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Summary
Investigating the regulation of APOBEC mutagenesis in cancer

Karim Ahmed

The sequencing of cancer genomes has revealed that cancers harbour 

recurrent patterns of mutation, known as mutational signatures. One 

common mutational signature, known as the APOBEC signature, is found in 

over 70% of cancer types. The APOBEC signature is thought to be 

mediated by the activity of the APOBEC enzyme family. However, the 

underlying cause of APOBEC activity in cancer is not fully understood.

This thesis investigates the regulation of APOBEC mutagenesis in cancer.  

There is a focus on APOBEC3A and APOBEC3B as likely mediators of 

APOBEC signature mutations, and a focus on the hypothesis that APOBEC 

activity might be driven by the activity of LINE-1 retrotransposons.

Firstly, the thesis details experiments to investigate APOBEC activity in 

cultured cancer cells. The experiments conducted suggest that p53 

inactivation leads to the upregulation of LINE-1 and APOBEC3B, and that 

their expression may be downregulated when p53 activity is promoted. An 

enzymatic assay for cancer-associated APOBEC activity is established. 

Reverse transcriptase inhibitors, which inhibit LINE-1 activity, appear to 

modulate APOBEC3B expression and associated enzymatic activity. This 

appears to occur when cells are p53-deficient, but not when p53 is intact.
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Secondly, the thesis reports exploratory bioinformatic analyses conducted 

using large genomic datasets. These indicate that APOBEC3A expression 

is associated with interferon signalling in cancer while APOBEC3B 

expression is associated with cell cycle signalling in cancer. A deletion of a 

consensus interferon response factor binding site in the APOBEC3B 

promoter is identified. Analyses of regulatory data suggest that APOBEC3B 

might be transcriptionally insulated from syntenic APOBEC3 genes by 

CTCF. In addition, p53 deficiency in cancer appears to be associated with 

the upregulation of APOBEC3A and APOBEC3B. 

Thirdly, the thesis reports bioinformatic analyses of an RNA sequencing 

dataset from patients with the rare genetic disease Aicardi-Goutières 

syndrome. It is thought that the disease process of the genotypes studied 

might driven by LINE-1 activity, as suggested in part by successful patient 

trials of reverse transcriptase inhibitors. The analyses conduced appear to 

identify changes to the transcriptome in Aicardi-Goutières syndrome that 

might mirror those associated with APOBEC activity in cancer.

In sum, these experiments provide evidence for possible regulators of 

APOBEC mutagenesis in cancer, including evidence that broadly supports 

the hypothesis that it may be driven by LINE-1 activity. The experiments 

also identify a class of drugs that might enable the pharmacological 

modulation of cancer-associated APOBEC activity. APOBEC mutagenesis 

is thought to mediate cancer initiation, progression, intratumour 

heterogeneity and responses to therapy, including immunotherapy. The  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findings detailed might therefore contribute to the ability to understand and 

control the natural history of cancer across multiple cancer types. 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1. Introduction

1.1. Cancer: an enduring health problem

The term ‘cancer’ refers to a phenomenon where a bodily cell and its 

progeny overproliferate, with these cells having the capacity to spread 

within the body (Weinberg 2007). Cancers arise from cells throughout the 

body, and are typically named according to their apparent origin.

Cancer is common; approximately 1 in 2 people in the UK (Ahmad, 

Ormiston-Smith, and Sasieni 2015) and 1 in 6 people worldwide (Bray et al. 

2018) are expected to develop cancer. It is the second leading cause of 

death globally (Wang et al. 2016). Of all known risk factors, cancer is most 

closely associated with increasing age (Ries et al. 2006). Although 

advancements in cancer research have led to improvements in patient 

outcomes in recent decades, around half of cancer patients in England and 

Wales still die within 5 years of diagnosis (Quaresma, Coleman, and 

Rachet 2015).

The earliest known description of cancer is thought to have been written in 

around 3000 BC (Hajdu 2011). Its author - purported to be the physician 

Imhotep (van Middendorp, Sanchez, and Burridge 2010) - remarks that it is 

a ‘grave disease’ with ‘no treatment’. Modern epidemiological data reaffirm 

that cancer evidently remains a grave disease. However, a number of 
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effective anticancer prevention and treatment strategies have been 

developed, particularly in the last century (DeVita Jr and Rosenberg 2012).

It is anticipated that further advances in cancer research will lead to further 

improvements in these strategies for prevention and treatment. A major 

area of contemporary research is the study of genomic mutation in cancer 

(Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium 2020), 

which is the topic of this thesis. The mutation of cellular DNA has been 

identified as a causative factor - an ‘enabling hallmark of cancer’ (Hanahan 

and Weinberg 2011), as well as a therapeutic target (Fox and Loeb 2010).
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1.2. Mutations as mediators of carcinogenesis

A mutation is defined as a change in a nucleotide sequence (Voet, Voet, 

and Pratt 2013). Germline mutations are those that can be passed on to 

offspring, while somatic mutations are those that cannot (Suzuki and 

Griffiths 1976). Somatic mutations are thought to mediate carcinogenesis - 

the process of cancer formation (Weinberg 2007).

The evidence supporting the somatic mutation theory of carcinogenesis first 

emerged in recent centuries. In the nineteenth century, Müller and his 

student Virchow used microscopy to deduce that cancer arises from cells 

(Müller 1838; Virchow 1858). Later that century, von Hansemann observed 

that cancer cells undergo abnormal cell divisions and have unequal 

numbers of chromosomes (von Hansemann 1890). In the twentieth century, 

Boveri observed that sea urchins with developmental defects also had 

abnormal cell divisions and chromosomal abnormalities. He proposed that 

chromosomal abnormalities could lead to cancer by inducing defects in 

cellular development (Boveri 1914). The term ‘somatic mutation’ was first 

used two years later, referring to ‘a permanent modification of somatic 

tissue’ that could be heritably transmitted ‘in successive cell generations’ of 

a tumour (Tyzzer 1916). 

Experimental and structural studies later identified DNA as the molecule 

that mediates heredity (Avery, MacLeod, and McCarty 1944; Franklin and 

Gosling 1953; Watson and Crick 1953). Then, specific alterations in DNA 

were found to be associated with cancer, as typified by the discovery of a 
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recurrent translocation (defined in Table 1.2) of chromosomes 9 and 22 in 

chronic myeloid leukaemia known as the Philadelphia chromosome (Nowell 

and Hungerford 1960; Rowley 1973). This discovery was enabled by 

advances in the preparation of samples for microscopy. Studies in this 

period also made use of viruses that were found to cause cancer (Rous 

1910). Such studies led to the finding that a single gene of the Rous 

sarcoma virus, src, was sufficient for transformation in cultured cells 

infected with the virus - ‘transformation’ being the cellular acquisition of 

cancerous traits (Parker, Varmus, and Bishop 1984). Similarly, it was shown 

that transferring DNA from cancer cells to non-cancer cells was sufficient for 

inducing transformation (Shih et al. 1981). Further studies demonstrated 

that transformation is mediated by the mutation of genes involved in 

controlling cellular proliferation - ‘proto-oncogenes’ that mutate to become 

‘oncogenes’ (Perucho et al. 1981; Pulciani et al. 1982). A mutation at a 

single nucleotide in the HRAS proto-oncogene was subsequently shown to 

be sufficient for transformation (Reddy et al. 1982).

Boveri had suggested that chromosomal material could promote 

transformation, as in the case of oncogenes, but might also limit 

transformation (Boveri 1914). Subsequent studies in the twentieth century 

supported this hypothesis. In 1971, Knudson used statistical models to 

propose that familial cases of retinoblastoma that typically occur in younger 

patients are caused by one inherited germline mutation and a second 

somatic mutation, while non-familial (sporadic) cases of typically older 

patients are caused by two somatic mutations (Knudson 1971). This is 

known as the ‘two-hit hypothesis’. The identification of the RB1 gene as the 
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genomic locus for these two mutations suggested the discovery of the first 

‘tumour suppressor gene’ - a gene that functions to prevent transformation 

(Friend et al. 1986). It was deduced that, in familial cases of retinoblastoma, 

one defective RB1 allele is inherited in the germline and the second RB1 

allele is inactivated due to somatic mutation. However, in sporadic cases, 

both RB1 alleles are inactivated somatically. This showed that somatic and 

germline mutations could contribute to carcinogenesis.

Since the identification of the first oncogene and tumour suppressor gene in 

the 1980s, over 700 genomic regions that contribute to carcinogenesis 

when mutated have been identified (Sondka et al. 2018). There have been 

concurrent efforts to systematically identify the genomic mutations that drive 

cancer (‘driver mutations’ - defined in section 1.3.1). The turn of the 

millennium marked the completion of the first draft of the sequence of the 

human genome, comprising approximately 3 billion base pairs (Lander et al. 

2001). More recently, the large international PCAWG study reported 

sequencing of the genomes of around 2500 cancers across 38 cancer 

types - the first time  that whole cancer genomes have been sequenced at 

this scale (PCAWG Consortium 2020). The study has identified several 

thousand mutations throughout the genome that are thought to drive 

cancer. This set of mutations was identified by filtering mutations found in 

these samples according to whether or not they have similar features to 

known driver mutations. The study’s authors comment that this set of 

mutations is expected to expand as more cancer genomes are sequenced 

and methods of studying mutations in cancer (described in section 1.3) are 
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refined. A number of mutation classes have been identified to date (Tables 

1.1 and 1.2). 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Table 1.1 - Mutation classes identified in cancer genomes

(Adapted from Ahmad, Ahmed, and Venkitaraman 2018).

Mutation class Definition

Single-base substitution, also 

known as a single nucleotide 

variant (SNV) or a point mutation

The substitution of the base at an 

individual nucleotide.

n-base substitution (eg. doublet-

base, triplet-base etc.)

The substitution of bases at n 

contiguous nucleotides.

Small insertion or deletion (Indel) The gain or loss, respectively, of 

one or a few nucleotides.

Structural variant, also known as 

a genomic rearrangement

The gain, loss or reordering of 

chromosomal segments that 

typically range in size from 

kilobases to whole chromosomes.

Aneuploidy The gain or loss of entire 

chromosomes.

Whole-genome duplication The doubling of the number of all 

chromosomes.
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Structural variant class Definition

Copy number variant (CNV) The gain or loss of copies of a 

chromosomal segment.

Amplification The gain of a chromosomal 

segment.

Deletion The loss of a chromosomal 

segment.

Tandem duplication The doubling of a chromosomal 

segment in which the additional 

copy is inserted immediately 

adjacent to the original copy and 

in the same orientation.

Reciprocal inversion A chromosomal segment that has 

been reversed in orientation.
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Fold-back inversion An inverted rearrangement 

between two points typically over 

20 kilobases apart on a 

chromosome, with associated 

copy number change.

Translocation The rearrangement of non-

homologous chromosomes.

Chromoplexy The rearrangement of more than 

two chromosomal segments such 

that these segments are 

preserved and shuffled with 

regards to genomic position and 

orientation.

Chromothripsis A cluster of tens or hundreds of 

structural variants in one or a few 

chromosomes that are thought to 

occur as a single event, with 

associated oscillations in copy 

number and segment orientation.

Local n-jump A cluster of n structural variants in 

a single genomic region.
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Table 1.2 - Structural variant classes identified in cancer genomes

(Adapted from Li et al. 2020).

The PCAWG study also reports that approximately 5-9% of cases studied 

have ‘no apparent driver mutations’, a finding which could ‘arise from either 

technical or biological causes’. However, the study also identifies examples 

where cancers are found to have driver mutations where none were initially 

apparent. For example, cases of chromophobe renal cell carcinoma 

demonstrate ‘a remarkably consistent profile of chromosomal aneuploidy’ 

that appears to be ‘sufficient to initiate a cancer in the absence of more-

targeted driver events’. Such a mechanism was first posited by Boveri after 

observing a range of chromosomal profiles in abnormal sea urchin cells 

(Boveri 1914).

Templated insertion The addition, into a single 

chromosome, of a contiguous 

string of copies of one or more 

genomic segments.

Local-distant cluster A cluster of structural variants that 

has both local rearrangements 

and rearrangements to other 

parts of the genome.
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Together, the observations made from the nineteenth century to the present 

day indicate that mutations in cellular DNA mediate transformation. It has 

also been shown that many of the mutations that occur in cancer 

predispose cells to acquiring additional mutations - a trait described as 

‘genomic instability’. The increase in genomic instability observed in cancer 

is thought to enable transformation by enabling subsequent mutations in 

proto-oncogenes and tumour suppressor genes. 

For example, TP53 has been identified the as most frequently mutated 

gene in cancer (PCAWG 2020). Mutations in TP53 are observed to be 

‘among the earliest [mutational] events’ across cancer types in the PCAWG 

cohort (Gerstung et al. 2020) and TP53 mutation induces genomic 

instability that includes structural variation and aneuploidy (Ciriello et al. 

2013; Kastenhuber and Lowe 2017). The canonical function of the TP53 

gene product, known as p53, is to arrest the proliferative cell cycle or initiate 

programmed cell death (apoptosis) in response to DNA damage (Weinberg 

2007). These functions of p53 were identified upon its initial 

characterisation in the 1990s, with Lane describing p53 as a ‘guardian of 

the genome’ in 1992 (Lane 1992). Many studies on TP53 have followed 

since. Indeed, TP53 has been identified as ‘the most studied human gene 

of all time’ (Hafner et al. 2019), based on the large number of publications 

that refer to it. In addition to its canonical function, several thousand studies 

collectively report a wide range of functions for its unmutated (wild-type) 

and mutant forms (Kastenhuber and Lowe 2017).
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TBP3, RB1 and many other genes implicated in carcinogenesis are now 

understood to be part of the cellular DNA damage response (DDR - Elledge 

1996). Failure of the DDR leads to mutagenesis mediated by DNA damage 

- with DNA damage defined as ‘a change that introduces a deviation from 

the usual double-helical structure’ (Lewin 2004; Table 1.3). The DDR 

involves a number of cellular mechanisms (reviewed in Jackson and Bartek 

2009). These include the sensing of DNA damage, the repair of DNA 

damage (Table 1.3), cell signalling cascades, changes to gene expression 

(transcription), changes to DNA replication, cell cycle arrest, apoptosis and 

cellular senescence.
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Table 1.3 - DNA damage and repair processes (adapted from Jackson and 

Bartek 2009).

DNA repair mechanism Principal DNA lesions repaired

Direct lesion reversal O6 alkylguanine

Mismatch repair DNA mismatches, insertion/

deletion loops arising from DNA 

replication

Base excision repair and SSB 

repair

Abnormal DNA bases, simple 

base adducts, SSBs generated as 

base excision repair 

intermediates

Nucleotide excision repair Lesions that disrupt the DNA 

double helix, such as bulky base 

adducts and UV photoproducts

Translesion synthesis Base damage blocking replication 

fork progression

Non-homologous end-joining DSBs

Homologous recombination DSBs, stalled replication forks, 

inter-strand DNA crosslinks

Fanconi anaemia pathway Inter-strand DNA crosslinks
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Recurrent somatic mutations in DDR genes are found in many cancer 

types. For example, the ten most frequently mutated cancer genes in the 

PCAWG cohort include genes implicated in the DDR such as TP53, 

CDKN2A, ARID1A, PTEN, TERT, CDKN2B, SMAD4 and RB1, with TP53 

mutations found in 37% of cases and 96% of cancer types (Negrini, 

Gorgoulis, and Halazonetis 2010; Katz et al. 2013; Lee, Chen, and Pandolfi 

2018; Mathur 2018; PCAWG 2020). In addition, a number of mutations in 

DDR genes are thought to mediate hereditary cancer syndromes (Table 

1.4), including TP53 in Li-Fraumeni syndrome and RB1 in hereditary 

retinoblastoma.

Disease Gene(s) Principal defective 

response

46BR syndrome LIG1 Chromosomal 

stability

Ataxia telangiectasia ATM Repair of DNA strand 

breaks

Basal cell nevus 

syndrome

PTCH2 Cell signalling

Bloom syndrome BLM Resolution of stalled 

replication/

transcription 

intermediates
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Cowden syndrome 

and Bannayan-Riley-

Ruvalcaba syndrome

PTEN Cell cycle responses 

and apoptosis

Cutaneous malignant 

melanoma

CDKN2A, CDK4 Cell cycle responses 

and apoptosis

Familial 

adenomatous 

polyposis

APC Cell proliferation and 

chromosomal 

stability

Fanconi anaemia FANCA, FANCB, 

FANCC, FANCD1, 

BRCA2, FANCD2, 

FANCE, FANCF, 

FANCG, FANCI, 

FANCJ, FANCL

Chromosomal 

stability, both 

spontaneous and in 

response to cross-

linking agents

Hereditary breast 

and ovarian cancer

BRCA1, BRCA2 Cell cycle response 

to DNA damage

Hereditary 

nonpolyposis colon 

cancer

MLH1, MSH2, 

MSH6, PMS1, 

PMS2, MLH3, EXO1

Mismatch repair
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Hereditary papillary 

renal cell carcinoma

MET Cell signalling

Juvenile polyposis 

syndrome

SMAD4, BMPR1A Cell signalling

Li-Fraumeni 

syndrome

TP53, CHEK2 Cell cycle response 

to DNA damage

LIG4 syndrome LIG4 Repair of DNA strand 

breaks

MYH-associated 

polyposis

MYH None noted, despite 

mutations in a base 

excision repair gene

Neurofibromatoses 

type 1 and type 2

NF1, NF2 RAS regulation or 

cell cytoskeleton 

maintenance

Nijmegen breakage 

syndrome

NBS1 Repair of DNA strand 

breaks

Peutz-Jeghers 

syndrome

STK11 Cell cycle responses 

and apoptosis

Retinoblastoma RB1 Cell cycle response 

to DNA damage
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Table 1.4 - Hereditary diseases involving cancer predisposition, many of 

which are implicated in a defective DNA damage response (adapted from 

Friedberg et al. 2006).

Rothmund-Thomson 

syndrome

RECQL4 Resolution of stalled 

replication/

transcription 

intermediates

Tuberous sclerosis 

complex

TSC1, TSC2 Cell cytoskeleton 

maintainance

von Hippel-Lindau VHL Multiple; possibly cell 

cycle regulation

Werner syndrome WRN Resolution of stalled 

replication/

transcription 

intermediates

Wilm's tumour WT1 Transcriptional 

regulation

Xeroderma 

pigmentosum

XPA, XPB, XPC, 

XPD, XPE, XPF, 

XPG, XPV

Nucleotide excision 

repair and 

translesion DNA 

synthesis
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The DNA damage that the DDR counteracts can occur as a result of 

processes that are intrinsic to the cell or from exposure to its environment. 

For example, common oncogene mutations lead to changes in the timing 

and progression of DNA replication during the cell cycle - such disruptions 

in replication are known as ‘replication stress’ and involve DNA lesions that 

trigger the DDR (Bartkova et al. 2005; Gorgoulis et al. 2005). In addition, 

external sources of DNA damage such as radiation, chemical agents and 

biological agents have been shown to cause mutations and increase cancer 

incidence. Early experimental studies indicated that approximately 90% of 

identified carcinogens are also mutagenic (McCann and Ames 1976). 

Epidemiological studies have since identified over 100 carcinogens and 

over 300 other exposures that are probably or possibly carcinogenic, as 

determined by the International Agency for Research on Cancer (Cogliano 

et al. 2011).

In summary, alterations in cellular DNA mediate transformation through the 

activation of oncogenes and the inactivation of tumour suppressor genes. 

These changes often lead to genomic instability by compromising the 

cellular response to DNA damage. In addition, carcinogenic exposures are 

often mutagenic. Together, these findings support the notion that mutations 

contribute to carcinogenesis.
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1.3. Mutations as modifiers of cellular fitness

1.3.1. Driver mutations and passenger mutations

Efforts have been made to classify the mutations found in cancer according 

to their effect on cancer development. Mutations may be classified as driver 

mutations or passenger mutations (Stratton, Campbell, and Futreal 2009). A 

driver mutation is defined as one that endows a cell with a proliferative 

advantage. In contrast, a passenger mutation is one that does not confer a 

proliferative advantage. 

The proliferative advantage that occurs as a result of a driver mutation may 

be viewed as a Darwinian selective advantage that increases the fitness of 

the cancer cell within its environment (Pepper et al. 2009). A number of  

selection pressures within the cellular environment have been identified. 

These include the genetic profile of other cells; lifestyle factors such as 

external exposures; systemic factors such as hormones, growth factors, 

immune cells and cytokines; local factors such as oxygen, nutrients, and 

space; and architectural constraints such as physical compartments, 

basement membranes and restricted niches (Greaves and Maley 2012).

1.3.2. Cancer as a multi-step evolutionary process

The notion of Darwinian selection as a feature of carcinogenesis was first 

proposed by Nowell in the 1970s (Nowell 1976). He posited that cancer is 

clonal (that the cells that form a tumour arise ‘from a single cell of origin’) 
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and that the sequential selection of more aggressive subclones emerges as 

a result of ‘acquired genetic variability within the original clone’.

The evidence for iterative selection in carcinogenesis was first suggested 

by an observed delay between exposure to mutagens and cancer 

formation, and mathematical modelling of the relationship between cancer 

incidence and age, which together suggested that multiple mutations were 

required in the process of carcinogenesis (Nordling 1953; Armitage and Doll 

1954).  Since the incidence of cancer appeared to increase according to the 

sixth power of age, it was proposed that there were around six rate-limiting 

mutational events in carcinogenesis.

These observations were supported by histological and molecular studies 

that indicated that normal cells undergo premalignant changes that 

enhance their capacity for proliferation before a malignant cancer is formed. 

For example, histological studies of colon tumours led to their classification 

as early adenomas (premalignant), intermediate adenomas (premalignant), 

late adenomas (premalignant) and carcinomas (malignant cancer). Genetic 

analyses of these lesions indicated that four or five known drivers were 

found in carcinomas, and that particular drivers were enriched in different 

stages (Fearon and Vogelstein 1990). For example, loss of chromosome 5q 

(containing APC) appeared to be important for the formation of early 

adenomas, KRAS mutations appeared to be important for the formation of 

intermediate adenomas, loss of chromosome 18q (containing SMAD4) for 

late adenoma formation and loss of chromosome 17p (containing TP53) for 

carcinoma formation.
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Contemporary whole-genome analyses have supported these early studies, 

finding that cancers harbour four to five drivers on average (PCAWG 2020). 

In addition, across cancer types, there are a number of characteristic 

subclonal or late changes and clonal or early changes, with some driver 

mutations preceding diagnosis by years or decades (Gerstung et al. 2020). 

For example, the classical APC-KRAS-SMAD4-TP53 model of colorectal 

carcinogenesis posed by Fearon and Vogelstein has been expanded, and 

is presented as a probabilistic process involving several genetic loci, with 

TP53 inactivation appearing to be an early event. The order of mutations in 

whole genome sequencing studies such as this may be inferred from the 

estimated clonality of those mutations in the sample, while timing can be 

inferred by calibrating these data according to mutational processes that 

appear to increase linearly with age. This information can also be used to 

construct evolutionary trees.

Together, the driver events that occur in cancer lead to a range of putatively 

adaptive changes. Experimental studies interrogating the function of driver 

mutations have shown that cancer cells subvert a range of processes to 

overcome the selection pressures in their environment (Hanahan and 

Weinberg 2011). Cancers may activate proliferative signalling, 

angiogenesis, metastasis, replicative immortality, tumour-promoting 

inflammation and genomic instability, while subverting growth suppression, 

cell death, cellular metabolism and immune destruction. Mutations may also  

mediate treatment resistance.
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Although four to five driver mutations are under positive selection in a 

typical cancer, thousands of putatively evolutionarily neutral passenger 

mutations are also present (Martincorena et al. 2017; Alexandrov et al. 

2020). In addition, some mutations appear to be under negative selection, 

such as those that generate a protein that is detected as foreign by the 

immune system (a neoantigen) or those that occur in genes that are 

understood to be essential for cellular survival (Martincorena et al. 2017; 

Rosenthal et al. 2019). These findings highlight that many more mutations 

occur in cancers than those required to drive them, and that some 

mutations are deleterious to cancer cells.

1.3.3. The relationship between mutation rate and fitness

The relationship between a cell’s rate of mutation and its fitness can be 

informed by considering cells with mutation rates at their theoretical limits. 

At one extreme, one might consider a cell whose genome undergoes no 

mutagenesis whatsoever. Such a cell cannot evolve and therefore lacks the 

capacity to gain any fitness advantage. At the other extreme, one might 

consider a cell whose rate of mutation is so great that it entirely degrades 

the integrity of the instructions encoded in its genome. Such a cell would no 

longer be able to perform the essential functions required for its survival. 

These two hypothetical examples, of cells with mutation rates at opposite 

extremes, illustrate that the rate of mutation is inherently tied to the fitness 

of a cell. They also indicate that excessively low or excessively high rates of 

mutation are not advantageous. Indeed, species appear to evolve mutation 
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rates that are between these two extremes, with multiple determinants 

appearing to influence the evolved rates of mutation (Lynch et al. 2016).

Experimental and computational studies on species from a range of 

phylogenetic lineages have indicated that, in general, mutations arise 

stochastically, a large fraction of mutations are deleterious, and 

advantageous mutations are rare (Loewe and Hill 2010). These findings 

support the notion that the rate of mutation is, in itself, a determinant of 

fitness, and the notion that unduly high rates of mutation are likely to be 

selected against (Kimura 1967; Loewe and Hill 2010) particularly when the 

genetic material available to a population is limited due to factors such as a 

limited population size or a lack of sexual recombination between 

individuals, as occurs in a population of cancer cells.

Asexually reproducing cells, such as cancer cells, are understood to be 

susceptible to the phenomenon known as ‘Muller’s ratchet’ - the irreversible 

accumulation of deleterious mutations in the genome in the absence of 

sexual recombination (Muller 1964). Muller’s ratchet has been observed in 

asexually reproducing species across taxonomic domains, including fish 

(Loewe and Lamatsch 2008), worms (Loewe and Cutter 2008), bacteria 

(Andersson and Hughes 1996) and amoebae (Maciver 2016). It has also 

has been observed in parts of the human genome that do not undergo 

recombination in the germline, such as the Y chromosome and the 

mitochondrial genome (Loewe 2006; Engelstädter 2008). Moreover, 

Muller’s ratchet is particularly prominent in small populations, where it is 

thought to inevitably lead to extinction - a process that has been termed 
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‘mutational meltdown’ (Lynch et al. 1993). Mutational meltdown is described 

to occur as deleterious mutations further reduce the population size and are 

fixed due to the effect of genetic drift (the change in allele frequency due to 

random sampling of individuals in the population).

1.3.4. The effect of mutation rate on cancer cell fitness

As described in section 1.3.2, mutations give cancer cells a selective 

advantage relative to non-cancer cells, increasing their fitness by subverting 

restrictions on growth, cell death and bodily location as well as mediating 

treatment resistance (Hanahan and Weinberg 2011). An elevated rate of 

mutation, as is observed is cancer, increases the probability that such 

mutations will occur, thereby increasing the probability that cancer cells gain 

a selective advantage.

On the other hand, since cancer cells act as a limited number of asexually 

reproducing cells in the body, they are subject to the constraints described 

in section 1.3.3. As a result, an excessively elevated mutation rate leads to 

a fitness disadvantage in cancer cells.

A number of findings support the notion that excessively high mutation rates 

pose a fitness disadvantage to cancer cells. Firstly, there is evidence that 

whole-genome doubling events in cancer mitigate against the effects of 

Muller’s ratchet (López et al. 2020). In addition, clonally transmissible 

cancers, which affect non-human species and grow for many more 

generations than conventional cancers, avoid mutational meltdown by 
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reverting to genomic stability and gaining the capacity to replenish their 

mitochondrial genomes from their host’s mitochondria (Ní Leathlobhair and 

Lenski 2022). In human cancer, genomically unstable BRCA2-deficient 

cancers acquire secondary mutations that subsequently decrease their 

chromosomal instability (Lee et al. 1999). Moreover, experimentally-induced 

exacerbations of genomic instability impair the growth of cancer cells, and 

abolish their ability to form xenografts (Godek et al. 2016). Lastly, an 

increased rate of mutation in cancer cells also increases the probability of 

neoantigen formation, increasing the susceptibility of cancer cells to 

destruction by the immune system (Niknafs et al. 2023).

Together, the findings detailed in this section indicate that cancer cells are 

disadvantaged by excessively low or excessively high rates of mutation.  It 

therefore seems plausible that therapeutics that modulate the activity of 

mutational processes in cancer cells may be of clinical benefit. In keeping 

with this, very low and very high rates of mutation have been found to be 

associated with improved patient survival. A large pan-cancer study of 1165 

patients with 12 different cancer types indicates that mutation rates at the 

extremes, in terms of either the rate of point mutations or copy number 

variation, are associated with an approximately two-fold or seven-fold 

improvement in survival, respectively (Andor et al. 2015). Improvements in 

survival have also been found to be associated with very high or very low 

levels of chromosomal instability (Birkbak et al. 2011; Jamal-Hanjani et al. 

2015).
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1.4. Next-generation sequencing of cancer

The term ‘next-generation sequencing’ (NGS) refers to a high-throughput 

method of nucleic acid sequencing developed in the mid-2000s, 

characterised by its relatively high speed and low cost (Goodwin, 

McPherson, and McCombie 2016). It is contrasted with the first generation 

of nucleic acid sequencing technologies developed by Sanger and others in 

the 1970s, known as ‘Sanger sequencing’ (Sanger, Nicklen, and Coulson 

1977). By Sanger sequencing cancer genes in DNA extracted from cancer 

cells, small-scale mutations could be identified in early low-throughput 

studies (Greenblatt et al. 1994). In addition, large-scale structural variation 

could be studied through microscopy - a process that was refined by the 

use of labelled probes that bind to specific DNA regions (Speicher, Ballard, 

and Ward 1996). Since the sequencing of the first human genome by 

automated Sanger sequencing in 2001 (Lander et al. 2001), and the 

sequencing of the first cancer genome by NGS in 2010 (Pleasance et al. 

2010), NGS has been used to catalogue small-scale and large-scale DNA 

alterations in around 2500 whole cancer genomes (PCAWG 2020). This 

has yielded data on cancer mutagenesis at a scale that has not previously  

existed - data that is at the resolution of single nucleotides, throughout the 

length of the genome, and from a large sample of patients.

Through reverse transcription of RNA extracts, NGS has also been applied 

to measure the transcriptome of cancer cells (RNA-seq) with greater 

sensitivity and specificity than preceding transcriptomic technologies such 

as microarrays that, like older DNA sequencing technologies, are also 
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based on sequence-specific probes (Mardis and Wilson 2009). In addition, 

specific segments of the genome have been captured and sequenced by 

NGS, such as in the case of chromatin immunoprecipitation sequencing 

(ChIP-seq) which identifies DNA regions bound by specific DNA-associated 

proteins (Park 2009).

The NGS process involves a number of biochemical stages (section 1.4.1) 

followed by a number of bioinformatic stages (section 1.4.2). Commonly-

used methods for studying cancer genomes by NGS are described below. A 

number of limitations of these process have been identified, which may be 

used to aid interpretation of the data generated (section 1.4.3).

1.4.1. Biochemical stages

Illumina/Solexa sequencing, a widespread NGS method used by ICGC, the 

International Cancer Genome Consortium (ICGC 2010), is described in this 

section and given in Figure 1.1. First, DNA is extracted from cells and 

fragmented into smaller pieces of approximately 200-500 base pairs 

mechanically, enzymatically or by sonication. Then, adaptors are ligated to 

each end of the new fragments (Figure 1.1a). These adaptors are used to 

adhere the fragment ends to the surface of a flow cell, where the 

sequencing reaction takes place (Figure 1.1b). First, a polymerase chain 

reaction (PCR) is used to generate several copies of the fragment. The 

PCR is primed by a lawn of adaptors adjacent to DNA fragment, and the 

fragment bends to form a bridge between its binding site and the adjacent 

primer in a process termed ‘bridge amplification’ (Figure 1.1c). These 
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copies are adhered to the surface adjacent to the original copy, which 

increases the size of the surface occupied by each set of copies, to form a 

spot that is large enough to be observed by an optical microscope if 

illuminated. To enable detection by such a microscope, a fluorescent DNA 

synthesis reaction is undertaken. A mixture of free A, C, T and G 

nucleotides that are fluorescently labelled with a colour that corresponds to 

each nucleotide is added to provide substrates for the reaction. Once a 

nucleotide is incorporated into the nascent DNA strand in the synthesis 

reaction its fluorophore is imaged, then cleaved to permit the next 

nucleotide to be incorporated. Thus, under the microscope, each spot 

flashes with a different colour - depending on the nucleotide sequence - at 

each step of the synthesis reaction. The sequence of colours at each spot 

can then be decoded to give the sequence of bases of the PCR-amplified 

fragments in the spot. Imperfections in this process, where the sequence is 

unclear, are summarised as a quality score that can be accounted for in 

subsequent analyses. This step concludes the contribution of biochemical 

processes to the NGS protocol. The information obtained is subsequently 

used to computationally reconstruct the genome. In order to identify 

mutations specific to cancer genomes, both cancer and normal cells are 

processed in this way, to enable downstream comparison.
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Figure 1.1 - Illumina/Solexa sequencing (described in section 1.4.1).  

Adapted from materials on the Illumina (a-h: illumina.com) Wellcome 

Genome Campus (i: wellcomegenomecampus.org) and European 

Bioinformatics Institute (j: ebi.ac.uk) websites. Fluorescent spots in i and j 

are approximately 1.5 µm in diameter.
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1.4.2. Bioinformatic stages

The bioinformatic analysis of NGS data also involves multiple steps. The 

output of next generation sequencing machines - the inferred code of the 

very many fragments - is known as a set of ‘reads’. The first step in the 

computational analysis is a quality control step, to account for known 

imperfections in the process. For example, the quality score of bases 

towards the end of reads is known to tend to be low. Reads are therefore 

often ‘trimmed’ to remove these low-quality ends, in order to facilitate 

downstream interpretation. In most applications, this does not meaningfully 

affect the coverage of the genome. This is because there are typically 

several overlapping reads from the many copies of input DNA inserted 

following DNA extraction.

After quality control, these overlapping reads are stitched together 

computationally to form a continuous sequence. In order to identify where 

each read lies along the genome, reads are computationally aligned to the 

reference human genome. Ideally, reads would align perfectly - to one 

unique location in the genome, and with no discrepancy between the 

reference sequence and the read. Such algorithms must, however, account 

for imperfection - due to the numerous germline and somatic mutations in a 

cancer genome, and any possible errors or fluctuations in quality due to the 

sequencing process.

30  



Following read alignment, it is possible to identify putative mutations in the 

sample relative to the reference genome. In this process, common, normal 

germline variants are typically taken into account and filtered out, leaving 

potentially cancer-related variants. Moreover, a subtractive algorithm can 

compare the constructed sequence from a patient’s cancer compared to 

that of their non-cancer cells (typically their blood) in order to identify 

cancer-specific mutations. The mutations typically studied are those that 

occur at a small scale - SNVs or indels. These variants can then be further 

annotated by referring to manually curated databases. For example, a 

mutation in a tumour suppressor gene may be known to be inactivating, and 

can be labelled as such. In contrast, an incidental mutation in a gene that is 

not associated with cancer may be known to be a benign variant. These 

mutational catalogues are then ready for subsequent analysis.

1.4.3. Limitations

Although NGS provides, for the first time, a picture of the mutational 

landscape of many cancers, there are several reasons why that picture may 

be incomplete or flawed. For example, it has been reported that damage to 

the input DNA is a major source of sequencing errors (Chen et al. 2017). 

This has been shown to affect downstream interpretation, and it remains 

unclear whether input DNA should be repaired artificially prior to 

sequencing - and if so, to what extent.

Another factor to consider is that the genomic sequence obtained - of, say, 

a cancer - is actually a composite genome that is an average of many cells’ 
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input DNA. This has been termed a metagenome, and some efforts have 

been made to deconvolute it (Andor et al. 2015). The mutations detected in 

the sequence are therefore biased towards those found in all cells. In the 

instance of cancer, this leads to a greater likelihood of detection of so-called 

‘founder mutations’, present in the founding cancer cell. Mutations occurring 

in the first few cancer cells are also detected more readily. Indeed, 

sequencing of cells from different regions of the same tumour paints a 

different mutational picture, identifying mutations that appear to be specific 

to those regions (Gerlinger et al. 2012).

Aside from these biases, another factor to consider in considering cancer 

mutational data is what is considered as normal. The normal cell 

comparator is central in determining what is cancer-specific, and, as 

described above, is typically a blood sample. This leaves the possibility that 

organ-specific mutational processes may be misinterpreted as cancer-

specific. For example, mutations detected in a breast cancer may merely be 

typical of mutations that accumulate in normal breast tissue. However, 

when compared to a blood sample as the ‘normal’ reference for that patient, 

they are deemed cancer-specific. Some efforts have been made to identify 

mutational processes in normal cells (Behjati et al. 2014). However, this 

information is, to date, largely incomplete.

The bioinformatic analysis of reads also has a number of potential pitfalls. 

One example is in how reads that map to highly repetitive regions are 

aligned. Most reads of this kind are typically discarded, as the algorithm 

cannot ascertain where they fall. If, therefore, a mutation falls within a highly 
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repetitive region, it may not be detected. It is also particularly challenging to 

identify the sequence of highly repetitive genomic regions, such as the 

centromere.

Moreover, the mathematical problem of mutation calling is still unsolved, 

and there is a lack of consensus on what methodology should be used. For 

example, the Cancer Genome Atlas (TCGA) uses four leading mutation 

calling algorithms in its bioinformatic pipelines, and all are available for 

analysis. This leads to further heterogeneity in results, and the potential for 

further computational artefacts.

Accounting for these limitations aids the interpretation of the output of NGS 

analysis, enabling the measurement of mutation across the genome. 

Researchers have been able to identify known germline and somatic 

mutations, and validate their findings of novel mutations using more 

traditional sequencing methods. With these large-scale pictures of cancer 

mutagenesis, it has been possible to identify patterns of mutation that point 

to underlying mutational processes. 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1.5. Mutational signatures in cancer

The term ‘mutational signature’ refers to a pattern of mutations, often 

attributed to the characteristic activity of a specific mutational process 

(Alexandrov et al. 2013). The first mutational signature was identified in the 

1960s, when it was found that ultraviolet light, a known carcinogen, acted 

as a mutagen that caused a characteristic pattern of CC>TT mutations 

(Alexandrov and Stratton 2014). The advent of Sanger sequencing, then 

NGS, has led to the identification of tens of mutational signatures in cancer, 

of both known and unknown aetiology (Alexandrov et al. 2020; Steele et al. 

2022). Patterns have been identified for changes that occur at a range of 

mutation sizes, from the level of single-base substitutions to the level of 

whole genome doublings.

Mutational signatures have been identified in large, contemporary pan-

cancer studies by analysing the output data produced by the next-

generation sequencing of cancer genomes. As this data accumulated, it 

became evident that a typical cancer has around 1 somatic mutation per 

megabase, or around 3,000 mutations in total (Alexandrov et al. 2013). The 

majority of these mutations are point mutations (Campbell et al. 2017).

In order to identify patterns of mutation representing mutational signatures 

in these data, point mutations were first classified according to the specific 

base substitution that was detected. For example, sequencing might identify 

that a C was substituted for a T, A or G. Of note, this mutation can also be 

described as equivalent to a G being substituted for an A, T or C, 
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respectively, on the opposite strand. There are 6 possible types of point 

mutation that can be identified on this basis - taking all possible 

combinations into account, and the equivalence of mutations on opposite 

strands. These are described with reference to the pyrimidine base (C or T), 

as is convention in the field.

The 6 types of point mutation are: 

- C>A

- C>G 

- C>T

- T>A

- T>G

- T>C

This 6 type classification was then expanded further, as it is was 

understood that many mutational processes could be influenced by the 

sequence context of the mutated base (Friedberg et al. 2006; Alexandrov 

and Stratton 2014). The six substitution types were further subdivided 

depending on the base that was found immediately upstream and 

immediately downstream of the mutated base. For example, a mutated C in 

a TCA context was delineated as different from to one mutated in a GCG 

context. Classifying point mutations in this way yields an expanded 

framework consisting of 96 possible mutation types. 

By applying these systems of classifying point mutations, the prevalence of 

each point mutation type could then be quantified, giving an initial indication 
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of patterns of mutations between cancers. This is illustrated by data from 

one of the first NGS studies of multiple cancer genomes (Nik-Zainal et al. 

2012). Data from this study indicated that C>T mutations are typically the 

most common type of point mutation in the 21 breast cancers studied. In 

particular, C>T mutations that occur in an NCG (also known as CpG) 

context were the most common point mutations found, according to the 96 

type classification. The data also indicate that a wide range of mutation 

types occur at varying frequencies between patients, a finding consistent 

with the presence of multiple mutational processes generating multiple 

mutational signatures in these cancers.

Mathematical methods in machine learning were applied to the 96 type 

classification data, with the aim of deconvoluting the signals contributed by 

these putative mutational signatures to the observed data. The algorithm 

used to identify mutational signatures is known as non-negative matrix 

factorisation (NMF). NMF is a statistical tool that is part of a family of 

statistical tools used for unsupervised factor analysis (Hastie et al. 2005). 

The role of tools such as these is to identify underlying factors in sets of 

data. ‘Supervised’ machine learning algorithms learn relationships between 

input and output data, whereas this is not the case for ‘unsupervised’ 

algorithms that instead identify patterns in input data. NMF differs from 

similar tools used in unsupervised factor analysis because of assumptions 

that are made in constructing the algorithm. As its name suggests, NMF 

assumes that the factors (which are mutational processes in the case at 

hand) are non-negative. In other words, it assumes that factors do not 

cancel each other out. NMF also assumes that factors will sum linearly to 
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produce the final output. These assumptions enable NMF to identify distinct 

features, conceptually equivalent to ‘parts’, that contribute to the observed 

data. A classical example that is used to illustrate this is that of feature 

recognition in facial images (Lee and Seung 1999). When given images of 

faces as input data, NMF identifies distinct facial features, while vector 

quantisation (VQ - a method equivalent to the commonly-used method of k-

means clustering) instead identifies ‘subtypes' of faces and principal 

component analysis (PCA) forms abstract negative and non-negative 

features of faces that do not correspond to physical reality.

The pixels of these images are represented as numbers for processing by 

the NMF algorithm. The pixels of these facial image data can be considered 

equivalent to the pixels represented in the heatmaps displaying the 

prevalence of cancer mutations, such as those produced by Nik-Zainal and 

colleagues. Instead of facial features, applying NMF to cancer mutation 

heatmaps would be expected to yield ‘parts’ that correspond to mutational 

signatures. Indeed, when applied to data from the genomes of 

approximately 23,829 cancers across 32 cancer types in the PCAWG 

dataset, NMF identifies tens of single-base substitution signatures 

(Alexandrov et al. 2020). This has yielded signatures with distinct 

mutational profiles, with subsequent assessments of their proposed 

aetiologies (shown in Table 1.5) and their prevalence.
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Single-base 

substitution 

signature

Proposed aetiology

SBS1 Deamination of 5-methylcytosine

SBS2 APOBEC activity

SBS3 Defective HR DNA repair; BRCA1/2 mutation

SBS4 Tobacco smoking

SBS5 -

SBS6 Defective DNA mismatch repair

SBS7a Ultraviolet light exposure

SBS7b Ultraviolet light exposure

SBS7c Ultraviolet light exposure

SBS7d Ultraviolet light exposure

SBS8 -

SBS9 In part, polymerase η activity

SBS10a POLE mutation

SBS10b POLE mutation

SBS11 Temozolomide treatment
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SBS12 -

SBS13 APOBEC activity

SBS14 POLE mutation and mismatch repair deficiency

SBS15 Defective DNA mismatch repair

SBS16 -

SBS17a -

SBS17b -

SBS18 Reactive oxygen species

SBS19 -

SBS20 POLD1 mutation and mismatch repair deficiency

SBS21 Defective DNA mismatch repair

SBS22 Aristolochic acid exposure

SBS23 -

SBS24 Aflatoxin exposure

SBS25 Chemotherapy

SBS26 Defective DNA mismatch repair

SBS28 -

SBS29 Tobacco chewing
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Table 1.5 - Proposed aetiologies of single-base substitution signatures (as 

reported in Alexandrov et al. 2020).

The profiles of these signatures and their associated features indicate a 

consistency with prior knowledge in the field, lending weight to the validity 

SBS30 Defective base excision repair; NTHL1 mutation

SBS31 Platinum treatment

SBS32 Azathioprine treatment

SBS33 -

SBS34 -

SBS35 Platinum treatment

SBS36 Defective base excision repair; MUTYH mutation

SBS37 -

SBS38 Indirect effect of ultraviolet light

SBS39 -

SBS40 -

SBS41 -

SBS42 Haloalkane exposure

SBS44 Defective DNA mismatch repair
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of the mutational signature discovery process. For example, several 

mutational signatures have features that are consistent with mutational 

processes that are known to operate in cancer.

One mutational signature, SBS1, is present in all cancers and consists of 

C>T mutations in a CpG context. Mutations of this kind are described to 

occur as result of the spontaneous, hydrolytic deamination of methylated 

cytosines in the aqueous cellular environment. CpG residues are the 

classical sites for genomic cytosine methylation. This deamination is 

understood to be a ubiquitous process that occurs progressively with age 

and, indeed, the prevalence of mutations attributable to SBS1 is correlated 

with increasing age.

Other mutational signatures demonstrate consistency with the known 

underlying aetiology of cancers they are detected in. For example, lung 

cancer demonstrates signatures with a predominance of C>A mutations 

that are known to be mediated by carcinogens in tobacco smoke. Similarly, 

melanomas are found to demonstrate CC>TT mutations that are 

characteristic of pyrimidine dimer formation following skin cells’ exposure to 

ultraviolet light.

A subset of signatures are associated with identifiable DNA repair defects, 

such as SBS3 that is found in patients with inactivating mutations in BRCA1 

or BRCA2. Other studies have shown that SBS3 and other BRCA-related 

signatures can be used to identify patients whose cancers have functional 

defects in homologous recombination, regardless of whether they have 
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detectable inactivations of BRCA1 or BRCA2. This supports the notion that 

the inferred mutational signatures are causally produced by specific 

mechanistic processes, as opposed to simply being statistically correlated 

to certain inactivating mutations in DNA repair genes, and highlights the 

potential for these patients to be treated with therapies that take advantage 

of homologous recombination deficiency such as PARP inhibitors (Davies et 

al. 2017).

Overall, these data provide, for the first time, what has been termed a 

‘repertoire’ of mutational signatures in cancer derived from ‘catalogues’ of 

somatic mutations in cancer genomes. Many mutational signatures were 

not previously known to occur in cancer. These findings may therefore 

indicate the discovery of novel mutational processes that operate in cancer 

cells. Alternatively, they may not truly reflect the mutagenesis that occurs in 

cancer genomes, as a result of errors inherent to the methods used.

For example, as described in section 1.4.3, a number of errors arise in the 

sequencing process. Indeed, some of the newly-identified mutational 

signatures have been attributed to expected sequencing artefacts and 

subsequently excluded. Other signatures have been attributed to artefacts 

that are specific to the research centre where the cancer has been 

sequenced, highlighting the scope for both expected and unexpected 

artefacts to occur in the NGS process. In addition, the ‘catalogues’ of 

somatic mutations may not be entirely complete or accurate, and as a result 

NMF may be acting on biased input data that skews the patterns detected.
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There may also be limitations that arise as a result of the NMF algorithm 

itself. For example, it may be possible that mutational processes might not 

be strictly non-negative, as assumed by the algorithm, and may in fact 

cancel each other out in some contexts. NMF will also generate different 

results if the precise underlying mathematics is varied, or if user-defined 

parameters such as the predicted number of signatures is changed 

(Alexandrov et al. 2020). Other limitations lie in how mutation types are 

defined for analysis by NMF - it may be the case that features other than a 

trinucleotide sequence context are relevant to how mutational processes 

operate in cancer cells. Examples of this are given in section 1.6.

Lastly, the approaches used may not meet the complexity required to fully 

reflect the biochemical complexity of the problem at hand. The mechanisms 

of mutagenesis are highly diverse, owing to the wide range of biochemical 

processes that can lead to DNA damage and the correspondingly wide 

range of DNA repair mechanisms that may act (or indeed fail) in cancer 

(Friedberg et al. 2006). As a result, at the biochemical level, a mutational 

signature produced by a given mutational process may readily be skewed 

by many of factors. It is known that some factors may, for example, be 

specific to the tissue of origin or subtype of cancer, which is not something 

that is accounted for in these methodologies. NMF may consequently more 

readily identify a mutational signature that is typical of a mutational process 

in these studies, rather than variants of that mutational signature 

(Degasperi et al. 2020).
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A final point that is of note in interpreting these data is whether the 

signatures reported are specific to cancer cells. It is possible that some or 

all of these signatures are also found in normal cells. If certain signatures 

are found in both normal cells and cancer cells, it may be possible that they 

are similar or different in prevalence when comparing normal and cancer 

cells. The sequencing of normal tissues performed thus far appears to 

demonstrate that, with some exceptions, normal cells generally have a 

limited number of mutations from a small set of mutational signatures that 

are widespread in both normal genomes and cancer genomes (Abascal et 

al. 2021; Moore et al. 2021; Wang et al. 2023). This suggests that the 

mutational signatures detected in cancer genomes broadly differentiate 

cancer cells from normal cells and represent sources of genomic instability 

in cancer.

The first pan-cancer analysis of mutational signatures in 2013, using NMF 

to identify single-base substitution signatures, informed the work described 

in this thesis. Since then, the work has expanded to address some of the 

limitations of initial studies. The increase in cancer genomes available for 

analysis has been leveraged in the latest studies, which consequently 

report the discovery of new signatures and the subdivision of previously-

identified signatures, including subdivision into ‘components that may 

represent associated - but distinct - DNA damage, repair and/or replication 

mechanisms’. They also include analyses of doublet-base substitutions, 

quadruplet-base substitutions, indels and structural abnormalities 

(Alexandrov et al. 2020; Steele et al. 2022). 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1.6. APOBEC activity in cancer

1.6.1. APOBEC signature mutations

SBS2 and SBS13 are thought to be caused by the mutagenic activity of the 

APOBEC enzyme family (described in section 1.6.2). Mutations attributed to 

SBS2 and SBS13 have consequently been termed ‘APOBEC signature 

mutations’.

APOBEC signature mutations are characterised by cytosine mutations that 

occur in a TCW trinucleotide context (where W denotes A or T). SBS2 is 

characterised by C>T mutations that occur predominantly in this TCW 

context. In contrast, SBS13 is characterised by C>G mutations, and 

sometimes C>A mutations, that occur predominantly in this TCW context.

These patterns of mutagenesis are consistent with the known mutational 

activity of the APOBEC enzyme family. APOBEC enzymes are cytosine 

deaminases - their enzymatic activity mediates the conversion of cytosine 

to uracil in nucleic acid sequences. Although first described as mutators of 

cytosine residues in RNA, many are capable of acting on single-stranded  

DNA (ssDNA. Substrate preferences in Table 1.6). APOBECs convert 

cytosine to uracil in genomic ssDNA, leading to APOBEC signature 

mutations.

APOBEC activity is sensitive to the bases immediately 5' and 3' of the 

target cytosine, with different APOBECs displaying different trinucleotide 
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motif preferences (Conticello et al. 2007). The APOBEC signature detected 

in cancer genomes, of cytosine deamination at TCW motifs, is consistent 

with the motif preferences of two APOBEC family members, APOBEC3A 

and APOBEC3B, but not others (see section 1.6.2 and 1.6.3; Taylor et al. 

2013).

The mechanism of how APOBEC activity is thought to lead to SBS2 and 

SBS13 is shown in Figure 1.2 (as described in Morganella et al. 2016).  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Figure 1.2 - Proposed mechanisms of SBS2 and SBS13 formation resulting 

from APOBEC cytosine deamination (adapted from Morganella et al. 2016).

The first step involves cytosine deamination in an exposed ssDNA strand, 

such as the lagging strand that is formed as part of the process of DNA 

replication. Cytosine deamination entails the hydrolytic cleavage of the 

amino group in a cytosine molecule, forming ammonia and uracil. Uracil is 

then removed from DNA by UNG, the uracil DNA glycosylase, which is a 

component of the base excision repair pathway that leaves only the carbon-
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phosphate backbone of the DNA at that position. This lesion is known as an 

abasic site.

The C>T mutations that characterise SBS2 can be formed either before or 

after the uracil is excised. If the uracil is not yet excised, it will base pair with 

adenine. When this uracil is then eventually excised, a thymine will base 

pair with the adenine that has incorporated into the opposite strand. This 

therefore completes the process of forming a C>T mutation. Alternatively, a 

C>T mutation can be formed from an abasic site. Abasic sites are 

processed by error-prone translesion synthesis DNA polymerases that will 

frequently pair bases at low fidelity, leading to point mutations (Friedberg et 

al. 2006). These polymerases tend to preferentially incorporate adenines 

opposite abasic sites. As a result, thymine would then base pair with the 

adenine that has incorporated into the opposite strand as before, 

completing the process of forming a C>T mutation.

Polymerases will not, however, always incorporate adenines opposite 

abasic sites. For example, the polymerase REV1 is known to insert 

cytosines opposite abasic sites. As a result, a guanine will ultimately base 

pair with this cytosine, leading to the C>G mutations that characterise 

SBS13.

Abasic sites also frequently form strand breaks, a potential source of further 

mutagenesis and exposed ssDNA. Indeed, APOBEC signature mutations 

sometimes co-localise with strand breaks and structural abnormalities. A 

large number of APOBEC signature mutations can occur in a specific region 
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of the genome, a phenomenon of localised hypermutation known as 

‘kataegis’ (Nik-Zainal et al. 2012). Regions of kataegis co-localise with 

regions of genomic rearrangements.

The wide range of mutations that might occur as a result of APOBEC 

mutagenesis support the notion that APOBEC activity might result in 

mutational processes other than SBS2 and SBS13. In keeping with this, 

PCAWG data indicate that the number mutations attributed to SBS2 and 

SBS13 are positively correlated to the number of mutations from all other 

SBSs (Spearman’s ρ = 0.57) and that SBS2 and SBS13 are associated 

with many fold increases in the number of indels and structural variants, 

putatively through the generation of strand breaks that occur as a result of 

cytosine deamination (Jakobsdottir et al. 2022).

APOBEC signature mutations are common. They are found in over 70% of 

cancers (Alexandrov et al. 2020). The only mutational signatures that are 

found more commonly are those that are ubiquitously detected in all normal 

cells and cancer cells (SBS1 and the related signatures SBS5 and SBS40). 

APOBEC signature mutations often contribute to a substantial fraction of 

the total burden of point mutations in the cancers in which they are 

detected. For example, around 75% of point mutations in cervix cancer 

exomes are APOBEC signature mutations, the highest of any cancer type 

(Alexandrov et al. 2013).

APOBEC signature mutations include common driver mutations that 

mediate the pathogenesis of many cancer types. For example, APOBEC 
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signature mutations are found in frequently-mutated TP53 hotspots, and 

APOBEC3B overexpression in cultured cells has been found to induce 

these inactivating mutations in TP53 (Burns et al. 2013). APOBEC 

signature mutations are also found in frequently-mutated PIK3CA helical 

domain hotspot sites - specifically in cancers that have APOBEC signature 

mutations throughout their genome, but not in those that do not (Henderson 

et al. 2014). More broadly, pan-cancer studies associating mutational 

signatures and driver mutations indicate that APOBEC mutagenesis may be 

responsible for around a quarter of reported associations (Temko et al. 

2018).

Increased APOBEC mutagenesis is also associated with resistance to 

therapy. For example, bladder cancers with a high number of APOBEC 

signature mutations were found to be more likely to resist treatment with 

chemotherapy in patients (Faltas et al. 2016). In addition, high APOBEC3B 

expression was associated with reduced response to the breast cancer 

therapy tamoxifen, both in a mouse xenograft model and in patients with 

the disease (Law et al. 2016). APOBEC activity is also associated with poor 

response to immunotherapy in lung cancer (McGranahan et al. 2016). In 

particular, it is though that the genetic heterogeneity mediated by APOBEC 

in cancers such as lung cancer (de Bruin et al. 2014) might mediate 

resistance to immunotherapy.
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1.6.2. The APOBEC enzyme family 

‘APOBEC’ stands for apolipoprotein B mRNA-editing enzyme catalytic 

polypeptide-like. This name is derived from the discovery of the function of 

the first APOBEC, APOBEC1, which edits the mRNA sequence of APOB, 

the apolipoprotein B gene in cells of the small intestine (Teng, Burant, and 

Davidson 1993; Hirano et al. 1997). In humans, the APOBEC family 

contains 11 evolutionarily-related genes (Table 1.6).

Name Genomic 

location

Substrate Cellular localisation

AID 12p13 DNA Mainly cytoplasmic

APOBEC1 12p13.1 DNA, RNA Cytoplasmic, nuclear

APOBEC2 6p21 Unkown Cytoplasmic, nuclear

APOBEC3A 22q13.1 DNA, RNA Cytoplasmic, nuclear

APOBEC3B 22q13.1 DNA Mainly nuclear

APOBEC3C 22q13.1 DNA Cytoplasmic, nuclear

APOBEC3DE 22q13.1 DNA Cytoplasmic

APOBEC3F 22q13.1 DNA Cytoplasmic

APOBEC3G 22q13.1 DNA, RNA Cytoplasmic

APOBEC3H 22q13.1 DNA Cytoplasmic, nuclear
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Table 1.6 - Human APOBEC genes, their genomic locations, nucleic acid 

substrates and cellular localisations (Conticello 2008; Pecori et al. 2022).

APOBECs function as enzymes that deaminate cytosine to form uracil in 

DNA and RNA substrates, using zinc ions to catalyse the reaction in a core 

cytosine deaminase domain that is found in all APOBEC family members 

(Pecori et al. 2022). APOBEC3B, APOBEC3DE, APOBEC3F and 

APOBEC3G contain two cytosine deaminase domains, while all others 

have one. Aside from their catalytic domains, all APOBEC proteins also 

contain cofactor interacting sequences that determine their interactions with 

substrates. Their sequences also determine their localisation, which in turn 

also contributes to determining the types of substrates available to each 

APOBEC. These subcellular localisations, as detailed in Table 1.6, can be 

influenced by a number of factors. For example, AID and APOBEC1 have 

both a nuclear localisation and nuclear export sequences that mediate their 

transit between the nucleus and cytoplasm. APOBEC2, APOBEC3A, 

APOBEC3C and APOBEC3H passively diffuse between the two 

compartments. The APOBECs with two cytosine deaminase domains, - 

APOBEC3B, APOBEC3DE, APOBEC3F and APOBEC3G - are too large to 

diffuse between compartments. As a result, they are restricted to the 

cytoplasm, apart from APOBEC3B which is nuclear as a result of its nuclear 

localisation sequence.

APOBEC4 1q25.3 Unkown Unkown
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APOBECs are thought to have evolved from the prokaryotic zinc-

coordinating tRNA deaminase known as Tad (Figure 1.3, Conticello et al. 

2005).

Figure 1.3 - Simplified phylogenetic tree of the APOBEC family (adapted 

from Pecori et al. 2022)

This prokaryotic RNA deaminase is thought to have been co-opted to 

perform DNA deamination functions. Interspecies bioinformatic analyses of 

APOBEC sequences indicate that current APOBEC family members arose 

through duplications and fusions of ancestral APOBEC genes throughout 

the process of evolution from prokaryotes to humans. APOBEC4 is the only 

APOBEC with orthologues found in invertebrates, which suggests that it 

predates all other APOBECs (Krishnan et al. 2018). AID and APOBEC2 are 
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found in early vertebrates lineages (Conticello 2008). APOBEC1 and a 

single APOBEC3 gene emerged through duplications of AID, in tetrapods 

and placental mammals, respectively (Hayward et al. 2018; Krishnan et al. 

2018). APOBEC3 genes then expanded in many mammals. There are 

seven APOBEC3 paralogues in humans, six in horses, four in cats, two or 

three in pigs and one in mice (Münk, Willemsen, and Bravo 2012).

The seven human APOBEC3 genes are found immediately next to each 

other, in order, in a locus in chromosome 22. The APOBEC3 locus has 

been found to be under positive selection, displaying some of the highest 

signals of positive selection in the human genome, as determined by the 

ratio of the rate of non-synonymous mutations (dN, which change the amino 

acid sequence of a protein) and the rate of synonymous mutations (dS) in 

these genes (Sawyer, Emerman, and Malik 2004). These dN/dS data, and 

the recent expansion of APOBEC3s in mammalian lineages, are in keeping 

with the described function of APOBEC3s as immune genes, since such 

genes may rapidly evolve to counteract the rapid evolution of pathogens, so 

are often found to be under positive selection. 

APOBEC3s mutate the cytosines found in the DNA of viruses and 

transposons, leading to both physical and informational degradation of their 

sequences (Yang et al. 2007). The physiological role of APOBEC3s in 

multiple species appears to be the restriction of viruses and transposons, 

with evidence of counteracting mechanisms to evade APOBEC-mediated 

restriction (Bogerd et al. 2006; Harris and Dudley 2015). For example, 

APOBEC3G potently mutates the genome of HIV, leading to its inactivation 
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(Mangeat et al. 2003). To counteract this, HIV expresses the VIF protein 

which leads to the proteasome-mediated degradation of APOBEC3G, 

thereby circumventing its antiviral effects (Yu et al. 2003). Although 

APOBEC3s can restrict both viruses and transposons, it is thought that the 

expansion of the APOBEC3 locus in humans was driven primarily by 

increased germline retrotransposition (Ito, Gifford, and Sato 2020; Uriu et 

al. 2021). It is possible that APOBEC3 activity in cancer might be due to the 

aberrant activation of the innate immune pathways used to counteract 

viruses and transposons (see section 1.7.1). 

In terms of the physiological function of other APOBECs, AID (activation-

induced deaminase) also plays a role in immunity. The canonical role of AID 

is mutating cytosine residues in immunoglobulin genes, to generate 

antibody diversity in the process of somatic hypermutation in 

immunologically-activated B lymphocytes (Muramatsu et al. 2000). The 

physiological role of APOBEC1 is in RNA editing, as described above. 

APOBEC2 and APOBEC4 do not appear to have functional cytosine 

deaminase activity despite retaining their ability to bind DNA. Their 

physiological functions are unclear. However, APOBEC2 is expressed in 

cardiac and skeletal muscle, where APOBEC2 knockout models indicate 

that it plays a role in preventing myopathy (Pecori et al. 2022).
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1.6.3. APOBEC3A and APOBEC3B as mediators of APOBEC 

signature mutations

APOBEC enzymes preferentially deaminate cytosines depending on the 

sequence context those cytosines occur in. AID prefers WRC, APOBEC1 

prefers WC, APOBEC3C prefers TYC, APOBEC3G prefers CCC, while the 

others prefer TC (W = A or T, R = A or G, Y = C or T; Conticello et al. 2007). 

APOBEC3A and APOBEC3B have a strong preference (>90%) for a 5’ T 

adjacent to the target C and also show a preference for a 3’ W. This pattern 

matches the pattern found in cancer genomes, and does so much more 

closely than for other TC-preferring APOBECs (Taylor et al. 2013). 

APOBEC3A and APOBEC3B were consequently highlighted as likely 

mediators of APOBEC signature mutations in cancer genomes.

Other lines of evidence support the notion that APOBEC3A and 

APOBEC3B are likely mediators. For example, they are among the 

APOBEC family members that can access the cell nucleus, where they are 

able to act on genomic DNA (Lackey et al. 2013). In addition, pan-cancer 

analyses have found that the RNA expression levels of both APOBEC3A 

and APOBEC3B are positively correlated to the number of APOBEC 

signature mutations, with APOBEC3B showing a stronger positive 

correlation (Spearman’s ρ  = 0.16 for APOBEC3A and 0.30 for APOBEC3B; 

Roberts et al. 2013). In these studies, the expression of other APOBECs 

show no correlation, or weaker correlations, to the number of APOBEC 

signature mutations. The fact that APOBEC3B showed the strongest 

positive correlation indicated that it might be a likelier candidate as a 
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mediator of APOBEC signature mutations in cancer, although it is of note 

that the coefficient of 0.30 indicates that this correlation is in itself not 

strong.

RNA-seq data of paired tumour-normal samples also implicated 

APOBEC3B more than APOBEC3A (Roberts et al. 2013). These data 

indicated that the expression of both APOBEC3A and APOBEC3B is very 

low in normal tissues. However, APOBEC3B appears to be overexpressed 

in a wide range of cancer samples, while the extent of APOBEC3A 

expression in cancer appears more limited. In addition, APOBEC3B, but not 

APOBEC3A, is widely expressed in cancer cell lines (Kinomoto et al. 2007; 

Burns et al. 2013) and APOBEC3A expression is usually restricted to cells 

of the myeloid lineage (Refsland et al. 2010).

Although these RNA-level data indicate that APOBEC3B is likely to play a 

leading role, they do not conclusively determine that this is the case. For 

instance, the relative RNA expression of APOBEC3A and APOBEC3B may 

not indicate their relative mutational activity, not least since APOBEC3A is a 

more potent cytosine deaminase enzyme following its translation (Caval et 

al. 2014; Cortez et al. 2019). In addition, RNA-seq can be understood as 

providing a ‘snapshot’ of gene expression when the sample was collected, 

while DNA sequencing is reflecting the entire mutational history of the 

cancer and its progenitors. APOBEC3A expression may be transient and 

the detection of APOBEC3B expression may depend on cell cycle stage,  

with analyses of single cell sequencing data indicating that their expression 

may also vary according to tumour cell type (Ng et al. 2019; Oh et al. 2021). 
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A single gene expression timepoint might therefore be unlikely to explain or 

represent the history of mutagenesis of a cancer genome.

In keeping with this, DNA sequencing data suggested APOBEC3A might 

instead play a more important role than APOBEC3B. Overexpression of 

APOBEC3A and APOBEC3B in yeast cells, followed by genomic NGS, 

indicated that the motif preferences enzymes might be differentiated by the 

base that comes immediately before the TCW motif (Chan et al. 2015). 

APOBEC3A was described to prefer YTCW and APOBEC3B preferred 

RTCW, although it was not clear whether human cells might yield the same 

results, owing to possible differences in processing APOBEC-mediated 

lesions. However, these data were then supported by progress in 

mutational signature analyses as applied to human cancers. NMF was 

applied to the PCAWG dataset including the two bases upstream and two 

bases downstream of a point mutation, expanding the 96 type classification 

based on three nucleotides to a 1,536 type classification based on 5 

nucleotides. This yielded the splitting of SBS2 and SBS13 into signatures 

with YTCW or RTCW motifs, consistent with the activity of APOBEC3A or 

APOBEC3B, respectively (Alexandrov et al. 2020). These data indicate that 

APOBEC3A-like mutations are more commonly found in cancer than 

APOBEC3B-like mutations. In addition, deletion of APOBEC3A in cultured 

cancer cells is reported to lead to a greater reduction in the number of new 

APOBEC signature mutations than deletion of APOBE3B (Petljak et al. 

2022).
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Other findings indicate that APOBEC3B may not be required for APOBEC 

signature mutations in cancer. A common germline polymorphism in which a 

region including the APOBEC3B coding sequence is deleted does not 

prevent the formation of APOBEC signature mutations in cancer (Nik-Zainal 

et al. 2014). Indeed, this polymorphism is associated with an increased 

number of APOBEC signature mutations. The APOBEC3B coding 

sequence deletion giving rise to a fusion between APOBEC3A and the 

APOBEC3B 3’UTR. The aberrant relocation of its 3’UTR notwithstanding, 

this indicates that APOBEC3B is not required for APOBEC mutagenesis in 

cancer.

Lastly, although these data collectively indicate that APOBEC3A and 

APOBEC3B mediate APOBEC signature mutations, other APOBECs have 

also sometimes been implicated. For example, AID, which is normally 

expressed in B cells, may contribute to the mutation of B cell lymphoma 

genomes, and APOBEC1 may similarly contribute to mutagenesis in its own 

physiological context of the small intestine (Pettersen et al. 2015; Wang et 

al. 2023). In keeping with this, deletion of both APOBEC3A and APOBEC3B 

from cancer cell lines substantially reduces but does not eliminate the 

formation of APOBEC signature mutations, suggesting the potential for 

contributions from other APOBEC family members (Petljak et al. 2022). 

However, the literature to date nonetheless appears to suggest that most 

APOBEC signature mutations in cancer are likely to be mediated by 

APOBEC3A and APOBEC3B.

59  



At the time of preparing the experiments presented in this thesis, it was not 

yet clear if APOBEC3A or APOBEC3B might act as the main source of 

APOBEC signature mutations in cancer, or if both might contribute, perhaps 

to varying degrees in different contexts. APOBEC3B appeared the likelier 

candidate at the time, owing to its higher expression level, stronger positive 

correlation with APOBEC signature mutations, the uncertainty around 

whether APOBEC3A and APOBEC3B might indeed have different motif 

preferences in humans as opposed to yeast, and the uncertainty around 

whether the APOBEC3B deletion polymorphism might subject APOBEC3A 

to unusual regulation through its fusion with the APOBEC3B 3’UTR. As a 

result, the work in this thesis typically focuses on APOBEC3B in the first 

instance.
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1.7.  Mechanisms of APOBEC regulation in cancer

1.7.1. Pathways regulating APOBEC expression in normal cells and 

cancer cells

As described in section 1.6, APOBEC signature mutations are commonly 

found in human cancer and likely due to the activity of APOBEC3A or 

APOBEC3B. APOBEC3s have been described as immune genes involved 

in the restriction of viruses and transposons. Recurrent driver mutations in 

APOBEC3 genes or their regulatory regions have not been identified in 

large pan-cancer analyses, suggesting that APOBEC activity is mediated 

through the alteration of upstream pathways (Priestley et al. 2019; Elliott 

and Larsson 2021). These mechanisms leading to their apparent activity in 

cancer are not yet fully understood.

Mechanistic work in the field of virology has helped elucidate the pathways 

that regulate APOBEC3 gene activity in normal cells. APOBEC3s are 

interferon-stimulated genes whose expression increases during states of 

infection (Stavrou and Ross 2015). A range of molecules, including viral 

proteins and nucleic acids, trigger this response through a number of 

cellular sensors including TLR3, TLR4, TLR7, AIM2 and cGAS. Activation of 

these sensors leads to immune signalling involving IRFs (interferon 

response factors) that are thought to subsequently trigger APOBEC3 

expression through type-I interferons. Not all APOBEC3 genes appear to be 

recruited in these antiviral responses. For example, infection by HIV is 

characterised by expression of and mutagenesis by APOBEC3G, with less 
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significant contributions from APOBEC3D and APOBEC3F (Gillick et al. 

2013).

Some cancers have a viral cause that likely leads to APOBEC signature 

mutations. For example, cervix cancers, which are caused by human 

papillomavirus (HPV), have high numbers of APOBEC signature mutations, 

as previously described. Here, HPV is described to lead to APOBEC3B 

upregulation in a mechanism that requires the inhibition of p53 by the HVP 

E6 oncoprotein (Vieira et al. 2014). However, in contrast, liver cancers 

caused by hepatitis viruses do not appear to contain APOBEC signature 

mutations, despite the fact that APOBEC3s can restrict these viruses 

(Janahi and McGarvey 2013).

Moreover, most cancers have no known viral aetiology, suggesting that 

there are other processes that drive APOBEC activity in the majority of 

cancers. A number of possible causes have been identified. These include   

NF-κB, which has been described to bind to the to the APOBEC3B 

promoter to increase APOBEC3B expression following replication stress or 

exposure to a range of chemotherapy drugs (Periyasamy et al. 2021; Butler 

and Banday 2023). p53 has also been described to inhibit APOBEC3B 

expression through recruitment of the repressive DREAM complex to the 

APOBEC3B promoter (Periyasamy et al. 2017). In addition, nucleic acids 

derived from the host cell, such as those generated by transposon activity, 

have been suggested as possible drivers for the induction of APOBEC 

activity in cancer cells through action on cellular nucleic acid sensors 

(Petljak and Maciejowski 2020).
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At the time of preparing the work in this thesis, the possible mechanistic 

drivers of APOBEC activity in the majority of cancers were less clear. In 

terms of regulatory factors, the canonical role of APOBECs was most 

apparent, as interferon response genes that were thought to have evolved 

to combat viruses and transposons. A particular focus of the work in this 

thesis was consequently the possibility that non-viral nucleic acids, such as 

those derived from transposons, might cause APOBEC activity in cancer.

1.7.2. LINE-1 activity as a possible cause for APOBEC activity in 

cancer

Around 50% of the human genome is made up of transposon sequences, 

with roughly 20% of the genome consisting of LINE-1 (long interspersed 

nuclear element 1) retrotransposon sequences and roughly 30% of the 

genome consisting of other types of transposons (Kemp and Longworth 

2015). LINE-1 elements are part of an ancient family of LINE elements that 

are found in the genomes of eukaryotes (Ivancevic et al. 2016). Full-length 

LINE-1 sequences are approximately 6 kb in length (Dombroski et al. 

1991). They contain a 5’ promoter and two open reading frames - ORF1, 

which encodes an RNA-binding protein, and ORF2, which encodes a 

protein with endonuclease and reverse transcriptase functions (Swergold 

1990; Mathias et al. 1991; Feng et al. 1996; Hohjoh and Singer 1997). 

LINE-1 elements also contain an antisense open reading frame, ORF0, 

whose function is unclear (Denli et al. 2015). 
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LINE-1 elements are thought to be the only autonomously active 

transposons in human cells, with around 150 copies - all belonging to the 

subset of copies specific to Homo sapiens termed L1Hs - capable of 

propagating in the genome (Sassaman et al. 1997; Penzkofer et al. 2016). 

Other transposons found in the human genome appear to depend on the 

activity of LINE-1 elements to facilitate their propagation (Dewannieux, 

Esnault, and Heidmann 2003; Hancks et al. 2011).

As retrotransposons, LINE-1 elements propagate by reverse transcription, 

which generates new copies through a 'copy and paste' mechanism. This 

involves transcription of LINE-1 RNA (‘copying’), translation of this RNA into 

LINE-1 protein, then the formation of a LINE-1 ribonucleoprotein complex 

that mediates reverse transcription of the RNA into a new genomic location 

(‘pasting’). LINE-1 elements insert new copies of themselves into the 

genome in a process known as ‘target-primed reverse transcription’ (Figure 

1.4; Cordaux and Batzer 2009). LINE-1 inserts are often truncated at the 5’ 

end or, in contrast, can involve transduction of downstream sequences due 

to transcription that goes beyond the 5’ end of the LINE-1 element.
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Figure 1.4 - Mechanistic stages of LINE-1 target-primed reverse 

transcription (adaoted from Cordaux and Batzer 2009). TSD: target site 

duplication.

First, the ORF2 endonuclease generates a nick in one strand of DNA, with 

a preference for AA/TTTT target sequences  (Jurka 1997). ORF2 then uses 

the free end of the ssDNA generated to prime the reverse transcription of its 

RNA, forming LINE-1 cDNA. After this, the second strand of DNA is cleaved 

by ORF2, leading to a ‘sticky-ended’ double-strand break with ssDNA 
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overhangs. This double-strand break is then repaired by cellular DNA repair 

factors. During the repair process, DNA is synthesised to fill in gaps on 

opposite strands, leading to LINE-1 dsDNA formation and the formation of 

target site duplications.

The sticky-ended double-strand breaks that LINE-1 generates are thought 

to be mutagenic, since they expose DNA to additional damage, as well 

repair pathways that re-ligate DNA ends in an error-prone manner (Gasior, 

Roy-Engel, and Deininger 2008; Venkitaraman 2014), with the potential for 

the generation of point mutations, indels and structural abnormalities. In 

addition, LINE-1 is capable of causing insertional mutagenesis through the 

reverse transcription of its own RNA, as well as other RNAs present in the 

cell (Kemp and Longworth 2015). LINE-1 can therefore threaten genomic 

integrity by generating DSBs, inserting DNA into functional loci and 

increasing the copy number of expressed genes.

Many mechanisms exist to inhibit LINE-1 activity in somatic cells at various 

stages in its cycle of retrotransposition. For example, LINE-1 appears to be 

subject to a substantial degree of inhibition at the level of its transcription. 

The LINE-1 promoter contains many CpG sites that are typically highly 

methylated by host cells, leading to epigenetic silencing (Hata and Sakaki 

1997), with further epigenetic silencing occurring through associated 

histone modifications and heterochromatin formation (Garcia-Perez et al. 

2010). Multiple factors are also described to inhibit LINE-1 activity at the 

post-transcriptional level. These include degradation of LINE-1 RNA 

through RNA interference involving miR-128  (Hamdorf et al. 2015) and by 
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the interferon-inducible RNase L (Zhang et al. 2014). Protein complexes 

including ADAR1, MOV10, SAMHD1 and ZAP proteins are involved in the 

dissociation of LINE-1 RNA from ORF1, sequestration of LINE-1 RNA in 

stress granules, and autophagy-mediated degradation of LINE-1 transcripts 

(Protasova, Andreeva, and Rogaev 2021). LINE-1 RNA degradation 

products have been described to bind and stimulate RIG-I and MDA5 RNA 

sensors, leading to type I interferon production (Zhao et al. 2018). 

Interferon-inducible factors such as APOBEC3 deaminases and the TREX1 

exonuclease also interact with LINE-1 ribonucleoproteins, where their 

inhibitory effects can be mediated through enzymatic or non-enzymatic 

activity (Li et al. 2017; Orecchini et al. 2018). Other processes of LINE-1 

inhibition are active in the germline, such as RNA degradation mediated 

through the piRNA/PIWI pathway (Pezic et al. 2014).

Studies comparing LINE-1 expression in normal cells and cancer cells 

indicate that LINE-1 is normally transcriptionally repressed, but that these 

processes of repression commonly fail in cancer (Menendez, Benigno, and 

McDonald 2004; Tubio et al. 2014). A pan-cancer immunohistochemical 

study of around 1000 patients appears to be illustrative, estimating that 

LINE-1 derepression occurs in around half of all cancers, with little or no 

LINE-1 expression detected in normal tissues (Rodić et al. 2014). 

APOBEC3s are among many factors that are used by cells to restrict 

LINE-1 activity at the post-transcriptional level. It is therefore plausible that 

uncontrolled LINE-1 expression in cancer might consequently trigger 

APOBEC activity.
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In keeping with the reported increases in LINE-1 expression in many 

cancers, there is evidence that LINE-1 retrotransposition is a common 

event in many cancers. PCAWG analyses indicate that around half of all 

cancers contain somatic insertions of LINE-1 elements, which also 

contribute to a wide range of small and large scale structural variation, such 

as LINE-1 mediated deletions that occur as a result of incomplete LINE-1 

integration (Rodriguez-Martin et al. 2020). LINE-1 activity can be a 

significant source of mutagenesis in certain cancers - for example, it is 

reported that in oesophageal adenocarcinomas, LINE-1 insertions are the 

most common type of structural variation found.

Although LINE-1 mediated mutagenesis of cancer genomes is found to be 

common, there is evidence to suggest that findings such as these could 

represent an underestimate of the full impact of LINE-1 activity. For 

example, methods of detecting new insertions in genomic NGS data are 

known to limited by difficulties in resolving repetitive elements such as 

LINE-1, owing to limitations in the process of aligning sequencing reads 

with ambiguous genomic origins (Treangen and Salzberg 2012; Ewing 

2015). In addition, it is not clear how the impact of LINE-1 mediated double-

strand breaks, rather than completed insertions, might be measured using 

NGS data. This may be of relevance given the observation that LINE-1 

generates many more double-strand breaks than new insertions when 

overexpressed in cultured cells (Gasior et al. 2006).
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1.7.3. LINE-1 inhibition as a possible physiological role for 

APOBEC3B

In keeping with their role as inhibitors of transposons, several APOBECs 

have been shown to inhibit LINE-1 activity, typically in assays where they 

are overexpressed alongside LINE-1 (Muckenfuss et al. 2006; Kinomoto et 

al. 2007; Conticello 2008). In cell culture, overexpression of AID, 

APOBEC1, APOBEC3A, AOBEC3B, APOBEC3C, APOBEC3DE and 

APOBEC3F leads to LINE-1 inhibition in a manner that does not require 

their cytosine deaminase activity, despite evidence of APOBEC signature 

mutations in genomic LINE-1 sequences (Orecchini et al. 2018).

APOBEC enzymes are known to be recruited in a specific physiological 

contexts. For example, as previously described, AID is recruited in the 

context of B cell somatic hypermutation, and APOBEC3G is typically 

recruited in the context of HIV infection. It is not yet known if one or more 

APOBECs might be specifically recruited for the process of LINE-1 

inhibition. There is, however, evidence to suggest that endogenous 

APOBEC3B might be recruited as a physiological defence against LINE-1, 

while other APOBECs are not.

For example, a study by Marchetto and colleagues looked to find 

differences in the RNA-seq profiles of human and non-human primate 

induced pluripotent stem cells (iPSCs). APOBEC3B was among the top 

differentially expressed genes. The expression of APOBEC3B was around 

30-fold higher in human iPSCs, while the expression of other APOBECs 
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was broadly similar. This increase in APOBEC3B expression was 

associated with a substantial reduction in LINE-1 activity in human iPSCs 

when LINE-1 was overexpressed, relative to non-human primate iPSCs. 

LINE-1 activity could be inhibited by APOBEC3B overexpression, but not by 

APOBEC3G. These findings were also associated with reduced LINE-1 

activity in the human germline since the evolutionary divergence from non-

human primates. Together, these data suggest that APOBEC3B, but not 

other APOBECs, has played the physiological role of inhibiting LINE-1 

activity in human evolution.

Knockdown studies of different APOBECs in cell culture also support the 

notion that APOBEC3B may act to inhibit LINE-1 in physiological contexts. 

These data suggest that knockdown of APOBEC3B increases LINE-1 

activity, while knockdown of other APOBECs (A3C, A3DE, A3F or A3G) 

does not (Wissing et al. 2011). In these studies, APOBEC3A expression 

was undetectable, so could not be knocked down.

It is possible that the elevated APOBEC3B expression observed in cancer 

might therefore reflect cells attempting to recruit APOBEC3B as a response 

to LINE-1 expression. There is some evidence from studies of cancer to 

suggest that this hypothesis is plausible. For example, many cancers with  

evidence of LINE-1 activity also have evidence of APOBEC activity 

(Alexandrov et al. 2020; Rodriguez-Martin et al. 2020). However, this may 

simply reflect the fact that both phenomena are common, and there  are 

examples of cancers where both do not co-occur. The loss of p53 function, 

another common feature of cancer, has been associated with LINE-1 
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derepression in fruit flies, zebrafish, mice and humans, suggesting an 

evolutionarily conserved mechanism (Wylie et al. 2016). p53 inactivation is 

also associated with APOBEC3B upregulation (Burns et al. 2013; 

Periyasamy et al. 2017). Few studies have specifically examined the 

relationship between APOBEC activity and LINE-1 activity in cancer. 

However, one study has found that APOBEC mutagenesis in cultured 

cancer cells is episodic (Petljak et al. 2019). It was noted that this is 

consistent with the activity of transposons, that also become active 

episodically. The authors find a positive correlation between LINE-1 

transposition events and APOBEC activity in cell lines, but no significant 

correlation when this is extended to an analysis of patient cancers.
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1.7.4. Aicardi-Goutières syndrome as a possible model for studying 

APOBEC activity

Aicardi-Goutières syndrome (AGS) is a rare, severe paediatric genetic 

condition, initially characterised in the 1980s as a disease of 

neuroinflammation involving white matter disease, intracranial calcification 

and cerebrospinal fluid lymphocytosis  (Aicardi and Goutières 1984). It is 

now understood that AGS causes systemic autoinflammation, with patients 

also developing skin lesions, lupus-like disease, glaucoma and 

hypothyroidism (Crow, Shetty, and Livingston 2020). The disease presents 

in utero, where it mimics a congenital viral infection in the absence of a 

causative virus (so-called ‘sterile inflammation’) and has high rates of death 

or disability.

A number of germline genetic alterations have been associated with 

Aicardi-Goutières syndrome (Table 1.7). These are thought to cause 

chronic activation of type I interferon that may be central to the 

pathophysiology of the disease. Indeed, AGS is among a number of 

conditions that were termed ‘type I interferonopathies’ in the early 2010s  

(Crow 2011). 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Gene Protein 

function

Proposed link 

to type I 

interferon 

signalling

Mutation effect

TREX1 DNase Cytosolic 

DNA

LOF (autosomal 

recessive or 

dominant negative)

SAMHD1 Control of 

dNTP pool

Cytosolic 

DNA

LOF (autosomal 

recessive)

RNASEH2A RNase Cytosolic 

RNA–DNA 

hybrids

LOF (autosomal 

recessive)

RNASEH2B RNase Cytosolic 

RNA–DNA 

hybrids

LOF (autosomal 

recessive)

RNASEH2C RNase Cytosolic 

RNA–DNA 

hybrids

LOF (autosomal 

recessive)
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Table 1.7 - Genotypes implicated in Aicardi-Goutières syndrome (adapted 

from Crow and Stetson 2022).

dsRNA: double-stranded RNA, RDH: replication-dependent histone, LOF: 

loss-of-function, GOF: gain-of-function.

The genes implicated in Aicardi-Goutières syndrome are those whose 

products are involved in nucleic acid metabolism or nucleic acid sensing. 

This is a theme among type I interferonopathies, where pathways involved 

in the immune response to ‘non-self’ nucleic acids, such as those 

ADAR1 RNA 

editing

Cytosolic 

dsRNA

LOF (autosomal 

recessive or 

dominant negative)

IFIH1 dsRNA 

sensor

Cytosolic 

dsRNA

GOF (autosomal 

dominant)

LSM 11 RDH pre-

mRNA 

processing

Histone 

stoichiometry/

genomic 

DNA

LOF (autosomal 

recessive)

RNU7-1 RDH pre-

mRNA 

processing

Histone 

stoichiometry/

genomic 

DNA

LOF (autosomal 

recessive)
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originating from viruses, are active in the absence of such stimuli (Crow and 

Stetson 2022).

Nine genes are implicated in AGS. LSM11 and RNU-7 are the most recently 

identified genes. They are described to promote the physical separation of 

genomic DNA and the DNA sensor cGAS by maintaining histone 

stoichiometry (Uggenti et al. 2020).

ADAR1 encodes an adenosine deaminase involved in RNA editing. IFIH1 

encodes the cellular sensor of dsRNA known as MDA5. It has been 

suggested that these two genes work in tandem in the cellular response to 

sequences from the inactive Alu retrotransposon, which make up around 

10% of the human genome. ADAR1 is described to deaminate adenosine 

residues in transcribed Alu sequences to mark them as ‘self’ (Chung et al. 

2018). Failure of this process leads to MDA5 activation, and gain-of-

function IFIH1 mutations found in AGS are described to make MDA5 

molecules hypersensitive to cellular Alu RNAs (Ahmad et al. 2018).

TREX1 encodes an exonuclease that degrades ssDNA and dsDNA. 

SAMHD1 encodes a dNTPase that is thought to inhibit the synthesis of 

cytosolic DNA. RNASEH2A, RNASEH2B and RNASEH2C encode subunits 

of the RNase H2 complex, which degrades RNA in RNA-DNA hybrids. For 

these genotypes, nucleic acids arising from DNA damage or from 

retrotransposon activity have been posited as possible stimuli that trigger 

sterile inflammation (Crow and Manel 2015).
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In terms of evidence supporting the role of DNA damage as a source of 

aberrant nucleic acids in these genotypes, TREX1 knockout cells have 

been described to display chronic activation of ATM-mediated DNA damage 

checkpoint signalling, with cytosolic ssDNAs generated during S phase that 

could represent replication intermediates (Yang, Lindahl, and Barnes 2007). 

SAMHD1 deficiency is also associated with chronic activation of DNA 

damage signalling, with evidence of replication stress (Kretschmer et al. 

2015). In addition, RNase2 deficiency is described to lead to replication 

stress, genomic instability and the formation of micronuclei, as it is involved 

in the processing of RNA-DNA hybrids formed during DNA synthesis (Pizzi 

et al. 2015; Mackenzie et al. 2017). However, LINE-1 activity alone has the 

potential to cause DNA damage signalling, cytosolic ssDNA accumulation, 

replication stress, genomic instability and micronuclei (Section 1.7.2, 

McKerrow et al. 2022).

TREX1, SAMHD1 and RNase H2 are described to be inhibitors of LINE-1 

activity, as well as ADAR1 which is also an AGS gene (section 1.7.2). The 

defects in their activity found in AGS have been reported to lead to the 

accumulation of LINE-1 RNA and cDNA (Stetson et al. 2008; Pokatayev et 

al. 2016; Herrmann et al. 2018).  SAMHD1 and TREX1 are thought to limit 

the number LINE-1 cDNAs, while RNaseH2 is thought to limit the number of 

LINE-1 RNAs. In their absence, accumulated LINE1 ssDNA, dsDNA and 

RNA-DNA hybrids can activate the cGAS/STING/IRF3 pathway, leading to 

type I interferon activation. Although RNase H2 can aid LINE-1 

retrotransposition by removing RNA during target-primed reverse 

transcription (Benitez‐Guijarro et al. 2018) it is likely that the accumulation 
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of LINE-1 RNA-DNA hybrids in states of RNase H2 deficiency are 

immunostimulatory (Uggenti et al. 2020).

Since LINE-1 encodes a reverse transcriptase, it is susceptible to inhibition 

by nucleoside reverse transcriptase inhibitors (RTIs), such as those used in 

treating HIV (Dai, Huang, and Boeke 2011). RTIs have consequently been 

used to test the hypothesis that retrotransposition contributes to the 

pathophysiology of AGS, and to test the hypothesis that AGS could be 

treated with RTIs. 

Results from TREX1-deficient mouse models have given conflicting results 

in these regards. Treatment with azidothymidine (AZT), a classical 

nucleoside RTI and the first RTI developed for HIV treatment, was not able 

to alleviate a TREX1-deficient mouse model of AGS (Stetson et al. 2008). In 

addition, while one study found that treatment with tenofovir, emtricitabine 

and nevirapine RTIs successfully alleviated the lethal cardiomyopathy that 

occurs in these mice, another found that these drugs had no such effect 

(Beck-Engeser, Eilat, and Wabl 2011; Achleitner et al. 2017).

Unlike the conflicting results reported for this mouse model, studies in 

human cells and clinical trials indicated that LINE-1 activity could be 

inhibited by RTIs to alleviate AGS pathophysiology. These differences may 

be in part due to the fact that the mouse genome has multiple active 

retrotransposons aside from LINE-1 that may also be expressed in different 

tissues (Crow and Manel 2015). TREX1-deficient human cells are reported 

to accumulate LINE-1 ssDNA in the cytosol, leading to interferon-associated 
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toxicity that could be blocked with the nucleoside RTIs 3TC and d4T 

(Thomas et al. 2017). In addition, treatment with the nucleoside RTIs 

abacavir, 3TC and AZT in a clinical trial involving AGS patients with 

germline TREX1, SAMHD1 and RNASEH2A-C mutations was reported to 

result in reduced interferon signalling and improved neurovascular function, 

indicating alleviation of the disease process (Rice et al. 2018). These data 

support the notion that LINE-1 activity drives AGS pathophysiology, and that 

RTIs can be used to treat AGS. It may be the case that these human 

studies could better represent what is true for human AGS than the studies 

based on mouse models that are more equivocal in their results. It is 

possible that RTIs could also inhibit inflammation through a known off-target 

effect of inhibiting inflammasome activity (Fowler et al. 2014). However, a 

role for inflammasome activity in AGS has not been established (Crow and 

Manel 2015).

AGS therefore mimics viral infection in the absence of a causative virus, 

and may be triggered by endogenous nucleic acids such as those deriving 

from LINE-1 elements. This is reminiscent of what is observed in cancer, 

where there is an apparent activation of APOBEC3s in the absence of viral 

infection, with LINE-1 activity as a putative cause. It was consequently 

reasoned that LINE-1 associated Aicardi-Goutières syndrome genotypes 

could be used as a possible model to study mechanisms of APOBEC 

regulation in this thesis. Of note, patients with Aicardi-Goutières syndrome 

are not thought to have an increased propensity for developing cancer. 

However, AGS patients are reported to die at a young age, typically before 

78  



early adulthood (Aicardi and Goutières 2000) and therefore may not have 

the opportunity to accumulate the mutations required for carcinogenesis. 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1.8. The multiple functions of p53

TP53 is the most frequently mutated gene in cancer (PCAWG 2020). As 

described in section 1.2 and section 1.7, mutations in TP53 canonically lead 

to impairments in cell cycle arrest and apoptosis in response to DNA 

damage (Weinberg 2007) and are also associated with LINE-1 upregulation 

(Wylie et al. 2016) and APOBEC3B upregulation (Periyasamy et al. 2017). 

p53 was first identified as a 53 kDa protein that binds to the large T antigen 

of simian virus 40 (Lane and Crawford 1979). The p53 protein acts as a 

tetramer of four identical subunits (Jeffrey, Gorina, and Pavletich 1995) 

which each contain a DNA-binding domain that is used to enact its function 

as a transcriptional regulator (Laptenko and Prives 2006). The vast majority 

of TP53 mutations that occur in cancer are found in the DNA-binding 

domain.

Early work on p53 showed that its overexpression led to the suppression of 

cellular growth and transformation (Finlay, Hinds, and Levine 1989). It was 

found that p53 protein levels are maintained at low levels by regulators that 

include MDM2, which promotes p53 degradation (Haupt et al. 1997) and 

that p53 levels are stabilised in response to a stresses including DNA 

damage and oncogene activity in part through MDM2 inhibition (Haupt et al. 

1997; Pomerantz et al. 1998). p53 enforces reversible cell cycle arrest in 

the G1 phase by transcriptionally activating the gene encoding p21 (Harper 

et al. 1993) stably arrests the cell cycle by activating senescence in tandem 
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with Rb (Shay, Pereira-Smith, and Wright 1991) and activates apoptotic 

signalling by inducing the activity of BCL-2 genes (Miyashita et al. 1994).

These functions reflect p53’s canonical role as the ‘guardian of the genome’  

which acts to hinder growth and transformation in cells with oncogenic 

signalling or potentially mutagenic DNA damage (Lane 1992). In keeping 

with this, other work has identified its role in maintaining chromosomal 

stability by promoting the fidelity of the G2/M transition (Vitre and Cleveland 

2012) and in promoting DNA repair signalling (Williams and Schumacher 

2016). Several non-canonical functions of p53 have also been described, 

which include the regulation of metabolism, autophagy, cellular 

development, tissue remodelling and responses to reactive oxygen species 

(Kastenhuber and Lowe 2017). Non-canonical p53 functions may occur in a 

context-dependent manner.
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2. Thesis aims

The overall aim of the work presented in this thesis is to investigate the 

regulation of APOBEC mutagenesis in cancer. As previously discussed, 

aberrant signalling appears likely to drive aberrant APOBEC3A and/or 

APOBEC3B expression in cancer, leading to APOBEC signature mutations. 

The thesis explores possible drivers of cancer-associated APOBEC activity, 

with a particular focus on LINE-1 activity as a possible driver and 

APOBEC3B as a possible mediator.

The work in first results chapter describes cell culture experiments that look 

to identify models and measures for LINE-1 and APOBEC activity, as well 

as testing whether RTI treatment could modulate APOBEC activity in 

cancer cells. The second results chapter looks to identify possible 

regulators of cancer-associated APOBEC activity, primarily by examining 

NGS data from patient cancers. The work in the third and final results 

chapter looks to obtain similar insights, drawing primarily on NGS data from  

patients with Aicardi-Goutières syndrome.

These experiments were performed according to the overarching rationale 

summarised in Figure 2.1. It was reasoned that TP53 inactivation might 

lead to LINE-1 activity, which in turn could lead to cancer-associated 

APOBEC activity, perhaps through AGS-like signalling. RTIs inhibit LINE-1, 

which under this frame of reference would lead to reduced genomic 

instability both by directly reducing metagenesis by LINE-1 and indirectly 
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reducing mutagenesis from APOBEC activity, with consequences for cancer 

evolution.

Figure 2.1 - Schematic diagram illustrating the overarching rationale for 

experiments described in the thesis.
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3. Results

3.1. Results Chapter 1: Experiments investigating 

APOBEC activity in cultured cancer cells

3.1.1. Introduction

The specific focus of this first results chapter is to test the hypothesis that 

LINE-1 activity promotes APOBEC activity in cancer. The use of cell biology 

experiments in this chapter was intended to complement results gained 

from bioinformatic analyses. The bioinformatic analyses described in the 

second and third results chapters provide data that is primarily descriptive 

and correlative in nature. In contrast, the experimental methods described 

in this chapter allow, in principle, for the identification of causal relationships 

between cellular factors - such as the putatively causal relationship 

between LINE-1 activity and APOBEC activity - to be ascertained from the 

perturbation of specific cellular mechanisms. It was reasoned that 

descriptive genomic data from patient samples might provide a more 

accurate overall summary of APOBEC biology in vivo, while experiments on 

cultured cancer cells would allow for the direct testing of suggested 

associations, albeit in a model system that might deviate from the true 

disease state in several ways.

84  



A number of methodological considerations were reviewed in the process of 

designing the experiments described in this chapter. Efforts were made to 

attempt to reflect the reality of the disease state as accurately as possible 

and test the hypothesis at hand as reliably as possible, taking any practical 

or methodological constraints into account. The factors considered will be 

discussed in turn in order to provide the rationale that informed and 

constrained the experiments conducted. These factors were:

- what cellular material to use for these experiments

- how best to measure LINE-1 activity

- how best to measure APOBEC activity, and

- how best to perturb the cellular system in order to test the hypothesis that 

LINE-1 activity promotes APOBEC activity.

3.1.1.1. Choice of cellular material

The first factor considered was what cellular material should be used. 

Cancer cell lines appear to be used widely in the field. Indeed, experiments 

using cancer cell lines have contributed to many seminal papers in cancer 

and in other fields. However, they do not seem to be completely reliable 

model systems. They have been described to show continuous genomic 

instability in culture (Petljak et al. 2019), which may distort their phenotypes 

beyond the degree of distortion caused by the level of mutagenesis 

observed in vivo. They are also subjected to non-physiological selection 

pressures; such cells are typically grown as a monolayer in plastic dishes in 

the absence of supporting stromal tissue. Factors such as these are 
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thought to contribute to the limited reproducibility observed for studies on 

cancer cell lines (Liu et al. 2019) and the fact that findings on possible 

therapeutic strategies in vitro rarely translate to efficacious treatments in 

clinical settings (Hingorani et al. 2019). 

Given the potential disadvantages of using standard cancer cell lines, other 

types of cellular material were considered for the experiments described in 

this chapter. These were the use of three-dimensional organoid culture, the 

use of co-culture with stromal cells, the use of animal models, and the use 

of human trials. However, these were ultimately not pursued. The use of 

organoids and stromal cells was not pursued as these methods had not 

been previously established in our laboratory, and there was no clear 

suggestion from the literature that these factors might meaningfully 

contribute to LINE-1 and APOBEC regulation in cancer. Animal models and 

human trials were not pursued owing the the ethical and practical limitations 

of setting up such studies, and that such studies are typically preceded by 

in vitro data that justify such in vivo investigation. In addition, animal models 

of LINE-1 and APOBEC regulation are limited by the fact that their genetic 

loci remain under selection and vary significantly between (and indeed 

within) species. For example, the commonly used animal model, Mus 

muluscus, has only one APOBEC3 gene in place of the seven human 

APOBEC3s, and has multiple active LINE-1 element families of differing 

genetic sequences (Sookdeo et al. 2013) in contrast to the single active 

LINE-1 family specific to Homo sapiens. It is therefore unclear to what 

extent conclusions derived from a mouse model, including one that could 

be partly humanised by genetic modification, may yield results that are 
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applicable to the hypothesis at hand pertaining to human carcinogenesis - 

particularly when other mechanisms of LINE-1 repression might also differ 

significantly. As a result, cultured cancer cells were ultimately chosen for 

these experiments despite the limitations that have been described for their 

use. 

Another consideration was how to use this model system to best 

approximate the LINE-1 and APOBEC activation that is observed in cancer 

in vivo. One approach to this would be to culture cancer cells and matched  

normal cells from the same donor tissue - for example, breast cancer cells 

and adjacent normal breast cells from the same patient. However, practical 

considerations meant that this approach was not pursued - these materials 

were not readily available, and non-cancer cells are typically resistant to 

continual growth in vitro. Instead, activation of LINE-1 and APOBEC was 

pursued by studying the effect of TP53 deficiency in otherwise isogenic 

cancer cells. This approach was pursued as a review of the literature 

indicated that p53 deficiency might be a cause of LINE-1 and APOBEC 

activation in cancer, in keeping with p53’s function of counteracting many 

mediators of genomic instability (described in the Thesis introduction). The 

relationship between p53 inactivation and LINE-1 activity was suggested by 

data including the finding that LINE-1 elements contain multiple p53 binding 

sites (Harris et al. 2009) and that LINE-1 activity induces DNA damage that 

leads to a p53 response (Haoudi et al. 2004). Similarly, it was shown by 

Burns et al. that TP53 mutations in TCGA breast cancers were associated 

with elevated APOBEC3B expression, a correlation that suggested that a 

causative relationship between p53 inactivation and APOBEC activity might 
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be found if tested experimentally. However, at the time of conducting these 

experiments, no studies to our knowledge had demonstrated that p53 

inactivation would lead to the activation of LINE-1 or APOBEC3B. This has 

since been reported in the literature (see sections 1.7.1, 1.7.3 and 3.1.6).

3.1.1.2. Measure of LINE-1 activity

Another factor considered in the design of these experiments was how best 

to measure LINE-1 activity. LINE-1 replication is a multi-step process, and it 

is possible that one or multiple LINE-1 replication steps could act as a 

signal that triggers a putative host cell response involving APOBEC activity. 

Given the abundance of LINE-1 elements in the genome, it was reasoned 

that a signal that might trigger such a response would likely be specific to 

LINE-1 elements that were no longer quiescent. The features of non-

quiescent LINE-1 elements include DNA demethylation, RNA expression, 

translation, LINE-1 nucleoprotein formation, cDNA synthesis and 

integration. A measure of LINE-1 activity that could trigger APOBEC activity 

might therefore include one or more of these features.

Both DNA demethylation and integration were deemed unsuitable as 

measures of LINE-1 activity. DNA demethylation was not chosen as it was 

reasoned that demethylated LINE-1 elements may not necessarily be 

expressed or otherwise active. In addition, LINE-1 elements contain a 

significant fraction of CpG sites in the genome, such that LINE-1 

methylation is often used as a surrogate for global methylation in epigenetic 
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studies (Vryer and Saffery 2017). Measuring LINE-1 methylation might 

therefore reflect global epigenetic change, and global, non-specific changes 

to gene expression could confound interpretation of results in this type of 

analysis.

LINE-1 integration was also not chosen. LINE-1 integration occurs when the 

host cell fails to repress LINE-1 activity at every stage of repression. On 

considering this further, and on review of the literature, it was not clear what 

results from cells with high numbers of de novo LINE-1 integration events  

indicated about the dynamics of LINE-1 activity in these cells, particularly in 

relation to defences against LINE-1. It was not clear if these cells might 

have weaker defences against LINE-1 (for example, having weaker 

APOBEC expression) or if such cells are overwhelmed by LINE-1 activity 

despite a maximal repressive response - or if indeed both are true in 

different contexts. As a result, LINE-1 integration was deemed a potentially 

unreliable measure for testing the hypothesis that LINE-1 activity promotes 

APOBEC activity.

The intermediate steps of LINE-1 mobilisation were therefore subsequently 

considered. Antibodies for LINE-1 remain in active development (Sharma et 

al. 2016; Ardeljan et al. 2020) with no commercially available antibody in 

widespread use at the time of conducting these experiments. Detection of 

protein levels of LINE-1 were consequently also deemed unsuitable, as a 

method for identifying LINE-1 protein levels appeared not to be firmly 

established in the field. cDNA levels were also considered - however, 

measuring LINE-1 cDNA is complicated by the high number of genomic 
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copies of LINE-1 that could contaminate the cDNA sample and falsely 

elevate cDNA quantification. Ultimately, quantification of LINE-1 mRNA by 

qRT-PCR was chosen as the measure of LINE-1 activity in these 

experiments given the disadvantages of the other options described above, 

and primers specific to L1Hs were chosen in an attempt to selectively 

measure the expression of potentially active elements (as described in 

Marchetto et al. 2013).

3.1.1.3. Measure of APOBEC activity

On considering how best to measure APOBEC activity, it was reasoned that 

directly measuring the APOBEC signature observed in cancer genomes 

would likely be the most representative measure that could be obtained in 

cultured cancer cells in vitro. However, this was not pursued in these 

experiments for several reasons. These were that it was not clear whether 

cells would need to be grown and treated for a prolonged period of time in 

order for mechanistic changes to yield measurable mutations, multiple 

individual clones would need to be grown out to identify new mutations that 

had occurred in the cell culture, and the sequencing required for such 

experiments would be relatively costly.

Given that APOBEC expression is associated with APOBEC activity, 

measures of APOBEC expression levels were also considered as 

surrogates of APOBEC activity. The high sequence homology of the 

APOBEC genes leads to challenges in measuring them at the protein and 
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RNA level. Primers that are highly specific to each APOBEC3 gene have 

been developed (Refsland et al. 2010), while specific antibodies are still 

under development. For example, a monoclonal antibody with improved 

specificity showed cross-reactivity between A3A, A3B and A3G, and was 

described in late 2019 (Brown et al. 2019). It was consequently decided 

that measurement by qRT-PCR would again be preferable to measurement 

by Western blot. On considering which genes to measure, it was reasoned 

that it might be more practical to focus on a single APOBEC gene, and thus 

APOBEC3B was chosen for study rather than APOBEC3A. This is because 

of its place as a likely mediator of the APOBEC signature, with RNA 

expression that is more clearly elevated and more highly correlated with the 

number of APOBEC signature mutations than APOBEC3A (Thesis 

Introduction; Burns et al. 2013; Roberts et al. 2013). APOBEC3B RNA 

expression appears therefore to be a marker of APOBEC activity in cancer, 

notwithstanding the likely role of APOBEC3B as an enzymatic mediator of 

genomic cytosine deamination.

In addition to measuring APOBEC3B RNA expression, efforts were made to 

quantify the biochemical activity of APOBEC enzymes in cell extracts. This 

is detailed as part of the results given in this chapter, where a cytosine 

deaminase assay is developed for this purpose. It was reasoned that 

measuring the APOBEC-mediated cytosine deaminase activity of cell 

extracts might complement and expand upon RNA expression data by 

approximating both measures of protein expression as measured by 

Western blot and the APOBEC mutational signature as measured by NGS. 

It was also reasoned that the deaminase assay would reflect APOBEC 
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protein abundance regardless of whether or not inhibition of LINE-1 was 

mediated via deaminase-dependent or deaminase-independent 

mechanisms. 

3.1.1.4. Method of perturbation

The final factor considered was what experimental interventions could be 

used to test the hypothesis at hand. If, as hypothesised, LINE-1 activity 

does promote APOBEC activity, then methods of modulating LINE-1 activity 

can be used to elicit a concordant modulation of APOBEC activity. Methods 

for either increasing or decreasing LINE-1 activity were therefore 

considered. It was reasoned that these artificial interventions should ideally 

closely resemble the LINE-1 deregulation that occurs naturally in cancer, in 

order to avoid conditions that would be more likely to yield unrepresentative 

results. In addition, attempts were made to avoid experimental interventions 

that appeared to have a high risk of affecting APOBEC activity directly, 

rather than indirectly though their effect on LINE-1 activity.

A review of the literature indicated that interventions that could be 

considered for increasing LINE-1 activity were the use of DNA 

methyltransferase inhibitors, LINE-1 overexpression plasmids and p53 

inactivation. Although LINE-1 elements are silenced by methylation, DNA 

methyltransferase inhibitors were not used owing to concerns that inhibiting 

all cellular methylation could affect APOBEC activity by the derepression of 

genes other than LINE-1, including the APOBEC genes themselves. 
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Although LINE-1 overexpression could have been suitable, p53 inactivation 

was ultimately selected the preferred method for increasing LINE-1 activity. 

This was because LINE-1 overexpression using a transfected plasmid 

would likely lead to LINE-1 expression levels that were higher than those 

observed in cancer, and could elicit significant LINE-1 mediated DNA 

damage that might plausibly limit the cell’s recruitment of additional 

mutagens such as the APOBEC family. Given the purported link between 

p53 inactivation and LINE-1 activity, and the commonality of p53 

inactivation in cancer, it was reasoned that p53 inactivation might represent 

the best method of increasing LINE-1 activity from the options considered, 

in terms of recapitulating disease pathophysiology, despite the additional 

functions of p53 (reviewed in Kastenhuber and Lowe 2017) that could also 

be disrupted.

The interventions considered for decreasing LINE-1 activity were p53 

activation, RNA interference and the use of reverse transcriptase inhibitors. 

It was reasoned that p53 activation might yield representative results for the 

reasons described above, and could be readily achieved by the use of the 

MDM2 inhibitor Nutlin, which stabilises cellular p53 (Vassilev et al. 2004).   

This strategy was consequently pursued in the experiments described in 

this chapter. In contrast, RNA interference was not pursued as siRNAs 

against LINE-1 would, in principle, lead to genome-wide hypermethylation 

that might affect APOBEC expression indirectly. In support for this concern, 

it has been reported, for example, that siRNAs targeting LINE-1 typically 

lead to a 2-3 fold increase in global DNA methylation across a range of cell 

types (Ohms and Rangasamy 2014). Reverse transcriptase inhibitors were 
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also chosen for use in these experiments. RTIs have been used as a life-

long therapeutics in patients with HIV, with a relatively favourable side effect 

profile. Their side effect profile may be due to the relatively low 

concentrations of RTIs required to inhibit HIV and the apparent paucity of 

physiological roles for reverse transcriptases in human cells. Instead, a 

significant burden of side effects are thought to be mediated through off-

target inhibition of mitochondrial polymerases (Lewis, Day, and Copeland 

2003). Nucleoside reverse transcriptase inhibitors inhibit LINE-1 activity at 

concentrations comparable to those used to treat HIV, with an IC50 for the 

canonical RTI azidothymidine (AZT) on the order of 1 nM (Dai, Huang, and 

Boeke 2011). In contrast, telomerase reverse transcriptase is inhibited at 

much higher concentrations, with an IC50 for AZT on the order of 100 µM 

(Hukezalie et al. 2012). RTIs were therefore selected as relatively selective 

inhibitors of LINE-1. It was reasoned that if RTIs were found to modulate 

LINE-1 and APOBEC mutagenesis in vitro, then they might be more readily 

indicated as possible therapeutics for modulating mutagenesis in cancer.

3.1.1.5. Summary

To summarise, the aim of the experiments described in this chapter are to 

test the hypothesis that LINE-1 activity promotes APOBEC activity in 

cancer. Techniques in cell biology and biochemistry, involving the use of 

cultured cancer cells, were chosen to conduct these experiments. LINE-1 

activity was measured by qRT-PCR and APOBEC activity was measured by 

qRT-PCR of APOBEC3B and the use of a cytosine deaminase assay. p53 
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inactivation was chosen both to model LINE-1 and APOBEC derepression 

and as a method of elevating LINE-1 activity. Attempts to inhibit LINE-1 

activity by p53 activation via Nultin and RTIs were also pursued. The results 

of these experiments, as well as the rationale underpinning their iterative 

progression and modification, are given in the sections that follow. 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3.1.2. Investigating the effect of p53 activation and p53 inactivation 

on LINE-1 expression and APOBEC3B expression in the 

HCT116 cancer cell line

The introduction to this results chapter describes that cultured cancer cells 

were chosen as the system in which to test the hypothesis at hand, and that 

p53 inactivation was chosen as a putative method of recapitulating the 

LINE-1 and APOBEC3B derepression observed in cancer. A cell line that 

might be well-suited for p53 inactivation was therefore sought for these 

experiments. The HCT116 colorectal cancer cell line was chosen because a 

well-characterised p53 homozygous null version of the line was available. 

The pair of cell lines include HCT116 p53wt/wt cells and their otherwise 

isogenic p53-/- counterparts. This isogenic pair of cell lines was first 

generated by Vogelstein and colleagues by replacing the first codon of 

TP53 with its second intron, for use in some of the earliest studies of p53 

function, yielding seminal findings (Bunz et al. 1998). These cells were then 

made available for widespread use by other researchers in the field. Our 

laboratory is among those that have made use of these cells. We have 

validated their status and used them for a number of years to investigate 

mechanisms of DNA damage and repair (Hattori et al. 2014). A figure 

produced in collaboration with a postdoctoral colleague in our laboratory, Dr 

Amy Emery, validating the p53 status of the batch of cells used for these 

experiments by Western blot, is given below (Figure 3.1.1). The experiment 

was performed by Dr Emery during a period of restricted working in the 

Covid-19 pandemic.
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Figure 3.1.1 - p53 protein expression is present in HCT116 p53wt/wt cells 

and absent in HCT116 p53-/- cells, as determined by Western blot of three 

serial passages of these cell lines. HSP90 protein expression is measured 

as a loading control.

The first experiment conducted looked to ascertain whether mRNA 

expression of LINE-1 and APOBEC3B, as determined by qRT-PCR, was 

elevated in HCT116 p53-/- cells relative to HCT116 p53wt/wt cells. LINE-1 

qRT-PCR primers specific to L1Hs targeting ORF1 and ORF2, as well as 

qRT-PCR primers specific to APOBEC3B were identified from the literature  

and used in these experiments (Refsland et al. 2010; Marchetto et al. 

2013). The results are given below (Figure 3.1.2).
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Figure 3.1.2 - p53 loss is associated with a two-fold to three-fold increase 

in LINE-1 and APOBEC3B mRNA levels in HCT116 cells. Expression levels 

are normalised to ACTB mRNA expression and given as a fold change in 

HCT116 p53-/- cells relative to HCT116 p53wt/wt cells. Mean ± standard error 

of the mean. Three experimental repeats. Dashed line: fold change value of 

1. t-test p-values for ORF1 = 0.0196, ORF2 = 0.0414, APOBEC3B = 

0.0460.

The results in Figure 3.1.2 indicate that p53 inactivation in HCT116 cells 

does indeed lead to an increase in LINE-1 and APOBEC3B mRNA 

expression. The two-fold to three-fold increase observed in these cells in 

vitro is in keeping with the fold change that is observed in bioinformatic 

correlations of elevated LINE-1 mRNA expression in p53-deficient cancers 

(Wylie et al. 2016) and elevated APOBEC3B mRNA expression in p53-
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deficient cancers from in vivo TCGA samples (Results Chapter 2; Figure 

3.2.3).

These results suggest two findings. Firstly, that p53 inactivation in HCT116 

cells may indeed be a model that approximates LINE-1 and APOBEC3B 

derepression in cancer. And secondly, that p53 inactivation appears to lead 

to LINE-1 and APOBE3B activation.

These cell lines seemed likely to be an appropriate model system for 

LINE-1 and APOBEC3B derepression based on the results given in Figure 

3.1.2 and the rationale given in the introduction to this chapter. These cells 

were consequently used for further experimentation. The next experiment 

conducted aimed to examine whether increasing p53 activity might reduce 

LINE-1 and APOBEC3B expression - the inverse relationship to the first 

experiment given in Figure 3.1.2. To test this, p53 activity was increased 

using the MDM2 inhibitor Nutlin-3a, which stabilises cellular p53 protein 

levels. These experiments were conducted in the HCT116 p53wt/wt cells that 

express p53. First, the dose of Nutlin-3a that would lead to cell death was 

established, in order to identify a Nutlin-3a dose that would promote p53 

activity in these cells without causing cell death. This was achieved by 

treating cells with a dilution series of Nutlin-3a concentrations, and cellular 

survival was measured three days after treatment by the Sulforhodamine B 

Biomass Assay. The results are given below in Figure 3.1.3.
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Figure 3.1.3 - Dose-survival curve for HCT116 p53wt/wt cells three days after 

treatment with Nutlin-3a. Mean ± standard error of the mean. Three 

experimental repeats.

The results in Figure 3.1.3 indicate that Nutlin-3a concentrations greater 

than 10-6 M appear to lead to increasing cell death, with almost complete 

cell death at 10-4 M. This cell death is presumably due to p53-mediated 

apoptosis, with an additional contribution from the effect Nutlin-3a toxicity. 

Based on the data given in Figure 3.1.3, a Nutlin-3a dose of 10-6 M (1 µM) 

was chosen as the dose that would promote p53 activity without causing 

cell death.
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In the next experiment, HCT116 p53wt/wt cells were treated with 1 µM 

Nutlin-3a, and expression levels of LINE-1 and APOBEC3B were measured 

by qRT-PCR after three days. The results are given below in Figure 3.1.4.

Figure 3.1.4 - Treatment with 1 µM Nutlin-3a leads to a moderate reduction 

in LINE-1 and APOBEC3B mRNA levels in HCT116 p53wt/wt cells. 

Expression levels are normalised to ACTB expression. Mean ± standard 

error of the mean. Three experimental repeats. Dashed line: fold change 

value of 1. t-test p-values for ORF1 = 0.0865, ORF2 = 0.0939, APOBEC3B 

= 0.184.

The data given in Figure 3.1.4 suggest that increasing p53 activity might 

lead to a decrease in LINE-1 and APOBEC3B mRNA expression in these 
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cells. However, these changes do not individually reach statistical 

significance. Taken together with the results given in Figure 3.1.2 (which 

show an inverse pattern when p53 is inactivated) the overall trends 

observed in both figures are in keeping with the notion that p53 is an 

inhibitor of LINE-1 and APOBEC3B mRNA expression in HCT116 cells. This 

would, in turn, be in keeping with the notion that p53 inactivation might lead 

to the activation of LINE-1 and APOBEC3B, and lend weight to the use of 

p53 inactivation in these cells as a means to recapitulate LINE-1 and 

APOBEC3B derepression as is observed in vivo. Based on this rationale, 

these cells were taken forward as a model system for further experimental 

interventions and mechanistic investigation. 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3.1.3. Investigating the effect of the reverse transcriptase inhibitor 

azidothymidine on LINE-1 expression and APOBEC3B 

expression in the HCT116 cell line

The data presented in the previous section, section 3.1.2, do not provide 

insight into the extent to which APOBEC3B modulation is mediated by p53 

alone, or whether LINE-1 may mediate some or all of the effects observed 

on APOBEC3B. In an attempt to disentangle these two factors, a LINE-1 

inhibitor was used in both HCT116 p53wt/wt and HCT116 p53-/- cells, and 

mRNA expression was again measured by qRT-PCR. As described in the 

introduction to this chapter, the method of LINE-1 inhibition selected was 

pharmacological inhibition by nucleoside reverse transcriptase inhibitors 

(RTIs). In the experiments in this section, the RTI azidothymidine (AZT) was 

used to inhibit LINE-1. AZT was chosen as it plays a canonical role as the 

first RTI developed for use in patients with HIV, and was described to be an 

effective inhibitor of LINE-1 activity (Jones et al. 2008; Dai, Huang, and 

Boeke 2011).

First, the toxicity of AZT in these cell lines was established. This was 

determined by treating cells with a dilution series of AZT, and measuring cell 

death by  Sulforhodamine B Biomass Assay. The results are given below in 

Figure 3.1.5.
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Figure 3.1.5 - Dose-survival curves for HCT116 p53wt/wt cells and HCT116 

p53-/- cells two days after treatment with AZT. Mean ± standard error of the 

mean. Three experimental repeats.

The results in Figure 3.1.5 indicate that AZT concentrations above 10-5 M 

(10 µM) appear to lead to cell death. Based on these data, concentrations 

of AZT above 10 µM were not used in subsequent experiments.

Next, HCT116 p53wt/wt cells and HCT116 p53-/- cells were again treated with 

a dilution series of AZT at concentrations of 10µM or below. APOBEC3B 

mRNA levels were measured by qRT-PCR. The results are given below in 

Figure 3.1.6. 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Figure 3.1.6 - Dose-response curves for APOBEC3B mRNA expression in 

HCT116 p53wt/wt cells and HCT116 p53-/- cells, two days after treatment with 

AZT. Expression levels are normalised to ACTB expression and the 

untreated p53wt/wt group. Mean ± standard error of the mean. Three 

experimental repeats. t-test p-value comparing 10 µM conditions = 0.0056.

The results in Figure 3.1.6 indicate that treatment with AZT leads to an 

increase in APOBEC3B mRNA expression in HCT116 p53-/- cells. In 

general, this effect appears to increase as the dose of AZT increases, 

although the data point for HCT116 p53-/- cells treated with 10-7 M AZT does 

not appear to be in keeping with this general trend. The maximal increase in 

APOBE3B mRNA expression in the HCT116 p53-/- cells is approximately 

two-fold, when treated with the highest doses of AZT, However, there is little 

to no increase in APOBEC3B mRNA expression in HCT116 p53wt/wt cells as 
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AZT concentrations increase. These data appear to contradict the 

hypothesis at hand, and instead support the notion that LINE-1 inhibition 

promotes (rather than inhibits) APOBEC activity in states of LINE-1 

derepression.

After conducting the experiment shown in Figure 3.1.6, it was reasoned that 

the effect of AZT on APOBEC3B mRNA expression might be more 

pronounced if samples were collected three days following treatment with 

AZT rather than after two days. This was in keeping with the experience of 

laboratory colleagues, who reported that gene expression changes in their 

work could peak after three days rather than two. A prolonged treatment 

period is also in keeping with reports in the literature. For example, Kanu 

and colleagues treat cells for 4-10 days before detecting changes in 

APOBEC3B expression in cancer cells (Kanu et al. 2016).

The experiment was repeated using the longer time interval of three days, 

using the highest AZT concentration of 10 µM. In addition, LINE-1 mRNA 

levels were measured to investigate whether the unexpected result was due 

to any unexpected changes in LINE-1 mRNA expression mediated by AZT 

treatment. The results are given below in Figure 3.1.7.
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Figure 3.1.7 - Treatment with 10 µM AZT leads to an increase in 

APOBEC3B mRNA levels in HCT116 p53-/- cells but not their HCT116 p53wt/

wt counterparts, as measured by qRT-PCR three days after treatment. 

LINE-1 expression shows no substantial change. Expression levels are 

normalised to ACTB expression and the untreated group in all four 

conditions. Mean ± standard error of the mean. Three experimental repeats. 

t-test p-value for p53-/- + 10 µM AZT = 0.000537.

The results shown in Figure 3.1.7 indicate that LINE-1 mRNA expression is 

not substantially altered by treatment with 10 µM AZT after three days. In 

contrast, APOBEC3B mRNA expression is elevated by a factor of around 

twelve after three days. This is again observed to be present in HCT116 

p53-/- cells but not their HCT116 p53wt/wt counterparts. Measurement after an 

additional day therefore does indeed lead to a larger increase than the two-

107  

A1 A2 A3A A3B A3C A3DE A3F A3G A3H A4
0

2

4

6

8

10

Fold change in
mRNA expression



fold increase in APOBEC3B mRNA expression observed in the previous 

experiment given in Figure 3.1.6. This increase does not appear to be 

attributable to unexpected increases in LINE-1 mRNA expression following 

AZT treatment. The data given here in Figure 3.1.17 hence further 

contradict the hypothesis at hand, and instead support the notion that 

LINE-1 inhibition promotes APOBEC activity in states of LINE-1 

derepression.

To summarise, the results given thus far in this chapter together indicate 

that, in HCT116 cells, APOBEC3B expression can be modulated by 

modulating p53 activity, and can also be modulated by modulating the 

reverse transcriptase activity of LINE-1 when p53 is inactive. These results 

achieved aims described in the introduction to this chapter and represented 

novel observations, some of which have since also been shown by other 

laboratories (see section 3.1.6).

While the results from modulating p53 activity were expected, the results 

from treating cells with AZT were not. This prompted an attempt to 

investigate these observations in greater detail, using alternative 

techniques to test the same hypothesis. Specifically, other methods of 

measuring APOBEC activity and inhibiting LINE-1 activity were pursued. A 

biochemical APOBEC assay and the use of other RTIs other than AZT were 

used to address each of these aims, respectively. The results obtained from 

these two pursuits are given in the remaining two sections of this chapter. 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3.1.4. High-throughput cytosine deaminase assay development

In the experiments given thus far in this chapter, cancer-associated 

APOBEC activity has been approximated by using APOBEC3B mRNA 

expression as a surrogate measure. Section 3.1.1.3 in the introduction to 

this chapter gives the rationale for this. The reasons for this choice include 

the fact that APOBEC3B mRNA expression is most clearly elevated in 

cancer relative to the expression of other APOBEC3 genes, APOBEC3B 

mRNA expression is most closely correlated to the number of APOBEC 

signature mutations relative to the expression of other APOBEC3 genes, 

and the C>T mutations at TCW residues (W = A or T) that define the 

APOBEC signature are in keeping with the enzymatic sequence preference 

of APOBEC3B or APOBEC3A cytosine deamination (Burns et al. 2013; 

Roberts et al. 2013; Taylor et al. 2013). This evidence indicates that 

APOBEC3B mRNA expression is, at least, a marker of APOBEC activity in 

cancer, notwithstanding the likely role of deamination by expressed 

APOBEC3B protein in causing APOBEC signature mutations.

Despite the evidence in support of this choice, there are also flaws evident 

in using APOBEC3B mRNA expression as surrogate a measure of 

APOBEC activity. These include the fact that APOBEC3B mRNA 

expression may not accurately represent the extent of APOBEC3B protein 

expression or the extent of any resultant APOBEC signature mutations in 

genomic DNA. In addition, mutagenic APOBEC activity might also be 

mediated by APOBEC3A rather than APOBEC3B. A method of measuring 
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APOBEC activity that could account for some or all of these flaws was 

consequently pursued.

Measuring APOBEC protein levels by Western blot or the number of 

APOBEC signature mutations by DNA sequencing were not pursued owing 

to practical constraints, as is also described in section 3.1.1.3. Instead, a 

biochemical method, measuring the cytosine deaminase activity of 

expressed APOBEC3A and APOBE3B enzymes, was pursued.

This approach in centred upon measuring the extent to which cell extracts 

can deaminate TCW residues in synthetic DNA probes. This is thought to 

be a specific marker of the enzymatic activity of APOBEC3A and 

APOBEC3B, and is therefore an indirect measure of APOBEC3A and 

APOBEC3B protein levels in these cells. Deamination of exogenous TCW 

residues in synthetic probes can also be used to approximate the formation 

of APOBEC signature mutations at endogenous TCW residues in the 

genome, which is the measure of APOBEC activity that appears to be most 

directly implicated in the pathogenesis of cancer. The features of such an 

assay therefore address some of the flaws highlighted above in using only 

APOBEC3B mRNA expression when investigating APOBEC activity.

This section describes the process of developing this type of assay in our 

laboratory. The methods draw in large part from, and attempt to expand 

upon, assays for APOBEC cytosine deaminase activity described in the 

literature (Burns et al. 2013; Holtz, Sadler, and Mansky 2013; Vieira et al. 

2014). The biochemical reactions required for the cytosine deaminase 
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assay described in this section are presented diagrammatically in Figure 

3.1.8 below, with the protocol detailed in the Materials and Methods section.

Figure 3.1.8 - A diagrammatic representation of reaction steps in the 

cytosine deaminase assay.

The assay is conducted by mixing a cell lysate containing APOBEC 

enzymes with a labelled ssDNA substrate. The ssDNA is labelled with a 

green 5' fluorescein fluorophore and a 3' TAMRA fluorescence quencher. 

The two labels act as a Förster resonance energy transfer (FRET) pair. The 

green fluorescence of the intact ssDNA probe is quenched, since the 

fluorescein emission spectrum overlaps with the TAMRA excitation 

spectrum when the two are in close proximity (Edelman, Cheong, and Kahn 

2003). However, if this ssDNA is cleaved, FRET is effectively eliminated by 
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the loss of proximity of the two labels (Edelman, Cheong, and Kahn 2003; 

Burns et al. 2013). This leads to a loss of quenching, and an increase in 

green fluorescence that is proportional to the amount of cleaved ssDNA.

The labelled ssDNA probe used in these experiments contains a single 

cytosine in an TCA motif, as is described to be favoured by APOBEC3A and 

APOBEC3B (Taylor et al. 2013). Deamination of this cytosine by 

APOBEC3A or APOBEC3B in cell extracts would consequently lead to the 

formation of a single uracil. The addition of exogenous uracil DNA 

glycosylase (UDG) then leads to uracil excision and the formation an abasic 

site. Lastly, the addition of exogenous NaOH leads to ssDNA cleavage at 

this abasic site, liberating fluorescein from its TAMRA quencher. As result, 

APOBEC activity leads to green fluorescence once all reaction steps are 

complete.

The assay format that was first trialled was based on protocols given in 

Burns et al. (2013) and Vieira at al. (2014). These were selected as they 

were designed for use in high-throughput workflows. The protocols use a 

small reaction volume, with 20 µl reactions enabling processing on 384-well 

plates. A high-throughput assay protocol was pursued in order to facilitate 

the investigation of APOBEC activity in our laboratory in a wide range of 

treatment conditions in future work.

This section describes the successful development of a high-throughput 

assay, through optimisation and the inclusion of control conditions that were 

not previously described in the literature reviewed and which enable assay 
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interpretation. However, a low-throughput deaminase assay is then 

ultimately used in the subsequent section, in order to better resolve the 

small difference between APOBEC-specific deaminase activity and non-

specific nuclease activity observed in the HCT116 cells used. The 

experiments conducted in developing the high-throughput assay will now be 

described in turn.

The first experiment conducted with this assay aimed to vary a number of 

protocol conditions simultaneously in order to identify optimal reaction 

conditions. A number of control conditions that were not present in the 

protocols found in the literature were included in an attempt to aid assay 

interpretation. Firstly, the protein concentration of the cell lysate was varied 

across a dilution series. Incubation times were also varied, so that results 

were measured after either one, two or three hours of incubation. In 

addition, a set of reactions lacking the fluorescently labelled ssDNA were 

used as a negative control to determine if there was any endogenous 

fluorescence unexpectedly arising from the remaining components of the 

reaction. Lastly, another set of reactions lacking the addition of exogenous 

UDG were used as another negative control, aiming to test the premise that 

exogenous UDG would be required for the reaction to proceed fully to 

ssDNA cleavage.

The cells used for the experiments described in this section are the HCT116 

p53-/- cells. These were chosen because they were found to have elevated 

APOBEC3B mRNA, as described in experiments given earlier in this 

chapter, and were consequently deemed more likely to yield a detectable 
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signal of APOBEC cytosine deaminase activity. The results of the first 

deaminase assay experiment are given below in Figure 3.1.9. 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Figure 3.1.9 - Results of the initial cytosine deaminase assay experiment. 

The data are normalised to the maximum signal measured across all 

conditions. Mean ± standard error of the mean. Three experimental repeats.

The results shown in Figure 3.1.9 indicate a number of findings that were 

used to guide assay optimisation. These will be described in turn. Firstly, it 
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appears that reactions lacking the fluorescent ssDNA probe have negligible 

levels of fluorescence in the excitation and emission wavelengths used for 

the assay. This indicates that fluorescence arising from these remaining 

components of the reaction are unlikely to affect assay interpretation. This 

control condition was therefore consequently excluded from subsequent 

experiments.

Incubation times were also considered. These data suggest that incubation 

times of two hours or more lead to a greater degree of fluorescence, with 

the largest values for fluorescence arising in the two hour and three hour 

incubation conditions. As a result, a reaction time of two hours was chosen 

as the incubation time, in keeping with the incubation period used by Burns 

et al. and Vieira et al.

In terms of protein concentration of the lysate, the data in Figure 3.1.9  

suggest that the reaction proceeds more readily at higher concentrations. 

However, this appeared to be a weak trend, and the data points did not 

form an asymptotic curve that would be indicative of a reaction series 

reaching completion. As a result, higher protein concentrations were used in 

subsequent experiments in an attempt to promote reaction completion.

Lastly, the data showing the control reactions lacking UDG were 

considered. These data indicate that, under these conditions, the vast 

majority of ssDNA probe cleavage does not depend on the addition of 

exogenous UDG. This is not in keeping with the assumptions made for the 

assay as used in the literature and outlined in the text pertaining to Figure 
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3.1.8. It was speculated that this may be to the action of endogenous UDG 

in the cell lysate, or may also be due to ssDNA probe degradation that was 

not dependent upon APOBEC activity, but may instead be mediated by 

endogenous DNAses in the cell lysate. As a result, additional control 

conditions attempting to measure probe degradation that is not specific to 

the activity of APOBEC3A and APOBEC3B were introduced. 

To summarise the conclusions drawn from the data in Figure 3.1.9, 

autofluorescence was shown to be negligible and a two hour incubation 

time appeared to be optimal. Higher protein concentrations and the use of 

control conditions for measuring non-specific probe degradation should be 

introduced. These conclusions were incorporated in designing the 

subsequent experiment, shown in Figure 3.1.10 and detailed below.

In the experiment shown in Figure 3.1.10, attempts were made to 

characterise and quantify non-specific degradation arising from the samples 

in the experiment. This was pursued by sourcing two additional negative 

control ssDNAs. The first new ssDNA contains no cytosines (TTA in place of 

TCA). Since this ssDNA contains no cytosines, it cannot be subject to 

APOBEC-mediated cytosine deamination, and therefore all degradation of 

this control probe must be due non-specific causes. Degradation of this 

probe does not depend on uracil formation, and any increase in 

fluorescence is therefore independent of UDG activity.

The second new ssDNA control used contains a single cytosine in an ACA 

rather than a TCA sequence context. This cytosine is in a context that is not 
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preferred by APOBEC3A, APOBEC3B, or indeed any of the APOBEC3s, 

which all prefer a 5’ thymidine (Conticello et al. 2007; Olson, Harris, and 

Harki 2018). Studies where APOBEC3A or APOBEC3B are overexpressed 

in yeast with subsequent genomic sequencing indicate that the vast 

majority of mutations occur at TCA residues, with ACA residues accounting 

for the site of approximately 5% of mutations mediated by APOBEC3A and 

1% of mutations mediated by APOBEC3B (compared in Chan et al. 2015). 

This ACA control probe is therefore included in an attempt to characterise 

any degradation that might arise from the presence of cytosine alone. This 

may be useful since cytosine is known to be susceptible to additional 

damage in commonly-used biochemical protocols. For example, it is known 

that cytosine deamination that occurs in the process of preparing samples 

for NGS is a major cause of sequencing artefacts (Chen et al. 2014).
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Figure 3.1.10 - Cytosine deaminase assay results following one round of 

optimisation and the addition of negative controls. The data are normalised 

to the no C control reaction containing lysis buffer alone (i.e. lysate protein 

concentration of zero). Test ssDNA = TCA, ACA control = ACA, no C control 

= TTA. Mean ± standard error of the mean. Three experimental repeats.

The results in Figure 3.1.10 indicate that increasing the protein 

concentration produces a more prominent degradation curve, as predicted 

from the previous experiment. They also indicate that it is possible to 

identify non-specific degradation, and reaffirm that non-specific degradation 

is a significant contributor to total degradation. For example, there is a 

notable degree of ‘no C’ ssDNA degradation. This degradation is UDG-
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independent, and is therefore due to the activity of nucleases or other DNA-

degrading factors in the lysate. These data appear to reaffirm the need to 

include a measure of non-specific degradation in this assay in future.

Figure 3.1.10 also shows that the test ssDNA generally produces more 

fluorescence than the two control ssDNA under these reaction conditions. 

This suggests that this additional fluorescence represents detectable 

APOBEC3A/APOBEC3B activity. However, this trend is not entirely clear 

given the errors in the readings made and the fact that non-specific 

degradation appeared to sometimes exceed degradation that was thought 

to be specific.  It was speculated that this was due to a low signal-to-noise 

ratio. As a result, efforts were made to increase the dynamic range of the 

assay in order to clarify the trend suggested by Figure 3.1.10.

To summarise, the data in Figure 3.1.10 indicate that increasing protein 

concentration increases ssDNA degradation, that a significant amount of 

ssDNA degradation is non-specific, and that negative control ssDNA 

degradation sometimes overlapped with or exceeded degradation specific 

to cytosine deamination, which was thought could be in part due to a low 

dynamic range. High protein concentrations and negative control ssDNAs 

were therefore used in subsequent experiments. The remaining 

experiments in this section attempt to identify and improve upon the factors 

affecting the dynamic range of the assay. Three experiments were 

conducted, given in Figure 3.1.11, Figure 3.1.12 and Figure 3.1.13. These 

were to test the role of ssDNA concentration, ssDNA length and uracil 

formation, respectively, in determining the dynamic range.
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The dynamic range of the assay is the ratio of its maximum signal to its 

minimum signal. The dynamic range may therefore be increased either by 

increasing the assay’s maximum signal or by decreasing the assay’s 

minimum signal.

The first factor considered was whether ssDNA concentration could be 

varied in order to improve the assay’s dynamic range. Increasing ssDNA 

concentration could increase the dynamic range of the assay if ssDNA 

availability is the limiting factor in the reaction. However, this comes at the 

expense of increased basal fluorescence when no ssDNA cleavage has 

occurred, such as in the control condition containing lysis buffer alone 

which lacks any cell lysate. These factors contribute to a trade-off that 

increasing the ssDNA concentration brings to potentially improving the 

dynamic range of the assay. Decreasing ssDNA concentration, rather than 

increasing it, in order to improve the dynamic range of the assay is also 

subject to the same trade-off. If ssDNA availability is not the limiting factor in 

the reaction, then reducing ssDNA concentration may improve the dynamic 

range of the assay.

The data for the experiments conducted in Figure 3.1.10 were considered 

when evaluating whether ssDNA concentration should be decreased or 

increased in an attempt to improve the dynamic range. It was thought that 

the curves produced should become asymptotic if the reaction reached 

completion, indicating that ssDNA availability might not be a limiting factor. 

The shape of the ‘test ssDNA’ curve was in keeping with possible reaction 
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completion, but the other conditions did not show this. As a result, it was not 

clear whether these experiments supported increasing or decreasing the 

concentration of ssDNA. The data shown in Figure 3.1.9 were also 

reviewed. These data indicated that ssDNA fluorescence was several fold 

higher than that of the remaining reaction materials at baseline, supporting 

the notion that reducing ssDNA concentration could be beneficial. Since it 

was not clear from the experiments conducted how ssDNA should be 

varied, both increasing and decreasing ssDNA concentration were trialled in 

an attempt to improve the dynamic range. This was done using reactions at 

either the maximum protein concentration that could be achieved by the 

protocol, or using lysis buffer alone. The results are given in Figure 3.1.11.
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Figure 3.1.11 - ssDNA concentration does not significantly alter the assay’s 

dynamic range. The data are normalised to the 1 pmol, lysis buffer only 

reaction. Mean ± standard error of the mean. Three experimental repeats.

Figure 3.1.11 shows that the dynamic range of the assay does not markedly 

vary as the ssDNA concentration is varied. The protocols given in the 

literature use 4 pmol of ssDNA per 20 µl reaction. The data above indicate 

that the dynamic range reduces from 1.32 to approximately 1.22 if the 

amount of ssDNA is either increased or decreased four-fold, to 1 pmol or 16 

pmol respectively. The dynamic range at the 2 pmol or 8 pmol conditions 
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Dynamic range 1.23 1.35 1.32 1.34 1.21



appears to increase by 0.03 and 0.02 respectively compared to the 4 pmol 

condition. It was reasoned that any possible improvements suggested by 

these differences are negligible, given that the standard error of the mean 

for the data points given in Figure 3.1.10 were comparatively large. As a 

result, the original 4 pmol condition was chosen as the preferred ssDNA 

amount in subsequent experiments, in order to maintain consistency and 

comparability with published protocols where possible. 

After assessing ssDNA concentration, the next factor considered was 

whether ssDNA length could affect the dynamic range of the assay. As 

described above and shown in Figure 3.1.9, background ssDNA 

fluorescence is much higher than the fluorescence of the remaining reaction 

materials.  One way to reduce this basal fluorescence, aside from reducing 

the amount of ssDNA in each reaction, is to improve the efficiency of FRET 

quenching. FRET efficiency is dependent upon the sixth power of the 

distance between two labels (Edelman, Cheong, and Kahn 2003), and as a 

result, FRET efficiency can be markedly altered as this distance is changed. 

A shorter 17 nucleotide ssDNA was identified in the literature (Burns et al. 

2013), for comparison with the 40 nucleotide ssDNA used up to this point 

(Vieira et al. 2014). In order to assess FRET quenching efficiencies, three 

ssDNAs were used. These were the new 17-mer, the old 40-mer, and the 

40-mer labelled with a 5’ fluorescein alone (missing a 3’ TAMRA quencher). 

Their relative fluorescence is given in Figure 3.1.12.
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Figure 3.1.12 - Relative fluorescence intensity of 4 pmol labelled ssDNA, 

untreated and dissolved in 20 µl H2O. H2O = water only negative control, 5’-

Flc = 40-mer labelled with fluorescein only - positive control. Values 

normalised to 5’-Flc.

The results in Figure 3.1.12 indicate that the FRET quenching efficiency 

was improved from approximately 40% to approximately 90% by reducing 

the distance between the 5’ and 3’ labels. This was thought to be likely to 

lead to an improvement in the assay’s dynamic range. The possibility of 

further shortening the ssDNA was considered. However, this was not 

pursued, owing to concerns that an unduly short ssDNA might no longer act 

as a substrate for APOBEC-mediated deamination (as described in Thielen 

et al. 2007 for APOBEC3G), unlike the 17-mer which has been purported to 

be subject to such deamination in the literature.
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After varying ssDNA length and concentration, the final factor considered in 

assessing the dynamic range of the assay was the role of uracil formation. 

This was achieved by the inclusion of ssDNA that, in place of having a 

single cytosine, instead included a single uracil. This was used in order to 

assess the extent to which action by UDG and NaOH-mediated hydrolysis 

were limiting the reaction, rather than cytosine deamination. It was 

reasoned that this uracil-containing ssDNA would in effect be a positive 

control, indicating the maximum degree of ssDNA cleavage achievable in 

these reaction conditions.

The uracil-containing positive control ssDNA was used in the experiments 

given in Figure 3.1.13. This figure repeats the experiments done in Figure 

3.1.10, but uses a new set of shorter 17 nucleotide ssDNAs, as discussed 

in relation to Figure 3.1.12. The results are given below, in the final figure of 

this section. 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Figure 3.1.13 - HCT 116 p53-/- cells are subjected to the final iteration of the 

high throughput deaminase assay. Test ssDNA = TCA, ACA control = ACA, 

no C control = TTA, U control = TUA. Mean ± standard error of the mean. 

Three experimental repeats.

Figure 3.1.13 shows that the new, shorter ssDNAs contribute to an 

improved dynamic range. Here, the dynamic range is approximately 3.5-

fold. This can be compared to the dynamic range using the longer ssDNAs 

in Figure 3.1.10, which is approximately 2-fold. These data also show that 

the new, uracil-containing positive control ssDNA facilitates the 

interpretation of the assay’s results by giving a measure of the maximum 

limit of the reaction. The data in Figure 3.1.13 indicate that the reaction 

nears completion at high protein concentrations, as might be speculated 

from the shape of the test ssDNA curve in Figure 3.1.10. The data in Figure 
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3.1.13 therefore confirm that the changes made to the assay lead to an 

improved dynamic range, with control ssDNAs that enable assay 

interpretation by defining the upper and lower bounds of the reaction.

In terms of assessing APOBEC activity, the data in Figure 3.1.13 indicate 

that the vast majority of ssDNA degradation that occurs under these 

conditions is non-specific; there is little difference between the curves for 

the test ssDNA, ACA ssDNA and no C ssDNA. This suggests that cytosine 

deaminase activity that is specific to APOBEC3A and APOBEC3B is not 

detectable under these conditions. This is contrast to the results in Figure 

3.1.10, where the test ssDNA curve was distinguishable from the ACA and 

no C ssDNA curves. To speculate, this may indicate that the 17-mer used to 

improve the dynamic range may have lost some or all of its substrate 

specificity to APOBEC3A and APOBEC3B. Alternatively, the difference 

apparent in Figure 3.1.10 may be a function of statistical noise owing to a 

low dynamic range - this would suggest that the result in Figure 3.1.13 is a 

more accurate one, and that perhaps the HCT116 cells used have too low a 

rate of APOBEC activity or too high a rate of non-specific nuclease activity 

to elicit a prominent APOBEC-specific signal.

In summary, this section details the development of a high-throughput 

cytosine deaminase assay in our laboratory. The experiments conducted 

identify a number of factors that influence the assay’s ability to detect 

APOBEC activity. The variables investigated include incubation time, 

protein concentration, autofluorescence, ssDNA concentration and ssDNA 

length. The inclusion of novel ssDNA controls enable interpretation of the 
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assay, and confirm that the variables optimised lead to an assay with an 

improved dynamic range. These results optimise and expand upon what 

has previously been published on high throughput cytosine deaminase 

assays. In the next and final section of this chapter, these results are used 

to inform the use of a low-throughput cytosine deaminase assay, which is 

used in an attempt investigate APOBEC activity as it pertains to LINE-1 

activity.

129  



3.1.5. Investigating the effect of the reverse transcriptase inhibitors 

3TC and d4T on APOBEC cytosine deaminase activity in the 

HCT116 cell line

In this final section, the results accumulated thus far in the chapter are 

taken together to design an experiment that attempts to test the hypothesis 

that LINE-1 activity promotes APOBEC activity. APOBEC activity is 

measured using a low-throughput deaminase assay, while LINE-1 activity is 

modulated using a combination of the reverse transcriptase inhibitors 3TC 

and d4T. The rationale for these two choices is given below.

In terms of the deaminase assay, the results in the previous section 

indicated a low capacity for the FRET-based, high-throughput assay to 

discriminate APOBEC activity from non-specific activity in the conditions 

used. It was speculated that the length of the ssDNA used could be a key 

factor. On one hand, shortening the ssDNA promotes FRET quenching 

efficiency. However, on the other hand, shortening the ssDNA could reduce 

the ability for APOBEC enzymes in the lysate to recognise the ssDNA as a 

substrate (Thielen et al. 2007). One way to address this trade-off would be 

to design a series of ssDNAs between 17 nucleotides and 40 nucleotides in 

length, to identify if there is an intermediate ssDNA length that retains both 

a high dynamic range and, putatively, retains the ability to be metabolised 

by APOBEC enzymes in the lysate. This was not pursued, as an alternative 

explanation for the observations made is that, in the HCT116 p53-/- cells 

used, APOBEC activity could simply be too low relative to a high activity of 

non-specific nuclease activity; the results of a length series of ssDNAs 
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might not be able to indicate whether this is indeed the case if no ssDNA 

that optimises the putative length trade-off is identified.

An alternative deaminase assay was consequently pursued. This version of 

the assay is not FRET-based. It is based on the use of the 40-mer ssDNA 

which is only labelled with a 5-fluorescein. The fluorescently-labelled ssDNA 

reaction products are size-separated on a TBE-Urea gel. This gel-based 

method is not a high-throughput one. However, it does enable the detection 

of a 12 nucleotide-long band that is specific to ssDNA cleavage at the site 

of the single cytosine within it. Given that non-specific ssDNA degradation 

could generate a wide range of ssDNAs from 1 to 39 nucleotides in length, 

size-separating the reaction products should, in principle, enable the 

detection of APOBEC-specific activity at higher sensitivity than the high-

throughput FRET-based assay. This assay should enable direct 

visualisation of the sites of specific and non-specific ssDNA degradation, 

with the dynamic range in effect enhanced by limiting the range of ssDNAs 

examined to only those of 12 nucleotides in length. The control ssDNAs 

chosen for this assay were the no C and U controls, to enable identification 

of the uncleaved and specifically-cleaved bands, respectively. The ACA 

control was not included, as it was observed that there was no substantial 

difference between this ssDNA and the no C ssDNA in the experiments 

given in Figure 3.1.10 and Figure 3.1.13.

The role of the deaminase assay is to measure APOBEC activity as it 

pertains to LINE-1 activity. In this final section, LINE-1 activity is modulated 

using 3TC and d4T.  These were chosen as an alternative to AZT, which in 
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the experiments conducted led to an unexpected increase in APOBEC3B  

mRNA expression in HCT116 p53-/- cells, as shown in Figure 3.1.6 and 

Figure 3.1.7. The introduction and third results chapter of this thesis discuss 

evidence that the autoinflammatory pathways in Aicardi-Gouitères 

syndrome might be analagous to the pathways associated with in APOBEC 

activation in cancer. RTIs have been used in an attempt to rescue AGS 

phenotypes, both in model systems and in clinical trials, in keeping with the 

hypothesis that AGS is caused by a defect in retrotransposon repression. In 

a mouse model of AGS, AZT monotherapy fails to rescue the disease 

phenotype (Stetson et al. 2008), and it has been proposed that the chain-

terminating effect of AZT on reverse transcriptases leads to the release of 

short ssDNAs that ultimately promote, rather than inhibit, innate immune 

pathways (Beck-Engeser, Eilat, and Wabl 2011). Instead, subsequent 

studies report that the use of a combination of RTIs is effective in rescuing 

AGS phenotypes. For example, Thomas et al. describe the use of 10 µM 

3TC and 1 µM d4T in rescuing a LINE-1 mediated autoinflammatory 

phenotype in an human AGS neuronal cell culture model. The three RTIs 

share a common mechanism of action of inhibiting the active site of the 

LINE-1 reverse transcriptase - however, in vitro inhibition studies of purified 

ORF2 indicate that d4T is the most potent, followed by 3TC and then AZT, 

which may explain their differential efficacy in these contexts (Baldwin et al. 

2023).

Given the use of a human model system, and the demonstration that the 

effect of these RTIs was mediated through LINE-1 in the Thomas et al. 

study, 3TC and d4T were chosen for use in the experiments in this section, 
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at the concentrations reported. Both p53-proficient and p53-deficient 

HCT116 cells were compared using the gel-based deaminase assay 

described above, either treated or untreated with these new RTIs. The 

results are given below, in Figure 3.1.14. Since ssDNAs used are 

conjugated to a fluorescein marker that may alter ssDNA migration, the no 

C and U controls were used as markers for interpreting the output of the  

instead of using a ssDNA ladder without conjugated fluorescein. 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a

b

Figure 3.1.14 - A representative TBE-Urea gel (a) and its quantification (b) 

indicating that 3TC and d4T inhibits cancer-associated APOBEC activity in 

HCT116 p53-/- cells. The fluorescence ratio is calculated by dividing the 

intensity of the lower (cleaved) band by the intensity of the upper 

(uncleaved) band. Three experimental repeats.
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The results in Figure 3.1.14a indicate that the TBE-Urea gel separates the 

ssDNA in the reaction mixture as expected, with the uncleaved input ssDNA 

and cleaved APOBEC-specific product identifiable as distinct bands. The no 

C lane shows a strong band of uncleaved ssDNA with a relatively low 

intensity tail of bands, suggesting that the non-specific nuclease activity is 

low. The U lane shows a strong APOBEC-specific band, with almost no 

uncleaved ssDNA, indicating that the reaction proceeds to completion if 

uracil is generated. Comparing the APOBEC-specific band in the U lane to 

the lanes containing the test ssDNA shows that, in general, the band in the 

U lane is of notably higher intensity. These data suggest that the rate of 

APOBEC activity in the HCT116 cells is low, rather than there being a 

particularly high rate of non-specific nuclease activity.

Figure 3.1.14b gives the digitally-quantified ratio of the intensity lower 

cleaved band to the upper uncleaved band in the test ssDNA conditions. 

These data indicate that the RTI combination of 3TC and d4T inhibits 

cancer-associated APOBEC activity in HCT116 p53-/- cells. In this condition, 

around a quarter of the input ssDNA is cleaved to form the 12 nucleotide 

product. In contrast, the other three conditions show a fraction of around a 

half.

These data can be compared to the previous results in this chapter, where 

APOBEC3B mRNA expression was measured in relation to p53 inactivation 

and AZT treatment. Previously, APOBEC3B mRNA expression appeared 

two-fold to three-fold higher in HCT116 p53-/- cells compared to HCT116 

p53+/+ cells. No such difference in APOBEC activity is apparent in Figure 
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3.1.14. This could be due to a discordance between APOBEC3B mRNA 

expression and its expression at protein level or deaminase activity of the 

expressed protein. This could also be due to the contribution of 

APOBEC3A; APOBEC3A mRNA expression levels were not measured in 

previous experiments. However, as before, RTI treatment leads to an 

APOBEC response only when p53 is deficient and LINE-1 is derepressed. 

Here, enzymatic activity is inhibited by around a half, whereas AZT 

treatment previously increased APOBEC3B mRNA expression by around 

twelve-fold. 

To summarise, the results of the experiment shown in Figure 3.1.14 suggest 

that a combination of 3TC and d4T can be used to inhibit APOBEC activity 

in p53-deficient HCT116 cells. Since these cells exhibit impaired LINE-1 

repression, these results in Figure 3.1.14 also suggest that LINE-1 activity 

may promote cancer-associated APOBEC activity. 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3.1.6. Discussion

The aim of the experiments conducted in this chapter are to test the 

hypothesis that LINE-1 activity promotes APOBEC activity in cancer. This is 

in line with the overall aim of the thesis to investigate the regulation of 

APOBEC activity in cancer. The aim of the chapter was to be pursued by 

using experimental methods to attempt to identify causal relationships 

between cellular factors that could mediate cancer-associated APOBEC 

activity.

To this end, experiments were performed using the HCT116 cell line, and 

these experiments yielded the following results:

- p53 deficiency in HCT116 cells leads to LINE-1 mRNA and APOBEC3B  

mRNA upregulation.

- p53 stabilisation with Nutlin-3a in HCT116 cells might lead to LINE-1 

mRNA and APOBEC3B mRNA downregulation.

- AZT treatment leads to APOBEC3B upregulation in p53-deficient 

HCT116 cells.

- The development of a high-throughput cytosine deaminase assay, 

through its optimisation and use of novel controls.

- 3TC and d4T treatment inhibits cancer-associated APOBEC cytosine 

deaminase activity in p53-deficient HCT116 cells.

Together, these experiments provide new evidence that can be used to 

evaluate the hypothesis that LINE-1 activity promotes APOBEC activity in 

cancer. On beginning to evaluate this evidence, it is noted that the evidence 
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is intrinsically limited by the fact that it has been accrued using only one cell 

type, the HCT116 cell line. Aside from the limitations of using a cancer cell 

line described in the introduction to this chapter, there are other factors that 

might potentially limit the generalisability of the findings produced from 

these cells. For example, HCT116 cells are colorectal cancer cells. 

Colorectal cancers do not typically display APOBEC signature mutations 

(Alexandrov et al. 2020). Moreover, on comparing different cancer types, 

colorectal cancer has been observed to have among the highest rates of 

LINE-1 retrotransposition events (Rodriguez-Martin et al. 2020). Therefore, 

as colorectal cancer cells, HCT116 cells may not have APOBEC activity 

and LINE-1 activity that is typical or representative of most cancers. Indeed, 

they appear to display observable but low levels of APOBEC activity in the 

experiments in this chapter. Ovarian or pancreatic cancers appear to more 

stably display both APOBEC activity and LINE-1 activity, and might 

therefore be more suitable models in this regard. In general, the evidence 

gathered in this chapter would likely be strengthened if repeated in a range 

of cancer cell types, as it would not be limited to the potentially atypical 

context of colorectal cancer, or indeed any atypical phenotypes that the 

HCT116 cell line might uniquely display when compared to other cell lines. 

In addition, assaying the developmental lineage of particular cell type - such 

as its stem cells and early progenitor cells - using single cell techniques  

and organoid cultures may yield data that may be of relevance to putative 

mechanisms of carcinogenesis in vivo involving mechanisms of cellular 

development. These limitations notwithstanding, these data can 

nonetheless be used to evaluate the hypothesis at hand, not least since this 
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specific cell line has been used to demonstrate seminal and generalisable 

findings in cancer biology, as previously described.

The experiments in this chapter are based on the premise that p53 inhibits 

LINE-1. The results of the experiments indicate that this does appear to be 

the case. p53 inactivation leads to LINE-1 upregulation at the mRNA level, 

while the opposite might be true when p53 is stabilised by Nutlin-3a. When 

these HCT116 cells are treated with reverse transcriptase inhibitors, effects 

on APOBEC activity, a likely downstream target of LINE-1 activity, occur 

only when cells are p53-deficient. The only active reverse transcriptase that 

can be targeted by the drug concentrations used is that of LINE-1, 

notwithstanding any previously undescribed off-target effects. Therefore, 

the observations from the p53 inactivation, p53 stabilisation, AZT treatment 

and 3TC/d4T treatment experiments all provide evidence supporting the 

notion that p53 inhibits of LINE-1 activity. As described in the introduction to 

this chapter, LINE-1 elements contain multiple p53 binding sites (Harris et 

al. 2009) and LINE-1 activity induces DNA damage that leads to a p53 

response (Haoudi et al. 2004), suggesting that p53 could directly inhibit 

LINE-1.

Given this evidence, the findings above suggest that HCT116 p53-/- cells 

can reasonably be considered as a model that approximates the LINE-1 

derepression that is observed in cancer in vivo. When considering the 

hypothesis that is the focus of this chapter, it appears to be the case that 

LINE-1 activity and APOBEC activity are not unrelated in this p53-deficient 

state. However, whether this relationship has the expected directionality, 
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with LINE-1 promoting APOBEC activity, is a question that is not answered 

simply by the data. On one hand, the results of the qRT-PCR experiments 

are in keeping with this hypothesis. They indicate that LINE-1 mRNA 

upregulation is accompanied by APOBEC3B mRNA upregulation when p53 

is inactivated, and that the inverse might also true, where cells are treated 

with Nutlin-3a. Since generating these data, the results on APOBEC3B 

mRNA expression using p53 inactivation and stabilisation have also been 

reproduced by an independent group, both in HCT116 cells and in breast 

cancer cell lines (Periyasamy et al. 2017). In addition, treatment with the 

LINE-1 inhibitors 3TC and d4T leads to a reduction in cytosine deaminase 

activity, only in p53-deficient cells where LINE-1 derepression has occurred.

However, one conflicting experiment is where cells are treated with AZT. 

Only p53-deficient cells with LINE-1 derepression show a change in 

APOBEC3B mRNA expression when treated with AZT, supporting the 

notion that LINE-1 and APOBEC3B are mechanistically linked. However, 

the effect is strongly in the opposite direction to that predicted. As described 

in the text giving the rationale for trialling 3TC and d4T, this unexpected 

result seems likely to be attributable to the formation of short ssDNAs that 

are generated when AZT is used as a monotherapy in states of LINE-1 

derepression. This paradoxically promotes, rather than inhibits, innate 

immune mechanisms implicated in autoinflammation (Beck-Engeser, Eilat, 

and Wabl 2011) such as those that could mediate APOBEC3B upregulation. 

However, while this reasoning might be plausible, it is as yet unconfirmed 

by experimentation in the experimental conditions described in this chapter.
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Another conflicting piece of evidence is that HCT116 p53+/+ and HCT116 

p53-/- cells show similar levels of cytosine deaminase activity, despite the 

p53-deficient cells showing elevated levels of APOBEC3B mRNA. From the 

evidence gathered so far, it is not clear why this is the case. Although 

HCT116 cells have been reported to express APOBEC3B rather than 

APOBEC3A (Papatheodorou et al. 2017), one explanation is that 

APOBEC3A expression, which was not measured at the mRNA level, could 

be contributing to the enzymatic activity measured in the deaminase assay.

Looking retrospectively at the data accumulated, further experimentation 

could help to clarify the points raised by these conflicting results. For 

example, no data has been gathered to assess how APOBEC3A varies at 

the mRNA level as p53 and LINE-1 are varied, or as cells are treated with 

AZT. This is also true for the question of whether APOBEC3A or 

APOBEC3B mRNA expression is affected by treatment with 3TC and d4T, 

or whether AZT or Nutlin-3a treatment leads to a change in cytosine 

deaminase activity concordant with the observed changes in APOBEC3B 

mRNA they appear to elicit. Such experiments would provide greater 

context for the dynamics of how APOBEC3A and APOBEC3B expression 

combine to produced cytosine deaminase activity in these cells, as p53 

status and drug treatments are varied. However, such experiments might 

not provide definitive clarity as to whether LINE-1 activity promotes 

APOBEC activity, with progress in methods and knowledge in the field 

providing alternative routes that could be pursued.
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On balance, considering the evidence accumulated thus far, it seems that 

the results provide some support for the notion that LINE-1 activity 

promotes APOBEC activity, but that that support can be considered 

equivocal. However, with the exception of the observation that p53 

deficiency appears not to influence cytosine deaminase activity, the data  

gathered support the notion that LINE-1 activity is at least mechanistically 

linked to APOBEC activity in cancer.

Aside from the hypothesis investigated as the aim of this chapter, it is of 

note in and of itself that reverse transcriptase inhibitors appear to modulate 

APOBEC activity in cancer cells, in a manner that appears to be dependent 

on LINE-1 activity. This is observed using two different measures of 

APOBEC activity, and it appears that APOBEC activity can be promoted or 

inhibited depending on the RTI used. This observation could have clinical 

utility, as it provisionally identifies RTI treatment as a novel method of 

modulating mutagenesis in a wide range of cancer types. An experiment 

that could be used to evaluate the robustness of the observation that RTIs 

modulate APOBEC activity is to use the high-throughput cytosine 

deaminase assay developed to test a range of RTIs, either alone or in 

combination, on their ability to modulate APOBEC activity in p53-deficient 

cancer cell lines from a range of tissues of origin.

It appears likely that the high-throughput cytosine deaminase assay, in its 

final form presented towards the end of the chapter, could be used to 

produce such results. The use of novel ssDNA controls expand upon what 

is described in the literature to enable interpretation of the assay, and 
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confirm that the variables optimised lead to an assay with an improved 

dynamic range. The results of the gel-based deaminase assay suggest that 

the HCT116 cells used might exhibit a low level of APOBEC activity. This 

could be evaluated by comparing the activity from these cells to that elicited  

using a recombinant APOBEC protein positive control. Using other cell lines 

with high endogenous APOBEC overexpression would confirm the ability of 

the high-throughput assay to detect APOBEC activity in cells, and therefore 

any modulation that might occur with RTI treatment.  Looking further, if the 

ability of RTIs to modulate APOBEC activity is confirmed, then subsequent 

experiments could include testing whether continuous RTI treatment leads 

to a detectable change in the APOBEC signature as measured by NGS, or 

testing whether any modulation in genomic mutagenesis results in effects 

on cellular fitness.

A number of experiments could also be performed in future to strengthen 

the results already detailed in this chapter. Firstly, given risks of genetic drift 

and selection in continuous cell culture, genotyping both the wild-type and 

knockout HCT116 cells would have benefit in confirming the copy number 

of genes of interest, particularly in p53-deficient cells with heightened 

genomic instability. For example, it may be the case that LINE-1 and 

APOBEC3B expression is elevated in p53-deficient cells simply because 

there are more copies of each, with implications for the interpretation of the 

apparent differences in fold change seen in qRT-PCR experiments. To 

mitigate against this, experiments involving transient p53 inactivation, for 

example through the use of siRNA targeting the TP53 gene or 

overexpression of MDM2, would allow for p53 signalling to be disrupted in 
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the short term without allowing time for substantial genomic changes to 

occur. Alternatively, wild-type p53 could be transiently expressed using an 

exogenous construct in knockout cells, which would be expected to rescue 

the phenotypes observed. In general, experiments involving p53, including 

the experiments in this chapter where cells are treated with Nutlin-3a, would 

benefit from assaying whether cells display MDM2/4 amplification, Western 

blots assaying the abundance of p53 protein in different experimental 

conditions, and an assessment of whether changes in proliferation or cell 

cycle profiles might confound the results obtained. In addition, the capacity 

for the RTIs used to inhibit LINE-1 activity described in the literature could 

be confirmed in the HCT116 cells used. Lastly, repeating the experiments 

conducted would yield a greater sample size, thereby improving the 

statistical confidence of the results obtained. 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3.2. Results Chapter 2: Bioinformatic analyses 

investigating APOBEC regulation in large genomic 

datasets

3.2.1. Introduction

The work presented in this chapter was performed in an attempt to identify 

possible regulators of APOBEC activity in cancer. The chapter describes 

exploratory analyses of large genomic datasets. These datasets were 

produced and curated by a number of consortia as resources that could be 

used for further study by researchers in the field. The work in this chapter 

makes use of bioinformatic tools designed for the analysis of these 

datasets. The datasets and tools used in this chapter are summarised in 

this section. Each analysis is then described in greater detail in subsequent 

sections. The analyses conducted in this chapter aimed to determine:

- What gene expression is associated with APOBEC3A expression, 

APOBEC3B espression and the number of APOBEC signature mutations 

in cancer.

- Whether APOBEC3 expression varies with p53 deficiency in cancer.

- Whether human APOBEC3 promoters might differ from those of 

chimpanzees and bonobos.

- Whether there might be transcriptional regulators of APOBEC3B that 

recurrently bind to the locus in multiple human cell  types.
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Sections 3.2.2 and 3.2.3 describe the analysis of data from the Cancer 

Genome Atlas pan-cancer analysis project (TCGA; Weinstein et al. 2013). 

The TCGA dataset was generated by an international consortium that has 

profiled thousands of cancers, across a range of cancer types, at genomic, 

epigenomic, transcriptomic, and proteomic levels. This dataset was chosen 

for study as it represented the most comprehensive molecular 

characterisation of patient cancers available at the time of conducting the 

analyses in this chapter. It was reasoned that associations derived from 

these descriptive data could plausibly be used to infer possible mechanisms 

of APOBEC regulation in cancer. Such inferences were contrasted with data 

that could be gained from experiments on cultured cancer cells. It was 

reasoned that causative regulatory relationships could in principle more 

readily be drawn from experiments in cell culture, but such data might not 

reflect biological process that occur in vivo as accurately as data drawn 

directly from patient samples in the TCGA cohort (this elaborated on in 

section 3.1.1, the introduction to the first results chapter). Somatic mutation 

and RNA sequencing data for multiple cancers in the TCGA dataset were 

used in the analyses described in this chapter, in an attempt to identify 

possible regulators of APOBEC activity. Analysis of gene expression using 

RNA-seq data in section 3.2.2 makes use of the PANTHER (Protein 

Analysis Through Evolutionary Relationships) classification tool, which 

allows for the identification of statistically overrepresented gene ontologies 

in lists of candidate genes (Mi et al. 2013).
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Sections 3.2.4 and 3.2.5 make use of another resource, the University of 

California Santa Cruz (UCSC) genome browser, to study genetic and 

epigenetic data. These data include the reference sequence of the human 

genome and location of human genes, as well as the reference sequences 

of the chimpanzee and bonobo genomes. Epigenetic data were derived 

from either the Encyclopaedia of DNA Elements (ENCODE) dataset 

(ENCODE Project Consortium 2012), the Chromatin Immunoprecipitation 

Sequencing Atlas (ChIP-Atlas) dataset (Oki et al. 2018) and the ReMap 

dataset (Hammal et al. 2022). These datasets collate publicly available 

epigenetic data, such as ChIP-seq data, in attempt to build curated, high-

quality catalogues of regulatory genetic regions in the human genome. 

These data were used in the analyses in this chapter in an attempt to 

identify putative APOBEC3 regulatory regions and associated 

transcriptional regulators.

Lastly, the design of the analyses in this chapter is premised on the 

rationale described in the thesis introduction. That is, that APOBEC3s, 

particularly APOBEC3A and APOBEC3B, have been implicated as likely 

mediators of APOBEC signature mutations in cancer that might be 

overexpressed as a result of LINE-1 activity. As APOBEC3B was thought 

likely to play a leading role in causing APOBEC signature mutations in 

cancer, there is a tendency towards investigating APOBEC3B in the design 

of analyses in this chapter. In addition, in the discussion section of this 

chapter, the data are discussed in relation to the possible role of LINE-1 as 

a driver of APOBEC activity.
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3.2.2. Investigating gene expression associated with APOBEC3A 

expression, APOBEC3B expression or the number of APOBEC 

signature mutations in the TCGA dataset

This section describes bioinformatic analyses conducted using somatic 

mutation and RNA-seq data from the TCGA dataset. Here, an exploratory 

analysis was performed to investigate if certain gene expression profiles 

were associated with either APOBEC3A expression, APOBEC3B 

expression or the number of APOBEC signature mutations. At the time of 

conducting this analysis, results such as these had not been previously 

reported. It was hypothesised that generating these results might, for 

example, reveal gene expression profiles that differentiated cancers that 

express APOBEC3A from those that express APOBEC3B. It was also 

reasoned that the associations produced by such an analysis might point 

towards possible mechanisms of APOBEC3A and APOBEC3B regulation in 

cancer - confounders notwithstanding.

RNA-seq and somatic mutation data were sourced from TCGA for 2,840 

patients (summarised in Table 3.2.1). The patients selected were diagnosed 

with one of of five cancer types that are described to have a relatively high 

rate of APOBEC signature mutations. Cancers associated with viral 

infection, such as head and neck cancers and cervix cancers, were 

excluded in attempt to find APOBEC regulators of non-viral aetiology.
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Table 3.2.1 - Cancer types and patient numbers used for the analysis of 

TCGA data.

The expression of APOBEC3s in these samples, as determined by RNA-

seq, is presented in Figure 3.2.1. These data underwent normalisation by  

TCGA prior to download, using the transcripts per million (TPM) method 

which accounts for technical variability due to gene length and sequencing 

depth (Zhao et al. 2021). For this analysis, APOBEC3 expression was then 

also normalised to the expression of TBP (the TATA-Box Binding Protein 

housekeeping gene) in each sample. Although housekeeping genes such 

as TBP are thought to represent genes whose expression is constant 

across conditions, there is some variability when RNA-seq normalisation 

using different housekeeping genes is compared (Eisenberg and Levanon 

2013). TBP was chosen to allow for comparison with reports in the 

literature, which typically use TBP for normalisation of APOBEC3 

expression in RNA-seq or qRT-PCR data. 

Cancer type Number of patients

Bladder 427

Breast 979

Lung adenocarcinoma 576

Lung squamous cell carcinoma 551

Ovary 307
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Figure 3.2.1 - TPM-normalised expression levels of APOBEC3 genes 

normalised to the expression of TBP across the five cancer types studied in 

the TCGA dataset. a = breast, b = bladder, c = lung adenocarcinoma, d = 

lung squamous cell carcinoma, e = ovarian.

Somatic mutation data were derived from exome sequencing performed by 

the TCGA study. A total of 542,170 single base substitutions were identified 

across all 2,840 samples. Mutation calling was performed by TCGA prior to 

download using Mutect2, a widely-used variant calling method that is part of 
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the GATK best practices pipeline that is also used in this thesis (DePristo et 

al. 2011). Other methods are also used in the field as there is presently 

some variability in the performance of variant calling algorithms (Supernat 

et al. 2018). 

The number of mutations at TCA residues in each cancer type is given in 

Figure 3.2.2. Mutations at TCA residues were chosen as a measure of the 

number of APOBEC signature mutations, as opposed to mutations at TCW 

residues, due to limited computing power available at the time of completing 

this analysis (the time taken for processing results for a single cancer type 

was on the order of weeks). It was noted that APOBEC activity could 

potentially cause C>T, C>G or C>A mutations (Morganella et al. 2016) and 

APOBEC expression was associated with mutations at C residues in 

general as well as at TCW residues (Burns et al. 2013). As a result, any 

point mutation occurring at a TCA residue was chosen as a measure of 

APOBEC signature mutations, rather than the more restricted definition of 

C>T or C>G mutations at these residues that characterise SBS2 and 

SBS13.
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Figure 3.2.2 -  Number of point mutations at TCA residues across the five 

cancer types studied in the TCGA dataset. AC: adenocarcinoma, SC: 

squamous cell carcinoma.

APOBEC3A expression, APOBEC3B expression and the number of 

APOBEC signature TCA mutations were each separately correlated to the 

expression of all other genes using a Spearman's rank correlation. A 

Spearman correlation was chosen over a Pearson correlation in an attempt 

to account for non-linear differences in the distribution of the expression 

levels of all genes. Genes with statistically significant correlations (σrs < 

0.04) and which were amongst the top 20 most highly correlated genes 

were then analysed using the PANTHER tool to identify statistically 
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significant enrichments (p < 0.05) in gene ontologies. Statistically significant 

enrichments are determined using a binomial test comparing the expected 

and observed frequencies of gene ontologies in lists of candidate genes (Mi 

et al. 2013). The results are presented below.  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Table 3.2.2 - 10 genes showing the strongest positive correlation with 

APOBEC3A expression and their Spearman coefficients in each cancer.

Bladder Breast Lung 
Adenocarcinoma

Lung Squamous 
Cell Carcinoma Ovarian

Gene ρ Gene ρ Gene ρ Gene ρ Gene ρ

ISG20 0.472 OASL 0.699 IFIT3 0.545 IL1RN 0.621 OASL 0.672

PLAUR 0.467 CCL8 0.680 RSAD2 0.532 S100A12 0.569 CCL8 0.659

HBEGF 0.462 CXCL10 0.664 OASL 0.515 FFAR2 0.530 IFI35 0.650

OASL 0.459 CXCL11 0.662 LILRB2 0.510 TGM1 0.527 IFIT3 0.648

MXD1 0.451 LAG3 0.659 GBP1 0.509 S100A8 0.522 RSAD2 0.647

S100A12 0.451 CXCR2P1 0.657 LILRA5 0.508 SAMD9 0.522 LILRA5 0.636

RSAD2 0.448 EPSTI1 0.654 IFI30 0.508 SPRR2E 0.506 CMPK2 0.635

BCL2A1 0.445 TAP1 0.653 IFIT2 0.504 EMP1 0.503 PLSCR1 0.630

LAMP3 0.445 IFI44 0.652 STX11 0.501 IL1F6 0.500 GPBAR1 0.628

PRDM1 0.444 MX2 0.651 PILRA 0.499 MXD1 0.494 CD80 0.626
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Table 3.2.3 - 10 most overrepresented gene ontology terms for 

APOBEC3A-linked genes in Table 3.2.2. 

Bladder Breast Lung 
Adenocarcinoma

Lung Squamous 
Cell Carcinoma Ovarian

negative regulation of 
viral genome 

replication

lymphocyte 
chemotaxis

type I interferon 
signaling pathway neutrophil aggregation type I interferon 

signaling pathway

type I interferon 
signaling pathway

type I interferon 
signaling pathway

cellular response to 
type I interferon

sequestering of zinc 
ion

cellular response to 
type I interferon

cellular response to 
type I interferon

cellular response to 
type I interferon

response to type I 
interferon chemokine production response to type I 

interferon

response to type I 
interferon

response to type I 
interferon

cellular response to 
interferon-gamma

leukocyte migration 
involved in 

inflammatory 
response

negative regulation of 
viral genome 

replication

regulation of viral 
genome replication

defense response to 
virus

defense response to 
virus

chronic inflammatory 
response

lymphocyte 
chemotaxis

negative regulation of 
viral life cycle response to virus response to virus defense response to 

fungus
regulation of viral 

genome replication

negative regulation of 
viral process

defense response to 
other organism

defense response to 
other organism

positive regulation of 
inflammatory 

response

negative regulation of 
viral process

negative regulation of 
multi-organism 

process

cytokine-mediated 
signaling pathway

immune effector 
process

keratinocyte 
differentiation

negative regulation of 
viral life cycle

defense response to 
virus

response to other 
organism

cytokine-mediated 
signaling pathway leukocyte chemotaxis defense response to 

virus

response to virus response to external 
biotic stimulus

response to other 
organism

positive regulation of 
response to wounding

interferon-gamma-
mediated signaling 

pathway

156  



Table 3.2.4 - 10 genes showing the strongest positive correlation with 

APOBEC3B expression and their Spearman coefficients in each cancer.

Bladder Breast Lung 
Adenocarcinoma

Lung Squamous 
Cell Carcinoma Ovarian

Gene ρ Gene ρ Gene ρ Gene ρ Gene ρ

C1orf135 0.551 GTSE1 0.638 ASF1B 0.552 PLEKHG6 0.614 RACGAP1 0.523

MED8 0.524 RAD51 0.621 MLF1IP 0.541 CENPM 0.567 APOBEC3A 0.511

SLC35A2 0.524 CDC45 0.614 CDCA8 0.536 CDC45 0.559 MCM5 0.508

SEC13 0.507 CDCA8 0.610 RPL39L 0.529 MCM5 0.549 KIF4A 0.508

RAD51 0.503 CENPA 0.609 CENPM 0.529 EPT1 0.540 KIFC1 0.507

CDK2 0.503 HJURP 0.607 MCM2 0.525 TUBA1C 0.538 NCAPG 0.500

CDC6 0.500 TPX2 0.605 STIL 0.525 ACTL6A 0.538 TCF19 0.499

PVRL2 0.498 CCNB2 0.605 C16orf75 0.524 SFXN1 0.535 NUSAP1 0.495

MASTL 0.497 UBE2C 0.604 MCM6 0.520 RAD51 0.534 TPX2 0.493

RAD18 0.494 KIF2C 0.604 GINS3 0.519 THOC3 0.530 PRC1 0.492
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Table 3.2.5 - 10 most overrepresented gene ontology terms for 

APOBEC3B-linked genes in Table 3.2.4. 

Bladder Breast Lung 
Adenocarcinoma

Lung Squamous 
Cell Carcinoma Ovarian

meiotic nuclear 
division

activation of 
anaphase-promoting 

complex activity

DNA replication 
initiation

DNA strand elongation 
involved in DNA 

replication

mitotic spindle 
elongation

meiotic cell cycle 
process

mitotic metaphase 
plate congression

DNA strand elongation 
involved in DNA 

replication
DNA strand elongation spindle elongation

meiotic cell cycle mitotic spindle 
assembly checkpoint DNA strand elongation DNA-dependent DNA 

replication
mitotic spindle 

midzone assembly

mitotic cell cycle 
phase

spindle assembly 
checkpoint mitotic prometaphase mitotic S phase spindle midzone 

assembly

cell cycle phase mitotic spindle 
checkpoint

DNA-dependent DNA 
replication S phase mitotic chromosome 

condensation

biological phase
negative regulation of 

mitotic metaphase/
anaphase transition

mitotic cell cycle 
phase mitotic interphase mitotic spindle 

assembly

nuclear division
negative regulation of 
metaphase/anaphase 
transition of cell cycle

cell cycle phase interphase

microtubule 
cytoskeleton 

organization involved 
in mitosis

mitotic nuclear 
division

negative regulation of 
mitotic sister 

chromatid separation
biological phase mitotic cell cycle 

phase mitotic cytokinesis

regulation of DNA 
metabolic process

negative regulation of 
mitotic sister 

chromatid segregation

DNA conformation 
change cell cycle phase chromosome 

condensation

organelle fission
negative regulation of 

sister chromatid 
segregation

mitotic M phase biological phase cytoskeleton-
dependent cytokinesis
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Table 3.2.6 - 10 genes showing the strongest positive correlation with the 

number of TCA mutations and their Spearman coefficients in each cancer.

Bladder Breast Lung 
Adenocarcinoma

Lung Squamous 
Cell Carcinoma Ovarian

Gene ρ Gene ρ Gene ρ Gene ρ Gene ρ

KIAA1841 0.318 BEND3 0.294 MCM10 0.312 PPIAL4G 0.545 TMEM93 0.296

UAP1 0.298 CBX2 0.294 PRR11 0.308 TMEM183A 0.437 PPA1 0.286

KLRD1 0.291 CENPW 0.289 TTK 0.306 FAM58B 0.436 SSSCA1 0.282

SMC1B 0.289 FAM54A 0.287 DIAPH3 0.303 RPS3A 0.423 TMEM223 0.281

SGOL1 0.278 A2ML1 0.284 CKAP2L 0.298 C12orf41 0.412 RHEB 0.278

FAM54A 0.277 NXPH4 0.275 FAM54A 0.293 ZNF410 0.411 ZCRB1 0.278

TCAM1P 0.277 CDC20 0.275 KIAA1524 0.291 LOC441089 0.411 C11orf83 0.271

MSH2 0.274 CENPA 0.270 C11orf82 0.291 RPS5 0.411 LOC150381 0.270

RAD18 0.272 CCNE1 0.268 KPNA2 0.289 SNX11 0.409 NDUFS8 0.270

C1orf135 0.271 UBE2C 0.268 SGOL1 0.288 PRKAG1 0.399 NDUFB11 0.267
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Table 3.2.7 - Overrepresented gene ontology terms for TCA mutation-linked 

genes in Table 3.2.6. 

Bladder Breast Lung 
Adenocarcinoma

Lung Squamous 
Cell Carcinoma Ovarian

sister chromatid 
cohesion

CENP-A containing 
nucleosome assembly

sister chromatid 
cohesion

(none)

organonitrogen 
compound metabolic 

process

organelle organization cell cycle process

CENP-A containing 
chromatin 

organization
cell cycle

centromere complex 
assembly organelle organization

chromatin remodeling 
at centromere

sister chromatid 
segregation

chromosome 
segregation

nuclear chromosome 
segregation

mitotic nuclear 
division

chromosome 
segregation

mitotic cell cycle 
process

single-organism 
organelle organization

mitotic cell cycle mitotic prometaphase

cell cycle mitotic nuclear 
division
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These results indicate that APOBEC3B expression is associated with cell 

cycle-related gene expression (ρ ≈ 0.54, Tables 3.2.4 and 3.2.5), while 

APOBEC3A expression is associated with interferon-related gene 

expression (ρ ≈  0.55, Table 3.2.2 and Table 3.2.3). APOBEC signature 

mutations show a weaker association (ρ ≈ 0.28) with cell cycle-related gene 

expression in three of the five cancers examined (Table 3.2.7 and Table 

3.2.8). 

Since both APOBEC3B expression and APOBEC signature mutations are 

associated with cell-cycle related gene expression, but APOBEC3A 

expression is not, these results support the notion that APOBEC3B may be 

more likely to mutate cancer genomes than APOBEC3A - at least in bladder 

cancer, breast cancer and lung adenocarcinoma. However, there are many 

possible confounding factors in interpreting correlations such as these that 

limit any such mechanistic inferences. 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3.2.3. Investigating the association between p53 deficiency and 

APOBEC3 expression in the TCGA dataset

This section describes the use of data from the TCGA dataset to examine 

whether p53 inactivation is associated with changes in the expression of 

any APOBEC3s. This analysis was prompted by the observation that p53  

deficiency was associated with APOBE3B upregulation in breast cancer 

(Burns et al. 2013). However, it was not clear whether this was true of other 

APOBEC3s, or for other cancer types with a relatively high prevalence of 

APOBEC signature mutations. p53 deficiency was also described to lead to 

LINE-1 activity in a manner that is conserved between species (Section 

1.3.7; Wylie et al. 2016). As a result, it was reasoned that p53 deficiency in 

this dataset might act as a possible surrogate for LINE-1 activity, enabling 

investigation of the relationship between LINE-1 activity and APOBEC3 

expression in patient cancers.

The samples from patients analysed in the previous section (detailed in 

Table 3.2.1 with APOBEC3 expressions distributions given in Figure 3.2.1) 

were also used in this analysis. However, this analysis excludes the use of 

ovarian cancer samples. p53 inactivation is near-ubiquitous in ovarian 

cancers in this dataset, in keeping with prior findings (Cancer Genome Atlas 

Research Network 2011). As a result, it was reasoned that comparing wild-

type and mutant p53 samples may not yield representative results. Samples 

with wild-type p53 in this dataset may represent ovarian cancers with 

unusual sets of genetic alterations, which might make comparisons to other 

more typical ovarian cancers unrepresentative. 
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Samples with TP53 mutations were identified in the TCGA somatic mutation 

calls. This was used to calculate the fold change in APOBEC3 expression in 

samples with inactive p53 relative to those with intact p53. APOBEC3 

expression was again normalised to TBP expression. The results are shown 

in Figure 3.2.3.

Figure 3.2.3 - Fold change in APOBEC3 expression, normalised to TBP 

expression, in p53-deficient cancers relative to those with intact p53. 

Bonferroni-corrected t-test p-values: * <0.05, ** <0.01, *** <0.001. 
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Figure 3.2.3 indicates that there is a statistically significant upregulation of 

APOBEC3B in three of four cancer types when p53 is inactivated. This 

relationship is found in breast cancer, as previously identified. APOBEC3A 

is upregulated in two of four cancers. The other APOBEC3s do not appear 

to be consistently upregulated or downregulated across cancers at 

statistical significance. These data suggest that p53 inactivation is 

associated with increased APOBEC3A expression and APOBEC3B 

expression in multiple cancers, although this association may or may not be 

causal.
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3.2.4. Identification of APOBEC3 promoter regions in the human 

genome and comparison to chimpanzee and bonobo genome 

sequences

As described in the thesis introduction, a review of the literature 

accumulated indicated that APOBEC3B was a likely mediator of APOBEC 

signature mutations in cancer (section 1.6.3). APOBEC3B regulation was 

also reported to differ between humans and our nearest evolutionary 

relatives, chimpanzees and bonobos (section 1.7.3; Marchetto et al. 2013). 

This prompted the analysis in this section, which aimed to identify the  

APOBEC3B promoter region and compare its sequence between species. 

This was achieved using the UCSC genome browser. In this section, ChIP-

seq data is used to verify that sequences in the immediate proximity of 

APOBEC3 start codons are associated with regulatory activity.

As shown in Figure 3.2.4, the APOBEC3B gene was identified within the 

APOBEC3 locus on chromosome 22 q13.1 using the latest reference 

version of the human genome (build 38). The putative promoter region is 

(highlighted with red arrows in Figure 3.2.4) is found immediately upstream 

of the region encoding APOBEC3B transcript and demonstrates heightened 

H3K27 acetylation (a marker associated with transcriptional promotion), 

consistent with a role as a regulatory region. 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Figure 3.2.4 - UCSC Genome Browser view of the APOBEC3B region in 

the human genome reference build 38. (a) A broad view of the region 

including the upstream APOBEC3A locus and part of the downstream 

APOBEC3C locus. (b) A focused view of the key data from (a) for identifying 

the putative APOBEC3B promoter: the genomic location of the transcript as 

well as ENCODE data for H3K27 acetylation from seven cell lines. Red 

arrows in both images highlight the identified promoter region.
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This region was subsequently compared to equivalent sequences in 

chimpanzees and bonobos, yielding identification of a deletion in the human 

promoter (Figure 3.2.5). 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a

b

Figure 3.2.5 - UCSC Genome Browser view of deletion in the human 

APOBEC3B promoter region relative to the chimp (a) and bonobo (b) 

genomes.

The deleted sequence comprises the loss of 12 nucleotides around 2 kb 

upstream of human APOBEC3B start codon. The deletion eliminates 

approximately half of a CT-rich region. This sequence is otherwise intact in 

both chimpanzees and bonobos.

The sequence lost is consistent with the consensus sequence for interferon 

response factors (IRFs). The IRF consensus sequence is 5’-TTT-CN-NTT-3’ 
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(Yanai, Negishi, and Taniguchi 2012). The deletion leads to the elimination 

of two out of four overlapping IRF consensus sequences in the CT-rich 

region. This is illustrated below, with the deleted region shown in red:

5’-CTTT-CT-CTTT-CT-CTTT-CT-CTTT-CT-CTTT-3’

Repeating this process systematically for all APOBEC3s, and including up-

to-date ChIP-Seq data from the ReMap project, showed that there were no 

such deletions in the promoters of the other APOBEC3 genes. This is 

shown in a series of figures below, Figure 3.2.6.1 to Figure 3.2.6.7. These 

figures show UCSC genome browser views of human APOBEC3 promoter 

regions and comparisons to chimpanzee and bonobo genome sequences. 

ReMap density plots show the number of transcriptional regulators found to 

bind to that portion of DNA in the ReMap dataset. The ReMap data are 

filtered for quality according to cross-correlation and the FRiP (fraction of 

reads in peaks) metrics developed by the ENCODE Consortium (Hammal 

et al. 2022).

Together, these data suggest that, in the recent evolution of the human 

genome, APOBEC3B may have evolved to become less responsive to 

interferon response factors. However, this is only inferred bioinformatically, 

and not verified experimentally. 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Figure 3.2.6.1 - UCSC genome browser view of human APOBEC3A 

promoter  region and comparison to chimpanzee and bonobo sequences. 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Figure 3.2.6.2 - UCSC genome browser view of human APOBEC3B 

promoter  region and comparison to chimpanzee and bonobo sequences. 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Figure 3.2.6.3 - UCSC genome browser view of human APOBEC3C 

promoter  region and comparison to chimpanzee and bonobo sequences. 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Figure 3.2.6.4 - UCSC genome browser view of human APOBEC3DE 

promoter  region and comparison to chimpanzee and bonobo sequences. 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Figure 3.2.6.5 - UCSC genome browser view of human APOBEC3F 

promoter  region and comparison to chimpanzee and bonobo sequences. 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30/07/2023, 22:20 Bonobo panPan3 chr22:19,948,382-19,953,565 UCSC Genome Browser v451
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Figure 3.2.6.6 - UCSC genome browser view of human APOBEC3G 

promoter  region and comparison to chimpanzee and bonobo sequences. 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30/07/2023, 22:23 Chimp panTro6 chr22:21,910,788-21,915,647 UCSC Genome Browser v451
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UCSC Genome Browser on Chimp Jan. 2018 (Clint_PTRv2/panTro6)
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multi-region  chr22:21,910,788-21,915,647  4,860 bp. gene, chromosome range, search terms, help pages, see exa  go examples
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30/07/2023, 22:24 Bonobo panPan3 chr22:19,981,296-19,986,479 UCSC Genome Browser v451

https://genome-euro.ucsc.edu/cgi-bin/hgTracks?db=panPan3&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&non… 1/1

UCSC Genome Browser on Bonobo May 2020 (Mhudiblu_PPA_v0/panPan3)
move <<<  <<  <  > >> >>>  zoom in 1.5x  3x 10x base  zoom out 1.5x  3x 10x 100x

multi-region  chr22:19,981,296-19,986,479  5,184 bp. gene, chromosome range, search terms, help pages, see exa  go examples
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Figure 3.2.6.7 - UCSC genome browser view of human APOBEC3H 

promoter  region and comparison to chimpanzee and bonobo sequences.
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30/07/2023, 22:30 Human hg38 chr22:39,094,444-39,100,539 UCSC Genome Browser v451
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multi-region  chr22:39,094,444-39,100,539  6,096 bp. gene, chromosome range, search terms, help pages, see exa  go examples
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bars or labels up or down to reorder tracks. Drag tracks left or right to new position. Press "?" for keyboard
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30/07/2023, 22:30 Chimp panTro6 chr22:21,931,277-21,936,136 UCSC Genome Browser v451
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3.2.5. Identifying candidate transcriptional regulators of APOBEC3B 

using ChIP-Seq data

This section describes further exploratory analyses of regulatory data to 

identify possible regulators of APOBEC3B. Here, the UCSC genome 

browser is used to summarise ChIP-seq data from ENCODE project. 

Instead of transcription regulator binding being summarised as a density 

plot, as in Figure 3.2.6 in the previous section, the specific transcriptional 

regulators measured in a range of cancer and non-cancer cell lines are 

listed. This is shown for the APOBEC3B locus in Figure 3.2.7. It was 

reasoned that proteins that were found to bind to this region recurrently 

across a range of cell lines were more likely to be bona fide regulators of 

APOBEC3B expression. 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Figure 3.2.7 - UCSC genome browser view of the APOBEC3B locus, with 

ENCODE ChIP-seq data loaded. For each transcription factor detected to 

bind to the region, a grey box is given to indicate a peak cluster of 

transcription factor occupancy. For each transcription factor, a set of letters 

is given. Each letter represents a different cell line tested. The darkness of 

each box is proportional to the maximum signal strength observed in any 

cell type contributing to the cluster. Red stars indicate CTCF and its binding 

partner Rad21, which are discussed below.
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The data in Figure 3.2.7 show that many different transcriptional regulators 

that appear to bind to the region. However, most do not appear to be 

detected consistently across different cell lines. As a result, it may be 

difficult to ascertain whether this might reflect cell line-specific regulation, or 

non-specific binding by these transcription factors.

However, in contrast, CTCF appears to bind to the region reproducibly in a 

wide range of cell lines, showing by far the most consistent results of the 

transcriptional regulators observed. Moreover, its binding partner Rad21 

also appears to bind to the region in multiple cell lines. These findings 

support the notion that CTCF might bind and transcriptionally regulate the  

APOBEC3B locus. 

CTCF has been characterised as a transcriptional insulator that is used to 

demarcate functional regions of gene expression (Ong and Corces 2014).  

This suggested that APOBEC3B might be transcriptionally insulated from 

neighbouring genes. To examine this further, these CTCF Chip-Seq data 

were downloaded from the ChIP-Atlas. CTCF results were filtered for high 

significance threshold (>500, as determined by the peak-calling algorithm 

MACS2) and selected for data from all cell types available. These data 

were visualised in the region encoding all APOBEC3 genes using the 

Integrative Genomics Viewer (Figure 3.2.8). 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Figure 3.2.8 - A representative Integrative Genomics Viewer (IGV) view of 

ChIP-Atlas CTCF ChIP-Seq peaks in the region encoding APOBEC3A-

APOBEC3H.
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The data shown in Figure 3.2.8 indicate that CTCF is found to bind to the 

APOBEC3B locus reproducibly in multiple cell lines, binding immediately 

upstream and downstream of the APOBEC3B gene. This does not appear 

to be the case for any of the other APOBEC3 genes. Instead, CTCF 

appears to demarcate the start and end of the entire APOBEC3 locus. 

Given the insulatory function of CTCF, these data suggest that the entire 

APOBEC3 region might be subject to common transcriptional regulation. 

However, APOBEC3B might be insulated from this regulation of syntenic 

APOBEC3s, and subject to different mechanisms of transcriptional control.
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3.2.6. Discussion

These exploratory analyses were conducted in order to identify possible 

regulators of cancer-associated APOBEC activity. To summarise, the 

analyses conducted in this chapter suggest the following findings:

- APOBEC3A expression is associated with the expression of interferon-

related genes.

- APOBEC3B expression is associated with the expression of cell cycle-

related genes.

- The number of APOBEC signature mutations is weakly associated with 

the expression of cell cycle-related genes.

- APOBEC3A expression and APOBEC3B expression are associated with 

p53 deficiency.

- The APOBEC3B promoter has lost a consensus IRF binding region, 

while other APOBEC3s have not.

- APOBEC3B may be transcriptionally insulated from syntenic APOBEC3s 

by CTCF.

Across the 2,840 TCGA cancers studied, APOBEC3A expression was found 

to be associated with the expression of interferon-related genes in all five 

cancer types tested while APOBEC3B expression was associated with the 

expression of cell cycle-related genes in all five cancer types tested. One 

strength of the analysis of the TCGA dataset is the large number of samples 

studied across a range of cancer types. The reproducibility of these 

associations across cancer types suggests that the underlying mechanisms 

- causal or confounding - that lead to these associations may be consistent 
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across tissue types studies. APOBEC3 expression, particularly the 

expression of APOBEC3A, is known to be stimulated by interferon in 

experimental studies (Stavrou and Ross 2015). In addition, experimental 

data from cultured cells indicate that APOBEC3B expression depends on 

cell cycle phase (Hirabayashi et al. 2021). These studies lend weight to the 

possibility that the associations found in the TCGA dataset might represent 

causal regulatory mechanisms.

These associations, described in section 3.2.2, have been reproduced by 

other groups - first in breast cancer, then in a pan-cancer study (Cescon, 

Haibe-Kains, and Mak 2015; Ng et al. 2019). These studies also expand 

upon the findings described in this section by assessing gene expression 

associated with all APOBEC3s, not just APOBEC3A and APOBEC3B. While 

APOBEC3B is associated with cell cycle-related gene expression, they find 

that the expression of each of the other APOBEC3s is associated with 

interferon-related gene expression.

This is keeping with other results presented in this chapter. Firstly, that the 

APOBEC3B promoter region appears to have lost a consensus IRF binding 

region in the divergence from non-human primates, while other human 

APOBEC3 promoters do not appear to have any deletions. And secondly, 

that APOBEC3B may be insulated from the transcriptional regulation of 

syntenic APOBEC3s by CTCF. 

Together, these data indicate that APOBEC3B expression is subject to 

regulation that may differ from other APOBEC3s. These data indicate that, 
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in general, APOBEC3 expression appears to be associated with interferon 

signalling in cancer. However, APOBEC3B expression appears to be 

associated with the expression of cell cycle genes rather than interferon-

related genes. This difference could be influenced by the identified IRF 

binding site deletion or the insulatory action of CTCF.

Direct experimentation to test whether these relationships might be causal 

would be needed to verify this. For example, gene editing technology such 

as CRISPR/Cas9 could be used to restore the deleted IRF binding 

sequence in cultured cells in order to test whether this sequence might 

influence the interferon-responsiveness of APOBEC3B expression. CTCF 

function could also be disrupted in such a system to examine whether it has 

an influence on the interferon-responsiveness of APOBEC3B expression.

Unless there are errors in the reference sequences of the human, 

chimpanzee or bonobo genomes, the apparent deletion in the APOBEC3B 

promoter is likely to be a true observation. The CTCF binding observed is 

reproducible across many experiments in multiple cell types, and is 

associated with Rad21 binding, which suggests that that CTCF is truly likely 

to bind to the sequences of interest as observed. Other transcriptional 

regulators that may have been found to bind to the APOBEC3B promoter 

less reproducibly were not considered in this analysis in attempt to assess 

the regulatory data with a high degree of stringency. However, they may 

represent true regulators of APOBEC3B in particular contexts and may be 

of relevance to APOBEC3B regulation in cancer in vivo.
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The results in section 3.2.2 also include data that suggest that the number 

of APOBEC signature mutations for cancers in the TCGA dataset are 

associated with cell cycle-related gene expression rather than interferon-

related gene expression. This might be indicative of an association between 

APOBEC3B expression, which is also associated with cell cycle-related 

gene expression, and the number of APOBEC signature mutations, but 

there are multiple plausible confounding factors that could cast doubt on 

this possibility. There are a number of limitations of this analysis that make 

these suggestions less likely.

For example, it is noted that the number of APOBEC signature mutations is 

associated with cell cycle-related gene expression in bladder cancer, breast 

cancer and lung adenocarcinomas but not lung squamous cell carcinomas 

or ovarian cancer. Where these associations are found, the Spearman 

correlation coefficients are around 0.28, which is not suggestive of a strong 

positive correlation. The measure of APOBEC signature mutations used 

was mutations at TCA residues rather than mutations at TCW residues, 

owing to limited computing power. Using TCW mutations as a measure 

would likely be more representative of APOBEC activity and might yield 

greater statistical power to detect associations. To aid interpretation of this 

analysis, greater computing power could be used to assess what gene 

expression profiles are associated with different types of point mutations. 

This might help account for one possible confounder, which is that cells that 

express high levels of cell cycle genes could plausibly have more point 

mutations of all types. 
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One purpose of this analysis was to identify if an APOBEC3A-associated 

gene expression profile or an APOBEC3B-associated gene expression 

profile was also associated with the number of APOBEC signature 

mutations, in an attempt to investigate the possibility that either APOBEC3A 

or APOBEC3B might be more likely to mediate the APOBEC mutagenesis 

observed in cancer. However, the field has advanced since this analysis 

was conducted. There is now an understanding that APOBEC3A (YTCW) 

and APOBEC3B (RTCW) activity can be differentiated by the base two 

positions 5’ of the target cytosine, indicating that APOBEC3A contributes 

more APOBEC signature mutations to cancer genomes (Alexandrov et al. 

2020). As a result, an expanded analysis of the type conducted in this 

chapter might not provide information that would add meaningfully to what 

is presently known. In addition, the results obtained via PANTHER analysis, 

which depends on the detection of gene ontology enrichment in a pre-

determined list of genes of interest, might be complemented and validated 

by the use of a technique such as Gene Set Enrichment Analysis (GSEA), 

which instead looks to see if there are statistically significant differences in 

gene expression for all genes represented by specific gene ontologies 

(Subramanian et al. 2005).

Section 3.2.3 examines the association between TP53 mutations and 

APOBEC3 expression. APOBEC3A expression is upregulated around 1.5-

fold to 2-fold in breast cancer and lung adenocarcinoma when TP53 is 

mutated, while APOBEC3B expression is upregulated around 1.5-fold to 

2.5-fold in breast cancer, lung adenocarcinoma and lung squamous cell 

carcinoma. Other APOBEC3s show no consistent pattern of upregulation or 
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downregulation. These results appear to confirm and expand upon the 

association between TP53 mutation and APOBEC3B upregulation in breast 

cancer reported by Burns et al. They indicate that TP53 mutations are 

associated with APOBEC3A and APOBEC3B in multiple cancers, with a 

more marked association for APOBEC3B which is found in three of four 

cancer types examines (as opposed to two of four for APOBEC3A) and has 

the highest fold change values found in all conditions.

Since TP53 mutations commonly occur in the process of carcinogenesis, 

these data further implicate APOBEC3A and APOBEC3B, but not other 

APOBEC3s, in the process of carcinogenesis. These associations suggest 

that APOBEC3A or APOBEC3B activity might lead to TP53 mutations, as 

demonstrated experimentally for APOBEC3B by Burns et al. Alternatively, 

these associations could also suggest that TP53 mutations might lead to 

APOBEC3A and APOBEC3B upregulation, as indicated by the results for 

APOBEC3B in the first results chapter and by Periyasamy et al. It is noted 

that the inactivation of p53 in HCT116 leads to an approximately 2.5-fold 

upregulation in APOBEC3B expression in the experiments described in the 

first results chapter, which a similar degree of upregulation found in the 

analysis of the TCGA dataset.

The analyses in this chapter were also, in part, conducted to assess the 

possibility that LINE-1 activity might promote cancer-associated APOBEC 

activity. The results in this chapter are consistent with this possibility. For 

example, LINE-1 activity is described to lead to an interferon response, and 

APOBEC3A expression is found to be associated with interferon-related 
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gene expression. In addition, p53 inactivation is described to lead to LINE-1 

derepression, and is also associated with APOBEC3A and APOBEC3B 

upregulation in the TCGA data analysed.

It is thought that expression of potentially active LINE-1 elements cannot be 

accurately measured using standard RNA-seq methods, owing to difficulties 

in resolving repetitive sequences using bioinformatic tools, leading to a 

need for customised sequencing protocols (Deininger et al. 2016). As 

discussed in the introduction to the first results chapter, LINE-1 RNA 

expression might be a stimulus that triggers APOBEC recruitment. It might 

therefore be a good measure of LINE-1 for identifying a putative correlation 

between LINE-1 activity and APOBEC activity in cancer. This is in contrast 

to other measures of LINE-1 activity, such as LINE-1 methylation or the 

number of new LINE-1 insertions, which may be less sensitive in detecting 

this putative correlation. As a result, future work using bespoke RNA-seq 

protocols for LINE-1 RNA measurement in patient cancer samples may 

prove useful in assessing this relationship in greater detail. 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3.3. Results Chapter 3: Bioinformatic analyses 

investigating APOBEC activity in Aicardi-Goutières 

syndrome

3.3.1. Introduction

This chapter presents the results of bioinformatic analyses that were 

performed to investigate whether cells from patients with Aicardi-Goutières 

syndrome might show evidence of cancer-associated APOBEC activity. The 

AGS phenotype mimics that of a viral infection, but in the absence of a 

causative virus. It is  instead thought to be triggered by endogenous nucleic 

acids such as those deriving from LINE-1 elements. This is reminiscent of 

what is observed in cancer, where there is an apparent activation of the 

antiviral APOBEC3 enzymes in the absence of viral infection, and LINE-1 

activity might instead be an underlying cause.

It was reasoned that LINE-1 associated Aicardi-Goutières syndrome 

genotypes might therefore be used as a possible model to study 

mechanisms of APOBEC regulation. AGS has been associated with LINE-1 

activity when the underlying defects are in the function TREX1, RNase H2 

or SAMHD1 (see section 1.7.4). At the time of preparing the analyses in this 

chapter, Lim and colleagues had published what was, to our knowledge, the 

first NGS analysis of AGS patient samples (Lim et al. 2015). As part of their 

study, they performed RNA sequencing on 14 fibroblast samples from four 
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patients with LINE-1 associated AGS genotypes and one age-matched 

health control. The four patients had pathogenic mutations in TREX1, 

RNASEH2A, RNASEH2B and SAMHD1, respectively. Four samples were 

derived from the patient with RNASEH2A deficiency and four were from the 

patient with RNASEH2B deficiency. The other individuals provided two 

samples each.

It was reasoned that these samples could be used to examine whether the 

pattern of APOBEC expression in AGS was similar or different to the pattern 

observed in cancer, which is characterised by APOBEC3B overexpression 

and a less marked APOBEC3A expression. Global gene expression profiles 

could also be assessed to determine if AGS samples show any gene 

expression profiles linked to cancer-associated APOBEC activity. In 

addition, in the absence of standard genome sequencing data, reads from 

these RNA-seq data could be examined for the presence of APOBEC 

signature mutations of the type that are found in cancer. If such mutations 

were indeed found, then it would be possible to test if their prevalence is 

positively correlated with the expression levels of APOBEC3A and 

APOBEC3B, as is observed in cancer.

Data from Lim et al. and the TCGA studies were downloaded in order to 

perform these analyses. The PANTHER classification tool, which allows for 

the identification of statistically overrepresented gene ontologies in lists of 

candidate genes, was again used, as in the previous results chapter. In 

addition, the Genome Analysis Toolkit (GATK) Best Practices pipeline for 

somatic mutation calling from RNA-seq data was used to identify whether 
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APOBEC signature mutations were present in these samples (DePristo et 

al. 2011).

After conducting the analyses in this chapter, an additional AGS RNA-seq 

study was published (Rice et al. 2018). This was not chosen for further 

study as the samples were derived from whole blood. Blood cells are known 

to have substantially different APOBEC3 regulation to cells from solid 

tissues (Refsland et al. 2010). For example, APOBEC3A is described to 

show little to no expression in solid tissues but is markedly expressed in 

blood cells, where it appears to be the most highly expressed APOBEC3 

gene. Despite this, APOBEC signature mutations are usually prevalent in 

solid tumours rather than liquid tumours (Alexandrov et al. 2020).
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3.3.2. APOBEC expression in Aicardi-Goutières syndrome

The first analysis in this chapter was conduced to assess whether APOBEC 

expression in AGS might be similar to or different from that observed in 

cancer. Expression data were obtained for all 14 samples. Expression 

levels were normalised to the expression of the TBP housekeeping gene, 

as in the previous results chapter, to allow for comparison with reports in 

the literature that also typically use TBP for normalisation. The expression 

level of each APOBEC gene in the AGS samples was then also normalised 

to its mean expression level in the two control samples. Given the small 

sample size, it was reasoned that samples from different AGS genotypes 

should be grouped together to achieve greater statistical power to detect 

expression changes, as it was reasoned that these samples would be 

expected to display common phenotypes owing to shared underlying 

pathophysiology. The data from this analysis are shown below, in Figure 

3.3.1.  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Figure 3.3.1 - Fold change in APOBEC expression in AGS samples relative 

to control samples, as measured by RNA-seq. Expression levels for each 

APOBEC gene are normalised to the mean of the control samples and to 

TBP expression. Error bars: Standard error of the mean. Red line: fold 

change value of 1.

The pattern of APOBEC expression in Figure 3.3.1 appears to be similar to 

that found in cancer. APOBEC3B expression appears elevated around 3-

fold. APOBEC3A appears to upregulated to a lesser extent, showing an 

approximately 1.5-fold increase in expression. The other APOBEC genes 

are not comparably overexpressed. While the pattern observed is 

reminiscent of that observed in cancer, none of the APOBEC genes are 

individually upregulated at a level of statistical significance in these AGS 
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samples. For example, the t-test p-value for APOBEC3B, which is shows 

the highest fold change in expression, is 0.170. 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3.3.3. Mutational profiles of Aicardi-Goutières syndrome RNA and 

association of APOBEC signature mutations with APOBEC 

expression

RNA-Seq data were downloaded and processed according to GATK best 

practices for mutation calling in RNA. This was performed in order to 

assess whether AGS samples might have evidence of APOBEC signature 

mutations that exceeds that of control samples. Raw data files were 

downloaded from the Sequence Read Archive. Quality control was 

performed on these raw data using FastQC, to evaluate read quality scores, 

and TrimGalore, to perform read trimming using a quality score threshold. 

Reads were mapped to the reference human genome (build 38). Additional 

data curation steps were performed, including base recalibration to correct 

for systematic errors in the base quality scores, and the filtering of known 

germline variants from the set of mutations detected. The output data are 

presented in Table 3.3.1 as the number of point mutations of each type 

across the 14 fibroblast samples, using the 96 type classification system. 

The data are also summarised in Figure 3.3.2, which plots the mean 

proportion of each point mutation type in control samples and AGS 

samples, respectively.
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C1 C2 T1 T2 RB1 RB2 RB3 RB4 RA1 RA2 RA3 RA4 S1 S2
A[C>A]A 4 4 3 73 2 104 4 4 4 52 3 2 4 127
A[C>A]C 0 1 2 31 1 46 4 2 3 20 5 1 4 53
A[C>A]G 1 1 2 7 1 9 1 0 0 5 1 0 0 8
A[C>A]T 0 0 3 16 3 25 3 1 3 18 2 0 3 23
A[C>G]A 5 1 6 14 4 23 6 4 1 8 8 5 4 26
A[C>G]C 3 2 1 12 0 11 4 1 1 10 1 0 4 15
A[C>G]G 1 0 2 1 1 10 2 0 1 3 1 1 1 3
A[C>G]T 2 1 2 11 3 17 2 1 2 7 2 0 5 20
A[C>T]A 1 0 18 55 9 76 9 4 20 29 7 4 9 58
A[C>T]C 1 0 15 35 15 62 6 5 10 31 10 4 13 62
A[C>T]G 1 0 0 0 0 5 3 0 3 1 3 0 0 1
A[C>T]T 3 2 8 49 7 75 7 5 9 24 10 4 8 50
A[T>A]A 5 0 3 63 6 105 2 1 7 43 3 1 2 76
A[T>A]C 3 3 2 31 0 36 2 2 1 21 2 0 1 40
A[T>A]G 1 1 4 26 4 23 5 0 2 21 5 0 6 34
A[T>A]T 1 1 0 19 0 26 1 0 1 15 3 1 2 25
A[T>C]A 6 2 163 95 18 131 104 80 61 73 169 63 136 153
A[T>C]C 3 1 22 54 16 86 20 14 23 42 35 12 30 90
A[T>C]G 3 1 137 92 36 123 87 71 92 59 137 66 100 148
A[T>C]T 1 0 306 193 55 223 203 170 248 122 336 115 221 215
A[T>G]A 4 1 3 12 1 12 1 0 1 9 5 0 2 10
A[T>G]C 0 1 7 11 1 11 3 1 4 5 5 2 0 13
A[T>G]G 4 4 10 20 2 27 3 3 4 7 4 3 5 25
A[T>G]T 4 1 1 16 2 16 2 1 0 10 1 1 4 15
C[C>A]A 1 1 3 62 1 95 3 2 4 53 7 3 4 92
C[C>A]C 3 1 3 44 3 56 4 1 3 29 3 2 2 59
C[C>A]G 1 1 1 11 1 17 0 2 1 5 0 0 2 14
C[C>A]T 3 2 1 25 1 32 2 2 4 17 1 1 3 28
C[C>G]A 4 1 2 11 2 15 4 1 4 9 4 2 5 15
C[C>G]C 6 2 0 10 1 11 0 0 2 7 1 2 4 17
C[C>G]G 3 1 0 8 1 15 0 2 1 3 3 1 1 11
C[C>G]T 6 1 1 7 2 16 4 3 2 6 4 3 6 17
C[C>T]A 7 6 13 78 15 89 7 6 16 49 11 4 9 63
C[C>T]C 20 13 12 67 12 113 7 3 14 50 7 2 9 102
C[C>T]G 0 1 3 7 3 11 3 1 2 6 4 2 2 8
C[C>T]T 9 6 16 37 13 95 9 3 20 38 13 3 9 69
C[T>A]A 19 22 1 37 2 51 2 0 2 33 2 1 1 58
C[T>A]C 24 19 4 50 5 50 2 2 5 21 3 0 1 74
C[T>A]G 1 1 5 31 6 41 2 1 9 20 4 3 4 51
C[T>A]T 35 24 3 14 2 28 2 3 2 10 4 0 2 38
C[T>C]A 13 4 1125 523 147 507 725 641 589 343 1091 431 752 569
C[T>C]C 14 8 174 148 51 230 126 71 140 128 174 57 114 251
C[T>C]G 6 3 894 418 138 522 593 517 494 273 931 350 578 499
C[T>C]T 10 3 552 322 129 359 434 347 342 181 627 230 445 413
C[T>G]A 24 15 4 13 0 5 2 0 1 2 4 1 2 11
C[T>G]C 65 49 4 13 5 23 1 1 2 9 2 0 4 29
C[T>G]G 5 3 3 21 4 25 3 1 5 13 4 3 8 25
C[T>G]T 34 31 5 13 0 16 2 0 0 6 2 2 2 16
G[C>A]A 7 2 4 19 4 28 1 0 2 14 3 0 3 26
G[C>A]C 0 0 2 22 3 23 2 3 2 14 2 2 4 35
G[C>A]G 4 2 2 10 0 24 2 2 1 11 1 1 1 19
G[C>A]T 0 0 2 22 4 28 1 3 1 10 0 0 2 30
G[C>G]A 1 0 2 18 2 21 5 0 0 8 1 1 6 19
G[C>G]C 4 1 3 21 0 42 3 1 6 16 4 1 10 33
G[C>G]G 6 4 1 5 1 16 1 1 3 2 3 1 4 14
G[C>G]T 1 1 4 16 1 28 7 3 3 11 2 1 4 22
G[C>T]A 0 0 9 52 11 87 2 3 14 37 5 3 7 69
G[C>T]C 2 2 10 55 15 73 8 5 12 30 9 6 8 75
G[C>T]G 7 0 5 17 2 17 5 3 4 7 3 2 2 16
G[C>T]T 2 3 5 58 12 70 6 1 16 43 8 1 8 89
G[T>A]A 2 2 3 15 0 19 1 1 2 9 1 0 3 15
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Table 3.3.1 - Number of point mutations of each type (using the 96 type 

classification system) in the AGS RNA-seq dataset.

C: control, RA: RNSASEH2A, RB: RNASEH2B, S: SAMHD1, T: TREX1. 

G[T>A]C 3 1 1 11 3 25 0 1 4 8 1 0 1 25
G[T>A]G 1 0 3 51 5 91 3 0 1 45 4 0 2 93
G[T>A]T 4 2 0 25 2 21 0 0 1 6 2 0 3 21
G[T>C]A 116 85 428 213 76 274 339 279 268 138 452 186 358 279
G[T>C]C 32 15 35 49 13 53 18 17 20 29 33 13 19 76
G[T>C]G 120 54 411 221 73 276 298 238 250 131 460 156 267 287
G[T>C]T 262 168 210 140 44 184 133 127 185 92 224 82 153 175
G[T>G]A 980 548 0 7 1 17 3 1 1 5 2 0 6 12
G[T>G]C 133 80 2 12 1 25 2 2 1 9 3 2 2 11
G[T>G]G 755 493 3 19 3 31 2 3 2 7 3 2 5 37
G[T>G]T 544 357 2 17 0 16 2 1 2 6 2 0 1 10
T[C>A]A 403 263 0 22 2 29 1 0 3 13 1 0 1 30
T[C>A]C 30 11 0 20 0 14 2 2 0 16 1 0 2 36
T[C>A]G 333 230 1 2 0 4 1 1 1 1 0 1 1 6
T[C>A]T 174 103 0 17 3 19 0 1 2 12 0 1 1 21
T[C>G]A 297 185 4 23 3 25 4 0 5 11 2 1 3 35
T[C>G]C 30 20 5 16 5 14 5 2 6 12 6 2 5 28
T[C>G]G 229 164 1 3 0 6 0 0 2 4 0 0 1 12
T[C>G]T 207 131 5 26 2 37 3 3 1 16 8 0 5 36
T[C>T]A 1 0 12 58 10 86 7 5 16 38 15 4 10 89
T[C>T]C 1 1 19 50 17 86 16 7 15 40 18 5 20 64
T[C>T]G 3 1 2 14 4 12 1 3 4 11 5 1 2 13
T[C>T]T 1 2 19 98 21 128 9 6 31 58 13 9 20 114
T[T>A]A 3 1 4 18 2 25 6 1 4 16 3 0 1 44
T[T>A]C 1 1 2 17 1 32 1 1 0 16 1 0 1 35
T[T>A]G 5 4 0 17 1 42 0 1 6 11 3 2 3 23
T[T>A]T 1 2 3 40 8 39 7 1 3 18 1 0 11 43
T[T>C]A 1 1 326 203 49 253 222 205 266 146 344 115 249 268
T[T>C]C 2 1 42 96 21 114 36 27 50 53 57 16 34 112
T[T>C]G 6 1 268 158 63 198 194 161 179 93 281 102 175 233
T[T>C]T 1 1 192 172 74 233 157 116 269 101 207 79 159 230
T[T>G]A 3 1 3 29 2 34 5 2 3 15 4 1 3 32
T[T>G]C 6 3 4 20 5 20 3 1 0 20 2 1 3 20
T[T>G]G 6 3 5 15 2 26 1 3 3 15 3 4 4 31
T[T>G]T 5 3 2 61 1 65 1 1 2 42 1 3 7 85
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Figure 3.3.2 - The mean proportion of each of the 96 mutation types in the 

RNA-seq samples analysed. (a) control sample means. (b) AGS sample 

means.
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These data indicate that the mutational profiles of both control and AGS 

samples are marked by a predominance of T>C mutations. This is in 

keeping with the physiological activity of ADAR deaminases that perform 

RNA editing of the human transcriptome (Lerner, Papavasiliou, and Pecori 

2019). In addition to this, AGS samples appear to have slightly more point 

mutations of all other types. Both control and AGS samples were found to 

have mutations at TCW residues that could be consistent with the activity of 

APOBEC3A or APOBEC3B. The number of these TCW mutations in control 

and AGS samples is shown in Figure 3.3.3. Here, TCW mutations were 

chosen as a measure of APOBEC signature mutations as it was noted that 

cancer-associated APOBEC activity could potentially cause C>T, C>G or 

C>A mutations (Morganella et al. 2016) and APOBEC expression was 

associated with mutations at C residues in general as well as at TCW 

residues (Burns et al. 2013), suggesting that cancer-associated APOBEC 

activity might be more promiscuous than suggested by the NMF-generated 

SBS2 and SBS13 (see sections 1.5 and 1.6). 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Figure 3.3.3 - The number of APOBEC signature TCW mutations detected 

in RNA-seq of AGS samples and control samples. Error bars: Standard 

error of the mean.

The data in Figure 3.3.3 showed an increase in the number of mutations at 

TCW residues that was not statistically significant (control mean: 61.5, AGS 

mean: 102.9 , t-test p-value: 0.328). 

Given that mutations of all types were slightly elevated in AGS samples 

relative to controls, the percentage of mutations occurring at TCW residues 
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in control and AGS samples, rather than simply their number, was also 

compared (Figure 3.3.4).

Figure 3.3.4 - The percentage of APOBEC signature TCW mutations 

detected in RNA-seq of AGS samples and control samples. Error bars: 

Standard error of the mean.

The data in Figure 3.3.4 showed an increase in the percentage of mutations 

at TCW residues that was again not statistically significant (control mean: 

1.1%, AGS mean: 2.1% , t-test p-value: 0.227).
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It was noted that there was some variability in data points for APOBEC3A 

and APOBEC3B expression, the number of TCW mutations and percentage 

of TCW mutations. Their distribution did not appear to depend on the 

underlying genotypes of the samples (Table 3.3.2).

Table 3.3.2 - The expression levels of APOBEC3A and APOBEC3B and the 

number and percentage of TCW mutations in each AGS sample. 

Expression data are normalised to TBP and the mean of the control 

samples.

Next, Spearman rank correlations were performed using data for APOBEC 

gene expression and either the number or percentage of TCW mutations in 

the AGS samples (Table 3.3.3). A Spearman correlation was chosen over a 

Pearson correlation in an attempt to account for non-linear differences in 

the distributions of these sets of data. 

AGS Sample

TREX1 RNASEH2B RNASEH2A SAMHD1

1 2 1 2 3 4 1 2 3 4 1 2

APOBEC3A 
expression 1.1 3.8 1.5 1.3 1.2 1.1 6.0 0.6 1.1 1.5 0.5 1.0

APOBEC3B 
expression 0.2 8.8 2.1 5.5 0.7 2.1 8.6 4.6 0.2 2.3 2.0 1.4

TCW 
number 40 244 41 324 24 15 58 148 39 15 40 325

TCW 
percentage 0.7 4.7 3.1 4.8 0.6 0.5 1.5 4.3 0.7 0.7 1.0 4.7
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Table 3.3.3 - Spearman correlations using expression levels of APOBEC 

genes and either the number or percentage of APOBEC signature TCW 

mutations in AGS samples.

The results in Table 3.3.3 indicate that expression of APOBEC3A and 

APOBEC3B are positively correlated with the number of TCW mutations in 

AGS samples (ρ = 0.01 and 0.38, respectively) and the percentage of TCW 

mutations in AGS samples (ρ = 0.13 and 0.54, respectively) with 

APOBEC3B showing a stronger correlation than APOBEC3A and no other 

APOBEC genes showing positive correlations. This mimics the pattern 

observed in cancer. However, as indicated by Table 3.3.3, none of the 

positive correlations calculated are statistically significant. The reasons 

underlying negative correlations of approximately ρ = -0.6 for APOBEC3C 

Number of TCW mutations Percentage of TCW mutations

APOBEC gene Spearman’s ρ p-value Spearman’s ρ p-value

APOBEC1 NA NA NA NA

APOBEC2 -0.13 0.677 -0.04 0.911

APOBEC3A 0.01 0.965 0.13 0.681

APOBEC3B 0.38 0.220 0.54 0.071

APOBEC3C -0.62 0.030 -0.65 0.022

APOBEC3DE -0.49 0.102 -0.58 0.479

APOBEC3F -0.61 0.036 -0.64 0.240

APOBEC3G -0.42 0.173 -0.47 1.245

APOBEC3H NA NA NA NA

APOBEC4 -0.30 0.335 -0.40 0.194
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and APOBEC3F are not clear. Again, these correlations do not meet 

statistical significance if a Bonferroni correction is applied.  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3.3.4. Gene ontology analysis of RNA-seq data in Aicardi-Goutières 

syndrome and APOBEC3B-deficient breast cancer

Gene ontology analysis was performed using the PANTHER tool on the list 

of ~100 genes reported by Lim et al to be upregulated at statistical 

significance in AGS patients relative to controls. Gene ontology terms  

which are overrepresented at statistical significance (p < 0.05) are shown in 

Table 3.3.4. 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Table 3.3.4 - Overrepresented gene ontology terms for genes reported to 

be most significantly upregulated in AGS, as reported by Lim et al.

The results shown in Table 3.3.4 indicate that, although AGS is described to 

be an interferonopathy, interferon-related genes are not overrepresented in 

the list of overexpressed AGS genes. However, a number of immune-

related and cell cycle-related gene ontologies are overrepresented.

AGS upregulated

positive regulation of 
neutrophil chemotaxis
chemokine-mediated 

signaling pathway
positive regulation of 
leukocyte chemotaxis

mitotic prometaphase

regulation of leukocyte 
chemotaxis

anaphase

mitotic anaphase

regulation of leukocyte 
migration

M phase

mitotic M phase

mitotic cell cycle 
phase

cell cycle phase

biological phase

positive regulation of 
response to external 

stimulus
cytokine-mediated 
signaling pathway

mitotic nuclear division
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It was not clear why cell cycle genes might be upregulated as part of the 

pathophysiology of AGS, or why more general immune gene ontologies 

might be overrepresented rather than interferon-related gene ontologies. 

However, it was noted that APOBEC3B expression is associated with the 

expression of cell cycle-related genes in cancer (see section 3.2.2). It was 

also noted that the APOBEC3B deletion polymorphism was previously 

associated with the upregulation of immune gene expression in   two breast 

cancer datasets, from TCGA and METABRIC (Molecular Taxonomy of 

Breast Cancer International Consortium; Curtis et al. 2012; Cescon, Haibe-

Kains, and Mak 2015).

To further characterise the possible similarity between gene expression in 

AGS and APOBEC3B-deficient cancers, PANTHER gene ontology analysis 

was conducted on upregulated and downregulated genes using the Lim et 

al and TCGA datasets. TCGA patient IDs from Nik-Zainal et al. 2014 were 

used to identify the APOBEC3B-deficient cancers in the TCGA dataset. 

Individuals that were either homozygous or heterozygous for the 

APOBEC3B deletion allele were grouped in an attempt to achieve greater 

statistical power to detect expression changes, given observed similarities 

in their resultant phenotypes. The top and bottom 100 differentially-

expressed genes in the AGS and breast cancer datasets were analysed 

using the PANTHER gene ontology tool. Gene ontology terms which are 

overrepresented at statistical significance (p < 0.05) are shown in Table 

3.3.5.
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Table 3.3.5 - Overrepresented gene ontology terms for genes in AGS  and 

APOBEC3B-deficient breast cancers that are either upregulated (a) or 

downregulated (b).
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AGS 
downregulated

extracellular matrix 
organization

extracellular structure 
organization
animal organ 

morphogenesis
animal organ 
development

anatomical structure 
development

developmental 
process

system development

multicellular organism 
development
multicellular 

organismal process
anatomical structure 

morphogenesis

cell adhesion

biological adhesion

APOBECB-
deficient cancer
downregulated

multicellular 
organismal process 

system development 

cell-cell adhesion 

extracellular structure 
organization 

extracellular matrix 
organization 

single-multicellular 
organism process 

cell adhesion 

biological adhesion 

AGS upregulated

positive regulation of 
neutrophil chemotaxis
chemokine-mediated 

signaling pathway
positive regulation of 
leukocyte chemotaxis

mitotic prometaphase

regulation of leukocyte 
chemotaxis

anaphase

mitotic anaphase

regulation of leukocyte 
migration

M phase

mitotic M phase

mitotic cell cycle 
phase

cell cycle phase

biological phase

positive regulation of 
response to external 

stimulus
cytokine-mediated 
signaling pathway

mitotic nuclear division

APOBECB-
deficient cancer

upregulated

immune response 

biological process 

tissue homeostasis 

regulated exocytosis 

retina homeostasis 

defense response 

multi-organism 
process 

response to external 
stimulus 

secretion 

single-multicellular 
organism process 
humoral immune 

response 
defense response to 

other organism 
response to biotic 

stimulus 
response to external 

biotic stimulus 

response to bacterium 

response to other 
organism 

single-organism 
process 

defense response to 
bacterium 

antimicrobial humoral 
response 

a                                                             b



The results in Table 3.3.5 indicate that AGS and APOBEC3B-deficient 

breast cancers appear to share similar gene expression changes. In terms 

of upregulated genes, both APOBEC3B-deficient breast cancers AGS show 

an overrepresentation of immune response genes. Interferon-related gene 

ontologies are not overrepresented. The immune gene ontology terms that 

are overrepresented in the two datasets are qualitatively similar but not 

identical. In terms of downregulated genes, both APOBEC3B-deficient 

breast cancers and AGS samples show an overrepresentation of 

developmental, cell adhesion and extracellular structure genes. Here, there 

are many identical gene ontology terms between the two groups.
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3.3.5. Discussion

These analyses were conducted in order to investigate whether cells from 

patients with Aicardi-Goutières syndrome might show evidence of cancer-

associated APOBEC activity. On one hand, the overall trends shown in 

each analysis performed are consistent with the notion that cancer-

associated APOBEC activity might indeed be present in Aicardi-Goutières 

syndrome. But on the other hand, multiple individual results within these 

trends were found not to be statistically significant. The findings suggested 

by these data in particular are therefore equivocal. To summarise:

- The pattern of APOBEC expression in AGS appears similar to that 

observed in cancer, where APOBEC3B and to a lesser extent 

APOBEC3A are overexpressed. However, the apparent overexpression 

of each of these genes is not statistically significant.

- APOBEC signature mutations appear to be detectable in RNA from AGS. 

The mean number and mean percentage of APOBEC signature 

mutations appears to be around 2-fold higher in AGS samples relative to 

controls, but this apparent increase is not statistically significant.

- When the number of APOBEC signature mutations is correlated to the 

expression levels of APOBEC genes in AGS, the pattern appears similar 

to that observed in cancer, where APOBEC3B and to a lesser extent 

APOBEC3A show the highest positive correlations. However, these 

correlations did not individually reach statistical significance.

- Although AGS is described to be an interferonopathy, interferon-related 

gene ontologies are not overrepresented in the list of significantly 
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upregulated AGS genes. Instead, more general immune gene ontologies 

are overrepresented, alongside cell cycle-related gene ontologies.

- Germline APOBEC3B deletions in breast cancer appear to show similar 

gene expression patterns to those observed in AGS. In both cases, 

immune genes are upregulated, while developmental, cell adhesion and 

extracellular structure genes are downregulated.

One explanation for the fact that some results did not reach statistical 

significance is that the analyses in section 3.3.2 and 3.3.3 were limited by 

the small sample size of the Lim et al. study. This possibility appears to be 

reaffirmed by considering the probability of detecting APOBEC3B 

upregulation in this dataset, for example. In this thesis and in work by 

others, APOBEC3B expression appears to increase by a magnitude of 2-3 

fold in cancer. A power calculation suggests that the analysis conducted 

may have been underpowered in attempting to detect a fold change of this 

magnitude. Assuming equal numbers of cases and controls, a fold change 

of 2.5 with a standard deviation of 1, a false positive rate of 0.05 and a 

power threshold of 90%, a study of 9 cases and 9 controls would be 

required to detect APOBEC3B upregulation at statistical significance. This 

suggests that future work would likely benefit from a greater sample size. To 

our knowledge, an RNA-seq study of AGS patients and matched controls of 

a larger sample size had not been conducted at the time of preparing these 

analyses.

Another limitation of the analyses conducted is the use of RNA-seq to 

identify APOBEC signature mutations rather then sequencing of the 
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genome. Firstly, cancer-associated APOBEC signature mutations are found 

in DNA rather than RNA. Mutations in DNA were understood to be 

detectable in expressed RNA, and APOBEC3A and APOBEC3B had been 

characterised predominantly as ssDNA mutators. However, it is not possible 

to definitively determine whether the APOBEC signature mutations detected 

in this analysis are due to DNA editing or RNA editing using these data 

alone. Another limitation of using RNA-seq data for this analysis lies in the 

limited amount of the genome covered when using this technique. The 

coverage of the genome is broadly similar to that of exome sequencing, at 

around 1%. In keeping with this, there are on the order of tens of APOBEC 

signature mutations found in the Lim et al. RNA-seq dataset (Figure 3.3.3) 

and the TCGA exome sequencing dataset (Figure 3.2.2). In contrast, whole 

genome sequencing might be expected to identify hundreds or thousands 

of APOBEC signature mutations, which would provide additional statistical 

power for some of the analyses conducted. In addition, an examination of 

whether or not the mutations called in the RNA sequencing data might 

reflect pathogenic changes in potentially relevant genes, such as TP53, 

was not conducted. This is because it is was not clear whether RNA-seq 

could accurately identify specific DNA-level variants in specific genes, 

despite its use in approximating this mutagenesis at an exome-wide scale. 

Examining the functional consequences of specific variants might  be 

particularly beneficial in future DNA sequencing work 

Another factor that can be considered in this analysis is the heterogeneity 

of AGS mutations in the samples studied. Given the rarity of AGS as a 

disease, studies using samples from multiple patients typically consist of 
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multiple genotypes, given that they are thought to share phenotypic 

pathophysiology (such as in Rice et al. 2018). Although all such patients 

display AGS phenotypes, the precise mechanistic changes that occur with 

each type of AGS mutation are not identical. It may therefore be possible 

possible that different AGS genes might influence APOBEC regulation in 

different ways in these analyses. However, Table 3.3.2 suggested that this 

might not be the case for the key data studied in this chapter. To speculate, 

there may be variability due to an inherent heterogeneity in APOBEC 

activity in these cells – in a manner that is analogous to previous 

descriptions of the episodic and heterogeneous nature of LINE-1 and 

APOBEC activity in cancer cells (Petljak et al. 2019; Rodriguez-Martin et al. 

2020). 

Despite the limitations of the analysis described above, the Lim et al. 

dataset nonetheless appears to represent a rare and valuable resource. 

This dataset allows, in principle, for the study of the dysregulation of  the 

metabolism of endogenous nucleic acids that are likely derived from LINE-1 

elements in vivo. The value of data such as these is emphasised by the fact 

that both LINE-1 elements and their regulation vary substantially between 

species, potentially limiting the utility of studying similar genetic defects in 

animal models. Although many of the results in this chapter equivocal, the 

trends observed throughout the analyses are repeatedly consistent with the 

presence of cancer-associated APOBEC activity, a feature of the data 

which in itself might be unlikely to occur due to chance. It may therefore be 

possible that further study indicates more rigorously that LINE-1 activity in 

AGS leads to ABOBEC activity that is analogous to that observed in cancer. 
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It is also possible that further study indicates that the endogenous nucleic 

acids other than LINE-1 might contribute to any such observations 

(discussed in section 1.7.4).

The gene ontology results in this chapter were statistically significant. They 

appear to provide evidence that gene expression in AGS shows parallels 

with gene expression that is associated with APOBEC3B in cancer. For 

example, cell cycle-related genes appear to be upregulated in AGS. Cell 

cycle-related genes also appear to be associated with APOBEC3B 

expression in cancer (see section 3.2.2). In addition, the AGS data indicate 

that genes with immune gene ontologies are upregulated and genes with 

developmental, cell adhesion and extracellular structure gene ontologies 

are downregulated. This also appears to be the case in breast cancers with 

APOBEC3B deficiency. Of note, although AGS is reported to be an 

interferonopathy, interferon-related genes are not overrepresented in the 

set significantly upregulated genes. As with the PANTHER gene ontology 

results in the previous results chapter, the ontology results in this chapter 

might be complemented and validated by the use of techniques such as 

Gene Set Enrichment Analysis, which identifies statistically significant 

differences in gene expression for all genes represented by specific gene 

ontologies (Subramanian et al. 2005). 

These parallels implicate the mechanistic changes that occur in AGS with 

those that are associated with APOBEC3B activity cancer. The mechanistic 

basis of the expression changes detected are not immediately clear. For 

example, on review of the literature, it is not clear why cell cycle-related 
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genes might be upregulated in AGS. Further experimental work is required 

to determine whether the parallels observed are due to shared 

pathophysiology, or instead due to confounding factors or chance. 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4. Discussion

Introduction

The stated aim of this thesis is to investigate the regulation of APOBEC 

mutagenesis in cancer. The approach taken for the work conducted was 

based on the understanding that aberrant signalling appears likely to drive 

the aberrant expression of APOBEC3A and APOBEC3B in cancer, leading 

to APOBEC signature mutations. A focus of the work conducted was the 

hypothesis that APOBEC activity might be driven by LINE-1 upregulation. 

Inactivation of either p53 or AGS genes were identified as possible ways to 

model the upregulation of LINE-1 activity that occurs in cancer. Here, the 

key findings in each chapter of the thesis are listed in turn and critically 

analysed in light of the hypothesis at hand to inform suggestions for future 

work.

1. Experiments investigating APOBEC activity in cultured cancer cells

In terms of the first results chapter, the experiments conducted suggest that 

p53 inactivation leads to the upregulation of LINE-1 and APOBEC3B, and 

that the opposite might occur when p53 activity is promoted by Nutlin-3a. 

Reverse transcriptase inhibitors of LINE-1 activity appear to modulate 

APOBEC3B expression and associated enzymatic activity. This appears to 

occur when cells are p53-deficient, but not when p53 is intact. In addition, a 

high-throughput deaminase assay is established.
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These experiments do not determine whether or not LINE-1 activity drives 

APOBEC activity, although the findings are broadly consistent with this 

hypothesis. An approach to testing this hypothesis in future could entail the 

use of gene editing to inactivate the 150 or so reportedly active LINE-1 

elements in the genome (Penzkofer et al. 2016). This would provide a 

genetic approach to LINE-1 inhibition to complement the pharmacological 

approach pursued in these experiments. It would be of use to examine 

whether APOBEC activity is reduced or abolished if LINE-1 is genetically 

inactivated, and to examine what global expression changes occur by RNA-

seq, including expression changes that mirror those found in AGS.

In this section, p53 inactivation is used as a model for LINE-1 activation. 

Since these experiments were designed and conducted, it has been 

reported that p53 directly regulates the APOBEC3B promoter (Periyasamy 

et al. 2017). It is therefore unclear whether this model is as valid to the 

extent that was assumed. The TP53 gene might regulate APOBEC activity 

through direct epigenetic control or indirectly through LINE-1 activation as 

posited - possibly through pathways that are of relevance to AGS 

pathophysiology. LINE-1 inactivation experiments, as described above, 

performed in the context of p53 inactivation would enable the detection of 

the extent to which p53’s impact on APOBEC activity is LINE-1 mediated 

and an assessment of global gene expression changes.

Although the conflicting results concerning AZT versus d4T and 3TC were 

rationalised in the context of a possible parallel with AGS, the experiments 
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conducted would be strengthened by assessing possible changes in 

APOBEC activity using a wider range of RTIs. Recently reported structures 

of LINE-1 ORF2 may shed light on why there may be differential effects of 

different RTIs, or inform the development of more specific inhibitors that 

could be used in their place to test the hypothesis at hand (Baldwin et al. 

2023; Thawani et al. 2023). 

2. Bioinformatic analyses investigating APOBEC regulation in large 

genomic datasets

In terms of the second results chapter, the analyses conducted indicate that 

APOBEC3A expression is associated with interferon signalling in cancer 

while APOBEC3B expression is associated with cell cycle signalling in 

cancer. A deletion of a consensus interferon response factor binding site in 

the human APOBEC3B promoter is identified. Analyses of regulatory data 

suggest that APOBEC3B might be transcriptionally insulated from syntenic 

APOBEC3 genes by CTCF. In addition, p53 deficiency in cancer appears to 

be associated with the upregulation of APOBEC3A and APOBEC3B. 

The results of these exploratory analyses are not inconsistent with the 

hypothesis that LINE-1 activity promotes APOBEC activity in cancer. 

However, they again do provide definitive answers. Further experimental 

work is required to develop an understanding of the observations gained 

from these data, and then test their relevance in the context of LINE-1. For 

example, the significance of the deletion in the APOBEC3B promoter could 

be evaluated in future work by using gene editing techniques to delete this 
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region in chimpanzee or bonobo cells and examine how APOBEC3B 

expression varies when these cells are exposed to interferon, or indeed 

exposed to LINE-1 upregulation. Similar functional experiments could be 

performed to examine the significance of CTCF from putatively insulating 

APOBEC3B from syntenic interferon responsiveness by knocking out these 

CTCF binding sites in human cells. While APOBEC3s are known to be 

interferon-responsive, work published since the completion of this work 

indicates that the association of cell cycle signalling to APOBEC3B may 

reflect a causal relationship, with APOBEC3B expression varying as a result 

of cell cycle phase (Hirabayashi et al. 2021)

In addition, while p53 deficiency is associated with APOBEC3A and 

APOBEC3B upregulation, it is not clear whether this is a potentially causal 

relationship. One method of addressing this in future would be to attempt to 

assess the temporality of the relationship between p53 inactivation and 

APOBEC activity. Since the clonality of mutations in a genetically 

heterogenous tumour can be used to infer timing, it may be possible to 

examine computationally whether APOBEC signature mutations (and 

indeed LINE-1 insertions) occur before or after TP53 mutation in a range of 

cancers.

3. Bioinformatic analyses investigating APOBEC activity in Aicardi-

Goutières syndrome
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In terms of the third results chapter, the analyses conduced suggest that 

changes to the transcriptome in Aicardi-Goutières syndrome might mirror 

those associated with APOBEC activity in cancer. AGS cells show an 

upregulation of genes with cell cycle gene ontologies, mimicking the 

association of APOBEC3B expression in cancer. AGS cells also show the 

upregulation of immune genes and the downregulation of developmental, 

cell adhesion and extracellular structure genes, which mimics the changes 

that occur when APOBEC3B deletions are found in breast cancer.

These results are also broadly consistent with the hypothesised role played 

by LINE-1 and could also be strengthened by future work. Obtaining a 

larger number of AGS samples would likely be required for sufficient 

statistical power to detect the changes of interest. Performing genome 

sequencing in future work would allow for the detection of APOBEC 

signature mutations with greater accuracy than can be achieved with 

mutation calling in RNA-seq data, including the detection of potentially 

relevant somatic mutations of specific genes such as TP53. In addition, 

using techniques specific for the measurement of LINE-1 expression in 

RNA-seq data would help confirm the presence of increased LINE-1 

activity. LINE-1 knockout through gene editing or treatment of RTIs prior to 

sequencing would have utility in determining the contribution of LINE-1 

activity to any APOBEC-related phenotypes observed.

It would also be of use to perform experimental work to determine the 

significance of the APOBEC3B deletion polymorphism in breast cancer to 

LINE-1 and AGS biology. The deletion polymorphism could be generated in 
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cancer cells using gene editing. Based on the results of the analysis in this 

chapter, one might expect that this would lead to elevated LINE-1 activity 

that in turn leads to AGS-related signalling. It would also be expected that 

this phenotype could be rescued by inhibiting LINE-1 genetically or 

pharmacologically.

It is of note that the RTI treatments that alleviate AGS models also appear 

to reduce measures APOBEC activity in HCT116 cells, while the opposite is 

true for those that do not alleviate AGS models, and that both such effects 

occur when p53 is deficient and LINE-1 expression is elevated. If reverse 

transcriptase inhibitors might influence cancer cells in vivo in similar ways, 

then it might be expected that cancer patients on RTI therapy as part of a 

long term antiretroviral treatment might have cancer genomes with atypical 

numbers of APOBEC signature mutations. Such genome sequences are 

currently being generated and analysed as part of the HIV+ Tumor 

Molecular Characterization Project performed by the United States National 

Cancer Institute (NCI 2024).

Conclusion

The hypothesis that LINE-1 activity promotes APOBEC activity in cancer 

appears to remain of importance to the field. Both LINE-1 activity and 

APOBEC activity are highly prevalent and likely underestimated sources of 

genomic instability in cancer that are likely to mediate cancer evolution. 

Indeed, recent reports indicate that APOBEC activity plays a causal role in 

the evolutionary trajectory of cancer cells, with experimental work indicating 
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that APOBEC activity mediates the acquisition of resistance in cells 

subjected to targeted therapies (Isozaki et al. 2023). Although multiple 

mechanisms have now been described in the literature as leading to 

cancer-associated APOBEC activity in vitro, it not yet clear which of these 

operates in vivo. In the event there are multiple such mechanisms, it is not 

clear which is most common and which might be therapeutically relevant. 

LINE-1 activity appears likely to play a role in driving APOBEC activity at 

least in some contexts. It is commonly found in range of cancer types, is 

therapeutically actionable, and its inhibition would be expected to reduce 

genomic instability mediated by both LINE-1 activity and APOBEC activity. 

The findings described in this thesis provide evidence for possible 

regulators of APOBEC mutagenesis in cancer, including evidence that 

broadly supports the hypothesis that it may be driven by LINE-1 activity. 

The experiments conducted identify a class of drugs that might enable the 

pharmacological modulation of cancer-associated APOBEC activity through 

the modulation of LINE-1 activity. APOBEC mutagenesis is thought to 

mediate cancer initiation, progression, intratumour heterogeneity 

and  responses  to therapy, including immunotherapy. It is therefore hoped 

that the work conducted might contribute to the ability to understand and 

control the natural history of cancer across multiple cancer types.
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5. Materials and Methods

5.1. Cell culture

HCT116 p53wt/wt and p53-/- cells (Dr. Bert Vogelstein, Howard Hughes 

Medical Center, USA) were grown in McCoy's 5A (1x) + GlutaMAX™-I 

Modified Medium (Gibco) supplemented with 10% Foetal Bovine Serum 

(Gibco) and passaged by trypsinisation using trypsin-EDTA solution 

(Gibco). p53-/- knockout cells were generated by Vogelstein and colleagues 

by replacing the first codon of TP53 with its second intron (Bunz et al. 

1998).

Cells were incubated in humid conditions at 37 °C and 5% CO2 in 

Nunclon™ Delta treated flasks (Thermo Fisher). Cultured cells were treated 

with up to 100 µM Nutlin-3a (Sigma Aldrich), 100 µM AZT (Sigma Aldrich), a 

combination of 1 µM d4T (Sigma Aldrich) and 10 µM 3TC (Sigma Aldrich) or 

given mock treatment. Inhibitors stocks were stored at -20˚C in 10 µl 

aliquots. Cells were assayed 2-3 days after a single dose of inhibitor 

treatment.

5.2. Western blot

HCT116 p53wt/wt and p53-/- cells were harvested over three consecutive 

passages. Cells were lysed in lysis buffer (20mM Tris (pH8), 150mM NaCl, 
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0.5% NP-40, 1mM EDTA) plus protease inhibitor cocktail.   Protein content 

was measured by Bradford and 15ug of total cell lysate was loaded for each 

sample on a 4-12% Bis-Tris gel and run in MOPS running buffer. The 

protein was transferred to PVDF, 100v for 1hr, in transfer buffer containing 

7.5% methanol. 

The membrane was cut in half between 50kDa and 75kDa and blocked in 

TBST + 5%milk for 1hr.  The upper section was probed with anti-HSP90 

(Cell Signalling Technology) diluted 1:2000 in TBST + 5% milk and the 

lower section was probed with anti-p53 (Santa Cruz) diluted 1:500 in TBST 

+ 5% milk. The blot was washed and incubated with anti-mouse or anti-

rabbit HRP-conjugated secondary antibodies then developed with ECL 

reagent.

5.3. Sulforhodamine B biomass assay

Cells were seeded in 96-well plates (Thermo Fisher) at a seeding density of 

2000 cells per well and incubated with or without varying concentrations of 

AZT (Sigma Aldrich) or Nutlin-3a (Sigma Aldrich) for 72 hours. Cells were 

fixed with 1% trichloroacetic acid for 30 minutes. Then, plates were washed 

with deionised water before staining with 0.057% Sulforhodamine B (Sigma 

Aldrich) solution for 30 minutes. After washing with 1% acetic acid, plates 

were allowed to air dry overnight.
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The Sulforhodamine B stain was then solubilised by 10 mM Tris for 10 mins 

while agitating. Fluorescence intensity was measured at excitation 540 nm 

and emission 590 nm on a PHERAstar Plus plate reader (BMG Labtech).
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5.4. qRT-PCR

Experiments were performed in triplicates. RNA extraction was performed 

using the RNeasy Mini Kit (Qiagen), including Qiazol and DNase (Qiagen) 

treatment, according to the manufacturer's instructions. RNA was stored at 

-70 °C once extracted. cDNA synthesis was performed using the 

SuperScript III reverse transcriptase (Invitrogen) according to the 

manufacturer's instructions. Then, two PCR reactions for each triplicate 

were performed using the SYBR® Green PCR Kit (Qiagen). PCR reactions 

were performed in 96-well optical plates (Invitrogen) using a StepOne Plus 

RT-PCR machine (Applied Biosystems). Expression levels were quantified 

using the 2-ΔΔCT method, normalised to ACTB expression. Data were 

analysed using GraphPad Prism software. The following forward (F) and 

reverse (R) primers were used:
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5.5. Cytosine deaminase assay

The protocol used was adapted from the Burns et al. (2013) and Vieira et 

al. (2014) studies. Cultured cells were harvested by trypsinisation and 

Target Source Sequence Concentration

LINE-1 ORF1

Marchetto et al.

F ATGAGCAAAGCCTCCAAGAA 

500 nM

R TTCTCCCCATCACTTTCAGG 

LINE-1 ORF2

F TGGAGGCATCACACTACCTG

500 nM

R ATGCGGCATTATTTCTGAGG

APOBEC3B Burns et al.

F GACCCTTTGGTCCTTCGAC

500 nM

R GCACAGCCCCAGGAGAAG

ACTB Qiagen

F
N/A: proprietary information. 
Primers are designed to amplify 
exons 3 and 4.

N/A: proprietary 
information.

R
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washed in PBS. Cells lysis was then performed using 400 µl lysis buffer (25 

mM HEPES pH 7.4, 250 mM NaCl, 0.5% Triton X-100 (Thermo Fisher), 1 

mM EDTA, 1 mM MgCl2, 1 mM ZnCl2, 10% glycerol, 2x Pierce™ EDTA-free 

protease inhibitor cocktail (Thermo Fisher)) using a 25 gauge needle (BD 

Microlance) and syringe. Lysates were sonicated at 30 Hz for 10 seconds 

and left to rotate for 30 minutes at 4 °C. Lysates were then centrifuged at 

12000x g for 10 minutes at 4 °C. The supernatant was extracted and 

protein concentration determined by absorbance at 280 nm using a 

NanoDrop 2000 spectrophotometer (Thermo Fisher). 

20 µl reactions were performed in black low volume 384-well plates 

(Corning) using 16 µl protein extract and 4 µl reaction mixture (4 pmol 

ssDNA probe, 0.025 U Uracil DNA Glycosylase (NEB), 5x UDG buffer 

(NEB), 1.75 U RNase H (Sigma Aldrich)). Where dilutions of lysates were 

used, these were diluted in lysis buffer. Plates were sealed and incubated in 

dark conditions at 37 °C for 2 hours. Reactions were supplemented with 20 

µl 0.2 M NaOH and incubated for a further 30 minutes at 37 °C. Plates were 

read at excitation 485 nm and emission 520 nm on a PHERAstar Plus plate 

reader (BMG Labtech). ssDNA probes (Sigma Aldrich) used had the 

following sequences:

5’-6FAM-ATTATTATTATNNNAATGGATTTATTTATTTATTTATTTATTT-

TAMRA-3’

5’-6FAM-ATTATTATTATNNNAATGGATTTATTTATTTATTTATTTATTT-3’
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5’-6FAM-ATAANNNAATAGATAAT-TAMRA-3’

(NNN: TTA, ACA, TCA or TUA).

Where a gel was used to separate fragments, the gel used was a 15-well 

15% Tris-Borate-EDTA (TBE)-Urea gel (Thermo Fisher). Gels were imaged 

using a Gel Doc XR+ machine (Bio-Rad). Imaged bands were quantified 

using ImageJ software (NIH - https://imagej.nih.gov/ij/).

5.6. Bioinformatic analyses of large datasets

Mutect2-called somatic mutation data and TPM-normalised RNA-seq data 

from 2840 patients were sourced from The Cancer Genome Atlas (TCGA) 

data portal (tcga-data.nci.nih.gov). Microsoft Excel and R (r-project.org) 

functions were used to link datasets, while R was used to compute 

correlations and complete arithmetic.

The bases immediately 5' and 3' of point mutations called in the TCGA 

dataset were extracted using the UCSC human genome builds 36 and 37 

(genome.ucsc.edu) in order to identify APOBEC signature TCA point 

mutations. Then, the number of APOBEC signature mutations for each 

patient was linked to their RNA-seq profile. The gene expression data for all 

genes was normalised to that of the TATA binding protein (TBP) 

housekeeping gene. Then, APOBEC3A expression, APOBEC3B expression 

and the number of APOBEC signature TCA mutations were correlated to 
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the expression to all other genes using a Spearman's rank correlation. The 

standard error of the coefficient (σrs) is given by the formula 0.6325/√(n-1), 

where n is the number of patients. The top 20 most highly correlated genes 

were analysed for gene ontology enrichment using the Protein Analysis 

Through Evolut ionary Relat ionships (PANTHER) tool (http:/ /

geneontology.org/ - Bonferroni-corrected p < 0.05 in all cases). 

Concerning the p53 fold change analysis, patients with TP53 mutations 

were first identified using the somatic mutation data sourced from the TCGA 

data portal. The corresponding APOBEC expression data for the two 

groups were then identified in the linked RNA-seq data, and fold change 

calculated directly between these two groups. Calculations were performed 

in Microsoft Excel, GraphPad Prism and R.

To compare genomes of human and non-human primates, UCSC genome 

builds hg38 (human), panTro4 (chimpanzee) and panPan1 (bonobo) were 

viewed on the UCSC genome browser to identity sequence differences in 

the APOBEC3B promoter. ENCODE H3K27 acetylation data from all 7 cell 

lines available (GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, NHLF) 

were used to verify the regulatory role of putative promoter regions in 

human APOBEC3 genes, alongside ReMap peaks. Peak data were filtered 

for quality according to cross-correlation and the FRiP (fraction of reads in 

peaks) metrics developed by the ENCODE Consortium (Hammal et al. 

2022).
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ChIP Atlas Peak Browser (https://chip-atlas.org/) CTCF results (n=490) 

were filtered for high significance threshold (>500) and selected for data 

from all cell types available (n=43086). These data were downloaded as 

BED files. Indexing and viewing of these BED files were performed on the 

Broad Inst i tute Integrat ive Genomics Viewer ( IGV) (ht tps: / /

software.broadinstitute.org/software/igv/).

5.7. Bioinformatic analyses of Aicardi-Goutières syndrome data

These analyses made use of the RNA-Seq data from Lim et al. study. 

These authors performed RNA sequencing on 14 fibroblast samples from 

four patients with LINE-1 associated AGS genotypes and one age-matched 

health control. The four patients had pathogenic mutations in TREX1, 

RNASEH2A, RNASEH2B and SAMHD1, respectively. Four samples were 

derived from the patient with RNASEH2A deficiency and four were from the 

patient with RNASEH2B deficiency. The other individuals provided two 

samples each.

For mutational analyses, raw RNA-seq files from the study were sourced 

from the NCBI SRA repository (https://trace.ncbi.nlm.nih.gov/Traces/study/?

acc=SRP041718). The samples were subsequently processed according to 

GATK best practices for variant calling from RNA-Seq data (Figure 5.1;  

https://software.broadinstitute.org/gatk/best-practices/workflow?id=11164).
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Figure 5.1 - A diagram summarising the processing of RNA-Seq data using 

the GATK best practices pipeline.

Quality control was performed on the raw FASTQ format RNA-seq data 

using FastQC, to evaluate read quality scores, and TrimGalore, to perform 

read trimming using a quality threshold of 20. Reads were mapped to the 

reference human genome build 38 using the STAR aligner to generate BAM 

files. Then, a number of data curation steps are performed using GATK 

tools, including the identification of artefacts arising from duplicate reads 

and base recalibration to correct for systematic errors in the base quality 
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scores. Then, variants were called into VCF files using the GATK 

HaplotypeCaller, and filtered with high threshold GATK VariantFiltration 

(using parameters -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" 

-filterName QD -filter "QD < 2.0”). 

VCF files were analysed using the deconstructSigs R package (Rosenthal 

et al. 2016) to identify the proportion of TCW mutations in each sample and 

generate mutation proportion graphs across all 96 mutation types.

For expression analyses, genome-wide expression data were sourced from 

NCBI GEO (ht tps: / /www.ncbi .n lm.n ih.gov/geo/query/acc.cg i?

acc=GSE57353). Calculations were performed in Microsoft Excel, 

GraphPad Prism and R.

In comparing AGS to APOBEC3B-deficient breast cancers, a list of 

APOBEC3B-deficient breast cancers that were either homozygous or 

heterozygous for the deletion polymorphism were sourced from Nik-Zainal 

et al. Fold change in expression was calculated using (mean[APOBEC3B-

deficient cancers] + 0.5) / (mean[other cancers] + 0.5). The top 100 most 

highly upregulated and downregulated genes were subjected to PANTHER 

gene ontology analysis (http://geneontology.org/ Bonferroni-corrected p < 

0.05  in all cases).

The formula for the power calculation described in the discussion section of 

the third results chapter is given in Fundamentals of Biostatistics (Rosner 
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2015) and was calculated onl ine (ht tps: / /c l incalc.com/stats/

samplesize.aspx).
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Appendix II: Source data for Figure 3.1.2 and Figure 3.1.4

Data for Figure 3.1.2

HCT116 p53wt/wt

HCT116 p53-/-

Gene Cт

Actin 18.1869200 18.1861670 18.2038600 18.2162410 18.1765600 19.1906330

APOBEC3B 26.6181210 26.6370150 26.6245030 26.6083390 26.6049760 27.7152310

ORF1 21.1063140 21.1169680 21.1467510 21.1807040 21.1005630 22.4143990

ORF2 20.0205200 20.1320140 20.2348700 20.2413800 20.1797010 21.9087020

Gene Cт

Actin 19.6457920 19.6334560 19.6435290 19.6154890 19.6394770 20.7322300

APOBEC3B 26.5866430 26.5924870 26.6278490 26.6262300 26.5868570 27.8098110

ORF1 21.3268060 21.3677580 21.2921810 21.3419810 21.3143530 22.7420580

ORF2 20.4913540 20.3979280 20.3844020 20.4353870 20.4230400 21.8979140
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Data for Figure 3.1.4

Vehicle-treated

Nutlin-treated

Gene Cт

Actin 20.4789238 20.1745796 20.3936863 20.7767448 19.3506718 19.0721626

APOBEC3B 29.3181858 28.9162579 29.2849827 29.3563805 27.8790112 27.9372330

ORF1 19.9865799 19.9351368 20.6324806 20.7063961 19.4255810 19.7062817

ORF2 18.1295357 17.1355591 18.5711403 18.5403938 18.5849495 18.7065392

Gene Cт

Actin 20.3917580 20.1976242 20.9781837 20.9432907 31.4161415 30.8860035

APOBEC3B 29.1902618 29.6727200 30.1705303 30.1122952 37.0444832 36.4303093

ORF1 21.3118210 20.9966164 21.2331409 21.0229053 19.5149193 19.0666790

ORF2 19.4672661 19.2933865 19.4826813 19.3169899 16.8296909 16.9100800
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