of which not all will be outlined in the interest of sustaining the reader’s attention.
First, the traits that species develop across generations provide enhanced adaptation
to their environment. In other words, evolution fosters characteristics that increase
the likelihood for survival. Moreover, access to resources and the presence of predators
(other species) threatening a species’ safety are important factors (or selection forces in
Darwinian terms) affecting its evolution. Not to mention, the rare but possible shock
that natural disasters may cause. In absence of these - which are essentially depictions
of a changing environment - there would be no reason for biological adaptation - and
thus evolution - to occur.

In Cancer

Much like species in the visible world, such concepts have been theorised in the context
of oncogenesis (Nagy, 2004; Nowell, 1976) and observed at the cellular level (Reid,
1996). Evolutionary theory of tumour development has been widely accepted and further
elaborated (Greaves, 2015; Vogelstein et al., 2013).

The very material that acts as the vehicle for generational transmission of traits
(i.e. DNA) can acquire ’defects’ or ’faults’ – anomalies such as mutations are osberved
in tumours. A cell’s survival depends on its fitness, which is regulated by mutational
burden – caused by cellular population evolution and DNA damage – and subjected to
tissue-specific natural selection predispositions (Ostrow et al., 2016). Thus some tumour
types are known to display particular genetic anomalies whereas others show very few
or different genetic aberrations (Vogelstein et al., 2013). Of important note though,
over millennia mammalian cells have developed robust DNA mechanisms (low error-rate
replication and damage repair) that minimise somatic (non-heritable) evolution (Ostrow
and Hershberg, 2016). Thus each human individual is equally likely to experience similar
somatic evolution. Moreover, interactivity between different cell populations is another
aspect of tumour development gaining investigational traction due to the likely influence
it may have on existing populations (Tabassum and Polyak, 2015).

Thus, tumorigenesis is shaped by the eventual accumulation of fitness-enhancing
genetic mutations that are selected for by contextual selection forces.

The Genetic Basis

Tumorigenesis is a phenomenon that arises from an iterative combination of a whole
range of complex biological events. The most well known contributor to evolutionary
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trajectories of tumour potential are DNA defects. A genetic aberration has the potential
to completely disrupt cellular life (Vogelstein and Kinzler, 2004). On most occasions,
mutations and other genetic aberrations are events effectively dealt with by cellular
DNA damage repair (DDR) mechanisms. These have evolved over millennia to correct
the various types of damage DNA can succumb to. To name a few, single nucleotide
damage (ROS-induced) is resolved by Base Excision Repair (Wilson and Bohr, 2007),
whereas homologous recombination (HR) and non-homologous end-joining (NHEJ) deal
with double strand breaks (Sung and Klein, 2006). Repair mechanisms and other DNA
processes such as replication are not fail-safe (Rodgers and Mcvey, 2016) and on a
span of human lifetime a minuscule error rate is sufficient for cells to acquire mutations
(Chatterjee and Walker, 2017) (see (a,b) in Fig. 1.2) - some of which may bypass
cellular homeostatic controls and be inherited by progeny. Mutations can be functionally
beneficial, neutral or deleterious, altough the latter two are most common. Thus, the
appearance of genetic alterations is a crucial first ’ingredient’ to develop evolutionary
trajectories ultimately leading to cancer.

Fig. 1.2 Genetic processes such as DNA damage repair (DDR) mechanisms (a) and even
DNA replication (b) can lead to cells acquiring new mutations. Over many iterations,
cells become genetically distinct and are thus classified as different subclones (derived
from a common clone). Heterogeneous populations with genetically distinct subclones
are more likely to survive under the selective pressures of different environments (c, from
Greaves and Maley (2012))

Variation

As cells continue to live on and divide, they inevitably and constantly experience events
of genetic as well as non-genetic nature. This results in the accumulation of (cell-
specific) alterations over time. However, if the cumulative combination of these become
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homeostatically deleterious or unbearable, cell death is triggered and said alterations
disappear. Importantly, it is reasonable to assume that not one cell is physically identical
to another nor does it experience the exact same sequence of environmental events as
any other cell. Therefore, every ’daughter’ cell that survives lasting changes provides
the evolutionary framework to enable tumour-forming cell candidates, each presenting
a unique combination of genetic and functional features. This process results in the
appearance of clones and over time greatly fosters diversification of clonal populations.
This variability is crucial, as without it one’s ’luck’ (probability of survival) is much
diminished in face of environmental changes (see (c) in Fig. 1.2). The lower the number
of different ’options’ (clones) the lesser the likelihood of any of these being viable and
selected for.

1.2 Genetic Mutations Rewire Cells

The appearance of mutations that stand the test of time is what drives opportunistic
evolutionary trajectories that may result in oncogenesis. However, a single gene mutation
is not sufficient to induce oncogenesis (Knudson, 1971). To this end, we have formulated
the concept of cancer onset as the result of the sequential acquisition of a particular
number and set of mutations affecting select genes (Fearon and Vogelstein, 1990; Nowell,
1976). Such genes - commonly known as driver genes - have gained particular attention
due to 1) their high mutation frequency in tumours and 2) the mutation-induced effect on
their respective functional role in cellular homeostasis (see Fig. 1.3). It is important to
emphasize that it is fairly common to observe passenger mutations that have a ’neutral’
effect in highly mutated genes (scenario 1). Yet, there are other mutations at specific gene
loci that induce significant protein biochemical changes resulting in a survival advantage
(Vogelstein et al., 2013) – driver gene mutations. Driver genes contain such mutations,
granting cells a fitness advantage through gain of function means (eg. constantly active
KRAS or EGFR) or inactivation of tumour suppressor genes such as BRCA2 or TP53.
The latter was discovered over four decades ago (Lane and Crawford, 1979) and found
to be mutated in 42% of cases across 12 different tumour types (Kandoth et al., 2013).
TP53 has an important role in monitoring DNA damage (Maki and Howley, 1997) and
regulating cell cycle progression (El-Deiry et al., 1993) and aptoptosis (Toshiyuki and
Reed, 1995). Thus, it is evident that driver TP53 mutations have profound & irreversible
molecular effects that corrupt the functional systems maintaining cellular homeostasis.
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Fig. 1.3 Mutations in driver genes fundamentally change cellular wiring resulting in
anomalous and unregulated behaviour. Such genetic change can result in ’fitter’ cells
owing to their sustained proliferation, for example. Further DNA damage induced by
replication (stress) promotes the accumulation of genetic aberrations in pre-malignant
cells. Commonly found to be mutated are the TERT and TP53 genes, resulting in
replicative immortality and escape from apoptosis, respectively. Figure from Macheret
and Halazonetis (2015).
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An explanation as to why driver gene mutations are observed in a select number of
tumours may be due to their dependency on other hitchhiker gene mutations that may
not have a direct effect, but are necessary for the driver gene to reach its full oncogenic
potential (Maley et al., 2004; Maynard and Haigh, 1974). Hitchhiker mutations may be
more frequently mutated in certain tissues due to tissue-specific microenvironment which
itself may be shaped by tissue function and its required homeostatic activities.

Driver gene mutation-induced rewiring is the target of molecular therapies to selec-
tively eradicate cancer cells (Chapman et al., 2011; Cobleigh et al., 1999; Paez et al.,
2004). Although these have had resounding success, it is not uncommon to observe a
mid-to-low response rate in a cohort of patients with the same cancer type. Often, lack
of response to treatment is attributed to the high level of variability among cells of a
tumour - a characteristic that has been greatly scrutinized in the last decades with the
advent of single-cell assays.

1.3 Diversity – the ’Gift’ that Keeps on Giving
In Darwinian evolutionary theory, diversity is a necessity for species to increase their
chances of survival via acquisition of new traits. In other words, in the absence of
heterogeneity, species threatened by a change in environment or event are much more
likely to become extinct, since there would be no other (advantageous) traits to select
for.

In the cellular context, the terms heterogeneity, diversity or variability are used
to describe the different phenotypes present in a cell population. A phenotype is the
combination of observed characteristics of an organism – here a cell – known to derive
from its genome and epigenome resulting from its interaction with the surrounding
environment. Phenotypic heterogeneity implies the presence of non-genetic variability
(such as dissimilar protein levels among cells, for example) or genetic diversity (via
genome instability), or – most likely – both (see (c) in Fig. 1.4).

The most basic and obvious observation of variability in cancer is that of the range of
tissues in which tumours can arise (see (a) in Fig. 1.4), demonstrating that oncogenesis
cannot be attributed to a particular tissue, even though tissue context is involved in the
process (Haigis et al., 2019; Schneider et al., 2017). In fact, cancer can either arise locally
as a solid mass or develop systemically in liquid form (such as leukemia). Therapy may
vary depending on tissue of origin, since accessibility will impact on the possibility of
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performing the preferred strategy – surgery – for solid tumours. Thus, this ’first grade’ of
variability in cancer – form and location – already greatly influences treatment strategies.

The picture is unfortunately much more complex. In addition to the aforementioned,
a tumour’s aberrant cells can display various kinds and degrees of variability (see (b) in
Fig. 1.4), of which genetic heterogeneity has been well documented (Reiter et al., 2019;
Vogelstein et al., 2013). Such heterogeneity can be broadly categorised as follows:

• inter-patient: among cancer patients with the same tissue of origin

• inter-tumour : across (a patient’s own) tumour sites (Curtis et al., 2012; Nakamura
et al., 2015)

• intra-tumour (ITH): within the primary tumour site itself (Gerlinger et al., 2012;
Karaayvaz et al., 2018)

Less documented although potentially equally important are the contributions made
by the microenvironment (Lloyd et al., 2016), epigenetic regulation (You and Jones,
2012), state transitions (Hoek and Goding, 2010) - to name but a few of the non-genetic
factors involved in ITH.

Oncogenesis entails the development of abnormal cells that may reach malignancy –
described as the result of a step-wise acquisition of aberrations in specific genes (Fearon
and Vogelstein, 1990). However, it is important to consider 1) the potentially infinite
number of cellular evolutionary trajectories, some of which result in malignancy and 2)
that oncogenic development does not halt once malignancy is reached. The extent of
and means leading to a tumour’s heterogeneity has been well-documented in the genetic
context. In fact, genetic profiling has enabled the deciphering of a tumour’s overall
evolutionary trajectory (Alexandrov et al., 2013; Govindan et al., 2012; Nik-Zainal et al.,
2012), as well as revealed the high number of dissimilar mutational profiles present in
tumours (Stephens et al., 2012). Tumour cells preserve an ’active layer’ of (genetic)
heterogeneity (due to genomic instability) enabling development under selection forces.
Malignant cells display frequently observed oncogenic features such as uncontrolled
growth and evasion of cellular death programmes, among others (Hanahan and Weinberg,
2011). Malignant phenotypes can result from various evolutionary trajectories (and not
just specific trajectories), be it through parallel (same clone of origin) or convergent
(different ancestral clone) evolution (Francis et al., 2014; Venkatesan et al., 2017). The
’end’ (malignancy) can be reached through different means (trajectories) (Radhakrishna
et al., 2016), resulting in a genetically diverse cell population.
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Fig. 1.4 Cancer does not develop in specific tissues; an even and broad distribution of
(solid) tumour types were observed in the USA in 2018 (a, from Reiter et al. (2019)).
Heterogeneity can be observed at different levels; across patients, between a patient’s own
tumours and within tumours as well (b, adapted from Burrell et al. (2013)) Non-genetic
factors such as the epigenome acts as an additional player (and inducer of diversity)
involved in shaping the cellular phenotypes (c, from Wooten and Quaranta (2017))
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All these considerations taken, cancer is far from a disease recognised as being
reproducible. More on the contrary and as a matter of fact, irreproducibility effectively
impinges on success rates of many therapies. Heterogeneity – which increases in time,
emphasizing the value of early detection – is the main cause of resistance to therapy
and relapse (Pribluda et al., 2015; Shi et al., 2014). These are the current major clinical
challenges for disease management. Personalised medicine is the best solution to address
clinical bottlenecks and more effectively treat cancer patients. Although much progress
has been made, to enlighten our insight we need to significantly deepen our understanding
of how heterogeneity arises in the first place and – most importantly – how it contributes
to a tumour’s development. Armed with the relevant answers to such questions will
put us in a better position to prevent and manage cancer. The following sections will
summarise known causes (and effects) of genetic and non-genetic variability contributing
to phenotypic diversity and tumour behaviour.

1.3.1 Genome Instability Induces Genetic Heterogeneity

The driving force of genetic heterogeneity derives from genome instability (Burrell et al.,
2013). It creates opportunistic genetic aberrations that are then subjected to selection
pressures, potentially resulting in the acquisition of fitness-enhancing mutations. The
vast array of DNA stressors result in a whole range of types of aberrations. For example,
errors in DNA repair mechanisms, replication and chromosomal segregation contribute
to genome instability. This genetic imbalance induces specific alterations that jeopardise
genomic integrity. Some modifications, though, are more commonly observed than others.

Single nucleotide damage can be the result of either endogenous or exogenous chemical
events. In a recent analysis of a large dataset of somatic mutations representative of
most cancer types, the authors characterised up to 49 mutational signatures (Alexandrov
et al., 2020) - the ’marks’ left behind by specific genome instability processes (see (a,c)
in Fig. 1.5) - displaying the breadth of events causing genetic alterations. In another
analysis of over 30 cancers, Alexandrov & colleagues found 20 characteristic mutational
signatures (Alexandrov et al., 2013). Of these, cytosine (C) to thymin (T) transitions at
CpG sites (age-related) and C to T and cytosine to guanine (G) mutations at TpC sites
(APOBEC-related) were observed in numerous tumour types whereas other signatures
were only tumour-type specific (Alexandrov et al., 2013). The cause of many of these
mutational signatures however is still unknown (Helleday et al., 2014). Exogenous sources
of genomic instability are easier to identify. When comparing non-small-cell lung cancer
(NSCLC) from heavy cigarette smokers vs non-smokers, it was found that the former
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displayed a tendency towards C to A transversions as well as amplified copy numbers
and mutations (Govindan et al., 2012). Inconveniently and paradoxically, chemotherapy
treatment - used with the purpose of eradicating or managing cancerous tissue - such as
the use of platinum compounds - also contribute to genomic instability (Johnson et al.,
2014).

Intratumour heterogeneity is also dependent on and fueled by chromosomal instability
(Lengauer et al., 1997). Deficiency in DNA repair mechanisms such as in homologous
recombination (HR) are known to induce a particular set of copy number aberrations. This
results in a specific genetic profile of prognostic value, as suggested from a study where
HR-induced signatures predicted response to cisplatin treatment (Birkbak et al., 2012).
Other genetic single events such as chromothripsis - localised chromosomal rearrangements
- result in catastrophic effects of varied magnitude and have the potential of seeding
cancer-driving lesions (Stephens et al., 2011). Such aberrations can be quantified and
used as a surrogate marker of chromosomal instability (Birkbak et al., 2011) - typically
associated with poor prognosis (McGranahan et al., 2012).

The described insults (among others not mentioned) result in a particular genetic
imprint (signature) (see (c) in Fig. 1.5), thus reflecting the process or damage encountered.
This provides insight into oncogenesis and tumour evolution but there are still mutational
signatures that are yet to be fully harnessed as a useful tool for the design of personalized
therapies. Intratumoural heterogeneity observations thus provide vital developmental
insight and can inform on disease prognosis (Andor et al., 2016; Maley et al., 2017).

Particular sets of mutated genes and genome instability mechanisms found in tumours
tend to be tissue-specific (Ciriello et al., 2013; Graham et al., 2018). Thus, much of the
cancer research carried out until the present day focuses on understanding tissue-specific
tumour behaviour, with the objective of finding treatments that impinge or ultimately
eliminate (tissue-specific) cancer cells. Successful pre-clinical treatments validated in
vitro and in vivo further progress onto cancer clinical trials which, by convention, enroll
patients with tumours of the same tissue of origin. However, in cases where the tested
therapy is proven to be clinically effective, it is common to observe lower and various
levels of efficacy and even lack of it in certain patients. Thus cancer originating from a
specific tissue does not guarantee response to targeted therapy. This is a clear indicator
that each patient’s tumour is unique and that tissue-specific tumours could be considered
as collective of diseases of the same type - emphasizing individuality - rather than a
single disease characterised only by its origin.
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Fig. 1.5 The multitude of events resulting in genome instability arise from within a cell
and its environment (a). Certain molecules such reactive oxygen species (ROS) can
derive from both milieus via metabolism (endogenous) or ionising radiation (exogenous).
Driver genes such as oncogenes PIK3CA and IDH1 and tumour suppressors RB1 and
VHL are frequently mutated in tumours (b, from Vogelstein et al. (2013)). However,
aberrations can greatly vary in type and gene locus as seen with the tumour suppressors.
Genetic events such as those shown in (a) are known to ’imprint’ specific patterns in the
gene. Over time, the cumulative imprint of all these processes result in a mutational
’signature’ representative of a cell’s history (c, from Helleday et al. (2014))
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Because many solid tumours take a long time to develop, they are deemed to result
from complex evolutionary trajectories, themselves defined and differentiated by fitness-
inducing genetic alterations (Scott and Marusyk, 2017) inherited or acquired through
somatic mutations. Therefore, a substantial contributor to a tumour’s ’uniqueness’
is its genetic makeup. This results in inter-patient heterogeneity. For example, two
patients of similar age with colorectal cancer (CRC) are likely to share aberrations in
known colorectal driver genes, namely APC and KRAS. However, those aberrations
are likely not identical (see (b) in Fig. 1.5) and the additional set of non-driver gene
(passenger) mutations in each patient will further differentiate them from one another.
Thus, commonality may be found in a small subset of genes crucial for oncogenesis, but
the diversity derives from the combination of mutations encountered in each tumour
(Stephens et al., 2012; Wood et al., 2007). The aberrations found in driver genes can vary
by mutation type and gene location, and it is not uncommon to observe differences in
these across patients. Such subtle differences have the potential to affect protein function
in different ways and to different extents.

In fact, it is well documented that for certain crucial genes such as KRAS, clinical
outcome has shown to be dependent on mutations’ location and substitution type. In
a study involving CRC patients treated with cetuximab and chemotherapy, those with
KRAS G13D mutations had better overall survival (OS) and progression free survival
(PFS) than those with other KRAS mutations (De Roock et al., 2010). In another
study looking at metastatic CRC with the same treatment regime, depending on the
KRAS mutation, tumours had superior (G13D) or worse (G12V) response and PFS
when compared to chemotherapy treatment only (Tejpar et al., 2012). Molecular features
such as transcriptional activity and anchorage independent growth has been shown to
be mutation-location dependent (Stolze et al., 2014). Moreover, specific substitution
type mutations within the same KRAS codon 12 can differentially activate downstream
signalling pathways (Ihle et al., 2012).

Thus, tumours derived from the same tissue should not necessarily be treated equally.
Although two tumours are considered similar enough to be categorised as part of a
group (tissue-specific category) they can be distinct enough from one another to be
considered different (molecular-specific category). If said tissue-specific tumours are
considered dissimilar diseases, it begs the question as to how they have come to differ
from one another across patients. What’s more, one can make the reasonable speculation
that these tumours have developed in dissimilar ways resulting in small yet significant
differences of clinical relevance.
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1.3.2 Non-Genetic Forces – The Ace Up a Tumour’s Sleeve

Heterogeneity has often been considered and described exclusively at the genetic level,
due to the well-corroborated fact that genetic aberrations contribute to oncogenesis and
the rise of characteristic cancer hallmarks (Hanahan and Weinberg, 2011). In the last
decade however, the field of cancer research has seen a rise of evidence describing various
forms of non-genetic heterogeneity (Brock et al., 2009; Marine et al., 2020; Pisco and
Huang, 2015; Tabassum and Polyak, 2015) - a concept traditionally thought of as noise,
randomness or stochasticity having little or no effect on population fitness and seen as a
byproduct of evolution (Via, 1993) rather than a contributor.

Growing Evidence

Variability of this nature was first observed and more thoroughly studied in bacterial
(Golding et al., 2005; Losick and Desplan, 2008; Norman et al., 2015; Spudich and
Koshland, 1976) and yeast research (Van Heerden et al., 2014). Such studies challenge
the view that the genome and epigenome only determine a (static) phenotype. For
example, sister bacteria from the same mother cell can co-exist in different molecular
states, even in the context of a static environment. This is thought to be caused by
stochastic events – such as RNA partitioning during cell division or transcriptional ’bursts’
(Golding et al., 2005) – that enable phenotypic diversification. Variability of this type
results in increased resilience (in an adverse environment) but at the expense of decreased
overall population fitness (in a non-adverse environment) – a phenomenon termed as
bet-hedging (Balaban et al., 2004; Solopova et al., 2014). Essentially, bet-hedging is an
alternate strategy for maximising a species’ survival.

Non-genetic diversity has also been observed in multicellular organisms, including
plants (Nicotra et al., 2010), animals (Lyon, 1961; Nussey et al., 2005; Vogt, 2015) and
humans (Zwijnenburg et al., 2010). A population of cells can be diverse at the genetic
level; certain mutations have the potential to induce profound functional effects on a
cell, for as long as the cell (and its progeny) that hosts them survive. For a cell to
survive it needs to generate the relevant gene-coded functional units (proteins); it is
these that determine a cell’s molecular state (i.e. what it can or cannot do). One can
infer that it is rather unlikely that cells may have the exact same types and amounts of
proteins, even in the case of ’genetically identical’ cells. Hence, the term ’non-genetic
heterogeneity’; variation in cellular function. This variability can originate from the
(seemingly) random changes or fluctuations – in part influenced by the exposure to
changing environments – of the units responsible for the determination of a cell state.
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These can include the intermediaries of the central dogma (such as mRNA transcripts)
and the functional proteins themselves (e.g. p53) – of which variability is known as
gene and protein expression, respectively. One might reason that cells differing from one
another by the quantity of protein X may not function in the same way. Indeed, Spencer
et al. (2009) showed that cell-to-cell variability in levels of proteins mediating apoptosis
was the main determinant of probability and time of death. Another example is the
significantly different transcription profiles encountered in haematopoietic progenitor
derived subpopulations with low or high expression of stem cell marker Sca-1 (Chang
et al., 2008). As such, protein and gene expression are the more known and distinguishable
characteristics resulting from inter-cellular variability.

In addition to random fluctuations, functional states are also dictated by long-
lasting events – e.g. different cell cycle stages (Buettner et al., 2015; Loewer et al.,
2010) and microenvironmental effects – cell density, for example, can impact cells’
endocytic capability (Snijder et al., 2009). The described evidence offers but a succinct
representation of the non-genetic factors in cell populations and how these may impact
cellular decisions (Balázsi et al., 2011) through regulation (or lack thereof) of molecular
states. Before delving deeper into the question of non-genetic heterogeneity in cancer,
it is useful to first understand its fundamental structure and how time may be a vital
factor in the equation.

Structure

There are various non-genetic factors involved in generating the diversity present in
cell populations. Such factors can be categorised into two broad groups (see Fig. 1.6).
The first involves the (micro-)environment which may be heterogeneous itself (nutrient
gradients, for example), and this is often reflected in the observed phenotypic diversity
of a cell population (Huang, 2009). Thus, micro-environmental factors can be considered
as a trivial and extrinsic cause of variability, whereas the more subtle population-driven
(ie originating within cells) diversity is categorised as intrinsic non-genetic heterogeneity.
The latter can be further broken down into macro- and micro- heterogeneity which can be
represented as two distinct populations (multi-modality) or as a spectrum (uni-modality),
respectively, in the distribution of a trait X in a given isogenic population (see Fig. 1.6).
These distinctions allow for a clearer depiction of heterogeneity and a representation
of the potentially existing stable network (defined by gene expression levels) states
towards which cells evolve, ie attractor states. The presence or absence of subpopulations
(macro-heterogeneity) may indicate attractor states, whereas the width of a distribution
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Fig. 1.6 To better understand non-genetic heterogeneity, one can devise categories
according to the diversity-inducing causes and their effects. At the most basic level,
isogenic cells may be different due to variable environmental conditions or internal
composition (extrinsic vs intrinsic). The latter can distinguish two types of heterogeneity
depending on the modality (macro-heterogeneity) and spread (micro-heterogeneity) of
the distributon of a trait X across an isogenic cell population. Figure from Huang (2009)
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(micro-heterogeneity) may inform on the breadth of phenotypic plasticity of a population.
However, since these are descriptions derived from a single point in time, one might
ask how ’stable’ or ’unstable’ these phenotypes are (ie is time a influential and defining
factor?). If there is such a dichotomy, what determines a phenotype’s stability?

Deterministic & Stochastic Heterogeneity

Living systems are not static; homeostasis and potential for cellular adaptation are
dynamic features that can shape phenotypic landscapes over time. Thus, time is a
necessary variable in determining the stability (or lack thereof) of cellular phenotypes and
behaviour - characterised by (potential fluctuations in) molecular elements and network
states. The terms determinism and stochasticity are used to relate to a phenotype as a
function of time or its stability (see Fig. 1.7). In the context of variability, deterministic
heterogeneity posits the presence of multiple stable phenotypic states in a cellular
population (Huang, 2009). An oversimplified example is the cell type; groups of cells
categorised by their specific gene regulatory network (GRN) and resulting phenotype –
more likely to appear as macro-heterogeneity.

On the other hand, stochastic heterogeneity designates cellular phenotypes of deter-
ministic (stable) state that show unstable phenotypes (see Fig. 1.7). Such concept is
associated (and used interchangeably) with noise – a term classically used to designate
random cellular biochemical reactions (ie probabilistic molecular events) contributing
to the variability usually observed when measuring gene and protein expression in a
’uniform’ population (Elowitz et al., 2002; Raser and O’Shea, 2004). Thus stochasticity
mainly involves so-called random events that occur in cellular life. These events are
understood to be the probabilistic reactions resulting in the generation or degradation of
individual molecules (such as proteins or mRNA), but these can also occur at a larger
scale such as mitosis – where equal partitioning of molecules is only guaranteed for DNA
(Huh and Paulsson, 2011). Stochastic effects in bacteria have been shown to give rise
to persistency – the concept of entering a state of dormancy (or reduced homeostatic
activity) to sustain species-threatening conditions (such as lack of nutrients) (Balaban
et al., 2004). In this case, survival is warranted through stochasticity-induced phenotypic
diversification (Norman et al., 2015). However, such diversification may alter biological
circuitry regulating important homeostatic activities such as signalling, metabolism,
movement and stress-responsive networks (Van Boxtel et al., 2017), essentially resulting
in information corruption and maladaptation. As such, stochasticity has the potential to
be either benefitial or detrimental to a population’s survival.
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Fig. 1.7 A clonal population of cells differentially express a trait X ; its measurement with
flow cytometry is displayed as a gaussian distribution. If we were to take a sample from
this clonal population, we would find that expression levels of X fluctuate in the short
term (stochasticity). However, with time, eventually we can observe that X remains at a
particular level of expression (determinism). The latter contributes to population noise,
whereas the former is known as temporal noise. Both of these make up the distribution
of the level of X. Figure from Huang (2009)
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When it comes to single-cell measurements, snapshot-type assays provide us a glimpse
of the variability at a single point in time (see Fig. 1.7) and the micro-heterogeneity
we observe may be associated with noise. But unimodal distributions may well also
be consisting of cells that host slightly different but more ’durable’ phenotypes, ie not
caused by random events resulting in temporal fluctuations (Huang, 2009). Subtle
deterministic factors such as cell volume (Kempe et al., 2015), cell cycle stage (Zopf
et al., 2013), metabolic state (Kiviet et al., 2014) and signalling (Iwamoto et al., 2016)
prime cells in particular functional or molecular states contributing to a ’spectrum-like’
variability. Thus, we can conceive micro-heterogeneity as being driven by either stochastic
or deterministic effects (Zopf et al., 2013), resulting in observable traits generated by
noise or by stable (yet subtle) differences among cells, respectively, or both (Eling et al.,
2019).

These concepts have been formulated to explain the observed non-genetic variability
and to gain a more structured insight on their causes and effects. Because of the
non-triviality of some of its aspects and the lack of technologies available to gather
the necessary high resolution data, non-genetic heterogeneity has been off the active
spotlight of cancer research, until approximately a decade ago. The conceptualisations
of determinism and stochasticity – derived from observations in developmental biology –
and their potential implication in survival raises a few eyebrows as to what role these
might play in oncogenesis and/or tumour behaviour, if at all.

In Cancer

The somatic mutation theory of cancer initially proposed in 1914 (Boveri, 1914) is the
long-standing and most accepted view on cancer genesis. The current take posits that
fitness-inducing DNA mutations in driver genes (cf. 1.2) are acquired by cells which
then are capable of expanding as a clonal population. As time goes on, these cells evolve
- via Darwinian-like selection - by accumulating further mutations, eventually leading to
cancer onset and malignancy; it is a multistep process (Vogelstein and Kinzler, 1993).
Another prominent and debated model is that of cancer stem cells (CSCs) - a small
fraction of undifferentiated cells in a clonal population which are capable of self-renewal
and generating multiple differentiation lineages (Medema, 2013; Vermeulen et al., 2008).
The full picture of the process seems much more complex and is unlikely to be explained
by a single paradigm nor universally.

The literature is relatively scarce on how non-genetic forces contribute to cancer onset.
Noteworthy observations showing that presence and frequency of specific driver genes
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correlate with distinct tissues (Haigis et al., 2019; Kandoth et al., 2013; Schneider et al.,
2017) are a clear indication that carcinogenesis cannot amount to genetics only. Such
evidence suggests that tissue microenvironment influences genetic developments either
through tissue-specific cell differentiation mechanisms (Chou et al., 2010) or due to the
cell types that constitute them - which are effectively cells of different developmental
lineage. Cell types do not respond equally to the same microenvironmental cues such as
growth promotion (Sack et al., 2018), and they host particular epigenetic states (John
et al., 2011). Related to these is the idea of phenotypic plasticity whereby cells can
change their phenotype due to stochastic effects or in response to microenvironmental
events (Marusyk et al., 2012) (see Fig. 1.8). The research community has increasingly
focused on the characterisation and implications of such non-genetic phenomena in
tumour maintenance and progression - especially under cancer treatment regimens -
resulting in a more substantial body of work.

Fig. 1.8 Acquired resistance involves the Darwinian selection of a clone that has acquired
a benefitial mutation (A). Said mutation results in a modification of the gene regulatory
network (GRN) and higher expression of gene X, placing the mutated cell in a new single
cell state S(XHigh). However, therapy can also induce transitions between two different
states with the same GRN and within a non-changing multistable epigenetic landscape
(B). Figure from Pisco and Huang (2015)

Intra-tumour heterogeneity (ITH) contributes to the biggest bottlenecks in cancer
treatment and management; resistance and relapse. We have rather successfully harnessed
our genetic understanding of cancer by targeting mutation-induced vulnerabilities with
molecular compounds - examples being BRAF and PARP inhibitors for patients with
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BRAFV 600E (Hyman et al., 2015) and germline BRCA 1/2 mutations (Kaufman et al.,
2015). However, on too many scenarios, we observe the rise of resistant cells able to sustain
traditional - chemotherapy and radiotherapy - as well as more modern - molecularly-
targeted and immunotherapy - treatments (Holohan et al., 2013; Senft et al., 2017;
Sharma et al., 2017). Alas, our ability to detect and understand genetic abnormalities
does not warrant sufficient insight into the high order complexity that drives cancer.

The lack of a complete response to treatment - fractional killing of cancer cells -
may be due to pre-existing genetically resistant clones or the generation these during
treatment (Hata et al., 2016; Ng et al., 2012) (see Fig. 1.8). Others postulate that CSCs
are the culprits (Makena et al., 2020). In addition to these, it is also plausible that
phenotypic diversity or plasticity may result in said resistant cells (Bell and Gilan, 2020;
Konieczkowski et al., 2014; Paudel et al., 2018; Pisco et al., 2013; Salgia and Kulkarni,
2018). An intriguing study - where Kreso et al. (2013) and colleagues explored the
functional integrity of single genetic clones - found that various single-cell tumour derived
(sub-)clones displayed different behaviours over a 4-week oxaliplatin course in mouse
xenografts. Behaviours such as persistency, proliferation and tolerance to chemotherapy
seemed to vary within cell lineages. This study strongly suggests non-genetic mechanisms
at work, since copy number alteration profiles and mutation hot spots remained mostly
intact. Such plasticity entails that cells can change between drug-tolerant and sensitive
states - otherwise known as phenotypic switching (Hoek and Goding, 2010; Sun et al.,
2014). Notably, the various phenotypes present in cell populations can be inherited to
the progeny (Brock et al., 2009) and may even be preferentially selected for (Anderson
et al., 2006; Sharma et al., 2010), thus affecting evolutionary trajectories.

Despite the seemingly influential role of phenotypic diversity in cancer resistance,
there is a need to provide a complete characterisation of its potential synergy with genetic
defects. The understanding of how cell-to-cell variability influences response to oncogenic
cues and therapeutic interventions is essential for a more practical understanding of
how neoplastic lesions are triggered and become clinically manifest, and to improve the
effectiveness of clinical intervention.

1.4 Signalling Networks: the Decision-Makers
The human body is a complex organism comprising many tissues that need to be
maintained in a steady state in order to carry out their designated function. This
so-called steady state, aslo known as homeostasis, is highly dependent on the equilibrium
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of physical and chemical conditions not only within tissues but also within the units that
constitute them, i.e. cells. Cellular homeostasis, including the capability to respond to
external stimuli, is maintained by chemically active networks. These, more commonly
known as signal transduction networks (STNs) (see Fig. 1.9), play a fundamental role in
cellular life as they enable cells the ability to sense and process information in order to
execute context-dependent decisions. The complexity of STNs is such that it supports the
integration of multiple inputs and processes. These result in a specific output or cellular
phenotype. Such molecular information-processing ’machines’ maintain homeostasis not
only at an individual, single-cell level but also at a cell-contextual, tissue level.

Fig. 1.9 A signal transduction networks (STN) is a group of interconnected proteins
(or molecules) relaying biological information typically via chemical reactions. Here,
proteins or network components (nodes) are represented as dots, and their interaction by
edges (lines connecting dots) (a). Hubs (shown in (a) as red dots) are nodes with high
connectivity. Biologically, a standard STN structure typically starts in the extracellular
space, where ligands bind cell surface receptors. These in turn activate and kick-start
a series of sequential reactions, i.e. a signalling cascade. Finally, proteins furthest
’downstream’ of a cascade interact with DNA to promote gene expression and ultimately
induce a specific behaviour (b, adapted from Jackson et al. (2018))

STNs are constituted of nodes and edges (see (a) in Fig. 1.9) – terms derived from
graph theory, a branch of mathematics (Biggs et al., 1986). Nodes can be thought of as
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biological units that are subject to (or induce) actionable events or edges (Azeloglu and
Iyengar, 2015). The former are made up of proteins, microRNAs and indirectly by certain
DNA sequences affecting gene expression (Csermely et al., 2016). These are connected
together via edges; chemical reactions characterised by their type (inhibition/stimulation)
and strength (Csermely et al., 2016). The way nodes and edges are structured allow for the
sensing of specific information and its transmission to the relevant cellular location. For
example, a cell detects an external signal through growth factor-induced activation of a
receptor-tyrosine kinase (RTK), which then results in the sequential activation of a number
of ’downstream’ proteins and eventually the activation of a transcription factor prompting
expression of select genes (see (b) in Fig. 1.9). Here, the nodes (RTK, ’downstream’
proteins, transcription factor) connected by edges (chemical activation events) constitute
a single signal transduction network. However, networks do not function independently,
on the contrary; they are connected (see (a) in Fig. 1.9), thus enabling a higher order
of cognition. This interconnectivity is achieved through hubs - nodes with many edges
(rather than the average few) providing them with superior signalling influence (Azeloglu
and Iyengar, 2015). An example of a hub is KRAS (thoroughly described in Chapter
2) – a protein regulating mainly growth and survival (Cox et al., 2014). Such important
cellular behaviours are deregulated when a genetic mutation induces the expression of
an ’anomalous’ version of KRAS, ultimately leading to unwanted consequences such
as oncogenesis. Therefore, it is vital to understand how cells make ’decisions’ in the
first place. And although network-network connectivity contributes to signal processing,
the final cellular output (’decision’) is determined by the various signal characteristics
registered in space and time, i.e. signalling dynamics.

1.4.1 Signalling Dynamics Enables Complex Information Pro-
cessing

Signalling dynamics in STNs are paramount to a cells’ ability to carry out fate decisions
such as proliferation, survival or apoptosis (Marshall, 1995; von Kriegsheim et al., 2009).
Mechanistically speaking, the concept of dynamics has the objective to either convert a
gradual signal into binary information (i.e. ON/OFF), or maintain a particular encoded
message despite variable signal cues (Kholodenko et al., 2010). This way, cells can
discriminate important information or signal (and decisions to make) from a noisy
environment.

To clarify, the term signal is usually employed to refer to protein activity in response
to an event. Each protein in a STN has the capability for dynamics but it is of particular
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importance in so-called ’key’ proteins – such as ERK – due to their ability to activate
gene regulatory machinery, ultimately triggering specific transcriptional programmes
(Makadia et al., 2015; Wilson et al., 2017).

Signalling dynamics are profoundly characterised by temporal features such as signal
duration and frequency (see (b) in Fig. 1.10). One of the main mechanisms through
which these features are regulated is the stimulation type and amount perceived by
cells. For example, the signal duration-phenotype association was first elucidated in
pheochromocytoma rat cells (PC-12), where observed EGF-induced transient ERK
activation resulted in proliferation. Whereas NGF-induced chronic ERK activation
elicited differentiation (Marshall, 1995) (see (b) in Fig. 1.10). These observations have
been further replicated in subsequent studies by various researchers (Albeck et al., 2013;
Ryu et al., 2015; Santos et al., 2007). Similarly, single or multiple signals in a particular
window of time (ie dissimilar signal frequency) may have different consequences. This is
observed in p53 activity which may be either pulsatile (γ-radiation) or sustained (UV
radiation) to different extents (ie dose-dependent) depending on the type of DNA damage
detected (Purvis and Lahav, 2013) (see (b) in Fig. 1.10).

Fig. 1.10 Biological information can be modified depending on cellular location (a),
input-induced differential time dynamics (b, adapted from Purvis and Lahav (2013)) and
the presence of network motifs, such a negative feedback loops (c), wired within a STN.
Both (a) and (c) adapted from Kholodenko et al. (2010)

The way nodes and their connecting edges are arranged constitute the topology of
a network. Signalling dynamics are restrained to a higher or lesser extent by network
topologies. These include modular network motifs - edges with regulatory roles, in
addition to information transfer functions. Motifs can either stimulate (positive regu-
lation) or inhibit (negative regulation) proteins at different stages of signal processing.



1.4 Signalling Networks: the Decision-Makers 25

Feedback or feedforward loops affect proteins earlier or later, respectively, in a signalling
cascade. Effectively, these loops significantly shape the different types of responses (Alon,
2007; Brightman and Fell, 2000; Kholodenko, 2000; Kiyatkin et al., 2006), such as the
aforementioned acute or sustained protein activity (see (c) in Fig. 1.10), among others.

Frequency features such as oscillations were in fact first theoretically described (and
predicted) mathematically in the MAPK signalling cascade. Negative feedback from ERK
to Son of Sevenless (SOS) or RAF and ultrasensitivity of ERK activity to changes resulted
in so-called oscillations (Kholodenko, 2000). This was later observed experimentally
(Nakayama et al., 2008; Shankaran et al., 2009). These remarks confirm and highlight
the temporal dynamics capabilities of biochemical networks.

In addition to variations in temporal aspects of a signal, another response-shaping
factor is that of space (Muñoz-García et al., 2009). Biochemical networks exist within cells
– biological bodies with a total volume of 400-5000 µm3 (Moran et al., 2010; Wiederschain,
2005) hosting a wide range of function-specific structures (Golgi, nucleus, endoplasmic
reticulum, membrane to name a few) and a much wider range of proteins. The latter
can be as small as 1nm in size, meaning that the space dimension is vast. To put it
in context, E.coli have a volume of 3 µm3 with similar sized proteins. This results in a
much reduced dimensionality, restricting signalling complexity and processing. Coming
back to the example of KRAS, previous research has proved that it needs to be located
at the plasma membrane in order to undergo efficient activation (Augsten et al., 2006)
and subsequently stimulate downstream pathways (e.g. MAPK, PI3K). Moreover, key
downstream targets such as ERK have differential activity depending on its cellular
location and interaction with other proteins (see (a) in Fig. 1.10). Therefore, for ’normal’
signalling to occur, a protein needs to have a certain activity for a certain amount of
time and at a certain location.

Signalling Heterogeneity

It is clear that signalling cues are dependent on a high number of factors, of which
time, location and activity of a protein play a dominant role in encoding and decoding
information (Kholodenko et al., 2010). However, biological systems are not quite binary
- variability is an omnipresent factor that affects many aspects of cellular life. Protein
concentrations varying from cell to cell (potentially) differentially affect the networks
they are part of. This isn’t to say that all cells have differently functioning STNs, but
rather highlights the fact that certain cells may not respond as expected. Such cells may
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be at such ’distance’ from the norm due to the effective sum of past events that have led
them to a particular state (one that may be considered at the ’edge’ of homeostasis).

In a relatively recent study where the authors aimed at understanding how PC-12
cells interpret different external stimulations (Ryu et al., 2015), experiments showed
a high level of intercellular heterogeneity in signalling patterns when compared to the
population average – an observation previously described (Marshall, 1995; von Kriegsheim
et al., 2009). Interestingly, they observed a correlation between ERK 1st peak amplitude
and sustained activation, in addition to the EGF and NGF specific induction of ERK
responses previously aforementioned (Ryu et al., 2015). Pulsed GF experiments shed
light on new aspects of the MAPK network; ERK refraction behaviour (ability to respond
to the same stimulus in an identical manner) occurring only once the cell has reached
its basal state, and the identification of different hour-scale negative feedback loops
depending on GF identity and concentration.

Therefore, in response to the same stimulus, genetically identical cells exhibit different
signaling dynamics. More importantly, cell-to-cell variability in signalling responses
results in variability of cellular decision. These seemingly stochastic responses are
frequently observed when live single-cell imaging technologies are utilised to characterise
cellular responses. However, these observations are then often neglected when we model
carcinogenesis and response to clinical intervention.

1.4.2 Cancer as an ecological problem

Cell decisions are determined both by cell-autonomous and non-cell-autonomous mecha-
nisms. Tissues are made up of millions of cells in direct physical contact with each other,
and cell-to-cell communication has a fundamental role in tissue homeostasis (Tabassum
and Polyak, 2015). The mechanism of signaling dynamics described so far, should indeed
be considered within this context.

The secretion of cytokines by cells is a form of intercellular communication studied
since the 1940’s (Dinarello, 2007). Since then, we know that these chemical units are
the way in which cells communicate between one another. As an example, the secretion
of chemokines inform the immune system (via neutrophil recruitment among others) of
the presence of non-self (i.e. foreign) material that has the potential to be threatening
to the human organism. In other words, cells from the immune system attracted by
chemokines migrate to the site where cells secreting said pro-inflammatory reside, i.e.
the site of pathogen. This constitutes a form of positive intercellular communication –
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termed commensalism – in that the immune cells prevent chemokine-secreting cells from
death by neutralisation of the pathogenic material.

However, there are several types of cell-to-cell interactions that affect cellular life.
Both positive (mutualism, commensalism) (Chiarugi and Cirri, 2016) and negative
(competition, predation) (Caignard et al., 1985) interactions have been experimentally
shown. Such events drive cells to increase (positive interaction) or decrease (negative
interaction) their likelihood of survival, on occasion at the benefit of other cells. These
are selection forces at play, which in the context of cancer become paramount factors
shaping clonal evolution trajectories and promoting malignancy (see Fig. 1.11).

Fig. 1.11 Cells interact with one other via direct or indirect means. Intercellular interac-
tions can promote drug resistance, malignant and metastatic behaviour, thus benefiting
cell populations’ survival. Figure from Tabassum and Polyak (2015)

Although intercellular communication has been described and proven with factors such
as cytokines and cellular nutrients (such as glucose (Santo-Domingo et al., 2019)) it has
also been osberved in the signalling context in the form of progressive MAPK activation,
for example. Numerous cell migration studies have shown that ERK information ’travels’
through cell populations in a wave-like pattern (Aoki et al., 2017, 2013; Gerosa et al., 2020;
Hino et al., 2020). Interestingly, the state of a cell (cell cycle stage) can determine whether
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it is more prone to induce an ERK pulse and subsequent activation ’wave’ (Hiratsuka
et al., 2015). ERK activation of a cell induces its contraction. Said contraction in turn
stretches the neighbouring cell prompting it to stimulate ERK via EGFR activation
(Hino et al., 2020). However, ERK activity can also be spatially transmitted via paracrine
signalling. Extracellular ATP binds to P2Y receptors, resulting in the activation (and
secretion) of matrix metalloproteases (MMPs) to which EGF is tethered (Aikin et al.,
2019; Handly et al., 2015). Local diffusion of the secreted EGF results in the activation
of EGF receptors in neighbouring cells. This signalling cascade can be triggered by
an apoptotic cell as a means of temporarily protecting neighbouring cells from death
(Gagliardi et al., 2021). Alternate cell fates such as growth arrest (Park et al., 2003)
and dedifferentiation (Takahashi et al., 2003) can also be imposed on neighbouring
cells via the ERK-induced release of Leukemia Inhibitory Factor (LIF) and epiregulin,
respectively.

Thus, the state of a cell as well as its microenvironment may differentially influence
the way a cell affects its neighbours’ behaviour, i.e. non-self cellular decisions. Due to the
unlimited number of possible scenarios, cell-to-cell communication can also significantly
contribute to a cell population’s heterogeneity (Davies and Albeck, 2018).

1.5 Studying Single Cells - Towards Accurate Infor-
mation

Biochemical networks and quantitative controls of signal timing and strength together
with quantitative monitoring of biochemical outputs and phenotypes are necessary to
describe the actual mechanism by which oncogenic signalling causes cancer or failure of
therapeutic interventions. Such detailed understanding of signalling requires technologies
of unprecedented accuracy and precision. Classic methodologies used to study signal
transduction pathways are limited by their spatial and temporal resolution (see (b) in
Fig. 1.12). Only until recently, STNs have mostly been studied by measuring protein
levels in whole populations - samples constituting of millions of single cells. Thus, such
experiment outputs mirror the behaviour of cell populations, rather than single cells. The
sample may be derived from a tissue and thus cells are considered ’the same’. However,
it is not unusual to have cell populations with a large variety in protein levels (Sigal
et al., 2006).Thus, potentially biologically relevant cell-to-cell differences (present in cell
populations) are masked by ensemble measurements (Altschuler and Wu, 2010) (see (a)
in Fig. 1.12).
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Fig. 1.12 Traditional assays (such as Western blot) provide population measurements.
These, however, are far from an accurate representation at the single-cell level. Popula-
tion measurements may mask asynchronous signal activity and fail to provide suitable
explanations - such as fold change detection - for certain phenotypes (a, adapted from
Gaudet and Miller-Jensen (2016)). With microscopy, one can not only measure single
cells but also yield a very high time resolution rendering a much more accurate depiction
of signalling activity (b, adapted from Tischer and Weiner (2014)).



30 General Introduction | Heterogeneity & Cell Signalling

It is important to stress that biological features such as signalling should be monitored
frequently if one is to dissect the acute dynamics involved in information processing.
Moreover, it is worth studying protein activity over a rather long period of time as its
cumulative activity may have an effect on how cells behave.

1.5.1 Dissecting cell-to-cell variability in oncogenesis

Cell-to-cell variability in cell populations can result in the appearance of a diversity
of phenotypes, some of which are conducive to a tumour’s development or resistance
to therapies. We hypothesise that heterogeneity in signalling dynamics and its causes
are key to understand tumour maintenance, with important consequences to disease
management. However, non-genetic heterogeneity is scantly studied and mechanistically
not fully understood. In addition, cell-to-cell variability is often neglected or challenging,
even impossible to characterise. It is therefore insufficient to probe samples at limited
time points if we ought to understand dynamics and further enrich our knowledge of
forces driving cellular decisions.

The development of the green fluorescent protein (GFP) in the 60’s (Shimomura et al.,
1962) and subsequent fluorescent proteins (FPs), combined with imaging, provided the
research community a novel and innovative toolbox that enabled a whole new dimension
through which to understand biological phenomena. This was especially so in the case
of live cell studies, where one can track cells expressing a relevant FP-bound protein
over time. Moreover, objectives with different magnifications means that one can have
different levels of spatial detail – to the point where we can make out organelles and obtain
subcellular spatial information on a protein of interest. Thus, the main characteristics
of this general technology combinaton (imaging and fluorescent probes) are that of a
superior time and space resolution, in addition to the main advantage of using microscopy;
the ability to perform single-cell measurements (see (b) in Fig. 1.12).

In conclusion, the aim of this PhD project is to investigate cell-to-cell variability in
signalling dynamics and how genetic and non-genetic heterogeneity may synergise to
give rise to oncogenesis & shape cancer cell decision-making. To this purpose, I use
isogenic cell lines with different mutations at the same codon of KRAS and the most
advanced tools for single live cell biochemistry that are required for the study of cell-to-cell
variability. Alongside the utilisation of established tools, I also develop novel optogenetic
tools and monitoring methods for KRAS-dependent signal transduction pathways that
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enable the study of oncogenic signalling with unprecedented spatiotemporal control and
biochemical resolution.





Chapter 2

KRAS Signalling
Dissecting the subtleties

2.1 Introduction
The RAS genes were the first oncogenes identified, over 35 years ago (Der et al., 1982;
Parada et al., 1982; Santos et al., 1982). There are three main genes; HRAS (Harvey rat
sarcoma viral oncogene homolog), KRAS (Kirsten rat sarcoma viral oncogene homolog)
and NRAS (neuroblastoma v-ras oncogene homolog). They encode four different proteins,
namely H-Ras, N-Ras, K-Ras4A and K-Ras4B. The latter two derive from alternative
RNA splicing of a pre-processed KRAS protein; however, K-Ras4B is the predominant
variant (Hobbs et al., 2016). These form part of a wider RAS superfamily which affects
a large range of signalling networks, ultimately regulating cellular processes such as
cell migration, differentiation, proliferation, cytoskeletal modifications, apoptosis and
senescence (Fernández-Medarde and Santos, 2011).

2.1.1 Role & function of RAS in the cell

RAS proteins function via chemical interactions with guanosine molecules. Just as
all members of the RAS superfamily, RAS proteins are small GTPases, i.e. hydrolase
enzymes. These are proteins that break down guanosine triphosphate (GTP) into
guanosine diphosphate(GDP). Thus, small GTPases exist in two forms; GDP-bound,
and GTP-bound conformation (see (a) in Fig. 2.1). Guanosine nucleotide exchange
factors (GEFs) and GTPase activating proteins (GAPs) regulate the activity of small
GTPases. GAPs catalyse the hydrolysis of the bound GTP, whereas GEFs exchange a
bound GDP for a freely available GTP (Hobbs et al., 2016; Vigil et al., 2010). Thus, RAS
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proteins switching between GTP-bound and GDP-bound states are considered as active
(’ON’ state) or inactive (’OFF’ state) RAS, respectively. Active RAS (i.e. GTP-bound)
interacts with proteins containing RAS Binding Domains (RBD) to stimulate effector
downstream targets. This type of interaction regulates a variety of molecular networks
such as the frequently studied MAPK and PI3K signaling cascades, but also RAL, RAC
and RASSF pathways (Cox and Der, 2003; Pylayeva-Gupta et al., 2011; Zhou et al.,
2016). These signaling networks ultimately induce the promotion of specific cellular fates.

While the developments shown in Chapter 3 are aimed to monitor multiple pathways
simultaneously, due to current technical limitations, I have focused on the characterisation
of MAPK signalling in cells with mutated KRAS.

Fig. 2.1 The RAS GTP-GDP cycle (a) and the MAPK signalling cascade (b). Adapted
from Ahearn et al. (2011)

The RAF-ERK or Mitogen Activated Protein Kinase (MAPK) pathway (see (b) in
Fig. 2.1) – heavily involved in cellular proliferation and growth (Campbell et al., 1998;
McCubrey et al., 2007; Mebratu and Tesfaigzi, 2009) – is one of the central signalling
cascades that RAS proteins regulate. First active RAS binds to the RBD domain of a RAF
protein (Moodie et al., 1993) at the plasma membrane. Active RAF stimulates MEK which
in turn phosphorylates extracellular signal-regulated kinase (ERK). Upon activation,
ERK translocates to the nucleus where it plays the instrumental role of triggering
transcriptional programmes directly regulating gene expression. Signalling dynamics –
tightly regulated by regulatory mechanisms such as feedback loops (see section 1.4.1 on
page 23 and (c) in Fig. 1.10 on page 24) – of the RAF-ERK pathway determines the



2.1 Introduction 35

activation of specific transcriptional programmes (Aoki et al., 2013). Pulsatile activity
results in the recruitment of serum response factor (SRF) – a transcription factor involved
in the transcriptional activation of immediate early genes (IEGs) – and upregulation
of around a dozen genes. Sustained ERK activity however, prompts the recruitment
of other transcription factors (activator protein-1 and transcription enhancer factor)
resulting in the expression of a much wider range of genes. Importantly, Wilson et al.
(2017) discovered that frequent ERK pulses result in efficient transcriptional activation,
as opposed to sustained or infrequent ERK pulses.

Thus, the deregulation of proteins within the MAPK cascade has the potential to
alter signalling dynamics resulting in alterations in the capability of a cell to trigger
physiological responses and transcriptional programs.

2.1.2 Patterns in cancer

The frequency and the type of genetic aberrations affecting different isoforms varies
from tissue and cancer type rather drastically. The most common point mutations occur
in hotspots at codons 12 (G12), 13 (G13) and 61 (Q61) and they account for most
(87-97%) mutations in all RAS isoforms (Prior et al., 2020). The mutational frequency
at these codons varies on the RAS isoform (see Fig. 2.2). For example, in KRAS,
mutations in G12, G13 and Q61 account for 81%, 14% and 2%, respectively (Prior et al.,
2020). However, most mutations in NRAS occur at the Q61 locus, followed by G12 and
G13. Also, the mutational spectrum changes between isoforms and tissues as illustrated
in Figure 2.2. For example, G12D, G13D, and Q61H are the predominant mutations
in KRAS overall. However, in non-small cell lung cancer (NSCLC), the predominant
KRAS mutation is G12C. The transversion G:C→T:A that causes the G12C mutation is
associated with a mutagen found in cigarette smoke, combustion engine gas and power
plants (Seo et al., 2000).

A G12C mutation in lung tissue is an evident effect of specific carcinogens. However,
there is strong evidence that the tissue-dependent prevalence of different mutations across
isoforms and at specific hotspots does not depend only on tissue-dependent mutagenesis.
Rather, such prevalence for mutations could be attributed to selective pressures that
might favour some mutations more than others (Cook et al., 2021; Ostrow et al., 2016;
Temko et al., 2018).

These observations can be explained only partly by the effect of different mutagenic
processes in different tissues. It is thus possible that different, albeit similar, mutations
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might trigger subtle differences in cellular states (such as differential gene expression)
that might confer tissue dependent fitness. Underpinning my work is the hypothesis that
mutations alter signalling dynamics triggering different transcriptional programmes.

Fig. 2.2 Mutational frequencies at G12, G13 and Q61 codons of the different RAS gene
isoforms. Shown percentages indicate the frequency with which the highlighted codon
(left) is mutated in a given RAS isoform. Adapted from Pylayeva-Gupta et al. (2011)

2.1.3 Variable RAS Dosage

The heterogeneity in mutations in RAS isoforms across cancer types might also relate to
differential expression or function. Although the isoforms’ sequences closely resemble one
another, what distinguishes them is the hypervariable variable (HVR) region. The HVR
is subject to complex post-translational modifications (PTMs) that prime RAS proteins
for organelle trafficking and membrane binding, in addition to protein level regulation
(Ahearn et al., 2011). In the case of KRAS, the HVR-induced PTMs prompt it to
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localise to the plasma membrane where GAPs and GEFs regulate it and where it recruits
downstream RAS effectors (see (b) in 2.1). Other variables involved in the regulation of
RAS protein levels include differences in promoters, splice variant expression, transcript
expression (Tsai et al., 2015), translation processing (via different codon usage) (Lampson
et al., 2013), untranslated regions (UTRs) (Mayr, 2017) and degradation rates (Jeong
et al., 2012). All these factors contribute to the visibly wide range of RAS protein levels
observed across tissues (Newlaczyl et al., 2017). Furthermore, the observed variation
in the proportion of GTP-bound proteins (Killoran and Smith, 2019), as well as active
RAS stability (Smith et al., 2013), are chemical factors that, together with the protein
expression levels, shape the RAS ’dosage’ (Li et al., 2018a; Prior et al., 2020). Different
RAS-dependent signalling might then be more conducive to specific RAS-dependent
functions.

2.1.4 Isoform-specific Signalling

RAS has been found to engage key effector pathways in an isoform-specific manner. In
the MAPK pathway, KRAS only undergoes critical regulation by SOS2 (Sheffels et al.,
2018) and preferentially binds to B-RAF over other isoforms (Terrell et al., 2019). In
contrast, HRAS and NRAS are considered to more effectively activate PI3K (Voice
et al., 1999; Yan et al., 1998). Haigis et al. (2008) were one of the first to demonstrate
isoform-specific functions during tumorigenesis in vivo. Even with identical sequence
regulation (to control for variable expression) of HRAS and KRAS, Drosten et al. (2017)
and colleagues observed dissimilar oncogenic behaviour, underlining the isoform-specific
functional divergence.

This distinction could be due to isoform/HVR-specific PTM-induced localisation of
RAS proteins, which is instrumental for its signalling function (Willumsen et al., 1984).
Moreover, there is a growing number of proteins found to interact with specific isoforms,
such as calmodulin for KRAS4B (Abraham et al., 2009) and galectin 1 for oncogenic
HRAS (Paz et al., 2001). However, the seemingly dispensable function of HRAS, NRAS
and KRAS4a in the development of normal mice (Esteban et al., 2001; Koera et al., 1997;
Plowman et al., 2003), the relatively high mRNA transcript expression levels (Newlaczyl
et al., 2017) and the title of most frequently mutated isoform suggest KRAS4B may play
a more prominent role in cell signalling.
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2.1.5 Oncogenic KRAS Signalling

Most mutations in KRAS are thought to alter the rate of loading, hydrolysis and
unloading of GTP to KRAS, therefore rendering KRAS active even in the absence of
extracellular signals (Parker et al., 2018; Shima et al., 2010; Smith et al., 2013). Thus, the
canonical interpretation of the effects of activating mutations on KRAS is the resulting
hyperactivation of the MAPK cascade. Nevertheless, rodents and primary human cells
with ectopic expression of oncogenic RAS (Bennecke et al., 2010; Serrano et al., 1997)
found to have senescent phenotypes led to the idea of ’too much’ oncogenic RAS signalling.
Indeed, MAPK hyperactivity can be detrimental to tumour maintenance, as observed in
melanoma cells with mutations in RAS or RAF (Leung et al., 2019). Multiple studies
also show that mutant KRAS is, in fact, not constitutively active. In unstimulated
conditions, some cell lines with mutant KRAS do not have particularly high levels of
active KRAS (Ardito et al., 2012; Huang, 2014; Stolze et al., 2014) and downstream
ERK phosphorylation (Konishi et al., 2007). However, once stimulated by upstream
signals, KRAS remains active for longer periods compared to wild-type KRAS due, for
example, to GAP insensitivity of the mutant form. In some cases, RAS signalling can be
insufficient for tumorigenic transformation. Mice expressing KRAS in various tissues
failed to show typical signs of cell transformation such as hyperplasia (Guerra et al.,
2003).

Therefore, the depiction of oncogenic RAS as a simple hyper-activity of mitogenic
signalling is an oversimplification and several laboratories are now trying to understand
the mechanisms underpinning RAS -driven tumorigenesis. A new model of RAS -driven
carcinogenesis is therefore emerging, where the mutant allele might cooperate with the
wild-type, in a tissue-dependent and isoform-dependent way leading to a sweetspot (Li
et al., 2018a) of oncogenic signalling. At least during early carcinogenesis, this sweetspot
permits the cell to maintain high fitness in permissive tissues without triggering tumour
suppressive mechanisms.

2.1.6 Mutant Specificity

In this model, the variability of hotspot mutations across tissues (i.e. G12, G13 &
Q61) might be better understood. Different mutations, for example, confer KRAS with
different hydrolytic and exchange rates (Smith et al., 2013). Different mutations can then
result in mutation-specific phenotypes (Stolze et al., 2014) or transcriptional regulation
of target genes such as doublecortin-like Kinase 1 (DCLK1) (Hammond et al., 2015),
a cancer stem cell marker. More importantly, different mutations at the same codon
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can provide different prognosis. For example lung tumour patients with KRAS-G12C
and KRAS-G12V mutations have a worse prognosis to those with other mutants (Ihle
et al., 2012). Therefore, the understanding of the pathophysiology of specific mutations
is essential to improve strategies for disease management.

2.1.7 Concluding Remarks

The RAS biology covered here, although by far not an exhaustive review of all the
literature, underlines the still unmet need of further defining oncogenic signalling activities
that drive (or not) cancer onset and how do they maintain tumours. Different KRAS
mutations may trigger different responses in cells.

The working hypothesis is that during carcinogenesis mutant KRAS alleles results in
aberrant signalling dynamics corresponding to a sweetspot of oncogenesis in permissive
tissues. Furthermore, as cell-to-cell variability in MAPK signalling has been widely
reported (Albeck et al., 2013; Blum et al., 2019; Cohen-Saidon et al., 2009; De et al.,
2020; Ryu et al., 2015), heterogeneity in MAPK signaling might also affect the plasticity
and heterogenety of KRAS signalling.

Therefore, this chapter focuses on work aimed to better understand how genetic
and non-genetic heterogeneity might cooperate to drive carcinogenesis in KRAS -driven
tumours. This is an aspect of carcinogenesis that is poorly understood and often neglected
despite its significant implications.
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2.2 Results
To investigate cell-to-cell variability and characterise how a mutation in KRAS alters
signaling dynamics, I set out to design an assay to yield and accurately analyse single-cell
measurements of MAPK activity. After an extensive characterisation of several ERK
sensors (including EKAR2G, EKAREV, EKAREN4 and EKAREN5, see suppl. Fig.
2.13), I selected EKAREN5 – a new FRET-based sensor of ERK activity that was kindly
provided by Prof Hugo Snippert and Dr Bas Ponsioen (Utrecht University) (Ponsioen
et al., 2021). EKAREN5’s improved specificity is due to the removal of substrates
targeted by CDK1 and the overall speed of response and dynamic range of the sensor is
better that other sensors that had been published previously.

Therefore, with the use of transposon-mediated gene transfer, I generated stable cell
lines expressing EKAREN5 (see (a) and (b) in Fig. 2.3 on the facing page). I have
generated SW48 (colorectal), LIM1215 (colorectal) and HPNE (pancreatic) reporter cell
lines, harbouring mutant KRAS alleles (G12A, G12C, G12D and G12V). SW48 and
LIM1215 cell lines are isogenic lines of commercial origin where a single allele is mutated.
HPNE cells have been engineered in-house to express doxycycline inducible KRAS mutants
(also including G12R, specific to pancreatic cancer) and controls expressing inducible
WT KRAS and mCherry. However, due to the complexity and ensuing long development
of the experimental setup, it was decided to initially investigate two samples (out of the
30 cell lines generated); SW48 (colorectal cancer cell line) cells with (KRASwt/G12D) or
without (KRASwt/wt). For simplicity, I will hereon refer to these (monoclonal) reporter
cell lines as KRASG12D and KRASW T , respectively. Of note, KRASG12D cells are
heterozygous and also carry a wild-type KRAS allele.

I also integrated a commercially available microfluidic device to our imaging platform
(see (c) in Fig. 2.3) to enable computer-controlled chemical stimulation of cells. Finally,
I developed a custom imaging pipeline (PyFRET, see Chapter 3 and (e) in Fig. 2.3) to
analyse the image data generated with a widefield fluorescence microscope.

MAPK activity has previously been observed to display ligand- (EGF vs NGF) and
concentration-dependent signalling activity (Ryu et al., 2015). Growth factor-based
linearity and dynamics of the MAPK cascade in the context of a KRAS mutation was
to be assessed. To do this, various physiologically-relevant concentrations of epidermal
growth factor (EGF) spanning up to a 500 fold change difference between the lowest
(0.1 ng/ml) and highest (50 ng/ml) concentration were used. The experimental imaging
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protocol involved four separate stages; adaptation (6 hours), EGF treatment (3
hours), ERK inhibiton (1 hour) and wash (2 hours) (see (d) in Fig. 2.3).

Fig. 2.3 Experimental platform for single-cell imaging assays. Three cell lines with
different KRAS mutations (a) are used as a clinically-relevant model for studying single-
cell dynamics. These cell lines stably express an ERK FRET sensor (b, illustration from
Komatsu et al. (2011)). A microfluidic device and fluorescence widefield microscope (c)
are used to record timelapses of cells under a dynamic protocol (d). Finally, images are
processed by PyFRET to yield single-cell data.

Cells respond to mechanical stress induced by flow. Therefore, cells are left to adapt
to flow for six hours similarly to Ryu et al. (2015). This time lag was selected through
preliminary long experiments executed to exclusively assess flow-based adaptation time of
cells. Once adapted, cells are then stimulated with an identical and constant flow of EGF
for 3 consecutive hours to measure the EGF response and the following desensitisation.
After stimulation, cells were treated with the ERK inhibitor SCH227984 (ERKi) to acquire
the nominal null activity of ERK as a reference. ERKi was used at the concentration of
500 nM, determined by the manufacturer guidelines and a titration-based experiment
(see suppl. Fig. 2.14 on page 68). Finally, ERKi is washed-off with fresh imaging media
for a further 2 hours, again with constant flow, to assess the return to basal ERK activity
as a mean to control for possible artefacts. For better representation, the first 5 hours
of the adaptation phase are not shown in the figures. In this work, I present relative
activity of ERK as r(t), i.e. the background-subtracted YFP/CFP intensity ratio to
which the minimum ratio measured during ERKi is further subtracted (see materials
and methods).
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2.2.1 Mutant KRAS cells display specific signalling dynamics

In all EGF-treated conditions, on average, KRASW T cells reach a peak relative ERK
activity of approximately >1.0. After reaching peak ERK activity, cells follow a pattern
that is either rather sustained or adaptive (reaching a stable activity) when treated with
lower (0.1 ng/ml, 0.5 ng/ml and 1 ng/ml) or higher (10 ng/ml and 50 ng/ml) concentra-
tions of EGF, respectively. Interestingly, in all EGF-treated conditions, intercellular
KRASW T variability greatly increases 1 hour after EGF treatment, as inferred from
the rise of the standard variation (see Fig. 2.4 on the facing page). This variability
remains relatively high until ERK inhibitor is administered, suggesting the presence of
subpopulations with different ERK activity patterns.

On average, cells reach a peak ERK activity rpeak = 1.008 ± 0.003 (n = 3230) for
all EGF concentrations tested relative to a basal rbasal = 0.166 ± 0.002 (n = 4556).
After the peak, cells exposed to EGF are known to desensitise. However, at EGF
concentrations higher than 1 ng/ml, cells desensitise to reach a plateau at rplateau =
0.298 ± 0.006 (n = 1100) after 1.5 hours, while at lower EGF concentrations cells exhibit
a slower desensitisation thus resulting in a more sustained response. At around the same
time of 1.5 hours, in all EGF-treated conditions, cell-to-cell variability in cells increases
significantly as denoted from the rise of the standard deviation (see Fig. 2.4 on the
next page). This variability remains relatively high until ERK inhibitor is administered,
suggesting the presence of subpopulations with different ERK activity patterns. In the
presence of ERKi and with the subsequent media wash, cells homogeneously exhibit an
rwash = 0.179 ± 0.004 (n = 3230), similar to rbasal.

In contrast, mutant cells exhibit a rather homogeneous response both to EGF con-
centrations and over time. Unsurprisingly, mutant cells exhibit a higher basal activity
rbasal = 0.296 ± 0.002 (n = 4785) compared to wild-type cells, but they reach only
average peak values rpeak = 0.890 ± 0.003 (n = 3591). Also, cells respond with a lower
peak value for the lowest EGF concentration of 0.1 ng/ml but show no differences in
the speed of desensitisation, reaching an rplateau = 0.349 ± 0.008 (n = 609), similar to
rbasal. Unexpectedly, after ERKi treatment KRASG12D cells do not just reach basal
level again but overshoot this value (rwash = 0.428 ± 0.003 (n = 3591)) to relative ERK
activities similar to those of rplateau of wild-type cells. Mutant cells that have not been
pre-treated with EGF (i.e. control cells) also exhibit this post-inhibition rebound but
in a more pronounced and faster way (see Fig. 2.5 on page 44). Thus, the presence or
absence of EGF prior to ERK inhibition clearly affects how cells respond during the
washing sequence of the experiment. Variability in mutant cells remains relatively stable
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(σ ≈ 0.11) during the phases where ERK inhibitor is not present. Finally, untreated
cells show a minimal but visible increase in ERK activity at the start of the treatment
sequence. This suggests that mutant cells are more sensitive to mechanically-induced
stimulation than their WT counterpart.

Fig. 2.4 Shown is the relative ERK activity of KRASwt (a) and KRASG12D (b) in
response to various concentrations of EGF. Each activity curve represents mean single-
cell data (cell number shown in brackets) culled from three identical repeats, except
for Control and EGF-1ng/mL, of which the conditions were replicated in a total of 6
experiments. Below is the standard deviation as a measure of variability.

Figure 2.5 on the next page summarizes various statistical features of KRASW T and
KRASG12D cells. For example, in addition to differences in peak amplitude (see (c) in Fig.
2.5), mutant cells show a concentration-dependent ERK rise to peak. Rate differences
are quantified in (b) of Figure 2.5 as derivatives of r(t). KRASW T cells exhibit a very
similar r′(tpeak) ≈ 0.4 whereas mutant cells only reach a maximal derivative of 0.3 with
the top three EGF concentrations (50,10 and 1 ng/ml). Moreover, this results in delayed
(>20min after EGF) maximal activity of ERK in mutant cells, whereas KRASW T cells
consistently reach peak ERK activity within 20 minutes from exposure to EGF (see
suppl. Fig. 2.15).

The differences in concentration-dependent ERK deactivation dynamics seen in Figure
2.4 for the wild-type cells is evident from r’(t) values plotted between 30’ to 3hrs post
treatment (see (d) in Fig. 2.5). To high EGF concentrations correspond the highest
deactivation rate reaching a value of ≈ −0.06 with quick adaptation (near-zero derivative
or flat curve). To low EGF concentrations correspond slower and smaller responses with
the largest r’(t) values of about ≈ −0.05, similar to KRASW T cells treated with low EGF
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Fig. 2.5 The population distributions of ERK activity at key experimental timepoints –
namely baseline, response peak and sustained activity – are shown in (a). KRASG12D

cells show concentration-dependent ERK activation kinetics (b) and amplitude response
(c). KRASW T cells show linear-type deactivation kinetics (d) but not mutant cells (e).
Data shown in this figure is representative of n = 3 for all conditions except for control &
EGF 1 ng/ml which were replicated in n = 6 experiments. In boxplot (a), the notch with
a dark line represents the median, the top and bottom edges of the box represent the
75th and 25th percentile, the error bars represent values within 1.5 of the interquartile
range (IQR) and the red dots are the outlier values above 1.5 IQR. Total cells analysed
(including all EGF conditions and both KRASW T and KRASG12D cells) are n= 2518.
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concentrations but with an overall slower decay (see (d) in Fig. 2.5). Interestingly, the
deactivation kinetics of KRASG12D cells treated with EGF 0.1 ng/ml (the only condition
that yields a different profile) resemble most those observed in KRASW T cells when
treated with high EGF concentrations (10 ng/ml and 50 ng/ml) (see (d) and (e) in Fig.
2.5). The faster deactivation rate – suggesting the presence of a stronger negative feedback
in mutant cells – results in a shorter ERK pulse akin to the proliferative-type of activity
profile in KRAS wild-type cells induced by high EGF concentrations. This observation
potentially designates mutant cells’ preference for low EGF stimulation, as the signalling
dynamics may lead to enhanced promotion of transcription of target genes involved in
proliferation.

Correlation analysis of signalling features

A clear feature that might have clinical relevance is that the baseline KRAS activity in
the presence of an oncogenic mutation is higher than the wild-type. It was hypothesized
that the higher background activity seen also with the ERK sensor might induce cells
to adapt to avoid detrimentally high oncogenic signalling. To test this hypothesis, the
cell-to-cell variability in background signaling was exploited and checked if basal ERK
activity might predict ERK responses.

The linear correlation between baseline magnitude and the cells’ respective response
amplitude (i.e. the difference between a cell’s maximal and baseline ERK activity values)
was measured. The graphs in (a) of Figure 2.6 on the following page show two examples
of correlations in two EGF concentration conditions (one low, one high). In both cases,
wild-type cells broadly display a larger amplitude than mutant cells – as already described
in Fig. 2.5. Moreover, for both genotypes the linear correlation is negative, suggesting
the higher a cell’s baseline activity the smaller the peak amplitude will be. However, the
correlation is stronger (i.e. more negative) in KRASG12D cells. Thus, mutant cells have
a more pronounced decrease in peak amplitude with increasing baseline activity, when
compared to KRASW T cells. This correlation is observed for all other EGF treatment
conditions (see suppl. Fig. 2.16 on page 69).

To substantiate this observation with a quantitative analysis, I performed Pearson
correlation analysis of signalling features. I analysed single-cell traces to describe them
with the following features (see (b) in Fig. 2.6):

• Number of peaks (α): although the average responses exhibit one peak after EGF
stimulation, individual traces might exhibit multiple peaks.
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Fig. 2.6 Scatter plots of single-cell data on the relation between baseline activity and
EGF response amplitude (a). Symbols illustrated between both dot plots are a schematic
representation of the amplitude of a cell according to a data point’s y axis position. The
arrows indicate whether the amplitude of a cell is an increase (up) or decrease (down)
in signal activity. Using Pearson correlation, specific signalling activity features (b) are
associated with one another in KRASW T and KRASG12D cells (c).
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• Peak activity (β): the maximal ERK activity in an EGF-induced response

• Minutes post-EGF (π): the time a cell need to reach maximal amplitude.

• Full width at half maximum (FWHM, φ): the width (time difference) of a response
curve at half its amplitude

• Area under the curve (AUC, ϵ): the area between the response curve and the
baseline level, starting from the time of EGF stimulation to the start of ERKi
treatment. In other words, AUC is the cumulative ERK activity post-stimulation.

• Basal amplitude (δ): the difference between baseline activity and minimum ERK
activity.

It can observed that a number of obvious correlations such as the peak activity (β)
and area under the curve (AUC, ϵ) and generally correlations between features are similar
across cell lines. However, there are also correlations that exhibit a different strength in
different genotypes.

There is a very strong negative correlation between basal amplitude and AUC from
which it can be inferred that -– irrespective of genotype -– those cells that have a
higher steady-state ERK activity have more restrained dynamics after EGF stimulation
resulting in a ‘lower signal’. Furthermore, the peak activity (β) is negatively correlated
with the time when ERK activity reaches its peak (π), particularly in mutant cells. This
observation suggests that cells that exhibit a lower peak also reach it slower, and so at
later times.

Taken together, the data suggest that cells with higher basal steady state ERK activity
respond less and slower to extracellular stimuli. In agreement with this observation,
mutant cells – exhibiting high basal activity – still respond to EGF but to a lower extent
and with a lower speed.

2.2.2 Corrupt MAPK negative feedback in mutant KRAS
After KRASG12D cells have been treated with an ERK inhibitor, their ERK activity
’overshoots’ their respective baseline levels (see right panel of Fig. 2.4 on page 43). This
rebound effect peaks ≈1.5 hours after the inhibitor is washed away. Control cells not
treated with EGF exhibit the strongest and fastest rebound whilst EGF-treated cells
showing a milder and slower rebound activity with increasing EGF concentrations (see
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Fig. 2.7 Distribution of all conditions in both genotyopes (a) show the stark difference in
ERK activity 1.5 hours after ERK inhibitor is removed – value designated as ’rebound’
(normalised ratio of YFP/CFP, see section 2.4.7 for further details). The notch represents
the median, the box represents the interquartile range (IQR), whiskers represent values
within 1.5 IQR and red dots are outlier data points beyond 1.5 IQR. Scatter plots show
differing linear correlations between baseline (b), peak (c) and sustained (EGF+3h, d)
and rebound activity. Subplots in (b-d) are a representation of the activity plotted in the
x axis (x) and y axis (y, rebound). Single-cell data points have been omitted for clarity.
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(a) in Fig. 2.7 on the preceding page). This response is very distinctive and absent in
KRASW T cells that return to baseline ERK activity irrespective of EGF stimulation.

It was hypothesized that during the ERKi phase, negative feedbacks that might
restrain MAPK signalling are no longer enforced and that when ERKi is removed mu-
tant cells might temporarily overshoot baseline level until the MAPK network readapts.
Evidence of desensitisation and resensitisation was tested by investigating correlations
between ERK activities before and after ERKi (see (b-d) in 2.7). Positive linear corre-
lations of the rebound magnitude with baseline and sustained (EGF+3hrs) activities
(see (b) & (d) in 2.7) can be observed. However, these correlations are similar between
genotypes.

Interestingly, there is a KRASG12D-specific EGF concentration-dependent correlation
between peak magnitude and rebound magnitude. Contrarily to wild-type KRAS cells,
mutant cells that respond strongly to low EGF concentrations exhibit a low rebound but
cells that have modest responses to EGF exhibit a larger rebound effect. This negative
correlation between peak response and rebound magnitude disappears when cells are
treated with high EGF concentrations (see (c) in 2.7).

This was taken as evidence that mutant cells have an adaptive MAPK pathway
in conditions of low extracellular stimuli that restrains activity of highly responsive
(sensitive) cells and loosens regulation on moderately responsive (insensitive) cells.

To further validate the observed rebound activity, it was decided to replicate the
protocol outlined in (d) of Fig. 2.3 on page 41 and read out protein activity via Western
blot (see (a) in Fig. 2.8 on the next page). EGF 100 ng/ml was used in order to
exaggerate the phenotype previously observed; rebound activity is high in untreated cells
but much decreased when pre-treating cells with EGF (more so in high concentrations).
Unexpectedly, 30 minute DMSO treatment resulted in an activation of p-/t-ERK in both
genotypes. Quantification of p-/t-ERK (see (b) in Fig. 2.8) suggests there is a ’rebound’
activity. However, presence or absence of pre-EGF treatment did not make a difference.
Although the phenotype in this case is not significant, it remains KRASG12D-specific.

Because p-/t-ERK does not represent ERK activity (as does the FRET sensor) per
se, but rather the pool of active ERK molecules, CDC25C was probed as a surrogate
measure for ERK activity. CDC25C was specifically chosen as, in addition to being a
direct target of ppERK, a specific region of its genetic sequence containing a known
ERK target (Threonine 48) was integrated in the FRET sensor to act as a substrate
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Fig. 2.8 Western blot (a) probing of relevant proteins ERK (b) and CDC25C (c) con-
firm the ’rebound’ effect seen in previous imaging experiments, albeit not as strongly.
Both KRASW T (left) and KRASG12D (right) cells were treated with or without EGF
(100 ng/ml). n = 1

region. Active CDC25C levels broadly replicate those of active ERK (see (c) in Fig. 2.8).
However, the levels of active CDC25C in mutant cells at the ’rebound’ timepoint (i.e. 1
hour after ERK inhibition) are in fact higher than those 15 minutes after EGF treatment,
contrarily to KRASW T cells which do not overshoot baseline CDC25C levels. One of
the control samples (UT1) does show higher active CDC25C levels than the response to
EGF in mutant cells, but is still surpassed by the rebound activity levels.

As part of a wider effort to characterise the effects of mutations at the G12 codon of
KRAS, our laboratory has carried out extensive characterisation of the isogenic panels of
cells with RNA sequencing and metabolomics. To identify plausible mechanisms that
might underpin the adaptive feedback previously described, RNA sequencing data was
used to compare the parental (i.e. cells without the sensor) mutant and wild-type cells
to perform gene enrichment and expression analysis (see Fig. 2.9 on the facing page).
A number of signalling pathways are differentially regulated in mutant cells, of which a
select few signalling pathways are significantly downregulated (Hippo, Wnt, and mTOR)
and upregulated (MAPK and FoxO). Within the differentially regulated RNA transcripts
in KRASG12D cells, several of these are related to MAPK signalling regulation and
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negative feedback loops. For example, dual specificity phosphatases (DUSPS) are known
targets and negative regulators of ERK. Interestingly, DUSPS 6 and 19 are shown to
be upregulated in mutant cells whereas DUSP8 is downregulated. Of these, DUSP6 is
known to reside in the cytoplasm whereas DUSP8 is located in both cytoplasmic and
nuclear compartments (Huang, 2009; Kidger and Keyse, 2016). Sprouty 4 (SPRY4) –
another ERK inhibitor – is upregulated in mutant cells whereas another sprouty protein
(SPRY1) is downregulated. Lastly, MAP3K1 (also known as MEKK1), a less common
MEK kinase (Caunt et al., 2015) is upregulated as well.

Fig. 2.9 Gene enrichment analysis from RNA sequencing data shows differential regulation
of a number of genes involved in signalling pathways and tumours (a). Moreover, among
the differentially regulated genes, several of these are involved in MAPK activity control
(b).

Although the relevance of these genes in the observed signalling dynamics are yet to
be confirmed, they pose a plausible class of proteins that will be assessed in upcoming
experiments.

2.2.3 Hierarchical clustering reveals a mutant-specific pheno-
type

It is to be noted that the scatter of cell responses changes during different stages of the
single-cell assays. Also previously highlighted is the existence of correlations between
features of single-cell dynamics that are similar between genotypes or distinctive of the
RAS mutant cell line. Fig. 2.10 on page 53 illustrates a density plot of all traces discussed
so far that reveal the vast cell-to-cell variability in biochemical responses.
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To better quantify the cell-to-cell variability of genetic and non-genetic origin affecting
KRAS signaling, hierarchical clustering (see (a) in Fig. 2.10) of all single-cell signalling
profiles was performed using the Time Course Inspector tool developed by Dobrzyński
et al. (2019). The data seems to be best described by a total of 7 clusters representative
of responses that are somewhat simple to interpret (see (b) in Fig. 2.10 on the facing
page):

• Cluster 1 | non-responding cells with high baseline activity (≈0.25)

• Cluster 2 | non-responding cells with low baseline activity (≈0.10)

• Cluster 4 | transient responders with low ERK amplitude (≈0.40) and comparatively
faster desensitisation (≈2hr post-treatment)

• Cluster 5 | transient responders with large peak amplitude (≈0.75) and FWHM
resulting in desensitisation at ≈2.5hrs post-treatment

• Cluster 6 | transient responders with a large peak amplitude – similar to Cluster 5
– but with a smaller FWHM resulting in the return to baseline activity similar to
Cluster 4.

• Cluster 3 | sustained responders – i.e. cells that cannot return to baseline activity
spontaneously before the ERKi treatment – with a strong peak amplitude (≈1.2)

• Cluster 7 | sustained responders with lower amplitude (<1.0) than Cluster 3.

Panel (c) in Figure 2.10 shows how each cluster represents experiments at different
EGF concentrations and different genotypes. Cluster 2 represents cells with low baseline
activity and no response, which are present only in mock-treated KRAS wild-type cells
(≈55%). Similarly, cluster 1 represents the higher baseline activity of untreated control
KRASG12D cells. However, it was observed that ≈40% of the wild-type phenotype
exhibits also a higher baseline activity. The transient and modest response shown by
Cluster 4 is visible only in KRASG12D cells, with a prevalence decreasing from ≈50% to
20% at increasing EGF concentrations. The faster and more robust response depicted by
Cluster 6, conversely, titrates from ≈30% to 50% with increasing EGF concentrations
in cells of both genotypes. The intermediate phenotype described by Cluster 5 is also
prevalent in equal proportions between wild-type and mutant cells. Finally, the sustained
responders described by Clusters 3 and 7 are mostly present in wild-type cells, except for
≈20% prevalence of Cluster 7-like phenotype in treated mutant cells.
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This cluster analysis shows that KRASG12D cells still respond to extra-cellular
signalling but in a more modest, slower, and faster to desensitise manner.

Fig. 2.10 Hierarchical clustering of all curated single-cell tracks are represented as a
dendogram (a). Individual clusters are shown as time series plots of single cell curves
and the respective mean in red (b). Panel (c) shows the distribution of every cluster
for each experimental conditions tested and for each genotype (top: KRASW T , bottom:
KRASG12D). The horizontal triangle with a yellow colour gradient is representative of
the EGF concentrations tested, namely 0.1, 0.5, 1, 10, and 50 ng/mL. The horizontal
line in panel (b) designates an ERK activity of 0. CTRL: control.
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2.3 Discussion
Mutant KRAS has long been implicated in carcinogenesis and it is a major driver of
clinical relevance. We have a good understanding of the GTP and GDP cycling of
KRAS and how oncogenic KRAS mutations alter KRAS activation. Yet, oncogenic
KRAS can stimulate proliferation, EMT, stemness but also cell death and senescence;
it drives tumorigenesis but it is also found in healthy tissues; as a potent driver of
proliferation, it should unbalance homeostasis in any tissue but it does so only in specific
ones; all oncogenic mutations increase KRAS activation but the prevalence of different
mutations varies across tissues. In fact, we have a rather incomplete understanding of
the biochemical mechanisms underpinning KRAS-driven carcinogenesis, limiting our
capability to diagnose early and manage effectively KRAS-driven cancers. While studying
less characterised aspects of genetic heterogeneity, this work also investigates cell-to-cell
variability of non-genetic origin – an aspect increasingly recognised as a key contributor
to both tumour maintenance and resistance to chemotherapy although scantly studied.

In this chapter I have shown how MAPK activity is altered by a single KRAS
point mutation (G12D) establishing a platform for single-cell biochemical imaging that
integrates a state-of-the art FRET probe for ERK activity, microfluidics for the tritration
of EGF and inhibitors, and image analysis.

In summary, KRASG12D cells exhibit a higher baseline activity and dampened
maximal peak amplitude. Different EGF concentrations affect the amplitude, speed and
desensitisation of KRASG12D and KRASW T cells differently. Western Blotting analysis
shows that cells with a heterozygous mutation in KRAS display a rather mild background
activation of the MAPK pathway and a robust response to EGF stimulation (see suppl.
Fig. 2.19 on page 72). This observation suggests that wild-type and mutant KRAS
cooperate to maintain cells responsive to environmental cues. However, single-cell data
investigated through correlation analysis and hierarchical clustering reveals that mutant
cells exhibit milder and slower responses, desensitise faster during prolonged exposure to
EGF, and display a strong rebound response after ERK inhibition.

The decreased maximal response amplitude and higher basal activity in mutant
cells are signalling features that have been replicated in our laboratory. For example,
the panels (a-b) in Figure 2.11 show how several cell lines with wild-type KRAS and
different KRAS mutations (G12A, G12C, G12D and G12V) respond to EGF (100 ng/ml),
analysed by flow cytometry by Dr. Suzan Ber. Mutants display differential baseline but
also response to EGF. The higher baseline activity in KRASG12D cells could be directly
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attributed to the mutant KRAS, which may constitutively activate the MAPK pathway.
It is worth pointing out that mutant SW48 cells are heterozygous, meaning they still
express wild-type KRAS but at half the levels than those in cells carrying homozygous
wild-type KRAS. The heterozygosity could partially explain the dampened maximal
amplitude response observed, since the pool of readily available KRAS – and thus the
stimulus-response capacity – is much reduced.

Fig. 2.11 Signalling characteristics of KRASG12D cells are replicated in other assay
types. Parental and mutant SW48 cells are treated in suspension with EGF (100 ng/ml).
Barcoding the samples with Pacific Blue dye allows flow cytometry-based analysis (a) of
phosphorylated ERK, of which a quantification is also shown (b). Modular Response
Analysis (MRA) of SW48 mutant cells show a strong MEK to RAF negative feedback
present after 5min treatment with EGF (100 ng/ml). Dashed lines in (a) have been
manually drawn to represent parental cell response (as a reference). Flow cytometry
data (a, b) was kindly provided by Dr Suzan Ber. MRA data (c, d) was kindly provided
by Ms Khushali Patel.

Taken together, it is hypothesised that in the presence of an overactive KRAS, cells
trigger negative feedback mechanisms to compensate for the higher basal ERK activity.
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It is noted that KRAS dependent signalling is indeed highly plastic accounting for the
many difficulties of drugging targets downstream of KRAS. As a team-wide effort to
identify how KRAS mutations rewire biochemical networks, another PhD student in the
same laboratory – Ms Khushali Patel – has used a population-based systems-biology
approach to characterise feedback mechanisms within the MAPK pathway. The use of
Modular Response Analysis (MRA) – technique originally developed by Kholodenko et al.
(2002) – revealed a mutant-specific negative feedback loop from ERK to RAF (see (c-d)
in Fig. 2.11) that might explain the observations previously made. MRA was performed
in SW48, LIM1215 and doxycycline-inducible HeLa CCL2 KRAS cells. Although MAPK
wiring changes between cell types, KRAS mutant cells invariably show the appearance
of altered negative feedbacks.

Commonly known proteins involved in the dampening of ERK activity are dual-
specificity phosphatases (DUSPS) and sprouty (SPRY4 ). The former directly dephospho-
rylates ERK after being transcribed by the same protein (Lavoie et al., 2020). DUSP6 in
particular has been found to be upregulated in lung tumour cells with EGFR or KRAS
mutations (Unni et al., 2018). Although DUSP6 is found to be upregulated in our mutant
cells, its higher expression cannot account for dampened nuclear ERK activity since it
resides in the cytoplasm, unlike our nuclear ERK FRET sensor. On the other hand,
SPRY4 depletes the pool of active RAS-GTP molecules by stimulating neurofibromin
1 (NF1), a GTPase activating protein (GAP) (Lavoie et al., 2020). Given that the
latter is also upregulated in mutant cells, it is plausible that it may play a bigger role in
the deactivation kinetics than in wild-type cells as a protective mechanism (to prevent
hyperactivity). This could also be due to a loss of the positive feedback loop via protein
kinase C (PKC), known to prolong ERK activity (Bhalla et al., 2002).

Although not proven yet, it is speculated that the unexpected ERK activity rebound
behaviour is a transient relaxation of this bona fide negative feedback of mutant cells
during ERKi treatment. In the absence of MAPK signaling, cells might respond to restore
an optimal level of mitogenic signaling. This relaxation is enabled by ERK inhibition
which would prevent ERK-induced direct activation of negative feedback regulators and
their transcription. Moreover, during the same time period of ERK inhibition, proteases
and degradation mechansims may deplete negative regulators of ERK, thus priming cells
for temporary overriding of the relatively stringent negative feedback regulation. However,
specific DUSPS such as DUSP8 – an ERK phosphatase residing in both cytoplasmic and
nuclear compartments – is shown to be downregulated in our SW48 mutant cells (see (b)
in Fig. 2.9 on page 51). Therefore, dampened levels of this negative ERK regulator could
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have additive effects on the ERK rebound activity behaviour. Curiously, this phenotype is
pronounced only in control cells and is rather subtle in mutant cells pre-treated with EGF.
A possible explanation to the effects induced by EGF pre-treatment is the ligand-induced
internalisation of EGF receptors – another mechanism of ERK deactivation (Bergeron
et al., 2016). Control mutant cells may experience much less receptor internalisation and
consequently be more sensitive to extracellular stimuli inducing receptor activation.

Although there are currently no treatments specifically targeting KRAS G12D mu-
tations, cancer patients suffering the genetic aberration still follow standard treatment
strategies for their respective tumour. Because of the difficulty in designing drugs that
effectively target mutated KRAS, the inhibition of the MAPK pathway has been proposed
as an alternative treatment strategy (Moore et al., 2020). Our results indicate that
mutant cells transiently treated with ERK inhibiton result in MAPK over-activity which
may lead to further cell proliferation, depending on drug administration. Therefore, a
temporarily relaxed negative feedback is of significant clinical relevance.

2.3.1 Conclusion

Taken together, the presented data shows that mutant cells have a similar yet subtly
different signalling profile to wild-type cells allowing them to potentially better tolerate
extreme stimuli (such as chemotherapeutic treatments) and foster high MAPK activity
levels that favour a proliferative state.

Assessment of downstream MAPK targets (such as transcript levels of MAPK-
regulated genes) and association of the characterised signalling profiles to particular cell
fates would further elucidate our understanding of cancer development and better inform
current treatment strategies for the management of tumours with G12D mutations in
KRAS.

2.3.2 Limitations of this study

Although panels of stable cell lines expressing EKAREN5 and different KRAS mutations
were prepared, because of the lockdown and faults of the microfluidic setup, experiments
could only be executed in SW48 cells, KRASW T and KRASG12D. The results are
therefore, at this stage, very interesting from the perspective of a single-cell system-level
characterisation of KRAS mutations but not possible to generalise. With the use of the
resources I have developed so far, however, it will be possible to investigate the effect of
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KRAS mutations in different genetic backgrounds (for example in the colorectal tumour
LIM1215 lines, and the non-transformed pancreatic HPNE lines).

The FRET measurements are ratio-based which, although straightforward to compute,
entails that probe readings are not necessarily reflective of a cell’s absolute ERK activity.
In other words, measured FRET data does not linearly correspond to the ERK activity
signal. This could partially explain the dissimilarity in ERK activity between the imaging
data and the western blot analysis. This limitation was known beforehand and it was
decided to follow through with the project since the interest was in comparing MAPK
signalling of KRASG12D cells to those carrying no KRAS mutation. Thus, although the
measured signal does not represent absolute values, it still provides invaluable information
on the signalling dynamics of mutant cells when compared to their wild-type counterpart.

3 identical repeats of low (0.1, 0.5, 1 mg/mL) and 3 identical repeats of high (1,
10, 50 mg/mL) EGF concentration experiments for each KRASG12D and wild-type
SW48 cells were carried out in addition to pilot experiments and experiments that
partially failed because of technical issues (for example clogging of individual microfluidic
channels). It is to be noted that precise features of biochemical dynamics across different
independent experiments exhibit non-negligible variability (see suppl. Fig. 2.17 on page 70
and 2.18 on page 71). Certain results such as the ERK deactivation kinetics in wild-type
cells, for example, are particularly variable. Given the high standards taken to execute
the experiments as similar as possible, a plausible reason to explain inter-experiment
variability has not been found yet. Importantly, the interpretation of the results relies on
differences between WT and G12D that are largely unaffected by such variability.
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2.4 Materials & Methods

2.4.1 Cell lines and culture conditions

Parental and heterozygous KRAS mutant (G12A, G12C, G12D, G12V) SW48 CCL-231
cell lines (derived from colorectal adenocarcinoma) were obtained from Horizon Discovery
and cultured in RPMI-1640 medium, supplemented with GlutaMAXT M -I and 10% foetal
cow serum (FCS).

Parental and heterozygous KRAS mutant (G12A, G12C, G12D, G12V) LIM1215
colorectal cell line (Whitehead et al., 1985) were obtained from ATCC and cultured in
RPMI-1640 medium, supplemented with GlutaMAXT M -I, 1 µg/mL insulin (Sigma, cat.
no. I9278-5ml), 1 µg/mL hydrocortisone (Sigma, cat. no. H0396-100MG) and 10% FCS.

The pancreatic cell line hPNE E6/E7/st (CRL-4037) was obtained from ATCC. E6
and E7 are human papillomavirus oncogenes that inhibit p53 and Rb tumour suppressor
proteins, respectively (Campbell et al., 2007). Moreover, SV40 small t antigen (st)
promotes cell growth via the inhibition of protein phosphatase 2A family of Sr/Thr
phosphatases (Hahn et al., 2002). This cell line was used to generate a panel of cell
lines stably expressing a doxycycline-inducible mutant (KRASwt/G12A, KRASwt/G12C ,
KRASwt/G12D, KRASwt/G12V ,KRASwt/G12R) or wild-type (KRASwt/wt) KRAS.

Cells were cultured in DMEM (1X) medium, phenol red and L-glutamine free,
supplemented with 1g/L glucose and pyruvate (Gibco by Life Technologies). Additional
medium contents include M3:BaseFT M (1X) (Innovative Life Sciences SolutionTM),
5% FCS, epidermal growth factor (EGF, 10 ng/mL), glutamine (2mM), puromycin
(150 ng/mL), 1% penicillin/streptomycin and Hygromycin (150 µg/mL).

All cultured cell lines were stored in an incubator at 37 ◦C with 5% CO2, containing a
water bath filled with distilled H2O to control for internal humidity. At 80% confluency,
cells were washed with PBS and passaged via trypsinization (Trypsin-EDTA, Gibco).

2.4.2 Molecular cloning

The EKAREN5-NLS plasmid kindly provided by Hugo Snippert and Bas Ponsioen
(Utrecht University) contained a puromycin resistance gene. This was unsuitable for
our monoclonal cell-line generation needs since all our parental cell lines were already
resistant to puromycin. Thus, it was decided to replace puromycin with a blasticidin
resistance gene.
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To do this, the vector from another similar blasticidin-containing plasmid (EKAREN4)
was fused with the sequence expressing the EKAREN5-NLS sensor with 2-way ligation
cloning. The restriction enzymes used to digest the vector (from miniTol-EKAREN4-
PGK-blasticidin) and insert (from miniTol-EKAREN5-PGK-puromycin) were NheI and
PacI. The resulting plasmid (miniTol-EKAREN5-PGK-blasticidin) was confirmed via
analytical digest and Sanger sequencing.

2.4.3 Stable cell line generation

Transfection

800,000 (HPNE) or 2 million (SW48, LIM1215) cells were seeded onto T25 flasks. 24h
later, cells were transfected with 1.5µg of EKAREN5-NLS plasmid and 1.5µg transposase
plasmid using Jetprime (Polyplus transfection) according to the manufacturer’s guidelines.

Polyclonal cell lines

HPNE, SW48 and LIM1215 cells with wild-type KRAS (KRASwt/wt) and heterozygous
mutant KRAS (KRASwt/G12A, KRASwt/G12C , KRASwt/G12D, KRASwt/G12V ) were used
to generate polyclonal cell lines.

72h after transfection, 6µg/mL (LIM1215, HPNE) or 12µg/mL (SW48) of selection
agent blasticidin (Invivogen) was added into the growth media. Growth media with
blasticidin was replenished every 3-4 days for at least 10 days, after which cells were
frozen in freezing media (90% FCS and 10% DMSO) and stored in -180 ◦C.

Monoclonal cell lines

For the generation of monoclonal cell lines, HPNE, SW48 and LIM1215 cells with
KRASwt/wt (wild-type) and KRASwt/G12D (mutant) were used.

72h after transfection, cells were trypsinised and single-cell sorted via fluorescence-
activated cell sorting (FACS) into 96-well ’feeder’ plates pre-seeded 24 hours earlier with
non-transfeced cells (250 cells/well for HPNEs, 400 cells/well for SW48 & LIM1215).
Each sample (cell line with or without mutation in KRAS) submitted for FACS was
sorted into three 96-well plate replicates. Once samples were sorted, plates were kept
in an incubator at 37◦C for 5 days. Then, growth media was replenished every 3-4
days with 6µg/mL (LIM1215, HPNE) or 12µg/mL (SW48) of selection agent blasticidin
(Invivogen). 10 days after the addition of blasticidin, single colonies from 96-well plates
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were transferred to 24-well plates via trypsinisation and for further expansion. Once
confluency was reached, cells were frozen in freezing media (90% FCS and 10% DMSO)
and stored in -180 ◦C.

2.4.4 Microfluidics and sample preparation for EGF titration
assays

All microfluidic experiments were carried out using the CellASIC ONIX2 system (Merck
Millipore, cat. no. CAX2-S0000), a CellASIC ONIX2 Manifold XT (cat. no. CAX2-
MXT20) and CellASIC ONIX plates (cat no. M04S-03-5PK, see Fig. 2.12). Here I
describe the preparations and seeding procedures prior to imaging.

Fig. 2.12 Diagram of a CellASIC plate. Gravity flow inlets (column 1) have a low flow
resistance and are typically filled with growth media for cell maintenance. Solution inlets
(columns 2-5) have the highest flow resistance and are filled solutions of interest for assay
purposes. Cell inlets (column 5) have the least resistance and are used to seed cells onto
the cell chambers (coloured red). Flow outlets (columns 7-8) are the wast compartments
that accummulate any solution that is perfused through the cell chambers. Figure from
the CellASIC ONIX M04S-03 Microfluidic Plate user guide.



62 KRAS Signalling | Dissecting the subtleties

Plate priming

At least one hour before seeding, chambers in the CellASIC plate were coated with
growth media to facilitate cell attachment and distribution at the time of seeding. Prior
to coating, the PBS in the plate’s channels (connecting wells with chambers) was replaced
with imaging media. The latter consists of RPMI-1640 without phenol red and HEPES
(cat no. 11835030) and is supplemented with 1% FCS and 1% penicillin/streptomycin.
Whenever solution was aspirated from the CellASIC plate, care was taken not to aspirate
solution from the bottom hole of inlets (to prevent air leakage into the plate’s internal
channel system).

A CellASIC plate was removed from its packaging and PBS was aspirated from all
inlets in aseptic conditions. After adding 200µl of imaging media to the solution inlets
(2-5, see Fig. 2.12), the CellASIC plate was sealed to the manifold (CellASIC ONIX2
Manifold XT (Temperature Controlled), cat. no. CAX2-MXT20). Then, using the ONX2
software, solution inlets were activated and a pressure of 5psi (34.5kPa) was applied for
at least 5 minutes (to allow imaging media to cover all of the chamber surface). Then,
pressure was turned off, CellASIC plate was unsealed from the manifold and returned to
a microbiological safety cabinet. Media in the waste compartments (7-8) was removed.
After aspirating all media (including bottom hole) from cell inlets, 12µL of growth media
was added to cell inlets (column 6) to begin chamber coating. Finally, the plate was left
in the incubator at 37◦C until seeding.

Seeding

Cells were washed with PBS and trypsinised to achieve a solution with cells in suspension.
After counting cells with a Countess Automated Cell Counter (Thermo Scientific), a cell
solution with a concentration of 1.5-2 cells1/mL was prepared. Then, after removing
all growth media (including bottom hole) from the first cell inlet (A6) in the CellASIC
plate, 11µL of homogenised cell solution was added. This procedure (media removal &
cell loading) was carried out sequentially for each cell inlet. Once completed, media from
waste compartments (7-8) was removed to increase the cell solution flow and prevent cell
aggregation. Then, using a combination of finger-tapping, strict visual inspection of the
chambers and flow control, cells were seeded as evenly as possible.

Once all chambers were seeded with the cells of interest and solution flow was halted
(by adding imaging media to waste compartments), the CellASIC plate was stored in
the incubator at 37◦C for 2-6 hours. Finally, 350µL of imaging media was added to all
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gravity flow inlets (column 1) and the CellASIC plate was stored again in the incubator
overnight (at least 20h) to allow cellular adaption to the new environment.

On experiment day

At the designated time, solution was aspirated from all inlets, except the cell inlet
(6). 300µL of imaging media was added to inlets 2 & 5. The same volume of EGF
(sigma-aldrich, cat. no. E9644) and ERK inhibitor (SCH772984, 500 nM, Generon, cat.
no. A3805-10mg) solution was added to inlets 3 & 4, respectively. A solution of imaging
media and EGF stock buffer was added in inlet A3 for control samples.

To ensure a good fit of the CellASIC plate with the microscope stage, 6 tape strips
were attached to the sides of the plate. After adding oil underneath the cell chamber,
the plate is returned to the stage and sealed to the manifold. On the ONIX2 software,
the perfusion protocol is prepared as in Fig. 2.20 on page 73. Once field of views (FOVs)
have been selected on the microscope, the imaging timelapse and microfluidic protocol
are synchronously initiated.

2.4.5 Microscopy

All imaging experiments were carried out using a Nikon Eclipse Ti inverted fluorescence
widefield microscope controlled by NIS-Elements AR software. Images were captured
using a Plan Fluor 40x Oil objective, 200-300ms exposure time and a two-camera system
(TuCam, Andor) for the simultaneous detection of FRET acceptor (YFP) and donor
(CFP) light emission. The sample is exposed to excitation light – generated by restricting
the fluorescence light with a CFP band-pass filter (ET 436/20X). Emission light is
then split by a dichroic mirror within the TuCam to capture CFP and YFP emission
separately.

Timelapse images of 12 hours duration were captured using an image acquisition
frequency of 6 minutes.

2.4.6 FRET measurement

FRET data was measured as described in Chapter 3. Briefly, YFP and CFP channel
images undergo smoothing (via median filtering) and background subtraction. Then, a
FRET image (YFP/CFP) is generated and average or single-cell FRET data measured
using the regionprops function from the sci-kit image Python package. Measurement
data is then saved in .csv file format.
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2.4.7 Signal dynamics analysis

Analysis was performed using Python 3.7.6, and plots were generated using Python’s
Matplotlib visualisation package, unless stated otherwise.

Single-cell data from all experimental repeats was collated in a single master .csv
file. Data was normalised by subtracting each each cell’s FRET data with the median
value of minimal ERK activity of all cells of the same treatment condition and biological
sample. Minimal ERK activity was calculated (per cell) by averaging FRET data in the
30-48’ time window after start of ERK inhibition treatment.

The mean values in section 2.2.1 are reported with the standard error of the mean
and number of single cells in brackets.

Derivative values (see (b), (d) and (e) in Fig. 2.5) were calculated using the gradient
function from the Numpy library package.

Peak prominence values of mean FRET data curves (see (c) in Fig. 2.5) were measured
using the find_peaks function from the signal package of the SciPy library. Using the
same function, peak-related features were calculated on single-cell data.

Pearson correlation plots were generated using the single-cell feature data and the sta-
tistical data visualisation library Seaborn. Plots were further amended with CorelDRAW
2020 and illustrated as in Fig. 2.6.

2.4.8 Analysis using Time Course Inspector

A .csv file with normalised FRET single-cell data generated with Python was loaded into
Time Course Inspector (TCI), an R/Shiny app developed by Dobrzyński et al. (2019)
for the analysis of time series single-cell data. Outlier trajectories – identified by visual
inspection of the FRET curves – were removed. Within TCI, data was interpolated
with the interval between two points set to 6 (minutes), the image capture frequency.
For clustering purposes, X-axis (time) was trimmed to -30min to 3.5 hours since EGF
addition. All distribution plots shown were generated with TCI.

Scatter plots

Plotted data was smoothed by calculating the average of the selected timepoint and its
two adjacent timepoints. For example, if x axis is set to intensity values at frame 10, the
plotted data will represent intensity values averaged over frame 9, 10 and 11.

https://github.com/pertzlab/shiny-timecourse-inspector
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For scatter plots in Fig. 2.6, baseline ERK activity is the activity at 18min before EGF
stimulation. Peak amplitude represents the difference between peak activity (defined as
ERK activity at EGF+24min) and baseline activity.

For scatter plots in Fig. 2.7, rebound magnitude is the ERK activity 1h24’ after
ERK inhibition. Baseline magnitude equates to baseline ERK activity as defined in
the previous paragraph. Peak magnitude is the ERK activity at EGF+24’. EGF+3h
magnitude is the ERK activity 2h54’ after EGF treatment.

Hierarchical clustering

Clustering was performed using the Euclidean distance as a dissimilarity measure, with
Ward (Ward.D2) linkage method and a cluster number of k = 7.

2.4.9 Western blot

At the indicated time point, samples were immediately placed on ice. Medium was
aspirated using a table-top pump, and samples were each then added 3mL of ice-cold
PBS. Dishes were angled as vertically as possible for maximal extraction of the PBS
(aspirated). Then, cells were lysed with 40uL of RIPA solution containing 50mM TRIS
pH7.4, 150mM NaCl, 0.5% sodium deoxychelate, 0.1% SDS, 1% NP-40 (IGEPAL),
ultrapure water, 1mM PMSF, 1x protease inhibitor cocktail (PIC) and 1x phosphatase
inhibitor (PhosphoSTOP). Cells were harvested using a cell scraper. RIPA solution
containing lysed cells was pipetted into 1.5mL Eppendorf tubes and placed immediately
on ice under blue light. Once all samples were harvested, samples were vortexed for
10 seconds and followed by a 30-minute incubation at 4◦C and in the dark (tubes were
covered in foil). Samples were then placed in a centrifuge and spun at 13,000 rpm for
10min and at 4 degrees. The supernatant was transferred into a new Eppendorf tube
and the former tube with the pellet (cell debris) discarded. Finally, samples were stored
at -80◦C, if not assayed directly.

Protein concentration of cell lysates was determined by BCA assay. 30µg of lysate
was denatured with 1x sample loading buffer (with 50mM dithioltheitol or DTT) at 70◦C
for 10min. Samples were loaded onto a NuPAGE Novex 4-12% Bis-Tris protein gel (Life
Technologies) and transferred onto a PVDF membrane using wet transfer (tansfer buffer
with 20% methanol) at 20V, overnight and at 4◦C. Once transferred, the membrane
was stained with Ponceau S to confirm successful protein transfer. The membrane was
blocked for 1 hour using 5% milk (unless stated otherwise) in TBS-T (0.05% Tween 20).
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The membrane was washed (3 x 5min) with TBS-T and incubated with primary antibody
solution overnight at 4◦C. The following day the membrane was washed again (3 x 5min)
with TBS-T and incubated for 1 hour at room temperature with fluorescently-labelled
secondary anti-mouse or anti-rabbit antibodies (IRDye-680 anti-rabbit, IRDye-680 anti-
mouse, IRDye-800 anti-rabbit, IRDye-800 anti-mouse; LI-COR) diluted 1:5,000 in odyssey
blocking buffer (PBS). Finally, the membrane is washed with TBS-T and scanned using
the Licor Odyssey CLx imaging system.

Primary antibodies

Primary antibodies and dilutions used: mouse P-p44/p42 MAPK (T202/Y204) (E10)
(1:1,000; Cell Signalling, cat. no. 4695S), p44/p42 MAPK (Erk1/2) (137F5) Rabbit
(1:1,000, Cell Signalling, cat. no. 9106L), p-CDC25C (T48, Rabbit 1:1,000, cat. no.
9527S), CDC25C (H-6, Santa Cruz, Mouse 1:500, cat no. sc-13138), Hsp90 Rabbit mAb
(C45G5, 1:1,000, Cell Signalling, cat. no. 4877S).

2.4.10 RNA sequencing sample preparation and analysis

SW48 cells with heterozygous knock-in mutations for KRAS G12A, G12C, G12D, G12V
and WT were thawed and cultured for 3 passages before sample preparation. 5 replicates
from 3 different batches of each cell line were used for the RNAseq experiment. Briefly,
1.5 million cells were seeded on a 6cm dish. 48h later cells were placed on ice, washed
1x with cold PBS, and collected by scraping with 1ml PBS into 1.5ml Eppendorf tubes.
Samples were centrifuged for 3min 1000rpm at 4 ◦C and pellets kept in −80 ◦C until
shipment. Total RNA isolation, library preparation and sequencing (with 20M reads per
sample) was performed by BGI in Hong Kong.

Differential expression data was generated by Dr Shamith Samarajiwa. Gene set
enrichment analysis was performed using enrichR (v3.0) using default settings on all
differentially expressed genes (FDR < 0.001 & |logFC| > 1). Genes were tested for
enrichments in gene sets defined by KEGG pathways or MSigDB. Gene sets with an
adjusted p-value < 0.05 were highlighted in the figure.
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2.5 Supplementary Figures

Fig. 2.13 Comparison of various ERK sensors. SW48 cells are treated with EGF
(100 ng/ml) for 30min. EKAREN5-NLS was chosen for stable cell line generation as it
displays the highest dynamic range, is the least saturable and has been modified to have
insensitivity to CDK1 (not shown).
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Fig. 2.14 Titration of ERK inhibitor SCH772984. Solution flow starts at t=0 and is
maintained constant throughout the whole experiment. Dashed lines designate a change
in solution. Non-shaded areas represent imaging media flow.

Fig. 2.15 Time to response peak activity. The shades of colour are representative of the
EGF concentration.
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Fig. 2.16 Correlation of baseline ERK activity to response amplitude of all tested
conditions in both KRASG12D (G12D) and KRASW T (WT) cells.
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Fig. 2.17 Experimental repeats of EGF titration in cells with KRASW T . Mean FRET
data and standard deviation are plotted for each condition tested in each repeat. Following
3 hours of EGF treatment (yellow) cells are treated with SCH772984 (conc.?, purple).
The repeats are codenamed according to their experiment type (H = high EGF titration
experiment, L = low EGF titration experiment) and replicate number. Thus, ’Repeat H1’
refers to the first repeat of high EGF titration experiment (includes Control, EGF-1, EGF-
10 and EGF-50 ng/mL). The dashed lines represent a change in solution administration
(change of inlet activation in the microfluidic plate). Non-shaded areas represent sections
of the experiment where cells are perfused with imaging media
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Fig. 2.18 Experimental repeats of EGF titration in cells with KRASG12D. Mean FRET
data and standard deviation are plotted for each condition tested in each repeat. Following
3 hours of EGF treatment (yellow) cells are treated with SCH772984 (conc.?, purple).
The repeats are codenamed according to their experiment type (H = high EGF titration
experiment, L = low EGF titration experiment) and replicate number. Thus, ’Repeat H1’
refers to the first repeat of high EGF titration experiment (includes Control, EGF-1, EGF-
10 and EGF-50 ng/mL). The dashed lines represent a change in solution administration
(change of inlet activation in the microfluidic plate). Non-shaded areas represent sections
of the experiment where cells are perfused with imaging media
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Fig. 2.19 EGF treatment (100ng/mL) of SW48 cell line panel, including parental (Par),
KRASG12A (A), KRASG12C (C), KRASG12D (D) and KRASG12V (V). Figure kindly
provided by Dr. Suzan Ber.
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Fig. 2.20 Microfluidic plate layout (top table) and protocol (bottom table) example. The
top table shows the arrangement of solutions and samples according to inlet position of
the CellASIC plate. SIM in the top table refers to Starvation Imaging Media and column
6 labels are that of the specific cell line used. In the protocol table, the parameters
column shows pressure (in kPa) and inlet (number) information. Pressure can only be
applied to inlets vertically (per plate column, see top table).





Chapter 3

Optogenetic Tool Development for
Novel Insights

3.1 Introduction
Traditional biochemical assays (e.g. Western Blot and proteomics) often provide only
population measurements thus masking cell-to-cell variability. Since the 17th century,
microscopy permits scientists to describe single cells within a population. Microscopy
is then an invaluable tool to describe the structure and morphology of the cell and
its compartments, and their variability. In the 90s, however, the ground breaking
innovations of digital microscopy, laser systems and molecular cloning, together enabled
scientists to utilize high resolution fluorescence microscopy to characterise living specimens
genetically tagged with fluorescent proteins. These innovations transformed the study
of cell biochemistry and made fluorescence microscopy an essential tool not only for
structural but also functional studies. By permitting to map proteins, protein-protein
interaction and enzymatic activities in the living cells and tissues, biochemical imaging
enables us to study signalling dynamics and heterogeneity of biochemical events within
cellular populations. However, the investigation of biochemical networks – the main
focus of this thesis – is constrained by the limited capability of microscopy in quantifying
several biochemical event at once on the same sample. Therefore, population-based
assays are still the main tool applied for the system-level understanding of the cell. To
better complement these assays, I have optimised an imaging platform that permits us
to quantify at least three FRET reporters simultaneously. The capability to directly
monitor the dynamics and variability of small biochemical networks in living cells could
provide a deeper and more accurate understanding of cell biochemistry.
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3.1.1 Fluorescent Probes for Monitoring Single-Cells

Genetically encoded fluorescent probes enables the readout of a biochemical event of
interest when expressed in cells either through transient expression or stable genomic
integration. Fluorescent reporters typically consist of a sensing element fused to a
reporting unit. The former is an endogenous peptide involved in a biochemical reaction of
interest. Whereas the latter radiates a fluorescent signal used as a proxy for the activity
of the protein (or molecule) acting on the sensing element (Sample et al., 2014).

The design of these reporters is not trivial; one has to ensure that FP brightness,
stability, maturation, quantum yield (ϕ) and extinction coefficient (ε) are optimally
selected to be measurable. Moreover, pKa, redox sensitivity, unspecific sensitivity to
analytes (e.g. halides), as well as the propensity for oligomerisation can also have
detrimental effects on quantitative measurements. However, years of efforts on the
improvement of these factors have resulted in a library of high quality fluorescent
proteins.

FRET sensors are probably the most commonly used among the research community.
FRET, originally described by Theodor Förster in the 1940’s (Forster, 1946), consists in
the transfer of non-radiative energy from an excited ’donor’ FP (FD) to an ’acceptor’
FP (FA) (see Fig. 3.1 on the facing page). Thus, like dimerisation sensors, FRET
probes consist of two different FPs. In this case, however, they are both functional FPs,
and under an activation event, are brought close to each other effectively resulting in
fluorescence intensity changes via FRET. As a result, the former’s fluorescence decreases
(energy loss) whereas the latter’s increases (energy gained) (see (a) in Fig. 3.1). For
FRET to occur it is vital to ensure that both FD and FA spectrally overlap, i.e. the
emission spectrum of FD coincides with the excitation spectrum of FA (see (a) in Fig.
3.1). Other crucial requirements for FRET are appropriate angle and close proximity
between both FPs (see (b) and (c) in Fig. 3.1).

In the case of intramolecular FRET sensors – i.e. when both FD and FA are connected
forming a single protein unit – approximation between both FPs is enabled by the presence
of two specialised domains. First, an interaction domain to which a protein or ligand of
interest binds. Second, a binding domain to which the ’activated’ interaction domain
binds to, resulting in the sensor’s conformational change; bringing both FD and FA in
close proximity. Thus, genetically encoded intramolecular FRET sensors consist of 1)
spectrally overlapping FPs, 2) specialised domains (for sensing & conformational change),
and 3) linkers connecting all components (see (d) in Fig. 3.1). The popularity of FRET
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sensors is partially due to their modular components; switching an FP for another one,
for example, is a relatively straightforward and simple task.

Fig. 3.1 A donor-acceptor fluorescent protein (FP) needs to satisfy a number of conditions
in order to undergo energy transger. These include an overlap between the donor emission
(λD

em) and acceptor excitation (λA
ex) wavelengths (a, adapted from Shrestha et al. (2015)),

close proximity (b) and appropiate orientation (c) between both FPs (both adapted from
Broussard et al. (2013)). An intramolecular FRET sensor comprises of a donor and
acceptor fluorophore bound by protein linkers and reaction-sensitive sensor domains (d,
from Bajar et al. (2016))

FRET can be measured in a variety of ways, including via spectral imaging (siFRET),
acceptor photobleaching (apFRET), polarisation-resolved (prFRET), sensitised emission
(seFRET) and fluorescence lifetime imaging (FLIM-FRET) (Bajar et al., 2016; Shrestha
et al., 2015). For the scope of this thesis however, the focus will be on the intensity- and
lifetime-based approaches, namely seFRET and FLIM-FRET, respectively.

3.1.2 Sensitised emission FRET

The optical changes occurring when two FPs undergo FRET are that of decreased
donor emission (FD) and sensitized acceptor emission (FA) (see (a) in Fig. 3.1). The
dependency of FD and FA on FRET permits FRET to be quantified from intensity
measurements. Sensitised acceptor emission is based only off of the energy transfer
from a FD, and it can be measured in a variety of ways. The main concept involves
the measurement of the FRET signal by measuring FA emission when only exciting
FD. However, FRET efficiency cannot be accurately quantified in a straightforward
manner due to the presence of spectral bleed-through. More precisely, FA can be directly
but mildly excited by FD excitation light, and some FD emission may bleed into the
acquired acceptor’s emission. This results in an uncorrected FRET image (uFRET)
containing, sensitised and directly-excited FA and FD emission. Thus, to accurately
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calculate FRET efficiency, researchers employ rather complex imaging protocols involving
three- or four-channel imaging as well as single-FP imaging for spectral bleed-through
corrections (Bajar et al., 2016; Pietraszewska-Bogiel and Gadella, 2011; Sun et al., 2011).

A more straightforward approach to seFRET particularly useful when using in-
tramolecular FRET reporters is two-channel imaging. Using appropriate band pass
filters; under direct FD excitation light both a quenched donor (qD) image (FD emission
channel) and a uFRET image (sensitised emission channel) are captured. One can then
achieve a relative FRET efficiency (rE) with a simple ratiometric calculation:

rE = uFRET

qD

Due to the inherent fixed stoichiometry of intramolecular FRET reporters (ie equal
protein expression of FA and FD), spectral bleed-through in uFRET remains constant
meaning that it does not differentially affect rE. Contrarily, single-FP sensors can be
confounded by biological variables – such as cell morphology (cell thickness and shrinkage)
– affecting their intracellular concentration and ensuing intensiometric quantification.
Moreover, a ratiometric-based measurement means FRET sensors display added sensitiv-
ity; small FRET changes are amplified. Although accurate FRET efficiency cannot be
measured, this ratiometric-based seFRET approach provides a simpler way of measuring
signalling activity changes in single living cells.

3.1.3 Measuring FRET with FLIM

When a fluorescent molecule absorbs a photon it transitions to an excited state, due
to the increase in energy (see (a) in Fig. 3.2 on the next page). Excited states are
unstable and a fluorophore tends to fall back to a ground (stable) state. The time spent
in the excited state (in the nanosecond range for the fluorophores most commonly used
in biology) is called the fluorescence lifetime (FLT) (Lakowicz, 2006). Returning to a
ground state requires releasing energy in a number of ways, including heat and light
(photon) emission, among others (Lakowicz, 2006). There are several ways to measure
FLT, but methodologies can be broadly categorised as frequency-domain or time-domain
Fluorescence Lifetime Imaging Microscopy FLIM). With the latter method, we quantify
the number of photons that are emitted when a fluorophore goes from an excited state
to a ground state (see (b) in Fig. 3.2). To do this, the sample is exposed to very
short laser pulses that excite the fluorophore. Over time, photons are collected and
eventually one obtains a fluorescence decay function. This graph is the distribution of
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delay times for each photons from the excitation pulse, and the decay constant that can be
inferred by fitting exponential curves is a measurement of the fluorescence lifetime. FLIM
requires specialist instrumentation and expertise, thus FLIM is not as widespread as other
imaging techniques but provides a quantitative and robust measure of physico-chemical
characteristic that alters the fluorescence lifetime of a fluorophores, for example FRET.

Fig. 3.2 The lifetime of a fluorophore designates the time a fluorophore is in an excited
state S1, as shown in the simplified Jablonski diagram (a, adapted from Huang et al.
(2020)). Fluorescence lifetime determined by the photon decay rate is decreased when a
donor FP is quenched by undergoing FRET (b, adapted from Becker (2012))

FLIM can be used to investigate a wide range of features such as local viscosity,
fluorescence quenching by molecules (oxygen) or ions (Ca2+ and Cl−), binding to specific
biological targets or even nanoparticle localisation (Becker, 2012). Its most common
use however is for the measurement of FRET. A donor fluorophore’s lifetime changes
when it undergoes FRET. This is due to the acceptor fluorophore quenching the donor
fluorescence, resulting in a more pronounced photon decay rate and thus shorter lifetime
(see (a) in Fig. 3.2). Once we have two FLT values, for example the FLT of a donor FP
in the presence (τDA) or absence (τD) of an acceptor FP, FRET efficiency (E, the energy
transferred from donor to acceptor) can be measured as follows:

E = 1 − τDA

τD

There are various advantages to using FLIM when measuring FRET, the main
one being accuracy. The FLT of a fluorophore is not affected by intracellular sensor
concentration, but sensitive to the molecular interactions with its environment. This
supposes an additonal advantage, as often the precise sensor concentration is not known.
Moreover, spectral bleed-through – often present when measuring more than one FP – is
not an issue as only FD is measured.
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Multiplexing with FLIM probes

Because FLIM measures just the donor fluorescence, the fluorescence emission of the
acceptor molecule (FA) is redundant. Therefore, the acceptor can be a chromoprotein
(a dark FP), i.e. a molecule that can sink energy from the donor without emission of
fluorescence. This in turn opens up the possibilities for mutliplexing various probes
simultaneously, since there is double the spectral room than that with standard (non-dark
acceptor) FRET sensors. FLIM has been used in conjunction with intensity-based FRET
measurements to monitor drug delivery and metabolic activity in vivo (Rudkouskaya et al.,
2020). Another study uses the same combination of techniques for the characterisation of
RAS GTPase and calcium activity within single cells after exposure to epidermal growth
factor (Grant et al., 2008). Although these and other non-FLIM studies (Galperin et al.,
2004; Piljic and Schultz, 2008; Su et al., 2013) demonstrate the use of more than one
FRET probe, they are often limited by spectral bleed-through and/or multiple excitation
lines (meaning sequential acquisition) to excite all the donor fluorophores.
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Fig. 3.3 The NyxBits reporters are excitable at the same wavelength yet have spectrally
separated emission wavelengths (a). Because they all contain dim/dark acceptor fluo-
rophores (b), blue (mTagBFP), green (mAmetrine) and red (mKeima) donor emission
can be measured with low spectral bleed-through (c). These reporters exhibit a good
dynamic range granted by their relatively high FRET efficiencies (d). Figure from Fries
et al. (2018)

To overcome such limitations, Dr. Fries (previous PhD student in same research
group) spear-headed the design of novel reporter system (NyxBits) consisting of three
spectrally separated FLIM-FRET pairs, excitable with a single laser (Fries et al., 2018).
NyxBits reporters consist of a bright donor fluorophore (mTagBFP (Subach et al.,
2008), mAmetrine (Ai et al., 2008) and mKeima (Kogure et al., 2006)) and a dim/dark
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acceptor fluorophore (sREACh (Murakoshi et al., 2008), msCP756 and tdNirFP). These
reporters, together with fast photon-counting hardware and custom spectral unmixing
software (NyxSense), were used to simultaneously monitor the activity of death-inducing
proteases caspase 2, 3 and 9 in single living cells. Importantly, this novel optical platform
unveiled previously unidentified single-cell non-genetic heterogeneity of caspase activation
dynamics and ensuing survival or death (Fries et al., 2018). Despite NyxBits reporters
providing useful new insights in signal transduction dynamics, their FRET efficiencies
are optical features that could be further improved for wider dynamic range purposes.

3.1.4 Image Analysis Tools

For every image that is generated by a microscope, there needs to be a software to handle
the image files. In a first instance, to allow the user to view an image but also to quantify
the pixel’s intensity values. Such task can vary in complexity depending on many factors,
including the following non-exhaustive list:

• Image dimensions: these can be 2D or 3D single image or timelapse movies

• Channel number: cells can be imaged for morphology using brightfield or differential
interference contrast (DIC), for example, but also for endogenous information
reported by one or more fluorescent sensors

• Signal shape: nuclear stains are simpler to measure than ’dots’ or non-uniform
stain

• Background noise: depending both on instrumentation and signal strength, back-
ground pixel intensity can confound measurements of regions of interest. This is
specially important if we are to compare different images together, as background
levels may vary from image to image.

These are but a few considerations to take when analysing images. Unmentioned, but
related and equally important to image dimensionality, is the question of whether cells
need to be tracked over time. To the human eye, tracking is a relatively straighforward
task, but computers cannot intuitively perform such task since it requires a superior
level of visual recognition. Programmatically speaking, cells of one frame – of a 2D
timelapse – are pre-assigned an ID (number) which ought to be linked to the same cell
in the following frames. Tracking (ID assignment) can be performed manually by a user.
However, manual tracking can very quickly become incredibly time-consuming as the
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number of objects to measure and track over time will tend to be high to achieve robust
statistical power. Hence the importance of automation in this scenario.

Fortunately, there are many tools available to make necessary image corrections,
measure intensity and a plethora of other features. With the advent of machine learning,
computers can significantly improve performance of crucial image analysis methods such
as segmentation and tracking. Nevertheless, machine learning based tracking still does
not warrant close to 100% accuracy and remains a challenge even with the best available
methods. Therefore, it is crucial to also have access to software that enables the curation
of tracking data. Curation - usually performed by the user - requires a tool that enables
correction of track trajectories but also allows a user to verify other tracks that may
result in measurement of irrelevant objects (such as image artefacts or dead cells).

3.1.5 Optogenetic systems enable dynamic perturbation

In addition to visualisation, perturbation methods are required in order to decode and
rewire the vast information network of molecular topologies. Traditional techniques
include cellular stimulation by growth factors or insertion of mutant protein-coding
DNA (see Fig. 3.4) (W. D. Mühlhäuser et al., 2017). Although such perturbations have
furthered our understanding of signalling networks by elucidating on protein-protein
interactions, they lack the spatial and temporal resolution to decipher networks crosstalks
and more elaborate signalling subtleties such as negative or positive feedback-loops.

Fig. 3.4 Optogenetics provides perturbations of highly spatiotemporal resolution, in
comparison to genetic or chemical stimulations. Figure from W. D. Mühlhäuser et al.
(2017)
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Optogenetics provides excellent control of biochemical networks (see Fig. 3.4) by
using optically active protein domains. In addition to the inherent low invasiveness,
optogenetics grants high spatiotemporal control and specificity of target proteins in single
living cells or organisms. Optogenetic systems based on photosensitive proteins such
as light-oxygen-voltage 2, cryptochrome and phytochrome have been used for plasma
membrane recruitment of proteins in order to induce activation of signal transduction
pathways (Aoki et al., 2013; Johnson et al., 2017; Toettcher et al., 2013). Such tools
should enable us to directly activate oncogenic stimuli, study non-linearity features of
signal transduction pathways and address non-genetic heterogeneity.

3.1.6 Concluding Remarks

In this chapter, I present a series of methodological developments, some of which have
directly had a crucial role in biological projects (see Chapter 2). Specifically, I describe
1) the optimisations of blue- and green-based FLIM-FRET NyxBits reporters with
recently developed ’dark’ FPs (Murakoshi and Shibata, 2017; Murakoshi et al., 2015)
2) the construction of a custom-made software pipeline for the analysis of two-channel
microscopy images for ratiomatric-based seFRET single-cell measurements and 3) the
development of phytochrome and LOV-based optogenetic systems.
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3.2 Results

3.2.1 Enhancing NyxBits FLIM-FRET pairs

To improve the original NyxBits reporters developed in-house, it was decided to pair
the donors to recently engineered ’dark’ acceptor proteins with low quantum yield (the
number of photons emitted over those absorbed).

Improvement of the Blue FLIM-FRET pair

The optical properties of the original blue sensor (namely mTagBFP-sREACh) were
already satisfactory and readily functional for experimental purposes. However, the
residual fluorescence of sREACh caused by direct donor excitation light presents a
complication for accurate FRET efficiency determination. Indeed, mTagBFP-sREACh
displays a suboptimal FRET efficiency of 34%. Thus, it was decided to replace sREACh
with ShadowG (Murakoshi et al., 2015) and ShadowY (Murakoshi and Shibata, 2017)
dark acceptor proteins. With excitation wavelengths peaking at 486nm (ShadowG)
and 519nm (ShadowY), these proteins were chosen due to their optical compatibility –
higher molar exctinction coefficients and less spectral overlap – with mTagBFP (emission
at 457nm) and particularly low quantum yield (ϕ). Both single and tandem dimer
(abbreviated as TD) sensor configurations were tested.

The original sensor exhibits a lifetime value of approximately 1300ps; effectively
a FRET efficiency of 34%. Pairing mTagBFP with single and TD-ShadowG further
decreases fluorescence lifetime values to 1200ps and 1100ps, respectively (see Figure 3.5
on the facing page). However, mTagBFP-TDshadowG displays significant spectral bleed-
through, as suggested by the osberved ’shoulder’ at 490-560nm. Although consistent
with ShadowG’s emission spectra, this finding is surprising as the protein’s quantum
yield of 0.005 is far inferior to sREACh’s of 0.07. mTagBFP-sREACh on the other hand
also suffers from bleed-through (’shoulder’ visible at 530nm) but to a much lesser extent
than with mTagBFP-TDshadowG. Finally, with a single ShadowG, this FRET-FLIM
pair shows perhaps the best – although barely – spectral profile; no ’shoulder’ is apparent
but a slightly increased intensity within ShadowG’s emission range when compared to
mTagBFP alone. Thus, although mTagBFP-ShadowG has a minimally improved FRET
efficiency (from 34% to 38%) and spectral profile, these enhancements do not warrant
the consideration of this pair for the further development with a sensor domain.
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Fig. 3.5 Substitution of sREACh with two dark yellow ShadowG proteins results in
lowest fluorescent lifetime, suggesting the highest FRET efficiency. However, both sensor
versions with ShadowG display overall a high spectral bleed-through.
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Fluorescence lifetime values of the ShadowY-containing pairs proved to be either the
same (mTagBFP-TDshadowY, 1300ps) or shorter (mTagBFP-ShadowY, 1100ps) than the
original blue sensor (see Figure 3.6). The aforementioned ’shoulder’ at 530nm displayed
due to residual sREACh emission is quite apparent when compared to both ShadowY-
containing pairs which show practically an identical spectral profile to mTagBFP alone.
The fluorescence lifetime of 1100ps of mTagBFP-ShadowY effectively results in a FRET
efficiency of 43%. The increaed FRET efficiency and reduced residual fluorescenece of the
accept makes of mTagBFP-ShadowY an more efficient FRET-FLIM pair for multiplexed
detection.
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Fig. 3.6 Substitution of sREACh with a single dark yellow ShadowY protein produces a
blue FRET pair with enhanced fluorescence lifetime and negligible bleed-through

ShadowY as a dark acceptor for mAmetrine

The original green FLIM-FRET pair (namely mAme-msCP576h) already shows excellent
optical properties; with a FRET efficiency of 44% and no spectral bleed-though, it is
the best pair of the NyxBits platform. Although msCP576h did not exhibit apparent
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issues in aggregation, msCP576h was not monomerized. Therefore, it was considered
to pair mAmetrine with ShadowY because ShadowY might remove concerns related
to potential aggregation and still exhibits a better spectal overlap with mAmetrine.
This overlap suggests that FRET efficiency may be further improved, without affecting
spectral bleed-through as ShadowY has a low quantum yield of 0.01. Fluorescence
lifetime measurements show that mAme-msCP576h exhibit a higher FRET efficiency (see
Figure 3.7) when compared to both single and tandem-dimer ShadowY configurations
(both with a lifetime of approximately 1800ps, or around 35% FRET).
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Fig. 3.7 mAmetrine-hsCP576 remains optically superior when compared to new sensors
using ShadowY as a dark acceptor.

mAmetrine-ShadowY is thus a viable alternative to mAmetrine-msCP576h for sensors
where msCP576h might induce aggregation although for the specific backbone that was
attempted (direct fusion) a partial loss of FRET efficiency is observed.
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3.2.2 Design of an Image Analysis Pipeline for Single-cell FRET
Measurements

Althouth the laboratory has several toolboxes programemed in Matlab that are dedicated
to the analysis of seFRET data, segmentation and tracking of SW48 cells has posed
specific challenges. Compared to parental SW48, mutant cells are often of irregular
shape and adhere more to each other. Analysis of SW48 data required intensive manual
curation of the data. Hence, I opted to code a dedicated analysis workflow with the aims
of:

1. Improve the quality of the segmentation and tracking using machine learning
algorithms

2. Renovate the analysis workflow utilizing Python (departing from Matlab) to further
open up our data infrastructure to the broader community

3. Provide a semi-supervised workflow to provide high quality single-cell analysis of
biochemical traces and statistical description

The tool I have developped is named PyFRET and it will be available to the community
as a GitHub public repository. I opted for Python as the primary programming language
for a several reasons. First, Python is among the ’easy-to-learn’ programming languages
and its open-source nature means that its usage is free of charge to anyone, thus displaying
attractive economic and learning accessability. This fosters the exchange of useful software
as well as skill by the improvement of software by other interested parties. Second, In
addition to its growing worldwide popularity, there is an extensive number of libraries
available that facilitate useful functions. Lastly, Python’s access to powerful machine
and deep learning libraries – such as Keras and Tensorflow – that can be harnessed to
dramatically improve traditional image analysis techniques such as segmentation.

Before an image is analysed in any way, it needs to be imported first. Image file
selection occurs once executing the main PyFRET script. Importantly, the user is asked
(via the Command Prompt/Terminal) a series of queries in relation to the imaging
experiment (see suppl. Fig. 3.22 on page 123). User input, together with other basic
image metadata, is then saved as experiment metadata and later used for automatic
plotting. Data from the first field of view (FOV) is then loaded and ready for processing.
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Segmentation

Segmentation is the classification of the image’s pixels to enable the measurement
of objects of interest. Among the various segmentation methods, the most common
and simple is thresholding; setting a minimum intensity value above which pixels are
considered as the ’foreground’. Such calculation can be performed manually by a user,
but certain algorithms such as Otsu’s method have been developed to enable automatic
optimised thresholding. Although useful, thresholding typically requires a clear bimodal
distribution of an image’s intensity values. This requirement can be problematic when
segmenting noisy images (high background signal and/or low signal intensity of objects).
In addition, thresholding does not take into account the spatial context of regions of
interest; different objects may be part of a same mask (a ’foreground’ region in the image)
due to their spatial proximity and similar intensity values.

Indeed, in the example image shown in Figure 3.8 on the following page, thresholding
performs well only when nuclei are well separated from one another (see Fig. 3.8A).
However, when cells adhere to one another (a hallmark of the SW48 cells, particularly
those with a mutation in KRAS) simple thresholding results in segmentation of cell
’clusters’ as opposed to single cells (see (B) in Fig. 3.8).

Threshold-induced undersegmentation is most prominent when a FOV experiences
focus drift (see (C) in Fig. 3.8), resulting in higher intensity values between cells and
thus less contrast. FOVs with many cells (ie ’crowded’ FOVs) (see (D) in Fig.3.8) are
commonly acquired due to the potentially higher quantity of information (more cells) as
well as the cellular behaviour (cluster-like growth). Yet again in this scenario, threshold-
based segmentation provides a poor separation of individual cells. To further improve
threshold-based segmentation it is common (and necessary) to make additional image
operations such as watershedding. Although the watershed manipulation results in more
regions being defined (see (D) in Fig. 3.8), false merges (masks overlaying more than one
cell) are still clearly visible (see (C) in Fig. 3.8).

With the advent of machine learning, new tools leverage this technology with the
aim of dramatically increasing segmentation performance and accuracy. Such tools were
considered due to the complex images requiring better performance than traditional
threshold-based segmentation. These include StarDist, ilastik and Cellpose. The latter
is a generalist, deep-learning based algorithm developed to segment a wide variety of
biological objects of interest without the need to adjust parameters or re-train the
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Fig. 3.8 Comparison of several segmentation methods with different image case scenarios.
Various segmentation results are visually displayed for the easy (a), death (b), focus
(c) and crowded (d) scenarios. All segmentation methods were compared by speed of
execution (e), F1 score (f, a measure of both accuracy and precision) and merge score
(g) which designates the number of true objects that have been merged. For both (f)
and (g), a higher score indicates higher precision/accuracy and higher number of merged
objects, respectively. Graph (g) only relates to the crowded (d) scenario.
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algorithm (Stringer et al., 2020). StarDist makes use of star-convex polygons and a U-net
(Ronneberger et al., 2015) based lightweight neural network. The developers state that
StarDist addresses problematic scenarios such as crowded field of views (FOVs) where
many ’foreground’ masks may overlap with one another (Schmidt et al., 2018). Finally,
ilastik is a tool designed to facilitate several machine learning based image processing
techniques (including segmentation) by training a non-linear classifier in an intuitive (ie
no programming required) and interactive manner (Berg et al., 2019).

In our tests, all the machine learning based tools provide significantly improved
segmentation performance over threshold-based operations. Notably, the biggest im-
provement is observed in the FOV with focus drift (see (C) in Fig. 3.8) where ’smart’
software successfully detects slightly-out-of-focus cells. However, not all tools perform
identically. Although the F1 score (metric for overall accuracy) indicates ilastik as the
best performer (see (F) in Fig. 3.8), the measure does not account this tool’s poor
performance in false splits (where a nucleus has been assigned more than one mask)
or false merges. Overall, these tools display very low rates of such inaccuracies in all
scenarios (see suppl. Fig. 3.23 on page 124). However, ilastik performs relatively low in
the ’crowded’ scenario, where it has a false merge score comparable to threshold-based
methods (see (G) in Fig. 3.8). Both StarDist and Cellpose perform well in all cases,
including in the difficult crowded and focus drift scenarios, showing very low levels of false
splits or false mergers. The major limitation of Cellpose is the speed at which each images
are processed (see (E) in Fig. 3.8). The iteration time of 15s/image is drastically longer
than the other ’smart’ tools (approximately 0.5s/image each) and thresholding-based
operations (<200ms/image). Due to the large number of frames in a multi-position
timelapse acquisition, such a slow speed causes unsustainably large processing times.

Therefore, I selected StarDist for integration within PyFRET.

Tracking

Tracking is the extension of segmentation in the time dimension where objects are not
just separated in each frame, but their identity preserved over the entire timelapse.
Briefly, segmentation provides masks (binary images) used to assign a unique label (an
id number) to each cell within a field of view. At each subsiquent time point, cell IDs
are then propagated to the new masks, and so on and so forth until the last frame of the
timelapse. This procedure results in the tracking of individual cells in space and time.

After an extensive literature review, I selected ilastik, a tool developed by Haubold
et al. (2016). Ilastik demonstrated high performance and was designed to enable non-
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programmers the ability to use machine learning-based image analysis operations. The
tool includes a number of workflows, of which Object Classification [Inputs: Raw Data,
Segmentation] is used.

First, a machine learning model needs to be trained in order to yield successful
single-cell tracks. I used a set of 10 images representative of the breadth of scenarios
captured on a fluorescence widefield microscope and using nuclear ERK FRET-expressing
SW48 colorectal cells. The training consists in the user interactively assigning (via the
user interface (UI)) true and false detections, as well as the number of objects (cells) of
an inaccurate mask. Once satisfactorily trained, a project file generated by ilastik can
be used for tracking analyses of similar-looking images. Although ilastik is meant to be
mainly used through its UI, it can also be used programmatically.

Therefore, ilastik can be summoned from Python (using headless mode). In short,
the segmentation masks generated from Stardist (see section 3.2.2 on page 89) together
with YFP-channel images are ’fed’ to ilastik, which then uses the assigned trained model
to generate an image file containing masks with cell-specific labels across space and
time. Thus, this machine learning-based tracking approach enables effective artefact
discrimination, sensitive segmentation and high performance tracking.

The analysis performed by ilastik is relatively accurate. However, our final analysis is
carried out on fully curated datasets to avoid possible artefacts that might occur because
of missegmentation (e.g., in clustered cells) or mistracking (e.g., due to mitosis; see (a)
in Fig. 3.9 on the next page). When a field of view (FOV) contains a high number of
cells, a significant number of these tend to either stay at the border or come in and out
of the FOV. ilastik does not discriminate cell detection at specific locations such as the
border. However, these cells should be discarded from (single-cell) analysis since they
cannot provide accurate FRET quantifications, if at all (ie not in frame). Thus, masks
touching any FOV border are automatically removed via Python.

Moreover, mitotic events are commonly observed in our typical 12-hour imaging
experiments. When a cell divides, its daughter cells should be assigned new labels. In
ilastik, the option to train a model to detect mitotic events is available. However, the
imaging conditions needed to train the model are too simplistic and restrictive; mitosis
can be detected mostly if it occurs between two consecutive frames. In our timelapse
experiments, the high frequency capture and seemingly long mitotic events of SW48
cells means that cell division can be observed over a long period of time (up to 10
frames or 60 minutes). For this reason, I did not enable mitotic detection in ilastik and
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instead use a custom method to automatically detect cell divisions and amend cell tracks
accordingly. To do this, the cell area is measured to infer divisions; generally dividing
cells are relatively large in size, but cell area is greatly reduced when daughter cells
appear on the focal plane. If such area reduction is detected in a tracked cell, its label will
be terminated 10 frames prior to the inferred mitotic event (this is to prevent inaccurate
measurements of actively dividing cells), after which a new label will be assigned to the
daughter cell (see suppl. Fig. 3.24 on page 125).
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Fig. 3.9 After an image file is segmented with StarDist, ilastik is used to enable machine
learning-based cell tracking and further prune data with quality control procedures (a).
Cell tracks are discarded if they do not meet specific requirements (b). The number of
objects decreases with each analysis step after segmentation in favour of higher accuracy,
as shown in the example graph (c)

In addition to these categorical (border clearing) and morphological (mitosis) ’filters’,
quality control checks were also perofmed on track lengths.

Cells ought to be tracked during the whole duration of the imaging experiment.
Whole-experiment or long tracks are preferred as the interest lies in monitoring sensor
information (in this case ERK activity) during and across treatments. However, ilastik
tends to yield tracks of varying length as well as frequency (see (b) in Fig. 3.9). What
determines the length of a track is the detection or loss of a cell-label assignment by
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ilastik. The start of a track may represent the appearance of a cell via mitosis or by
entering the FOV. Track termination however may represent cells that disappear by
death, division or exiting the FOV or the focal plane. Thus short tracks result from
appearance and disappearance events that occur in a short window of time. If this occurs
on repeated occasions, it can lead to tracks with many ’gaps’, as shown in (b) in Figure
3.9 and named as intermittent tracks. A real world scenario are cells remaining close
to the edge of a FOV and often entering and exiting the FOV over time. Thus, these
tracks are likely to represent cells that cannot be tracked in a reliable way and so are
considered unsuitable for analysis. Labels of short and intermittent tracks are assigned
false detection labels which will be later ignored during measurements.

It is noteworthy to indicate that ilastik can, on occasion, assign more than one label
to a same cell. This can happen due to movement and/or focus-induced complexity and
the trained algorithm not being able to successfully infer cell-specific events over time.
Such tracking misinterpretation can result in multi-labelled cells and ensuing tracks that
are not within a time range of interest (treatment time, for example). In other words,
an out-of-range track might represent a fraction of a cell’s true trajectory. Out-of-range
tracks are only discarded after curation (see (b) in Fig. 3.9) since they 1) might be useful
for curation purposes (further explained in Curation section) and 2) are more likely to
represent a true short track after human assessment.

There is a great difference between the number of objects (cells) detected with
StarDist only and after tracking and all the quality controls implemented (see (c) in Fig.
3.9). However, using a machine learning-based approach and programmatically filtering
tracking data based on cell type-specific characteristics provides us with accurate results
and eases the burden on the manual-intensive curation process.

Measurement

After segmentation, tracking and data pruning by unsupervised quality control, an image
file and tracking masks are obtained. Next, data is prepared for single-cell analysis of
the FRET ratio.

First, both individual channel images (ie YFP and CFP) are denoised by median
filtering and background substracted. A non-zero background is always present because of
camera noise, stray light and unspecific fluorescence emission from media. Then, I generate
an acceptor:donor FRET ratio image (see Fig. 3.10 on the next page), representative of
the FRET activity of the expressed sensor. This is the image used to make intensity-
based measurements. Finally, the tracking masks are eroded to minimise inaccurate
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Fig. 3.10 The intensity image and tracking mask undergo simple operations to ensure
accurate and reliable measurements.
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boundary measurements resulting from slight image misalignment, for example. Once
the intensity image and tracking masks have undergone the aforementioned operations,
intensity properties are measured for all frames of a timelapse.

Depending on whether tracking masks are curated or not, the script will generate
one or two tables (see Fig. 3.10). When an image file is analysed for the first time, fully
automated analysis will only yield a whole FOV database (hereon referred to as DBF OV

whole).
In other words, the automatic workflow in the analysis pipeline only records the mean
values of all the single-cell intensity features that are measured. Contrarily, when curated
masks are available, a table with single-cell properties (hereon referred to as DBF OV

s−c ) is
saved in addition to DBF OV

whole. The pipeline is designed in this manner since non-curated
tracking masks are not reliable enough to provide truly accurate single-cell data. Hence,
only after visual inspection and correction the script can record single-cell measurements
(for full list see suppl. Table 3.1 on page 127) as the assumption after curation is that
cell tracks are the true representation of the cells’ spatial trajectories.

Last but not least, collected data is used to automatically plot an FOV-specific
mean FRET values, as well as raw cell-specific and background signal intensity of both
individual channels. This allows fast inspection of the technical and biological signal,
which may inform the viewer of potential artefacts and warrant further investigation.
Once all FOVs of an imaging experiment have been automatically measured, a master
database containing whole FOV properties of all FOVs is saved (hereon referred to as
DBmaster

whole ). If curation data is available, a master database containing all single-cell data
of all FOVs (hereon referred to as DBmaster

s−c ) is saved in addition to DBmaster
whole . These

rich databases are then used to generate basic plots and further processing (see section
Analysis – Dynamics & Clustering).

Curation

Automatic analysis of image files allows the harvesting of imaging data in a time-efficient
manner and without any input from the user. However, too often automatic measurements
fall short of high levels of accuracy, despite the use of AI-aided tools and the ensuing
increased performance. It is no different in this analysis pipeline, where ilastik tracks do
not yield the accuracy required to reliably analyse single-cell data. Even after applying
quality control steps, tracking events such as inaccurate splits, disappearances and
appearances remain in the data. Thus, manual curation of cell tracks is still required if
one is to yield highly precise data. Although averages of experiments are unaffected by
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residual error, highly accurate single-cell analysis always requires manual curation aimed
to furher prune data from misegmented or mistracked objects.

The key aspect of curation software is the ability of a user to navigate the raw data
(intensity images) compare it with the tracking data and iteratively amend tracking in
a time efficient manner. Supervised curations requires significant resources and several
graphical tools. I have tested bespoke software available in Matlab in the laboratory,
and tools available in the community including ImageJ, CellProfiler, Omero and others.
ImageJ and CellProfiler did not seem to be as intuitive and Omero does not provide a
good range of tools for manual curation.

Therefore, I decided to integrate napari – an open source Python image viewer – into
my imaging pipeline. napari provides a range of intuitive tools with full GUI support.
Being open source, I was able to build and integrate additional custom functions on top
of napari’s original framework. In this section I will describe napari’s viewer, its native
features and my own implementations designed to further facilitate manual curation (as
illustrated in Fig. 3.11 on the next page).

When napari is instantiated from a custom python script, a GUI with several sections
appears (see (a) in Fig. 3.11). First, the viewer section displays any image files added to
napari. Different types of data can be loaded to napari, including images, masks, points
and shapes, among others. When each data type is added, it is displayed as a layer in
the Layer list section of (see (c) in Fig. 3.11). In this case, I have facilitated a specific
button function ’Load materials’ (see (d) in Fig. 3.11) which automatically adds all the
necessary data to enable cell track corrections. The essential layers are added (see (c)
in Fig. 3.11, namely an intensity image (to assess the raw data) and the corresponding
cell masks (for correction) obtained from filtering ilastik’s tracking masks. Above the
Layer List is the Layer Controls (see (b) in Fig. 3.11; this section displays layer viewing
information as well as access to important mask editing tools allow a user to pick a label
(colour), paint, fill and effortlessly fix track mislabelling by activating the n-dimensional
function.

These are useful tools to amend cell masks in the current (and contiguous) frame of
the viewer. However napari is yet to natively display tracking data. This is a necessary
feature as it allows the user to better assess any potential corrections to be made. For
this reason, I integrated a Tracks Graph that displays single-cell tracks over the course of
the entire experiment and with matching colours to the mask layer (see (e) in Fig. 3.11).
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Moreover, with the aim of minimising manual curation effort, the Tracks Graph displays
the time of interest (determined by user input).
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Fig. 3.11 napari provides a useful platform to curate single-cell mask data as well as
enabling the integration of custom functionality to achieve a more comprehensive curation
experience. napari mainly constitutes a viewer window (a), including a Layer Controls
panel (b) to amend and access layer-specific features and a Layer list panel (c) containing
layers of different data types. Moreover, custom-made panels such as an Action buttons
bar (d) and a Tracks graph (e) has been added to facilitate the curation of image files.

Finally, because napari is still rather in its infancy stages as a standalone image viewer,
it requires the use of Python to add and retrieve layer data. These and other operations
are frequently repeated over the course of curation of a whole imaging experiment. Thus,
to maximise efficiency, I have integrated an Action Buttons widget containing practical
buttons. These provide easily accessible and click-executable functions as follows:

• Update Tracks [u]: updates the tracks displayed in the Tracks Graph and the
Borders layer (mask contours). In brackets is the keyboard’s letter shortcut.
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• Stats: displays time information, as well as the number of merged masks in the
tracking data

• Save+next: saves current curation data and replaces all layer data with that of the
next FOV

• Save: saves current curation data

• Load Materials: loads all the layer data required for curation of cell tracks of
currently displayed FOV

• Previous: Removes all layer data and displays the previous FOV intensity image

• Next: Removes all layer data and displays the next FOV intensity image

• Select FOV – Jump: Allows user to view the intensity image of a specific FOV by
typing the desired FOV number and consequently clicking on the Jump button

• Finish: initiates single-cell measurement of all FOVs in an imaging experiment

Analysis – Dynamics & Clustering

Upon curation of tracking masks, re-analysis yields FOV-specific single-cell (DBF OV
s−c )

and population (DBF OV
whole) databases saved in each FOV analysis folder. Moreover, all

FOV-specific databases are collated together to produce DBmaster
whole and DBmaster

s−c (see 3.25
on page 126). This is to enable access to experiment-wide population and single-cell
information. These databases are then used to automatically generate appropriately
labelled plots of various biological insights.

With DBmaster
whole , mean FRET data is plotted according to treatment group (up to 4

groups supported), either separately (with treatment labelling) or in the same graph (see
(a) in Fig. 3.12 on the next page). With DBmaster

s−c , probability density function graphs
are generated, providing a better view of the data distribution across time (see (b) in
Fig. 3.12). Moreover, signalling activity over time comprises a wealth of information in
addition to the FRET value. Features, such as signal amplitude, number and frequency
of peaks, basal activity (see (c) in Fig. 3.12) and many others can be used to make
further biological inferences. These signal characteristics are measured from DBmaster

s−c

and stored in a new ’single-cell features database’ (hereon referred to as DBs−c
features).

These signalling features are automatically visualised as a matrix (see (d) in Fig. 3.12).
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Fig. 3.12 Whole FOV measurements allow the visualisation of average FRET activity
(among others) according to pre-defined treatment groups (a). Curated data yields single-
cell FRET measurements enabling new types of visualisation (b), further analysis via
cluster (e), the quantification of signal features (c) and the ensuing potential correlations
(d). Data shown is for illustration purposes only FWHM : full width half maximum
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Similar types of signalling analyses are carried out by other researchers. In fact,
Dobrzyński et al. (2019) made an R and Shiny-based app (Time Course Inspector or
TCI) built to provide exploratory and clustering data analysis capabilities specifically for
sensor readout activity in single cells. The only requirement is that single-cell data needs
to be provided in a specific format. Thus, a TCI-specific database is also automatically
generated from the DBmaster

s−c , mainly to take advantage of the clustering capability of
TCI (see (e) in Fig. 3.12).

Overview

The presented Python-based pipeline (PyFRET ) integrates multiple open-source projects
designed for specific image analysis purposes (see Fig. 3.13 on the following page).
StarDist uses R-Convoluted Neural Networks (Schmidt et al., 2018; Weigert et al.,
2020) for precise and accurate nuclear segmentation. ilastik (Berg et al., 2019) enables
interactive single-cell tracking using machine learning algorithms. napari (Contributors,
2019) is an image multi-viewer for python with built-in tools to modify tracking masks
generated by ilastik. Masks are used to measure properties including signal intensity.
Finally, data is visualised in the form of automatically-generated ’signal activity’ graphs
or clustered using Time Course Inspector (Dobrzyński et al., 2019).
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Fig. 3.13 Schematic representation of PyFRET. StarDist and ilastik are open-source
projects, here used for image segmentation and tracking, respectively. Tracking masks
are used for intensity-based measurements. Finally, data is plotted for visualisation of
signalling actvity. Green arrows indicate the additional steps required to achieve single-
cell information. napari is used for the curation of tracking masks, cells are re-measured
and single-cell data is undergoes hierarchical clustering in the Time Course Inspector
R/Shiny app.
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3.2.3 Development of photo-inducible RAS systems

Optogenetic tools can provide significant advantages compared to the use of growth
factors. Such advantages include i) interrogation of single cells, ii) light mediated fast,
non-invasive and quantitative titration of biological signals, iii) perturbation by means
of direct activation of oncogenic proteins, rather than through growth factors, iv) the
possibility to automate experiments, including targeted activation of oncogenic signalling,
and v) enables the study of cell-to-cell communication and oncogenic signalling.

In this section I describe my efforts to establish optogenetic tools to induce light-
activated oncogenic mutant KRAS signalling using a selection of optogenetic systems.

PhyB-PIF6

Toettcher et al. (2013) have used phytochrome B (PhyB) and phytochrome interacting
factor 6 (PIF6) to recruit Son of Sevenless (SOS, a guanosine exchange factor) to the
plasma membrane by light. The resulting optogenetic system – OptoSOS – activates the
MAPK signalling pathway (see (A) in Fig. 3.14 on the next page). A similar strategy to
OptoSOS is adopted, whereby instead of SOS, mutant KRAS is bound to PIF6. Such
optogenetic system would enable us to probe cellular signalling behaviour in the context
of acute oncogene activation.

The development of optogenetic tools for the activation of oncogenic RAS started
with Dr. Fries, PhD student in the same research group. The system did not exhibit
sufficient reproducibility and, therefore, it was deprioritized until I was able to take over
the project. I will briefly describe the work previously carried out in order to better
understand my work. I will show and discuss only the data I acquired, but I acknowledge
the significant contribution from Dr. Fries.

The plasmid designed to express OptoRAS underwent a number of optimizations in
order to guarantee controlled expression of the two elements constituting OptoRAS (i.e.
the CAAX anchor and the RAS cargo) to establish stable cell lines suitable both for
western blotting and imaging quantitative analysis. An optogenetic plasmid was designed
under the control of a pTetOne plasmid with 1) a doxycycline-inducible promoter coding
for the CAAX plasma membrane anchor domain (K-Ras CVIM amino acids) fused with
PhyB and mCherry and 2) an IRES sequence for the quantitative co-expression of the
second element coding for PIF6 and KRASG12D∆CV IM (oncogenic KRAS lacking the
CAAX domain) fused with YPet. PhyB/PIF6 interact upon red light illumination and
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Fig. 3.14 PIF6 component bound to catalytic domain of guanosine nucleotide exchange
factor (GEFs) SOS (A, from Toettcher et al. (2013)). The system can be activated
by exposing the photoreceptive proteins to red light (650nm). Exposure to infrared
light (750nm) induces PhyB/PIF6 dissociation. Putative model of our development:
oncogenic RAS-bound PIF6 component is recruited to the plasma membrane upon red
light stimulation and induces MAPK signalling (B, provided by Dr. Fries)

reconstitutes KRASG12D∆CV IM to the plasma membrane. The mCherry/YPet fluorescent
markers are utilized to quantify translocation/activation.

This particular optogenetic system, ie expression of PhyB-mCherry-CAAX and Ypet-
PIF6-KRASG12D will now be referred to as OptoRAS (see (B) in Fig. 3.14). The order
of the two protein coding regions and the IRES sequence were tested (data not shown)
to ensure optimal expression levels of the two components (i.e. PhyB-mCherry-Caax and
YPet-PIF6-KRASG12D∆CV IM).

During pilot experiments utilizing a double promoter plasmid encoding both con-
structs during transient expressions, effective translocation of the cytoplasmic component
(i.e. YPet-PIF6-KRASG12D∆CV IM) was first demonstrated in HeLa cells. Cytoplasmic
depletion of fluorescently tagged KRASG12D is observable. Equally, upon exposure to
infrared light, the PIF6 component dissociates from PhyB as KRASG12D re-locates to the
cytoplasm. This reversible translocation is reproducible and occurring in the 1 second
time scale demonstrating the potential for these constructs to work as a fast acting,
reversible and reliable optogenetic ‘switch’ mechanism for an oncogene.

Translocation to plasma membrane does not guarantee biological activity of OptoRAS.
Therefore, the activation of MAPK and PI3K RAS-dependent signal transduction path-
ways were tested. HeLa cells transiently expressing OptoRAS were stimulated with
red light (660nm) for one minute and different samples were prepared for Western Blot
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analysis at different times (0, 5, 10, 20, 30 and 40 minutes) post-stimulation. Quantitative
analysis of Western blots utilizing the LI-COR gel imaging systems demonstrated the
activation of MAPK and PI3K signalling, as shown by increased levels of phospho-Erk
and phospho-Akt peaking at 40 and 30 minutes, respectively (see suppl. Fig. 3.26 on
page 126). These initial results suggested that light-inducible recruitment of mutant
KRAS to the plasma membrane does activate RAS dependent signal transduction path-
ways. However, independent experiments resulted in different results and occasional
phosphorylation of ERK and AKT in response to light in parental HeLa cells (data not
shown).

To address the issue of reproducibility, it was decided to engineer a dedicated incubator
(designated as OptoFarm, see Fig. 3.15) that permits us to control temperature and
CO2 also during photostimulation. Moreover, OptoFarm provides quantitative and
computer controlled implementation of light protocols with light at 480nm, 630nm and
735nm and the possibility to execute three experiments in parallel. OptoFarm was
designed to ameliorate possible variations in experimental conditions caused by the
optical stimulation.

Fig. 3.15 A) The OptoFarm includes a water-cooling system (1) for the electronics, a
small incubator (2) and a medium-sized incubator (3) containing ‘optoPODs’ (B), with
LED ights installed at the bottom. C) Schematic of the optoPOD setup inside the
incubator. Only three optoPODs are operational (coloured) with the shown lights (as
dots), ie blue, red and infrared.
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Aiming to eliminate the possibility that variability across experiments was caused
by transient transfection, the preliminary results on HeLa cells and published work
on OptoSOS, motivated us to continue the work. Therefore, it was decided to test
the system on a non-transformed cell line capable to transform upon expression of
oncogenic KRAS. This PhyB/PIF6-based cell line – generated by using hPNEs E6E7 st
(human pancreatic cell line) and OptoRAS – could represent an ideal system to study
KRAS -driven oncogenesis in a KRAS -driven (pancreatic) tumour setting.

Here I will illustrate preliminary characterisation of these cell lines. First I tested
optoRAS hPNE cells with a simple protocol involving a deactivation phase – used to
ensure optoRAS is not basally stimulated – and a 5min red light activation phase, after
which cells where harvested at several sub-1h timepoints. Cells showed a significant
decrease in the activity of Erk just after light stimulation (see suppl. Fig. 3.27 on
page 128). This led us to question whether phycocyanobilin (PCB) – a cofactor critical
for optoRAS to function, added prior to light stimulation – may be affected by exposure
to either infrared or red light.

To test this hypothesis, the protocol was amended to allow an additional step (25
minutes rest time prior to ‘ON’ light) for the PCB-loaded cells to regain a basal state
after exposure to ‘OFF’ light (see Fig. 3.16).

Fig. 3.16 Light protocol for testing the optoRAS system. U0126 is a MEK inhibitor.
PCB: phycocyanobilin.

In the western blot analysis (see Fig. 3.17 on the facing page), doxycycline-untreated
cells in the presence of PCB do not show significant initial decrease in ERK activation,
thus resolving the issue observed in previous experiments (see suppl. Fig. 3.27 on
page 128)). However, this phenomenon is yet again seen in conditions where cells are
administered with doxycycline. Treated cells without PCB or with the addition of a
MEK inhibitor experience a minor decrease in ERK activity, when compared to treated
cells in presence of PCB (see Fig. 3.17). This suggests that such unexpected event is
partially dependent on PCB (when optoRAS is expressed) and MEK activity.
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The assumption that an oncogene would activate the MAPK/ERK pathway in a
similar manner to growth factors (ie activation at 5-10 minutes post GF induction) is
the rationale as to why all previous experiments were designed to assay cells in the first
hour time frame post- light stimulation.

Fig. 3.17 Four different conditions were tested; untreated cells with PCB, treated (with
doxycycline) cells with PCB or no PCB or PCB and U0126 (MEK inhibitor). PCB:
phycocyanobilin; EGF: epidermal growth factor; UT: untreated

Therefore, it was hypothesised that oncogene-induced activation of MAPK/ERK
might behave in a different manner to GFs, by displaying an initial decrease in ERK
activity but potentially increased in later time points. To test this hypothesis, cells
need to be assayed at longer time points, and this might provide a more insightful
representation of the signalling behaviour orchestrated by acute activation of KRASG12D.
It was thus decided to assess cells at such time points.

Pre-‘ON’ light stimulation procedures were carried out in a similar fashion to the
aforementioned protocol (see Fig. 3.16 on the facing page), using PCB and doxycycline
only as additional supplements. Cells were harvested at 0min, 30min, 24h and 48h after
red light (635nm) exposure. Samples overexpressing KRASG12D were harvested 24h
and 48h (including a mock sample) post-transfection (plasmids used for transfection:
pcDNA3.1-Myc-KRASG12D & pcDNA3.1), together with the other samples at their
respective time points.

Most notably, this experiment shows more than a two-fold increase of p-ERK levels
at 24 hours post red-light stimulation, followed by a decrease at the 48-hour time point
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p-/t-ERK (normalised to NoDox & 0min) p-/t-AKT

Fig. 3.18 Western blot of a 48-hour long optogenetic experiment (a) to assess the long
term performace of OptoRAS. p-ERK (b) and p-AKT (c) activity were quantified and
plotted for improved visualisation purposes. OE: overexpression of a mutant KRAS
containing plasmid, EV: overexpression of empty vector (pcDNA3.1).
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(see (a) in Fig. 3.18 on the preceding page). It is to be noted, however, that an initial
decrease in ERK activity can be observed (as seen in (b) in Fig. 3.18), as experienced in
previous experiments. In the case of the overexpression samples, ERK is activated at 24
as well as 48 hours post-transfection, as expected. Interestingly, pAKT levels initially
increase by 40% but decrease down to 40% at the latest time point. Although ERK
activity at 24 hours is considerably higher than basal levels, this is a single experiment
and more than one repeat would be necessary to prove that it is a true biological effect.
However, if this hypothesis were to be proven correct, it could explain the initial decrease
in pERK levels observed in all previous experiments.

CIBN-CRY2

As issues of reproducibility of the original OptoRAS design could not be resolved, it
was decided to test a set of different light-indudible domains, the proteins CIBN and
CRY2 instead. A plasma membrane-bound CIBN-EGFP-CAAX protein that dimerises
with cytoplasmic cryptochrome 2 (CRY2)-bound KRASG12D upon blue light (488nm)
exposure was designed.

Fig. 3.19 Testing CIBN/CRY2 for the photo activation of KRASG12D. A) Light protocol
design performed on cells. Blue light was used to induce dimerization of CRY2 component
to CIBN. B) Western blot probing for various proteins.
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MCF7 cells transfected with two separate plasmids containing the optogenetic trans-
genes (i.e. CIBN-EGFP-CAAX and CRY2-KRASG12D or CRY2-CRAF), or empty vector
plasmid (pcDNA3.1), were used for a first pilot experiment. Design of the light protocol
was based on previous studies by Aoki et al. (2013) where activation of the CIBN-
CAAX/CRY2-CRAF system induces ERK activity 20min after blue light stimulation, on
repeated occasions. In our experiment, samples were harvested prior to light illumination
and after two 20min-long phases of blue light exposure, separated by a 40min no-light
phase (see (A) in Fig. 3.19 on the preceding page).

CRY2-CRAF expressing cells show increased levels of pERK after the second light
stimulation (see (B) in Fig. 3.19 on the previous page), confirming that this optogenetic
system induces photoactivation of CRAF, resulting in the activation of MAPK signalling.
In contrast, no response is observed in the CRY2- KRASG12D expressing sample after
exposure to light. Transgene expression levels (probed with pan RAS and GFP-JL8) are
clearly observable, indicating that the optogenetic components are present in the cells.

It was therefore hypothesised, similarly to the PhyB/PIF6 development, that acute
activation of KRASG12D may result in signalling patterns activated at longer time points.
As such, it was decided to carry out an experiment where cells would undergo repeated
cycles of the previously described light protocol (see (A) in Fig. 3.19 on the preceding
page) and harvested at 0min, 2h20min, 6h20min and 24h20min. Once again, photo-
stimulation of CRAF induces ERK activation at 2h20min and most notably at 6h20min
(see Fig. 3.20). Light-stimulated cells with CRY2-KRASG12D does not induce ERK
activation at any of the time points.

Fig. 3.20 Western blot analysis shows that long term blue light stimulation induces ERK
activation in CRY2-CRAF only

In summary, the effective mechanism of CIBN/CRY2-CRAF optogenetic tool was
confirmed by observing blue light mediated activation of ERK at different time points.
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This phenotype was not observable in CIBN/CRY2-KRASG12D expressing cells. With no
indication of biological activity, the development of this system was abandoned.

Before derisking my project in favour of more established yet powerful assay techniques
such as microfluidics, I briefly tested an alternative optogenetic system; improved light-
induced dimer (iLID). The advantage of this system is that its optogenetic components
were designed to be small and modular (to minimise biochemical interference) and enable
fast light-induced association kinetics (Guntas et al., 2015).

With the same objectives as described in the previous two sections, it was decided to
construct our model based on iLID photosensitive proteins. Although the development
state is at very preliminary stages, a proof of concept experiment was performed, showing
the translocation of the cytoplasmic SSBP-tgRFPt protein to the plasma membrane (see
Fig. 3.21).
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Fig. 3.21 Translocation of iLID optogenetic system. A) Cytoplasmic SSPB-RFP was
imaged at 561nm laser excitation pre- and post- 10 second exposure to blue light (488nm).
B) Plasma membrane signal intensity quantification (normalised to t0 time point) of the
above images.
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3.3 Discussion

3.3.1 NyxBits reporters

One of the limitations of FRET sensors is their dynamic range, ie the range of values
a sensor can provide reporting for a biological event. Moreover, residual emission
fluorescence of dark acceptors of FLIM-FRET pairs is also a common complication that
requires custom unmixing software to resolve lifetime images. Thus, there is a preference
for FRET-FLIM reporters to show a large dynamic range and low sprectal bleed-through
to have more precise biochemical measurements.

In this Chapter I showed the assessment of the optical features of blue (mTagBFP)
and green (mAmetrine) NyxBits reporters paired with new dark acceptors ShadowY
and ShadowG. I report an improvement of approximately 10% in FRET efficiency and
a practically absent bleed-through when combining mTagBFP with ShadowY. This
improvement further enhances the biochemical resolution of NyxBits’ blue FLIM-FRET
pair.

The green reporter’s donor fluorophore – mAmetrine – was tested with ShadowY
only. The worse performance of the ShadowY pairs was unexpected, since it boasts a
notably superior molar extinction of coefficient to msCP576 (136,000 vs 64,000 M−1

cm−1) (Kogure et al., 2006). Moreover, the differences in maximal excitation wavelengths
led us to hypothesise that spectral crossover with mAmetrine emission (526nm) should –
in theory – be higher with ShadowY (519nm) than with msCP576 (576nm). The reduced
FRET observed with ShadowY as acceptor could be due to FRET properties that are
largely difficult to control such as chromoprotein orientation or spatial proximity. The
latter can be somewhat addressed by reducing the linker size, however at the same time
it may further negatively affect the donor-acceptor orientation.

NyxBits reporters have previously been effectively used to study caspase biology. In
line with the group’s long-term focus on KRAS biology, the aim is to now use these
improved reporters to multiplex activity of two major signalling pathways regulated
by KRAS, namely the MAPK and PI3K signalling cascades. It is thus desirable to
integrate sensor domains that would detect phosphorylation activity of two relevant and
key proteins; ERK and AKT.
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3.3.2 Image Analysis Pipeline Improvements

Usually investigators make use of already existing popular (and powerful) imaging
softwares, such as Cellprofiler. However, self-contained ’jack-of-all-trades’ programs
rarely result in excellent performance for all imaging scenarios. In addition to the
learning curve, users may be limited by the features offered and find that they need to
look elsewhere to meet their analysis needs.

I have devised an analysis workflow (PyFRET ) that yields accurate single-cell seFRET
data of difficult-to-track SW48 colorectal cells. The main advantages of PyFRET is that
it harnesses the performance of different image processing open-source software projects
and provides a framework upon which other users can expand the feature set. PyFRET
is also an open-source project, freely available for anyone to download from Github
(clickable link here) and use. However, several areas require further improvements.

Ease of use

First, installation and simple script execution is not as straightforward as a mouse click.
Although an installation guide has been written to facilitate the process, the user may
encounter installation issues, in which case troubleshooting will be required. Moreover,
software package installation (as well as execution of Python scripts) is done through an
unintuitive interface; the Terminal/Command prompt. Thus, PyFRET would greatly
increase its ease of use by reducing the number and complexity of the steps required for
installation.

The other aspect where ease of use may be affected is at the Curation stage. Curation
is performed in napari, a Python multi-dimensional image viewer. Just as with any new
software tool, there are functions the user needs to learn in order to use the software
efficiently. Thus, simple yet effective documentation on napari’s features, as well as
general guidelines (installation and tool use) are planned to be included in PyFRET ’s
Github homepage.

Finally, pre-analysis user input enquiries for metadata purposes is relatively unintuitive
and complex (see suppl. Fig. 3.22). Using a custom graphical user interface (GUI) – for
example building on top of napari by using developer-facilitated addition of graphical
elements – with a straightforward design would facilitate this process.

https://github.com/Esposito-Lab/PyFRET
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Performance

PyFRET ’s use of custom-trained models for the 2D segmentation and tracking of SW48
cell-specific fluorescent nuclei is rather limiting. This means that any other data with
dissimilar image properties would require training new models for effective analysis.
Moreover, PyFRET currently exclusively handles 2-channel image files captured with a
Nikon widefield fluorescence microscope. Thus, adapting PyFRET to accept image files
and formats from a wide range of microscopes would increase the pipeline’s flexibility.

The advantage of using ilastik’s intuitive interface lies in that a tracking algorithm
can be trained by manually annotating false/true positive masks as well as the the
number of objects in an under-segmented mask, for example. Thus trained models tend
to perform well when it comes to ignoring artefacts. However, tracking of cell masks,
although effective, still requires improvements to minimise manual curation effort (which
requires a significant amount of time). Complicated scenarios where cells move behind
one another, leaving the focus plane in the process and later re-entering it, add to the
overall tracking error burden.

An alternative option of seemingly equal or better performance would be Bayesian
Tracker (btrack); a tool specialised in cell (nuclei) tracking and reconstructing trajectories
based on a probability network (Bove et al., 2017; Ulicna et al., 2020). Moreover, the
tool’s developers have already built a btrack-based plugin (named arboretum) for use in
napari, which could be benefitial for single FOV image analysis.

3.3.3 Light induced activation of KRAS

PhyB-PIF6

A potential oncogene-induced activation of ERK 24 hours after red-light induced stimula-
tion of our optoRAS model is reported. Initial reproducibility issues with HeLa cells led
to significant methodological changes (creation of hPNEs OptoG12D and development
of an OptoFARM) and later deprioritisation of the project. Once taken over again in
October 2016, further complications were observed and optimisations performed. There-
fore, in order to ensure that there is a real biological effect at 24 hours post-stimulation,
additional similar optogenetic experiments are necessary.

In the early stages of development, it was already shown that our optoRAS model is
capable of inducing reliable, fast and reversible translocation of cytoplasmic KRASG12D

to the plasma membrane. Doxycycline-induced transgene expression levels have been
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confirmed via western blot analysis. Most of the variables affecting OptoRAS experiments
have been controlled for and/or optimised in order to ensure correct function of the
system. However, biological activity remains to be proven.

In the possible case that this line of work does not eventually result in a successful
tool capable of acute oncogene-induced MAPK/ERK activation, there are other available
and validated tools that can allow us to probe signalling dynamics using different
perturbation methods. Remaining within the same methodology; PhyB/PIF6-based
optoSOS stimulation is another optogenetic system that has already been successfully
used by other research groups (Toettcher et al., 2013). Moreover, the use of growth
factors such as EGF is a simple and effective way to induce MAPK stimulation in cells.
The use of microfluidic devices coupled with GFs allow for sophisticated probing of
signalling modules. Thus, there are a number of other working methodologies that can
substitute our OptoRAS model, and that can be readily used in order to address the
bigger questions of non-genetic heterogeneity in the context of genetic heterogeneity.

CIBN-CRY2 & iLID

Light induction of CIBN/CRY2-KRASG12D resulted in unsuccessful activation of the
MAPK cascade, contrarily to blue light-mediated stimulation of CIBN/CRY2-CRAF
which did show MAPK activation. The latter system was successfully used in previous
studies to analyse cell-to-cell signal propagation (Aoki et al., 2013). Here the reliability of
CIBN/CRY2-CRAF and its potential use in the study signalling dynamics is confirmed.

Effective translocation of the iLID cytoplasmic component to the plasma membrane
is reported. These initial successful results encourage the further development of this
optogenetic system. Steps planned to be undertaken for further proof of concept purposes
involve the cloning and testing of single empty vector plasmids containing this system
and a protein of interest (SOS or KRASG12D) involved in MAPK signalling. Longer
term objectives implicate the generation of an inducible iLID system capable of effective
plasma membrane recruitment of a KRAS-derived mutant protein resulting in functional
downstream biological activity.

3.3.4 Conclusion

In this chapter, I have presented a number of technological advancements that lay the
foundations for the next generation of technology-led biological research. I have improved
the dynamic range of a FLIM-FRET reporter, an optimisation which – in conjunction with
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another NyxBit reporter – could lead to the multiplexing of KRAS -regulated signalling
pathway activity with superior biochemical resolution. Moreover, I have assessed and
explored optogenetic methods that enable the non-invasive stimulation of KRAS, with
high temporal control. Finally, I have described the development of an analytical tool
(PyFRET ) that facilitates the accurate measurement of single-cell FRET data from cells
presenting morphological and movement challenges.

Alongside my focus on biology shown in Chapter 2, I was involved in methodological
developments that could expand the toolbox available to the community for direct imaging
of small networks of biochemical reactions. To do so, the following improvements were
desired: i) a light based stimulation of KRAS signalling, ii) a multiplexing platform that
could – in the future – enable the study of signalling up to 3 downstream signals in KRAS-
regulated networks (e.g. MAPK, PI3K and Hippo signalling pathways) and iii) provide
high quality single cell data analysis. I completed all of these, but as optogenetics and
NyxBits are still insufficiently mature to feedback into my biology research, I derisked
my project by i) using established sensors in isogenic lines and ii) microfluidics for
perfusion-based assays.
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3.4 Materials & Methods

3.4.1 Molecular cloning

All reagents used for cloning were from New England Biolabs LTD. Except the mTagBFP-
ShadowG pair, all the other NyxBits reporters paired with ShadowG & ShadowY were
cloned. All plasmids generated were verified via Sanger sequencing.

mAmetrine-shadowY & mAmetrine-TDshadowY

ShadowY was synthesised via GeneArt Gene synthesis, provided by ThermoFisher
Scientific. An AgeI restriction site was added to a NyxBit reporter plasmid (mAmetrine-
UCL-hsCP576) already available. More specifically, it was added prior to the N-terminus
of hsCP576. This was done by amplifying the KpnI-stuffer-AgeI-hCp576-PmeI sequence
with the following primers:

• 046-AgeI-hCP576fwd (forward): AGCTGGTACCAGCACCGGTATGG TGTC-
CGTGATCGCCAAG

• 047-AgeI-hCP576rev (reverse): AGCTGTTTAAACTCATCCCAGCAG GCTGT-
GCCG

The amplicon was then digested with restriction enzymes KpnI and PmeI and re-
ligated with (digested) mAmetrine-UCL-hsCP576. Using a ShadowY-containing plasmid,
AgeI-ShadowY-PmeI (1), AgeI-ShadowY-AscI (2) and AscI-linker-ShadowY-PmeI (3)
were PCR amplified with the following primers:

• (1, forward) 048-AgeI-sYfwd: AGCTACCGGTATGGTGTCCAAGGGCGAAGAA

• (1, reverse) 049-PmeI-sYrev: AGCTGTTTAAACCTATTTGTACAG

• (2, forward) 048-AgeI-sYfwd (see first item)

• (2, reverse) 050-AscI-sYrev: AGCTGGCGCGCCTTTTGTACAGCTCGTCCAT-
GCC

• (3, forward) 051-AscI-linker-sYfwd, FWD): AGCTGGCGCGCCGGGCATGG
CACCGGCAGCACCGGCAGCGGCAGCTCCGGCACCATGGTGTCCAA
GGGCGAAGAA

• (2, reverse) 049-PmeI-sYrev (see second item)
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For the mAmetrine-shadowY construct, AgeI-containing vector mAmetrine-hsCP576
and amplicon from reaction (1) were digested with restriction enzymes AgeI and PmeI.
Digested products were then ligated. For mAmetrine-TDshadowY, the same vector and
amplicons from reactions (2) and (3) were digested with restriction enzymes AgeI, AscI
and PmeI. Digested products underwent a 3-way ligation to yield mAmetrine-TDshadowY.

mTagBFP-TDshadowG

First, in order to introduce an additional ShadowG in mTagBFP-ShadowG, an AgeI
restriction site was inserted at the C-terminus of ShadowG (and prior to PmeI restricition
site). This was done by PCR amplifying the NotI-UCL-ShadowG-AgeI-PmeI sequence
from mTagBFP-ShadowG with the following primers:

• 042-NotI-UCLfwd (forward): AGCTGCGGCCGCcCTGGGAGGCACCG

• 043-PmeI-AgeI-sGrev (reverse): AGCTGTTTAAACCATAACCGGTCT TGTACAGCTCGTCC

The amplicon was then digested with restriction enzymes NotI and PmeI, and
re-ligated with digested mTagBFP-ShadowG. Then, a second PCR amplification was
performed to yield an AgeI-linker-ShadowG-PmeI sequence with the following primers:

• 044-AgeI-sGfwd (forward): AGCTACCGGTGGGCATGGCACCGGC AG-
CACCGGCAGCGGCAGCTCCGGCACCATGGTGAGCAAGGGCGAGGAG

• 045-PmeI-sGrev (reverse): AGCTGTTTAAACCTTGTACAGCTCGTCC

Note the forward primer contains a linker (in bold), previously used by for the design of
the red NyxBit reporter pair mKeima-tdNirFP. The amplicon AgeI-linker-ShadowG-PmeI,
together with the AgeI-containing mTagBFP-ShadowG plasmid were then digested and
ligated, resulting in a plasmid containing tandem dimer ShadowG paired with mTagBFP.

mTagBFP-shadowY & mTagBFP-TDshadowY

I digested mTagBFP-TDshadowG (insert), mAmetrine-shadowY (vector) and mAmetrine-
TDshadowY (vector) with restriction enzymes BmtI and NotI-HF. Then I ligated
mTagBFP with each vector separately to obtain mTagBFP-shadowY and mTagBFP-
TDshadowY.
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3.4.2 Cell lines and culture conditions

Maximilian Fries, a PhD student, used the pancreatic cell line hPNE E6/E7/st (CRL-
4037) to make a stable cell line expressing a pTetOne doxycycline inducible plasmid
(ClonTech Laboratories, Inc) containing the following transgene: PhyB-mCherry-CaaX-
IRESwt-YPet-PIF6-KRasG12D. This cell line is referred to as hPNEs OptoG12D.

All used cell lines were cultured as described in Chapter 2 (see section 2.4.1).

3.4.3 Sample preparation for FLIM

55,000 HeLa cells were plated in each well of a 4-well LabTek chamber slide (cat. no.
155383). 24 hours later, cells were transfected using Jetprime (Polyplus transfection)
according to the manufacturer’s guidelines and using a total of 500 ng of plasmid DNA
(NyxBit reporter or single donor fluorophore) per well. Transfection medium was replaced
with DMEM+10% FBS growth medium 4 hours later. 24 hours later and two hours prior
to imaging, samples’ medium was replaced with Leibovitz L-15 (Gibco) imaging medium,
phenol red free, supplemented with L-Glutamine and 10% FCS.

3.4.4 FLIM measurement & Spectral scanning

All NyxBits-related imaging was performed on an SP5 multi-photon confocal laser
scanning microscope.

To measure FLIM, light emission was filtered according to the donor proteins to be
quantified (mTagBFP: 467-499 nm; mAmetrine: 506-545 nm). Photons were counted
using a hybrid photomultiplier tube connected to a module allowing for time correlated
single-photon-counting. The images were acquired with a 40x objective, 60 seconds of
photon-acquisition time, image resolution of 256x256 and 400 Hz scanning speed. The
SPCImage V4.9 (Becker & Hickl) software was used to calculate lifetimes and fit the
photon monoexponential decay profiles. Both lifetime and intensity images were exported
from SPCImage. Lifetime data was exported to Microsoft Excel, where the raw data of
several FOV repeats (n>=4) was averaged for each different sample and subsequently
plotted (as shown in Fig. 3.7, 3.5, 3.6).

Emission spectra were capture with a 40x objective, an image format of 256x256,
a scan line speed of 400 Hz and an ’open’ pinhole (nominal size of 600 µm). The total
detection range was 250 nm (400-650um) and the bandwidth and step size was of 10 nm.
Analysis was performed by transferring the emission data in the .lif files generated from
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the Leica LAS lite software, into Microsoft Excel. The latter was used to generate the
shown graphs.

3.4.5 Evaluation metrics

Segmentation performance was assessed by quantifiying the precision (a measure of
specificity), recall (a measure of sensitivity) and accuracy of each compared tool.

Precision = T P
T P +F P

Recall = T P
T P +F N

Accuracy = T P +T N
T P +T N+F P +F N

where TP is True Positive, TN is True Negative, FP is False Positive and FN is False
Negative. To measure these, the shown images in Fig. 3.8 on page 90 where manually
assessed. These measures were used to yield an F1 score; a better representation of both
precision and recall, since it’s their harmonic mean and defined as follows:

F1 = 2∗P recision∗Recall
P recision+Recall

Split and merge scores were quantified using the variationofinformation function
from the Python package sci-kit image, under the metrics module. The function returns
two values representatinf the amount of under- (merges) and over-segmentation (splits).

Finally, execution speed of segmentation methods was assessed using an in-cell timer
in a Jupyter Notebook. Several iterations were performed and the average value was
reported.

3.4.6 Western blotting of optogenetic experiments

Western blot assay was carried out as described in Chapter 2 (see section 2.4.9). 20 µg or
15 µg (48-hour experiment) of lysate were used and further processed as in section 2.4.9.

Primary antibodies

Primary antibodies and dilutions used: alpha-GFP (1:1000; JL-8, Clontech), mouse
P-p44/p42 MAPK (T202/Y204) (E10) (1:1,000; Cell Signalling, cat. no. 4695S), p44/p42
MAPK (Erk1/2) (137F5) Rabbit (1:1,000, Cell Signalling, cat. no. 9106L), alpha-pAKT
(Ser473) (1:1000; Cell Signalling), alpha-AKT (1:1000; Cell Signalling), alpha-DsRed
(1:1000, Clontech), alpha-pan RAS (1:2000, Clone-10, Millipore), Hsp90 Rabbit mAb
(C45G5, 1:1,000, Cell Signalling, cat. no. 4877S).
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3.4.7 Confocal imaging for iLID translocation

150,000 HeLa cells were seeded in 35mm glass bottom culture dishes (MaTek #1.5) in
full medium and transfected (24 hours after plating) using JETPRIME and 1 µg of DNA
per lentiviral plasmid; pLL7.0: Venus-iLID-CAAX (from KRas4B) (Addgene #60411)
and pLL7.0: tgRFPt-SSPB WT (Addgene #60415). Samples were added L-15 medium
(+10% FCS) 48 hours after transfection and prior to imaging.

Imaging was performed on a Leica SP5 multi-photon confocal microscope (Leica
Microsystems) equipped, amongst others, with a stage incubator at 37C for optimal
imaging conditions. Images were acquired using the 40x oil objective, using an image size
256 px x 256 px and sequential scanning. Cells were first imaged with 561nm (tgRFP-
t) laser excitation for 10 seconds, followed by 10-30s of 488nm (mVenus, optogenetic
activation) laser excitation, and finally re-imaged with 561nm wavelength for a period of
30s-1minute. Saved images were analysed using FIJI/ImageJ.
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3.5 Supplementary Figures

Fig. 3.22 Example of user input log before starting image processing.
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a

b

False splits

False mergers

Fig. 3.23 All segmentation methods have similar false splits (a) error rates, except in a
’crowded’ scenario where best and worst performers are StarDist and ilastik, respectively.
Contrarily, false merges (b) become more frequent with increasing imaging complexity,
especially for simple thresholding.
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Fig. 3.24 Cells touching the edge of a field of view (FOV) are removed (a). Custom
area-based mitotic detection corrects ilastik cell tracks (b).
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Fig. 3.25 Data is stored in a structured manner, with curated data (in green) being most
accessible.

Fig. 3.26 Light induction of ERK and AKT in HeLa cells (kindly provided by Dr. Fries)
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Database
whole FOV single-cell

FRET

Median x
Mean x x
Standart deviation x
Variance x
Mode x
Mean – median x
IQR x
Mad x
Skew x
Kurtosis x
Minimum x
Maximum x

Other

CFP mean x
CFP background x
YFP mean x
YFP background x

Mask

Label x
Area x
Diameter x
Centroid-Y x
Centroid-X x

Categorical

FOV x x
Frame x x
Chamber x x
Group name x x
Group number x x
Sample name x x
Treatment x x

Table 3.1 Image properties measured in an automatic worklow (whole FOV only) or
when curation data is available (single-cell & whole FOV)
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Fig. 3.27 Doxycycline titration experiment reveals high basal pERK levels (kindly provided
by Dr. Fries)



Chapter 4

Discussion

In this thesis, I have studied the impact of heterogeneity of genetic and non-genetic
origin in oncogenesis and tumour maintenance through the study of protein signalling
activity in single cells. Heterogeneity has long been observed in tumours and today
supposes one of the major challenges to treat cancer effectively. Genetic heterogeneity
has been characterised relatively thoroughly, but the continuous evolution of tumour
clones contributes to the rise of therapy resistance and a tumour’s metastatic potential.
Non-genetic heterogeneity, on the other hand, is less well characterised and thus our
understanding of its contribution to oncogenic development is rather poor. However,
various studies demonstrating cells’ phenotypic plasticity in face of environmental stressors
(such as therapy) suggest cell-to-cell variability is a force to be reckoned with. In order
to best define variability among cells, one must be able to accurately measure output
information on a single-cell basis. Although microscopy has enabled researchers to image
live cells for days, technologies allowing us to efficiently yield single-cell protein activity
are only beginning to bear its fruits. As a result, my efforts to address heterogeneity
have focused on two main areas that have shaped my doctoral project.

In Chapter 2, I describe the characterisation of colorectal tumour single cells with
or without a heterozygous G12D mutation in the KRAS oncogene. First, mutant cells
in a basal state have a higher MAPK activity than its wild-type counterpart. Then, by
performing an extended EGF titration assay, KRASG12D cells are observed to have a
lower amplitude response (when compared to KRASW T ) and unanimous desensitisation
kinetics irrespective of the EGF concentration. Single-cell ERK activity profile analyses
further demonstrate that KRASG12D cells have, overall, a diminished responsive capacity.
Moreover and surprisingly, mutant cells show a ’rebound’ higher than basal ERK activity
shortly after the release of an ERK inhibitor. RNA sequencing analysis reveals the
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upregulation of a number of genes known to be involved in MAPK negative feedback
mechanisms. Finally, hierarchical clustering of all acquired single-cell signalling activity
profiles uncovers the presence of a mutant-exclusive population.

In Chapter 3, I give and account of the optogenetic tool developments derived from
the need to obtain higher quality single-cell FRET data, higher biochemical resolution
and novel stimulation methods. The ERK FRET reporter cell lines generated for the
signalling assays outlined in Chapter 2 presented a set of challenges that prevented the
acquisition of accurate single-cell data with the available in-house software. Because of
this, I developed from the ground up an image analysis pipeline – called PyFRET – that
better performs image processing tasks and enables curation of cell tracks. This software
proved invaluable in obtaining and analysing accurate single-cell ERK activity profiles in
cells expressing a nuclear ERK FRET reporter. Moreover, I present the optimisation
of the optical properties of the blue FLIM-FRET reporter of NyxBits – a multiplexing
platform developed in-house for the simultaneous detection of three biochemical events.
Finally, this chapter also outlines efforts in developing OptoRAS ; the concept of light-
induced KRAS mutant-specific stimulation of the MAPK pathway. Translocation of
two optogenetic systems (PhyB-PIF6 and iLID) are demonstrated and the potential
long-term activation of ERK is observed with the PhyB-PIF6 system. However, due
to reproducibility issues, the development of OptoRAS was deprioritised in favour of
more reliable yet still dynamic stimulation methods (growth factor based stimulation via
microfluidics).

In this chapter, I will discuss my results in the context of the literature, as well as
propose future experiments and/or avenues to pursue in order to harness but also extend
my work.

4.1 Mutant KRAS and MAPK signalling
The high mutation rate of KRAS in tumours prompted the investigation of its role in
oncogenesis and tumour progression. To address such question, numerous in vivo and in
vitro models have been used to assess the tumorigenic potential of various RAS isoforms
and mutations. Many such studies usually involved the assessment of cell morphology
in tissues (in vivo) and/or the quantification of RAS-regulated signalling networks via
whole cell lysate protein immunoblotting.

Early studies observed that mutant RAS induced high MAPK activity, as well as
showing independence from growth factor receptor activation (Gallego et al., 1992). Thus,
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plain hyperactivation of the MAPK pathway (and concomitant high proliferative capacity)
was thought to be the net effect of the expression of oncogenic RAS (Koeffler et al.,
1991). Additional observations whereby mutant RAS is concomitantly expressed with
other mutant MAPK cascade components, such as BRAF (Davies et al., 2002), further
reinforced the concept of RAS-induced MAPK hyperactivation and its addiction to high
MAPK activity. More recently, specific mutations such as KRASG12D in hematopoitic
stem cells (Van Meter et al., 2007) and lung tumour cells (Ihle et al., 2012) have shown
upregulated activity of the MAPK pathway in basal conditions. Highly phoshorylated
ERK has also been found in mouse lung tissue expressing mutant KRASG12C (more
so than KRASG12D) (Li et al., 2018b). Lastly, single-cell studies characterising MAPK
signalling in mutant KRAS expressing cells also observed higher baseline ERK activity
when compared to non-mutant cells (Gillies et al., 2020; Ponsioen et al., 2021).

In line with these observations, in this thesis SW48 colorectal cancer cells with a
heterozygous KRASG12D mutation show subtle yet visibly higher ERK activity than cells
with non-mutated KRAS. It is worth noting that this observation is derived from cells
under constant and high perfusion flow of 1% FCS-containing imaging media. In a pilot
experiment (data not shown) assessing ERK activity over a duration of 12 hours and
under various non-perfusion, basal conditions (including starved and non-starved), both
KRASG12D and KRASW T cells exhibited similar levels of (stable) ERK activity. This
suggests that mutant cells’ higher MAPK activity observed in the EGF titration assays is
achieved via constant flow of media and mechanically induced stress. Indeed, on multiple
occasions, the MAPK pathway has been shown to be stimulated via mechanosensorial
mechanisms (Chien et al., 1998; Plotkin et al., 2005; Reusch et al., 1997; Tseng et al.,
1995; Weyts et al., 2002; Yan et al., 2012). The requirement for upstream signalling
activation agrees with previous studies stipulating that a preliminary stimulation is
necessary to kickstart oncogenic signalling. In the context of oncogenic KRAS, it is only
after treatment with a growth factor (such as EGF) that mutant KRAS cells display the
’expected’ high MAPK activity as well as a more sustained signalling response (Hood
et al., 2019; Huang et al., 2014; Kruspig et al., 2018). In the absence of growth factor
stimulation (i.e. in basal conditions), cells expressing mutant KRAS have been found
to display similar (Stolze et al., 2014) or even attenuated (Haigis et al., 2008; Tuveson
et al., 2004) MAPK activity when compared to cells with KRASW T .

It is important to stress that MAPK activity is highly dependent on RAS isoform
(Hobbs et al., 2016) and mutation (Hammond et al., 2015). For example, primary
hepatocytes expressing consitutively active HRAS or KRAS with a G12V mutation
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resulted in growth factor induced proliferation. However, survival was mediated differently
depending on the isoform that was mutated; cells with HRASG12V exhibited high ERK
& PI3K signalling, whereas cells with KRASG12V displayed high PI3K signalling only
(Rosseland et al., 2008). Similarly, in vivo work by Céspedes et al. (2006) showed that
high ERK activity in murine tumours was caused only by a G12V mutation in KRAS,
whereas tumours with a G12D mutation had higher PI3K signalling. Tissue context is
also highly influential in cells’ ability to activate the MAPK pathway. When staining
for pERK in colonic epithelium tissue comprising of cells expressing KRASG12D, Haigis
et al. (2008) observed that phospho-ERK levels were high only in differentiated cells
of the upper region of colonic crypts, and not in the bottom region where stem cells
usually reside (Testa et al., 2018). Finally, there is also evidence showing that mutant
RAS-induced MAPK activation is also cell-type dependent (Brandt et al., 2019).

The aforementioned studies were designed and carried out in order to broaden our
knowledge on the effects of mutant RAS as well as its role in oncogenesis and cancer
maintenance, broadly speaking. Despite providing crucial information, most of these
fail to assess MAPK signalling at the single-cell level with superior temporal resolution.
Such quantification is vital to assess heterogeneity – undeniably present in tumours – as
well as for the characterisation of the cellular information processing that drives cells to
carry out (or not) cell fate decisions.

Oncogenic MAPK signalling dynamics

Numerous studies have strived to characterise how cells encode and decode information
transmitted through the MAPK pathway (Aoki et al., 2011; Blum et al., 2019; Cohen-
Saidon et al., 2009; Davies et al., 2020; Gillies et al., 2017; Shindo et al., 2016; Wilson
et al., 2017), and how it translates into cellular behaviour (Albeck et al., 2013; Goglia
et al., 2020; Herrero et al., 2016; Marshall, 1995; Ryu et al., 2015). However, the literature
is scarce on how a mutation in an oncogene such as KRAS may affect cells. Given that
KRAS regulates several vital signalling pathways, the dynamics of which determine
cellular behaviour, how might a mutation alter such pathway signalling in a way that
the end result is a fitter phenotype conducive to cancer development? Do individual
mutant KRAS expressing cells perceive and process external information differently than
non-mutant cells? It is only in the last few years that oncogene-induced MAPK signalling
dynamics have started to be described at a single-cell level.

In a recent study aimed at investigating the effects of different KRAS mutations
on MAPK signalling, Gillies et al. (2020) found that cells with or without mutant
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KRAS (including KRASG12D), upon EGF stimulation, reached peak ERK activity and
desensitised to steady state activity around 15 minutes and 1.5-2 hours after treatment,
respectively. Mutant cells’ EGF-induced peak ERK activity, however, was either equal
or lower than that of cells with wild-type KRAS.

The characterisation of MAPK signalling in KRASG12D SW48 cells in response to
EGF performed in this thesis broadly replicates the aforementioned observations made
by Gillies et al. (2020). In addition to the elevated baseline ERK activity and attenuated
response to EGF in mutant cells, both KRASW T and KRASG12D expressing cells respond
to EGF rather fast and desensitise within the same time period of 1.5-2 hours post-EGF.
However, SW48 cells with KRASG12D showed slightly delayed or ’sluggish’ kinetics in
comparison to KRASW T cells; mutant cells take more time to reach peak ERK activity
from EGF stimulus (also observed by Gillies et al. (2020), see suppl. Fig. 2.15 on page 68)
and take slightly more time to desensitise to a steady state activity for EGF 10ng/mL
(see Fig. 2.4 on page 43 and (d-e) in Fig. 2.5 on page 44). In fact, the observed delayed
kinetics are reminiscent to the ERK signalling activity displayed by a lung cancer cell
line with mutant BRAF when stimulated with an optogenetic system (Bugaj et al., 2018).
The decreased responsive capacity of KRASG12D cells demonstrated by single-cell analysis
supports the findings of Gillies et al. (2020) whereby cells with a KRAS mutation overall
had a lower probability of response (40-75%) when compared to KRASW T cells (90%).
Although ERK baseline activity negatively correlated with response amplitude more so
in SW48 KRASG12D than in KRASW T cells, such correlation was not found by Gillies
et al. (2020). Such discrepancy could be due to a multitude of factors, one of which is
the genetic background of cell lines in both studies and the potentially ensuing signalling
rewiring. Gillies et al. (2020) use mouse embryonic fibroblasts (MEFs) expressing a single
RAS allele (wild-type or mutant) whereas SW48 mutant KRAS cells are heterozygous
(i.e. both mutant and wild-type KRAS are endogenously expressed). Gillies et al. (2020)
argue that mutant MEFs’ surprising (supposedly there is no inactive mutant KRAS
expressed) ability to respond to EGF is due to a weakened negative feedback. It is
possible that SW48 cells retain the capacity to respond to EGF due to the wild-type
(activatable) KRAS, but have a stronger negative feedback that prevents cells from
signalling above a certain level (resulting in cells with higher baseline ERK having a
lower response amplitude).

Taken together, the characterisation of MAPK signalling in SW48 cells expressing
KRASG12D is consistent with the scarce literature available that has addressed similar
questions. Overall, mutant KRAS cells display analogous signalling MAPK dynamics
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yet are subtly more sluggish (or incapable) in their capacity to respond to growth factor
mediated stimulation.

Negative feedback regulation

Duration, frequency and amplitude are signalling features that heavily influence signalling
(Kholodenko et al., 2010), and thus control the activation of specific transcriptional
programmes. Because of their importance, it is vital that cells are able to regulate
signalling in order to prevent hyperactivation of a pathway, for example. Cells have
evolved regulatory mechanisms that either enhance (positive feedback) or diminish
(negative feedack) signalling. The MAPK pathway hosts a range of feeback motifs, most
of which stem from ERK – known to negatively regulate upstream MAPK components
(Buday et al., 1995; Heisermann et al., 1990; Lehr et al., 2004; Matallanas et al., 2011).
Feedback mechanisms can be differentially activated in a ligand-dependent manner. A
classic example of signalling dynamics is that of the differential ERK activity when
cells are treated with EGF or NGF (Marshall, 1995; Ryu et al., 2015; Santos et al.,
2007). Underlying these dynamics however, are different feedback mechanisms controlling
signal activity. Whilst NGF-induced sustained ERK activity is driven by a PKC positive
feedback loop, readaptation (to basal-like levels) following EGF-induced ERK activity
results from activation of negative feedback motifs; 1) the upregulation of RAF-1 Kinase
Inhibitor Protein (RKIP) (Santos et al., 2007) and 2) ERK-mediated inhibiton of
guanosine exchange factor Son of Sevenless (SOS) (Purvis and Lahav, 2013).

In this thesis, colorectal cancer cells with a G12D mutation in KRAS display the same
readaptation kinetics (akin to KRASW T cells treated with high EGF concentrations)
irrespective of the EGF concentration. Such concentration-independent dynamics alludes
to cells’ inability to activate PKC for a more sustained ERK activity (typically induced
with lower EGF concentrations). Moreover, and contrarily to KRASW T cells, KRASG12D

cells ’overshoot’ ERK activity shortly after one hour of ERK inhibition, especially those
that have not been pre-treated with EGF. These results, together with the RNAseq data
revelation of the upregulated mRNA expression of negative regulators of the MAPK
pathway, suggest that mutant cells have a stronger negative feedback activity. As
explained in Discussion 2.3 on page 54, the higher than basal-like ERK activity following
ERK inhibition may result from the temporal relaxation of the hypothesised stronger
negative feedback in mutant cells.

In line with this hypothesis, using melanoma (A375) cells with mutant BRAFV 600E

(i.e. resulting in upregulated MAPK activity), Gerosa et al. (2020) observed that
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various negative regulators (including EGFR, SPRY, DUSP4/6) of ERK activity were
substantially downregulated (protein and gene expression) following ablation of MAPK
activity. Similarly, Pratilas et al. (2009) observed downregulation of relevant genes in
mRNA expression data. Moreover, RNA sequencing of pancreatic ductal adenocarcinoma
(PDAC) cell lines treated with various durations of SCH772984 (same ERK inhibitor
used in this thesis) also revealed the significant downregulation of negative regulators
DUSP6 & SPRY4, even just after 1 hour of ERK inhbition (Bryant et al., 2019; Klomp
et al., 2021). Not so surprisingly, in another study, following 4 and 24 hours of MAPK
inhibition (also using SCH772984), PDAC derived cell lines expressing mutant KRAS
showed increased levels of MEK and RAF, suggesting a loss of (SCH772984-induced)
ERK-mediated negative feedback (Hayes et al., 2016). Despite the genotypic disparity
between SW48 and the mentioned cell lines, all display high MAPK activity, which when
inhibited results in significant downregulation of several negative regulators involved
in MAPK and RTK signalling, as well as the activation of upstream MAPK proteins
usually inhibited by ERK.

4.2 Optogenetic tool developments
Live cell signalling studies typically involve the measurement of a single key protein of a
signalling network. However, years of research have provided us with the knowledge of
signalling transduction network (STN) topology and the fact that they are interconnected
between one another. In other words, activity in one STN may affect one or more other
STNs, the sum of which may result in an observed cellular decision and/or transcriptional
programme activation. Thus, to gain significant insight in cellular information processing
there is a need to survey multiple key signalling nodes of pathways known to be closely
interlinked. Moreover, the methods used to probe said STNs provide low control when
it comes to localisation and timing. Hence the need to develop unobtrusive yet highly
precise tools – such as optogenetics – to stimulate cells. Finally, a higher degree of
imaging complexity (more than one fluorescent reporter combined with light-based
perturbation methods) requires superior tools to unmix the additional information in an
image. Machine learning-based high-performing algorithms are useful tools to aid in the
endeavour to maximise efficiency in image processing operations and biological activity
quantification.
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NyxBits

To harness the potential insight of monitoring mutliple signalling networks, developments
prior to this PhD led to the creation of a multiplexing platform – Nyxbits. Said platform
consists of three spectrally separated FLIM-FRET pairs designed to be co-expressed
for the simultaneous detection of three biochemical events, as previously used to study
caspase biology (Fries et al., 2018). In this thesis is shown the optimisation of two
Nyxbits reporters (blue and green pair), from which the blue pair’s FRET efficiency
was significantly improved by pairing mTagBFP with the dark acceptor fluorophore
ShadowY, whilst reducing the spectral bleed-through from the donor. With this new and
improved FLIM-FRET pair, Nyxbits provides the first most advanced FLIM-FRET-based
multiplexing platform for the simultaneous measurement of three biochemical events.

The scientific community’s attempts at multiplexing biochemical readouts have
resulted in similar yet different approaches to our Nyxbits platform. First, many have made
use of typically two spectrally distinguishable FRET sensors to measure protein activity.
Often, sequential image acquisition together with blue/green and yellow/orange FRET
sensors are co-expressed in cells. Such combinations have commonly been used to image
calcium and another protein of interest (Ding et al., 2011; Grant et al., 2008; Su et al.,
2013). For example, Su et al. (2013) used mTagBFP/sfGFP (B/G) & mVenus/mKOk
(Y/O) ratiometric biosensors with no additional image correction to monitor tyrosine-
protein kinase Src and Ca2+ upon EGF treatment. The reason red and near-infrared
(NIR) fluorescent proteins are not used to develop red FRET sensors is due to the
typical low FRET efficiencies achieved and the likelihood for protein aggregation (an
issue encountered when developing the red Nyxbits pair mKeima-tdNiRFP). However,
variants of the red fluorescent protein (RFP) can be used as acceptors of CFP and YFP
for dual FRET sensor co-imaging (Nwe-Nwe Aye-Han et al., 2012). Recent improvements
in the optical properties of NIR FPs have given rise to effective NIR FRET sensors such
as miRFP670-miRFP720, which Shcherbakova et al. (2018) developed and used together
with a CFP-YFP RhoA biosensor and blue-based optogenetic system for Rac1 activation.
Similarly, RFP enhancements led by Mo et al. (2020) enabled the multiplexing of three
different kinases (Src, Akt & ERK) using ratiometric measurements. More advantageous
however, is the excitation of expressed sensors using a single laser line (as opposed to
sequential excitation of FPs), since it allows the simultaneous measurement of biochemical
activities – technique used to image up two FLIM-FRET sensors Demeautis et al. (2017);
Ringer et al. (2017). Finally, the use of homo-FRET sensors (Ross et al., 2018; Snell
et al., 2018) and alternative FRET measurement methodology – such as photochromism
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(Roebroek et al., 2021) or phosphorescence (Conway et al., 2018) – provide advantageous
properties that are harnessed to achieve a higher multiplexing capacity. Although various
useful multiplexing platforms have emerged, Nyxbits represents a unique system in that
it enables truly simultaneous FLIM-FRET measurements (using a single laser line) of
three biochemical reactions.

Using light to activate oncogene-induced MAPK signalling

Single-cell assays often require high-level control that traditional stimulation methods
(chemical or genetic-induced) cannot provide. Alternative methods that enable a much
higher spatiotemporal stimulation control are therefore preferred, especially in experi-
ments involving cell-to-cell communication where ideally individual cells of a population
are stimulated. Optogenetics provides such control and it – specifically rhodopsins
(Boyden et al., 2005; Zhang et al., 2011) – has been developed and extensively used for
neuronal stimulation and the study of brain diseases since the beginning of the 20th

century (Deisseroth, 2015). More recently, optogenetics has been used to dynamically
stimulate signal transduction networks such as the MAPK pathway. In this thesis,
I’ve shown efforts toward the development of OptoRAS ; a light-inducible mutant RAS
activation system.

Early developments of OptoRAS (a phytochrome-based system (PhyB-PIF6)) by
a previous PhD student demonstrated the reversible translocation of one of the pho-
toreceptive components (YFP-PIF6-KRASG12D); from the cytoplasm to the plasma
membrane (to which PhyB-CAAX is bound). Because the system was demonstrated
to successfully work mechanically and due to complications in preliminary experiments
with Helas, it was decided to assess biological activity in a more relevant cell line (pan-
creatic hPNE). Using such cell line stably expressing a doxycycline-inducible OptoRAS
and a custom-built optical illumination platform (OptoFarm) to improve the control of
experimental variables, I took over the project by carrying out experiments assessing
whether light induction of oncogenic KRAS activated the MAPK pathway. Long-term
(i.e. 24 hours post-light induction) ERK activation was reported, and unexpectedly
not within the first 30 minutes after stimulation – the latter is a phenotype observed
with growth factor induced stimulation (Ryu et al., 2015). Using a different optogenetic
(cryptochrome-based) system, long-term ERK activation was not observed, despite the
same system working effectively for C-RAF mediated MAPK activation (see Fig. 3.20 on
page 110).
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Despite the use of optogenetics to light-activate the MAPK pathway via SOS
(Toettcher et al., 2013), RAF (Aoki et al., 2013) & MEK (Patel et al., 2019), to date no
system to directly light-induce (oncogenic) KRAS has been developed (Kramer et al.,
2021). Thus, although the explained OptoRAS system is completely novel in the field, the
lack of published research and the importance of KRAS in oncogenesis hints at the fact
that light-induced MAPK activation via KRAS is not as straightforward as with other
MAPK components. Two main reasons might explain the inconsistent results achieved
with OptoRAS. First, protein conformation at the plasma membrane is crucial for sig-
nalling to occur (Prakash and Gorfe, 2019; Prakash et al., 2019, 2016). It is likely that
the fused photoreceptive protein complex (YFP-PIF6-KRASG12D or CRY2-KRASG12D)
prevents KRAS from reaching an optimal protein conformation, consequently preventing
it from effectively binding to RAS binding domains of downstream proteins. Just as the
placement of the membrane anchor on the photoreceptive protein can affect recruitment
(Natwick and Collins, 2021), similarly, how the oncogene is bound to the photoreceptive
protein might affect the oncogene’s protein conformation. Second, the mutant KRASG12D

that is translocated to the plasma membrane upon light exposure is thought to be
GTP-bound (i.e. active KRAS). The GTP/GDP state of the mutant KRAS has not been
verified and so it is plausible that the translocated mutant oncogene is in an inactive
state, resulting in no activation of the MAPK pathway. This speculation is not unlikely,
given the fact that oncogenic KRAS has been shown to require preliminary growth factor
stimulation to confer sustained high MAPK activity (Huang et al., 2014). Moreover,
the potential steric hindrance caused by the fusion to another (photosensitive) protein
may prevent KRAS from dimerising and forming nanoclusters – naturally occurring
membrane formations that significantly amplify signalling (Muratcioglu et al., 2020; Nan
et al., 2015; Sarkar-Banerjee et al., 2017; Zhou et al., 2017) or are even required for
oncogenic signalling (Ambrogio et al., 2018).

4.3 Conclusion

I have shown the effects of mutant KRASG12D on the the MAPK signalling cascade
in colorectal cell lines stably expressing a novel ERK sensor using microfluidics and a
custom-made image analysis pipeline. Cells with mutant KRAS are still responsive to
growth factor stimulation, however their acute-like deactivation kinetics are homogeneous,
independent of input strength (growth factor concentration). Supporting previous
observations in the literature, overall, mutant cells display a rather subdued response
to EGF. Such response is potentially due to a speculated stronger negative feedback
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as hinted by a high ’rebound’ activation following ERK inhibition and the upregulated
mRNA expression of negative feedback regulators. Rewiring of feedback mechanisms has
high implications on cell information processing and consequentially any regimen that
aims to manipulate the MAPK pathway for cancer management purposes. More work
aiming at accurately describing relevant feedback mechanisms may not only enlighten our
insight on oncogenic signalling but also reveal potential new drug targets with possibly
less toxic effects than MAPK ablating treatments.

To enable present (Chapter 2) and future biological projects aimed at characterising
oncogene signalling with superior biochemical resolution and stimulation control, in
addition to generating numerous monoclonal cell lines of different origins (colorectal and
pancreatic) stably expressing EKAREN5 – a novel & enhanced ERK sensor (Ponsioen
et al., 2021) – I developed and optimised optical tools. By enhancing a FLIM-FRET pair
of the Nyxbits reporters, these heavily optimised sensors can be used to multiplex three
different proteins involved in key RAS-regulated signal transduction networks. Moreover,
although more work is needed to ensure reliability, promising optogenetic developments
whereby light mediated activation of mutant KRAS may result in subsequent MAPK
stimulation could become an instrumental tool to dynamically decode cellular signal
processing.

4.4 Future work
A number of aspects mentioned in the above discussion can be adressed experimentally
to further elucidate the effects of mutant KRAS on MAPK signalling. First, despite our
interpretations being consistent from experiment to experiment, replicating the performed
EGF titration assays and observed results using alternate methodologies or sensors would
further strengthen our interpretations and hypotheses. To perform more robust FRET
measurements, the ERK CDC25C substrate sequence could be integrated within one
of the Nyxbits reporters to measure FLIM-FRET (as opposed to ratiometric sensitised
emission FRET). Alternatively, although more challenging image analysis wise, common
ERK sensors such as ERK-Kinase Translocation Reporter (ERK-KTR) (Regot et al.,
2014) could also be directly used to monitor ERK.

Second, further characterisaiton of negative feedback regulation in mutant KRAS
cells would likely elucidate causes of the ’rebound’ signalling effect shortly after ERK
inhibition. The results shown here indicate that negative feedback regulation in cells with
mutant KRAS is distinctively different from KRAS wild-type cells. However, it is not
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clear whether this is attributable to a single deregulated feedback motif or whether it is
the cumulative sum of multiple dysregulations. To address this, an shRNA/siRNA screen
of known negative and positive regulators of the MAPK pathway and subjecting both
mutant and wild-type KRAS cells to the same stimulation protocol as used in this thesis
would help characterising the effects of individual feedback regulators. If the wild-type
phenotype is achieved (or conversely KRASW T cells behave as KRASG12D cells), the
screen is likely to indicate the particular feedback motif involved. Additionally, using the
siRNA screen data together with the SW48 RNAseq data (i.e. to take into account gene
up-/down-regulation) is useful information that may be harnessed to build in silico models
and assess the combined effects of multiple feedback regulators. Moreover, replacing the
ERK inhibitor (SCH772984) – which prevents ERK activity on downstream proteins
as well as ERK activation by MEK (Chaikuad et al., 2014) – with a MEK inhibitor
(such as Selumetinib, which would enable phosphorylation of ERK downstream targets
but prevent further activation of ERK) would elucidate whether the mutant-specific
’rebound’ phenotype is solely due to direct ERK-induced activity. In the latter case
scenario, treatment of mutant cells with a MEKi would result in a similar phenotype
to wild-type KRAS cells (i.e. regaining basal-like levels of ERK activity following ERK
inhibition). ERK inhibition is known to activate AKT due to loss of ERK negative
feedback on EGFR (Chen et al., 2017, 2012). If AKT is probed during ERK inhibition
and is found to be phosphorylated (more so than in KRAS wild-type cells), this would
suggest that negative feedback regulation strongly signals through AKT, which could in
turn enhance ERK-induced transcription via phosphorylation of PEA-15 and subsequent
nuclear translocation (Lavoie et al., 2020; Traverse et al., 1992; von Kriegsheim et al.,
2009). Yet another feedback mechanism that could be explored involves EGFR; its
internalisation – an event that occurs upon EGFR activation (Madshus and Stang, 2009)
– and ERK-induced inhibitory phosphorylation at threonine 693 (Lavoie et al., 2020),
which can be probed by Western Blot. Although SW48 cells harbour an activating
G719S mutation, they still retain EGF response capacity, as observed by the clear ERK
peak shortly after EGF treatment (see Fig. 2.4 on page 43). Thus, exposing cells to
EGFR inhibition after ERK inhibition – i.e. when cells are usually subjected only to
low-nutrient (1% FCS) imaging media – would be a useful intervention to understand to
which extent the ’rebound’ ERK activity observed post-ERK inhibition in mutant cells is
dependent on externally-induced stimulation. Although there are many tyrosine kinase
inhibitors (TKIs) used clinically and commercially available, previous studies suggest
that afatinib is rather advantageous in that it is more effective at inhibiting mutated
EGFR (Kobayashi et al., 2015; Yang et al., 2015) than other standard TKIs such as
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gefitinib (Kobayashi et al., 2005). Another method to test whether EGFR internalisation
plays a role is by inhibiting such process using a dynamin inhibitor (Henriksen et al.,
2013).

Third, signalling dynamics characterisation is another aspect on which further efforts
may result in useful insights. For example, the lowest EGF concentration condition in the
titration assays shows that KRASwt cells are ultrasensitive to the growth factor whereas
mutant cells visibly display a milder response amplitude (see (c) in Fig. 2.5 on page 44).
This observation is an indication that there might be a low EGF concentration that
mutant cells cannot sense (and KRAS wild-type cells might). Therefore treating both
genotypes with lower EGF concentrations might aid in defining a minimum concentration
threshold below which mutant cells cannot sense growth factor induced stimuli.

Fourth and finally, already available RNAseq and imaging data can be harnessed to
gain further insight on network dynamics. Due to the known correlation of ERK pulsatile
dynamics with proliferation (Goglia et al., 2020), quantification of the percentage of
pulsating cells could indicate whether one genotype is more likely to proliferate. RNA
expression data can be used to interrogate the effect of chronic expression of mutant
KRAS in cells by surveying the relative expression of ERK-response genes according to
their known stimulation-response times (i.e. immediate early genes or IEGs, delayed
early genes or DEGs and secondary response genes or SRGs) (Avraham and Yarden,
2011).
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