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On Gaussian Multiplicative Chaos

Mo Dick Wong

Abstract

Gaussian multiplicative chaos was first constructed in Kahane’s seminal paper in 1985 in an

attempt to provide a mathematical foundation for Kolmogorov-Obukhov-Mandelbrot theory

of energy dissipation in developed turbulence. It has attracted a lot of attentions from

the mathematics community in the last decade, playing a pivotal role in the probabilistic

formulation of Liouville conformal field theory, as well as showing up in different branches

of mathematics such as analytic number theory where it describes the statistical behaviour

of the Riemann zeta function on the critical line.

This thesis explores the theory of Gaussian multiplicative chaos in three different

directions. We commence with a new connection with random matrix theory, showing

that for large Hermitian matrices sampled from the one-cut-regular unitary ensemble, the

absolute powers of the characteristic polynomial, when suitably normalised, converge in

distribution to multiplicative chaos on the support of the limiting spectral distribution

as the size of the matrix goes to infinity, and the limit is independent of the choice of

the potential function. This is part of an ongoing programme of establishing Gaussian

multiplicative chaos as a universal limit object in probability theory.

Next, we consider Gaussian multiplicative chaos in the context of Liouville conformal

field theory and study the fusion estimate of the Liouville correlation function. More

precisely, we derive the exact asymptotics for the Liouville four-point correlation when two

points are merging and express the leading order coefficient in terms of DOZZ constants

from the three-point correlation function. Our result is consistent with predictions from

conformal bootstrap in theoretical physics, and has a geometric interpretation of surfaces

being glued together, as hinted by the bootstrap equation.

Finally, we study the right tail of the mass of Gaussian multiplicative chaos and

establish a formula for the leading order asymptotics under mild assumptions on the

underlying log-correlated Gaussian field. The tail exponent satisfies a universal power-law

profile, while the leading order coefficient can be described by the product of two constants,

one capturing the dependence on the test set and any non-stationarity, and the other one

encoding the universal properties of multiplicative chaos. This may be seen as a first step

in understanding the full distributional properties of Gaussian multiplicative chaos.
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Chapter 1

Introduction

Gaussian multiplicative chaos, formally defined as the exponentiation of a log-correlated

Gaussian field, is a one-parameter family of random measures with intriguing properties.

First introduced by Mandelbrot [Man72] as a refinement of Kolmogorov-Obukhov’s model

of energy dissipation in turbulence, Gaussian multiplicative chaos is arguably the first

example of multifractal measures (measures that are supported on sets of fractal dimension

and that exhibit non-linear scaling relations) in the literature of intermittency modelling,

but it was not until more than a decade later in Kahane’s seminal paper [Kah85] that the

first mathematical construction of multiplicative chaos was given.

Unlike other multifractal measures such as the cascade counterparts, Gaussian mul-

tiplicative chaos arises naturally in many different branches of mathematics, such as

mathematical physics where it plays an indispensable role in the probabilistic formulation

of Liouville conformal field theory, and probabilistic number theory where it is related to

the description of the statistical behaviour of the Riemann zeta function on the critical

line, to name but a few. Motivated by its significance, this thesis explores the theory

of multiplicative chaos in three different directions with the goal of developing a better

understanding of its universality and fundamental properties.

In this introductory chapter, we give an overview of Gaussian multiplicative chaos,

starting with its construction and elementary properties. After that, we discuss some of the

developments of the theory in the last two decades and highlight some recent applications

in Liouville quantum gravity and intermediate sets of discrete log-correlated fields. We

then explain the three directions that are explored in this thesis and an outline of the

remaining chapters, and close the chapter with a discussion of future research.
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Introduction

1.1 Definition and elementary properties

1.1.1 Log-correlated Gaussian fields

In order to discuss the theory of Gaussian multiplicative chaos, we first need to explain

the notion of log-correlated Gaussian fields.

Given a domain D ⊂ Rd, we say that X(·) is a (centred) log-correlated Gaussian field

on D if it is a Gaussian field with domain D and covariance of the form

K(x, y) = E[X(x)X(y)] = − log |x− y|+ f(x, y) ∀x, y ∈ D (1.1.1)

where f(x, y) is some sufficiently regular function which remains bounded as |x− y| → 0.

The term “log-correlated” refers to the presence of logarithmic singularity along the

diagonal of the covariance kernel (1.1.1), and as a consequence of this behaviour the

field X(·) cannot be defined pointwise. There are, however, two ways of making sense of

log-correlated Gaussian fields:

• Stochastic process indexed by test functions. We may view X = (X(φ))φ∈F

as a centred Gaussian process with index set given by some collection F of test

functions, e.g. F = C∞c (D), with the covariance structure given by

E [X(φ1)X(φ2)] :=

ˆ
D×D

φ1(x)K(x, y)φ2(y)dxdy, ∀φ1, φ2 ∈ F . (1.1.2)

If K(x, y) is a positive-definite kernel, i.e. (1.1.2) is non-negative for any φ1, φ2 ∈
C∞c (D), then the existence of a Gaussian process with the aforementioned covariance

is an immediate consequence of Kolmogorov’s consistency criterion.

• Gaussian generalised function. Consider the operator T : L2(D) → L2(D)

defined by the Fredholm integral

T (φ)(x) :=

ˆ
D
K(x, y)φ(y)dy.

Then T is a bounded symmetric operator and the spectral theory of self-adjoint

compact operator implies that there exists eigenvalues (λn)n∈N and an orthonormal

basis (fn)n∈N of L2(D) such that |λn| → 0 as n → ∞ and T (fn) = λnfn. With a

dominated convergence argument, the latter relation suggests that the eigenfunctions

fn are actually continuous. Since K(x, y) is a positive-definite kernel, all the eigen-

values λn are non-negative and we can define a sequence of i.i.d. N(0, 1) random

variables (Zk)k∈N, and for each n ∈ N a continuous Gaussian field given by

Xn(x) :=
∑
k≤n

Zk
√
λkfk(x). (1.1.3)

2



1.1. Definition and elementary properties

Given any two test functions φ1, φ2, it is straightforward to check that

(Xn(φ1), Xn(φ2)) :=

(ˆ
D
Xn(x)φ1(x)dx,

ˆ
D
Xn(x)φ2(x)dx

)

converges a.s. and in L2(P) to some Gaussian vector (X(φ1), X(φ2)) with the correct

covariance

E[X(φ1)X(φ2)] =

ˆ
D×D

φ1(x)

( ∞∑
k=1

λkfk(x)fk(y)

)
φ2(y)dxdy

=

ˆ
D×D

φ1(x)K(x, y)φ2(y)dxdy

and the calculation extends to any finite collection of test functions. While the series

X(x) :=
∞∑
n=1

Zn
√
λnfn(x)

does not converge pointwise, we may still make sense of it by interpreting it as a

random distribution in the sense of Schwartz.

1.1.2 Construction of Gaussian multiplicative chaos

Gaussian multiplicative chaos is formally defined as the random measure with density

given by the exponentiation of a log-correlated Gaussian field, i.e.

Mγ,σ(dx) = eγX(x)− γ
2

2
E[X(x)2]σ(dx), γ ∈ R (1.1.4)

where σ(dx) is some reference Radon measure on D. For the purpose of our discussion,

we shall restrict ourselves to the situation where σ(dx) = g(x)dx for some non-negative

continuous function g on D and abuse the notation to write Mγ,g(dx) = Mγ,σ(dx). When

g(x) ≡ 1 we simply write Mγ(dx), or more generally Mγ,g(dx) = g(x)Mγ(dx).

The first mathematical construction of Gaussian multiplicative chaos was due to Kahane

[Kah85], based on a martingale approach. Assuming that the covariance kernel K can be

decomposed into

K(x, y) =
∞∑
n=1

Kn(x, y), ∀x, y ∈ D (1.1.5)

where (Kn)n∈N is a collection of covariance kernels of some independent continuous Gaussian

3



Introduction

fields (Yn)n∈N on D, then one may define Xn(x) =
∑

k≤n Yn(x) and hope that

Mγ,g,n(dx) = eγXn(x)− γ
2

2
E[Xn(x)2]g(x)dx

converges to some random measure Mγ,g(dx) as n→∞. Indeed, the sequence of random

measures (Mγ,g,n)n∈N with respect to the filtration G = (σ(Yk, k ≤ n))n forms a measure-

valued martingale, and the existence of the almost sure limit Mγ,g is a consequence of the

martingale convergence theorem.

Given the existence of the limit Mγ,g, two natural questions arise, namely

• whether Mγ,g is a trivial measure; and

• whether Mγ,g depends on the kernel decomposition (1.1.5).

The answer to the first question was already given by Kahane’s paper: Mγ,g is non-trivial if

and only if γ2 < 2d, which is now known as the subcritical regime of Gaussian multiplicative

chaos. As for the second question, Kahane was only able to show that the limit is unique

under σ-positivity, i.e. Mγ,g is independent of the kernel decomposition if Kn(x, y) ≥ 0

for all x, y ∈ D and n ∈ N. This is not very satisfactory because the condition is rather

restrictive and cannot be verified easily, limiting the applicability of Kahane’s theory. For

instance, the kernel

K(x, y) = log+

L

|x− y|
= max

(
log

L

|x− y|
, 0

)
(L > 0)

in dimension d = 3 was of interest to Kahane as it was proposed in the Kolmogorov-Obukhov

model of turbulence to capture the intermittency phenomenon of energy dissipation, and

the σ-positivity of which remains an open problem.

In recent years, a lot of activities have been centred around the study of log-correlated

Gaussian fields. Motivated by new applications such as random planar geometry, people

have been working towards a more robust theory of Gaussian multiplicative chaos and

a new construction based on convolution has emerged. The idea is to pick a mollifier θ

(i.e. non-negative function with compact support and
´
θ(x)dx = 1), and introduce a

sequence of approximate Gaussian fields Xε(x) = X ∗ θε(x) where θε(·) = ε−dθ(·/ε) and

ε > 0. Under minimal assumptions on θ, the field Xε(·) is a Borel measurable function for

fixed ε, and one may try to define Mγ,g as the limit

lim
ε→0+

Mγ,g,ε(dx) = lim
ε→0+

g(x)Mγ,ε(dx) = lim
ε→0+

g(x)eγXε(x)− γ
2

2
E[Xε(x)2]dx.

The first convolution construction is due to Robert and Vargas [RV10b], under the

condition that the covariance is translation invariant, and the method has been simplified

by Berestycki and extended to deal with general kernels (1.1.1) with f being a continuous

4
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function in [Ber17]. The main result in the latter paper is that

Theorem 1.1.1. Let γ2 < 2d. Then the sequence Mγ,g,ε(dx) = eγXε(x)− γ
2

2
E[Xε(x)2]g(x)dx

converges in probability to some random measure Mγ,g in the weak* topology on D. More-

over, the limit is non-trivial and it does not depend on the choice of mollification.1

As a by-product of the proof of the uniqueness part of the above theorem, Berestycki also

showed that Kahane’s martingale construction is equivalent to the convolution construction

for general kernels, i.e. the limit arising from the martingale approach is the same as that

from the regularisation approach.

To conclude our discussion here, let us mention the work of Shamov [Sha16], which

adopts an equivalent but abstract approach of Gaussian Hilbert space to constructing

Gaussian multiplicative chaos, and the work of Junilla and Saksman [JS17], which studies

the uniqueness problem under the more general setting of smooth approximation.

1.1.3 Elementary properties of Gaussian multiplicative chaos

Let us focus on the subcritical regime γ2 < 2d. Many properties of Gaussian multiplicative

chaos are universal in the sense that they do not depend heavily on the function f that

appears in the covariance kernel (1.1.1). An important example is the following criterion

for the existence of moments: if A ⊂ D is a non-empty bounded open set, then

E [Mγ(A)p] <∞ ⇔ p <
2d

γ2
.

In particular the multiplicative chaos Mγ possesses some moment of order greater than 1.

The result for the positive moments was already present in Kahane’s work [Kah85], but

that for the negative moments is more recent and due to Robert and Vargas [RV10b] who

adapted the analysis of multiplicative cascades to the current setting.

Another interesting result is the multifractality of Gaussian multiplicative chaos: for

any p ∈ [0, 2d
γ2

) we have

E [Mγ(B(x, r))p] = Θ(rξ(p)), r → 0+ (1.1.6)

where ξ is the so-called structure exponent, given by ξ(p) = (d + γ2

2 )p − γ2

2 p
2. To see

why this is true, consider the special case where f ≡ L for some constant L ∈ R, i.e.

E[X(x)X(y)] = − log |x− y|+ L, which is a positive definite kernel on sufficiently small

ball B(0, r). The corresponding field X(·) satisfies exact scale invariance, i.e. for any

c ∈ (0, 1) we have the distributional equality

(X(cx))|x|≤r
d
= (X(x) +Nc)|x|≤r

1Under minimal assumption on the mollifier θ, which is automatically satisfied if e.g. θ is in Lp for some
p > 1, see [Ber17] for the details.
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where Nc is an independent Gaussian random variable with zero mean and variance

E[N2
r ] = − log c. This implies that

Mγ(B(0, cr)) =

ˆ
|x|≤cr

eγX(x)− γ
2

2
E[X(x)2]dx

= cd
ˆ
|u|≤r

eγX(cu)− γ
2

2
E[X(cu)2]du

d
= cdeγNc−

γ2

2
E[N2

c ]

ˆ
|u|≤r

eγX(u)− γ
2

2
E[X(u)2]du = cd+ γ2

2 eγNcMγ(B(0, r))

and therefore

E [Mγ(B(0, cr))p] = E[(cd+ γ2

2 eγNc)p]E [Mγ(B(0, r))p] = cξ(p)E [Mγ(B(0, r))p] .

For the general result, we invoke Kahane’s convexity inequality, which, when specialised to

log-correlated Gaussian fields, says that if X1(·) and X2(·) are two centred log-correlated

Gaussian fields on D such that for any two different points x, y ∈ D

E[X1(x)X1(y)] ≤ E[X2(x)X2(y)],

then for any convex function h : R+ → R,

E
[
h(M1

γ (A))
]
≤ E

[
h(M2

γ (A))
]

where M i
γ(A) is the mass of a set A ⊂ D with respect to the Gaussian multiplicative chaos

associated with Xi, i = 1, 2. We may then take h : x 7→ xp, and compare the general kernel

(1.1.1) with the exact kernel above (with two different choices of L to upper and lower

bound the function f(·, ·) on B(x, r)) to obtain the same multifractal exponent ξ(·) for all

multiplicative chaos.

Let us highlight yet another fundamental property, namely the support of Mγ . It is not

difficult to see, under the usual topological definition, that Mγ is almost surely supported

on the whole domain D. The following argument is due to [RV14]: for any open ball

B ⊂ D, we have

inf
x∈B

eγXn(x)− γ
2

2
E[Xn(x)2]M̃γ,n(B) ≤Mγ(B) ≤ sup

x∈B
eγXn(x)− γ

2

2
E[Xn(x)2]M̃γ,n(B)

where M̃γ,n(dx) = limk→∞ e
γ(Xk−Xn)(x)− γ

2

2
E[(Xk−Xn)2(x)]dx and (Xn)n are given by the

truncated Karhunen-Loève expansion of X(·) (1.1.3)2. From the above inequality we

2Where (Zn)n are i.i.d. N(0, 1) random variables coming from Zn = X(fn)

6



1.2. Recent development in multiplicative chaos

observe immediately that

{Mγ(B) > 0} =
⋂
n≥1

{M̃γ,n(B) > 0}

where the event on the RHS is in the tail σ-algebra generated by the i.i.d. random variables

(Zn)n and hence has probability 1 by Kolmogorov’s 0-1 law.

On the other hand, one can also show that the mass of Mγ is concentrated on a random

set of fractal dimension. Under the convolution construction of multiplicative chaos, we

define the set of γ-thick points of X(·) as

Tγ :=

{
x ∈ D : lim

ε→0+

Xε(x)

− log ε
= γ

}
.

By a simple calculation (see [Ber17, Lemma 3.5]) one can show that E[Xε(x)2] = − log ε+

O(1) as ε→ 0+, i.e. the set Tγ collects the exceptional points x at which the field Xε blows

up like γVar(Xε(x)). Furthermore, it is known (e.g. [RV14, Theorem 4.1-4.2]) that the set

of γ-thick points gives full mass to Mγ in the sense that Mγ(D ∩ T cγ ) = 0 almost surely,

and the Hausdorff dimension of Tγ is d− γ2

2 , which shows that Gaussian multiplicative

chaos is not absolutely continuous with respect to the Lebesgue measure despite the formal

expression (1.1.4). This also gives a partial explanation of why the measure Mγ becomes

trivial when γ2 ≥ 2d. The idea of thick points was already hinted in Kahane’s paper and

the fact that the “support” of Mγ is of fractal dimension was reflected by the notion of

measure with finite β-energy there, but these concepts have not been fully capitalised

until recently in [Ber17] and lead to an elementary yet general construction of Gaussian

multiplicative chaos in the subcritical phase.

1.2 Recent development in multiplicative chaos

The theory of Gaussian multiplicative chaos has attracted a lot of attention in the past

decade thanks to new applications beyond intermittency modelling. In this section, we

highlight some of the important applications of multiplicative chaos and survey various

advancement made in the last few years.

1.2.1 Gaussian free field and Liouville quantum gravity

Many research activities in Gaussian multiplicative chaos in the last decade have been driven

by the interest in random geometry – an area that studies the geometric characteristics of

random curves/surfaces with special symmetry such as conformal invariance, as well as

random discrete processes and their scaling limits.

We commence with the notion of Gaussian free field. The Gaussian free field on a

bounded simply connected domain D ⊂ R2 with Dirichlet boundary condition is a centred

7
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Gaussian field XD(·) with covariance given by the Dirichlet Green’s function GD(x, y) in

the sense of (1.1.2), where GD(x, y) may be defined via

GD(x, y) = π

ˆ ∞
0

pDt (x, y)dt

with pDt (x, y) being the transition density of a Brownian motion started from x and killed

upon hitting y ∈ ∂D at time t.

The Green’s functionGD(x, ·) satisfies the distributional equation ∆GD(x, ·) = −2πδx(·)
with Dirichlet boundary condition. It has the property of being a harmonic function in

D \ {x} and is an example of log-correlated Gaussian field:

GD(x, y) = − log |x− y|+ logR(x;D) + o(1), y → x

where R(x;D) is the conformal radius of x in D, defined by R(x;D) = |m′(0)| for any

conformal transformation m : D := {x ∈ R2 : |x| < 1} → D with the property that

m(0) = x. From the point of view of abstract Wiener space, the Gaussian free field may

also be seen as a Gaussian Hilbert space indexed by the Sobolev space H1
0 (D) of functions

with compact support: for any φ ∈ H1
0 (D), we have

Var〈XD, φ〉∇ = ||φ||2∇ =
1

2π

ˆ
D
|∇φ(x)|2dx. (1.2.1)

Using this interpretation and the Karhunen-Loève expansion

XD(·) =
∑
n

Znfn(·)

where (fn)n is an orthonormal basis with respect to the Dirichlet inner product (1.2.1)

and (Zn)n is a collection of i.i.d. N(0, 1) random variables defined by Zn = 〈XD, fn〉∇, we

see that the Gaussian free field may be realised as a random generalised function that

lives in the negative Sobolev space H−ε0 (D) for any ε > 0. The two perspectives may be

reconciled by an exercise of integration by parts: if we take

ρ(x) = − 1

2π
∆φ(x), φ ∈ C∞c (D),

then we observe that

Var〈XD, φ〉∇ =
1

2π

ˆ
D
|∇φ(x)|2dx = − 1

2π

ˆ
D
φ(x)∆φ(x)dx

=
1

(2π)2

ˆ
D

(ˆ
D

∆yGD(x, y)φ(y)dy

)
∆xφ(x)dx

=
1

(2π)2

ˆ
D

(ˆ
D
GD(x, y)∆yφ(y)dy

)
∆xφ(x)dx

8



1.2. Recent development in multiplicative chaos

=

ˆ
D×D

ρ(x)GD(x, y)ρ(y)dxdy = E
[
XD(ρ)2

]
and this can be immediately extended to an identity for the covariance structure (i.e.

involving two test functions) by a standard polarisation argument.

The Gaussian free field has two remarkable properties that are essentially inherited

from the Dirichlet inner product:

• Conformal invariance: if T : D → D′ is a conformal map from D to D′, then

GT (D)(T (x), T (y)) = GD(x, y) and hence

XD(·) d
= XT (D)(T (·)).

• Markov property: if U ⊂ D is some fixed subdomain, then

XD = X0 + h

where X0 is a Gaussian free field in U with Dirichlet boundary condition and vanishes

outside U , while h is independent of X0 and harmonic in U .

These properties turn out to provide a characterisation of the Gaussian free field [BPR18].3

Motivated by Polyakov’s work on two-dimensional quantum gravity [Pol81], the math-

ematics community has been trying to understand the geometry of random Riemann

surfaces under natural probability measures. As a consequence of Riemann’s uniformisa-

tion theorem, the study of a “random surface” may be reformulated as that of a random

Riemannian metric

eλ(x)(dx2
1 + dx2

2)

where x = (x1, x2) ∈ D are the isothermal coordinates and λ(·) is randomly chosen. It

happens that under the Liouville action and the non-interacting case where the cosmological

constant µ is equal to zero (see also Section 1.2.2), the natural choice of λ(·) above is the

Gaussian free field (up to some constant factor). This led Duplantier and Sheffield [DS11]

to introduce the Liouville quantum gravity (LQG) measure

MLQG
γ (dx) = R(x;D)

γ2

2 eγXD(x)− γ
2

2
E[XD(x)2]dx (1.2.2)

= lim
ε→0+

ε
γ2

2 eγXD,ε(x)dx

and they were able to establish a relationship between Euclidean (i.e. with respect to the

Lebesgue measure) and quantum (i.e. with respect to MLQG
γ ) scaling exponents, verifying

3Up to some moment conditions.
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the Knizhnik-Polyakov-Zamolodchikov formula [KPZ88] from the physics literature. Many

ongoing activities attempt to explore the connections between LQG measure and other

objects such as Schramm-Loewner evolutions and scaling limits of random planar maps,

see e.g. [DMS14, MS15, MS16a].

1.2.2 Liouville conformal field theory

More recently, David-Kupiainen-Rhodes-Vargas [DKRV16] provided the first rigorous

construction of Liouville quantum field theory on the Riemann sphere Ĉ ≡ C ∪ {∞}. As

mentioned in Section 1.2.1, this was proposed in the physics literature by Polyakov who was

interested in developing a theory of path integral in dimension d = 2 with an exponential

interaction term, and it is formally defined as the “Gibbs measure”4

〈F 〉 = 2

ˆ
F (X)e−SL(X)DX (1.2.3)

where DX is the “Lebesgue measure” on the space of real functions Ĉ→ R, and SL is the

Liouville action5

SL(X) =
1

4π

ˆ
Ĉ

(
|∇gX(x)|2 +Rg(x)QX(x) + 4πµeγX(x)

)
g(x)d2x. (1.2.4)

Here g(x) = |x|−4
+ = (|x| ∨ 1)−4 is the background metric6 with ∇g and Rg being the

associated gradient and curvature respectively; µ > 0 is called the cosmological constant,

γ ∈ (0, 2) is a positive parameter and Q = γ
2 + 2

γ . The first term of the Liouville action, or

exp

(
− 1

4π

ˆ
Ĉ
|∇gX(x)|2g(x)d2x

)
DX

hints that X(·) may be interpreted as some variant of Gaussian free field, and the third

term 4πµeγX(x)g(x)d2x suggests an indispensable role of Gaussian multiplicative chaos in

the mathematical definition of the functional (1.2.3).

A central object in Liouville quantum field theory is the correlation function. If (zk)k≤N

are N distinct points in C and (αk)k≤N are non-negative numbers such that the Seiberg

bounds

s :=

∑N
k=1 αk − 2Q

γ
< 0 and αk ∈ (0, Q) ∀k

4The factor 2 is for aesthetic purpose in order to match the DOZZ formula.
5The Liouville action has an extra curvature term which is omitted here for simplicity since it does not

give any contribution when we restrict ourselves to our special choice of metric g.
6More precisely the background metric is g(x)d2x. One can define LCFT with a different choice of

background metric, and the Weyl anomaly formula provides a simple way to perform conformal changes of
metrics, see [DKRV16, Section 3.5].
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are satisfied, one may define the Liouville correlation function〈
N∏
k=1

Vαk(zk)

〉
= 2

ˆ ( N∏
k=1

eαk(X(zk)+Q
2

log g(zk))

)
e−SL(X)DX,

under the probabilistic approach, by〈
N∏
k=1

Vαk(zk)

〉
= 2µ−sγ−1Γ(s)

∏
i<j

1

|zi − zj |αiαj
E

[(ˆ
C
F (x, z)Mγ,g(d

2x)

)−s]
(1.2.5)

where

F (x, z) =

N∏
k=1

(
|x|+
|x− zk|

)γαk
,

and Mγ,g(d
2x) = eγX(z)− γ

2

2
E[X(z)2]g(x)d2x is the multiplicative chaos associated with the

Gaussian free field with vanishing average over the unit circle:

E[X(x)X(y)] = − log |x− y|+ log |x|+ + log |y|+.

The Liouville theory is a conformal field theory and the correlation function satisfies

the property of conformal covariance (also known as the KPZ relation, again named after

Knizhnik-Polyakov-Zamolodchikov): if ψ is any Möbius transform of the sphere, then〈
N∏
k=1

Vαk(ψ(zk))

〉
=

N∏
k=1

|ψ′(zk)|−2∆αk

〈
N∏
k=1

Vαk(zk)

〉

where ∆α = α
2 (Q − α

2 ) is called the conformal weight. Since any Möbius transform is

uniquely determined by the image of three points, the above conformal symmetry allows

us to express the three-point correlation function as〈
3∏

k=1

Vαk(zk)

〉
= |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13Cγ(α1, α2, α3)

where ∆12 = ∆α3 − ∆α1 − ∆α2 , ∆23 and ∆13 are similarly defined, and the constant

Cγ(α1, α2, α3) is the three-point structure constant which may be seen as the three-point

correlation evaluated at (z1, z2, z3) = (0, 1,∞):

Cγ(α1, α2, α3) = lim
z3→∞

|z3|4∆α3 〈Vα1(0)Vα2(1)Vα3(z3)〉

= 2µ−sγ−1Γ(s)E

(ˆ
C

|x|γ(α1+α2+α3)
+

|x|γα1 |x− 1|γα2
Mγ,g(d

2x)

)−s .
11
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One research direction in Liouville conformal field theory is to compute the correlation

function (1.2.5) and verify the formulae from the physics literature. In the case where N = 3,

the celebrated DOZZ formula, proposed independently by Dorn-Otto and Zamolodchikov-

Zamolodchikov, asserts that the three-point structure constant is given by

Cγ(α1, α2, α3) =

(
πµl(

γ2

4
)(
γ

2
)2− γ

2

2

)−α−2Q
γ Υ′γ

2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2
(α2 −Q)Υ γ

2
(α2 − α1)Υ γ

2
(α2 − α2)Υ γ

2
(α2 − α3)

where l(z) = Γ(z)/Γ(1 − z), α = α1 + α2 + α3 and Υ γ
2
(z) is Zamolodchikov’s special

holomorphic function defined on C which has the following integral representation when

Re(z) ∈ (0, Q):

log Υ γ
2
(z) =

ˆ ∞
0

((
Q

2
− z
)2

e−t −
(sinh((Q2 − z)

t
2))2

sinh( tγ4 ) sinh( tγ )

)
dt

t
.

The DOZZ formula has been, however, controversial within the physics community because

of its invariance under the simultaneous change of parameters

γ

2
↔ 2

γ
, µ↔ µ̃ =

(µπl(γ
2

4 ))
4
γ2

πl( 4
γ2

)

and such a symmetry is not apparent from the Liouvile action (1.2.4) a priori. This

conjecture is finally resolved by Kupiainen, Rhodes and Vargas in their work [KRV15,

KRV17], where the DOZZ formula was verified by deriving and solving the BPZ differential

equations, which are satisfied by a degenerate four-point function with suitably chosen α’s.

Let us mention that the interest in Liouville conformal field theory goes beyond the

setting of Riemann sphere, and rigorous probabilistic constructions of the theory are also

available for the complex tori [DRV16] and other compact Riemann surfaces of higher

genus [GRV16], as well as non-compact surfaces such as the unit disc7 [HRV18].

1.2.3 Discrete log-correlated Gaussian fields

Parallel to the research in the continuum, there has been a lot of work devoted to the study

of discrete log-correlated Gaussian fields arising from physical models at criticality, an

example of which is the membrane model in d = 4 [Kur09]. We shall focus on the discrete

Gaussian free field in d = 2, which is closely related to random walks and is arguably the

most extensively studied model in the literature.

For simplicity, consider a discrete Gaussian free field XN (·) defined on VN = [0, N ]2∩Z2

with Dirichlet boundary condition. This is a centred Gaussian function which is identically

zero on the boundary ∂VN (i.e. any points x ∈ VN with a nearest neighbour outside VN ),

7In which case there are additional boundary terms involved in the definition of Liouville action.
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1.2. Recent development in multiplicative chaos

and is otherwise characterised by the covariance given by the discrete Green’s function

EN [XN (x)XN (y)] = GN (x, y) = Ex

[τ∂VN∑
n=0

1{Sn=y}

]
, x, y ∈ Int(VN ) = VN \ ∂VN .

Here (Sn)n≥0 is a simple random walk starting from x under Px
8, and τ∂VN = {n ≥ 1 :

Sn ∈ ∂Vn} is the first exit time of (Sn)n. Alternatively, the law of XN (·) can be explicitly

written as

PN (dXN ) ∝ exp

− 1

16

∑
x,y∈V :x∼y

(XN (x)−XN (y))2

 ∏
x∈Int(VN )

dXN (x).

Viewing
∑

x,y(XN (x)−XN (y))2 as the discrete analogue of the Dirichlet energy
´
D |∇X(x)|2dx,

it should not be surprising that XN (·), when suitably scaled (and extended), converges to

a continuum Gaussian free field that was discussed in Section 1.2.1. Indeed, if we discretise

the domain D = [0, 1]2 using a triangular mesh and project the continuum Gaussian free

field to the σ-algebra generated by continuous functions that are affine on each triangle,

then the resulting Gaussian field restricted to VN is precisely the discrete Gaussian free

field (see [She07, Section 4.2-4.3]).

It has been well-known since the work [BDG01] of Bolthausen, Deuschel and Giacomin

that the maximum of the discrete Gaussian free field grows like

max
x∈VN

XN (x) ∼ 2
√
g logN, N →∞

where g = 2/π describes the behaviour of the Green’s function on the diagonal: GN (x, x) =

g logN + O(1) as N → ∞ for any x ∈ VN sufficiently away from ∂VN . Since then a lot

of effort has been made in studying finer geometric properties of the field, such as the

intermediate level sets

{x ∈ VN : XN (x) ≥ 2
√
gλ logN}, λ ∈ (0, 1).

This is the subject of investigation in the paper [BL16b] by Biskup and Louidor, and the

authors there proved that the scaling limit of the intermediate level sets is described by

Gaussian multiplicative chaos:

Theorem 1.2.1 ([BL16b, Theorem 2.1 and Theorem 2.5]). Let (aN )N≥1 be any positive

sequence such that aN ∼ 2
√
gλ logN for some λ ∈ (0, 1), KN := N2

√
logN

exp
(
− a2N

2g logN

)
8PN ,EN are used for the law of the discrete Gaussian free field XN , whereas Px, Ex refer to the law of

the symmetric random walk (Sn)n.

13



Introduction

and define

ηN :=
1

KN

∑
x∈VN

δ x
N
⊗ δXN (x)−aN .

Then as N →∞,

ηN
d−→ ZD2λ(dx)⊗ e−

2√
g
h
dh

with respect to the topology of vague convergence of measures on D × R. Here9 ZD2λ is the

Liouville quantum gravity measure defined in (1.2.2) up to a multiplicative factor, i.e.

ZD2λ(dx)
d
= cMLQG

γ=2λ(dx), x ∈ D

for some deterministic constant c ∈ (0,∞).

1.3 Outline of the thesis

In the following, we explain our contributions to three different aspects of the theory of

Gaussian multiplicative chaos, and give an outline of the remaining chapters.

1.3.1 Gaussian multiplicative chaos as a universal limit

Log-correlated Gaussian fields and multiplicative chaos have, in recent years, appeared in

different random models outside of their traditional applications (namely turbulence and

Liouville theory). An example is the study of Riemann zeta function10

ζ(s) =
∞∑
n=1

1

ns
,

and Saksman and Webb [SW16] proved an intriguing result that connects the behaviour of

the randomised Riemann zeta function on the critical line Re(s) = 1
2 to that of a complex

variant of Gaussian multiplicative chaos.

Here we are interested in establishing Gaussian multiplicative chaos as a limit object in

different areas of mathematics. Our starting point is random matrix theory. In Chapter 2,

we shall consider large random Hermitian matrices HN sampled from the unitary ensemble

P(dHN ) ∝ e−NTrV (HN )dHN

9Our parameters are different from those in [BL16b] where the authors use a different normalisation for
Gaussian multiplicative chaos.

10The series representation is only valid when Re(s) > 1; otherwise ζ(·) is defined via meromorphic
continuation.
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where the potential function V is one-cut regular. This is an interesting class of random

matrices that has been extensively studied in the physics literature for graph enumeration

and discrete gravity [LZ13], and includes many important random matrix models such as

the Gaussian unitary ensemble, which has been used since the work of Montgomery for

different conjectures regarding the behaviour of the Riemann zeta function on the critical

line.

Our main result concerns the characteristic polynomial of HN : if µV (dx) is the

equilibrium measure (which describes the asymptotic eigenvalue distribution) associated

with the potential V , then the renormalised characteristic polynomial

|det(HN − xIN )|β

E| det(HN − xIN )|β
dx

converges in distribution, as the size N of the matrix goes to infinity, to a universal11

Gaussian multiplicative chaos measure on supp(µV ) for sufficiently small12 β ≥ 0. To

some extent, our result suggests that perhaps the centred logarithm of the characteristic

polynomial, i.e.

x 7→ log | det(HN − xIN )| − E log | det(HN − xIN )|, (1.3.1)

behaves asymptotically like a log-correlated Gaussian field. This may not be entirely

surprising because of a well-known result of Johansson [Joh98] which states that the linear

statistics of a one-cut regular ensemble satisfies a central limit theorem: if T : R→ R is

some sufficiently regular function, (λi)i≤N are the eigenvalues of HN , then the quantity

N∑
i=1

T (λi)−N
ˆ
R
T (x)µV (dx) (1.3.2)

converges in distribution to some centred Gaussian random variable as N tends to infinity.

What is special here is that (1.3.2) does not require a normalisation factor 1/
√
N that is

present in the usual central limit theorem for i.i.d. random variables, and this would have

relied on effective cancellation due to the regularity of eigenvalue distributions.

Unlike usual constructions of Gaussian multiplicative chaos, the field (1.3.1) has no

martingale structure and Gaussianity only holds in the asymptotic sense which poses a huge

challenge. A major part of our proof requires the derivation of the large-N asymptotics of

mixed moments of the form

E

[
e
∑N
j=1 T (λj)

k∏
i=1

| det(HN − xiIN )|βi
]

11In the sense that if V1 and V2 are two one-cut regular potentials and the associated equilibrium measures
are supported on the same interval, then the limit measure is the same for both potentials.

12In the L2-regime of Gaussian multiplicative chaos.
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which makes the notion of asymptotic Gaussianity more quantitative and recovers the

structure of a log-correlated field.

1.3.2 Fusion estimates of Gaussian multiplicative chaos

Fusion estimates refer to the study of negative moments of a Gaussian multiplicative chaos

integrated against merging singularities, or more precisely, expectations of the form

E

[(ˆ
D

Mγ,g(dx)

|x|γα1 |x− z|γα2

)−s]
, z → 0 (1.3.3)

where s > 0, γ ∈ (0,
√

2d), and α1, α2 ∈ (0, Q) with Q = γ
2 + d

γ . By a dominated

convergence argument,

lim
z→0

E

[(ˆ
D

Mγ,g(dx)

|x|γα1 |x− z|γα2

)−s]
= E

[(ˆ
D
|x|−γ(α1+α2)Mγ,g(dx)

)−s]

where the RHS is non-trivial (i.e. positive) if the merged singularity is not too strong. We

are, however, more interested in the other case where the limit above is trivial and would

like to understand the fusion asymptotics as z approaches the origin.

Variants of expectations of the form (1.3.3) appear naturally in many problems related

to Gaussian multiplicative chaos. The first example is the study of annealed multifractal

exponent of Gibbs measures associated with log-correlated Gaussian fields [Fyo09, Won17].

Suppose (Xε)ε>0 is a sequence of continuous Gaussian fields on a compact set D ⊂ Rd

with covariance

E [Xε(x)Xε(y)] = − log (|x− y| ∨ ε) + fε(x, y).

One may want to study the multifractality of the limiting Gibbs measure

lim
ε→0+

mγ,ε(u)du = lim
ε→0+

eγXε(u)du´
D e

γXε(x)dx

via the annealed multifractal exponent η̃q, which is defined, for each q > 0, by

E
[ˆ

D
mγ,ε(u)qdu

]
= E

[
Zε(γq)

Zε(γ)q

]
ε→0+∼ εη̃q , Zε(β) :=

ˆ
D
eβXε(u)du.

To see the connection, observe that

E
[
Zε(γq)

Zε(γ)q

]
= ε−

γ2q2

2
+ γ2q

2

ˆ
D
E

 eγqXε(u)− γ
2q2

2
E[Xε(u)2](´

D e
γXε(x)− γ2

2
E[Xε(x)2]e

γ2

2
fε(x,x)dx

)q
 e γ2q22

fε(u,u)du
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1.3. Outline of the thesis

= ε−
γ2q2

2
+ γ2q

2

ˆ
D
E

ˆ
D

e
γ2

2
fε(x,x)+γqfε(x,u)Mγ,ε(dx)

(|x− u| ∨ ε)γ2q

−q e γ2q22
fε(u,u)du

where Mγ,ε(dx) = eγXε(x)− γ
2

2
E[Xε(x)2]dx and the second equality above follows from the

Cameron-Martin theorem13. The integrand is reminiscent of (1.3.3) except that we now

deal with the regularised chaos Mγ,ε and (ε, γq) here plays the role of (|z|, α1 + α2) there.

Another important application of fusion estimates comes from Liouville conformal field

theory and is presented in Chapter 3. We consider the four-point correlation14

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉

= 2|z|−α1α2 |z − 1|−α2α3E

(ˆ
C

|x|γ(α1+α2+α3+α4)
+

|x|γα1 |x− z|γα2 |x− 1|γα3
Mγ,g(d

2x)

)−s ,
where Mγ,g is the multiplicative chaos defined in Section 1.2.2 and s =

∑4
k=1 αk−2Q

γ , in the

degenerate case when z is sent to the origin. We are able to derive the exact asymptotics

for the fusion estimate, i.e. the rate in terms of |z| at which the expectation above decays

to 0 as well as the leading order coefficient. We show that the leading order coefficient

may be expressed in terms of the DOZZ formula, and that our result is consistent with

the predictions from conformal bootstrap in theoretical physics. In particular, in the

“supercritical” regime where both α1 +α2 and α3 +α4 are greater than Q, the leading order

coefficient can be factorised into the product of two DOZZ constants, demonstrating the

philosophy of gluing surfaces together in the bootstrap approach to conformal field theory.

1.3.3 Distributional properties of Gaussian multiplicative chaos

The last topic we discuss in this thesis is the distributional properties of Gaussian multi-

plicative chaos. Despite being of fundamental importance, this topic is not actively explored

in the literature. Answers to some very basic questions like whether the distribution of

Mγ(A) is non-atomic/has a density are still unknown except for the special case where

the underlying Gaussian field is exact scale invariant [RV10b], and our knowledge about

the distribution of Mγ(A) has not gone much beyond the criterion for the existence of

moments.

Driven by new applications in random geometry and random matrices, there has been

some renewed effort in improving our understanding of the distribution of multiplicative

13The theorem says that if (X(·), Y ) are centred and jointly Gaussian, then for any functional F we have

E
[
eY−

γ2

2
E[Y 2]F (X(·))

]
= E [F (X(·) +m(·))] , m(·) = E[X(·)Y ].

14Strictly speaking we consider the renormalised four-point correlation when z4 is sent to infinity.
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chaos. This includes the work of Ostrovsky [Ost16] which attempts to study E [F (Mγ,g(D))]

by a formal expansion in the variable γ using his theory of intermittency differentiation.

While the method employed in his work is not completely rigorous, Ostrovsky’s computation

has led to a lot of interesting conjectures, especially for multiplicative chaos associated

with exactly scale invariant fields. Also, inspired by the work of Kupiainen-Rhodes-Vargas

[KRV15, KRV17] on the proof of the DOZZ formula, Remy [Rem17] considers the total

mass of the Gaussian multiplicative chaos measure associated with the Gaussian free field

on the unit circle, i.e.

E[X(eiθ)X(eiθ
′
)] =

1

2
log

1

|eiθ − eiθ′ |
and Mγ(T) =

ˆ 2π

0
eγX(eiθ)− γ

2

2
E[X(eiθ)2]dθ,

and he is able to verify the Fyodorov-Bouchaud formula [FB08a] from the physics literature,

which says that

E [Mγ(T)p] =
Γ(1− pγ

2

4 )

Γ(1− γ2

4 )p
, ∀p < 4

γ2
.

In particular, the distribution of Mγ(T) has an explicit density

P(Mγ(T) ∈ dm) =
4β

γ2
(βm)

− 4
γ2
−1
e−(βm)

− 4
γ2

dm, m ≥ 0

where β = Γ(1− γ2

4 ), i.e. Mγ has the law of 1
βT
− γ

2

4 where T is an Exp(1) random variable.

With Zhu [RZ18] he extends the technique to the study of exactly scale invariant fields on

the unit interval and verifies some of Ostrovsky’s distributional conjectures. In general,

however, there is no reason to believe that exact integrability results are possible for

Gaussian multiplicative chaos even if we restrict ourselves to nice sets and kernels in d = 2

where machinery from complex analysis can be employed. An example would be the total

mass Mγ(D) of the multiplicative chaos associated with the Gaussian free field on the

unit disc, which seems to have all the possible symmetries one could hope for but little is

known about it even at a heuristic level.

The final chapter of the thesis is devoted to another perspective on the distributional

properties, namely the tail probability of general Gaussian multiplicative chaos. We

consider the chaos measure Mγ,g associated with general log-kernels (1.1.1), and derive

the tail asymptotics

P(Mγ,g(A) > t) ∼ Cγ,d,f,g(A)t
− 2d
γ2 , t→∞

for any bounded open sets A. The tail exponent should not be surprising as it is consistent

with the criterion for the existence of moments. We are able to give a rather precise

description of the tail coefficient Cγ,d,f,g(A) including the dependence of the coefficient on
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f, g and A. Using the exact integrability results [KRV15, KRV17, Rem17, RZ18], we are

also able to provide a closed form expression for Cγ,d,f,g(A) when the dimension is less

than or equal to 2. This may be seen as a first step towards understanding finer universal

distributional properties of Gaussian multiplicative chaos.

1.4 Future directions

To conclude this introductory chapter, we explain some of the general research themes

that we intend to pursue, and present a selection of problems that have been inspired by

the findings in this thesis and that we hope to address in the future.

Universality. There are two major goals we would like to achieve under the universality

programme of Gaussian multiplicative chaos:

• We would like to establish Gaussian multiplicative chaos as a universal limit object

in various different contexts. This could be extending our analysis to other models

such as Wigner ensembles and Ginibre ensembles [WW18] in random matrix theory

where evidence of logarithmic correlation and asymptotic Gaussianity is suggested

by a central limit theorem for the linear statistics, or problems in integrable systems

such as random partition of integers where Gaussian fluctuations have been observed.

We hope that by establishing and exploiting new links between multiplicative chaos

and large disordered systems, we are able to uncover new properties of both objects

by translating the properties of one to those of the other.

• We hope to find an explanation for the universality of log-correlated Gaussian fields

and multiplicative chaos, and study to what extent the convergence of a random

function to a log-correlated Gaussian field is equivalent to that of the exponentiation

of the random function to a multiplicative chaos.

Further distributional properties. Following the result in Chapter 4, we would like

to investigate into the following problems.

• The leading order coefficient Cγ,d,f,g(A) has a component Cγ,d called the reflection

coefficient of Gaussian multiplicative chaos. This constant is unfortunately non-

explicit in dimension d ≥ 3 despite admitting various probabilistic representations,

and we hope to find a way to adapt the Liouville conformal field theory techniques in

[KRV15, KRV17, Rem17, RZ18] to obtain some exact integrability results in higher

dimension.

• We would like to extend the investigation in Chapter 4 to lower order terms or full

asymptotic series for the right tail probability if possible. It would also be interesting
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to consider the analogous problem for the left tail

P(Mγ,g(A) ≤ ε), ε→ 0+

but this would require a very different approach, as the analysis of the right tail

relies on a local argument which is completely irrelevant in the left tail problem.

• The interaction between Gaussian multiplicative chaos with different intermittency

parameters γ is a topic that does not seem to have been explored very much before

but it could be of fundamental importance if we would like to understand the scaling

limit of several intermediate level sets of discrete Gaussian free field simultaneously.

We would like to formulate a tail probability problem involving Mγ1,g1(A1) and

Mγ2,g2(A2) where the chaos measures are defined with respect to the same Gaussian

field but (γi, gi, Ai) are different, and try to study how the knowledge of one of the

variables affects the distribution of the other.

Beyond Gaussianity We would like to study non-Gaussian variants of multiplicative

chaos which arise naturally in large disordered systems. This idea is inspired by the

result in Chapter 2, where we show that the characteristic polynomial of a one-cut regular

random matrix behaves asymptotically like a Gaussian multiplicative chaos. Without

the one-cut condition, the (Gaussian) central limit theorem for the linear statistics of

the random matrix is no longer true, and the convergence to Gaussian multiplicative

chaos is conceptually impossible. We would therefore like to extend our study of random

characteristic polynomials to more general unitary ensemble and hope to identify the

multi-cut analogue of multiplicative chaos and study its properties there.
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Chapter 2

Random Hermitian Matrices and

Gaussian Multiplicative Chaos

Abstract. We prove that when suitably normalized, small enough powers of the absolute

value of the characteristic polynomial of random Hermitian matrices, drawn from one-cut

regular unitary invariant ensembles, converge in law to Gaussian multiplicative chaos

measures. We prove this in the so-called L2-phase of multiplicative chaos. Our main

tools are asymptotics of Hankel determinants with Fisher-Hartwig singularities. Using

Riemann-Hilbert methods, we prove a rather general Fisher-Hartwig formula for one-cut

regular unitary invariant ensembles.

2.1 Introduction

2.1.1 Main result

Log-correlated Gaussian fields, namely Gaussian random generalized functions whose

covariance kernels have a logarithmic singularity on the diagonal, are known to show

up in various models of modern probability and mathematical physics – e.g. in combi-

natorial models describing random partitions of integers [IO02], random matrix theory

[FKS16, HKO01, RV07], lattice models of statistical mechanics [Ken01], the construc-

tion of conformally invariant random planar curves such as stochastic Loewner evolution

[AKSJ11, She16], and growth models [BF14] just to name a few examples. A recent

and fundamental development in the theory of these log-correlated fields has been that

while these fields are rough objects – distributions instead of functions – their geometric

properties can be understood to some degree. For example, one can describe the behavior

of the extremal values and level sets of the fields in a suitable sense – see e.g. [RV14,

Section 4 and Section 6.4].

A fundamental tool in describing these geometric properties of the fields is a class

of random measures, which can be formally written as an exponential of the field. As
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these fields are distributions instead of functions, exponentiation is not an operation

one can naively perform, but through a suitable limiting and normalization procedure,

these random measures can be rigorously constructed and they are known as Gaussian

multiplicative chaos measures. These objects were introduced by Kahane in the 1980s

[Kah85]. For a recent review, we refer the reader to [RV14] and for a concise proof of

existence and uniqueness of these measures we refer to [Ber17].

A typical example of how log-correlated fields show up can be found in random matrix

theory. For a large class of models of random matrix theory, the following is true: when the

size of the matrix tends to infinity, the logarithm of the characteristic polynomial behaves

like a log-correlated field. This is essentially equivalent to a suitable central limit theorem

for the global linear statistics of the random matrix – see [FKS16, HKO01, RV07] for

results concerning the GUE, Haar distributed random unitary matrices, and the complex

Ginibre ensemble.

One would thus expect that the characteristic polynomial and powers of it should

behave asymptotically like a multiplicative chaos measure. A related question was explored

thoroughly though non-rigorously in [FK07, FS16]. The issue here is that the construction

of the multiplicative chaos measure goes through a very specific approximation of the

Gaussian field and typically uses things like independence and Gaussianity very strongly.

In the random matrix theory situation these are present only asymptotically. Thus the

precise extent of the connection between the theory of log-correlated processes and random

matrix theory is far from fully understood. For rigorous results concerning multiplicative

chaos and the study of extrema of approximately Gaussian log-correlated fields in random

matrix theory we refer to [ABB17, CMN18, LOS18, LP18, PZ18, Web15].

In this article we establish a universality result showing that for a class of random

Hermitian matrices, small enough powers of the absolute value of the characteristic

polynomial can be described in terms of a Gaussian multiplicative chaos measure. More

precisely, we prove the following result (for definitions of the relevant quantities, see Section

2.2).

Theorem 2.1.1. Let HN be a random N ×N Hermitian matrix drawn from a one-cut

regular, unitary invariant ensemble whose equilibrium measure is normalized to have support

[−1, 1]. Then for β ∈ [0,
√

2), the random measure

|det(HN − x)|β

E|det(HN − x)|β
dx

on (−1, 1), converges in distribution with respect to the topology of weak convergence of

measures on (−1, 1) to a Gaussian multiplicative chaos measure which can be formally

written as eβX(x)−β
2

2
EX(x)2dx, where X is a centered Gaussian field with covariance kernel

EX(x)X(y) = −1

2
log |2(x− y)|.
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We note that in particular, this result holds for the Gaussian Unitary Ensemble (GUE)

of random matrices, with a suitable normalization. The proof here is a generalization of

that in [Web15] by the second author and relies on understanding the large N asymptotics

of quantities which can be written in the form E[eTr T (HN )
∏k
j=1 |det(HN − xj)|βj ] for a

suitable function T : R→ R, xj ∈ (−1, 1) and βj ≥ 0.

It is easy to see, and we will recall the relevant derivations below, that such expectations

can be written in terms of Hankel determinants with Fisher–Hartwig symbols, and while

such quantities (and corresponding Toeplitz determinants) have been studied in great detail

[CF16, DIK11, DIK14, Kra07], it seems that in the generality we require for Theorem 2.1.1,

many of the results are lacking. Thus we give a proof of such results using Riemann–Hilbert

techniques; see Proposition 2.2.10 for the precise result. This settles some conjectures due

to Forrester and Frankel – see Remark 2.2.11 and [FF04, Conjecture 5 and Conjecture 8]

for further information about their conjectures.

2.1.2 Motivations and related results

One of the main motivations for this work is establishing multiplicative chaos measures as

something appearing universally when studying the global spectral behavior of random

matrices. This is a new type of universality result in random matrix theory and also suggests

that it should be possible to establish some of the geometric properties of log-correlated

fields in the setting of random matrix theory as well. Perhaps on a more fundamental level,

a further motivation for the work here is a general picture of when does the exponential

of an approximation to a log-correlated field converge to a multiplicative chaos measure.

Naturally we don’t answer this question here, but the fact that our approach works so

generally, suggests that part of this argument is something that transfers beyond random

matrix theory to general models where one expects multiplicative chaos measures to play

a role.

On a more speculative level, we also mention as motivation the connection to two-

dimensional quantum gravity. It is well known that random matrix theory is related to a

discretization of two-dimensional quantum gravity, namely the analysis of random planar

maps – see e.g. [EM03] for a mathematically rigorous discussion of this connection. On the

other hand, multiplicative chaos measures play a significant role in the study of Liouville

quantum gravity [DKRV16, DS11] which is in some instances known to be the scaling

limit of a suitable model of random planar maps [Gal13, Mie13, MS15, MS16a, MS16b].

The appearance of multiplicative chaos measures from random matrix theory seems like a

curious coincidence from this point of view, and one that deserves further study.

One interpretation of Theorem 2.1.1 is that it gives a way of probing the (random

fractal) set of points x where the recentered log characteristic polynomial log | det(HN −
x)| − E log |det(HN − x)| is exceptionally large. In analogy with standard multiplicative

chaos results (see e.g. [RV14, Theorem 4.1] or the approach of [Ber17]), one would expect
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that Theorem 2.1.1 implies that asymptotically, |det(HN−x)|β
E| det(HN−x)|β dx lives on the set of points

x where

lim
N→∞

log | det(HN − x)| − E log |det(HN − x)|
Var(log |det(HN − x)|)

= β. (2.1.1)

We emphasize that this really means that the (approximately Gaussian) random variable

log |det(HN − x)| − E log |det(HN − x)| would be of the order of its variance instead of

its standard deviation – as the variance is exploding, this is what motivates the claim

of the log-characteristic polynomial taking exceptionally large values. Moreover, as it is

known that the measure µβ vanishes for β ≥ 2, this connection suggests that for β > 2,

there are no points where (2.1.1) is satisfied and that β = 2 corresponds to the scale of

where the maximum of the field lives (note that it is rigorously known through other

methods that the maximum is indeed on the scale of two times the variance of the field

– see [LP18] and see also [ABB17, PZ18, CMN18] for analogous results in the case of

ensembles of random unitary matrices). This suggests that suitable variants of Theorem

2.1.1 should provide a tool for studying extremal values of the characteristic polynomial,

or even that more generally, existence of multiplicative chaos measures can be used to

study the extremal behavior of log-correlated field. This is significant because maxima of

logarithmically correlated fields (such as the log characteristic polynomial) are believed

to display universality, and have as such been extensively studied in recent years (see

e.g. [FHK12] and references below). In fact, the construction of Gaussian multiplicative

chaos measures supported on points where the value of the field is a given fraction of the

maximal value, may be viewed as part of the programme of establishing universality for

such processes. While our results do not extend to the full range of values of β where

one expects the result to be valid (roughly, we examine only the L2 regime in Gaussian

multiplicative chaos terminology), we believe that an appropriate modification of the

methods of this paper eventually will yield the result in its full generality (for instance by

combining it with a suitable modification of the approach in [Ber17]).

Regarding this programme, we mention the papers of Arguin, Belius and Bourgade

[ABB17] which verify the leading order of the maximum of the CUE log characteristic

polynomial, as well as Paquette and Zeitouni [PZ18] which refined this to obtain the second

order, doubly logarithmic (“Bramson”) correction. This is consistent with a prediction

of Fyodorov, Hiary and Keating [FHK12]. In turn this was subsequently refined and

generalized to the so-called circular β-ensemble by [CNN17] where tightness of the centered

maximum was proved. For a large class of random Hermitian matrices, the leading order

behavior was established recently by Lambert and Paquette [LP18], while in the case of

the Riemann zeta function, the first order term was obtained (assuming the Riemann

hypothesis) by Najnudel [Naj18] as well as (unconditionally) by Arguin et al. [ABB+19].

In the case of the discrete Gaussian free field in two dimensions, the convergence in law of
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the recentered maximum was obtained recently in an important paper of Bramson, Ding

and Zeitouni [BDZ16]. As for Gaussian multiplicative chaos measures (in the L2-phase),

the construction in the case of CUE random matrices was achieved by Webb [Web15]. Very

recently, a related construction of a Gaussian multiplicative chaos measure was obtained

by Lambert, Ostrovsky and Simm [LOS18] in the full L1 regime of CUE random matrices,

but for a slightly regularized version of the logarithm of the characteristic polynomial

which is closer to a Gaussian field.

2.1.3 Organisation of the paper

The outline of the article is the following: in Section 2.2, we describe our model and

objects of interest, our main results, and an outline of the proof. After this, in Section

2.3, we recall how the relevant moments can be expressed as Hankel determinants as

well as how these determinants are related to orthogonal polynomials on the real line

and Riemann-Hilbert problems. In this section we also recall from [DIK14] a differential

identity for the relevant determinants. Then in Section 2.4 we go over the analysis of the

relevant Riemann-Hilbert problem. This is very similar to the corresponding analysis in

[Kra07, DIK14], but for completeness and due to slight differences in the proofs, we choose

to present details of this in appendices. After this, in Section 2.5 we use the solution of the

Riemann-Hilbert problem to integrate the differential identity to find the asymptotics of

the relevant moments. Finally in Section 2.6, we put things together and prove our main

results.

We have chosen to defer a number of technical proofs to the end of the paper in the

form of multiple appendices. These contain proofs of results which might be considered

in some sense routine calculations by experts in random matrix and integrable models,

but which would require significant effort to readers not familiar with these techniques.

Since we hope that the paper will be of interest to different communities, we have chosen

to keep them in the paper at the cost of increasing its length.
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2.2 Preliminaries and outline of the proof

In this section, we describe the main objects we shall discuss in this article, state our main

results, and give an outline of the proof of them.

2.2.1 One-cut regular ensembles of random Hermitian matrices

The basic objects we are interested in are N ×N random Hermitian matrices HN whose

distribution can be written as

P(dHN ) =
1

Z̃N (V )
e−NTrV (HN )dHN , (2.2.1)

where dHN =
∏N
j=1 dHjj

∏
1≤i<j≤N d(ReHij)d(ImHij) denotes the Lebesgue measure on

the space of N ×N Hermitian matrices, TrV (HN ) denotes
∑N

j=1 V (λj), where (λj) are

the eigenvalues of HN (we drop the dependence on N from our notation), the potential

V : R→ R is a smooth function with nice enough growth at infinity so that this makes

sense, and Z̃N (V ) is a normalizing constant. Perhaps the simplest model of such form is

the Gaussian Unitary Ensemble for which V (x) = 2x2. This corresponds to the diagonal

entries of HN being i.i.d. centered normal random variables with variance 1/(4N), and the

entries above the diagonal being i.i.d. random variables whose real and imaginary parts

are centered normal random variables with variance 1/(8N) and are independent of each

other and of the diagonal entries. The entries below the diagonal are determined by the

condition that the matrix is Hermitian.

The distribution (2.2.1) induces a probability distribution for the eigenvalues of HN . In

analogy with the GUE (see e.g. [AGZ09]) one finds that the distribution of the eigenvalues

(on RN ) is given by

P(dλ1, ..., dλN ) =
1

ZN (V )

∏
i<j

|λi − λj |2
N∏
j=1

e−NV (λj)dλj , (2.2.2)

where ZN (V ) is a normalizing constant called the partition function. Our main goal will

be to describe the large N behavior of the characteristic polynomial of HN , and more
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generally a power of this characteristic polynomial. To do this, we will have to impose

further constraints on the function V . A general family of functions V for which our

argument works is the class of one-cut regular potentials. We will review the relevant

concepts here, but for more details, see [KM00].

First of all, we assume that V is real analytic on R and limx→±∞ V (x)/ log |x| = ∞.

Further conditions on V are rather indirect as they are statements about the associated

equilibrium measure µV which is defined as the unique minimizer of the functional

IV (µ) =

ˆ ˆ
log

1

|x− y|
µ(dx)µ(dy) +

ˆ
V (x)µ(dx)

on the space of Borel probability measures on R. For further information about µV , see e.g.

[DKM98, ST97]. The measure µV can also be characterized in terms of Euler–Lagrange

equations:

2

ˆ
log |x− y|µV (dy) = V (x) + `V , x ∈ supp(µV ) (2.2.3)

2

ˆ
log |x− y|µV (dy) ≤ V (x) + `V , x /∈ supp(µV ) (2.2.4)

for some constant `V depending on V .

Our first constraint on V is that the support of µV is a single interval, and we normalize

it to be [−1, 1]. In this case, on [−1, 1], µV can be written as

µV (dx) = d(x)
√

1− x2dx, (2.2.5)

where d is real analytic in some neighborhood of [−1, 1] – see [DKM98]. For one-cut

regularity, we further assume that d is positive on [−1, 1] and that the inequality (2.2.4) is

strict. We collect this all into a single definition.

Definition 2.2.1 (One-cut regular potentials). We say that the potential V : R → R
is one-cut regular (with normalized support of the equilibrium measure) if it satisfies the

following conditions:

1. V is real analytic.

2. limx→±∞ V (x)/ log |x| =∞.

3. The support of the equilibrium measure µV is [−1, 1].

4. The inequality (2.2.4) is strict.

5. The real analytic function d from (2.2.5) is positive on [−1, 1].

The condition that the support is [−1, 1] instead of say [a, b] is not a real constraint

since the general case can be mapped to this with a simple transformation. Moreover,

note that the support of the equilibrium measure is where the eigenvalues accumulate
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asymptotically, as the size of the matrix tends to infinity. So in this limit, we expect that

nearly all of the eigenvalues of HN are in [−1, 1].

We also point out that this is a non-empty class of functions V, since for the GUE

(V (x) = 2x2), it is known that all of the conditions of Definition 2.2.1 are satisfied – in

particular d(x) = 2/π in this case.

2.2.2 The characteristic polynomial and powers of its absolute value

As mentioned, our main goal is to describe the large N behavior of the characteristic

polynomial of HN . There are several possibilities for what one might want to say. One

could consider the characteristic polynomial at a single point, say inside the support of

the equilibrium measure, in which case one might expect in analogy with random unitary

matrices [KS00] that the logarithm of the characteristic polynomial should, as a linear

statistic of eigenvalues, be asymptotically a Gaussian random variable with exploding

variance. One could consider the behavior of the characteristic polynomial in a microscopic

neighborhood of a fixed point, where one might expect it to be asymptotically a random

analytic function as it is for the CUE – see [CNN17], or one could consider the logarithm

of the absolute value of the characteristic polynomial on a macroscopic scale inside or

outside the support of the equilibrium measure. For the GUE, on the macroscopic scale

and in the support of the equilibrium measure, it is known [FKS16] that the recentered

logarithm of the absolute value of the characteristic polynomial behaves like a random

generalized function which is formally a Gaussian process with a logarithmic singularity in

its covariance.

Our goal is to “exponentiate” this last statement. (Note that since the limiting process

describing the logarithm of a the characteristic polynomial is only a generalized function,

and not an actual function defined pointwise, taking its exponential is a priori highly

nontrivial). More precisely, we make the following definitions.

Definition 2.2.2. For N ∈ Z+, let HN be distributed according to (2.2.1). For x ∈ C,

define

PN (x) = det(HN − x1N×N ) =
N∏
j=1

(λj − x). (2.2.6)

Moreover, let

XN (x) = log |PN (x)| =
N∑
j=1

log |λj − x| , (2.2.7)

and for β > 0, define the following measure on (−1, 1):

µN,β(dx) =
eβXN (x)

EeβXN (x)
dx =

|PN (x)|β

E|PN (x)|β
dx. (2.2.8)

While exponentiating a generalized function in general is impossible, it turns out that
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in our setting, the correct description of such a procedure is in terms of random measures

known as Gaussian multiplicative chaos measures. We now describe some of the basics of

the relevant theory.

2.2.3 Gaussian Multiplicative Chaos

Gaussian multiplicative chaos is a theory going back to Kahane [Kah85] with the aim of

defining what the exponential of a Gaussian random (possibly generalized) function should

mean when the covariance kernel of the Gaussian process has a suitable structure, as well

as describing some geometric properties of these Gaussian processes.

Kahane proved, that if the covariance kernel has a logarithmic singularity, but otherwise

has a particularly nice form, then with a suitable limiting and normalizing procedure,

the exponential of the corresponding generalized function can be indeed understood as a

random multifractal measure, known as a Gaussian multiplicative chaos measure. For a

recent review of the theory, see [RV14] and for a concise proof for existence and uniqueness,

see [Ber17].

Recently, these measures have found applications in constructing random SLE-like

planar curves through conformal welding [AKSJ11, She16], quantum Loewner evolution

[MS16b], the random geometry of two-dimensional quantum gravity [DKRV16, DS11] –

see also the lecture notes [BerNotes], and even in models of mathematical finance [BKM13].

Complex variants of these objects are also connected to the statistical behavior of the

Riemann zeta function on the critical line [SW16]. Perhaps their greatest importance is

the role they are believed to play in describing the scaling limits of random planar maps

embedded conformally – see [MS15, MS16a, MS16b] and [BerNotes]. In all of these cases,

the covariance kernel of the Gaussian field has a logarithmic singularity on the diagonal.

In this section we will give a brief construction of the measures which are relevant to

us. The random distribution we will be interested in is the whole-plane Gaussian free field

restricted to the interval (−1, 1) with a suitable choice of additive constant. Formally we

will want to consider a Gaussian field X defined on (−1, 1) such that it has a covariance

kernel EX(x)X(y) = −1
2 log[2|x− y|]. It can be shown that it is possible to construct such

an object as a random variable taking values in a suitable Sobolev space of generalized

functions, see [FKS16]. However, we will only need to work with approximations to this

distribution which are well defined functions, so we will not need this fact. To motivate

our definitions, we first recall a basic fact about expanding log |x− y| for x, y ∈ (−1, 1) in

terms of Chebyshev polynomials – see e.g. [Por90, Appendix C], [For10, Exercise 1.4.4], or

[GP13, Lemma 3.1] for a proof.

Lemma 2.2.3. Let x, y ∈ (−1, 1) and x 6= y. Then

log |x− y| = − log 2−
∞∑
n=1

2

n
Tn(x)Tn(y), (2.2.9)
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where Tn is a Chebyshev polynomial of the first kind, i.e. it is the unique polynomial of

degree n satisfying Tn(cos θ) = cosnθ for all θ ∈ [0, 2π].

Thus formally, if (Ak)
∞
k=1 were i.i.d. standard Gaussians and one defined

G(x) =
∞∑
j=1

Aj√
j
Tj(x),

then one would have EG(x)G(y) = −1
2 log[2|x − y|]. Motivated by this, we make the

following definition.

Definition 2.2.4. Let (Ak)
∞
k=1 be i.i.d. standard Gaussian random variables. For x ∈

(−1, 1) and M ∈ Z+, let

GM (x) =
M∑
j=1

Aj√
j
Tj(x). (2.2.10)

We then want to understand eβG (for suitable β) as a limit related to eβGM as M →∞.

The precise statement is the following:

Lemma 2.2.5. Consider the random measure

µ
(M)
β (dx) = eβGM (x)−β

2

2
EGM (x)2dx (2.2.11)

on (−1, 1). For β ∈ (−
√

2,
√

2), µ
(M)
β converges weakly almost surely (when the i.i.d.

Gaussians are realized on the same probability space) to a non-trivial random measure µβ

on (−1, 1), as M →∞.

This measure µβ is the limiting object in Theorem 2.1.1. The basic idea is that the

sequence µ
(M)
β is a measure-valued martingale, and it turns out that for β ∈ (−

√
2,
√

2),

it is bounded in L2 so by standard martingale theory it has a non-trivial limit. The

L2-boundedness is somewhat non-trivial and we will return to the details later.

Remark 2.2.6. The measure µβ exists actually for larger values of |β| as well. It essentially

follows from the standard theory of multiplicative chaos, or alternatively the approach of

[Ber17], that a non-trivial limiting measure exists for β ∈ (−2, 2). In fact, comparing

with other log-correlated fields, it is natural to expect that with a suitable deterministic

normalization, that differs from ours for some values of β, it is possible to construct a

non-trivial limiting object for all β ∈ C. However, for complex β, the limit might not

be in general a measure (not even a signed measure), but only a distribution. We refer

to [LRV15] for a study in complex multiplicative chaos and to [MRV16] for defining µβ

for large real β. Our approach for proving convergence relies critically on calculating

second moments and it is known for example that the total mass of the measure µβ has

a finite second moment only for β ∈ (−
√

2,
√

2), so our approach is not directly possible

30



2.2. Preliminaries and outline of the proof

for proving a corresponding result in the full range of values of β where we would expect

the result to hold. However, combining our results, those of [CK15], and the approach of

[LOS18] should yield the result for β ∈ (0, 2). This being said, we wish to point out that

while the limiting object µβ should exist for all complex β, one should not expect that µN,β

converges to it if the real part of β is too negative – e.g. if β ≤ −1, then with overwhelming

probability,
´ 1
−1 f(x)|PN (x)|βdx will be infinite and one can not hope for convergence. To

avoid this type of complications, we focus on non-negative β.

2.2.4 Outline of the proof

In this section we define the main objects we analyze in the proof of Theorem 2.1.1, and

state the main results we need about them. Motivated by the approach in [Web15], we

will consider an approximation to µN,β, and we will denote this by µ̃
(M)
N,β , where M is an

integer parametrizing the approximation. Using known results about the linear statistics

of one-cut regular ensembles, it will be clear that as N →∞ for fixed M , µ̃
(M)
N,β → µ

(M)
β

in distribution. Thus our goal is to control the difference µN,β − µ̃
(M)
N,β , when we first let

N →∞ and then M →∞.

Let us begin by defining our approximation µ̃
(M)
N,β . It is essentially just truncating the

Fourier-Chebyshev series of XN , but we have to be slightly careful as the eigenvalues can

be outside of [−1, 1] with non-zero probability.

Definition 2.2.7. Fix M ∈ Z+ and ε > 0 (small and possibly depending on M). Let

T̃j(x) be a C∞(R)-function with compact support such that T̃j(x) = Tj(x) for each x ∈
(−1− ε, 1 + ε). Then define for x ∈ (−1, 1)

X̃N,M (x) = −
M∑
k=1

2

k

 N∑
j=1

T̃k (λj)

Tk(x), (2.2.12)

and

µ̃
(M)
N,β (dx) =

eβX̃N,M (x)

EeβX̃N,M (x)
dx. (2.2.13)

Remark 2.2.8. Our reasoning here is that if we pretended that all of the λj are in the

interval (−1, 1), we could make use of Lemma 2.2.3. Then XN would coincide with the

above expansion for M =∞ and T̃j replaced by Tj. Outside of the interval, we have to use

T̃k instead of Tk, as otherwise EeβX̃N,M (x) might not exist for all values of x and M .

We will break our main statement down into parts now. The statement of our Theorem

2.1.1 is equivalent to saying that for each bounded continuous ϕ : (−1, 1) → [0,∞),

µN,β(ϕ) :=
´ 1
−1 ϕ(x)µN,β(dx) converges in distribution to µβ(ϕ). It will actually be enough

to assume that ϕ has compact support in (−1, 1), i.e. to prove vague convergence. We will

be more detailed about these statements in the actual proof in Section 2.6. The way we
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will prove vague convergence is to write

µN,β(ϕ) = [µN,β(ϕ)− µ̃(M)
N,β (ϕ)] + µ̃

(M)
N,β (ϕ).

By using standard central limit theorems for linear statistics of one-cut regular ensem-

bles, and the definition of µβ, we will see that the second term here tends to µβ(ϕ) in

the limit where first N →∞, and then M →∞. Our main result will then follow from

showing that the second moment of the first term tends to zero in the same limit. We

formulate this as a proposition.

Proposition 2.2.9. If we first let N → ∞ and then M → ∞, then for β ∈ (0,
√

2)

and each compactly supported continuous ϕ : (−1, 1) → [0,∞), µ̃
(M)
N,β (ϕ) converges in

distribution to µβ(ϕ), and

lim
M→∞

lim
N→∞

E|µN,β(ϕ)− µ̃(M)
N,β (ϕ)|2 = 0. (2.2.14)

Proving the second statement takes up most of this article. Expanding the square,

we see that what is critical is having uniform asymptotics for EeβXN (x), EeβX̃N,M (x),

Eeβ(XN (x)+XN (y)), Eeβ(X̃N,M (x)+X̃N,M (y)), and Eeβ(XN (x)+X̃N,M (y)). More precisely, we have:

E|µN,β(ϕ)− µ̃(M)
N,β (ϕ)|2 =

¨
ϕ(x)ϕ(y)

E(eβXN (x)+βXN (y))

E(eβXN (x))E(eβXN (y))
dxdy

− 2

¨
ϕ(x)ϕ(y)

E(eβXN (x)+βX̃N,M (y))

E(eβXN (x))E(eβX̃N,M (y))
dxdy

+

¨
ϕ(x)ϕ(y)

E(eβX̃N,M (x)+βX̃N,M (y))

E(eβX̃N,M (x))E(eβX̃N,M (y))
dxdy.

Each of these expectations here can be expressed as E
∏N
j=1 h(λj) for a suitable function

h : R→ R. For instance,

eβXN (x)+βX̃N,M (y) =
N∏
j=1

|λj − x|βeT (λj); where T (λ) = T (λ; y) = −β
M∑
k=1

2

k
T̃k(λ)Tk(y).

As we will recall in Section 2.3, such quantities can be expressed in terms of Hankel

determinants. Moreover, all of these Hankel determinants have a very specific type of

symbol: one with so-called Fisher–Hartwig singularities. To explain what this means

here, a Hankel matrix is a matrix in which the skew-diagonals are constant. They are

closely related to Toeplitz matrices where the diagonals themselves are constant (these

arise typically in the study of CUE and related random matrix ensembles rather than

the GUE-type ensembles considered in this paper). In the case we will be interested

in, the (i, j)th coefficient of the Hankel matrix will be of the form
´
R x

i+jh(x)e−NV (x)dx
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where h is as above. When h is smooth enough and doesn’t have any roots, then the

asymptotic analysis of such determinants would follow from the classical strong Szegő

theorem (actually this theorem applies in the Toeplitz case rather than the Hankel case,

but here this isn’t a crucial distinction). However in our situation h typically contains

at least one root of the form |x− xi|βi , which greatly complicates the task of analysing

the corresponding determinant. This type of behavior is an example of a Fisher–Hartwig

singularity. (In general a Fisher–Hartwig singularity might also include a jump at xi

corresponding to the symbol also having a term of the form eγIm log(x−xi).)

The asymptotics of Hankel determinants with Fisher–Hartwig singularities is still very

much a subject of active research, and much information is already available using the

steepest descent technique due to Deift and Zhou [DZ93]; see in particular the papers

[DIK11, DIK14, Kra07, CF16] which play an important role in our proof. Yet results in

the generality we need seem to still be lacking in the literature. What suffices for us is the

following result (which we will only use with k = 1 or k = 2, but since there is no added

difficulty in proving it for a general value of k we will do so).

Proposition 2.2.10. Let T ∈ C∞(R) be real analytic in some neighborhood of [−1, 1] and

have compact support. Let k ∈ Z+ be fixed, and let β1, ..., βk ∈ [0,∞) be fixed. Moreover,

let x1, ..., xk ∈ (−1, 1) be distinct. Finally let HN be a N ×N random Hermitian matrix

drawn from a one-cut regular unitary invariant ensemble with potential V . Then for

C(β) = 2
β2

2
G(1+β/2)2

G(1+β) , where G is the Barnes G function, we have as N →∞,

E

[
e
∑N
j=1 T (λj)

k∏
i=1

|det(HN − xi)|βi
]

(2.2.15)

=
k∏
j=1

C(βj)
(
d(xj)

π

2

√
1− x2

j

)β2j
4

(
N

2

)β2j
4

e(V (xj)+`V )
βj
2
N

∏
1≤i<j≤k

|2(xi − xj)|−
βiβj
2

× e
N
´ 1
−1 T (x)d(x)

√
1−x2dx+

∑k
j=1

βj
2

[´ 1
−1

T (x)

π
√

1−x2
dx−T (xj)

]

× e
1

4π2

´ 1
−1 dy

T (y)√
1−y2

P.V.
´ 1
−1
T ′(x)

√
1−x2

y−x dx
(1 + o(1))

uniformly on compact subsets of {(x1, ..., xk) ∈ (−1, 1)k : xi 6= xj for i 6= j}. Here P.V.
´

denotes the Cauchy principal value integral. Moreover, if there exists a fixed M ∈ Z+,

such that in some fixed neighborhood of [−1, 1], T (x) =
∑M

j=1 αjTj(x), then the above

asymptotics are uniform also in compact subsets of {(α1, ..., αM ) ∈ RM}.

Remark 2.2.11. As mentioned in the introduction, this settles some conjectures due to

Forrester and Frankel – see [FF04, Conjecture 5 and Conjecture 8] for more details. In

terms of the potential V , we actually improve on the conjectures as these are only stated

for polynomial V , but concerning the functions T , our results are not as general as those
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appearing in the conjectures of Forrester and Frankel. This being said, one could easily

relax some of our regularity assumptions on T . In fact, the compact support or smoothness

outside of a neighborhood of the interval [−1, 1] play essentially no role in our proof, but

as this is a simple and clear way of stating the result, we do not attempt to state things in

their greatest generality. Moreover, using techniques from [DIK14], one could attempt to

generalize our estimates and prove a corresponding result when T is less smooth also on

[−1, 1]. Again, this is not necessary for our main goal, so we don’t pursue this further.

We also mention that after the first version of this article appeared, Charlier (in

[Cha18]) proved an extension of this result to the case where the symbol can also have

jump-type singularities.

We prove our results through Riemann–Hilbert methods. In particular, we first show

that with a suitable differential identity, and some analysis of a Riemann–Hilbert problem,

we can relate the T = 0 case to the T 6= 0 case. Then with another differential identity

(and further analysis of another Riemann–Hilbert problem) we relate the T = 0, general

V -case to the GUE with T = 0. The asymptotics in the T = 0 case for the GUE have

been obtained by Krasovsky [Kra07]. Using these, we are able to prove Proposition 2.2.10.

As we will need uniform asymptotics for EeβXN (x)+βXN (y) and other terms, Proposition

2.2.10 is not quite enough for us. For uniform estimates, we will rely on a recent result

of Claeys and Fahs [CF16], which combined with Proposition 2.2.10 will let us prove

Proposition 2.2.9.

Next we review the connection between expectations of the form (2.2.15), Hankel

determinants, and Riemann–Hilbert problems.

2.3 Hankel determinants and Riemann–Hilbert problems

In this section, we recall how the expectations we are interested in can be written as

Hankel determinants, which are related to orthogonal polynomials, which in turn can be

encoded into a Riemann–Hilbert problem. We also recall certain differential identities we

will need for analyzing the expectations we are interested in. While our discussion is very

similar to that in e.g. [DIK11, DIK14], there are some minor differences as we are dealing

with Hankel determinants instead of Toeplitz ones. We choose to give some details for the

convenience of a reader with limited experience with Riemann-Hilbert problems.

2.3.1 Hankel determinants and orthogonal polynomials

Terms of the form E
∏N
j=1 f(λj) can be written in determinantal form due to Andreief’s

identity – for a proof, one can use e.g. [AGZ09, Lemma 3.2.3] with the functions

fi(x) = f(x)e−NV (x)xi−1 and gi(x) = xi−1 as well as the product representation of

the Vandermonde determinant.
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Lemma 2.3.1. Let f : R → R be a nice enough function (measurable and nice enough

decay that all the relevant integrals converge absolutely). Then

E
N∏
j=1

f(λj) =
N !

ZN (V )
det

(ˆ
R
xi+jf(x)e−NV (x)dx

)N−1

i,j=0

. (2.3.1)

where ZN (V ) is as in (2.2.2).

Let us introduce some notation for the Hankel determinant here.

Definition 2.3.2. For nice enough functions f : R→ R, (so that the integrals exist) let

Dk(f) = Dk(f ;V ) = det

(ˆ
R
xi+jf(x)e−NV (x)dx

)k
i,j=0

. (2.3.2)

As the notation suggests, we will suppress the dependence on V when it’s convenient.

We suppress the dependence on N always.

It is a well known result in the theory of orthogonal polynomials, that such determinants

can be written in terms of orthogonal polynomials. For the convenience of the reader, we

offer a proof for the following result.

Lemma 2.3.3. Let f : R→ R be positive Lebesgue almost everywhere, have nice enough

regularity and growth at infinity, and let (pj(x; f, V ))∞j=0 be the sequence of real polynomials

which have a positive leading order coefficient and which are orthonormal with respect to

the measure f(x)e−NV (x)dx on R (we will write pj(x; f) when we wish to suppress the

dependence on V and we will always suppress the dependence on N):

ˆ
R
pj(x; f)pk(x; f)f(x)e−NV (x)dx = δj,k, (2.3.3)

and pj(x; f) = χj(f)xj +O(xj−1) as x→∞, where χj(f) > 0. Then

Dk(f) =
k∏
j=0

χj(f)−2. (2.3.4)

Note that due to our assumptions on f , the above polynomials do exist as we can

construct them by applying the determinantal representation associated with the Gram–

Schmidt procedure to the monomials.

Proof. Consider the space of real polynomials, equipped with an inner product given by

the L2 inner product on R with weight f(x)e−NV (x). A consequence of the Gram–Schmidt

procedure applied to the sequence of monomials in this inner product space is the following:
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for j ≥ 1

pj(x; f) =
1√

Dj−1(f)Dj(f)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

´
f(y)e−NV (y)dy · · ·

´
yjf(y)e−NV (y)dy

...
. . .

...

´
yj−1f(y)e−NV (y)dy · · ·

´
y2j−1f(y)e−NV (y)dy

1 · · · xj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3.5)

where for j = 0 the determinant is replaced by 1, and D−1(f) = 1.

Note that from our assumption on f and an easy generalization of Lemma 2.3.1,

Dj(f) > 0 for all j ≥ 0, so these polynomials exist. From (2.3.5) one sees that χj(f) –

the coefficient of xj in pj(x; f) – equals
√
Dj−1(f)/Dj(f). The claim then follows as the

product has a telescopic form, and we defined D−1(f) = 1.

2.3.2 Riemann-Hilbert problems and orthogonal polynomials

We now recall a result going back to Fokas, Its, and Kitaev [FIK92] about encoding

orthogonal polynomials on the real line into a Riemann-Hilbert problem. In our setting,

the relevant result is formulated in the following way.

Proposition 2.3.4 (Fokas, Its, and Kitaev). Let T be a real valued C∞(R) function with

compact support, let (βj)
k
j=1 ∈ [0,∞)k , (xj)

k
j=1 ∈ (−1, 1)k, and xi 6= xj for i 6= j. Let

V be some real analytic function on R satisfying limx→±∞ V (x)/ log |x| =∞. For λ ∈ R,

define

f(λ) = eT (λ)
k∏
j=1

|λ− xj |βj , (2.3.6)

and let pj(x; f) be as in Lemma 2.3.3, with the relevant measure being f(λ)e−NV (λ)dλ on

R. Consider the 2× 2 matrix-valued function

Y (z) = Yj(z; f, V ) =

 1
χj(f)pj(z; f) 1

χj(f)

´
R
pj(λ;f)
λ−z

f(λ)e−NV (λ)dλ
2πi

−2πiχj−1(f)pj−1(z; f) −χj−1(f)
´
R
pj−1(λ;f)
λ−z f(λ)e−NV (λ)dλ

 ,

(2.3.7)

for z ∈ C \ R. Then Y is the unique solution to the following Riemann-Hilbert problem:

find a function Y : C \ R→ C2×2 such that

1. Y is analytic.

2. On R, Y has continuous boundary values Y±, i.e. Y±(λ) = limε→0+ Y (λ± iε) exists
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and is continuous for all λ ∈ R. Moreover, Y± are related by the jump condition

Y+(λ) = Y−(λ)

1 f(λ)e−NV (λ)

0 1

 , λ ∈ R. (2.3.8)

3. As z →∞,

Y (z) = (I +O(z−1))

zj 0

0 z−j

 . (2.3.9)

Remark 2.3.5. Typically for Riemann-Hilbert problems related to Toeplitz and Hankel

determinants with Fisher-Hartwig singularities (e.g. [DIK11, DIK14, CF16]) one says

that the boundary values are continuous on the relevant contour minus the singularities xj,

and then imposes conditions on the behavior of Y near the singularities. This is relevant

when one of the βj is negative or non-real, but as we will shortly mention, in our case the

boundary values are truly continuous on R and no further condition is needed.

Sketch of proof. The proof for uniqueness is the standard one: one first looks at some

solution to the RHP, say Y . From the jump condition, it follows that detY is continuous

across R, so it is entire. From the behavior of Y at infinity, it follows that detY is

bounded, so by Liouville’s theorem and the behavior at infinity, one sees that detY = 1.

In particular, (as a matrix) Y is invertible and the inverse matrix Y −1 is analytic in C \R.

Now if Ỹ is another solution, we see that Ỹ Y −1 is analytic in C \R and continuous across

R, so it is entire. From the behavior at infinity, Ỹ (z)Y (z)−1 → I (the 2×2 identity matrix)

as z →∞, so again by Liouville, Ỹ = Y .

Consider then the statement that Y given in terms of the orthogonal polynomials is

a solution. The analyticity condition is obvious. The continuity of the boundary values

of the first column is obvious since we are dealing with polynomials. For the second

column, the Sokhotski-Plemelj theorem implies that the boundary values of the second

column can be expressed in terms of pjfe
−NV (or pj replaced by pj−1) and its Hilbert

transform (see e.g. [Tit59, Chapter V] for an introduction to the Hilbert transform). The

first term is obviously continuous. For the Hilbert transform, we note that pjfe
−NV is

Hölder continuous, so as the Hilbert transform preserves Hölder regularity (see [Tit59,

Chapter V.15]), we see that the boundary values of Y are continuous.

For the jump condition (2.3.8) and behavior at infinity (2.3.9), we refer to analogous

problems in [Dei99, Section 3.2 and Section 7].

We next discuss how deforming V or T changes DN−1(f ;V ).
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2.3.3 Differential identities

Let us fix our potential V (and drop dependence on it from our notation) and first consider

how deforming T changes DN−1(f).

The proof of the following result is a minor modification of the proof of [DIK14,

Proposition 3.3], but for completeness, we give a proof in Appendix 2.A. The role of this

result is that if we know the asymptotics in the case T = 0, instead of studying Yj for all

j, it’s enough to study YN though with a one-parameter family of deformations of T .

Lemma 2.3.6. Let T : R → R be a C∞ function with compact support, let (βj)
k
j=1 ∈

[0,∞)k , (xj)
k
j=1 ∈ (−1, 1)k, and xi 6= xj for i 6= j. For t ∈ [0, 1] and λ ∈ R, define

ft(λ) =
[
1− t+ teT (λ)

] k∏
j=1

|λ− xj |βj . (2.3.10)

Let Y (z, t) be as in (2.3.7) with j = N , f = ft, and pl(x; f) = pl(x; ft) the orthonormal

polynomials with respect to the measure ft(λ)e−NV (λ)dλ on R. Then

∂t logDN−1(ft) =
1

2πi

ˆ
R

[Y11(x, t)∂xY21(x, t)− Y21(x, t)∂xY11(x, t)] ∂tft(x)e−NV (x)dx,

(2.3.11)

where the indices of Y refer to matrix entries.

The object we are interested in is DN−1(f1) which we can analyze by writing

logDN−1(f1) = logDN−1(f0) +

ˆ 1

0

∂

∂t
logDN−1(ft)dt.

For the GUE, the asymptotics of DN−1(f0) – the case T = 0 – were investigated in

[Kra07], so a consequence of Lemma 2.3.6 is that if we understand the asymptotics of

Y (z, t) well enough, we are able to study the asymptotics of DN−1(f1) in the GUE case.

The other deformation we will consider is what happens when we interpolate between

the potentials V0(x) = 2x2 (the GUE) and V1(x) = V (x) in the T = 0 case.

Lemma 2.3.7. Let (βj)
k
j=1 ∈ [0,∞)k, (xj)

k
j=1 ∈ (−1, 1)k, and xi 6= xj for i 6= j. Let f

be defined by (2.3.6) with T = 0 and let V : R→ R be a real analytic function satisfying

limx→±∞ V (x)/ log |x| =∞. Define for s ∈ [0, 1]

Vs(x) = (1− s)2x2 + sV (x). (2.3.12)

Let us then write Y (z;Vs) for Y defined as in (2.3.7) with j = N , V = Vs and
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pj(x; f) = pj(x; f, Vs). Then using the notation of (2.3.2)

∂s logDN−1(f ;Vs) (2.3.13)

= −N 1

2πi

ˆ
R

[Y11(x;Vs)∂xY21(x;Vs)− Y21(x;Vs)∂xY11(x;Vs)] f(x)[∂sVs(x)]e−NVs(x)dx.

Again, we give a proof in Appendix 2.A. The role of this differential identity is that if

we understand the asymptotics of Y (z;Vs) well enough, then by integrating (2.3.13), we

can move from the GUE asymptotics to the general ones.

We mention that both of these identities are of course true for a much wider class of

symbols than what we state in the results (in particular, in Lemma 2.3.7 the condition

T = 0 is not necessary for anything). This is simply the generality we use them in. Next

we move on to describing how to study the large N asymptotics of Y (z, t) and Y (z;Vs).

2.4 Solving the Riemann-Hilbert problem

In this section we will finally describe the asymptotic behavior of Y (z, t) and Y (z;Vs) as

N →∞. The typical way this is done is through a series of transformations to the RHP,

ultimately leading to a RHP where the jump matrix is asymptotically close to the identity

matrix as N →∞, and the behavior at infinity is close to the identity matrix. Then using

properties of the Cauchy-kernel, the final RHP can be solved in terms of a Neumann series

solution of a suitable integral equation. Moreover, each term in the series expansion is of

lower and lower order in N . We will go into further details about this part of the problem

in Section 2.4.5, but we will start with transforming the problem.

While we never have both s, t ∈ (0, 1), we will find it notationally convenient to consider

Y (z) to be defined as in (2.3.7) with f = ft and V = Vs. We suppress all of this in our

notation for Y . We will also focus on functions T with the regularity claimed in Proposition

2.2.10 which was stronger than what we stated in the differential identities.

2.4.1 Transforming the Riemann-Hilbert problem

Let us introduce some further notation to simplify things later on. Let T satisfy the

conditions of Proposition 2.2.10, and let

Tt(λ) = log(1− t+ teT (λ)) (2.4.1)

so that in the notation of Lemma 2.3.6

ft(λ) = eTt(λ)
k∏
j=1

|λ− xj |βj ,

and let us assume that the singularities are ordered: xj < xj+1.
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The series of transformations we will now start implementing is a minor modification

of that in [Kra07, Section 4].

The first transformation

Our first transformation will change the asymptotic behavior of the solution to the RHP

so that it is close to the identity as z → ∞, as well as cause the distance between the

jump matrix and the identity matrix to be exponentially small in N when we’re off of

the interval [−1, 1]. The proofs of the statements of this section are either elementary

or straightforward generalizations of standard ones in the RHP-literature, but for the

convenience of readers unfamiliar with the literature, they are sketched in Appendix 2.B.

Let us now make the relevant definitions.

Definition 2.4.1. In the notation of (2.2.5), for s ∈ [0, 1] as above, let

ds(λ) = (1− s) 2

π
+ sd(λ), (2.4.2)

and for z ∈ C \ (−∞, 1], let

gs(z) =

ˆ 1

−1
ds(λ)

√
1− λ2 log(z − λ)dλ, (2.4.3)

where the branch of the logarithm is the principal one. We also define

`s = (1− s)(−1− 2 log 2) + s`V , (2.4.4)

where `V is the constant from (2.2.3) and (2.2.4). Finally, for z ∈ C \ R, let

T (z) = e−N`sσ3/2Y (z)e−N(gs(z)−`s/2)σ3 , (2.4.5)

where

σ3 =

1 0

0 −1

 and eqσ3 =

eq 0

0 e−q

 .

Before describing the jump structure and normalization of T near infinity, we first

point out some simple facts about the boundary values of gs on R which follow from its

definition and (2.2.3) (details may be found in Appendix 2.B).

Lemma 2.4.2. For λ ∈ R, let gs,±(λ) = limε→0+ gs(λ ± iε). Then for λ ∈ (−1, 1) and

s ∈ [0, 1]

gs,+(λ) + gs,−(λ) = Vs(λ) + `s. (2.4.6)
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There exist M,C > 0 (independent of s) so that for λ ∈ R \ [−1, 1],

gs,+(λ) + gs,−(λ)− Vs(λ)− `s ≤

−C(|λ| − 1)3/2, |λ| − 1 ∈ (0,M)

− log |λ|, |λ| − 1 > M
. (2.4.7)

For λ ∈ R

gs,+(λ)− gs,−(λ) =


2πi, λ < −1

2πi
´ 1
λ ds(x)

√
1− x2dx, |λ| < 1

0, λ > 1

. (2.4.8)

The function gs,+− gs,− along with an analytic continuation of it will play a significant

role in our analysis of the Riemann-Hilbert problem, so we give it a name.

Definition 2.4.3. Let U ⊂ C be an open neighborhood of R into which d has an analytic

continuation. For z ∈ U \ ((−∞,−1] ∪ [1,∞)) and s ∈ [0, 1], let

hs(z) = −2πi

ˆ z

1
ds(w)

√
1− w2dw, (2.4.9)

where the square root is according to the principal branch (i.e.
√

1− w2 = e
1
2

log(1−w2) and

the branch of the logarithm is the principal one), and the contour of integration is such

that it stays in U and does not cross (−∞,−1] ∪ [1,∞).

The function hs will often appear in the form e±Nhs and to estimate the size of such

an exponential, we will need to know the sign of Re(hs). For this, we use the following

elementary fact.

Lemma 2.4.4. In a small enough open neighborhood of (−1, 1) (independent of s) in the

complex plane,

Re(hs(z)) > 0 if Im(z) > 0

and

Re(hs(z)) < 0 if Im(z) < 0

for all s ∈ [0, 1], and if we restrict to a fixed set in the upper half plane such that the set

is bounded away from the real axis, but inside this neighborhood of (−1, 1), we have e.g.

Re(hs(z)) ≥ ε > 0 for some ε > 0 independent of s. A similar result holds in the lower

half plane.

Again, see Appendix 2.B for details on the proof of this and the next result, which

describes the Riemann-Hilbert problem T solves.

Lemma 2.4.5. The function T : C \ R→ C2×2 defined by (2.4.5) is the unique solution

to the following Riemann-Hilbert problem.
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1. T : C \ R→ C2×2 is analytic.

2. On R, T has continuous boundary values T± and these are related by the jump

conditions

T+(λ) = T−(λ)

e−Nhs(λ) ft(λ)

0 eNhs(λ)

 , λ ∈ (−1, 1) (2.4.10)

and

T+(λ) = T−(λ)

1 ft(λ)eN(gs,+(λ)+gs,−(λ)−`s−Vs(λ))

0 1

 , λ ∈ R\[−1, 1]. (2.4.11)

3. As z →∞,

T (z) = I +O(|z|−1). (2.4.12)

The jump matrix given by (2.4.10) and (2.4.11) already looks good for λ /∈ [−1, 1],

in the sense that it is exponentially close to the identity, (compare (2.4.11) with (2.4.7)).

However, the issue is that across (−1, 1), the jump matrix is not close to the identity in

any way. We will next address this issue by performing a second transformation.

The second transformation

As customary in this type of problems, the next step is to “open lenses”. That is, we will

add further jumps to the problem off of the real line. Due to a nice factorization property

of the jump matrix for T , the new jump matrix will be close to the identity on the new

jump contours when we are not too close to the points ±1 or xj .

Before going into the details of this, we will define an analytic continuation of ft into a

subset of C. Recall from our assumptions in Proposition 2.2.10 that on (−1 − ε, 1 + ε),

T (x) is real analytic. Thus T certainly has an analytic continuation to some neighborhood

of [−1, 1]. Moreover as it is real on [−1, 1], we see that in some small enough complex

neighborhood of [−1, 1] (which is independent of t), 1− t+ teT (z) has no zeroes for any

t ∈ [0, 1]. Thus Tt (see (2.4.1)) has an analytic continuation to this neighborhood for all

t ∈ [0, 1]. We use this to define the analytic continuation of ft.

Definition 2.4.6. Let U[−1,1] be some neighborhood of [−1, 1] which is independent of t
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and in which Tt is analytic for t ∈ [0, 1]. In this domain, and for 1 ≤ l ≤ k − 1, let

ft(z) = eTt(z) ×


∏k
j=1(xj − z)βj , Re(z) < x1∏l
j=1(xj − z)βj

∏k
j=l+1(z − xj)βj , Re(z) ∈ (xl, xl+1)∏k

j=1(z − xj)βj , Re(z) > xk

, (2.4.13)

where the powers are according to the principal branch.

We will now impose some conditions on our new jump contours. Later on, we will

be more precise about what we exactly want from them, but for now, we will ignore the

details.

Definition 2.4.7. For j = 1, ..., k+1, let Σ+
j (Σ−j ), be a smooth curve in the upper (lower)

half plane from xj−1 to xj, where we understand x0 as −1 and xk+1 as 1. The curves are

oriented from xj−1 to xj and independent of t, s, and N . Moreover, they are contained in

U[−1,1].

The domain between Σ+
j and Σ−j is called a lens. The domain between Σ+

j and R is

called the top part of the lens, and that between Σ−j and R the bottom part of the lens. See

Figure 2.1 for an illustration.

Remark 2.4.8. Our definition here and our coming construction implicitly assume that

βj 6= 0 for all j. If one (or more) βj = 0, one simply ignores the corresponding xj (so e.g.

one connects xj−1 to xj+1 with a curve in the upper half plane etc).

−
+

−
+

−
+

−
+

x0 = −1 x1 x2 = 1

U[−1,1]

−
+Σ+

1

−
+

Σ−1

−
+ Σ+

2

−
+

Σ−2

Figure 2.1: Opening of lenses, k = 1. The signs indicate the orientation of the curves: the
+ side is the left side of the curve and − the right.

We use these contours in our next transformation.
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Definition 2.4.9. For z /∈ Σ := ∪k+1
j=1(Σ+

j ∪ Σ−j ) ∪ R, let

S(z) =



T (z), outside of the lenses

T (z)

 1 0

−ft(z)−1e−Nhs(z) 1

 , top part of the lenses

T (z)

 1 0

ft(z)
−1eNhs(z) 1

 , bottom part of the lenses

. (2.4.14)

Remark 2.4.10. Note that S depends on our choice of the contours Σ (as well as s, t,

and N), but we suppress this in our notation. We also point out that as ft has zeroes at the

singularities, the entries in the first column of S(z) blow up when z approaches a singularity

from within the lens. Moreover, we see that we have discontinuities at the points ±1. Thus

the boundary values are no longer continuous on R, but on R \ {xj : j = 0, ..., k+ 1}, where

again x0 = −1 and xk+1 = 1.

Using the definition of S, the RHP for T , and the fact that

e−Nhs(λ) ft(λ)

0 eNhs(λ)

 =

 1 0

eNhs(λ)ft(λ)−1 1


 0 ft(λ)

−ft(λ)−1 0


 1 0

e−Nhs(λ)ft(λ)−1 1


it is simple to check what the Riemann–Hilbert problem for S should be; we omit the

proof.

Lemma 2.4.11. S is the unique solution to the following Riemann–Hilbert problem:

1. S : C \ Σ→ C2×2 is analytic.

2. S has continuous boundary values on Σ \ {xj}k+1
j=0 and they are related by the jump

conditions

S+(λ) = S−(λ)

 1 0

ft(λ)−1e∓Nhs(λ) 1

 , λ ∈ ∪k+1
j=1Σ±j \ {xl}

k+1
l=0 , (2.4.15)

S+(λ) = S−(λ)

 0 ft(λ)

−ft(λ)−1 0

 , λ ∈ (−1, 1) \ {xj}kj=1, (2.4.16)

44



2.4. Solving the Riemann-Hilbert problem

and

S+(λ) = S−(λ)

1 ft(λ)eN(gs,+(λ)+gs,−(λ)−`s−Vs(λ))

0 1

 , λ ∈ R \ [−1, 1]. (2.4.17)

In (2.4.15) the ∓ and ± notation means that we have e−Nhs in the jump matrix

when we cross Σ+
j and eNhs when we cross Σ−j .

3. S(z) = I +O(|z|−1) as z →∞.

4. For j = 1, ..., k, S(z) is bounded as z → xj from outside of the lenses, but when

z → xj from inside of the lenses,

S(z) =

O(|z − xj |−βj) O(1)

O
(
|z − xj |−βj

)
O(1)

 . (2.4.18)

Moreover, S is bounded at ±1.

We are now in a situation where if we are on one of the Σ±j or on R \ [−1, 1] and not

close to one of the points ±1 or xj , then the distance of the jump matrix from the identity

matrix is exponentially small in N . We thus need to do something close to the points ±1

and xj as well as on the interval (−1, 1) to get a small norm problem, i.e. one that can be

solved in terms of a Neumann series.

The way to proceed here is to construct functions which are solutions to approximations

of the Riemann-Hilbert problem where we expect the approximations to be good if we are

close to one of the points ±1 or xj , or then alternatively when we are far away from them

and we expect the approximate problem related to the behavior on (−1, 1) to determine

the behavior of S. We then construct an ansatz to the original problem in terms of these

approximations. This will lead to a small norm problem.

These approximations are often called parametrices, and we will start with the solution

far away from the points ±1 and xj . This case is often called the global parametrix.

2.4.2 The global parametrix

Our goal is to find a function P (∞)(z) such that it has the same jumps as S(z) across

(−1, 1), is analytic elsewhere, and has the correct behavior at infinity. We won’t go into

great detail about how such problems are solved, but we will build on similar problems

solved in [Kra07, Section 4.2] (see also for example [DKM+99, Section 5]). We will simply

state the result here and sketch a proof in Appendix 2.C. Later on we will need some

regularity properties of the solution considered here so we will state and prove the relevant

facts here.
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We now define our global parametrix.

Definition 2.4.12. Let us write for z /∈ (−∞, 1]

r(z) = (z − 1)1/2(z + 1)1/2 (2.4.19)

and

a(z) =
(z − 1)1/4

(z + 1)1/4
, (2.4.20)

where the powers are taken according to the principal branch. Then for t ∈ [0, 1] and

z /∈ (−∞, 1], let

Dt(z) = (z + r(z))−A exp

[
r(z)

2π

ˆ 1

−1

Tt(λ)√
1− λ2

1

z − λ
dλ

] k∏
j=1

(z − xj)βj/2 (2.4.21)

where A =
∑k

j=1 βj/2 and the powers are according to the principal branch. Finally, for

z /∈ (−∞, 1] and t ∈ [0, 1], define the global parametrix

P (∞)(z) = P (∞)(z, t) =
1

2
Dt(∞)σ3

 a(z) + a(z)−1 −i(a(z)− a(z)−1)

i(a(z)− a(z)−1) a(z) + a(z)−1

Dt(z)−σ3 ,
(2.4.22)

where Dt(∞) = limz→∞Dt(z) = 2−Ae
1
2π

´ 1
−1

Tt(λ)√
1−λ2

dλ
.

Remark 2.4.13. It’s simple to check that r and a are continuous across (−∞,−1) so

they can be analytically continued to C \ [−1, 1]. Using the fact that r(λ) is negative for

λ < −1, one can check that also Dt is continuous across (−∞,−1), so in fact P (∞) is

analytic in C \ [−1, 1].

We also point out that as T0(λ) = 0 (recall (2.4.1)) we can also write

P (∞)(z, t) = e
σ3
2π

´ 1
−1

Tt(λ)√
1−λ2

dλ
P (∞)(z, 0)e

−σ3 r(z)2π

´ 1
−1

Tt(λ)√
1−λ2

dλ
z−λ . (2.4.23)

The relevance of this parametrix stems from the following lemma.

Lemma 2.4.14. For each t ∈ [0, 1], P (∞)(·) = P (∞)(·, t) satisfies the following Riemann–

Hilbert problem.

1. P (∞) : C \ [−1, 1]→ C2×2 is analytic.

2. P (∞) has continuous boundary values on (−1, 1) \ {xj}kj=1, and satisfies the jump
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condition

P
(∞)
+ (λ) = P

(∞)
− (λ)

 0 ft(λ)

−ft(λ)−1 0

 , λ ∈ (−1, 1) \ {xj}kj=1. (2.4.24)

3. As z →∞,

P (∞)(z) = I +O(|z|−1). (2.4.25)

See Appendix 2.C for a proof. Later on, we will need some estimates on the regularity

of the Cauchy transform appearing in (2.4.21) near the interval [−1, 1]. The fact we need

is the following one.

Lemma 2.4.15. The function

z 7→ r(z)

ˆ 1

−1

Tt(λ)√
1− λ2

1

z − λ
dλ

is bounded uniformly in t ∈ [0, 1] and z in a small enough neighborhood of [−1, 1]. Moreover,

if in a neighborhood of [−1, 1], T is a real polynomial of fixed degree, and if we restrict

its coefficients to be in some bounded set, then we have uniform boundedness of the above

function in the coefficients of T as well.

Proof. Let us fix a neighborhood of [−1, 1] such that for all t ∈ [0, 1], Tt is analytic in the

closure of this neighborhood (this exists by similar reasoning as in the beginning of Section

2.4.1). Now write

ˆ 1

−1

Tt(λ)√
1− λ2

1

z − λ
dλ =

ˆ 1

−1

Tt(λ)− Tt(z)
z − λ

1√
1− λ2

dλ+ Tt(z)
ˆ 1

−1

1√
1− λ2

1

z − λ
dλ.

As Tt is analytic, the first term is of order O(supt∈[0,1] ||T ′t ||∞) (the prime referring to

the z-variable and the sup-norm is over z in the neighborhood we are considering) which

is a finite constant depending on our neighborhood of [−1, 1] and the function T . In the

polynomial case, one can easily check that it is bounded uniformly in the coefficients when

they are restricted to a compact set. The second integral can be calculated exactly:

ˆ 1

−1

1√
1− λ2

1

z − λ
dλ =

π

r(z)
.

This can be seen for example by expanding the Cauchy kernel for large |z| as a

geometric series. The integrals resulting from this are simple to calculate and one can

then also calculate the remaining sum exactly. The resulting quantity agrees with π/r(z)

on (1,∞) so by analyticity, the statement holds. The claim now follows from the uniform
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boundedness of Tt (for which the uniform boundedness in the polynomial case is again

easy to check).

2.4.3 Local parametrices near the singularities

We now wish to find functions approximating S(z) well near the points xj . We will

thus look for functions that satisfy the same jump conditions as S(z) in some fixed

neighborhoods of the points xj for j = 1, ..., k, but we will also want these approximations

to be consistent with the global approximation, so we will replace a normalization at

infinity with a matching condition, where we demand that the two approximations are close

to each other on the boundary of the neighborhood we are looking at at. Our argument is

built on [Kra07, Section 4.3], which in turn relies on [Van03, Section 4]. Again, we state

the relevant facts here and give some further details in Appendix 2.D.

In this case, we will have to introduce a bit more notation before defining our actual

object. We first introduce a change of coordinates that will blow up in a neighborhood of

a singularity in a good way.

Definition 2.4.16. Fix some δ > 0 (independent of N , s, and t). Let us write Uxj for the

open δ-disk surrounding xj. We assume that δ is small enough that the following conditions

are satisfied:

i) |xi − xj | > 3δ for i 6= j.

ii) |xj ± 1| > 3δ for all j ∈ {1, ..., k}.

iii) For all j, U ′xj – the open 3δ/2-disk around xj – is contained in U , which is some

neighborhood of R into which d has an analytic continuation (see e.g. Definition

2.4.3).

For z ∈ U ′xj , let

ζs(z) = πN

ˆ z

xj

[
2

π
(1− s) + sd(w)

]√
1− w2dw, (2.4.26)

where the root is according to the principal branch, and the integration contour does not

leave U ′xj .

Remark 2.4.17. The reason for introducing the two neighborhoods Uxj and U ′xj , is that

we will want the local parametrices to be analytic functions approximately agreeing with

P (∞) on the boundary of Uxj , but to ensure that they behave nicely near the boundary, we

will construct them such that they are analytic in U ′xj .

We also point out that by taking δ smaller if needed, ζs can be seen to be injective as d

is positive on [−1, 1]. More precisely, we see that ζ ′s(xj) > cN for some constant c which

is independent of s (but not necessarily of δ) and |ζ ′′s (z)| ≤ CN uniformly in z ∈ U ′xj for
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some C > 0 independent of s (but not necessarily of δ). From this one sees that ζs is

injective in a small enough (N - and s-independent) neighborhood of xj.

In addition to this change of coordinates, we will need to add further jumps to make

our jump contour more symmetric, in order to obtain an approximate problem with a

known solution.

Definition 2.4.18. For z ∈ U ′xj , let

Wj(z) = Wj(z, t) (2.4.27)

= eTt(z)/2
j−1∏
l=1

(z − xl)βl/2
k∏

l=j+1

(xl − z)βl/2 ×

(z − xj)βj/2, |arg ζs(z)| ∈ (π/2, π)

(xj − z)βj/2, |arg ζs(z)| ∈ (0, π/2)
,

where the roots are principal branch roots. Moreover, let

φs(z) =


hs(z)

2 , Im(z) > 0

−hs(z)
2 , Im(z) < 0

. (2.4.28)

The precise form of ζs will be important for us to be able to see that the local

parametrices indeed approximately agree with P (∞) on the boundary of Uxj . We also

point out that for small enough δ, ζs is one-to-one, and it preserves the real axis (along

with the orientation of the plane as it’s conformal).

We also point out that Wj is almost identical to f
1/2
t , apart from the fact that it

introduces some further branch cuts to it: along the imaginary axis in the ζs-plane, as well

as on the real axis (recall that ft has no branch cut along the real axis). These further

branch cuts are useful in transforming the Riemann-Hilbert problem for the parametrix

into one with certain constant jump matrices along a very special contour. This problem

has been studied in [Van03].

We are now able to clarify our choice of the contours Σ±j apart from the behavior near

the end points ±1.

Definition 2.4.19. Let (Σ±l )l be such that

ζs

(
Σ±j−1 ∩ U

′
xj

)
=
[
e±3πi/4 × [0,∞)

]
∩ ζs

(
U ′xj

)
(2.4.29)

and

ζs

(
Σ±j ∩ U

′
xj

)
=
[
e±πi/4 × [0,∞)

]
∩ ζs

(
U ′xj

)
. (2.4.30)

Outside of U ′xj (apart from close to ±1), we take (Σ±l )l to be smooth, without self-

intersections and the distance between them and the real axis to be bounded away from zero

and of order δ, and such that the contours are contained in U – the neighborhood of R into

which d has an analytic continuation. For an illustration, see Figure 2.2.

49



Random Hermitian Matrices and Gaussian Multiplicative Chaos

Using the injectivity of ζs we argued in Remark 2.4.17 and the Koebe quarter theorem,

it is immediate that Σ±j and Σ±j−1 are well defined for large enough N and small enough δ

(large and small enough being independent of s).

<z = xj

Σ+
j−1 ∩ U ′xj

Σ−j−1 ∩ U ′xj

Σ+
j ∩ U ′xj

Σ−j ∩ U ′xj
O(δ)

U ′xj Uxj

ζs

ζs(Σ
+
j−1 ∩ U ′xj )

ζs(Σ
−
j−1 ∩ U ′xj )

ζs(Σ
+
j ∩ U ′xj )

ζs(Σ
−
j ∩ U ′xj )

<z = 0 = ζs(xj)
ζs(U

′
xj ) ζs(Uxj )

Figure 2.2: Choice of the jump contours near the singularities.

We still need one further ingredient before defining our local parametrix. This is a

solution to a model Riemann-Hilbert problem – a problem where the jump contours and

matrices are particularly simple and a solution can be given explicitly in terms of suitable

special functions. We will give a rather compact definition here with a more detailed

description in Appendix 2.D.

Definition 2.4.20. Let us denote by Roman numerals the octants of the complex plane –

so we write I = {reiθ : r > 0, θ ∈ (0, π/4)} and so on. Denote by Γl the boundary rays of

these octants: for 1 ≤ l ≤ 8, Γl = {rei
π
4

(l−1), r > 0}, oriented as in Figure 2.3.

For ζ ∈ I, let

Ψ(ζ) =
1

2

√
πζ

H
(2)
βj+1

2

(ζ) −iH(1)
βj+1

2

(ζ)

H
(2)
βj−1

2

(ζ) −iH(1)
βj−1

2

(ζ)

 e
−
(
βj
2

+ 1
4

)
πiσ3 , (2.4.31)

where H
(i)
ν are Hankel functions and the root is according to the principal branch. In other

octants, Ψ satisfies the following Riemann-Hilbert problem:

1. Ψ : C \ ∪8
l=1Γl → C2×2 is analytic.

2. Ψ has continuous boundary values on each Γl and satisfies the following jump

condition (again for the orientation, see Figure 2.3) Ψ+(ζ) = Ψ−(ζ)K(ζ) for ζ ∈
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∪8
l=1Γl, where

K(ζ) =



 0 1

−1 0

 , ζ ∈ Γ1 ∪ Γ5 1 0

e−πiβj 1

 , ζ ∈ Γ2 ∪ Γ6

eπi
βj
2
σ3 , ζ ∈ Γ3 ∪ Γ7 1 0

eπiβj 1

 , ζ ∈ Γ4 ∪ Γ8

(2.4.32)

+

−
+

−

−
+

−
++

−

+

−

+ −

− +

I

IIIII

IV

V

VI VII

VIII

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

Figure 2.3: Jump contour of the model RHP

Uniqueness of such a Ψ can be argued in a similar manner as usual. First of all, one

can check that for ζ ∈ I, det Ψ(ζ) = 1. As the jump matrices all have unit determinant,

det Ψ is analytic in C \ {0}, so det Ψ(ζ) = 1 for ζ ∈ C (one can check that ζ = 0 is a

removable singularity). Consider then some other solution to the problem, say Ψ̃. As

det Ψ = det Ψ̃ = 1, Ψ(ζ)Ψ̃(ζ)−1 is analytic in C \ ∪l=1Γl and equals I for ζ ∈ I. Again it

follows from the jump structure that Ψ(ζ)Ψ̃(ζ)−1 continues analytically to C \ {0} so it

must equal I everywhere. For an explicit description of the solution, see Appendix 2.D.

The local parametrices will then be formulated in terms of this function Ψ, a coordinate

change given by ζs, the function Wj , and an analytic (C2×2-valued) “compatibility matrix”

E, which is needed for the matching condition to be satisfied. We now make the relevant

definitions.
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Definition 2.4.21. For z ∈ U ′xj ∩ {Im(z) > 0}, write

E(z) = E(z, t, s) = P (∞)(z, t)Wj(z, t)
σ3eNφs,+(xj)σ3e−(1∓βj)πiσ3/4 1√

2

1 i

i 1

 (2.4.33)

where the − sign is in the domain {z ∈ C : arg(ζs(z)) ∈ (0, π/2)} and the + sign is in the

domain {z ∈ C : arg(ζs(z)) ∈ (π/2, π)}. For z ∈ U ′xj ∩ {Im(z) < 0}, write

E(z) = P (∞)(z)Wj(z)
σ3

 0 1

−1 0

 eNφs,+(xj)σ3e−(1∓βj)πiσ3/4 1√
2

1 i

i 1

 (2.4.34)

where − sign is in the domain {z ∈ C : arg(ζs(z)) ∈ (−π/2, 0)} and the + sign is in the

domain {z ∈ C : arg(ζs(z)) ∈ (−π,−π/2)}.
Finally, for z ∈ U ′xj \ Σ, let

P (xj)(z) = P (xj)(z, s, t) = E(z, s, t)Ψ(ζs(z))Wj(z, t)
−σ3e−Nφs(z)σ3 . (2.4.35)

Remark 2.4.22. Using (2.4.27) – the definition of Wj – as well as (2.4.24) – the jump

conditions of P (∞), one can check that E has no jumps in U ′xj . Moreover, using the behavior

of both functions near xj, one can check that E does not have an isolated singularity at xj,

so E is analytic in U ′xj .

We also point out that it follows directly from the definitions, i.e. (2.4.27), (2.4.33),

(2.4.34), and (2.4.35), that for z ∈ U ′xj \ Σ

P (xj)(z, t, s) = P (∞)(z, t)e
1
2
Tt(z)σ3

[
P (∞)(z, 0)

]−1
P (xj)(z, 0, s)e−

1
2
Tt(z)σ3 . (2.4.36)

The main claim about P (xj) is the following, whose proof we sketch in Appendix 2.D.

Lemma 2.4.23. The function P (xj) satisfies the following Riemann-Hilbert problem.

1. P (xj) : U ′xj \ Σ→ C2×2 is analytic.

2. P (xj) has continuous boundary values on Σ∩U ′xj \{xj} and these satisfy the following

jump conditions (with the same orientation as for S and same convention for the

sign in e∓Nhs(λ)): for λ ∈ (U ′xj \ {xj}) ∩ (Σ+
j−1 ∪ Σ−j−1 ∪ Σ+

j ∪ Σ−1
j )

P
(xj)
+ (λ) = P

(xj)
− (λ)

 1 0

ft(λ)−1e∓Nhs(λ) 1

 , (2.4.37)
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and for λ ∈ R ∩ U ′xj \ {xj}

P
(xj)
+ (λ) = P

(xj)
− (λ)

 0 ft(λ)

−ft(λ)−1 0

 . (2.4.38)

3. P (xj)(z) is bounded as z → xj from outside of the lenses, but when z → xj from

inside of the lenses

P (xj)(z) =

O(|z − xj |−βj ) O(1)

O(|z − xj |−βj ) O(1)

 . (2.4.39)

4. For z ∈ ∂Uxj
P (xj)(z)

[
P (∞)(z)

]−1
= I +O(N−1), (2.4.40)

where the O(N−1)-term is a 2× 2 matrix whose entries are O(N−1) uniformly in

z, s, t, {|xi − xj | ≥ 3δ for i 6= j}, and {|1 ± xj | ≥ 3δ for all j ∈ {1, ..., k}}. If in

a neighborhood of [−1, 1], T is a real polynomial of fixed degree, the error is also

uniform in the coefficients once they are restricted to some bounded set.

For our second differential identity, we will actually need more precise information

about P (xj) on ∂Uxj . While we will only use it in the T = 0 case, it is not more difficult

to formulate the result in the general case.

Lemma 2.4.24. For z ∈ ∂Uxj

P (xj)(z)
[
P (∞)(z)

]−1
= I +

βj
4ζs(z)

E(z)

 0 1 +
βj
2

1− βj
2 0

E(z)−1 +O
(
N−2

)
, (2.4.41)

where the O(N−2)-term is a 2× 2 matrix whose entries are O(N−2) uniformly in z, s, and

{|xi − xj | ≥ 3δ for i 6= j} and {|1± xj | ≥ 3δ for all j ∈ {1, ..., k}}.

The t = 0, s = 0 case of these results has been proven in [Kra07, Section 4.3], though

without focus on the uniformity relevant to us. Due to this, we will again sketch a proof

in Appendix 2.D.

2.4.4 Local parametrices at the edge of the spectrum

The reasoning here is similar to the previous section – we wish to find a function approx-

imating S near the points ±1. We will do this by approximating the Riemann-Hilbert
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problem and imposing a matching condition. Our argument will follow [Kra07, Section

4.4], which in turn relies on [DKM+99]. We will focus on the approximation at 1, as the

one at −1 is analogous. Again we will provide a sketch of the relevant proofs in Appendix

2.E. We will begin by introducing the relevant coordinate change in this case (analogous

to ζs in the previous section).

Definition 2.4.25. Let δ > 0 satisfy the conditions of Definition 2.4.16. Denote by U1 a

δ-disk around 1 and U ′1 denote a 3δ/2-disk around 1. We assume that δ is small enough

that d has an analytic extension to U ′1. Moreover, we assume δ is small enough – though

independent of s – so that with a suitable choice of the branch, the function

ξs(z) =

[
−3

2
Nφs(z)

]2/3

(2.4.42)

is analytic and injective in U ′1, for all s ∈ [0, 1].

We will justify that this is indeed possible in Appendix 2.E. This conformal coordinate

change allows us to define what Σ±k+1 looks like near 1. Let δ > 0 be small enough to

satisfy the conditions of Definition 2.4.25 and so that Tt is analytic in U ′1 for all t ∈ [0, 1].

We will define the local parametrix in U ′1 and impose the matching condition on ∂U1. Let

us thus define Σ±k+1 in U ′1.

Definition 2.4.26. Inside U ′1, let Σ±k+1 be such that

ξs(Σ
±
k+1 ∩ U

′
1) =

[
e±2πi/3 × [0,∞)

]
∩ ξs(U ′1). (2.4.43)

1

Σ+
k+1 ∩ U

′
xj

Σ−k+1 ∩ U
′
xj

O(δ)

U ′1 U1

ξs

ξs(Σ
+
k+1 ∩ U

′
1)

ξs(Σ
−
k+1 ∩ U

′
1)

<z = 0 = ξs(1)

2π/3

2π/3

ξs(U
′
1) ξs(U1)

Figure 2.4: Choice of the jump contours near the edge of the spectrum.

Remark 2.4.27. The angle 2π/3 is slightly arbitrary here. In [DKM+99] the model

Riemann-Hilbert problem relevant to us is constructed for a family of angle parameters

σ ∈ (π/3, π), and any angle here would work just as well for us, but we choose this for

concreteness.
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Also we point out that the above definition is fine as we know that ξs is injective and we

can apply the Koebe quarter theorem to ensure that the preimage of the rays is non-empty.

We are now also in a position to define our local parametrix. As in the previous section,

we need for this a solution to a certain model RHP considered in [DKM+99] as well as a

function which is analytic in U ′xj which is required for the matching condition to hold.

Definition 2.4.28. Let us write I = {reiθ : r > 0, θ ∈ (0, 2π/3)}, II = {reiθ : r > 0, θ ∈
(2π/3, π)}, III = {reiθ : r > 0, θ ∈ (−π,−2π/3)}, and IV = {reiθ : r > 0, θ ∈ (−2π/3, 0)}.
Then define

Q(ξ) =



Ai(ξ) Ai(e4πi/3ξ)

Ai′(ξ) e4πi/3Ai′(e4πi/3ξ)

 e−πiσ3/6, ξ ∈ IAi(ξ) Ai(e4πi/3ξ)

Ai′(ξ) e4πi/3Ai′(e4πi/3ξ)

 e−πiσ3/6

 1 0

−1 1

 , ξ ∈ IIAi(ξ) −e4πi/3Ai(e4πi/3ξ)

Ai′(ξ) −Ai′(e4πi/3ξ)

 e−πiσ3/6

1 0

1 1

 , ξ ∈ IIIAi(ξ) −e4πi/3Ai(e4πi/3ξ)

Ai′(ξ) −Ai′(e4πi/3ξ)

 e−πiσ3/6, ξ ∈ IV

, (2.4.44)

where Ai is the Airy function.

Morover, define another “compatibility matrix”

F (z) = F (z, t, s) = P (∞)(z, t)ft(z)
σ3/2eiπσ3/4

√
π

1 −1

1 1

 ξs(z)
σ3/4e−πi/12, (2.4.45)

where the roots are principal branch roots, and

P (1)(z) = P (1)(z, t, s) = F (z)Q(ξs(z))e
−Nφs(z)σ3ft(z)

−σ3/2. (2.4.46)

Remark 2.4.29. Note that we can write

P (1)(z, t, s) = P (∞)(z, t)eTt(z)σ3/2
[
P (∞)(z, 0)

]−1
P (1)(z, 0, s)e−Tt(z)σ3/2. (2.4.47)

Again the relevant fact about this function is that it satisfies a suitable Riemann-Hilbert

problem. Part of this is the fact that F in (2.4.45) is an analytic function in U ′1. As before,

we sketch the proof in Appendix 2.E.
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+

−
+

−

+−

+ −

III

III IV

Figure 2.5: Jump contour of Q(ξ)

Lemma 2.4.30. The function F from (2.4.45) is analytic in U ′1 and the function P (1)(z)

satisfies the following Riemann-Hilbert problem.

1. P (1)(z) is analytic in U ′1 \ (Σ+
k+1 ∪ Σ−k+1 ∪ R).

2. For λ ∈ (−1, 1) ∩ U ′1, P (1) satisfies

P
(1)
+ (λ) = P

(1)
− (λ)

 0 ft(λ)

−ft(λ)−1 0

 . (2.4.48)

For λ ∈ (1,∞) ∩ U ′1, P (1) satisfies

P
(1)
+ (λ) = P

(1)
− (λ)

1 ft(λ)eN(g+,s(λ)+gs,−(λ)−Vs(λ)−`s)

0 1

 . (2.4.49)

For λ ∈ Σ±k+1, P (1) satisfies

P
(1)
+ (λ) = P

(1)
− (λ)

 1 0

ft(λ)−1e∓Nhs(λ) 1

 . (2.4.50)

3. For z ∈ ∂U1, P (1) satisfies the following matching condition,

P (1)(z)
[
P (∞)(z)

]−1
= I +O(N−1), (2.4.51)

where the entries of the O(N−1) matrix are O(N−1) uniformly in z ∈ ∂U1, uniformly

in {xi} for |xi − xj | ≥ 3δ for i 6= j and |xi ± 1| ≥ 3δ for j ∈ {1, ..., k}, uniformly
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in t ∈ [0, 1], and uniformly in s ∈ [0, 1]. If in a neighborhood of [−1, 1], T is a real

polynomial with fixed degree, the error is also uniform in the coefficients once they

are restricted to some bounded set.

Again we will need finer asymptotics for our second differential identity and we will

formulate them in the T = 0 case.

Lemma 2.4.31. For z ∈ ∂U1,

P (1)(z)
[
P (∞)(z)

]−1
− I

= P (∞)(z)f(z)σ3/2eiπσ3/4
1

8

 1
6 1

−1 −1
6

 e−iπσ3/4f(z)−σ3/2
[
P (∞)(z)

]−1
ξs(z)

−3/2 +O(N−2)

where the O(N−2)-term is a 2× 2 matrix whose entries are O(N−2) uniformly in z, s, and

{|xi − xj | ≥ 3δ for i 6= j} and {|1± xj | ≥ 3δ for all j ∈ {1, ..., k}}.

Remark 2.4.32. Using the definition of F , one can check that this can be written also as

P (1)(z)
[
P (∞)(z)

]−1
= I + F (z)

 0 5
48ξs(z)

−2

− 7
48ξs(z)

−1 0

F (z)−1 +O(N−2).

From the previous representation of the matching condition matrix, one can easily see

that the subleading term is indeed of order N . The benefit of this representation is that

as F and F−1 are analytic in U1, the subleading term is analytic in U1 \ {1} and has (at

most) a second order pole at z = 1.

2.4.5 The final transformation and asymptotic analysis of the problem

We now perform the final transformation of the problem, and solve it asymptotically. The

proofs of these statements are essentially standard in the RHP literature, but we don’t

know of a reference where the exact calculations we need exist and also issues such as

uniformity in our relevant parameters are essential for us, but not usually stressed in the

literature. Thus we provide proofs in Appendix 2.F.

Definition 2.4.33. Let us fix some small δ > 0 (“small” being independent of t and s

and detailed in Section 2.4.3 and Section 2.4.4), and write U±1 for a δ-disk around ±1

and Uxj for a δ-disk around xj. We also assume that for i 6= j, |xi − xj | ≥ 3δ and for all
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i 6= 0, k + 1, |xi ± 1| ≥ 3δ. We then define

R(z) =



S(z)
[
P (−1)(z)

]−1
, z ∈ U−1 \ Σ

S(z)
[
P (xj)(z)

]−1
, z ∈ Uxj \ Σ for some j

S(z)
[
P (1)(z)

]−1
, z ∈ U1 \ Σ

S(z)
[
P (∞)(z)

]−1
, z ∈ C \ U−1

⋃
∪kj=1Uxj

⋃
U1
⋃

Σ

. (2.4.52)

We now state what is the Riemann–Hilbert solved by R – for details, see Appendix

2.F.

Lemma 2.4.34. For the δ in Definition 2.4.33, define

Γδ = (R \ [−1− δ, 1 + δ])
⋃(
∪k+1
j=1(Σ+

j ∪ Σ−j ) \ U−1 ∪ ∪kj=1Uxj ∪ U1

)
(2.4.53)⋃(

∂U−1 ∪ ∪kj=1∂Uxj ∪ ∂U1

)
,

where R and the lenses are oriented as before. ∂Uxj and ∂U±1 are oriented in a clockwise

manner – see Figure 2.6. Then R is the unique solution to the following Riemann-Hilbert

problem:

1. R : C \ Γδ → C2×2 is analytic.

2. R satisfies the jump conditions R+(λ) = R−(λ)JR(λ) (with lenses and R oriented as

before, and the circles are oriented clockwise), where the jump matrix JR take the

following form:

(i) For λ ∈ R \ [−1− δ, 1 + δ],

JR(λ) = P (∞)(λ)

1 ft(λ)eN(gs,+(λ)+gs,−(λ)−Vs(λ)−`s)

0 1

[P (∞)(λ)
]−1

.

(2.4.54)

(ii) For λ ∈ ∪k+1
j=1Σ±j \ U−1 ∪ ∪kj=1Uxj ∪ U1,

JR(λ) = P (∞)(λ)

 1 0

ft(λ)−1e∓Nhs(λ) 1

[P (∞)(λ)
]−1

. (2.4.55)

(iii) For λ ∈ ∂Uxj \ ∪k+1
j=1(Σ+

j ∪ Σ−j ),

JR(λ) = P (xj)(λ)
[
P (∞)(λ)

]−1
. (2.4.56)
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−1 x1 1

Σ+
1 \(∪jUxj )

Σ−1 \(∪jUxj )

Σ+
2 \(∪jUxj )

Σ−2 \(∪jUxj )

∂U−1 ∂Ux1 ∂U1

Figure 2.6: The jump contour of the Riemann–Hilbert problem for R, in the case k = 1.

(iv) For λ ∈ ∂U±1 \ (R ∪ ∪k+1
j=1(Σ+

j ∪ Σ−j ),

JR(λ) = P (±1)(λ)
[
P (∞)(λ)

]−1
. (2.4.57)

3. As z →∞,

R(z) = I +O(|z|−1). (2.4.58)

The first ingredient to solving this Riemann–Hilbert problem is to show that the jump

matrix of R(z) is close to the identity matrix in a suitable sense.

Lemma 2.4.35. For z ∈ Γδ, write JR(z) = I + ∆R(z) = I + ∆ for the jump matrix of R

as described in Lemma 2.4.34. Then for any p ≥ 1, and large enough N (“large enough”

depending only on V )

||∆||Lp(Γδ) = O(N−1)

where the norm is any matrix norm, the Lp-spaces are with respect to the Lebesgue measure

on the jump contour, and the O(N−1) term is uniform in everything relevant (i.e., (xi) for

|xi − xj | ≥ 3δ, for i 6= 0, k + 1: |xi ± 1| ≥ 3δ, in s, t ∈ [0, 1], and if T is a real polynomial

in a neighborhood of [−1, 1], then in its coefficients when restricted to a bounded set; but

may depend on δ).

See Appendix 2.F for a proof. We will want to show that R is close to the identity,

and the tool which allows us to do this is the following representation of R as a solution to

a suitable integral equation involving its jump matrix.

Proposition 2.4.36. Let δ > 0 be small enough (“small enough” being independent of s

and t). For N sufficiently large (again independent of s and t), the unique solution of the

Riemann–Hilbert problem for R (see Lemma 2.4.34) is given by

R = I + C[∆ + (I − C∆)−1(C∆(I))∆] (2.4.59)
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where

C(f) :=
1

2πi

ˆ
Γδ

f(s)
ds

s− z

is the Cauchy operator on Γδ, and C∆(f) = C−(f∆) where C−(f) = limz→sC(f) as z

approaches a point s ∈ Γδ\{intersection points} from the −side of Γδ (for the orientation,

see Lemma 2.4.34).

Finally, what we want to show is that R(z) = I + O(N−1) uniformly in everything

relevant and use this as well as the explicit form of our parametrices to analyze our

differential identities. The precise statement we need is the following one.

Theorem 2.4.37. For small enough δ > 0 (again small enough being independent of

relevant quantities) and large enough N (large enough being independent of everything

relevant) with respect to any matrix norm | · |, there exists a c > 0 such that

|R(z)− I| ≤ c

N
and |R′(z)| ≤ c

N

uniformly in (xi) for |xi − xj | ≥ 3δ, |xi ± 1| ≥ 3δ for i 6= 0, k + 1, t, s ∈ [0, 1], z ∈ C\Γδ,
and if T is a real polynomial in a neighborhood of [−1, 1], then the error is uniform in its

coefficients when these are restricted to a bounded set.

Moreover, for T = 0, we have

R(z) = I +R1(z) + o(1/N), R′(z) = R′1(z) + o(1/N)

uniformly in (xi) for |xi − xj | ≥ 3δ, |xi ± 1| ≥ 3δ for i 6= 0, k + 1, s ∈ [0, 1], and

z ∈ C\(Γδ ∪ ∪k+1
j=0Uxj ). Here R1(z) =

∑k+1
j=0 R

(xj)
1 (z) with

R
(xj)
1 (z) =



1
xj−z

βj

4πNds(xj)
√

1−x2j
E(xj)(xj)

 0 1 +
βj
2

1− βj
2 0

[E(xj)(xj)
]−1

, j ∈ {1, ..., k}

− Res
w=−1

1
w−zF

(−1)(w)

 0 − 5

48ξ
(−1)
s (w)2

− 7

48ξ
(−1)
s (w)

0

[F (−1)(w)
]−1

, j = 0

−Res
w=1

1
w−zF

(1)(w)

 0 5

48ξ
(1)
s (w)2

− 7

48ξ
(1)
s (w)

0

[F (1)(w)
]−1

, j = k + 1

.

where E and F are the “compatibility matrices” from Definitions 2.4.21 and 2.4.28. In

particular, we have

J (xj)(z) :=

(
[P (∞)(z)]−1

[
R

(xj)
1

]′
(z)P (∞)(z)

)
22
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=



1
4

1
(z−xj)2

iβj

4πNds(xj)
√

1−x2j

[
a(z)2

a+(xj)2
(c2
xj ,s + c−2

xj ,s − βj)

−a+(xj)
2

a(z)2
(c2
xj ,s + c−2

xj ,s + βj)

]
, j ∈ {1, . . . , k}

− 1
(z+1)2

√
2i

8N

{
a(z)−2

[
5+96A2

48G
(−1)
s (−1)

−
5
[
G

(−1)
s

]′
(−1)

12G
(−1)
s (1)2

]
− a(z)2 7

24G
(−1)
s (−1)

}
+ 1

(z+1)3
5
√

2i

48NG
(−1)
s (1)

a(z)−2, j = 0

− 1
(z−1)2

√
2

8N

{
a(z)2

[
5+96A2

48G
(1)
s (1)

−
5
[
G

(1)
s

]′
(1)

12G
(1)
s (1)2

]
− a(z)−2 7

24G
(1)
s (1)

}
− 1

(z−1)3
5
√

2

48NG
(1)
s (1)

a(z)2, j = k + 1

where

cxj ,s =
(
xj + i

√
1− x2

j

)A
exp

−i∑
k>j

βkπ/2 +Nφs,+(xj)− (1 + βj)πi/4

 ,

G(−1)
s (−1) = −iπ

√
2ds(−1),

[
G(−1)
s

]′
(−1) = − 3πi

10
√

2
[4d′s(−1)− ds(−1)],

G(1)
s (1) = π

√
2ds(1),

[
G(1)
s

]′
(1) =

3π

10
√

2
[4d′s(1) + ds(1)].

Remark 2.4.38. As discussed in [Kra07], using the asymptotic expansions of the Airy

function and Bessel functions, the matching conditions of the local parametrices can be

extended into asymptotic expansions in inverse powers of N . These then can be used to

prove a full asymptotic expansion for R and R′. We don’t have use for this, so we won’t

discuss it further.

2.5 Integrating the differential identities

In this section we will use our asymptotic solution and precise form of the parametrices

to analyze the asymptotics of the differential identities (2.3.11) and (2.3.13), and finally

integrate them. We will start with (2.3.11).

2.5.1 The differential identity (2.3.11)

Here we will give a (slightly simplified) variant of the argument in [DIK14, Section 5.3] to

integrate the differential identity (2.3.11). As there are minor modifications due to the

differences in the models and the argument being relevant for (2.3.13), we present a full

proof here. The main goal we wish to prove is the following.

Proposition 2.5.1. Let V be one-cut regular, T as in Proposition 2.2.10, and δ > 0 small
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enough, but independent of N . Then as N →∞,

log
DN−1(f1;V )

DN−1(f0;V )
= N

ˆ 1

−1
T (x)d(x)

√
1− x2dx+

A
π

ˆ 1

−1

T (x)√
1− x2

dx−
k∑
j=1

βj
2
T (xj)

(2.5.1)

+
1

4π2

ˆ 1

−1
dy
T (y)√
1− y2

P.V.

ˆ 1

−1

T ′(x)
√

1− x2

y − x
dx+ o(1)

where o(1) is uniform in {(xj)kj=1 : |xi − xj | ≥ 3δ, i 6= j and |xi ± 1| ≥ 3δ ∀i}, and if in

a neighborhood of [−1, 1], T is a real polynomial of fixed degree, then the error is also

uniform in the coefficients of T when these are restricted to a bounded set.

The way we will do this is we’ll express the integrand in (2.3.11) in a slightly different

way which will allow deforming our integration contour in such a way that we can express

Y in terms of R and the global parametrix P (∞). The expression will be such that to

leading order, we can treat R as the identity, and using the global parametrix, we can

perform the relevant integrals explicitly.

Let us begin with expressing our integral in terms of the global parametrix. We first

remind the reader that we denoted by U[−1,1] a fixed (independent of N and t) complex

neighborhood of [−1, 1] into which Tt had an analytic continuation for all t ∈ [0, 1]. We

also assumed that the lenses and neighborhoods (Uxj )
k+1
j=0 were inside U[−1,1].

Lemma 2.5.2. Let τ+ : [0, 1] → {z ∈ C : Im(z) ≥ 0} ∩ U[−1,1] be a smooth simple curve

independent of N . We also assume that τ+(0) < −1, τ+(1) > 1, and that τ(s) is outside of

the lenses and neighborhoods (Uxj )
k+1
j=0 for all s. We also define τ− in a similar way but in

the lower half plane and with the assumption that τ−(0) = τ+(0) as well as τ−(1) = τ+(1).

See Figure 2.7 for an illustration.

Then for t ∈ [0, 1]

1

2πi

ˆ
R

[Y11(x, t)∂xY21(x, t)− Y21(x, t)∂xY11(x, t)] ∂tft(x)e−NV (x)dx

= N

ˆ 1

−1
d(x)

√
1− x2

∂tft(x)

ft(x)
dx+

1

2πi

[ˆ
τ+

−
ˆ
τ−

]
D′t(z)
Dt(z)

∂tft(z)

ft(z)
dz + o(1),

where o(1) is uniform in t ∈ [0, 1], {(xj)kj=1 : |xi − xj | ≥ 3δ, i 6= j and |xi ± 1| ≥ 3δ ∀i},
and if in a neighborhood of [−1, 1], T is a real polynomial of fixed degree, then the error is

also uniform in the coefficients of T when these are restricted to a bounded set.

Proof. Let us write Y ′ = ∂xY . We first note that an elementary calculation using (2.3.8)

and the fact that the first column of Y consists of polynomials which have no jump across
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x0 = −1 x2 = 1

U[−1,1]

τ±(0) τ±(1)

τ+

τ−

x1

Σ+
1

Σ−1

Σ+
2

Σ−2

Ux0 = U−1 Ux1 Ux2 = U1

Figure 2.7: Deforming the integration contour, k = 1.

R, show that for λ ∈ R,

fte
−NV (Y11Y

′
21 − Y21Y

′
11) =

(
Y22,−Y

′
11 − Y12,−Y

′
21

)
−
(
Y22,+Y

′
11 − Y12,+Y

′
21

)
. (2.5.2)

Now recall that Y12,± and Y22,± have continuous boundary values on R so we see that

the terms Y22Y
′

11 − Y12Y
′

21 are analytic in C \ R and are continuous up to the boundary.

Moreover, by our construction, ft(z)
−1∂tft(z) is analytic in U[−1,1]. We can thus argue

by Cauchy’s integral theorem to deform the integration contour. In particular, plugging

(2.5.2) into (2.3.11), we find

1

2πi

ˆ
R

[Y11(x, t)∂xY21(x, t)− Y21(x, t)∂xY11(x, t)] ∂tft(x)e−NV (x)dx

=
1

2πi

ˆ
(−∞,τ+(0)]∪[τ+(1),∞)

[
Y11(x, t)Y ′21(x, t)− Y21(x, t)Y ′11(x, t)

]
∂tft(x)e−NV (x)dx

− 1

2πi

[ˆ
τ+

−
ˆ
τ−

] (
Y22(z, t)Y ′11(z, t)− Y12(z, t)Y ′21(z, t)

) ∂tft(z)
ft(z)

dz.

Notice that

Y11Y
′

21 − Y21Y
′

11 = [Y −1Y ′]21, Y22Y
′

11 − Y12Y
′

21 = [Y −1Y ′]11.

Unravelling our transformations, we note as we are not inside the lenses or the neighbor-

hoods, we have on R \ [τ+(0), τ+(1)] and on τ±

Y −1Y ′ =
[
eN`1σ3/2SeN(g1−`1/2)σ3

]−1 [
eN`1σ3/2SeN(g1−`1/2)σ3

]′
= Ng′1σ3 + e−N(g1−`1/2)σ3S−1S′eN(g1−`1/2)σ3

= Ng′1σ3 + e−N(g1−`1/2)σ3

[(
P (∞)

)−1
R−1

(
RP (∞)

)′]
eN(g1−`1/2)σ3 (2.5.3)
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where we have used the global parametrix in the last equality. Since the P (∞)-RHP

implies that P (∞)(z) is complex analytic when z 6∈ [−1, 1], I +O(|z|−1) as z → ∞, and

detP (∞) ≡ 1, we see that both
(
P (∞)

)−1
and

(
P (∞)

)′
are bounded when we are away

from a (complex) neighbourhood of [−1, 1]. One can easily check that they are in fact

uniformly bounded in all our relevant parameters. Combined with the estimates

R(z, t) = I +O(N−1), R′(z, t) = O(N−1)

in Theorem 2.4.37, we have S−1S′ =
(
P (∞)

)−1 (
P (∞)

)′
+O(N−1).

Consider first the integral along R \ [τ+(0), τ+(1)]. Using the specific form (2.4.22) of

P (∞), (2.5.3), and the fact that terms containing R give something o(1), a direct calculation

shows that

[Y (z, t)−1Y ′(z, t)]21 = eN(2g1(z)−`1)
[
P

(∞)
11 (z, t)∂zP

(∞)
21 (z, t)− P (∞)

21 (z, t)∂zP
(∞)
11 (z, t) + o(1)

]
=
ieN(2g1(z)−`1)

4D2
t (z)

[
((a(z)2 + a(z)−2)(a(z)2 − a(z)−2)′ − (a(z)2 − a(z)−2)(a(z)2 + a(z)−2)′ + o(1)

]
=
ieN(2g1(z)−`1)

Dt(z)2

[
1

z2 − 1
+ o(1)

]
.

Thus

[Y11(x, t)∂xY21(x, t)− Y21(x, t)∂xY11(x, t)] ∂tft(x)e−NV (x)

=

 eT (x) − 1

Dt(x)2(x2 − 1)

k∏
j=1

|x− xj |βj + o(1)

 eN(g1,+(x)+g1,−(x)−`1−V (x))

and one finds from (2.4.7) that as N → ∞, the integral along R \ [τ+(0), τ+(1)] is o(1)

uniformly in everything relevant.

Consider then the integrals along τ±. A similar direct calculation shows that

[Y (z, t)−1Y ′(z, t)]11 = Ng′1(z) + P
(∞)
22 (z, t)∂zP

(∞)
11 (z, t)− P (∞)

12 (z, t)∂zP
(∞)
21 (z, t) + o(1)

= Ng′1(z) +
1

4

[
∂zDt(z)−1

Dt(z)−1

(
(a(z)2 + a(z)−2)2 − (a(z)2 − a(z)−2)2

)]
+ o(1)

= Ng′1(z)− D
′
t(z)

Dt(z)
+ o(1)

and hence

(
Y22(z, t)Y ′11(z, t)− Y12(z, t)Y ′21(z, t)

) ∂tft(z)
ft(z)

= Ng′1(z)
∂tft(z)

ft(z)
− D

′
t(z)

Dt(z)
∂tft(z)

ft(z)
+ o(1),

where again o(1) is uniform in everything relevant. This yields the claim once we notice
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that by contour deformation and (2.4.8)

− 1

2πi

[ˆ
τ+

−
ˆ
τ−

]
g′1(z)

∂tf(z)

ft(z)
dz =

ˆ 1

−1
d(x)

√
1− x2

∂tft(x)

ft(x)
dx.

Our next task is to calculate the τ± integrals. To do this, we introduce some notation.

Definition 2.5.3. For z ∈ C \ (−∞, 1], let

qFH(z) = log

(z + r(z))−A
k∏
j=1

(z − xj)βj/2
 , (2.5.4)

where the logarithm is with the principal branch, A =
∑k

j=1 βj/2, and FH refers to

Fisher-Hartwig. We also define for z ∈ C \ [−1, 1]

qSz(z) = qSz(z, t) =
r(z)

2π

ˆ 1

−1

Tt(λ)√
1− λ2

1

z − λ
dλ, (2.5.5)

where r(z) is as in (2.4.19) and Sz refers to Szegő.

Note that we have D′t/Dt = q′FH + q′Sz. We will need the following fact before proving

Proposition 2.5.1. The following is an analogue of a result in [Dei99b] in the case of the

circle.

Lemma 2.5.4. Write τ± be as in Lemma 2.5.2. We have

ˆ 1

0

1

2πi

[ˆ
τ+

−
ˆ
τ−

]
q′Sz(z, t)

∂tft(z)

ft(z)
dzdt = − 1

4π2

ˆ 1

−1
dy
T (y)√
1− y2

P.V.

ˆ 1

−1

T ′(x)
√

1− x2

x− y
dx.

(2.5.6)

Proof. Let us recall that we saw in the proof of Lemma 2.4.15 that off of [−1, 1] we can

write

qSz(z, t) =
r(z)

2π

ˆ 1

−1

Tt(λ)− Tt(z)
z − λ

dλ√
1− λ2

+
Tt(z)

2

which implies that qSz is bounded in a neighborhood of [−1, 1] and qSz(±1, t) = 1
2Tt(±1).

Moreover, we see from this that

q′Sz(z, t) =
r′(z)

2π

ˆ 1

−1

Tt(λ)− Tt(z)
z − λ

dλ√
1− λ2

+
r(z)

2π

ˆ 1

−1

Tt(z)− Tt(λ)− T ′t (z)(z − λ)

(z − λ)2

dλ√
1− λ2

+
T ′t (z)

2
.

This in turn implies that q′Sz is bounded except at z = ±1 where it has singularities of

order |z ∓ 1|−1/2; in particular these are integrable ones. Due to the singularities being
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integrable, we can perform contour deformation and integrate by parts in the z-integral in

the left hand side of (2.5.6). Noting that f−1
t ∂tft = ∂tTt =: Ṫt (we will use a dot here and

below to indicate time derivatives below when there is no risk of confusion), we see that

I :=

ˆ 1

0
dt

[ˆ
τ+

−
ˆ
τ−

]
dz

2πi
Ṫt(z)q′Sz(z, t) = −

ˆ 1

0
dt

ˆ 1

−1

dx

2πi
Ṫ ′t (x) [qSz,+(x, t)− qSz,−(x, t)] .

(2.5.7)

Let us write for x ∈ (−1, 1), s(x) =
√

1− x2. As for x ∈ (−1, 1), r±(x) = ±is(x), we

see by Sokhotski–Plemelj that

qSz,+(x, t)− qSz,−(x, t) = is(x)
1

π
P.V.

ˆ 1

−1

Tt(y)

x− y
dy

s(y)
=: is(x)[H(1(−1,1)Tt/s)](x),

where 1(−1,1) is the indicator function of the interval (−1, 1), and H denotes the Hilbert

transform (note that the Hilbert transform is well defined as 1(−1,1)Tt/s ∈ Lp(R) for

p ∈ [1, 2)).

To simplify notation slightly, let us write 〈f, g〉 :=
´
R f(x)g(x)dx. Integrating by parts

in the t integral in (2.5.7) we see that

I = −
ˆ 1

0

1

2π

〈
Ṫ ′t ,1(−1,1)sH

(
1(−1,1)Tt/s

)〉
dt (2.5.8)

= − 1

2π

〈
T ′,1(−1,1)sH

(
1(−1,1)T /s

)〉
+

ˆ 1

0

1

2π

〈
T ′t ,1(−1,1)sH

(
1(−1,1)Ṫt/s

)〉
dt.

Our aim is now to show that actually 1
2π

´ 1
0 〈T

′
t ,1(−1,1)sH(1(−1,1)Ṫt/s)〉dt = −I so we

would have I = −〈T ′,1(−1,1)sH(1(−1,1)T /s)〉/4π, which we will see to be equivalent to

our claim. To see that indeed 1
2π

´ 1
0 〈T

′
t ,1(−1,1)sH(1(−1,1)Ṫt/s)〉dt = −I, we note first that

s(x)

s(y)

1

x− y
=
s(y)

s(x)

1

x− y
− x+ y

s(x)s(y)

implying that for say a continuous f : [−1, 1]→ R and x ∈ (−1, 1)

s(x)
[
H
(
1(−1,1)f/s

)]
(x) =

1

s(x)

[
H
(
1(−1,1)fs

)]
(x)− 1

π

ˆ 1

−1

x+ y

s(x)s(y)
f(y)dy. (2.5.9)

Using the definition of the Cauchy principal value integral, one can also check easily

that for a smooth f : [−1, 1]→ R and x ∈ (−1, 1)

[
H(1(−1,1)fs)

]′
(x) =

[
H(1(−1,1)(fs)

′)
]

(x). (2.5.10)

Thus integrating by parts in the x integral, using the fact that q+(±1, t) = q−(±1, t),
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and (2.5.10), we see that〈
T ′t ,1(−1,1)sH

(
1(−1,1)Ṫt/s

)〉
=

ˆ 1

−1
dxTt(x)

s′(x)

s(x)2

([
H
(
1(−1,1)Ṫts

)]
(x)−

ˆ 1

−1

x+ y

πs(y)
Ṫt(y)dy

)
(2.5.11)

−
ˆ 1

−1
dxTt(x)

1

s(x)

([
H
(
1(−1,1)(Ṫts)′

)]
(x)−

ˆ 1

−1

Ṫt(y)

πs(y)
dy

)
.

We then note that

[H(1(−1,1)Ṫts′)](x)− 1

π

ˆ 1

−1

Ṫt(y)

s(y)
dy =

1

π
P.V.

ˆ 1

−1

Ṫt(y)

s(y)

(
−y
x− y

− 1

)
dy

= −x[H(1(−1,1)Ṫt/s)](x)

and[
H
(
1(−1,1)Ṫts

)]
(x)− 1

π

ˆ 1

−1

x+ y

s(y)
Ṫt(y)dy =

1

π
P.V.

ˆ 1

−1

Ṫt(y)

s(y)

[
s(y)2 − (x2 − y2)

]
x− y

dy

= s(x)2[H(1(−1,1)Ṫt/s)](x).

Plugging these into (2.5.11), using the fact that s′(x) = −x/s(x) along with the anti-self

adjointness of H we see that

1

2π

ˆ 1

0

〈
T ′t ,1(−1,1)sH

(
1(−1,1)Ṫt/s

)〉
dt = − 1

2π

ˆ 1

0

〈
Tt,1(−1,1)s

−1H
(
1(−1,1)Ṫ ′t s

)〉
dt

(2.5.12)

=
1

2π

ˆ 1

0

〈
Ṫ ′t ,1(−1,1)sH(1(−1,1)Tt/s)

〉
dt

= −I.

Note that 1/s /∈ L2(−1, 1) so we can’t use the anti-self adjointness of the Hilbert transform

on the space L2, but we use the fact that if f ∈ Lp(R) and g ∈ Lp′(R), where p′ is the

Hölder conjugate of p, then
´
gHf = −

´
fHg – see e.g. [Tit59, Theorem 102].

Plugging (2.5.12) into (2.5.8), we find our previous claim that

I = − 1

4π
〈T ′,1(−1,1)sH(1(−1,1)T /s)〉

Making use of the anti-self adjointness of H again, this translates into

I =
1

4π2

ˆ 1

−1
dy
T (y)√
1− y2

P.V.

ˆ 1

−1

T ′(x)
√

1− x2

y − x
dx
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which is our claim.

We are now in a position to finish the proof.

Proof of Proposition 2.5.1. We start with the result of Lemma 2.5.2. Consider first the

integral along [−1, 1]. Here we note that by the definition of ft,
´ 1

0 ft(x)−1∂tft(x)dt =

log f1(x)− log f0(x) = T (x). This yields the O(N)-term in (2.5.1).

Let us now consider the D′t/Dt-terms. The contribution from qSz is calculated in

Lemma 2.5.4, so we need to understand the contribution of qFH . As qFH is independent

of t, we find that

ˆ 1

0
dt

[ˆ
τ+

−
ˆ
τ−

]
dz

2πi
q′FH(z)

ḟt(z)

ft(z)
=

[ˆ
τ+

−
ˆ
τ−

]
dz

2πi
T (z)q′FH(z). (2.5.13)

Now as

q′FH(z) = − A
r(z)

+

k∑
j=1

βj
2

1

z − xj

we see by Cauchy’s integral theorem, the fact that r±(x) = ±i
√

1− x2 for x ∈ (−1, 1),

and Sokhotski-Plemelj that

ˆ 1

0
dt

[ˆ
τ+

−
ˆ
τ−

]
dz

2πi
q′FH(z)

ḟt(z)

ft(z)
=
A
π

ˆ 1

−1

T (x)√
1− x2

dx−
k∑
j=1

βj
2
T (xj). (2.5.14)

Thus combining (2.5.14), (2.5.6), our reasoning about the O(N) term, and Lemma

2.5.2, yields

logDN−1(f1)− logDN−1(f0) = N

ˆ 1

−1
T (x)d(x)

√
1− x2dx+

A
π

ˆ 1

−1

T (x)√
1− x2

dx−
k∑
j=1

βj
2
T (xj)

+
1

4π2

ˆ 1

−1
dy
T (y)√
1− y2

P.V.

ˆ 1

−1

T ′(x)
√

1− x2

y − x
dx+ o(1),

where o(1) is uniform in everything relevant. This is precisely the claim.

2.5.2 The differential identity (2.3.13)

The main goal of this section is to prove the following identity.

Proposition 2.5.5. Let V be one-cut regular, T as in Proposition 2.2.10, δ > 0 small
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enough but independent of N . Then as N →∞,

logDN−1(f0;V1)− logDN−1(f0;V0)

= −N
2

2

ˆ 1

−1

(
2

π
+ d(x)

)
(V (x)− 2x2)

√
1− x2dx

−AN
π

ˆ 1

−1

V (x)− 2x2

√
1− x2

dx+N
k∑
j=1

βj
2

(V (xj)− 2x2
j )

+
k∑
j=1

β2
j

4
log
(π

2
d(xj)

)
− 1

24
log

(
π2

4
d(1)d(−1)

)
+ o(1),

where o(1) is uniform in {(xj)kj=1 : |xi − xj | ≥ 3δ, i 6= j and |xi ± 1| ≥ 3δ ∀i}.

The arguments are largely similar to those related to the differential identity (2.3.11) so

we will be less detailed here. The arguments in the proof of Lemma 2.5.2 can be repeated

in this case with the only difference being that we replace ∂tft by −Nf∂sVs and d with ds

etc, apart from approximating R by the identity – we’ll need the O(N−1) contribution

from R here as well. We will also need to assume that our lenses and neighborhoods of

the singularities are chosen so that V is analytic in some neighborhood of them, but as we

assumed V to be real analytic, we can of course do this. We will also assume that τ± are

inside this domain where V can be analytically continued to. Repeating the arguments

from the previous section in such a setting leads to the following lemma.

Lemma 2.5.6. Let τ± be as in Lemma 2.5.2 with the difference that we assume that the

contours are within the domain where V is analytic in. Then for s ∈ [0, 1]

− N

2πi

ˆ
R

[Y11(x;Vs)∂xY21(x;Vs)− Y21(x;Vs)∂xY11(x;Vs)] f(x)e−NVs(x)∂sVs(x)dx

= −N2

ˆ 1

−1
ds(x)

√
1− x2∂sVs(x)dx− N

2πi

[ˆ
τ+

−
ˆ
τ−

]
Js(z)∂sVs(z)dz + o(1),

where o(1) is uniform in s ∈ [0, 1], {(xj)kj=1 : |xi − xj | ≥ 3δ, i 6= j and |xi ± 1| ≥ 3δ ∀i}
and

Js(z) = −Y22(z;Vs)Y
′

11(z;Vs) + Y12(z;Vs)Y
′

21(z;Vs).

The proof is essentially identical to that of Lemma 2.5.2 and we omit it. We now

consider the asymptotics of the integral of this from s = 0 to s = 1. Let us first consider

the order N2 term.

Lemma 2.5.7. We have

ˆ 1

0
ds(−N2)

ˆ 1

−1
ds(x)∂sVs(x)

√
1− x2dx = −N

2

2

ˆ 1

−1

(
2

π
+ d(x)

)
(V (x)−2x2)

√
1− x2dx.
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Proof. This follows immediately from the definitions: ∂sVs(x) = V (x)− 2x2 and ds(x) =

(1− s) 2
π + sd(x).

For J -terms, we note that we now need to take into account O(N−1) terms in the

expansion of R – these will result in O(1) terms in the differential identity. We first focus

on the O(N) terms which come from the O(1) terms in the expansion of R. For this,

repeating our argument from the previous section results in the O(N) term being

N

2πi

ˆ 1

0
ds

˛
γ

D′(x)

D(x)
∂sVs(x)dx =

N

2πi

˛
γ

D′(x)

D(x)
(V (x)− 2x2)dx,

where γ is a nice curve enclosing [−1, 1] inside which everything relevant is analytic. We

again have D′(z)/D(z) = q′Sz(z, 0) + q′FH(z, 0) = q′FH(z, 0) (as qSz(z, 0) = 0). Recalling

that

q′FH(z) = − A
r(z)

+
k∑
j=1

βj
2

1

z − xj
,

an application of Sokhotski-Plemelj shows that the order N terms combine into the

following quantity

N

2πi

˛
γ

D′(x)

D(x)
(V (x)− 2x2)dx = − N

2πi

ˆ 1

−1
(q′FH,+(x)− q′FH,−(x))(V (x)− 2x2)dx

(2.5.15)

= −AN
π

ˆ 1

−1

V (x)− 2x2

√
1− x2

dx+N
k∑
j=1

βj
2

(V (xj)− 2x2
j ).

Finally, let us consider the O(1) terms. We will make use of the following lemma

(whose variants are surely well known in the literature, but as we don’t know of a reference

exactly in our setting we will sketch a proof of it).

Lemma 2.5.8. For x ∈ (−1, 1) and one-cut regular potential V ,

P.V.

ˆ 1

−1
V ′(λ)

√
1− λ2

λ− x
dλ = −2π + 2π2d(x)(1− x2) (2.5.16)

and

ˆ 1

x
d(λ)

√
1− λ2dλ =

√
1− x2

2π2
P.V.

ˆ 1

−1

V (λ)

x− λ
dλ√

1− λ2
+

1

π
arccos(x). (2.5.17)

Proof. For (2.5.16), define the function H : C \ [−1, 1]→ C

H(z) = 2π(z − 1)1/2(z + 1)1/2

ˆ 1

−1

d(λ)
√

1− λ2

λ− z
dλ+

ˆ 1

−1

V ′(λ)
√

1− λ2

λ− z
dλ.
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Using Sokhotksi-Plemelj and (2.2.3), one can check that this function is continuous

across (−1, 1). One also sees easily that H is bounded at ±1 so we conclude that it is

entire. Finally as H(∞) = −2π, Liouville implies that H(z) = −2π. An application of

Sokhotski-Plemelj then implies (2.5.16).

We note that as a consequence of (2.5.16), one can check that what’s required for

(2.5.17) is to prove the identity

ˆ 1

x

1√
1− y2

P.V.

ˆ 1

−1

V ′(λ)

λ− y
√

1− λ2dλdy︸ ︷︷ ︸
=:p(x)

=
√

1− x2P.V.

ˆ 1

−1

V (λ)

x− λ
dλ√

1− λ2︸ ︷︷ ︸
=:q(x)

. (2.5.18)

One can easily check that these are both smooth functions of x and satisfy p(1) =

q(1) = 0, so it’s enough for us to check that p′(x) = q′(x). For this, let us first write

q(x) =
1√

1− x2
P.V.

ˆ 1

−1

V (λ)

x− λ
√

1− λ2dλ− 1√
1− x2

ˆ 1

−1

(x+ λ)V (λ)√
1− λ2

dλ.

We again make use of the fact that differentiation commutes with the Hilbert transform

so one can check that

q′(x) = p′(x)− 1√
1− x2

P.V.

ˆ 1

−1

λV (λ)

x− λ
dλ√

1− λ2
+

x

(1− x2)3/2
P.V.

ˆ 1

−1

V (λ)

x− λ
√

1− λ2dλ

− x

(1− x2)3/2

ˆ 1

−1

(x+ λ)V (λ)√
1− λ2

dλ− 1√
1− x2

ˆ 1

−1

V (λ)√
1− λ2

dλ

= p′(x) +
x√

1− x2
P.V.

ˆ 1

−1

V (λ)

x− λ

[
− 1√

1− λ2
+

√
1− λ2

1− x2
− x2 − λ2

(1− x2)
√

1− λ2

]
dλ

= p′(x).

We conclude that p = q and (2.5.17) is true.

Now to get a hold of the O(1)-terms we are interested in, we need the O(N−1) term in

the expansion of Js for the τ±-integrals. Again by Theorem 2.4.37, we know that

R(z) = I + R1(z)︸ ︷︷ ︸
O(N−1)

+o(N−1), ⇒ R(z)−1 = I −R1(z) + o(N−1)

where the claim about R−1 follows by Neumann series expansion. Inspecting (2.5.3), one

realizes that the extra O(N−1) correction is indeed given by

−
([
P (∞)

]−1
R′1P

(∞)

)
11

.

Let us consider first the contributions from the R
(xj)
1 terms with j ∈ {1, ..., k} (recall
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Theorem 2.4.37 for the definition of this and J (xj) below).

Lemma 2.5.9. Let τ± be as in Lemma 2.5.4 and j ∈ {1, ..., k}. Then

−
ˆ 1

0
ds

N

2πi

[ˆ
τ+

−
ˆ
τ−

]
J (xj)(z)∂sVs(z)dz =

β2
j

4
log
[π

2
d(xj)

]
+O(N−1) (2.5.19)

uniformly in xj ∈ (−1 + ε, 1− ε).

Proof. Recall first of all from Theorem 2.4.37 that for j ∈ {1, ...k}

NJ (xj)(z) = −1

4

1

(z − xj)2

iβ2
j

4πds(xj)
√

1− x2
j

[
a(z)2

a+(xj)2
+
a+(xj)

2

a(z)2

]

+
1

4

1

(z − xj)2

iβj(c
2
xj ,s + c−2

xj ,s)

4πds(xj)
√

1− x2
j

[
a(z)2

a+(xj)2
− a+(xj)

2

a(z)2

]

where

cxj ,s =
(
xj + i

√
1− x2

j

)A
exp

−i∑
k>j

βkπ/2 +Nφs,+(xj)− (1 + βj)πi/4

 .

Let us first focus on the z-integral in the statement of the lemma. Note first that

a(z)2

a+(xj)2
+
a+(xj)

2

a(z)2
=

2i(1− xjz)

(z − 1)1/2(z + 1)1/2
√

1− x2
j

(2.5.20)

and
a(z)2

a+(xj)2
− a+(xj)

2

a(z)2
=

2i(xj − z)

(z − 1)1/2(z + 1)1/2
√

1− x2
j

. (2.5.21)

Using (2.5.20) and (2.5.21) one can check with direct calculations that

1

(xj − z)2

[
a(z)2

a+(xj)2
+
a+(xj)

2

a(z)2

]
=

2i√
1− x2

j

d

dz

(z − 1)1/2(z + 1)1/2

z − xj

and
1

(xj − z)2

[
a(z)2

a+(xj)2
− a+(xj)

2

a(z)2

]
=

2i√
1− x2

j

1

xj − z
1

(z − 1)1/2(z + 1)1/2
.

Recalling that ∂sVs(z) = V (z) − 2z2, we thus see by integration by parts, contour
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deformation, and Sokhotski-Plemelj that[ˆ
τ+

−
ˆ
τ−

]
1

(xj − z)2

[
a(z)2

a+(xj)2
+
a+(xj)

2

a(z)2

]
∂sVs(z)

dz

2πi
(2.5.22)

= − 1

π

1√
1− x2

j

[ˆ
τ+

−
ˆ
τ−

]
(z − 1)1/2(z + 1)1/2

z − xj
(V ′(z)− 4z)dz

= − 2i

π
√

1− x2
j

P.V.

ˆ 1

−1
(V ′(λ)− 4λ)

√
1− λ2

λ− xj
dλ

and simply by Sokhotski-Plemelj that[ˆ
τ+

−
ˆ
τ−

]
1

(xj − z)2

[
a(z)2

a+(xj)2
− a+(xj)

2

a(z)2

]
∂sVs(z)

dz

2πi
(2.5.23)

=
2

πi

1√
1− x2

j

P.V.

ˆ 1

−1

V (λ)− 2λ2

xj − λ
dλ√

1− λ2
.

Let us first focus on the integral of the first term. We have from (2.5.22) and (2.5.16)

−
ˆ 1

0
ds

[ˆ
τ+

−
ˆ
τ−

]−1

4

1

(z − xj)2

iβ2
j

4πds(xj)
√

1− x2
j

[
a(z)2

a+(xj)2
+
a+(xj)

2

a(z)2

] ∂sVs(z)
dz

2πi

(2.5.24)

=
β2
j

4

(
d(xj)−

2

π

)ˆ 1

0

ds

ds(xj)
=
β2
j

4
log
[π

2
d(xj)

]
.

Let us now turn to the second term. We have from (2.5.23) and (2.5.17) that

−
ˆ 1

0
ds

[ˆ
τ+

−
ˆ
τ−

]1

4

1

(z − xj)2

iβj(c
2
xj ,s + c−2

xj ,s)

4πds(xj)
√

1− x2
j

[
a(z)2

a+(xj)2
− a+(xj)

2

a(z)2

] ∂sVs(z)
dz

2πi

= −(1− xj)−3/2βj
4

ˆ 1

xj

(
d(λ)− 2

π

)√
1− λ2dλ

ˆ 1

0
ds
c2
xj ,s + c−2

xj ,s

ds(xj)
.

Let us note that we can write c2
xj ,s = eiθN (xj)e

2πiNs
´ 1
xj

(d(λ)− 2
π )
√

1−λ2
dλ, where eiθN (xj)

is a complex number of unit length and independent of s. Thus

ˆ 1

xj

(
d(λ)− 2

π

)√
1− λ2dλ

ˆ 1

0
ds

c±2
xj ,s

ds(xj)

= ±e±iθN (xj)
1

2πiN

ˆ 1

0

1

ds(xj)

d

ds
e±2πiNs

´ 1
x (d(λ)− 2

π )
√

1−λ2dλds.

Integrating this by parts, noting that d
dsds(x) = d(x)− 2

π is bounded and 1/ds(x)2 is
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bounded in x and s, we see that

−
ˆ 1

0
ds

[ˆ
τ+

−
ˆ
τ−

] 1

(z − xj)2

iβj(c
2
xj ,s + c−2

xj ,s)

ds(xj)
√

1− x2
j

[
a(z)2

a+(xj)2
− a+(xj)

2

a(z)2

] ∂sVs(z)dz

(2.5.25)

is O(N−1) uniformly in xj ∈ (−1 + ε, 1− ε). Combining (2.5.24) and (2.5.25), yields the

claim (2.5.19).

Let us now treat the integrals associated to J (±1).

Lemma 2.5.10. We have

−
ˆ 1

0
ds

N

2πi

[ˆ
τ+

−
ˆ
τ−

]
J (1)(z)∂sVs(z)dz = − 1

24
log
(π

2
d(1)

)
, (2.5.26)

−
ˆ 1

0
ds

N

2πi

[ˆ
τ+

−
ˆ
τ−

]
J (−1)(z)∂sVs(z)dz = − 1

24
log
(π

2
d(−1)

)
.

Proof. We only prove the first equality. From Theorem 2.4.37 we have

J (1)(z) = − 1

(z − 1)2

21/2

8N

{
a(z)2

[
1

48

(
G(1)
s (1)

)−1
(5 + 96A2)− 5

12

(
G(1)
s (1)

)−2
([
G(1)
s

]′
(1)

)]
−a(z)−2 7

24

(
G(1)
s (1)

)−1
}
− 1

(z − 1)3

5
√

2

48NG
(1)
s (1)

a(z)2

where G
(1)
s is defined in (2.E.2) and we have G

(1)
s (1) = π

√
2ds(1). Note that

a(z)2

(z − 1)2
= − d

dz

(z + 1)1/2

(z − 1)1/2
and

a(z)2

(z − 1)3
=

1

3

d

dz

(z − 2)(z + 1)1/2(z − 1)1/2

(z − 1)2
.

Thus integrating by parts, contour deformation, and a simple application of Lemma

2.5.8 imply that[ˆ
τ+

−
ˆ
τ−

]
a(z)2

(z − 1)2
V (z)dz = −

[ˆ
τ+

−
ˆ
τ−

]
V (z)

d

dz

(
z + 1

z − 1

)1/2

dz

=

[ˆ
τ+

−
ˆ
τ−

]
V ′(z)

(
z + 1

z − 1

)1/2

dz

= 2i

ˆ 1

−1

√
1− x2

x− 1
V ′(x)dx = −4πi

and[ˆ
τ+

−
ˆ
τ−

]
a(z)2

(z − 1)2
∂sVs(z)dz =

[ˆ
τ+

−
ˆ
τ−

]
a(z)2

(z − 1)2
(V (z)− 2z2)dz = 0. (2.5.27)
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2.5. Integrating the differential identities

In a similar manner and with an application of Lemma 2.5.8,[ˆ
τ+

−
ˆ
τ−

]
a(z)2

(z − 1)3
V (z)dz = −

[ˆ
τ+

−
ˆ
τ−

]
V ′(z)

1

3

(z − 2)(z + 1)1/2(z − 1)1/2

(z − 1)2
dz

= −1

3

[ˆ
τ+

−
ˆ
τ−

]
V ′(z)

(z + 1)1/2(z − 1)1/2

z − 1
dz

+
1

3

[ˆ
τ+

−
ˆ
τ−

]
V ′(z)

(z + 1)1/2(z − 1)1/2

(z − 1)2
dz

= −1

3

[ˆ
τ+

−
ˆ
τ−

]
V ′(z)

(z + 1)1/2(z − 1)1/2

z − 1
dz

+
1

3

d

dx

∣∣∣∣
x=1

[ˆ
τ+

−
ˆ
τ−

]
V ′(z)

(z + 1)1/2(z − 1)1/2

z − x
dz

=
2i

3

ˆ 1

−1
V ′(λ)

√
1 + λ

1− λ
dλ+

2i

3

d

dx

∣∣∣∣
x=1

P.V.

ˆ 1

−1
V ′(λ)

√
1− λ2

λ− x
dλ

=
4πi

3
− 8π2i

3
d(1),

which implies [ˆ
τ+

−
ˆ
τ−

]
a(z)2

(z − 1)3
∂sVs(z)dz = −8π2i

3

(
d(1)− 2

π

)
. (2.5.28)

Consider finally the a(z)−2 term. One can easily check that

a(z)−2

(z − 1)2
= −2

3

∂

∂z

[
(z − 1)1/2(z + 1)1/2

(z − 1)2

]
+

1

3

a(z)2

(z − 1)2
.

We can safely ignore the second term on the RHS, as we saw that it will integrate to zero.

Moreover, we essentially calculated the integral related to the first term already:

−2

3

[ˆ
τ+

−
ˆ
τ−

]
V (z)

∂

∂z

[
(z − 1)1/2(z + 1)1/2

(z − 1)2

]
dz = −16

3
π2id(1)

and we find [ˆ
τ+

−
ˆ
τ−

]
a(z)−2

(z − 1)2
∂sVs(z)dz = −16π2i

3

(
d(1)− 2

π

)
. (2.5.29)

Putting together (2.5.27), (2.5.28), and (2.5.29) a direct calculation leads to

−
ˆ 1

0
ds

N

2πi

[ˆ
τ+

−
ˆ
τ−

]
J (1)(z)∂sVs(z)dz = − 1

24
log
(π

2
d(1)

)
.

Proof of Proposition 2.5.5. This is simply a combination of Lemma 2.5.6, Lemma 2.5.7,
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(2.5.15), Lemma 2.5.9, and Lemma 2.5.10.

We are now in a position to apply these results.

2.6 Proof of Theorem 2.1.1

As discussed earlier, we do this through Proposition 2.2.9. Before proving this, we will

need to recall Krasovsky’s result for the GUE from [Kra07] and a result of Claeys and

Fahs [CF16] which we need to control the situation when the singularities are close to each

other. Let us begin with Krasovsky’s result [Kra07, Theorem 1].

Theorem 2.6.1 (Krasovsky). Let (xj)
k
j=1 be distinct points in (−1, 1), let βj > −1, and

let HN be a GUE matrix (i.e. V (x) = 2x2). Then as N →∞

E
k∏
j=1

|det(HN − xj)|βj

=

k∏
j=1

C(βj)(1− x2
j )

β2j
8

(
N

2

)β2j
4

e(2x2j−1−2 log 2)
βj
2
N
∏
i<j

|2(xi − xj)|−
βiβj
2 (1 +O(logN/N))

uniformly in compact subsets of {(x1, ..., xk) ∈ (−1, 1)k : xi 6= xj for i 6= j}. Here

C(β) = 2
β2

2
G(1+β/2)2

G(1+β) , and G is the Barnes G function.

We mention that Krasovsky’s result is actually valid for complex βj with real part greater

than −1, and he used a slightly different normalization, but obtaining this formulation

follows after trivial scaling. Also his formulation of the result does not stress the uniformity,

but it can easily be checked through uniform bounds on the jump matrices which are

similar to the ones we have considered.

Combining this with Proposition 2.5.5 yields the following result.

Proposition 2.6.2. Let HN be drawn from a one-cut regular ensemble with potential V

and support of the equilibrium measure normalized to [−1, 1]. If (xj)
k
j=1 are distinct points

in (−1, 1) and βj ≥ 0 for all j, then

E
k∏
j=1

| det(HN − xj)|βj =

k∏
j=1

C(βj)
(
d(xj)

π

2

√
1− x2

j

)β2j
4

(
N

2

)β2j
4

e(V (xj)+`V )
βj
2
N

×
∏
i<j

|2(xi − xj)|−
βiβj
2 (1 + o(1)))

uniformly in compact subsets of {(x1, ..., xk) ∈ (−1, 1)k : xi 6= xj for i 6= j}.
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Proof. Let us write EV for the expectation with respect to an ensemble with potential V .

Note that from (2.3.1) setting f = 1, we have

ZN (V )

N !
= DN−1(1;V )

so we see from Proposition 2.5.5 that for f(λ) =
∏k
j=1 |λ− xj |βj and V0(x) = 2x2

logEV
k∏
j=1

|det(HN − xj)|βj − logEV0
k∏
j=1

| det(HN − xj)|βj (2.6.1)

= logDN−1(f ;V )− logDN−1(f ;V0)− logDN−1(1;V ) + logDN−1(1;V0)

= −N
k∑
j=1

βj
2

[
1

π

ˆ 1

−1

V (x)− 2x2

√
1− x2

dx− (V (xj)− 2x2
j )

]
+

k∑
j=1

β2
j

4
log
(π

2
d(xj)

)
+ o(1),

where we have the desired uniformity.

Let us now recall the logarithmic potential of the arcsine law (see e.g. [ST97, Section

1.3: Example 3.5]): 1
π

´ 1
−1 log |x− y|/

√
1− x2dx = − log 2 for all y ∈ (−1, 1). This along

with (2.2.3) imply that

1

π

ˆ 1

−1

V (x)√
1− x2

dx+ `V = −2 log 2.

This in turn implies that

(2x2
j − 1− 2 log 2)− 1

π

ˆ 1

−1

V (x)− 2x2

√
1− x2

dx+ (V (xj)− 2x2
j ) = V (xj) + `V .

Combining this with Theorem 2.6.1 and (2.6.1) yields the claim.

We now recall the result of Claeys and Fahs that we will need, namely [CF16, Theorem

1.1].

Theorem 2.6.3 (Claeys and Fahs). Let V be one-cut regular and let the support of

the associated equilibrium measure be [a, b] with a < 0 < b. Let β > 0, u > 0, and

fu(x) = |x2 − u|β. Then

logDN−1(fu;V ) = logDN−1(f0;V ) +

ˆ sN,u

0

σβ(s)− β2

s
ds+

β

2
sN,u

+N
β

2
(V (
√
u) + V (−

√
u)− 2V (0)) +O(

√
u) +O(N−1)

uniformly as u→ 0 and N →∞. Here

sN,u = −2πiN

ˆ √u
−
√
u
d(s)

√
(s− a)(b− s)ds
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and σβ(s) is analytic on −iR+, independent of V, N , and u and satisfies:

σβ(s) =

β2 + o(1), s→ −i0+

β2

2 −
β
2 s+O(|s|−1), s→ −i∞

(2.6.2)

Moreover, the integral involving σβ is taken along −iR+.

Much more is in fact known about σβ. For example, it is known to satisfy a Painlevé

V equation. A generalization of it was studied extensively in [CK15]. Theorem 2.6.3 and

Proposition 2.6.2 let us prove the convergence of E[µN (f)2] – the argument is similar to

analogous ones in [CF16, CK15].

Proposition 2.6.4. Let ϕ : (−1, 1) → [0,∞) be continuous and have compact support.

Moreover, let β ∈ (0,
√

2). Then

lim
N→∞

E[µN,β(ϕ)2] =

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)(2|x− y|)−

β2

2 dxdy

Proof. This is very similar to the proof of [CF16, Corollary 1.11] where a more general

statement was proven for the GUE. Let us fix some small ε > 0, α ∈ (β2/2, 1), and write

the relevant moment in the following way:

E[µN (ϕ)2] =

[ˆ
|x−y|≥ε

+

ˆ
2N−α≤|x−y|<ε

+

ˆ
|x−y|≤2N−α

]
ϕ(x)ϕ(y)

×
E
[
| det(HN − x)|β|det(HN − y)|β

]
E|det(HN − x)|βE|det(HN − y)|β

dxdy

=: AN,1(ε) +AN,2(ε) +AN,3.

It follows immediately from Proposition 2.6.2 that if there is some ε > 0 such that

|x− y| ≥ ε and x, y ∈ (−1 + ε, 1− ε) then uniformly in such x, y

E
[
|det(HN − x)|β| det(HN − y)|β

]
E|det(HN − x)|βE|det(HN − y)|β

=
1

(2|x− y|)
β2

2

(1 + o(1)).

As ϕ has compact support in (−1, 1), this is precisely the situation for the integral in

AN,1(ε). We conclude that

lim
N→∞

AN,1(ε) =

ˆ
|x−y|≥ε

ϕ(x)ϕ(y)
1

(2|x− y|)
β2

2

dxdy
ε→0+−→

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)

1

(2|x− y|)
β2

2

dxdy.

Let us now consider AN,3. Here we find by Cauchy–Schwarz and Proposition 2.6.2 that
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there exists some finite B(β) (uniform in the relevant x, y) such that

EV [|det(HN − x)|β|det(HN − y)|β]

EV [| det(HN − x)|β]EV [| det(HN − y)|β]
≤
√
EV [| det(HN − x)|2β]EV [|det(HN − y)|2β]

EV [|det(HN − x)|β]EV [|det(HN − y)|β]

≤ B(β)Nβ2/2

so we see that as N →∞

AN,3 =

ˆ
|x−y|≤2N−α

ϕ(x)ϕ(y)
EV [|det(HN − x)|β|det(HN − y)|β]

EV [| det(HN − x)|β]EV [| det(HN − y)|β]
dxdy . N−α+β2

2 → 0

since we chose α > β2/2.

Thus to conclude the proof, it’s enough to show that

lim
ε→0+

lim sup
N→∞

AN,2(ε) = 0.

Let us begin doing this by noting that if we write u = (x−y)2

4 and Vx,y(λ) = V (λ+ (x+

y)/2), then in the notation of Theorem 2.6.3

EV
[
| det(HN − x)|β|det(HN − y)|β

]
=
DN−1(fu;Vx,y)

DN−1(1;V )
.

This follows from (2.2.2) through the change of variables λi = µi + x+y
2 . The goal is to

make use of Theorem 2.6.3 to estimate DN−1(fu;Vx,y). There are several issues we need to

check to justify this. First of all, we need Vx,y to be one-cut regular and the interior of the

support of its equilibrium measure to contain the point 0. This is simple to justify as one

can check from the Euler-Lagrange equations that the equilibrium measure associated to

Vx,y is simply d(u+ x+y
2 )
√

1− (u+ x+y
2 )2du and its support is [−1− x+y

2 , 1− x+y
2 ]. The

remaining conditions for one-cut regularity are easy to check with this representation.

It is less obvious that we can use Theorem 2.6.3 to study the asymptotics ofDN−1(fu;Vx,y)

as now Vx,y depends on x and y and we would need the errors in the theorem to be uniform

in V as well. As mentioned in [CF16] for the GUE, for x, y ∈ (−1 + ε, 1− ε), this can be

checked by going through the relevant estimates in the proof. This is true also for general

one-cut regular ensembles. As checking this may be non-trivial for a reader with little

background in Riemann-Hilbert problems, we outline how to do this in Appendix 2.G.

We may therefore use Theorem 2.6.3, and so we have

log EV [| det(HN − x)|β| det(HN − y)|β]

= logDN−1(f0;Vx,y)− logDN−1(1;V ) +

ˆ sN,u

0

σβ(s)− β2

s
ds+

β

2
sN,u

+N
β

2
(Vx,y(

√
u) + Vx,y(−

√
u)− 2Vx,y(0)) +O(

√
u) +O(N−1),
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where the error estimates are uniform in |x− y| < ε and x, y ∈ (−1 + ε, 1− ε). Note that

now

sN,u = −2πiN

ˆ √u
−
√
u
dx,y(s)

√
1−

(
s+

x+ y

2

)2

ds

= −4πiN
√
ud

(
x+ y

2

)√
1−

(
x+ y

2

)2

+O(Nu)

again uniformly in the relevant values of x and y.

Recall that we’re considering u such that
√
u < 2ε but

√
u > N−α with β2

2 < α < 1.

We then have sN,u → −i∞ uniformly in the relevant x, y and using [CK15, equation (1.26)]

one has

lim
N→∞

[ˆ sN,u

0

σβ(s)− β2

s
ds+

β

2
sN,u +

β2

2
log |sN,u|

]
= log

G(1 + β
2 )4G(1 + 2β)

G(1 + β)4

uniformly for x, y ∈ (−1 + ε, 1− ε) and 2N−α < |x− y| < ε.

On the other hand, reversing our mapping from V to Vx,y, we see that

logDN−1(f0;Vx,y)− logDN−1(1;V ) = logEV
∣∣∣∣det

(
HN −

x+ y

2

)∣∣∣∣2β .
Thus we see that uniformly for x, y ∈ (−1 + ε, 1− ε) and 2N−α < |x− y| < ε

log EV [|det(HN − x)|β| det(HN − y)|β]

= logEV
∣∣∣∣det

(
HN −

x+ y

2

)∣∣∣∣2β + log
G(1 + β

2 )4G(1 + 2β)

G(1 + β)4

− β2

2
log

4πN
√
ud

(
x+ y

2

)√
1−

(
x+ y

2

)2
+N

β

2
(Vx,y(

√
u) + Vx,y(−

√
u)− 2Vx,y(0))

+O(
√
u) + o(1),

where o(1) means something that tends to zero as N →∞. Using these estimates, we can

write for such x, y

EV [|det(HN − x)|β|det(HN − y)|β]

EV [| det(HN − x)|β]EV [| det(HN − y)|β]

=
G(1 + β

2 )4G(1 + 2β)

G(1 + β)4

EV
∣∣det

(
HN − x+y

2

)∣∣2β
EV [|det(HN − x)|β]EV [| det(HN − y)|β]

×N−
β2

2 (2|x− y|)−
β2

2

πd(x+ y

2

)√
1−

(
x+ y

2

)2
−

β2

2
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× e
Nβ
2 (Vx,y(

√
u)+Vx,y(−

√
u)−2Vx,y(0))eO(

√
u)(1 + o(1))

uniformly in x, y ∈ (−1 + ε, 1− ε) and 2N−α < |x− y| < ε. Plugging in Proposition 2.6.2,

we see that this becomes

EV [| det(HN − x)|β|det(HN − y)|β]

EV [|det(HN − x)|β]EV [| det(HN − y)|β]

=

(
d
(x+y

2

)√
1−

(x+y
2

)2)β2/2

(
d(x)
√

1− x2d(y)
√

1− y2d(y)
)β2

4

(2|x− y|)−
β2

2 (1 + o(1))(1 +O(
√
u))

= (2|x− y|)−
β2

2 (1 + o(1))(1 +O(
√
u)).

We conclude that

lim
ε→0+

lim sup
N→∞

ˆ
2N−α<|x−y|<ε

ϕ(x)ϕ(y)
EV [|det(HN − x)|β| det(HN − y)|β]

EV [| det(HN − x)|β]EV [|det(HN − y)|β]
dxdy = 0,

which was the missing part of the proof.

Next we need to study the cross term EµN,β(ϕ)µ̃
(M)
N,β (ϕ) along with the fully truncated

term E[µ̃
(M)
N,β (ϕ)2]. For this, we need Proposition 2.2.10, so let us finish the proof of it.

Proof of Proposition 2.2.10. We have now

Ee
∑N
j=1 T (λj)

k∏
j=1

|det(HN − xj)|βj =
DN−1(f ;V )

DN−1(1;V )
,

where f(λ) = f1(λ) = eT (λ)
∏k
j=1 |λ − xj |βj . Since we know the asymptotics of this for

T = 0, we can apply Proposition 2.5.1 to get the relevant asymptotics for T 6= 0:

DN−1(f1;V )

DN−1(1;V )
=
DN−1(f0;V )

DN−1(1;V )
e
N
´ 1
−1 T (x)d(x)

√
1−x2dx+

∑k
j=1

βj
2

[´ 1
−1

T (x)

π
√

1−x2
dx−T (xj)

]

× e
1

4π2

´ 1
−1 dy

T (y)√
1−y2

P.V.
´ 1
−1
T ′(x)

√
1−x2

y−x dx
(1 + o(1))

uniformly in everything relevant. Applying Proposition 2.6.2 to this yields the claim.

We now apply this to understanding the remaining terms.

Proposition 2.6.5. Let β ∈ (0,
√

2) and ϕ : (−1, 1)→ [0,∞) be continuous with compact

support. Then for fixed M ∈ Z+

lim
N→∞

E[µN,β(ϕ)µ̃
(M)
N,β (ϕ)] = lim

N→∞
E[µ̃

(M)
N,β (ϕ)2] =

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy.
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Proof. Let us first consider the cross term. We write this as

E[µN,β(ϕ)µ̃
(M)
N,β (ϕ)] =

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)

E|det(HN − x)|βeβX̃N,M (y)

E| det(HN − x)|βEeβX̃N,M (y)
dxdy.

Let us begin by calculating the numerator. Note that as we have only one singularity,

Proposition 2.2.10 gives us asymptotics which are uniform in x throughout the whole

integration region. To apply Proposition 2.2.10, we point out that we now have T (λ) =

T (λ; y) = −β
∑M

k=1
2
k T̃k(λ)Tk(y). We need uniformity in y, but this is ensured by the fact

that in a neighborhood of [−1, 1], T is a polynomial of fixed degree and its coefficients are

uniformly bounded for fixed M . Using the facts that
´ 1
−1 Tk(y)/

√
1− y2dy = 0 for k ≥ 1,

P.V. 1π
´ 1
−1 T

′
k(y)

√
1− y2/(x − y)dy = kTk(x), and the orthogonality of the Chebyshev

polynomials: 2
´ 1
−1 Tk(λ)Tl(λ)/(π

√
1− λ2)dλ = δk,l for k, l ≥ 1, we see that

E[| det(HN − x)|βeβX̃N,M (y)] = E[|det(HN − x)|β]e−βN
∑M
k=1

2
k
Tk(y)

´ 1
−1 Tk(λ)d(λ)

√
1−λ2dλ

× e
β2

2

∑M
k=1

1
k
Tk(y)2+β2

∑M
k=1

1
k
Tk(x)Tk(y)(1 + o(1))

uniformly in x, y ∈ (−1 + ε, 1 − ε). We see that the E[|det(HN − x)|β]-term in the

denominator will cancel, but we still need to understand the EeβX̃N,M (y)-term. This now

has no singularity, so we get the asymptotics from Proposition 2.2.10 by setting βj = 0 for

all j. Thus we find with a similar argument that

EeβX̃N,M (y) = e−βN
∑M
k=1

2
k
Tk(y)

´ 1
−1 Tk(λ)d(λ)

√
1−λ2dλ+β2

2

∑M
k=1

1
k
Tk(y)2(1 + o(1)),

uniformly in y, and we conclude that

lim
N→∞

E[µN,β(ϕ)µ̃
(M)
N,β (ϕ)] =

ˆ 1

−1

ˆ 1

−1
f(x)f(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy.

For the fully truncated term one argues in a similar way: in this case

T (λ) = T (λ;x, y) = −β
M∑
j=1

2

j
T̃j(λ)(Tj(x) + Tj(y))

and only the part quadratic in T affects the leading order asymptotics. Going through the

calculations one finds

lim
N→∞

E[µ̃
(M)
N,β (ϕ)2] =

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy.

Before proving Proposition 2.2.9, we need to know that µβ exists, namely we need to
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prove Lemma 2.2.5.

Proof of Lemma 2.2.5. As discussed earlier, this boils down to showing that (µ
(M)
β (ϕ))∞M=1

is bounded in L2 for continuous ϕ : [−1, 1] → [0,∞). From the definition of µ
(M)
β (see

(2.2.11)), we see that

E[µ
(M)
β (ϕ)2] =

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)e

β2
∑M
j=1

1
j
Tj(x)Tj(y)

dxdy.

Now from Proposition 2.6.4 and Proposition 2.6.5, we see that if ϕ had compact support

in (−1, 1), then

0 ≤ lim
N→∞

E[(µN,β(ϕ)− µ̃(M)
N,β (ϕ))2] =

ˆ 1

−1

ˆ 1

−1

ϕ(x)ϕ(y)

|2(x− y)|β2/2
dxdy

−
ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy,

so for fixed M ∈ Z+ and continuous, compactly supported in (−1, 1), non-negative ϕ

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy ≤

ˆ 1

−1

ˆ 1

−1

ϕ(x)ϕ(y)

|2(x− y)|β2/2
dxdy <∞

as β2/2 < 1. For continuous ϕ : [−1, 1] → [0,∞), we get the same inequality simply by

approximating ϕ by a compactly supported one. We conclude that µ
(M)
β (ϕ) is indeed

bounded in L2 and thus (as it is a martingale as a function of M), a limit µβ(ϕ) exists in

L2(P).

We are now in a position to prove Proposition 2.2.9.

Proof of Proposition 2.2.9. As noted, Proposition 2.6.4 and Proposition 2.6.5 imply that

lim
N→∞

E[(µN,β(ϕ)−µ̃(M)
N,β (ϕ))2] =

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)

[
1

|2(x− y)|β2/2
− eβ2

∑M
k=1

1
k
Tk(x)Tk(y)

]
dxdy.

As this is a limit of a second moment, it is non-negative and we see that

lim sup
M→∞

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy ≤

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)(2|x− y|)−

β2

2 dxdy.

On the other hand, Lemma 2.2.3 and Fatou’s lemma imply that

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)(2|x− y|)−

β2

2 dxdy ≤ lim inf
M→∞

ˆ 1

−1

ˆ 1

−1
ϕ(x)ϕ(y)eβ

2
∑M
k=1

1
k
Tk(x)Tk(y)dxdy,
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so we see actually that

lim
M→∞

lim
N→∞

E[(µN,β(ϕ)− µ̃(M)
N,β (ϕ))2] = 0.

We still need to prove that when we first let N → ∞ and then M → ∞, µ̃
(M)
N,β (ϕ)

converges in law to µβ(ϕ). As µβ(ϕ) is constructed as a limit of µ
(M)
β (ϕ), this will follow

from showing that µ̃
(M)
N,β (ϕ) converges to µ

(M)
β (ϕ) in law if we let N →∞ for fixed M . For

this, consider the function F : RM → [0,∞)

F (u1, ..., uM ) =

ˆ 1

−1
ϕ(λ)e

β
∑M
k=1

1√
k
ukTk(λ)−β

2

2

∑M
k=1

1
k
Tk(λ)2

dλ.

We now have

F

((
− 2√

k
TrT̃k(HN ) +

2√
k
N

ˆ 1

−1
Tk(λ)µV (dλ)

)M
k=1

)
= µ̃

(M)
N,β (ϕ)(1 + o(1)),

where o(1) is deterministic. Moreover, if (Ak)Mk=1 are the i.i.d. standard Gaussians used in

the definition of µ
(M)
β , then F (A1, ..., AM ) = µ

(M)
β (ϕ). It follows easily from the dominated

convergence theorem that F is a continuous function, so if we knew that(
− 2√

k
TrT̃k(HN ) +

2√
k
N

ˆ 1

−1
Tk(λ)µV (dλ)

)M
k=1

d→ (A1, ..., AM )

as N → ∞, we would be done. This is of course well known and follows from more

general results such as [Joh98] for polynomial potentials or [BG13] for more general ones.

Nevertheless, we point out that it also follows from our analysis. If one looks at the

function T (λ) =
∑M

j=1 αj
2√
j
(T̃j(λ)−

´
Tj(u)µV (du)), one can then check that it follows

from Proposition 2.2.10 (setting βj = 0 for all j) that

Ee
∑N
j=1 T (λj) = e

1
2

∑M
k=1 α

2
j ,

which implies the claim.

Theorem 2.1.1 is essentially a direct corollary of Proposition 2.2.9.

Proof of Theorem 2.1.1. It is a standard probabilistic argument that Proposition 2.2.9

implies that also µN,β(ϕ) converges in law to µβ(ϕ) as N →∞ (for compactly supported

continuous ϕ : (−1, 1) → [0,∞)) – see e.g. [Kal02, Theorem 4.28]. Upgrading to weak

convergence is actually also very standard. One can simply approximate general continuous

ϕ : [−1, 1] → [0,∞) by ones with compact support in (−1, 1) and argue by Markov’s

inequality. For further details, we refer to e.g. [Kal83, Section 4].
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Appendix 2.A Proof of differential identities

In this appendix we prove Lemma 2.3.6 and Lemma 2.3.7.

Proof of Lemma 2.3.6. First of all, note that all of the appearing objects are differentiable

functions of t as can be seen from the determinantal representation of the polynomials

(2.3.5).

Recall from (2.3.4) that logDj(ft) = −2
∑j

k=0 logχk(ft). Also from (2.3.3), we see

that all polynomials of degree less than j are orthogonal to pj , so

ˆ
R
χj(ft)x

jpj(x; ft)ft(x)e−NV (x)dx = 1

and

ˆ
[∂tpj(x; ft)] pj(x; ft)ft(x)e−NV (x)dx =

ˆ
[∂tχj(ft)]x

jpj(x; ft)ft(x)e−NV (x)dx

=
∂tχj(ft)

χj(ft)
.

Thus we see that

∂t logDj(ft) = −
ˆ
∂t

[
j∑
l=0

pl(x; ft)
2

]
ft(x)e−NV (x)dx. (2.A.1)

The Christoffel-Darboux identity (see e.g. [Dei99, page 55]) states that

j∑
l=0

pl(x; ft)
2 =

χj(ft)

χj+1(ft)
[p′j+1(x; ft)pj(x; ft)− p′j(x; ft)pj+1(x; ft)]. (2.A.2)

Here ′ denotes differentiation with respect to x. Plugging this into (2.A.1), we see that

∂t logDj(ft) = −
ˆ
∂t

[
χj(ft)

χj+1(ft)
[p′j+1(x; ft)pj(x; ft)− p′j(x; ft)pj+1(x; ft)]

]
ft(x)e−NV (x)dx

= −∂t
ˆ

χj(ft)

χj+1(ft)
[p′j+1(x; ft)pj(x; ft)− p′j(x; ft)pj+1(x; ft)]ft(x)e−NV (x)dx

+

ˆ
χj(ft)

χj+1(ft)
[p′j+1(x; ft)pj(x; ft)− p′j(x; ft)pj+1(x; ft)]∂tft(x)e−NV (x)dx.

Using (2.3.3), one finds that the first integral equals j + 1 (note that the term cor-

responding to p′jpj+1 integrates to zero by orthogonality) so its derivative equals zero.
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Recalling that for Y (z, t) = Yj+1(z, t), we have

Y (z, t) =

 1
χj+1(ft)

pj+1(z, ft) ∗

−2πiχj(ft)pj(z, ft) ∗

 ,

where we ignore the second column of the matrix as it’s not relevant right now. Thus we

see the claim by replacing pj and pj+1 by the entries of Y and setting j = N − 1.

We now prove our second differential identity.

Proof of Lemma 2.3.7. The beginning of the proof is identical to the proof of Lemma 2.3.6.

Indeed, we can repeat everything up to (2.A.1) to get

∂s logDj(f, Vs) = −
ˆ
R
∂s

[
j∑
l=0

pl(x; f, Vs)
2

]
f(x)e−NVs(x)dx.

Again making use of Christoffel-Darboux and orthogonality, we find

∂s logDj(f ;Vs)

=

ˆ
χj(f ;Vs)

χj+1(f ;Vs)
[p′j+1(x; f, Vs)pj(x; f, Vs)− p′j(x; f, Vs)pj+1(x; f, Vs)]f(x)∂se

−NVs(x)dx,

which yields the claim when we set j = N − 1.

Appendix 2.B Proofs for the first transformation

In this appendix we prove Lemma 2.4.2, Lemma 2.4.4, and Lemma 2.4.5. Variants of

Lemma 2.4.2 are certainly well known in Riemann-Hilbert literature (see e.g. [DKM+99,

Proposition 5.4]), but to have it in precisely the form we need it, we sketch a proof.

Proof of Lemma 2.4.2. The first statement – (2.4.6) – is simply linearity and making use

of the fact that for the GUE, one has `GUE = −1 − 2 log 2 in our normalization. This

amounts to simply calculating the logarithmic potential (or noncommutative entropy) of

the semi-circle law. This is a standard calculation and we omit the proof, see e.g. Theorem

4.1 in [GP13] or alternatively one can integrate (2.2.3) against the arcsine law and use the

logarithmic potential of the arcsine law [ST97, Section 1.3: Example 3.5].

For (2.4.7) consider first the case where |λ| − 1 > M . Here we note that gs,+(λ) +

gs,−(λ) = 2 log |λ|+O(1) as |λ| → ∞ (uniformly in s), but we know that V (λ)/ log |λ| → ∞
as |λ| → ∞, so we see that by choosing M large enough (independent of s), gs,+(λ) +

gs,−(λ)− Vs(λ)− `s ≤ − log |λ|.
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For the |λ| − 1 < M -case, note that the left side of (2.4.7) is a continuous function,

and if we take M ′ < M , then our function is a continuous function which is (uniformly in

s) negative on [M ′,M ]. Thus it’s enough to consider the situation where M is small. In

particular, we can assume it’s so small, that d is positive in |λ| − 1 ∈ (0,M). Let us focus

on the λ > 1 case. The λ < −1 case is similar.

Let us suppress the dependence on s and write F (λ) = g+(λ) + g−(λ)− V (λ)− `. As

F (1) = 0, we have by using the Euler-Lagrange equation (2.2.3) at the point x = 1

F (λ) = F (λ)− F (1) = 2

ˆ 1

−1
(log(λ− x)− log(1− x))µV (dx)− V ′(1)(λ− 1) +O((λ− 1)2)

= 2

ˆ 1

−1

ˆ λ

1

du

u− x
µV (dx)− 2

ˆ 1

−1

λ− 1

1− x
µV (dx) +O((λ− 1)2)

= 2

ˆ 1

−1

ˆ λ

1

[
1

u− x
− 1

1− x

]
duµV (dx) +O((λ− 1)2)

= −2

ˆ λ

1
(u− 1)

ˆ 1

−1

d(x)
√

1− x2

(u− x)(1− x)
dxdu+O((λ− 1)2).

In the x-integral, let us make the change of variables, 1− x = (u− 1)y. We find

ˆ 1

−1

d(x)
√

1− x2

(u− x)(1− x)
dx = (u− 1)

ˆ 2
u−1

0

d(1− (u− 1)y)
√

(u− 1)y
√

2− (u− 1)y

(u− 1)2y(1 + y)
dy

=
√

2d(1)(u− 1)−1/2

ˆ 2
u−1

0

dy
√
y(1 + y)

+O

(ˆ 2
u−1

0

√
(u− 1)y

(1 + y)
dy

)
= O((u− 1)−1/2).

We conclude that F (λ) = −
´ λ

1 O(
√
u− 1)du + O((λ − 1)2) which implies the claim in

(2.4.7).

For (2.4.8), we note that for λ ∈ R and x ∈ (−1, 1)

lim
ε→0+

[log(λ+ iε− x)− log(λ− iε− x)] =

2πi, λ < x

0, λ > x
.

Thus for λ ∈ R

gs,+(λ)− gs,−(λ) =


2πi, λ < −1

2πi
´ 1
λ

[
(1− s) 2

π + sd(x)
]√

1− x2dx, |λ| < 1

0, λ > 1

which is (2.4.8).
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We now move on to prove Lemma 2.4.4.

Proof of Lemma 2.4.4. Let λ ∈ (−1, 1) and ε > 0 be small. We have

hs(λ+ iε) = −2πi

ˆ λ

1

[
(1− s) 2

π
+ sd(x)

]√
1− x2dx

− 2πi

ˆ ε

0

[
(1− s) 2

π
+ sd(λ+ iu)

]√
1− (λ+ iu)2idu.

The first term is purely imaginary. The second term is an analytic function of ε (in a

small enough λ-dependent neighborhood of the origin), it vanishes at ε = 0, its derivative

at ε = 0 is positive, and second derivative in a neighborhood of zero is bounded. From this

one can conclude that for small enough ε > 0, the real part of hs(λ+ iε) > 0. A similar

argument works for the claim about the real part of hs(λ− iε). Such an argument is easily

extended into a uniform one in this case.

Finally we prove Lemma 2.4.5.

Proof of Lemma 2.4.5. Uniqueness can be argued as for Y . The analyticity condition

comes from analyticity of Y and gs, so let us look at the jump conditions. Consider

first λ ∈ (−1, 1). Then from (2.4.5), (2.3.8), (2.4.8), (2.4.6), and some elementary matrix

calculations one finds

T+(λ) = e−N`sσ3/2Y−(z)

1 ft(λ)e−NVs(λ)

0 1

 e−N(gs,−(λ)+2πi
´ 1
λ [(1−s) 2

π
+sd(x)]

√
1−x2dx−`s/2)σ3

= T−(λ)

1 e2Ngs,−(λ)−N`sft(λ)e−NVs(λ)

0 1

 e−Nhs(λ)σ3

= T−(λ)

e−Nhs(λ) ft(λ)

0 eNhs(λ).


For |λ| > 1, we note that by (2.4.8), gs,+(λ)−gs,−(λ) ∈ {0, 2πi}, and a similar argument

results in

T+(λ) = T−(λ)

1 eN(g+,s(λ)+gs,−(λ)−`s−Vs(λ))ft(λ)

0 1


which is precisely (2.4.11).

For the behavior at infinity, we note that as z →∞ (uniformly for z not on the negative

real axis) gs(z) = log z + O(|z|−1). Thus we see from (2.3.9) and (2.4.5) that indeed
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(2.4.12) is satisfied (with behavior on the negative real axis coming from continuity up to

the boundary).

Appendix 2.C The RHP for the global parametrix

In this appendix we will sketch a proof of Lemma 2.4.14. We will make use of the fact

that the result is proven for t = 0, i.e. the case when T = 0, in [Kra07, Section 4.2] (which

relies on a similar result in [KMVAV04, Section 5], which again makes use of results in e.g.

[Dei99]).

Sketch of a proof of Lemma 2.4.14. The analyticity condition was already argued in Re-

mark 2.4.13. The normalization at infinity is easy to see from the fact that the a-matrix

(in right hand side of (2.4.22)) is 2I +O(|z|−1) and Dt(z) = Dt(∞) +O(|z|−1) as z →∞.

Thus the jump condition is the main one to check.

This would be a fairly short calculation to check directly, but we make use of it

being known for t = 0 and the representation (2.4.23). We start by noting that by the

Sokhotski-Plemelj formula and (2.4.23), for λ ∈ (−1, 1) \ {xj}kj=1

P
(∞)
± (λ, t) = e

σ3
2π

´ 1
−1

Tt(x)√
1−x2

dx
P

(∞)
± (λ, 0)e

−σ3
r±(λ)

2π

[
±πi Tt(λ)√

1−λ2
+P.V.

´ 1
−1

Tt(x)√
1−x2

dx
λ−x

]
,

where P.V. denotes the Cauchy principal value integral. Thus from the jump condition of

P (∞)(z, 0) (note that detP (∞)(z, t) = 1 so everything makes sense)

[
P

(∞)
− (λ, t)

]−1
P

(∞)
+ (λ, t) = e

σ3
r−(λ)

2π

[
−πi Tt(λ)√

1−λ2
+P.V.

´ 1
−1

Tt(x)√
1−x2

dx
λ−x

] 0 f0(λ)

−f0(λ)−1 0


× e
−σ3

r+(λ)

2π

[
πi
Tt(λ)√
1−λ2

+P.V.
´ 1
−1

Tt(x)√
1−x2

dx
λ−x

]

Noting that (from the definition of r; see (2.4.19)) r+(λ) = i
√

1− λ2 and r−(λ) =

−i
√

1− λ2 so with a simple calculation

[
P

(∞)
− (λ, t)

]−1
P

(∞)
+ (λ, t) =

 0 eTt(λ)f0(λ)

−e−Tt(λ)f0(λ)−1 0

 ,

which is precisely the claim as f0e
Tt = ft.
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Appendix 2.D The RHP for the local parametrix near a

singularity

Here we give further details about the local parametrix near a singularity. First of all, we

give a full description of the solution to the model RHP - the function Ψ.

Definition 2.D.1. Recall that we use Roman numerals for the octants of the plane:

I = {reiθ : r > 0, θ ∈ (0, π/4)} and so on. We also write Iν and Kν for the modified Bessel

functions of the first and second kind, as well as H
(1)
ν and H

(2)
ν for the Hankel functions

of the first and second kind. We then define (again roots are principal branch roots)

Ψ(ζ) =
1

2

√
πζ

H
(2)
βj+1

2

(ζ) −iH(1)
βj+1

2

(ζ)

H
(2)
βj−1

2

(ζ) −iH(1)
βj−1

2

(ζ)

 e
−
(
βj
2

+ 1
4

)
πiσ3 ζ ∈ I, (2.D.1)

Ψ(ζ) =
√
ζ


√
πIβj+1

2

(−iζ) − 1√
π
Kβj+1

2

(−iζ)

−i
√
πIβj−1

2

(−iζ) − i√
π
Kβj−1

2

(−iζ)

 e−
βj
4
πiσ3 ζ ∈ II, (2.D.2)

Ψ(ζ) =
√
ζ


√
πIβj+1

2

(−iζ) − 1√
π
Kβj+1

2

(−iζ)

−i
√
πIβj−1

2

(−iζ) − i√
π
Kβj−1

2

(−iζ)

 e
βj
4
πiσ3 ζ ∈ III, (2.D.3)

Ψ(ζ) =
1

2

√
−πζ

 iH
(1)
βj+1

2

(−ζ) −H(2)
βj+1

2

(−ζ)

−iH(1)
βj−1

1

(−ζ) H
(2)
βj−1

2

(−ζ)

 e

(
βj
2

+ 1
4

)
πiσ3 ζ ∈ IV, (2.D.4)

Ψ(ζ) =
1

2

√
−πζ

−H
(2)
βj+1

2

(−ζ) −iH(1)
βj+1

2

(−ζ)

H
(2)
βj−1

2

(−ζ) iH
(1)
βj−1

2

(−ζ)

 e
−
(
βj
2

+ 1
4

)
πiσ3 ζ ∈ V, (2.D.5)

Ψ(ζ) =
√
ζ

−i
√
πIβj+1

2

(iζ) − i√
π
Kβj+1

2

(iζ)

√
πIβj−1

2

(iζ) − 1√
π
Kβj−1

2

(iζ)

 e−
βj
4
πiσ3 ζ ∈ VI, (2.D.6)
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Ψ(ζ) =
√
ζ

−i
√
πIβj+1

2

(iζ) − i√
π
Kβj+1

2

(iζ)

√
πIβj−1

2

(iζ) − 1√
π
Kβj−1

2

(iζ)

 e
βj
4
πiσ3 ζ ∈ VII, (2.D.7)

Ψ(ζ) =
1

2

√
πζ

−iH
(1)
βj+1

2

(ζ) −H(2)
βj+1

2

(ζ)

−iH(1)
βj−1

1

(ζ) −H(2)
βj−1

2

(ζ)

 e

(
βj
2

+ 1
4

)
πiσ3 ζ ∈ VIII. (2.D.8)

In [Van03, Theorem 4.2] it is shown that this function indeed satisfies the problem we

used in Definition 2.4.20. An important fact about the function Ψ is its behavior near the

origin. The following was also part of [Van03, Theorem 4.2]: as ζ → 0

Ψ(ζ) =



O(|ζ|βj/2) O(|ζ|−βj/2)

O(|ζ|βj/2) O(|ζ|−βj/2)

 , ζ ∈ II, III,VI,VIIO(|ζ|−βj/2) O(|ζ|−βj/2)

O(|ζ|−βj/2) O(|ζ|−βj/2)

 , ζ ∈ I, IV,V,VIII

. (2.D.9)

We also mention that the function Ψ could be expressed in terms of the confluent

hypergeometric function of the second kind as in [DIK11, DIK14]. Let us now sketch the

proof of Lemma 2.4.23.

Sketch of a proof of Lemma 2.4.23. Consider first the analyticity condition. As we men-

tioned in Remark 2.4.22, one can check that E is analytic in U ′xj , so the jumps of P (xj)

come from those of Ψ(ζs(z)), Wj(z)
−σ3 and e−Nφs(z)σ3 .

As ζs preserves the real axis, and Σ was chosen so that under ζs, Σ ∩ U ′xj is mapped

to the real axis and lines intersecting origin at angles ±π/4. Thus from Definition 2.4.20,

Ψ(ζs(z)) has jumps on Σ and {z : Re(ζs(z)) = 0}.
From (2.4.27) – the definition of Wj – we see that Wj has jumps only across R and

{z : Re(ζs(z)) = 0}. Also from (2.4.28) and (2.4.9) we see that φ only has a jump across

R.

Thus to see that P (xj)(z, t, s) is analytic in U ′xj \ Σ, we need to check that the jump of

Wj(z)
−σ3 cancels that of Ψ(ζs(z)) along {z : Re(ζs(z)) = 0}. Let us look at for example

the jump across {z : Re(ζs(z)) = 0, Im(ζs(z)) > 0} = ζ−1
s (Γ3). From (2.4.27) we find that

for λ ∈ ζ−1
s (Γ3) (where the orientation is as for Γ3)

Wj,+(λ)Wj,−(λ)−1 =
(λ− xj)βj/2

(xj − λ)βj/2
= eiπ

βj
2 .
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Combining this with (2.4.32)

Ψ+(ζs(λ))Wj,+(λ)−σ3 = Ψ−(ζs(λ))eiπ
βj
2
σ3e−iπ

βj
2
σ3Wj,−(λ) = Ψ−(ζs(λ))Wj,−(λ),

so we see that P (xj)(z) is continuous across ζ−1
s (Γ3). The argument is similar for the jump

across ζ−1
s (Γ7). We conclude that P (xj) is analytic in U ′xj \ Σ.

Consider now the jump structure. The existence of continuous boundary values is

inherited from the corresponding properties of Ψ, Wj and φs. As Wj and φs have no jumps

across Σ±j−1 or Σ±j , the jumps here come from the jumps of Ψ. Let us consider for example

λ ∈ ζ−1
s (Γ2). Here using the jump condition of Ψ, an elementary matrix calculation shows

that

P
(xj)
+ (λ) = P

(xj)
− (λ)Wj(λ)σ3eNφs(λ)

 1 0

e−iπβj 1

Wj(λ)−σ3e−Nφs(λ)

= P
(xj)
− (λ)

 1 0

ft(λ)−1e−Nhs(λ) 1

 .

Calculating the jump matrix across Σ±j−1 and Σ−j is similar. For the jump across R, we

have for example for λ ∈ U ′xj ∩ (xj ,∞), from (2.4.27), (2.4.28), the analyticity of hs across

U ′xj ∩ R, along with Definition 2.4.20:

P
(xj)
+ (λ) = P

(xj)
− (λ)

 0 eNhs(λ)−iπ
βj
2 Wj,−(λ)2e2Nφs,−(λ)

−e−Nhs(λ)+iπβjWj,−(λ)−2e−2Nφs,−(λ) 0



= P
(xj)
− (λ)

 0 ft(λ)

−ft(λ)−1 0

 .

The calculation for the jump across U ′xj ∩ (−∞, xj) is similar.

To see (2.4.39), note first that as z → xj , ζs(x) = O(|z − xj |) (the implicit constant

depending on xj , N , and s, but this doesn’t matter now) and Wj(z) = O(|z − xj |βj/2). So

we have from (2.D.9) that for z ∈ ζ−1
s (I) and z → xj

Ψ(ζs(z))Wj(z)
−σ3 =

O(|z − xj |−βj ) O(1)

O(|z − xj |−βj ) O(1)

 .

As E is analytic in U ′xj , it is in particular bounded at xj , so as multiplying from the left
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doesn’t mix the columns, we have the same behavior for E(z)Ψ(ζs(z))Wj(z)−σ3 . Now also

φs is bounded at xj and again multiplying by a diagonal matrix doesn’t mix the columns

so we have the claimed asymptotics for P (xj)(z) as z → xj from ζ−1
s (I). The other regions

are similar.

Let us now focus on the matching condition (2.4.40). We note that as d is positive on

[−1, 1], we see that for z ∈ ∂Uxj (and for δ small enough), |ζs(z)| � N where the implied

constants are uniform in xj ∈ (−1 + 3δ, 1− 3δ), s ∈ [0, 1], and z ∈ ∂Uxj . Thus to study

Ψ(ζs(z)), we can make use of the large argument expansion of Bessel functions. We won’t

go into great detail here, but simply refer the reader to [Van03, Section 4.3] and references

therein.

For simplicity, we focus on the domain {z : arg ζs(z) ∈ (0, π/2)}. In the other domains,

one has different asymptotics for Ψ, but the argument is similar. The relevant asymptotics

here are

Ψ(ζ) =
1√
2

 1 −i

−i 1

[I +O(|ζ|−1)
]
e
πi
4
σ3e−iζσ3e−πi

βj
4
σ3 , (2.D.10)

where the implied constant in O(|ζ|−1) is uniform in the first quadrant. Here and below,

the O-notation will refer to a 2× 2 matrix whose entries satisfy the relevant bound. Noting

from (2.4.26), (2.4.9), and (2.4.28), that for z ∈ U ′xj ∩ {Im(z) > 0}

ζs(z) = −Ni(φs,+(xj)− φs(z)).

It then follows from this and (2.D.10) that for z ∈ ζ−1
s (I ∪ II) ∩ ∂Uxj

Ψ(ζs(z))Wj(z)
−σ3e−Nφs(z)σ3 =

1√
2

 1 −i

−i 1

[I +O(N−1)
]
e
πi
4
σ3e−N(φs,+(xj)−φs(z))σ3e−πi

βj
4
σ3

×Wj(z)
−σ3e−Nφs(z)σ3

=
1√
2

 1 −i

−i 1

[I +O(N−1)
]
ei
π
4

(1−βj)σ3e−Nφs,+(xj)σ3Wj(z)
−σ3 ,

where the O(N−1) term is uniform in everything relevant. Using (2.4.33) and (2.4.35), we

see that for z ∈ ζ−1
s (I ∪ II) ∩ ∂Uxj

P (xj)(z)
[
P (∞)(z)

]−1
= A(z)(I +O(N−1))A(z)−1 = I +A(z)O(N−1)A(z)−1,
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where the O(N−1) term is uniform in everything relevant and

A(z) = P (∞)(z)Wj(z)
σ3eNφs,+(xj)σ3e−i

π
4

(1−βj)σ3 = E(z)

 1√
2

1 i

i 1



−1

The claim (in this sector of the boundary) will then follow if we show that A is uniformly

bounded in everything relevant. As φs,+(xj) is purely imaginary (see (2.4.9)), we see that

the relevant question is the boundedness of P (∞)(z)Wj(z)
σ3 and its inverse. Looking at

(2.4.22), we see that this is equivalent to Dt(z)−1Wj(z) being uniformly bounded and

uniformly bounded away from zero. Let us write this quantity out. From (2.4.21) and

(2.4.27) we have

∣∣Dt(z)−1Wj(z)
∣∣ =

∣∣∣∣(z + r(z))Ae
− r(z)

2π

´ 1
−1

Tt(λ)√
1−λ2

dλ
z−λ e

1
2
Tt(z)

∣∣∣∣ .
Since z + r(z) is obviously bounded for z in a compact set, the integral term is uniformly

bounded in everything relevant by Lemma 2.4.15, and the last term is bounded as Tt is

uniformly bounded in everything relevant. Similarly we see uniform boundedness away

from zero. This concludes the proof for z ∈ ζ−1
s (I∪ II)∩ ∂Uxj . The proof in the remaining

parts of the boundary are similar.

We now move on to considering the proof of Lemma 2.4.24.

Proof of Lemma 2.4.24. Here we simply need to take into account the next term in the

asymptotic expansion of Ψ. The argument is otherwise as in the proof of Lemma 2.4.23.

For simplicity, we will focus on the case where ζ is in the first quadrant. Other quadrants

are handled in a similar manner. We refer to the discussion around [Van03, equation (5.9)]

for the following asymptotics:

Ψ(ζ) =
1√
2

 1 −i

−i 1


I − iβj

4ζ

βj
2 i

i −βj
2

+O
(
|ζ|−2

) ei(π4−βjπ4 −ζ)σ3 , (2.D.11)

where the error O(|ζ|−2) is uniform for ζ in the first quadrant. Then arguing as in the

previous proof, we see that

P (xj)(z)
[
P (∞)(z)

]−1
= I − i βj

4ζs(z)
A(z)

βj
2 i

i −βj
2

A(z)−1 +O
(
|ζs(z)|−2

)
,
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where we used the uniform boundedness of A and A−1. Noting that

1√
2

 1 −i

−i 1


βj

2 i

i −βj
2

 1√
2

1 i

i 1

 =

 0
(

1 +
βj
2

)
i(

1− βj
2

)
i 0

 ,

making use of ζs(z) � N uniformly in everything relevant for z ∈ ∂Uxj and the fact that

the asymptotic expansion of Ψ is uniform, we see the claim. Again, the argument in the

other regions is similar.

Appendix 2.E The RHP for the local parametrix near the

edge of the spectrum

In this section we will give some further details about the parametrices near the edge of

the spectrum. First we will justify the definition of the function ξs from (2.4.42).

Justification of the definition of ξs. The argument is essentially as in [DKM+99, Section

7]. Let us first recall some properties of φs. From (2.4.28) and (2.4.9), we note that φs

has a jump across U ′1 ∩ (−1, 1) but is continuous across U ′1 ∩ (1,∞), so it is analytic in

U ′1 \ [−1, 1]. Moreover, in U ′1 \ [−1, 1] we can write

3π

2
ds(z)(z + 1)1/2(z − 1)1/2 = G̃(1)

s (z)(z − 1)1/2, (2.E.1)

where G̃
(1)
s is analytic in U ′1. Expanding G̃

(1)
s as a series, integrating, and taking into

account the branch structure of φs, we can write

−3

2
φs(z) = G(1)

s (z)(z − 1)3/2, (2.E.2)

where the power is according to the principal branch and G
(1)
s is analytic in U ′1. If we

expand G
(1)
s (z) =

∑∞
k=0G

(1)
s,k(z − 1)k and G̃

(1)
s (w) =

∑∞
k=0 G̃

(1)
s,k(w − 1)k, then

G
(1)
s,k =

2

3 + 2k
G̃

(1)
s,k.

Now as G̃
(1)
s,0 = 3π√

2
ds(1) is uniformly bounded away from zero, we see from the above

display that the same holds for G
(1)
s,0. By Cauchy’s integral formula (for derivatives),

∣∣∣G̃(1)
s,k

∣∣∣ ≤ (3δ/2)−k sup
|z−1|=δ

∣∣∣∣32√z + 1

[
sd(z) + (1− s) 2

π

]∣∣∣∣ ≤ Cδ(3δ/2)−k,

for some constant Cδ independent of s, so we again get a similar bound for G
(1)
s,k. From this
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type of estimate, one can easily argue that by possibly decreasing δ by some s-independent

factor, G
(1)
s is zero free in U ′1. Thus with a suitable convention for the branch of the power,

the function

ξs(z) = N2/3(z − 1)G(1)
s (z)2/3

is analytic in U ′1.

For injectivity, note that the derivative of the function z 7→ (z − 1)G
(1)
s (z)2/3 at z = 1

is uniformly (in s) bounded away from zero and its second derivative is uniformly bounded

in s and in a small enough (s independent) neighborhood of 1. Thus by decreasing δ if

needed (in an s independent manner), we have univalence of ξs.

We now sketch the proof of Lemma 2.4.30.

Sketch of a proof of Lemma 2.4.30. Let us first of all consider the analyticity of F . P (∞)

is analytic in U ′1 \ [−1, 1], f1/2 is analytic in U ′1, and as ζs(1) = 0, ζ
1/4
s has a branch cut in

U1. We note from (2.E.2) that as one can check (from (2.4.9)) that −φs(λ) > 0 for λ > 1,

Gs(λ) > 0 for λ > 1. Thus Gs is real on R ∩ U ′1. As we argued above that it’s zero free, it

must be positive on R∩U ′1, so we see that ξs(λ) < 0 for λ < 1. As we are dealing with the

principal branch, the cut of ξ
1/4
s is along U ′1 ∩ (−1, 1). It’s thus enough to check that F is

continuous across (−1, 1) ∩ U ′1 and does not have an isolated singularity at z = 1.

For the continuity across (−1, 1), let λ ∈ (−1, 1) ∩ U ′1. We have from (2.4.24) and the

jump for ξ
1/4
s : for λ ∈ (−1, 1) ∩ U ′1

[ξs]
1/4
+ (λ) = i[ξs]

1/4
− (λ),

so that

F−(λ)−1F+(λ) =
(

[ξs]
1/4
− (λ)

)−σ3 1

2

 1 1

−1 1

 e−i
π
4
σ3ft(λ)−σ3/2

[
P

(∞)
− (λ)

]−1
P

(∞)
+ (λ)

× ft(λ)σ3/2ei
π
4
σ3

1 −1

1 1

([ξs]
1/4
+ (λ)

)σ3

=
(

[ξs]
1/4
− (λ)

)−σ3 1

2

 1 1

−1 1


 0 −i

−i 0


1 −1

1 1

([ξs]
1/4
+ (λ)

)σ3
= I.

Thus F is continuous across (−1, 1) ∩ U ′1.
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For the absence of an isolated singularity, we note that the entries of ξs(z)σ3/4 behave

at worst like |z− 1|−1/4 as z → 1. From (2.4.22) and Lemma 2.4.15, we see that the entries

of P (∞)(z) behave at worst like |z − 1|−1/4 as well. As f1/2(z) is bounded at z = 1, the

entries of F (z) behave at worst like |z − 1|−1/2. This is not strong enough to be a pole, so

there can be no isolated singularity at z = 1 and F is analytic.

Towards checking the analyticity of P (1) on U ′1 \ Σ, we refer to [DKM+99, Section 7]

on the following matter (in their notation Q = Ψσ): Q(ξs(z)) is analytic on U ′1 \ Σ and it

satisfies the following jump conditions:

Q+(ξs(λ)) = Q−(ξs(λ))

1 0

1 1

 , λ ∈ Σ±k+1 ∩ U
′
1, (2.E.3)

Q+(ξs(λ)) = Q−(ξs(λ))

 0 1

−1 0

 , λ ∈ (−1, 1)± ∩ U ′1, (2.E.4)

and

Q+(ξs(λ)) = Q−(ξs(λ))

1 1

0 1

 , λ ∈ (1,∞)± ∩ U ′1. (2.E.5)

As f
±1/2
t is analytic in U ′1 as if F , and φs has a jump along (−1, 1) ∩ U ′1, we see that P (1)

indeed is analytic in U ′1.

The jump conditions come from those of Q. Let us check for example the one across

(−1, 1) ∩ U ′1 – (2.4.48). For λ ∈ (−1, 1) ∩ U ′1, we have[
P

(1)
− (λ)

]−1
P

(1)
+ (λ) = ft(λ)σ3/2eNφs,−(λ)Q−(ξs(λ))Q+(ξs(λ)e−Nφs,+(λ)ft(λ)−σ3/2

= ft(λ)σ3/2e−
1
2
Nhs(λ)σ3

 0 1

−1 0

 e−
1
2
Nhs(λ)σ3ft(λ)−σ3/2

=

 0 ft(λ)

−ft(λ)−1 0

 .

The other jump conditions are similar.

Let us then check the matching condition. Let z ∈ ∂U1. For small enough δ (inde-

pendent of s), it is clear from (2.4.9) and (2.4.28) that |φs(z)| is bounded away from zero

uniformly in s and uniformly in z ∈ ∂U1. Thus |ξs(z)| � N2/3 where the implied constants

are uniform in z and s. We can thus make use of the large |ξ| asymptotics of Ai(ξ) and
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Ai′(ξ) to obtain asymptotics for Q(ξs(z)). For this, we will again refer to [DKM+99] – in

particular [DKM+99, equation (7.30)]: for z ∈ ∂U1

Q(ξs(z))e
2
3
ξs(z)3/2σ3 =

eπi/12

2
√
π
ξs(z)

−σ3/4


 1 1

−1 1

 e−i
π
4
σ3 +O(N−1)

 ,
where the error is uniform in z and s. Recalling that the construction of ξs was precisely

so that 2
3ξs(z)

3/2 = −Nφs(z), we see that

Q(ξs(z))e
−Nφs(z)σ3ft(z)

−σ3/2 =
eπi/12

2
√
π
ξs(z)

−σ3/4


 1 1

−1 1

 e−i
π
4
σ3 +O(N−1)

 ft(z)−σ3/2,
with the O(N−1)-term being uniform in everything relevant. Thus

P (1)(z)
[
P (∞)(z)

]−1
= I + P (∞)(z)ft(z)

σ3/2O(N−1)ft(z)
−σ3/2

[
P (∞)(z)

]−1
.

As ft(z)
±1 as well as the entries of [P (∞)]±1 are uniformly (in everything relevant)

bounded on ∂U1, the claim follows.

We will also give a proof of Lemma 2.4.31.

Proof of Lemma 2.4.31. This is again proven as the matching condition, but using finer

asymptotics of the Airy function. In particular, one has (see [DKM+99, equation (7.30)])

Q(ξs(z))e
−Nφs(z)σ3

=
eπi/12

2
√
π
ξs(z)

−σ3/4


 1 1

−1 1

+

− 5
48

5
48

− 7
48 − 7

48

 ξs(z)
−3/2 +O(|ξs(z)|−3)

 e−iπ4 σ3 ,
where the constant implied by the O notation is uniform in everything relevant. Thus

arguing as in the previous proof, we see that for z ∈ ∂U1

P (1)(z)
[
P (∞)(z)

]−1

= I + P (∞)(z)f(z)σ3/2eiπσ3/4
1

8

 1
6 1

−1 −1
6

 e−iπσ3/4f(z)−σ3/2
[
P (∞)(z)

]−1
ξs(z)

−3/2 +O(N−2)

uniformly in everything relevant.
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Appendix 2.F Proofs concerning the final transformation

and solving the R-RHP

In this section we sketch proofs concerning the final transformation and the solution of the

R-RHP. We start with checking that R indeed solves the RHP of Lemma 2.4.34.

Proof of Lemma 2.4.34. Uniqueness follows from S being the unique solution to its problem.

The last condition is immediate to check as for large |z|, R(z) = S(z)[P (∞)(z)]−1 and both

of these terms are asymptotically I +O(|z|−1). The jump conditions simply make use of

the definition of R and the jump conditions of S – these are direct to check and we skip

this.

For the analyticity condition we begin with the domain U±1. Here the construction of

P (±1) was such that it would have the same jumps as S so R has no branch cuts inside of

U±1. We are left with the possibility that R would have an isolated singularity at z = ±1.

Recall that S(z) is bounded as z → ±1, while Lemma 2.4.15 implies that the entries of

[P (∞)(z)]−1 can blow up at most like |z ∓ 1|−1/4 as z → ±1. Thus the possible isolated

singularity of R is not strong enough to be a pole (or essential), so it is removable, and R

is analytic in U±1.

Consider now a neighborhood Uxj . Again, by the construction of the parametrix, there

are no jumps here, and the only possible singularity is an isolated singularity at xj . Recall

now that as z → xj from outside of the lenses, S(z) = O(1), and as z → xj from inside of

the lenses,

S(z) =

O(|z − xj |−βj ) O(1)

O(|z − xj |−βj ) O(1)

 .

P (xj)(z) has similar behavior near xj . To estimate it’s inverse, we note that detP (xj)(z) =

1 for all z ∈ Uxj - which follows directly from the definitions once one knows that det Ψ = 1

(which we argued following Definition 2.4.20, or one could check directly using the explicit

representation of Ψ from Appendix 2.D).

We thus see that as z → xj from outside of the lenses, [P (xj)(z)]−1 remains bounded,

and as z → xj from inside the lenses, we have

[
P (xj)(z)

]−1
=

 O(1) O(1)

O(|z − xj |−βj ) O(|z − xj |−βj )


so we conclude that from the inside of the lens, the entries of the matrix S(z)[P (xj)(z)]−1

have singularities of order O(|z − xj |−βj ) at worst. Now we see that as S(z)[P (xj)(z)]−1

remains bounded as z → xj from outside of the lenses, it can’t have a pole at xj .

But as the degree of the singularity is bounded (we can find an integer k such that
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(z− xj)kS(z)[P (xj)(z)]−1 tends to zero as z → xj), the singularity can’t be essential either.

Thus the only possibility is that the singularity is removable, and R(z) is analytic in Uxj .

Thus we see that R indeed solves the Riemann-Hilbert problem.

We next prove the relevant estimate for the jump matrix.

Proof of Lemma 2.4.35. Let us first consider the jump matrix on R \ [−1− δ, 1 + δ]. Here

we have

∆(λ) = P (∞)(λ)

0 ft(λ)eN(gs,+(λ)+gs,−(λ)−Vs(λ)−`s)

0 0

[P (∞)(λ)
]−1

.

First of all, we note that the entries of P (∞)(λ) and [P (∞)(λ)]−1 are bounded (uniformly

in everything relevant) in this area, and ft(λ) grows like |λ|
∑k
j=1 βj as |λ| → ∞. From (2.4.7),

we see that there exist constants C,M > 0 depending only on V such that for |λ| > 1 +M ,

eN(gs,+(λ)+gs,−(λ)−Vs(λ)−`s) ≤ |λ|−N and for |λ| − 1 ∈ (0,M), eN(gs,+(λ)+gs,−(λ)−Vs(λ)−`s) ≤
e−NC(|λ|−1)3/2 . From these estimates, it’s easy to see that any Lp norm on R\ [−1−δ, 1+δ]

is exponentially small in N .

Consider next the part of the contour lying on the boundaries of the lenses. More

precisely, we have for λ ∈ ∪k+1
j=1Σ±j \ U−1 ∪ ∪kj=1Uxj ∪ U1,

∆(λ) = P (∞)(λ)

 0 0

ft(λ)−1e∓Nhs(λ) 0

[P (∞)(λ)
]−1

.

We now refer to Lemma 2.4.4, which states that for example for λ ∈ Σ+
j \U−1 ∪ ∪kl=1Uxl ∪ U1,

there exists an ε > 0 independent of s and λ such that Re(hs(λ)) > ε (we assume that the

distance between this part of the contour and the real axis is bounded away from zero

uniformly in everything relevant). Moreover, ft(λ)−1 is uniformly bounded here so we

again get exponential smallness for any Lp norm uniformly in everything relevant for this

part of the contour (as the contour has finite length). The Σ−j -case is identical.

For ∂Uxj and ∂U±1 the bounds come from the matching conditions in Lemma 2.4.23

and Lemma 2.4.30. Combining the estimates from the different parts of the contour is

elementary and we find the claim.

The next proof we consider is the representation of R in terms of a certain Neumann-

series. The proof follows [DKM+99, Theorem 7.8], and while it is a standard fact, we

record it here for completeness.

Proof of Proposition 2.4.36. By the Sokhotski-Plemelj theorem, we see that the function

R̂ = I +C(R+−R−) satisfies R̂+− R̂− = R+−R− across Γδ \ {intersection points} (note
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that from our proof of Lemma 2.4.35, we see that R+ − R− = R−∆ has nice enough

decay at infinity for R̂ to be well defined). Thus the function R̂−R has no jump across

Γδ \ {intersection points}. By construction, both functions are bounded at the intersection

points of the different parts of the contour, and behave like I +O(|z|−1) as z →∞, so by

Liouville’s theorem

R = I + C(R+ −R−) = I + C(R−∆).

In particular, taking the limit from the − side, we obtain

R− − I = C−(R−∆) = C∆(R−) ⇔ (I − C∆)(R− − I) = C∆(I).

It is well known that C− is a bounded operator from L2(Γδ) to L2(Γδ) – see e.g. the

discussion and references in [DKM+99, Appendix A]. Given the estimate in Lemma 2.4.35

the operator norm of C∆ is of order O(1/N), I − C∆ is invertible (and the inverse can be

expanded as a Neumann series) for N sufficiently large and the result follows.

Finally we prove the main result concerning R. Our proof is a minor modification of

that in [Kra07].

Proof of Theorem 2.4.37. Note that since (I − C∆)(R− − I) = C∆(I) and since the L2-

boundedness of C− implies that ||C∆(I)||L2(Γδ) = O(N−1) (uniformly in everything rele-

vant), we have

||R− − I||L2(Γδ) ≤ ||(I − C∆)−1||L2(Γδ)→L2(Γδ)||C∆(I)||L2(Γδ) ≤
c1

N

for some c1 > 0 (independent of the relevant quantities).

Now fix some small ε > 0, and suppose z is at least ε away from the jump contour Γδ.

Recall that in the proof of (2.4.59), we saw that (I − C∆)−1C∆(I) = R− − I, so we have

(for c2, c3, c4 depending on ε but not on t, s, ...)

|R− I| ≤ |C(∆)|+ |C((R− − I)∆)|

≤ c2

N
+ c3||R− − I||L2(Γδ)||∆||L2(Γδ) ≤

c4

N
,

where we used Cauchy-Schwarz in the second step and the facts that R− is bounded on Γδ

and behaves like I +O(|λ|−1), as λ→∞.

For z ∈ C\Γδ that is within a distance of ε from Γδ but not close to any intersection

points, we use the usual trick of contour deformation. First note that we can analytically

continue the jump matrix JR to, without loss of generality, a (2ε)-neighbourhood of Γδ,

with the estimates in Lemma 2.4.35 remaining true (up to a change of constants).

We may assume that z lies on the + side of Γδ. Let Γ̃δ be the contour in Figure 2.8,

obtained from Γδ with the dotted part replaced by a half circle of radius ε, and R̃ be
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+

− Γ̃δ
z

ε

R̃ = R

R̃ = R
R̃ = RJ

Figure 2.8: Deforming the R-RHP.

defined as shown, where J is the analytic continuation of JR. Then R̃(z) satisfies the same

Riemann-Hilbert problem as R(z) except on the new contour Γ̃δ. Repeating our argument

for the case where z is at distance at least ε from the contour, we see that

|R(z)− I| = |R̃(z)− I| ≤ c5

N
,

for a c5 which is uniform in the relevant quantities. Now note that all estimates established

so far are also uniform in δ ∈ K ⊂ (0, δ0] for some compact set K and δ0 > 0, see [DKM+99,

Section 7.2]. If z is close to any intersection points we may then deform our contour by

varying δ.

For the derivative, let us consider the case where the distance between z and the jump

contour is greater than ε. Then by Cauchy’s integral formula we have

R′(z) =
1

2πi

ˆ
|w−z|=ε

R(w)

(w − z)2
dw =

1

2πi

ˆ
|w−z|=ε

R(w)− I
(w − z)2

dw = O(N−1)

where the last equality follows from the uniform estimates for R(w)− I. For z close to the

contour we argue by contour deformation again.

We now want to extract the second order asymptotics when T = 0. Since

R = I + C(∆) + C((R− − I)∆),

repeating our argument with minor modifications we see that

R− I − C(∆) = O(N−2) and R′ − C(∆)′ = O(N−2)

uniformly off of Γδ and uniformly in everything relevant. Now by definition, we have

[C(∆)](z) =

ˆ
Γδ

∆(w)

w − z
dw

2πi
.

With similar arguments as in the proof of Lemma 2.4.35, one can easily see (e.g. using

Cauchy-Schwarz and a L2-norm bound on the jump matrix on the unbounded part of the

contour and a L∞-norm bound on the part of the contour on the boundary of the lenses)
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that the contribution from the part of the contour on R and on the boundary of the lenses

has uniformly (in everything relevant) exponentially small contribution to C(∆). Thus we

have for z not on the jump contour

[C(∆)](z) =
k+1∑
j=0

˛
∂Uxj

∆(w)

w − z
dw

2πi
+O(N−2) =:

k+1∑
j=0

R
(xj)
1 (z) +O(N−2),

where the orientation of the contours is in the clockwise direction and the O(N−2) is

uniform in everything relevant. From Lemma 2.4.24, Lemma 2.4.31, and Remark 2.4.32,

we can then write (again for z off of the jump contour)

R
(xj)
1 (z) =

1

2πi

˛
∂Uxj

dw

w − z
βj

4ζ
(xj)
s (w)

E(xj)(w)

 0 1 +
βj
2

1− βj
2 0

[E(xj)(w)
]−1

, 1 ≤ j ≤ k

R
(±1)
1 (z) =

1

2πi

˛
∂U±1

dw

w − z
F (±1)(w)

 0 ± 5
48

[
ξ

(±1)
s (w)

]−2

− 7
48

[
ξ

(±1)
s (w)

]−1
0

[F (±1)(w)
]−1

where the superscripts have been added to underline that the functions depend on the

singularity we are considering.

Consider now z /∈ Uxj with j ∈ {1, ..., k}. Then as E,E−1 are analytic in Uxj and

1/ζ
(xj)
s (w) has a simple pole at w = xj (and no other singularities in Uxj ), we see that

R
(xj)
1 (z) =

1

z − xj
βj

4πN
(

2
π (1− s) + sd(xj)

)√
1− x2

j

E(xj)(xj)

 0 1 +
βj
2

1− βj
2 0

[E(xj)(xj)
]−1

,

where, by writing bxj = a+(xj)
2 + a+(xj)

−2 and b̄xj = a+(xj)
2 − a+(xj)

−2, one finds

(after an elementary calculation)

E(xj)(xj)

 0 1 +
βj
2

1− βj
2 0

[E(xj)(xj)
]−1

=
1

8

 −i[2(c2
xj + c−2

xj )bxj b̄xj + βj(b
2
xj + b̄2xj )] 2D(∞)2[(c2

xjb
2
xj + c−2

xj b̄
2
xj ) + βjbxj b̄xj ]

2D(∞)−2[(c−2
xj b

2
xj + c2

xj b̄
2
xj ) + βjbxj b̄xj ] i[2(c2

xj + c−2
xj )bxj b̄xj + βj(b

2
xj + b̄2xj )]

 .

Here we made use of the fact that E(xj) is analytic at xj so we can evaluate E(xj)(xj)

using the formula (2.4.33).
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For R
(±1)
1 (z) with z /∈ U±1 the residue calculations are more involved (but still straight-

forward) because of the presence of a second order pole. We just summarize here that

R
(−1)
1 (z) = −21/2

2N

1

(−1− z)2

5

48G
(−1)
s (−1)

 −i D(∞)2

D(∞)−2 i



+
21/2

8N

1

z + 1


i

[
9−96A2

48G
(−1)
s (−1)

−
5
[
G

(−1)
s

]′
(−1)

12G
(−1)
s (−1)2

]
D(∞)2

[
19+96A(1+A)

48G
(−1)
s (−1)

+
5
[
G

(−1)
s

]′
(−1)

12G
(−1)
s (−1)2

]
i

D(∞)2

[
19−96A(1−A)

48G
(−1)
s (−1)

+
5
[
G

(−1)
s

]′
(−1)

12G
(−1)
s (−1)2

]
−i

[
9−96A2

48G
(1)
s (1)

−
5
[
G

(−1)
s

]′
(−1)

12G
(−1)
s (−1)2

]
 ,

R
(1)
1 (z) = −21/2

2N

1

(1− z)2

5

48G
(1)
s (1)

 1 −iD(∞)2

−iD(∞)−2 −1



− 21/2

8N

1

1− z


9−96A2

48G
(1)
s (1)

+
5
[
G

(1)
s

]′
(1)

12G
(1)
s (1)2

iD(∞)2

[
19+96A+96A2

48G
(1)
s (1)

−
5
[
G

(1)
s

]′
(1)

12G
(1)
s (1)2

]

iD(∞)−2

[
19−96A+96A2

48G
(1)
s (1)

−
5
[
G

(1)
s

]′
(1)

12G
(1)
s (1)2

]
− 9−96A2

48G
(1)
s (1)

−
5
[
G

(1)
s

]′
(1)

12G
(1)
s (1)2

 ,

where the functions G
(±1)
s (z) come from

ξ(−1)
s (z) = e−iπN2/3G(−1)

s (z)2/3(z + 1), ξ(1)
s (z) = N2/3G(1)

s (z)2/3(z − 1),

(see Appendix 2.E). J (xj)(z) may now be obtained by direct calculation.

Appendix 2.G Uniformity of the asymptotics in Theorem

2.6.3

In this appendix we will give a brief outline of how to check that the asymptotics in

Theorem 2.6.3 are still uniform when we replace V by Vx,y when x, y ∈ (−1 + ε, 1 − ε)
(in the notation of Section 2.6). We will not try to be self contained here and we will

use notations both from [CF16] and ones we’ve adopted earlier in this article. We won’t

provide all of the relevant definitions from [CF16]. We will simply try to provide a map of

how to go over the argument.

Let us write u = (x − y)2/4 ≥ 0 (which in the notation of [CF16] is t) and v =

(x + y)/2 ∈ (−1 + ε, 1 − ε), where ε is determined by the support of our non-negative

test function. We also write Vv(z) = V (z + v). In the notation of Section 2.6, we are

interested in the asymptotics of DN−1(fu;Vv), which in the notation of [CF16] would be

ẐN (u, β, Vv)/N !. Note that in the notation of [CF16], β is replaced by α.
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Let us write Y for the solution of the RHP related to DN−1(fu;Vv). Y depends on u

and v, but as usual, we suppress this dependence in our notation. Then as the “center of

mass” and “relative motion” coordinates decouple, or ∂uVv = 0 for all u and v, the proof

of [CF16, Proposition 4.1] carries through word to word and one finds

∂u logDN−1(fu;Vv) = − β

2
√
u

[
(Y (
√
u)−1Y ′(

√
u))22 − (Y (−

√
u)−1Y ′(−

√
u))22

]
. (2.G.1)

The goal will be to integrate this from zero to some positive u. Even though ±
√
u lie

on the jump contour of Y , this quantity in fact does not have a jump so the notation is

justified. Moreover one can calculate the relevant quantities at a point z and then let

z → ±
√
u – in particular the point z can be taken to be outside of the relevant lenses and

for simplicity in the lower half plane (see [CF16, Figure 8]). In [CF16, Section 6], using

results of [CK15], it is argued that near the points ±
√
u, but outside of the lenses, one

can write

Y (z) = e−N
`v
2
σ3
(
Rv(z)Ev(z)Ψ

(2)(λv(z); sN,u)Wv(z)
)
eNgv(z)σ3e

N`v
2
σ3 , (2.G.2)

where `v and gv refer to the `- and g-quantities constructed from the potential Vv. If we

restrict to points z outside of the lenses and in the lower half plane, then one has

Wv(z) =
[
(z2 − u)−β/2e

−πiβ
2 eNφv(z)

]σ3
, (2.G.3)

where (see the discussion around [CF16, equation (4.13)] for details about the branch and

integration contour – note that in the notation of [CF16], d is h and the support of the

equilibrium measure is [a, b] instead of our [−1− v, 1− v])

φv(z) = π

ˆ z

1−v
dv(ξ)((ξ + v) + 1)((ξ + v)− 1))1/2dξ. (2.G.4)

λv is a coordinate change which for z in the lower half plane is defined by (see [CF16,

equation (6.2)])

λv(z) = −iN
(
−φv(z)−

φv,+(
√
u) + φv,+(−

√
u)

2

)
. (2.G.5)

The main reason the uniformity of the asymptotics holds is that varying v ∈ (−1+ε, 1−ε)
does not change the qualitative behavior of the asymptotics of λv(z). If one were to allow

v = ±1, then the situation would be different.

For the definition of Ψ(2)(λ, s), we refer to [CF16, Section 3], but point out here that

while it depends on β, it does not depend on x, y, or V . The function Ev is analytic in a

neighborhood of zero (containing the points ±
√
u) and for the values of z we are interested
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in, it can be written as (see [CF16, Section 6.4])

Ev(z) = Nv(z)Wv(z)
−1e−iλv(z)σ3 = Nv(z)

[
(z2 − u)β/2eπiβ/2

]σ3
e
N
2 (φv,+(

√
u)+φv,+(−

√
u))σ3 ,

(2.G.6)

where Nv(z) is the global parametrix which is of similar form as the one we consider in

Section 2.4.2 apart from the support of the equilibrium measure now being [−1− v, 1− v]

which changes the formulas slightly. See also around [CF16, equations (5.5) and (6.1)]

for details. In particular, as z → ±
√
u for a fixed N , Nv(z) ∼ (z ∓

√
u)−

β
2
σ3 uniformly

in v. This combined with the fact that φv,+(±
√
u) is purely imaginary implies that in a

neighborhood of the origin, Ev, E
−1
v , and E′v are bounded uniformly in v ∈ (−1 + ε, 1− ε).

Finally Rv is a solution to a small norm RHP. As pointed out in [CF16], the analysis

of Rv and its RHP is essentially carried out in [CK15]. While verifying in full detail the

asymptotic behavior of Rv is not something we will do, we will briefly sketch part of the

argument, namely uniform asymptotics for the jump matrix across part of the boundary

of a neighborhood of the origin. Analyzing the jump matrix of R in the remaining part of

the contour is similar and with a standard argument one finds that R is uniformly close to

the identity and its derivative is uniformly small.

From the definition of Rv in [CF16, Section 6.5] we see for z on the boundary of some

neighborhood of the origin containing the points ±
√
u

Rv,+(z) = Rv,−(z)Ev(z)Ψ
(2)(λv(z); sN,u)Wv(z)Nv(z)−1 (2.G.7)

Following the notation in [CF16, Section 3], we note that we can write

Ψ(2)(λ, s) = ΨCK

(
−4λ

|s|
i; s

)
χ(λ), (2.G.8)

where ΨCK is the solution to the RHP in [CK15, Section 3] and χ(λ) is defined in [CF16,

equation (3.12)]. We note that as u is always small for us, |λv(z)/|s|| ∼ u−1/2 is large if

z is at a fixed distance from ±
√
u. We thus want to know the λ → ∞ asymptotics of

ΨCK(λ, s) for all values of s. This was studied in [CK15]. For the relevant asymptotics

for ΨCK(ζ; s), we refer to the discussion relevant to [CK15, equations (3.6), (5.25), and

(6.32)]. For Ψ(2)(λ; s) these asymptotics translate into the following: for large |λ|

Ψ(2)(λ; s) =


(I +O(|s||λ|−1))eiλσ3 , s→ −i0+

(I +O(|λ|−1))eiλσ3 , s = O(1)

(I +O(|sλ|−1))eiλσ3 , s→ −i∞

.

Using (2.G.6) and fact that Ev and E−1
v are uniformly bounded, we thus see that for
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all u and uniformly in v, the jump matrix along this part of the jump contour is

I + Ev(z)O(min(|s|, |s|−1)|λv(z)|−1)Ev(z)
−1 = I +O(min(|s|, |s|−1)|λv(z)|−1).

Going over such an argument in full detail would then imply that Rv can be solved

through the general small-norm approach and one has uniform asymptotics for Rv, e.g.

Rv(z) = I +O(N−1) and R′v(z) = O(N−1) uniformly in z and v ∈ (−1 + ε, 1− ε).
Let us now return to the differential identity (2.G.1). With a basic matrix algebra

argument, one finds from (2.G.2) as in [CF16, Section 5]

(
Y −1(z)Y ′(z)

)
22

= (B(z))22 −
N

2
V ′v(z) +

β

2

[
1

z −
√
u

+
1

z +
√
u

]
+

[
Ψ(2)(λv(z); sN,u)

d

dz
Ψ(2)(λv(z); sN,u)

]
22

,

where

B(z) = Ψ(2)(λv(z); sN,u)−1(Rv(z)Ev(z))
−1(Rv(z)Ev(z))

′Ψ(2)(λv(z); sN,u).

For the asymptotics of the d
dzΨ(2)-term, one can argue exactly like in [CF16, Section

6.4] (see also [CF16, equations (5.27) and (5.28); Lemma 5.3]) to find that as z → ±
√
u,

(
Ψ(2)(λv(z); s)

−1 d

dz
Ψ(2)(λv(z); s)

)
22

= ±2i
λ′v(±

√
u)

sN,u

(
σβ(sN,u)− β2

2

β
+
sN,u

2

)
− β

2

1

z ∓
√
u

+O(1),

where O(1) is uniform in v.

Thus what remains is the B-term. For this, by what we’ve argued about R and E, we

see that (RE)−1(RE)′ = O(1) uniformly in v in a neighborhood of zero. Thus it is enough

to show that as z → ±
√
u, ((Ψ(2))−1O(1)Ψ(2))22 = O(1) uniformly in v. Here again the

asymptotics of Ψ(2) come from [CK15], and in fact the uniformity in v follows from the

argument for a fixed v as in [CF16, Section 5.6 and Section 6.6] and the uniform behavior

of λv.
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Chapter 3

Fusion Asymptotics for Liouville

Correlation Functions

Abstract Under the probabilistic framework for the path integral approach to Liouville

Conformal Field Theory (LCFT) introduced by David-Kupiainen-Rhodes-Vargas, we

compute fusion estimates for the four-point correlation function on the Riemann sphere

and find that it is consistent with predictions from the framework of conformal bootstrap

in theoretical physics. This result fits naturally into the famous KPZ conjecture which

relates the four-point function to the expected density of points around the root of a

large random planar map weighted by some statistical mechanics model. From a purely

probabilistic point of view, we establish non-trivial results on negative moments of Gaussian

Multiplicative Chaos, giving exact formulae based on the DOZZ formula in the Liouville

case and a probabilistic representation of the limit in other cases. Finally, we also show

how to extend our results to boundary LCFT, treating the cases of the fusion of two

boundary or bulk insertions as well as the absorption of a bulk insertion on the boundary.

3.1 Introduction

3.1.1 Path integral

The Liouville action on the Riemann sphere S2 ∼= Ĉ = C ∪ {∞} is the action functional

SL : Σ→ R (where Σ is some function space to be determined) defined by1

SL(X) =
1

4π

ˆ
S2

(|∇gX|2 +Rg(z)QX(z) + 4πµeγX)g(z)d2z (3.1.1)

where g(z) = |z|−4
+ := (|z| ∨ 1)−4 is the background metric, γ ∈ (0, 2) is the parameter

1∇g = 1
g
∇ is the gradient associated to g, and Rg(z) = − 1

g(z)
∆ log g(z) is the associated curvature.

Since we will consider metrics whose curvature concentrates on the unit circle, the curvature term will not
play an important role here.
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of the theory, and µ > 0 is the cosmological constant (whose value is irrelevant in this

paper). Another important parameter is the so-called background charge which is defined

by Q := γ
2 + 2

γ . From here, Liouville Conformal Field Theory (LCFT) is the “Gibbs

measure” associated to SL, which is formally defined in the physics literature by

〈F 〉 :=

ˆ
F (X)e−SL(X)DX (3.1.2)

for all continuous functional F on Σ. Here DX stands for “Lebesgue measure” on C∞(S2),

which of course does not make sense mathematically. Nonetheless, it is possible to define

(3.1.2) in a rigorous framework using the Gaussian Free Field (GFF) and Kahane’s theory

of Gaussian Multiplicative Chaos (GMC) – see [DKRV16] and Sections 3.2.1 and 3.2.2

of this paper. Roughly speaking, the GFF X on S2 is the Gaussian field corresponding

to the “Gaussian measure” e−
1
4π

´
S2 |∇X|

2
DX. We will write P for its probability measure

and E for the associated expectation. The GFF lives P-a.s. in the topological dual

of the Sobolev space H1(S2, g) and is therefore defined as a distribution (in the sense

of Schwartz). In this context, GMC is the random measure Mγ on S2 defined for all

γ ∈ (0, 2) and making sense of the exponential of the GFF (which is a priori ill-defined).

This can be constructed through a regularisation of the field and we will loosely write

dMγ(z) = eγX(z)− γ
2

2
E[X(z)2]g(z)d2z to refer to the limiting measure, even though X is only

defined as a distribution.

The main observables in LCFT are the vertex operators Vα(z) := eαX(z), giving rise to

the correlation functions, which can be thought of as the Laplace transform of the field

defined by the measure (3.1.2):〈
N∏
i=1

Vαi(zi)

〉
=

ˆ N∏
i=1

eαiX(zi)e−SL(X)DX. (3.1.3)

On the sphere, these are defined for all pairwise disjoint insertions (z1, ..., zn) ∈ ĈN and

Liouville momenta (α1, ..., αn) ∈ RN+ satisfying the Seiberg bounds

σ :=
N∑
i=1

αi
Q
− 2 > 0, ∀i, αi < Q. (3.1.4)

In particular, this implies that the correlation function exists only if N ≥ 3.

For fixed z0 ∈ Ĉ, the vertex operator Vα(z0) has a geometric interpretation, as it inserts

a conical singularity of order α/Q at z0 in the physical metric ([Sei90, HMW11], Appendix

3.B). Thus the second Seiberg bound is there to make the singularity integrable around

z0. On the other hand by Gauss-Bonnet theorem, the first bound is equivalent to asking

that the surface S2 \ {z1, ..., zN} with conical singularities of order αi/Q at zi has negative

total curvature.
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The correlation functions satisfy some conformal covariance under Möbius transforma-

tion, namely if ψ is such a map, then [DKRV16]〈
N∏
i=1

Vαi(ψ(zi))

〉
=

N∏
i=1

|ψ′(zi)|−2∆i

〈
N∏
i=1

Vαi(zi)

〉

where ∆i = ∆αi := αi
2 (Q − αi

2 ) is called the conformal dimension of Vαi(·). This prop-

erty implies that the three-point correlation function 〈
∏3
i=1 Vαi(zi)〉 is determined by

〈Vα1(0)Vα2(1)Vα3(∞)〉 since there is a unique Möbius transformation sending (z1, z2, z3)

to (0, 1,∞). The three-point correlation functions play a central role in the conformal

bootstrap approach to CFTs (see Section 3.1.2). For LCFT, they are given by the cele-

brated DOZZ formula, a proof of which was given for the first time in [KRV17], where

the authors rigorously implemented the method known as Teschner’s trick [Tes95] (see

[DO94, ZZ96] for the original derivation of the formula which uses a different approach).

We now turn to the four-point function. By conformal covariance, we can take the

insertions to be at (z1, z2, z3, z4) = (0, z, 1,∞) with z ∈ Ĉ \ {0, 1,∞} being the free

parameter. In this paper, we will take (α1, α2, α3, α4) satisfying the Seiberg bounds and

will be concerned about the behaviour of the four-point function as z → 0 (the other

fusions being easily deduced from conformal invariance). In the framework of [DKRV16]

using the GFF and GMC, the four-point function has the following expression for |z| ≤ 1:〈
4∏
i=1

Vαi(zi)

〉
= 2γ−1µ

−Qσ
γ Γ

(
Qσ

γ

)
|z|−α1α2 |1− z|−α2α3E

[(ˆ
C
eγ
∑4
i=1 αiG(zi,·)dMγ

)−Qσ
γ

]
(3.1.5)

where G = G(·, ·) is Green’s function on (S2, g). The main feature of (3.1.5) is that, up

to explicit factors, it is expressed using negative moments of GMC. One of our main

results (Theorem 3.1.1) gives the exact asymptotic behaviour of (3.1.5) as z → 0 using the

integrability result of the DOZZ formula. Now the reader will notice that the negative

exponent in the definition of (3.1.5) depends on the αi’s, so the DOZZ formula does not

give integrability results for all moments of GMC but only for the one corresponding to the

Liouville correlation function. However, in our framework, we lose nothing in promoting

σ to a free parameter, so we were able to find the asymptotic behaviour of all negative

moments (Theorems 3.1.2 and 3.1.3) but only in the Liouville case did we get an exact

expression for the limit. In this special case, we were able to confirm a prediction coming

from the bootstrap approach to LCFT, which we review now.

3.1.2 Conformal bootstrap

The foundations of the conformal bootstrap were laid in [BPZ84] and since then it has

been acknowledged in the physics community as a powerful tool to analyse two dimensional
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CFTs. However it is still a challenge to make sense of the theory in a rigorous mathematical

framework. One of the goals of this paper is to recover some aspects of the bootstrap

predictions in the probabilistic formulation of LCFT.

The conformal bootstrap is an algebraic approach based on the axiom that the vertex

operator Vα can be associated to a highest-weight representation of the Virasoro algebra

[Rib14]. It turns out that this assumption constrains the correlation functions drastically

through some identities like the the Ward or BPZ equations (a null-vector equation at

level 2). The constraints of local conformal invariance imply that all correlation functions

can be constructed from more fundamental objects:

1. The spectrum S ⊂ C. For α ∈ S, the vertex operator Vα(·) is called a primary field.

In Liouville CFT, the spectrum is the line Q+ iR. It is important to notice that the

conformal bootstrap assumes that vertex operators are defined for all α ∈ C and not

necessarily for α in the “physical region” defined by the Seiberg bounds.

2. The 3-point correlation functions, a.k.a. the structure constants. In Liouville CFT,

these are given by the DOZZ formula Cγ(α1, α2, α3), which is meromorphic in each

one of the αi’s.

Another key idea of the conformal bootstrap is that local fields should satisfy a so-called

Operator Product Expansion (OPE), which can be understood analytically as a Taylor

expansion of vertex operators in the z variable. In other words, the OPE of the local

operators Vα1(0)Vα2(z) describes the fusion of the two insertions as z → 0. The fusion

rule is particularly simple in the case where the Verma module associated to Vα2(z) is

reducible (i.e. α2 ∈ −γ
2N
∗ − 2

γN
∗), but in the case of α1, α2 in the spectrum, it has the

following form ([BZ06], equation (1.18))

Vα1(0)Vα2(z) =
1

8π

ˆ
R
|z|2(∆P−∆1−∆2)Cγ(α1, α2, Q− iP )VQ+iP (0)|fα12

γ,P (z)|2dP (3.1.6)

where ∆P = Q2

4 + P 2

4 is the conformal dimension of VQ−iP and fα12
γ,P (z) = 1 + oz→0(1) is

a so-called conformal block, a holomorphic function of z depending only on P, γ, α1, α2.

Plugging this into the four-point correlation function yields2

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉cb =
1

8π
|z|2(Q

2

4
−∆1−∆2)

×
ˆ
R
|z|

P2

2 Cγ(α1, α2, Q− iP )Cγ(Q+ iP, α3, α4)|Fα1234
γ,P (z)|2dP

(3.1.7)

where Fα1234
γ,P (·) is the four-point conformal block coming from the contribution of the OPE

conformal block. It is also holomorphic in z and universal in the sense that it depends

2We add the superscript cb for “conformal bootstrap”, in order to differentiate it with the correlation
function given by the path integral.
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only on γ, P, α1, α2, α3 and α4. We call this formula the conformal bootstrap equation. The

term “bootstrap” refers to the fact that one can recursively compute all the correlation

functions on any Riemann surface of any genus by “bootstrapping” the structure constants

using the spectrum and the conformal blocks.

Let us stress again that formula (3.1.7) is far from having a mathematical justification.

In general, one way to make sense of the bootstrap predictions is to recover them from the

rigorous probabilistic framework of DKRV. This is usually a hard matter, but first steps

have been made in this direction, notably in [KRV15, KRV17] where the authors showed

the validity of Ward identities and BPZ differential equations and gave a proof of the DOZZ

formula. At this stage, we are still far from having a probabilistic interpretation of formula

(3.1.7) because the spectrum and the conformal blocks are not properly understood in the

path integral approach. However, we will see that in the limit where z → 0, these two

objects disappear from the equation and we are left with DOZZ formula which is well

understood.

glue

Figure 3.1: The gluing of two instances of the thrice-punctured sphere, producing a
four-punctured sphere.

There is a geometric interpretation of equation (3.1.7). Indeed, one can produce a

four-punctured sphere by gluing together two instances of the thrice-punctured sphere

along annuli neighbourhoods of one puncture (see Figure 3.1 and [TV15] for details of

this procedure). The bootstrap equation is the CFT counterpart of this gluing procedure

since the integrand is a product of DOZZ formulae. We will see in Section 3.1.3 that the

factorisation becomes exact in the z → 0 limit. The problem of factorisation of surfaces

is an old one and was stressed by Seiberg ([Sei90, p.336]) as the most important open

problem in Liouville CFT, at a time where the DOZZ formula was not yet known (nor even

guessed). This paper gives a partial answer to the problem since we will show rigorously

that the state factorises into two independent states as z → 0.

Finally, let us briefly comment on the place of this work within the existing literature.

The recent proof of the DOZZ formula [KRV17] made an extensive use of the BPZ equation,

a second order ODE satisfied by the correlation function z 7→ 〈V− γ
2
(z)Vα1(0)Vα2(1)Vα3(∞)〉,

which was established in the earlier paper [KRV15] and solved explicitly using hyperge-

ometric functions. The reason why such an equation was expected to hold in the first

place is that the representation of the Virasoro algebra associated to the field V− γ
2
(·) is
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expected to be degenerate, with a null vector at level two in the Verma module. This

drastically simplifies the fusion rule for the fields V− γ
2
(z)Vα1(0), and using the interpreta-

tion of Virasoro generators as differential operators, this leads to the second order BPZ

equation. In this paper on the contrary, we study the general form of the fusion rule,

for which the associated representation should not be degenerate in general, thus not

leading to a differential equation. To our knowledge, there is no rigorous construction of

representations of the Virasoro algebra in Liouville CFT yet, but there are works addressing

the question and exploiting null vectors in the context of boundary CFT. For instance, it

was shown in [Dub15] that SLE partitions functions can be constructed from highest-weight

representations of the Virasoro algebra. In general, some BPZ and Ward-type identities

appear in SLE related martingales as the condition making the drift term in Itô’s formula

vanish [Fri04].

3.1.3 Main results

Let (α1, α2, α3, α4) be satisfying the Seiberg bounds (3.1.4). In particular, this implies that

either α1 +α2 > Q or α3 +α4 > Q (or both), and we assume without loss of generality that

α3 + α4 > Q. Notice that these conditions are equivalent to having the Seiberg bounds

being satisfied by (α1, α2, Q) (with the exception of the α3 = Q saturation).

Suppose for now that α1 + α2 ≥ Q. Then equation (3.1.7) is expected to hold, i.e. we

should have

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉cb =
1

8π
|z|2(Q

2

4
−∆1−∆2)

×
ˆ
R
|z|

P2

2 Cγ(α1, α2, Q− iP )Cγ(Q+ iP, α3, α4)|Fα1234
γ,P (z)|2dP.

(3.1.8)

At the geometrical level, we can produce a four-punctured sphere by gluing together

two copies of the thrice-punctured sphere (see Figure 3.1) by picking one puncture on each

sphere and identifying together annuli neighbourhoods of these punctures. The form of

equation (3.1.7) reveals this gluing construction: the four-point function is a factorisation

of three-point functions.

Assume α1 + α2 > Q. Taking Fα1234
γ,P (z) ≡ 1 uniformly as P → 0, making the change
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of variable P 7→ P
√

log 1
|z| , equation (3.1.7) gives

8π|z|2(∆1+∆2−Q4
2
)〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉cb

=

ˆ
R
|z|

P2

2 Cγ(α1, α2, Q− iP )Cγ(Q+ iP, α3, α4)|Fα1234
γ,P (z)|2dP

=
1√

log 1
|z|

ˆ
R
e−

P2

2 Cγ

α1, α2, Q− i
P√

log 1
|z|


× Cγ

Q+ i
P√

log 1
|z|

, α3, α4

∣∣∣∣∣∣Fα1234

γ, P√
log 1
|z|

(z)

∣∣∣∣∣∣
2

dP

∼
|z|→0

(
log

1

|z|

)−3/2

∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4)

ˆ
R
P 2e−

P2

2 dP

=
√

2π

(
log

1

|z|

)−3/2

∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).

(3.1.9)

Hence

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉cb ∼
z→0

|z|2(Q
2

4
−∆1−∆2)

4
√

2π log3/2 1
|z|
∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).

(3.1.10)

There are two important features in this asymptotic behaviour

• There is a
(

log 1
|z|

)−3/2
term correcting the polynomial rate |z|2(Q

2

4
−∆1−∆2)

• The limit is expressed as a product of two derivative DOZZ formulae. Geometrically

speaking, this means that we are sewing two instances of the thrice-punctured spheres,

each one presenting a cusp at the α = Q singularity. The fact that we have a product

means that we have two “independent” surfaces.

In the case α1 + α2 = Q, the computation of Appendix 3.A shows that:

lim
P→0

Cγ(α1, α2, Q− iP )Cγ(Q+ iP, α3, α4) = −4∂1Cγ(Q,α3, α4). (3.1.11)

Going back to the bootstrap equation and noticing that 2(Q
2

4 −∆1 −∆2) = −α1α2,

we can apply the same change of variables as in (3.1.9), and get in this case

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉cb ∼
z→0
− |z|

−α1α2

2π
√

log 1
|z|

∂1Cγ(Q,α3, α4)

ˆ
R
e−

P2

2 dP

= − 1√
2π

|z|−α1α2

log1/2 1
|z|
∂1Cγ(Q,α3, α4)

(3.1.12)
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α1

α2

Q Q

α4

α3

α1

α2

α4

α3

α1 + α2 > Q

α1 + α2 = Q

α3

α4

Q

α4

α3

α1 + α2

α1 + α2 < Q

Figure 3.2: The three different regimes depending on the sign of α1 + α2 −Q. Up: Case
α1 + α2 > Q. The surface on the left is a four-punctured sphere with conical singularities
of order (α1

Q ,
α2
Q ,

α3
Q ,

α4
Q ) at (0, z, 1,∞). The limiting surface is a pair of thrice-punctured

sphere: one with singularities (α1
Q ,

α2
Q , 1) at (0, 1,∞) (the singularity at ∞ is a cusp), the

other with singularities (1, α3
Q ,

α4
Q ) at (0, 1,∞). Middle: Case α1 + α2 = Q. The limiting

surface is a thrice-punctured sphere with singularities of order (1, α3
Q ,

α4
Q ) at (0, 1,∞).

Bottom: Case α1 + α2 < Q. The limiting surface is a thrice-punctured sphere with
singularities (α1+α2

Q , α3
Q ,

α4
Q ) at (0, 1,∞).

Again, let us notice two important features of this asymptotic behaviour

• There is a
(

log 1
|z|

)−1/2
correction term to be compared with the power −3/2 found

in the supercritical case α1 + α2 > Q in (3.1.9). This is explained by the fact that

there is only one cusp and one limiting surface (so no extra zero mode).

• The limit is expressed with only one derivative DOZZ block, to be compared with the

product found in (3.1.9). Intuitively, this means that in this critical case α1 +α2 = Q,

we see only one surface with two conical singularities and one cusp.

Finally we turn to the case α1 + α2 < Q. In this case, equation (3.1.7) does not hold

in this form and there is a need for “discrete corrections” (see [BZ06, Section 8] for a

thorough discussion of the phenomenon). This is linked with the fact that the contour of

integration in (3.1.7) includes poles of the DOZZ formula, and the discrete corrections are

merely residues. In particular, the leading order as z → 0 is simply

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉cb ∼
z→0
|z|−α1α2Cγ(α1 + α2, α3, α4)

so that the geometric interpretation is that the two singularities add up together. This

makes sense since (α1 + α2, α3, α4) satisfies the Seiberg bounds. In this last case, the
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spectrum is “hidden” behind the discrete leading-order terms. In order to see the spectrum

in our probabilistic framework, one would need to push the asymptotic expansion further.

It should be possible to do so using similar techniques as in [KRV17, Section 6] but we

restrict ourselves to the leading order for now.

Theorem 3.1.1. Let (α1, α2, α3, α4) satisfying the Seiberg bounds and such that α3 +α4 >

Q. The asymptotic behaviour as z → 0 of the correlation function 〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉
depends on the sign of α1 + α2 −Q and is described by the following three cases.

1. Supercritical case:

If α1 + α2 > Q, then

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉

∼
z→0

1

4
√

2π

|z|2(Q
2

4
−∆1−∆2)

log3/2 1
|z|

∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).
(3.1.13)

2. Critical case:

If α1 + α2 = Q, then

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉 ∼
z→0
− 1√

2π

|z|−α1α2

log1/2 1
|z|
∂1Cγ(Q,α3, α4) (3.1.14)

3. Subcritical case3:

If α1 + α2 < Q, then

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉 ∼
z→0
|z|−α1α2Cγ(α1 + α2, α3, α4) (3.1.15)

The different regimes appearing in the statement of Theorem 3.1.1 have a natural

geometric explanation (see Figure 3.2 for an illustration of the phenomenon). First,

notice that the condition α3 + α4 − Q > 0 corresponds to having the Seiberg bounds

satisfied for (Q,α3, α4), except that the first coefficient saturates the second bound. When

α1 + α2 < Q, the two singularities add up and the limit is non-trivial. When α1 + α2 = Q,

the second Seiberg bound is saturated and it is natural [DKRV17, Bav18] to expect

the factor (log 1
|z|)
−1/2∂1Cγ(Q,α3, α4) since the 0-th order is trivial in this case. When

α1 + α2 − Q > 0, this also explains the factor (log 1
|z|)
−1∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).

The extra (log 1
|z|)
−1/2 term has a more subtle origin. Since both (α1, α2, Q) and (Q,α3, α4)

satisfy the Seiberg bounds, we expect to see the two spheres split and form a disconnected

pair of surfaces in the limit. In this limit, the GFF should have two zero modes (given e.g.

by the mean on each independent surface). Roughly speaking, upon splitting, the mean

3This was already proved in [KRV17, Section 6.1] and essentially follows from dominated convergence.
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on the right surface conditioned on the mean on the total surface is a Gaussian random

variable with large variance which – when properly rescaled – produces the extra zero

mode. This rescaling explains the extra (log 1
|z|)
−1/2 term appearing in (3.1.13).

Theorem 3.1.1 can be equivalently reformulated in terms of GMC. Since our proof

does not depend on the particular choice of (−Qσ
γ )-moment in the four-point correlation,

we may promote σ to a free parameter and study fusion estimates for arbitrary negative

moments of GMC that could be of independent interest. We first record the decay rate in

the theorem below.

Theorem 3.1.2. Let κ > 0, γ ∈ (0, 2) and (α1, α2, α3, α4) ∈ R4
+ be such that the Seiberg

bound is satisfied. Also let (z1, z2, z3, z4) = (0, z, 1,∞) with z ∈ C \ {0}. Then there exists

some constant Eγκ(α1, α2, α3, α4) > 0 such that

lim
z→0

1

Iγ,κα1+α2
(z)

E
[
Mγ

(
eγ
∑4
j=1 αjG(zj ,·)

)−κ]
= Eγκ(α1, α2, α3, α4) (3.1.16)

where the rate function Iγ,κα is given by

Iγ,κα (z) =



1 α−Q < 0,√
log 1

|z| α−Q = 0,

|z|
(α−Q)2

2

(
log 1

|z|

)3/2
α−Q ∈ (0, κγ),

|z|
(α−Q)2

2

√
log 1

|z| α−Q = κγ,

|z|
(α−Q)2

2
− (κγ−(α−Q))2

2 α−Q > κγ.

As mentioned in Section 3.1.1, LCFT gives an exact expression for Eγκ(α1, α2, α3, α4) in

terms of the DOZZ formula when κ =
∑4
i=1 αi−2Q

γ . While this is not the case in general, we

can still provide a probabilistic representation of the constant based on the radial/angular

decomposition of the GFF on the infinite cylinder (see Section 3.2.1). For this it is useful

to introduce the random functional

Fa1,a2(u, f(·)) = e−γu
ˆ
|x|≥1

dMγ(x)

|x|4−γ(a1+a2)|x− 1|γa1
+

ˆ
Rs≥0×S1θ

e−γ(f(s)−a1G(1,e−s−iθ))dM̂γ(s, θ)

=

ˆ
C∞

eγ((−u+Bs+(Q−a2)s)1{s≤0}−f(s)1{s≥0}+a1G(1,e−s−iθ))dM̂γ(s, θ)

(3.1.17)

where (Bs)s≥0 is a Brownian motion independent of the GMC dM̂γ(s, θ) associated with

the lateral noise of GFF (see Lemma 3.2.1). We will also write (β̃us )s≥0 to denote a

B̃ESu(3)-process (see Definition 3.2.7).

Theorem 3.1.3. Let α1 + α2 − Q ≥ 0. The constant Eγκ(α1, α2, α3, α4) in (3.1.16) has

the following probabilistic representations.
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• If α1 + α2 −Q = 0, then

Eγκ(α1, α2, α3, α4) =
1

κγ

√
2

π
E
[(
Fα3,α4(τ, β̃τ· )

)−κ]
(3.1.18)

where τ ∼ Exp(κγ).

• If α1 + α2 −Q ∈ (0, κγ), then

Eγκ(α1, α2, α3, α4) =
1

γ

B
(
α1+α2−Q

γ , κ− α1+α2−Q
γ

)
(α1 + α2 −Q)(κγ − (α1 + α2 −Q))

√
2

π

× E

[(
Fα3,α4(τ, β̃τ· )

)−(κ−α1+α2−Q
γ

)
]
E

[(
Fα2,α1(T , β̃T· )

)−α1+α2−Q
γ

]
(3.1.19)

where τ ∼ Exp(κγ − (α1 + α2 −Q)), T ∼ Exp(α1 + α2 −Q) and B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

• If α1 + α2 −Q = κγ, then

Eγκ(α1, α2, α3, α4) =
1

κγ

√
2

π
E
[(
Fα2,α1(T , β̃T· )

)−κ]
. (3.1.20)

where T ∼ Exp(κγ).

• If α1 + α2 −Q > κγ, then

Eγκ(α1, α2, α3, α4) = E
[(
Fα2,α1(0,−B−(α1+α2−Q−κγ)

· )
)−κ]

(3.1.21)

where (B
−(α1+α2−Q−κγ)
s )s≥0 is a Brownian motion with negative drift −(α1+α2−Q−κγ).

Remark 3.1.4. When α1 + α2 −Q > κγ, we can easily rewrite (3.1.21) as

Eγκ(α1, α2, α3, α4) = E

(ˆ
C

|x−1|(κ+1)γ2

+ dMγ(x)

|x|4−γ(α1+α2)|x− 1|γα2

)−κ
which is very similar to the subcritical regime α1 + α2 −Q < 0 where

Eγκ(α1, α2, α3, α4) = E

ˆ
C

dMγ(x)

|x|γ(α1+α2)|x− 1|γα3 |x|4−γ
∑4
j=1 αj

+

−κ
can be obtained immediately by dominated convergence.
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3.1.4 Conjectured link with random planar maps

The result of Theorem 3.1.1 has an interesting counterpart in the world of 2d discretised

quantum gravity via the famous KPZ conjecture which was originally formulated in the

physics literature by Knizhnik, Polyakov and Zamolodchikov [KPZ88]. Roughly speaking,

the authors conjectured that, in some sense, LCFT should be the scaling limit of large

random planar maps weighted by some statistical mechanics model.

We start by recalling some facts about planar maps, using the setting of [Kup16,

Section 1] (see also [DKRV16, Section 5.3]). A planar map is a graph together with an

embedding into the sphere such that no two edges cross and viewed up to orientation

preserving homeomorphisms.

For concreteness, we will work with triangulations, meaning that all the faces in the

map are triangles. Let TN,3 be the set of planar triangulations with N faces and 3 extra

marked points (called roots). The combinatorics of TN,3 is well known since the work of

Tutte [Tut63] and we have

#TN,3 �
N→∞

N−1/2e−µcN

for some µc > 0. We mention that a wide class of planar maps fall into the same universality

class (e.g. 2p-angulations), meaning that they scale like N−1/2e−µcN where µc depends on

the model.

There is a way to conformally embed any triangulation (t,x1,x2,x3) into the sphere

by first turning it into a topological manifold and second specifying complex coordinate

charts. This endows the triangulation with a structure of Riemann surface with conical

singularities at vertices with n 6= 6 neighbours, and this embedding is unique if we add

the extra requirement that the marked points (x1,x2,x3) are sent to (0, 1,∞) (see e.g.

[Kup16]). Concretely, if 4 ⊂ C is an equilateral triangle with unit (Lebesgue) volume, the

embedding provides a conformal map ψt : 4→ Ĉ for each triangle t in the map. For all

a > 0, we consider the pushforward measure dνt,a(z) = a2|(ψ−1
t )′(z)|2dz on ψt(4), which

assigns a mass a2 to each triangle of t. The collection of (νt,a)t∈t defines a measure νta on

Ĉ, and in particular νta(Ĉ) = Na2 for all t ∈ TN,3.

The model becomes interesting when we choose the triangulation randomly. The

simplest example is the case of pure gravity, which amounts in sampling the triangulation

with respect to the probability measure defined by

Pa(t,x1,x2,x3) :=
1

Za
e−µ|t|

where µ := (1 + a2)µc, |t| is the number of faces of t and Za is a normalising constant.

Notice that Za →∞ as we send a→ 0, which means that the measure selects larger and

larger maps. When (t,x1,x2,x3) is sampled under Pa, the KPZ conjecture states that the

random measure νa = νta converges in distribution (with respect to the topology of weak
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convergence of measures) as a→ 0 to a random Radon measure ν on S2. This limiting

measure is expected to be given by the Liouville measure (see [DKRV16, Section 3.3] for a

definition) and in particular, it should satisfy the property that for all measurable A ⊂ Ĉ,

E

[
ν(A)

ν(Ĉ)

]
=

ˆ
A
f√

8/3,µc

where we have defined the probability density function

fγ,µ(z) :=
µγ

3γ − 2Q

〈Vγ(0)Vγ(z)Vγ(1)Vγ(∞)〉
Cγ(γ, γ, γ)

(3.1.22)

for all γ ∈ (0, 2) and µ > 0 (see Appendix 3.C for the derivation of the normalising

constant).

The critical case of Theorem 3.1.1 is given by γ = 2√
3

4, so that γ =
√

8
3 falls into the

supercritical case. Thus we have the asymptotic behaviour (note that ∆γ = γ
2 ×

2
γ = 1)

fγ,µ(z) ∼
z→0

µγ

2
√

2π(3γ − 2Q)
|z|

Q2

2
−4

(
log

1

|z|

)−3/2 (∂3Cγ(γ, γ,Q))2

Cγ(γ, γ, γ)
. (3.1.23)

If we integrate this formula on a small disc of radius ε, we find

ˆ ε

0
r
Q2

2
−4

(
log

1

r

)−3/2

rdr = (Q2/2− 2)1/2

ˆ ∞
(Q2/2−2) log 1

ε

e−uu−3/2du ∼
ε→0

2
ε
Q2

2
−2√

log 1
ε

so that ˆ
|z|≤ε

fγ,µ(z)dz ∼
ε→0

√
2πµγ

3γ − 2Q

(∂3Cγ(γ, γ,Q))2

Cγ(γ, γ, γ)

ε
Q2

2
−2√

log 1
ε

. (3.1.24)

If the conjecture holds true, the asymptotic behaviour (3.1.24) gives the expected fraction

of vertices which are close to 0 in a large planar map. In particular, the exponent of ε is
Q2

2 − 2 = 1/12 for pure gravity.

Similar conjectures hold for random maps coupled with some statistical mechanics

model (such as the Potts model, see e.g. [DKRV16]). The conjectures are essentially the

same in each case except that the value of γ and µ may vary (e.g. Ising model corresponds

to γ =
√

3). However one can still plug the good value of γ in formula (3.1.24) to conjecture

the expected density of points around 0.

4We notice that this is a special value of γ from the random maps perspective since it corresponds to
the scaling limit of bipolar-oriented maps, see [KMSW15]
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3.1.5 Outline

The remainder of this article is organised as follows. In the next section, we provide a

summary of GFF and GMC for the construction of Liouville correlation functions, and

then explain the main idea of our proofs. Section 4.3 is devoted to the proof of Theorem

3.1.1 (on the four-point correlation) and Theorem 3.1.2 (on the decay of arbitrary negative

moments of GMC), while that of Theorem 3.1.3 (on the probabilistic representations of

the limiting constants) is treated in Section 3.4. In the appendices we collect the DOZZ

formula, discuss our work from the perspective of surfaces with conical singularities and

explain how to normalise the four-point correlation to a probability distribution.

Acknowledgements The authors wish to thank Rémi Rhodes and Vincent Vargas for

bringing this problem to their knowledge and for interesting comments on this work and

discussions on LCFT. The second author is also grateful to Nathanael Berestycki for useful

discussions.

3.2 Background

In this section, we recall the mathematical foundation for the Liouville measure (3.1.2)

and the derivation for the 4-point function, and explain the main idea of our approach. To

commence with, we quickly review GFF and GMC and mention several facts about them.

3.2.1 Gaussian Free Field

Let H1
0 (S2, g) (or simply H1

0 ) be the Sobolev space of functions with distributional deriva-

tives in L2(S2, g) and vanishing g-mean. This space is equipped with the norm

||X||2∇ :=
1

2π

ˆ
S2
|∇X|2 = − 1

2π

ˆ
S2

∆X ·X

that we call the Dirichlet energy. Hence we can interpret the formal measure 1
ZGFF

´
e−

1
2
||X||2∇DX

as a Gaussian probability measure on the space H1
0 (where ZGFF is a “normalising constant”

which we will explain at the end of this section). Thus if (en)n≥1 is an orthonormal basis

of H1
0 , we define the formal series

X =
∑
n≥1

αnen

where (αn)n≥1 is a sequence of i.i.d. normal random variables. It can be shown that this

series converges in H−1
0 , the topological dual of H1

0 . In particular, it is not defined as

a function but rather as a distribution in the sense of Schwartz. We call this field the
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Gaussian Free Field (GFF). We write P for the probability measure of the GFF and E the

associated expectation. The covariance kernel of the GFF is given by Green’s function

G := (− 1
2π∆)−1, i.e. we formally write

E[X(x)X(y)] = G(x, y)

where the kernel of Green’s function is explicitly given by

G(x, y) = log
1

|x− y|
+ log |x|+ + log |y|+.

Thus the “normalising constant” ZGFF that we are looking for should be given by ZGFF :=

(det(− 1
2π∆))1/2, which is obtained via zeta-regularisation [OPS88].

There is a convenient choice of basis for H1
0 , which is the family (

√
2π
λn
ϕn)n≥1 where

(ϕn)n≥0 is an orthonormal basis of L2 of eigenfunctions of −∆ with eigenvalues 0 = λ0 <

λ1 ≤ ... ≤ λn.... This gives an L2 decomposition of the GFF, except that we are missing

the zero mode (the coefficient in front of the constant function ϕ0 ≡ Volg(S2)−1/2). This

should be a Gaussian with infinite variance and we interpret this as Lebesgue measure, since√
2π
λ times the law of a Gaussian random variable with variance λ−1 converges vaguely to

Lebesgue measure as λ → 0. So our final interpretation of the measure e−
1
2
||X||2∇DX is

that we set for all continuous functional F : H−1 → R

ˆ
F (X)e−

1
2
||X||2∇DX =

(
det(− 1

2π∆)

Volg(S2)

)−1/2 ˆ
R
E[F (X + c)]dc.

Throughout the paper, we will make an extensive use of the so-called radial/angular

decomposition of the GFF, which is better understood in cylinder coordinates. Let

C∞ := Rs × S1
θ be the complete cylinder. Under the conformal change of coordinates

ψ : z 7→ − log z, the Riemann sphere (Ĉ \ {0,∞}, g) endowed with the crêpe metric is

mapped to (C, gψ) with gψ(s, θ) = e−2|s|. From now on, we write G for Green’s function

on (C∞, gψ) with vanishing mean on {0} × S1.

Lemma 3.2.1. Let X(s, θ) be a GFF on C∞. Then we can write X(s, θ) = Bs + Y (s, θ)

where

1. (Bs)s∈R is a two-sided Brownian motion. We will call this process the radial part of

the field.

2. Y is a log-correlated field with covariance kernel

H(s, θ, s′, θ′) := E[Y (s, θ)Y (s′, θ′)] = log
e−s ∨ e−s′

|e−s−iθ − e−s′−iθ′ |
. (3.2.1)

We will call this field the lateral noise or angular part of the field. Notice that the
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law of Y is translation invariant.

3. B is independent of Y .

Otherwise stated, Lemma 3.2.1 enables to rewrite Green’s function (on the cylinder)

as
G(s, θ, s′, θ′) = (|s| ∧ |s′|)1ss′≥0 +H(s, θ, s′, θ′)

= (|s| ∧ |s′|)1ss′≥0 +H(0, 0, s′ − s, θ′ − θ)

= (|s| ∧ |s′|)1ss′≥0 +G(0, 0, s′ − s, θ′ − θ).

(3.2.2)

Remark 3.2.2. We will sometimes abuse notations and write the more compact form

G(s+ iθ, s′ + iθ′) (resp. H(s+ iθ, s′ + iθ′)) for G(s, θ, s′, θ′) (resp. H(s+ iθ, s′ + iθ′)).

3.2.2 Gaussian Multiplicative Chaos

Recall that a GFF is only defined as a distribution, so the exponential term eγX is ill-

defined a priori. However it is possible to make sense of the measure eγX(x)g(x)d2x using a

regularising procedure based on Kahane’s theory of Gaussian Multiplicative Chaos (GMC)

(see [RV14, Ber17] for more detailed reviews).

We use the regularisation called the circle average. For ε > 0, let Xg,ε be the average

of X on the geodesic circle of radius ε in the metric g. The field Xε is continuous, so the

measure

dMγ
g,ε(x) := eγXg,ε(x)− 1

2
γ2E[Xg,ε(x)2]d2x

is well defined for all γ ∈ (0, 2), and it is known that the sequence of measures Mγ
g,ε

converges weakly in probability to a (random) Radon measure Mγ
g with no atoms.

An important property of GMC measure is its conformal covariance [DKRV16, DRV16,

GRV16] under conformal multiplication

Proposition 3.2.3. Let ω ∈ C∞(S2, g). Let X be a GFF on (S2, g) and Mγ
g̃ be the GMC

measure obtained when regularising the field with circle averages in the metric g̃ := eωg.

Then Mγ
g̃ = e

γQ
2 Mγ

g .

Remark 3.2.4. For notational convenience, when the regularising metric is the background

metric g(x) = |x|−4
+ on Ĉ, we will drop the subscript and write Mγ = Mγ

g .

Another useful tool of GMC is Kahane’s convexity inequality [Kah85].

Theorem 3.2.5 (Kahane 1985). Let X and Y be two continuous Gaussian fields on

D ⊂ S2 such that for all x, y ∈ D

E[X(x)X(y)] ≤ E[Y (x)Y (y)].

124



3.2. Background

Then for all convex function F : R+ → R with at most polynomial growth at infinity,

E
[
F

(ˆ
D
eγX(x)− γ

2

2
E[X(x)2]d2x

)]
≤ E

[
F

(ˆ
D
eγY (x)− γ

2

2
E[Y (x)2]d2x

)]
.

In practice, one can apply this theorem to the GMC measure associated with log-

correlated fields like the GFF after using the regularising procedure.

Now suppose X,Y are log-correlated fields with |E[X(x)X(y)− E[Y (x)Y (y)]| ≤ ε and

write Mγ , Nγ for their respective chaos measure. In particular we have

E[X(x)X(y)] ≤ E[Y (x)Y (y)] + ε.

Notice that the field Z(x) = Y (x) +
√
εδ – with δ ∼ N (0, 1) independent of everything

– has covariance kernel E[Y (x)Y (y)] + ε. Hence by Kahane’s convexity inequality, we have

for all κ > 0

E[Mγ(D)−κ] ≤ E[e−rγ
√
εδNγ(D)−κ] = e

1
2
γ2r2εE[Nγ(D)−κ].

By the symmetry of the roles played by X and Y , the converse inequality is also true, so

E[Mγ(D)−κ] = E[Nγ(D)−κ](1 +Oε→0(ε)).

Similarly, we have for all c ∈ R,

E [exp(−µeγcMγ(D))] = E [exp(−µeγcNγ(D))] (1 +Oε→0(ε)).

3.2.3 Derivation of the correlation function

Using the GFF and GMC we are ready to state the definition of the correlation functions on

the sphere. For ε > 0, we can regularise the vertex operator Vαi(zi) by defining Vαi,ε(zi) =

eαiXε(zi)−
α2i
2
E[Xε(zi)

2]. By Cameron-Martin theorem, we have (recall σ =
∑N

i=1
αi
Q − 2 > 0)

〈
N∏
i=1

Vα,ε(zi)

〉
= 2eCε(z)

ˆ
R
eQσcE

[
exp

(
−µeγc

ˆ
Ĉ
eγ
∑N
i=1 αiGε(zi,·)dMγ

)]
dc (3.2.3)

where Cε(z) =
∑

i<j αiαjGε(zi, zj). This regularised correlation function (3.2.3) converges

to a positive finite limit as ε→ 0 as long as the Seiberg bounds are satisfied as the GMC

measure integrates the singularities around each insertion. We take this limit as our
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definition of the correlation function〈
N∏
i=1

Vαi(zi)

〉
= 2eC(z)

ˆ
R
eQσcE

[
exp

(
−µeγc

ˆ
Ĉ
eγ
∑N
i=1 αiG(zi,·)dMγ

)]
dc

= 2eC(z)γ−1µ
−Qσ

γ Γ

(
Qσ

γ

)
E

[(ˆ
Ĉ
eγ
∑N
i=1 αiG(zi,·)dMγ

)−Qσ
γ

] (3.2.4)

after making the change of variable u = eγc. As can be seen from expression (3.2.4), the

finiteness of the correlation function in our probabilistic formulation is equivalent to the

finiteness of the moments of the GMC measure. This holds provided the extended Seiberg

bounds are satisfied [KRV17]

−Qσ
γ

<
4

γ2
∧ min

1≤i≤N
(Q− αi) and αi < Q ∀i.

In particular, if N = 3 with insertions at (0, 1,∞) and Liouville momenta (α1, α2, α3)

satisfying the Seiberg bounds, the expression is simply

〈Vα1(0)Vα2(1)Vα3(∞)〉 = 2γ−1µ
−Qσ

γ Γ

(
Qσ

γ

)
E

[(ˆ
Ĉ
eγ(α1G(0,·)+α2G(1,·)+α3G(∞,·))dMγ

)−Qσ
γ

]
(3.2.5)

and this expression equals the DOZZ formula Cγ(α1, α2, α3) [KRV17].

As for the four-point correlation function with insertions at (z1, z2, z3, z4) = (0, z, 1,∞)

with |z| < 1, we find

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉

=
2

|z|α1α2 |1− z|α2α3

ˆ
R
e−QσcE

[
exp

(
−µeγc

ˆ
Ĉ
eγ
∑4
i=1 αiG(zi,·)dMγ

)]
dc.

(3.2.6)

3.2.4 Main idea

We now explain our approach which is inspired by [DKRV17]. By applying the ra-

dial/angular decomposition of the GFF as we will see in Section 3.3.1, we can effectively

transform our problem to the study of exponential functionals of Brownian motion.

To be more precise consider the following toy model. Let (Bλ
s )s≥0 be a Brownian

motion with drift λ, and suppose C1, C2 > 0 are two fixed constants. Our goal is to

understand the asymptotics of

E

[(
C1 +

ˆ t

0
eγB

λ
s ds+ C2e

γBλt

)−κ]
(3.2.7)

as t→∞. In order to extract the leading order in (3.2.7), we have to play the game of
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balancing energy (i.e. asking our drifted Brownian motion (Bλ
s )s to remain small) and

entropy (i.e. paying a multiplicative cost given by the probability of such event).

• When λ < 0, we don’t have to do anything because Bλ
s

s→∞−−−→ −∞ anyway, and

E

[(
C1 +

ˆ t

0
eγB

λ
s ds+ C2e

γBλt

)−κ]
t→∞−−−→ E

[(
C1 +

ˆ ∞
0

eγB
λ
s ds

)−κ]

by dominated convergence easily.

• When λ = 0, we should demand our Brownian motion to never exceed an O(1) threshold.

On the event that {sups≤tBs ≤ N}, (N −Bs)s≤t behaves like a BESN (3)-process and

drifts to −∞, and therefore for suitably chosen t′ � t we see that

C1 +

ˆ t

0
eγB

λ
s ds+ C2e

γBλt ≈ C1 +

ˆ t′

0
eγB

λ
s ds

is expected to be O(1) while the entropy cost is given by

P
(

sup
s≤t

Bs ≤ N
)
∼
√

2

π

N√
t

= O
(
t−

1
2

)
.

• When λ ∈ (0, κγ), we still demand our drifted Brownian motion Bλ
t to remain below an

O(1) threshold, which requires an entropy cost of

P
(

sup
s≤t

Bλ
s ≤ N

)
∼
√

2

π

e−
λ2

2
t

λ2t
3
2

NeλN = O

(
e−

λ2

2
tt−

3
2

)
.

The structural difference here is that even though Bλ
s is rather negative in the interme-

diate time interval s ∈ [t′, t− t′], the terminal value Bλ
t is typically O(1):

P
(
Bλ
t ≤ x

∣∣∣∣ sup
s≤t

Bλ
s ≤ N

)
t→∞−−−→ e−λ(N−x)(1 + λ(N − x)), x ≤ N.

Therefore for the purpose of deriving the renormalised constant, we will have to keep

C1 +

ˆ t

0
eγB

λ
s ds+ C2e

γBλt ≈ C1 +

ˆ t′

0
eγB

λ
s ds+

ˆ t

t−t′
eγB

λ
s ds+ eγB

λ
t C2.

which is O(1) as (Bλ
s )s≤t′ and (Bλ

t−s−Bλ
t )s≤t′ behave like the negation of two independent

BES(3)-processes.

• Moving beyond, we can only ask the Bλ
s not to drift faster than λ−κγ or else the entropy

cost would be too expensive. To proceed we first apply Cameron-Martin theorem to
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rewrite (3.2.7) as

E

[
eκγBt−

κ2γ2

2
t

(
C1 +

ˆ t

0
eγB

λ−κγ
s ds+ C2e

γBλ−κγt

)−κ]

= e−κγλt+
κ2γ2

2
tE

[(
C1e

−γBλ−κγt +

ˆ t

0
eγ(Bλ−κγs −Bλ−κγt )ds+ C2

)−κ]
. (3.2.8)

If λ = κγ, there isn’t any drift in the expectation. The observation from the case λ = 0

suggests that we may want to demand Bt−s −Bt to not exceed an O(1) threshold for

s ≤ t. This would imply again an entropy cost of O(t−
1
2 ), and we expect that

C1e
−γBλ−κγt +

ˆ t

0
eγ(Bs−Bt)ds+ C2 ≈

ˆ t′

0
eγ(Bs−Bt)ds+ C2

is O(1) because (Bt−s −Bt)s≤t′ behaves like the negation of a BES(3)-process as before.

If λ > κγ, the story is simpler because Bλ−κγ
t−s − Bλ−κγ

t may be seen as a Brownian

motion with negative drift. Similar to the earlier case where λ < 0,

C1e
−γBλ−κγt +

ˆ t

0
eγ(Bλ−κγs −Bλ−κγt )ds+ C2 ≈

ˆ t′

0
eγ(Bλ−κγs −Bλ−κγt )ds+ C2.

is already O(1) without incurring any further entropy cost.

3.2.5 Path decomposition of BES(3)-processes

Before we proceed to the proofs, we collect Williams’ path decomposition theorem [Wil74]

for 3-dimensional Bessel processes (abbreviated as BES(3)-processes) which will be helpful

when we study the probabilistic representations of the renormalised constant (3.1.16).

Theorem 3.2.6 (Williams 1974). Fix x > 0, and consider the following independent

objects:

• (Bs)s≥0 is a standard Brownian motion (starting from 0).

• U is a Uniform[0, 1] random variable.

• (β0
s )s≥0 is a 3-dimensional Bessel process starting from 0.

Then the process (β̂xs )s≥0 defined by

β̂xs =

x+Bs s ≤ T−x(1−U),

xU + β0
s−T−x(1−U)

s ≥ T−x(1−U)

(3.2.9)
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with

T−x(1−U) = inf{s > 0 : Bs = −x(1− U)} = inf{s > 0 : x+Bs = xU}

is a 3-dimensional Bessel process starting from x (written as BESx(3)-process).

In view of Theorem 3.2.6, we introduce the following definition.

Definition 3.2.7. Let (Bs)s≥0 and (β0
s )s≥0 be as in Theorem 3.2.6, and x ≥ 0 an inde-

pendent random variable. Then the process (β̃xs )s≥0 defined by

β̃xs =

x+Bs s ≤ T−x,

β0
s−T−x s ≥ T−x

(3.2.10)

with

T−x = inf{s > 0 : x+Bs = 0}

is called a 3-dimensional Bessel process starting from x conditioned on hitting 0, written

as B̃ESx(3)-process.

3.3 Proof of Theorem 3.1.1

3.3.1 Supercritical case

We set the insertions at (z1, z2, z3, z4) := (0, z, 1,∞) with Liouville momenta (α1, α2, α3, α4)

satisfying the Seiberg bounds, and we write − log z = t + iφ with t > 0 and φ ∈ [0, 2π).

We assume that both α3 + α4 − Q > 0 and α1 + α2 − Q > 0 which corresponds to the

supercritical case of Theorem 3.1.1. Notice that this corresponds precisely to having

(α1, α2, Q) and (Q,α3, α4) satisfying the Seiberg bounds (with respectively the 3-rd and

the 1-st momenta saturating the second Seiberg bound).

Proof of (3.1.13). Let X(s, θ) = Bs+Y (s, θ) be a GFF on C∞ = Rs×S1
θ. By the conformal

covariance of GMC, it is equivalent to study the chaos measure of X with respect to gψ

or to consider the field X(s, θ) + Q
2 log gψ(s, θ) = X(s, θ)−Q|s| and do the regularisation

with respect to Lebesgue measure.

From now on, we write dM̂γ(s, θ) for GMC measure of the lateral noise with respect

to Lebesgue measure on C∞ (while dMγ(x) will be used for GMC measure of the entire

GFF in spherical coordinates).
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We are interested in the total GMC mass

Wt :=

ˆ
C∞

eγ(Bs+(α1−Q)s1s>0−(α4−Q)s1s<0+α3G(0,s+iθ)+α2G(t+iφ,s+iθ))dM̂γ(s, θ)

=

ˆ
C∞

eγ(Bs+(α1+α21s<t−Q)s1s>0−(α4−Q)s1s<0+α3G(0,s+iθ)+α2G(0,s−t+i(θ−φ)))dM̂γ(s, θ).

(3.3.1)

The behaviour of this integral is essentially governed by the radial process. From the

expression above, we can see that on the negative real line the process is (B−s+(α4−Q)s)s≥0

which is a Brownian motion with negative drift so the integrand is integrable at s = −∞.

On the positive real line, the radial process has a positive drift α1 + α2 −Q up to time t,

then a negative drift α4 −Q from t to ∞.

The first step is to apply Cameron-Martin theorem to get rid of the (α1 +α2−Q) drift

term in [0, t], so that for all continuous and bounded function F : R→ R

E [F (Wt)] = E
[
e(α1+α2−Q)Bt− 1

2
(α1+α2−Q)2tF (Zt)

]
(3.3.2)

where Zt is the random variable defined by

Zt :=

ˆ
C∞

eγ(Bs+(α1−Q)(t−s)1s>t−(α4−Q)s1s<0+α2G(0,t−s+i(φ−θ))+α3G(0,s+iθ))dM̂γ(s, θ).

(3.3.3)

Hence the correlation function takes the form (recall t = log 1
|z|)

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉

= 2|z|2(Q
2

4
−∆1−∆2)|1− z|−α2α3

ˆ
R
eQσcE

[
e(α1+α2−Q)Bt exp(−µeγcZt)

]
dc

(3.3.4)

where the exponent for |z| was found by noticing that 1
2(α1 + α2 −Q)2 − α1α2 = 2(Q

2

4 −
∆1 −∆2).

Remark 3.3.1. The change of measure (3.3.2) becomes trivial if α1 + α2 = Q. This is

the reason why there is a phase transition at this value and why the case is easier to treat.

Remark 3.3.2. From a geometric point of view, the change of measure (3.3.2) has the

effect of changing the background metric from a cone to a cylinder as illustrated in Figure

3.3 (see also Appendix 3.B for links between changes of metrics and changes of probability

measures).

We can sample the radial part (Bs)0≤s≤t by the independent sum Bs = Brs + δ√
t
s

where (Brs)0≤s≤t is a standard Brownian bridge and δ ∼ N (0, 1) (see Figure 3.4). We

write (B̃s)0≤s≤t the process on R where

1. (B̃−s)s≥0 and (B̃s)s≥t are independent Brownian motions.
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Figure 3.3: Change of measure from the cone to the cylinder

2. (B̃s)0≤s≤t is a Brownian bridge in [0, t] independent of the two other processes.

Similarly, we write Z̃t for the GMC mass defined similarly as Zt but with B̃ instead of B.

The result will follow from an analysis of the behaviour of Z̃t.

Q− α4

α1 −Q

Bt =
√
tδ

0 t

Bs = Brs +
δ√
t
s

Figure 3.4: The radial process in (0, t) is the independent sum of a Brownian bridge (red)
and a random drift (blue).

Let η ∈ (0, 1/2). We split Z̃t into three parts and write Z̃t = L̃t + C̃t + R̃t where

L̃t, C̃t and R̃t are obtained by restricting the domain of integration to (−∞, t1/2−η)× S1,

(t1/2−η, t− t1/2−η)× S1 and (t− t1/2−η,∞)× S1 respectively. We define Zt = Lt +Ct +Rt

similarly. These random variables are the “left”, “central”, and “right” parts of the Z̃t

and Zt.

For b > 0, we introduce the event Ãb,t :=

{
sup

0≤s≤t
B̃s ≤ b

}
. This event has probability

P(Ãb,t) = 1− e−2b2/t =: f(b/
√
t).

Notice that lim
x→∞

f(x) = 1 and f(x) ∼
x→0

2x2.

Conditioning on Ãb,t, the processes (b− B̃s)0≤s≤t/2 and (b− B̃t−s)0≤s≤t/2 are absolutely

continuous with respect to a BESb(3)-process. Hence there exists η′ > 0 such that with

high probability as t→∞, we have sup
t1/2−η≤s≤t−t1/2−η

B̃s ≤ −t1/2−η
′
. It follows that C̃t → 0

in probability as t→∞ when conditioned on Ãb,t.

Let Pb the law of a field X(s, θ) = Bs + Y (s, θ) where
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1. Y is a standard lateral noise.

2. (B−s)s≥0 is a standard Brownian motion.

3. (b−Bs)s≥0 is a BESb(3)-process independent of (B−s)s≥0.

We now describe the behaviour of L̃t and R̃t. On Ãb,t, the law of the process (b −
B̃s)0≤s≤t1/2−η is absolutely continuous with respect to that of a BESb(3)-process, and the

Radon-Nikodym derivative tends to 1 a.s. and in L1 as t→∞ (see e.g. [MY16, Exercise

9.4]). Hence the pair of processes ((b− B̃s)0≤s≤t1/2−η , (b− B̃t−s)0≤s≤t1/2−η) converges in

distribution to a pair of BESb(3)-processes, and it is clear that these limit processes are

independent of each other.

As for the angular part, notice that for all s < t1/2−η and s′ > t− t1/2−η, we have for

all θ, θ′ ∈ S1,

H(s+ iθ, s′ + iθ′) = log
1

|1− e−(s′−s)−i(θ′−θ)|
≤ log

1

1− e−(t−2t1/2−η)
= O(e−t/2) (3.3.5)

Now let Y +, Y − be independent lateral noises on C∞ and define Y ′(s, θ) := Y +(s, θ)1s<t/2+

Y −(s, θ)1s≥t/2. Let L̃−t (resp R̃+
t ) be the random variable defined like L̃t (resp. R̃−t ) except

we use Y ′ rather than Y for the lateral noise. Then under Ãb,t, the pair (L̃−t , R̃
+
t ) converges

in distribution to a pair of independent random variables (L∞, R∞) with

L∞
law
=

ˆ
C∞

eγ(Bs−(α4−Q)s1s≤0+α3G(0,s+iθ))dMγ(s, θ),

R∞
law
=

ˆ
C∞

eγ(Bs−(α1−Q)s1s≤0+α2G(0,s+iθ))dMγ(s, θ)

where the field is sampled from Pb in both cases.

Using the estimate (3.3.5) and Kahane’s convexity inequality, we have for all c ∈ R

E
[
exp

(
−µeγc(L̃t + R̃t)

)
|Ãb,t

]
= Eb

[
Et exp

(
−µeγc(L̃−t + R̃+

t )
)]

(1 +O(e−t/2))

→
t→∞

Eb [exp(−µeγc(L∞ +R∞))]

= Eb [exp(−µeγcL∞)]Eb [exp(−µeγcR∞)] .

Putting pieces together, we find for all c ∈ R

lim
t→∞

E
[
exp(−µeγcZ̃t)|Ãb,t

]
= lim

t→∞
E
[
exp(−µeγcL̃t) exp(−µeγcC̃t) exp(−µeγcR̃t)|Ãb,t

]
= Eb [exp(−µeγcL∞)]Eb [exp(−µeγcR∞)] .

To conclude we need to relate the behaviour of Z̃t with that of Zt as t→∞. To this

end we will condition on the value of the drift δ ∼ N (0, 1). For fixed δ ∈ R, we have
δ√
t
t1/2−η = δt−η, and this will be sufficient to show that up to time t1/2−η, the radial
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part of the GFF (Bt−s − δ√
t
s)0≤s≤t1/2−η does not “feel” the drift and therefore looks like a

Brownian motion started from
√
tδ. More precisely, we have

e−γ|δ|t
−η
R̃t ≤ e−γ

√
tδRt ≤ eγ|δ|t

−η
R̃t.

Taking expectations and rescaling δ by t−1/2, we get for all c ∈ R

√
tE
[
e(α1+α2−Q)Bt exp(−µeγcRt)|Ãb,t

]
=

ˆ
R
e(α1+α2−Q)δE

[
exp(−µeγ(c+δ+δO(t−1/2−η))R̃t)|Ãb,t

] e− tδ22√
2π

dδ

→
t→∞

1√
2π

ˆ
R
e(α1+α2−Q)δEb[exp(−µeγ(c+δ)R∞]dδ

where we applied the dominated convergence theorem in the last line.

Remark 3.3.3. The take-home message of this computation is that as t gets large the

value of the radial part at t is distributed like
√
tδ, so when properly rescaled, its law

converges vaguely to Lebesgue measure. Hence the field in the right part looks like a usual

GFF plus a constant which is “distributed” with Lebesgue measure, so δ plays the role of an

extra zero mode in the limit. This translates the fact that we see two independent surfaces

in the limit.

Recalling the expression of the correlation function (3.3.4), we make the change of

variable (c, δ) = (u, v − u) (with Jacobian equal to 1) and find

√
t

ˆ
R
eQσcE

[
e(α1+α2−Q)Bt exp(−µeγcZt)|Ãb,t

]
dc

=
√
t

ˆ
R
eQσc

ˆ
R
e(α1+α2−Q)

√
tδE
[
exp(−µeγcZt)|Ãb,t

] e− δ22√
2π
dδdc

→
t→∞

1√
2π

ˆ
R2

e(α1+α2−Q)(c+δ)e(α3+α4−Q)cEb [exp(−µeγcL∞)]Eb
[
exp(−µeγ(c+δ)R∞)

]
dδdc

=
1√
2π

(ˆ
R
e(α3+α4−Q)uEb [exp(−µeγuL∞)] du

)(ˆ
R
e(α1+α2−Q)vEb [exp(−µeγvR∞)] dv

)
.

(3.3.6)

Thus we have for each b > 0

lim
t→∞

t3/2
ˆ
R
eQσcE[exp(−µeγcZt)|Ãb,t]P(Ãb,t)dc

=

√
2

π
b2
(ˆ

R
e(α1+α2−Q)uEb[exp(−µeγuR∞)]du

)(ˆ
R
e(α3+α4−Q)vEb[exp(−µeγvL∞)]dv

)
.

It is shown in [DKRV17] that bEb [exp(−µeγvL∞)] has a non-trivial limit as b → ∞
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and, exchanging limits, the authors conclude that

lim
b→∞

bEb [exp(−µeγvL∞)] = lim
t→∞

√
πt

2
E [exp(−µeγvLt)] . (3.3.7)

On the other hand, one can recover the BESb(3)-process by conditioning a Brownian motion

with negative drift to stay below b forever and letting the drift tend to 0. More precisely,

if τα,b = inf{s ≥ 0, Bs + (α−Q)s ≥ b}, then we have P(τα,b =∞) ∼
α→Q−

2(Q− α)b. Now

adding the drift α−Q in the definition of L∞ gives the correlation function 1
2Cγ(α, α3, α4).

In the end (see [Bav18] for details), we have the alternative characterisation of the limit

(3.3.7)

lim
b→∞

b

ˆ
R
e(α3+α4−Q)vEb [exp(−µeγvL∞)] dv = −1

4
lim
α→Q

Cγ(α, α3, α4)

α−Q
= −1

4
∂1Cγ(α, α3, α4).

(3.3.8)

A similar statement holds for the L∞ term, so we have

lim
b→∞

lim
t→∞

t3/2
ˆ
R
eQσcE[exp(−µeγcZt)1Ãb,t ]dc =

1

8
√

2π
∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).

From [DKRV17], the family of functions E[exp(−µeγcZt)1Ãb,t ] converges uniformly

with respect to t as b→∞, enabling us to exchange limits in b an in t. Hence

lim
t→∞

t3/2
ˆ
R
eQσcE[exp(−µeγcZt)]dc = lim

b→∞
lim
t→∞

t3/2
ˆ
R
eQσcE[exp(−µeγcZt)1Ãb,t ]dc

=
1

8
√

2π
∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).

Recall equation (3.3.4) to find

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉

∼
z→0

1

4
√

2π
|z|2(Q

2

4
−∆1−∆2)|1− z|−α2α3(log

1

|z|
)−3/2∂3Cγ(α1, α2, Q)∂1Cγ(Q,α3, α4).

3.3.2 Critical case

We conclude the proof of Theorem 3.1.1 by proving the asymptotic formula (3.1.14), i.e.

we assume α1 + α2 = Q.

Proof of (3.1.14). The analysis of Section 3.3.1 fails only because the limit identified in

(3.3.6) becomes trivial in this case because the triplet (α1, α2, Q) violates the first Seiberg

bound. Geometrically, the random variable Rt does not have enough mass as t→∞ in

order to produce another surface.
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However, the analysis is still valid up to equation (3.3.2) and the expression of Zt is the

same with this new set of parameters. Consider the same decomposition Zt = Lt +Ct +Rt

and write ξt := Ct +Rt with the same η > 0.

As before, we condition the radial part no to exceed a given value. For b > 0, we define

the event

Ab,t :=

{
sup

0≤s≤t
Bs ≤ b

}
.

It is well-known that

P(Ab,t) =

√
2

π

ˆ b/
√
t

0
e−

x2

2 dx =: g(b/
√
t).

Notice that g(x) →
x→∞

1 and g(x) ∼
x→0

√
2
πx. The process (Bs)s≥0 conditioned on Ab,t has

the law of a BESb(3)-process. Repeating the argument of the previous subsection, we find

that ξt → 0 in probability as t→∞ when conditioned on Ab,t.

As for the radial part, we have the following estimate for s < t1/2−η and θ ∈ S1

|H(s+ iθ, t+ iφ)| = log
1

|1− e−(t−s)−i(φ−θ)|
= O(e−t/2).

Let Pb be the law of the field when the radial part (Bs)s≥0 is conditioned not to exceed

b. Applying exactly the same framework as before, we have for all κ > 0

lim
t→∞

√
tE
[
Z−κt

]
= lim

t→∞

√
tE
[
L−κt

]
=

√
2

π
lim
b→∞

bEb
[
L−κ∞

]
.

(3.3.9)

So it follows from the result of [Bav18] that

lim
t→∞

ˆ
R
e−QσcE

[
exp

(
−µeγc

ˆ
Ĉ
eγ
∑4
i=1 αiG(zi,·)dMγ

)]
dc = − 1

2
√

2π
∂1Cγ(Q,α3, α4)

(3.3.10)

which concludes the proof.

3.3.3 Proof of Theorem 3.1.2

As mentioned in Section 3.1.3, Theorem 3.1.2 follows easily from Theorem 3.1.1 by taking

σ to be arbitrary. We will use the notations in Section 3.3.1 and 3.3.2, outlining the

differences with the Liouville case and leaving the details to the reader.

Let (α1, α2, α3, α4) be such that the Seiberg bound is satisfied. If α1 + α2 −Q < κγ,

the previous analysis applies immediately modulo the obvious substitution Qσ
γ ↔ κ in the

relevant places. If α1 + α2 −Q ≥ κγ, however, we only apply Cameron-Martin to partially
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offset the positive drift in [0, t] by κγ, as motivated in Section 3.2.4. This leads to

E
[
W−κt

]
= e−κγ(α1+α2−Q)t+κ2γ2

2
tE
[(
e−γ(Bt+(α1+α2−Q−κγ)t)Ẑt

)−κ]
(3.3.11)

where Wt is defined in (3.3.1) and Ẑt is defined suitably. Notice that (3.3.11) is identical

to (3.3.2) when α1 + α2 −Q = κγ, the analysis of which is similar to that of Section 3.3.2

except that here we consider the event

A′b,t :=

{
sup

0≤s≤t
(Bt−s −Bt) ≤ b

}
so that Lt becomes irrelevant in the limit while Rt survives as t → ∞ instead. The

case α1 + α2 −Q > κγ is straightforward because e−γ(Bt+(α1+α2−Q−κγ)t)Ẑt is an integral

involving the exponentiation of a two-sided Brownian motion with negative drifts in both

directions, and we can even obtain (3.1.21) by dominated convergence directly.

�

3.4 Proof of Theorem 3.1.3

This section is devoted to the proof of Theorem 3.1.3 which gives probabilistic representa-

tions for the limits (3.3.8) and (3.3.9) for which we do not have exact formulae outside

of the Liouville case. We will not discuss (3.1.21) which is basically explained in the last

section.

3.4.1 Infinite series representation of Eγ
κ(α1, α2, α3, α4)

In order to obtain Theorem 3.1.3 we need the following intermediate result.

Lemma 3.4.1. Fix h > 0. When α1 + α2 −Q ∈ [0, κγ], the constant Eγκ(α1, α2, α3, α4)

in (3.1.16) has the following representations.

• If α1 + α2 −Q = 0, we have

Eγκ(α1, α2, α3, α4) =

√
2

π

∞∑
n=1

nhe−κγnhE
[(
Fα3,α4(nh, βnh· )

)−κ
1{mins>0 βnhs ≤h}

]
(3.4.1)

where (βus )s≥0 is a BESu(3)-process.
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• If α1 + α2 −Q ∈ (0, κγ),

Eγκ(α1, α2, α3, α4) =

√
2

π

∞∑
n=1

nhe−(κγ−(α1+α2−Q))nh

(α1 + α2 −Q)2
E

 1{mins>0 βnhL,s≤h}∪{mins>0 βTR,s≤h}(
Fα3,α4(nh, βnhL,·) + F ′α2,α1

(T , βTR,·)
)κ


(3.4.2)

where (βuL,s)s≥0 and (βTR,s)s≥0 are independent BESu(3)- and BEST (3)-processes respec-

tively with T ∼ Gamma(2, α1 + α2 −Q), and F ′ is an independent copy of F .

• If α1 + α2 −Q = κγ,

Eγκ(α1, α2, α3, α4) =

√
2

π

∞∑
n=1

nhe−κγnhE
[(
Fα2,α1(nh, βnh· )

)−κ
1{mins>0 βnhs ≤h}

]
(3.4.3)

where (βus )s≥0 is a BESu(3)-process.

Proof. For the sake of brevity we only sketch the proof for the case h = 1 here and leave

the details to the reader. The key idea is the partitioning of

An,t =

{
sup

0≤s≤t
Bs ≤ n

}
=
⋃
k≤n

{
sup

0≤s≤t
Bs ∈ [(k − 1), k]

}
=
⋃
k≤n

{
min

0≤s≤t
k −Bs ∈ [0, 1]

}
.

When α1 + α2 −Q = 0, our claim essentially follows from Proposition 3.1 and Lemma

3.2 in [DKRV17], where a dominated convergence argument (see the paragraph after

Lemma 3.2 and Section 5.0.3 in that article) implies that the renormalised constant is

given by

∞∑
n=1

lim
t→∞

(√
tE
[
L−κt 1{min0≤s≤t n−Bs≤1}

∣∣An,t]P(An,t)
)

=

√
2

π

∞∑
n=1

nEn
[
L−κ∞ 1{mins≥0 n−Bs≤1}

]
which is equivalent to (3.4.1). The proof of (3.4.3) is similar.

To apply the same dominated convergence approach to (3.4.2), we need a control

analogous to [DKRV17, equation (3.18)] when α1 + α2 − Q ∈ (0, κγ). Indeed the same

argument there suggests that

t3/2E
[
e(α1+α2−Q)Bt(Lt +Rt)

−κ1{sup0≤s≤tBs∈[(n−1),n]}

]
≤ Ce−(κγ−(α1+α2−Q))n

for some constant C > 0 independent of t and n, and therefore Eγκ(α1, α2, α3, α4) again

has an infinite series representation of the form

∞∑
n=1

lim
t→∞

(
t3/2E

[
e(α1+α2−Q)Bt(Lt +Rt)

−κ1{sup0≤s≤tBs∈[n−1,n]}

])
. (3.4.4)
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Let us highlight several observations.

• For every n ∈ N, the event {sup0≤s≤tBs ∈ [n− 1, n]} may be replaced by{
sup

0≤s≤t
Bs ≤ n

}
︸ ︷︷ ︸

=An,t

∩
({

min
0≤s≤t1/2−η

n−Bs ≤ 1

}
∪
{

min
0≤s≤t1/2−η

n−Bt − (Bt−s −Bt) ≤ 1

})
︸ ︷︷ ︸

=:An,t

up to a cost of o(1) for neglecting the unlikely event
{

sups∈[t1/2−η ,t−t1/2−η ]Bs ≥ n− 1
}

.

• Similar to the proof of Theorem 3.1.1, if we condition on the event An,t and Bt = x,

then

(n−Bs)0≤s≤t1/2−η , (n−Bt − (Bt−s −Bt))0≤s≤t1/2−η

converge in distribution to independent BESn(3)- and BESn−x(3)-processes (βnL,s)s≥0

and (βn−xR,s )s≥0 respectively. Consequently Lt and Rt converge in distribution to

eγnFα3,α4(n, βnL,·) and eγnF ′α2,α1
(n− x, βn−xR,· ) respectively.

We now compute

E
[
1An,t∩An,t

∣∣(Bs)s∈(−∞,t1/2−η ]∪[t−t1/2−η ,∞)

]
= 1{

min
0≤s≤t1/2−η n−Bs≤1

}
∪
{

min
0≤s≤t1/2−η n−Bt−(Bt−s−Bt)≤1

}
× P

(
An,t

∣∣(Bs)s∈(−∞,t1/2−η ]∪[t−t1/2−η ,∞)

)
where

P
(
An,t

∣∣(Bs)s∈(−∞,t1/2−η ]∪[t−t1/2−η ,∞)

)
= 1{sup

0≤s≤t1/2−η Bs≤n}
1{sup

0≤s≤t1/2−η Bt−s−Bt≤n−Bt}

× P

(
sup

t1/2−η≤s≤t−t1/2−η
Bs ≤ n

∣∣∣∣Bt1/2−η , Bt−t1/2−η
)

and

P

(
sup

t1/2−η≤s≤t−t1/2−η
Bs ≤ n

∣∣∣∣Bt1/2−η , Bt−t1/2−η
)

= 1− e−
2

t−2t1/2−η
(n−B

t1/2−η )(n−Bt−(B
t−t1/2−η−Bt))

is asymptotically 2
t (n−Bt1/2−η)(n−Bt − (Bt−t1/2−η −Bt)) when t is large. In particular

P
(
An,t

∣∣Bt = x
)
∼ 2

t
n(n− x) + o(t−1), t→∞.
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Substituting this into the summand in (3.4.4), we obtain

lim
t→∞

t3/2
ˆ n

−∞
E
[
e(α1+α2−Q)x(Lt +Rt)

−κ1An,t

∣∣∣∣An,t, Bt = x

]
P(An,t

∣∣Bt = x)P(Bt ∈ dx)

=
e(α1+α2−Q)n

√
2π

lim
t→∞

t

ˆ n

−∞
E
[
e−(α1+α2−Q)(n−x)(Lt +Rt)

−κ1An,t

∣∣∣∣An,t, Bt = x

]
× P(An,t

∣∣Bt = x)e−
x2

2t dx

=
2e(α1+α2−Q)n

√
2π

ˆ n

−∞
E

e−(α1+α2−Q)(n−x)1{mins≥0 β
n
L,s≤1}∪{mins≥0 β

n−x
R,s ≤1}

(eγnFα3,α4(n, βnL,·) + eγnF ′α3,α4
(n− x, βn−xR,· ))κ

n(n− x)dx

where the last line follows by dominated convergence, and is equal to√
2

π
ne−(κγ−(α1+α2−Q))n

ˆ ∞
0

E

[
1{mins≥0 β

n
L,s≤1}∪{mins≥0 β

x
R,s≤1}

(Fα3,α4(n, βnL,·) + F ′α3,α4
(x, βxR,·))

κ

]
xe−(α1+α2−Q)xdx

so we are done.

Remark 3.4.2. The careful reader may notice that the proof above when α1 + α2 −Q ∈
(0, κγ) differs slightly from that in Section 3.3.1 where one considers the event Ãn,t ={

sup0≤s≤t B̃s ≤ n
}

instead of An,t =
{

sup0≤s≤tBs ≤ n
}

. The current approach, which

addresses the partitioning of probability space instead of factorisation in the first place, may

have the drawback that (3.4.2) does not give a product of two negative moments immediately

but it allows for an easier side-by-side comparison with the analysis in [DKRV17].

3.4.2 Proof of Theorem 3.1.3

The infinite series representation in Lemma 3.4.1 is reminiscent of Riemann sums. We now

explain how to obtain the simplified expressions in Theorem 3.1.3.

Proof of (3.1.18) and (3.1.20). We begin with α1 + α2 − Q = 0. Fix some N > 0, and

without loss of generality choose a sequence of h→ 0+ such that h always divides both

N−1 and N . Then by Lemma 3.4.1 we have

Eγκ(α1, α2, α3, α4) =

√
2

π

N/h∑
n=1/Nh+1

nhe−κγnhE
[(
Fα3,α4(nh, βnh· )

)−κ
1{mins>0 βnhs ≤h}

]
+ CN

(3.4.5)

for some constant CN > 0 which depends on N and the other parameters but not on h,

with the property that limN→∞CN = 0.
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Recall (3.1.17) for the definition of the random functional F . By Theorem 3.2.6, we

can rewrite the sum in (3.4.5) as

N/h∑
n=1/Nh+1

nhe−κγnh
ˆ 1

n

0

E

[(
e−γnh

ˆ
|x|≥1

dMγ(x)

|x|4−γ(α3+α4)|x− 1|γα3

+

ˆ
Rs≥0×S1θ

e
−γ((nh+Bs)1{s≤T−nh(1−u)}+(nhu+β0

s−T−nh(1−u)
)1{s≥T−nh(1−u)}−α3G(1,e−s−iθ))

dM̂γ(s, θ)

)−κ du
x=nh(1−u)

=

N/h∑
n=1/Nh+1

e−κγnh
ˆ nh

(n−1)h

E

[(
e−γnh

ˆ
|x|≥1

dMγ(x)

|x|4−γ(α3+α4)|x− 1|γα3

+

ˆ
Rs≥0×S1θ

e
−γ((nh+Bs)1{s≤T−x}+(nh−x+β0

s−T−x
)1{s≥T−x}−α3G(1,e−s−iθ))

dM̂γ(s, θ)

)−κ dx
= (1 + o(1))

ˆ N

1/N

e−κγxE
[(
Fα3,α4(x, β̃x· )

)−κ]
dx

where the o(1) error is with respect to h→ 0+ and comes from the fact that

e−γnh = (1 + o(1))e−γx, e−γ(nh−x) = (1 + o(1))

uniformly in h > 0 and n ∈ N for all x ∈ [(n− 1)h, nh]. The desired formula (3.1.18) is

recovered by sending h→ 0+ and N →∞. The proof of (3.1.20) is similar.

The case where α1 + α2 − Q ∈ (0, κγ) is slightly more involved and the following

elementary formula will be useful.

Lemma 3.4.3. Fix κ, γ, λ > 0 such that λ < κγ. Let X,Y be independent non-negative

random variables and T an independent Exp(λ) random variable. Provided that all the

moments below exist, we have

E
[(
X + e−γTY

)−κ]
=
λ

γ
B

(
λ

γ
, κ− λ

γ

)
E
[
X
−(κ−λ

γ
)
]
E
[
Y
−λ
γ

]
. (3.4.6)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function.

The proof of Lemma 3.4.3 follows from the same change-of-variable argument in (3.3.6)

and is skipped here. For a sanity check one may quickly verify that both the LHS and

RHS of (3.4.6) converge to E[X−κ] as λ/γ → 0.
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Proof of (3.1.19). Our starting point is (3.4.2) from Lemma 3.4.1. It is clear that

E

 1{mins>0 βnhL,s≤h}∪{mins>0 βTR,s≤h}(
Fα3,α4(nh, βnhL,·) + F ′α2,α1

(T , βTR,·)
)κ
 = E

 1{mins>0 βnhL,s≤h}(
Fα3,α4(nh, βnhL,·) + F ′α2,α1

(T , βTR,·)
)κ


+ E

 1{mins>0 βTR,s≤h}(
Fα3,α4(nh, βnhL,·) + F ′α2,α1

(T , βTR,·)
)κ
− E

 1{mins>0 βnhL,s≤h}∩{mins>0 βTR,s≤h}(
Fα3,α4(nh, βnhL,·) + F ′α2,α1

(T , βTR,·)
)κ


where the last term is O(h2) and may be safely ignored. Arguing as before, we see that

√
2

π

∞∑
n=1

nhe−(κγ−(α1+α2−Q))nh

(α1 + α2 −Q)2
E

 1{mins>0 βnhL,s≤h}(
Fα3,α4(nh, βnhL,·) + F ′α2,α1

(T , βTR,·)
)κ


=

√
2/π

(α1 + α2 −Q)2(κγ − (α1 + α2 −Q))
E
[(
Fα3,α4(τ, β̃τL,·) + F ′α2,α1

(T , βTR,·)
)−κ]

+ o(1)

(3.4.7)

where τ ∼ Exp(κγ − (α1 + α2 −Q)) and T ∼ Gamma(2, α1 + α2 −Q). Recall that if U is

an independent Uniform[0, 1] random variable, then (T1, T2) := (T U, T (1− U)) is a pair

of independent Exp(α1 + α2 −Q) random variables. Combining this fact with Theorem

3.2.6, we obtain

F ′α2,α1
(T , βTR,·)

d
= e−γT1F ′α2,α1

(T2, β̃
T2
R,·)

and we can rewrite the expectation in (3.4.7) as

E
[(
Fα3,α4(τ, β̃τL,·) + e−γT1F ′α2,α1

(T2, β̃
T2
R,·)
)−κ]

.

Similarly, if we let τ1, τ2 be independent Exp(κγ − (α1 + α2 −Q)), then

√
2

π

∞∑
n=1

nhe−(κγ−(α1+α2−Q))nh

(α1 + α2 −Q)2
E

 1{mins>0 βTR,s≤h}(
Fα3,α4

(nh, βnhL,·) + F ′α2,α1
(T , βTR,·)

)κ


=

√
2/π

(α1 + α2 −Q)(κγ − (α1 + α2 −Q))2
E
[(
e−γτ1Fα3,α4

(τ2, β̃
τ2
L,·) + F ′α2,α1

(T2, β̃
T2
R,·)
)−κ]

+ o(1).

(3.4.8)

The claim then follows by sending h → 0+ and applying Lemma 3.4.3 to (3.4.7) and

(3.4.8).
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3.5 Fusion in boundary Liouville Conformal Field Theory

3.5.1 Boundary Liouville Conformal Field Theory

Boundary LCFT is LCFT on proper simply connected domains D ⊂ C. We start by a

brief review of the theory and refer to [HRV18] for details. Like LCFT on the sphere, the

theory is conformally invariant, so by the Riemann uniformisation theorem, it is enough

to study it on the upper-half plane H := {Imz > 0} (the unit disc D is also a common

choice) equipped with some background metric g. In this context, the Liouville action

with boundary term is given by5

SL(X, g) :=
1

4π

ˆ
H

(
|∇X|2 + 4πµeγXg(z)

)
d2z + µ∂

ˆ
R
e
γ
2
Xg(x)1/2dx (3.5.1)

where µ∂ > 0 is the boundary cosmological constant. One recognises the Dirichlet energy in

the first term of the action, giving rise to a GFF which we take to have Neumann boundary

conditions. The GFF is weighted by its bulk GMC mass Mγ(H) and its boundary GMC

mass Mγ
∂ (R), where the boundary GMC is formally

dMγ
∂ (x) = e

γ
2
X(x)− γ

2

8
E[X(x)2]g(x)1/2dx

and is obtained via a regularisation of the field using semi-circle averages.

As in the sphere case, the observables are the vertex operators Vα(z) for insertions

z ∈ H. The main difference is that one can consider insertions on the boundary, which we

formally write

Bβ(x) := e
β
2
X(x)

for x ∈ R and β in a range to be determined. The correlation functions 〈
∏N
i=1 Vαi(zi)

∏M
j=1Bβj (xj)〉

exist if and only if the Seiberg bounds are satisfied, which in this context are given by

σ :=

N∑
i=1

αi
Q

+
M∑
j=1

βj
2Q
− 1 > 0,

∀i, αi < Q and βj < Q.

(3.5.2)

If these are satisfied, the correlation function has the following form6 [HRV18]:〈
N∏
i=1

Vαi(zi)

M∏
j=1

Bβj (xj)

〉
= 2eC(z,x)

ˆ
R
eQσcE

[
exp

(
−µeγc

ˆ
H
eγHdMγ − µ∂e

γ
2 c

ˆ
R
e
γ
2HdMγ

∂

)]
dc

(3.5.3)

5We omit the Ricci and geodesic curvature terms.
6We chose the prefactor 2 so that the asymptotic behaviour of the bulk 1-point function with µ = 0

coincides with that of [FZZ00, equation (2.24)].
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where H and C(z,x) are the functions defined by

H =

N∑
i=1

αiG(zi, ·) +

M∑
j=1

βj
2
G(xj , ·)

C(z,x) =
∑
i<i′

αiαi′G(zi, z
′
i) +

∑
i,j

αiβj
2

G(zi, xj) +
∑
j<j′

βjβj′

4
G(xj , x

′
j)

(3.5.4)

with G being Green’s function with Neumann boundary conditions on (H, g). Notice that

the usual change of variable u = eγc does not give a nicer expression in this case since the

exponential term in the expectation is quadratic in e
γ
2
c.

Correlation functions are conformally covariant, and if ψ : H → H is a Möbius

transformation, then (recall that ∆α = α
2 (Q− α

2 ))〈
N∏
i=1

Vαi(ψ(zi))

M∏
j=1

Bβj (ψ(xj))

〉
=

N∏
i=1

|ψ′(zi)|−2∆αi

M∏
j=1

|ψ′(xj)|−∆βj

〈
N∏
i=1

Vαi(zi)

M∏
j=1

Bβj (xj)

〉
.

Möbius transforms of H have three real parameters, so when the location of the

insertions have less than (or exactly) three real parameters, the correlation functions are

determined by conformal invariance, and we have the following structure constants

1. Bulk-boundary two-point function

〈Vα(z)Bβ(x)〉 =
R(α, β)

|z − z̄|2∆α−∆β |z − x|2∆β
.

As a special case of this equation for β = 0, we have the bulk one-point function

〈Vα(z)〉 =
U(α)

|z − z̄|2∆α
. (3.5.5)

2. Boundary three-point function

〈Bβ1
(x1)Bβ2

(x2)Bβ3
(x3)〉 =

c(β1, β2, β3)

|x1 − x2|∆β1
+∆β2

−∆β3 |x2 − x3|∆β2
+∆β3

−∆β1 |x3 − x1|∆β3
+∆β1

−∆β2
.

(3.5.6)

Remark 3.5.1. There is also a definition for a boundary two-point function, which we

omit here since we will not be needing it for the purpose of this paper. Let us just mention

that this object is to the reflection coefficient of [KRV17] what the boundary three-point

function is to the DOZZ formula.

The above structure constants are to be understood as meromorphic functions of

the parameters and they arise naturally in the bootstrap formalism. Physicists have
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conjectured exact formulae for the values of these structure constants [FZZ00, PT02], and

there are works in progress by Gwynne and Remy establishing the validity of (3.5.5) and

Remy and Zhu addressing (3.5.6).

3.5.2 Main results

The cases we treat are the fusion on two boundary-insertions, the absorption of a bulk-

insertion on the boundary and the fusion of two bulk-insertions.

Theorem 3.5.2 (Boundary four-point). Let (β1, β2, β3, β4) satisfying the Seiberg bounds

and suppose that β3 + β4 > Q. Then the following asymptotic holds:

1. Supercritical case

If β1 + β2 > Q, then

〈Bβ1(0)Bβ2(x)Bβ3(1)Bβ4(∞)〉 ∼
x→0

1

4
√
π

|x|
Q2

4
−∆β1

−∆β2

log3/2 1
|x|

∂3c(β1, β2, Q)∂1c(Q, β3, β4).

2. Critical case

If β1 + β2 = Q, then

〈Bβ1(0)Bβ2(x)Bβ3(1)Bβ4(∞)〉 ∼
x→0
− 1√

π

|x|−
1
2
β1β2

log1/2 1
|x|
∂1c(Q, β3, β4). (3.5.7)

3. Subcritical case

If β1 + β2 < Q, then

〈Bβ1(0)Bβ2(x)Bβ3(1)Bβ4(∞)〉 ∼
x→0
|x|−

1
2
β1β2c(β1 + β2, β3, β4).

The next theorem is about the fusion in the bulk two-point function.

Theorem 3.5.3 (Bulk two-point: Fusion). Let (α1, α2, β) satisfying the Seiberg bounds.

Then the following asymptotics hold:

1. If β = 0, then

〈Vα1(i)Vα2(i+ z)〉 ∼
z→0
−2−α1α2

√
2π

|z|2(Q
2

4
−∆α1−∆α2 )

log1/2 1
|z|

∂3Cγ(α1, α2, Q). (3.5.8)

2. If β > 0, then

(a) Supercritical case
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If α1 + α2 > Q, then

〈Vα1(i)Vα2(i+ z)Bβ(0)〉

∼
z→0

2∆β−Q
2

2
−α1α2

4
√

2π

|z|2(Q
2

4
−∆α1−∆α2 )

log3/2 1
|z|

∂3Cγ(α1, α2, Q)∂1R(Q, β).

(b) Critical case

If α1 + α2 = Q, then

〈Vα1(i)Vα2(i+ z)Bβ(0)〉 ∼
z→0
−2∆β−Q

2

2
−α1α2

√
2π

|z|−α1α2

log1/2 1
|z|
∂1R(Q, β).

(c) Subcritical case

If α1 + α2 < Q, then

〈Vα1(i)Vα2(i+ z)Bβ(0)〉 ∼
z→0

2∆β−Q
2

2
−α1α2 |z|−α1α2R(α1 + α2, β). (3.5.9)

Another interesting limit of the bulk two-point function is sending one insertion to the

boundary.

Theorem 3.5.4 (Bulk two-point: Absorption). Let (α1, α2) satisfying the Seiberg bounds,

and suppose α1 >
Q
2 . Then the following asymptotic holds:

1. Supercritical case

If α2 >
Q
2 , then

〈Vα1(i)Vα2(z)〉 ∼
z→0

22(Q
2

4
−∆α1−∆α2 )

4
√
π

|z|(α2−Q2 )2

log3/2 1
|z|

∂2R(α1, Q)∂2R(α2, Q).

2. Critical case

If α2 = Q
2 , then

〈Vα1(i)Vα2(z)〉 ∼
z→0
− 2

Q2

2
−2∆α1

√
π log1/2 1

|z|
∂2R(α1, Q).

3. Subcritical case

If α2 <
Q
2 , then

〈Vα1(i)Vα2(z)〉 ∼
z→0

R(α1, 2α2)

22∆α1−∆2α2
. (3.5.10)
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We now turn to the bulk-boundary three-point function 〈Vα(z)Bβ1(0)Bβ2(∞)〉. There

is not much to say about the merging of the bulk insertion with a boundary insertion since

for all r > 0 and θ ∈ (0, π), the correlation function 〈Vα(reiθ)Bβ1(0)Bβ2(∞)〉 is deduced

from 〈Vα(eiθ)Bβ1(0)Bβ2(∞)〉 by scaling. The non-trivial parameter we can vary is θ, and

the limit θ → 0 corresponds to the absorption of an bulk insertion on a boundary point

which is not an insertion. Thus we will study the correlation function 〈Vα(z)Bβ1(1)Bβ2(∞)〉
in the limit z → 0. Notice that by Möbius invariance, this is the same as studying the

function 〈Vα(i)Bβ1(0)Bβ2(x)〉 in the limit x→ 0, i.e. merging the two boundary insertions.

Theorem 3.5.5 (Bulk-boundary three-point). Let (α, β1, β2) satisfying the Seiberg bounds,

and assume that β1 + β2 >
Q
2 . Then the following asymptotic holds

1. Supercritical case

If α > Q
2 , then

〈Vα(z)Bβ1(1)Bβ2(∞)〉 ∼
z→0

2
Q2

4
−2∆α

4
√
π

|z|(α−
Q
2

)2

log3/2 1
|z|
∂2R(α,Q)∂1c(Q, β1, β2).

2. Critical case

If α = Q
2 , then

〈Vα(z)Bβ1(1)Bβ2(∞)〉 ∼
z→0
− 1
√
π log1/2 1

|z|
∂1c(Q, β1, β2).

3. Subcritical case

If α < Q
2 , then

〈Vα(z)Vβ1(1)Vβ2(∞)〉 ∼
z→0

c(2α, β1, β2).

Remark 3.5.6. More generally, the fusion rules in the supercritical case are the following:

1. Fusion of boundary-boundary (β1, β2)-insertions produces a boundary three-point

function ∂3c(β1, β2, Q).

2. Absorption of a bulk α-insertion produces a bulk-boundary function ∂2R(α,Q).

3. Fusion of bulk-bulk (α1, α2)-insertions produces a DOZZ formula ∂3Cγ(α1, α2, Q).

This rule, as well as the rate functions of the above theorems, can be used to compute the

asymptotic behaviour of all correlation functions upon fusion of insertions, and express the

limit with a lower order correlation function.

We haven’t said anything about the fusion of bulk-boundary insertions. This is

because it can be seen as a two-step procedure of first absorbing the bulk insertion into
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3.5. Fusion in boundary Liouville Conformal Field Theory

the boundary and then merging the boundary insertions. Hence the operation does

not produce a structure constant. As an example, consider the correlation function

〈Vα(z)Bβ1(0)Bβ2(1)Bβ3(∞)〉 in the limit z → 0, for (α, β1, β2, β3) satisfying the Seiberg

bounds, and suppose that both β3 + β4 > Q and 2α + β1 > Q, so that we are in the

supercritical case. Then the asymptotic is given by

〈Vα(z)Bβ1(0)Bβ2(1)Bβ3(∞)〉

∼
z→0

1

4
√
π

|z|(α−
Q
2

)2−αβ1

log3/2 1
|z|

∂

∂β
〈Vα(i)Bβ1(0)Bβ(∞)〉|β=Q∂1c(Q, β2, β3).

Remark 3.5.7. Even though the correlation functions can no longer be expressed in terms

of negative moments of GMC (unless µµ∂ = 0), it is still possible to give probabilistic

representations of the renormalised constants in the aforementioned theorems by performing

the same partitioning-of-probability-space procedure on

E
[
exp

(
−µeγc

ˆ
H
eγHdMγ − µ∂e

γ
2
c

ˆ
R
e
γ
2
HdMγ

∂

)]
.

as we did in Section 3.4. We omit the details here.

We now turn to proving Theorems 3.5.2, 3.5.3, 3.5.4 and 3.5.5. We only deal with

Theorems 3.5.2 and 3.5.3 since the other cases are similar.

Subcritical cases follow from dominated convergence so we won’t treat them. The rest

of the proofs are very similar to that of Theorem 3.1.1 so we will be brief.

Proof of Theorem 3.5.2. The setting is the upper-half plane H equipped with the metric

g(z) = 4|z|−4
+ . We use the same procedure as for the sphere and apply the conformal

change of coordinate ψ : z 7→ e−z/2 from the infinite strip S := R × (0, 2π) to H. Then

Green’s function on the strip is given by the even part of Green’s function on the cylinder,

i.e. if X is a GFF on Rs × (0, 2π)θ, we have (recall (3.2.2))

E[X(s, θ)X(s′, θ′)] = G(
s

2
,
θ

2
,
s′

2
,
θ′

2
) +G(

s

2
,
θ

2
,
s′

2
,−θ

′

2
)

= (|s| ∧ |s′|)1ss′≥0 +H(
s

2
,
θ

2
,
s′

2
,
θ′

2
) +H(

s

2
,
θ

2
,
s′

2
,−θ

′

2
)

= (|s| ∧ |s′|)1ss′≥0 +G(0, 0,
s′ − s

2
,
θ′ − θ

2
) +G(0, 0,

s′ − s
2

,
θ′ + θ

2
).

(3.5.11)

Hence the field can be decomposed into the independent sum X = B + Y where (Bs)s∈R

is standard two-sided Brownian motion and Y is a log-correlated field whose covariance

kernel is given by the sum of G functions on the right-hand side of the previous equation.

It is also clear from the definition that the law of Y is translation invariant. The pullback

measure of g on the strip is gψ(s, θ) = e−|s| so we can take the GMC measure of Y with
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respect to Lebesgue measure on S and take the drifted process Bs − Q
2 |s| for the radial

part of the GFF.

First we have to explain how to make sense of boundary (derivative) Q-insertions. A

boundary insertion with momentum β at∞ (on the strip) amounts in adding a positive drift
β
2 to the radial process (on the positive real line), so the total drift vanishes when β = Q. For

t > 0, define Ht := H\(e−t/2D) (resp. Rt := R\(−e−t/2, e−t/2)) and 〈BQ(0)Bβ2(1)Bβ3(∞)〉t
the correlation function where we integrate the bulk (resp. boundary) GMC measure of

(3.5.3) on Ht (resp. Rt) instead of H (resp. R). Viewed in the strip, this is the same as

taking St := (−∞, t)× (0, 2π) and (−∞, t)×{0, 2π} as domains of integration for the bulk

and boundary measures.

For fixed b > 0, we have

P
(

sup
0≤s≤t

Bs ≤ b
)
∼

t→∞

√
2

πt
b,

P
(

sup
t≥0

Bs +
1

2
(β −Q)s ≤ b

)
∼

β→Q−
(Q− β)b

(3.5.12)

and so by previous arguments we have

lim
t→∞

√
πt

2
〈BQ(0)Bβ2(1)Bβ3(∞)〉t = lim

β→Q−
1

Q− β
〈Bβ(0)Bβ2(1)Bβ3(∞)〉 = −∂1c(Q, β2, β3).

The critical case (3.5.7) follows easily from this equality.

Now we turn to the supercritical case. We write t := 2 log 1
|x| . The radial process has a

positive drift 1
2(β1 + β2 −Q) in (0, t), which we kill by Cameron-Martin’s theorem (recall

(3.3.2), yielding the Radon-Nikodym derivative e
1
2

(β1+β2−Q)Bt− 1
8

(β1+β2−Q)2t. This accounts

for the polynomial rate in |x|.
Similarly as in Figure 3.4, we condition on value of the process at time t and introduce

Bt =
√
tδ with δ ∼ N (0, 1) independent of everything. Thus the process in [0, t] is the

sum of a random drift δ√
t

and an independent Brownian bridge in [0, t] (see Figure 3.5).

Conditioning the Brownian bridge in (0, t) to stay below b, we get a contribution of√
2
π t
−3/2 = 1

2
√

2π log3/2 1
|x|

. Taking t→∞ then b→∞, the limiting integral on the left is a

strip with a β4-insertions at −∞, a β3-insertion at 0 and a (derivative) Q-insertion at +∞
(see Figure 3.5), hence the limit is −1

2∂1c(Q, β3, β4) (recall the prefactor 2 in the definition

of (3.5.3)). Similarly the limiting integral on the left is −1
2∂1c(β1, β2, Q), which yields the

result.

Proof of Theorem 3.5.3. In this proof, we use the flat disc (D, dz) as set-up, which is

mapped to the semi-infinite cylinder C+ = R+×S1 equipped with the metric g(s, θ) = e−2s

under the conformal transformation z 7→ e−z. So the GFF decomposes as the sum of a

148



3.5. Fusion in boundary Liouville Conformal Field Theory

1
2(Q− β4)

1
2(β1 −Q)

Bt =
√
tδ

0 t

Bs = Brs +
δ√
t
s

Figure 3.5: The radial process on the strip in [0, t] is the sum of a Brownian bridge (red)
and a random independent drift (blue).

drifted Brownian motion (Bs −Qs)s≥0 and an independent lateral noise Y from which we

take the GMC measure with respect to Lebesgue measure.

We treat the case β > 0 and α1 + α2 > Q, the others being similar. Let t := log 1
|z| .

With the presence of the insertions, the radial part has a positive drift α1 + α2 − Q in

(0, t) and negative drift α1 −Q in (t,∞). Killing the drift in (0, t) with Cameron-Martin’s

theorem gives the exponent in |z|. Conditioning on the value of Bt =
√
tδ and conditioning

the Brownian bridge not to exceed some b > 0 gives a prefactor of
√

2
π t
−3/2. Taking t→∞

then b→∞, we find that the integral on the right is an infinite cylinder with insertions

(α1, α2, Q) at (+∞, 0,−∞), so its value is −1
4∂3Cγ(α1, α2, Q) (the lateral noise is close to

the one used before in this region and can be dealt with using Kahane’s convexity inequality).

On the other hand, the integral on the left is a semi-infinite cylinder with a Q-insertion at

∞ and a β-insertion on the boundary, so its value is −1
4
∂
∂α〈Vα(i)Bβ(0)〉|α=Q.

3.5.3 Links with random planar maps

The above results can be interpreted with respect to the KPZ conjecture on random planar

maps with the topology of the disc. For concreteness, let Tn,m be the set of triangulations of

the disc with n internal vertices and m+2 boundary vertices, with two marked vertices (one

internal and one on the boundary). Then it is known [AS03] that there exists µc, µc∂ > 0

such that

#Tn,m � eµ
cneµ

c
∂mm1/2n−5/2.

We suppose that for a triangulation (t, z,x), we have conformal mapped t to H (in

the manner of section 3.1.4) and that z is mapped to i and x is mapped to 0. For each

such triangulation and a > 0, we can construct measures νt,a (resp. νt,a∂ ) giving mass a2

(resp. a) to each triangle (resp. each boundary edge). Now we let µ := (1 + a2)µc and
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µ∂ := (1 + a)µc∂ , and sample the triangulations at random with the probability measure

Pa(t, z,x) =
1

Za
e−µ|t|e−µ∂`(t)

where Za is the normalising constant and `(t) is the boundary length of t. Additionally

we choose the internal marked vertex uniformly in the internal vertices of t and similarly

for the boundary marked vertex.

It is conjectured [HRV18] that the pair of random measures (νt,a, νt,a∂ ) converges in

distribution to a pair of random measures on (D, ∂D), and the limit (ν, ν∂) should be given

by (some form of) LQFT on the disc. In particular, it should be the case that for all

measurable sets A ⊂ H, B ⊂ R,

E
[
ν(A)

ν(H)

]
=

ˆ
A
f√ 8

3
,µc,µc∂

(z)d2z

E
[
ν∂(B)

ν∂(R)

]
=

ˆ
B
λ√ 8

3
,µc,µc∂

(x)dx

where we define for all γ ∈ (0, 2) and µ, µ∂ > 0,

fγ,µ,µ∂ (z) :=
1

Z
〈Vγ(z)Vγ(i)Bγ(0)〉

λγ,µ,µ∂ (x) :=
1

Z∂
〈Bγ(x)Vγ(i)Bγ(0)〉

(3.5.13)

where Z,Z∂ are normalising constants whose values are discussed in Appendix 3.C.

Similarly to the discussion of section 3.1.4, the result of Theorems 3.5.5 and 3.5.3

gives precise estimates on the expected density of vertices in different settings: internal or

boundary vertices around the marked point on the boundary, internal vertices around the

internal marked point, and internal vertices around the boundary.

Finally, we mention that one can formulate other conjectures involving different values

of γ (e.g. by weighting the measure Pa by some statistical mechanics model), µ and µ∂

(e.g. by considering other types of maps).
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3.A. The DOZZ formula

Appendix 3.A The DOZZ formula

The DOZZ formula is the expression of the 3-point correlation function on the sphere

〈Vα1(0)Vα2(1)Vα3(∞)〉S2 . The formula reads

Cγ(α1, α2, α3) =

(
πµ
(γ

2

)2− γ
2

2 Γ(γ2/4)

Γ(1− γ2/4)

)−α−2Q
γ

×
Υ′γ

2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2

(
α−2Q

2

)
Υ γ

2

(
α
2 − α1

)
Υ γ

2

(
α
2 − α2

)
Υ γ

2

(
α
2 − α3

)
(3.A.1)

where α = α1 + α2 + α3 and Υ γ
2

is Zamolodchikov’s special function. It has the following

integral representation for <z ∈ (0, Q)

log Υ(z) =

ˆ ∞
0

(Q
2
− z
)2

e−t −
sinh2

((
Q
2 − z

)
t
2

)
sinh

(γt
4

)
sinh

(
t
γ

)
 dt

t

and it is extended holomorphically to C.

It satisfies the functional relation Υ(Q − z) = Υ(z) and it has a simple zero at 0 if

γ2 ∈ R \Q7, so it has a simple zero at Q too and Υ′(Q) = −Υ′(0) 6= 0.

Let us introduce the notation

Cγ(α1, α2, α3) =
Υ′(0)Υ(α1)Υ(α2)Υ(α3)

Υ(α2 −Q)Υ(α2 − α1)Υ(α2 − α2)Υ(α2 − α3)
.

Now we assume α1 + α2 = Q and α3 = Q − iP and show the limit (3.1.11). Then

α = 2Q− iP and

Cγ(α1, Q− α1, Q− iP ) =
Υ′(0)Υ(α1)2Υ(iP )

Υ(− iP
2 )Υ(α1 + iP

2 )Υ(α1 − iP
2 )Υ( iP2 )

∼
P→0

4i

P
.

The product of DOZZs appearing in the bootstrap equation (3.1.7) becomes

Cγ(α1, α2,Q− iP )Cγ(Q+ iP, α3, α4)

∼
P→0

4Υ′(0)2Υ(α3)Υ(α4)

Υ(α3+α4−Q+iP
2 )Υ(α3+α4−Q−iP

2 )Υ(α4+Q+iP−α3

2 )Υ(α3+Q+iP−α4

2 )

∼
P→0

−4∂1Cγ(Q,α3, α4).

(3.A.2)

Notice that 2Q− (α1 + α2 +Q− iP ) →
P→0

0, so the prefactor in the DOZZ formula with

7This is not really a restriction since the theory is continuous in γ
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Liouville momenta (α1, Q− α1, Q− iP ) is simply 1 in this limit. Hence

lim
P→0

Cγ(α1, Q− α1, Q− iP )Cγ(Q+ iP, α3, α4) = 4∂1Cγ(Q,α3, α4).

Appendix 3.B Conical singularities

Here we reproduce [Bav18, Appendix B] for the commodity of the reader.

We study the effect of a change of measure with respect to the Liouville field. Let X

be a GFF on S2 with some background metric g and dMγ
g be the associated chaos measure

(regularised in g). Let ω ∈ H1
0 be a function such that e

Q
2
ω ∈ L1(dMγ

g ). Let ĝ := eωg

and dMγ
ĝ be the chaos of X regularised in ĝ. Then for all κ > 0, applying successively

Girsanov’s theorem and conformal covariance, we find

E
[
e〈X,

Q
2
ω〉∇−Q

2

8
||ω||2∇Mγ

g (S2)−κ
]

= E

[(ˆ
S2
e
γQ
2
ωdMγ

g

)−κ]
= E

[
Mγ
ĝ (S2)−κ

]
(3.B.1)

In particular, the vertex operator which is formally written Vα(z) = eαX(z)−α
2

2
E[X(z)2] is

a special case of the previous setting with ω = 2α
Q G(z, ·). Hence, after regularising, we

find that adding a vertex operator is the same as conformally multiplying the metric by

Green’s function, i.e. we have ĝ = e
2α
Q
G(z,·)

g. Hence the metric behaves like |x − z|−
2α
Q

near 0 so it has a conical singularity of order α/Q.

α = 0 0 < α < Q α = Q

0

∞ 1
1

∞

0

0

∞
1

Figure 3.6: The effect of the the vertex operator Vα(0) in the crêpe metric.

If α = Q, the singularity is no longer integrable, so the volume is infinite and the

surface has a semi-infinite cylinder. Loosely, we will refer to this situation as a cusp, even

though the hyperbolic cusp has finite volume because of the extra log-correction in the
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metric:

log ĝ(z + h) = −2 log |h| − 2 log log
1

|h|
+O(1).

The reason for this abuse of terminology is that we are interested in GMC measure.

Indeed, suppose z = 0 in the sphere coordinates. By conformal covariance, if we use the

cylinder coordinates, the log-correction term is the same as shifting the radial part of the

GFF from the Brownian motion (Bs)s≥0 to (Bs−Q log(1 +s))s≥0. Up to time t, this corre-

sponds to a change of measure given by the exponential martingale e
−Q
´ t
0
dBs
1+s
−Q

2

2

´ t
0

1
(1+s)2

ds
,

which is uniformly integrable since
´∞

0
1

(1+t)2
dt <∞. So the new field is absolutely contin-

uous with respect to the old one, meaning that GMC does not make a difference between

a Euclidean cylinder and a hyperbolic cusp.

Another way to see this is to look at the curvature, which reads in the distributional

sense

Kĝ = e
− 2α
Q
G(z,·)

(
Kg +

4πα

Q

(
δz −

1

Volg(S2)

))
where Volg(S2) is the volume of the sphere in the metric g. Thus the metric has an atom

of curvature at z, meaning it has a conical singularity.

Of course, when α = Q, the singularity is no longer integrable and the metric looks

like a semi-infinite (flat) cylinder near 0.

Appendix 3.C The normalising constant in (3.1.22) and (3.5.13)

We present the computation of the normalising constant for fγ,µ (in a more general setting).

The idea is that integrating over the location of a γ-insertion is the same as differentiating

with respect to the cosmological constant. We present the main steps and leave the details

to the reader.

Let N ≥ 3 and z1, ..., zN ∈ Ĉ pairwise disjoint and (α1, ..., αN ) satisfying the Seiberg

bounds. For notational convenience, we write G(x) :=
∑N

i=1 αiG(zi, x) and as usual

σ =
∑N

i=1
αi
Q − 2.
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Using Cameron-Martin’s theorem to go from the second to third line we find

1

2
e
−
∑

1≤i<j
αiαjG(zi,zj)

ˆ
Ĉ

〈
Vγ(z)

N∏
i=1

Vαi(zi)

〉
dz

=

ˆ
Ĉ
eγG(z)

ˆ
R
e

(Q(σ+ γ
Q

)cE
[
exp

(
−µeγcMγ

(
eγ(G+γG(z,·))

))]
dcd2z

= E
[ˆ

R
eQσceγcMγ

(
eγG
)

exp
(
−µeγcMγ

(
eγG
))
dc

]
= −1

2
e
−
∑

1≤i<j
αiαjG(zi,zj) ∂

∂µ

〈
N∏
i=1

Vαi(zi)

〉
(3.C.1)

so that in the end

ˆ
Ĉ

〈
Vγ(z)

N∏
i=1

Vαi(zi)

〉
d2z = − ∂

∂µ

〈
N∏
i=1

Vαi(zi)

〉
=
Qσ

γµ

〈
N∏
i=1

Vαi(zi)

〉
(3.C.2)

where we simply used that 〈
∏N
i=1 Vαi(zi)〉 is equal to µ

−Qσ
γ times some quantity independent

of µ. In particular this yields (3.1.22) for N = 3 and (α1, α2, α3) = (γ, γ, γ).

Similarly, in the disc case, we find that for (α1, ..., αN , β1, ..., βM ) satisfying the Seiberg

bounds, we have

ˆ
H

〈
Vγ(z)

N∏
i=1

Vαi(zi)
M∏
j=1

Bβj (xj)

〉
d2z = − ∂

∂µ

〈
N∏
i=1

Vαi(zi)Bβj (xj)

〉

and

ˆ
R

〈
Bγ(x)

N∏
i=1

Vαi(zi)

M∏
j=1

Bβj (xj)

〉
dx = − ∂

∂µ∂

〈
N∏
i=1

Vαi(zi)Bβj (xj)

〉
.

In general, this does not simplify as nicely as (3.C.2) but if e.g. µ = 0, then we have

for instance

ˆ
R
〈Bγ(x)Vγ(i)Bγ(0)〉dx =

3γ − 2Q

2γµ
R(γ, γ).
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Chapter 4

Tail Asymptotics of General

Gaussian Multiplicative Chaos

Abstract. In this chapter we study the tail probability of the mass of Gaussian multi-

plicative chaos. With the novel use of a Tauberian argument and Goldie’s implicit renewal

theorem, we provide a unified approach to general log-correlated Gaussian fields in arbitrary

dimension and derive precise first order asymptotics of the tail probability, resolving a

conjecture of Rhodes and Vargas. The leading order is described by a universal constant

that captures the generic property of Gaussian multiplicative chaos, and may be seen as

the analogue of the Liouville unit volume reflection coefficients in higher dimensions.

4.1 Introduction

Gaussian multiplicative chaos (GMC) was first constructed by Kahane [Kah85] in an

attempt to provide a mathematical framework for the Kolmogorov-Obukhov-Mandelbrot

model of energy dissipation in turbulence. The theory of (subcritical) GMC consists of

defining and studying, for each γ ∈ (0,
√

2d), the random measure

Mγ(dx) = eγX(x)− γ
2

2
E[X(x)2]dx, (4.1.1)

where X(·) is a (centred) log-correlated Gaussian field on some domain D ⊂ Rd. The

expression (4.1.1) is formal because X(·) is not defined pointwise; instead it is only a

random generalised function. It is now, however, well understood that Mγ may be defined

via a limiting procedure of the form

Mγ(dx) = lim
ε→0

Mγ,ε(dx) = lim
ε→0

eγXε(x)− γ
2

2
E[Xε(x)2]dx

where Xε(·) is some suitable sequence of smooth Gaussian fields that converges to X(·) as

ε→ 0. We refer the readers to e.g. [Ber17] for more details about the construction.
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In recent years the theory of GMC has attracted a lot of attention in the mathematics

and physics communities due to its wide array of applications – it plays a central role in

random planar geometry [DMS14, DS11] and the mathematical formulation of Liouville

conformal field theory (LCFT) [DKRV16], appears as a universal limit in other areas such

as random matrix theory [Web15, BWW18, LOS18, NSW18], and is even used as a model

for Riemann zeta function in probabilistic number theory [SW16] or stochastic volatility

in quantitative finance [DRV12].

In spite of the importance of the theory, not much is known about the distributional

properties of GMC. For instance, given a bounded open set A ⊂ D, one may ask what the

exact distribution of Mγ(A) is, but nothing is known except in very specific cases where

specialised LCFT tools are applicable [KRV17, Rem17, RZ18]. Indeed even the regularity

of the distribution (e.g. whether it has a density or not) is not known except for kernels

with exact scale invariance [RV10b].

4.1.1 Main results

Define Mγ,g(dx) = g(x)Mγ(dx) where g(x) ≥ 0 is continuous on D. The goal of this paper

is to derive the leading order asymptotics for

P (Mγ,g(A) > t) (4.1.2)

for non-trivial1 bounded open sets A ⊂ D as t → ∞. This may be seen as a first step

towards the goal of understanding the full distribution of Mγ,g(A), and will also highlight

a new universality phenomenon of GMC. It is a standard fact in the literature that

E [Mγ,g(A)p] <∞ ⇔ p <
2d

γ2

and this suggests the possibility that the right tail (4.1.2) may satisfy a power law with

exponent 2d/γ2. Our main result confirms this behaviour.

Theorem 4.1.1. Let γ ∈ (0,
√

2d), Q = γ
2 + d

γ and Mγ,g be the subcritical GMC associated

with the Gaussian field X(·) with covariance

E[X(x)X(y)] = − log |x− y|+ f(x, y), ∀x, y ∈ D (4.1.3)

where f is a continuous function on D ×D. Suppose f can be decomposed into

f(x, y) = f+(x, y)− f−(x, y) (4.1.4)

where f+, f− are covariance kernels for some continuous Gaussian fields on D. Then there

exists some constant Cγ,d > 0 independent of f and g such that for any bounded open set

1In the sense that
´
A
g(x)dx > 0. In particular A has non-trivial Lebesgue measure.
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4.1. Introduction

A ⊂ D,

P (Mγ,g(A) > t)
t→∞
=

(ˆ
A
e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2 dv

) 2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d

t
2d
γ2

+ o(t
− 2d
γ2 ) (4.1.5)

While the decomposition condition (4.1.4) may look intractable at first glance, it is

implied by a more convenient criterion regarding higher regularity of f (see Lemma 4.2.3

or [JSW18] for more details about local Sobolev spaces Hs
loc). This is satisfied by the

important example of the Liouville quantum gravity measure in dimension 2, i.e.

µLQG
γ (dx) = R(x;D)

γ2

2 Mγ(dx)

where Mγ(dx) is the GMC measure associated with the Gaussian free field with Dirichlet

boundary conditions on ∂D, in which case f(x, x) = R(x;D) is the conformal radius of x

in D. This is not covered in any previously known results.

Corollary 4.1.2. If f ∈ Hs
loc(O × O) for some s > d and open set O ⊃ D, then the

decomposition condition (4.1.4) is satisfied. In particular the tail asymptotics (4.1.5) holds.

The constant Cγ,d that appears in the tail asymptotics (4.1.5) has various probabilistic

representations which are summarised in Corollary 4.3.3, and we shall call it the reflection

coefficient of Gaussian multiplicative chaos2 as it may be seen as the d-dimensional analogue

of the reflection coefficient in Liouville conformal field theory (LCFT), see Section 4.A.

Based on existing exact integrability results, we can even provide an explicit expression

for Cγ,d when d = 1 and d = 2.

Corollary 4.1.3 (cf. [RV17, Section 4]). The constant Cγ,d in (4.1.5) is given by

Cγ,d =



(2π)
2
γ

(Q−γ)

γ
2 (Q− γ)Γ

(γ
2 (Q− γ)

) 2
γ2

, d = 1,

−

(
πΓ(γ

2

4 )/Γ(1− γ2

4 )
) 2
γ

(Q−γ)

2
γ (Q− γ)

Γ(−γ
2 (Q− γ))

Γ(γ2 (Q− γ))Γ( 2
γ (Q− γ))

, d = 2.

(4.1.6)

Proof. The d = 2 case follows from [RV17] which proves (4.1.5) when f ≡ 0 and g ≡ 1.

By Theorem 4.1.1, our constant Cγ,d is independent of f and therefore coincides with the

Liouville unit volume reflection coefficient evaluated at γ, the value of which is given by

the formula in (4.1.6).

For d = 1, this follows from [Rem17] which verifies the Fyodorov-Bouchaud formula

[FB08a] that gives the exact distribution of the total mass of the GMC (associated with

Gaussian free field with vanishing average over the unit circle) on the circle.

2evaluated at γ; see the general definition of Cγ,d(α) in Section 4.A.
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4.1.2 Previous work and our approach

Despite being a very fundamental question, the tail probability of GMC has not been

investigated very much in the literature. To our knowledge, the first result in this direction

is established by Barral and Jin [BJ14] for the GMC associated with the exactly scale

invariant kernel E[X(x)X(y)] = − log |x− y| on the unit interval [0, 1]:

P(Mγ([0, 1]) > t) =
C∗

t
2
γ2

+ o(t
− 2
γ2 )

where the constant C∗ > 0 is given by

C∗ =
2γ2

2− γ2

E
[
Mγ([0, 1])

2
γ2
−1
Mγ([0, 1

2 ])−Mγ([0, 1
2 ])

2
γ2

]
log 2

.

The issue about their approach is that they rely heavily on the exact scale invariance of

the kernel and the symmetry of the unit interval in order to derive a stochastic fixed point

equation. Such derivation of leading tail coefficient results in the inexplicit constant C∗. It

is not clear how their method can be adapted to general kernels in higher dimension, let

alone arbitrary open test sets A.

A recent paper [RV17] by Rhodes and Vargas, who consider the whole-plane Gaussian

free field (GFF) restricted to the unit disc (i.e. E[X(x)X(y)] = − log |x− y| on D = {x ∈
R2 : |x| < 1}), offers a new perspective for the tail problem. Their starting point is the

localisation trick

P (Mγ,g(A) > t) =

ˆ
A
E
[

1{Mγ,g(v,A)>t}

Mγ,g(v,A)

]
g(v)dv, Mγ,g(v,A) :=

ˆ
A

eγ
2f(x,v)Mγ,g(dx)

|x− v|γ2

which effectively pins down the γ-thick points of X(·), allowing one to express the depen-

dence of the leading tail coefficient on the test set A in a very explicit way. Their proof

then makes use the polar decomposition of the GFF, which can be adapted to the case

when the function f is positive definite and sufficiently regular3 when d ≤ 2.

Our strategy is inspired by the ideas from both approaches and we make several

additional input. Instead of working directly with E
[
Mγ,g(v,A)−11{Mγ,g(v,A)>t}

]
in the

localisation trick like [RV17], we shall apply Tauberian arguments and consider the

equivalent problem of the asymptotics of

E
[

1

Mγ,g(v,A)
e−λ/Mγ,g(v,A)

]
(4.1.7)

as λ→∞. The advantage of working with this expression is that it is more amenable to

further analysis with Kahane’s interpolation formula and ultimately allows us to reduce our

3This extension is covered in [RV17, v3] with f being locally Hölder.
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problem to the case where the underlying kernel is exact (i.e. E[X(x)X(y)] = − log |x−y|).
Then all we need is the precise asymptotics of the tail probability

P

(ˆ
|x|≤r

|x|−γ2Mγ,g(dx) > t

)
(4.1.8)

which can be obtained using a coupling argument and a result by Goldie from the literature

of random recursive equations. Unlike many other estimates such as moment bounds in

GMC, the expectation (4.1.7) we are studying here concerns a function F : x 7→ x−1e−λx

which is not convex or concave. The lack of a convenient convex/concave modification of

F without affecting the behaviour of the expectation as λ→∞ means that the popular

convexity inequality (4.2.9) is not applicable, and Kahane’s full interpolation formula

(4.2.8) plays an indispensable role in our analysis.

The novel use of Tauberian arguments and Goldie’s result helps us bypass many

tedious estimates in existing approaches, and our proof requires no special decomposition

of the log-kernel (such as the cone construction in [BJ14] or the polar decomposition of

GFF in [RV17]), providing a unified framework for general kernels in all dimensions4.

Our philosophy is that once we obtain the tail probability of a particular GMC, we can

extrapolate the result to all other GMCs in the same dimension, as far as the leading order

term is concerned. The end result suggests that the power law of Mγ,g(A) is a consequence

of approximate scale invariance of log-correlated fields.

We note that our result generalises that of [RV17] not only to general kernels in arbitrary

dimension, but also to sets that do not necessarily have C1 boundary. Theorem 4.1.1 shares

the same spirit of the result in [RV17] in the sense that we have successfully separated the

dependence on the test set A and the functions f, g from the rest of the tail coefficient,

and the constant Cγ,d captures any remaining dependence on d and γ and generic feature

of GMC. The fact that we are unable to provide an explicit formula for Cγ,d for d ≥ 3

should not be seen as a drawback of our approach – explicit expressions are known for

d = 1 and d = 2 only because the constant has an LCFT interpretation, and their formulae

are found (independently of the study of tail probability) by LCFT tools which do not

seem to have natural generalisation to higher dimension at the moment.

4The paper [BJ14] used Goldie’s ideas in a very different way. Indeed the authors were not aware of the
localisation trick and therefore had to revisit Goldie’s proof to relax the independence assumption. Such
an approach was not robust enough to treat higher dimensions d, general test sets A or arbitrary densities
g, and also required a proof of C∗ <∞ which was involved.
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4.1.3 On the relevance of the kernel decomposition

Based on the continuity assumption of f , it is always possible to decompose f into the

difference of two positive definite functions: indeed

Tf : h(·) 7→
ˆ
D
f(·, y)h(y)dy

is a symmetric Hilbert-Schmidt operator that maps L2(D) to L2(D) and by the standard

spectral theory of compact self-adjoint operators there exist λn ∈ R and φn ∈ L2(D) such

that (Tfφn)(x) = λnφn(x), |λn|
n→∞−−−→ 0 and

f(x, y) =
∞∑
n=1

λnφn(x)φn(y)

=

( ∞∑
n=1

|λn|φn(x)φn(y)1{λn>0}

)
︸ ︷︷ ︸

=:f+(x,y)

−

( ∞∑
n=1

|λn|φn(x)φn(y)1{λn<0}

)
︸ ︷︷ ︸

=:f−(x,y)

in L2(D).Therefore, the relevant question is to determine the least regularity on f± for

the power-law profile (4.1.5) to hold. Our decomposition condition (4.1.4) requires f± to

be kernels of some continuous Gaussian fields. As it turns out, we only use this technical

assumption to obtain the following estimate (see for instance Corollary 4.3.5(ii)):

• There exists some r > 0 and C > 0 such that for all v ∈ D and s ∈ [0, 1]

P

(ˆ
B(v,r)∩D

M s
γ(dx)

|x− v|γ2
> t

)
≤ C

t
2d
γ2
−1

∀t > 0 (4.1.9)

where M s
γ(dx) = eγZs(x)− γ

2

2
E[Zs(x)2]dx is the Gaussian multiplicative chaos associated

with the log-correlated field Zs with covariance E[Zs(x)Zs(y)] = − log |x − y| +
sf(x, y).

Inspecting the proof in Section 4.3, this is the only assumption (other than the continuity

of f) we need in order to apply dominated convergence in several places (such as (4.3.19))

which ultimately yields the desired power law. In other words our decomposition condition

(4.1.4) may be relaxed so long as (4.1.9) is satisfied, e.g. we may assume instead that

• The Gaussian fields G± associated with the kernels f± satisfy

P
(

sup
x∈D
|G±(x)| <∞

)
> 0 (4.1.10)

(see Section 4.2.1 for various implications).
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All the proofs in Section 4.3 will go through without any modification to cover this slightly

more general setting (which obviously includes the case where G± are continuous on D).

We choose not to phrase Theorem 4.1.1 this way because (4.1.10) is less tractable and

not necessarily much more general. Indeed when f±(x, y) = f±(x − y) are continuous

shift-invariant kernels, a classical result by Belayev [Bel61] states that G± are either

continuous or unbounded on any non-empty open sets5, and so (4.1.10) is equivalent to the

original condition (4.1.4) in the stationary setting. We also think that the decomposition

condition (4.1.4) is a very natural assumption because for any s ≥ 0, ε > 0 and symmetric

function f(·, ·) ∈ Hs(R2d), one can always find some symmetric function f̃(·, ·) ∈ C∞c (R2d),

say by truncating suitable basis expansion (see also [JSW18, Lemma 2.2]), such that

||f − f̃ ||Hs(R2d) < ε and that the operator T
f̃

is of finite rank, i.e. the decomposition

condition (4.1.4) is satisfied by a “dense collection” of covariance kernels of the form

(4.1.3).

To understand the importance of continuity at the level of the fields G±, let us consider

the simpler situation where f = f+. We have

E [X(x)X(y)] = − log |x− y|+ f(x, y) ≈ − log |x− y|+ f(v, v)

on a ball of small radius r > 0 centred around v ∈ A. This says that X(·) is the sum of

an exactly scale invariant field Y (with covariance E[Y (x)Y (y)] = K(x, y) = − log |x− y|)
and an independent field G+ which locally behaves like an independent random variable

Nv ∼ N (0, f(v, v)), and this leads to

P
( ˆ

A

eγ
2f(x,v)Mγ,g(dx)

|x− v|γ2︸ ︷︷ ︸
=:Mγ,g(v,A)

> t

)

≈ P
(ˆ
|x−v|≤r

eγ
2f(x,v)Mγ,g(dx)

|x− v|γ2︸ ︷︷ ︸
=:Mγ,g(v,r)

> t

)
∼ e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1 Cγ,d

t
2d
γ2
−1

(4.1.11)

(see Corollary 4.3.5 and Remark 4.3.6). This allows us to interpret

P (Mγ,g(A) > t) ∼
(ˆ

A
e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2 dv

) 2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d

t
2d
γ2

in the following way: if Mγ,g(A) is extremely large, then most of its mass comes from a

small neighbourhood B(v, r) ⊂ A of some γ-thick point v ∈ A of X(·), and this point v

is more likely to come from regions of higher density with respect to g and/or of higher

values of f , i.e. where G+ has higher variance near v.

5The theorem of Belayev actually concerns stationary kernels in d = 1, but this implies the statement in
higher dimension because we may view G±, with d− 1 coordinates fixed, as Gaussian fields in 1 dimension.

161



Tail Asymptotics of General Gaussian Multiplicative Chaos

When G+ is not continuous, the localisation intuition is not valid anymore and our

method breaks down because (4.1.10) is possibly false by Belayev’s dichotomy mentioned

earlier. It may happen that (4.1.9) is still valid, in which case the power-law profile will

still hold, but it is unclear how to proceed with a Gaussian field G+ that is only guaranteed

to have a separable and measurable version but nothing else. We conjecture that the power

law (4.1.5) remains true without the generalised decomposition condition (4.1.10) based

on two heuristics:

• Despite the possibility that G± are unbounded in every non-empty open set, G±

are still measurable and Lusin’s theorem suggests some “approximate” continuity of

the fields which is much weaker than the usual notion of continuity but is perhaps

sufficient for studying integrals.

• The construction of the GMC measure involves the mollification of the underlying

log-correlated field. When G± are convolved with a smooth mollifier θ ∈ C∞c (Rd),
the new covariance kernels are differentiable which implies that the resulting fields

are actually continuous.

4.1.4 Critical GMCs and extremal processes: heuristics

Let us abuse the notation and denote by M√2d the critical GMC (via Seneta–Heyde

renormalisation6)

M√2d(dx) = lim
ε→0+

√
π

2

(
E[Xε(x)2]

) 1
2 e
√

2dXε(x)−dE[Xε(x)2]dx

and similarly M√2d,g(dx) = g(x)M√2d(dx). While a similar criterion for the existence of

moments [DRSV14b]

E
[
M√2d,g(A)p

]
<∞ ⇔ p < 1

has been known for critical GMC associated with general fields, previous attempts to

understand the tail probability P(M√2d,g(A) > t) are again restricted to exact kernels

so that the derivation via stochastic fixed point equation may be applied [BKN+15].

By combining the techniques in this paper with additional ingredients including fusion

estimates of GMC that have appeared in [DKRV17, BW18], it is possible to prove that

P
(
M√2d,g(A) > t

)
t→∞
=

´
A g(v)dv

t
√

2d
+ o(t−1). (4.1.12)

6Our definition differs from the usual one by the factor
√
π/2 for aesthetic purpose.
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The precise statement and the proof of the result will be discussed separately in a

forthcoming article in order not to overload the present paper. Nevertheless, let us provide

a heuristic proof of (4.1.12) in the case d = 2 based on Theorem 4.1.1. Recall that for

γ ∈ (0, 2) we have

Cγ,2 = −
π

4
γ2
−1
(

Γ(γ
2

4 )/Γ(1− γ2

4 )
) 4
γ2
−1

4
γ2
− 1

Γ(γ
2

4 − 1)

Γ(1− γ2

4 )Γ( 4
γ2
− 1)

.

Using the property7 that

Mγ(dx)

2− γ
γ→2−−−−−→ 2M2(dx)

and that Γ(x) = x−1Γ(1 + x)
x→0∼ x−1, we should expect

P (M2,g(A) > t)
γ→2−

≈ P (Mγ,g(A) > (2− γ)2t)

γ→2−∼
(

4

γ2
− 1

)(
1− γ2

4
γ2

4

) 4
γ2
−1 ´

A g(v)dv

((2− γ) · 2t)
4
γ2

γ→2−∼
´
A g(v)dv

2t
.

Unfortunately it seems impossible to justify the interchanging of the limits γ → 2−

and t → ∞ to turn the above argument into a rigorous proof, and this is actually not

the approach adopted in the separate paper. On the other hand, the constant Cγ,d is not

explicitly known in higher dimension d ≥ 3 but the heuristic here suggests the existence of

a non-trivial limit:

lim
γ→
√

2d
−

(
√

2d− γ)
2d
γ2Cγ,d = lim

γ→
√

2d
−

(
√

2d− γ)Cγ,d ∈ (0,∞).

Connection to discrete Gaussian free field The tail probability of critical chaos is

not only interesting in its own right but is also closely related to the study of extrema of

log-correlated Gaussian fields, which has been an active area of research in the last two

decades. For instance, it is known that the extremal process of a discrete Gaussian free

field (DGFF) in d = 2 converges to a Poisson point process with intensity e−2x ⊗ Z(dx)

for some random measure Z(dx) [BL14, BL16a, BL18] which has long been conjectured to

be some constant multiple of the critical LQG measure µLQG
2 , i.e.

Z(dx) ∝ µLQG
2 (dx) = R(x;D)2M2(dx), x ∈ D (4.1.13)

where M2(dx) is the critical GMC associated with Gaussian free field with Dirichlet

7This was first proved in d = 2, for GFF with Dirichlet boundary conditions in [APS18], and subsequently
extended in [JSW18] to log-correlated fields (4.1.3) with f ∈ Hd+ε

loc in dimension d = 2.
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boundary condition. The random measure Z(dx) is characterised (up to a deterministic

multiplicative factor) by a set of properties, among which the Laplace-type estimate

lim
λ→0+

E
[
Z(A)e−λZ(A)

]
− log λ

= c

ˆ
A
R(x;D)2dx, (4.1.14)

(where c > 0 is independent of A) has been left unverified by µLQG
2 for several years until

very recently in the revision of [BL14]. Here we suggest an approach slightly different from

that in [BL14]: it is sufficient to first establish the statement that

P
(
µLQG

2 (A) > t
)
t→∞
=

c
´
AR(x;D)2dx

t
+ o(t−1) (4.1.15)

from which we conclude that the Laplace-type estimate holds by straightforward computa-

tion. We would like to point out that (4.1.15) is a strictly stronger statement and cannot

be deduced from the estimate (4.1.14) without additional assumption.

4.1.5 On the critical case in Karamata’s Tauberian theory

The second version of [BL14] claims to have obtained the tail probability (4.1.15) as an

easy consequence of (4.1.14) through the use of Tauberian theorem (cf. [BL14, Corollary

2.10]). This would have relied on a result of the following form8: for a non-negative random

variable U and q > 0

P (U > t) =
C

tq
+ o(t−1) ⇔ lim

λ→0+

E
[
U qe−λU

]
− log λ

= Cq. (4.1.16)

While the forward implication of (4.1.16) can be verified by straightforward computation

(Lemma 4.2.13), the backward implication (which is the direction of interest in [BL14])

is, unfortunately, false in general, as seen by the simple counter-example q = 1 and

P(U > t) = (1 + 0.1 sin(log t))/t for t ≥ 1. To understand what the backward implication

is really suggesting, first recall that

E
[
Ue−λU

]
λ→0+∼ −C log λ ⇔ E

[
U1{U≤t}

] t→∞∼ C log t

by standard Tauberian theorem, and in the notation of Theorem 4.2.10 we are in the

critical case of Karamata’s Tauberian theory where ρ = 0 and L(x) = log x. Since

E
[
U1{U≤t}

]
= −tP(U > t) +

´ t
0 P(U > s)ds by Fubini, if we can ignore the negative term

(which would be subleading anyway if P(U > t) were supposed to be o(t−1 log t)) then we

8[BL14] only requires q = 1, but if such claim were true for q = 1 it would be true for any q > 0 by a
simple reduction argument.
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have

ˆ t

0
P(U > s)ds

t→∞∼ C log t (4.1.17)

The backward implication of (4.1.16) is thus, to some extent, equivalent to the question of

whether we can “differentiate” the above asymptotics and obtain P(U > t) ∼ C/t, and the

same counter-example we mentioned just now provides a negative answer to this. Indeed,

even under (4.1.17), it is still not possible to prove the existence of some C ′ > 0 such that

for all t > 0 sufficiently large

P(U > t) ≤ C

t

or an analogous lower bound – whether U has a density function or not, one can always

construct counter-examples such that these bounds are not satisfied.

The necessary and sufficient conditions for the backward implication are related to the

notion of de Haan class from the higher-order theory of regular variation (see [dH76] or

e.g. [BGT89, Chapter 3]), which requires better control over subleading order terms in

E
[
U qe−λU

]
as λ→ 0+. Such control is unavailable with the method in [BL14], and this

explains why the asymptotics of the tail probability of subcritical/critical GMC is more

subtle than that of the corresponding Laplace-type estimate.

Note, however, that once we prove an asymptotic power law for a random variable U ,

we can rely on the forward implication of (4.1.16) to study the leading order coefficient C in

the asymptotics. For our purpose, this provides an alternative probabilistic representation

of Cγ,d (see Corollary 4.3.3) which may be more useful in d ≥ 3 for the derivation of an

explicit formula in the future.

4.1.6 Outline of the paper

The remainder of the article is organised as follows.

In Section 4.2 we compile a list of results that will be used in the proof of Theorem 4.1.1.

This includes a collection of facts regarding separable Gaussian processes, log-correlated

Gaussian fields and GMCs, Karamata’s Tauberian theorem and auxiliary asymptotics, and

random recursive equations.

In Section 4.3 we present the proof of Theorem 4.1.1 which is divided into two parts.

After sketching the idea of the localisation trick, we first establish the tail asymptotics for

GMCs associated with exact kernels. We then apply Kahane’s interpolation and generalise

the result to general kernels (4.1.3).

We conclude the article with Section 4.A where we define the reflection coefficient

Cγ,d(α) of Gaussian multiplicative chaos and prove that it is equivalent to the Liouville

reflection coefficients in d = 1 and d = 2.
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4.2 Preliminaries

4.2.1 Basic facts of Gaussian processes

We collect a few standard results (see e.g. [GN16, Chapter 2]) regarding Gaussian processes

in the following theorem.

Theorem 4.2.1. Let (Gt)t∈T be a separable centred Gaussian process such that

P
(

sup
t∈T
|Gt| <∞

)
> 0.

Then the following statements are true.

• Zero-one law: P (supt∈T |Gt| <∞) = 1.

• Finite moments: E [supt∈T |Gt|] <∞ and σ2 = σ2(G) = supt∈T E
[
G2
t

]
<∞.

• Concentration: there exists some c > 0 such that for any t ≥ 0,

P
(∣∣∣∣sup

t∈T
|Gt| − E

[
sup
t∈T
|Gt|

]∣∣∣∣ > t

)
≤ 2e−c

u2

σ2 . (4.2.1)

The lemma below is an easy consequence of Theorem 4.2.1.

Lemma 4.2.2. Let G(·) be a continuous Gaussian field on some compact domain K ⊂ Rd,

then the following are true.

(i) There exists some c > 0 such that

P
(

sup
x∈K
|G(x)| > t

)
≤ 1

c
e−ct

2
, ∀t ≥ 0. (4.2.2)

(ii) Let x ∈ int(K). For any monotone functions Ψ : R→ R with at most exponential

growth at infinity,

lim
r→0+

E

[
Ψ

(
sup

y∈B(x,r)
G(y)

)]
= lim

r→0+
E
[
Ψ

(
inf

y∈B(x,r)
G(y)

)]
= E [Ψ (G(x))] (4.2.3)

Proof. Since G(·) is continuous on K, it is separable and satisfies supx∈K |G(x)| < ∞
almost surely. By Theorem 4.2.1 we have E [supx∈K |G(x)|] < ∞ and σ2(G) < ∞. The

tail in (i) can thus be obtained from the concentration inequality (4.2.1).
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For (ii), note that by monotonicity we can split Ψ into positive and negative parts

Ψ = Ψ+ −Ψ−, such that Ψ± are monotone functions with at most exponential growth at

infinity. Since we can deal with Ψ+ and Ψ− separately, we may as well assume without

loss of generality that Ψ is non-negative. Now take r0 > 0 such that B(x, r0) ∈ K, and

consider the case where Ψ is non-decreasing. By (4.2.2) and the assumption on the growth

of Ψ at infinity, we have

E

[
Ψ

(
sup

y∈B(x,r0)
G(y)

)]
<∞.

But then for any r ∈ (0, r0),

0 ≤ inf
y∈B(x,r)

Ψ(G(y)) ≤ sup
y∈B(x,r)

Ψ(G(y)) ≤ sup
y∈B(x,r0)

Ψ(G(y))

and (4.2.3) follows from the continuity of G and dominated convergence. The case where

Ψ is non-increasing is similar.

4.2.2 Decomposition of Gaussian fields

We mention a result concerning the decomposition of symmetric functions from the very

recent paper [JSW18]. Let f(x, y) be a symmetric function on D ×D for some domain

D ⊂ Rd. We say f is in the local Sobolev space Hs
loc(D ×D) of index s > 0 if κf is in

Hs(D ×D) for any κ ∈ C∞c (D ×D), i.e.

ˆ
Rd

(1 + |ξ|2)s|(̂κf)(ξ)|2dξ <∞

where (̂κf) is the Fourier transform of κf (see more details in [JSW18, Section 2]). Then

Lemma 4.2.3 (cf. [JSW18, Lemma 3.2]). If f ∈ Hs
loc(D ×D) for some s > d, then there

exist two centred, Hölder-continuous Gaussian processes G± on Rd such that

E[G+(x)G+(y)]− E[G−(x)G−(y)] = f(x, y), ∀x, y ∈ O′ (4.2.4)

for any bounded open set D′ such that D′ ⊂ D.

This decomposition result has various important implications, one of which is the

positive-definiteness of the logarithmic kernel. The following result may be seen as a trivial

special case of [JSW18, Theorem B] and has been known since [RV10a].

Lemma 4.2.4. For each L ∈ R, there exists rd(L) > 0 such that the kernel

KL(x, y) = − log |x− y|+ L (4.2.5)
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is positive definite on B(0, rd(L)) ⊂ Rd. In particular, for any R > 0 there exists some

L > 0 such that KL is positive definite on B(0, R).

For the sake of convenience, we shall from now on call (4.2.5) the L-exact kernel, and

when L = 0 we simply call K0(·, ·) the exact kernel and write rd = rd(0). The exact kernel

will play a pivotal role as the reference point from which we extrapolate our tail result to

general kernels in the subcritical regime.

4.2.3 Gaussian multiplicative chaos

Given a log-correlated Gaussian field 4.1.3, there are various equivalent constructions of the

GMC measure Mγ . In the subcritical case γ ∈ (0,
√

2d), one approach is the regularisation

procedure, which is first suggested in [RV10b] and then generalised/simplified in [Ber17].

The idea is to pick any suitable mollifier θ(·) and define

Mγ,ε(dx) = eγXε(x)− γ
2

2
E[Xε(x)2]dx (4.2.6)

where Xε(·) = X ∗ θε(·) is a continuous Gaussian field on D. Then

Theorem 4.2.5. For γ ∈ (0,
√

2d), the sequence of measures Mγ,ε converges in probability

to some measure Mγ in the weak∗ topology as ε→ 0+. The limit Mγ is independent of the

choice of the mollification θ.

We collect a few standard results in the literature of GMC. The first is the celebrated

interpolation principle by Kahane.

Lemma 4.2.6 ([Kah85]). Let ρ be a Radon measure on D, X(·) and Y (·) be two continuous

centred Gaussian fields, and F : R+ → R be some smooth function with at most polynomial

growth at infinity. For t ∈ [0, 1], define Zt(x) =
√
tX(x) +

√
1− tYt(x) and

ϕ(t) := E [F (Wt)] , Wt :=

ˆ
D
eZt(x)− 1

2
E[Zt(x)2]ρ(dx). (4.2.7)

Then the derivative of ϕ is given by

ϕ′(t) =
1

2

ˆ
D

ˆ
D

(E[X(x)X(y)]− E[Y (x)Y (y)])

× E
[
eZt(x)+Zt(y)− 1

2
E[Zt(x)2]− 1

2
E[Zt(y)2]F ′′(Wt)

]
ρ(dx)ρ(dy).

(4.2.8)

In particular, if

E[X(x)X(y)] ≤ E[Y (x)Y (y)] ∀x, y ∈ D,

168



4.2. Preliminaries

then for any convex F : R+ → R

E
[
F

(ˆ
D
eX(x)− 1

2
E[X(x)2]ρ(dx)

)]
≤ E

[
F

(ˆ
D
eY (x)− 1

2
E[Y (x)2]ρ(dx)

)]
. (4.2.9)

and the inequality is reversed if F is concave instead.

While Lemma 4.2.6 is stated for continuous fields, it may be extended to log-correlated

fields if we first apply it to mollified fields Xε and Yε and take the limit ε → 0+. Such

argument will work immediately for comparison principles (4.2.9) and we shall make no

further remarks on that. For the interpolation principle (4.2.8) we only need the following

weaker statement which may be extended to log-correlated fields in the same way.

Corollary 4.2.7. Under the same assumptions and notations in Lemma 4.2.6, if there

exists some C > 0 such that

|E[X(x)X(y)]− E[Y (x)Y (y)]| ≤ C ∀x, y ∈ D,

then

|ϕ′(t)| ≤ C

2
E
[
(Wt)

2|F ′′(Wt)|
]

and consequently

|ϕ(1)− ϕ(0)| ≤ C

2

ˆ 1

0
E
[
(Wt)

2|F ′′(Wt)|
]
dt.

The next result is a generalised criterion for the existence of moments of GMC.

Lemma 4.2.8. Let γ ∈ (0,
√

2d), Q = γ
2 + d

γ , α ∈ [0, Q) and B(0, r) ⊂ D. Then

E

[(ˆ
|x|≤r

|x|−γαMγ(dx)

)s]
<∞ (4.2.10)

if s < 2d
γ2
∧ 2
γ (Q− α). In particular

E

[(ˆ
|x|≤r

Mγ(dx)

)s]
<∞, ∀s < 2d

γ2
,

and E

[(ˆ
|x|≤r

|x|−γ2Mγ(dx)

)s]
<∞, ∀s < 2d

γ2
− 1.

Remark 4.2.9. The bound on (4.2.10) is uniform among the class of fields (4.1.3) with

supx,y∈D |f(x, y)| ≤ C for some C > 0 by Gaussian comparison (Lemma 4.2.6).
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4.2.4 Tauberian theorem and related auxiliary results

Let us record the classical Tauberian theorem of Karamata.

Theorem 4.2.10 ([Fel71, Theorem XIII.5.3]). Let f(d·) be a non-negative measure on

R+, F (t) :=
´ t

0 f(ds) and suppose

F̃ (λ) :=

ˆ ∞
0

e−λtf(dt)

exists for λ > 0. If L is slowly varying at zero and ρ ∈ [0,∞), then

F̃ (λ)
λ→∞∼ λ−ρL(λ−1) ⇔ F (ε)

ε→0+∼ 1

Γ(1 + ρ)
ερL(ε). (4.2.11)

The above is also true when we consider the asymptotics λ→ 0+ and ε→∞, and L being

slowly varying at infinity.

Our use of Theorem 4.2.10 is summarised in the following corollary.

Corollary 4.2.11. Let U be a non-negative random variable, C > 0 and q > 0. Then

E
[
U−11{U>t}

] t→∞∼ C

tq
⇔ E

[
U−1e−λ/U

]
λ→∞∼ CΓ(1 + q)

λq
. (4.2.12)

Proof. Let V = U−1. In the notation of Theorem 4.2.10, we choose f(ds) = sP(V ∈ ds),
L ≡ CΓ(1 + q) and ε = t−1 such that F̃ (λ) = E

[
U−1e−λ/U

]
and F̃ (ε) = E

[
U−11{U>t}

]
,

and our claim is now immediate.

To save ourselves from repeated calculations, we shall collect a few basic estimates

below. The first one concerns the Laplace transform estimate of a random variable with

power-law tail.

Lemma 4.2.12. If U is a non-negative random variable such that

P(U > t)
t→∞∼ C

tq

for some C > 0 and q > 0, then for any p > 0

E
[
U−pe−λ/U

]
λ→∞∼ q

p+ q

CΓ(p+ q + 1)

λp+q
. (4.2.13)

If P(U > t) ≤ Ct−q for all t > 0 instead, then there exists some C ′ > 0 such that

E
[
U−pe−λ/U

]
≤ C ′

λp+q
, ∀λ > 0. (4.2.14)
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Proof. For any t0 > 0, it is not difficult to see that there exists c0 > 0 such that

E
[
U−pe−λ/U1{U≤t0}

]
= O(e−c0λ).

For any ε > 0, choose t0 > 0 such that for all t > t0 we have

C(1− ε)
tq

≤ P(U > t) ≤ C(1 + ε)

tq
.

Using Fubini, we have

E
[
U−pe−λ/U1{U≥t0}

]
=

1

tp0
e−λ/t0P(U > t0) +

ˆ ∞
t0

e−λ/t
(
− p

tp+1
+

λ

tp+2

)
P(U > t)dt

≤ O(e−λ/t0) + C

ˆ ∞
t0

e−λ/t
(
−p(1− ε)
tp+q+1

+
λ(1 + ε)

tp+q+2

)
dt.

Note that for any m > 0 we have

ˆ ∞
t0

e−λ/t

tm+2
dt = λ−(1+m)

ˆ λ/t0

0
sme−sds

λ→∞
= (1 + o(1))Γ(1 +m)λ−(m+1)

and therefore

E
[
U−pe−λ/U

]
≤ C

λp+q
[−p(1− ε)Γ(p+ q) + (1 + ε)Γ(p+ q + 1)] + o(λ−(p+q))

≤
(

Cq

p+ q
+ (p+ 1)ε

)
Γ(p+ q + 1)

λp+q
+ o(λ−(p+q)).

Similarly we have

E
[
U−pe−λ/U

]
≥
(

Cq

p+ q
− (p+ 1)ε

)
Γ(p+ q + 1)

λp+q
+ o(λ−(p+q)).

This means that(
Cq

p+ q
− (p+ 1)ε

)
Γ(p+ q + 1) ≤ lim inf

λ→∞
λq+1E

[
U−pe−λ/U

]
≤ lim sup

λ→∞
λq+1E

[
U−pe−λ/U

]
≤
(

Cq

p+ q
+ (p+ 1)ε

)
Γ(p+ q + 1).

Since ε > 0 is arbitrary, we let ε→ 0+ and obtain (4.2.13). The claim (4.2.14) is similar.

We collect another Laplace transform estimate discussed in Section 4.1.5. The proof of

the result is similar to that of Lemma 4.2.12 and is omitted.

Lemma 4.2.13. If U is a non-negative random variable such that

P(U > t)
t→∞∼ C

tq
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for some C > 0 and q > 0, then

lim
λ→0+

E
[
U qe−λU

]
− log λ

= Cq. (4.2.15)

If P(U > t) ≤ Ct−q for all t sufficiently large instead, then (4.2.15) may be replaced by

the statement that the limit superior is upper bounded by Cq.

We also need the following elementary result, the proof of which is again skipped.

Lemma 4.2.14. Let U, V be two non-negative random variables. Suppose there exists

some C > 0 and q > 0 such that

(i) P(U > t)
t→∞∼ Ct−q,

(ii) P(V > t)
t→∞∼ o(t−p) ∀p > 0.

Then the tail behaviour of UV is given by

(iii) P(UV > t)
t→∞∼ CE[V q]t−q.

Remark 4.2.15. The converse of Lemma 4.2.14 is false: in general if we are given only

conditions (ii) and (iii), we can only show that there exists some C ′ > 0 such that

P(U > t) ≤ C ′t−q

which follows immediately from P(UV > t) ≥ P(U > t/a)P(V > a) for any a > 0 such

that P(V > a) 6= 0.

4.2.5 Random recursive equation

Here we collect Goldie’s implicit renewal theorem [Gol91] from the literature of random

recursive equation.

Theorem 4.2.16. Let M and R be two independent non-negative random variables.

Suppose there exists some q > 0 such that

(i) E[M q] = 1.

(ii) E[M q logM ] <∞.

(iii) The conditional law of logM given M 6= 0 is non-arithmetic.

(iv)
´∞

0 |P(R > t)− P(MR > t)|tq−1dt <∞.
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Then E[M q logM ] ∈ (0,∞) and as t→∞,

P(R > t) =
C

tq
+ o(t−q)

where the constant C > 0 is given by

C =
1

E[M q logM ]

ˆ ∞
0

(P(R > t)− P(MR > t)) tq−1dt. (4.2.16)

Theorem 4.2.16 will be used alongside the following lemma.

Lemma 4.2.17. Let U, V be two non-negative random variables and q > 0. Then

ˆ ∞
0
|P(U > t)− P(V > t)| tq−1dt ≤ 1

q
E |U q − V q| . (4.2.17)

Moreover, for any coupling of (U, V ) such that E|U q − V q| <∞,

ˆ ∞
0

[P(U > t)− P(V > t)] tq−1dt =
1

q
E [U q − V q] . (4.2.18)

Proof. Suppose U, V are bounded by some constant M > 0. The inequality (4.2.17) is

then a simple consequence of

|P(U > t)− P(V > t)|

= |P(U > t, V > t) + P(U > t, V ≤ t)− P(U > t, V > t)− P(U ≤ t, V > t)|

= |P(U > t, V ≤ t)− P(U ≤ t, V > t)|

≤ P(U > t, V ≤ t) + P(U ≤ t, V > t)

= P(max(U, V ) > t)− P(min(U, V ) > t)

combined with the fact that

E |U q − V q| = E [max(U, V )q −min(U, V )q]

= q

ˆ ∞
0

tq−1 [P(max(U, V ) > t)− P(min(U, V ) > t)] dt.

The equality (4.2.18) is trivial because E[U q],E[V q] are all finite.

For U, V that are not necessarily bounded but E|U q − V q| <∞ (otherwise (4.2.17) is

trivial), we introduce a cutoff M > 0 and write UM = min(U,M), VM = min(V,M). Then

the previous discussion implies that

ˆ M

0
|P(U > t)− P(V > t)| tq−1dt =

ˆ ∞
0
|P(UM > t)− P(VM > t)| tq−1dt

≤ 1

q
E |max(UM , VM )q −min(UM , VM )q|
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≤ 1

q
E
∣∣(U q − V q)1{max(U,V )≤M}

∣∣+
1

q
E
[
(M q −min(U, V )q) 1{max(U,V )≥M}

]
M→∞−−−−→ 1

q
E |U q − V q|

by dominated convergence since both

∣∣(U q − V q)1{max(U,V )≤M}
∣∣ , (M q −min(U, V )q) 1{max(U,V )≥M}

are bounded by |U q−V q|. We send M →∞ on the LHS of the above inequality and obtain

(4.2.17) by monotone convergence. The equality (4.2.18) may be proved by a similar cutoff

argument.

4.3 Proof of Theorem 4.1.1

This section is devoted to the proof of the tail asymptotics of subcritical GMC measures.

As advertised earlier, our proof of Theorem 4.1.1 consists of two steps.

(i) Tail asymptotics of reference measure (Section 4.3.1): we consider the chaos measure

Mγ,g associated with the exact kernel as the reference measure and derive the leading

order term of P
(´
|x|≤r |x|

−γ2Mγ,g(dx) > t
)

as t→∞.

(ii) Tail extrapolation principle (Section 4.3.2): the leading order tail behaviour of Mγ,g

can be expressed in terms of that of Mγ,g.

Before we start, let us highlight the localisation trick from [RV17]

Lemma 4.3.1. Let A ⊂ D be a non-empty open subset. Then9

P (Mγ,g(A) > t) =

ˆ
A
E
[

1

Mγ,g(v,A)
1{Mγ,g(v,A)>t}

]
g(v)dv (4.3.1)

where

Mγ,g(v,A) :=

ˆ
A

eγ
2f(x,v)Mγ,g(dx)

|x− v|γ2
.

Sketch of proof. For each ε > 0, letXε be the mollified field with covariance E[Xε(x)Xε(y)] =

− log (|x− y| ∨ ε) + fε(x, y) where fε(x, y)
ε→0+−−−→ f(x, y) pointwise (cf. [Ber17, Lemma

9Actually it is not known whether the distribution of Mγ,g(v,A) is continuous everywhere and hence
the correct statement should beˆ
A

E
[

1

Mγ,g(v,A)
1{Mγ,g(v,A)>t}

]
g(v)dv ≤ P (Mγ,g(v,A) > t) ≤

ˆ
A

E
[

1

Mγ,g(v,A)
1{Mγ,g(v,A)≥t}

]
g(v)dv.

We are cheating here so that we do not have to keep the lower and upper bounds everywhere but for the
purpose of evaluating the tail asymptotics as t→∞ it does not make any difference.
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3.4]). If Mγ,ε(dx) is the GMC associated to Xε and Mγ,g,ε(dx) = g(x)Mγ,ε(dx), then

P(Mγ,g(A) > t) = lim
ε→0+

P(Mγ,g,ε(A) > t)

= lim
ε→0+

ˆ
A
E
[
Mγ,g,ε(A)

Mγ,g,ε(A)
1{Mγ,g,ε(A)>t}

]
dv

= lim
ε→0+

ˆ
A
E

eγXε(v)− γ
2

2
E[Xε(v)2]

Mγ,g,ε(A)
1{Mγ,g,ε(A)>t}

 g(v)dv. (4.3.2)

One may interpret eγXε(v)− γ
2

2
E[Xε(v)2] as a Radon-Nikodym derivative, and by applying

the Cameron-Martin theorem, we can remove this exponential by shifting the mean of

X(·) by E [Xε(·)γXε(v)] = γ (− log (| · −v| ∨ ε) + f(·, v)), i.e.

E

eγXε(v)− γ
2

2
E[Xε(v)2]

Mγ,g,ε(A)
1{Mγ,g,ε(A)}>t}

 = E
[

1

Mγ,g,ε(v,A)
1{Mγ,g,ε(v,A)>t}

]
(4.3.3)

where

Mγ,g,ε(v,A) =

ˆ
A
eγXε(x)+γE[Xε(x)Xε(v)]− γ

2

2
E[Xε(x)2]g(x)dx =

ˆ
A

eγ
2fε(x,v)Mγ,g,ε(dx)

(|x− v| ∨ ε)γ2
.

Then (4.3.3) converges to the integrand in (4.3.1) as ε→ 0+, and we can interchange the

limit and integral in (4.3.2) by dominated convergence since the expectation is always

upper-bounded by 1/t.

4.3.1 The reference measure Mγ

LetM
L
γ be the GMC associated with the log-correlated field YL with covariance E[YL(x)YL(y)] =

KL(x, y) = − log |x − y| + L, which by Lemma 4.2.4 is positive definite on B(0, rd(L)).

We shall suppress the dependence on L when we are referring to the exact kernel, i.e.

L = 0. The main result in this subsection concerns the tail probability of Mγ(0, r) :=´
|x|≤r |x|

−γ2Mγ(dx).

Lemma 4.3.2. There exists some constant Cγ,d > 0 such that for any r ∈ (0, rd] and as

t→∞,

P
(
Mγ(0, r) > t

)
=

Cγ,d

t
2d
γ2
−1

+ o(t
− 2d
γ2

+1
). (4.3.4)

Proof. Pick c ∈ (0, 1). Using the fact that

(Y (cx))|x|≤r
d
= (Y (x) +Nc)|x|≤r
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where Nc ∼ N(0,− log c) is an independent random variable, we obtain

Mγ(0, cr) =

ˆ
|x|<|cr|

eγY (x)− γ
2

2
E[Y (x)2] dx

|x|γ2

= cd
ˆ
|u|<|r|

eγY (cu)− γ
2

2
E[Y (cu)2] du

|cu|γ2

d
= cd−γ

2
eγNc−

γ2

2
E[N2

c ]

ˆ
|u|<|r|

eγY (u)− γ
2

2
E[Y (u)2] du

|u|γ2

= cd−
γ2

2 eγNcMγ(0, r). (4.3.5)

For convenience, set q = 2d
γ2
−1 and write M = cd−

γ2

2 eγNc = c
γ2

2
qeγNc and R = Mγ(0, r).

We only need to show that conditions (i) – (iv) in Theorem 4.2.16 are satisfied to obtain

our desired tail behaviour. Conditions (ii) and (iii) are trivial, while

E [M q] = c
γ2

2
q2c−

γ2

2
q2 = 1

and so condition (i) is also satisfied. If we take U = Mγ(0, r), V = Mγ(0, cr), and

W = U − V =

ˆ
|x|∈[cr,r)

eγY (x)− γ
2

2
E[Y (x)2] dx

|x|γ2
≤ |cr|−γ2Mγ(B(0, r)).

then

ˆ ∞
0
|P(R > t)− P(MR > t)|tq−1dt =

ˆ ∞
0
|P(U > t)− P(V > t)|tq−1dt

≤ 1

q
E |(V +W )q − V q|

≤ 2q−1E
[
V q−1W +W q

]
(4.3.6)

where the first inequality follows from Lemma 4.2.17 and the second inequality from the

elementary estimate

(V +W )q − V q ≤ q(V +W )q−1W ≤ q2q−1
(
V q−1W +W q

)
.

Since E[W q+1−ε] <∞ for any ε > 0 (in particular that E[W q] <∞), we see that

E[V q−1W ] ≤ E
[
V

(q−1)(q+1−ε)
q−ε

]1− 1
q+1−ε

E
[
W q+1−ε] 1

q+1−ε <∞

for ε sufficiently small so that (q − 1)(q + 1 − ε)/(q − ε) < q. Then (4.3.6) is finite and

condition (iv) is also satisfied, and by Theorem 4.2.16 (and again Lemma 4.2.17)

P(Mγ(0, r) > t) =
Cγ,d
tq

+ o(t−q).
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We summarise various probabilistic representations of Cγ,d in the following corollary.

Corollary 4.3.3. The constant Cγ,d has the following equivalent representations.

Cγ,d = lim
t→∞

t
2d
γ2
−1P

(
Mγ(0, r) > t

)

= lim
λ→0+

1
2d
γ2
− 1

E
[
Mγ(0, r)

2d
γ2
−1
e−λMγ(0,r)

]
− log λ

(4.3.7)

=
1

− 2
γ2

(
d− γ2

2

)2
log c

E
[
Mγ(0, r)

2d
γ2
−1 −Mγ(0, cr)

2d
γ2
−1
]
, ∀c ∈ (0, 1). (4.3.8)

Proof. The first representation is an immediate consequence of Lemma 4.3.2, and the

second representation follows from Lemma 4.2.13. For the third representation, the proof

of Lemma 4.3.2 and Theorem 4.2.16 suggests that

lim
t→∞

tqP
(
Mγ(0, r) > t

)
=

1

E
[
c
γ2

2
q2eγqNc

(
γ2

2 q log c+ γNc

)] 1

q
E
[
Mγ(0, r)q −Mγ(0, cr)q

]

for q = 2d
γ2
− 1 and any c ∈ (0, 1). Then it is straightforward to check that

E
[
c
γ2

2
q2eγqNc

(
γ2

2
q log c+ γNc

)]
=
γ2

2
q log c+ γE

[
γqN2

c

]
= −γ

2

2
q log c

which implies (4.3.8).

Remark 4.3.4. The fact that (4.3.8) holds regardless of c ∈ (0, 1) is not surprising. Indeed

when c = 2−N , we have

E
[
Mγ(0, r)

2d
γ2
−1 −Mγ(0, cr)

2d
γ2
−1
]

=
N∑
n=1

E
[
Mγ(0, 2−(n−1)r)

2d
γ2
−1 −Mγ(0, 2−nr)

2d
γ2
−1
]

and the summand on the RHS does not change with n because of the scaling property

(4.3.5). The scaling property also explains why (4.3.8) is independent of r ∈ (0, rd) (as

long as the exact kernel remains positive definite on B(0, r)).

Lemma 4.3.2 has several useful implications.

Corollary 4.3.5. The following are true.
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(i) For any L ∈ R and r ∈ (0, rd(L)], let M
L
γ (0, r) =

´
|x|≤r |x|

−γ2eγ
2LM

L
γ (dx). We have,

as t→∞,

P
(
M

L
γ (0, r) > t

)
= e

2d
γ

(Q−γ)L Cγ,d

t
2d
γ2
−1

+ o(t
− 2d
γ2

+1
). (4.3.9)

(ii) Let X be the log-correlated field in Theorem 4.1.1, and A ⊂ D be a fixed, non-trivial

open set. Then there exists some C > 0 independent of v ∈ A such that

P (Mγ,g(v,A) > t) ≤ C

t
2d
γ2
−1

∀t > 0. (4.3.10)

Remark 4.3.6. The importance of Corollary 4.3.5 is as follows.

• The tail (4.3.9) in (i) suggests how P (Mγ,g(v,A) > t) should behave asymptotically as

t→∞. As we shall see in the proof, we can pick any r > 0 such that B(v, r) ⊂ A and

consider instead P (Mγ,g(v, r) > t) without changing the asymptotic behaviour. When

r is small, the covariance structure of X looks like − log |x−y|+f(v, v) = Kf(v,v)(x, y)

locally in B(v, r) and we should expect

P (Mγ,g(v, r) > t) ∼ e
2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1 Cγ,d

t
2d
γ2
−1
. (4.3.11)

It is not hard to verify this claim when f is the covariance of some continuous

Gaussian field. The situation becomes slightly more tricky under the setting of

Theorem 4.1.1 when we only assume that f = f+ − f− is the difference of two such

covariance kernels and we shall not attempt to prove (4.3.11) here.

• The uniform bound (4.3.10) in (ii) provides an estimate sufficient for an application

of dominated convergence: since

t
2d
γ2 E

[
1{Mγ,g(v,A)>t}

Mγ,g(v,A)

]
≤ t

2d
γ2

[
1

t
P (Mγ,g(v,A) > t)

]
≤ C ∀v ∈ A,

we have, by the localisation trick (4.3.1)

lim
t→∞

t
2d
γ2 P (Mγ,g(v,A) > t) =

ˆ
A

(
lim
t→∞

t
2d
γ2 E

[
1{Mγ,g(v,A)>t}

Mγ,g(v,A)

])
g(v)dv (4.3.12)

provided that the limit on the RHS exists for g-almost every v ∈ A. Note that the

existence of this limit is not known a priori. If we were allowed to assume (4.3.11)
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though, the existence of such limit would not be an issue because

lim
t→∞

t
2d
γ2 E

[
Mγ,g(v,A)−11{Mγ,g(v,A)>t}

]
=

1

Γ(1 + 2d
γ2

)
lim
λ→∞

λ
2d
γ2 E

[
Mγ,g(v,A)−1e−λ/Mγ,g(v,A)

]
(4.3.13)

= e
2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1

2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d

where the first equality follows from Corollary 4.2.11 and the second from Lemma 4.2.12

(with the fact that 2d
γ2
− 1 = 2

γ (Q − γ)), and this would yield Theorem 4.1.1. Our

proof, however, will adopt a more direct approach of evaluating the Laplace estimate

(4.3.13) without assuming the general tail behaviour (4.3.11).

Proof of Corollary 4.3.5. For convenience, let q = 2d
γ2
− 1 = 2

γ (Q− γ).

(i) For any c, θ ∈ (0, 1), we have

P
(
M

L
γ (0, cr) > t

)
≤ P

(
M

L
γ (0, r) > t

)
≤ P

(
M

L
γ (0, cr) > (1− θ)t

)
+ P

(
M

L
γ (0, B(0, r) \B(0, cr)) > θt

)
where M

L
γ (0, A) :=

´
A |x|

−γ2eγ
2LM

L
γ (dx). Since

E
[
M

L
γ (0, B(0, r) \B(0, cr))p

]
≤ (cr)−pγ

2
E
[
M

L
γ (B(0, r))p

]
<∞ ∀p < 2d

γ2
,

the tail probability of the random variable M
L
γ (0, B(0, r) \ B(0, cr)) decays faster

than t−q as t→∞ by Markov’s inequality, and therefore

lim inf
t→∞

tqP
(
M

L
γ (0, cr) > t

)
≤ lim inf

t→∞
tqP
(
M

L
γ (0, r) > t

)
≤ lim sup

t→∞
tqP
(
M

L
γ (0, r) > t

)
≤ lim sup

t→∞
tqP
(
M

L
γ (0, cr) > (1− θ)t

)
.

As θ ∈ (0, 1) is arbitrary, if P
(
Mγ(0, r) > t

)
∼ Ct−q for some C > 0, then C must

be independent of r ∈ (0, rd(L)]. We may thus assume r > 0 to be as small as we

like (but independent of t) without loss of generality.

If L ≥ 0, we may interpret KL(x, y) = K0(x, y) + L as the sum of the exact kernel

and the variance of an independent random variable NL ∼ N (0, L), and hence

P
(
M

L
γ (0, r) > t

)
= P

(
eγNL−

γ2

2
LMγ(0, r) > t

)
∼
Cγ,dE

[(
eγNL−

γ2

2
L

)q]
tq
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by Lemma 4.2.14, and E
[(
eγNL−

γ2

2
L

)q]
= e

2d
γ

(Q−γ)L
.

If L < 0, we instead interpret KL(x, y) = − log
∣∣e−L(x− y)

∣∣ as the exact kernel

with coordinates scaled by e−L. If we restrict ourselves to x, y ∈ B(0, e−Lrd) or

equivalently r ∈ (0, e−Lrd], then

P
(
M

L
γ (0, r) > t

)
= P

(ˆ
|x|≤r

|e−Lx|−γ2eγY (e−Lx)− γ
2

2
E[Y (e−Lx)2]dx > t

)

= P
(
edLMγ(0, eLr) > t

)
∼
Cγ,de

dqL

tq

where edqL = e
2d
γ

(Q−γ)L
as expected.

(ii) Let r = rd. Then

P (Mγ,g(v,A) > t) ≤ P
(
Mγ,g(v,B(v, r) ∩D) >

t

2

)
+ P

(
|r|−γ2eγ2LMγ,g(D) >

t

2

)
.

Since E [Mγ,g(D)q] <∞ by Lemma 4.2.8, Markov’s inequality implies that we only

need to verify P (Mγ,g(v,B(v, r) ∩D) > t) ≤ Ct−q uniformly in v.

By (i), let C > 0 be such that

P
(
Mγ(0, r) > t

)
≤ C

tq
∀t > 0.

To go beyond exact kernels, we utilise the decomposition condition of f . Let G±(·)
be independent continuous Gaussian fields on D with covariance f±, and introduce

the random variables

R+ = eγ supx∈D G+(x)+γ2 supy,z∈D |f(y,z)|, R− = eγ infx∈D G−(x)− γ
2

2
supy∈D |f−(y,y)|

which possess moments of all orders by Lemma 4.2.2. Let a > 0 be such that

PR− := P(R− > a) > 0.

Since E[X(x)X(y)] + f−(x, y) = K0(x− v, y − v) + f+(x, y), we have

P(Mγ,g(v,B(v, r) ∩D) > t) ≤ P−1
R−

P(R−Mγ,g(v,B(v, r) ∩D) > at)

≤ P−1
R−

P

ˆ
B(v,r)∩D

eγ
2f(x,v)eγG−(x)− γ

2

2
E[G−(x)2]

|x− v|γ2
Mγ(dx) >

at

||g||∞


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= P−1
R−

P

(ˆ
B(0,r)∩(D−v)

eγ
2f(x+v,v)eγG+(x+v)− γ

2

2
E[G+(x+v)2]Mγ(dx)

|x|γ2
>

at

||g||∞

)

≤ P−1
R−

P
(
R+Mγ(0, r) >

at

||g||∞

)
≤ P−1

R−
E
[
P
(
Mγ(0, r) >

at

||g||∞R+

∣∣∣R+

)]
≤ P−1

R−

C(||g||∞/a)qE
[
Rq+
]

tq
.

The coefficient P−1
R−
C(||g||∞/a)qE

[
Rq+
]
<∞ is independent of v so we are done.

4.3.2 The tail extrapolation principle

Based on the discussion in Remark 4.3.6, we have actually proved Theorem 4.1.1 when

E[X(x)X(y)] = KL(x, y) is the L-exact kernel, and in this subsection we shall show the

existence of the limit

lim
λ→∞

λ
2d
γ2 E

[
Mγ,g(v,A)−1e−λ/Mγ,g(v,A)

]
and evaluate the value of it.

Step 1: removal of non-singularity. We show that

Lemma 4.3.7. For any r > 0 such that B(v, r) ⊂ A,

E
[
Mγ,g(v,A)−1e−λ/Mγ,g(v,A)

]
λ→∞

= E
[
Mγ,g(v, r)

−1e−λ/Mγ,g(v,r)
]

+ o(λ
− 2d
γ2 ) (4.3.14)

Proof. Starting with the localisation trick (4.3.1), we know by the uniform bound (4.3.10)

from Corollary 4.3.5 that

P(Mγ,g(A) > t) ≤
ˆ
A

1

t
P (Mγ,g(v,A) > t) g(v)dv ≤

C
´
A g(v)dv

t
2d
γ2

for all t > 0. In particular

P (Mγ,g(v,A \B(v, r)) > t) ≤ P
(
|r|−γ2Mγ,g(A) > t

)
≤ Cr,g

t
2d
γ2

∀t > 0

for some Cr,g > 0.

To finish our proof we only need to show matching upper/lower bounds for (4.3.14).
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For a lower bound, pick δ ∈ (0, 1) and

E
[
Mγ,g(v,A)−1e−λ/Mγ,g(v,A)

]
≥ E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r) +Mγ,g(v,A \B(v, r))

]

≥ E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)

(
1 +

λ1−δ

Mγ,g(v, r)

)−1

1
{Mγ,g(v,r)}≥λ1−

δ
4 ,Mγ,g(v,A\B(v,r))≤λ1−δ}

]

≥
(

1− λ−
3δ
4

)
E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)
1
{Mγ,g(v,r)}≥λ1−

δ
4 ,Mγ,g(v,A\B(v,r))≤λ1−δ}

]

=
(

1− λ−
3δ
4

){
E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)

]
− E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)
1
{Mγ,g(v,r)≤λ1−

δ
4 }

]

− E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)
1
{Mγ,g(v,r)≥λ1−

δ
4 ,Mγ,g(v,A\B(v,r))≥λ1−δ}

]}

where

E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)
1
{Mγ,g(v,r)≤λ1−

δ
4 }

]
≤ λ−(1−δ/4)e−λ

3δ/4
= o(λ

− 2d
γ2 )

and

E

[
e−λ/Mγ,g(v,r)

Mγ,g(v, r)
1
{Mγ,g(v,r)≥λ1−

δ
4 ,Mγ,g(v,A\B(v,r))≥λ1−δ}

]}

≤ λ−(1−δ/4)P
(
Mγ,g(v,A \B(v, r)) ≥ λ1−δ

)
≤ Crλ

−(1−δ)
(

2d
γ2

+1
)

and so we just pick δ > 0 small enough satisfying (1− δ)
(

2d
γ2

+ 1
)
> 2d

γ2
for our desired

lower bound.

As for the upper bound,

E
[
Mγ,g(v,A)−1e−λ/Mγ,g(v,A)

]
= E

[
Mγ,g(v,A)−1e

− λ
Mγ,g(v,r)

(
1+

Mγ,g(v,A\B(v,r))

Mγ,g(v,r)

)−1]

≤ E

Mγ,g(v, r)
−1e
− λ
Mγ,g(v,r)

(
1+λ−

3δ
4

)−1

1
{Mγ,g(v,r)≥λ1−

δ
4 ,Mγ,g(v,A\B(0,r))≤λ1−δ}


+ e−

λδ/4

2 E
[
Mγ,g(v,A)−1

]
+ λ−(1−δ)P

(
Mγ,g(v,A \B(0, r)) > λ1−δ

)
︸ ︷︷ ︸

=o(λ−2d/γ2 )
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where

E

Mγ,g(v, r)
−1e
− λ
Mγ,g(v,r)

(
1+λ−

3δ
4

)−1

1
{Mγ,g(v,r)≥λ1−

δ
4 ,Mγ,g(v,A\B(0,r))≤λ1−δ}


≤ eλ

−δ/2︸ ︷︷ ︸
=1+o(1)

E

[
Mγ,g(v, r)

−1e
− λ
Mγ,g(v,r) 1

{Mγ,g(v,r)≥λ1−
δ
4 ,Mγ,g(v,A\B(0,r))≤λ1−δ}

]

≤ (1 + o(1))E

[
Mγ,g(v, r)

−1e
− λ
Mγ,g(v,r)

]
+ o(λ

− 2d
γ2 )

where the last inequality follows from similar calculations in the proof of the lower bound.

This concludes the proof of (4.3.14).

Step 2: tail extrapolation. For s ∈ [0, 1], define Zs(x) =
√
sX(x) +

√
1− sYf(v,v)(x−

v), M s
γ(dx) = eγZs(x)− γ

2

2
E[Zs(x)2]dx and

M s
γ,g(v, r) :=

ˆ
B(v,r)

eγ
2f(v,v)g(v)M s

γ(dx)

|x− v|γ2
, ϕ(s) := E

[
1

M s
γ,g(v, r)

e−λ/M
s
γ,g(v,r)

]
(4.3.15)

where r ∈ (0, rd(f(v, v))]. Our goal is to prove the following extrapolation result.

Lemma 4.3.8. Suppose v ∈ D satisfies g(v) > 0. We have

lim
λ→∞

λ
2d
γ2 ϕ(1) = lim

λ→∞
λ

2d
γ2 ϕ(0) (4.3.16)

= Γ

(
1 +

2d

γ2

)
e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1

2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d.

In particular,

lim
λ→∞

λ
2d
γ2 E

[
Mγ,g(v, r)

−1e−λ/Mγ,g(v,r)
]

= Γ

(
1 +

2d

γ2

)
e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1

2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d. (4.3.17)

Proof. We first recall that the definition of ϕ(t) depends on r but the limits (4.3.16), if

exist, do not because of Lemma 4.3.7. Also

lim
λ→∞

λ
2d
γ2 ϕ(0) = lim

λ→∞
λ

2d
γ2 E

[(
g(v)M

f(v,v)
γ (v, r)

)−1
e
−λ/

(
g(v)M

f(v,v)
γ (v,r)

)]
= Γ

(
1 +

2d

γ2

)
e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1

2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d
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by combining Corollary 4.3.5 (L = f(v, v)) with Lemma 4.2.12. From now on we shall

focus on the equality of the two limits (4.3.16).

For any ε > 0 there exists some r = r(ε) ∈ (0, rd(f(v, v))] be such that

|f(x, y)− f(v, v)| ≤ ε (4.3.18)

for all x, y ∈ B(v, r) by continuity. If we write F (x) = x−1e−λ/x, then F ′′(x) =

e−λ/x
(

2
x3
− 4λ

x4
+ λ2

x5

)
, and Corollary 4.2.7 yields

|ϕ(1)− ϕ(0)| ≤ ε

2

ˆ 1

0
E
[
e−λ/M

s
γ,g(v,r)

(
2

M s
γ,g(v, r)

+
4λ

M s
γ,g(v, r)

2
+

λ2

M s
γ,g(v, r)

3

)]
ds.

(4.3.19)

Going through the argument in the proof of Corollary 4.3.5(ii), we can check that there

exists some C > 0 independent of s ∈ [0, 1] and v ∈ D such that

P
(
M s
γ,g(v, r) > t

)
≤ C

t
2d
γ2
−1

∀t > 0.

By Lemma 4.2.12, the integrand in (4.3.19) is uniformly bounded by C ′λ
− 2d
γ2 for some

C ′ > 0 which means that

lim sup
λ→∞

λ
2d
γ2 |ϕ(1)− ϕ(0)| ≤ C ′ε

2
.

Since ε > 0 is arbitrary, we have limλ→∞ λ
2d
γ2 ϕ(1) = limλ→∞ λ

2d
γ2 ϕ(0).

Finally, let ε, r > 0 be chosen according to (4.3.18) and the additional constraint that∣∣∣∣g(x)

g(v)
− 1

∣∣∣∣ ≤ ε ∀x ∈ B(v, r)

which is possible because g(v) > 0 and g is continuous. Then

lim inf
λ→∞

λ
2d
γ2 E

[
Mγ,g(v, r)

−1e−λ/Mγ,g(v,r)
]

≥ lim
λ→∞

λ
2d
γ2 (1 + ε)−1e−γ

2εE
[
M1
γ,g(v, r)

−1e−λ(1+ε)eγ
2ε/M1

γ,g(v,r)

]
=
(

(1 + ε)eγ
2ε
)−(1+ 2d

γ2

)
lim
λ→∞

λ
2d
γ2 ϕ(1),

lim sup
λ→∞

λ
2d
γ2 E

[
Mγ,g(v, r)

−1e−λ/Mγ,g(v,r)
]

≤ lim
λ→∞

λ
2d
γ2 (1 + ε)eγ

2εE
[
M1
γ,g(v, r)

−1e−λ(1+ε)−1e−γ
2ε/M1

γ,g(v,r)

]
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=
(

(1 + ε)eγ
2ε
)(1+ 2d

γ2

)
lim
λ→∞

λ
2d
γ2 ϕ(1).

Given that the lim inf/lim sup do not depend on r by Lemma 4.3.7 and ε is arbitrary, the

claim (4.3.17) follows and this concludes the proof.

Proof of Theorem 4.1.1. Since

t
2d
γ2 E

[
1

Mγ,g(v,A)
1{Mγ,g(v,A)>t}

]
≤ t

2d
γ2
−1P (Mγ,g(v,A) > t)

is uniformly bounded in v ∈ A by Corollary 4.3.5, and

lim
t→∞

t
2d
γ2 E

[
1

Mγ,g(v,A)
1{Mγ,g(v,A)>t}

]
= lim

λ→∞

λ
2d
γ2

Γ(1 + 2d
γ2

)
E
[

1

Mγ,g(v,A)
e−λ/Mγ,g(v,A)

]

= e
2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2
−1

2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d

g-almost everywhere by Corollary 4.2.11, Lemma 4.3.7 and Lemma 4.3.8, we conclude that

lim
t→∞

t
2d
γ2 P (Mγ,g(A) > t) =

ˆ
A

(
lim
t→∞

t
2d
γ2 E

[
1

Mγ,g(v,A)
1{Mγ,g(v,A)>t}

])
g(v)dv

=

(ˆ
A
e

2d
γ

(Q−γ)f(v,v)
g(v)

2d
γ2 dv

) 2
γ (Q− γ)

2
γ (Q− γ) + 1

Cγ,d

by dominated convergence.

Appendix 4.A Reflection coefficient of GMC

In this appendix we explain why Cγ,d should be seen as a natural d-dimensional analogue

of the Liouville reflection coefficients evaluated at γ. To commence with, we define Cγ,d(α),

which we call the reflection coefficient of GMC, for each α ∈ (γ2 , Q) as follows.

Proposition 4.A.1. Let Mγ,α(0, r) =
´
|x|≤r |x|

−γαMγ(dx) for α ∈ (γ2 , Q). Then there

exists some constant Cγ,d(α) > 0 independent of r ∈ (0, rd) such that

Cγ,d(α) = lim
t→∞

t
2
γ

(Q−α)P
(
Mγ,α(0, r) > t

)
= lim

λ→0+

1
2
γ (Q− α)

E
[
Mγ,α(0, r)

2
γ

(Q−α)
e−λMγ,α(0,r)

]
− log λ

. (4.A.1)

Proof. The first equality can be obtained by repeating the proof of Lemma 4.3.2, and the

second equality follows from Lemma 4.2.13.
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We now show that Cγ,d(α) coincides with the Liouville reflection coefficients10.

Proposition 4.A.2. When d = 2, the reflection coefficient Cγ,2(α) of GMC is equivalent

to the unit volume Liouville reflection coefficient R(α) defined in [RV17].

Proof. Using the notations in [RV17], we can write

Mγ,α(0, 1)
d
= eγM

ˆ ∞
−L−M

eγB
α
s Zsds =: eγMI(L−M )

where

• Zsds is the GMC associated with the lateral noise of GFF;

• (Bαs )s∈R an independent two-sided Brownian motion with negative drift α − Q

conditioned to stay non-positive;

• M is an independent Exp(2(Q− α)) random variable; and

• L−M is the last time (Bαs )s≥0 hits −M .

Applying (4.A.1) and the decomposition above, we have

Cγ,2(α) = lim
λ→0+

1
2
γ (Q− α)

E

[
I(L−M )

2
γ

(Q−α)

(
(eγM )

2
γ

(Q−α)
e−λe

γMI(L−M )

− log λ

)]
.

When λ → 0+, the above expectation is dominated by the event that the exponential

variable M is large, in which case L−M is very large and I(L−M ) behaves like I(∞) which

does not depend on M . To make this rigorous we aim to prove matching upper/lower

bounds. Since P(eγM > t) = t
− 2
γ

(Q−α)
for t ≥ 1, a straightforward computation shows that

E
[(
eγM

) 2
γ

(Q−α)
e−λe

γM

]
= −2

γ
(Q− α)e−λ log λ+O(1)

where the error O(1) is bounded independently of λ > 0. Using the fact that I(∞) has

moments of all orders smaller than 4
γ2

([KRV17, Lemma 2.8]), we deduce that

Cγ,2(α) ≤ lim
λ→0+

1
2
γ (Q− α)

E

[
I(∞)

2
γ

(Q−α)E

[(
(eγM )

2
γ

(Q−α)
e−λe

γMI(0)

− log λ

)∣∣∣∣I(0)

]]
= E

[
I(∞)

2
γ

(Q−α)
]

10We only focus on d = 2; for d = 1 the same proof shows that Cγ,1 coincides with the boundary unit
volume reflection coefficient, see [RV17, Section 4.3].
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which is the desired upper bound. Now fix any T > 0, we have

Cγ,2(α) ≥ lim
λ→0+

1
2
γ (Q− α)

E

[
I(L−T )

2
γ

(Q−α)E

[(
(eγM )

2
γ

(Q−α)
e−λe

γMI(∞)

− log λ

)∣∣∣∣I(∞)

]]

− lim
λ→0+

1
2
γ (Q− α)

E

[
I(∞)

2
γ

(Q−α)

(
(eγM )

2
γ

(Q−α)
e−λe

γMI(∞)

− log λ

)
1{M≤T}

]
= E

[
I(L−T )

2
γ

(Q−α)
]
.

Since T is arbitrary, we may send T → ∞ so that L−T → ∞ and obtain Cγ,2(α) ≥
E
[
I(∞)

2
γ

(Q−α)
]
. This matches our upper bound and is precisely the probabilistic defini-

tion of the Liouville reflection coefficient R(α) in [RV17, equation (1.10)].
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